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Preface

Biologic drug products are therapeutic moieties that are manufactured using 
a living system or organism. These are important life-saving drug products 
for patients with unmet medical needs. They also comprise a growing seg-
ment in the pharmaceutical industry. In 2007, for instance, worldwide sales 
of biological products reached $94 billion, accounting for about 15% of the 
pharmaceutical industry’s gross revenue. Meanwhile, many biological prod-
ucts face losing their patents in the next decade. Attempts have been made 
therefore to establish an abbreviated regulatory pathway for approval of 
biosimilar drug products, that is, follow-on (or subsequent entered) biologics 
of the innovator’s biological products in order to reduce cost. However, due 
to the complexity of the structures of biosimilar products and the nature of 
the manufacturing process, biological products differ from traditional small-
molecule (chemical) drug products. Although the concepts and principles for 
bioequivalence and interchangeability could be the same for both chemical 
generics and biosimilar products, scientific challenges remain for establish-
ing an abbreviated regulatory pathway for approval of biosimilar products 
due to their unique characteristics.

This book is intended to be the first book entirely devoted to the design and 
analysis of biosimilarity and drug interchangeability and includes tests for 
comparability in important quality attributes at critical stages of manufactur-
ing processes of biological products. It covers most of the statistical issues that 
one may encounter in biosimilar studies under various study designs at dif-
ferent stages of research and development of biological products. The goal of 
this book is to provide a useful desk reference and describe the state of the art 
to (1) scientists and researchers engaged in pharmaceutical/clinical research 
and development of biological products, (2) those in government regulatory 
agencies who have to make decisions in the review and approval process of 
biological regulatory submissions, and (3) biostatisticians who provide statis-
tical support to the assessment of biosimilarity and drug interchangeability 
of biosimilar products. I hope that this book can serve as a bridge among the 
pharmaceutical/biotechnology industry, government regulatory agencies, 
and academia.

The scope of this book is restricted to scientific factors and practical 
issues related to the design and analysis of biosimilar studies that are 
commonly seen in biosimilar research and development. Also, since reg-
ulatory requirements for assessment of biosimilar products between the 
European Medicines Agency (EMA) and the United States Food and Drug 
Administration (FDA) are similar but slightly different, this book primar-
ily focuses on regulatory requirements from FDA. The book contains 17 
chapters. Chapter 1 provides a background of pharmaceutical/clinical 
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development of biosimilar products and describes commonly seen scientific 
factors and practical issues in biosimilar clinical research and development. 
Chapter 2 reviews past experience for generic approval of small-molecule 
drug products. Chapter 3 summarizes regulatory requirements for assess-
ment of biosimilar products (or follow-on biologics) and includes a review 
of recently published FDA draft guidances on biosimilar products. Criteria 
for assessment of biosimilarity, which are available in the regulatory guid-
ances/guidelines and/or literature, are described in Chapter 4. Chapter 5 
introduces statistical methods for assessing average biosimilarity based 
on the concept of relative distance between a test product and a refer-
ence product as compared to the distance between the reference product 
and itself. Chapter 6 proposes a general approach based on biosimilarity 
index (reproducibility probability) for the assessment of biosimilar prod-
ucts. Chapter 7 explores the relationship between the concept of testing 
non-inferiority and testing for equivalence. Chapter 8 deals with statistical 
tests for assessment of biosimilarity in variability of biosimilar products. 
Formulas or procedures for sample size calculations for comparing vari-
abilities under a crossover design or a parallel design with or without rep-
licates are given in Chapter 9. Chapter 10 studies the impact of variability 
on biosimilarity limits for assessing biosimilar products. Chapter 11 inves-
tigates the feasibility/applicability of the assessment of interchangeability 
(in terms of the concepts of switching and alternating among biosimilar 
products) and describes useful study designs that address switching and/
or alternation in biosimilar studies. The issue of immunogenicity in bio-
similar studies is examined in Chapter 12. Chemistry, manufacturing, and 
control (CMC) requirements for biological products in regulatory submis-
sion are discussed in Chapter 13. Chapter 14 provides statistical methods 
for testing comparability of important quality attributes at various critical 
stages of a manufacturing process of biosimilar products. Stability design 
and analysis of biosimilar products are dealt with in Chapter 15. Chapter 16 
discusses statistical tests for assessment of biosimilarity using biomarker 
data. Current issues for assessing biosimilarity and interchangeability of 
biosimilar products are discussed in the Chapter 17.

From Taylor & Francis Group, I would like to thank David Grubbs for 
providing me the opportunity to work on this book. I wish to express my 
gratitude to my wife Annpey Pong, PhD, for her understanding, constant 
encouragement, and support during the preparation of this book. I thank 
Laszlo Endrenyi, PhD, of the University of Toronto for his constructive 
comments and editing, which have led to a significant improvement of the 
book. I would also like to thank colleagues from the Statistical Scientific 
Advisory Board (SSAB) on Biosimilars (sponsored by Amgen, Inc.), Amgen, 
Inc., the Department of Biostatistics and Bioinformatics, Duke Clinical 
Research Institute (DCRI), Duke Clinical Research Unit (DCRU), and the 
Center for AIDS Research (CFAR) of Duke University School of Medicine 
as well as many friends from academia, the pharmaceutical industry, and 
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regulatory agencies for their support and discussions during the prepara-
tion of this book.

Finally, the views expressed are those of the author and not necessarily 
those of Duke University School of Medicine. I am solely responsible for the 
contents and errors of this book. Any comments and suggestions will be 
very much appreciated.

Shein-Chung Chow, PhD

School of Medicine
Duke University 

Durham, North Carolina





1

1
Introduction

1.1  Background

In the United States (U.S.), for small-molecule drug products, when an inno-
vative (brand-name) drug product is going off patent, pharmaceutical and/or 
generic companies may file an abbreviated new drug application (ANDA) 
for the approval of the generic copies of the brand-name drug. In 1984, the 
United States Food and Drug Administration (FDA) was authorized to 
approve generic drug products under the Drug Price Competition and Patent 
Term Restoration Act, which is also known as the Hatch-Waxman Act. For the 
approval of generic (small-molecule) drug products, the FDA requires that 
evidence of average of bioavailability, which is measured in terms of the 
rate and extent of drug absorption, be provided through the conduct of bio-
equivalence studies. As indicated by Chow and Liu (2008), the assessment 
of bioequivalence as a surrogate for evaluation of drug safety and efficacy 
is based on the so-called Fundamental Bioequivalence Assumption that if two 
drug products are shown to be bioequivalent in average bioavailability, 
it is assumed that they will reach the same therapeutic effect or that they 
are therapeutically equivalent. Many practitioners interpret that approved 
generics and the brand-name drug can, in most cases, be used interchange-
ably since they are therapeutically equivalent. Under the Fundamental 
Bioequivalence Assumption, regulatory requirements (e.g., FDA guidances), 
study design (e.g., a standard two-sequence, two-period crossover design), 
acceptance criteria (e.g., the 80/125 rule based on log-transformed data), and 
statistical methods (e.g., Shuirmann’s two one-sided tests procedure or the 
confidence interval approach) for the assessment of bioequivalence have 
been well established over the past several decades (see, e.g., Schuirmann, 
1987; FDA, 2001, 2003; Chow and Liu, 2008).

Unlike small-molecule drug products, a generic version of a biological 
products is only a similar biological drug product (SBDP) in comparison with 
the originator biological product. It should be noted that the SBDPs are not 
like the small-molecule generic drug products, which are usually referred 
to as containing identical active ingredient(s) as the innovative drug product. 
The concept for the development of SBDPs, which are made of living cells or 
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organisms, is very different from that of the (small-molecule) generic drug 
products. The SBDPs are usually referred to as biosimilars by the European 
Medicines Agency (EMA) of the European Union (EU), follow-on biologics (FOB 
or FoB) by the U.S. FDA, and subsequent entered biologics (SEB) by the Health 
Canada. Throughout this book, unless otherwise stated, the term biosimi-
lars or follow-on biologics will be used. Note that experience with biosimilar 
development worldwide can be found in McCamish and Woollett (2011).

Webber (2007) defines follow-on (protein) biologics as products that are 
intended to be sufficiently similar to an approved product to permit the appli-
cant to rely on certain existing scientific knowledge about the safety and 
efficacy of an approved reference product. It should be noted that the generic 
(small-molecule) drug products are fundamentally different from biosimi-
lar (large-molecule) drug products. For example, biosimilar products are 
made of living cells and have heterogeneous structures (usually mixtures of 
related molecules) which are difficult to characterize. In addition, biosimilar 
products are often variable and sensitive to environmental conditions such 
as light and temperature. A small change or variation at any critical stage 
of a manufacturing process of a biological product could result in a drastic 
change in clinical outcomes. Thus, the current standard methods for bio-
equivalence assessment of generic drug products may not be appropriate for 
the assessment of biosimilar products due to these fundamental differences.

On March 23, 2010, the Biologics Price Competition and Innovation (BPCI) 
Act (as part of the Affordable Care Act) was written into law, which has 
given the FDA the authority to approve similar biological drug products. 
As indicated in the BPCI Act, a biosimilar product is defined as a product 
that is highly similar to the reference product notwithstanding minor differ-
ences in clinically inactive components and there are no clinically mean-
ingful differences in terms of safety, purity, and potency. However, little or 
no discussion regarding how similar is considered highly similar is given 
in the BPCI Act. As stated in Subsection 351(k)(4), a biological product is 
considered to be interchangeable with the reference product if (1) the biologi-
cal product is biosimilar to the reference product; and (2) it can be expected 
to produce the same clinical result in any given patient. In addition, for a 
biological product that is administered more than once to an individual, 
the risk in terms of safety or diminished efficacy of alternating or switch-
ing between use of the biological product and the reference product is not 
greater than the risk of using the reference product without such alternation 
or switch. Thus, by definition, there is a clear distinction between biosimi-
larity and interchangeability. In other words, biosimilarity does not imply 
interchangeability, which is much more stringent. The BPCI Act also states 
that if a test product is judged to be interchangeable with the reference prod-
uct, then it may be substituted, even alternated, without a possible interven-
tion, or even notification, of the health care provider. However, as noted 
earlier, interchangeability is expected to produce the same clinical result in 
any given patient, which can be interpreted as that the same clinical result 
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can be expected in every single patient. In reality, conceivably, lawsuits may 
be filed if adverse effects are recorded in a patient after switching from one 
product to another.

Following the passage of the BPCI Act, in order to obtain input on spe-
cific issues and challenges associated with the implementation of the BPCI 
Act, the U.S. FDA conducted a 2 day public hearing on the Approval Pathway 
for Biosimilar and Interchangeability Biological Products held on November 2–3, 
2010, at the FDA in Silver Spring, Maryland. Several scientific factors were 
raised and discussed at the public hearing. These scientific factors included 
criteria for assessing biosimilarity, study design and analysis methods for 
the assessment of biosimilarity, and tests for comparability in quality attri-
butes of the manufacturing process and/or immunogenicity (see, e.g., Chow 
et al., 2010). These issues primarily focused on the assessment of biosimilar-
ity. The issue of interchangeability in terms of the concepts of alternating 
and switching was also mentioned and discussed. The discussions of these 
scientific factors have led to the development of regulatory guidances. On 
February 9, 2012, the U.S. FDA circulated three draft guidances on the dem-
onstration of biosimilarity for comments. These draft guidances are

	 1.	Scientific Considerations in Demonstrating Biosimilarity to a 
Reference Product (FDA, 2012a)

	 2.	Quality Considerations in Demonstrating Biosimilarity to a 
Reference Protein Product (FDA, 2012b)

	 3.	Biosimilars: Questions and Answers Regarding Implementation of 
the BPCI Act of 2009 (FDA, 2012c)

Subsequently, the FDA hosted another public hearing on the discussion of 
these draft guidances at the FDA on May 11, 2012.

As patents of a number of biological products are due to expire in the next 
few years, the subsequent production of follow-on products has aroused 
interest within the pharmaceutical industry as biosimilar manufacturers 
strive to obtain part of an already large and rapidly growing market. The 
potential opportunity for price reductions versus the originator biological 
products remains to be determined, as the advantage of a slightly cheaper 
price may be outweighed by the hypothetical increased risk of side effects 
from biosimilar molecules that are not exact copies of their originators. In 
this chapter, we shall focus not only on the fundamental differences between 
small-molecule drug products and biological products but also on practical 
issues surrounding the assessment of biosimilar products, including scien-
tific factors on biosimilarity, drug interchangeability, quality, and compara-
bility in manufacturing process, and clinical efficacy and side effects.

The rest of this chapter is organized as follows. In the next section, fun-
damental differences between small-molecule drug products and biological 
drug products are briefly described. Section 1.3 provides a brief summary 
of the current regulatory requirements for the approval of biosimilars in the 
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European Union and the United States. The concepts and corresponding 
issues regarding biosimilarity, drug interchangeability, and the quality and 
comparability in the manufacturing process are discussed in Sections 1.4, 
1.5, and 1.6. Note that basic concepts and issues are briefly introduced here. 
These basic concepts and issues will be discussed in greater detail in later 
chapters. The aim and scope of the book are given in the last section of this 
chapter.

1.2  Fundamental Differences

Biosimilars are fundamentally different from small-molecule generic drugs. 
Some of the fundamental differences between biosimilars and generic 
drugs are summarized in Table 1.1. As can be seen from the table, for example, 
small-molecule drug products are made by chemical synthesis, while large-
molecule biologics are made of living cells or organisms. Small-molecule 
drug products have well-defined structures which are easy to characterize, 
while biosimilars have heterogeneous structures with mixtures of related 
molecules which are difficult to characterize. Small-molecule drug products 
are usually relatively stable, while biosimilars are known to be variable and 
very sensitive to environmental conditions such as light and temperature. 
A small change or variation during the manufacturing process may translate 
to a drastic change in clinical outcomes (e.g., safety and effectiveness). Small-
molecule drug products which are often taken orally are generally prescribed 
by general practitioners, while biosimilars which are usually injected are 
often prescribed by specialists. In addition, unlike small-molecule drug prod-
ucts, biosimilars may induce unwanted immune responses which may cause 
a loss of efficacy or change in their safety profile. Moreover, with differences 

TABLE 1.1

Fundamental Differences between Chemical Drugs and Biologics

Chemical Drugs Biologics

Made by chemical synthesis Made of living cells or organisms
Defined structure Heterogeneous structure

Mixtures of related molecules
Easy to characterize Difficult to characterize
Relatively stable Variable

Sensitive to environmental conditions 
such as light and temperature

No issue of immunogenicity Issue of immunogenicity
Usually taken orally Usually injected
Often prescribed by a general practitioner Usually prescribed by specialists
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in the size and complexity of the active substance, important differences also 
include the nature of the manufacturing process.

As indicated by Kuhlmann and Covic (2006), biological products are 
usually recombinant-protein molecules manufactured in living cells. Thus, 
manufacturing processes for biological products are highly complex and 
require hundreds of specific isolation and purification steps. As a result, in 
practice, it is impossible to produce an identical copy of a biological products, 
as changes to the structure of the molecule can occur with changes in the 
production process. Since a protein can be modified during the process (e.g., 
a side chain may be added, the structure may have changed due to protein 
misfolding, and so on), different manufacturing processes may lead to struc-
tural differences in the final product, which result in differences in efficacy 
and safety, and may have a negative impact on the immune responses of 
patients. It should be noted that these issues may also occur during the post-
approval changes of the innovator’s biological products.

Biosimilar products are not generic products since they are not identical to 
their originator products. Thus, biosimilars should not be brought to mar-
ket using the same procedure applied to generics. This is partly a reflec-
tion of the complexities of manufacturing and safety and efficacy controls 
of biosimilars when compared to their small-molecule generic counterparts 
(see, e.g., Chirino and Mire-Sluis, 2004; Schellekens, 2004; Crommelin et al., 
2005; Roger and Mikhail, 2007). Instead, for investigating biological products, 
including biosimilars, the state-of-the-art of analytical procedures should be 
applied.

1.3  Regulatory Requirements

For the approval of biosimilars in the EU community, the EMA has issued 
a new guideline describing general principles for the approval of similar 
biological medicinal products, or biosimilars. The guideline is accompanied 
by several concept papers that outline areas in which the agency intends to 
provide more targeted guidance (EMA, 2003a,b, 2006a–g). Specifically, the 
concept papers discuss approval requirements for several classes of human 
recombinant products containing erythropoietin, human growth hormone, 
granulocyte-colony stimulating factor, and insulin. The guideline consists 
of a checklist of documents published to date relevant to the data require-
ments for biological pharmaceuticals. It is not clear what specific scientific 
requirements will be applied to biosimilar applications. In addition, it is not 
clear how the agency will treat the innovator data contained in the dossiers 
of the reference product. The guideline provides a useful summary of the 
biosimilar legislation and previous EU publications, but it provides few 
answers to the issues.
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On the other hand, for the approval of follow-on biologics in the United 
States, its path depends on whether the biological products is approved 
under the United States Food, Drug, and Cosmetic Act (US FD&C) or if it 
is licensed under the United States Public Health Service Act (US PHS). As 
indicated, some proteins are licensed under the PHS Act, while some are 
approved under the FD&C Act. For products approved under a New Drug 
Application (NDA, under the US FD&C Act), generic versions of products 
can be approved under an ANDA, for example, under Section 505(b)(2) of 
the FD&C Act. For products that are licensed under a Biologics License 
Application (BLA, under the US PHS Act), there exists no abbreviated BLA. 
As pointed out by Woodcock et al. (2007), for the assessment of similarity of 
follow-on biologics, the FDA would consider the following factors:

	 1.	The robustness of the manufacturing process
	 2.	The degree to which structural similarity could be assessed
	 3.	The extent to which the mechanism of action was understood
	 4.	The existence of valid, mechanistically related pharmacodynamic 

(PD) assays
	 5.	Comparative pharmacokinetics (PK)
	 6.	Comparative immunogenicity
	 7.	The amount of available clinical data
	 8.	The extent of experience with the original product

A typical example would be the recent regulatory approval of Omnitrope 
(somatropin), which was approved in 2006 under Section 505(b)(2) of the 
FD&C Act. Omnitrope was approved based on the following evaluations:

	 1.	Physicochemical testing that established highly similar structure to 
Genotropin

	 2.	New non-clinical pharmacology and toxicology data specific to 
Omnitrope

	 3.	PK, PD, and comparative bioavailability data
	 4.	Clinical efficacy and safety data from comparative controlled trials 

and from long-term trials with Omnitrope
	 5.	Vast clinical experience and a wealth of published literature concern-

ing the clinical effects (safety and effectiveness) of human growth 
hormone

The approval of Omnitrope was based on an ad hoc, case-by-case review of an 
individual biosimilar application. In practice, there is a strong industrial inter-
est and desire for the regulatory agencies to develop review standards and an 
approval process for biosimilars instead of an ad hoc, case-by-case review of 
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individual biosimilar applications. For this purpose, the FDA has established 
three committees to ensure consistency in the FDA’s regulatory approach 
and guidance to applicants regarding development programs for proposed 
biosimilar biological products which are intended for submission under the 
new section 351(k) of the PHS Act. The three committees involve the two cen-
ters of FDA which actively review submissions on new biosimilars: the Center 
for Drug Evaluation and Research (CDER) and the Center for Biologics 
Evaluation and Research (CBER). The committees to review applications for 
biosimilars are the CDER/CBER Biosimilar Implementation Committee (BIC), 
the CDER Biosimilar Review Committee (BRC), and the CBER Biosimilar 
Review Committee. The CDER/CBER BIC will focus on the cross-center 
policy issues related to the implementation of the BPCI Act. The CDER BRC 
and CBER BRC committees are responsible for considering applicant requests 
for advice about proposed development programs for biosimilar products, 
reviewing Biologic License Applications (BLAs) that are submitted under sec-
tion 351(k) of the PHS Act, and managing related issues. Thus, the CDER BRC 
(CBER BRC) review process steps include the following:

	 1.	An applicant submits a request for advice.
	 2.	 Internal review team meeting.
	 3.	 Internal CDER BRC (or CBER BRC) meeting.
	 4.	 Internal post-BRC meeting.
	 5.	CDER (CBER) meeting with the applicant.

As mentioned earlier, the FDA has circulated, on February 9, 2012, three draft 
guidances on the assessment of biosimilar products. The first draft guidance 
regarding scientific considerations is intended to assist sponsors in demon-
strating that a proposed therapeutic protein product is biosimilar to a refer-
ence product for the purpose of a submission for a marketing application 
under section 351(k) of the PHS Act. The second draft guidance on quality 
considerations describes the Agency’s current thinking on the factors to con-
sider when demonstrating that a proposed protein product is highly simi-
lar to a reference product. Specifically, the guidance is intended to provide 
recommendations to applicants on scientific and technical information on 
the chemistry, manufacturing, and controls (CMC) section of a marketing 
application for a proposed biosimilar product. The third draft guidance pro-
vides answers to common questions from sponsors interested in developing 
proposed biosimilar products, biologics license application (BLA) holders, 
and other interested parties regarding FDA’s interpretation of the BPCI Act.

It should be noted that the three draft guidances do not describe the FDA’s 
current position on drug interchangeability. In order to obtain public input 
and comments on the draft guidances and drug interchangeability, the FDA 
also hosted a public hearing at FDA on May 11, 2012. The thinking on drug 
interchangeability in terms of the concepts of switching and alternating was 
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explored while some useful study designs and statistical methods were pro-
posed and discussed at the public hearing. More details regarding individual 
regulatory requirements for assessing biosimilarity of biosimilar products 
from the EU, the United States, and Japan and a discussion regarding the 
comparison and harmonization of these regulatory requirements are given 
in Chapter 3.

1.4  Biosimilarity

1.4.1  Definition and Basic Principles

As indicated earlier, the BPCI Act defines a biosimilar product as a product 
that is highly similar to the reference product, notwithstanding minor dif-
ferences in clinically inactive components. There are no clinically meaning-
ful differences between a biosimilar and an originator biological product 
in terms of safety, purity, and potency. Based on this definition, we would 
interpret that a biological medicine is biosimilar to a reference biological 
medicine if it is highly similar to the reference in safety, purity, and potency. 
Here purity may be related to some important quality attributes at critical 
stages of the manufacturing process, and potency has something to do 
with the stability and efficacy of the biosimilar product. However, little or no 
discussion regarding how similar is considered highly similar (or how close 
is considered sufficiently close) was mentioned in the BPCI Act.

The BPCI Act seems to suggest that a biosimilar product should be highly 
similar (sufficiently close) to the reference drug product in all spectrums of 
good drug characteristics such as identity, strength (potency), quality, purity, 
safety, and stability as described in the U.S. Pharmacopeia and National 
Formulary (see, e.g., USP/NF, 2000). In practice, however, it is almost impossi-
ble to demonstrate that a biosimilar product is highly similar to the reference 
product in all aspects of good drug characteristics in a single study. Thus, to 
ensure that a biosimilar product is highly similar to the reference product in 
terms of these good drug characteristics, different biosimilar studies may be 
required. For example, if safety and efficacy are the concern, then a clinical 
trial must be conducted to demonstrate that there are no clinically meaning-
ful differences in terms of safety and efficacy between a biosimilar product 
and the innovator biological product. On the other hand, to ensure that 
important quality attributes are highly similar, critical stages of the manu-
facturing process, assay development/validation, process control/validation, 
and product specification of the reference product should be necessarily 
established through the conduct of relevant studies. In addition, studies need 
to be conducted for testing the comparability in the manufacturing process 
(raw materials, in-use materials, and end-product) between the biosimilars 
and the reference product. This is extremely important because biological 
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products are known to be sensitive to small changes or variations in envi-
ronmental factors such as light and temperature, during the manufacturing 
process. In some cases, if a surrogate endpoint such as PK, PD, or a genomic 
marker is predictive of the primary efficacy/safety clinical endpoint, then a 
PK/PD or genomic study may be used to assess biosimilarity.

The current regulatory requirements are guided on a case-by-case basis by 
the following basic principles:

	 1.	The extent of the physicochemical and biological characterization of 
the product

	 2.	The nature or possible changes in the quality and structure of the 
biological product due the changes in the manufacturing process 
(and their unexpected outcomes)

	 3.	Clinical/regulatory experiences with the particular class of the 
product in question

	 4.	Several factors that need to be considered for biocomparability

Most recently, in its recent draft guidance on Scientific Considerations in 
Demonstrating Biosimilarity to a Reference Product, the FDA has suggested that 
considerations and reviews of biosimilarity should be based on the totality-
of-the-evidence. This indicates that the FDA is interested in demonstrating 
global similarity in all aspects related to safety, purity, and potency of the 
biosimilar products.

1.4.2  Criteria for Bioequivalence/Biosimilarity

The BPCI Act defines a biosimilar product as a biological product that is 
highly similar to the reference drug product. However, no criteria for assess-
ing biosimilarity were mentioned in the Act. Statistically, one could refer to 
as similarity between two drug products as similarity in average, variability, 
or distribution of the response of a specific study endpoint of interest. In 
practice, the assessment of similarity in the average of the response of a spe-
cific study endpoint is often considered. A typical example is the assessment 
of average bioequivalence in terms of drug absorption (which is measured 
by the study endpoint of area under the blood or plasma concentration time 
curve or maximum concentration) for the regulatory approval of generic 
drug products. In this book, unless otherwise stated, we shall focus on the 
biosimilarity in the average response of the study endpoint of interest in a 
given biosimilar study. More details regarding the bioequivalence experi-
ence for small-molecule drug products are discussed in the next chapter.

In practice, the terms of biosimilarity (similarity), bioequivalence (equiv-
alence), comparability, biocomparability, and consistency are alternately 
used in biopharmaceutical/biotechnology research and development. For 
comparisons between drug products, some criteria for the assessment of 
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bioequivalence (e.g., the comparison of drug absorption profiles), similarity 
(e.g., the comparison of dissolution profiles), and comparability or consis-
tency (e.g., comparisons between manufacturing processes) are available in 
either regulatory guidelines/guidances or the literature. These criteria, how-
ever, can be classified into the following categories:

	 1.	Absolute change versus relative change
	 2.	Aggregated versus disaggregated criteria
	 3.	Moment-based versus probability-based criteria
	 4.	Scaled versus unscaled criteria
	 5.	Weighted versus unweighted criteria

In what follows, these categories of criteria are briefly reviewed. While 
the criteria have been applied to bioequivalence studies, they are equally 
relevant to investigations of biosimilarity.

1.4.2.1  Absolute Change versus Relative Change

In clinical research and development, for a given study endpoint, post-
treatment absolute change from baseline or post-treatment relative change 
(% change) from a baseline is usually considered for comparisons between 
treatment groups. A typical example would be the study of weight reduction 
in an obese patient population. In practice, it is not clear whether a clinically 
meaningful difference in terms of absolute change from the baseline can be 
translated to a clinically meaningful difference in terms of relative change 
from the baseline. Sample size calculations based on power analysis in terms 
of absolute change from the baseline or relative change from the baseline 
could lead to a very different result.

For generic approval, current U.S. regulation adopts a one size-fits-all 
criterion based on relative change for bioequivalence assessment. In other 
words, we conclude (average) bioequivalence between a test product and a 
reference product if the 90% confidence interval for the ratio of geometric 
means of the primary endpoint (e.g., a PK response such as the area under 
the blood or plasma concentration time curve) between the two drug prod-
ucts is (in%) completely within 80% and 125%. Note that regulatory agencies 
suggest that a log-transformation be performed before data analysis for the 
assessment of bioequivalence.

1.4.2.2  Aggregated versus Disaggregated Criteria

As indicated by Chow and Liu (2008), bioequivalence can be assessed by 
evaluating differences, separately, in averages, intra-subject variabilities, 
and variance due to subject-by-formulation interaction between drug 
products. Individual criteria for the assessment of differences in averages, 
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intra-subject variabilities, and variance due to subject-by-formulation inter-
action are referred to as disaggregated criteria. If the criterion is a single 
summary measure composed of these individual criteria, it is called an 
aggregated criterion.

For the assessment of bioequivalence in average bioavailability (ABE), 
most regulatory agencies recommend the use of a disaggregated criterion 
based on average bioavailability. That is, bioequivalence is concluded if the 
average bioavailability of the test formulation is within (80%, 125%) that of 
the reference formulation, with a certain assurance. Note that the EMA (2001) 
and WHO (2005) use the same equivalence criterion of 80%–125% for the 
log-transformed PK responses such as the area under the blood or plasma 
concentration time curve (AUC).

Aggregated criteria for population bioequivalence (PBE) and individual 
bioequivalence (IBE) were presented in an FDA guidance (FDA, 2001). PBE 
and IBE will be discussed in greater detail in Chapter 4. It is noted here only 
that both procedures rely on aggregated criteria. PBE evaluates jointly the 
differences between the means and between the total variances of the two 
drug products. (Total variances are the sums of the between- and within-
subject variances.) Similarly, IBE assesses jointly the differences between the 
means and between the intra-subject variances as well as the variance com-
ponent of the subject-by-product interaction (FDA, 2001). These examples of 
aggregated criteria will be considered later.

For aggregated criteria, the FDA proposes the use of an individual bio-
equivalence (IBE) criterion (IBC) for addressing drug switchability and 
population bioequivalence (PBE) criterion (PBC) for addressing drug pre-
scribability (FDA, 2001). For the assessment of IBE, the IBC, denoted by θI, 
can be expressed as

	
θ δ σ σ σ

σ σI
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W WR
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(1.1)

where
δ = μT − μR, σ σ σWT WR D

2 2 2, ,  are the true differences between means, the intra-
subject (within-subject) variabilities of the test product and the reference 
product, and the variance component due to subject-by-formulation 
interaction between drug products, respectively

σW 0
2  is a scale parameter specified by the user

Similarly, the PBC for the assessment of PBE, denoted by θP, suggested in the 
FDA guidance (FDA, 2001) is given by
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where
σ σTT TR

2 2,  are the total variances for the test product and the reference prod-
uct, respectively

σT0
2  is a scale parameter specified by the user

A typical approach is to construct a one-sided 95% confidence interval for 
θI(θP) for the assessment of individual (population) bioequivalence. If the 
one-sided 95% upper confidence limit is less than the bioequivalence limit 
of θI(θP), we then conclude that the test product is bioequivalent to that of the 
reference product in terms of individual (population) bioequivalence. More 
details regarding individual and PBE can be found in Chow and Liu (2008).

1.4.2.3  Moment-Based versus Probability-Based Criteria

Schall and Luus (1993) proposed the moment-based and probability-based 
measures for the expected discrepancy in PK responses between drug prod-
ucts. The moment-based measure compares the expectation of the (squared) 
difference between responses of the test and reference products (T versus R) 
with that of the (squared) difference between two administrations of the ref-
erence formulation (R versus R′). The probability-based approach makes the 
same comparison but utilizes the probabilities for occurrence of such differ-
ences. Details of the approaches will be provided in Chapter 4. The moment-
based measure suggested by Schall and Luus (1993) is based on the following 
expected mean-squared differences:
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For some pre-specified positive number r, one of the probability-based 
measures for the expected discrepancy is given as (Schall and Luus, 1993)
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(1.4)

d(YT; YR) measures the expected discrepancy for some PK metric between the 
test and reference formulations, and d Y YR R( ; )′  provides the expected discrep-
ancy between the repeated administrations of the reference formulation. The 
role of d Y YR R( ; )′  in the formulation of the bioequivalence criteria is to serve 
as a control. The rationale is that the reference formulation should be bio-
equivalent to itself. Therefore, for the moment-based measures, if the test for-
mulation is indeed bioequivalent to the reference formulation, then d(YT; YR) 
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should be very close to d Y YR R( ; ).′  It follows that if the criteria are functions 
of the difference (or ratio) between d(YT; YR) and d Y YR R( ; ),′  bioequivalence 
is concluded if they are smaller than some pre-specified limit. On the other 
hand, for probability-based measures, if the test formulation is indeed 
bioequivalent to the reference formulation, as measured by d Y YR R( ; ),′  then 
comparison d(YT; YR) should not be much larger. As a result, bioequivalence 
is concluded if the criterion based on the probability-based measure is larger 
than some pre-specified limit.

Chow et al. (2010) compared the moment-based criterion with the 
probability-based criterion for the assessment of bioequivalence or biosimi-
larity under a parallel group design. The results indicate that the probability-
based criterion is not only much more stringent but also sensitive to small 
changes in variability. This justifies the use of the probability-based criterion 
for the assessment of biosimilarity if a certain level of precision and reliabil-
ity of biosimilarity is desired.

1.4.2.4  Scaled versus Unscaled Criteria

Scaled criteria are usually referred to as criteria that are adjusted for the 
intra-subject variability of the reference product or for the therapeutic index. 
For example, the IBC criterion, to be discussed in Chapter 4, is adjusted, 
depending on the circumstances, either for a constant variance or for the 
within-subject variability. The PBC criterion is adjusted correspondingly and 
thereby becomes also a scaled criterion. Scaled criteria adjusting for the vari-
ability of the reference product do not penalize good generic or biosimilar 
products having smaller variability.

As indicated by the FDA, a drug product is considered a highly variable 
drug if its intra-subject coefficient of variation (CV) is higher than or equal 
to 30%. It should be noted that, by applying the regulatory criterion for aver-
age BE, it may be difficult to demonstrate bioequivalence or biosimilarity 
between highly variable test and reference drug products. Alternatively, 
Haidar et al. (2008) described a procedure using scaled average bioequiva-
lence (SABE) for the assessment of bioequivalence for highly variable drug 
products. The procedure has been, in effect, adopted by the FDA for bio-
equivalence assessment of highly variable drug products. As a result, SABE 
has attracted much attention for possible application for the assessment of 
biosimilarity of follow-on biologics since biological products are usually 
highly variable.

1.4.2.5  Weighted versus Unweighted Criteria

Weighted criteria are aggregated criteria with different weights of each com-
ponent (e.g., of the difference between means and of the variance compo-
nents). For example, the three components of IBE (the difference between 
the means, the difference between the within-subject variances, and the 
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variance component for the subject-by-product interaction) may be consid-
ered to have differing weights. However, this could further complicate an 
already complicated criterion. In practice, it is a challenging question to select 
an appropriate weight for each component, which will then have an impact 
on the assessment of bioequivalence or biosimilarity. Besides, it is difficult 
to interpret the selected weights for each component since there are mask-
ing effects among differences in means and variance components (Chow, 
1999). Note that assessments of biosimilarity assessments are based on the 
totality-of-the-evidence. The FDA seems to suggest a weighted criterion or 
weighted scoring system (across different functional areas or domains) for 
global similarity.

In summary, for the assessment of bioequivalence of small-molecule 
drug products, the FDA recommends aggregated, moment-based, scaled, 
and unweighted criteria based on relative change. This has led to SABE 
for average bioequivalence of highly variable drug products and also, ear-
lier, to the criteria for IBE and PBE. For the assessment of biosimilarity, on 
the other hand, Chow et al. (2010) suggested a disaggregated, probability-
based, scaled, and weighted criterion based on relative distance (the distance 
between “T versus R” and “R versus R”) being considered. This has led to 
the development of the (totality) biosimilarity index for the assessment of 
biosimilarity and drug interchangeability, which are further discussed in 
Chapter 6 (biosimilarity) and Chapter 11 (interchangeability).

1.4.3  Biosimilarity versus Non-inferiority

As indicated in the 2012 FDA draft guidance on Scientific Considerations 
in Demonstrating Biosimilarity to a Reference Product, in some cases, a one-
sided test (non-inferiority design) may be appropriate for comparing safety 
and effectiveness and also advantageous as it could generally allow for a 
smaller sample size than an equivalence (two-sided) design (see, e.g., Chow 
et al., 2008). The FDA draft guidance provided the following example. If 
doses of the reference product higher than those recommended in its label-
ing do not create safety concerns, then a one-sided test may be sufficient 
for comparing the efficacy of certain protein products. The FDA draft 
guidance indicated that it is generally important to demonstrate that a pro-
posed product has no more risk in terms of safety and immunogenicity 
than the reference product. For this purpose, a one-sided test may also 
be adequate in a clinical study which evaluates immunogenicity or other 
safety endpoints, as long as it is clear that lower immunogenic or other 
adverse events would not have implications for the effectiveness of a pro-
tein product. For a non-inferiority design, the FDA draft guidance indi-
cated that a non-inferiority margin should be pre-specified with scientific 
justification.

The approaches of non-inferiority, superiority, equivalence, and similarity 
will be presented in detail in Chapter 7.
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Statistically, testing for non-inferiority includes testing for equivalence 
and testing for superiority. In practice, we may test for equivalence or test 
for superiority once the non-inferiority has been established. Thus, non-
inferiority does not imply equivalence. It should be noted that testing for 
non-inferiority/superiority is often employed based on a one-sided test pro-
cedure at the 5% level of significance, which is equivalent to a two-sided test 
procedure at the 10% level of significance. In practice, it is suggested that a 
one-sided test procedure at the 2.5% level of significance should be applied 
for testing non-inferiority; it is equivalent to a two-sided test procedure at 
the 5% level of significance. Similarly, testing for superiority includes test-
ing for equivalence and testing for non-inferiority. In other words, we may 
test for equivalence or test for non-inferiority if we fail to reject the null 
hypothesis of non-superiority. It should also be noted that superiority does 
not imply equivalence. In practice, it is also suggested that a one-sided test 
procedure at the 2.5% level of significance, which is equivalent to a two-
sided test procedure at the 5% level of significance, should be used for test-
ing superiority.

Since non-inferiority is regarded as one-sided equivalence, we may con-
sider establishing non-inferiority first and then test for non-superiority for the 
assessment of biosimilarity by utilizing the concept of asymmetric equiva-
lence limits (α). This proposal deals with distinct values of α1 and α2 rather 
than α1 = α2. This enables us to adopt flexible biosimilarity criteria. However, 
the selection of the non-inferiority margin and the choices of α1 and α2 are 
controversial issues. Consideration of spending functions could be helpful. 
In any case, consensus among the regulatory agency, pharmaceutical/
biotechnology industry, and academia should be reached based on appropri-
ate and valid scientific/statistical justification. More details regarding testing 
for non-inferiority versus testing for equivalence or similarity are given in 
Chapter 7.

1.4.4  Practical Issues

In practice, the following questions are often asked when assessing biosimi-
larity between biosimilars and an innovative drug product.

How similar is considered highly similar?—Current criteria for assessment of bio-
equivalence may, in some cases, be useful for determining whether a biosim-
ilar product is similar to a reference product. However, they do not provide 
additional information regarding the degree of similarity. As indicated in the 
BPCI Act, a biosimilar product is defined as a product that is highly similar to 
the reference product. However, little or no discussion regarding the degree 
of similarity for achieving highly similar was provided. It may well be that, in 
addition to the demonstration of similarity, on the average, of a study end-
point, demonstration of similarity in variability of a study endpoint should 
also be considered for achieving highly similar as defined in the BPCI Act.
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What criteria should be used for assessing biosimilarity?—As indicated earlier, 
several criteria for the assessment of similarity are available in the published 
regulatory guidelines/guidances and the literature. The question regarding 
what criteria should be considered for assessing biosimilarity has become 
interesting. However, no systematic comparisons have been undertaken 
among these criteria in terms of their relative advantages and limitations. In 
practice, it is of interest to investigate

	 1.	Whether these criteria will lead to the same conclusion?
	 2.	Which criterion is superior (or more efficient) in comparison with 

others for a fixed sample size?
	 3.	Can these criteria translate to one another?
	 4.	Which criterion is telling the truth?

Further research is needed in order to address these questions.

Is a one-size-fits-all criterion feasible?—The use of one size-fits-all criterion for 
bioequivalence assessment has been criticized in the past several decades. 
The major-criticism is that it ignores the variability associated with the 
response. In practice, it would be difficult, if not impossible, to demon-
strate, with the usual criterion for average bioequivalence, that a test prod-
uct is bioequivalent to a reference product if the reference product is highly 
variable. The one size-fits-all criterion is also criticized for penalizing good 
products having lower variability. Thus, it has been suggested that the one-
fits-all criterion be flexible by adjusting for the intra-subject variability of 
the reference product and/or the therapeutic window whenever possible. 
This has led to the approach of the SABE criterion which can be applied to 
the assessment of bioequivalence for highly variable drug products. Since 
most biological products are considered highly variable, the application 
of SABE for assessment of biosimilar products is being studied (see, e.g., 
Zhang et al., 2013).

Should similarity in variability or distribution of response be considered?—As 
discussed earlier, the one size-fits-all criterion, based on the average response 
of the study endpoint, suffers from the following disadvantages:

	 1.	 It ignores the variability associated with the response
	 2.	 It may penalize good products with lower variability

The use of SABE for highly variable drugs is an attempt to fix the problem. 
In practice, it is of interest to establish similarity in variability or distribution 
for the response of the study endpoint for achieving the ultimate goal of high 
similarity (see, e.g., Chow and Liu, 2010). For this purpose, many authors 
have explored the potential application of IBE or PBE to assess biosimilarity 
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(see, e.g., Hsieh et al., 2010). Hsieh et al. (2010) suggested that the similarity 
in variability of the response of the study endpoint be evaluated because the 
assessment of similarity in variability is more stringent than that for assess-
ing the biosimilarity in average and, consequently, a higher degree of simi-
larity can be achieved.

What endpoints should be used for the assessment of biosimilarity?—As indi-
cated in the BPCI Act, a biosimilar product should not only be highly 
similar to that of a reference product but also there should be no clini-
cally meaningful differences in terms of the drug characteristics of safety, 
purity, and potency. Thus, an easy answer to this question would depend 
upon which good drug characteristics one would like to show high simi-
larity. For example, if we are to show that there are no clinically mean-
ingful differences in terms of safety and potency (efficacy), then clinical 
endpoints for safety and efficacy should be used for the assessment of 
biosimilarity.

Should a clinical trial always be conducted?—If one would like to show that the 
safety and efficacy of a biosimilar product are highly similar to those of the 
reference product, then a clinical trial may be required. In some cases, clini-
cal trials for the assessment of biosimilarity may be waived if there is sub-
stantial evidence that surrogate endpoints or biomarkers are predictive of 
the clinical outcomes. On the other hand, clinical trials are required for the 
assessment of drug interchangeability in order to show that the safety and 
efficacy between a biosimilar product and a reference product are similar 
in any given patient of the patient population under study.

What if a biosimilar product turns out to be superior to the reference product?—It 
should be noted that superiority (including both statistical superiority and 
clinical superiority) is not biosimilarity. Thus, if a biosimilar product has 
been shown to be superior to the reference product, then it is suggested that 
it should be considered as a new biological product. Thus, it is a controversial 
issue that a biosimilar product should go through the lengthy regulatory 
review/approval process for similar indications if it is shown to be superior 
to the innovative product.

Is there a unified approach for the assessment of biosimilarity?—Chow et al. (2010) 
proposed a unified approach, which is referred to as the biosimilarity index, 
for the assessment of biosimilarity. The method of biosimilarity index is 
robust with respect to criteria for biosimilarity and the study design used. 
The proposed biosimilarity index can be extended to a totality biosimilar-
ity index, which can be used to provide the totality-of-the-evidence across 
functional areas or domains for the assessment of biosimilarity as suggested 
in the FDA draft guidance on scientific considerations. More details regard-
ing the development and application of the biosimilarity index for assessing 
biosimilarity can be found in Chapter 6.
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1.5  Interchangeability of Biological Drug Products

As indicated in the Public Health Act Subsection 351(k)(4), that is, in 
Subsection (k)(4) of the BPCI Act, the term interchangeable or interchangeability 
in reference to a biological product means that the biological product may be 
substituted for the reference product without the intervention of the health 
care provider who prescribed the reference product. Along this line, in what 
follows, the definition and basic concepts of interchangeability (in terms of 
switching and alternating) are given.

1.5.1  Definition and Basic Concepts

As stated in the Public Health Act Subsection 351(k)(4), a biological product is 
considered to be interchangeable with the reference product if (1) the biologi-
cal product is biosimilar to the reference product, and (2) it can be expected 
to produce the same clinical result in any given patient. In addition, for a bio-
logical product that is administered more than once to an individual, the risk 
in terms of safety or diminished efficacy of alternating or switching between 
use of the biological product and the reference product is not greater than the 
risk of using the reference product without such alternation or switch.

Thus, by the definition of the BPCI Act, there is a clear distinction between 
biosimilarity and interchangeability. In other words, biosimilarity does not 
imply interchangeability which is much more stringent. According to the 
BPCI Act, if a test product is judged to be interchangeable with the refer-
ence product, then it may be substituted, even alternated, without a possi-
ble intervention, or even notification, of the health care provider. However, 
interchangeability is expected to produce the same clinical result in any given 
patient, which can be interpreted as expecting the same clinical result in 
every single patient. In reality, conceivably, lawsuits may be filed if adverse 
effects are recorded in a patient after switching from one product to another.

It should be noted that when the FDA declares the biosimilarity of two drug 
products, it may not be assumed that they are interchangeable. Therefore, 
labels ought to state whether for a follow-on biologic which is biosimilar 
to a reference product, interchangeability has or has not been established. 
However, payers and physicians may, in some cases, switch products even if 
interchangeability has not been established.

1.5.2  Switching and Alternating

Unlike the interchangeability of small-molecule drug products (in terms of 
prescribability and switchability) (Chow and Liu, 2008), the FDA has slight 
perception of drug interchangeability for biosimilars. From the FDA’s per-
spective, interchangeability includes the concepts of switching and alter-
nating between an innovative biological products (R) and its follow-on 
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biologics (T). The concept of switching involves the switch from not only 
“R to T” or “T to R” (narrow sense of switchability) but also “T to T” and 
“R  to  R” (broader sense of switchability). As a result, in order to assess 
switching, biosimilarity for “R to T,” “T to R,” “T to T,” and “R to R” needs to 
be assessed based on some biosimilarity criteria under a valid study design.

On the other hand, the concept of alternating is referred to as either the 
switch from T to R and then switch back to T (i.e., “T to R to T”) or the switch 
from R to T and then switch back to R (i.e., “R to T to R”). Thus, the difference 
between “the switch from T to R” or “the switch from R to T” and “the switch 
from R to T” or “the switch from T to R” needs to be assessed for addressing 
the concept of alternating.

1.5.3  Study Design

For the assessment of bioequivalence for chemical drug products, a standard 
two-sequence, two-period (2 × 2) crossover design is often considered, except 
for drug products with relatively long half-lives. Since most biosimilar prod-
ucts have relatively long half-lives, it is suggested that a parallel-group 
design should be considered. However, the parallel-group design does not 
provide independent estimates of variance components such as inter-subject 
and intra-subject variabilities and the variability due to subject-by-product 
interaction. Thus, it is a major challenge for assessing biosimilarity and 
interchangeability (in terms of the concepts of switching and alternating) of 
biosimilar products under parallel-group designs.

For the assessment of switching, a switching design should allow the 
assessment of biosimilarity for the switch from “R to T,” “T to R,” “T to T,” 
and “R to R” in order to determine whether there is a risk when a switch 
occurs. For this purpose, Balaam’s 4 × 2 crossover design, that is, TT, RR, TR, 
RT, may be useful. Similarly, for addressing the concept of alternating, a two-
sequence, three-period dual design, that is, TRT, RTR, may be useful since 
the designs allow the assessment of the switch from T to R and then back 
to T, that is, “T to R to T” and from R to T and then back to R, that is, “R to 
T to R.” For addressing both concepts of switching and alternating for drug 
interchangeability of biosimilars, a modified Balaam’s crossover design, that 
is, TT, RR, TRT, RTR, is recommended.

More details and further discussions regarding the design and analysis of 
drug interchangeability in terms of switching and alternating are given in 
Chapter 11.

1.5.4  Remarks

With small-molecule drug products, bioequivalence generally reflects thera-
peutic equivalence. Drug prescribability, switching, and alternating are gen-
erally considered reasonable. With biological products, however, variations 
are often higher (other than PK factors may be sensitive to small changes 
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in conditions). Thus, often only parallel-group design rather than crossover 
kinetic studies can be performed. It should be noted that very often, with 
follow-on biologics, biosimilarity does not reflect therapeutic comparability. 
Therefore, switching and alternating should be pursued with extreme 
caution.

1.6  Scientific Factors

Following the passage of the BPCI Act, in order to obtain input on specific 
issues and challenges associated with the implementation of the BPCI Act, 
the U.S. FDA conducted a 2 day public hearing on the Approval Pathway for 
Biosimilar and Interchangeability Biological Products held on November 2–3, 
2010, at the FDA in Silver Spring, Maryland, United States. In what follows, 
some of the scientific factors and practical issues are addressed.

1.6.1  Fundamental Biosimilarity Assumption

Similar to the Fundamental Bioequivalence Assumption for the assessment 
of bioequivalence, Chow et al. (2010) proposed the following Fundamental 
Biosimilarity Assumption for follow-on biologics:

When a biosimilar product is claimed to be biosimilar to an innovator’s product 
based on some well-defined product characteristics, it is therapeutically equiva-
lent, provided that the well-defined product characteristics are validated and are 
reliable predictors of safety and efficacy of the products.

For the chemical generic products, the well-defined product character-
istics are the exposure measures for early, peak, and total portions of the 
concentration–time curve. The Fundamental Bioequivalence Assumption 
assumes that equivalence in the exposure measures implies therapeutical 
equivalence. However, due to the complexity of the biosimilar drug prod-
ucts, one has to verify that some validated product characteristics are indeed 
reliable predictors of safety and efficacy. It follows that the design and analy-
sis of studies for the evaluation of similarity between a biosimilar drug prod-
uct and an innovator product are substantially different from those for the 
chemical generic products.

1.6.2  Consistency in Manufacturing Process/Quality Control

Tse et al. (2006) proposed a statistical quality control (QC) method to assess 
a proposed index to test the consistency between raw materials (which are 
from different resources) and/or between final products manufactured by 
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different manufacturing processes. The consistency index is defined as the 
probability that the ratio of the characteristics (e.g., potency) of the drug 
products produced by two different manufacturing processes is within a 
pre-specified limit of consistency. The consistency index close to 1 indicates 
that the characteristics of the drug products from the two manufacturing 
processes are almost identical. The idea for testing consistency is to construct 
a 95% confidence interval for the proposed consistency index under a sam-
pling plan. If the constructed 95% confidence lower limit is larger than a pre-
specified QC lower limit, then we claim that the final products produced by 
the two manufacturing processes are consistent.

Let U and W be characteristics of the drug products from two different 
manufacturing processes, where X = log U and Y = log W follow normal dis-
tributions with means μX, μY and variances VX, VY, respectively. Similar to 
the idea of using P(X < Y) to assess reliability in statistical QC (Church and 
Harris, 1970; Enis and Geisser, 1971), Tse et al. (2006) proposed the following 
probability as an index to assess the consistency between the two different 
manufacturing processes:
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where 0 < δ < 1 and is defined as a limit that allows for consistency. Tse et al. 
(2006) refer to p as the consistency index. Thus p tends to 1 as δ tends to 1. For 
a given δ, if p is close to 1, characteristics U and W are considered to be nearly 
identical. It should be noted that a small δ implies the requirement of high 
degree of consistency between the characteristics U and W. In practice, it may 
be difficult to meet this narrow specification for consistency. Tse et al. (2006) 
proposed the following QC criterion. If the probability that the lower limit 
LL(p̂) of the constructed (1 − α) × 100% confidence interval of p is larger than 
or equal to a pre-specified QC lower limit, say, QCL, exceeds a pre-specified 
number β (say β = 80%), then we claim that U and W are consistent or simi-
lar. In other words, U and W are consistent or similar if P QC LL pL( ( )) ,≤ ≥ˆ β  
where β is a pre-specified constant.

1.6.3  Biosimilarity in Biological Activity

Pharmacological or biological activity is an expression describing the benefi-
cial or adverse effects of a drug on living matter. When the drug is a complex 
chemical mixture, this activity is exerted by the substance’s active ingredient 
or pharmacophore but can be modified by the other constituents. The main 
kind of adverse biological activity is a substance’s toxicity. Activity is gener-
ally dosage-dependent and it is not uncommon to have effects ranging from 
beneficial to adverse for one substance when going from low to high doses. 
Activity depends critically on the fulfillment of the ADME (absorption, 
distribution, metabolism, and elimination) criteria.
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Biosimilarity refers to comparisons between a reference product and a 
biosimilar product (the new EU “pharmaceutical review” legislation pub-
lished on April 30, 2004, amended the EU community code on medicinal 
products to provide for the approval of biosimilars based on fewer preclinical 
and clinical data than had been required for the original reference product.)

The complexity of the protein and knowledge of its structure–function rela-
tionships determine the types of information needed to establish similarity.

1.6.4  Similarity in Size and Structure

In practice, various in vitro tests such as the assessments of the primary 
amino acid sequence, charge, and hydrophobic properties are performed 
to compare the structural aspects of biosimilars with their originator mole-
cules. However, it is a concern whether in vitro tests can be predictive of bio-
logical activity in vivo due to the fact that there are significant differences in 
biological activity despite similarities in size and structure. Besides, it is dif-
ficult to assess biological activity adequately as few animal models are able 
to provide data that can be extrapolated for an accurate and reliable predic-
tion of biological activity in humans. Thus, controlled clinical trials remain 
the most reliable means of demonstrating therapeutic similarity between a 
biosimilar molecule and the originator product.

1.6.5  Issues of Immunogenicity

The immune system consists of a diverse and complex set of cells and 
organs that have complicated interactions with each other and with other 
physiological systems. These complexities make the detection and evalua-
tion of drug-induced immunogenicity difficult. The use of biosimilar prod-
ucts could have unwanted immune responses. An unwanted immune reaction 
could result in a clinical consequence of severe life-threatening conditions. 
Thus, the assessment of potential immunogenicity on the immune system 
is an important component of the overall evaluation of the safety (toxicity) 
of biosimilar products. However, although immunogenicity findings could 
indict a biosimilar product for some types of clinical investigations or certain 
indications, these findings appear to be rare (FDA, 2002).

Since all biological products are biologically active molecules derived from 
living cells and have the potential to evoke an immune response, immu-
nogenicity is probably the most critical safety concern for the assessment 
of biosimilarity of follow-on biologics. The immune responses to biological 
products can lead to loss in efficacy and change in safety profile such as

	 1.	Anaphylaxis
	 2.	 Injection site reactions
	 3.	Flu-like syndromes
	 4.	Allergic responses
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The risk of immunogenicity can be reduced through stringent testing of the 
products during their development. More details regarding issues on immu-
nogenicity are provided in Chapter 12.

1.6.6  Comparability/Consistency of Manufacturing Processes

Unlike small-molecule drug products, biological products are made of liv-
ing cells. Thus, manufacturing of biological products is a very complicated 
process, which involves the steps of

	 1.	Cell expansion
	 2.	Cell production (in bioreactors)
	 3.	Recovery (through filtration or centrifugation)
	 4.	Purification (through chromatography)
	 5.	Formulation

A small discrepancy at each step (e.g., purification) could lead to a significant 
difference in the final product, which might cause drastic change in clinical 
outcomes. Thus, process control and validation play an important role for 
the success of the manufacturing of biological products. In addition, since 
at each step (e.g., purification) different methods may be used at different 
biological manufacturing processes (within the same company or at differ-
ent biotech companies), tests for consistency are necessarily performed. Note 
that at the step of purification, the following chromatography media or resin 
are commonly considered:

	 1.	Gel filtration
	 2.	 Ion exchange
	 3.	Hydrophobic interaction
	 4.	Reversed phase normal phase
	 5.	Affinity

Thus, at each step of the manufacturing process, primary performance char-
acteristics should be identified, controlled, and tested for consistency for pro-
cess control and validation.

Issues involving the comparability and the assessment of consistency for 
manufacturing processes are presented in Chapter 14.

1.6.7  Other Practical Issues

There are many critical attributes of a potential patient’s response to follow-on 
biologics. For a given critical attribute, valid statistical methods are necessarily 
to be developed under a valid study design and a given set of criteria for 
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similarity, as described in the previous section. Several areas can be identi-
fied for developing appropriate statistical methodologies for the assessment of 
biosimilarity of follow-on biologics. These areas include, but are not limited to

Reference standards—For the development of biosimilar products, any infor-
mation regarding the reference product is critical because the assessment of 
biosimilarity and interchangeability may heavily depend upon the perfor-
mance of the reference product. We shall refer to the performances of the ref-
erence product in various functional areas as reference standards. In practice, 
the sponsors of biosimilar products usually have limited information regard-
ing the reference product even if the reference product has expired (not much 
information is available in public). In this case, how to establish reference 
standards (or the baseline) for comparison has become very critical (Davis 
et al. 2009). In practice, it is suggested that a study comparing the reference 
product to itself be considered, in a three-arm investigation consisting of a 
test product, a reference product, and the other reference product, in order to 
establish the baseline or reference standards for a valid and reliable assess-
ment of the biosimilar product. Note that in these cases, the same reference 
product may come from either different batches of the same manufacturing 
process or different manufacturing processes (sites or countries).

Criteria for biosimilarity—In addition to the issue regarding what criteria for 
biosimilarity should be used (in terms of average, variability, or distribution), 
the following questions are of particular interest to scientists/researchers 
in  the subject area. First, should a one size-fits-all criterion be applied to 
different functional areas (or domains) for achieving the totality-of-the evi-
dence between biosimilars and the innovative product? If the answer to this 
question is negative, then what degrees of similarity at different functional 
areas (or domains) should be considered? For some functional areas, the 
degree of similarity could have less impact on the clinical outcomes as com-
pared to others. In this case, what weights should be used for achieving the 
totality-of-the-evidence when assessing biosimilarity?

Criteria for interchangeability—In practice, drug interchangeability (in terms of 
IBE for switchability for small-molecule drug products) is recognized to be 
related to the variability due to subject-by-drug product interaction. However, 
it is not clear whether the criterion for interchangeability should be based on 
the variability due to subject-by-product interaction or on the variability due 
to subject-by-product interaction adjusted for intra-subject variability of the 
reference drug. Moreover, for the assessment of interchangeability (in terms 
of the concepts of switching and alternating) of biosimilar products, it is 
not clear (1) whether the criterion based on the variability due to subject-by-
drug interaction for small-molecule drug products can be applied directly to 
biosimilar products, and (2) how the criterion based on the variability due to 
subject-by-drug product relates to the relative risk with and without alter-
nating and switching of biosimilar products.
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Bridging studies for assessing biosimilarity—As most studies of biosimilars are 
conducted using a parallel design rather than a replicated crossover design, 
independent estimates of variance components such as for within subjects 
and the variability due to subject-by-drug interaction are not possible. In this 
case, bridging studies may be considered.

Other practical issues include (1) the use of a percentile method for the 
assessment of variability, (2) comparability in biologic activities, (3) sample 
size determination for immunogenicity studies with extremely low inci-
dence rates, (4) QC/assurance in manufacturing processes (see, e.g., ICH, 
1996, 1999, 2005), (5) stability testing for multiple lots and/or multiple labo-
ratories (see, e.g., ICH, 1996), (6) the potential use of sequential testing proce-
dures and multiple testing procedures, and (7) assessing biosimilarity using 
a surrogate endpoint or biomarkers such as genomic data (see, e.g., Chow 
et al., 2004).

More discussion of the aforementioned practical issues can be found in the 
last four chapters (CMC requirements, stability analysis, assessing biosimi-
larity using biomarker data, and current issues). Further research is needed 
in order to address the aforementioned scientific factors and practical issues 
recognized at the FDA Public Hearings (November 2–3, 2010 and May 11, 
2012) and Public Meeting for User Fees (December 16, 2011).

1.7  Aim and Scope of the Book

This book is intended to be the first book entirely devoted to the design and 
analysis for the development of follow-on biologics. It focuses on the assess-
ment of biosimilarity and of interchangeability of biosimilars as well as on 
tests for the comparability in the manufacturing processes of biological prod-
ucts. It covers the statistical issues that may be encountered in biosimilar 
studies under various study designs, at the various stages of research and 
development of biological products. It is my goal to provide a useful desk 
reference and the state-of-the-art examination of the subject area to scien-
tists and researchers engaged in pharmaceutical/clinical research and the 
development of biological products, those in government regulatory agencies 
who have to make decisions in the review and approval process of biologi-
cal regulatory submissions, and to biostatisticians who provide the statisti-
cal support to the assessment of biosimilarity and drug interchangeability of 
biosimilars and related issues regarding the QC/assurance and test for the 
comparability in the manufacturing processes for biological products. I hope 
that this book can serve as a bridge among scientists in the pharmaceutical/
biotechnology industry, government regulatory agencies, and academia.

The scope of this book covers statistical issues that are commonly encoun-
tered for the assessment of biosimilarity and drug interchangeability of 
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follow-on biologics. In this chapter, the definitions, regulatory requirements, 
and scientific factors regarding biosimilarity and drug interchangeability 
have been discussed. In the next chapter, past experience for bioequivalence 
assessment for small-molecule drug products is briefly described. Chapter 3 
summarizes regulatory requirements for the assessment of biosimilar prod-
ucts (or follow-on biologics). Also included in this chapter is a review of 
recently published FDA draft guidances on biosimilar products. Criteria 
for the assessment of biosimilarity which are available in the regulatory 
guidances/guidelines and/or the literature are described in Chapter 4. 
Chapter 5 introduces statistical methods for assessing average biosimilarity 
based on the concept of relative distance between a test product and a refer-
ence product as compared to the reference product versus itself. Chapter 6 
proposes a general approach based on a biosimilarity index (reproducibility 
probability) for the assessment of biosimilar products. Chapter 7 explores the 
relationship between the concept of testing non-inferiority and testing for 
equivalence. Chapter 8 provides some statistical tests for the assessment of 
biosimilarity in variability of biosimilar products. Formulas and procedures 
for sample size calculations for comparing variabilities under a crossover 
design or a parallel design with or without replicates are given in Chapter 9. 
Chapter 10 studies the impact of variability on biosimilarity limits for assess-
ing biosimilar products. Chapter 11 investigates the feasibility/applicability 
for the assessment of interchangeability (in terms of the concepts of alter-
nating and switching among biosimilar products). The issue of immunoge-
nicity in biosimilar studies is examined in Chapter 12. CMC requirements 
for biological products in BLA (Biologic Licence Application) submissions 
are discussed in Chapter 13. Chapter 14 provides statistical methods for 
testing comparability in manufacturing processes of biosimilar products. 
Stability design and analysis of biosimilar products are given in Chapter 15. 
Chapter 16 discusses statistical tests for the assessment of biosimilarity using 
biomarker data. Current issues for assessing biosimilars are discussed in the 
last chapter.

For each chapter, whenever possible, examples are included to illustrate 
the described statistical methods for the assessment of biosimilarity and 
drug interchangeability. In addition, if applicable, topics for future research 
are provided. All computations in this book are performed using version 9.20 
of SAS. Other statistical packages such as R and S-plus can also be applied.
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2
Bioequivalence Experience for 
Small-Molecule Drug Products

2.1  Background

As indicated in the previous chapter, when an innovative small-molecule 
drug product is going off patent, brand-name pharmaceutical and generic 
companies may file an abbreviated new drug application (ANDA) for 
approval of the generic copies of the innovative drug product. The innova-
tive drug product is usually referred to as the brand-name drug product or 
reference product. A generic copy is a drug product identical to the reference 
drug which is the subject of an approved new drug application (NDA) with 
regard to active ingredient(s), route of administration, dosage form, strength, 
and conditions of use. Generic copies of the reference product are called test 
products. For the approval of generic drug products, the U.S. Food and Drug 
Administration (FDA) as well as other regulatory authorities require that evi-
dence of bioequivalence in average bioavailability be provided through the 
conduct of pharmacokinetic (PK) bioequivalence studies. The assessment of 
bioequivalence in average bioavailability is usually referred to as the assess-
ment of average bioequivalence (ABE). The assessment of bioequivalence as 
a surrogate endpoint for the evaluation of drug safety and efficacy is based 
on the Fundamental Bioequivalence Assumption that if two drug products are 
shown to be bioequivalent in average bioavailability, it is assumed that they 
are therapeutically equivalent. Note that, in clinical practice, many practitio-
ners interpret that approved generic drug products can be used interchange-
ably since they are therapeutically equivalent to the brand-name drug.

For the approval of generic drug products, the FDA requires that bioequiv-
alence studies be conducted for comparing drug absorption profiles between 
the test product and the reference product in terms of some PK parameters 
such as the area under the blood and/or plasma concentration–time curve 
(AUC) and maximum or peak concentration (Cmax). AUC and Cmax are the 
primary PK responses for measuring the extent and rate of drug absorption. 
In practice, we claim that a test drug product is bioequivalent to a reference 
drug product if the 90% confidence interval for the ratio of geometric means 
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of the primary PK parameter (in %) is totally within the bioequivalence limits 
of (80%, 125%). The confidence interval for the ratio of geometric means of 
the primary PK parameters is obtained based on log-transformed data.

The purpose of this chapter is to provide a comprehensive summarization 
of experience in bioequivalence assessment of small-molecule drug products. 
In the next section, the process for the assessment of bioequivalence of generic 
approval for small-molecule drug products is given. Section 2.3 discusses the 
issue of drug interchangeability in terms of population bioequivalence (PBE) 
for addressing drug prescribability and individual bioequivalence (IBE) for 
drug switchability. Current thinking of FDA on the assessment of highly 
variable drug products is given in Section 2.4. Practical issues and frequently 
asked questions when assessing the bioequivalence of small-molecule drug 
products are discussed in Section 2.5 and Section 2.6, respectively. Brief con-
cluding remarks are given in the last section of this chapter.

2.2  Process for Bioequivalence Assessment

The process of bioequivalence assessment starts with the so-called Fundamental 
Bioequivalence Assumption followed by the conduct of a bioequivalence study 
under a valid study design, appropriate statistical methods for the assess-
ment of ABE, and then regulatory submission, review, and approval.

2.2.1  Fundamental Bioequivalence Assumption

As indicated by Chow and Liu (2008), bioequivalence studies are necessar-
ily conducted under the Fundamental Bioequivalence Assumption, which 
constitutes legal basis (from the Hatch-Waxman Act) for regulatory review 
and approval of small-molecule generic drug products. The Fundamental 
Bioequivalence Assumption states that

If two drug products are shown to be bioequivalent, it is assumed that they will 
reach the same therapeutic effect or that they are therapeutically equivalent.

In practice, bioequivalence in drug absorption has been interpreted as the 
confidence interval for the ratio of means (of drug absorption) being within 
the bioequivalence limits. An alternative would be to show that the toler-
ance intervals (or a distribution free model) overlap sufficiently. Under 
the previously mentioned Fundamental Bioequivalence Assumption, 
many practitioners interpret that generic drug products and the innova-
tive drug product can be used interchangeably (i.e., that they can be freely 
switched within patients) because they are therapeutically equivalent. 
The FDA and other regulatory authorities, however, do not indicate that 
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(1) approved generic drug products and the innovative drug products can 
be used interchangeably, and (2) approved generic drug products can be 
used interchangeably. The FDA and other regulatory authorities only indi-
cate that an approved generic drug product can be used as a substitute to 
the innovative drug product.

To protect the exclusivity of an innovative (or brand-name) drug product, the 
sponsors of the innovator drug products will usually make every attempt to 
prevent generic drug products from being approved by the regulatory agen-
cies such as the FDA. One of the strategies is to challenge the Fundamental 
Bioequivalence Assumption by filing a citizen petition with scientific/clinical 
justification. In the United States, upon the receipt of a citizen petition, the 
FDA has legal obligation to respond within 180 days. It, however, should 
be noted that the FDA will not suspend or withhold the review/approval 
process of a generic submission of a given brand-name drug even if a citizen 
petition is under review within the FDA.

In spite of the Fundamental Bioequivalence Assumption, one of the 
controversial issues is that bioequivalence may not necessarily imply 
therapeutic equivalence and therapeutic equivalence does not guarantee 
bioequivalence either. The assessment of ABE for generic approval has 
been criticized to be based on legal/political considerations rather than 
scientific arguments. In the past several decades, many sponsors/research-
ers have made attempts to challenge this assumption without success. 
More discussions regarding the Fundamental Bioequivalence Assumption 
are given in Section 2.5.1.

2.2.2  Study Design

As indicated in the Federal Register (Vol. 42, No. 5, Sec. 320.26 (b) and Sec. 
320.27 (b), 1977), a bioavailability study (single-dose or multi-dose) should 
be crossover in design, unless a parallel or other design is more appropri-
ate for valid scientific reasons. Thus, in practice, a standard two-sequence, 
two-period (or 2 × 2) crossover design is often considered for a bioavail-
ability or bioequivalence study. Denote by T and R the test product and 
the reference product, respectively. Thus, a 2 × 2 crossover design can be 
expressed as (TR, RT), where TR is the first sequence of treatments and 
RT denotes the second sequence of treatments. Under the (TR, RT) design, 
qualified subjects who are randomly assigned to sequence 1 (TR) will 
receive the test product (T) first and then cross over to receive the refer-
ence product (R) after a sufficient length of wash-out period. Similarly, 
subjects who are randomly assigned to sequence 2 (RT) will receive the 
reference product (R) first and then cross over to receive the test product 
(T) after a sufficient length of wash-out period.

One of the limitations of the standard 2 × 2 crossover design is that it does 
not provide independent estimates of intra-subject variabilities since each 
subject receives the same treatment only once. In the interest of assessing 
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intra-subject variabilities, the following alternative crossover designs for 
comparing two drug products are often considered:

Design 1: Balaam’s design—i.e., (TT, RR, RT, TR)
Design 2: Two-sequence, three-period dual design—e.g., (TRR, RTT)
Design 3: Four-period design with two sequences—e.g., (TRRT, RTTR)
Design 4: Four-period design with four sequences—e.g., (TTRR, RRTT, 

TRTR, RTTR)

Note that the aforementioned study designs are also known as higher-order 
crossover designs. A higher-order crossover design is defined as a crossover 
design with the number of sequences or the number of periods larger than 
the number of treatments to be compared.

For comparing more than two drug products, a Williams’ design is often 
considered. For example, for comparing three drug products, a six-sequence, 
three-period (6 × 3) Williams’ design is usually considered, while a 4 × 4 
Williams’ design is employed for comparing four drug products. Williams’ 
design is a variance stabilizing design. More information regarding the con-
struction and good design characteristics of Williams’ designs can be found 
in Chow and Liu (2008).

Note that when designing a bioequivalence study, the question regarding 
“What length of wash-out is considered sufficient enough in order to wear off 
the possible residual effect that might be carried over from one period to the 
next?” is often asked. For immediate-release (IR) drug products, the FDA sug-
gests at least 5.5 half-lives of the reference product be used, while 8.5 half-lives 
should be considered for controlled-release (CR) drug products. Regarding 
blood sampling, it is suggested that more sampling around Cmax be considered. 
The sampling should cover at least three half-lives in order to characterize 
the blood or plasma concentration–time curve, which is often used to derive 
model-independent PK responses such as the area under the blood or plasma 
concentration–time curve (AUC) and the maximum concentration (Cmax).

2.2.3  Power Analysis for Sample Size Calculation

As indicated in Chow and Liu (2008), formulas for sample size calculations 
under a given p × q crossover design can be obtained based on the evaluation 
of power curve of Schuirmann’s two one-sided tests procedure. For this pur-
pose, we define the following quantities:

θ µ µ
µ

= −T R

R
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µ
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[ , ]− =δµ δµR R The bioequivalence limits,

t(α, v) = The upper αth quantile of a t distribution with v degrees of freedom,

where
μT and μR are the average bioavailabilities of the test and reference 

products, respectively
s denotes the square-root of the mean square error from the analysis of 

variance table of the given crossover design

Note that θ is the ratio of the difference in average bioavailability between the 
two products and the average reference bioavailability, while CV stands for 
the coefficient of variation for the reference product. Because the power curves 
of Schuirmann’s two one-sided tests procedure are symmetric about zero, in 
the section, we shall only present the formulas for the case where θ ≥ 0.

Let ni be the number of subjects in each sequence i having the same value n, 
and Fv denote the cumulative distribution function of the t distribution with 
v degrees of freedom. Then, under an additive model, the power function 
Pk(θ) of the Schuirmann’s two one-sided tests procedure at the α nominal 
level for design k as described in previous subsection can be obtained as
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Hence, the exact formula for determination of n required to achieve a 1 − β 
power at the α nominal level for the design k when θ = 0 is given by
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For the multiplicative model, consider (0.8, 1.25) to be the bioequivalence 
limits of μT/μR and denoted by δ, where μT and μR are the median bioavail-
abilities of the test and reference products, respectively (Hauschke et al., 
1992). Also, let ln denote the natural logarithm. Similarly, the sample size 
required for achieving a 1 − β power at the α level of significance for the 
design k after the logarithmic transformation is determined by the follow-
ing formulas:
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Note that in the formulas provided earlier, β is the probability of a type 
II error concluding bioinequivalence when in fact the two products are 

bioequivalent. δ σ, exp( )CVk k= −2 1 , the coefficient of variation in the 
multiplicative model, and σ2, the residual (within-subject) variance of the 
logarithmically transformed characteristics, can usually be obtained from 
previous studies. However, because the degrees of freedom are usually 
unknown, an easy way to find the sample size is to enumerate n (see, also, 
Chen et al., 1997).

2.2.4  Statistical Methods

As indicated earlier, ABE is claimed if the geometric means ratio (GMR) of 
average bioavailabilities between test and reference products is within the 
bioequivalence limits of (80%, 125%) with 90% assurance based on log-trans-
formed data. Along this line, commonly employed statistical methods are 
the confidence interval approach and the method of interval hypotheses test-
ing. For the confidence interval approach, a 90% confidence interval for the 
ratio of geometric means of a primary PK response such as AUC or Cmax is 
obtained under an analysis of variance model. We claim bioequivalence if 
the obtained 90% confidence interval (in%) is totally within the bioequiva-
lence limits of (80%, 125%).



33Bioequivalence Experience for Small-Molecule Drug Products

For the method of interval hypotheses testing, the interval hypotheses are

	 H Ha0 : :Bioinequivalence versus Bioequivalence 	 (2.1)

Note that the aforementioned hypotheses are usually decomposed into two sets 
of one-sided hypotheses. The first set of hypotheses is to verify that the aver-
age bioavailability of the test product is not too low, whereas the second set of 
hypotheses is to verify that average bioavailability of the test product is not too 
high. Under the two one-sided hypotheses, Schuirmann’s two one-sided tests 
procedure is commonly employed for testing ABE (Schuirmann, 1987).

In practice, other statistical methods are sometimes considered such as 
Westlake’s symmetric confidence interval approach, the exact confidence 
interval based on Fieller’s theorem, Chow and Shao’s joint confidence region 
approach, Bayesian methods, and nonparametric methods such as the 
Wilcoxon–Mann–Whitney two one-sided tests procedure, a distribution-
free confidence interval based on the Hodges–Lehmann estimator, and boot-
strap confidence interval (Chow and Liu, 2008).

2.2.5  Remarks

Although the assessment of ABE for generic approval has been in practice for 
years, it has the following limitations:

	 1.	 It focuses only on the population average.
	 2.	 It ignores the distribution of the metric.
	 3.	 It does not provide independent estimates of intra-subject variability 

(ISV) and ignores the subject-by-formulation interaction.

Many authors criticized that the assessment of ABE does not address the 
question of drug interchangeability and it may penalize drug products with 
lower variability.

As indicated by the regulatory agencies, a generic drug can be used as 
a  substitute for the brand-name drug if their bioequivalence has been 
demonstrated. Current regulations do not indicate that two generic copies of 
the same brand-name drug can be used interchangeably, even though they 
are bioequivalent to the same brand-name drug. Bioequivalence between 
generic copies of a brand-name drug is not required. Note that in practice, 
it is possible that there can be drift: one product is bioequivalent but with a 
slightly smaller response (parameter) than the innovator product and the 
other bioequivalent but with a slightly larger response (parameter) than the 
innovator product. Consequently, the difference could be large enough that 
the products are not bioequivalent. Thus, one of the controversial issues in 
the assessment of ABE is whether these approved generic drug products can 
be used interchangeably and safely.
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2.3  Issue of Drug Interchangeability

Basically, interchangeability of small-molecule drug products can be con-
sidered either as drug prescribability or drug switchability. These concepts 
were much discussed in the 1990s and early 2000s. They are still valuable 
and important. However, the FDA and other regulatory agencies do not 
encourage at present their use and implementation.

Drug prescribability is defined as the physician’s choice for prescribing an 
appropriate drug product for his/her new patients between a brand-name 
drug product and a number of generic drug products that have been shown to 
be bioequivalent to the brand-name drug product. The underlying assumption 
of drug prescribability is that the brand-name drug product and its generic 
copies can be used alternatively in terms of the efficacy and safety of the drug 
product. Drug prescribability, therefore, involves the administration of either 
drug product to a new patient. Drug switchability, on the other hand, is related 
to the switch from a drug product (e.g., a brand-name drug product) to an 
alternative drug product (e.g., a generic copy of the brand-name drug product) 
within the same subject, whose concentration of the drug product has been 
titrated to a steady, efficacious, and safe level. As a result, drug switchabil-
ity is considered more critical than drug prescribability in the study of drug 
interchangeability for patients who have been on medication for a while. Drug 
switchability, therefore, is exchangeability within the same subject.

Note that in practice many use the terms interchangeability and switch-
ability synonymously. (Another term used, in this context, is substitutability.) 
These terms are meant to replace, in a given patient, the administration of one 
drug product by another. Thus, these usages refer to subjects to whom the 
drug has already been administered and who are not naïve to it. The recent 
Canadian document is an example of the widespread usage of these terms. 
Also noteworthy is the definition of interchangeability in the Biologics Price 
Competition and Innovation (BPCI) Act of 2010, Section 7002: “(3) The term ‘inter-
changeable’ or ‘interchangeability,’ in reference to a biological product that is 
shown to meet the standards described in subsection (k)(4), means that the 
biological product may be substituted for the reference product without the 
intervention of the health care provider who prescribed the reference product.”

2.3.1  Population Bioequivalence for Drug Prescribability

As indicated in Chow and Liu (2008), ABE can guarantee neither drug pre-
scribability nor drug switchability. Therefore, the assessment and implemen-
tation of bioequivalence should take into consideration drug prescribability 
and drug switchability. To address drug interchangeability, it is recom-
mended that PBE and IBE be considered for testing drug prescribability and 
drug switchability, respectively. More specifically, the FDA recommended 
that PBE be applied to new formulations, additional strengths, or new dosage 
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forms in NDAs, while IBE should be considered for ANDA or AADA (abbre-
viated antibiotic drug application) for generic drugs (FDA, 2001).

To address drug prescribability, the FDA proposed the following aggre-
gated, scaled, moment-based, one-sided criterion:
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where
μT and μR are the means of the test drug product and the reference drug 

product, respectively
σTT

2  and σTR2  are the total variances of the test drug product and the 
reference drug product, respectively

σT0
2  is a constant that can be adjusted to control the probability of passing 

PBE
θP is the bioequivalence limit for PBE

The numerator on the left-hand side of the criterion is the sum of the 
squared difference between the population averages and of the difference 
in total variance between the test and reference drug products which mea-
sure the similarity for the marginal population distribution between the 
test and the reference drug products. The denominator on the left-hand 
side of the criterion is a scaling factor that depends upon the variability of 
the drug class of the reference drug product. The FDA guidance suggests 
that θP be chosen as
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where εP is guided by the consideration of the variability term σ σTT TR
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to the ABE criterion. As suggested by the FDA guidance, it may be appropriate 
that εP be chosen as 0.02. For the determination of σT0

2 , the guidance suggests 
the use of the so-called population difference ratio (PDR), which is defined as
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Therefore, assuming that the maximum allowable PDR is 1.25, substitution 
of (log . )1 25 2

0
2/σT  for PBC without an adjustment of the variance term approx-

imately yields σT0 = 0.2.

2.3.2  Individual Bioequivalence for Drug Switchability

Similarly, to address drug switchability, the FDA recommended the follow-
ing aggregated, scaled, moment-based, one-sided criterion:
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where
σWT2  and σWR2  are the within-subject variances of the test drug product and 

the reference drug product, respectively
σD

2  is the variance component due to subject-by-drug product interaction
σW 0

2  is a constant that can be adjusted to control the probability of passing 
IBE

θI is the bioequivalence limit for IBE

The FDA guidance suggests that θI be chosen as
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where εI is the variance allowance factor, which can be adjusted for sample 
size control. Note that the FDA guidance suggests εI = 0.05.

For the determination of σW 0
2 , the guidance suggests the use of an indi-

vidual difference ratio (IDR), which is defined as
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Therefore, assuming that the maximum allowable IDR is 1.25, substitution of 
(log . )1 25 2

0
2/σW  for IBC without an adjustment of the variance term approxi-

mately yields σW0 = 0.2. It should be noted that although the FDA guidance 
recommends σWO = 0.2, the FDA uses (in a different context) σWO = 0.25.
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2.3.3  Remarks

In practice, it is of particular interest to pharmaceutical scientists and 
researchers to determine whether similar ideas for assessing drug inter-
changeability for small-molecule drug products could be directly applied 
to biosimilar products if independent estimates of intra-subject variabilities, 
inter-subject variabilities, and the variability due to subject-by-drug interac-
tion can be obtained under a valid study design.

2.4  Highly Variable Drugs

As indicated earlier, the assessment of ABE focuses on average bioavail-
ability but ignores the variability associated with the PK responses. Thus, 
two drug products may fail the evaluation of ABE if the variability associ-
ated with the PK responses is large even though they have identical means. 
A drug with large variability is considered highly variable. It is gener-
ally accepted that a highly variable drug (HVD) is defined as one whose 
within-subject (or intra-subject) variation is larger than or equal to 30% 
(Shah et al., 1996). This definition based on intra-subject variation, how-
ever, is rather arbitrary. One of the problematic aspects of this definition is 
that the estimated within-subject variability depends on the metrics of PK 
responses such as AUC and Cmax. In practice, the observed Cmax is usually 
more variable than AUC. As indicated by Davit et al. (2008), among the 212 
bioequivalence studies submitted to the FDA, 33 studies were considered 
highly variable. In 28 of the 33 studies, only the Cmax, but not the AUC, 
had a variation higher than 30%. Among the 33 studies, no cases indicated 
that the AUC, but not the Cmax, was highly variable. Tothfalusi et al. (2008) 
pointed out that HVDs show variable PKs as a result of their inherent 
properties (e.g., distribution, systemic metabolism, and elimination). A 
drug may have low variability if it is administered intravenously, whereas 
it can be highly variable after oral administration.

In practice, HVDs often fail to meet current regulatory acceptance criteria 
for ABE. In the past decade, the topic the evaluation of bioequivalence for 
HVDs has received much attention. This topic has been discussed several 
times at regulatory forums and international conferences. Academics, rep-
resentatives of pharmaceutical industries and regulatory agencies have 
recently reached a consensus that the approach of scaled average bioequiva-
lence (SABE), or an equivalent procedure, provides a reasonable means to 
deal with the problem. Tothfalusi et al. (2009) provided an excellent review 
for the evaluation of bioequivalence for HVDs with SABE. The approach 
of SABE, proposed by Tothfalusi et al. (2001) and implemented by the FDA 
(Haidar et al., 2008), is briefly described later.
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2.4.1  Scaled Average Bioequivalence

To introduce SABE, we first consider the criterion for ABE. As indicated ear-
lier, the PK response is a logarithmically transformed metric, e.g., log(AUC) 
or log(Cmax). The two one-sided tests (TOST) procedure is usually applied to 
assess bioequivalence (Schuirmann, 1987). Accordingly, the average logarith-
mic kinetic responses of the test (T) and reference (R) formulations, denoted 
by μT and μR, respectively, are compared. The acceptance of bioequivalence 
is claimed if the difference between the logarithmic means is between pre-
specified regulatory limits. The limits (θA) are generally symmetrical on the 
logarithmic scale and usually equal ±ln(1.25). Thus, the criterion for ABE can 
be expressed as follows:

	 − ≤ − ≤θ µ µ θA T R A. 	 (2.8)

In a bioequivalence study, the individual kinetic responses are evaluated 
from the measured concentrations. The means of the logarithmic responses 
of the two formulations are calculated. These sample averages estimate 
the true population means. A variance is also estimated for each kinetic 
response. It is a measure of the intra-subject variance, but not always identical 
to it. The FDA suggests the ABE mentioned previously could be scaled by a 
standard deviation as follows:
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where θS is the SABE regulatory cutoff. Here the standard deviation (σW) is 
the within-subject standard deviation. In applying a replicate design, σW is 
generally the within-subject standard deviation of the reference formulation 
(denoted by σWR). Thus, the scaling factor of SABE has similar features to the 
scaling factor of IBE.

2.4.2  Recent Considerations by Regulatory Agencies

Between the early 1990s and early 2000s, the FDA considered IBE and PBE 
as a possible solution for the problem of bioequivalence for HVDs. However, 
the development of this approach has been abandoned. In 2004, the FDA 
kicked off a Critical Path Initiative that focused on the challenges involved 
in the development of new drugs and generics. As part of this initiative, 
the FDA established a working group on the bioequivalence of HVDs for 
the development of a guidance dealing with HVDs. The group made pre-
sentations to a meeting of its advisory committee in 2004 and at an AAPS 
symposium in 2005. The results and conclusions of the group’s work were 
summarized recently by Haidar et al. (2008) and Davit et al. (2008). The sum-
mary by Haidar et al. (2008) then serves as a basis for consideration by the 
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FDA of actual submissions. Consequently, SABE appears to have gained a 
measure of recognition and implementation.

For evaluation of bioequivalence of HVDs with SABE, as indicated in 
Equation 2.9, the bioequivalence limits for SABE can be expressed in the form of

θ
σS = ln( . ) ,1 25
0

where
σ0 is a so-called regulatory standardized variation, which defines the pro-

portionality factor between the logarithmic bioequivalence limits
σW in the highly variable region

The value of σ0 must be defined by the regulators. The magnitude of σ0 
defines the bioequivalence limits (θS). For instance, when σ0 = 0.294, then θ 
is 0.760.

EMA in the European Union applies a modified form of SABE (EMA, 
2010c). Multiplying Equation 2.9 by σW:

−θSσW ≤ μT − μR ≤ θSσW.

This is average bioequivalence but with expanding limits (ABEL), a form that 
was recommended by Boddy et al. (1995).

2.4.3  Other Rules for Assessment of Bioequivalence

In addition to the SABE, several rules for the assessment of bioequivalence 
for highly variables are available in the literature. These possible rules 
include GMR-dependent bioequivalence limits (Karailis et al., 2004) and the 
reference-scaled approach by Liao and Heyse (2011). These rules are briefly 
summarized in the following.

The geometric mean ratio dependent (GMR-dependent) bioequivalence 
limits considered by Karalis et al. (2004) can be summarized as follows:

µ µ σT R WR− ≤ + − × ×log( . ) ( ) .1 25 5 4 0 496GMR

or

µ µ σT R WR− ≤ + − ×(log( . ) . )( ),1 25 0 496 3 2 GMR

where σWR is the within-subject standard deviation. Bioequivalence or simi-
larity is claimed if the 90% confidence interval falls inside the limits. Liao 
and Heyse (2011) proposed the following reference scaled approach:

( ) ( ) ,µ µ σ θ σT R D L WR− +  − × ≤2 2 22 0GMR
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Bioequivalence or similarity is claimed if the upper 95% confidence bound 
is negative or zero.

Liao and Heyse (2011) indicated that the SABE proposed by the FDA has 
too little power and is not sensitive to reference CV changes. The two GMR-
dependent procedures are similar and are too sensitive to reference CV 
changes. Their method, on the other hand, has similar consumer’s risk but 
has better power and reduces the producer’s risk. In addition, their method 
is sensitive to the subject-by-product interaction and hence is preferred.

Both FDA and EMA require that a second regulatory criterion also be sat-
isfied (Haidar et al., 2008; EMA, 2010c). Accordingly, the point estimate of 
GMR must be between 0.80 and 1.25. The two procedures presented in this 
section provide smooth, GMR-dependent transitions toward the constrained 
difference between the logarithmic means. The recent study of Zhang et al. 
(2013) achieves the same goal in a different way, see Chapter 10.

2.4.4  Remarks

For the evaluation of bioequivalence, the ABE approach has been criti-
cized as follows: (1) generic companies are unable to obtain regulatory 
approval if the variability of the reference product is extremely large, 
and (2) it penalizes good products (with less variability). The SABE is 
an attempt to fix the problem. SABE is ABE adjusted for the standard 
deviation of the reference product, which is a special case of the IBE cri-
terion. As a result, SABE also suffers from the disadvantages/limitations 
as described in Chow (1999).

In practice, it can be assumed that the test and reference formulations have 
the same within-subject variability although this assumption is not always 
true. For example, as indicated in Tothfalusi et al. (2009), a reference formula-
tion of nadolol was found to have high within-subject variability (CV = 50% 
and 39% for the Cmax and AUC, respectively). However, a test product showed 
much lower variability (26% and 19% for the Cmax and AUC, respectively). 
In such cases, we are dealing with highly variable drug product (HVDP) 
rather than HVD. The most famous example of formulation-dependent (or 
drug product–dependent) within-subject variability is probably the case of 
cyclosporine when a change of the formulation leads to a marked decrease 
in within-subject variability. However, formulation-dependent variability 
can result in a paradoxical situation if the pooled variability (σW) is used 
for scaling. The paradox is that the chance of passing the SABE regulatory 
criterion increases with rising σW. It is bad enough that the test product has 
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higher variability than the reference formulation, but it is really problematic 
if this behavior is rewarded and not punished as in the case of ABE. The only 
way to avoid this unfortunate situation is reference scaling.

But reference scaling also raises problems. First of these is that the symme-
try of the equivalence relationship is broken. That is, by flipping the notation 
T and R we can come to a different conclusion. For instance, it is possible that 
T is equivalent to R, but R is not equivalent to T. This controversy was noted 
by Dragalin et al. (2003) who argued that for physicians and patients, bio-
equivalent drug formulations should not be used interchangeably to achieve 
a similar therapeutic effect. Therefore, in this sense, both formulations should 
be treated symmetrically from a theoretical point of view. However, from 
a practical point of view, the reference product has been shown to be safe 
and effective. Both effects depend on its within-subject variability which is, 
therefore, highly relevant. A new test product with a larger variability could 
possess a worse risk–benefit relationship. On the other hand, a test formula-
tion with a lower variability than the reference product could indicate an 
improvement. Then, a switchback from a new test formulation with lower 
variability to the reference formulation with higher variability, but also with 
demonstrated safety and efficacy, is not seen as a clinical problem. Besides, it 
is not clear at present what kind of regulatory policy will be followed when 
several σWR estimates (i.e., results of previous submissions) are available to a 
drug regulatory agency. If regulators use all available data, then they can get 
an improved estimate for σWR, and possibly can draw a different conclusion 
from the sponsor. Finally, the term “reference” can be interpreted only in the 
context of approval of generics. It is questionable whether reference scaling 
is needed at all for other possible applications, such as the approval of new 
formulations of drugs under development.

2.5  Practical Issues

In this section, we shall focus on controversial issues related to the 
Fundamental Bioequivalence Assumption, the one size-fits-all criterion, and 
issues related to the log-transformation of PK data prior to analysis. These 
controversial issues are briefly described.

2.5.1  Fundamental Bioequivalence Assumption

As indicated earlier, the Fundamental Bioequivalence Assumption states 
that if two drug products are shown to be bioequivalent, it is assumed that they 
will reach the same therapeutic effect or that they are therapeutically equivalent. 
Under the Fundamental Bioequivalence Assumption, one of the contro-
versial issues is that bioequivalence may not necessarily imply therapeutic 
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equivalence and therapeutic equivalence does not guarantee bioequivalence 
either. The assessment of ABE for generic approval has been criticized to be 
based on legal/political deliberations rather than scientific considerations. In 
the past several decades, many sponsors/researchers have made an attempt 
to challenge this assumption with no success.

Note that the Fundamental Bioequivalence Assumption is also applied to 
drug products with local action such as nasal spray products via the assessment 
of in vitro bioequivalence testing. In either in vivo or in vitro bioequivalence 
testing, the verification of the Fundamental Bioequivalence Assumption is often 
difficult, if not impossible, without the conduct of clinical trials. It should be 
noted that the Fundamental Bioequivalence Assumption is for drug products 
with identical active ingredient(s). Note that for two products to be bioequiva-
lent they must have, by general understanding, the same active ingredients.

In practice, the verification of the Fundamental Bioequivalence Assumption 
is often difficult, if not impossible, without the conduct of clinical trials. In 
practice, there are the following four possible scenarios:

	 1.	Drug absorption profiles are similar and they are therapeutic 
equivalent.

	 2.	Drug absorption profiles are not similar but they are therapeutic 
equivalent.

	 3.	Drug absorption profiles are similar but they are not therapeutic 
equivalent.

	 4.	Drug absorption profiles are not similar and they are not therapeutic 
equivalent.

The Fundamental Bioequivalence Assumption is nothing but scenario (1). 
Scenario (1) works if the drug absorption (in terms of the rate and extent of 
absorption) is predictive of the clinical outcome. In this case, PK responses 
such as AUC (area under the blood or plasma concentration–time curve for 
the measurement of the extent of drug absorption) and Cmax (maximum con-
centration for the measurement of the rate of drug absorption) serve as sur-
rogate endpoints for clinical endpoints for the assessment of efficacy and 
safety of the test product under investigation. Scenario (2) is the case which 
generic companies use to argue for generic approval of their drug products, 
especially when their products fail to meet the regulatory requirements for 
bioequivalence. In this case, it is doubtful that there is a relationship between 
PK responses and clinical endpoints. The innovator companies usually argue 
with the regulatory agency against the generic approval with scenario (3). 
However, more studies are necessarily conducted in order to verify scenario 
(3). There are no arguments with respect to scenario (4).

In practice, the Fundamental Bioequivalence Assumption is applied to 
all drug products across therapeutic areas without convincing scientific 
justification. In the past several decades, however, no significant safety 
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incidences were reported for the generic drug products approved under the 
Fundamental Bioequivalence Assumption. One of the convincing expla-
nations is that the Fundamental Bioequivalence Assumption is for drug 
products with identical active ingredient(s). Whether the Fundamental 
Bioequivalence Assumption is applicable to drug products with similar but 
different active ingredient(s) as in the case of follow-on products becomes an 
interesting but controversial question.

2.5.2  One-Size-Fits-All Criterion

For the assessment of ABE, FDA adopted a one size-fits-all criterion. That is, as 
noted earlier, a test drug product is said to be bioequivalent to a reference drug 
product if the estimated 90% confidence interval for the ratio of geometric 
means of the primary PK parameters (AUC and Cmax) is (in %) totally within 
the bioequivalence limits of 80%–125%. The one size-fits-all criterion does not 
take into consideration the therapeutic window (TW) and ISV of a drug which 
have been identified to have nonnegligible impact on the safety and efficacy of 
generic drug products as compared to the innovative drug products.

In the past several decades, this one size-fits-all criterion has been 
challenged and criticized by many researchers. It was suggested that flexible 
criteria in terms of safety (upper bioequivalence limit) and efficacy (lower 
bioequivalence limit) should be developed based on the characteristics of the 
drug, its TW, and ISV (Table 2.1).

The approach of one size-fits-all has begun to dissipate in recent years. 
For instance, in some jurisdictions such as Europe and Canada, narrower BE 
limits have been proposed for drugs with narrow TWs (Health Canada, 2006; 
EMA, 2010c). However, FDA has maintained its usual requirement for these 
drugs with BE limits between 80% and 125%.

On the other hand, for orally administered drugs with high within-subject 
variability and wide TW (Class D, HVDs, see Table 2.1), the regulatory expec-
tation has become, in some cases, more relaxed. For these drugs, the approach 
of SABE has been proposed (Haidar et al., 2008; Tothfalusi et  al.,  2009). 

TABLE 2.1

Classification of Drugs

Class TW ISV Example

A Narrow High Cyclosporine
B Narrow Low Theophylline
C Wide Low to moderate Most drugs
D Wide High Chlorpromazine or 

topical corticosteroids

Source:	 Chen, M.L. (1995). Dusseldorf, Germany, October 19–20, 
1995.

Key:	 TW, therapeutic window; ISV, intra-subject variability.
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This method is closely related to, and is a simplification of, the procedure 
recommended earlier for individual BE when the within-subject variation 
is high (σ σWR W

2
0

2> ). While the current FDA guidance does not contain spe-
cial provisions for this class of drugs, the agency actually entertains submis-
sions based on the criteria described in an “informal” publication (Haidar 
et al., 2008), which recommends the approach of SABE. Europe has recently 
also suggested the application of a variant of this procedure (EMA, 2010). 
However, some other agencies still apply the one size-fits-all approach and 
require the usual BE limits of 80%–125% also for this class of drugs.

2.5.3  Log-Transformation

In the past, bioequivalence could be assessed either based on raw data or 
log-transformed data depending upon which model followed normal dis-
tribution. This raised a controversial issue regarding which model should 
be used for the assessment of bioequivalence. The sponsors could choose 
the model which would serve their purposes (e.g., the demonstration of bio-
equivalence). In some cases, the raw data model could reach a different con-
clusion regarding bioequivalence than the log-transformation model. This 
controversial issue was discussed a great deal until a general understanding 
was reached on the use of log-transformed parameters.

The 2001 FDA guidance provides a rationale for the use of logarithmic 
transformation of exposure measures. The guidance emphasizes that the 
limited sample size in a typical BE study precludes a reliable determination 
of the distribution of the data. For this reason, the guidance does not encour-
age the sponsors to test for the normality of the error distribution after log-
transformation, nor to use the normality of the error distribution as a reason 
for carrying out the statistical analysis on the original scale.

With respect to the (PK) rationale, deterministic multiplicative PK models 
are used to justify the routine use of logarithmic transformation for AUC(0–∞) 
and Cmax. However, the deterministic PK models are theoretical derivations of 
AUC(0–∞) and Cmax for a single object. The guidance suggests that AUC(0–∞) 
be calculated from the observed plasma/blood concentration–time curve 
using the trapezoidal rule, and that Cmax be obtained directly from the curve, 
without interpolation. It is uncertain to what extent the observed AUC(0–∞) 
and Cmax can provide good approximations to those under the theoretical 
models if the models are correct.

The use of the logarithmic transformation of PK parameters was questioned 
in the statistical literature (e.g., Liu and Weng, 1992, 1994, 1995; Patel, 1994). It 
was stated that the log-transformed AUC(0–∞) and Cmax do not generally fol-
low a normal distribution even when either the plasma concentrations or the 
log-plasma concentrations are normally distributed (Liu and Weng, 1994). It 
was suggested that performing a routine log-transformation of data and then 
applying normal, theory-based methods is not appropriate (Patel, 1994). It 
was suggested that normal probability plots for the studentized inter-subject 
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and intra-subject residuals be examined and that the Shapiro–Wilk method 
be applied to test for normality of the inter-subject and intra-subject variabil-
ities. However, the sample size of a typical bioequivalence study is generally 
too small to allow an adequate large-sample normal approximation and to 
enable clear discrimination between the normal and log-normal distribu-
tions of the estimated PK parameters.

In addition, the use of logarithmic PK (and generally kinetic) parameters 
has a strong basis in their multiplicative, rather than additive, sense. We typi-
cally think of doubling or halving a dose or concentration and not adding or 
taking away some units. Similarly, in tables of kinetic parameters, whether 
they are rate constants (including half-lives), equilibrium constants, or many 
other kinetic measures, we compare their orders of magnitudes and ask if 
one is, say, 10 times higher or lower than the other. Consequently, analy-
ses involving kinetic parameters generally apply a multiplicative and not an 
additive model. An implementation of this sense is that the parameters are 
analyzed following their logarithmic transformation.

To achieve the objective of exchangeability among bioequivalent pharma-
ceutical products, the criteria for the assessment of bioequivalence must pos-
sess certain important properties. Chen (1995, 1997) outlined the desirable 
characteristics of bioequivalence criteria proposed by the FDA (Table 2.2). In 
addition, to address the issues of ISV and subject-by-formulation interaction 
and to ensure drug switchability, valid statistical procedures, both estima-
tion and hypothesis testing, should be developed from the criteria to control 
the consumer’s risk at the pre-specified nominal level (e.g., 5%). Furthermore, 
the statistical methods developed from the criteria should be able to provide 
sample size determination; to take into consideration the nuisance design 
parameters, such as period or sequence effects; and to develop user-friendly 
computer software. The most critical characteristics for the proposed criteria 
will be their interpretation to scientists and clinicians and the cost of con-
ducting bioequivalence studies to provide inference for the criteria.

TABLE 2.2

Desirable Features of Bioequivalence Criteria

Comparison of both averages and variances
Assurance of switchability
Encouragement or reward of pharmaceutical companies to 
manufacture a better formulation

Control of type I error rate (consumer’s risk) at 5%
Allowance for the determination of sample size
Admission of the possibility of sequence and period effects as well as 
missing values

User-friendly software application for statistical methods
Provision of easy interpretation for scientists and clinicians
Minimization of increased cost for conducting bioequivalence studies

Source:	 Chen, M.L., J. Biopharm. Stat., 7, 5–11, 1997.
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2.6  Frequently Asked Questions

Although the concepts of PBE and IBE for addressing drug prescribability 
and drug switchability were discussed tremendously especially during the 
1990s, until 2002, the current position of FDA regarding the assessment of 
bioequivalence is that ABE is required and individual/PBE may be considered. 
FDA does not encourage the application of IBE. In any case, FDA suggests 
that a medical/statistical reviewer be consulted if individual/PBE is to be 
used. For the assessment of bioequivalence, some questions are frequently 
asked during regulatory submissions and reviews. In what follows, fre-
quently asked questions in bioequivalence assessment are briefly described.

2.6.1 � What if We Pass the Raw Data Model 
but Fail the Log-Transformed Data Model?

Most regulatory agencies, including FDA, EMA, and WHO, recommend that a 
log-transformation of PK parameters of AUC(0–t), AUC(0–∞), and Cmax be per-
formed before analysis. No assumption checking or verification of the log-trans-
formed data is encouraged. However, sponsors often conduct analyses based on 
both raw data and log-transformed data and check which would pass bioequiv-
alence testing. A sponsor would take a great risk of questioning and rejection 
by the regulators if it would submit results based on raw data just because they 
would pass within the BE limits. Some additional justification would be needed. 
If the sponsor passes BE testing under the log-transformed data model, then 
there is no problem because it meets the regulatory requirement.

It is possible, however, that a sponsor may fail BE testing under the log-
transformed data model but pass under the raw data model. In this case, the 
sponsor can provide scientific/statistical justification for the use of raw data 
model. One of the most commonly seen scientific/statistical justifications is 
that the raw data model is a more appropriate statistical model than that 
of the log-transformed data model because all of the assumptions for the 
raw data model are met. However, for the raw data model, the bioequiva-
lence limits are often expressed in terms of the ratio of the population means 
between the test and reference formulations. The equivalence limits are then 
expressed as a percentage of the population reference average, which has to 
be estimated from the data. Therefore, the variability of the estimated ref-
erence average is not considered in the equivalence limit. Hence, the false 
positive rate for claiming ABE for the two one-sided tests procedure can be 
inflated to 50%. As a result, one should apply the modified two one-sided 
tests procedure using the raw data proposed by Liu and Weng (1995) to con-
trol the size at the nominal level. In any case, it is advisable to consult the 
regulatory agency before submitting a clinical study report when the use of 
a calculational procedure is contemplated, which differs from that recom-
mended in a guidance.
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2.6.2  What if We Pass AUC but Fail Cmax?

Based on log-transformed data, FDA requires that both AUC and Cmax meet 
the bioequivalence limits of 80%–125% in order to establish ABE. In practice, 
however, it is not uncommon to pass AUC (the extent of absorption) but fail 
Cmax (the rate of absorption). In this case, ABE cannot be claimed according 
to the FDA guidance.

If we pass AUC but fail Cmax, Endrenyi et al. (1991) suggested considering 
Cmax/AUC as an alternative bioequivalence measure for the rate of absorp-
tion. However, Cmax/AUC is not currently selected as a required PK response 
for the approval of generic drug products by regulatory authorities. The con-
dition of passing the regulatory requirement for AUC and not for Cmax is 
less likely to arise in Canada where only the point estimate of the ratio of 
geometric means of Cmax but not the 90% confidence interval must be (in%) 
between 80% and 125% (Health Canada, 1992, 2012).

It is possible that we would pass the regulatory requirement for Cmax but 
not for AUC. It was suggested that we could look at partial AUC as an addi-
tional measure of bioequivalence (see, e.g., Chen et al., 2001).

2.6.3  What if We Fail by a Small Margin?

In practice, it is possible that we fail BE testing for either AUC or Cmax by 
only a small margin. For example, suppose that the estimated 90% confi-
dence interval for AUC is from 79.5% to 121.3%, which is slightly outside the 
lower limit of the regulatory range of 80.0%–125.0%. In this case, the FDA’s 
position is very clear: A rule is a rule and you fail. In regulatory reviews and 
approvals, the FDA is very strict about this rule as described in the 2003 
FDA guidance.

However, a sponsor may perform either an outlier detection analysis or 
a sensitivity analysis in order to resolve the issue. If a subject is found to be 
an outlier statistically, the data may be excluded from the analysis but only 
with appropriate clinical justification. Once the identified outlier is excluded 
from the analysis, the recalculated 90% confidence interval could be totally 
within the bioequivalence limits of 80%–125%, and the sponsor may present 
an argument for claiming bioequivalence.

Major regulatory agencies have recently encouraged additional design 
features which permit the later addition of subjects. Notably, they include 
group sequential extensions of the usual bioequivalence testing procedure 
(Gould, 1995). The results of a study would first be evaluated by the custom-
ary procedures. However, in order to maintain the overall type I error, the 
results would be assessed with adjusted significance levels which would 
yield confidence intervals higher than 90% (Pocock, 1983). If the analysis 
indicates that the calculated 90% confidence intervals of the PK parameters 
are moderately outside the regulatory BE interval of 80%–125%, then a sec-
ond group of subjects could be investigated. A combined analysis of the two 
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groups could be performed; these would apply a modified structure of the 
statistical computations and, again, adjusted significance levels.

Health Canada accepts also a simple add-on of at least 12 subjects (Health 
Canada, 1992, 2012). The structure of the statistical analysis should be modi-
fied and the level of significance should be 0.025 instead of 0.05. In all cases, 
the intention of applying either a group sequential or an add-on design as well 
as the details of the procedure should be specified in the protocol of the study.

2.6.4 � Can We Still Assess Bioequivalence if There 
Is a Significant Sequence Effect?

As indicated in Chow and Liu (2008), under a standard two-sequence, two-
period (2 × 2) crossover design, a significant sequence effect is an indication 
of the possible

	 1.	Failure of randomization
	 2.	A true sequence effect
	 3.	A true carryover effect
	 4.	A true formulation-by-period effect

Under the standard 2 × 2 crossover design, the sequence effect is confounded 
with the carryover effect. Therefore, if a significant sequence effect is found, 
the treatment effect and its corresponding 90% confidence interval can-
not be estimated unbiasedly due to the possibly unequal carryover effects. 
However, in the 2001 FDA guidance, the following list of conditions is pro-
vided to rule out the possibility of unequal carryover effects:

	 1.	 It is a single-dose study.
	 2.	The drug is not an endogenous entity.
	 3.	More than an adequate washout period has been allowed between 

periods of the study, and in the subsequent periods the pre-dose bio-
logical matrix samples do not exhibit a detectable drug level in any 
of the subjects.

	 4.	The study meets all scientific criteria (e.g., it is based on an accept-
able study protocol and it contains a validated assay methodology).

The 2001 FDA guidance also recommends that sponsors conduct a bioequiva-
lence study with parallel designs if unequal carryover effects become an issue.

2.6.5 � What Should We Do When We Have Almost Identical Means 
but Still Fail to Meet the Bioequivalence Criterion?

It is not uncommon to run into the situation that we have almost identical means 
but still fail to meet the bioequivalence criterion. This may indicate that (1) the 
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variation of the reference product is too large to establish bioequivalence between 
the test product and the reference product, (2) the bioequivalence study was 
poorly conducted, and (3) the analytical assay methodology is inadequate and 
not fully validated. The concept of IBE and/or PBE was an attempt to overcome 
this problem. More recently, the application of scaled average BE (Haidar et al., 
2008; Tothfalusi et al., 2009; Liao and Heyse, 2011), or its variant (Boddy et al., 
1995), is proving useful to deal with the problem of BE for highly variable drugs 
and drug products. The approach is favored by major regulatory agencies in the 
United States and Europe (Haidar et al., 2009; EMA, 2010c). It should be noted 
that these authorities impose also a secondary expectation which requires that 
the estimated ratio of test/reference geometric means be between 0.80 and 1.25.

2.6.6 � Power and Sample Size Calculations Based on Raw-Data 
Model and Log-Transformed Model Are Different

The calculations of the statistical power and of the sample size are different 
when they are based on the raw data model and on the log-transformed model. 
Under different models, means, standard deviations, and coefficients of varia-
tion also differ. As mentioned earlier, for the assessment of bioequivalence, all 
regulatory authorities including the FDA, EMA, WHO, and Japan require that 
log-transformation of the parameters AUC(0–t), AUC(0–∞), and Cmax be per-
formed before the analysis and evaluation of bioequivalence. As a result, one 
should use differences between logarithmic means and the corresponding 
standard deviations or the coefficients of variation for the power analysis and 
sample size calculation based on the method for the log-transformed model 
(see, e.g., chapter 5 of Chow and Liu, 2008).

Note that sponsors should make a decision as to which model (the raw 
data model or the log-transformed data model) will be used for bioequiva-
lence assessment. Once the model is chosen, appropriate formulas can be 
used to determine the sample size. Fishing around for obtaining the smallest 
sample size is not a good clinical practice.

2.6.7  Multiplicity and Transitivity

The 2003 FDA guidance for general considerations requires that for AUC(0–t), 
AUC(0–∞), and Cmax, the following information be provided:

	 1.	Geometric means
	 2.	Arithmetic means
	 3.	Ratio of means
	 4.	90% Confidence interval

In addition, as already noted, the 2003 FDA guidance recommends that loga-
rithmic transformation be provided for each measure of AUC(0–t), AUC(0–∞), 
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and Cmax, and that, for the demonstration of ABE, each of their 90% confi-
dence intervals must fall within the bioequivalence limits of 80%–125%. It 
follows that according to the intersection-union principle (Berger, 1982), the 
type I error rate of ABE is still controlled under the nominal level of 5%. 
Therefore, there is no need for adjustment due to multiple PK measures.

Another issue involves the multiplicity of generic products of a drug. The 
bioequivalence of each generic formulation is determined against the ref-
erence, generally brand-name product. It is not obvious to what extent the 
generics could be equivalent with each other. This is particularly important 
when a patient is switched from one generic product to another. Anderson 
and Hauck (1990) examined the transitivity of bioequivalence, i.e., to what 
extent is there a potential of drift about the declaration of bioequivalence 
when a number of generics are tested against an innovator’s product, With 
two or three generic formulations, the confidence of transitive bioequiva-
lence is fairly high. With six generic products, this confidence is low.

2.7  Concluding Remarks

Current methods for the assessment of bioequivalence for drug products 
with identical active ingredients are not applicable to biosimilar products 
due to fundamental differences as described in Chapter 1. The assessment 
of biosimilarity between biosimilar products and the innovative biological 
product in terms of surrogate endpoints (e.g., PK parameters and/or phar-
macodynamic responses) or biomarkers (e.g., genomic markers) requires 
the establishment of the Fundamental Biosimilarity Assumption in order to 
bridge the surrogate endpoints and/or biomarker data to clinical safety and 
efficacy.

Unlike small-molecule drug products, biosimilar products are very sensi-
tive to small changes in variation during the manufacturing process, which 
have been shown to have an impact on the clinical outcome. Thus, it is a con-
cern whether current criteria and regulatory requirements for the assessment 
of bioequivalence for drugs with small-molecules can be applied directly to 
the assessment of biosimilarity of biosimilar products. It is suggested that 
current, existing criteria for the evaluation of bioequivalence, similarity, and 
biosimilarity be scientifically/statistically evaluated in order to choose the 
most appropriate approach for assessing biosimilarity. It is recommended 
that the selected biosimilarity criteria should be able to address (1) sensi-
tivity due to small variations in both location (bias) and scale (variability) 
parameters, and (2) the degree of similarity, which can reflect the assurance 
for drug interchangeability.

To assist the sponsors for the development of biosimilar products, several 
product-specific guidelines/guidances have been published by the EU EMA. 
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These guidelines/guidances, however, have been criticized for not having 
standards for the assessment of biosimilar products. Although product-
specific guidelines/guidances do not help to establish standards for the 
assessment of biosimilarity, they do provide the opportunity for accumulat-
ing valuable experience/information for establishing standards in the future. 
Thus, it is recommended that numerical studies including simulations, meta-
analysis, and/or sensitivity analysis be conducted, in order to (1) provide a 
better understanding of these product-specific guidelines/guidances, and (2) 
check the validity of the stated Fundamental Biosimilarity Assumption. This 
Assumption may constitute the legal basis for assessing biosimilarity if the 
process for bioequivalence assessment for small-molecule drug products is 
to be applied to the assessment of biosimilarity.

Note that recently the FDA circulated three draft guidances on the assess-
ment of biosimilarity for public comments (on February 9, 2012) and con-
ducted a public hearing on the discussion of the three guidances for public 
opinions and input (held on May 11, 2012). In one of the guidances, on sci-
entific considerations in demonstrating biosimilarity, the FDA proposed the 
concept of the totality-of-the-evidence for similarity in all aspects related to 
clinical outcomes and the use of stepwise approach for providing the total-
ity-of-the-evidence for a valid and reliable assessment of biosimilarity. These 
FDA draft guidances will be reviewed in Chapter 3.
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3
Regulatory Requirements for 
Assessing Follow-on Biologics

3.1  Background

Biological drugs make up one of the fastest-growing sectors of the phar-
maceutical and biotechnology industry in the past decade. For example, in 
2005, worldwide spending on drug therapy grew by 7% and topped $600 
billion. However, sales of biologics have grown even more rapidly, with an 
increase of about 17% in 2005 and annual expenditures worldwide of more 
than $50 billion. By 2010, spending on biologics roared to over $100 billion, 
with biologics making up nearly half of all newly approved medicines. Due 
to the high costs involved in the research, development, and production of 
many medicines, regulatory regimes have been created to balance the intel-
lectual property interests and investments made by originator companies 
with the need for wider patient access through generic forms of the drugs. 
In the traditional chemical drug market, such a regime was created by the 
Hatch–Waxman Act. The Hatch–Waxman Act added Section 505(j) to the 
Federal Food, Drug, and Cosmetic (FD&C) Act. This section and its accompa-
nying regulations created the Abbreviated New Drug Application (ANDA) 
process, which was designed to provide independent generic firms with a 
strong incentive to develop and introduce lower-cost and affordable generic 
drugs to majority of patient population. By virtually all accounts, the Hatch–
Waxman Act has been extremely successful in bringing cheaper and afford-
able generic products to the market while maintaining incentives for the 
development and discovery of new drugs.

Because of the effectiveness of the Hatch–Waxman Act in the context of 
traditional small-molecule chemical drugs, some have called for applying 
a similar regime for biologics, given the high cost of this class of drugs. In 
particular, Rep. Henry Waxman (D-Cal.), one of the original authors of the 
Hatch–Waxman Act sponsored the Access to Life-Saving Medicine Act to deter-
mine whether such a legal infrastructure is appropriate for regulating the 
follow-on biologics (FOBs), a thorough policy assessment is necessary (see 
also, Liang, 2007). This effort has led to the passage of the Biologics Price 
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Competition and Innovation (BPCI) Act, which has given the FDA the authority 
to review and approve biosimilar products (biosimilars or FOBs). Following 
the passage of the BPCI Act, the FDA hosted a public hearing between 
November 2 and 3, 2010, to obtain public input regarding scientific factors 
for assessing biosimilarity and drug interchangeability of biosimilar prod-
ucts. After extensive discussions, the FDA developed and circulated three 
draft guidances on biosimilars on February 9, 2012, and hosted another pub-
lic hearing to obtain public input and comments on the draft guidances on 
May 11, 2012. At this public hearing, special attention was directed to the 
discussion of drug interchangeability in terms of the concepts of switching 
and alternating as described in the BPCI Act.

On the other hand, the European Union (EU) has a well-established and 
well-documented legal and regulatory pathway for the review and approval 
of biosimilars. Other countries and organizations around the world, includ-
ing Australia, Canada, Japan, and Switzerland and the World Health 
Organization (WHO), are also following the same scientific principles for 
establishing an abbreviated approval pathway for biosimilars. In contrast, 
the United States is at the very beginning of the process, with a legal pathway 
being discussed by Congress for a number of years. The FDA views and/or 
current position on biosimilars can be found from an excellent publication 
by Woodcock et al. (2007), from communications from the FDA to Congress 
(Torti, 2008), and from a number of internal User Fees Stakeholders meetings 
held within the FDA between 2010 and 2011. These discussions and/or docu-
ments indicate the FDA is contemplating similar but more stringent scientific 
principles and/or requirement to those established by the EMA.

The purpose of this chapter is to review regulatory requirements for 
the approval pathway of FOBs worldwide including WHO and various 
regions, such as the EU, United States, Canada, and the Asian Pacific Region 
(e.g., Japan and South Korea). Comparisons of these regulatory requirements, 
and some recommendations regarding global harmonization, will be made. 
In the next section, definitions and interpretations of biosimilar products 
from different regions are given. Regulatory requirements from different 
regions are briefly summarized in Section 3.3. Recommendations on global 
harmonization of the regulatory approval pathway are offered in Section 3.5. 
Section 3.6 provides some concluding remarks.

3.2  Definitions and Interpretations of Biosimilar Products

As indicated earlier, the similar biologic drug products (SBDP) are usually 
referred to as similar biotherapeutic products (SBPs) by WHO, biosimilars 
by the European Medicines Agency (EMA) of the EU, FOBs by the U.S. FDA, 
and subsequent-entered biologics (SEBs) by Health Canada. In some cases, 
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the term biosimilar has been used in an inappropriate way, and therefore 
it is important to review differences in definitions of biosimilar products in 
different regions (Table 3.1).

WHO defines an SBP as a product that is similar in terms of quality, safety, 
and efficacy to an already licensed reference biotherapeutic product (WHO, 
2009). Health Canada defines biosimilar to be a biologic drug that enters the 
market subsequent to a version previously authorized in Canada, and with 
demonstrated similarity to a reference biologic drug (Health Canada, 2010). 
As indicated in the BPCI Act passed by the U.S. Congress and was written 
into law on March 23, 2010, a biosimilar product is defined as a product that 
is highly similar to the reference product, notwithstanding minor differences 
in clinically inactive components, and for which there are no clinically meaning-
ful differences in terms of safety, purity, and potency from the reference product. 
EMA did not provide the definition of biosimilars in the original guidelines. 
However, a recently published concept paper on the revision of the guide-
lines on similar biological medicinal product indicated that it might be pru-
dent to discuss if a definition of “biosimilar,” in extension of what is in the 
legislation and relevant Committee for Medicinal Products for Human Use 
(CHMP) guidance, is necessary (EMA, 2011a).

Based on these different but similar definitions, we would interpret that 
there are three determinants in the definition of a biosimilar product: (1) it 
should be a biological products; (2) the reference product should be an already 
licensed biological products; (3) the demonstration of high similarity in safety, 
quality, and efficacy is necessary. Besides, it is well recognized that the simi-
larity should be demonstrated using a set of comprehensive comparability 
exercises at the quality, nonclinical and clinical level. Products not authorized 
by this comparability regulatory pathway cannot be called biosimilars.

TABLE 3.1

Definitions of Biosimilar Products

Term By Definition

Biosimilar EU EMA A biological product claiming to be similar to 
another one already marketed

SBP WHO A biotherapeutic product similar to an already 
licensed reference biotherapeutic product in terms 
of quality, safety, and efficacy

FOB U.S. FDA A product highly similar to the reference product 
without clinically meaningful differences in safety, 
purity, and potency

SEB Canada A biologic drug that enters the market subsequent to 
a version previously authorized in Canada with 
demonstrated similarity to a reference biologic drug

Biosimilar KFDA A biological product which demonstrated its 
equivalence to an already approved reference 
product with regard to quality, safety, and efficacy
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3.3  Regulatory Requirements

As indicated by Chow et al. (2011), standard methods for the assessment of 
bioequivalence for generic drug products with identical active ingredients are 
not appropriate for the assessment of biosimilarity due to the fundamental 
differences between small-molecule drug products and biological products. 
For the assessment of FOBs, regulatory requirements from the WHO and 
different regions such as the EU, the United States, and the Asian Pacific 
Region are similar and yet slightly different (Wang and Chow, 2012). In what 
follows, these regulatory requirements are briefly described.

3.3.1  World Health Organization

As an increasingly wide range of SBPs are under development or are already 
licensed in many countries, WHO formally recognized the need for the 
guidance for their evaluation and overall regulation in 2007. “Guidelines on 
Evaluation of Similar Biotherapeutic Products (SBPs)” were developed and 
adopted by the 60th meeting of the WHO Expert Committee on Biological 
Standardization in 2009. The intention of the guidelines is to provide globally 
acceptable principles for licensing biotherapeutic products that are claimed 
to be similar to the reference products that have been licensed based on a full 
licensing dossier (WHO, 2009). The scope of the guidelines includes well-
established and well-characterized biotherapeutic products that have been 
marketed for a suitable period of time with a proven quality, efficacy, and 
safety, such as recombinant DNA-derived therapeutic proteins.

3.3.1.1  Key Principles and Basic Concepts

Key principles and basic concepts for licensing SBPs have been explained 
in WHO’s guidelines. One of the most important principles of developing 
SBPs is the stepwise approach starting with the characterization of quality 
attributes of the product and followed by nonclinical and clinical evalua-
tions. Manufactures should submit a full quality dossier that includes a com-
plete characterization of the product, the demonstration of consistent and 
robust manufacture of their product, and the comparability exercise between 
the SBP and RBP in the quality part, which together serve as the basis for 
the possible reduction in data requirement in the nonclinical and clinical 
development. This principle indicates that the data reduction is only pos-
sible for the nonclinical and clinical parts of the development program, and 
significant differences between the SBP and the chosen RBP detected during 
the comparability exercise would result in a requirement for more extensive 
nonclinical and clinical data. In addition, the amount of nonclinical and clini-
cal data considered necessary also depends on the class of products, which 
calls for a case-by-case approach for different classes of products.
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3.3.1.2  Reference Biotherapeutic Product

The choice of the reference biotherapeutic product is another important 
issue covered in the WHO guidelines. Traditionally, National Regulatory 
Authorities (NRA) have required the use of a nationally licensed reference 
product for the licensing of generic medicines, but this may not be feasible 
for countries lacking nationally licensed RBPs. Thus additional criteria to 
guide the acceptability of using an RBP licensed in other jurisdiction may be 
needed. Considering the choice of the RBP, WHO requires that it should have 
been marketed for a suitable duration, have a volume of marketed use, and 
should be licensed based on full quality, safety, and efficacy data. Besides, 
the same RBP should be used throughout the development of the SBP, and 
the drug substance, dosage form, and route of administration of SBP should 
be the same as those of the RBP.

3.3.1.3  Quality

As mentioned in an earlier section, the comprehensive comparison show-
ing quality similarity between SBP and RBP is a prerequisite for applying 
the clinical safety and efficacy profile of the RBP to SBP, thus a full quality 
dossier for both the drug substance and drug product is always required. To 
evaluate comparability, WHO recommends the manufacturer to conduct a 
comprehensive physicochemical and biological characterization of the SBP 
in head-to-head comparisons with the RBP. The following aspects of product 
quality and heterogeneity should be assessed.

3.3.1.3.1  Manufacturing Process

The manufacturing process should meet the same standards as required 
by NRA for originator products, and implement good manufacturing 
practices, modern quality control and assurance procedures, in-process 
controls, and process validation. The SBP manufacturer should assemble 
all available knowledge of the RBP with regard to the type of host cell, 
formulation, and container closure system, and submit a complete descrip-
tion and data package delineating the whole manufacturing process 
including obtaining target genes and their expression, the optimization 
and fermentation of gene engineering cells, the clarification and purifi-
cation of the products, the formulation and testing, aseptic filling and 
packaging.

3.3.1.3.2  Characterization

Thorough characterization and comparability exercise are required, and 
details should be provided on primary and higher-order structures, post-
translational modifications, biological activity, process- and product-related 
impurities, the relevant immunochemical properties, and results from accel-
erated degradation studies, and studies under various stress conditions.
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3.3.1.4  Nonclinical and Clinical Studies

After demonstrating the similarity of SBP and RBP in quality, the proving 
the safety and efficacy of an SBP usually requires further nonclinical and 
clinical data. Nonclinical evaluations should be undertaken both in vitro 
(e.g.,  receptor-binding studies, cell-proliferation, cytotoxicity assays) and in 
vivo (e.g., biological/pharmacodynamic [PD] activity, repeat dose toxicity study, 
toxicokinetic measurements, anti-product antibody titers, cross-reactivity with 
homologous endogenous proteins, product neutralizing capacity).

In terms of the clinical evaluation, the comparability exercise should begin 
with pharmacokinetics (PK) and PD studies followed by the pivotal clinical 
trials. PK studies should be designed to enable the detection of potential 
differences between SBP and RBP. Single-dose, cross-over PK studies in a 
homogenous population are recommended by WHO. The manufacturer 
should justify the choice of single-dose studies, steady-state studies, or 
repeated determination of PK parameters, and the study population. Due to 
the lack of established acceptance criteria for the demonstration of similar 
PK between SBP and RBP, the traditional 80%–125% equivalence range is 
often used. Besides, PD studies and confirmatory PK/PD studies may be 
appropriate if there are clinically relevant PD markers. In addition, similar 
efficacy of SBP and RBP has to be demonstrated in randomized and well-
controlled clinical trials, which should preferably be double-blind or at least 
observer-blind. In principle, equivalence designs (requiring lower and upper 
comparability margins) are clearly preferred for the comparison of efficacy 
and safety of SBP with RBP. Non-inferiority designs (requiring only one 
margin) may be considered if appropriately justified. WHO also suggests the 
pre-licensing safety data and the immunogenicity data should be obtained 
from the comparative efficacy trials.

In addition to the nonclinical and clinical data, applicants also need to 
present an ongoing risk management and pharmacovigilance plan, since 
data from pre-authorized clinical studies are usually too limited to identify 
all potential side effects of the SBP. The safety specifications should describe 
important identified or potential safety issues for the RBP, and any that are 
specific for the SBP.

In summary, the WHO guidelines on evaluating SBPs represent an impor-
tant step forward in the global harmonization of evaluation and regulation of 
biosimilar products, and provide clear guidance for both regulatory bodies 
and the pharmaceutical industry.

3.3.2  European Union

The EU has pioneered the development of a regulatory system for biosimilar 
products. The EMA began formal consideration of scientific issues presented 
by biosimilar products at least as early as January 2001, when an ad hoc work-
ing group discussed the comparability of medicinal products containing 
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biotechnology-derived proteins as active substances (CPMP, 2001). In 2003, 
the European Commission amended the provisions of the EU secondary 
legislation governing requirements for marketing authorization applications 
for medicinal products and established a new category of applications for 
“similar biological medicinal products” (CD, 2003). In 2005, the EMA issued 
a general guideline on similar biological medicinal products in order to 
introduce the concept of similar biological medicinal products, to outline the 
basic principles to be applied, and to provide applicants with a “user guide,” 
showing where to find relevant scientific information (EMA, 2006). Since 
then, 14 biosimilar products have been approved by the EMA under the path-
way (see  Table 3.3). One of the rejected biosimilars is Alpheon (interferon 
alpha-2a). It was developed by BioPartners GmbH, and designed to become 
a biosimilar of the reference product Roferon-A for the treatment of adult 
patients with chronic hepatitis C. The EMA refused the marketing authoriza-
tion for Alpheon due to the difference identified between Alpheon and the 
reference product, such as impurities, stability, and side effects.

3.3.2.1  Key Principles and Basic Concepts

Unlike WHO’s guideline which seems to focus more on recombinant DNA–
derived therapeutic proteins, the EMA guidelines clearly indicate that the 
concept of a “similar biological medicinal product” is applicable to a broad 
spectrum of products ranging from biotechnology-derived therapeutic pro-
teins to vaccines, blood-derived products, monoclonal antibodies, gene and 
cell therapy, etc. However, comparability exercises to demonstrate similar-
ity are more likely to be applied to highly purified products, which can be 
thoroughly characterized, such as biotechnology-derived medicinal prod-
ucts. Considering the amount of data submitted, EMA also requires a full 
quality dossier, while the comparability exercise at the quality level may 
allow a reduction of the nonclinical and clinical data requirement compared 
to a full dossier. In 2011, a concept paper on the revision of the guideline on 
similar biological medicinal product was published by EMA (EMA, 2011a), 
which emphasizes another main concept that clinical benefit has already 
been established by the reference medicinal product, and that the aim of a 
biosimilar development program is to demonstrate similarity to the reference 
product, and not clinical benefit. Besides, a clear definition of “biosimilar” is 
recommended as well as the feasibility to follow the generic legal basis for 
some biological products, and the refinement based on experience.

3.3.2.2  Reference Biotherapeutic Product

Similarly to the WHO, the EMA requires that the active substance, the 
pharmaceutical form, strength, and route of administration of the biosimi-
lar should be the same as that of the reference product. The same chosen 
reference medicinal product should be used throughout the comparability 
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program for quality, safety, and efficacy studies during the development 
of the biosimilar product. One of the major differences between WHO and 
EMA in terms of the choice of the reference product is that EMA requires the 
chosen medicinal reference product be authorized in the community. Data 
generated from comparability studies with medicinal products authorized 
outside the community may provide only supportive information.

3.3.2.3  Quality

In 2006, the “Guideline on Similar Biological Medicinal Products Containing 
Biotechnology-derived Proteins as Active Substance: Quality Issues” was 
adopted by the CHMP (EMA, 2006), which addresses the requirements 
regarding manufacturing processes, the comparability exercises for quality, 
analytical methods, physicochemical characterization, biological activity, 
purity, and specifications of the similar biological medicinal product. In 
2011, the EMA issued a concept paper on the revision of this guideline (EMA, 
2011b). This concept paper proposes that the guideline published in 2006 
needs refinements taking into account the evolution of quality profile during 
the product lifecycle, since in the context of a biotherapeutic product claim-
ing or claimed to be similar to another already marketed, the conclusion of 
a comparability exercise performed with a reference product at a given time 
may not hold true from the initial development of the biosimilar, through 
marketing authorization, until the product’s discontinuation.

3.3.2.4  Nonclinical and Clinical Evaluation

The “Guideline on Similar Biological Medicinal Products Containing 
Biotechnology-derived Proteins as Active Substance: Non-clinical and 
Clinical Issues,” published in 2006, lays down the nonclinical and clinical 
requirements for a biological medicinal product claiming to be similar to 
another already marketed product (EMA, 2006a–h). The nonclinical section 
of the guideline addresses the pharmaco-toxicological assessment, and the 
clinical section addresses the requirements for PK, PD, and efficacy studies. 
Clinical safety studies as well as the risk management plan with special 
emphasis on studying the immunogenicity of the biosimilar products are 
also required. In 2011, the EMA published a concept paper on the revision of 
this guideline (EMA, 2011c), which indicates several issues that need discus-
sion for a potential revision. Firstly, the EMA emphasizes the need to follow 
the 3R principles (replacement, reduction, and refinement) with regard to the 
use of animal experiments. Secondly, a revised version of the guideline will 
consider a risk-based approach for the design of an appropriate nonclini-
cal study program. Thirdly, the guideline should be clearer, considering the 
need and acceptance of PD markers, and what measures should be taken in 
case relevant markers are not available. Note that a draft guideline has been 
issued on May 24, 2012.
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3.3.2.5  Product Class–Specific Guidelines

The principles of biosimilar drug development discussed in the earlier 
sections apply in general to all biological drug products. However, there 
are no standard data sets that can be applied to the approval of all classes 
of biosimilars. Each class of biologic varies in its benefit/risk profile, the 
nature and frequency of adverse events, the breadth of clinical indications, 
and whether surrogate markers for efficacy are available and validated. 
Accordingly, the EMA has developed product-class-specific guidelines that 
define the nature of comparative studies. So far, guidances for the develop-
ment of biosimilar products have been developed for six different product 
classes, including erythropoietins, insulins, growth hormones, alpha inter-
ferons, granulocyte-colony-stimulating factors, and low-molecular-weight 
heparins (LMWH), with three more (beta interferons, follicle stimulation 
hormone, monoclonal antibodies) currently being drafted (EMA, 2006a–d, 
2009a,b, 2010a,b, 2011d).

3.3.2.6  European Experience

As indicated earlier, the EU EMA has issued scientific guidelines on the 
quality, nonclinical, and clinical standards for the approval of biosimilars. A 
summary of EMA product-class-specific guidelines (including EPO, G-CSF, 
insulin, growth hormone, LMW heparin, and interferon-alpha) is given in 
Table 3.2. According to these product-class-specific guidelines, as of December 
31, 2010, 14 biosimilar drugs have been approved in Europe. A list of these 
14 biosimilars is provided in Table 3.3. As compared to other regions in the 
world, Europe holds the highest number of biosimilar approvals. This num-
ber is expected to increase as many biologic patents will soon expire in the 
near future, which will help to increase market size and competition among 
market participants.

3.3.2.7  Remarks

In summary, the EU has taken a thoughtful and evidence-based approach, 
and has established a well-documented legal and regulatory pathway for 
the approval of biosimilar products distinct from the generic pathway. In 
order to approve a biosimilar product, the EMA requires comprehensive and 
justified comparability studies between the biosimilar and the reference in 
the quality, nonclinical, and clinical level, which are explained in detail in 
the EMA guidelines. The approval pathway of biosimilar products in the EU 
is based on case-by-case reviews, owing to the complexity and diversity of 
the biological products. Therefore, besides the three general guidelines, the 
EMA also developed additional product-class-specific guidelines on non-
clinical and clinical studies. This approval pathway is now held up as one of 
the gold standards for authorizing biosimilar products.
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3.3.3  North America (the United States and Canada)

3.3.3.1  United States (FDA)

For the approval of FOBs in the United States, current regulations depend 
on whether the biological products is approved under the U.S. Food, Drug, 
and Cosmetic Act (U.S. FD&C) or it is licensed under the U.S. Public Health 
Service Act (U.S. PHS). For the biologic drugs marketed under the PHS Act, 
the BPCI Act passed by the U.S. Congress on March 23, 2010, amends the PHS 
Act to establish an abbreviated approval pathway for biological products that 
are highly similar or interchangeable with an FDA-authorized biologic drug, 
and gives the FDA the authority to approve FOBs under new Section 351(k) 
of the PHS Act. Some early biologic drugs such as somatropin and insulin 
were approved under the FD&C Act. In this case, biosimilar versions can 
receive approval for New Drug Applications (NDAs) under Section 505(b)(2) 
of the FD&C Act.

Following the passage of the BPCI Act, in order to obtain input on specific 
issues and challenges associated with the implementation of the BPCI Act 
from a broad group of stakeholders, the U.S. FDA conducted a 2 day public 
hearing on the Approval Pathway for Biosimilar and Interchangeability 
Biological Product held on November 2–3, 2010, at the FDA in Silver Spring, 
Maryland. The scientific issues included, but were not limited to, criteria and 

TABLE 3.2

Summary of EMA Product-Class-Specific Guidelines

Parameter Method to demonstrate similar clinical characteristics in 
comparative study (studies).

Pharmacokinetics Acceptance range should be based on clinical judgment.
Standard bioequivalence criteria (i.e., 90% confidence interval 
within 80%–125% for select PK parameters) developed for orally 
administered products may not be appropriate.

Pharmacodynamics PD markers should be selected on their relevance to therapeutic 
efficacy. Examples: reticulocyte count for erythropoietin, absolute 
neutrophil count for G-CSF, euglycemic clamp for insulin.

Efficacy Demonstrate similar efficacy in at least one indication of the 
reference product. Indication chosen should be sensitive to 
differences in efficacy, should they exist. Demonstration of the 
clinical similarity in one indication may allow the extrapolation of 
the results to the other indications of the innovator biologic.

Safety Demonstrate similar safety in at least one indication of the 
reference product.

Immunogenicity Antibody testing should be part of all clinical studies.
Post-approval Data from pre-authorization in clinical studies normally are 

insufficient to identify all potential differences.
Clinical safety of biosimilars must be monitored on an ongoing 
basis post-approval, including continued benefit–risk assessment.
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design for establishing biosimilarity and interchangeability, comparability 
between manufacturing processes, patient safety and pharmacovigilance, 
exclusivity, and user fees.

In practice, there is a strong industrial interest and desire for the regu-
latory agencies to develop review standards and an approval process for 
biosimilars rather than an ad hoc case-by-case review of individual biosim-
ilar applications. For this purpose, the FDA has established three com-
mittees to ensure consistency in the FDA’s regulatory approach of FOBs. 
The three committees are the CDER/CBER Biosimilar Implementation 
Committee (BIC), the CDER Biosimilar Review Committee (BRC), and the 
CBER BRC. The CDER/CBER BRC will focus on the cross-center policy 
issues related to the implementation of the BPCI Act. The CDER BRC and 
CBER BRC are responsible for considering requests of applicants for advice 
about proposed development programs for biosimilar products, review-
ing Biologic License Applications (BLAs) that are submitted under Section 
351(k) of the PHS Act, and managing related issues. Thus, the review pro-
cess steps of CDER BRC and CBER BRC include (1) the applicant submits 
request for advice, (2)  internal review team meeting, (3) internal CDER 
BRC (CBER BRC) meeting, (4) internal post-BRC meeting, and (5) applicant 
meeting with CDER (CBER).

TABLE 3.3

List of Approved Biosimilars in Europe Up to December 31, 2010

Product
Common 

Name (INN) Company
Reference 
Product

Year of 
Approval

Omnitrope Somatropin Sandoz International 
Limited

Genotropin 2006

Valtropin Somatropin Biopartners GmbH Humatrope 2006
Binocrit Epoetin Alfa Sandoz International 

Limited
Eprex 2007

Epoetin Alfa Hexal Epoetin Alfa HEXAL AG Eprex 2007
Abseamed Epoetin Alfa Medice Arzneimittel 

Putter GmbH and Co. KG
Eprex 2007

Retacrit Epoetin Zeta Hospira, Inc. Eprex 2007
Silapo Epoetin Zeta SAADA Arzneimittel AG Eprex 2007
Biograstim Filgrastim CT Arzneimittel GmbH Neupogen 2008
Filgrastima 
Ratiopham

Filgrastim Ratiopham GmbH Neupogen 2008

Ratiograstim Filgrastim Ratiopham GmbH Neupogen 2008
Tevagrastim Filgrastim Teva Generics GmbH Neupogen 2008
Zarzio Filgrastim Sandoz International 

Limited
Neupogen 2009

Filgrastim Hexal Filgrastim HEXAL AG Neupogen 2009
Nivestim Filgrastim Hospira, Inc. Neupogen 2010

a	 Note that Filgrastim Ratiopharm was withdrawn on April 20, 2011, at the request of the sponsor.
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Another important issue discussed in the BPCI Act is the interchangeability 
of biosimilars. Once approved, standard generic drugs can be automatically 
substituted for the reference product without the intervention of the health-
care provider in many states. However, the automatic interchangeability 
cannot be applied to all biosimilars. In order to meet the higher standard of 
interchangeability, a sponsor must demonstrate that the biosimilar products 
can be expected to produce the same clinical result as the reference product 
in any given patient.

On February 9, 2012, the FDA announced the publication of three draft 
guidance documents to assist industry in developing FOB products, including 
“Scientific Considerations in Demonstrating Biosimilarity to a Reference 
Product,” “Quality Considerations in Demonstrating Biosimilarity to a 
Reference Protein Product,” “Biosimilars: Questions and Answers Regarding 
Implementation of the BPCI Act of 2009” (FDA, 2012a–c). Similar to the require-
ments of the WHO and EMA, a number of factors are considered to be important 
by the FDA when assessing applications for biosimilars, including the robust-
ness of the manufacturing process; the demonstrated structural similarity, the 
extent to which the mechanism of action was understood; the existence of valid, 
mechanistically related PD assays; comparative PK and immunogenicity; and 
the amount of clinical data and experience available with the original products. 
The FDA was seeking public comments on the guidance within 60 days of the 
notice of publication in the Federal Register. Even though the guidances do not 
provide clear standards for assessing biosimilar products, they are the first step 
toward removing the uncertainties surrounding the biosimilar approval path-
way in the United States.

3.3.3.2  Canada (Health Canada)

Health Canada, the federal regulatory authority that evaluates the safety, 
efficacy, and quality of drugs available in Canada, also recognizes that with 
the expiration of patents for biologic drugs, manufacturers may be interested 
in pursuing subsequent entry versions of these biologic drugs, which are 
called subsequent entry biologics (SEB) in Canada. In 2010, Health Canada 
issued a “Guidance for Sponsors: Information and Submission Requirements 
for Subsequent Entry Biologics (SEBs),” whose objective was to provide guid-
ance on how to satisfy the data and regulatory requirements under the Food 
and Drugs Act and Regulations for the authorization of SEBs in Canada 
(Health Canada, 2010).

The concept of an SEB applies to all biologic drug products; however, 
there are additional criteria to determine whether the product will be eli-
gible to be authorized as an SEB: (1) a suitable reference biologic drug exists 
that was originally authorized based on a complete data package, and has 
significant safety and efficacy data accumulated; (2) the product can be 
well characterized by state-of-the-art analytical methods; (3) the SEB can 
be judged similar to the reference biologic drug by meeting an appropriate 
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set of pre-determined criteria. With regard to the similarity of products, 
Health Canada requires the manufacturer to evaluate the following factors: 
(1) relevant physicochemical and biological characterization data; (2) analysis 
of the relevant samples from the appropriate stages of the manufacturing 
process; (3) stability data and impurities data; (4) data obtained from mul-
tiple batches of the SEB and the reference product to understand the ranges 
in variability; (5) nonclinical and clinical data and safety studies. In addition, 
Health Canada also has stringent post-market requirements including the 
adverse drug reaction report, periodic safety update reports, suspension or 
revocation of notice of compliance (NOC).

The guidance of Canada shares similar concepts and principles as indi-
cated in the WHO guidelines, since it is clearly mentioned in the guidance 
that Health Canada has the intention to harmonize as much as possible with 
other competent regulators and international organizations.

3.3.4  Asian Pacific Region (Japan and South Korea)

3.3.4.1  Japan (MHLW)

The Japanese Ministry of Health, Labor and Welfare (MHLW) has also been 
confronted with the new challenge of regulating biosimilar/FOB products. 
Based on the similarity concept outlined by the EMA, Japan has published 
a guideline for quality, safety, and efficacy of biosimilar products in 2009 
(MHLW, 2009). The scope of the guideline includes recombinant plasma 
proteins, recombinant vaccines, PEGylated recombinant proteins, and non-
recombinant proteins that are highly purified and characterized. Unlike the 
EU, polyglycans such as LMWH have been excluded from the guideline. 
Another class of product excluded is synthetic peptides, since the desired 
synthetic peptides can be easily defined by structural analyses and can be 
defined as generic drugs. Similar to the requirements by the EU, the original 
biologic should be already approved in Japan. However, there are some 
differences in the requirements of the stability test and toxicology studies 
for impurities in a biosimilar between the EU and Japan. A comparison of 
the stability of a biosimilar with the reference innovator products as a strat-
egy for the development of a biosimilar is not always necessary in Japan. 
In  addition, it is not required to evaluate the safety of impurities in the 
biosimilar product through nonclinical studies without a comparison to the 
original product. According to this guideline, two FOBs, “Somatropin” and 
“Epoetin alfa BS” have been recently approved in Japan.

3.3.4.2  South Korea (KFDA)

In Korea, the Pharmaceutical Affairs Act is a high-level regulation to license 
all medicines including biological products. The notifications by the Korean 
Food and Drug Administration (KFDA) serve as a lower-level regulation. 
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Biological products and biosimilars are subject to the Notification of the 
Regulation on Review and Authorization of Biological Products. The KFDA takes 
active participation in promoting a public dialog on the biosimilar issues. 
In 2008 and 2009, the KFDA held two public meetings and co-sponsored a 
workshop to gather input on scientific and technical issues. The regulatory 
framework of biosimilar products in Korea is a three-tiered system: (1) the 
Pharmaceutical Affairs Act; (2) the Notification of the Regulation on Review 
and Authorization of Biological Products; (3) the Guideline on Evaluation of 
Biosimilar Products (KFDA, 2011; Suh and Park, 2011). As the Korean guide-
line for biosimilar products was developed along with that of the WHO 
(WHO, 2009), most of the requirements are similar except for that of the clini-
cal evaluation to demonstrate similarity. The KFDA requires that equiva-
lent rather than noninferior efficacy should be shown in order to open the 
possibility of extrapolation of efficacy data to other indications of the refer-
ence product. Equivalence margins need to be pre-defined and justified, and 
should be established within the range which is judged not to be clinically 
different from reference products in clinical aspects.

3.4  Review of the FDA Draft Guidances

On February 9, 2012, the U.S. FDA released three draft guidances about 
the demonstration of biosimilarity. These draft guidances are (1) Scientific 
Considerations in Demonstrating Biosimilarity to a Reference Product, 
(2)  Quality Considerations in Demonstrating Biosimilarity to a Reference 
Protein Product, (3) Biosimilars: Questions and Answers Regarding 
Implementation of the BPCI Act of 2009. As stated, these guidances are 
intended not only (1) to assist sponsors to demonstrate that a proposed thera-
peutic protein product is biosimilar to a reference product for the purpose of 
submitting a marketing application under Section 351(k) of the PHS Act, but 
also (2) to describe the FDA’s current thinking on factors to consider when 
demonstrating that a proposed protein product is highly similar to a reference 
product which was licensed under Section 351(a) of the PHS Act. In addition, 
the guidances provide answers to common questions from sponsors inter-
ested in developing proposed biosimilar products, BLA holders, and other 
interested parties regarding FDA’s interpretation of the BPCI Act of 2009.

3.4.1  Statistical Scientific Advisory Board

The Statistical Scientific Advisory Board (SSAB) focusing on Statistical Consid
erations of Regulatory Approval for Biosimilars consists of Dr. Shein-Chung Chow, 
a professor at Duke University School of Medicine; Dr. Laszlo Endrenyi, a pro-
fessor at the University of Toronto; and Dr. Peter A. Lachenbruch, a professor 
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at the Oregon State University. It was established and sponsored by Amgen, 
Inc. as  an  independent Board in 2009. The primary objectives of SSAB are 
(1) to identify statistical research topics that are critical to informing any future 
standards for the assessment of biosimilars, and (2) to discuss and obtain feed-
back on these identified statistical topics from regulatory agencies such as the 
FDA. The SSAB is very active in (1) statistical methodology development for 
the assessment of biosimilarity and interchangeability, and (2) communica-
tion and collaboration with regulatory agencies such as the FDA since estab-
lished in 2009. SSAB also provided comments on one of the guidances entitled 
Scientific Considerations in Demonstrating Biosimilarity to a Reference Product for 
the Agency’s consideration when preparing a revision of the draft guidance. In 
this section, we will focus on the comments from SSAB especially on the step-
wise approach and the totality-of-the-evidence for assessment of biosimilarity.

3.4.2  FDA Draft Guidance on Scientific Considerations

The FDA draft guidance discusses important approaches for assessing 
biosimilarity, including (1) a stepwise approach to demonstrating biosimilar-
ity, and (2) the concept of totality-of-the-evidence for the regulatory review 
and approval of biosimilar applications. The draft guidance covers various 
topics such as (1) complexities of protein products, (2) U.S.-licensed refer-
ence products and other comparators, (3) studies required for demonstrating 
biosimilarity, e.g., structural analysis, functional assays, animal data, and clin-
ical studies, and (4) post-marketing safety monitoring considerations. Many 
important scientific factors and issues are discussed. They include (1) the use 
of human pharmacology data, (2) the assessment of clinical immunogenicity, 
(3) the use of clinical safety and effectiveness data, (4) the clinical study design 
issues, and (5) the extrapolation of clinical data across indications.

3.4.3  Comments on the FDA Draft Guidance

The draft guidances provide general concepts and principles for the assess-
ment of biosimilarity although they do not present detailed information 
regarding the scientific factors or issues raised at the FDA Public Hearing 
and the FDA Public Meeting for User Fees held on November 2–3, 2010, and 
December 16, 2011, respectively, within the FDA in Silver Spring, Maryland. 
In addition, the current draft guidances did not mention the assessment of 
drug interchangeability, which was one of the major topics discussed at the 
2010 FDA Public Hearing. In what follows, comments will be offered on some 
scientific factors or issues that still remain unanswered or unsolved.

3.4.3.1  Definition of Biosimilarity

As indicated in the section of Background of the draft guidance for Scientific 
Considerations, BPCI Act is part of the Affordable Care Act (the Healthcare Act) 
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passed by the U.S. Congress on March 23, 2010. It adds new sections to the 
PHS Act. Section 351(i) defines biosimilarity, while Section 351(k) sets the 
procedures in a submission for biosimilarity. Note that a 351(k) application 
is to be distinguished from a 505(j) application for bioequivalence (generic 
drug products). Section 351(i) defines biosimilarity: a biological product 
is expected to be highly similar to the reference product notwithstanding 
minor differences in clinically inactive components. There should be no clin-
ically meaningful differences between the biological product and the refer-
ence product in terms of safety, purity, and potency.

One of the major comments regarding the definition of biosimilarity is the 
question: “How similar is considered highly similar?” (see, e.g., Chow and Liu, 
2008; Chow, 2011; Chow et al., 2011). There is little or no information regarding 
the definition of highly similar. In addition, no information is available regard-
ing the degree of similarity such as similar, generally similar, and/or highly similar. 
Also: “What are the variables for which similarity should be demonstrated?” 
Presumably, variables used for the reference product should be studied.

The draft guidance introduces the concept of totality-of-the-evidence across 
different domains (such as PK/PD, immunogenicity, and clinical outcomes). 
The totality-of-the-evidence can be interpreted as expecting global similarity 
across different domains. Local similarity can be defined as similarity in some 
domains rather than in all domains. It is not clear that the demonstration of 
local similarity in some important domains would be sufficient for regula-
tory approval of biosimilar products.

Another comment is related to the demonstration of biosimilarity in terms 
of safety, purity, and potency, which are considered important, good drug 
characteristics as described in the FDA draft guidance. As indicated by USP/
NF XXI (2000), important good characteristics, however, should include iden-
tity, strength (potency), quality, purity, safety, and stability.

3.4.3.2  Criteria of Biosimilarity

For the assessment of bioequivalence for generic (small-molecule) drug 
products, a one size-fits-all criterion is considered by most regulatory agencies 
such as the U.S. FDA and EMA of the EU. For PK studies, the one size-fits-all 
criterion has been directly applied for the assessment of biosimilar products 
regardless that there are fundamental differences between small-molecule 
drug products and biological products (Chow and Liu, 2010; Chow, 2011). The 
one size-fits-all criterion is for the assessment of average bioequivalence which 
does not take variabilities (inter-subject variability, intra-subject variability, and 
variability due to subject-by-drug interaction) into consideration. Thus, it has 
been criticized for penalizing drug products with smaller variability.

In the current draft guidance, however, there is little or no information 
regarding the criteria of biosimilarity in different domains (e.g., functional 
structures, PK/PD, clinical outcomes, manufacturing process). Criteria for the 
assessment of biosimilarity could include, but are not limited to, (1) average 
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versus variability, (2) moment-based versus probability-based assessments, 
(3) aggregated versus disaggregated models, (4) scaled versus unscaled evalu-
ations, (5) weighted versus nonweighted assessments, (6) fixed versus flexible 
criteria (Chow and Liu, 2010; Chow et al., 2010, Hsieh et al., 2010). At the 2010 
FDA Public Hearing, it was pointed out by several presenters that the one size-
fits-all criterion for the assessment of bioequivalence of generic drug products 
may not be appropriate for the assessment of biosimilarity of FOBs due to their 
fundamental differences (see also Chow and Liu, 2010). It is then suggested that 
a flexible, probability-based, disaggregated, scaled, weighted criterion which 
can account for variability should be considered (see also Chow et al., 2010).

3.4.3.3  Biosimilar Studies

For the assessment of biosimilarity by the concept of the totality-of-the-
evidence, it is not clear what studies will be actually required. As stated in the 
draft guidance, the sponsor is required to show that there are no clinically 
meaningful differences between the biological product and the reference 
product in terms of safety, purity, and potency. This can be interpreted as 
the types of biosimilar studies required (e.g., PK/PD studies or clinical trials) 
for the demonstration of biosimilarity would depend upon the good (impor-
tant) drug characteristics required by the regulatory agency. For example, 
if safety is of great concern, then demonstration of biosimilarity in safety, 
animal studies for toxicity, and immunogenicity for safety may be required.

3.4.3.4  Study Design

For human PK and PD studies, FDA recommends the use of a cross-over 
design for products with a short half-life (e.g., shorter than 5 days) and low 
incidence of immunogenicity. For products with a longer half-life (e.g., more 
than 5 days), a parallel-group design will usually be needed. In addition, 
FDA requires that scientific justification for the selection of study subjects, 
study dose, route of administration, and sample size be provided.

It can be suggested that in addition to the half-life and incidence rate of 
immunogenicity, the selection of study design should also be made based on 
the relative magnitude of the inter-subject and intra-subject variabilities of the 
test and reference drug products. It should be noted that Chow et al. (2010) 
proposed two useful study designs for the assessment of biosimilarity. In 
addition, an adaptive sequential design may be useful that (1) combines both 
cross-over design and parallel design and (2) links these in a bridging study.

3.4.3.5  Statistical Methods

In the current draft guidance, no specific (detailed) statistical methods for the 
assessment of biosimilarity were mentioned. For the assessment of generic, 
small-molecule drug products, under a valid study design (a cross-over design 
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or a parallel design) and criteria for bioequivalence, standard statistical methods 
for the assessment of average bioequivalence such as a confidence interval 
approach and Schuirmann’s two one-sided tests procedure are available (Chow 
and Liu, 2008). The FDA draft guidance may assume that these methods can be 
directly applied to the assessment of biosimilarity. As detailed in the following 
chapters, these methods may not be appropriate for the assessment of biosimi-
larity of FOBs due to some fundamental differences between small-molecule 
drug products and biological (large-molecule) drug products (Chow and Liu, 
2010; Hsieh et al., 2010).

As indicated in the draft guidance, FDA recommends that sponsors use a 
stepwise approach to develop the evidence needed to demonstrate biosimi-
larity. FDA intends to consider the totality-of-the-evidence provided by a 
sponsor when the agency evaluates the sponsor’s demonstration of biosimi-
larity, consistent with the longstanding approach of the agency to evaluating 
scientific evidence.

3.4.3.6  Stepwise Approach

The concept of the stepwise procedure is easy to comprehend. However, 
the term “stepwise approach” can be easily mistaken for “stepwise regres-
sion” in statistics. Thus, it is suggested that the term “stepwise approach” be 
changed to “step-by-step approach” in order to clarify the confusion.

A concern regarding the step-by-step approach proposed for the dem-
onstration of evidence of biosimilarity is the control of the overall type I 
error rate for achieving the totality-of-the-evidence. In practice, the evidence 
obtained at different steps could carry different weights of clinical impor-
tance, which may or may not achieve statistical significance. In addition, the 
order of the step-by-step testing procedures may have an impact on the final 
test results. Also, the possible multiplicity of the variables could affect the 
type I error rate; this calls for clarification.

At each step of the approach, the “residual uncertainty” is to be evaluated 
which is still needed to demonstrate biosimilarity satisfactorily. At the end of 
the series of steps, the Draft Guidance presents clinical studies and thereby 
appears to leave the impression that the clinical program and its data are 
needed only if there is still “residual uncertainty” after evaluating the pre-
ceding steps (including structural analysis, functional assays, and studies in 
animals). On the other hand, the BPCI Act requires, not in a sequential man-
ner, “a clinical study or studies (including the assessment of immunogenicity 
and PK or PD) that are sufficient to demonstrate safety, purity, and potency.” 
It would be important to clarify the differing interpretations.

3.4.3.7  Totality-of-the-Evidence

The concept of totality-of-the-evidence is, in fact, global biosimilarity across 
different domains. The FDA seems to suggest that similarity should be 
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demonstrated across different domains. The degree of biosimilarity in differ-
ent domains, however, may have different degrees of impact on the clinical 
outcomes (i.e., safety and effectiveness). As a result, it is suggested that dif-
ferent criteria for biosimilarity in different domains should be considered. 
Thus, the criteria and degrees of biosimilarity in different domains will 
have an impact on the totality of evidence for global similarity. Chow (2011) 
proposed a biosimilarity index based on reproducibility probability, which 
may be helpful in achieving the totality of evidence for the assessment of 
biosimilarity. Details regarding Chow’s proposed biosimilarity index and 
totality biosimilarity index are given in Chapters 5 and 7.

As indicated by Chow et al. (2011), the proposed biosimilarity index has the 
advantages that (1) it is robust with respect to the selected study endpoint, 
biosimilarity criteria, and study design; (2) it takes variability into consid-
eration (one of the major criticisms in the assessment of average bioequiva-
lence); (3) it allows the definition and assessment of the degree of similarity 
(in other words, it provides a partial answer to the question “how similar is 
considered similar?”); and (4) the use of the biosimilarity index will reflect 
the sensitivity of heterogeneity in variance.

Most importantly, the biosimilarity index proposed by Chow (2011) can be 
applied to different functional areas (domains) of biological products such 
as the good drug characteristics of safety (e.g., immunogenicity), purity, 
and potency (as described in the BPCI Act), PK, PD, biological activities, 
biomarkers (e.g., genomic markers), the manufacturing process, etc., used for 
the assessment of global biosimilarity.

3.4.3.8  Manufacturing Process Validation and Tests for Comparability

As the biological and reference products are very sensitive to small changes 
(variations) in environmental factors such as light and temperature, it is 
suggested that criteria for the assessment of biosimilarity based on vari-
ability should be developed. In addition, since different manufacturing 
processes could affect safety and effectiveness, the manufacturing process 
must be validated. Sampling plan, acceptance criteria, and testing procedure at 
critical stages of the manufacturing process must be described in detail 
in the protocol for process validation. In addition, tests for comparability 
between raw-material, in-process material, and the end product of man-
ufacturing processes should be conducted based on some pre-specified 
criteria for comparability.

3.4.3.9  U.S.-Licensed Reference Product versus Other Comparators

In practice, a single reference product is less problematic. Different reference 
products may be problematic. Possibly, a U.S.-licensed reference product could 
be compared with another non-U.S.-licensed reference product. Alternatively, 
two different products licensed in the United States could be contrasted. 
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But, for example, what if the two reference products are not biosimilar under 
similar conditions of patient populations, study designs, and experiments?

Recently, Kang and Chow (2013) proposed a methodology for the assess-
ment of biosimilarity with two reference products (say one from Europe and 
one from the United States) based on the concept of relative distance under 
a three-arm study design (T, R1, and R2). The criterion for biosimilarity is 
based on the relative distance between (T, R1), (T, R2), and (R1, R2). If there is 
no significant difference, R1 and R2 can be combined in order to increase the 
power for the assessment of biosimilarity. Conceivably, Bayesian analysis of 
the data could be helpful here.

3.4.3.10  Non-inferiority versus Similarity

Since non-inferiority is regarded as one-sided equivalence, we may consider 
establishing non-inferiority first and then test for nonsuperiority for the assess-
ment of biosimilarity by utilizing the concept of asymmetric equivalence 
limits. This proposal deals with distinct values of α1 and α2 rather than α1 = α2. 
This enables us to adopt flexible biosimilarity criteria. However, the selection 
of the non-inferiority margin and the choices of α1 and α2 are controversial 
issues. Consideration of spending functions could be helpful. In any case, 
consensus among the regulatory agency, pharmaceutical/biotechnology 
industry, and academia should be reached based on appropriate and valid 
scientific/statistical justification.

3.4.3.11  Consultation with FDA

As pointed out in the draft guidance, many product-specific factors can influ-
ence the components of a product development program which intends to 
establish that a proposed product is biosimilar to a reference product. Therefore, 
FDA will provide feedback on a case-by-case basis on the components of a devel-
opment program for a proposed product. Although the FDA’s intention is good, 
one of the major criticisms is that case-by-case, product-specific regulatory 
requirements indicate that there are no standards for the assessment of biosimi-
larity. In addition, internal consistency among medical/statistical reviewers at 
the FDA with respect to regulatory requirements of similar drug products is 
another concern, especially when the decision is made subjectively and without 
valid and/or convincing scientific or statistical justification.

3.4.3.12  Remarks

In summary, many scientific factors still remain unresolved. These scientific 
factors and issues include, but are not limited to, (1) how similar is considered 
to be highly similar, (2) criteria for biosimilarity (average versus variability; 
one size-fits-all criterion or a more flexible criterion), (3) degree of biosimilar-
ity (local similarity versus global similarity), (4) study design (potential use of 
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adaptive designs in biosimilar studies) and sample size requirement, (5) statisti-
cal methods for achieving totality-of-the-evidence of biosimilarity, and (6) drug 
interchangeability (alternating versus switchability), even though it was not 
mentioned in the current draft guidance. More details for addressing these sci-
entific factors and issues ought to be provided in the revised draft guidance.

The draft guidance suggests a step-by-step (“stepwise”) approach for dem-
onstrating evidence of biosimilarity. At each step the residual uncertainty of 
the still needed evidence can be evaluated. The sequence of structural analysis, 
functional analysis, animal studies, and clinical studies appears to be proposed 
in which, for instance, clinical investigations could be needed only in the light 
of the residual uncertainty. This is in contrast with the nonsequential approach 
of the BPCI Act according to which a clinical study or studies are required in 
submissions. The differing approaches ought to be clarified.

Under the step-by-step approach, it is not clear how the assessment of 
biosimilarity would be undertaken for different biosimilar studies in terms of 
criteria for biosimilarity, study designs (sample size requirement), and statisti-
cal methods. The guidance suggests consulting with FDA medical/statistical 
reviewers before biosimilar studies are conducted. Internal consistency at the 
FDA with respect to regulatory requirements of similar drug products is a 
concern, especially when the decision is made without valid and/or convinc-
ing scientific or statistical justifications.

3.5  Global Harmonization

According to the regulatory requirements of different regions described in 
the previous section, there seems to be no significant difference in the gen-
eral concept and basic principles in these guidelines. There are five well-
recognized principles with regard to the assessment of biosimilar products: 
(1) the generic approach is not appropriate for biosimilars; (2) biosimilar prod-
ucts should be similar to the reference in terms of quality, safety, efficacy; 
(3) a stepwise comparability approach, required to indicate the similarity of 
the SBP to RBP in terms of quality, is a prerequisite for the reduction of the 
submitted nonclinical and clinical data; (4) the assessment of biosimilarity 
is based on a case-by-case approach for different classes of products; (5) the 
importance of pharmacovigilance is stressed.

However, differences have been noted in the scope of the guidelines, 
the  choice of the reference product, and the data required for product 
approval. The concept of a “similar biological medicinal product” in the EU 
is applicable to a broad spectrum of products ranging from biotechnology-
derived therapeutic proteins to vaccines, blood-derived products, mono-
clonal antibodies, gene and cell-therapy, etc. However, the scopes of other 
organizations or countries are limited to recombinant protein drug products. 



74 Biosimilars: Design and Analysis of Follow-on Biologics

Concerning the choice of the reference product, the EU and Japan require that 
the reference product should be previously licensed in their own jurisdiction, 
while other countries do not have this requirement. A detailed comparison of 
the guidelines of the WHO, the EU, Canada, Korea, and Japan for the biosimi-
lar products is summarized in Table 3.4.

TABLE 3.4

Comparison of Requirements among Different Regions

WHO Canada Korea EU Japan

Term SBPs SEBs Biosimilars Biosimilars Follow-on 
Biologics

Scope Recombinant protein drugs Mainly 
recombinant 
protein drugs

Recombinant 
protein drugs

Efficacy Double-blind or 
observer-blind; 
equivalence or 
non-inferiority design

Equivalence 
design

Comparability margins should be 
pre-specified and justified

Reference 
product

Authorized in a jurisdiction with 
well-established regulatory 
framework

Authorized in the 
EU

Authorized in 
Japan

Stability • Accelerated degradation studies
• Studies under various stress conditions

Not necessary

Purity Process-related and product-related impurities
Manufacture • Same standards required by the NRA for originator products

• Full chemistry and manufacture data package
Physicochemical • Primary and higher-order structure

• Post-translational modifications
Biological 
activity

• Qualitative measure of the function
• Quantitative measure (e.g., enzyme assays or binding assays)

Non-clinical 
studies

• In vitro (e.g., receptor-binding, cell-based assays)
• �In vivo (PD activity, at least one repeat dose toxicity study, antibody 

measurements, local tolerance)
PK study design 
and criteria

• Single dose, steady-state studies, or repeated determination of PK
• Cross-over or parallel
• Include absorption and elimination characteristics
• Traditional 80%–125% equivalence range is used

PD PD markers should be selected and comparative PK/PD studies may be 
appropriate

Safety Pre-licensing safety data and risk management plan
Principles • Generic approach is not appropriate for FOB

• �Follow-on biologic should be similar to the reference in terms of 
quality, safety, efficacy

• �Stepwise comparability approach: similarity of the SBP to RBP in terms 
of quality is a prerequisite for reduction of non-clinical and clinical data 
required for approval

• Case-by-case approach for different classes of products
• Pharmacovigilance is stressed

Note:	 See also Wang and Chow (2012).
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In order to facilitate the global harmonization of evaluation of the FOBs, the 
first workshop on implementing “WHO Guidelines on Evaluating Similar 
Biotherapeutic Products” into the regulatory and manufacturing practice at 
the global level was held on August 24–26, 2010, in Seoul, Republic of Korea. 
The workshop featured speakers from regulatory agencies from various 
countries, clinical and scientific experts, representatives from the biophar-
maceutical industry and WHO.

It was recognized in the workshop that some progress toward implementa-
tion and development of guidance documents in various countries had been 
made. For instance, the biosimilar guidances of Singapore and Malaysia 
are amended mainly based on the EU’s biosimilar guidelines, while Brazil 
and Cuba chose the WHO and Canadian guidelines as the basis for devel-
oping regulations. However, there are also many challenges which need 
to be addressed for global harmonization of the regulatory framework for 
licensure of biotherapeutics. For example, the manufacturing of SBPs in the 
Arab region is not well controlled due to the lack of expertise in the assess-
ment of biotechnology products and inexperience with regulatory processes. 
Besides, large emerging economies such as China and India are currently 
lagging behind in terms of their regulations and need to act rapidly in devel-
oping appropriate regulations for biosimilar product approval.

In summary, the status of SBPs and the implementation of the WHO 
guidelines are highly diverse worldwide, and a harmonized approach for 
SBPs worldwide is unlikely to occur rapidly. While some countries have 
developed guidelines or are developing guidelines, other countries are tak-
ing a relaxed view and are not committed to the approach to adopt for the 
approval of SBPs. Accordingly, in order to promote the global harmoniza-
tion, NRA should take an active role in building capacity for the regulatory 
evaluation of biotherapeutics; the existing guidelines should be revised as 
considerable experience is being gained through scientific advice, marketing 
authorization, applications, and workshops; WHO should continue monitor-
ing progress with the implementation of the guidelines on the evaluation of 
SBPs into regulatory and manufacturers’ practices.

3.6  Concluding Remarks

For the assessment of bioequivalence of generic drug products, with iden-
tified active ingredient(s) to the innovative drug products, the regulatory 
approval pathway through the conduct of bioequivalence studies is possible 
under the Fundamental Bioequivalence Assumption. For the assessment of 
biosimilar products, a similar Fundamental Biosimilarity Assumption is 
established. Biosimilar products are not identical, but merely similar to the 
innovative products.
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As described in Section 3.3, most regulatory requirements for the approval 
of biosimilar products are similar but slightly different in the definitions of 
biosimilarity, the scope of the guidelines, the choice of the reference prod-
uct, and the data required for product approval. Only few or no discussions 
regarding the criteria and/or the degree of biosimilarity and/or interchange-
ability have been pursued. In practice, it is an unresolved question, “how 
similar is considered highly similar?,” and it is of particular interest to the 
sponsors to establish “how many studies are required for the regulatory 
approval of biosimilar products?” Besides, the degree of similarity may have 
an impact on the interchangeability of biosimilar products. As indicated in 
the BPCI Act, biosimilar products are considered interchangeable provided 
that they can produce the same therapeutic effect in any given patient. 
This, however, is not possible to achieve. Alternatively, we would suggest 
that biosimilar products are considered interchangeable provided that they 
can produce the same therapeutic effect in any given patient with certain 
statistical assurance.

In summary, there are still many unsolved scientific issues regarding 
criteria, design, and analysis for the assessment of biosimilarity and/or 
interchangeability of FOBs. Detailed regulatory guidances for global harmo-
nization are needed whenever possible.
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4
Criteria for Similarity

4.1  Introduction

For comparisons between drug products, some criteria for testing similarity 
are available in either regulatory guidelines/guidances and/or the literature. 
These criteria include (1) criteria for the assessment of in vivo bioequivalence 
testing and in vitro bioequivalence testing (FDA, 1992, 1999, 2003; Chow and 
Liu, 2008), (2) similarity factors for dissolution profiles comparison (Moore 
and Flanner, 1996; Chow and Ki, 1997; FDA, 1997), and (3) tests for consis-
tency in raw materials, in-process materials, and end-products for quality 
control/assurance (Tse et al., 2006). These criteria are useful for assessing 
biosimilarity. However, these criteria do not discuss the issue regarding the 
degree of similarity. In general, these criteria can be classified into (1) absolute 
change versus relative change, (2) aggregated versus disaggregated, (3) scaled 
(weighted) versus unscaled (unweighted), or (4) moment-based (MB) versus 
probability-based (PB) criteria.

In clinical research and development, for a given study endpoint, post-
treatment absolute change from baseline or post-treatment relative change from 
baseline is usually considered for comparisons between treatment groups. In 
practice, it is not clear whether absolute change or relative change should be 
selected for the assessment of similarity. As a result, several controversial issues 
are raised (see, e.g., Chow, 2011). First, which endpoint (i.e., absolute change or 
relative change from baseline) is telling the truth? Second, it is not clear whether 
a clinically meaningful difference in absolute change from baseline can be sim-
ilarly translated to a clinically meaningful difference in relative change from 
baseline. Third, sample size calculations based on power analysis in terms of 
absolute change from baseline or relative change from baseline could lead to a 
very different result. It should be noted that current regulation for the assess-
ment of bioequivalence between drug products is based on relative change.

In the development of aggregated criteria, individual criteria for the assess-
ment of differences in average, intra-subject variability, and variance due to 
subject-by-product interaction between drug products are often adjusted 
for (or scaled with respect to) the variability associated with the reference 
product. The intention of the scaled criteria is not to penalize (good) products 
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with less variability during the bioequivalence review. The scaled criteria 
for the assessment of bioequivalence for highly variable drug products have 
been in practice since introduced by the U.S. Food and Drug Administration 
(FDA) (Haidar et al., 2008).

For the evaluation of similarity, one can develop either an MB criterion or 
a PB criterion. An MB criterion assures that the difference (in terms of either 
absolute change or relative change) is within some pre-specified similarity 
limits with certain statistical assurance. For example, a 90% confidence inter-
val of the ratio of means is totally within the similarity limits of (δL, δU). On 
the other hand, a PB criterion assures that there is a desired probability that 
the true difference (in terms of either absolute change or relative change) is 
within some pre-specified similarity limits. That is, for example, the prob-
ability that μT/μR is within the limits of δL and δU is higher than or equal 
to some pre-specified value p0. Current requirements for the assessment of 
bioequivalence focus on relative change using an MB criterion.

To address the degree of similarity, similarity can be assessed by evalu-
ating differences in average, intra-subject variability, and variance due to 
subject-by-product interaction between drug products separately. Individual 
criteria for the assessment of differences in average, intra-subject variability, 
and variance due to subject-by-product interaction between drug products 
are referred to as disaggregated criteria. If the criterion is a single summary 
measure composed of these individual criteria, it is called an aggregated 
criterion. Between early 1990s and early 2000s, aggregated criteria for the 
assessment of population bioequivalence (PBE) and individual bioequiva-
lence (IBE) were considered for addressing drug prescribability and drug 
switchability (Chow and Liu, 2008).

In the next section, criteria for the assessment of average bioequivalence 
(ABE), PBE, IBE, and in vitro bioequivalence testing are briefly described. 
Similarity factors used for the comparison of dissolution profiles are given 
in Section 4.3. Section 4.4 provides a criterion for testing consistency in 
the process of quality control/assurance. Section 4.5 compares the relative 
performances between MB criterion and PB criterion for the assessment 
of bioequivalence or similarity by means of extensive simulation studies. 
Other alternative criteria for the assessment of similarity such as PB relative 
distance and a biosimilarity index based on reproducibility probability are 
discussed in Section 4.6. Section 4.7 provides some concluding remarks.

4.2  Criteria for Bioequivalence

As indicated in Chapter 2, bioequivalence assessment is possible under 
the Fundamental Bioequivalence Assumption. Accordingly, if two drug 
products are shown to be bioequivalent in their drug absorption profiles 
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(which are measured in terms of the extent and rate of absorption), it is generally 
assumed that they will reach the same therapeutic effect or that they are thera-
peutically equivalent and hence can be used interchangeably. The extent and 
rate of drug absorption are usually measured by pharmacokinetic parameters 
such as the area under the blood or plasma concentration–time curve (AUC) 
and the maximum concentration (Cmax). The Fundamental Bioequivalence 
Assumption assumes that there is an association between pharmacokinetic 
responses and clinical outcomes. The association between bioequivalence lim-
its and clinical difference, however, is difficult to assess in practice.

4.2.1  Average Bioequivalence

For the assessment of ABE, the following criteria were considered by the 
FDA since 1977 (Chow and Liu, 2008):

75/75 Rule: Bioequivalence is claimed if at least 75% of individual subject 
ratios (relative individual bioavailability of the test product to the reference 
product) are within (75%, 125%). This criterion has the advantages that (1) it 
is easy to apply, (2) it compares the relative bioavailability within subjects, 
and (3) it removes the effect of heterogeneity from the comparison between 
products. However, this criterion is not viewed favorably by the FDA due to 
some undesirable statistical properties (see, e.g., Chow and Liu, 2008).

80/20 Rule: Bioequivalence is concluded if the average measure of the test 
product is not statistically significantly different from that of the reference 
product, and if there is at least 80% power for the detection of a 20% difference 
of the reference product average. This criterion has been criticized because it 
is based on hypothesis testing for equality, not for equivalence (similarity).

±20 Rule: Bioequivalence is concluded if the average bioavailability of the test 
product is within ±20% of that of the reference product with a certain sta-
tistical assurance. This criterion allows a test product to exhibit up to a 20% 
variation in average bioavailability in comparison with a reference product. 
The ±20 rule has been widely used for the assessment of bioequivalence for 
most drug products. Levy (1986), however, indicated that the ±20 rule does 
not accommodate the effect that the 20% variation could have on the safety 
and efficacy of the drug product under investigation.

80/125 Rule: Bioequivalence is concluded if the geometric means ratio 
between the test product and the reference product is within (80%, 125%), 
with a certain statistical assurance. This criterion is not symmetric about 
1 on the original scale. However, on the logarithmic scale, the criterion is 
symmetric about 0, that is, it has a range of –0.2231 to 0.2231.

Note that according to current regulations, the 75/75 rule is not required for the 
assessment of bioequivalence because it is not based on rigorous statistical tests. 
It appears that the ±20 rule was acceptable to the FDA for the evaluation of ABE 
in the early 1980s. The 80/20 rule was recommended as a secondary analysis, 
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which is often used as a supplement to the ±20 rule. However, frequently, the 
±20 rule and the 80/20 rule may result in inconsistent conclusions. The 80/125 
rule is the current regulation for the assessment of ABE (FDA, 2003).

4.2.2  Population/Individual Bioequivalence

In the early 1990s, as more generic drug products became available, it was a 
concern whether the use of generic drug products was safe, and whether the 
approved generic drug products could be used interchangeably. The FDA 
indicates that an approved generic drug product can be used as a substitu-
tion of the innovative (brand-name) drug product. However, the FDA does 
not indicate that generic drug products can be used interchangeably. Since 
generic drug products are approved based on the criterion of the 80/125 rule, 
there may be a drastic change in blood concentration if one shall switch from 
one generic drug to another. For example, if one switches from a drug which 
was approved on the lower end of the 80/125 rule (say 80%) to another drug 
which was approved on the higher end of the 80/125 rule (say 120%), then 
there would be a sudden 50% increase in blood concentration, which may 
cause a potential safety concern. In order to address the issue of drug inter-
changeability in terms of drug prescribability and switchability, between 
early 1990s and early 2000s, the FDA suggested using the concepts of PBE for 
addressing drug prescribability and IBE for addressing drug switchability.

Let yT be the PK response from the test product, and yR and yR '  be two 
identically distributed PK responses from the reference product. Now con-
sider a measure of the relative difference between the mean squared errors 
of yT − yR and y yR R− ' . Thus,
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2  is a given constant. If yT, yR, and yR '  are independent observations 

from different subjects, then the two drug products show PBE when θ < θP. 
On the other hand, if yT, yR, and yR '  are independent observations from the 
same subject, then the two drug products exhibit IBE when θ < θI. Thus, as 
indicated in Section 2.3, for the assessment of IBE the criterion proposed in 
the FDA guidance (FDA, 2001) can be expressed as
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where δ = μT − μR, σ σ σWT WR D
2 2 2, ,  are the true difference in means, intra-

subject variabilities of the test product and the reference product, and the 
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variance component due to subject-by-formulation interaction between the 
drug products, respectively. σW 0

2  is the scale parameter specified by the 
user. Similarly, the criterion for the assessment of PBE suggested in the FDA 
guidance (FDA, 2001) is given by
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where
σ σTT TR

2 2,  are the total variances for the test product and the reference 
product, respectively

σT0
2  is the scale parameter specified by the user

A typical approach is to construct a one-sided 95% confidence interval for 
θI(θP) for the assessment of individual (population) bioequivalence. If the 
one-sided 95% upper confidence limit is less than the bioequivalence limit 
of θI(θP), we then conclude that the test product is bioequivalent to that of the 
reference product in terms of individual (population) bioequivalence. More 
details regarding individual and PBE can be found in Chow and Liu (2008).

4.2.3  Profile Analysis for In Vitro Bioequivalence Testing

As indicated in the FDA draft guidance for in vitro bioequivalence testing, 
profile analysis using a confidence interval approach should be applied to 
studies with a cascade impactor or multistage liquid impinger for particle 
size distribution. Equivalence may be assessed based on chi-square differ-
ences. The idea is to compare the profile difference between test product and 
reference product samples to the profile variation between reference product 
samples. More specifically, let yijk denote the observation from the jth sub-
ject’s ith stage of the kth treatment. Given a sample (j0) from the test product 
and two samples (j0, j1) from the reference products and assuming that there 
are a total of S stages, the profile distance between the test and reference 
products is given by
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For a given triplet sample of (Test, Reference 1, Reference 2), the ratio of dTR 
and dRR, that is,

	
rd d

d
TR

RR
= ,

can then be used as a bioequivalence measure for the triplet samples between 
the two drug products. For a selected sample, the 95% upper confidence 
bound of E(rd) = E(dTR/dRR) is then used as a measure for the determination 
of bioequivalence. In other words, if the 95% upper confidence bound is less 
than the bioequivalence limit, then we claim that the two products are bio-
equivalent. The 1999 FDA draft guidance recommends a bootstrap proce-
dure to construct the 95% upper bound for E(rd). The procedure is described 
later.

Assume that the samples are obtained in a two-stage sampling manner. 
In other words, for each treatment (test or reference), three lots are randomly 
sampled. Within each lot, 10 samples (e.g., bottles or canisters) are sampled. 
The following is quoted from the 1999 FDA draft guidance regarding the 
bootstrap procedure to establish profile bioequivalence.

For an experiment consisting of three lots each of the test and reference 
products, and with 10 canisters per lot, the lots can be matched into six differ-
ent combinations of triplets with two different reference lots in each triplet. 
The 10 canisters of a test lot can be paired with the 10 canisters of each of the 
two reference lots in (10 factorial)2 = (3,628,800)2 combinations in each of the lot 
triplets. Hence a random sample of the N canister pairings of the six Test-
Reference 1-Reference 2 lot triplets is needed. rd is estimated by the sample 
mean of the rds calculated for the triplets in 10 selected samples of N. Note that 
the FDA recommends that N = 500 be considered.

4.3  Similarity Factor for Dissolution Profile Comparison

In vivo bioequivalence studies are surrogate trials for assessing equiva-
lence between test and reference formulations based on the rate and 
extent of drug absorption in humans to establish similar effectiveness 
and safety under the Fundamental Bioequivalence Assumption. However, 
drug absorption depends on the dissolved state of a drug product, and 
dissolution testing provides a rapid in vitro assessment of the rate and 
extent of drug release. Leeson (1995), therefore, suggested that in vitro dis-
solution testing be used as a surrogate for in vivo bioequivalence stud-
ies to assess equivalence between the test and the reference formulations 
for post-approval changes. For the comparison of dissolution profiles, the 
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FDA guidance suggests considering the assessment of (1) the overall pro-
file similarity and (2) the similarity at each sampling time point (FDA, 
1997). Since dissolution profiles are curves over time, Chow and Ki (1997) 
introduced the concepts of local similarity and global similarity. Two dis-
solution profiles are said to be locally similar at a given time point if their 
difference or ratio at the given time point is within some equivalence 
(similarity) limits, denoted by (δL, δU). Two dissolution profiles are consid-
ered globally similar if their differences or ratios are within (δL, δU) across 
all time points. Note that global similarity is also known as uniformly 
similar. Chow and Ki (1997) suggested the following similarity limits for 
comparing dissolution profiles:

	
δ δ

δ
δ δ

δL U
Q
Q

Q
Q

= −
+

= +
−

and ,

where
Q is the desired mean dissolution rate of a drug product as specified in the 

USP/NF individual monograph
δ is a meaningful difference of scientific importance in mean dissolution 

profiles of two drug products under consideration

In practice, δ is usually determined by a pharmaceutical scientist.
In order to achieve these two objectives, based on Moore and Flanner 

(1996), both the FDA SUPAC guidance (SUPAC, 1995) and guidance on disso-
lution testing (FDA, 1997) suggest the similarity and difference factor for the 
assessment of similarity. The similarity factor is then defined as the logarith-
mic reciprocal square root transformation of 1 plus the mean-squared (the 
average sum of squares) difference in mean cumulative percentage dissolved 
between the test and the reference formulations (μT and μR, respectively) over 
all sampling time points. That is,
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where

	
Q Rt Tt

t

n

= −
=

∑( ) ,µ µ 2

1

where log denotes the logarithm based on 10.
On the other hand, the difference factor is the sum of the absolute dif-

ferences in mean cumulative percentage dissolved between the test and 
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reference formulations divided by the sum of the mean cumulative dissolved 
amounts of the reference formulation:
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(4.4)

It should be noted that the definitions of f1 and f2 provided by Moore and 
Flanner (1996), and in the SUPAC and guidance on dissolution testing, are 
not clear whether they are defined based on the population means or the 
sample averages. However, following the traditional statistical inference 
with ability for the evaluation of error probability, we define both f1 and f2 
based on the population mean dissolution rates. It follows that f1 and f2 are 
population parameters for the assessment of similarity of dissolution pro-
files between the test and reference formulations.

The use of the f2 similarity factor has been discussed and criticized by 
many researchers (e.g., Liu et al., 1997; Shah et al., 1998; Ma et al., 1999). Chow 
and Shao (2002) pointed out two main problems in using the f2 similarity 
factor for assessing similarity between the dissolution profiles of two drug 
products. The first problem is its lack of statistical justification. Since f2 is a 
statistic and, thus, a random variable, P( f2 > 50) may be quite large when 
the two dissolution profiles are not similar. However, P( f2 > 50) can be very 
small when the two dissolution profiles are similar. Suppose the expected 
value E( f2) exists and that we can find a 95% lower confidence bound for 
E( f2). Then, a reasonable modification to the f2 similarity factor approach is 
to replace f2 with the 95% lower confidence bound for E( f2). The second prob-
lem with using the f2 similarity factor is that the f2 similarity factor assesses 
neither local similarity nor global similarity, owing to the use of the average 
of the dissolution data.

4.4  Measures of Consistency

4.4.1  Moment-Based Method

Consider that a parallel design of the study is employed for evaluating the 
ABE of the test product with the reference product. Let T and R be the param-
eters of interest (e.g., a pharmacokinetic response) with means of μT and μR, 
respectively. Thus, the interval hypothesis for testing the ABE of two prod-
ucts can be expressed as

	
H HL

T

R
U

T

R
a L

T

R
U0 : :θ µ

µ
θ µ

µ
θ µ

µ
θ≥ ≤ < <or vs. ,

	
(4.5)
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where (θL, θU) is the ABE limit. Furthermore, if X and Y are the log-transformed 
values of T and R, respectively, then the Hypothesis 4.5 can be expressed as

	 H HL X Y U X Y a L X Y U0 : : ,′ ≥ − ′ ≤ − ′ < − < ′θ µ µ θ µ µ θ µ µ θor vs. 	 (4.6)

where
μX and μY are the means of X and Y which are equal to the log-transformed 

values of μT and μR

′ ′( )θ θL U,  is (−0.2231, 0.2231) which is equal to the log-transformed values of 
(80%, 125%)

Let Xi and Yj be the log-transformed values of the observations of T and 
R obtained in the study following the normal distribution with means of 
μX, μY, variances of VX, VY, and numbers of the observations of nX and nY, 
respectively. The 100(1 − 2α)% confidence interval (L, U) based on the parallel 
design for μX − μY can be obtained as
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(4.7)

where X
–, Y

–, SX2 , and SY2 are the unbiased estimators of μX, μY, VX, and VY, 
respectively. Under the assumption that VX ≠ VY, the df which is the degrees 
of freedom for the t-distribution mentioned earlier can be obtained by

	

df
S n S n

S n n S n n
X X Y Y

X X X Y Y Y

=
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( ) − + ( ) −

2 2 2

2 2 2 2
1 1( ) ( )

.

The ABE of the test and reference products will be concluded if (L, U) lies 
within ′ ′( )θ θL U, .

4.4.2  Probability-Based Approach

Tse et al. (2006) proposed a PB index for measuring consistency between raw 
materials, in-process materials, and end products between two traditional 
Chinese medicines in the process of quality control/assurance. The idea of 
testing consistency is described later.

Let T and R be the parameters of interest with means μT and μR, respec-
tively. Also, let X and Y be the log-transformed values of T and R, respec-
tively. Tse et al. (2006) proposed to test for consistency between T and R by 
the following probability:

	
p P T

R
P X YC = − < < +



 = − < − < +1 1 1 1δ δ δ δ(log( ) log( )),

	
(4.8)
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where 0 < δ < 1 is an acceptance limit for consistency. Note that this idea 
can be applied to assess bioequivalence (biosimilarity) between drug 
products. In this case, we will refer to this PB index pC as the ABE index or 
average biosimilarity index (denoted by pPB), that is, pC = pPB. Let Xi and Yj 
be the log-transformed values of the observations of T and R obtained in 
the study following the normal distribution with means μX, μY, variances VX, 
VY, and numbers of the observations nX and nY, respectively.

From the second expression of pPB = pC in Equation 4.8 by the invariance 
principle, the maximum likelihood estimator (MLE) of pPB can be obtained as
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(4.9)

where
Φ(z0) = P(Z < z0) with Z being a standard normal random variable
V̂X and V̂Y are the MLE of VX and VY, respectively

Moreover, the asymptotic distribution can be obtained as p̂PB:
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where B(p̂PB) and C(p̂PB) are the MLEs of B(pPB) and C(pPB), respectively, and 
B(pPB) and C(pPB) are defined as follows:
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The PB method for hypothesis testing of ABE or average biosimilarity can be 
conducted based on the index of pPB by considering the following hypotheses:

	 H p p H p pPB a PB0 0 0: : ,≤ >vs.

where p0 is the lower limit of pPB for concluding the ABE or average biosim-
ilarity. We then reject the null hypothesis and conclude the alternative 
hypothesis if

	
ˆ ( ˆ ) ( ˆ ) ,p p B p Z C pPB PB PB> + +0 α

where B(p̂PB) and C(p̂PB) can be obtained by substituting V̂X and V̂Y for VX and 
VY into B(pPB) and C(pPB), respectively.

4.5 � Comparison of Moment-Based and 
Probability-Based Criteria

To study the feasibility and applicability of the MB and the PB criteria 
described earlier for the assessment of biosimilarity between biological 
products, the following hypotheses and probabilities of correctly concluding 
biosimilarity are considered. Let Ti be the ith test statistic for the assessment 
of similarity based on the ith criterion, where i = MB is the moment-based 
criterion and i = PB is the probability-based criterion. Consider the following 
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hypotheses for testing biosimilarity between a follow-on biologics and an 
innovator:

	 H Hi ai0 : :Dis-similarity vs. Similarity,

where the ith null hypothesis of dissimilarity is tested by means of Ti based 
on the ith method. Thus,

	 α i i iP H H= ( )reject |0 0

is the probability of rejecting the null hypothesis of H0i when H0i is true. Also,

	 p P H H P H Hi i ai ai i ai= − = − =1 1 0β ( ) ( )reject | reject |

is the power of concluding biosimilarity when the follow-on biologic is 
indeed biosimilar to the innovator. Thus, (pPB) is the probability of correctly 
concluding biosimilarity when applying the MB (or PB) criterion.

To compare the relative performance of the MB criterion and the PB crite-
rion for the assessment of biosimilarity, we consider examining the follow-
ing probabilities of consistency (see also Table 4.1):

P11: The probability by which both the MB and PB methods conclude ABE
P12: �The probability by which the MB method does not conclude ABE but 

the PB method does
P21: �The probability by which the MB method concludes ABE but the PB 

method does not
P22: �The probability by which both the MB and PB methods do not con-

clude ABE

Let PPB = p and PMB = q. Then, we have
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TABLE 4.1

Probabilities of Consistency

Probability-Based Method

Moment-Based Method

Similar q Not Similar (1 − q)

Similar p P11 = pq P12 = p(1 − q)
Not similar (1 − p) P21 = (1 − p)q P22 = (1 − p)(1 − q)
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As a result, P11 + P22 is considered the probability of consistency, while P12 + P21 
is a measure of inconsistency for the assessment of biosimilarity. A small 
value of P12 suggests that the conclusion of biosimilarity based on the PB 
criterion could imply the conclusion of biosimilarity based on the MB crite-
rion. On the other hand, a large value of P21 indicates that meeting the MB 
criterion for biosimilarity does not guarantee the data would also meet the 
PB criterion for biosimilarity.

A simulation study was conducted to evaluate the performance of the MB 
criterion and PB criterion by observing the relationship of P12, P21 under the 
following parameter settings for the simulation:

According to the parameter settings, 10,000 random samples were gener-
ated for each of a total 27 combinations of n V VT R T R, , , , ,µ µ( )  where the 
numbers of samples were assumed to be equal to n for test and reference 
products, respectively. The generated random samples were evaluated for 
ABE by the MB and PB methods simultaneously based on each of a total 
eight combinations of ABE criteria ((θL, θU), δ, p0). Empirical values of P11, P12, 
P21, and P22 were calculated for each of a total 216 combinations of param-
eters listed in Table 4.2. In addition, for the purpose of investigating the 
impact of the biosimilarity limit δ and the variability VT and VR on the con-
sistency and inconsistency between the two methods, separate simulations 
based on the combinations of parameters listed in Tables 4.3 and 4.4 were 
also conducted.

Results of the simulations for the parameter specifications in Table 4.2 are 
summarized in Tables 4.5 and 4.6. We have the following findings from these 
tables:

TABLE 4.2

Parameter Specifications for Simulation Study

Population Parameters for T and R

ABE Criteria 
for Moment-

Based Method

ABE Criteria for 
Probability-Based 

Method

n (μT, μR) V VT R,( ) (θL, θU) δ p0

12 (100, 95) (10, 5) (80%, 125%) 0.10 0.70
(100, 100) (10, 10) (90%, 111%) 0.20 0.90
(100, 105) (10, 15)

(20, 15)
(20, 20)
(20, 25)
(30, 25)
(30, 30)
(30, 35)
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	 1.	pMB is uniformly higher than pPB for all combinations of the param-
eters under study. The difference is very significant and more strin-
gent than the MB criterion. However, if we reset especially for large 
variability, this indicates that the PB criterion is much the bioequiva-
lence limits from (80%, 125%) to (90%, 111%), the rejection rate of the 
MB criterion would increase and pMB would move close to pPB.

	 2.	Studies that pass the bioequivalence or biosimilarity testing based on 
the MB criterion have relatively low probability of passing the testing 
based on the PB criterion. From Table 4.5, when n = 24 (i.e., 12 subjects 
per treatment arm), the probabilities of inconsistencies (i.e., P12 and 
P21) are 0.0000 and 0.7179, respectively, for the case of (μT, μR, VT, VR, 
δ, p0) = (100, 100, 20, 20, 0.2, 0.7) with (θL, θU) = (80%, 125%). This sug-
gests that the PB criterion is much more stringent compared to the 
MB criterion.

TABLE 4.3

Parameter Specifications for Simulation Study to Investigate the Impact of δ

Population Parameters for T and R
ABE Criteria for 

Moment-Based Method
ABE Criteria for 

Probability-Based Method

n (μT, μR) V VT R,( ) (θL, θU) ∆ p0

12 (100, 100) (10, 10) (80%, 125%) 0.10 0.7
(20, 20) (90%, 111%) 0.15 0.9

0.20
0.25
0.30
0.35
0.40

TABLE 4.4

Parameter Specifications for Simulation Study to Investigate the Impact of the 
Variability

Population Parameters for T and R
ABE Criteria for 

Moment-Based Method
ABE Criteria for 

Probability-Based Method

n (μT, μR) V VT R,( ) (θL, θU) δ p0

12 (100, 100) (5, 5) (80%, 125%) 0.10 0.7
(10, 10) (90%, 111%) 0.20 0.9
(15, 15)
(20, 20)
(25, 25)
(30, 30)
(35, 35)
(40, 40)
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TABLE 4.5

Empirical P11, P12, P21, and P22 with the Moment-Based Equivalence Limits of (80%, 
125%) and n = 12 (per Group)

μR σT σR

p0 = 0.7 p0 = 0.9

P11 P12 P21 P22 P11 P12 P21 P22

δ = 0.10

95 1 5 0.005 0.0000 0.9938 0.0004 0.0000 0.0000 0.9996 0.0004
10 0.000 0.0000 0.9916 0.0084 0.0000 0.0000 0.9916 0.0084
15 0.000 0.0000 0.9239 0.0761 0.0000 0.0000 0.9239 0.0761

2 15 0.000 0.0000 0.7192 0.2808 0.0000 0.0000 0.7192 0.2808
20 0.000 0.0000 0.6095 0.3905 0.0000 0.0000 0.6095 0.3905
25 0.000 0.0000 0.4588 0.5412 0.0000 0.0000 0.4588 0.5412

30 25 0.000 0.0000 0.2495 0.7505 0.0000 0.0000 0.2495 0.7505
30 0.000 0.0000 0.1597 0.8403 0.0000 0.0000 0.1597 0.8403
35 0.0000 0.0000 0.0963 0.9037 0.0000 0.0000 0.0963 0.9037

100 10 5 0.024 0.0000 0.9753 0.0000 0.0001 0.0000 0.9999 0.0000
10 0.000 0.0000 0.9992 0.0003 0.0000 0.0000 0.9997 0.0003
15 0.000 0.0000 0.9912 0.0088 0.0000 0.0000 0.9912 0.0088

20 15 0.000 0.0000 0.8412 0.1588 0.0000 0.0000 0.8412 0.1588
20 0.000 0.0000 0.7185 0.2815 0.0000 0.0000 0.7185 0.2815
25 0.000 0.0000 0.5551 0.4449 0.0000 0.0000 0.5551 0.4449

30 25 0.000 0.0000 0.2962 0.7038 0.0000 0.0000 0.2962 0.7038
30 0.000 0.0000 0.1928 0.8072 0.0000 0.0000 0.1928 0.8072
35 0.000 0.0000 0.1248 0.8752 0.0000 0.0000 0.1248 0.8752

105 10 5 0.011 0.0000 0.9880 0.0001 0.0001 0.0000 0.9998 0.0001
10 0.000 0.0000 0.9947 0.0049 0.0000 0.0000 0.9951 0.0049
15 0.000 0.0000 0.9568 0.0432 0.0000 0.0000 0.9568 0.0432

20 15 0.000 0.0000 0.7762 0.2238 0.0000 0.0000 0.7762 0.2238
20 0.000 0.0000 0.6597 0.3403 0.0000 0.0000 0.6597 0.3403
25 0.000 0.0000 0.5391 0.4609 0.0000 0.0000 0.5391 0.4609

30 25 0.000 0.0000 0.2921 0.7079 0.0000 0.0000 0.2921 0.7079
30 0.000 0.0000 0.2093 0.7907 0.0000 0.0000 0.2093 0.7907
35 0.000 0.0000 0.1422 0.8578 0.0000 0.0000 0.1422 0.8578

δ = 0.20
95 10 5 0.7314 0.0000 0.2682 0.0004 0.0976 0.0000 0.9020 0.0004

10 0.3712 0.0000 0.6204 0.0084 0.0088 0.0000 0.9828 0.0084
15 0.0786 0.0000 0.8453 0.0761 0.0005 0.0000 0.9234 0.0761

20 15 0.0023 0.0000 0.7169 0.2808 0.0000 0.0000 0.7192 0.2808
20 0.0004 0.0000 0.6091 0.3905 0.0000 0.0000 0.6095 0.3905
25 0.0000 0.0000 0.4588 0.5412 0.0000 0.0000 0.4588 0.5412

30 25 0.0000 0.0000 0.2495 0.7505 0.0000 0.0000 0.2495 0.7505
30 0.0000 0.0000 0.1597 0.8403 0.0000 0.0000 0.1597 0.8403
35 0.0000 0.0000 0.0963 0.9037 0.0000 0.0000 0.0963 0.9037

(continued)
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	 3.	In the interest of achieving the same level of precision and reliabil-
ity for detecting bioequivalence or biosimilarity based on the MB 
criterion as suggested by the FDA, we may loosen the specification 
limits of δ or P0 with the PB criterion. For example, for the case of 
(μT, μR, VT, VR) = (100, 100, 10, 5) with (θL, θU) = (90%, 111%), the choice 
of P0 = 0.9 and δ = 0.1 with the PB criterion cannot reach the same 
probability (p = 0.0001 vs. q = 0.8628) of concluding bioequivalence 
or biosimilarity as with the MB criterion. However, with δ = 0.2 
and p0 = 0.7, similar probabilities can be reached (p = 0.8628 vs. 
q = 0.9536) of concluding bioequivalence or biosimilarity. On the 
other hand, when the variability is large, it is almost impossible for 
the MB criterion to reach the same level of precision and reliability 
for detecting bioequivalence or biosimilar based on the proposed 
PB criterion regardless of how tight the bioequivalence or biosimi-
larity limit would be.

TABLE 4.5 (continued)

Empirical P11, P12, P21, and P22 with the Moment-Based Equivalence Limits of (80%, 
125%) and n = 12 (per Group)

μR σT σR

p0 = 0.7 p0 = 0.9

P11 P12 P21 P22 P11 P12 P21 P22

100 10 5 0.9536 0.0000 0.0464 0.0000 0.3081 0.0000 0.6919 0.0000
10 0.7049 0.0000 0.2948 0.0003 0.0330 0.0000 0.9667 0.0003
15 0.1869 0.0000 0.8043 0.0088 0.0010 0.0000 0.9902 0.0088

20 15 0.0037 0.0000 0.8375 0.1588 0.0000 0.0000 0.8412 0.1588
20 0.0006 0.0000 0.7179 0.2815 0.0000 0.0000 0.7185 0.2815
25 0.0002 0.0000 0.5549 0.4449 0.0000 0.0000 0.5551 0.4449

30 25 0.0000 0.0000 0.2962 0.7038 0.0000 0.0000 0.2962 0.7038
30 0.0000 0.0000 0.1928 0.8072 0.0000 0.0000 0.1928 0.8072
35 0.0000 0.0000 0.1248 0.8752 0.0000 0.0000 0.1248 0.8752

105 10 5 0.9439 0.0000 0.0560 0.0001 0.2910 0.0000 0.7089 0.0001
10 0.7203 0.0000 0.2748 0.0049 0.0342 0.0000 0.9609 0.0049
15 0.2126 0.0000 0.7442 0.0432 0.0022 0.0000 0.9546 0.0432

20 15 0.0058 0.0000 0.7704 0.2238 0.0000 0.0000 0.7762 0.2238
20 0.0005 0.0000 0.6592 0.3403 0.0000 0.0000 0.6597 0.3403
25 0.0002 0.0000 0.5389 0.4609 0.0000 0.0000 0.5391 0.4609

30 25 0.0000 0.0000 0.2921 0.7079 0.0000 0.0000 0.2921 0.7079
30 0.0000 0.0000 0.2093 0.7907 0.0000 0.0000 0.2093 0.7907
35 0.0000 0.0000 0.1422 0.8578 0.0000 0.0000 0.1422 0.8578
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TABLE 4.6

Empirical P11, P12, P21, and P22 with the Moment-Based Equivalence Limits of (90%, 
111%) and n = 12 (per Group)

μR σT σR

p0 = 0.7 p0 = 0.9

P11 P12 P21 P22 P11 P12 P21 P22

δ = 0.10

95 10 5 0.0058 0.0000 0.4626 0.5316 0.0000 0.0000 0.4684 0.5316
10 0.0000 0.0000 0.3153 0.6847 0.0000 0.0000 0.3153 0.6847
15 0.0000 0.0000 0.1438 0.8562 0.0000 0.0000 0.1438 0.8562

20 15 0.0000 0.0000 0.0138 0.9862 0.0000 0.0000 0.0138 0.9862
20 0.0000 0.0000 0.0033 0.9967 0.0000 0.0000 0.0033 0.9967
25 0.0000 0.0000 0.0009 0.9991 0.0000 0.0000 0.0009 0.9991

30 25 0.0000 0.0000 0.0002 0.9998 0.0000 0.0000 0.0002 0.9998
30 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
35 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

100 10 5 0.0247 0.0000 0.8381 0.1372 0.0001 0.0000 0.8627 0.1372
10 0.0005 0.0000 0.6061 0.3934 0.0000 0.0000 0.6066 0.3934
15 0.0000 0.0000 0.2684 0.7316 0.0000 0.0000 0.2684 0.7316

20 15 0.0000 0.0000 0.0225 0.9775 0.0000 0.0000 0.0225 0.9775
20 0.0000 0.0000 0.0047 0.9953 0.0000 0.0000 0.0047 0.9953
25 0.0000 0.0000 0.0011 0.9989 0.0000 0.0000 0.0011 0.9989

30 25 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
30 0.0000 0.0000 0.0001 0.9999 0.0000 0.0000 0.0001 0.9999
35 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

105 10 5 0.0119 0.0000 0.5052 0.4829 0.0001 0.0000 0.5170 0.4829
10 0.0004 0.0000 0.3746 0.6250 0.0000 0.0000 0.3750 0.6250
15 0.0000 0.0000 0.1986 0.8014 0.0000 0.0000 0.1986 0.8014

20 15 0.0000 0.0000 0.0218 0.9782 0.0000 0.0000 0.0218 0.9782
20 0.0000 0.0000 0.0061 0.9939 0.0000 0.0000 0.0061 0.9939
25 0.0000 0.0000 0.0020 0.9980 0.0000 0.0000 0.0020 0.9980

30 25 0.0000 0.0000 0.0001 0.9999 0.0000 0.0000 0.0001 0.9999
30 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
35 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

δ = 0.20
95 10 5 0.4616 0.2698 0.0068 0.2618 0.0973 0.0003 0.3711 0.5313

10 0.2621 0.1091 0.0532 0.5756 0.0088 0.0000 0.3065 0.6847
15 0.0579 0.0207 0.0859 0.8355 0.0005 0.0000 0.1433 0.8562

20 15 0.0015 0.0008 0.0123 0.9854 0.0000 0.0000 0.0138 0.9862
20 0.0002 0.0002 0.0031 0.9965 0.0000 0.0000 0.0033 0.9967
25 0.0000 0.0000 0.0009 0.9991 0.0000 0.0000 0.0009 0.9991

30 25 0.0000 0.0000 0.0002 0.9998 0.0000 0.0000 0.0002 0.9998
30 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
35 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

(continued)
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Figure 4.1 presents the relationship of probabilities of consistency and incon-
sistency of MB and PB methods versus δ and σ based on the simulation 
results of parameters specified in Tables 4.3 and 4.4, respectively, where σ 
denotes the standard deviation of the population which is assumed to be 
the same for test and reference products. The findings are summarized as 
follows:

	 1.	 In Figure 4.1, p = P11 + P12, that is, the probability concluding biosimi-
larity by the PB method increases when δ increases in both subfigures. 
On the other hand, the slope for the curve p becomes flatter when σ 
and p0 increase. With respect to q = P11 + P21 which stands for the 
probability concluding biosimilarity by the MB method, it remains as 
a horizontal line throughout the change of δ since δ is the ABE crite-
rion for the PB method and has no impact on the performance of the 
MB method. However, q becomes smaller when (θL, θU) changes from 
(80%, 125%) to (90%, 111%) since the ABE limit of the MB method 
becomes tighter. On the other hand, P12 increases when δ increases 
while P21 decreases because the ABE limit for the PB method becomes 
looser. In addition, when (θL, θU) = (80%, 125%), the probability for 
concluding the biosimilarity by both methods, that  is,  P11 + P22, 

TABLE 4.6 (continued)

Empirical P11, P12, P21, and P22 with the Moment-Based Equivalence Limits of (90%, 
111%) and n = 12 (per Group)

μR σT σR

p0 = 0.7 p0 = 0.9

P11 P12 P21 P22 P11 P12 P21 P22

100 10 5 0.8504 0.1032 0.0124 0.0340 0.3029 0.0052 0.5599 0.1320
10 0.5326 0.1723 0.0740 0.2211 0.0325 0.0005 0.5741 0.3929
15 0.1283 0.0586 0.1401 0.6730 0.0010 0.0000 0.2674 0.7316

20 15 0.0026 0.0011 0.0199 0.9764 0.0000 0.0000 0.0225 0.9775
20 0.0004 0.0002 0.0043 0.9951 0.0000 0.0000 0.0047 0.9953
25 0.0002 0.0000 0.0009 0.9989 0.0000 0.0000 0.0011 0.9989

30 25 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
30 0.0000 0.0000 0.0001 0.9999 0.0000 0.0000 0.0001 0.9999
35 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000

105 10 5 0.5136 0.4303 0.0035 0.0526 0.2499 0.0411 0.2672 0.4418
10 0.3457 0.3746 0.0293 0.2504 0.0314 0.0028 0.3436 0.6222
15 0.1064 0.1062 0.0922 0.6952 0.0020 0.0002 0.1966 0.8012

20 15 0.0035 0.0023 0.0183 0.9759 0.0000 0.0000 0.0218 0.9782
20 0.0004 0.0001 0.0057 0.9938 0.0000 0.0000 0.0061 0.9939
25 0.0002 0.0000 0.0018 0.9980 0.0000 0.0000 0.0020 0.9980

30 25 0.0000 0.0000 0.0001 0.9999 0.0000 0.0000 0.0001 0.9999
30 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
35 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
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FIGURE 4.1
(a) Probabilities of consistency and inconsistency of the moment-based method and the 
probability-based method versus δ when p0 = 0.7. (b) Probabilities of consistency and inconsis-
tency of moment-based method and probability-based method versus δ when p0 = 0.9.
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FIGURE 4.2
Probabilities of consistency and inconsistency of the moment-based method and the 
probability-based method versus the variability for (a) p0 = 0.7 and (b) p0 = 0.9.
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remains the same at the smaller value of δ and increases, while 
P11 + P22 increases at the smaller value of δ but decreases at the later 
value of δ when (θL, θU) = (90%, 111%). It should be noticed that most 
of the decreases of P11 + P22 result from the decrease of P22. Therefore, 
when the ABE limit of the MB method becomes tighter from (80%, 
125%) to (90%, 111%), P11 + P22 decreases due to the decrease of P22.

	 2.	 In Figure 4.2, both p and q decrease quickly when σ increases in 
all subfigures. The slopes become flatter if δ increases and (θL, θU) 
is looser. However, in most cases, p is more sensitive to the change 
of σ than q since it decreases faster. On the other hand, P21 varies a 
lot throughout with the change in σ while P12 maintains its value in 
most of the subfigures. The change in σ impacts the probability of 
concluding the biosimilarity by the PB method more than the MB 
method. Therefore, the simulation results of Figure 4.2 demonstrate 
that the PB method is more sensitive to the change of variability 
than the MB method.

4.6  Alternative Criteria

4.6.1  Probability-Based Relative Distance

In addition to the MB criterion relying on relative distance as described 
in Section 4.2.2, Schall and Luus (1993) also proposed PB measures for the 
expected discrepancy in pharmacokinetic responses between drug prod-
ucts. Their presentation involved the determination of bioequivalence. The 
arguments also apply to the evaluation of biosimilarity. The MB measure 
suggested by Schall and Luus (1993) is based on the following expected 
mean-squared differences:
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(4.10)

For some pre-specified positive number r, one of the PB measures for the 
expected discrepancy is given as (Schall and Luus, 1993)
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d(YT; YR) measures the expected discrepancy for some pharmacokinetic 
metric between test and reference formulations, and d Y YR R( ; )′  provides the 
expected discrepancy between the repeated administrations of the reference 
formulation. The role of d Y YR R( ; )′  in the formulation of bioequivalence criteria 
is to serve as a control. The rationale is that the reference formulation should 
be bioequivalent to itself. Therefore, for the MB measures, if the test formu-
lation is indeed bioequivalent to the reference formulation, then d(YT; YR) 
should be very close to d Y YR R( ; )′ . It follows that if the criteria are functions of 
the difference (or ratio) between d(YT; YR) and d Y YR R( ; ),′  then bioequivalence 
is concluded if they are smaller than some pre-specified limit. On the other 
hand, for PB measures, if the test formulation is indeed bioequivalent to the 
reference formulation, as compared with d Y YR R( ; ),′  then d(YT; YR) should be 
relatively large. As a result, bioequivalence is concluded if the criterion rely-
ing on the PB measure is larger than some pre-specified limit.

4.6.2  Reproducibility Probability

Most recently, Chow et al. (2011) proposed a biosimilarity index, based on the 
concept of reproducibility probability proposed by Shao and Chow (2002), 
for the assessment of biosimilarity for a given biosimilarity criterion. The 
idea is described later. Suppose that the null hypothesis H0 is rejected if and 
only if |T| > c, where c is a positive known constant and T is a test statistic. 
Thus, the reproducibility probability of observing a significant clinical result 
when Ha is indeed true is given by

	
p P T c H P T ca= >( ) = >( )| | ,θ̂

	
(4.12)

where θ̂  is an estimate of θ, which is an unknown parameter or vector of 
parameters. Following the similar idea, a reproducibility probability can 
also be used to evaluate biosimilarity between a test product and a reference 
product based on any pre-specified criteria for biosimilarity. As an example, 
the biosimilarity index proposed by Chow et al. (2011) is illustrated based on 
the well-established bioequivalence criterion by the following steps. First, 
assess the average biosimilarity between the test product and the reference 
product based on a given biosimilarity criterion. For illustration, consider 
the bioequivalence criterion as a biosimilarity criterion. That is, biosimilar-
ity is claimed if the 90% confidence interval of the ratio of means of a given 
study endpoint falls within the biosimilarity limits of (80%, 125%) based 
on log-transformed data. Once the product passes the test for biosimilar-
ity in Step 1, calculate the reproducibility probability based on the observed 
ratio (or observed mean difference) and variability. Chow et al. (2011) refer to 
the calculated reproducibility probability as the biosimilarity index. We then 
claim biosimilarity if the following null hypothesis is rejected:

	 H p p H p pa0 0 0: : .≤ >vs. 	 (4.13)
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A confidence interval approach can be similarly applied. In other words, we 
claim biosimilarity if the lower 95% confidence bound of the reproducibil-
ity probability is larger than a pre-specified number p0. In practice, p0 can 
be obtained based on an estimate of reproducibility probability for a study 
comparing a reference product to itself (the reference product). We will refer 
to such a study as an R–R study.

4.7  Concluding Remarks

Although several criteria for similarity are available in either regulatory 
guidelines/guidances or the literature, these criteria do not translate into one 
another. In other words, one may pass one criterion but fail to pass others. 
Besides, these criteria do not address the critical questions that (1) how simi-
lar is considered to be highly similar and (2) the impact of the degree or level 
of similarity on drug interchangeability.

EMA is not clear regarding what specific scientific requirements will be 
applied to biosimilar applications, or how innovator data from reference 
products will be treated. They do provide a summary of biosimilar legisla-
tions and previous publications in the European Union but do not address 
the question of scientific requirements. On the other hand, the FDA does 
not have clear regulatory requirements, currently, though guidelines are in 
preparation, and there does appear to be a preference for multiple testing 
and/or sequential testing procedures to establish biosimilarity.

In this chapter, we compare the MB criterion with the PB criterion for the 
assessment of bioequivalence and also of biosimilarity under a parallel-
group design. The results indicate that the PB criterion is not only much 
more stringent but also sensitive to any small changes in variability. This 
justifies the use of the proposed PB criterion for the assessment of biosimilar-
ity between follow-on biologics if a certain level of precision and reliability 
of biosimilarity is desired.

Moreover, since the comparison is made based on the concept of ABE 
(biosimilarity), the criterion does not take into consideration variability, 
which is known to have a significant impact on the clinical performance of 
follow-on biologics. Thus, it is suggested that a statistical methodology for 
comparing variabilities based on the PB criterion should be developed by fol-
lowing similar ideas described earlier. It should be noted that major sources 
of variabilities include intra-subject and inter-subject variabilities and vari-
ability due to possible subject-by-treatment interaction, which is known to 
have an impact on drug interchangeability.

In practice, we may consider to assess bioequivalence or biosimilarity 
by comparing average and variability separately or simultaneously. This 
leads to the so-called disaggregated criterion and aggregated criterion. 
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A disaggregate criterion will provide different levels of biosimilarity. For 
example, a study that passes both average and variability of biosimilarity 
provides stronger evidence of biosimilarity as compared to studies that pass 
only average biosimilarity. On the other hand, it is not clear whether an 
aggregated criterion would provide a stronger evidence of biosimilarity due 
to potential offset (or masked) effect between the average and variability in 
the aggregated criterion. Further research may be needed for establishing 
the appropriate statistical testing procedures based on the aggregate crite-
rion and comparing its performance with the disaggregate criterion.
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5
Statistical Methods for Assessing 
Average Biosimilarity

5.1  Introduction

In recent years, as more biological products are going off patent protection, the 
assessment of biosimilarity between biosimilar products (or follow-on biolog-
ics) and an innovative (reference) product has received considerable attention. 
For the approval of biosimilar products, the European Medicines Agency 
(EMA) has published several product-specific concept papers as regulatory 
guidelines for the approval pathway of biosimilar products (EMA, 2006a–g). 
In the United States, the Biologics Price Competition and Innovation (BPCI) Act 
(as part of the Affordable Care Act) has given FDA the authority to approve 
biosimilar drug products. As indicated in the BPCI Act, a biosimilar product 
is defined as a product that is highly similar to the reference product notwith-
standing minor differences in clinically inactive components and there are 
no clinically meaningful differences in terms of safety, purity, and potency. 
However, no discussion regarding the criterion for similarity and how similar 
is considered highly similar is given in the BPCI Act.

For the assessment of biosimilarity, standard methods for the assessment 
of bioequivalence for small-molecule drug products are usually considered. 
They include the classical methods such as the confidence interval approach 
and interval hypotheses testing such as Schuirmann’s two one-sided tests 
procedure, Bayesian methods, and non-parametric methods such as the 
Wilcoxon–Mann–Whitney two one-sided tests procedure. It should be 
noted that these methods were derived based on a raw data model under 
a crossover design although they can be easily applied to a parallel-group 
design based on log-transformed data. In practice, it is a concern whether 
these methods are appropriate for the assessment of biosimilarity due to 
fundamental differences between small-molecule drug products and large-
molecule biological drug products as described in earlier chapters (see also 
Chow et al., 2011). As a result, the search for biosimilarity criteria, study 
endpoints (measures of biosimilarity), and statistical methods has become 
the center of attention for the assessment of biosimilarity.
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In practice, one of the most widely used designs for assessing biosimilarity 
between biosimilar products and an innovator biological product is prob-
ably either a two-sequence, two-period (2 × 2) crossover design or a two-arm 
parallel-group design. Under a valid study design, biosimilarity can then 
be assessed by means of an equivalence test under the following interval 
hypotheses:

H HT R L T R U a L T R U0 : : ,µ µ θ µ µ θ θ µ µ θ− ≤ − ≥ < − <or versus 	 (5.1)

where
(θL, θU) are pre-specified equivalence limits (margins)
μT and μR are the population means of a biological (test) product and an 

innovator biological (reference) product, respectively

That is, biosimilarity is assessed in terms of the absolute difference between 
the two population means. Alternatively, biosimilarity can be assessed in 
terms of the relative difference (i.e., ratio) between the population means. Note 
that for the assessment of similarity between small-molecule drug products, 
average bioequivalence, population bioequivalence, and individual bioequiv-
alence are defined in terms of ratios of appropriate parameters under a cross-
over design. In practice, since many biological products have long half-lives, 
a crossover design may not be appropriate for the assessment of biosimilarity. 
Instead, a parallel-group design is considered to be more appropriate.

The purpose of this chapter is to provide a comprehensive summariza-
tion of standard statistical methods that are commonly used for the assess-
ment of average bioequivalence for small-molecule drug products under 
a crossover design. In addition, we will focus on the discussion of statisti-
cal methods proposed by Kang and Chow (2013) under a newly proposed 
three-arm parallel design for the investigation of biosimilarity. The statis-
tical analysis methods proposed by Kang and Chow (2013) consider the 
relative distance based on the absolute mean differences. Under the three-
arm design, patients who are randomly assigned to the first group receive 
a biosimilar (test) product, while patients who are randomly assigned to 
the second and the third groups receive the innovator biological (reference) 
product from different batches. The distance between the test product and 
the reference product is defined by the absolute mean difference between 
the two products. Similarly, the distance is defined between the reference 
products from two different batches. The relative distance is defined as the 
ratio of the two distances whose denominator is the distance between the 
two reference products from different batches. Under the proposed design, 
Kang and Chow (2013) claim that the two products are biosimilar if the rela-
tive distance is less than a pre-specified margin.

In the next section, classic methods such as the shortest confidence interval 
approach and Schuirmann’s two one-sided tests procedure are introduced. 
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The Bayesian method proposed by Rodda and Davis (1980) is given in Section 5.3. 
Section 5.4 outlines the non-parametric method of the Wilcoxon–Mann–
Whitney two one-sided tests procedure. In Section 5.5, two statistical methods 
for assessing biosimilarity of biosimilar products in a three-arm design pro-
posed by Kang and Chow (2013) are discussed. Also included in this section are 
the power functions of two statistical methods and a comparison of the powers 
of the two statistical methods. In Section 5.6, future studies are discussed.

5.2  Classic Methods for Assessing Biosimilarity

Under a p × q crossover design, consider the following statistical model for 
raw data:

	 Y S P F C eijk ik j j k j k ijk =  +  +  +  +  + ,( 1, )µ , − 	 (5.2)

where
Yijk is the response (e.g., AUC) of the ith subject in the kth sequence at the 

jth period
μ is the overall mean
Sik is the random effect of the ith subject in the kth sequence, where 

i = 1, 2, …, q
Pj is the fixed effect of the jth period, where j = 1, …, p and ΣjPj = 0
F(j,k) is the direct fixed effect of the drug product in the kth sequence which 

is administered in the jth period, and ΣF(j,k) = 0
C(j−1,k) is the fixed first-order carryover effect of the drug product in the kth 

sequence which is administered in the (j = 1)th period, where C(0,k) = 0; 
and ΣC(j−1,k) = 0

eijk is the (within-subject) random error in observing Yijk

It is assumed that {Sik} are independently and identically distributed (i.i.d.) 
with mean 0 and variance σs

2  and {eijk} are independently distributed with 
mean 0 and variances σt

2 , where t = 1, 2, …, L (the number of formulations 
to be compared). {Sik} and {eijk} are assumed mutually independent. The esti-
mate of σs

2  is usually used to explain the inter-subject variability, and the 
estimates of σt

2  are used to assess the intra-subject variabilities for the tth 
drug product.

5.2.1  Confidence Interval Approach

For bioequivalence assessment of small-molecule drug products, the FDA 
adopts the 80/125 rule based on log-transformed data. The 80/125 rule states 
that bioequivalence is concluded if the geometric means ratio (GMR) between 
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the test product and the reference product is within the bioequivalence limits 
of (80%, 125%), with a certain statistical assurance. Thus, a typical approach 
is to consider the method of classic (shortest) confidence interval.

Consider a standard two-sequence, two-period (i.e., p = q = 2) crossover 
design, under Model 5.2, after the log-transformation of the data, let Y−T and 
Y−R be the respective least-squares means for the test and reference formu-
lations, which can be obtained from the sequence-by-period means. The 
classic (or shortest) (1 − 2α) × 100% confidence interval can then be obtained 
based on the following t statistic:

	
T Y Y

n n
T R T R

d
= − − −

+
( ) ( )

( ) ( )
,µ µ

σ̂ 1 1 2/ 1/ 	
(5.3)

where
n1 and n2 are the numbers of subjects in sequences 1 and 2, respectively
σ̂d is an estimate of the variance of the period differences for each subject 

within each sequence, which is defined as follows:

	
d Y Y i n kik i k i k k= − = =1

2
1 2 1 22 1( ), , , , ; , .…

Thus, V dik d e( ) .= =σ σ2 2 2/  Under normality assumptions, T follows a central 
Student t distribution with degrees of freedom n1 + n2 − 2. Thus, the classic 
(1 − 2α) × 100% confidence interval for μT − μR can be obtained as follows:
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The previously mentioned (1 − 2α) × 100% confidence interval for log(μT) −
log(μR) = log(μT/μR) can be converted into a (1 − 2α) × 100% confidence interval 
for μT/μR by taking an anti-log transformation.

Note that under a parallel-group design, a (1 − 2α) × 100% confidence inter-
val for μT/μR can be similarly obtained.

5.2.2  Schuirmann’s Two One-Sided Tests Procedure

The assessment of average bioequivalence is based on the comparison of 
bioavailability profiles between drug products. However, in practice, it is 
recognized that no two drug products will have exactly the same bioavail-
ability profiles. Therefore, if the profiles of two drug products differ by less 
than a (clinically) meaningful limit, the profiles of the two drug products 
may be considered equivalent. Following this concept, Schuirmann (1987) 
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first introduced the use of interval Hypotheses 5.1 for assessing average 
bioequivalence. The concept of interval Hypotheses 5.1 is to show aver-
age bioequivalence by rejecting the null hypothesis of average bioinequiv-
alence. In most bioavailability and bioequivalence studies, δL and δU are 
often chosen to be −θL = θU = 20% of the reference mean (μR). When the 
natural logarithmic transformation of the data is considered, the hypoth-
eses corresponding to Hypotheses 5.1 can be stated as

	
′ ≤ ≥ ′ < <H HT

R
L

T

R
U a L

T

R
U0 : : ,µ

µ
δ µ

µ
δ δ µ

µ
δor versus 	 (5.5)

where
δ θL L= exp( )
δ θU U= exp( )

The FDA and other regulatory authorities recommend (δL, δU) = (80%, 125%) 
for assessing average bioequivalence.

Note that the test for hypotheses in Equation 5.5, formulated on the log-
scale, is equivalent to testing for Hypotheses 5.1 on the raw scale. The inter-
val Hypotheses 5.1 can be decomposed into two sets of one-sided hypotheses

	 H HT R L a T R L01 1: :µ µ θ µ µ θ− ≤ − >versus

and

	 H HT R U a T R U02 2: : .µ µ θ µ µ θ− ≥ − <versus 	 (5.6)

The first set of hypotheses is to verify that the average bioavailability of the 
test formulation is not too low, whereas the second set of hypotheses is to 
verify that the average bioavailability of the test formulation is not too high. 
A relatively low (or high) average bioavailability may refer to the concern of 
efficacy (or safety) of the test formulation. If one concludes that θL < μT − μR 
(i.e., rejects H01) and μT − μR < θU (i.e., rejects H02), then it has been concluded 
that

	 θ µ µ θL T R U< − < .

Thus, μT and μR are equivalent. The rejection of H01 and H02, which leads 
to the conclusion of average bioequivalence, is equivalent to rejecting H0 in 
Equation 5.1.

Under Hypotheses 5.1, Schuirmann (1987) introduced the two one-sided 
tests procedure for assessing average bioequivalence between drug prod-
ucts. The proposed two one-sided tests procedure suggests the conclusion of 
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the equivalence of μT and μR at the α level of significance if, and only if, H01 
and H02 in Equation 5.6 are rejected at a pre-determined α-level of signifi-
cance. Under the normality assumptions, the two sets of one-sided hypoth-
eses can be tested with ordinary one-sided t tests. We conclude that μT and 
μR are average equivalent if
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The two one-sided t tests procedure is operationally equivalent to the classic 
(shortest) confidence interval approach; that is, both the classic confidence 
interval approach and Schuirmann’s two one-sided tests procedure will lead 
to the same conclusion on bioequivalence.

Note that under a parallel-group design, Schuirmann’s two one-sided tests 
procedure can be similarly derived with a slight modification from a paired-t 
test statistic to a two-sample t test statistic.

5.3  Bayesian Methods

In previous sections, statistical methods for the assessment of biosimilar-
ity were derived based on the sampling distribution of the estimate of the 
parameter of interest, such as the direct drug effect (i.e., θ = μT − μR), which is 
assumed to be fixed, but unknown. Although statistical inference (e.g., confi-
dence interval and interval hypothesis testing) on the unknown direct drug 
effect can be drawn from the sampling distribution of the estimate, there is 
little information on the probability of the unknown direct drug effect being 
within the equivalent limits (θL, θU). To have a certain assurance on the prob-
ability of the direct drug effect being within (θL, θU), a Bayesian approach is 
useful (Box and Tiao, 1973), which assumes that the unknown direct drug 
effect is a random variable and follows a prior distribution.

In practice, before a biosimilar study is conducted, investigators may have 
some prior knowledge of the drug product under development. As an exam-
ple, for a PK biosimilar study, according to past experiments, the investigator 
may have some information on (1) the inter-subject and the intra-subject vari-
abilities, and (2) the ranges of AUC or Cmax for the test and reference products. 
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This information can be used to choose an appropriate prior distribution of 
the unknown direct drug effect. An appropriate prior distribution can reflect 
the investigator’s belief about the drug products under study. After the study 
is completed, the observed data can be used to adjust the prior distribution 
of the direct drug effect, which is called the posterior distribution. Given the 
posterior distribution, a probability statement on the direct drug effect being 
within the biosimilarity limits can be made.

A different prior distribution can lead to a different posterior distribution 
that has an influence on statistical inference on the direct drug effect. Thus, an 
important issue in a Bayesian approach is how to choose a prior distribution. 
Box and Tiao (1973) introduced the use of a locally uniform distribution over a 
possible range of AUC or Cmax as a non-informative prior distribution. A non-
informative prior distribution assumes that there is an equally likely chance 
for any two points within the possible range being the true state of the loca-
tion of the direct drug effect. In this case, the resultant posterior distribution 
can be used to provide the true state of the location of a direct drug effect. In 
practice, however, it is also desirable to provide an interval showing a range in 
which most of the distribution of a direct drug effect will fall. We shall refer to 
such an interval as a highest posterior density (HPD) interval. The HPD inter-
val is also known as a credible interval (Edwards et al., 1963) and a Bayesian 
confidence interval (Lindley, 1965). An HPD interval possesses the following 
properties (Box and Tiao, 1973): (1) the density for every point inside the inter-
val is higher than that for every point outside the interval, and (2) for a given 
probability distribution, the interval is the shortest. It can be verified that the 
above two properties imply each other.

In what follows, for the sake of illustration, the Bayesian method proposed 
by Rodda and Davis (1980) is discussed under the following model, which 
assumes that there are no carryover effects because a washout period of suf-
ficient length can be chosen to completely eliminate the residual effects form 
one dosing period to the next:

	 Y S F P eijk ik j k j ijk= + + + +µ ( , ) , 	 (5.8)

where Yijk, μ, Sik, F(j,k), Pj, and eijk were defined in Equation 5.2. Given the results 
of a bioequivalence/biosimilar study, Rodda and Davis (1980) proposed a 
Bayesian evaluation to estimate the probability of a clinically important dif-
ference (i.e., the probability that the true direct drug effect will fall within 
the bioequivalent limits is estimated). Under the assumption of normality 
and equal carryover effects, d
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Assuming that the non-informative prior distributions for θ1, θ2, and log (σd) are 
approximately independent and locally uniformly distributed, then the joint 
posterior distributions of θ1, θ2, and σd

2 , given the data Y = {Yijk, i = 1, 2, …, nk; 
j, k = 1, 2}, are
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where χ −2 (n1 + n2 − 2) is the distribution of the inverse of χ2 (n1 + n2 − 2). 
Therefore, the joint distribution of μT − μR (=F) and σd

2 is given by
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The marginal posterior distribution of F, given the data Y, is

	
p m

B n
Y Y

T R
d T R T R

d
( | ) ( )

( , )
[( ) ( )]µ µ σ

ν
µ µ

νσ
− = + − − −−

Y
ˆ

ˆ
2 1 2 2

21 2 2
1

/

/ / mm








− +( )/

,
ν 1 2
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where m = 1/n1 + 1/n2, v = n1 + n2 − 2 and −∞ < μT − μR < ∞.
Thus, we have
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which has a central Student t distribution with n1 + n2 − 2 degrees of freedom. 
From Equation 5.12, the probability of F being within the biosimilarity limits 
of (θL, θU) can be estimated by
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where Ft is the cumulative distribution function of a central t variable with 
n1 + n2 − 2 degrees of freedom, and
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The lower and upper limits of the (1 − 2α) × 100% HPD interval are given by
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Hence, it is verified that the (1 − 2α) × 100% HPD interval in Equation 5.15 
is numerically equivalent to the (1 − 2α) × 100% classic confidence interval 
obtained from the sampling theory. However, the interpretation of these two 
intervals is totally different. For example, a 90% classic confidence interval 
for F  indicates that, in the long run, if the study is repeatedly carried out 
numerous times, 90% of the times the interval will contain the unknown 
direct drug effect μT − μR. On the other hand, based on the posterior distribu-
tion of μT − μR, the chance of μT  − μR being within the lower and upper limits 
of a 90% HPD interval is 90%.

5.4  Wilcoxon–Mann–Whitney Two One-Sided Tests Procedure

As described in the previous sections, statistical methods for assessing aver-
age biosimilarity between drug products were derived under the assump-
tion that {Sik} and {eijk} are mutually independent and normally distributed 
with mean 0 and variance σs

2 and σe
2. Under these normality assumptions, 

confidence intervals and tests for interval hypotheses were obtained based 
on either a two-sample t statistic or an F statistic. In practice, however, one 
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of the difficulties commonly encountered in comparing drug products is 
whether the assumption of normality (for raw or untransformed data) or 
log-normality (for log-transformed data) is valid. If the normality (or log-nor-
mality) is seriously violated, the approach based on a two-sample t statistic 
or an F statistic is no longer justified. In this situation, a distribution-free (or 
non-parametric) method is useful. In this section, a non-parametric version 
of the two one-sided tests procedure for testing interval hypotheses, namely, 
the Wilcoxon–Mann–Whitney two one-sided tests procedure, is discussed. 
The Hodges–Lehmann estimator associated with the Wilcoxon rank sum 
test will be used to construct a (1 − 2α) × 100% confidence interval for μT − μR, 
the difference in average biosimilarity.

The standard 2 × 2 crossover design consists of a pair of dual sequences (i.e., 
RT and TR). A distribution-free rank sum test can then be applied directly to 
the two one-sided tests procedure (Cornell, 1990; Hauschke et al., 1990). We 
shall refer to this approach as the Wilcoxon–Mann–Whitney two one-sided 
tests procedure. Let θ = μT − μR. The two sets of hypotheses in Equation 5.6 
can then be rewritten as

	 H HL a L01 10 0: * : *θ θ≤ >vs.

and

	 H HU a U02 20 0: * : * ,θ θ≥ <vs.

where
θ θ θL L* = −
θ θ θU U* = −

Thus, the estimates of θL* and θU*  can be obtained as a linear function of period 
differences dik, i = 1, 2, …, nk, k = 1, 2. Let
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When there are no carryover effects, the expected value and variance of bhik, 
where h = L, U, i = 1, 2, …, nk, and k = 1, 2, are given by
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and

	
V b V dhik ik d

e( ) ( ) .= = =σ σ2
2

2

It can be seen that E b E bhi hi h h( ) ( ) ( ) *.1 2− = − =θ θ θ
Thus, for a fixed h, {bhi1} and {bhi2} have the same distribution except for the 

difference ( *)= θh  in location of the true formulation effect. Here, the Wilcoxon–
Mann–Whitney rank sum test (Wilcoxon, 1945; Mann and Whitney, 1947) 
for the unpaired two-sample location problem can be directly applied to 
test each of the two sets of hypotheses given earlier. Consider the first set of 
hypotheses that

	 H HL a L01 10 0: * : * .θ θ≤ >versus

The Wilcoxon–Mann–Whitney test statistic can be derived based on {bLi1}, 
i = 1, 2, …, n1 and {bLi2}, i = 1, 2, …, n2. Let R(bLik) be the rank of bLik in the com-
bined sample {bLik}, i = 1, 2, …, nk, k = 1, 2. Also, let RL be the sum of the ranks 
of the responses for subjects in sequence 1; that is,
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Thus, the Wilcoxon–Mann–Whitney test statistic for H01 is given by
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We then reject H01 if

	 W wL > −( ),1 α 	 (5.18)

where w(1 − α) is the (1 − α)th quantile of the distribution of WL. Similarly, for 
the second set of hypotheses that

	 H HU a U02 20 0: * : * ,θ θ≥ <versus

we reject H02 if
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where RU is the sum of the ranks of {bUik} for subjects in the first sequence. 
Hence, average bioequivalence is concluded if both H01 and H02 are rejected; 
that is,

	 W w W wL U> − <( ) ( ).1 α αand 	 (5.20)

The expected values and variances for WL and WU under the null hypotheses 
H01 and H02, when there are no ties, are given by
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When there are ties among observations, average ranks can be assigned to 
compute WL and WU. In this case, however, the expected values and vari-
ances of WL and WU become
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where
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where
q is the number of tied groups
rv is the size of the tied group v

Note that if there are no tied observations, q = n1 + n2, rv = 1 for v = 1, 2, …, n, 
and Q = 0, then Equation 5.22 reduces to Equation 5.21. Since WL and WU are 
symmetric about their mean (n1n2)/2, we have

	 w n n w(1 ) = ( ).1 2− −α α 	 (5.23)

When n1 + n2, the total number of subjects, is large (say, n1 + n2 > 40) and the 
ratio of n1 and n2 is close to ½; the standard normal distribution can be used 
for a large-sample approximation of average biosimilarity testing; that is, we 
may conclude bioequivalence if

	 ZL > z(α)  and  ZU < −z(α),
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where z(α) is the αth quantile of a standard normal distribution, and

	

Z W E W
V W

R n n n
n n n n

Z W

L
L L

L

L

U
U

= − =
− + +[ ]

+ +

= −

( )
( )

( )
( )

,1 1 2
1

12 1 2 1 2

1 2
1
/

EE W
V W

R n n n
n n n n

U

U

U( )
( )

( )
( )

.=
− + +[ ]

+ +
1 1 2

1
12 1 2 1 2

1 2
1
/

	

(5.24)

Note that the variances in ZL and ZU should be replaced with those given in 
Equation 5.21 if there are ties.

5.5  Three-Arm Parallel Design

Let T denote a biosimilar product, and R1 and R2 represent innovator bio-
logical products from different batches, respectively. Suppose that the N 
patients are randomized into the following three groups. The patients who 
are assigned to the first group receive the biosimilar product T and the num-
ber of patients is denoted by n1. The patients who are assigned to the second 
and the third groups receive the innovator biological products R1 and R2, 
respectively, and the number of patients in both groups is denoted by n2 for 
simplicity. The randomization ratio 2 : 1 : 1 is employed. So n1 = 2n2 and the 
total sample size is N = n1 + 2n2. Suppose that we have only one primary con-
tinuous response variable Y. If this trial is a pharmacokinetic study, Y can be 
either AUC or Cmax. If the trial is a pivotal trial, Y can be a clinical response.

5.5.1  Criteria for Biosimilarity

Let d(T, R) represent the distance between the biosimilar product T and 
the innovator biological product R. Similarly, d(R1, R2) denotes the distance 
between R1 and R2. There are many possible choices for specific forms of 
distance. For example,

	 d T R T R1 ,( ) = −µ µ

	
d T R T

R
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µ

	 d T R T R3
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	 d T R E T R4
2, ( )( ) = −µ µ

where
μT is the population mean of Y in patients with the biosimilar product T
μR is defined as ( )µ µR R1 2 2+ /  where µR1 and µR2 denote the population 

means of Y in patients who receive the reference product R1 and R2, 
respectively

In this chapter, we consider the following relative distance to assess biosimi-
larity between the biosimilar product and the innovator biological product
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Since the distances take on only non-negative values, the relative distances 
are also non-negative numbers. If the relative distance rd is less than a pre-
specified margin δ (δ > 0) in the proposed design, we claim that the two 
products are biosimilar. Therefore, the hypotheses of interest are given by

	 H rd H rda0 : : .≥ <δ δversus

Kang and Chow (2013) consider the absolute mean difference d1(T, R) = |μT − μR| 
to evaluate biosimilarity between the two products. Then, assuming that 
µ µR R1 2≠ , the relative distance is given by
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Then the hypotheses in Equation 5.1 can be rewritten as

	 H Ha0 : † : ,θ δ θ δ δ θ δ≤ − ≥ − < <�or versus 	 (5.25)

where
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It is well-known that the hypotheses in Equation 5.25 can be decomposed 
into two one-sided hypotheses as follows:

	 H Ha01 1: : ,θ δ δ θ≤ − − <versus 	 (5.27)
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and

	 H Ha02 2:†† : .θ δ θ δ≥ <versus 	 (5.28)

5.5.2  Statistical Tests for Biosimilarity

Let YT,i (i = 1, 2, …, n1) and Y k i nR ik, ( , , , , , )= = …1 2 1 2 2  denote the response 
variables from the biosimilar product in the first group and the innovator 
biological product in the second and the third groups, respectively, with 
n1 = 2n2. First, it is assumed that YT,i and Y kR ik, ( ),= 1 2  follow independently 
the normal distribution with the means μT and µRk k( , )= 1 2  and the common 
variance σ2. When we need to derive an asymptotic distribution of a test 
statistic and the power functions, we assume that the sample size is large 
enough so that the central limit theorem can be employed. In the following 
two subsections, we propose two statistical tests in order to test the hypoth-
eses in Equations 5.27 and 5.28.

5.5.2.1  Statistical Test Based on the Ratio Estimator

A natural estimator of θ in Equation 5.26 is to replace the population means 
with the corresponding sample means. It is given by

	

ˆ ( )/ ,θ = ≡ − +
−

V
U

Y Y Y
Y Y
R R

R R

1 2

1 2

2

where

Y
n

YT
i

n

T i=
=

∑1
1 1

1

, ,

Y
n

Y kR
i

n

R ik k= =
=

∑1
2 1

2

, , .for 1 2

Since the exact distribution of θ̂ is very complicated, Kang and Chow (2013) 
obtained the asymptotic normality of n1 ( )θ θˆ −  as follows. First, note that
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Therefore, we have
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By using this asymptotic normality of n1 ( ),θ θˆ −  we can conduct hypoth-
esis testing and establish an asymptotic confidence interval for θ. The null 
hypothesis H01 in Equation 5.27 is rejected if Z1 > zα where
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Similarly, the null hypothesis H02 in Equation 5.28 is rejected if Z2 < −zα, where
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If each null hypothesis in both Equations 5.27 and 5.28 is rejected at the 
significance level α, we claim that the two products are biosimilar.
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An alternative method to assess biosimilarity between the two products is 
to use a two-sided asymptotic confidence interval for θ. Since an (1 − α) × 100% 
asymptotic confidence interval for θ is given by
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we claim that the two products are biosimilar if the (1 − α) × 100% asymptotic 
confidence interval for θ lies within the interval (−δ, δ).

Although we have obtained the (1 − α) × 100% asymptotic confidence inter-
val for θ, actually we can obtain an exact (1 − α) × 100% confidence interval for θ 
based on Fieller’s theorem (Fieller, 1954, 1944), because we assume that YT,i and 
Y kR ik , ( ,†)= 1 2  follow the normal distribution. From the Fieller’s theorem, since
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an exact (1 − α) × 100% confidence interval for θ is given by
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where
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and tα,m is the upper α quantile of the t distribution with m degrees of freedom.

5.5.2.2  Linearization Method

When we conduct a hypothesis testing for a parameter which is the ratio of 
parameters, a popular method of constructing a hypothesis testing is the lin-
earization method (Howe, 1974; Hyslop et al., 2000). Both sides of the inequality 
in the hypothesis are multiplied by the parameter in the denominator of the 
ratio, and then the numerator of the ratio is moved to the opposite side of the 
inequality, so that the linearized parameter can be obtained.

The parameter of interest in this chapter is θ in Equation 5.8 and the denomi-
nator is µ µR R1 2− . First, we need to check the sign of the denominator, because 
the direction of inequalities in the hypotheses changes depending on the sign 
of the denominator. It is assumed that µ µR R1 2≠ . Otherwise, θ cannot be defined. 
In order to check the sign of the denominator µ µR R1 2− , we test the following 
preliminary hypotheses:
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	 H HR R a R R0 1 2 1 2: : .µ µ µ µ< >versus 	 (5.32)

The null hypothesis in Equation 5.32 is rejected if
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When the null hypothesis in Equation 5.32 is rejected, the null hypothesis 
H01 : θ ≤ − δ in Equation 5.9 can be expressed as
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Similarly, the null hypothesis H02 : θ ≥ δ in Equation 5.28 can be rewritten as
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Therefore, the two products are claimed to be biosimilar if
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In a similar fashion, when the null hypothesis is accepted, the null hypoth-
esis H01 : θ ≤ −δ in Equation 5.27 can be expressed as
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and the null hypothesis H02 : θ ≥ δ in Equation 5.28 can be rewritten as

	
H T R R R R02

1
2

01 2 1 2: † ( ) †( ) .µ µ µ δ µ µ− + − − ≤



119Statistical Methods for Assessing Average Biosimilarity

Hence, biosimilarity between the two products is claimed if
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5.5.2.3  Power Functions

In the previous section, we described two statistical tests proposed by Kang 
and Chow (2013) to test the hypotheses in Equation 5.25. In this section, 
following Kang and Chow (2013), the power functions of two statistical tests 
(in large samples) will be given. First, under the alternative hypothesis that 
Ha : −δ < θ < δ, the power function of the statistical test based on the ratio 
estimator in large samples is given by
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where
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and the random variable Z follows the standard normal distribution, 
and Φ represents the cumulative distribution function of the standard 
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normal distribution. Since the following condition should be satisfied in 
order to have positive powers
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In order to investigate the power function of the linearization method, we 
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Therefore, the power function of the linearization method in large sample is 
given by

	 Power = ( )Pr T R Rµ µ µ, ,1 2
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where Φ2 is the cumulative distribution function of a standardized bivariate 
normal distribution with mean 0, variance 1, and a correlation coefficient ρ 
in Equation 5.34 and
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5.5.2.4  Numerical Results

Kang and Chow (2013) compare the power of the statistical test based on the 
ratio estimator and the linearization method whose formulae are given in 
Equations 5.33 and 5.35, respectively. It seems that it may not be feasible to 
compare the two formulae in Equations 5.33 and 5.35 analytically. Therefore, 
numerical comparisons are conducted. Figures 5.1 through 5.3 show the pow-
ers of the two methods which are computed with the formulae in Equations 
5.33 and 5.35. The power of the statistical test based on the ratio estimator is 
always higher than that of the linearization method over the investigated 
ranges of the parameters. Tables 5.1 and 5.2 present sample size calculations 
computed numerically with Formula 5.33.
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FIGURE 5.1
The power of two statistical tests (δ = 1.2, σ = 2).
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The power of two statistical tests (δ = 1.1, σ = 2).

TABLE 5.1

Sample Size Calculations of the Statistical Test Based on the 
Ratio Estimator with µ = 8 and µ = 10

μ ν Σ
n1 

(80%)
n1 

(90%) μ ν σ
n1 

(80%)
n1 

(90%)

10 11.5 2 722 999 8 9.0 2 486 673
10 11.0 2 170 235 8 8.5 2 134 185
10 10.5 2 71 98 8 8.0 2 58 81
10 10.0 2 38 52 8 7.5 2 31 43
10 9.5 2 23 31 8 7.0 2 19 26
10 9.0 2 15 20 8 6.5 2 12 17
10 10.5 3 159 220 8 8.5 3 300 416
10 10.0 3 84 116 8 8.0 3 131 181
10 9.5 3 50 70 8 7.5 3 70 97
10 9.0 3 33 45 8 7.0 3 42 58
10 8.5 3 23 31 8 6.5 3 27 38
10 8.0 3 16 22 8 6.0 3 19 26
10 10.0 4 149 206 8 8.0 4 232 322
10 9.5 4 89 124 8 7.5 4 124 172
10 9.0 4 58 80 8 7.0 4 75 103
10 8.5 4 40 55 8 6.5 4 48 67
10 8.0 4 29 40 8 6.0 4 33 45
10 7.5 4 21 29 8 5.5 4 23 32
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Since the statistical test based on the ratio estimator employs large-
sample theory, we need to investigate the performance in finite samples. 
We generate random samples of XT,i and XR ik ,  (k = 1, 2) from normal dis-
tributions. Two test statistics, Z1 and Z2, are computed. If Z1 > z0.05 and 
Z2 < −z0.05, then the null hypothesis in Equation 5.25 is rejected. Kang and 
Chow (2013) generated 5000 simulation samples and the empirical type 
I error rate is calculated as the proportion of samples for which the null 
hypothesis in Equation 5.25 is rejected. The simulation results in Table 5.3 
show that the statistical test based on the ratio estimator controls the 
empirical type I error rates under the nominal level.

5.6  Concluding Remarks

In this chapter, much discussion was given to the design and analysis meth-
ods proposed by Kang and Chow (2013) for the assessment of biosimilarity. 
Kang and Chow’s methods were derived based on the relative distance of 

TABLE 5.2

Sample Size Calculations of the Statistical Test Based 
on the Ratio Estimator with μ = 4 and μ = 6

μ ν σ
n1 

(80%)
n1 

(90%) μ ν σ
n1 

(80%)
n1 

(90%)

6 6.5 2 338 469 4 4.2 2 441 610
6 6.3 2 196 272 4 4.0 2 232 322
6 6.0 2 104 143 4 3.8 2 139 193
6 5.5 2 46 64 4 3.5 2 75 103
6 5.0 2 25 34 4 3.0 2 33 45
6 4.5 2 15 20 4 2.5 2 17 24
6 6.3 3 441 610 4 4.0 3 522 723
6 6.0 3 232 322 4 3.8 3 313 433
6 5.5 3 104 143 4 3.5 3 167 231
6 5.0 3 55 77 4 3.0 3 73 102
6 4.5 3 33 45 4 2.5 3 38 52
6 4.0 3 21 29 4 2.0 3 22 30
6 6.0 4 413 571 4 3.2 4 177 245
6 5.5 4 184 255 4 3.0 4 130 180
6 5.0 4 98 136 4 2.7 4 86 119
6 4.5 4 58 80 4 2.5 4 67 93
6 4.0 4 37 51 4 2.0 4 38 53
6 3.5 4 25 34 4 1.4 4 24 33
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means observed from the test and reference products. The proposed design 
consists of three arms: one arm is for the test product and the other two 
arms are for the reference products from different batches. This design will 
allow us to assess the relative distance in terms of the ratio of the differ-
ence between T and R and the difference between R1 and R2. Under the 
design, the performances of the derived statistical tests were evaluated 
both theoretically and through the simulation study. Since the statistical 
test based on the ratio estimator is more powerful than the linearization 
method, Kang and Chow (2013) recommend the statistical test based on the 
ratio estimator.

In practice, one of the most commonly used designs for assessing biosim-
ilarity between a biosimilar product and an innovative biological product 
is probably a two-arm balanced design, and biosimilarity is assessed by 
using the difference between two population means. A disadvantage of 
this approach is that the variability of a reference product among differ-
ent batches cannot be incorporated. Hence, when an equivalence/similarity 
margin is larger than the variability of a reference product, this approach 
may tend to conclude that two products are biosimilar, although there 
could exist a considerable difference between the two products. This prob-
lem can be fixed if the equivalence/similarity margin can be determined 

TABLE 5.3

Empirical Type I Error Rates of the Statistical Test Based on the Ratio Estimator

δ μT μR1
μR2

σ n1

Type I 
Error μT μR1

μR2
σ n1

Type I 
Error

1.2 117 100 110 1 30 0.028 110.2 106 100 1 30 0.033
50 0.031 50 0.027

100 0.030 100 0.032
1.2 117 100 110 2 30 0.034 110.2 106 100 2 30 0.043

50 0.033 50 0.036
100 0.034 100 0.034

1.2 117 100 110 3 30 0.035 110.2 106 100 3 30 0.045
50 0.038 50 0.045

100 0.038 100 0.036
1.1 116 100 110 1 30 0.032 109.6 106 100 1 30 0.032

50 0.029 50 0.033
100 0.033 100 0.030

1.1 116 100 110 2 30 0.034 109.6 106 100 2 30 0.043
50 0.033 50 0.037

100 0.032 100 0.035
1.1 116 100 110 3 30 0.043 109.6 106 100 1 30 0.050

50 0.035 50 0.049
100 0.034 100 0.035
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by incorporating variability of a reference product prior to a clinical trial. 
However, in practice this may not be easy, because the variability of a refer-
ence product may be unknown. This point is an advantage of the proposed 
design, because relative distance rather than absolute difference is employed 
to assess biosimilarity.

As mentioned earlier, there are many possible choices for specific forms 
of distance. For the assessment of bioequivalence for small-molecule drug 
products, average bioequivalence uses d2(T, R) =|μT /μR| and the population 
and the individual bioequivalences employ d4(T, R) = E(YT − YR)2. Since dif-
ferent distances may produce different conclusions for biosimilarity, it is 
of interest to develop statistical tests for several difference distances which 
have often been used in the statistical literature. It seems that the absolute 
mean difference used as the distance in this chapter does not incorporate the 
variance. Another natural choice of the distance is the standardized absolute 
mean difference d T Rs

T R1( , ) | |/ .= −µ µ σ  However, since the common variance 
is assumed, the common standard deviation σ is cancelled out in the rela-
tive distance. Therefore, actually this chapter uses the standardized absolute 
mean difference as the distance. It is of interest to develop statistical tests 
when the common variance assumption does not hold.

In this chapter, the distance between a biosimilar product and an innovator 
biological product is defined as d t R T R R1 1 2 2( ), ( ) .= − +µ µ µ /  But, there are 
also other ways of defining the distance such as

	
d T R T R T R1 1 2( , ) max ,′ = − −( )µ µ µ µ

and

	
d T R T R T R1 1 2( , ) min , .′′ = − −( )µ µ µ µ

It is interesting to develop appropriate statistical tests for these new distances.
Note that the randomization ratio 2 : 1 between n1 and n2 is employed in this 

chapter. However, a general randomization ratio k : 1 can be used. Finding an 
optimal value of k might also be an interesting future study.
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6
General Approach for 
Assessing Biosimilarity

6.1  Background

As discussed in the previous chapters, the assessment of bioequivalence 
and/or biosimilarity is very sensitive to bioequivalence/biosimilarity crite-
ria. The one-size-fits-all criterion for the assessment of bioequivalence for 
small-molecule drug products has been criticized and considered not to be 
appropriate for the assessment of biosimilarity. However, little or no infor-
mation regarding what criteria are most appropriate for the assessment of 
biosimilarity is available in regulatory guidances. Without a well-defined 
and widely accepted biosimilarity criterion, it is difficult to demonstrate that 
the test product is highly similar to the reference product. To overcome this 
problem, Kang and Chow (2013) suggested considering the evaluation of rel-
ative distance between T–R and R–R and proposed useful statistical methods 
for the assessment of biosimilarity based on the defined relative distance 
as described in the previous section. The methods proposed by Kang and 
Chow, however, still depend upon the selection of biosimilarity criteria.

Chow et al. (2011) proposed a general approach for assessing biosimilar-
ity based on the concept of comparing the reproducibility probability in a 
T–R study as compared to that of an R–R study. Chow et al. (2011) referred to 
their proposed general approach as the local biosimilarity index for a given 
domain. Chow et al. (2011) claimed that the proposed biosimilarity index 
can take variability into consideration and it is insensitive to the selection of 
biosimilarity criteria. Based on the local biosimilarity index, a totality biosim-
ilarity index for providing the totality-of-the-evidence can be obtained across 
functional structures or domains for the development of biosimilar products. 
As indicated by Chow et al. (2013), a similar idea can be applied to obtain a 
switching index and/or alternating index for the assessment of drug inter-
changeability under certain study designs for switching and/or alternating.

Alternatively, Tsou et al. (2012) proposed a consistency approach for the 
statistical evaluation of similarity between a biosimilar product and the 
innovator biologic using the idea from Tsou et al. (2011) for the assessment of 
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similarity between a bridging study conducted in a new region and studies 
conducted in the original region. Tsou et al.’s (2012) consistency approach was 
developed based on either a response for therapeutic efficacy or a response 
for adverse effects. The consistency approach is useful for the evaluation of 
drug interchangeability under certain assumptions.

In the next section, the assessment of reproducibility probability under dif-
ferent study designs is briefly described. The development of the biosimilarity 
index, based on the concept of reproducibility probability proposed by Chow 
(2010) and Chow et al. (2011), is given in Section 6.3. Section 6.4 studies the rela-
tionship between the biosimilarity criterion and variability. The biosimilarity 
index based on the Bayesian approach is outlined in Section 6.5. A general 
consistency approach for assessing biosimilarity is outlined in Section 6.6. 
Brief concluding remarks are given in the last section of this chapter.

6.2  Reproducibility Probability

For marketing approval of a new drug product, the U.S. Food and Drug 
Administration (FDA) requires that at least two adequate and well-controlled 
clinical trials be conducted to provide substantial evidence regarding the 
effectiveness of the drug product under investigation. The purpose of con-
ducting the second trial is to study whether the observed clinical result from 
the first trial is reproducible on the same target patient population. Let H0 be 
the null hypothesis that the mean response of the drug product is the same 
as the mean response of a control (e.g., a placebo) and Ha be the alternative 
hypothesis. An observed result from a clinical trial is said to be significant if it 
leads to the rejection of H0. It is often of interest to determine whether clinical 
trials that produced significant clinical results provide substantial evidence 
to assure that the results will be reproducible in a future clinical trial with 
the same study protocol. Under certain circumstance, the FDA Modernization 
Act (FDAMA) of 1997 includes a provision (Section 115 of FDAMA) to allow 
data from one adequate and well-controlled clinical trial investigation and 
confirmatory evidence to establish the effectiveness of the drug and biological 
candidates for approval by a risk/benefit assessment. Suppose that the null 
hypothesis H0 is rejected if and only if |T|> c, where c is a positive known con-
stant and T is a test statistic. This is usually related to a two-sided alternative 
hypothesis. The discussion for a one-sided alternative hypothesis is similar. 
In statistical theory, the probability of observing a significant clinical result 
when Ha is indeed true is referred to as the power of the test procedure. If the 
statistical model under Ha is a parametric model, then the power is

	
P T c H P T ca>( ) = >( )| | ,θ 	 (6.1)
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where θ is an unknown parameter or vector of parameters. Suppose now 
that one clinical trial has been conducted and the result is significant. What 
is the probability that the second trial will produce a significant result, that 
is, if the significant result from the first trial is reproducible? Mathematically, 
if the two trials are independent, the probability of observing a significant 
result from the second trial when Ha is true is still given by Equation 6.1, 
regardless of whether the result from the first trial is significant or not. 
However, information from the first clinical trial should be useful in the 
evaluation of the probability of observing a significant result in the second 
trial. This leads to the concept of the reproducibility probability, which is 
different from the power defined by Equation 6.1.

In general, the reproducibility probability is a person’s subjective probabil-
ity of observing a significant clinical result from a future trial, when he/she 
observes significant results from one or several previous trials. For example, 
Goodman (1992) considered the reproducibility probability as the probabil-
ity in Equation 6.1 with θ replaced by its estimate based on the data from 
the previous trial(s). In other words, the reproducibility probability can be 
defined as an estimated power of the future trial using the data from the 
previous trial(s). In Section 6.2, we study how to evaluate the reproducibil-
ity probability using this approach, under several study designs. When the 
reproducibility probability is used to provide an evidence of the effectiveness 
of a drug product, the estimated power approach may produce a rather opti-
mistic result. A more conservative approach is to define the reproducibility 
probability as a lower confidence bound of the power of the second trial. This 
will be studied in Section 6.3. Perhaps a more sensible definition of the repro-
ducibility probability can be obtained by using the Bayesian approach. Under 
the Bayesian approach, the unknown parameter θ is a random vector with a 
prior distribution π(θ) assumed to be known. Thus, the reproducibility prob-
ability can be defined as the conditional probability of |T|> c in the future 
trial, given the data set x observed from the previous trial(s), that is,

	
P T c x P T c x d>( ) = >( )∫| | ( | ) ,θ π θ θ 	 (6.2)

where T = T(Y) is based on the data set y from the future trial and π(θ|X) 
is the posterior density of θ, given X. In practice, the reproducibility prob-
ability is useful when the clinical trials are conducted sequentially. It pro-
vides important information for regulatory agencies in deciding whether it 
is necessary to require the second clinical trial when the result from the first 
clinical trial is strongly significant. On the other hand, if the second trial is 
necessary, the reproducibility probability can be used for sample size adjust-
ment of the second trial. To study the reproducibility probability, we need to 
specify the test procedure, that is, the form of the test statistic T. We consider 
several different study designs.



130 Biosimilars: Design and Analysis of Follow-on Biologics

6.2.1  Two Samples with Equal Variances

Suppose that a total of n = n1 + n2 patients are randomly assigned to two 
groups, a treatment group and a control group. In the treatment group, 
n1 patients receive the treatment (or a test drug) and produce responses 
x x n11 1 1, ,… . In the control group, n2 patients receive the placebo (or a refer-
ence drug) and produce responses x x n21 2 2, ,… . This design is a typical two-
group parallel design in clinical trials. We assume that xij‘s are independent 
and normally distributed with means μi, i = 1, 2, and a common variance σ2. 
Suppose that the hypotheses of interest are

	 H Ha0 1 2 1 20 0: : .µ µ µ µ− = − ≠vs. 	 (6.3)

The discussion for a one-sided Ha is similar.
Consider the commonly used two-sample t-test which rejects H0 if and 

only if |T|> t0.975,n−2, where t0.975,n−2 is the 97.5th percentile of the t-distribution 
with n − 2 degrees of freedom

	

T x x
n s n s n n n

= −

−( ) + −( ) −( ) +
1 2

1 1
2

2 2
2

1 21 1 2 1 1( ) ( ) ( )/ /
	 (6.4)

and x–i and si2 are, respectively, the sample mean and variance based on the 
data from the ith treatment group. The power of T for the second trial is
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where

	

θ µ µ
σ

= −
+( )

1 2

1 21 1( ) ( )/ /n n
	 (6.6)

and ℑn− 2(·|θ) denotes the distribution function of the non-central t-distribution 
with n − 2 degrees of freedom and the non-centrality parameter θ. Note that 
p(θ) = p(|θ|).

Values of P(θ) as a function of |θ| are provided in Table 6.1. Using the idea 
of replacing θ by its estimate T(x), where T is defined by Equation 6.4, we 
obtain the following reproducibility probability:

	
ˆ ( | ( )) ( | ( )),. , . ,P t T x t T xn n n n= − ℑ + ℑ −− − − −1 2 0 975 2 2 0 975 2 	 (6.7)
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TABLE 6.1

Values of the Power Function p(θ) in Equation 6.5

|θ|

Total Sample Size

10 20 30 40 50 60 100 ∞

1.96 0.407 0.458 0.473 0.480 0.484 0.487 0.492 0.500
2.02 0.429 0.481 0.496 0.504 0.508 0.511 0.516 0.524
2.08 0.448 0.503 0.519 0.527 0.531 0.534 0.540 0.548
2.14 0.469 0.526 0.542 0.550 0.555 0.557 0.563 0.571
2.20 0.490 0.549 0.565 0.573 0.578 0.581 0.586 0.594
2.26 0.511 0.571 0.588 0.596 0.601 0.604 0.609 0.618
2.32 0.532 0.593 0.610 0.618 0.623 0.626 0.632 0.640
2.38 0.552 0.615 0.632 0.640 0.645 0.648 0.654 0.662
2.44 0.573 0.636 0.654 0.662 0.667 0.670 0.676 0.684
2.50 0.593 0.657 0.675 0.683 0.688 0.691 0.697 0.705
2.56 0.613 0.678 0.695 0.704 0.708 0.711 0.717 0.725
2.62 0.632 0.698 0.715 0.724 0.728 0.731 0.737 0.745
2.68 0.652 0.717 0.735 0.743 0.747 0.750 0.756 0.764
2.74 0.671 0.736 0.753 0.761 0.766 0.769 0.774 0.782
2.80 0.690 0.754 0.771 0.779 0.783 0.786 0.792 0.799
2.86 0.708 0.772 0.788 0.796 0.800 0.803 0.808 0.815
2.92 0.725 0.789 0.805 0.812 0.816 0.819 0.824 0.830
2.98 0.742 0.805 0.820 0.827 0.831 0.834 0.839 0.845
3.04 0.759 0.820 0.835 0.842 0.846 0.848 0.853 0.860
3.10 0.775 0.834 0.849 0.856 0.859 0.862 0.866 0.872
3.16 0.790 0.848 0.862 0.868 0.872 0.874 0.879 0.884
3.22 0.805 0.861 0.874 0.881 0.884 0.886 0.890 0.895
3.28 0.819 0.873 0.886 0.892 0.895 0.897 0.901 0.906
3.34 0.832 0.884 0.897 0.902 0.905 0.907 0.911 0.916
3.40 0.844 0.895 0.907 0.912 0.915 0.917 0.920 0.925
3.46 0.856 0.905 0.916 0.921 0.924 0.925 0.929 0.932
3.52 0.868 0.914 0.925 0.929 0.932 0.933 0.936 0.940
3.58 0.879 0.923 0.933 0.937 0.939 0.941 0.943 0.947
3.64 0.889 0.931 0.940 0.944 0.946 0.947 0.950 0.953
3.70 0.898 0.938 0.946 0.950 0.952 0.953 0.956 0.959
3.76 0.907 0.944 0.952 0.956 0.958 0.959 0.961 0.965
3.82 0.915 0.950 0.958 0.961 0.963 0.964 0.966 0.969
3.88 0.923 0.956 0.963 0.966 0.967 0.968 0.970 0.973
3.94 0.930 0.961 0.967 0.970 0.971 0.972 0.974 0.977

Source:	 Shao, J. and Chow, S.C., Stat. Med., 21, 1727, 2002.
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which is a function of |T(x)|. When |T(x)|> t0.975,n−2,
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If ℑn−2 is replaced by the normal distribution and t0.975,n−2 is replaced by 
the normal percentile, then Formula 6.8 is the same as that in Goodman 
(1992) who studied the case where the variance σ2 is known. Table 6.1 can 
be used to find the reproducibility probability P̂ in Equation 6.7 with a 
fixed sample size n. For example, if |T(x)|= 2.9 was observed in a clinical 
trial with n = n1 + n2 = 40, then the reproducibility probability is 0.807. If 
T(x) = 2.9 was observed in a clinical trial with n = 36, then an extrapola-
tion of the results in Table 6.1 (for n = 30 and 40) leads to a reproducibility 
probability of 0.803.

6.2.2  Two Samples with Unequal Variances

Consider the problem of testing Hypotheses 6.3 under the two-group paral-
lel design without the assumption of equal variances. That is, xij’s are inde-
pendently distributed as N ii i( , ), ,µ σ2 1 2= . When σ σ1

2
2
2≠ , there exists no exact 

testing procedure for the hypotheses in Equation 5.3. When both n1 and n2 
are large, an approximate 5% level test rejects H0 when |T|> z0.975, where

	

T x x
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2
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Since T is approximately distributed as N(θ, 1) with

	

θ µ µ

σ σ
= −

( ) + ( )
1 2

1
2

1 2
2

2n n
, 	 (6.10)

the reproducibility probability, obtained by using the estimated power 
approach, is given by

	
ˆ ( ( ) ) ( ( ) ).. .P T x z T x z= − + − −Φ Φ0 975 0 975 	 (6.11)

When the variances under different treatments are different and the sample 
sizes are not large, a different study design, such as a matched-pair par-
allel design or a 2 × 2 crossover design is recommended. A matched-pair 
parallel design involves m pairs of matched patients. One patient in each 
pair is assigned to the treatment group and the other is assigned to the 
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control group. Let xij be the observation from the jth pair and the ith group. It 
is assumed that the differences x1j − x2j, j = 1, …, m, are independent and iden-
tically distributed as N D( , )µ µ σ1 2

2− . Then, the null hypothesis H0 is rejected 
at the 5% level of significance if |T|> t0.975,m−1, where

	
T m x x

D
= −( )1 2

2σ̂
	 (6.12)

and σ̂D
2  is the sample variance based on the differences x1j − x2j, j = 1, …, m. 

Note that T has the non-central t-distribution with m − 1 degrees of freedom 
and the non-centrality parameter

	
θ µ µ

σ
= −m

D

( ) .1 2
2 	 (6.13)

Consequently, the reproducibility probability obtained by using the esti-
mated power approach is given by Equation 6.7 with T defined by Equation 
6.12 and n − 2 replaced by m − 1.

Suppose that the study design is a 2 × 2 cross-over design in which n1 
patients receive the treatment at the first period and the placebo at the sec-
ond period and n2 patients receive the placebo at the first period and the 
treatment at the second period. Let xlij be the normally distributed observa-
tion from the jth patient at the ith period and lth sequence. Then the treat-
ment effect μD can be unbiasedly estimated by

ˆ , ,µ µ σ
D D

Dx x x x N
n n

= − − + +
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where
x–li is the sample mean based on xlij, j = 1, …, nl
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which is independent of µ̂D and distributed as σD n n2
1 2 2( )+ −  times the 

chi-square distribution with n1 + n2 − 2 degrees of freedom. Thus, the null 
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hypothesis H0 : μD = 0 is rejected at the 5% level of significance if |T| > t0.975,n−2, 
where n = n1 + n2 and

	

T
n n
D

D
=

( ) + ( )
ˆ

ˆ
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σ 2 1 11 2/ /
	 (6.14)

Note that T has the non-central t-distribution with n − 2 degrees of freedom 
and the non-centrality parameter
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σ

=
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D

D n n2 1 11 2/ /
. 	 (6.15)

Consequently, the reproducibility probability obtained by using the estimated 
power approach is given by Equation 6.7 with T defined by Equation 6.14.

6.2.3  Parallel-Group Designs

Parallel-group designs are often adopted in clinical trials to compare more 
than one treatment with a placebo control or to compare one treatment, one 
placebo control and one active control. Let a ≥ 3 be the number of groups and 
xij be an observation from the jth patient in the ith group, j = 1, …, ni, i = 
1, …, a. Assume that xij’s are independently distributed as N(μi, σ2). The null 
hypothesis H0 is then H0 : μ1 = μ2 = … = μa, which is rejected at the 5% level 
of significance if T > F0.95;a−1,n−a, where F0.95;a−1,n−a is the 95th percentile of the 
F-distribution with a − 1 and n − a degrees of freedom, n = n1 + n2 + ⋯ + na,
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where
x–i is the sample mean based on the data in the ith group
x– is the overall sample mean

Note that T has the non-central F-distribution with a − 1 and n − a degrees of 
freedom and the non-centrality parameter
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where µ µ=
=∑ n ni i
i

a
/

1
. Let ℑα−1,ν−α(·|θ) be the distribution function of T. Then, 

the power of the second clinical trial is

P T y F Fa n a a n a a n a( ( ) ) ( | ).. ; , , . ; ,> = − ℑ− − − − − −0 95 1 1 0 95 11 θ

Thus, the reproducibility probability obtained by using the estimated power 
approach is

ˆ ( | ( )),, . ; ,P F T xa n a a n a= − ℑ − − − −1 1 0 95 1

where T(x) is the observed T based on the data x from the first clinical trial.

6.3  Development of the Biosimilarity Index

Chow (2010) proposed the development of a composite index for assessing 
the biosimilarity of follow-on biologics based on the facts that (1) the con-
cept of biosimilarity for biological products (made of living cells) is very 
different from that of bioequivalence for drug products, and (2) biological 
products are very sensitive to small changes in the variation during the man-
ufacturing process (i.e., it might have a drastic change in clinical outcome). 
Although some research on the comparison of moment-based criteria and 
probability-based criteria for the assessment of (1) average biosimilarity and 
(2) the variability of biosimilarity for some given study endpoints by applying 
the criteria for bioequivalence are available in the literature (see, e.g., Chow 
et al., 2010; Hsieh et al. 2010), universally acceptable criteria for biosimilarity 
are not available in the regulatory guidelines/guidances. Thus, Chow (2010) 
and Chow et al. (2011) proposed a biosimilarity index based on the concept 
of the probability of reproducibility as follows:

Step 1: Assess the average biosimilarity between the test product and 
the reference product based on a given biosimilarity criterion. For 
the purpose of an illustration, consider a bioequivalence criterion as 
a biosimilarity criterion. That is, biosimilarity is claimed if the 90% 
confidence interval of the ratio of means of a given study endpoint 
falls within the biosimilarity limits of (80%, 125%) or (−0.2231, 0.2231) 
based on log-transformed data or based on raw (original) data.

Step 2: Once the product passes the test for biosimilarity in Step 1, calculate 
the reproducibility probability based on the observed ratio (or observed 
mean difference) and variability. Thus, the calculated reproducibility 
probability will take the variability and the sensitivity of heterogeneity 
in variances into consideration for the assessment of biosimilarity.
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Step 3: We then claim biosimilarity if the calculated 95% confidence 
lower bound of the reproducibility probability is larger than a pre-
specified number p0, which can be obtained based on an estimate 
of reproducibility probability for a study comparing a “reference 
product” to itself (the “reference product”). We will refer to such 
a study as an R–R study. Alternatively, we can then claim (local) 
biosimilarity if the 95% confidence lower bound of the biosimilarity 
index is larger than p0.

In an R–R study, define

P PTR =

Concluding average biosimilarity between the test and the
refeerence products in a future trial given that theaverage

biosimiliarrity basedon ABEcriterion has been
establishedin first t
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Alternatively, a reproducibility probability for evaluating the biosimi-
larity of the same two reference products based on the ABE criterion is 
defined as

P PRR =

Concluding average biosimiliarity of the two samereference
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Since the idea of the biosimilarity index is to show that the reproducibility 
probability is higher in a study for comparing “a reference product” with 
“the reference product” than the study for comparing a follow-on biologic 
with the innovative (reference) product, the criterion of an acceptable repro-
ducibility probability (i.e., p0) for the assessment of biosimilarity can be 
obtained based on the R–R study. For example, if the R–R study suggests 
the reproducibility probability of 90%, that is, PRR = 90%, the criterion of the 
reproducibility probability for the biosimilarity study could be chosen as 
80% of the 90%, which is p0 = 80% × PRR = 72%.

The biosimilarity index described earlier has the advantages that (1) it is 
robust with respect to the selected study endpoint, biosimilarity criteria, and 
study design; and (2) the probability of reproducibility will reflect the sensi-
tivity of heterogeneity in variance.

Note that the proposed biosimilarity index can be applied to different 
functional areas (domains) of biological products such as pharmacoki-
netics (PK), biological activities, biomarkers (e.g., pharmacodynamics), 
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immunogenicity, manufacturing process, efficacy, etc. An overall biosimi-
larity index or totality biosimilarity index across domains can be simi-
larly obtained as follows:

Step 1: Obtain P̂i, the probability of reproducibility for the ith domain, 
i = 1, …, K.

Step 2: Define the biosimilarity index ˆ ˆp w pi i
i

K
=

=∑ 1
, where wi is the 

weight for the ith domain.
Step 3: Claim global biosimilarity if we reject the null hypothesis that 

p ≤ p0, where p0 is a pre-specified acceptable reproducibility prob-
ability. Alternatively, we can claim (global)biosimilarity if the 95% 
confidence lower bound of p is larger than p0.

Let T and R be the parameters of interest (e.g., a PK response) with means 
μT and μR, for a test product and a reference product, respectively. Thus, the 
interval hypotheses for testing the ABE of two products can be expressed as

H HL
T

R
U

T

R
a L

T

R
U0 : : ,′ ≥ ′

′
′ ≤ ′

′
′ < ′

′
< ′θ µ

µ
θ µ

µ
θ µ

µ
θor vs.

where ′ ′( )θ θL U,  is the ABE limit. For in vivo bioequivalence testing, ′ ′( )θ θL U,  
is chosen to be (80%, 125%). The aforementioned hypotheses can be 
re-expressed as

H HL T R U T R a L T R U0 : : ,θ µ µ θ µ µ θ µ µ θ≥ − ≤ − < − <or vs.

where
μT and μR are the means of log-transformed data which are equal to the log-

transformed values of ′µT and ′µR
(θL, θU) is (−0.2231, 0.2231), which is equal to the log-transformed values of 

(80%, 125%)

To calculate the reproducibility probability under the interval hypotheses 
mentioned earlier, the probability of PTR can be expressed when consider-
ing a parallel design (since it is a common design for biological products) as 
follows:

P
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L U
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where sT, sR, nT, and nR are the sample standard deviations and sample sizes 
for the test and reference formulations, respectively. The value of dfp can be 
calculated by
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s n n s n n
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σT
2 and σR

2  are the variances for test and reference formulations, respectively.
The vectors (TL, TU) can be shown to follow a bivariate non-central t-dis-

tribution with n1 + n2 − 2 and dfp degrees of freedom, correlation of 1, and 
non-centrality parameters δL and δU (Phillips, 1990; Owen, 1965). Owen (1965) 
showed that the integral of the earlier bivariate non-central t-distribution can 
be expressed as the difference of the integrals between two univariate non-
central t-distributions. Therefore, the power function in Equation 6.19 can be 
obtained by

	 P Q t R Q t RL U f U U f L Lδ δ δ δ, , ; , , ; , ,( ) = ( ) − ( )0 0 	 (6.21)

where
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and

t t t t f dfpL dfp U dfp= = − =α α, , ,, and  for parallel design.

Note that when 0 < θU = −θL, P(δL, δU) = P(−δU, −δL).
Figure 6.1 presents the relationship of the reproducibility and variabil-

ity under various sample sizes and ratios of means. The reproducibility 
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probabilities increase when the sample size increases and the means ratio is 
close to 1, while it decreases when the variability increases for the same set-
ting of sample size and means ratio which shows the impact of variability on 
reproducibility probabilities.

Since the true values of δL and δU are unknown, using the idea of replacing 
δL and δU in Equation 6.20 by their estimates based on the sample from the 
first study, the estimated reproducibility probability can be obtained as

	
ˆ(ˆ , ˆ ) ( , ˆ ; , ˆ ) ( , ˆ ; , ˆ ),P Q t R Q t RL U f L U f U Lδ δ δ δ= −0 0 	 (6.22)

where

ˆ
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T L L

T T R R
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T L U

T T R R

Y Y
s n s n

Y Y
s n s n

= − − ′
+

= − − ′
+2 2 2 2

, , ˆ̂ ( ˆ ˆ ) .R f
t tL U
L U

= −
−

δ δ

6.4 � Relationship of the Biosimilarity Criterion 
versus Variability

As described in the previous section, the pre-specified criterion for claiming 
biosimilarity between a test product and a reference product, that is, p0, is 
chosen based on the reproducibility probability PRR, which is obtained from 
an R–R study. The values of p0 may differ for different reference products 
since each of reference products has its own specific reproducibility prob-
ability. Thus, PRR is related to the variability associated with the reference 
product. A simulation study was conducted to investigate the impact of vari-
ability on the selected p0. The parameter settings of the simulation study 
were nR = 24, 36, 72; σR = 0.1, 0.15; (θL,θU) = (−0.2231, 0.2231).
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FIGURE 6.1
Reproducibility probability curves based on the estimation approach for sample sizes nT = nR = 
10, 20, 30, 40, 50, and 60 at the 0.05 level of significance and ( , ) ( %, %)′ ′ =θ θL U 8 1250  when 
σT = 0.2,0.3,0.4 and σR = 0.2.
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TABLE 6.2

PBE and PRR,RR and Average versus Variability-Based Estimation Approach

avg. avg. avg.

σR s sR R
2 2+ PBE PRR,RR PRR RR

�
, p0,0.7 p0,0.8 PBE PRR,RR PRR RR

�
, p0,0.7 p0,0.8 PBE PRR,RR PRR RR

�
, p0,0.7 p0,0.8

0.1 0.14 1.0000 1.0000 1.0000 0.7000 0.8000 1.0000 1.0000 1.0000 0.7000 0.8000 1.0000 1.0000 1.0000 0.7000 0.8000
0.1 0.21 1.0000 0.9994 0.9886 0.7000 0.8000 1.0000 1.0000 0.9991 0.7000 0.8000 1.0000 1.0000 1.0000 0.7000 0.8000
0.1 0.28 1.0000 0.9694 0.9198 0.7000 0.8000 1.0000 0.9976 0.9556 0.7000 0.8000 1.0000 1.0000 0.9999 0.7000 0.8000

Key:	 PBE, probability of claiming biosimilarity based on the BE criterion; PRR, reproducibility probability of R–R comparison study; avg. P̂RR,RR, average 
of the estimated reproducibility probability of R–R comparison study.
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Note that since there are the same two products, the means and vari-
abilities of the two reference products are assumed the same in the 
simulations. In addition, the correlation coefficient of the intra-subject 
variabilities of the two products was set to be 1, which resulted in t zero 
subject-by-formulation interaction. A total of 1000 random samples were 
generated for each parameter combination. The simulation results given 
in Table 6.2 show that PBE, which is the probability of claiming biosimilar-
ity based on the BE criterion, is higher than the reproducibility probability 
of PRR. The average of estimated reproducibility probabilities denoted by 
avg. P̂RR is close to the true reproducibility probability of PRR for the R–R 
comparison. The difference setting of intra-subject variabilities results 
only in a small change in avg. P̂RR since the subject-by-formulation interac-
tion is assumed to be 0. As expected, the PRR and agv. P̂RR decrease as the 

total variability of σd and σ σR R
2 2+  increase. The PRR and agv. P̂RR increase 

when the sample size increases. The two values of p0 (i.e., corresponding 
to 70% and 80% of PRR) are presented in the table for researchers’ refer-
ence to choose an appropriate value of p0 for their own products. If we 
define d = p0/pRR, then d can be used to address the degree of similarity 
and consequently the question “How similar is similar?”

6.5  Biosimilarity Index Based on the Bayesian Approach

The calculation of the reproducibility probability given earlier is based on 
the estimation approach by replacing the unknown parameters using their 
estimates. An alternative definition of the reproducibility probability is pro-
posed by Goodman (1992) and Shao and Chow (2002). Let p(θ) be the power 
function, where θ is an unknown parameter or a vector of parameters. Under 
this Bayesian approach, θ is random with a prior distribution assumed to be 
known. The reproducibility probability can be viewed as the posterior mean 
of the power function for a future trial

	
p d( ) ( | ) ,θ π θ θx∫ 	 (6.23)

where π(θ|x) is the posterior density of θ, given the data set x observed for 
the previous trial(s).

Two Bayesian versions of reproducibility probability will be derived 
by (1) assuming that (μT, μR) is random and the variance is fixed, and 
(2) (μT, μR) is fixed and the variance is random in Sections 6.5.1 and 6.5.2, 
respectively.



142 Biosimilars: Design and Analysis of Follow-on Biologics

6.5.1  μT, μR Is Random and the Variance Is Fixed

In statistical theory, the probability of observing a significant result when H1 
is indeed true is referred to as the power of the test procedure. The power is 
given by

P T X X z T X X z

n n
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T R U

T R
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+
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θ

σ1 1 1 1/ / / //nR
,

σ is a common variance for the test and reference products. As indicated by 
Goodman (1992) and Shao and Chow (2002), the reproducibility probability 
can be viewed as the posterior mean of the power function for the future trial. 
Under the Bayesian approach, the unknown parameter (μT, μR) is random with 
a prior distribution π(μT, μR) assumed to be known. Thus, the reproducibility 
probability can be defined as the conditional probability P(TL > zα, TU < −zα|x) 
in the future trial, given the observation x from the previous trial. Here TL = 
TL(y) and TU = TU(y) are based on the data y from the future trial. We can use 
the posterior mean of the power function to estimate reproducibility prob-
ability based on Equation 6.22, that is,

	

ˆ ( , | )

( ( , ) , ( , ) | )

P P T z T z

P T X X z T X X z

TR L U

L T R U T R T R

= > < −

= > < −

α α

α α µ µ

x

,∫∫∫
⋅π µ µ µ µ( | ) .T R T Rd d, x 	 (6.24)

Under the Bayesian approach, it is essential to construct the posterior density 
π(μT, μR|x) in Formula 6.24, given the data x from the previous trial. Consider 
first that σ2 is known, a commonly used prior for π(μT, μR) is the non-informative 
prior π(μT, μR). Consequently, P̂TR,TR can be derived by

ˆ ( , ) ( , ) .,P T X X z T X X z
TR TR

U T R L T R= − −



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+ −



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−Φ Φα α

2 2
1
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6.5.2  Both (μT, μR) and the Variance Are Random

For the more realistic situation where σ2 is unknown, we need a prior for σ2. 
A commonly used non-informative prior for σ2 is the Lebegue density 
π(σ2) = σ −2. If σ2 is unknown, the pooled sample variance is

S
X X X X

n n
Ti T

i

n
Ri R

i

nT R

2
2

1

2

1

1 2 2
=

− + −

+ −
= =∑ ∑( ) ( )

,

where XTi and XRi are the log-transformed values for the test and reference 
products, respectively, and the power is given by

P P T X X S t T X X S tL U L T R n n U T R n n( , ) ( ( , , ) , ( , , ) |, ,δ δ α α= > < −+ − + −1 2 1 22 2 δδ δL U, ), 	(6.25)

where
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Assume that the priors for μT, μR and σ2 are independent. Under the assump-
tion, we can obtain that the posterior density for (μT − μR|σ2, x) is normally 
distributed given by

π µ µ σ σ( | , ) ~ ( , ( )),T R T RN X X n n− − +2 2
1 21 1x / /

and the posterior density for (σ2|x) is the inverted gamma function IG (α, β), 
given by

π σ
α β σ

σα α
βσ( | )

( ) ( )
, ,/( )2

2 1
1 21 1 0

2
x = < < ∞+

−

Γ
e

where α = (n1 + n2 − 2) and β = (n1 + n2 − 2)S2/2. Therefore, the posterior mean 
of p(δL, δU) is
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2x x 22 , 	 (6.26)
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which is the reproducibility probability under the Bayesian approach. The 
probability of P̂TR in Equation 6.26 can be evaluated numerically. The Monte 
Carlo method can be applied to approximate P̂TR.

Estimates of the proposed biosimilarity index associated with a given σ 
and model configurations are then computed through Monte Carlo simula-
tion based on 1000 replicate data sets. One thousand estimates are computed, 
the average and SE of the estimate can be calculated. The results of the simu-
lation studies are presented in Table 6.3 and Figure 6.2.

TABLE 6.3

PBE and P̂RR,RR versus Variability Based on the Bayesian Approach When (μT, μR) 
Is Random and the Variance Is Fixed

σ

nT = nR = 12 nT = nR = 24 nT = nR = 36 nT = nR = 48

PBE

P̂RR,RR

PBE

P̂RR,RR

PBE

P̂RR,RR

PBE

P̂RR,RR

Mean SE Mean SE Mean SE Mean SE

0.05 0.30 0.97 0.08 0.36 0.99 0.06 0.35 0.99 0.05 0.39 0.99 0.06
0.10 0.28 0.93 0.13 0.31 0.96 0.10 0.33 0.97 0.10 0.35 0.97 0.09
0.15 0.22 0.85 0.15 0.27 0.92 0.13 0.31 0.94 0.12 0.29 0.94 0.12
0.20 0.17 0.75 0.14 0.25 0.88 0.14 0.25 0.90 0.14 0.28 0.92 0.13
0.25 0.10 0.64 0.08 0.20 0.82 0.13 0.23 0.88 0.14 0.27 0.91 0.13
0.30 0.03 0.54 0.03 0.16 0.72 0.12 0.21 0.81 0.15 0.23 0.85 0.16
0.35 0.00 NA NA 0.11 0.66 0.08 0.16 0.76 0.12 0.20 0.82 0.14
0.40 0.00 NA NA 0.04 0.57 0.04 0.12 0.67 0.10 0.17 0.76 0.13
0.45 0.00 NA NA 0.02 0.51 0.01 0.10 0.62 0.07 0.12 0.71 0.10
0.50 0.00 NA NA 0.00 NA NA 0.07 0.57 0.04 0.08 0.65 0.07

PBE
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FIGURE 6.2
Reproducibility probability curves based on the Bayesain approach when (μT, μR) is random 
and the variance is fixed.
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6.6  Consistency Approach

Tsou et al. (2011) proposed a consistency approach to the evaluation of bridg-
ing studies. Following a similar idea, Tsou et al. (2012) developed a consis-
tency criterion for the assessment of biosimilar products. For the purpose 
of illustration, for simplicity, we focus only on the trials comparing a test 
product and a placebo control.

6.6.1  Response for Therapeutic Efficacy

Suppose that there were K historical reference studies for the approval 
of an innovator product. Based on the K historical reference studies, the 
innovator product has been already approved in a traditional trial due to 
its proven efficacy against placebo control. For evaluating the similarity 
of a biosimilar product to the innovator product, a clinical trial was con-
ducted to compare the difference in efficacy between the biosimilar and 
the innovator product.

Let xij be some efficacy responses for the jth patient receiving the innovator 
product in the ith historical reference trial, i = 1, …, K, and j = 1, …, mi, and 
yij the efficacy responses for the jth patient receiving the placebo control in 
the ith historical reference trial, i = 1, …, K, and j = 1, …, ni. Assume that a 
higher score indicates better therapeutic efficacy and that both xij’s and yij’s 
are normally distributed for simplicity. Then the treatment group difference 
in means for the ith study is

	 w x yi i i= − , 	 (6.27)

where � /x m xi i ij
j

mi
=

=∑1
1

 and y n yi i ij
j

ni
=

=∑1
1

/  are the sample means of the 

mi and ni observations in the innovator product and the placebo group, 
respectively. With sufficient sample sizes, w Ni i~ ( , )∆ σ2  is assumed 
approximately, that is, a normal distribution with mean ∆ and variance 
σi

2, where the estimate of σi
2, ˆ ( ) ( )σi i i is m n2 2 1 1= +( )/ / , and si is the estimate of 

standard deviation of the ith original trial, i = 1, …, K. Here, ∆ represents 
the true parameter of the treatment difference. Let w = (w1, …, wk) be the 
results of the K reference studies.

Let xBr and yBs be the efficacy responses for patients r and s receiving the 
biosimilar product and the placebo control, respectively, in the new trial con-
ducted for evaluating biosimilarity, r = 1, …, mB, and s = 1, …, nB. Similar to 
Equation 6.27, let v be the treatment group difference between the means for 
the new trial. That is,

v x yB B= − ,



146 Biosimilars: Design and Analysis of Follow-on Biologics

where x m xB B Br
r

mB
=

=∑1
1

/  and y n yB B Bs
s

nB
=

=∑1
1

/ . We are here to assess 

whether v can reasonably be thought of as in consistency with the K pre-
vious results. Similar to Tsou et al. (2011), we construct the predictive 
probability function, p(v|w), which provides a measure of plausibility of 
v given the previous results w. In addition, we also construct p(wi|w), for 
i = 1, …, K. We say that the result v is consistent with the reference result 
w if and only if

	 p v p w i ki( | ) min{ ( | ), , , },w w≥ =ρ 1 … 	 (6.28)

for some pre-specified ρ > 0. Here ρ represents the magnitude of the consis-
tency trend. We assume 0.9 ≤ ρ ≤ 1 or specify ρ = 1 because a biosimilar prod-
uct is required to be “highly similar” to the reference product.

With a vague prior of c∆, the posterior probability density function (pdf) 
for ∆, given the reference set w, p(∆|w), is given by
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/ / /πσ σ  denotes the likeli-

hood function. Consequently, ∆|w is normally distributed with mean w– and 
variance ∑2 where
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. That is, ∆|w ∼ N(w–, ∑2).

Assume the result v in the new trial is also asymptotically distributed as 
a normal distribution with mean C and variance σB

2. The estimate of σB
2 is 

ˆ ( ) ( )σB B B Bs m n2 2 1 1= +( )/ / , where sB is the estimate of standard deviation of the 
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efficacy response in the new trial. The joint pdf for v and the mean parameter 
∆, given w, is given by

	 p v p v p, | | , | ,∆( ) = ∆( ) ∆( )w w w 	 (6.29)

where
p v vB B( | ) exp ( )( )w = − − ∆{ }1 2 1 2 2 2/ / /πσ σ  is the conditional pdf for v, given 

∆ and w
p(∆|w) is the posterior pdf for ∆

By integrating Equation 6.29 with respect to ∆, the predictive probability 
density function (Aitchison and Dunsmore, 1975) can be represented by
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Consequently, we can derive that v N w B| ~ ( , )w τ2  and w N wi i| ~ ( , )w τ2 , where

τ σB B
2 2 2= +∑

and

τ σB i
2 2 2= +∑ ,
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for i = 1, …, K. The estimator of τB
2 is 
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and p0 = min{pi,i = 1, …, K}. Then the consistency criterion 

p v p w i Ki( | ) min ( | ), , ,w w≥ ={ }ρ for 1…

holds if and only if

( ) ln( ).v w pB B− ≤ −2 2
02τ ρτ

The proposed approach described in this chapter is to assess whether the 
comparative response of the biosimilar product to the placebo is consis-
tent with the comparative response of the innovator product to the placebo. 
A simplified version of the proposed approach could be considered. It could 
be sufficient to compare directly the average response of the biosimilar 
product with the average response of the originator product from the study 
of the latter which deviates (after standardization) most from its average. 
Consequently, placebos may not be needed.

6.6.2  Response for Adverse Effects

The proposed approach could be applied to responses not only for therapeu-
tic efficacy but also for adverse effects. Let xij be some responses for adverse 
effects for the jth patient receiving the innovator product in the ith histori-
cal reference trial, i = 1, …, K and j = 1, …, mi. Assume that the higher score 
indicates a more severe adverse effect of the tested drug. Here we want to 
compare directly the average response of the biosimilar product with the 
average response of the originator product without placebos in the trials. 
Using similar notation and assuming that xij’s are normally distributed, 
the sample mean of the mi observations in the innovator product for the ith 

study is w m xi ij
j

mi
=

=∑1
1

/ . With sufficient sample sizes, w Ni i~ ( , )∆ σ2  approxi-

mately, where the estimate of σi
2, σ̂i i is m2 2= / , and si is the estimate of the stan-

dard deviation of the ith original trial, i = 1, …, K. Let w = (w1, …, wK) be 
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the results of the K reference studies. Similarly, let xBr be the responses for 
adverse effects for patients r receiving the biosimilar product in the new trial 
conducted for evaluating the similarity of the biosimilar product, r = 1, …, mB. 
Let v be the sample means of the mB observations for the new trial. That is, 
v m xB Br

r

mB
=

=∑1
1

/ . Our goal is to assess whether v can reasonably be thought 
of as being consistent with the K previous results. Similar to Section 2.1, 
we construct the predictive probability functions, p(v|w) and p(wi|w), for 
i = 1, …, K. Since the higher score indicates more a severe adverse effect of 
the tested drug in this case, we say that the result v is consistent with the 
reference result w if and only if

p v p w i Ki| max | , , , ,w w( ) ≤ ( ) ={ }1 1
ρ

…

for some pre-specified 0.9 ≤ ρ ≤ 1 or specified ρ = 1. Similarly, it can be shown 
that the consistency criterion

p v p p pK| max , , ,w( ) ≤ { }1
1 2ρ

…

holds if and only if

v w p
B B−( ) ≥ −





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2 22τ τ
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6.6.3  Sample Size Determination

In this section, we focus only on the response for therapeutic efficacy. For 
the determination of sample size for the new clinical trial, let n represent 
the numbers of patients studied per treatment group in the new trial. We 
assume that both efficacy responses for the test product and the placebo con-
trol for the new clinical trial are normally distributed with variance σ2. At 
the design stage, we assume that σ2 is known. Consequently, the treatment 
group difference in means v in the new clinical trial is also normally dis-
tributed with mean ∆ and variance σ σB n2 22= / . Proceeding similarly, τB

2 in 
Section 6.2 will become

τ σ
σ

σ
B B

ii

K

n
2 2 2

2
1

1
21 2= ∑ + =









 +

=

−

∑ .

Again the consistency criterion

p v p w i Ki| min | , , ,w w( ) ≥ ( ) ={ }ρ for 1…

holds if and only if

v w pB B−( ) ≤ −2 2
02τ ρτln( ).

Let R v v w pB B= −( ) ≤ −{ }: ln( )2 2
02τ ρτ  be the expanse of all consistent trials. 

Therefore, the cover of this consistency expanse can be expressed by the pre-
dictive probability

p R p v dv

p v w p
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where Φ(·) is the cumulative distribution function of standard normal 
distribution. The sample size per treatment group, n, is determined to 
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ensure that the cover probability of consistency expanse be at least γ, say, 
for example, 80%. That is,

	
p R pB( ) = − − − ( )( ) ≥1 2 2 0Φ ln .ρτ γ 	 (6.30)

As a result, Equation 6.30 holds if

Φ − − ( )( ) ≤ −2 1
20ln .ρτ γ

Bp

Therefore,

τ
ρ γB p

Z≤ −







−
1 1

20
1 2
2exp .

Then the sample size n can be determined by finding the smallest n such that

	
n

p Z y
≥

−{ } − ∑−

2
1

2

0
2

1 2
2 2

σ
ρ( ) exp

.
//

	 (6.31)

Note that the denominator may be negative. Our experience shows that the 
possibility of getting negative denominator can be reduced when K ≥ 2.

6.7  Concluding Remarks

Biological products or medicines are therapeutic agents made of a living sys-
tem or organism. As a number of biological products will be due to expire in 
the next few years, the potential opportunity for developing the follow-on 
products of these originator products may result in the reduction of these 
products and provide more choices to medical doctors and patients for get-
ting similar treatment care with lower cost. However, the price reductions 
versus the originator biological products remain to be determined, as the 
advantage of a slightly cheaper price may be outweighed by the hypothetical 
increased risk of side effects from biosimilar molecules that are not exact cop-
ies of their originators. Unlike traditional, small-molecule drug products, the 
characteristics and development of biological products are more complicated 
and sensitive to many factors. Any small change in the manufacturing pro-
cess may result in a change in the therapeutic effect of the biological products. 
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The traditional bioequivalence criterion for average bioequivalence of small-
molecule drug products may not be suitable for the evaluation of biosimi-
larity of biological products. Therefore, in this chapter, we evaluate the 
biosimilar index proposed by Chow et al. (2011) for the assessment of the 
(average) biosimilarity between innovator and reference products. Both 
results based on the estimation and Bayesian approaches demonstrate that 
the proposed method based on the biosimilar index can reflect the character-
istics and impact of variability on the therapeutic effect of biological products. 
However, the estimated reproducibility probability based on the Bayesian 
approach depends on the choice of the prior distributions. If a different prior 
such as an informative prior is used, a sensitivity analysis may be performed 
to evaluate the effects of different prior distributions.

The other advantage of the proposed method is that it can be applied to 
different functional areas (domains) of biological products such as PK, bio-
logical activities, biomarkers (e.g., pharmacodynamics), immunogenicity, 
manufacturing process, efficacy, etc., since it is developed based on the prob-
ability of reproducibility. Further research will be employed for the develop-
ment of the statistical testing approach for the evaluation of biosimilarity 
across domains.

Current methods for the assessment of bioequivalence for drug products 
with identical active ingredients are not applicable to follow-on biologics 
due to fundamental differences. The assessment of biosimilarity between 
follow-on biologics and innovator products in terms of surrogate endpoints 
(e.g., PK parameters and/or pharmacodynamic responses) or biomark-
ers (e.g., genomic markers) requires the establishment of the Fundamental 
Biosimilarity Assumption in order to bridge the surrogate endpoints and/or 
biomarker data to clinical safety and efficacy.

Unlike conventional drug products, follow-on biologics are very sensitive 
to small changes in variation during the manufacturing process, which have 
been shown to have an impact on the clinical outcome. Thus, it is a concern 
whether current criteria and regulatory requirements for the assessment of 
bioequivalence for drugs with small-molecules can also be applied to the 
assessment of biosimilarity of follow-on biologics. It is suggested that cur-
rent, existing criteria for the evaluation of bioequivalence, similarity, and 
biosimilarity be scientifically/statistically evaluated in order to choose the 
most appropriate approach for assessing biosimilarity of follow-on biolog-
ics. It is recommended that the selected biosimilarity criteria should be able 
to address (1) the sensitivity due to small variations in both location (bias) 
and scale (variability) parameters and (2) the degree of similarity, which can 
reflect the assurance for drug interchangeability.

Under the established Fundamental Biosimilarity Assumption and the 
selected biosimilarity criteria, it is also recommended that appropriate statisti-
cal methods (e.g., comparing distributions and the development of biosimilar-
ity index) be developed under valid study designs (e.g., Design A and Design 
B described earlier) for achieving the study objectives (e.g., the establishment 
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of biosimilarity at specific domains or drug interchangeability) with a desired 
statistical inference (e.g., power or confidence interval). To ensure the success 
of studies conducted for the assessment of biosimilarity of follow-on biolog-
ics, regulatory guidelines/guidances need to be developed. Product-specific 
guidelines/guidances published by the European Medicines Agency (EMA) 
have been criticized for not having standards. Although product-specific 
guidelines/guidances do not help to establish standards for the assessment 
of biosimilarity, they do provide the opportunity for accumulating valuable 
experience/information for establishing standards in the future. Thus, several 
numerical studies are recommended including simulations, meta-analysis, 
and/or sensitivity analysis, in order to (1) provide a better understanding of 
these product-specific guidelines/guidances and (2) check the validity of the 
Fundamental Biosimilarity Assumption, which is the legal basis for assessing 
μ′T/μ′R (original scale) biosimilarity of follow-on biologics.
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7
Non-Inferiority versus 
Equivalence/Similarity

7.1  Background

In clinical research and development, the method of hypothesis testing is 
usually employed to test for the treatment effect of a test treatment under 
investigation. The purpose is not only to detect whether there is a treat-
ment effect that is of clinical importance but also to assure that the detected 
treatment effect (or observed difference) is of statistical meaning (i.e., it has 
achieved statistical significance) in the sense that it is not by chance alone 
and is reproducible under the same experimental conditions. Commonly 
employed hypothesis testing includes testing for equality, testing for non-
inferiority, testing for superiority, and testing for equivalence/similarity. 
Under a given, valid study design, sample sizes required for achieving the 
study objectives are different depending upon the hypotheses (i.e., equality, 
non-inferiority, superiority, and equivalence/similarity hypotheses) to be 
tested. In the following, whenever equivalence will be discussed, the simi-
larity of two products will be equally considered.

For hypothesis testing in clinical investigation, the following questions are 
probably the most commonly asked by clinical scientists:

	 1.	 Is testing for non-inferiority equivalent to testing for equivalence?
	 2.	What is the difference between the non-inferiority margin and 

equivalence limit?
	 3.	What is the impact on sample size when switching hypotheses is 

tested?
	 4.	What is the relationship among the hypotheses for testing non-

inferiority, superiority, and/or equivalence?

In this chapter, we will make an attempt to address these questions. In the 
subsequent sections (Sections 7.2–7.5), hypotheses for testing equality, non-
inferiority, superiority, and equivalence are described. The relationship 
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among testing for non-inferiority, superiority, and equivalence is studied 
in Section 7.6. Section 7.7 examines the impact on sample size requirement 
when there is a switch of the hypotheses to be tested. Also included in this 
section is an example concerning a switch from testing equivalence to test-
ing non-inferiority. Some concluding remarks are given in the last section.

7.2  Testing for Equality

In clinical investigations of a test treatment for treating patients with certain 
diseases, a commonly employed approach for the demonstration of the effi-
cacy and safety of the test treatment is first to show that there is a difference 
between the test treatment and a control (e.g., placebo control) by testing the 
null hypothesis of no treatment difference. After the rejection of the null 
hypothesis of no treatment difference, the investigator is then to show that 
there is at least 80% power for correctly detecting a clinically meaningful 
difference if such a difference truly exists.

For testing the null hypothesis that there is no treatment difference (or test-
ing for equality), statistical hypotheses can be formulated as follows:

	 H HT S T Sa0 : . : ,µ µ µ µ= ≠vs 	 (7.1)

where μT and μS are the means for the test treatment and the control 
(e.g., placebo control or standard of care), respectively. In practice, we would 
reject the null hypothesis in favor of the alternative hypothesis, and conclude 
that there is a treatment difference. Once we have rejected the null hypoth-
esis of no treatment difference, we can then evaluate the power under the 
alternative hypothesis. The power is the probability of correctly detecting a 
difference when such a difference truly exists.

If we let δ = μT − μS, then the aforementioned hypotheses can be rewritten 
as follows:

	 H Ha0 0 0: : .δ δ= ≠vs. 	 (7.2)

In practice, δ may be referred to as a statistical difference if it has achieved 
statistical significance at a pre-specified level of significance (say 5%). In 
other words, a statistical difference is a difference which is not observed by 
chance alone. On the other hand, δ may be referred to as a clinical difference 
if it is of clinical importance.

In clinical trials, one of the controversial issues regarding hypothesis test-
ing for equality is that both a statistical difference and a clinical difference 
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do not translate to each other. In practice, it is not uncommon to have the 
following situations: (1) the observed difference is of no clinical importance 
but has reached statistical significance and (2) the observed difference is of 
clinical importance and yet it does not reach statistical significance. To over-
come this dilemma, a typical approach is to power the study by selecting an 
appropriate sample size for achieving a desired power to detect a clinically 
meaningful difference at a pre-specified level of significance (see, e.g., Chow 
et al., 2008). In other words, we power the study to detect a clinical differ-
ence (of clinical meaning) with statistical meaning (i.e., achieving statistical 
significance). The relationship between a statistical difference and a clinical 
difference is exhibited in Table 7.1.

The other controversial issue is the use of a one-sided test versus a two-
sided test for detecting a clinical difference with statistical meaning. The 
alternative hypothesis under Equation 7.1 is two-sided in the sense that the 
mean of the test treatment could be either larger than or smaller than that 
of the control or standard of care. For a one-sided test, the significance level 
would be the same as the nominal level of significance, while the significance 
level would be half of the nominal level of significance for a two-sided test.

7.3  Testing for Non-Inferiority

Unlike testing for equality (i.e., no treatment difference), the purpose of test-
ing for non-inferiority is to show that the test treatment is not inferior to or 
at least as effective as a standard therapy or an active agent. Situations where 
it is applicable are (1) the test treatment is less toxic, (2) the test treatment is 
easier to administer, (3) the test treatment is less expensive, and (4) the test 
treatment has other clinical benefits.

The null hypothesis is that the test treatment is inferior to the standard 
therapy, while the alternative hypothesis is that the test treatment is at least 

TABLE 7.1

Relationship between Statistical Difference 
and Clinical Difference

Clinical Difference

Yes No

Statistical difference Yes No confusion a

No a No confusion
a	 Inconsistencies between clinical difference and statistical 

difference may be due to small sample size or large vari-
ability associated with the observations.
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as effective as the standard care or therapy. Let μT > μS indicate improvement. 
Thus, hypothesis testing for non-inferiority can be expressed as follows:

	 H HT S a T S0 : : ,µ µ δ µ µ δ− ≤ − − > −vs. 	 (7.3)

where δ > 0 is the non-inferiority margin. To provide a better understanding, 
the concept of testing for non-inferiority is illustrated in Figure 7.1.

Statistically, we would like to reject the null hypothesis and conclude that 
the difference between the test drug and the standard therapy is less than a 
clinically meaningful difference (i.e., non-inferiority margin), and hence the 
test drug is as effective as the standard therapy.

One of the most controversial issues in non-inferiority trials is probably 
the selection of non-inferiority margin. A different choice of non-inferiority 
margin may affect the method of analyzing clinical data and consequently 
may alter the conclusion of the clinical study. As pointed out in the guideline 
by the International Conference on Harmonization (ICH), the determination 
of non-inferiority margins should be based on both statistical reasoning and 
clinical judgment (ICH, 2000). Despite the existence of some studies (e.g., 
Tsong et al., 1999; Hung et al., 2003; Laster and Johnson, 2003; Phillips, 2003; 
Chow and Shao, 2006), there is no established rule or gold standard for the 
determination of non-inferiority margins in active control trials until a recent 
draft guidance distributed by the U.S. Food and Drug Administration (FDA) 
for comments (FDA, 2010). The determination of non-inferiority margin will 
be discussed in Section 7.7.

7.4  Testing for Superiority

For testing superiority, the purpose is to show that the test drug is superior 
to a standard therapy or an active control agent, which has been approved 
by the regulatory agencies. The null hypothesis is that the test treatment is 
not superior to the standard therapy, while the alternative hypothesis is that 
the test treatment is superior to the standard therapy. Let μT > μS indicate 
improvement of the test treatment as compared to the standard therapy. 
Thus, hypothesis testing for non-inferiority can be expressed as follows:

	 H HT S a T S0 : : ,µ µ δ µ µ δ− ≤ − >vs. 	 (7.4)

µs – δ µs µs + δ

Inferiority     Non-inferiority

FIGURE 7.1
Testing for non-inferiority.
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where δ ≥ 0 is the superiority margin. When δ = 0, the aforementioned 
hypotheses are to test for statistical superiority. On the other hand, when 
δ > 0, it is referred to as hypotheses for testing clinical superiority. It should 
be noted that in some cases, non-inferiority margin need not be the same as 
the superiority margin (i.e., symmetric with respect to the treatment effect 
of the standard therapy). To provide a better understanding, the concept of 
testing for superiority is illustrated in Figure 7.2.

Similarly, the concept is to reject the null hypothesis and conclude that 
the test treatment is superior to the standard therapy; that is, the differ-
ence between the test treatment and the standard therapy is larger than a 
clinically meaningful difference (i.e., superiority margin), and hence the test 
treatment is superior to the standard therapy.

For investigation of a newly developed test treatment, hypothesis testing 
for clinical superiority of the test treatment over a placebo control is often 
employed. However, for active control trials comparing a test treatment 
and an active control agent (which has been approved by the regulatory 
agencies) or a standard therapy, hypothesis testing for both statistical (δ = 0) 
or clinical (δ > 0) superiority are usually not preferred by the regulatory 
agencies unless there is some strong evidence in clinical benefits (in terms 
of safety, efficacy, and risk benefits) of the test treatment under investiga-
tion. The endorsement of superiority of the test treatment by the regulatory 
agencies will force the approved active control agent to be withdrawn from 
the marketplace.

In practice, it is suggested that non-inferiority hypotheses be tested first. 
The superiority hypotheses can then be tested once non-inferiority has been 
established. In this case, we do not pay statistical penalty due to the closed 
testing procedure.

7.5  Testing for Equivalence

In clinical investigation, the purpose of testing for equivalence is to show 
that the test treatment can reach the same therapeutic effect as that of a stan-
dard therapy (or an active agent) or that they are therapeutically equivalent. 
In practice, situations in which equivalence is tested could involve (i) testing 
for therapeutic equivalence between a test treatment and a standard therapy 

µs–δ µs µs+δ

Non-superiority Superiority

FIGURE 7.2
Testing for superiority.
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or an active control agent and (ii) testing for bioequivalence between an 
innovator drug product and its generic copies.

The null hypothesis is that the test treatment is not equivalent to the stan-
dard therapy, while the alternative hypothesis is that the test treatment is 
equivalent to the standard therapy. Let μT > μS indicate improvement of the 
test treatment as compared to the standard therapy. Thus, hypothesis testing 
for equivalence can be expressed as follows:

	 H HT S a T S0 :| | :| | ,µ µ δ µ µ δ− ≥ − <vs. 	 (7.5)

where δ > 0 is the equivalence limit. To provide a better understanding, the 
concept of testing for equivalence is illustrated in Figure 7.3.

The rejection of the null hypothesis suggests that there is no clinically 
meaningful difference between the test drug and the standard therapy and 
hence we conclude that the test drug is superior to the standard therapy.

Note that there is a slight difference between testing for therapeutic 
equivalence and testing for bioequivalence. Testing for therapeutic equiv-
alence is often conducted based on a two-sided test at the 5% level of 
significance, while testing for bioequivalence is always conducted based on 
a two one-sided tests procedure at the 5% level of significance (FDA, 1988, 
2003). In other words, the significance level used for testing therapeutic 
equivalence (based on a two-sided test) is 5%, while the significance level 
used for testing bioequivalence (based on two one-sided tests) is 10%. For 
further study regarding the relationship between testing for therapeutic 
equivalence and testing for bioequivalence, the note by Chow and Shao 
(2002) is helpful.

7.6 � Relationship among Testing for Non-Inferiority, 
Superiority, and Equivalence

Figure 7.4 summarizes the relationship among different types of hypothesis 
testing including testing for non-inferiority, testing for superiority, and test-
ing for equivalence. As can be seen from Figure 7.4, testing for non-inferiority 

µs – δ µs µs + δ

Equivalence

FIGURE 7.3
Testing for equivalence.
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and testing for superiority (or non-superiority) are sometimes referred to as 
testing for one-sided equivalence.

Testing for non-inferiority includes testing for equivalence and testing for 
superiority. In other words, we may test for equivalence or test for superior-
ity once the non-inferiority has been established. Thus, non-inferiority does 
not imply equivalence. It should be noted that testing for non-inferiority/
superiority is often employed based on a one-sided test procedure at the 5% 
level of significance, which is equivalent to one of a two-sided test proce-
dure at the 10% level of significance. Thus, it is suggested that a one-sided 
test procedure at the 2.5% level of significance, which is equivalent to a two-
sided test procedure at the 5% level of significance, should be used for testing 
non-inferiority.

Similarly, testing for superiority includes testing for equivalence and test-
ing for non-inferiority. In other words, we may test for equivalence or test for 
non-inferiority if we fail to reject the null hypothesis of non-superiority. It 
should also be noted that superiority does not imply equivalence. In practice, 
it is also suggested that a one-sided test procedure at the 2.5% level of signifi-
cance should be used for testing superiority, which is equivalent to a two-sided 
test procedure at the 5% level of significance. To provide a better understand-
ing of the relationship between testing for non-inferiority/superiority and 
equivalence, Figure 7.5 also provides the corresponding hypotheses under-
neath the figures. It should be noted that the hypotheses are derived assum-
ing that μT − μS > 0 is considered an improvement. If μT − μS > 0 is considered 
worsening, the hypotheses need to be modified.

µs – δ µs µs + δ

EquivalenceInferiority

Non-inferiority
Non-superiority

Superiority

One-sided equivalence

FIGURE 7.4
Relationship among testing for non-inferiority, superiority, and equivalence.

µs – δ µs µs + δ

EquivalenceInferiority Superiority

H0 : μT – μs ≤ –δ
Ha : μT – μs > –δ

H0 : μT – μs ≤ δ
Ha : μT – μs > δ

H0 : |μT – μs | ≥ δ
Ha : |μT – μs | < δ

FIGURE 7.5
Hypotheses for testing non-inferiority, superiority, and equivalence.
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7.7  Determination of the Non-Inferiority Margin

Let θT, θA, and θP be the unknown population efficacy parameters associated 
with the test therapy, the active control agent, and the placebo, respectively. 
Also, let ∆ ≥ 0 be a non-inferiority margin. Without loss of generality, we 
assume that a large value of population efficacy parameter is desired. The 
hypotheses for non-inferiority can be formulated as

	 H HT A a T A0 : : .θ θ θ θ− ≤ − − > −∆ ∆vs. 	 (7.6)

If ∆ is a fixed pre-specified value, then standard statistical methods can be 
applied to testing Hypotheses 7.6. In practice, however, ∆ is often unknown. 
There exists an approach that constructs the value of ∆ based on a placebo-
controlled historical trial. For example, ∆ = a fraction of the lower limit of 
the 95% confidence interval for θA − θP could be based on some historical 
trial data (see, e.g., CBER/FDA, 1999). Although this approach is intuitively 
conservative, it is not statistically valid because (1) if the lower confidence 
limit is treated as a fixed value, then the variability in historical data is 
ignored, and (2)  if the lower confidence limit is treated as a statistic, then 
this approach violates the basic frequentist statistical principle, that is, the 
hypotheses being tested should not involve any estimates from current or 
past trials (Hung et al., 2003).

From the statistical point of view, the ICH E10 Guideline suggests that the 
non-inferiority margin ∆ should be chosen to satisfy at least the following 
two criteria:

Criterion 1: We want the ability to claim that the test therapy is non-infe-
rior to the active control agent and is superior to the placebo (even 
though the placebo is not considered in the active control trial).

Criterion 2: The non-inferiority margin should be suitably conservative, 
that is, variability should be taken into account.

A fixed ∆ (i.e., if it does not depend on any parameter) is rarely suitable under 
criterion 1. Let δ > 0 be a superiority margin if a placebo-controlled trial is 
conducted to establish the superiority of the test therapy over a placebo con-
trol. Since the active control is an established therapy, we may assume that 
θA − θP > δ. However, when θT − θA > −∆ (i.e., the test therapy is non-inferior 
to the active control) for a fixed ∆, we cannot ensure that θT − θP > δ (i.e., the 
test therapy is superior to the placebo) unless ∆ = 0. Thus, it is reasonable to 
consider non-inferiority margins depending on unknown parameters. Hung 
et al. (2003) summarized the approach of using the non-inferiority margin of 
the form

	 ∆ = −γ θ θ( ),A P 	 (7.7)
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where γ is a fixed constant between 0 and 1. This is based on the idea of 
preserving a certain fraction of the active control effect θA − θP. The smaller 
θA − θP is, the smaller ∆ is. How to select the proportion of γ, however, was 
not discussed.

Chow and Shao (2006) derived a non-inferiority margin satisfying criterion 
1. Let δ > 0 be a superiority margin if a placebo control is added to the trial. 
Suppose that the non-inferiority margin ∆ is proportional to δ, that is, ∆ = rδ, 
where r is a known value chosen in the beginning of the trial. To be conser-
vative, r should be ≤1. If the test therapy is not inferior to the active control 
agent and is superior over the placebo, then both

	 θ θ θ θ δT A T P− > − − >∆ and 	 (7.8)

should hold. Under the worst scenario, that is, θT − θA achieves its lower 
bound −∆, the largest possible ∆ satisfying Equation 7.8 is given by

	 ∆ = − −θ θ δA P ,

which leads to

	
∆ =

+
−r

r A P1
( ).θ θ 	 (7.9)

From Equations 7.7 and 7.9, γ = r/(r + 1). If 0 < r ≤ 1, then 0 < γ ≤ 1/2.
The previously described argument in determining ∆ takes Criterion 1 into 

account, but is not conservative enough, since it does not consider the vari-
ability. Let θ̂T and θ̂P be sample estimators of θT and θP, respectively, based on 
data from a placebo-controlled trial. Assume that ˆ ˆθ θT P−  is normally distrib-
uted with mean θT − θP and standard error SET−P (which is true under certain 
conditions or approximately true under the central limit theorem for large 
sample sizes). When θT = θA − ∆,

	
P

SET P
A P

T P
( ) ( ) ,θ θ δ δ θ θˆ ˆ− < = + − −



−

Φ ∆
	 (7.10)

where Φ denotes the standard normal distribution function. If ∆ is chosen 
according to Equation 7.9 and θT = θA − ∆, then the probability that ˆ ˆθ θT P−  
is less than δ is equal to 1/2. In view of Criterion 2, a value much smaller 
than 1/2 for this probability is desired, because it is the probability that the 
estimated test therapy effect is not superior over that of the placebo. Since 
the probability in Equation 7.10 is an increasing function of ∆, the smaller ∆ 
(the more conservative choice of the non-inferiority margin) is, the smaller 



164 Biosimilars: Design and Analysis of Follow-on Biologics

the chance that ˆ ˆθ θT P−  is less than δ. Setting the probability on the left-hand 
side of Equation 7.10 to ε with 0 < ε ≤ 1/2, we obtain that

	 ∆ = − − − − −θ θ δ εA P T Pz SE1 ,

where za = Φ−1(a). Since δ = ∆/r, we obtain that

	
∆ =

+
− − − −

r
r

z SEA P T P1 1( ).θ θ ε 	 (7.11)

Figure 7.6 provides an illustration for the selection of the non-inferiority mar-
gin according to this idea. Comparing Equations 7.7 and 7.11, we obtain that

	
γ

θ θ
ε=

+
−

−






− −r
r

z SET P

A P1
1 1 ,

that is, the proportion γ in Equation 7.7 is a decreasing function of a type of 
noise-to-signal ratio (or coefficient of variation).

The non-inferiority margin Equation 7.11 can also be derived from a 
slightly different point of view. Suppose that we actually conduct a placebo-
controlled trial with superiority margin δ to establish the superiority of the 

Area= ε
z1–εSET–P

Δ

0 δ θT  –θP θA–θP

FIGURE 7.6
Selection of non-inferiority margin ∆ (the solid curve is the probability density of ˆ ˆ ).θ θT P−
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test therapy over the placebo. Then, the power of the large-sample t-test for 
hypotheses θT − θP ≤ δ vs. θT − θP > δ is approximately equal to

	
Φ θ θ δ

α
T P

T PSE
z− − −



−

−1 ,

where α is the level of significance. Assume the worst scenario ˆ ˆθ θT A= − ∆ and 
that β is a given desired level of power. Then, setting the power to β leads to

	

θ θ δ
α β

A P

T PSE
z z− − − − =

−
−

∆
1 ,

	
∆ =

+
− − + − −

r
r

z z SEA P T P1 1θ θ α β( ) . 	 (7.12)

Comparing Equations 7.11 with 7.12, we have z1−β = z1−α + zβ. For α = 0.05, the fol-
lowing table gives some examples with different values of β, ε, and z1−ε (Table 7.2).

We now summarize the aforementioned discussions as follows:

	 1.	The non-inferiority margin proposed by Chow and Shao (2006) given in 
Equation 7.12 takes variability into consideration; that is, ∆ is a decreas-
ing function of the standard error of ˆ ˆθ θT P− . It is an increasing func-
tion of the sample sizes, since SET−P decreases as sample sizes increase. 
Choosing a non-inferiority margin depending on the sample sizes does 
not violate the basic frequentist statistical principle. In fact, it cannot be 
avoided when variability of sample estimators is considered. Statistical 
analysis, including sample size calculation in the trial planning stage, 
can still be performed. In the limiting case (SET−P → 0), the non-inferiority 
margin in Equation 7.12 is the same as that in Equation 7.10.

	 2.	The ε value in Equation 7.12 represents a degree of conservativeness. 
An arbitrarily chosen ε may lead to highly conservative tests. When 
sample sizes are large (SET−P is small), one can afford a small ε. A rea-
sonable value of ε and sample sizes can be determined in the plan-
ning stage of the trial.

TABLE 7.2

Various β, ε, and z1−ε for 
α = 0.05

β ε z1−ε

0.36 0.1000 1.282
0.50 0.0500 1.645
0.60 0.0290 1.897
0.70 0.0150 2.170
0.75 0.0101 2.320
0.80 0.0064 2.486
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	 3.	The non-inferiority margin in Equation 7.12 is non-negative if and 
only if θA − θP ≥ z1−εSET−P; that is, the active control effect is substan-
tial or the sample sizes are large. We might take our non-inferiority 
margin to be the larger of the quantity in Equation 7.12 and 0 to force 
the non-inferiority margin to be non-negative. However, it may be 
wise not to do so. Note that if θA is not substantially larger than θP, 
then non-inferiority testing is not justifiable since, even if ∆ = 0, con-
cluding Ha does not imply the test therapy is superior to the placebo. 
Using ∆ in Equation 7.12, testing hypotheses converts to testing the 
superiority of the test therapy over the active control agent when ∆ 
is actually negative. In other words, when θA − θP is smaller than a 
certain margin, our test automatically becomes a superiority test and 
the property P T P( )θ θ δ εˆ ˆ− < =  (with δ = |∆|/r) still holds.

	 4.	 In many applications, there are no historical data. In such cases 
parameters related to placebo are not estimable, and, hence, a non-
inferiority margin not depending on these parameters is desired. 
Since the active control agent is a well-established therapy, let us 
assume that the power of the level α test showing that the active 
control agent is superior to placebo by the margin δ is at the level η. 
This means that approximately

	 θ θ δ α ηA P A Pz z SE− ≥ + +− −( ) .1

Replacing θA − θP − δ in Equation 7.12 by its lower bound given in the previ-
ous expression, we obtain the non-inferiority margin

	 ∆ = + −− − − −( ) .z z SE z SEA P T P1 1α η ε

To use this non-inferiority margin, we need some information about the popu-
lation variance of the placebo group. As an example, consider the parallel design 
with two treatments, the test therapy and the active control agent. Assume 
that the same two-group parallel design would have been used if a placebo-
controlled trial had been conducted. Then SE n nA P A A P P− = +σ σ2 2  and 
SE n nT P T T P P− = +σ σ2 2 , where σk

2 is the asymptotic variance for nk k k( )θ θˆ −  
and nk is the sample size under treatment k. If we assume σP Pn c= , then

	
∆ = + + − +− −( ) .z z

n
c z

n
cA

A

T

T
1

2
2

1

2
2

α η ε
σ σ 	 (7.13)

Formula 7.13 can be used in two ways. One way is to replace c in Formula 7.13 
by an estimate. When no information from the placebo control is available, 
a suggested estimate of c is the smaller of the estimates of σT Tn  and 
σA An . The other way is to carry out a sensitivity analysis by using ∆ in 
Formula 7.13 for a number of c values.
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The 2010 FDA draft guidance defines two non-inferiority margins, namely, 
M1 and M2, where M1 is defined as the entire effect of the active control 
assumed to be present in the non-inferiority study and M2 is referred to as the 
largest clinically acceptable difference (degree of inferiority) of the test drug 
compared to the active control. As indicated in the 2010 FDA draft guidance, 
M1 is based on (1) the treatment effect estimated from the historical experi-
ence with the active control drug, (2) the assessment of the likelihood that the 
current effect of the active control is similar to the past effect (the constancy 
assumption), and (3) the assessment of the quality of the non-inferiority trial, 
particularly looking for defects that could reduce a difference between the 
active control and the new drug. On the other hand, M2 is a clinical judgment 
which can never be larger than M1, even if for active control drugs with small 
effects, a clinical judgment might argue that a larger difference is not clini-
cally important. Ruling out a difference between the active control and the 
test drug that is larger than M1 is a critical finding that supports the conclu-
sion of effectiveness.

7.8 � Sample Size Requirement When There Is a Switch 
in Hypothesis Testing

In practice, it is not uncommon to switch from a superiority hypothesis to 
a non-inferiority hypothesis in order to increase the probability of success 
of the intended clinical trial. A typical approach is to test for non-inferiority 
and then test for superiority after the non-inferiority has been established. 
In this case, we do not have to pay for statistical penalty due to closed 
testing procedure. In some case, the investigator may switch from testing 
for equivalence to testing for non-inferiority (one-sided equivalence). The 
switch in hypotheses will have an impact on the sample size required for 
achieving study objectives at a desired power and at a pre-specified level of 
significance. In this section, a couple of examples are presented to illustrate 
the impact on sample size requirement when such a switch occurs.

7.8.1 � Switch from Equivalence Hypotheses 
to Non-Inferiority/Superiority Hypotheses

As indicated in Chow et al. (2008), the problem of testing superiority and 
non-inferiority can be unified by the following hypotheses:

	 H HT S a T S0 : : ,µ µ λ µ µ λ− ≤ − >vs. 	 (7.14)

where λ is the superiority or non-inferiority margin. When λ > 0, the rejec-
tion of the null hypothesis indicates the superiority of test treatment over the 
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standard therapy. When λ < 0, the rejection of the null hypothesis indicates 
the non-inferiority of the test treatment against the standard therapy. Thus, 
the sample size needed to achieve power 1 − β at the α level of significance 
can be obtained as follows:

	 n kn1 2= ,

	
n z z k
2

2 2

2
1 1

=
+ +( )

−
( ) ( )

( )
,α β σ

λ
/

ε
	 (7.15)

where k = n1/n2, ε = μT − μS, and σ is the standard deviation of the standard 
therapy. On the other hand, for testing equivalence, the sample size required 
to achieve the power 1 − β at the α level of significance is given by

	 n kn1 2= ,

but

	
n z z k
2

2 2

2
1 1

=
+ +( )

−
( ) ( )

( | |)
.α β σ

λ
/

ε
	 (7.16)

Let k = 1 and assume that sample sizes in each treatment group are the same. 
Thus, the sample size requirement when switching from an equivalence 
hypothesis to a superiority hypothesis or a non-inferiority hypothesis can be 
evaluated by the following factor:

	
R z z

z z
= +

+






−
−


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2 2
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	 (7.17)

where R is the ratio of Equations 7.15 and 7.16.

7.8.2  Example

Note that when ε = μT − μS = 0, Equation 7.9 reduces to

	
R z z

z z
= +

+




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α β

α β

/ .2
2

	 (7.18)

Based on Equation 7.18, the impact of a sample size requirement when switch-
ing from testing equivalence to testing non-inferiority can be evaluated. 
Table 7.3 summarizes the sample size reduction from testing equivalence to 
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testing non-inferiority with various powers at several levels of significance. 
For example, there is a 27.8% sample size reduction if we switch from testing 
equivalence to testing non-inferiority for maintaining an 80% power at 5% 
level of significance.

7.8.3  Remarks

The impact on sample size requirement for a given switch in hypotheses 
under a valid study design for various data types (such as continuous, 
discrete or binary, or time-to-event data) can be similarly evaluated at dif-
ferent powers and levels of significance with respect to different variabilities 
associated with the observations.

7.9  Concluding Remarks

As indicated in Figures 7.1 through 7.4, testing for non-inferiority includes 
both testing for equivalence and testing for superiority. Testing for superi-
ority does not imply testing for equivalence. Testing for non-inferiority has 
the opportunity to test for superiority after the non-inferiority has been 
established.

For testing non-inferiority/equivalence, the selection of non-inferiority 
margin/equivalence limit is the key to the success of clinical investigation. 
In comparative active control clinical trials, non-inferiority margin is the 
same as the equivalence limit. According to the ICH guideline, the non-
inferiority margin should be both clinically and statistically justifiable. More 
specifically, the non-inferiority margin should be chosen in such a way that 
it is superior to the placebo control but non-inferior to the standard therapy 

TABLE 7.3

Sample Size Requirement when 
Switching Equivalence Hypothesis 
to Non-Inferiority Hypothesis

Α β Power (%)
Sample Size 

Reduction (%)

0.10 0.1 90 23.3
0.2 80 31.4

0.05 0.1 90 20.9
0.2 80 27.8

0.01 0.1 90 17.5
0.2 80 22.9

Note:	 α is the level of significance; 
power = (1 − β) × 100%.
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or active control agent. For this purpose, the draft guidance by the FDA is 
useful. For testing bioequivalence/biosimilarity, however, the current bio-
equivalence limit in terms of the ratio of geometric means of the primary 
pharmacokinetic responses such as the area under the blood or plasma 
concentration–time curve (AUC) or the maximum concentration (Cmax) is 
80% to 125%, which is a one-size-fits-all criterion for all drug products.

Sample size requirements for testing non-inferiority and equivalence 
(similarity) are different. The impact on the sample size requirement when 
there is a switch in hypotheses to be tested depends upon the selected non-
inferiority margin and the true difference between the test treatment and the 
standard therapy.
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8
Statistical Test for Biosimilarity 
in Variability

8.1  Introduction

As indicated in Chapter 2, current regulatory requirements for assessment of 
bioequivalence focus on average bioavailability, which ignore the associated 
variability of bioavailability (FDA, 2003; Chen et al., 1996; Chow and Liu, 
2008). It is a concern that standard methods for evaluation of small-molecule 
drug products may not be suitable for biological products due to some fun-
damental differences between small-molecule drug products and biological 
products (see,  e.g., Fox, 2010). These fundamental differences include that 
(1) the biological products are made of living cells; (2) the biological products 
have heterogeneous structures, which are difficult to characterize; (3) the 
biological products are variable and sensitive to certain conditions such 
as pH, light, and temperature; and (4) the biological products are usually 
injected and prescribed by specialists. In practice, large variability is often 
more likely to occur during the manufacturing process of biological prod-
ucts than that of the traditional small-molecules due to variability in the 
biologic mechanisms, inputs, and relatively large number of complex steps 
in the process. Variability in the products could lead to lower efficacy or 
potential safety risks for some patients, and have a significant impact on 
clinical outcomes of follow-on biologics (FOBs). Therefore, incorporating 
variance equivalence assessments should be an important part of determin-
ing biosimilarity between biological products.

The manufacturing process of a biological products usually involves 
five steps of cell expansion, cell production, recovery (through filtration or 
centrifugation), purification, and formulation, which is a very complicated 
process. A small variation which occurs at each step may lead to struc-
ture difference in the final product, and consequently result in differences 
in efficacy and safety of the biological products. As a result, in addition 
to the assessment of average biosimilarity, Chow et al. (2010a) indicated 
that the statistical methodology for comparing the variabilities should be 
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developed for assessing biosimilarity between biological products as the 
variability has a significant impact on clinical performance of FOBs. Under 
a crossover design, the classical Pitman–Morgan’s adjusted F-test is usually 
considered. Yang et al. (2013) proposed an F-type test for testing homogene-
ity of variances of FOBs. The F-type test, however, is known to be sensitive 
to the normality of the underlying assumption of population distribution. 
When the distributions are non-normal, the actual size of the test can be 
much higher than the assumed level of significance. Thus, Zhang et al. 
(2013) considered two types of non-parametric methods for comparing vari-
abilities between biosimilar products, which include the Conover’s squared 
ranks test (Conover, 1973, 1999) and Levene’s type of tests (Levene, 1960; 
Brown and Forsythe, 1974). Alternatively, Hsieh et al. (2010) considered an 
approach for comparing variabilities between biosimilar products based 
on the probability-based criterion, following the idea of Tse et al. (2006) for 
evaluating average biosimilarity between FOBs. The comparison was also 
made for comparing the relative performance of moment-based method 
and probability-based method in average bioequivalence. The results indi-
cated that the probability-based criterion is not only a much more stringent 
criterion but also sensitive to any small change in variability. This justified 
the use of a statistical method for evaluating biosimilarity in variability of 
biological products.

In the next two sections, the classical Pitman–Morgan’s test for assess-
ment of bioequivalence of small-molecule drugs under a crossover design 
and an F-type test for testing homogeneity of variances of FOBs under 
a parallel-group design are briefly introduced. Two types of non-para-
metric tests are described in Section 8.3. Also included in this section 
are some simulation studies for evaluation of the relative performances 
of the methods. Section 8.4 discusses probability-based criterion and its 
corresponding statistical hypotheses. Also included in this section are 
the corresponding statistical testing procedures proposed by Hsieh et al. 
(2010). The numerical study is also employed to investigate the relation-
ship between the probability-based criterion in variability and various 
combinations of the essential parameters. Some concluding remarks and 
recommendation are given in the last section.

8.2 � Pitman–Morgan’s Adjusted Test for 
Comparing Variabilities

In bioavailability and bioequivalence studies, the most commonly used 
test for equality of variabilities under a crossover design is probably the 
so-called Pitman–Morgan’s adjusted F-test. Let YT and YR be the param-
eters of interest (e.g., pharmacokinetic responses) for the test (T) product 
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and the reference (R) product with means μT and μR, and variances VT and 
VR, respectively. The hypothesis for testing equality of variabilities of the 
two products can be expressed as

	 H V V H V VT R a T R0 : : .= ≠vs.

To test the hypothesis, let’s denote independent samples observed on sub-
ject i from sequence k as (YiTk, YiRk) from a crossover study with i = 1, …, nk 
and k = 1, 2. Pitman (1939) and Morgan (1939) proposed a test statistic based 
on the correlation between the crossover differences and the subject totals, 
which can be expressed as

	
F n n F

F rPM
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TR TR
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2

2
2 1

4 1

where F S STR TT RR= 2 2 , rTR = STR/STTSRR and S S STT RR TR
2 2, , and  are the sample vari-

ances and covariance of YiTk and YiRk. On the other hand, if one is interested 
in testing equivalence between variabilities between drug products, the 
hypotheses for testing equivalence between variabilities can be expressed as
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where (θL, θU) is the biosimilarity margin for the ratio of variances. It can be 
decomposed into two one-sided hypotheses as
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(8.2)

or

	 H V V H V VL R T a L R T01 1: :θ θ≥ <vs.

	 H V V H V VU R T a U R T02 2: : ,θ θ≤ >vs.

given that VT and VR are always positive. To test the two one-sided hypoth-
eses, Liu and Chow (1992) extended the idea of Pitman–Morgan’s adjusted 
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F-test by defining the pairs of (YiTk, θLYiRk) and (YiTk, θUYiRk). The test statistics 
are then calculated similarly using the pairs as
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8.3  F-Type Test under Parallel Design

The Pitman–Morgan’s test for comparing variabilities described in the previ-
ous section was derived under a crossover design. For assessment of biosimi-
lar products, a parallel design is often recommended due to the fact that 
most biological products have relatively long half-lives. Therefore, statistical 
test for evaluation of the similarity in variability between biosimilar prod-
ucts under a parallel design is needed. For this purpose, Yang et al. (2013) 
applied similar idea to the two-sample F-test of equal variance to measure 
equivalence in variability under a parallel design. The test is described in the 
following text.

Consider a parallel design for evaluating the biosimilarity in variability 
of the test product with the reference product. Let’s denote independent 
samples of Ti and Rj as the observations of T and R with i = 1, …, nT and 
j = 1, …, nR. To test the two one-sided hypotheses
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in the extended F-test procedure, we define
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so that Var(Lj) ≡ VL = θLVR and Var(Uj) ≡ VU = θUVR. Then, the hypotheses are 
equivalent to

	 H V V H V VL T L T01 1: :≥ <vs. α

	 H V V H V VU T U T02 2: : .≤ >vs. α

Apply the one-sided F-test for equal variances. H01 is rejected at the α level 
of significance if
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and H02 is rejected if
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We then conclude that VT and VR are equivalent with significance level of α 
if both H01 and H02 are rejected.

8.4  Non-Parametrics Methods

Under normality assumption, the extended F-test described earlier is 
expected to be the most powerful test. However, when the distributions 
are non-normal, the actual size of the F-test can be much higher than the 
assumed level of significance. Therefore, Zhang et al. (2013) consider two 
non-parametric tests for evaluation of biosimilarity in variability between 
FOBs. One is the squared rank type of test (Conover, 1999) and the other one 
is based on Levene’s type of test (Levene, 1960). These are distribution-free 
tests and hopefully will overcome the difficulty of extended F-test when the 
underlying population distribution is non-normal.

8.4.1  Conover’s Squared Rank Test

When the normality assumption of T and R is not true, the first non-
parametric test we considered is the squared rank test proposed by Conover 
(1980). It is a powerful non-parametric test for equality of variances based on 
joint ranks of (Ti − –T)2, i = 1, …, nT, and (Rj − –R)2, j = 1, …, nR. In practice, we do 
not need to square the deviations to obtain the required rankings because 
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the same order is achieved by ranking the absolute deviations. Therefore, 
let’s denote ui(T) = rank of |Ti − –T| and uj(R) = rank of |Rj − –R|. Then the test 
statistic is as follows
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in one sample and a large sample approximation are given in Table A9 of 
Conover’s book (1999). But for reasonably large sample sizes, Z is approx-
imately a standard normal distribution. Therefore, for a one-sided level α 
test of

	 H V V H V VR T R T0 : : ,= <vs. α

we reject the null hypothesis if Zcalc > Z(α), where Z(α) is the α upper quantile 
of the standard normal distribution. For a one-sided level α test,

	 H V V H V VR T R T0 : := >vs. ,α

we reject null hypothesis if Zcalc < Z(1 − α). To test the biosimilarity of vari-
ability as expressed in Equation 8.2, we again define Lj and Uj as in Equation 
8.3 so that VL = θLVR and VU = θUVR. Then the Hypothesis 8.2 is equivalent to

	 H V V H V VL T L T01 1: :≥ <vs.  α

	 H V V H V VU T U T02 2: :≤ >vs. . α

H01 is then rejected at the α level of significance if Zcalc,L > Z(α); and H02 is 
rejected if Zcalc,U < Z(1 − α), where Zcalc,L and Zcalc,U are calculated as in Equation 
8.4 with (Ti, Lj) and (Ti, Uj), respectively. We conclude that VT and VR are equiv-
alent with significance level of α if both H01 and H02 are rejected.
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8.4.2  Levene’s Type of Test

Another non-parametric test is the Levene’s type of test initiated by Levene 
(1960). The original Levene’s test considers the hypothesis of

	 H V V H V VT R T R0 : : .= vs. α ≠

The test statistic is defined as

	

W n n n Z Z n Z Z

Z Z Z Z
T R T T R R
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nR ,

	

(8.5)

where ZTi and ZRj can have one of the following three definitions based on 
different centrality parameters used:

	 1.	ZTi = |Ti − –T| and ZRj = |Rj − –R| where –T and –R are the means of each 
treatment group.

	 2.	ZTi = |Ti − ~
T| and ZRj = |Rj − ~

R| where ~
T and ~

R are the medians 
of each treatment group. When median is used, it is actually the 
Brown–Forsythe Levene’s type of test.

	 3.	ZTi = |Ti − –T′| and ZRj = |Rj − –R′| where –T′ and –R′ are the trimmed 
means of each treatment group.

–ZT and –ZR are the group means of ZTi and ZRj, respectively; and –Z is the overall 
mean of all ZTi and ZRj.

The Levene test rejects the hypothesis that variances are equal if 
W > F(α; 1,nT + nR − 2), where F(α; 1,nT + nR − 2) is the upper critical value of 
the F distribution with the specified degrees of freedom at a significance 
level of α.

Levene’s test constructed the test statistic as F distribution, which gener-
ally doesn’t distinguish direction of the alternative. However, in the case of 
two samples, such a test is equivalent to the t-test. Therefore, we are able to 
extend the Levene’s test to the two one-sided hypotheses testing when com-
paring the FOB with reference drug where only two groups are involved. 
That is, we construct

	 t WL L= ,

where WL is the Levene’s test statistic obtained from comparing Ti and Lj and

	 t WU U= ,

where WU is the Levene’s test statistic obtained from comparing Ti and Uj
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H01 is then rejected at the α level of significance if tL > t(α; nT + nR − 2); and 
H02 is rejected if tU < t(1 − α; nT + nR − 2). We conclude that VT and VR are 
equivalent with significance level of α if both H01 and H02 are rejected.

8.4.3  Simulation Studies

In order to compare the performance of the two types of non-parametric tests 
with the extended F-test under a parallel design, Zhang et al. (2013) con-
ducted several simulation studies in terms of (1) type I error rate, which is 
the maximum of the probability of concluding biosimilarity when variance 
ratio is less than or equal to θL or is greater than or equal to θU, and (2) power, 
which is the probability of correctly concluding biosimilarity when variance 
ratio is close to 1.

Simulation studies were conducted under various settings. Each setting 
contains 10,000 repetitions, and each repetition consists of random sam-
plings from a particular distribution of reference group and from treatment 
group which has the same distribution family as the reference group but 
different variances. Then the test statistics from extended F-test, Conover’s 
test, and Levene’s test with mean are calculated from each repetition and 
the number of times rejecting null hypothesis (i.e., concluding biosimilarity) 
using different biosimilarity margins of (θL, θU) from the 10,000 repetitions 
are recorded for comparison in terms of power or type I error.

The distributions explored here are the Normal distributions, t distribu-
tions, Laplace distributions, Chi-square distributions, Weibull distributions, 
and zero-inflated Poisson distribution. The sample sizes used are 50 (not 
shown here) and 100 for each group, and the biosimilarity margins tested are 
(θL, θU) = (0.5, 2); (0.5, 1.5); (0.67, 1.5) (not shown here). The simulation results 
are summarized in Tables 8.1 through 8.7.

In the first set of simulations, Normal distribution is used. The extended 
F-test performed the best as expected. The proposed non-parametric tests are 
less powerful but the relative efficiency is reasonably good. For example, when 
biosimilarity margin (0.5, 2) is used, the relative power between Conover’s 
and extended F-test is 0.8172/0.9251 = 88%; and is 0.88/0.9251 = 95% between 
Levene’s and extended F-test. The type I error is well controlled by all three 
tests (0.0527, 0.0511, and 0.0533 from extended F-test, Conover’s, and Levene’s 
tests, respectively). When narrowing the biosimilarity margin from (0.5, 2) to 
(0.5, 1.5), the probability of concluding biosimilar drops quickly, where Levene’s 
test is still relatively comparable to the extended F-test. When the biosimilarity 
margin of (0.67, 1.5) is used, the probability of concluding biosimilar drops dra-
matically and close to 0 in most cases even when the two groups are the same.

From Table 8.2 where central t distribution is used, surprisingly none of the 
tests is sensitive to changes in variance ratio. Further investigation is needed 
to understand why and to find tests that are suitable for such cases. However, 
at least one message is even with such small deviation from Normal distribu-
tion, the tests could fail to show the robustness.
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TABLE 8.1

Normal Distribution with Sample Size = 100

Reference Group Test Group Variance Ratio

Biosimilarity Margin = (0.5, 2) Biosimilarity Margin = (0.5, 1.5)

Conover’s Test F-Test Levene’s Test Conover’s Test F-Test Levene’s Test

N(100, 100) N(100, 25) 0.25 0 0 0 0 0 0
N(100, 100) N(100, 50) 0.50 0.0511 0.0473 0.0511 0.0547 0.0516 0.0552
N(100, 100) N(100, 67) 0.67 0.352 0.4259 0.3893 0.3203 0.4138 0.3684
N(100, 100) N(100, 75) 0.75 0.5407 0.6397 0.591 0.4479 0.6044 0.5318
N(100, 100) N(100, 80) 0.80 0.6438 0.7619 0.7002 0.5121 0.6893 0.6038
N(100, 100) N(100, 100) 1.00 0.8172 0.9251 0.88 0.4519 0.6082 0.535
N(100, 100) N(100, 125) 1.25 0.6366 0.7538 0.6947 0.1823 0.2244 0.2028
N(100, 100) N(100, 133) 1.33 0.5333 0.6398 0.5917 0.1247 0.147 0.1333
N(100, 100) N(100, 150) 1.50 0.3355 0.4053 0.3698 0.0498 0.0498 0.0491
N(100, 100) N(100, 200) 2.00 0.0501 0.0527 0.0533 0.0019 0.0013 0.0015
N(100, 100) N(100, 400) 4.00 0 0 0 0 0 0
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TABLE 8.2

Central t Distribution with Sample Size = 100

Reference 
Group d.f.

Test 
Group d.f.

Variance 
Ratio

Biosimilarity Margin = (0.5, 2) Biosimilarity Margin = (0.5, 1.5)

Conover’s Test F-Test Levene’s Test Conover’s Test F-Test Levene’s Test

4 7.882353 0.67 0.6018 0.5116 0.5297 0.3474 0.4365 0.3583
4 6 0.75 0.6262 0.5943 0.5863 0.3344 0.4728 0.3376
4 5.333333 0.8 0.6400 0.6409 0.6059 0.3180 0.4676 0.3260
4 4.5 0.9 0.6409 0.6687 0.6138 0.2860 0.4424 0.2769
4 4 1 0.6266 0.6585 0.5957 0.2577 0.4084 0.2415
4 3.666667 1.1 0.6185 0.6315 0.5690 0.2313 0.3640 0.2000
4 3.333333 1.25 0.5965 0.5889 0.5274 0.2042 0.3115 0.1606
4 3.204819 1.33 0.5784 0.5525 0.4943 0.1953 0.2884 0.1449
4 3 1.5 0.5425 0.5000 0.4399 0.1731 0.2432 0.1229
4 2.666667 2 0.5049 0.3941 0.3407 0.1352 0.1735 0.0753
4 2.285714 4 0.3888 0.2329 0.1903 0.0796 0.0835 0.0319

Note:	 d.f., degrees of freedom.
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TABLE 8.3

Simulation: Laplace Distribution (Lap(μ,b)) with Sample Size = 100 where μ Is the Location Parameter 
and b Is the Dispersion Parameter

Reference Group Test Group Variance Ratio

Biosimilarity Margin = (0.5, 2) Biosimilarity Margin = (0.5, 1.5)

Conover’s Test F-Test Levene’s Test Conover’s Test F-Test Levene’s Test

Lap(10, 2) Lap(10, 1) 0.25 0 5.00E−04 0 0 7.00E−04 0
Lap(10, 2) Lap(10, 1.4142) 0.5 0.053 0.1425 0.0524 0.0271 0.1372 0.0362
Lap(10, 2) Lap(10, 1.6371) 0.67 0.2274 0.4375 0.2577 0.0951 0.3756 0.1541
Lap(10, 2) Lap(10, 1.7321) 0.75 0.3236 0.5731 0.3796 0.1180 0.4698 0.2008
Lap(10, 2) Lap(10, 1.7889) 0.8 0.3708 0.6434 0.4487 0.1358 0.5013 0.2262
Lap(10, 2) Lap(10, 2) 1 0.4722 0.7509 0.5743 0.1285 0.4653 0.2091
Lap(10, 2) Lap(10, 2.2361) 1.25 0.3873 0.6358 0.4526 0.0704 0.2828 0.1097
Lap(10, 2) Lap(10, 2.3065) 1.33 0.3247 0.5787 0.3817 0.0572 0.2328 0.0812
Lap(10, 2) Lap(10, 2.4495) 1.5 0.2160 0.4329 0.2501 0.0269 0.1361 0.0394
Lap(10, 2) Lap(10, 2.8284) 2 0.0491 0.1436 0.0512 0.0041 0.0238 0.0042
Lap(10, 2) Lap(10, 4) 4 0 7.00E−04 0 0 0 0
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TABLE 8.4

Chi-Square Distribution with Sample Size = 100

Reference 
Group d.f. Test Group d.f. Variance Ratio

Biosimilarity Margin = (0.5, 2) Biosimilarity Margin = (0.5, 1.5)

Conover’s Test F-Test Levene’s Test Conover’s Test F-Test Levene’s Test

4 1 0.25 1.00E−04 0.0067 1.00E−04 0 0.0064 1.00E−04
4 2 0.50 0.0529 0.1709 0.0570 0.0452 0.1507 0.0470
4 3 0.75 0.5126 0.5535 0.4509 0.4393 0.4587 0.3359
4 4 1.00 0.7840 0.7517 0.7095 0.4744 0.4664 0.3690
4 5 1.25 0.6154 0.6466 0.5749 0.2270 0.2885 0.1892
4 6 1.50 0.3337 0.4291 0.3176 0.0583 0.1224 0.0575
4 8 2.00 0.0524 0.1226 0.0564 0.0046 0.0163 0.0054
4 16 4.00 0 0 0 0 0 0

Note:	 degrees of freedom
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TABLE 8.5

Weibull Distribution (W(λ,κ)) with Sample Size = 100 where λ Is the Scale Parameter and κ Is the Shape Parameter

Reference Group Test Group Variance Ratio

Biosimilarity Margin = (0.5, 2) Biosimilarity Margin = (0.5, 1.5)

Conover’s Test F-Test Levene’s Test Conover’s Test F-Test Levene’s Test

W(10, 30) W(5, 30) 0.25 0 1.00E−04 0 1.00E−04 0 0
W(10, 30) W(6, 30) 0.36 0.0038 0.0072 0.0033 0.0036 0.0069 0.003
W(10, 30) W(7, 30) 0.49 0.0599 0.0918 0.0564 0.0582 0.0882 0.0525
W(10, 30) W(8, 30) 0.64 0.3006 0.3724 0.2943 0.2714 0.3550 0.2680
W(10, 30) W(9, 30) 0.81 0.6296 0.6924 0.6364 0.4677 0.5671 0.4769
W(10, 30) W(10, 30) 1 0.7639 0.8222 0.7757 0.4236 0.5266 0.4327
W(10, 30) W(11, 30) 1.21 0.6509 0.7173 0.6550 0.2357 0.3146 0.2355
W(10, 30) W(12, 30) 1.44 0.4197 0.4931 0.4149 0.0926 0.1377 0.0864
W(10, 30) W(13, 30) 1.69 0.2065 0.2612 0.1950 0.0288 0.0463 0.0259
W(10, 30) W(14, 30) 1.96 0.0827 0.1183 0.0767 0.0061 0.0109 0.0045
W(10, 30) W(15, 30) 2.25 0.0293 0.0456 0.0239 0.0011 0.0028 0.001
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TABLE 8.6

Weibull Distribution (W(λ,κ)) with Sample Size = 100 where λ Is the Scale Parameter and κ Is the Shape Parameter

Reference 
Group Test Group Variance Ratio

Biosimilarity Margin = (0.5, 2) Biosimilarity Margin = (0.5, 1.5)

Conover’s Test F-Test Levene’s Test Conover’s Test F-Test Levene’s Test

W(10, 30) W(9.9109, 60.7) 0.25 0 0 0 0 1.00E−04 0
W(10, 30) W(9.9448, 42.7) 0.50 0.0692 0.1066 0.0642 0.0658 0.1110 0.0628
W(10, 30) W(9.9667, 36.8) 0.67 0.3626 0.4444 0.3613 0.3148 0.4015 0.3136
W(10, 30) W(9.9630, 34.7) 0.75 0.5275 0.6065 0.5278 0.4208 0.5210 0.4251
W(10, 30) W(9.9749, 33.6) 0.80 0.6145 0.6800 0.6171 0.4567 0.5579 0.4657
W(10, 30) W(10, 30) 1.00 0.7619 0.8248 0.7771 0.4246 0.5185 0.4275
W(10, 30) W(10.0170, 26.75) 1.25 0.6085 0.6829 0.6183 0.2048 0.2778 0.2067
W(10, 30) W(10.0187, 25.9) 1.33 0.5257 0.6018 0.5307 0.1438 0.2001 0.1389
W(10, 30) W(10.0318, 24.35) 1.50 0.3454 0.4321 0.3495 0.0645 0.1034 0.0622
W(10, 30) W(10.0658, 21) 2.00 0.0663 0.1038 0.0630 0.0042 0.0086 0.0033
W(10, 30) W(10.1736, 14.67) 4.00 0 2.00E–04 0 0 0 0
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TABLE 8.7

Zero-Inflated Poisson Distribution (ZIP(λ, p0)) with Sample Size = 100 where λ Is the Poisson Parameter 
and p0 Is the Probability of Zero

Reference 
Group Test Group Variance Ratio

Biosimilarity Margin = (0.5, 2) Biosimilarity Margin = (0.5, 1.5)

Conover’s Test F-Test Levene’s Test Conover’s Test F-Test Levene’s Test

ZIP(5, 0.3) ZIP(3.75, 0.06667) 0.5 0.0192 0.0306 0.0113 0.0195 0.0304 0.0116
ZIP(5, 0.3) ZIP(4.175, 0.1617) 0.67 0.3968 0.4039 0.2847 0.3998 0.4053 0.2917
ZIP(5, 0.3) ZIP(4.375, 0.2) 0.75 0.6923 0.6642 0.5725 0.6730 0.6528 0.5610
ZIP(5, 0.3) ZIP(4.5, 0.2222) 0.8 0.8245 0.7951 0.7304 0.8075 0.7589 0.7093
ZIP(5, 0.3) ZIP(4.75, 0.26316) 0.9 0.9601 0.9408 0.9276 0.9136 0.8051 0.8290
ZIP(5, 0.3) ZIP(5, 0.3) 1 0.9855 0.9757 0.9753 0.8919 0.6685 0.7342
ZIP(5, 0.3) ZIP(5.25, 0.3333) 1.1 0.9826 0.9511 0.9516 0.8135 0.4426 0.5083
ZIP(5, 0.3) ZIP(5.625, 0.3778) 1.25 0.9417 0.8047 0.7865 0.6295 0.1649 0.1952
ZIP(5, 0.3) ZIP(5.825, 0.3991) 1.33 0.9017 0.6886 0.6577 0.5226 0.0846 0.0907
ZIP(5, 0.3) ZIP(6.25, 0.44) 1.5 0.7854 0.3938 0.3486 0.3175 0.0158 0.0165
ZIP(5, 0.3) ZIP(7.5, 0.5333) 2 0.3412 0.0204 0.0168 0.0496 1.00E−04 3.00E−04
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In the third set of simulations (Table 8.3), Laplace distribution (also known 
as double exponential distribution) is used. As we can see from Table 8.3, for 
symmetric distribution as Laplace, when the normal assumption is violated, 
F-test failed to show robustness. However, both Conover and Levene’s tests 
successfully maintain the type I error, while Levene test is a little bit more 
powerful than Conover’s under this case.

In the fourth set of simulations (Table 8.4), central chi-square distribution 
with degrees of freedom of 4 is used in the reference group, and central chi-
square distribution with different degrees of freedom is used in the test arm to 
reflect the different variance ratios. The power of the Conover’s test is compa-
rable to the F-test (0.784 vs. 0.7517 at biosimilarity margin of (0.5, 2); and 0.4744 
vs. 0.4664 for biosimilarity margin (0.5, 1.5)), although Levene’s test is not that 
powerful under this situation. However, F-test failed to control the type I 
error (0.1709) when biosimilarity margin = (0.5, 2), as noticed in the previous 
papers. While at the same time, the non-parametric tests still maintained the 
proposed type I error (0.0529 from Conover’s test and 0.057 from Levene’s test). 
Therefore, under this situation where the underlying distribution is asymmet-
ric with long tailed, non-parametric Conover’s test performs the best.

In the fifth set of simulations (Tables 8.5 and 8.6) where Weibull distri-
bution is used, we explore two scenarios. In the first scenario, the scale 
parameter changes in the test group to create different variances while the 
shape parameter stays same as the reference. Therefore, different variances 
from the two groups imply different means as well. In the second scenario, 
both scale and shape parameters change in the test group, so variances are 
changed but mean is still about same as the reference group. The simulation 
results are summarized later.

When a biosimilarity margin of (0.5, 2) is used, the power of the non-
parametric tests is comparable to that of the F-test (0.76–0.79 vs. 0.82–0.83) in 
both scenarios. But again F-test failed to control the type I error (around 0.1 in 
both scenarios) as noticed in the previous papers, while the non-parametric 
tests are a little bit better (0.6–0.8 in the first scenario and around 0.6 in the 
second scenario). When a biosimilarity margin of (0.5, 1.5) is used, similar 
pattern was observed.

Finally, a non-continuous distribution, zero-inflated Poisson, was explored 
in the simulation (Table 8.7).

8.4.4  Remarks

Simulation results indicate that under the given distribution assumption of nor-
mality, the two types of non-parametric tests have relatively good efficiency as 
compared to the parametric method. However, when the underlying distribu-
tion is deviated from normal, the parametric F-test incorrectly concludes biosim-
ilarity far too often, thus failing to control the type I error (not robust). Under 
such situations, the two types of non-parametric methods provide considerable 
improvement over the robustness while maintaining comparable power.
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The reported sample sizes used in simulations are 50 and 100 in each group. 
We tried smaller sample size (e.g., N = 36) in which none of the methods can 
achieve ideal power. It suggests that to assess biosimilarity in variabilities, ade-
quate sample size is generally required. From the simulation, we also noticed 
that the biosimilarity margin of (0.67, 1.5) is too stringent for all these tests of 
variability. The margin (0.5, 2) is  symmetric  around the variance ratio of 1, 
therefore resulting in roughly symmetric power/type I error rate around 1. 
However, considering small variance (ratio < 1) of FOB should not be penalized 
same as ratio > 1, some people may prefer the asymmetric biosimilarity margin 
of (0.5, 1.5). Further discussion will be needed in choosing the proper biosimi-
larity margin for evaluating variabilities. Finally, the proposed non-parametric 
methods and extended F-test presented in this manuscript are all based on 
parallel design of a clinical study. They do not distinguish inter- and intra-
subject variability and variability due to possible subject-by-treatment interac-
tion, which are known to have an impact on drug interchangeability. Further 
research is desired to address these motivating questions in assessing FOBs.

8.5  Alternative Methods

8.5.1  Probability-Based Criterion and Statistical Hypothesis

As a parallel design is often considered for assessment of biosimilarity 
between biological products, in this section, biosimilarity in variability will 
be evaluated under a parallel-group design. Let X and Y be the parameters 
of interest (e.g., pharmacokinetic response) which follow a normal distribu-
tion with variances VX and VY, respectively. Let Xi and Yj be the observations 
of X and Y with i = 1, …, nX and i = 1, …, nY. Thus, the maximum likeli-
hood estimators (MLE) of VX and VY are given by ˆ ( )V X X nX i X

i
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 respectively. Following the similar idea of a probabil-

ity-based index for the statistical quality control/assurance process for tra-
ditional Chinese medicine proposed by Tse et al. (2006), a probability-based 
criterion for assessment of the biosimilarity in variability can be proposed as
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where 0 < δ < 1 is the biosimilarity limit in variability for the probability-
based method. Equation 8.8 is the expression which converts the ratio of 
variabilities in Equation 8.7 into their linear combination. We will refer to pPB 
as the biosimilarity index in variability.

The probability-based method for testing biosimilarity in variability can be 
obtained based on the index of pPB by considering the following hypotheses:

	 H p p H p pPB a PB0 0 0: : ,≤ >vs. 	 (8.9)

where p0 is the biosimilarity limit. The biosimilarity in variability of two 
biological products is claimed if the 100(1 − α)% upper confidence limit of pPB 
is greater than p0.

8.5.2  Statistical Testing Procedure

With respect to constructing the (1 − α) × 100% upper limit of pPB for test-
ing the hypothesis (4), since it is known that the linear combination of the 
MLE of the variances for two independent normal distributions has an 
asymptotic normal distribution, we can construct the (1 − α) × 100% upper 
limit of pPB stated by considering the expression of pPB in terms of the form 
of the linear combination in Equation 8.3. The expected values and vari-
ances of the random variables of V̂X − (1 + δ)V̂Y and V̂X − (1 − δ)V̂Y can be 
obtained as follows:
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For the large nX and nY, the central limit theorem leads to Equation 8.3 as
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By the invariance principle, the MLE of pPB can be obtained as
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by substituting VX and VY using V̂X and V̂Y into Equation 8.6, respectively.
Moreover, expanding p̂PB by its Taylor expansion function at p, that is, 

V̂X = VX and V̂Y = VY, E( ̂pPB) and Var( ̂pPB) can be expressed as pPB + B(pPB) + o(n−1) 
and C(pPB) + o(n−1), respectively. The asymptomatic normal distribution of p̂PB 
can be obtained as
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where B(p̂PB) and C(p̂PB) are the MLEs of B(pPB) and C(pPB) by substituting 
V̂X  and V̂Y for VX and VY, respectively. B(pPB), C(pPB), and the derivation of 
Equation 8.14 are given later.

Considering the definition of p̂PB, its Taylor expansion at pPB can be 
obtained as
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The null hypothesis in Equation 8.9 will be rejected and the biosimilarity 
concluded if

	
ˆ ˆ ˆ .p p B p Z C pPB PB PB> + ( ) + ( )0 α 	

(8.14)

8.5.3  Probability-Based Criteria versus nX, nY, and δ

As pPB is the function of nX, nY, δ and the ratio of VX and VY, a numeri-
cal study is employed to investigate the relationship of pPB with these 
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parameters. Since the second expression of pPB in Equation 8.11 can be 
reformulated as follows:
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where Fn nX Y− −1 1,  is the random variable of F-distribution with nX − 1 and nY − 1 
degrees of freedom, the true value of pPB can be obtained via Equation 8.15. 
Table 8.8 presents the values of pPB which achieve 0.65 under various combi-
nations of nX, nY, and δ when the true ratio of VX and VY is equal to 0.75, 1.00, 
and 1.75, respectively. nX and nY are chosen to be the same value denoted 
by n in the table for the convenience of the discussion. As shown in the 
table, pPB cannot reach 0.65 for all VX/VY and n when δ is the smallest value 
of 0.1. In addition, pPB increases when the sample size and δ increase. With 
respect to impact of VX/VY on pPB, the pPB at VX/VY = 1.25 are smaller than 
those at VX/VY = 0.75 and 1.00 for all combinations of δ and n. It may mean 
that the probability index p0 needs to be set as a higher value for assessing 
the biosimilarity if the variability of the follow-on product is greater than 
that of the originator product. On the other hand, the pPB at VX/VY = 0.75 is 
greater than that at VX/VY = 1.00 when δ is greater than 0.5, while the results 
are opposite if δ is less than 0.5. If δ is set as 0.2, only the combinations of VX/
VY = 1.00 with the sample size ≥100 can achieve a pPB of 0.65.

Table 8.8 provides the idea for selecting the appropriate combination of nX, 
nY, δ for performing the proposed statistical testing procedure according to 
the need of the researcher. For instance, if the researcher is considering that 
VX and VY are comparable (i.e., the true ratio of VX and VY is around 1.00), the 
sample size of nX = nY = 150 is suggested for a biosimilarity limit δ of 0.2 and 
the biosimilarity index at least p0 = 75%.
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TABLE 8.8

Values of pPB under Various Combinations of nX, nY, and δ

VX / VY n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.75 24 — — — 0.6306 0.7794 0.8926 0.9560 0.9784 0.9849
36 — — — 0.7092 0.8604 0.9526 0.9871 0.9942 0.9963
50 — — — 0.7657 0.9119 0.9804 0.9967 0.9987 0.9993

100 — — 0.6306 0.8646 0.9772 0.9989 0.9999 0.9999 0.9999
150 — — 0.6624 0.9127 0.9931 0.9999 0.9999 0.9999 0.9999
200 — — 0.6864 0.9418 0.9978 0.9999 1.0000 1.0000 1.0000
250 — — 0.7067 0.9605 0.9993 0.9999 1.0000 1.0000 1.0000

1.00 24 — — — 0.6730 0.7794 0.8501 0.8919 0.9168 0.9345
36 — — 0.6311 0.7701 0.8605 0.9112 0.9391 0.9568 0.9692
50 — — 0.7115 0.8404 0.9119 0.9475 0.9669 0.9789 0.9867

100 — 0.6827 0.8645 0.9463 0.9772 0.9899 0.9956 0.9981 0.9992
150 — 0.7793 0.9297 0.9786 0.9931 0.9978 0.9993 0.9998 0.9999
200 — 0.8422 0.9614 0.9908 0.9978 0.9995 0.9999 0.9999 0.9999
250 — 0.8850 0.9780 0.9959 0.9993 0.9999 0.9999 0.9999 0.9999

1.25 24 — — — — 0.6509 0.7165 0.7661 0.8058 0.8388
36 — — — 0.6139 0.6996 0.7650 0.8163 0.8572 0.8898
50 — — — 0.6476 0.7363 0.8046 0.8574 0.8973 0.9269

100 — — — 0.7129 0.8170 0.8894 0.9361 0.9644 0.9808
150 — — — 0.7550 0.8665 0.9335 0.9692 0.9866 0.9945
200 — — 0.6088 0.7876 0.9003 0.9588 0.9847 0.9948 0.9984
250 — — 0.6214 0.8141 0.9245 0.9740 0.9922 0.9979 0.9995
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8.5.4  Simulation Study

The simulation study is conducted to evaluate the performance of the pro-
posed probability-based asymptotic testing procedure in terms of empiri-
cal sizes and powers. The empirical sizes are evaluated under the following 
parameter settings: nX = nY = 24, 36, 50, 100, 150, 200, 250; δ = 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9; μX = μY = 0, where μX and μY are the population means for 
X and Y, respectively. In addition, (VX, VY) are set as (0.75, 1.00), (1.00, 1.00), 
and (1.25, 1.00) for getting the true ratio of VX and VY as 0.75, 1.00, and 1.25. For 
each combination, 10,000 random samples are generated. For the 5% nominal 
significance level, a simulation study with 10,000 random samples implies that 
95% of the empirical sized evaluated at the allowable margins will be within 
0.0457 and 0.0543 if the proposed methods can adequately control the size at 
the nominal level of 0.05. Tables 8.9 through 8.12 present the empirical sizes at 
VX/VY = 0.75, 1.00, and 1.25, respectively. The p0 in the tables are calculated by 
Equation 8.15. The results show the empirical size increases when δ increases 
if the sample size is fixed. On the other hand, the empirical size is greater than 
0 only at VX/VY = 1.25 when δ ranges from 0.1 to 0.4. In addition, all empirical 
sizes at VX/VY = 1.25 are greater than 0 when δ ranges from 0.5 to 0.9 except 
for which at δ = 0.5 and sample size = 24, while only 17.1% (6/35) and 77.1% 
of empirical sizes are greater than 0 at VX/VY = 0.75 and 1.00, respectively. 
Moreover, the empirical sizes at VX/VY = 0.75 are greater than 0 at δ = 0.3 and 
0.4, while the empirical sizes at VX/VY = 1.00 are all equal to zero for the same 
value of δ. Comparing the corresponding p0 among three ratios of VX and VY 
when δ and n are fixed, the order of value of p0 is VX/VY = 1.25 < VX/VY = 
1.00 < VX/VY = 0.75 when δ ranges from 0.5 to 0.9. With respect to the δ less 
than 0.5, the value of p0 at VX/VY = 0.75 is less than VX/VY = 1.00. Through the 
earlier discussion, it can be found that the higher p0 result in the lower empiri-
cal sizes. This may be the reason why the null hypothesis in Equation 8.9 is 
harder to reject when p0 is higher, in particular for p0 close to 1. However, all 
empirical sizes cannot be adequately controlled at the 5% nominal level since 
all of them are out of (0.0457, 0.0543) for all combination of parameters.

As it can be found that the empirical size is the function of δ, p0, and n 
from the results of Tables 8.9 through 8.11, an alternative simulation study 
is employed to investigate the desirable δ and p0 for which the empirical 
size can be adequately controlled at the 5% nominal level for each of the 
selected sample sizes. Table 8.12 presents the results of the simulation for 
the cases of p0 ≥ 0.6. As shown in the table, for achieving the 5% nominal 
level, δ decreases while the corresponding pPB increases when the sample 
size increases. In addition, the minimum δ for which the empirical size can 
be adequately controlled are 0.533 at n = 200, 0.425 at n = 250, and 0.513 at 
n = 24 when VX/VY = 0.75, 1.00, and 1.25, respectively. The larger sample size 
and small VX/VY do not guarantee the smaller value of δ. This shows that 
δ, n, and VX/VY not only have impact on the empirical size simultaneously 
but may also have different ways of impact under different combinations.
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TABLE 8.9

Empirical Sizes when VX/VY = 0.75

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

24 — — — — — — 0.6306 0.0000 0.7794 0.0000 0.8926 0.0000 0.9560 0.0000 0.9784 0.0000 0.9849 0.0000
36 — — — — — — 0.7092 0.0000 0.8604 0.0000 0.9526 0.0000 0.9871 0.0000 0.9942 0.0000 0.9963 0.0549
50 — — — — — — 0.7657 0.0000 0.9119 0.0000 0.9804 0.0000 0.9967 0.0000 0.9987 0.0000 0.9993 0.0685

100 — — — — 0.6306 0.1608 0.8646 0.1465 0.9772 0.0000 0.9989 0.0000 0.9999 0.0000 0.9999 0.0000 0.9999 0.0475
150 — — — — 0.6624 0.1928 0.9127 0.2068 0.9931 0.0988 0.9999 0.0000 0.9999 0.0000 0.9999 0.0000 0.9999 0.0000
200 — — — — 0.6864 0.2018 0.9418 0.2340 0.9978 0.1618 0.9999 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
250 — — — — 0.7067 0.2052 0.9605 0.2601 0.9993 0.1980 0.9999 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
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TABLE 8.10

Empirical Sizes when VX/VY = 1.00

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

24 — — — — — — 0.6730 0.0000 0.7794 0.0000 0.8501 0.0000 0.8919 0.0000 0.9168 0.1600 0.9345 0.2030
36 — — — — 0.6311 0.0000 0.7701 0.0000 0.8605 0.0000 0.9112 0.0000 0.9391 0.0997 0.9568 0.1989 0.9692 0.1998
50 — — — — 0.7115 0.0000 0.8404 0.0000 0.9119 0.0000 0.9475 0.0000 0.9669 0.1641 0.9789 0.2139 0.9867 0.1989

100 — — 0.6827 0.0000 0.8645 0.0000 0.9463 0.0000 0.9772 0.0000 0.9899 0.1724 0.9956 0.2233 0.9981 0.2084 0.9992 0.1878
150 — — 0.7793 0.0000 0.9297 0.0000 0.9786 0.0000 0.9931 0.0986 0.9978 0.2089 0.9993 0.2219 0.9998 0.2129 0.9999 0.1784
200 — — 0.8422 0.0000 0.9614 0.0000 0.9908 0.0000 0.9978 0.1655 0.9995 0.2321 0.9999 0.2237 0.9999 0.2002 0.9999 0.1727
250 — — 0.8850 0.0000 0.9780 0.0000 0.9959 0.0000 0.9993 0.1974 0.9999 0.2430 0.9999 0.2127 0.9999 0.1984 0.9999 0.1733
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TABLE 8.11

Empirical Sizes when VX/VY = 1.25

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

24 — — — — — — — — 0.6509 0.0000 0.7165 0.1427 0.7661 0.2027 0.8058 0.2190 0.8388 0.2232
36 — — — — — — 0.6139 0.0727 0.6996 0.1519 0.7650 0.1956 0.8163 0.2263 0.8572 0.2271 0.8898 0.2331
50 — — — — — — 0.6476 0.1447 0.7363 0.1953 0.8046 0.2082 0.8574 0.2337 0.8973 0.2337 0.9269 0.2255

100 — — — — — — 0.7129 0.1983 0.8170 0.2286 0.8894 0.2337 0.9361 0.2429 0.9644 0.2433 0.9808 0.2434
150 — — — — — — 0.7550 0.2139 0.8665 0.2371 0.9335 0.2440 0.9692 0.2532 0.9866 0.2449 0.9945 0.2529
200 — — — — 0.6088 0.1907 0.7876 0.2174 0.9003 0.2410 0.9588 0.2536 0.9847 0.2489 0.9948 0.2579 0.9984 0.2530
250 — — — — 0.6214 0.1935 0.8141 0.2319 0.9245 0.2507 0.9740 0.2543 0.9922 0.2616 0.9979 0.2602 0.9995 0.2499
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Figure 8.1 presents the empirical power curves versus δ for true 
VX/VY = 0.75, 1.00, and 1.25, respectively, with n = 150. The p0 in statistical 
Hypothesis 8.9 is set as 0.75. The figure shows that all three power curves 
increase when δ increases. It can be also found that the empirical power 
at VX/VY = 0.75 reaches 0.05 (i.e., the 5% nominal level) at the earliest, 
while that at VX/VY = 1.00 reaches 0.05 at the latest. In addition, the power 
curve at VX/VY = 1.25 is lower than both power curves at VX/VY = 0.75 

TABLE 8.12

(δ, p0) for Controlling the Empirical Sizes 
Adequately at 5% Nominal Level

VX / VY n δ p0 Empirical Size

0.75 24 0.923 0.9859 0.0472
24 0.924 0.9859 0.0512
36 0.900 0.9964 0.0509
50 0.880 0.9992 0.0460
50 0.885 0.9992 0.0532

100 0.465 0.9523 0.0504
100 0.855 0.9999 0.0470
100 0.860 0.9999 0.0507
100 0.865 0.9999 0.0523
100 0.872 0.9999 0.0539
100 0.875 0.9999 0.0534
100 0.890 0.9999 0.0502
100 0.900 0.9999 0.0487
100 0.921 0.9999 0.0477
100 0.930 0.9999 0.0464
150 0.511 0.9953 0.0541
200 0.533 0.9996 0.0482

1.00 24 0.756 0.9047 0.0521
36 0.680 0.9346 0.0479
50 0.631 0.9546 0.0481

100 0.536 0.9830 0.0496
150 0.485 0.9918 0.0504
200 0.450 0.9955 0.0472
250 0.425 0.9973 0.0473

1.25 24 0.513 0.6606 0.0480
24 0.514 0.6613 0.0468
24 0.515 0.6620 0.0493
24 0.516 0.6627 0.0503
24 0.517 0.6635 0.0519
24 0.518 0.6642 0.0536
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and 1.00. Furthermore, it can be seen that the variance of p̂PB decreases 
when δ is greater than 0.5.

8.5.5  Numerical Example

A numerical example is used to illustrate the proposed probability-based 
statistical testing procedure by considering a pharmacokinetic study with 
parallel design to assess the biosimilarity in variability between an innova-
tor biological product and its follow-on product. Assume that a total of 72 
subjects (36 subjects per group) are randomly assigned to receive the inno-
vator product and its follow-on product. The PK parameter AUC is calcu-
lated for each of the 72 subjects in the study. The sample variances of AUC 
are obtained as 8.05 and 10.05 for the innovator product and the follow-on 
product, respectively. To test their biosimilarity, consider the proposed sta-
tistical testing with different biosimilarity limits of δ (i.e., δ = 0.4 and 0.5), 
and biosimilarity indexes p0 (i.e., p0 = 0.60 and 0.70) at the 5% and 10% lev-
els of significance, respectively. The testing results with the corresponding 
p̂PB are summarized in Table 8.13. As it can be seen in Table 8.6, when the 
biosimilarity limit δ is 0.4, since only the critical value of 0.7459 at p0 = 0.60 
and α = 0.10 is less than p̂PB of 0.7683, the biosimilarity in variability can only 
be concluded at p0 = 0.60 at a 10% statistical significance level. On the other 
hand, the biosimilarity in variability is concluded at δ = 0.5 at both p0 of 0.60 
and 0.70 at 5% and 10% statistical significance levels because all four critical 
values at δ = 0.5 are less than p̂PB of 0.8903.

1.0

0.8

Po
w
er 0.6

0.4

0.2

0.2 0.4 0.6

VX/VY=0.75
VX/VY=1.00
VX/VY=1.25

0.8 1.0

0.0

δ

FIGURE 8.1
Empirical power curve versus δ for different VX/VY.
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8.6  Concluding Remarks

Unlike traditional small-molecule drug products, the characteristic and 
development of biological products are more complicated and sensitive to 
many factors. As suggested by Chow et al. (2010a), the assessment of biosimi-
larity should be based on variability instead of average bioequivalence. In 
this chapter, the classical Pitman–Morgan’s adjusted F-test under a cross-
over design is introduced. Under a parallel design, an F-type test proposed 
by Yang et al. (2013) is useful for testing homogeneity of variances of FOBs. 
Since F-type tests are sensitive to the fundamental distribution assumption, 
Zhang et al. (2013) suggested the two types of non-parametric methods for 
comparing variabilities between biosimilar products be used. In the interest 
of comparing variabilities in biosimilar studies, a pre-study power analy-
sis for sample size calculation can be performed based on the F-type test 
statistics derived in this chapter under either a crossover design or a parallel 
group design. It, however, should be noted that statistical tests for comparing 
variabilities include comparing inter-subject variabilities, comparing intra-
subject variabilities, and comparing total variabilities under either a cross-
over design or a parallel design (with or without replicates). More details 
regarding sample size calculation in biosimilar studies comparing variabili-
ties are given in the next chapter.

Hsieh et al. (2010), on the other hand, indicated that the probability-based 
test is more sensitive to the variability and should be employed for assess-
ing biosimilarity in variability between biosimilar products. As indicated by 
Hsieh et al. (2010), the proposed asymptotic statistical testing procedure based 
on the probability index can be applied to test hypotheses in Equation 8.9 by 
using the testing rule described in Equation 8.13. Table 8.8 provides the infor-
mation for selecting the appropriate sample size for the desirable probability 
limit δ and probability index p0 based on the need of the researcher. However, 
as shown in the simulation study, the empirical size cannot be adequately 

TABLE 8.13

Result of the Example

δ p0 p̂PB α
Critical 
Value Result

0.4 0.60 0.7683 0.05 0.8288 Non-biosimilarity
0.10 0.7459 Biosimilarity

0.70 0.05 0.9278 Non-biosimilarity
0.10 0.8459 Non-biosimilarity

0.5 0.60 0.8903 0.05 0.7124 Biosimilarity
0.10 0.6661 Biosimilarity

0.70 0.05 0.8124 Biosimilarity
0.10 0.7666 Biosimilarity
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controlled at a desirable nominal level for all combinations of δ, p0, and 
selected sample size. Therefore, in Table 8.12, the combinations of δ and p0 
which can achieve the 5% nominal level for the selected sample sizes and 
ratios of VX and VY are provided for researcher’s reference. The simulation 
results also show the empirical power increases when δ increases. On the 
other hand, the smaller ratio of VX and VY will result in the larger power 
when δ is greater than certain level.

Considering that the study with smaller sample size for assessing biosimi-
larity of biological products may be employed in general, the exact testing 
procedure based on the same probability-based criterion may be needed to 
be developed. In addition, as the assessment of biosimilarity of two biologi-
cal products should consider the similarity in both average and variability in 
general, the multiple comparison procedure for comparing the average and 
variability simultaneously using the separate statistical testing procedures 
is considered to be conducted for achieving the purpose. An alternative way 
is to consider an aggregate criterion to integrate the measure for assessment 
of average and for assessment of variability as one measure, and perform 
the evaluation of biosimilarity by using a single statistical testing procedure. 
Further research will be employed for the consideration and topics men-
tioned earlier.
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9
Sample Size for Comparing Variabilities

9.1  Introduction

As indicated in the previous chapter, biosimilar products are variable and 
very sensitive to small changes (or variations) in environmental factors dur-
ing the manufacturing process. In a biosimilar study, small variability asso-
ciated with observed response is an indication that the observed difference 
in response between biosimilar products is not by chance alone and it is 
reproducible. In addition, small variability is also an indication of good drug 
characteristics such as stability and quality of the biosimilar product under 
investigation. Thus, in addition to the comparison of average responses 
between a biosimilar (test) product and an innovative (reference) product, it 
is suggested that the variabilities between the test product and the reference 
product should also be compared when assessing biosimilarity. The com-
parison of variabilities of responses between biosimilar products provides 
valuable information regarding the degree of similarity and how similar is 
considered highly similar in addition to average biosimilarity.

In practice, the variabilities associated with observed responses are usually 
classified into two categories: the intra-subject (or within subject) variability 
and the inter-subject (or between subject) variability. Intra-subject variability 
refers to the variability observed from repeated measurements from the same 
subject under the same experimental conditions. On the other hand, inter-
subject variability is the variability due to the heterogeneity among subjects. 
The total variability is simply the sum of the intra-subject and inter-subject 
variabilities. The identification, elimination, and control of the sources of vari-
abilities are useful for the statistical process of quality control/assurance in the 
development of biosimilar products. The problem of comparing intra-subject 
variabilities is well studied by Chinchilli and Esinhart (1996) through an F 
statistic under a replicated crossover model. A similar idea can be applied 
to comparing variabilities under a parallel design with and/or without rep-
licates. For comparing intra-subject variabilities and intra-subject coefficients 
of variation (CV), sample sizes required for achieving a desired power of cor-
rect establishment of biosimilarity are derived based on hypotheses testing 
for similarity. For comparing inter-subject variabilities and total variabilities, 
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sample sizes needed for achieving a desired power (say 80%) at a pre-specified 
level of significance (say 5%) are derived based on hypotheses testing for non-
inferiority and/or equivalence.

In the previous chapter, F-type test statistics and non-parametric meth-
ods were derived for comparing variabilities in biosimilar studies under 
either a crossover design or a parallel design. However, not much details 
regarding pre-study power analysis for sample size calculation are given. 
The purpose of this chapter is to derive sample size formulas and/or proce-
dures for comparing variabilities including intra-subject variabilities, inter-
subject variabilities, total variabilities, and intra-subject CV in biosimilar 
studies based on hypotheses testing for non-inferiority or equivalence 
under either a repeated crossover design or a parallel group design with 
or without replicates. The comparison of variabilities between treatment 
groups will provide valuable information regarding the degree of similar-
ity, which may be useful in addressing the question “How similar is con-
sidered highly similar?”

The remainder of this chapter is organized as follows. In the next three 
sections, formulas for sample size calculation for comparing intra-subject 
variabilities, inter-subject variabilities, and total variabilities under a par-
allel design with replicates and a replicated crossover design are derived. 
Section 9.5 provides formulas for sample size calculation for comparing 
intra-subject CVs. Some practical issues are discussed in the last section of 
this chapter.

9.2  Comparing Intra-subject Variability

To assess intra-subject variability, replicates from the same subject are nec-
essarily obtained. Thus, in practice, a simple parallel design with replicates 
or a standard 2 × 2 crossover design with replicates is often considered. In 
this section, sample size calculation for comparing intra-subject variability 
of responses between drug products under a parallel design with replicates 
and a replicated crossover design is considered.

9.2.1  Parallel Design with Replicates

Consider a biosimilar study utilizing a parallel group design with replicates, 
which is illustrated in Figure 9.1. Qualified subjects are randomly assigned to 
receive either a biosimilar (test) product or an innovative (reference) product. 
At the end of the treatment duration and after a sufficient length of washout, 
subjects will receive the same treatment under similar experimental condi-
tions. The replicates obtained from the same subject provide an independent 
estimate of the intra-subject variability of the test treatment under study.
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Let yijk be the observation of the kth replicate (k = 1, …, m) of the jth subject 
(j = 1, …, ni) from the ith treatment (i = T, R). Consider the following statistical 
model under a parallel group design:

	 y Sijk i ij ijk= + +µ ε , 	 (9.1)

where
μi is the drug effect
Sij is the random effect due to the jth subject in the ith group
εijk is the intra-subject random error under the ith group

For a fixed i, it is assumed that Sij are independent and identically distributed as 
normal random variables with mean 0 and variance σBi2 , and εijk, k = 1, …, m, are 
independent and identically distributed as a normal random variable with mean 
0 and variance σWi2 . Under Model 9.1, an unbiased estimator for σWi2  is given by
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FIGURE 9.1
Parallel design with replicates.
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where δ > 1 is the similarity limit. The aforementioned hypotheses can be 
decomposed into the following two one-sided hypotheses:
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These two one-sided hypotheses can be tested by the following two test 
statistics:
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significance if
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Note that under the alternative hypothesis, it is also possible that σ σWT WR
2 2≠ . 

In this case, without loss of generality, we assume that σ σ δWT WR r2 2 1/ = ∈� ( , ). 
Thus, the power of the aforementioned test can be approximated by
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Hence, the sample size required for achieving the desired power of 1 − β can 
be obtained by solving the following equation for n:
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9.2.1.1  Example

Consider a two-arm parallel trial with three replicates (m = 3) comparing 
intra-subject variabilities of a biosimilar (test) product and an innovative 
(reference) product. Based on a pilot study, the standard deviation of the test 
product is estimated to be about 30% (σWT = 0.30), whereas the standard devi-
ation for the reference product is about 45% (σWR = 0.45). Suppose that the 
investigator is interested in selecting a sample size for establishing similarity 
between the test and reference product at the 5% (α = 0.05) level of signifi-
cance with an 80% (β = 0.20) power. Thus, by the aforementioned formula, 
the sample size required can be obtained by solving
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which leads to n = 25. Hence, a total of 50 subjects (25 subjects per arm) are 
needed in order to achieve the desired power for establishing similarity in 
intra-subject variability between treatment groups.
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9.2.2  Replicated Crossover Design

Consider a 2 × 2m crossover design comparing two biosimilar products with 
m replicates, which is illustrated in Figure 9.2. A 2 × 2m crossover design is a 
design that repeats a 2 × 2 crossover design m times. Qualified subjects are 
randomly assigned to receive either sequence 1 or sequence 2 of treatments. 
A sufficient length of washout is applied between dosing periods. Similar to 
the parallel design with replicates described in the previous subsection, the 
replicates obtained from the same subject provide independent estimates of 
the intra-subject variability of the test treatments under study.

Let ni be the number of subjects assigned to the ith sequence and yijkl be the 
response from the jth subject in the ith sequence under the lth replicate of the 
kth drug (k = T, R). The following mixed effects model is usually considered 
for data from a 2 × 2m crossover trial:

	 y Sijkl k ikl ijk ijkl= + + +µ γ ε , 	 (9.5)

where
μk is the mean response of the kth drug
γikl is the fixed effect of the lth replicate under the kth drug in the ith 

sequence with constraint
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and SijT and SijR are the subject random effects of the jth subject in the ith 
sequence. (SijT, SijR)’s are assumed independent, identically distributed (i.i.d.) 
bivariate normal random vectors with mean (0, 0)′. As SijT and SijR are two 
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FIGURE 9.2
Replicated 2 × 2m crossover design. Note: A 2 × 2m crossover design is a design that repeats 2 × 2 
crossover design m times.
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observations taken from the same subject, they are not independent of 
each other. The following covariance matrix between SijT and SijR is usually 
assumed to describe their relationship:
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εijkl are assumed i.i.d. as N Wk( , )0 2σ . It is also assumed that (SijT, SijR)′ and εijkl
are independent. In order to obtain estimators for intra-subject variances, a 
new random variable zijkl is defined by an orthogonal transformation as zijk = 
P′yijk, where

	 y y y yijk ijk ijk ijkm′ = …( , , , ),1 2
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and P is an m × m orthogonal matrix with the first column given by 
( , , , )1 1 1… ′/ m. It can be verified that for a fixed I and any l > 1, zijkl are i.i.d. 
normal random variables with variance σWk2 . Therefore, σWk2  can be estimated by
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It should be noted that σ̂ σWk Wk
2 2/  is χ2 distributed with d = (n1 + n2 − 2)(m − 1) 

degrees of freedom, and σ̂WT2  and σ̂WR2  are mutually independent. More details 
can be found in Chinchilli and Esinhart (1996). Thus, the null hypotheses of 
dissimilarity in Equation 9.4 would be rejected and similarity would be con-
cluded at the α level of significance if
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Hence, assuming that n = n1 = n2, the sample size required for achieving the 
power of 1 − β can be obtained by solving the following equation:
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Note that more details can be found in Lee et al. (2002).
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9.3  Comparing Inter-subject Variability

For comparing inter-subject variabilities, since an estimator for inter-
subject variability can only be obtained under a replicated design and it 
usually can be expressed as a linear combination of various components 
estimates whose sampling distributions are relatively difficult to derive. 
Howe (1974), Graybill and Wang (1980), and Hyslop et al. (2000) developed 
several methods for estimation of inter-subject variabilities. One impor-
tant assumption for these methods is that the variance component esti-
mators involved in the estimation must be independent of one another. 
Lee et al. (2002) generalized these methods for the situation where some 
variance components are actually dependent on one another. The sample 
size formulas introduced in this section are mostly based on the methods 
by Lee et al. (2002).

9.3.1  Parallel Design with Replicates

Under Model 9.1, define
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are unbiased estimators for the inter-subject variabilities, where σ̂Wi2  is 
defined in Equation 9.2.

Similarly, consider the following hypotheses for establishment of similar-
ity in variability:
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where δ > 1 is the similarity limit. The aforementioned hypotheses can be 
decomposed into the following two one-sided hypotheses:

	 H HBT BR a BT BR01
2 2

1
2 20 0:† :† ,σ δσ σ δσ− ≥ − <versus

	 H HBT BR a BT BR02
2 2

2
2 20 0:† :† .σ δσ σ δσ− ≥ − <versus

Similarity in inter-subject variability between two drug products can be 
established if both of the aforementioned two hypotheses are rejected at the 
α level of significance. The test can be performed by calculating a (1 − α) × 
100% upper confidence bound for η σ δσ1

2 2= −BT BR and a (1 − α) × 100% lower 
confidence bound for η δσ σ2

2 2= −BT BR by the modified large sample (MLS) 
method (Hsylop et al., 2000). The upper and lower (1 − α) × 100% confidence 
bounds are given by
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Thus, we would reject the null hypothesis H01 at the α level of significance if 
ˆ .�η1 0U <  Under the assumption that n = nT = nR, using a similar argument, the 
power for testing H01 can be approximated by
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where
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As a result, the sample size needed in order to achieve the power of 1 − β at 
the α level of significance can be obtained by solving

	
z n zBT BR

α β
σ δσ

σ
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This gives
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−
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.
2 2

2 2 2

9.3.1.1  Example

Consider a two-arm parallel trial with three replicates (m = 3) for each sub-
ject. Suppose that the investigator is interested in comparing the inter-subject 
variabilities between a test product and a reference product. Based on a pilot 
study, the standard deviation for the test product is estimated to be about 
35% (σBT = 0.35), whereas the standard deviation for the reference product is 
about 45% (σBR = 0.45). It is also estimated that σWR = 0.20 and σWT = 0.25. It 
follows that

	

σ* . . . . .
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= 126

Thus, the sample size required for achieving an 80% power for establishing 
similarity at the 5% level of significance is given by

	

n z z
BT BR
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= +
−

σ
σ δσ

α β* ( )
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. ( . . )
( . . .

2 2

2 2 2

2

2 2
0 126 1 65 0 84
0 35 0 5 0 4552 2)

≈ 154.

Thus, a total of 308 subjects (154 subjects per arm) are needed in order to 
achieve the desired power for establishing similarity in inter-subject vari-
ability between treatment groups.
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9.3.2  Replicated Crossover Design

Similarly, under Model 9.5, let n = n1 + n2; the inter-subject variabilities can 
be estimated by
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For testing non-inferiority and superiority, similarly, consider the following 
hypotheses:

	 H Ha0 0 0:† † :† ,η η≥ <vs.

where η σ δσ= −BT BR
2 2 . For a given significance level of α, let ns = n1 + n2 − 2, an 

approximate (1 − α) × 100%th upper confidence bound for η can be calculated 
as ˆ ˆη ηU U= + ∆ , where
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Thus, the null hypothesis is rejected at the α level of significance if η̂U < 0. On 
the other hand, under the alternative hypothesis, the power of the aforemen-
tioned test can be approximated by
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Hence, the sample size needed in order to achieve the power of 1 − β at the α 
level of significance is given by
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9.4  Comparing Total Variability

In practice, in addition to the intra-subject and inter-subject variabilities, the 
total variability is also of interest to the investigator. The total variability is 
defined as the sum of the intra-subject and inter-subject variabilities. As the 
total variability is observable even in an experiment without replicates, in 
this section, both replicated and non-replicated designs are discussed.

9.4.1  Parallel Design without Replicates

Consider a parallel design without replicates. In this case, Model 9.1 reduces to

	 yij i ij= +µ ε , 	 (9.7)

where εij are assumed to be i.i.d. as N Ti( , )0 2σ . In this case, the total variability 
can be estimated by
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Similar to Equation 9.4, the following two one-sided hypotheses are com-
monly considered for testing similarity in total variability between drug 
products:
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Thus, for a given significance level α, the null hypothesis of dissimilarity is 
rejected and the alternative hypothesis of similarity is accepted if
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On the other hand, under the alternative hypothesis of similarity, a conser-
vative approximation to the power is given by
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Hence, the sample size needed for achieving the power of 1 − β can be 
obtained by solving the following equation:

	

δσ
σ

β

α

TT

TR

n n

n n

F
F

2

2
2 1 1

1 1 1
= − −

− − −

/ , ,

, ,
.

9.4.2  Parallel Design with Replicates

Under Model 9.7, the total variabilities can be estimated by

	
ˆ ˆ ,σ σTi Bi Wis m

m
2 2 2

1
= +

−

where
sBi2  is defined in Equation 9.6
σ̂Wi2  is given in Equation 9.2

Let η σ δσ= −TT TR
2 2 . Then, a natural estimator is given by
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2 2
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For testing similarity, the hypotheses of interest given in Equation 9.8, we 
reject the null hypothesis and conclude similarity at the α level of signifi-
cance if both hypotheses in Equation 9.8 are rejected with significance level 
α. The test can be performed by calculating a (1 − α) × 100% upper confidence 
bound for η σ δσ1

2 2= −TT TR and a (1 − α) × 100% lower confidence bound for 
η δσ σ2

2 2= −TT TR by the MLS method. For example, the (1 − α) × 100% lower 
confidence bound for η1 is given by
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Thus, the null hypothesis is rejected at the α level of significance if η̂1 0U < . 
The power of the aforementioned test can be approximated by
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Hence, the sample size needed in order to achieve the power of 1 − β at the α 
level of significance is given by
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9.4.3  Standard 2 × 2 Crossover Design

Under the standard 2 × 2 crossover design, the notation defined in Model 9.5 
can still be used. However, the subscript l is omitted as no replicate exists. 
Under Model 9.5, the total variability can be estimated by
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and
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For testing non-inferiority/superiority, similarly, consider the following 
hypotheses:

	 H Ha0 0 0: : ,η η≥ <versus

where η σ δσ= −TT TR
2 2 . For a given significance level of α, an approxi-

mate (1 − α) × 100% upper confidence bound for η can be calculated as 
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Thus, the null hypothesis is rejected at the α level of significance if η̂U < 0. On 
the other hand, under the alternative hypothesis, the power of the aforemen-
tioned test can be approximated by
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Hence, the sample size needed in order to achieve the power of 1 − β at the α 
level of significance is given by

	
n z z

TT TR
= +

−
+σ

σ δσ
α β* ( )

( )
.

2 2

2 2 2 2



218 Biosimilars: Design and Analysis of Follow-on Biologics

9.4.4  Replicated 2 × 2m Crossover Design

Under Model 9.5, the total variabilities can be estimated by
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where σWk2  and sBk2  are as defined earlier. Similarly, for testing non-inferiority 
and superiority, consider the following hypotheses:

	 H Ha0 0 0: : ,η η≥ <versus

where η σ δσ= −TT TR
2 2 . For a given significance level of α, let ns = n1 + n2 − 2, an 

approximate (1 − α) × 100%th upper confidence bound for η can be calculated 
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Thus, the null hypothesis is rejected at the α level of significance if η̂U < 0. On 
the other hand, under the alternative hypothesis, the power of the aforemen-
tioned test can be approximated by
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Hence, the sample size needed in order to achieve the power of 1 − β at the α 
level of significance is given by
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9.5  Comparing Intra-subject CVs

In addition to comparing intra-subject variabilities, it is often of interest to 
study the intra-subject CV, which is a relative standard deviation adjusted 
for mean. By definition of CV, the problem of comparing CVs is reduced to 
the problem of comparing intra-subject variabilities if the test product and 
the reference product have identical mean. On the other hand, if the intra-
subject variability of the test product is the same as that of the reference 
product, the problem of comparing CVs becomes the problem of comparing 
means between treatment groups. Statistically, comparing intra-subject CVs 
reduces a two-dimensional comparison (comparing means and comparing 
intra-subject variabilities) to a one-dimensional comparison.

In recent years, the use of intra-subject CV has become increasingly 
popular. For example, the FDA defines highly variable drug products 
based on their intra-subject CVs. That is, a drug product is considered a 
highly variable drug if its intra-subject CV is greater than 30%. The intra-
subject CV is also used as a measure for reproducibility of blood levels 
of a given drug product when the drug product is repeatedly adminis-
tered at different dosing periods. In practice, two methods are commonly 
employed for comparing intra-subject CVs. One is referred to as the con-
ditional random effects model proposed by Chow and Tse (1990) and the 
other one is called the simple random effects model proposed by Quan 
and Shih (1996). In this section, the method based on the simple random 
effects model is introduced.

Under Model 9.5, an estimator of the intra-subject CV can be obtained as
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Hence, by the central limit theorem, CVi�  is asymptotically distributed as a 
normal random variable with mean CVi and variance σi in*2/ , where
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An intuitive estimator of σi*2 is given by
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For testing similarity, the following hypotheses are usually considered:
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The two drug products are concluded to be similar to each other if the null 
hypothesis is rejected at the α level of significance if
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Under the alternative hypothesis that |CVT − CVR| < δ, the power of the afore-
mentioned test is approximately
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Hence, under the assumption that n = n1 = n2, the sample size needed in order 
to achieve 1 − β at the α level of significance can be obtained by solving
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9.6  Concluding Remarks

For assessment of average bioequivalence or biosimilarity, a one-size-fits-all 
criterion of (80%, 125%) is adopted based on log-transformed data. For assess-
ment of equivalence or similarity in variability including intra-subject vari-
ability, inter-subject variability, and total variability as described in this 
chapter, a one-size-fits-all criterion of (δ, 1/δ), where 0 < δ < 1, is considered. 
In practice, δ = 1/2 or δ = 2/3 are often considered. In order to address the 
degree of similarity and the question “How similar is considered highly 
similar?” disaggregated criteria by comparing average responses first and 
then the variability in responses is suggested. However, further research is 
needed in order to have a better understanding of the statistical properties 
of the proposed disaggregated criteria. To provide a better understanding 
of sample sizes required for comparing variabilities, Table 9.1 gives a sum-
mary of formulas for sample size calculation for achieving an 80% power 
for establishment of similarity in variability (including intra-subject vari-
ability, inter-subject variability, total variability, and intra-subject CV) 
between a biosimilar (test) product and an innovative (reference) product 
under a parallel design with replicates and a replicated crossover design.

For comparing intra-subject variabilities and/or intra-subject CVs between 
drug products, replicates from the same subject are essential regardless of 
whether the study design is a parallel group design or a crossover design. 
In clinical research, data are often log-transformed before the analysis. It 
should be noted that the intra-subject standard deviation of log-transformed 
data is approximately equal to the intra-subject CV of the untransformed 
(raw) data. As a result, it is suggested that intra-subject variability be used 

TABLE 9.1

Sample Size Formulas for Comparing Variabilities

Comparison
Parallel Design 
with Replicates

Replicated 2 × 2m 
Crossover Design
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n z z

CV CV
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/α β σ σ
δ

2
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2

Note:	 δ, similarity limit; r WT WR= ∈( ) ( , )σ σ δ2 2 1/ ; N = n1 + n2; n = n1 = n2; m, num-
ber of replicate.
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when analyzing log-transformed data, while the intra-subject CV be consid-
ered when analyzing untransformed data.

As indicated earlier, comparing intra-subject variabilities and/or intra-
subject CVs requires replicates from the same subjects. This is a limitation for 
parallel design, which is considered the design of choice for the assessment 
of biosimilarity of biosimilar products. To overcome this problem, alterna-
tively, it is suggested that the comparison between total variabilities of the 
test product and the reference product be performed under the assumption 
that the difference in intra-subject variabilities is within an acceptable range.

For assessment of inter-subject variability and/or total variability, Chow 
and Tse (1991) indicated that the usual analysis of variance models could lead 
to negative estimates of the variance components, especially the inter-subject 
variance component. In addition, the sum of the best estimates of the intra-
subject variance and the inter-subject variance may not lead to the best esti-
mate for the total variance. Chow and Shao (1988) proposed an estimation 
procedure for variance components that will not only avoid negative estimates 
but also provide a better estimate as compared to the maximum likelihood 
estimates. For estimation of total variance, Chow and Tse (1991) proposed a 
method as an alternative to the sum of estimates of individual variance com-
ponents. These ideas could be applied to provide a better estimate of sample 
sizes for studies comparing variabilities between drug products.

In recent years, the assessment of reproducibility in terms of intra-subject vari-
ability or intra-subject CV in clinical research has received much attention. Shao 
and Chow (2002) defined reproducibility of a study drug as a collective term that 
encompasses consistency, similarity, and stability (control) within therapeutic 
index (or window) of a subject’s clinical status (e.g., clinical response of some 
primary study endpoint, blood levels, or blood concentration–time curve) when 
the study drug is repeatedly administered at different dosing periods under 
the same experimental conditions. Reproducibility of clinical results observed 
from a clinical study can be quantitated through the evaluation of the so-called 
reproducibility probability, which will be further discussed in Chapter 11.

In biosimilar studies, one of the controversial issues is that what if we 
pass biosimilarity assessment based on the analysis of average responses 
but detect that there is a significant difference in variability of the responses 
(intra-subject variability, inter-subject variability, or total variability). In this 
case, it is a concern whether the heterogeneity of the variabilities (intra-
subject variability, inter-subject variability, or total variability) will post 
any safety concern in real practice as biosimilar products are known to be 
sensitive to a small change or variation in environmental factors during the 
manufacturing process. Thus, it is of particular interest to study the potential 
impact of the heterogeneity of the variabilities on the assessment of biosimi-
larity and especially interchangeability (in terms of the concepts of switch-
ing and alternating) if possible.
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10
Impact of Variability on Biosimilarity 
Limits for Assessing Follow-on Biologics

10.1  Introduction

As mentioned in the previous chapters, in a typical bioequivalence study 
for generic approval, the test product is said to be average bioequivalent 
with the reference product if the 90% confidence interval of the ratio of geo-
metric means of the primary pharmacokinetic (PK) responses such as AUC 
and Cmax is within the bioequivalence limits of 80% and 125% (FDA, 2001, 
2003). This one-size-fits-all ABE criterion ignores the variability associated 
with the responses although the number of subjects required for conclud-
ing ABE with a desired power depends upon the magnitude of the within-
subject variability of the product. One of the major criticisms is that the 
one-size-fits-all ABE criterion may penalize good products with smaller 
variability in the sense that they may fail to pass the one-size-fits-all ABE 
criterion if the intra-subject variability of the reference product is large. To 
overcome the problem, it is suggested to widen the bioequivalence limits for 
products with large variability in order to increase the probability of passing 
for those drug products with smaller variability.

Since mid-1990s, the FDA considers drug products with a within-subject 
coefficient of variation (CV) of 30% or more as highly variable drugs (Shah 
et al., 1996). The assessment of bioequivalence for highly variable drugs has 
attracted much attention since then (see, e.g., Boddy et al., 1995; Tothfalusi 
et  al., 2001, 2009; Tothfalusi and Endrenyi, 2003; Endrenyi and Tothfalusi, 
2009). Most discussions are directed to (1) proposal of more flexible bioequiv-
alence limits, e.g., bioequivalence limits adjusted for intra-subject variability 
and/or therapeutic index, and (2) increase the probability of success for the 
development of highly variable drug products by widening the bioequiva-
lence limits. For these purposes, Haidar et al. (2008) proposed the use of the 
so-called reference scaled average bioequivalence criterion (SABE). This pro-
posal was subsequently adopted by the FDA as standards for bioequivalence 
assessment of highly variable drug products.
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For assessment of biosimilarity of biosimilar products or follow-on bio-
logics, large variability is likely to occur during the manufacturing pro-
cess of biological products than that of the traditional small-molecule drug 
products. This large variability may be due to variability in the biologic 
mechanisms, inputs, and relatively large number of complex steps in the 
process (Roger, 2006; Roger and Mikhail, 2007; Woodcock, 2007; Chow 
and Liu, 2010). Thus, some researchers consider that biosimilar products 
are highly variable drug products and recommend that the assessment of 
biosimilarity should take variability into consideration whenever possible. 
As a result, biosimilarity assessment based on the SABE is recommended 
(Hsieh et al., 2010).

In this chapter, we focus on the assessment of average biosimilar-
ity of follow-on biologics based on some clinical endpoints from parallel 
group designs. In the next section, the relationship between variability 
and biosimilarity limit is studied given that power and all other param-
eters fixed. Based on this relationship, several scaled biosimilarity limits 
are proposed in Section 10.3. The properties of the proposed biosimilar-
ity limits for assessing biosimilar products are studied and compared in 
the subsequent section. Conclusions and discussions are presented in the 
last section.

10.2  Relationship between Variability and Biosimilarity Limits

In this section, we start with the average biosimilarity and explore the 
impact of variability on biosimilarity limits given that other parameters 
(e.g., power of 1 − β, type I error of α, sample size, and true treatment effect) 
are fixed. The relationship can help in addressing the questions of quantita-
tive standard for what constitutes highly variable drugs; and what biosimi-
larity limits are appropriate for highly variable biologics. As indicated in 
the previous chapters, several different criteria for assessing average bio-
equivalence (ABE) or biosimilarity have been proposed in the literature. For 
simplicity, in this section, we will focus on the moment-based criteria as 
described later.

Consider a parallel design of the study employed for evaluating the ABE 
of the test product with the reference product. Let T and R be the parameters 
of interest with means of μT and μR, respectively. For example, in a typical BE 
study with primary PK responses and ABE limit of (80%, 125%), the interval 
hypothesis for testing the ABE of two products can be expressed as

	
H HT

R

T

R

T

R
0 80 125 80 125: % %† : % %.µ

µ
µ
µ

µ
µα≤ ≥ < <or vs.
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Since the natural log transformation of PK response usually follows the nor-
mal distribution, the hypothesis can be re-expressed in terms of difference as
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T R T R0 0 2231 0 2231

0 22

: ln( ) ln( ) . ln( ) ln( ) .
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However, in the assessment of FOB, a clinical trial is required where the 
parameters of interest are clinical endpoints that are often assumed to be 
normally distributed. Therefore, without loss of generality, here we focus on 
the interval hypothesis expressed using mean difference as follows:

	 H HT R L T R U L T R U0 : : † ,µ µ θ µ µ θ θ µ µ θα− ≤ − ≥ < − <or vs. 	 (10.1)

where (θL, θU) is the average biosimilarity limit. Adopting the concept used 
in the non-inferiority trials, the FOB is expected to obtain similar fraction 
of effect, μR, as observed in the reference drug. We therefore choose to form 
the biosimilarity limit as θ = λ × μR, 0 ≤ λ ≤ 1, e.g., ±20% × μR. In particular, 
if symmetric limits on either direction are desired for biosimilarity, we will 
employ θ = θU = −θL for rest of the discussions.

Let us denote independent samples of Ti and Rj to be the observations of 
T and R with i = 1, …, nT and j = 1, …, nR. Without loss of generality, assume 
Ti and Rj are independent samples from N(μT, VT) and N(μR, VR), respectively. 
Then the 100(1 − 2α)% confidence interval based on the parallel design for 
μT − μR can be expressed as
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where T
–
 and R

–
 are the unbiased estimators of μT and μR, and Z1 − α the (1 − α) 

percentile of standard normal distribution. The ABE of the test and reference 
products will be concluded at the significance level of α if the aforemen-
tioned confidence interval lies entirely within (θL, θU). Thus, the probability 
of concluding ABE can be expressed as
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In particular, if θ = θU = −θL (i.e., symmetric limits on either direction), nT = anR, 
VT = bVR, and C n b anR R R= +( ) ×1/ / µ , the aforementioned equation can be 
expressed as
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Since the power of the test is defined as correctly concluding ABE when 
μT − μR is 0 or close to 0 (within the biosimilarity limit), we can obtain the 
required biosimilarity limit (θ) to achieve desired power and type I error, 
given the variability as measured by CV by solving the equation
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Figure 10.1 visually illustrated the relationship between θ and CV obtained 
from the numerical solution of the aforementioned equation under various 
scenarios. From the plot, an approximate linear pattern between the margin 
θ and CV is observed, which motivates us to approximate Expression 10.2 
using the first order of Taylor expansion around μT − μR as follows:
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Solving the equation, we get

	 θ µ µ µ µα β= +( ) × × + −( ) + −( )− −Z Z C oR T R T R1 1 2( ) ./ CV

Therefore, when μT − μR is close to 0, the closed form of relationship between 
θ and CV can be approximated as

	 θ α β= +( ) × ×− −Z Z C R1 1 2( / ) .CV 	
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FIGURE 10.1
Relationship between the margin and CV obtained from the numerical solution of Equation 10.3: 
nT = nR, VT = VR, and α = 0.05, β = 0.2.
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When μT − μR is largely deviated from 0 (e.g., outside of the biosimilarity 
limit), the probability of concluding biosimilarity in Expression 10.2 will be 
mainly obtained by one side of the interval:
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Under this situation, we get
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Expressions 10.4 and 10.5 provide us some closed form of relationship 
between biosimilarity limit (θ) and variability as measured by CV, approx-
imately. In Figure 10.2, we compare the approximation obtained from 
Expressions 10.4 and 10.5 with the exact numerical solutions. It turns out that 
the approximation is close to the precise numerical solution. When μT = μR, 
the solid and dotted purple lines are overlapped. The precise numerical solu-
tion and the approximation from those closed forms are off slightly as CV 
goes beyond 1. But the difference decreases as the sample size increases. So 
when the sample size reaches 100, they are almost overlapped again. This 
suggests that the relationship provided in closed form in Expressions 10.4 
and 10.5 approximates the real precise relationship very well, and they are 
much easier to use. Therefore, they will be utilized in our following discus-
sions about scaled biosimilarity limits.

Another observation from Expressions 10.4 and 10.5 is that the required 
margin is linearly related to the CV, given the fixed choice of type I error, 
desired power, and sample size. In a traditional PK bioequivalence study 
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where sample size is generally less (e.g., n from 18 to 24), the margin of 
±20% × μR will provide enough power for CV ≤ 30%, which is consistent 
with current generally accepted criteria. In the FOB assessment where a 
clinical study is planned, the sample size per group usually can go up to 
fifty or hundreds per group. With the larger sample sizes, a fixed margin 
of ±20% × μR can provide enough power for CV up to 40%. However, when 
CV is even larger than 40%, which is common in biological products, scaled 
margins need to be applied to account for the large variability of the refer-
ence drug itself.

In the next section, several scaled margins are proposed based on the 
literature or the relationship derived.
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FIGURE 10.2
Comparison of the relationship between the margin and CV obtained from the numerical solu-
tion of Equation 10.3 and from the approximations of Equations 10.4 and 10.5: nT = nR, VT = VR, 
and α = 0.05, β = 0.2.
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10.3  Scaled Biosimilarity Margins

Zhang et al. (2013) proposed the following margins aim to have the follow-
ing properties:

	 1.	Continuous.
	 2.	When CV is small, the margin is fixed and consistent with current 

regulatory standards.
	 3.	When CV is large, the adjusted margin becomes wider but shall not 

be too wide to properly control the consumer’s risk.

These margins are described in the following sections.

10.3.1  Fixed Cutoff Linear Scaled Margin

The fixed cutoff linear scaled margin can be expressed as follows:
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where CV0 is the chosen cutoff for high-variability drug definition (e.g., 30% 
or 40%), and θ0 is the fixed margin commonly accepted (e.g., a margin of 
±20% of μR).

Note that CV= V/µ are actually two components. Therefore, CV > CV0 
does not necessarily mean larger variability. It could also imply small means. 
However, in a trial of evaluating FOB, the CV reflects the inner property of the 
reference drug and is expected to remain constant. Therefore, it is a fine quan-
titative for defining high-variable drugs and to be used in the scaled margin 
adjustment. It should be noted that the margin given in Equation 10.6 is simi-
lar to the SABE described in the literature, which is illustrated in Figure 10.3.

As we can see, the slope of the scaled margin is decided by two points: 
CV = 0 and CV = CV0. When CV is close to 0, which means no variability 
around mean, the margin should be small and near 0 too. When CV = CV0, 
the margin equals the fixed margin so the continuity can be reserved.

However, this proposed margin tends to become wider when the CV 
is really high. For example, take CV0 = 0.3 and θ0 = ±20% of μR. When true 
CV = 1.2, the scaled margin will be ±80%*μR for μT − μR. With this more than 
half of the treatment effect difference, usually it is not advisable to con-
clude biosimilarity. Therefore, in our next proposal, we try to slow down 
the magnitude of the slope by taking the square root of the original slope 
(Figure 10.4).
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10.3.2  Fixed Cutoff Square Root Scaled Margin

Unlike the fixed cutoff linear margin, the fixed cutoff square root scaled 
margin is given as follows:
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where again CV0 is the chosen cutoff for high-variability drug definition, and 
θ0 is the fixed margin commonly accepted.

In the two proposals described earlier, the adjustment is based on some 
pre-specified CV0 and θ0. However, unlike BE studies where primary end-
points are typically PK responses, endpoints from clinical studies vary a lot 
for different disease areas. It is not practical to define a uniform cutoff for 
highly variable drug definition, as what has been done in BE studies.

10.3.3  Dynamic Cutoff Scaled Margin

Here, utilizing the relationship derived in the first part of the chapter, a third 
scaled margin with dynamic cutoff of CV is proposed as follows:
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where θ0 is the fixed margin commonly accepted (e.g., a margin of ±20% 
of μR) and
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As it can be seen, the high-variable drug cutoff CV0 also depends on the 
sample size. Bearing in mind that a study with large enough sample size can 
always get small standard error no matter how big the inner variability of the 
reference drug is, a fixed CV0 for high-variable drug and thus a wider margin 
will make it easier for a study with large sample size to achieve biosimilarity, 
by benefiting from the large sample size used.

By using the proposed CV0 mentioned earlier, the (CV/CV0 × θ0) results in 
the scaled margin as shown in Expression 10.8. This expression is roughly 
similar to the required margin for given power as derived in Formula 10.4 
because when nT = nR = n and VT = VR
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10.3.4  Dynamic Cutoff with Factor Scaled Margin
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where θ0 is the fixed margin commonly accepted (e.g., a margin of ±20% 
of μR) and
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The thinking behind this proposal is similar to the third scaled margin men-
tioned earlier, but with a factor (e.g., 48) enforced to define highly variable 
drug and control scaled margin not to exceed a certain level.

10.3.5  Dynamic Cutoff with Slope Scaled Margin

The scaled margins proposed so far are based on the closed form of relation-
ship between the margin and variability obtained, given power and other 
parameters. Power is the probability of correctly concluding biosimilarity, 
given the test drug is truly similar to the reference drug. For a study where 
test drug is deviated from reference drug, we would like to control the type I 
error (thus consumer’s risk) rather than wanting more power. Therefore, in 
the following proposal, we also take the adjustment of β into consideration 
when scaling the margins:
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Figure 10.4 compares the first three proposed margins with the required 
margins, given power is 80%. As we can see, the blue line (fixed cutoff lin-
ear scaled margin) got inflated and outbound the required margin when 
μT = μR = 100 (the purple dotted line) when CV is large. On the other hand, 
the fixed cutoff square root scaled margin (red solid line) gives us a smaller 
margin than actually needed. The dynamic cutoff and slope scaled margin 
overlapped with the purple dotted line when CV is larger than the cutoff, 
which suggests that it gives the same margin as required for achieving the 
desired power. When CV is small (smaller than the cutoff), it uses the com-
monly accepted margin (e.g., ±20% of μR).

10.4  Simulations

To compare the performances of the proposed scaled margins and unscaled 
margin, we carried out the simulations under different scenarios with

•	 α = 0.05 and β = 0.2 (i.e., power of 80%)
•	 Sample size: 50, 100 per group
•	 μR = 100; and μT = 50 to 100 by 5
•	 CV = 0.1 to 1 by 0.05
•	 θ0 = 20% of μR

•	 CV0 = 30% used in the two fixed cutoff margins
•	 factor = 48 used in the dynamic cutoff with factor scaled margin

The results from 5000 iterations are illustrated in Figures 10.5 and 10.6.
As shown in the left column of Figure 10.5, when we have equal means 

between reference and test sample, the power to detect the biosimilarity will 
drop substantially for unscaled margin with the increase of CV, while all the 
proposed scaled margins show improved power in different levels. The fixed 
cutoff linear scaled margin (FCLM) improves power the most at sample sizes 
of 50 and 100. The fixed cutoff square root scaled margin (FCSRM) improves 
the power to a lesser degree than the fixed cutoff linear scaled margin. It 
provides 80% power when CV = 0.75 with sample size 100, but only less than 
40% with sample size 50. Both the dynamic cutoff (DCM) and dynamic cut-
off and scope scaled (DCSM) margins provide around 80% power for both 
sample sizes. The dynamic cutoff with factor scaled margin (DCFM) is a 
little bit less powerful than the DCM and DCSM, with power maintained 
around 60% (Figure 10.7).
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Figure 10.5d is for mean difference at 20, which reflects the performance of 
the scaled margins with respect to type I error. From the graph, the unscaled 
margin controls the type I error at the very low level for all various CVs, 
while all the proposed scaled margins inflate the type I error to a certain 
level. The FCLM results in the unreasonable type I error. The DCFM inflates 
at a much lesser degree only when CV is greater than 60%.

In the other set of plots (Figure 10.6), the probability of concluding biosim-
ilarity was plotted against mean difference of μT − μR, under sample sizes 
of 50 and 100, and CV = 0.3, 0.4, 0.5, 0.6, 0.75, and 0.9. The results are consis-
tent with Figure 10.5. All the proposed scaled margins improve the power 
compared to the unscaled margin, but inflate the type I error to different 
degrees. The dynamic cutoff and the dynamic cutoff and slope scaled mar-
gins are very comparable. The dynamic cutoff with factor shows the most 
desired pattern.

10.5  Discussions

In the evaluation of bioequivalence for small-molecular drugs, there is 
scientific justification for defining wider bioequivalence limits for highly 
variable drugs, and regulatory agencies are moving toward this direc-
tion. Given that large variability is often more likely to occur for biological 
products than for the traditional small-molecular drug products, evalua-
tion of biosimilarity for highly variable biological products shall take this 
into consideration as well. In this chapter, we showed that to maintain 
desired power with reasonable sample size, biosimilarity margins should 
take variability into consideration when assessing ABE in FOBs. For this 
purpose, five scaled margins were proposed and their performances were 
evaluated. From simulations, it turns out it is hard to reach the ideal situ-
ation when the margin is power efficient and well controlling the type I 
error rate (i.e., consumer’s risk) simultaneously. The dynamic scaled mar-
gins perform relatively better than the other two fixed scaled margins in 
balancing power and type I error, especially when sample size is 100. This 
is because the scaled margin well reflects the theoretically derived rela-
tionship between variability and required margins to achieve the given 
power. Therefore, the scaled margins, especially the one with empirical 
factors, are those that we will further explore and recommend to be used 
in evaluating FOBs.

In addition, in the small-molecular drugs world, a within-subject CV of 
30% or more had become a generally accepted quantitative standard for what 
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constitutes highly variable drugs. This standard may not apply to clinical 
trials for assessing FOBs given the following:

The endpoints in the traditional BE study are uniform (AUC or Cmax of PK). 
For assessing FOBs, most likely, a clinical trial is needed where the clinical 
endpoints really vary from indication to indication.

The traditional BE study is intended to be a small study with about 25 sub-
jects at the most, while clinical trial size could vary from dozens to hundreds.

Therefore, the choice of definition for the highly variable biological drugs 
should be further considered.
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11
Drug Interchangeability

11.1  Introduction

In the United States, for traditional chemical (small-molecule) drug prod-
ucts, when an innovative (brand-name) drug product is going off patent, 
pharmaceutical and/or generic companies may file an abbreviated new 
drug application (ANDA) for the approval of generic copies of the brand-
name drug product. In 1984, the U.S. Food and Drug Administration (FDA) 
was authorized to approve generic drug products under the Drug Price 
Competition and Patent Term Restoration Act, which is known as the Hatch–
Waxman Act. For the approval of small-molecule generic drug products, 
the FDA requires that evidence of the average bioavailability be provided 
in terms of the rate and extent of drug absorption. As indicated earlier, 
the assessment of bioequivalence as a surrogate endpoint for the quanti-
tative evaluation of drug safety and efficacy is based on the Fundamental 
Bioequivalence Assumption. It states that if two drug products are shown to 
be bioequivalent in terms of average bioavailability, then it is assumed that 
they will reach the same therapeutic effect or that they are therapeutically 
equivalent and hence can be used interchangeably. Under the Fundamental 
Bioequivalence Assumption, regulatory requirements, study design, 
criteria, and statistical methods for assessment of bioequivalence have been 
well established (see, e.g., Schuirmann, 1987; EMA, 2001; FDA, 2001, 2003; 
WHO, 2005; Chow and Liu, 2008).

As the patents of a number of biological products are due to expire 
in the next few years, the subsequent production of biosimilar products 
has attracted much attention within the pharmaceutical/biotechnology 
industry as biosimilar manufacturers strive to obtain part of an already 
large and rapidly growing market. The potential opportunity for price 
reduction be provided the originator biological products remains to be 
determined, as the advantage of a slightly cheaper price may be out-
weighed by the hypothetical increased risk of side-effects from biosim-
ilar molecules that are not exact copies of their originators. Thus, it is 
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a great concern whether the approved biosimilar products can be used 
interchangeably and safely.

In the next section, the concepts of population and individual bioequiv-
alence (IBE) for addressing drug interchangeability in terms of prescrib-
ability and switchability for small-molecule drug products are reviewed. 
Section  11.3 focuses on the definition, interpretation, and assessment of 
interchangeability in terms of the concepts of switching and alternating for 
biosimilars as described in the BPCI Act. Several study designs for address-
ing switching, alternating, and/or switching/alternating are summarized in 
Section 11.4. A general unified approach using the biosimilarity index for the 
assessment of biosimilarity and interchangeability, which are derived based 
on the concept of reproducibility probability, is proposed and discussed in 
Section 11.5. Brief concluding remarks are given in the last section.

11.2  Population and Individual Bioequivalence

As indicated earlier, when a generic drug is claimed to be bioequivalent to 
a brand-name drug, it is assumed that they are therapeutically equivalent. 
A generic drug can be generally used as a substitution of the brand-name 
drug if it has been shown to be bioequivalent to the brand-name drug. The 
FDA does not indicate that two generic copies of the same brand-name drug 
can be used interchangeably even though they are bioequivalent to the 
same brand-name drug. In practice, bioequivalence between generic copies 
of a brand-name drug is not required. However, as more generic drug prod-
ucts become available, it is a concern whether the approved generic drug 
products have mutually the same quality and therapeutic effect even if each 
of them is bioequivalent to the brand-name drug product, and whether they 
can be used safely and interchangeably. The concept of drug interchange-
ability for small-molecule drug products involves drug prescribability and 
drug switchability. To evaluate whether generic drug products can be used 
safely and interchangeably, the FDA suggested that population bioequiva-
lence (PBE) and IBE be assessed for addressing drug prescribability and 
drug switchability of approved generic drug products, respectively (FDA, 
2001, 2003).

11.2.1  Population Bioequivalence

Drug prescribability is referred to as the physician’s choice for prescribing an 
appropriate drug for his/her patients between the brand-name drug and its 
generic copies. To address drug prescribability, the FDA recommended that 
PBE be assessed. In addition to the average of bioavailability, PBE focuses on 
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the variability of bioavailability. As indicated in Section 2.3, the 2001 FDA 
guidance recommends the following criterion be used for assessing PBE:

	
θ δ σ σ

σ σP
TT TR

T TR
= + −( )
max{ , }

,
2 2 2

0
2 2

where δ µ µ σ σ= −T R TT TR, ,2 2  are the total variances for the test product and the 
reference product, respectively, and σT0

2  is the scale parameter specified by 
the regulatory agency or the sponsor. PBE can be claimed if the one-sided 
95% upper confidence bound for θP is less than a pre-specified bioequiva-
lence limit. In view of the previously mentioned PBE criterion, PBE can be 
claimed if the null hypothesis in

	 H Ha0 0 0: : †λ λ≥ <versus

is rejected at the 5% level of significance and the observed geometric means 
ratio (GMR) is within the limits of 80% and 125%, where

	 λ δ σ σ θ σ σ= + − −2 2 2 2
0
2

TT TR PBE TRmax( , ),

and θPBE is a constant specified in the 2001 FDA draft guidance. Under a 2 × 2 
crossover design, the one-sided 95% upper confidence bound for θP can be 
obtained under the following model:

	 y F P Q Sijk l j k ikl ijk= + + + + +µ ε , 	 (11.1)

where
μ is the overall mean
Pj is the fixed effect of the jth period
Qk is the fixed effect of the kth sequence
Fl is the fixed effect of the lth drug product
Sijk is the random effect of the ith subject in the kth sequence under the lth 

drug product
εijk’s are independent random errors distributed as N Wl( ,† )0 2σ

It is assumed that Sijk’s and εijk’s are mutually independent. It can be verified that 
(SikT, SikR), i = 1, 2, …, nk; k = 1, 2, are independent and identically distributed bivar-
iate normal random vectors with mean 0 and an unknown covariance matrix
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where σBl2  denotes the between-subject variability for the lth drug product 
and ρ is the correlation coefficient between the variations of the two formula-
tions. Thus, we have

	 σ σ σ σ σ σTT BT WT TR BR WR
2 2 2 2 2 2= + = +and .
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Under the Model 11.1, unbiased estimators for δ, σTT
2 , and σTR2  can be obtained 

as follows:
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jth period and σ1 12,  is σ σ σ σa b D WT WRa b,

2 2 2 2= + +  with a = 1 and b = 1. Commonly 
considered unbiased estimators for σTT

2  and σTR2  are given by

	

ˆ ( ) ( )

~

σTT
i

n

i
i

n

in n
y y y y2

1 2 1
11 11

2

1
22 22

21
2

1 2

=
+ −

− + −










= =

∑ ∑

���σ λTT n n

n n

2
2

2

1 2

1 2

2
+ −

+ −

and

	

ˆ ( ) ( )

~

σTR
i

n

i
i

n

in n
y y y y2

1 2 1
21 21

2

1
12 12

21
2

1 2

=
+ −

− + −










= =

∑ ∑

���σ λTR n n

n n

2
2

2

1 2

1 2

2
+ −

+ −

According to Chow et al. (2002), the following approximate 95% upper confi-
dence bound for λ when σ σTR

2
0
2≥  can be obtained:
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where V is an estimated variance of ˆ ˆ ˆδ σ θ σ2 2 21+ − +( )TT PBE TR of the form
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and C is an estimated variance-covariance matrix of ( ,† ,† )δ σ σˆ ˆ ˆTT TR
2 2 . Since δ̂ and 

( ,† )σ σˆ ˆTT TR
2 2  are independent, C is given by
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where C1 is the sample covariance matrix of ((yi11 − y–11)2, (yi21 − y–21)2), i = 1, 2, …, n1, 
and C2 is the sample covariance matrix of ((yi22 − y–22)2), (yi12 − y–12)2), i = 1, 2, …, n2. 
On the other hand, when σ σTR

2
0
2< , the upper confidence bound for λ should 

be modified as follows:
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where

	 V C0 2 1 1 2 1 1= − − ′( ,†,† ) ( ,†,† ) .δ δˆ ˆ

11.2.2  Individual Bioequivalence

Drug switchability is referred to as the switch from a drug (e.g., a brand-
name drug or its generic copies) to another (e.g., a generic copy) within the 
same patient whose concentration of the drug has been titrated to a steady, 
efficacious, and safe level. To address drug switchability, the FDA suggested 
that IBE be assessed under replicated crossover designs such as a replicated 
2 × 2 crossover design, i.e., (TRTR, RTRT), or a 2 × 3 two-sequence dual design, 
i.e., (TRT, RTR). In addition to comparison of means, IBE focuses on the vari-
ability of bioavailability and variability due to subject-by-drug interaction. 
Recall, the 2001 FDA guidance recommended that the following criterion be 
used for assessing IBE:

	
θ δ σ σ σ

σ σ
I

D WT WR

W WR
= + + −( )

{ }
2 2 2 2

0
2 2max ,

,

where δ µ µ σ σ σ= −T R WT WR D, , ,2 2 2  are the true difference between the means, 
the intra-subject variabilities of the test product and the reference prod-
uct, and the variance component due to subject-by-formulation interaction 
between drug products, respectively. σW0

2  is a scale parameter specified by 
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the regulatory agency or the sponsor. In view of the IBE criterion mentioned 
earlier, IBE can be claimed if the null hypothesis in

	 H Ha0 0 0:† :γ γ≥ <versus

is rejected at the 5% level of significance and the observed GMR is within the 
limits of 80% and 125%, where

	 γ δ σ σ σ θ σ σ= + + − − ( )2 2 2 2 2
0

2
D WT WR IBE WR Wmax ,

and θIBE is a constant specified in the 2001 FDA draft guidance.
For the assessment of IBE, FDA recommends that a replicated 2 × 2 cross-

over design, i.e., (TRTR, RTRT) or (RTRT, TRTR), be used. Under the 2 × 2 
replicated crossover design, the one-sided 95% upper confidence bound for 
θI can be obtained under the following statistical model:

	 y F W Sijk l ljk ikl ijk= + + + +µ ε , 	 (11.2)

where
μ is the overall mean
Fl is the fixed effect of the lth drug product
Wljk’s are fixed period, sequence, and interaction effects
Sijk is the random effect of the ith subject in the kth sequence under the lth 

drug product
εijk’s are independent random errors distributed as N Wl( ,† )0 2σ

It is assumed that Sijk’s and εijk’s are mutually independent. Under Model 11.2, 
and σD

2  is given by

	 σ σ σ ρσ σD BT BR BT BR
2 2 2 2= + − ,

which is the variance of SikT − SikR. Note that σD
2  is usually referred to as the 

variance component due to the subject-by-drug interaction. It can be verified 
that when σ σWR W

2
0

2≥ , the linearized criterion γ can be decomposed as follows:

	 γ δ σ σ θ σ= + + − +( )2
0 5 0 5
2 2 20 5 1 5. , . . . .WT IBE WR

Now, under Model 11.2, for subject i in sequence k, let xilk and zilk be the 
average and the difference, respectively, of the observations from drug 
product l, and let x–lk and z–lk be respectively the sample means based on 
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xilk’s and zilk’s. Thus, under Model 10.2, unbiased estimators for δ, σ0 5 0 52
. , . , 

and σWR2  can be obtained as follows:
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where sdk2  is the sample variance based on xiTk − xiRk, i = 1, 2, …, nk; an unbiased 
estimator of σWT2  is given by
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where sTk2  is the sample variance based on ziTk, i = 1, 2, …, nk. An unbiased 
estimator of σWR2  is given by
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where sRk2  is the sample variance based on ziRk, i = 1, 2, …, nk. Furthermore, 
since δ̂, ˆ . , .σ0 5 0 52 , σ̂WT2 , and σ̂WR2  are independent, when σ σWR W

2
0

2≥ , an approxi-
mate 95% confidence upper bound for γ can be obtained as follows:
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When σ σWR W
2

0
2< , an approximate 95% confidence upper bound for γ is 

given by
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where U0 is the sum as U except that the four quantities should be 
replaced by
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11.2.3  Remarks

Both criteria for PBE and IBE are aggregated moment-based criteria, which 
involve several variance components including the inter-subject and intra-
subject variabilities. Since the criteria are non-linear functions of the direct 
drug effect, inter-subject and intra-subject variabilities for the test product 
and the reference product, and the variability due to subject-by-drug interac-
tion (for the IBE criterion), a typical approach is to linearize the criteria and 
then apply the method of modified large sample (MLS) or extended MLS 
for obtaining an approximate 95% upper confidence bound of the linearized 
criteria (see, e.g., Hyslop et al., 2000; Lee et al., 2004). The key is to decompose 
the linearized criteria into several components and obtain independent and 
unbiased estimators of these components for obtaining a valid approximate 
upper confidence bound.

Alternatively, one may consider the method of generalized pivotal quan-
tity (GPQ) to assess PBE and/or IBE (see, e.g., Chiu et al., 2013). The idea of 
GPQ is briefly described later. Suppose that Y is a random variable whose 
distribution depends on a vector of unknown parameters, ζ = (θ, η), where θ 
is a parameter of interest and η is a vector of nuisance parameters. Let y be 
a random sample from Y and ŷ be the observed value of Y. Furthermore, let 
R = R(ŷ; y, ζ) be a function of ŷ, y, and ζ. The random quantity R is referred 
to as a GPQ, which satisfies the following two conditions:

	 1.	The distribution of R does not depend on any unknown parameters.
	 2.	The observed value of R, say r = R(ŷ; y, ζ), is free of the vector of nui-

sance parameters η.

In other words, r is only a function of (ŷ, θ). Thus, a (1 − α) × 100% generalized 
upper confidence limit for θ is given by R1−α, which is the 100(1 − α)th percen-
tile of the distribution of R. The percentiles of can be analytically estimated 
using a Monte Carlo algorithm.
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11.3  Interchangeability for Biosimilar Products

As indicated in the Public Health Act subsection 351(k)(3), the term inter-
changeable or interchangeability in reference to a biological product that 
is shown to meet the standards described in subsection (k)(4) (i.e., inter-
changeability) means that the biological product may be substituted for the 
reference product without the intervention of the health care provider who 
prescribed the reference product. Along this line, in what follows, the defi-
nition and basic concepts of interchangeability (in terms of switching and 
alternating) are given.

11.3.1  Definition and Basic Concepts

As indicated in the Public Health Act subsection 351(k)(3), a biological prod-
uct is considered to be interchangeable with the reference product if (1) the 
biological product is biosimilar to the reference product; and (2) it can be 
expected to produce the same clinical result in any given patient. In addition, 
for a biological product that is administered more than once to an individual, 
the risk in terms of safety or diminished efficacy of alternating or switching 
between the use of the biological product and the reference product is not 
greater than the risk of using the reference product without such alternation 
or switch.

Thus, there is a clear distinction between biosimilarity and interchange-
ability. In other words, biosimilarity does not imply interchangeability 
which is much more stringent. Intuitively, if a test product is judged to be 
interchangeable with the reference product, then it may be substituted, 
even alternated, without a possible intervention, or even notification, of 
the health care provider. However, the interchangeability is expected to pro-
duce the same clinical result in any given patient, which can be interpreted as 
that the same clinical result can be expected in every single patient. In reality, 
conceivably, lawsuits may be filed if adverse effects are recorded in a patient 
after switching from one product to another.

It should be noted that when FDA declares the biosimilarity of two drug 
products, it may not be assumed that they are interchangeable. Therefore, 
labels ought to state whether for a follow-on biologic which is biosimilar 
to a reference product, interchangeability has or has not been established. 
However, payers and physicians may, in some cases, switch products even if 
interchangeability has not been established.

11.3.2  Switching and Alternating

Unlike drug interchangeability (in terms of prescribability and switchability) 
(Chow and Liu, 2008), the FDA has slight perception of drug interchange-
ability for biosimilars. From the FDA’s perspectives, interchangeability 
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includes the concept of switching and alternating between an innovative bio-
logical products (R) and its follow-on biologic (T). The concept of switching 
is referred to as not only the switch from “R to T” or “T to R” (narrow sense 
of switchability) but also “T to T” and “R to R” (broader sense of switchabil-
ity). Note that “T to T” could indicate a switch from an approved biosimilar 
product to another approved biosimilar product, while “R to R” could be a 
switch from an innovative biological product to itself (e.g., from a different 
batch or made at a different location). As a result, in order to assess switch-
ing, biosimilarity for “R to T,” “T to R,” “T to T,” and “R to R” needs to be 
assessed based on some biosimilarity criteria under a valid study design. 
The BPCI Act indicates that the risk in terms of safety or diminished effi-
cacy of switching between the use of the biological product and the reference 
product should not be greater than the risk of using the reference product 
without such a switch. This suggests that the risk of switching between Ti, 
i = 1, …, K, where K is the number of approved biosimilars, and R should not 
be greater than the risk of switching between R and R.

On the other hand, the concept of alternating (in the sense that it only 
involves one test product T and one reference product R) is referred to as 
either a switch from T to R and then switch back to T (i.e., “T to R to T”) or the 
switch from R to T and then switch back to R (i.e., “R to T to R”). Thus, the dif-
ference between “the switch from T to R” then “the switch from R to T” and 
“the switch from R to T” then “the switch from T to R” needs to be assessed 
for addressing the concept of alternating. The BPCI Act also indicates that the 
risk in terms of safety or diminished efficacy of alternating between use of 
the biological product and the reference product should not be greater than 
the risk of using the reference product without such alternating. In practice, 
however, it should be noted that there may be more than one test product on 
the market. Thus, several switches are possible, e.g., R to T1 to T2 to R to T2, 
etc., which will make the assessment of alternation even more complicated if 
it is not impossible.

Thus, in practice, it is very difficult, if not impossible, to assess drug inter-
changeability of approved biosimilar products especially when there are 
multiple T’s and R’s in the marketplace. As stated in the BPCI Act, the relative 
risk between switching/alternating and without switching/alternating must 
be evaluated. However, little or no discussion about the criteria for assess-
ment of the relative risk was mentioned in the BPCI Act. In the recent FDA 
draft guidances on the demonstration of biosimilarity of follow-on biologics, 
little or no discussion was mentioned either regarding the criteria, study 
design, and statistical methods for the assessment of drug interchangeability 
in terms of switching and alternating. Thus, detailed regulatory guidances 
regarding the assessment of drug interchangeability in terms of switching 
and/or alternating need to be developed.

For assessing drug interchangeability, an appropriate study design should 
be chosen in order to address (1) the risk in terms of safety or diminished effi-
cacy of alternating or switching between the uses of the biosimilar product 
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and the reference product, (2) the risk of using the reference product without 
such alternation or switch, and (3) the relative risk between switching/alter-
nating and without switching/alternating.

In order to assess switching, an appropriate study design should allow the 
assessment of biosimilarity for “R to T,” “T to R,” “T to T,” and “R to R” so that 
we can evaluate the risk of switching between use of the biological product 
and the reference product and the risk of using the reference product without 
such a switch. In this case, the Balaam’s 4 × 2 crossover design, i.e., (TT, RR, 
TR, RT) may be useful. Under a Balaam’s design, the risk of switching from 
“T to T,” “R to R,” “T to R” and “R to T” can be assessed. Consequently, the 
relative risk between the switching and without switching can be assessed.

11.3.3  Remarks

With small-molecule drug products, bioequivalence generally reflects ther-
apeutic equivalence. Drug prescribability, switching, and alternating are 
generally considered reasonable. With biological products, however, varia-
tions are often larger (other than pharmacokinetic factors may be sensitive to 
small changes in conditions). Thus, often only parallel-group design rather 
than crossover kinetic studies can be performed. It should be noted that very 
often, with follow-on biologics, biosimilarity does not reflect therapeutic 
comparability. Therefore, switching and alternating should be pursued only 
with substantial caution, provided that clear regulatory guidances about cri-
teria, design and analysis are available.

11.4  Study Designs for Interchangeability

For assessment of bioequivalence for chemical drug products, a standard 
two-sequence, two-period (2 × 2) crossover design is often considered, except 
for drug products with relatively long half-lives. Since most biosimilar 
products have relatively long half-lives, it is suggested that a parallel-group 
design should be considered. However, parallel-group design does not pro-
vide independent estimates of variance components such as inter- and intra-
subject variabilities and variability due to subject-by-product interaction. 
Thus, it is a major challenge for assessing biosimilarity (especially for assess-
ing drug interchangeability) under parallel-group designs since each subject 
will receive the same product once.

As indicated in the BPCI Act, for a biological product that is administered 
more than once to an individual, the risk in terms of safety or diminished 
efficacy of alternating or switching between use of the biological product 
and the reference product is not greater than the risk of using the refer-
ence product without such alternation or switch. Thus, for assessing drug 
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interchangeability, an appropriate study design should be chosen in order 
to address (1) the risk in terms of safety or diminished efficacy of alternat-
ing or switching between use of the biological product and the reference 
product, (2) the risk of using the reference product without such alterna-
tion or switch, and (3) the relative risk between switching/alternating and 
without switching/alternating. In this section, several useful designs for 
addressing switching and alternation of biosimilar products are discussed.

11.4.1  Designs for Switching

Consider the broader sense of switchability. In this case, the concept of 
switching includes (1) switch from “R to T,” (2) switch from “T to R,” (3) 
switch from “T to T,” and (4) switch to “R to R.” Thus, in order to assess 
interchangeability of switching, a valid study design should be able to assess 
biosimilarity between “R and T,” “T and R,” “T and T,” and “R and R” based 
on some biosimilarity criteria. For this purpose, the following study designs 
are useful.

11.4.1.1  Balaam Design

Balaam design is a 4 × 2 crossover design, denoted by (TT, RR, TR, RT). 
Under a 4 × 2 Balaam’s design, qualified subjects will be randomly assigned 
to receive one of the four sequences of treatments: TT, RR, TR, and RT. For 
example, subjects in sequence 1 of TT will receive the test (biosimilar) prod-
uct first and then cross-overed to receive the reference (innovative biological) 
product after a sufficient length of washout (see Figure 11.1). In practice, a 
Balaam design is considered the combination of a parallel design (the first 
two sequences) and a crossover design (sequences #3 and #4). The purpose 
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FIGURE 11.1
Balaam design. Note: Balaam design is a 4 × 2 crossover design.
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of the part of parallel design is to obtain independent estimates of intra-
subject variabilities for the test product and the reference product. In the 
interest of assigning more subjects to the crossover phase, an unequal treat-
ment assignment is usually employed. For example, we may consider a 1 : 2 
allocation to the parallel phase and the crossover phase. In this case, for a 
sample size of N = 24, 8 subjects will be assigned to the parallel phase and 
16 subjects will be assigned to the crossover phase. As a result, four sub-
jects will be assigned to sequences #1 and #2, while eight subjects will be 
assigned to sequences #3 and #4, assuming that there is a 1:1 ratio treatment 
allocation within each phase.

As it can be seen from Figure 11.1, the first sequence provides not only 
independent estimate of the intra-subject variability of the test product but 
also the assessment for “switch from T to T,” while the second sequence 
provides independent estimate of the intra-subject variability of the refer-
ence product and compares difference between “R and R.” The other two 
sequences assess similarity for “switch from T to R” and “switch from R to 
T,” respectively. Under the 4 × 2 Balaam design, the following comparisons 
are usually assessed:

	 1.	Comparisons by sequence
	 2.	Comparisons by period
	 3.	T vs. R based on sequences #3 and #4—this is equivalent to a typical 

2 × 2 crossover design
	 4.	T vs. R given T based on sequences #1 and #3
	 5.	R vs. T given R based on sequences #2 and #4
	 6.	The comparison between (1) and (3) for assessment of treatment-

by-period interaction

It should be noted that the interpretations of the comparisons mentioned 
earlier are different. More information regarding statistical methods for data 
analysis of Balaam design can be found in Chow and Liu (2008).

11.4.1.2  Two-Stage Design

Alternatively, a two-stage crossover design described in Figure 11.2 may be 
useful for addressing interchangeability of switching. Under the two-stage 
design, qualified subjects are randomly assigned to receive either the test 
product or the reference product at the first stage. At the second stage, after a 
sufficient length of washout, subjects are randomly assigned to receive either 
the test product or the reference product with either equal or unequal ratio of 
treatment allocation. At the end of the study, the two-stage design will lead 
to four sequences of treatments, i.e., TT, TR, RT, and RR, similar to those in 
Balaam’s design.
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Note that the previously mentioned two-stage design that consists of a par-
allel phase (stage 1) and a crossover phase (stage 2) is similar to a placebo-
challenging design proposed by Chow et al. (2000). As a result, statistical 
methods proposed by Chow et al. (2000) are useful for a valid analysis of 
data collected from a two-stage design described earlier. Under the two-
stage design, similarly, the comparisons (1)–(6) can also be made based on 
the methods proposed by Chow et al. (2000).

11.4.2  Designs for Alternating

For addressing the concept of alternating, an appropriate study design 
should allow the assessment of differences between “R to T” and “T to R” 
for alternating of “R to T to R” to determine whether the drug effect has 
returned to the baseline after the second switch.

For this purpose, the following study designs are useful.

11.4.2.1  Two-Sequence Dual Design

Two-sequence dual design is a 2 × 3 higher-order crossover design consist-
ing of two dual sequences, namely TRT and RTR (Figure 11.3). Under the 
two-sequence dual design, qualified subjects will be randomly assigned to 
receive either the sequence of TRT or the sequence of RTR. Of course, there 
is a sufficient length of washout between dosing periods. Under the two-
sequence dual design, we will be able to evaluate the relative risk of alternat-
ing between use of the biological product and the reference product and the 
risk of using the reference product without such alternating.
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FIGURE 11.2
Two-stage design. Note: Stage 2 is nested within stage 1.
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Note that expected values of the sequence-by-period means, analysis of 
variance table, and statistical methods (e.g., the assessment of average biosim-
ilarity, inference on carry-over effect, and the assessment of intra-subject 
variabilities) for analysis of data collected from a two-sequence dual design 
are given in Chow and Liu (2008). In case there are missing data (i.e., incom-
plete data), statistical methods proposed by Chow and Shao (1997) are useful.

11.4.2.2  Williams’ Design

For a broader sense of alternation involving more than two biologics, e.g., 
two biosimilars T1 and T2 and one innovative product R, there are six pos-
sible sequences: (R T2 T1), (T1 R T2), (T2 T1 R), (T1 T2 R), (T2 R T1), and (R T1 T2). 
In this case, a 6 × 3 Williams’ design for comparing three products is use-
ful (see, also, Chow and Liu, 2008). A William design is a variance-balanced 
design, which consists of six sequences and three periods. Under the 6 × 3 
Williams’ design, qualified subjects are randomly assigned to receive one 
of the six sequences. Within each sequence, a sufficient length of wash is 
applied between dosing periods (see also Figure 11.4).

Detailed information regarding (1) construction of a William design, 
(2) analysis of variance table, and (3) statistical methods for analysis of data 
collected from a 6 × 3 William design adjusted for carry-over effects, in the 
absence of unequal carry-over effects, and adjusted for drug effect can be 
found in Chow and Liu (2008).

11.4.3  Designs for Switching/Alternating

In the previous two sub-sections, useful study designs for addressing switch-
ing and alternating of drug interchangeability are discussed, respectively. In 
practice, however, it is of interest to have a study design which can address 
both switching and alternating. In this case, an intuitive study design is to 
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FIGURE 11.3
Two-sequence dual design. Note: Two-sequence dual design is a 2 × 3 crossover design.
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combine a switching design with an alternating design. Along this line, in 
this section, several useful designs for addressing both switching and alter-
nating of drug interchangeability are introduced.

11.4.3.1  Modified Balaam Design

As indicated earlier, Balaam’s design is useful for addressing switching, 
while a two-sequence dual design is appropriate for addressing alternating. 
In the interest of addressing both switching and alternating in a single trial, 
we may combine the two study designs as follows: (TT, RR, TRT, RTR), which 
consists of a parallel design (the first two sequences) and a two-sequence 
dual design (the last two sequences). We will refer to this design as a modi-
fied Balaam design, which is illustrated in Figure 11.5.

As it can be seen from Figure 11.5, data collected from the first two dosing 
periods (which are identical to the Balaam design) can be used to address 
switching, while data collected from sequences #3 and #4 can be used to 
assess the relative risks of alternating.

11.4.3.2  Complete Design

It can be seen that the modified Balaam’s design is not a balanced design 
in terms of the number of dosing periods. In the interest of balance in dosing 
periods, it is suggested the modified Balaam’s design be further modified 
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as (TTT, RRR, TRT, RTR). We will refer to this design as a complete design. 
The  difference between the complete design and the modified Balaam 
design is that the treatments are repeated at the third dosing period for 
sequences #1 and #2. Data collected from sequence #1 will provide a more 
accurate and reliable assessment of intra-subject variability, while data col-
lected from sequence #2 are useful in establishing the baseline for the refer-
ence product (Figure 11.6).

Note that statistical methods for analysis of data collected from the com-
plete design are similar to those under the modified Balaam’s design.
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FIGURE 11.5
Modified Balaam design for addressing switching/alternation of interchangeability. Note: 
Sequence #3 and #4 is a two-sequence dual design.
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FIGURE 11.6
Complete design for addressing switching/alternation of interchangeability.
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11.4.3.3  Alternative Designs

For assessment of IBE under a replicated design, Chow et al. (2002) indi-
cated that the optimal design among 2 × 3 crossover designs is the so-called 
extra-reference design, which is given by (TRR, RTR) (Figure 11.7). Thus, 
an alternative design is to combine a parallel design (TTT, RRR) and a 2 × 3 
extra-reference design for addressing both switching and alternating. The 
resultant study design is then given by (TTT, RRR, RTR, TRR).

11.4.3.4  Adaptive Designs

In recent years, the use of adaptive design methods in clinical research has 
become very popular due to their flexibility and efficiency for identifying 
any (or optimal) clinical benefits of the test treatment under investigation 
(see, e.g., Chow and Chang, 2011). Similar ideas can be applied for assessment 
of biosimilarity and interchangeability of biosimilar products. For example, 
a two-stage adaptive design that combines two independent studies into a 
single trial may be useful. Some adaptations (modifications or changes) can 
be implemented at the end of the first stage after the review of accumulated 
data collected from the first stage. More information regarding various adap-
tive trial designs can be found in Chow and Chang (2011).

11.4.4  Bridging Studies

Under certain assumptions such as (1) in vitro testing is predictive of in vivo 
testing; in other words, there is a correlation between in vitro testing and in 
vivo testing (IVIVC); (2) animal model is predictive of human model; or (3) bio-
marker such as PK/PD marker or genomic marker is predictive of clinical out-
comes, bridging studies may be useful by providing totality-of-the-evidence 
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Alternative design for addressing interchangeability. Note: Sequences #3 and #4 is an extra-
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for assessment of biosimilarity and for evaluation of the relative risks of 
switching and/or alternating for addressing interchangeability.

For example, Chow et al. (2010) derived statistical methods for assessment of 
average biosimilarity using biomarker(s) data according to both the moment-
based criterion and the probability-based criterion under a parallel-group 
design assuming that the biomarker (or biomarkers) is predictive of clinical 
outcomes for evaluation of safety and efficacy of the follow-on biologics.

11.4.5  Remarks

There is a clear distinction between the concepts for drug interchangeability 
for generic drugs and for biosimilar products. For drug interchangeability of 
generic drugs, the FDA suggests focusing on the assessment of the variability 
due to subject-by-product interaction although its clinical relevance has not 
yet been fully understood and demonstrated. Alternatively, it is suggested 
that the assessment of the variability due to subject-by-product adjusted for 
the intra-subject variability of the reference product be assessed for address-
ing drug interchangeability of small-molecule generics. This new criterion is 
currently being studied by Endrenyi et al. (2013).

Under an appropriate study design for switching or alternating or switching/
alternating, statistical methods for assessment of biosimilarity between prod-
ucts could be based on testing for average bioequivalence (similarity) or 
testing for PBE (similarity) or IBE (similarity). It should be noted that FDA 
recommended a replicated crossover design such as (TRTR, RTRT) or (TRT, 
RTR) be employed for assessment of IBE (similarity).

11.5  Statistical Methods

In practice, switching and alternating can be assessed only after the biosimi-
lar products under study have been shown to be highly similar to the inno-
vative biological drug product. Based on a parallel idea for the development 
the biosimilarity index as described in Chapter 6, a general approach for 
the development of a switching index (SI) and/or alternating index (AI) for 
addressing switching and/or alternating can be obtained.

11.5.1  Totality Biosimilarity Index

As indicated in Chapter 6, for a given criterion for biosimilarity and under 
a valid study design, the biosimilarity index for a given functional area or 
domain can be obtained by the following steps:

Step 1: Assess the average biosimilarity based on a given criterion, e.g., 
(80%, 125%) based on log-transformed data.
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Step 2: Calculate the local biosimilarity index (i.e., reproducibility) 
based on the observed ratio and variability.

Step 3: Claim local biosimilarity if the 95% confidence lower bound of p is 
larger than p0, a pre-specified number, where p0 can be obtained based 
on an estimate of reproducibility probability for a study comparing a 
reference product to itself (the reference product), i.e., an R–R study.

Similar to what was described in Chapter 6, a totality biosimilarity index can be 
derived across all functional areas or domains by the following steps:

Step 1: Obtain p̂i, the biosimilarity index for the ith domain.

Step 2: Define the totality biosimilarity index as ˆ ˆp w pT i i
i

K
=

=∑ 1
, where 

wi is the weight for the ith domain, where i = 1, 2, …, K (the number 
of domains or functional areas).

Step 3: Claim biosimilarity if the 95% confidence lower bound of pT 
is greater than a pre-specified value pT0, which can be determined 
based on an estimate of totality biosimilarity index for studies com-
paring a reference product to itself (the reference product).

The totality biosimilarity index, described earlier, has the advantages that 
(1) it is robust with respect to the selected study endpoint, biosimilarity cri-
terion, and study design; (2) it takes variability into consideration (one of the 
major criticisms in the assessment of average bioequivalence); (3) it allows 
the definition and assessment of the degree of similarity (in other words, it 
provides a partial answer to the question “how similar is considered simi-
lar?”), and (4) the use of the biosimilarity index or totality biosimilarity index 
will reflect the sensitivity of heterogeneity in variance.

11.5.2  Switching Index

A similar idea can be applied to developing an SI under an appropriate study 
design such as a 4 × 2 Balaam’s crossover design described earlier. Thus, 
biosimilarity for “R to T,” “T to R,” “T to T,” and “R to R” needs to be assessed 
for addressing the issue of switching.

Define p̂Ti, the totality biosimilarity index for the ith switch, where i = 1 
(switch from R to R), 2 (switch from T to T), 3 (switch from R to T), and 4 (switch 
from T to R). As a result, the SI can be obtained as follows:

Step 1: Obtain p̂Ti, i = 1, …, 4.
Step 2: Define the switching index as SI p

i
Ti= min{ }à , i = 1, …, 4, which is 

the largest order of the biosimilarity indices.
Step 3: Claim switchability if the 95% confidence lower bound of pS is 

larger than a pre-specified value pS0.
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Let PT1, PT2, …, PT4 be a random sample from a continuous distribution with 
probability density function f(p) and cumulative distribution function F(p), 
and let PT( )1 , PT( )2 , …, PT( )4  be the order statistics obtained from the sample men-
tioned earlier. Thus, the probability density function of the defined switch-
ing index SI PT= ( )4  is given by

	
f p F p F p f p F p f pSI ( )

!
!
( ( )) ( ( )) ( ) ( ( )) ( ),= − = −4

3
1 4 10 3 3

and the expected value and the variance of SI can be given by

	
µSI E SI p F p f p dp= = −∫( ) ( ( )) ( )4 1 3

and

	 Var( ) ( ) ( ) ,SI E SI SI= −2 2µ

where E(SI2) = ∫ p2(1 − F(p))3 f(p)dp is denoted as the second raw moment of SI.
With a given distribution function F(p), the expected value and the variance 

of order statistics could be derived (see David and Nagaraja, 2003). However, 
the population distribution may be unknown or difficult to determine. 
Several results of non-parametric bounds for the moments of order statistics 
have been provided. David (1981) summarized the distribution-free bounds 
on the expected values of the order statistics when the observations pT1, pT2, …, 
pT4 are i.i.d. from a population with expectation μ and variance σ2. The earliest 
result provided in Gumbel (1954) and Hartley and David (1954) concerns the 
minimum,

	 µ µ σ µ σSI n n≤ + − − = +−( )( ) . ,/1 2 1 1 2 1 1339 	 (11.3)

where sample size n = 4 here.
However, the observations may be dependent and/or from different dis-

tributions. It could be obtained, as in Arnold and Groeneveld (1979), that the 
bound in Equation 11.3 becomes

	 µ σ µ µ− − ≤ ≤( ) ,/n SI1 1 2

which yields

	 µ σ µ µ− ≤ ≤1 73205. ,SI 	 (11.4)

when independence cannot be assumed. On the other hand, for the variance 
of order statistics, the upper bound derived by Papadatos (1995) can be used. 
That is,

	 Var( ) .SI n< =σ σ2 24 	 (11.5)
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In order to obtain the estimates of the expectation and variance of SI, the 
sample mean and sample variance of the observations pT1, pT2, …, pT4 could be 
used to replace μ and σ2, respectively, in the bound Equation 11.4 or 11.5 of 
μSI and the bound Equation 11.5 of Var(SI).

As a result, the 95% confidence low bound of SI can be obtained. We then 
claim switching if the 95% confidence low bound for SI is greater than pS0.

11.5.3  Alternating Index

A similar idea can be applied in order to develop an AI under an appropriate 
study design. Under the modified Balaam’s crossover design of (TT, RR, TRT, 
RTR), biosimilarity for “R to T to R” and “T to R to T” needs to be assessed 
for the evaluation of alternating. For example, the assessment of differences 
between “R to T” and “T to R” for alternating of “R to T to R” needs to be 
evaluated in order to determine whether the drug effect has returned to the 
baseline after the second switch.

Define pTi as the totality biosimilarity index for the ith switch, where i = 1 
(switch from R to R), 2 (switch from T to T), 3 (switch from R to T), or 4 (switch 
from T to R). As a result, the AI can be obtained as follows:

Step 1: Obtain p̂Ti, i = 1, …, 4.
Step 2: Define the range of these indexes, AI p pi Ti i Ti= −max { } min { }ˆ ˆ , 

i = 1, …, 4, as the AI.

Step 3: Claim alternation if the 95% confidence lower bound of AI is 
larger than a pre-specified value pA0.

The estimates of the expected value and variance of AI could be similarly 
obtained following the process of the confidence lower bound for SI. Suppose 
that PT1, PT2, …, PT4 is a random sample from a continuous distribution with a 
probability density function f(p) and cumulative distribution function F(p), 
and PT( )1 , PT( )2 , …, PT( )4  are the order statistics obtained from the sample men-
tioned earlier. Thus, the joint density function of max { }i Tip̂  and min { }i Tip̂  
denoted by f p pT T( , )( , ,)( ) ( )1 4 1 4  is given by

	

f p p f p f p F p F pT T T T T T( , )( , , ) !
!
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 4 1 4 1 1 1 1

4
2

= − 

= − 

2

2
12 1 1 1 1f p f p F p F pT T T T( ) ( ) ( ) ( ) .( ) ( ) ( ) ( )

The expected value and the variance of AI can be given by

	
µAI T T T T T TE AI p p f p f p F p F p= = − −∫∫( ) ( ) ( ) ( ) ( ) (( ) ( ) ( ) ( ) ( ) (12 1 1 1 1 1 1)) ( ) ( )) 

2
1 4dp dpT T
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and

	 Var( ) ( ) ( ) ,AI E AI AI= −2 2µ

where

	
E SI p p f p f p F p F pT T T T T T( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

2 212 1 1 1 1 1 1= − −∫∫  
2

1 4dp dpT T( ) ( )

is denoted as the second moment of the sample range.
Based on the results of dependent distribution-free samples in Arnold and 

Groeneveld (1979), the bound on the expected value for the range of order 
statistics is given by

	

µ

σ
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where k1 = 1 and k2 = 4 denote the orders of the difference. On the other hand, 
the upper bound for the variance of AI could be obtained by
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1 2 1 2

2 2 2σ σ σ σ22 ,

which is derived based on Cauchy–Schwarz inequality (Casella and Berger, 
2002) and the result for the upper bound of the variance of order statistics 
(Papadatos, 1995). We could estimate μ and σ2 by the sample mean and sam-
ple variance in order to construct the confidence lower bound for AI. Thus, 
we then claim switching if the 95% confidence lower bound for AI is greater 
than pA0. Therefore, we may claim interchangeability if both switching and 
alternating are concluded.

11.5.4  Remarks

The above biosimilarity index (totality biosimilarity index) for assess-
ment of biosimilarity and SI and/or AI for assessment of interchange-
ability are developed based on reproducibility probability. Hence, they are 
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probability-based indices. In practice, we may consider moment-based indi-
ces for assessment of biosimilarity and interchangeability. For example, we 
may consider

	
ˆ ˆ ˆ

ˆzd T R

d
= −µ µ

σ

a standardized score for measuring the distance between the test (T) and the 
reference (R) products. In this case, the biosimilarity index can be defined as 
BI = ẑd or BI = Φ(ẑd).

11.6  Concluding Remarks

The concept of drug interchangeability in terms of prescribability and 
switchability for small-molecule drug products is similar but different from 
that for large-molecule biological products. Thus, the usual methods for 
addressing drug interchangeability through the assessment of population/
IBE cannot be directly applied for the assessment of drug interchangeability 
for biosimilar products.

Based on the totality biosimilarity index for the assessment of biosimilarity, 
the SI and AI for addressing drug interchangeability of biosimilar products can 
be obtained under an appropriate switching design and alternating design, 
respectively. The proposed switching/alternating indices have the advantages 
that (1) they can be applied regardless of the criteria for biosimilarity and study 
design used; (2) the assessment is made based on the relative difference with 
the reference product; (3) they can address the commonly asked questions con-
cerning how similar is considered highly similar, the degree of similarity, and 
interchangeability in terms of switching and alternating; and most importantly, 
(4) the proposed method is in compliance with current regulatory thinking.

It should, however, be noted that the proposed totality biosimilarity index 
and/or switching/alternating indices depend upon the selection of weights 
in each domain for achieving the totality-of-the-evidence for the assessment 
of biosimilarity and/or interchangeability.
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12
Issues on Immunogenicity Studies

12.1  Introduction

As indicated earlier, the U.S. BPCI Act defines a biosimilar product as a 
product that is highly similar to an innovative biological product notwith-
standing minor differences in clinically inactive components and there are 
no clinically meaningful differences in terms of safety, purity, and potency. 
Thus, safety is a great concern when assessing biosimilarity of biosimilar 
products. Since the issue of immunogenicity is one of the fundamental 
differences between small-molecule drug products and biological products, 
when to conduct immunogenicity testing for the evaluation of immunotoxic-
ity has become an important issue in biosimilar studies.

The U.S. FDA defines drug immunogenicity as the ability of a drug to 
induce an immune response. The clinical consequences of immunogenicity 
include the potential loss of efficacy and possible alteration of the safety pro-
file. As indicated in the 2002 FDA guidance on Immunotoxicology Evaluation 
of Investigational New Drugs, in general, drugs can be grouped into two major 
classes with respect to potential immunogenicity. These two classes are 
(1) polypeptides or proteins with molecular weights larger than or equal to 
10,000, and (2) low-molecular weight compounds (less than 1000). Smaller 
peptides or proteins in the 5000–10,000 range may also be immunogenic, 
although immune responses to these drugs may be fairly weak. On the other 
hand, De Weck (1974) indicated that immunogenicity is unpredictable for 
compounds in the 1000–5000 range.

In recent years, the number of biological/biotechnology-derived proteins 
used as therapeutic agents has been steadily increasing. These products 
may induce an unwanted immune response in treated patients, which can 
be influenced by various factors, including patient-related or disease-related 
factors and product-related factors. Unwanted immune reactions inducing 
anti-drug antibodies (ADA) may neutralize drug efficacy or cause allergic 
reactions and other severe side effects, representing a major issue in the devel-
opment of therapeutic proteins. Thus, proteins developed as vaccines have 
to be designed, manufactured, and formulated to induce the best protective 
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immune response possible, directed primarily against specific epitopes and 
not against non-relevant portions like protein scaffolds or carrier molecules.

In the next section, regulatory requirements from the European Medicines 
Agency (EMA), the U.S. Food and Drug Administration (FDA), and the 
International Conference on Harmonization (ICH) for the assessment of 
immunotoxicity (e.g., immunogenicity) during the development of biosimi-
lar products are briefly described. Section 12.3 provides some insight regard-
ing assay development/validation for distinguishing neutralizing from 
non-neutralizing antibodies. Basic design considerations, data collection and 
analysis, and interpretation for immunogenicity studies are given in Section 
12.4. Section 12.5 discusses sample size calculations/justifications for immu-
nogenicity studies with extremely low incidence rates (immune responses) 
based on precision analysis for achieving certain statistical assurance (infer-
ence) to detect a clinically meaningful immune response. Also included in 
this section is a proposed statistical procedure for data safety monitoring 
during the conduct of immunogenicity studies. Some concluding remarks 
are given in the last section of the chapter.

12.2  Regulatory Requirements

In this section, regulatory requirements from the EMA, the FDA, and the 
ICH for the evaluation of immunotoxicity (immunogenicity) of biosimilar 
products are briefly described.

12.2.1  European Medicines Agency

In 2007, the Committee for Medicinal Products for Human Use (CHMP) of 
the EMA released a guideline on Immunogenicity Assessment of Biotechnology-
Derived Therapeutic Proteins to assist sponsors in the evaluation of drug effects 
on the immune system. The guideline intends to cover proteins and polypep-
tides, their derivatives, and products of which they are components such as 
conjugates. These proteins and polypeptides are produced from recombinant 
or non-recombinant cell-culture expression systems. The guideline provides 
general principles on (1) risk factors for developing an immune response against 
a therapeutic protein, (2) predictivity of non-clinical models, (3) development of 
assays for humoral and cellular immune response, (4) potential clinical conse-
quences of immunogenicity, (5) clinical safety, and (6) risk management plan.

The most commonly seen risk factors for developing an immune response 
include patient-related, disease-related, and product-related risk factors. 
Patient-related risk factors include age and genetic factors such as certain 
allelic loci, gene polymorphisms for cytokines, and gene defects which 
could alter the immune response to a therapeutic protein. Disease-related 
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risk factors are referred to as a patient’s underlying disease itself such as 
an autoimmune disease, chronic infections, or advanced metastatic dis-
ease. Product-related risk factors include the protein structure, formulation, 
aggregation, excipients, and impurities. These factors definitely could impact 
immunogenicity (EMA, 2007).

For predictivity of non-clinical models, therapeutic proteins are different 
in various species. Thus, the evaluation of immunogenicity in animal models 
is generally not predictive of human models. As most therapeutic proteins 
induce unwanted immune responses that may be caused by more than one 
single risk factor, it is important to adopt or develop adequate screening 
and/or confirmatory assays for an accurate and reliable assessment of the 
immune response against a therapeutic protein.

Potential clinical consequences of immunogenicity include the possible loss 
of efficacy and the alteration of the safety profile. For example, neutralizing 
antibodies which interfere with biological activity by binding to or near the 
active site, or by induction of conformational changes, could induce loss of 
efficacy. However, loss of efficacy and alteration of the safety profile are not 
necessarily linked. Safety issues such as infusion-related reactions can occur 
even when there is no loss of efficacy. In addition, antibodies developing 
against therapeutic proteins can cross-react with an endogenous protein in 
cases where the/endogenous protein is still produced.

For clinical safety, the 2007 EMA guidance recommends the following prin-
ciples: pre-authorization of signal detection in clinical setting, the evaluation of 
the impact of both neutralizing and non-neutralizing antibodies on the phar-
macokinetics of the product, and methodology development for assessing the 
comparability of immunogenicity between biosimilar products and a refer-
ence product. As indicated by the 2007 EMA guidance, studies should be care-
fully planned and data should be systematically collected from a sufficiently 
large number of patients to characterize the variability in antibody response.

The 2007 EMA guidance also emphasizes that the risk of immunogenicity 
should be addressed in a risk management plan according to the princi-
ples outlined in the guidance. The risk management plan should take into 
account risks identified during product development and potential risks that 
may occur in the post-marketing setting.

12.2.2  United States Food and Drug Administration

In 2002, the FDA published a guidance entitled Immunotoxicology Evaluation 
of Investigational New Drugs to assist sponsors in the evaluation of the drug 
effects on the immune system. The guidance makes recommendations on 
(1) the parameters that should be routinely assessed in toxicology studies 
to determine effects of a drug on the immune function, (2) when additional 
immunogenicity studies should be conducted, and (3) when additional mech-
anistic information could help to characterize the significance of a given 
drug’s effect on the immune system.
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The 2002 FDA guidance indicated that assessment of potential adverse 
effects on the immune system is an important component of the overall 
evaluation of drug toxicity. In practice, there are two major concerns associ-
ated with drug immunogenicity: drug allergenicity (which is referred to as 
either protein allergens or small-molecular weight drugs that become aller-
gens when bound to proteins) and the ability of antidrug immune responses 
to alter the biological activities of the drug (e.g., PK, PD, and/or toxicities), 
(see, e.g., Schellekens, 2003). Evaluation of protein drugs for allergenic poten-
tial is difficult in non-clinical toxicology. As indicated by the FDA, although 
immunogenicity is an important property of protein allergens, not all pro-
tein immunogens are allergens (see also Kimber et al., 1999). In practice, evi-
dence of immunotoxicity can be observed in standard non-clinical toxicology 
studies, but in some cases additional studies are important. Observation of 
immune system effects may also suggest that more follow-up studies should 
be considered.

It should be noted that the 2002 FDA guidance is intended for drug prod-
ucts and not for biological products. The FDA encourages that sponsors of 
biological products should refer to the principles outlined in the ICH guid-
ance (ICH, 1997), which is briefly described later.

12.2.3  International Conference on Harmonization

In 1997, ICH published a guideline on Preclinical Safety Evaluation of 
Biotechnology-Derived Pharmaceuticals to assist sponsors in preclinical safety 
evaluation of biotechnology-derived pharmaceuticals (ICH, 1997). The pri-
mary goal is to assist sponsors in improving the quality and consistency 
of the preclinical safety data which support the development of biophar-
maceuticals. This guidance is intended primarily to recommend a basic 
framework for the preclinical safety evaluation of biotechnology-derived 
pharmaceuticals such as active substances including proteins and peptides, 
their derivatives, and products of which they are components. These bio-
technology-derived pharmaceuticals include, but are not limited to, cyto-
kines, plasminogen activators, recombinant plasma factors, growth factors, 
fusion proteins, enzymes, receptors, hormones, and monoclonal antibodies.

As indicated in the 1997 ICH guideline, many biotechnology-derived phar-
maceuticals intended for humans are immunogenic in animals. Thus, anti-
body responses such as titer, number of responding animals, neutralizing 
or non-neutralizing, should be characterized. In addition, these responses 
should be correlated with any pharmacological and/or toxicological 
changes. Specifically, the effects of antibody formation on pharmacokinetic/
pharmacodynamic parameters, incidence and/or severity of adverse effects, 
complement activation, or the emergence of new toxic effects should be con-
sidered when interpreting the data. The 1997 ICH guideline also pointed 
out that special attention should also be paid to the evaluation of possible 
pathological changes related to immune complex formation and deposition.
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The detection of antibodies is important in the evaluation of pre-clinical 
safety of biotechnology-derived pharmaceuticals. It, however, should be 
noted that, as indicated by the 1997 ICH guideline, the detection of antibodies 
should not be the only criterion for the early termination of a pre-clinical 
safety study unless the immune response neutralizes the pharmacological 
and/or toxicological effects of the biopharmaceutical in the majority of the 
animals under study. In most cases, the immune response to biopharmaceu-
ticals is expected to be variable (similar observations were seen in humans). 
Furthermore, in many cases, the induction of antibody formation in ani-
mals is found not to be predictive of antibody formation in humans. This 
is because humans may develop serum antibodies against humanized pro-
teins, and frequently the therapeutic response persists in their presence. The 
occurrence of severe anaphylactic responses to recombinant proteins is rare 
in humans. In this regard, such pre-clinical safety studies are considered of 
little value for the routine evaluation of these types of products.

The 1997 ICH guideline also pointed out that the assessment of poten-
tial immunogenicity is an important aspect for the immunotoxicological 
evaluation of biotechnology-derived pharmaceuticals, which are intended 
to stimulate or suppress the immune system. Thus, biotechnology-derived 
pharmaceuticals may affect not only humoral but also cell-mediated immu-
nity. In addition, inflammatory reactions at the injection site may be indica-
tive of a stimulatory response. It should also be noted that the expression of 
surface antigens on target cells may be altered, which has implications for 
autoimmune potential. To clarify these issues, immunotoxicological testing 
strategies may require screening studies followed by mechanistic studies.

12.3  Assay Development/Validation

In immunogenicity studies, it is essential to adopt an appropriate strategy 
for the development of adequate screening and confirmatory assays to mea-
sure an immune response against a therapeutic protein. Assays must be 
capable of distinguishing neutralizing from non-neutralizing antibodies, 
and to be used in pivotal clinical trials as well as in post-authorization stud-
ies to be validated.

12.3.1  Assay Development

As indicated in the 2007 EMA guidance, unwanted immunogenicity 
induced by biological products could include humoral and cellular immune 
responses. It is therefore very important to select and/or develop assays and 
assay strategies for the assessment of such immune responses. In practice, 
most effort is usually directed to antibody detection and characterization 
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because this is technically feasible and often related to clinical safety and 
efficacy. However, cell-mediated responses could play an important role and 
their assessment may be considered by applicants on a case-by-case basis.

12.3.1.1  Screening Assays

A screening assay should be capable of detecting antibodies induced against 
the biological product in all antibody positive samples/patients. This implies 
that detection of some false positive results is inevitable as absolute screen-
ing-assay specificity is normally unattainable and false negative results must 
be avoided. The desirable characteristics of screening assays are sensitivity, 
specificity, precision, reproducibility, and robustness.

12.3.1.2  Assays for Confirming the Presence of Antibodies

These assays are necessary for the elimination of false positive samples/patients 
following the initial screen. Various approaches can be adopted for this purpose 
but it is necessary to select assays taking account of the limitations and charac-
teristics of the screening assay(s). To confirm specificity, it is not normally suf-
ficient or appropriate to simply repeat the screening assay in its original form.

12.3.1.3  Assays for Dissecting the Specificity of Antibodies

Assays which provide information concerning the specificity of the antibodies 
detected may be useful in some cases. These data contribute to the confirma-
tion of the specificity of the immune response.

12.3.1.4  Neutralization Assays

Assessing the neutralizing capacity of antibodies usually requires the use of 
bioassays. An assay must be selected or developed which responds well to the 
biological product. Bioassays used for measuring the potency of biological prod-
ucts, e.g., for lot release purposes, can often be adapted to assess neutralizing 
antibodies. However, they frequently require refining if they are to perform 
optimally for measuring the neutralizing capacity of antibodies. If neutralizing 
cell-based assays are not feasible/available, competitive binding assays or other 
alternatives may be suitable. However, when these are used, it must be demon-
strated that they reflect neutralizing capacity/potential in an appropriate manner.

12.3.2  Assay Validation

Assay validation is an ongoing process throughout product development. 
Assays used for the pivotal clinical trials need to be validated for their 
intended purpose. Validation studies must be conducted to establish that the 
assays show appropriately linear, concentration-dependent responses to rele-
vant analytes as well as appropriate accuracy, precision, sensitivity, specificity, 
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and robustness. For pivotal clinical trials, the use of a central laboratory to 
perform the assays may be helpful to avoid inter-laboratory variability. In 
the post-approval setting, it is also important to consider inter-laboratory 
variability.

The 2007 EMA guidance indicated that assays must also be validated to 
show that matrix effects caused by reagents or substances present in samples 
do not adversely affect the obtained results. This is normally addressed by 
“recovery” investigations conducted by observing the effects of such sub-
stances present in the matrix on the response obtained in their absence. This 
needs to be investigated for the full range of dilutions of samples, which are 
to be used in assays, and, at least in some cases, limits the dilutions, which 
can be validly assessed.

It should be noted that the residual biological product present in patients’ 
blood can complex with induced antibody and hence reduce the amount of anti-
body detectable by assays. This may affect assays differently, depending on the 
assay, assay format or type, and the antibody characteristics. If this occurs, it 
may be circumvented/resolved by using a number of approaches, e.g., by dis-
sociating the immune complexes with acid, removing excess biological by solid-
phase adsorption, use of long incubation times, and/or using an assay which 
allows sufficient sample dilution to avoid this problem. Such approaches must 
themselves be validated for effectiveness and adopted on a case-by-case basis 
according to needs. In some cases this problem can be overcome by appropriate 
spacing of the timing between the administration of the product and the sam-
pling for antibody assessment, i.e., allowing time for the product to be cleared 
from the circulation before sampling. However, the latter approach must not sig-
nificantly compromise the detection of antibodies or the treatment of the patient.

If antibodies are detected in patients undergoing therapy, these need to be 
characterized to establish their clinical significance. This normally involves 
an immunological and/or biological assessment of antibody characteristics 
and the investigation of effects of the antibodies (or other induced immune 
responses) on the product. Some of this can be addressed by non-antibody 
assays as part of in vitro studies, but it may also require clinical assessment 
of the patients receiving therapy.

12.4  Design for Immunogenicity Studies

Most biological/biotechnology-derived proteins induce an unwanted 
immune response that may be triggered by more than a single factor. This 
immunological response is complex and could contribute to potential adverse 
responses. The consequences of an immune reaction to a therapeutic protein 
range from the transient appearance of antibodies without any clinical signif-
icance to severe life-threatening conditions. Potential clinical consequences 
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of an unwanted immune response are a loss of efficacy of the therapeutic 
protein, serious general immune effects such as anaphylaxis, and, for ther-
apeutic proteins used for substitution, a potential cross-reactivity with the 
endogenous counterpart in case it is still produced. Thus, immunogenicity 
studies need to be carefully and prospectively designed to ensure that all 
essential procedures are in place before the commencement of clinical assess-
ment. Basic design considerations for an immunogenicity study are described 
later followed by the identification of risk factors, selection and assessment of 
assays, data collection and analysis, and the interpretation of analysis results.

12.4.1  Basic Design Considerations

As indicated in the 2007 EMA guidance on the immunogenicity assessment 
of biotechnology-derived therapeutic proteins, immunogenicity studies 
should be carefully planned and data should be systematically collected 
from a sufficiently large number of patients to characterize the variability in 
antibody response. Some basic design considerations regarding immunoge-
nicity studies are briefly described later.

12.4.1.1  Patient Population

The patient population should be representative of the target population 
intended for clinical practice. A homogenous patient population should 
be chosen whenever possible. Due to expected differential susceptibility, 
immunogenicity data from healthy volunteers may not be suitable. For most 
biosimilar products, immunogenicity is studied in previously unexposed 
patients. Children should be studied separately.

12.4.1.2  Randomization

The 2007 EMA guidance suggests that if applicable, stratified randomization 
by age should be employed.

12.4.1.3  Washout

For immunogenicity studies, it is suggested that a sufficient washout period 
for previous treatments potentially influencing the immune response should 
be included. The washout should take into account not only elimination but 
also the reversal of the pharmacodynamic effect, where appropriate.

12.4.1.4  Variability in Antibody Response

For the comparative evaluation of immunogenicity between a biosimilar 
product and a reference product, inter-product and intra-product variabilities 
are inevitable. Inter-product variability is referred to as the variability due 
to similar biological medicinal products or products in the same class, while 
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intra-product variability is the variability due to different versions of the prod-
uct, indications or different patient populations for a given product. Variations 
of the production process have been reported to alter considerably their 
immunogenic properties. The assessment of inter-product and intra-product 
variabilities is useful in detecting signals of immunogenicity. For example, if 
intra-product comparative immunogenicity is analyzed when changes in pro-
duction have been made, a population should be chosen in an indication where 
differences can best be detected (i.e., due to susceptibility to immunogenicity).

12.4.1.5  Sample Size

Since the immune response is expected to be low, a large sample size may 
be required for achieving a desired power for detecting a relatively small 
difference of clinically importance if such a difference truly exists at a pre-
specified level of significance. In practice, a large sample size may not be fea-
sible. Alternatively, Chow and Chiu (2013) proposed to select/justify a sample 
size based on the concept of precision analysis in conjunction with a sensitiv-
ity analysis. More details are provided in the next section of this chapter.

12.4.1.6  Surrogate Endpoints

In some cases, surrogate endpoints such as pharmacodynamic parameters 
may be used to assess immunogenicity. In this case, as indicated by the 2007 
EMA guidance, surrogate endpoints should correlate with clinically relevant 
endpoints and have to be fully justified.

12.4.2  Risk Factors

Many factors may influence the immunogenicity of therapeutic proteins. 
They can be considered to be patient-related, disease-related, or product-
related. Patient-related factors that might predispose an individual to 
an  immune response include the underlying disease, genetic background, 
immune status, including immunomodulating therapy, and the dosing 
schedule. Product-related factors also influence the likelihood of an immune 
response, e.g., the manufacturing process, formulation, and stability char-
acteristics. Although data on possible unwanted immune reactions to ther-
apeutic proteins are required before marketing authorization, problems 
may still be encountered in the post-authorization period. In the marketing 
authorization application, the applicant should include a summary of the 
investigations of immunogenicity in the respective overview sections with 
full cross-reference to the data in the relevant modules. Depending on the 
immunogenic potential of the therapeutic protein and the rarity of the dis-
ease, the extent of immunogenicity data before approval might be limited. 
Further systematic immunogenicity testing might become necessary after 
marketing authorization, and may be included in the risk management plan.
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The most commonly seen patient-related risk factors are age and genetic 
factors such as certain allelic loci, gene polymorphisms for cytokines, and 
gene defects which could alter the immune response to a therapeutic protein. 
Disease-related risk factors are referred to as a patient’s underlying disease 
itself such as autoimmune disease, chronic infections, or advanced metastatic 
diseases. In practice, the immune reaction against a therapeutic protein can be 
reduced when immunosuppressive agents are used concomitantly. As a result, 
it is expected that concomitant therapies may decrease the risk of an immune 
response to a therapeutic protein. Thus, the 2007 EMA guidance indicated that 
if clinical trials are performed in conjunction with immunosuppressants, a 
claim for the use of the therapeutic protein in monotherapy must be accompa-
nied by adequate clinical data on the immunogenicity profile in monotherapy. 
Product-related risk factors include the protein structure, formulation, aggrega-
tion, excipients, and impurities. These factors could impact on immunogenicity. 
Thus, it is suggested that careful planning of immunogenicity evaluation should 
be exercised and data should be systematically collected from a sufficiently large 
number of patients to characterize the variability in antibody response.

12.4.3  Selection/Assessment of Assays

This applies to assays used to measure and characterize antibodies and to meth-
ods employed for assessing clinical responses to antibodies if they are induced. 
Much of this needs to be established on a case-by-case basis, taking account 
of product, patients, and expected clinical parameters. Such studies can pro-
vide valuable information concerning significant immunogenicity of biological 
products, their characteristics and potential clinical consequences. They can 
be valuable for comparative immunogenicity studies for biosimilar products 
or following production/process changes introduced for established products. 
However, unwanted immunogenicity can occur at a level which will not be 
detected by such studies when conducted at a pre-approval stage, due to the 
restricted number of patients normally available for study. In view of this, it is 
often necessary to continue the assessment of unwanted immunogenicity and 
its clinical significance post-approval, usually as part of pharmacovigilance 
surveillance. In some cases, post-approval clinical studies may be needed to 
establish the risk associated with an unwanted immune response

12.4.4  Data Collection and Analysis

The 2007 EMA guidance suggests that in the clinical setting, careful planning 
of immunogenicity evaluation should include data systematically collected 
from a sufficient number of patients. For a given product, sampling should 
preferably be standardized across studies (e.g., sampling at the baseline, 
under treatment and follow-up samples). The sampling schedule for each 
product is determined on a case-by-case basis, taking into account also the 
risks associated with an unwanted immune response to patients. Data on the 
impact on efficacy and safety should be collected in order to fully understand 



279Issues on Immunogenicity Studies

the clinical consequences of the immune response. Immunogenicity issues 
should be further addressed in the risk management plan.

12.4.5  Interpretation of Results

For the interpretation of results, the 2007 EMA guidance also indicated that 
it is essential to establish clear criteria for deciding how samples will be con-
sidered positive or negative, and also how positive results will be confirmed. 
Approaches to these can differ according to assay, etc. and need to be decided 
accordingly. A common procedure for establishing a positive cut-off for 
immunoassays is to establish the assay background. A statistical approach 
should preferably be used to establish the assay cut-off value. Alternatively, 
real data (e.g., double background value) can be used to determine what will 
be considered the lowest positive result.

12.5  Sample Size for Immunogenicity Studies

In immunogenicity studies, the incidence rate of immune responses is 
expected to be low. In this case, the usual pre-study power analysis for sam-
ple size calculation for detecting a clinically meaningful difference may not 
be feasible. Alternatively, we may consider selecting an appropriate sample 
size based on precision analysis rather than power analysis to provide some 
statistical inference. In this section, a simple procedure based on precision 
analysis for selecting an appropriate sample size in immunogenicity studies 
is introduced. In addition, a strategy for data safety monitoring during the 
conduct of a given immunogenicity study with extremely low incidence rate, 
proposed by Chow and Chiu (2013), is discussed.

12.5.1  Sample Size Determination

In clinical trials, a pre-study power analysis for sample size calculations 
is often performed to ensure that an intended clinical trial will achieve a 
desired power for correctly detecting a clinically meaningful treatment 
effect at a pre-specified level of significance. For clinical trials with extremely 
low incidence rate, sample size calculations based on power analysis may 
not be feasible. Alternatively, it is suggested that sample size calculations be 
done based on precision analysis. In this section, pre-study power analysis 
and precision analysis for sample size calculation are briefly described.
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12.5.1.1  Power Analysis

Under a two-sample parallel-group design, let xij be a binary response (e.g., 
adverse events, immune responses, or infection rate post-surgery) from the 
jth subject in the ith group, j = 1, …, n, i = T (test), R (reference or control). 
Then, �p n xi ij

i

n
� =

=∑1
1

/  are the incidence rates for the test group and the con-
trol group, respectively. Let, δ = pR − pT be the difference in incidence rates 
between the test group and the control group. For simplicity, consider the 
following hypotheses for testing equality between pR and pT:

	 H0 : δ = 0  versus  Ha : δ ≠ 0

Thus, under the alternative hypothesis, the power of 1 − β can be approxi-
mately obtained by the following equation (see, e.g., Chow et al., 2007):
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where
Φ is the cumulative standard normal distribution function
Z1−α/2 is the upper α/2th quantile of the standard normal distribution

As a result, the sample size needed for achieving a desired power of 1 − β at 
the α level of significance can be obtained by the following equation:
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where
ˆ ˆ ˆδ = −p pR T

ˆ ˆ ( ˆ ) ˆ ( ˆ )σ2 1 1= − + −p p p pR R T T

12.5.1.2  Precision Analysis

On the other hand, the (1 − α) × 100% confidence interval (CI) for δ = pR − pT, 
based on large-sample normal approximation, is given by

	

ˆ ˆ
,/δ σ

α± −Z n1 2

where
ˆ ˆ ˆδ = −p pR T
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ˆ ˆ ˆσ σ σ= +R T
2 2

ˆ ˆ ( ˆ )σR R Rp p2 1= −
ˆ ˆ ( ˆ )σT T Tp p2 1= −
Z1−α/2 is the upper α/2th quantile of the standard normal distribution

Denote the half of the width of the CI by w Z= −1 2α σ/ ˆ , which is usually referred 
to as the maximum error margin allowed for a given sample size n. In practice, 
the maximum error margin allowed represents the precision that one would 
expect for the selected sample size. The precision analysis for sample size 
determination is to consider the maximum error margin allowed. In other 
words, we are confident that the true difference δ = pR − pT would fall within 
the margin of w Z= −1 2α σ/ ˆ  for a given sample size of n. Thus, the sample size 
required for achieving the desired precision can be chosen as
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2 2

2
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(12.2)

where ˆ ˆ ( ˆ ) ˆ ( ˆ ).σ2 1 1= − + −p p p pR R T T
This approach, based on the interest in only the type I error, is to spec-

ify precision while estimating the true δ for selecting n. By Equations 12.1 
and 12.2, we can also get the relationship between the sample size based on 
power analysis and precision analysis:
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Thus, R is proportional to 1/δ2 or w2. Under a fixed power and significance 
level, the sample size based on power analysis is much larger than the sam-
ple size based on precision analysis with extremely low infection rate differ-
ence or large allowed error margin.

Without loss of generality, (1 + Zβ/Z1−α/2) is always much larger than 
1 (e.g., if power 1 − β = 80% and significance level α = 5% then (1 + Zβ/
Z1−α/2)2 = 2.04). It means that if w/δ > 0.7, the proposed sample size based 
on power analysis will be larger than the one based on precision analysis. 
The sample size determined by power analysis will be large when the dif-
ference between the test group and the control group is extremely small. 
Table 12.1 shows the comparison of sample sizes determined by power 
analysis and precision analysis. The power is fixed at 80% and the signif-
icance level is 5%. When (p̂R, p̂T) = (2%, 1%), compare the sample sizes cal-
culated by the two methods. The sample sizes determined by precision 
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analysis are much smaller than the sample sizes determined by power 
analysis.

12.5.1.3  Sensitivity Analysis

nprecision in Equation 12.2 is very sensitive to small changes in pR and pT. The 
following sensitivity analysis evaluates the impact of small deviations from 
the true incidence rates. The true incidence rates for the reference and con-
trol groups have a small shift, then, p pR R R′ = + ε  and p pT T T′ = + ε . Thus, the 
required sample size can be chosen as
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Z1−α/2 is the upper (α/2)th quantile of the standard normal distribution

TABLE 12.1

Sample Size Based on Power Analysis and Precision 
Analysis

ω δ npower nprecision R

0.08σ̂ 1.37% 0.04σ̂ 0.69% 4906 600 8.2

1.37% 0.05σ̂ 0.86% 3140 600 5.2

1.37% 0.06σ̂ 1.03% 2180 600 3.6

1.37% 0.07σ̂ 1.20% 1602 600 2.7

1.37% 0.08σ̂ 1.37% 1226 600 2.0

0.10σ̂ 1.72% 0.04σ̂ 0.69% 4906 384 12.8

1.72% 0.05σ̂ 0.86% 3140 384 8.2

1.72% 0.06σ̂ 1.03% 2180 384 5.7

1.72% 0.07σ̂ 1.20% 1602 384 4.2

1.72% 0.08σ̂ 1.37% 1226 384 3.2

0.12σ̂ 2.06% 0.04σ̂ 0.69% 4906 267 18.4

2.06% 0.05σ̂ 0.86% 3140 267 11.8

2.06% 0.06σ̂ 1.03% 2180 267 8.2

2.06% 0.07σ̂ 1.20% 1602 267 6.0

2.06% 0.08σ̂ 1.37% 1226 267 4.6



283Issues on Immunogenicity Studies

We let the shift εR = εT = ε. By Formulas 12.2 and 12.3, we can also get the 
relationship between the sample size based on precision analysis and the 
sample size adjusted by sensitivity analysis.
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Obviously, the aforementioned ratio is independent of Z1−α/2 and w. It becomes 
a ratio of variances before and after shift. Moreover,
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This means that when ε > 0, the sample size adjusted by sensitivity analysis, 
ns, will be smaller than nprecision relying on precision analysis. On the other 
hand, ns will be larger than nprecision if ε < 0.

12.5.1.4  Procedure for Sample Size Determination

As indicated earlier, for clinical trials with extremely low incidence rates, 
sample sizes required for achieving a desired power for detecting a small dif-
ference may not be feasible. Sample size justification based on a small differ-
ence (absolute change) may not be of practical interest. Alternatively, sample 
size justification based on relative change is often considered. For example, 
suppose that the incidence rate for the control group is 2% and the incidence 
rate for the test group is 1%. The absolute change in infection rate is 1% = 
2% − 1%. This small difference may not be of any clinical or practical meaning. 
However, if we consider relative change, then the difference becomes appeal-
ing. In other words, there is a 50% relative reduction in incidence rate from 2% 
to 1%. In this section, we introduce a procedure based on precision analysis 
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for selecting an appropriate sample size for clinical trials with extremely low 
incidence rate, which will also take into account relative change.

Suppose that pR and pT are incidence rates for the control group and the 
test group, respectively. Define relative improvement (or % improvement) as 
follows:

	
%†Improvement = − ×� %.p p

p
R T

R
100

Note that when pR < pT, the aforementioned measure becomes that of % wors-
ening. Based on the precision analysis and considering the relative improve-
ment at the same time, the following step-by-step procedure. for choosing an 
appropriate sample size is recommended:

Step 1: Determine the maximum allowed error margin. Choose a maximum 
error margin that one feels comfortable with. In other words, we are 95% 
confident that the true difference in incidence rates between the two groups 
is within the maximum error margin.

Step 2: Select the highest % improvement. Since it is expected that the rela-
tive improvement in infection rate is somewhere within the range, we 
may choose the combination of incidence rates which gives the highest % 
improvement.

Step 3: Select the sample size that reaches statistical significance. We then 
select the sample size for achieving statistical significance (i.e., those CIs 
that do not cover 0). In other words, the observed difference is not by chance 
above zero and is reproducible if we repeat the study under similar experi-
mental conditions.

Note that with a selected sample size (based on the earlier procedure), we can 
also evaluate the corresponding power. If one feels uncomfortable, one may 
increase the sample size. In practice, it is suggested that the selected sample 
size should have at least 50% power at a pre-specified level of significance.

12.5.1.5  Example

A biotechnology company is interested in conducting a clinical trial for evalu-
ating immune responses of one of their products as compared to an innovative 
product. Suppose that the incidence rate for the control group is extremely low, 
which is ranging from 1.7% to 2.1% with a mean incidence rate of 1.9%. The 
sponsor expects that the incidence rate for the test product is about 1.0% and 
targets for an at least 50% improvement in the immune response rate. Based 
on a pre-study power analysis for sample size calculation, a total sample size 
of 6532 (3266 per group) is required for achieving a 90% power for detecting a 
difference in incidence rate of 0.95% if such a difference truly exists at the 5% 
level of significance. With this huge sample size, the sponsor cannot afford to 
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TABLE 12.2

95% CIs (pR = 1.90%) for the Determination of Sample Sizes

pT % of 
Improvement

0.85% 0.90% 0.95% 1.00% 1.05%

55% 53% 50% 47% 45%

Lower (%) Upper (%) Lower (%) Upper (%) Lower (%) Upper (%) Lower (%) Upper (%) Lower (%) Upper (%)

n Power Power Power Power Power

200 −1.23 3.33 −1.30 3.30 −1.37 3.27 −1.44 3.24 −1.51 3.21
14.52 13.39 12.35 11.38 10.48

300 −0.81 2.91 −0.88 2.88 −0.95 2.85 −1.01 2.81 −1.08 2.78
19.64 17.97 16.42 14.98 13.66

400 −0.56 2.66 −0.63 2.63 −0.69 2.59 −0.76 2.56 −0.82 2.52
24.71 22.51 20.45 18.55 16.80

500 −0.39 2.49 −0.46 2.46 −0.52 2.42 −0.58 2.38 −0.64 2.34
29.71 26.99 24.46 22.10 19.92

600 −0.27 2.37 −0.33 2.33 −0.39 2.29 −0.45 2.25 −0.51 2.21
34.58 31.40 28.42 25.62 23.03

700 −0.17 2.27 −0.23 2.23 −0.29 2.19 −0.35 2.15 −0.41 2.11
39.30 35.71 32.30 29.10 26.11

800 −0.09 2.19 −0.15 2.15 −0.21 2.11 −0.27 2.07 −0.33 2.03
43.85 39.89 36.11 32.52 29.15

900 −0.02 2.12 −0.08 2.08 −0.14 2.04 −0.20 2.00 −0.26 1.96
48.19 43.93 39.81 35.88 32.16

1000 0.03 2.07 −0.03 2.03 −0.09 1.99 −0.15 1.95 −0.21 1.91
52.32 47.81 43.40 39.16 35.11

1100 0.08 2.02 0.02 1.98 −0.04 1.94 −0.10 1.90 −0.16 1.86
56.23 51.51 46.87 42.35 38.01

(continued)
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TABLE 12.2 (continued)

95% CIs (pR = 1.90%) for the Determination of Sample Sizes

pT % of 
Improvement

0.85% 0.90% 0.95% 1.00% 1.05%

55% 53% 50% 47% 45%

Lower (%) Upper (%) Lower (%) Upper (%) Lower (%) Upper (%) Lower (%) Upper (%) Lower (%) Upper (%)

n Power Power Power Power Power

1200 0.12 1.98 0.06 1.94 0.00 1.90 −0.06 1.86 −0.11 1.81
59.91 55.04 50.20 45.44 40.84

1300 0.16 1.94 0.10 1.90 0.04 1.86 −0.02 1.82 −0.08 1.78
63.35 58.39 53.40 48.44 43.60

1400 0.19 1.91 0.13 1.87 0.07 1.83 0.02 1.78 −0.04 1.74
66.57 61.56 56.45 51.33 46.28

1500 0.22 1.88 0.16 1.84 0.10 1.80 0.05 1.75 −0.01 1.71
69.56 64.55 59.37 54.12 48.89
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support the study, and it may not be of any practical use. Alternatively, based 
on the suggestions in the preceding sections, we may pursue the following 
steps to choose an appropriate sample size for the proposed clinical study:

Step 1: Assume that the true incidence rate for the control group is 1.90% 
and we expect that there is a 50% relative reduction for the test group. 
In other words, the true incidence rate for the test group is 0.95%. 
Now suppose that the sponsor is willing to tolerate a 50% error mar-
gin. Thus, we choose a maximum error margin allowed to be 50.

Step 2: We then use Table 12.2 to select the combination of (pR, pT) with 
the highest possible % improvement. Table 12.2 suggests that the sec-
ond column with 53% relative improvement be considered.

Step 3: We then select a sample size that reaches statistical significance. 
It can be seen from Table 12.2 that n = 1100 per group will reach 
statistical significance (i.e., the observed difference is not by chance 
alone and it is reproducible).

Thus, the total sample size required for the proposed study for achieving 
the desired precision (i.e., the maximum allowed error margin) and the rela-
tive improvement of 53% is 2200 (1100 per group), assuming that the true 
incidence rate for the control group is 1.9%. With the selected sample size of 
N = 2n = 2200, the corresponding power for correctly detecting a difference 
of δ = pR − pT = 1.9% − 0.9% = 1.0% is 53.37. Note that the selected sample size 
does not account for possible dropouts in the proposed study (Table 12.3).

12.5.2  Strategy for Data Safety Monitoring Procedure

For clinical trials with extremely low incidence rate, it will take a large sample 
to observe a few responses. The time and cost are of a great concern to the 
sponsor of the trial. In practice, it is then of particular interest to stop the trial 
early if the test treatment will not achieve the study objectives. In this section, 
a statistical data safety monitoring procedure, based on the probability state-
ment proposed by Chow and Chiu (2013), is outlined in order to assist the 
sponsor in making a decision as to whether the trial should stop at the interim.

Assume that an interim look is to be taken when we reach the sample size 
of N′ = N/2 = n, where N = 2n is the total sample size for the trial. At the 
interim, suppose that p% (where p = (pR + pT)/2) incidences are expected to be 
observed from the N′ samples. Then one can follow the procedure described 
later for data safety monitoring (Figure 12.1):

For the purpose of illustration, consider the example described in Section 
12.5.1.5. Assume that the incidence rate of the reference group is 1.9% and 
0.95% is for the test group. Thus, the blinded expected total incidence rate will 
be 1.425% and the expected mean is 15.68 ≈ 16. We can also find the 95% upper 
and lower limits of the expected observed numbers for the entire trial which 
are (8, 23). If the observed incidence number is 23 (µ̂ = 23, which is within the 
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TABLE 12.3

95% CIs (pR = 2.00%) for the Determination of Sample Sizes

pT % of 
Improvement

0.90% 0.95% 1.00% 1.05% 1.10%

55% 53% 50% 48% 45%

n

Lower (%) Upper (%) Lower (%) Upper (%) Lower (%) Upper (%) Lower (%) Upper (%) Lower (%) Upper (%)

Power Power Power Power Power

200 −1.24 3.44 −1.31 3.41 −1.38 3.38 −1.45 3.35 −1.52 3.32
14.95 13.83 12.79 11.82 10.92

300 −0.81 3.01 −0.88 2.98 −0.94 2.94 −1.01 2.91 −1.08 2.88
20.28 18.61 17.07 15.63 14.30

400 −0.55 2.75 −0.62 2.72 −0.68 2.68 −0.75 2.65 −0.81 2.61
25.55 23.36 21.32 19.41 17.65

500 −0.38 2.58 −0.44 2.54 −0.51 2.51 −0.57 2.47 −0.63 2.43
30.73 28.05 25.52 23.17 20.98

600 −0.25 2.45 −0.31 2.41 −0.37 2.37 −0.44 2.34 −0.50 2.30
35.78 32.64 29.67 26.89 24.28

700 −0.15 2.35 −0.21 2.31 −0.27 2.27 −0.33 2.23 −0.39 2.19
40.65 37.11 33.74 30.55 27.56
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800 −0.07 2.27 −0.13 2.23 −0.19 2.19 −0.25 2.15 −0.31 2.11
45.32 41.44 37.71 34.15 30.79

900 0.00 2.20 −0.06 2.16 −0.12 2.12 −0.18 2.08 −0.24 2.04
49.77 45.60 41.55 37.67 33.97

1000 0.05 2.15 −0.01 2.11 −0.06 2.06 −0.12 2.02 −0.18 1.98
53.98 49.58 45.27 41.09 37.08

1100 0.10 2.10 0.04 2.06 −0.01 2.01 −0.07 1.97 −0.13 1.93
57.94 53.37 48.85 44.41 40.12

1200 0.14 2.06 0.09 2.01 0.03 1.97 −0.03 1.93 −0.09 1.89
61.66 56.97 52.27 47.62 43.09

1300 0.18 2.02 0.12 1.98 0.07 1.93 0.01 1.89 −0.05 1.85
65.12 60.36 55.54 50.72 45.97

1400 0.22 1.98 0.16 1.94 0.10 1.90 0.04 1.86 −0.01 1.81
68.34 63.56 58.65 53.69 48.76

1500 0.25 1.95 0.19 1.91 0.13 1.87 0.07 1.83 0.02 1.78
71.32 66.55 61.60 56.54 51.46
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95% CI) at the interim, one can consider to continue the trial by probability. 
The expected incidences are shown in Table 12.4 for illustration. For the entire 
trial, the estimated expected mean and the 95% confidence limits in the refer-
ence group are 28 and (16, 40); and they are in the test group 14 and (6, 23) if 
µ̂ µ= U . For the possible combination of sample sizes, we provide the prob-

abilities P x pRj R
i

n
|†

=∑



1
 × P x pTj T

i

n
|†

=∑



1

 for each case in Table 12.5.

12.5.3  Bayesian Approach

As discussed earlier, formulas for sample size calculations were derived based 
on the concept of frequentists. Information obtained from previous studies 

TABLE 12.4

Expected Incidence Numbers and the Corresponding 95% Confidence Limits 
in Each Group for Whole Trail Intermit the Interim

Sample 
Size

Interim Target Reference Test

N′ = 1100 N = 2200 nR = 1100 nT = 1100

Expected Incidence 
Numbers Lower Mean Upper Lower Mean Upper

Upper 23 47 16 28 40 6 14 23
Mean 16 31 12 21 30 4 10 17
Lower 8 16 8 14 19 3 7 11

Find the 95% confidence upper and lower bounds of 
blinded expected mean (μL, μU)

Estimate the mean incidence rate μ in the N΄ samplesˆ

If μL≤ μ ≤ μU,
then check for the possible 

allocation and its probability 
(e.g., Table 12.5) to decide if the 

trial should go on or stop

Find the blinded expected mean N΄×p= μ

If μ < μL or μ > μU, then stop the trialˆ ˆ ˆ

FIGURE 12.1
Flow chart for data safety monitoring.



291
Issues on Im

m
unogenicity Studies

TABLE 12.5

Probabilities That Each Sample Size Combination Is Likely to Occur

Incidences Incidences Incidences Incidences Incidences

Reference Test
Prob 
(%) Reference Test

Prob 
(%) Reference Test

Prob 
(%) Reference Test

Prob 
(%) Reference Test

Prob 
(%)

16 6 1.71 21 6 5.84 26 6 9.17 31 6 10.17 36 6 10.30
16 7 3.00 21 7 10.26 26 7 16.10 31 7 17.87 36 7 18.10
16 8 4.69 21 8 16.05 26 8 25.19 31 8 27.95 36 8 28.31
16 9 6.66 21 9 22.78 26 9 35.76 31 9 39.68 36 9 40.19
16 10 8.73 21 10 29.83 26 10 46.83 31 10 51.96 36 10 52.62
16 11 10.68 21 11 36.53 26 11 57.34 31 11 63.62 36 11 64.44
16 12 12.39 21 12 42.36 26 12 66.50 31 12 73.78 36 12 74.73
16 13 13.76 21 13 47.04 26 13 73.84 31 13 81.93 36 13 82.98
16 14 14.78 21 14 50.53 26 14 79.31 31 14 88.00 36 14 89.13
16 15 15.49 21 15 52.95 26 15 83.11 31 15 92.22 36 15 93.40
16 16 15.95 21 16 54.52 26 16 85.58 31 16 94.96 36 16 96.18
16 17 16.23 21 17 55.49 26 17 87.10 31 17 96.63 36 17 97.87
16 18 16.39 21 18 56.04 26 18 87.97 31 18 97.60 36 18 98.85
16 19 16.48 21 19 56.34 26 19 88.44 31 19 98.13 36 19 99.39
16 20 16.53 21 20 56.50 26 20 88.69 31 20 98.40 36 20 99.67
16 21 16.55 21 21 56.58 26 21 88.81 31 21 98.54 36 21 99.80
16 22 16.56 21 22 56.62 26 22 88.87 31 22 98.60 36 22 99.87
16 23 16.56 21 23 56.63 26 23 88.90 31 23 98.63 36 23 99.90
17 6 2.38 22 6 6.70 27 6 9.52 32 6 10.23 37 6 10.31
17 7 4.18 22 7 11.76 27 7 16.71 32 7 17.96 37 7 18.10

(continued)
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TABLE 12.5 (continued)

Probabilities That Each Sample Size Combination Is Likely to Occur

Incidences Incidences Incidences Incidences Incidences

Reference Test
Prob 
(%) Reference Test

Prob 
(%) Reference Test

Prob 
(%) Reference Test

Prob 
(%) Reference Test

Prob 
(%)

17 8 6.54 22 8 18.40 27 8 26.14 32 8 28.10 37 8 28.32
17 9 9.29 22 9 26.13 27 9 37.12 32 9 39.90 37 9 40.20
17 10 12.17 22 10 34.21 27 10 48.60 32 10 52.24 37 10 52.64
17 11 14.90 22 11 41.89 27 11 59.52 32 11 63.97 37 11 64.47
17 12 17.27 22 12 48.58 27 12 69.02 32 12 74.18 37 12 74.75
17 13 19.18 22 13 53.95 27 13 76.64 32 13 82.38 37 13 83.01
17 14 20.60 22 14 57.95 27 14 82.32 32 14 88.48 37 14 89.16
17 15 21.59 22 15 60.72 27 15 86.27 32 15 92.72 37 15 93.44
17 16 22.23 22 16 62.53 27 16 88.83 32 16 95.47 37 16 96.21
17 17 22.63 22 17 63.63 27 17 90.40 32 17 97.16 37 17 97.91
17 18 22.85 22 18 64.27 27 18 91.31 32 18 98.13 37 18 98.89
17 19 22.98 22 19 64.62 27 19 91.80 32 19 98.66 37 19 99.43
17 20 23.04 22 20 64.80 27 20 92.06 32 20 98.94 37 20 99.71
17 21 23.07 22 21 64.88 27 21 92.18 32 21 99.08 37 21 99.84
17 22 23.09 22 22 64.93 27 22 92.24 32 22 99.14 37 22 99.91
17 23 23.09 22 23 64.95 27 23 92.27 32 23 99.17 37 23 99.94
18 6 3.17 23 6 7.48 28 6 9.77 33 6 10.26 38 6 10.31
18 7 5.56 23 7 13.13 28 7 17.17 33 7 18.02 38 7 18.11
18 8 8.70 23 8 20.54 28 8 26.85 33 8 28.19 38 8 28.32
18 9 12.35 23 9 29.16 28 9 38.13 33 9 40.03 38 9 40.21
18 10 16.17 23 10 38.19 28 10 49.92 33 10 52.42 38 10 52.65
18 11 19.81 23 11 46.76 28 11 61.13 33 11 64.19 38 11 64.48
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18 12 22.97 23 12 54.23 28 12 70.89 33 12 74.43 38 12 74.77
18 13 25.50 23 13 60.22 28 13 78.72 33 13 82.66 38 13 83.03
18 14 27.39 23 14 64.68 28 14 84.56 33 14 88.78 38 14 89.18
18 15 28.71 23 15 67.78 28 15 88.61 33 15 93.03 38 15 93.46
18 16 29.56 23 16 69.79 28 16 91.24 33 16 95.80 38 16 96.23
18 17 30.08 23 17 71.02 28 17 92.85 33 17 97.49 38 17 97.93
18 18 30.38 23 18 71.73 28 18 93.78 33 18 98.47 38 18 98.91
18 19 30.55 23 19 72.12 28 19 94.29 33 19 99.00 38 19 99.45
18 20 30.63 23 20 72.32 28 20 94.55 33 20 99.27 38 20 99.73
18 21 30.67 23 21 72.42 28 21 94.68 33 21 99.41 38 21 99.86
18 22 30.69 23 22 72.47 28 22 94.74 33 22 99.48 38 22 99.93
18 23 30.70 23 23 72.49 28 23 94.77 33 23 99.50 38 23 99.96
19 6 4.03 24 6 8.15 29 6 9.96 34 6 10.28 39 6 10.31
19 7 7.08 24 7 14.32 29 7 17.49 34 7 18.06 39 7 18.11
19 8 11.08 24 8 22.40 29 8 27.36 34 8 28.25 39 8 28.33
19 9 15.73 24 9 31.80 29 9 38.85 34 9 40.11 39 9 40.22
19 10 20.59 24 10 41.64 29 10 50.87 34 10 52.52 39 10 52.66
19 11 25.22 24 11 50.99 29 11 62.29 34 11 64.32 39 11 64.49
19 12 29.24 24 12 59.13 29 12 72.23 34 12 74.58 39 12 74.78
19 13 32.48 24 13 65.66 29 13 80.21 34 13 82.82 39 13 83.04
19 14 34.88 24 14 70.53 29 14 86.16 34 14 88.96 39 14 89.19
19 15 36.55 24 15 73.91 29 15 90.28 34 15 93.22 39 15 93.47
19 16 37.64 24 16 76.11 29 16 92.97 34 16 95.99 39 16 96.24
19 17 38.30 24 17 77.45 29 17 94.61 34 17 97.69 39 17 97.94
19 18 38.69 24 18 78.22 29 18 95.56 34 18 98.67 39 18 98.92
19 19 38.90 24 19 78.65 29 19 96.07 34 19 99.20 39 19 99.46
19 20 39.01 24 20 78.87 29 20 96.34 34 20 99.48 39 20 99.74

(continued)
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TABLE 12.5 (continued)

Probabilities That Each Sample Size Combination Is Likely to Occur

Incidences Incidences Incidences Incidences Incidences

Reference Test
Prob 
(%) Reference Test

Prob 
(%) Reference Test

Prob 
(%) Reference Test

Prob 
(%) Reference Test

Prob 
(%)

19 21 39.06 24 21 78.98 29 21 96.47 34 21 99.62 39 21 99.87
19 22 39.08 24 22 79.03 29 22 96.54 34 22 99.68 39 22 99.94
19 23 39.10 24 23 79.05 29 23 96.56 34 23 99.71 39 23 99.97
20 6 4.94 25 6 8.72 30 6 10.09 35 6 10.30 40 6 10.31
20 7 8.67 25 7 15.31 30 7 17.72 35 7 18.08 40 7 18.11
20 8 13.57 25 8 23.95 30 8 27.71 35 8 28.29 40 8 28.33
20 9 19.26 25 9 34.00 30 9 39.35 35 9 40.16 40 9 40.22
20 10 25.22 25 10 44.52 30 10 51.52 35 10 52.59 40 10 52.66
20 11 30.89 25 11 54.52 30 11 63.09 35 11 64.40 40 11 64.49
20 12 35.82 25 12 63.22 30 12 73.16 35 12 74.67 40 12 74.78
20 13 39.77 25 13 70.21 30 13 81.24 35 13 82.92 40 13 83.05
20 14 42.72 25 14 75.41 30 14 87.26 35 14 89.07 40 14 89.20
20 15 44.77 25 15 79.02 30 15 91.44 35 15 93.34 40 15 93.47
20 16 46.10 25 16 81.37 30 16 94.16 35 16 96.11 40 16 96.25
20 17 46.91 25 17 82.81 30 17 95.82 35 17 97.81 40 17 97.95
20 18 47.38 25 18 83.63 30 18 96.78 35 18 98.79 40 18 98.93
20 19 47.64 25 19 84.09 30 19 97.31 35 19 99.32 40 19 99.47
20 20 47.77 25 20 84.32 30 20 97.58 35 20 99.60 40 20 99.74
20 21 47.84 25 21 84.44 30 21 97.71 35 21 99.74 40 21 99.88
20 22 47.87 25 22 84.49 30 22 97.78 35 22 99.80 40 22 99.94
20 23 47.88 25 23 84.52 30 23 97.80 35 23 99.83 40 23 99.97
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or small pilot studies is often used to estimate the parameters required for 
sample size calculations. In practice, the sample sizes required for achiev-
ing a desired precision may be further improved by taking the Bayesian 
approach into consideration. For the purpose of illustration, a sample size 
calculation based on precision analysis in conjunction with the Bayesian 
approach with a non-informative uniform prior is performed, based on the 
following assumptions:

	 1.	Since the primary endpoint xij is a binary response, it follows 
Bernoulli distribution.

	 2.	 p pR T> .
	 3.	Let δi|θ, σ2 ∼ N(θ, σ2) and σ2 ∼ Uniform(0,1).

We would like to estimate the likelihood of the data which follow the normal 
distribution with a known mean θ and unknown variance σ2. Thus,
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As a result, the posterior distribution can be obtained as follows:
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Thus, the sample size required for achieving a desired precision can be 
obtained by following iterative steps:

Step 1: Start with an initial guess for n0.

Step 2: Generate σ2 from inverse-gamma 
α β
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= − =
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Step 3: Calculate the required sample size n with σ2 (generated from 
Step 2) by Formula 12.2.
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Step 4: If n ≠ n0, then let n0 = n and repeat Steps 1–4. If n = n0, then let 
nb = n.

The sample size based on the Bayesian approach nb can be obtained which 
will converge in probability to n after several iterations.

12.5.4  Remarks

For clinical trials with extremely low incidence rates, the sample size 
required for achieving a desired power of correctly detecting a small, clini-
cally meaningful calculation if such a difference truly exists is often very 
large. This huge sample size may not be of practical use. In this section, an 
alternative approach based on a precision analysis in conjunction with a sen-
sitivity analysis is described. The proposed method reduces the sample size 
required for achieving a desired precision with certain statistical assurance. 
As a result, a step-by-step procedure for choosing appropriate sample size is 
recommended. The proposed procedure for choosing an appropriate sample 
size is taking the relative improvement into consideration.

For clinical trials with extremely low incidence rate, it will take a large 
sample to observe a few responses. The time and cost are of great con-
cern to the sponsor of the trial. In practice, it is then of particular interest 
to stop the trial early if the test treatment will not achieve the study objec-
tives. Along this line, a statistical data safety monitoring procedure based on 
probability statement is developed to assist the sponsor in making a decision 
as to whether the trial should stop at the interim. If the observed incidences 
are within the confidence limits with 95% assurance, then we can check the 
probabilities for all possible combinations; otherwise, stop the trial.

12.6  Concluding Remarks

As more and more biological/biotechnology-derived proteins are increas-
ingly used as therapeutic agents, the issue of immunogenicity has become 
a safety concern because these products may induce an unwanted immune 
response in treated patients. The clinical consequences of such immune reac-
tions to a therapeutic protein could result in either loss of efficacy or severe 
life-threatening conditions.

Non-clinical studies may contribute to the interpretation of comparabil-
ity of the immunogenicity potential and of repeat dose toxicity studies. It is 
essential to adopt an appropriate strategy for the development of adequate 
screening and confirmatory assays to measure an immune response against 
a therapeutic protein. Assays should be capable of distinguishing neutraliz-
ing from non-neutralizing antibodies, be validated and standardized.
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13
CMC Requirements for Biological Products

13.1  Introduction

As indicated in the earlier chapters, there are some fundamental differences 
between biologics and small-molecule drugs. Small-molecule drugs are 
prepared by chemical synthesis, which are usually not sensitive to process 
changes, while biological products are made of living cells or organisms, 
which are very sensitive to process changes. A small change in manufac-
turing conditions could result in a drastic change in clinical outcomes. In 
practice, even minor modifications of the manufacturing process can cause 
variations in important properties of a biological product. Biologics, which 
possess sophisticated three-dimensional structures and contain mixtures of 
protein isoforms, are 100-fold or 1000-fold larger than small-molecule drugs. 
A biological product is a heterogeneous mixture and the current analytical 
methods cannot characterize these complex molecules sufficiently to con-
firm structural equivalence with the reference biologics.

Since biological products are manufactured in living systems that are inex-
act by their nature, they are influenced by the method of the manufactur-
ing system. Along with the manufacturing system, biological products are 
susceptible to the environmental factors. As a result, the biological products 
are capable of causing a unique set of pathologies due to their origin during 
the manufacturing process. Thus, it is important to make sure that biological 
products are manufactured using a consistent and reproducible process 
which is in compliance with applicable regulations to ensure the safety, 
purity, and potency (efficacy) of the biological products.

In the United States, regulatory requirements for biological products are 
codified in chapter 21, section 600 of the Code of Federal Regulations (21 
CFR 600). The CMC requirements for biosimilars in the Europe Union (EU) 
are those described in the ICH Common Technical Document (CTD) Quality 
Module 3 with supplemental information demonstrating comparability or 
similarity in quality attributes to the reference medicine product. At the 
present time, the United States suggests submission following CTD format 
for drug substance, which consists of general information, manufacture, 
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characterization, control, reference standards, container closure system, and 
stability (see Table 13.1).

In the next section, CMC requirements for biological products are briefly 
outlined. Section 13.3 provides brief introduction to product characteriza-
tion and specification followed by commonly seen errors in biologics license 
application (BLA) submission. Similarly, Sections 13.4 and 13.5 discuss 
requirements for manufacturing process validation and quality control/
assurance in BLA submission. Section 13.6 reviews CMC requirements for 
reference standards, container and closure system, and stability. Some con-
cluding remarks are given in the last section of this chapter.

13.2  CMC Development

For manufacturing of biosimilar products, a typical flowchart of manu-
facturing production is illustrated in Figure 13.1. As it can be seen from 
Figure  13.1, the development of chemistry, manufacturing, and controls 
(CMC) for biosimilar products starts with establishment of the expression 
system (see, e.g., Wolff, 2011). A cell-line is usually selected among bacterial, 
yeast, and mammalian host strains and then the correct DNA sequence is 
inserted. Elaborate cell-screening and selection methods are then used to 
establish a master cell bank (Chen, 2009). Extensive characterization on the 
master cell bank needs to be carried out to provide microbiological purity or 
sterility and identity (CBER/FDA, 1993).

As indicated by Chen (2009), bulk protein production involves develop-
ing robust and scalable fermentation and purification processes. The goals 
for fermentation are to increase the expression level, a deficiency, without 
compromising the correct amino acid sequence and post-translational modi-
fication. Achieving high expression requires optimizing culture medium 
and growth conditions, and efficient extraction and recovery procedures. 
Correct amino acid sequence and post-translation modification will need to 

TABLE 13.1

CTD Module 3 Format

Section Description

3.2.S.1 General information
3.2.S.2 Manufacture
3.2.S.3 Characterization
3.2.S.4 Control
3.2.S.5 Reference standards
3.2.S.6 Container closure system
3.2.S.7 Stability
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be verified. Solubilization and refolding of insoluble proteins are sometimes 
necessary for proteins which have the tendency to aggregate under the pro-
cessing condition. Differences in the cell bank and production processes may 
create impurities that are different from the innovator’s product.

Chen (2009) also pointed out that the purification process needs to remove 
impurities such as host-cell proteins, DNA, medium constituents, viruses, 
and metabolic by-products as much as possible. It is important for biosimilar 
manufacturers to accept appropriate yield losses to achieve high purity, 
because any increase in yield at the expense of purity is unacceptable and 
can have clinical consequences. The final product is produced by going 
through formulation, sterile filtration, and fill/finish into the final contain-
ers. Selection of formulation components starts from basic buffer species for 
proper pH control and salt for isotonicity adjustment. Surfactants may be 
needed to prevent proteins from being absorbed onto the container surface 
or water–air interface or other hydrophobic surfaces. Stabilizers are required 
to inhibit aggregation, oxidation, deamidation, and other degradations. 
The container and closure system can be glass vials, rubber stoppers, and 
aluminum seals or pre-filled syringes or IV bags. The container and closure 
integrity needs to be verified by sterility or dye leak test. Biologics are not 
pure substances. They are heterogeneous mixtures.

In compliance with current good manufacturing practice (cGMP), each 
batch of a biological products intended for clinical or commercial use needs 

Cell bank

Fermentation

Purification

Drug substance

Formulation

Fill/finish

Drug product

Shipment

Administration

FIGURE 13.1
Typical flowchart of manufacturing production.
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to be tested for good drug characteristics such as identity, strength, quality, 
purity, and safety (USP/NF, 2000). These tests are usually done by a panel of 
assays (given in Table 13.2) to ensure the product meets pre-defined specifi-
cations for identity, strength (potency), quality, purity, and safety. Note that 
the product purity is often measured by multiple assays, which measure dif-
ferent product-related variants (biologically active) or product-related impuri-
ties (biologically inactive). It should also be noted that biologics are parenteral 
drugs and filled into the final containers through the aseptic process so that 
microbiological control is critical. Thus, it is advisable to set up product specifi-
cations for a biosimilar within the variation of the reference biological products 
for quality assurance/control. Product characterization can be performed on 
selected batches for primary sequence, high order structures, isoform profiles, 
heterogeneity, product variants, and impurities and process impurity profiles. 
Physicochemical characterization tests include IEF, CE, HIC, LCMS, carbohy-
drate analysis, N- and C-terminal sequencing, amino acid analysis, analytical 
ultracentrifugation, CD, and DSC (Chirino et al., 2004; Kendrick et al., 2009).

Biologics are highly sensitive to environmental influences during storage, 
shipment, and handling. Temperature excursion, movement, and exposure 
to UV light can lead to protein degradation. Product expiry needs to be based 
on the real-time stability data. Stability program should also include accel-
erated or stress studies to gain insight of the degradation profiles. In-use 
stability studies are carried out to verify shipping conditions or handling 
procedures exert no detrimental effect on the drug product.

13.3  Product Characterization and Specification

13.3.1  General Description

Biosimilar manufacturers usually have no access to the manufacturing pro-
cess and product specifications of the innovator’s products because these 
are proprietary knowledge. To develop a biosimilar product, a biosimilar 

TABLE 13.2

Analytical Methods to Characterize Good Drug 
Characteristics of Biological Products

Type Assays

Identity Western blot, peptide mapping; isoelectric focusing
Strength Protein concentration by A280
Purity SDS-PAGE, SEC-HPLC, IEX-HPLC, RP-HPLC
Quality Appearance, particulates, pH, osmolality
Potency In vitro or in vivo bioactivity assays
Safety Endotoxin, sterility, residual DNA, host cell proteins
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manufacturer will need to first identify a marketed biological products to 
serve as the reference biological products. Then a detailed characteriza-
tion of the reference biological products can be performed. The information 
obtained from the characterization of the reference biological products can 
then be utilized to direct the process development of the biosimilar product 
and comparative testing to demonstrate similarity between the biosimilar 
product and the reference biological products. It, however, should be noted 
that a biosimilar product may be manufactured from a completely new pro-
cess, which may be based on a different host/vector system with different 
process steps, facilities, and equipment.

13.3.2  Drug Substance Characterization

Drug substance should be positive for identity and have specified criteria for 
purity, potency, and microbial contamination. Acceptance criteria for release 
and stability attributes should be established. Results from release and sta-
bility testing should be provided in the IND. Raw data supporting drug sub-
stance characterization should be provided in the IND. The following good 
drug characteristics should be characterized:

Safety—Ensured by the specified limits for bioburden and endotoxin, misc. 
process-related contaminants, which are usually characterized by the LAL 
test, the rabbit pyrogen test, and bacterial culture methods.

Purity—Assesses the capability of the purification process to remove pro-
cess-related impurities (e.g., endogenous viruses, host-cell proteins, DNA, 
leachables, anti-foam, antibiotics, toxins, solvents, heavy metals), product-
related impurities (e.g., aggregates, breakdown products, product variants 
due to oxidation, deamidation, denaturation, loss of C-term Lys in MAbs), 
and product substances (product variants that are active). Methods for char-
acterization of purity include, but are not limited to,

	 1.	Reversed-phase HPLC, peptide mapping, MS
	 2.	SDS-PAGE, Western analysis, capillary electrophoresis
	 3.	SEC, AUC, FFF, light scattering
	 4.	 Ion exchange chromatography
	 5.	Carbohydrate analysis (capillary electrophoresis, high-pH anion-

exchange chromatography, IEF for sialic acid)

Identity—Unique for protein of interest, especially relevant for closely related 
proteins manufactured in the same facility. Identity is usually characterized 
by N-terminal sequencing, peptide mapping, or immunoassays (ELISA, 
Western blotting).
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Potency—Required to assess biological activity of the product. The assay 
should be relevant for protein mechanism of action. For MAb or Fc fusion 
proteins, a binding assay may be sufficient for early development, but a func-
tional assay relevant for the mechanism of action should be developed. If 
the mechanism of action is unknown, multiple bioactivities plus elucidat-
ing higher-order structure may be required. Potency is usually character-
ized by animal-based assays, cell-based assays, reporter gene, or biochemical 
(e.g., enzyme activity).

Strength—Protein content, which can be characterized by RIA, ELISA, UV 
absorbance, Bradford.

Stability—Drug substance stability should be demonstrated with appropriate 
stability-indicating assays.

13.3.3  Product Characterization

Similarly, product characterization for the following good drug characteris-
tics such as safety, purity, identity, potency, strength, stability, and container 
closure should be provided in BLA submission.

Safety—The final drug product for injection should be sterile and within speci-
fied limits for endotoxin; immunogenicity should be screened and monitored. 
Successfully reduced in MAb by replacing murine with human sequences.

Purity and Characterization—Product and process-related impurities and 
product-related substances should be within specified limits.

Identity—Unique for protein of interest, especially relevant for closely related 
proteins manufactured in the same facility.

Potency—Assay should be relevant for protein mechanism of action; for MAb 
or Fc fusion proteins, a binding assay may be sufficient for early develop-
ment, but a functional assay relevant for the mechanism of action should 
be developed; if the mechanism of action is unknown, multiple bioactivities 
plus elucidation of higher-order structure may be required.

Strength—Protein content.

Stability—The drug product should maintain stability for the duration of the 
clinical trial.

13.3.4  Practical Issues

Commonly seen issues in the process of product characterization include, but 
are not limited to, (1) establishing specification prior to understanding the 
product, (2) insufficient knowledge of relationship between protein structure 
and potential safety/toxicity, (3) lack of the examination of impurity profile, 
and (4) inadequate process validation/control. Appropriate actions need to 
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be taken in order to correct or resolve these issues for quality assurance/
control of the biosimilar product under development.

13.4  Manufacture and Process Validation

13.4.1  Manufacturing Process

A typical manufacturing process for biological product consists of expression 
vector (plasmid), cell banking system including master cell bank (MCB), work-
ing cell bank (WCB), and end of production cells (EOP), drug substance man-
ufacturing and release, and drug product formulation and release (see also 
Figure 13.2). As an example, consider a manufacturing process for therapeutic 
biologic protein products. Expression vectors are used for (1) transfer of genes 
from one organism to another, (2) production of large amounts of  protein, 
(3) description of origin of the construct, (4) plasmid mapping (e.g., restriction 
sites, integration sites, promoter, copy number) and stability, and (5) sequenc-
ing of gene of interest (Markovic, 2007). A WCB is derived from the MCB and 
is used to initiate a production batch. Table 13.3 provides a list of characteriza-
tion of cell banks required for CMC. It should be noted that sources of adven-
titious agents include cell substrate (e.g., endogenous viruses and exogenous 
microbial contamination, raw materials (e.g., cell culture reagents such as ani-
mal and non-animal derived), and environment (e.g., water, air, and humans 
technicians). As indicated in Figure 13.1, fermentation and purification are 
two key components of the manufacturing process. The fermentation process 
and purification process are depicted in Figures 13.2 and 13.3, respectively.

The goal of the manufacturing process is to produce sufficient quantities 
of quality product in a controlled and reproducible manner. Manufacturing 
processes are dynamic. Changes can be process-related (e.g., modification 
of process, increase in scale, or change in location). Changes can be method 
related (e.g.,  improvement of analytical method and replacement of one or 
analytical methods). The manufacturing process should be thoroughly inves-
tigated and understood. Quality should be designed into the process, rather 
than tested into the product via the analytical methods. When evaluating 
changes, one should focus on (1) that biological products are complex mix-
tures, that the control starts with the cell banks and on all raw materials, and 
whether the product is at risk from raw materials, operators, and environment. 
No change can be assumed to be neutral. Release criteria alone are insufficient 
to fully evaluate the impact of changes.

13.4.2  Process Validation

As indicated in Chow and Liu (1995), the primary objective of process valida-
tion is to provide documented evidence that a manufacturing process does 
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reliably what it purports to do. To accomplish this prospectively, a validation 
protocol is necessarily developed. A validation protocol should include the 
characterization of the product, the manufacturing procedure, and sampling 
plans, acceptance criteria, and testing procedures to be performed at identi-
fied critical stages of the manufacturing process. The statistically based sam-
pling plans, testing procedures, and acceptance criteria ensure, with a high 
degree of confidence, that the manufacturing process does what it purports 
to do. Since the manufacturing process for a biological product is complex 
that involves several critical stages, it is important to discuss the following 
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issues with the project scientists to acquire a good understanding of the 
product and the manufacturing process:

	 1.	 Identified critical stages
	 2.	Equipment to be used at each critical stage
	 3.	Possible issues/problems
	 4.	Testing procedures to be performed
	 5.	Sampling plan, testing plan, and acceptance criteria
	 6.	Pertinent information
	 7.	Specification to be used as reference
	 8.	Validation summary

When a problem is observed in a manufacturing process, it is crucial to 
locate at which stage the problem occurred so that it can be corrected and 
the manufacturing process can do what it purports to do. In practice, the 
manufacturing process is usually evaluated by constant monitoring of its 
critical stages. Therefore, for the validation of a manufacturing process, it 
is recommended that project scientists be consulted to identify the critical 
stages of the manufacturing process. At each stage of the manufacturing 
process, it is also helpful to have knowledge of the equipment to be sued 
and its components. The equipment may affect the conformance with com-
pendia specifications for product quality. The validation protocol should 
establish statistically based sampling plans, testing plans, and acceptance 
criteria. Sampling plans and acceptance criteria are usually chosen such 
that (1) there is a high probability of meeting the acceptance criteria if the 

TABLE 13.3

Characterization of Cell Banks

Test MCB WCB EPC

Viability × × ×
Identity × ×
Purity × × ×
Stability × ×
Karyology × ×
Tumorigenicity × ×
Sterility × × ×
Mycoplasma × × ×
Adventitious viruses × ×
Species-specific ×
Retrovirus × ×

Key:	 MCB, master cell bank; WCB, working 
cell bank; EOP, end of production cells.
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batch at a given stage is “acceptable” (this probability is 1 − the producer’s 
risk), and (2) there is small probability of meeting the acceptance criteria if 
the batch at a given stage is “unacceptable” (this probability is the so-called 
consumer’s risk).

13.4.3  Commonly Encountered Issues

Note that commonly seen errors/omissions regarding a manufacturing 
process include (1) manufacturing and/or testing locations not registered; 
(2) manufacturing not planned during application review cycle; (3) inade-
quate raw material control; (4) failure to perform or provide results of process 
understanding studies and impurity clearance studies; (5) failure to validate 
commercial process, intermediate hold times, resin and membrane reuse 
cycles, buffer hold times, reprocessing if included, and shipping of interme-
diates/drug substance; (6) failure to demonstrate consistency of manufacture 
(e.g., according to a protocol with pre-specified criteria, using validated test 
methods, as three successive successful runs); (7) failure to demonstrate com-
parability between processes during development; and (8) lack of retaining 
samples to close gaps. Appropriate actions need to be taken in order to cor-
rect or resolve these issues for quality control/assurance of the biosimilar 
product under development.

13.5  Quality Control/Assurance

The manufacture of biological products involves biological processes and 
materials, such as cultivation of cells or extraction of material from living 
organisms. These biological processes may display inherent variability, and 
so the range and nature of by-products are variable. Moreover, the materials 
used in these cultivation processes provide good substrates for growth of 
microbial contaminants. Thus, quality control/assurance of biological prod-
ucts usually involves biological analytical techniques which have a greater 
variability than that of chemical drug products. In-process controls there-
fore take on a great importance in the manufacture of biological medicinal 
products.

13.5.1  General Principles

For quality control of biological products, it is suggested that the following 
general principles should be followed:

In-process controls—In-process controls play an important role in ensuring 
the consistency of the quality of biological products. Those controls which 
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are crucial for quality (e.g., virus removal), but cannot be carried out on the 
finished product, should be performed at an appropriate stage of produc-
tion. Thus, critical stages of the manufacturing process need to be identi-
fied and validated accompanied with sampling plan, acceptance criteria, 
and testing procedure.

Sample retention—It may be necessary to retain samples of intermediate 
products in sufficient quantities and under appropriate storage conditions to 
allow the repetition or confirmation of a batch control.

Quality control requirement—Where continuous culture is used, special con-
sideration should be given to the quality control requirements arising from 
this type of production method.

Statistical process for QC—Continuous monitoring of certain production pro-
cesses is necessary, for example, fermentation. Such data should form part of 
the batch record. The statistical process for QC will help in identifying prob-
lems or issues early and appropriate actions can be taken to correct the prob-
lems or resolve the issues.

13.5.2  Starting Materials

As indicated in WHO (2010), quality and control of the starting material 
should be documented. Information demonstrating that the starting mate-
rial meets the quality level appropriate for its intended use should be pro-
vided. Thus, the source, origin, and suitability of starting materials should 
be clearly defined. Where the necessary tests take a long time, it may be 
permissible to process starting materials before the results of the tests are 
available. In such cases, release of a finished product is conditional on satis-
factory results of these tests.

Note that where sterilization of starting materials is required, it should 
be carried out where possible by heat. Where necessary, other appropriate 
methods may also be used for inactivation of biological materials (e.g., 
irradiation).

13.5.3  Seed Lot and Cell Bank System

For quality and control of the cell bank system of biological medicinal prod-
ucts, it is suggested that the following principles as described in the Guide 
to Good Manufacturing Practice for Medicinal Products be considered 
(PIC/S, 2009).

First, in order to prevent the unwanted drift of properties, which might 
ensue from repeated subcultures or multiple generations, the production of 
biological medicinal products obtained by microbial culture, cell culture, or 
propagation in embryos and animals should be based on a system of master 
and working seed lots and/or cell banks. Second, the number of generations 



309CMC Requirements for Biological Products

(doublings, passages) between the seed lot or cell bank and the finished 
product should be consistent with the marketing authorization dossier. 
Scaling up and post-approval changes of the process should not change this 
fundamental relationship.

Third, it is strongly recommended that seed lots and cell banks should be 
adequately characterized and tested for possible contaminants. Their suitabil-
ity for use should be further demonstrated by the consistency of the charac-
teristics and quality of the successive batches of the product. Seed lots and cell 
banks should be established, stored, and used in such a way as to minimize 
the risks of contamination or alteration. A recent incidence of virus contami-
nation is further discussed in the last chapter of this book. It is also important 
to establish the seed lot and cell bank in a suitably controlled environment in 
order to protect the seed lot and the cell bank, and, if applicable, the personnel 
handling it. During the establishment of the seed lot and cell bank, no other 
living or infectious material (e.g., virus, cell lines, or cell strains) should be 
handled simultaneously in the same area or by the same person.

Finally, evidence of the stability and recovery of the seeds and banks should 
be documented. Storage containers should be hermetically sealed, clearly 
labeled, and kept at an appropriate temperature. An inventory should be 
meticulously kept. Storage temperature should be recorded continuously for 
freezers and properly monitored for liquid nitrogen. Any deviation from set 
limits and any corrective action taken should be recorded. Note that different 
seed lots or cell banks should be stored in such a way as to avoid confusion or 
cross-contamination. It is desirable to split the seed lots and cell banks and to 
store the parts at different locations so as to minimize the risks of total loss.

13.5.4  Operating Principles

From the operating perspective, it is suggested that the growth-promoting 
properties of culture media should be demonstrated. Addition of materi-
als or cultures to fermenters and other vessels and the taking of samples 
should be carried out under carefully controlled conditions to ensure that 
the absence of contamination is maintained. Care should be taken to ensure 
that vessels are correctly connected when addition or sampling takes place. 
It should also be noted that centrifugation and blending of products can lead 
to aerosol formation and containment of such activities. Thus, it is important 
to prevent transfer of live microorganisms if necessary (PIC/S, 2009).

13.5.5  Premises and Equipment

The assurance of product quality relies on sponsor’s commitment and 
equipment, which involve manufacturing facility, facility design and con-
trols, and robust quality system. Basic considerations for manufacturing 
facility, facility design and controls, and robust quality system are briefly 
outlined as follows:
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Manufacturing facility—Some basic considerations (commonly seen issues/
problems) for manufacturing facility are summarized as follows:

	 1.	Materials of construction are smooth, hard, and cleanable.
	 2.	Edges are coved and seams are sealed.
	 3.	No open floor drains.
	 4.	No clutter.
	 5.	Unidirectional flow of materials, staff, and waste is preferred.
	 6.	Cleaning validation critical for multi-use areas and equipment.
	 7.	Direction of air flow is away from the product.
	 8.	Air returns are low and accessible.
	 9.	Air quality assessed under dynamic conditions.
	 10.	Water is of the highest quality feasible for each step.
	 11.	WFI is introduced as early as feasible in downstream processing.

Facility design and controls—Basic considerations for facility design and con-
trols include the following:

	 1.	Sufficient work space
	 2.	Appropriate equipment
	 3.	Environmental control
	 4.	Validated systems and equipment
	 5.	Validated cleaning procedures using qualified cleaning and sanitiz-

ing agents
	 6.	Systems to prevent cross-contamination system to handle waste 

materials

Robust quality system—Robust quality system should focus on the following:

	 1.	Raw material/inventory control
	 2.	Environmental monitoring programs
	 3.	Maintenance and calibration programs
	 4.	Validation activities including computer systems
	 5.	Staff training requirements
	 6.	 Internal audit program
	 7.	Vendor audit program
	 8.	Trending and oversight programs
	 9.	Records review and product release
	 10.	Non-conformance and OOS procedures
	 11.	Change control procedures
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13.5.6  Practical Issues

Commonly seen errors in the quality control/assurance of a manufacturing 
process of biological products include (1) manufacturing/testing locations are 
not registered; (2) manufacturing is not planned during application review 
cycle; (3) inadequate raw material control; (4) failure to perform or provide 
results of impurity clearance studies; (5) failure to validate commercial pro-
cess, intermediate hold times, resin and membrane reuse cycles, buffer hold 
times, reprocessing (if included), and shipping of intermediate/drug substance; 
(6) failure to demonstrate consistency of manufacture according to a protocol 
with pre-specified criteria; (7) failure to demonstrate comparability between 
processes during development; and (8) lack of retaining samples to close gaps.

13.6 � Reference Standards, Container Closure 
System, and Stability

In addition to general information regarding manufacturing process/process 
validation, product characterization/specification, and quality control/
assurance, a complete CMC package also requires the inclusion of the estab-
lishment of reference standards, the information regarding container closure 
system, and the evidence of product stability, which are briefly described later.

13.6.1  Reference Standards

Biological medicinal products can be defined by reference to their method 
of manufacture. Biological medicinal products are usually prepared by the 
following methods of manufacture:

	 1.	Microbial cultures, excluding those resulting from r-DNA techniques
	 2.	Microbial and cell cultures, including those resulting from recombi-

nant DNA or hybridoma techniques
	 3.	Extraction from biological tissues
	 4.	Propagation of live agents in embryos or animals

Biological medicinal products manufactured by these methods include 
vaccines, immunosera, antigens, hormones, cytokines, enzymes, and other 
products of fermentation (including monoclonal antibodies and products 
derived from r-DNA).

Characterization of reference standard is usually performed using part of 
the lot used for non-clinical studies. The established reference standard is then 
used to release the clinical lot. As development progresses, if the lot is too old or 
there is insufficient amount of the previous lot, a new reference standard may 
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be required to account for change in manufacturing. In this case, a protocol for 
generating and/or qualifying the new reference standard must be developed to 
incorporate new methods as new specification evolves. Portion of each reference 
standard lot must be retained for future use or needs. During the development, 
reference materials which reflect degradation pathways critical in product qual-
ity control are needed as assay development, controls, and validation.

Recently, for the assessment of biosimilarity between a biosimilar (test) 
product and an innovative (reference) product, a criterion for biosimilarity 
based on relative difference between (T vs. R) and (R vs. R) is recommended. 
The difference between T and R is compared with the difference between R 
and R, which is used as a reference standard for comparison. For this pur-
pose, the establishment of the reference standard can be done by either con-
ducting a so-called R–R study or utilizing a three-arm (i.e., T, R, and R) trial 
(see, e.g., Kang and Chow, 2013). In an R–R study or a three-arm study, it 
is suggested that the two R’s be obtained from either two different batches 
of the same manufacturing process or two different manufacturing pro-
cesses (or locations). The establishment of the reference standard will help in 
addressing the issues of “How similar is considered similar?” and the degree 
of similarity.

13.6.2  Container Closure System

To fulfill regulatory requirements for license, extractables and leachables stud-
ies are often conducted. Extractables are those which migrate from a container 
closure system and/or other packaging components in a DP vehicle or solvent 
under exaggerated conditions, while leachables are those which migrate spon-
taneously from a container closure system and/or other packaging compo-
nents under normal conditions of use and storage. Extractables are helpful in 
predicting the potential leachables and in selecting the appropriate container 
closure system. Leachables are often a subset of extractables, or derived by their 
chemical modification. Sources of leachables in the product include syringes/
prefilled syringes, ampoules, vials, bottles, IV bags, storage bags for product 
intermediates, closures (screw caps, rubber stoppers), and container liners 
(e.g., tube liners). Processing equipment usually include stainless steel storage 
tanks/bioreactors, tubing, gaskets, valves, rings, and filter purification resins.

As indicated by Markovic (2007), leachables could have an impact on 
safety and product quality. For example, when there is a change from HSA 
formulation to a polysorbate with unchanged container closure system (pre-
filled syringes with the uncoated rubber stoppers). The observation of a seri-
ous adverse event (PRCA) leads to the hypothesis that leachables acted as 
adjuvants triggering immunogenicity. For another example, when there is 
a change from a lyophilized to a liquid formulation (divalent cation leached 
from the rubber stopper) which might cause activation of metalloprotease 
(a process-related impurity co-eluted with the API). This could impact prod-
uct degradation at the N-terminal site (stability study).
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Commonly, errors in extractables and leachables studies include absence of 
data on extractables and leachables from the container closure and absence 
of assessment of the impact of the extractables/leachables data on product 
specification and methods (potential to seed microaggregates, potential to 
alter the immunogenicity profile). In practice, it is suggested that appropriate 
actions be taken to resolve the issues of extractables and leachables.

13.6.3  Stability

For drug substance and drug product, real-time and accelerated (stress) sta-
bility data with several time points under upright and inverted conditions 
are necessarily collected to establish the expiration dating period of the 
drug substance and drug product. Stress studies (e.g., UV, exaggerated light, 
temperature, and pH) are useful to elucidate product degradation pathways 
and for defining acceptance criteria. Limited time stability studies may be 
acceptable for short-term stability study. In practice, stability data gener-
ated from engineering lots are also acceptable. It should be noted that fail-
ure to demonstrate product stability could result in a potential hold issue.

For assessment of stability, the following testing should be performed at 
a minimum: (1) safety (e.g., bioburden/sterility), (2) purity (including prod-
uct and process-related impurities and product-related substances), (3) sialic 
acid (if appropriate), (4) potency, (5) protein content/strength, (6) pH, and 
(7) appearance leachables (separate study, not part of routine stability testing).

In BLA submission, summary of all stability data includes supporting data 
from the clinical program; forced degradation data to support choice of sta-
bility indicating panel; data assessment to support expiration dating period; 
stability protocol for commercial lots; data from ICH compliant stability pro-
gram, with a minimum of 6 monthsʼ data under intended storage conditions 
and conformance lots at commercial scale; and description and validation 
data for methods used only for assessing stability.

Common errors include insufficient number of lots, insufficient stability data, 
stability containers not representative of drug substance container closure sys-
tem, absence of forced degradation data to identify stability indicating assays, 
and absence of stability protocol. More detailed information regarding require-
ments, design, and analysis of stability studies are provided in Chapter 15.

13.7  Concluding Remarks

A typical BLA includes (1) form FDA 356h (cover sheet), (2) applicant infor-
mation, (3) product/manufacturing information, (4) pre-clinical studies, 
(5)  clinical studies, and labeling. Thus, CMC, pre-clinical, and clinical are 
three critical components in biosimilars development. A full-scale CMC 



314 Biosimilars: Design and Analysis of Follow-on Biologics

development is required including expression system, culture, purification, 
formulation, analytics, and packaging. The EU has issued biosimilars guide-
lines based on comparative testing against the reference biologic drug (the 
original approved biologic). For approval of biosimilars in the United States, 
we expect the CMC package will be similar to that in the EU which con-
tains a full quality dossier with a comparability program including detailed 
product characterization comparison and reduced pre-clinical and clinical 
requirements.

CMC requirements for biological products have received increasing atten-
tion from the regulatory agencies worldwide. The following lists potential 
CMC hold issues for phase 1 IND:

	 1.	Comparability between preclinical and clinical lots not demonstrated
	 2.	 Insufficient characterization of cell banks (e.g., adventitious agents 

testing, identity)
	 3.	 Inadequate product characterization with regards to purity, identity, 

potency, and safety
	 4.	Lack of final product release testing
	 5.	Lacking or inappropriate specifications for release and stability 

testing
	 6.	Lacking or inadequate potency assay
	 7.	Data supporting product stability have not been shown for the 

planned duration of clinical studies
	 8.	Lack or inappropriate immunogenicity assays for high-risk products
	 9.	Lack of evidence for final drug product sterility

Thus, it is suggested that the earlier listed potential CMC issues be resolved 
before regulatory submission of a BLA for biosimilar product.
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14
Test for Comparability 
in Manufacturing Process

14.1  Introduction

Unlike small-molecular drugs with clearly and well-defined composition 
and structure, biologic drugs have much more complex ingredients, which 
are usually biomacromolecules including proteins, nucleic acids (DNA, 
RNA, antisense oligonucleotides), or living microorganisms like virulence-
attenuated viruses and bacteria. Among them, recombinant-protein drugs 
have been the most common biopharmaceuticals so far. Classes of approved 
recombinant-protein drugs include hormones, cytokines, clotting factors, 
monoclonal antibodies, vaccine products, enzymes, and novel conjugates. 
As indicated earlier, biological products have many fundamental differences 
from chemical compounds. For example, chemical drugs are usually low-
molecular-weight organic compounds (<1000 Da) with simple and definite 
chemical structures, while biological products have larger sizes and more 
complex structures. The average molecular weight of biologics ranges from 
4,000 Da for nonglycosylated proteins to more than 140,000 Da for monoclonal 
antibodies (Lanthier et al., 2008). Recombinant-protein drugs fold into three-
dimensional structures, which have four distinct levels. Amino acids are 
polymerized into a linear chain by the formation of an amide linkage between 
the α-carboxyl group of one amino acid and the α-amino group of the next, 
which is referred to as the primary structure of proteins. The polypeptide 
then folds into highly regular local substructures such as an alpha helix and 
beta strand, forming the secondary structures. The spatial relationship of the 
secondary structures to one another is referred to as tertiary structure, which 
is stabilized by nonlocal interactions like the hydrophobic core, salt bridges, 
hydrogen bonds, disulfide bonds, and posttranslational modifications. Many 
proteins consist of two or more polypeptide chains, and the manner of these 
associated protein subunits is called the quaternary structure.

Due to the low molecular weight, it is much easier for chemical com-
pounds to rapidly diffuse across cell membranes and reach intracellular sites 
of action, compared with biological products. Besides, chemical drugs have 
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generally much higher oral bioavailability, since biologics, usually proteins, 
will be degraded by proteases in the gastrointestinal tract after oral admin-
istration. Thus biologic drugs are usually injected into human bodies and 
require high purity and safety. Another pharmacokinetic difference is that 
when chemical drugs enter living organisms, they usually undergo, by the 
process of drug metabolism, a series of biochemical modifications through 
specialized enzymatic systems such as the cytochrome P450 superfamily 
(CYPs). The process usually converts a chemical drug to more water soluble 
and easily excreted metabolites. It may also contribute to the activity and 
toxicity of metabolites. But biological products usually do not undergo this 
kind of drug metabolism since they are generally active biological molecules 
initially synthesized by human body itself.

Chemical drugs usually have pharmacological functions through binding 
with targets such as receptors or enzymes and alter activity or function of 
the targets. For example, small-molecule drug tamoxifen is used as a stan-
dard endocrine therapy for steroid hormone receptor-positive breast cancer. 
It can competitively bind to estrogen receptors on tumors and other tissue 
targets, producing a nuclear complex that decreases DNA synthesis and 
inhibits estrogen effects and tumor cell proliferation. The pharmacological 
mechanisms of biological products are different from those of chemical com-
pounds. Hormones have pharmacological functions through the alleviation 
of deficiencies. For example, biosynthetic human insulin is used to treat dia-
betes caused by insulin secretion deficiency, and human growth hormone 
is used for the treatment of children’s growth disorders and adult growth 
hormone deficiency. Cytokines such as interferon-α can enhance cellular 
immune responses and have antiviral or antineoplastic effects. Another 
important class of biological products is monoclonal antibodies. They can 
specifically inhibit the activity of their targets. For example, bevacizumab is 
a humanized monoclonal antibody used to treat various cancers by inhibit-
ing vascular endothelial growth factor A and blocking angiogenesis (Los 
et al., 2007). Accordingly, pharmacological mechanisms are different with 
biologic medicines and small-molecule chemical drugs.

In the next section, a typical manufacturing process for biological products 
is briefly outlined. The concept of testing comparability in terms of consis-
tency between raw materials or final products between a biosimilar prod-
uct and a reference product is introduced in Section 14.3. Statistical tests for 
comparability in critical quality attributes at various stages between manu-
facturing processes are studied in Section 14.4. Also included in this section 
are sampling plans, acceptance criteria, testing procedures, and strategies 
for statistical quality control (QC)/assurance under various specifications 
and/or user parameters. Other comparability tests such as pharmacokinetics 
(PK) comparability test, pharmacodynamics (PD) comparability index, and 
clinical efficacy comparability study are discussed in Section 14.5. A brief 
discussion is given in the last section.
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14.2  Biologic Manufacturing Process

Unlike small-molecule drugs, which are produced through chemical 
synthesis procedures, biological products are often recombinant-protein 
molecules manufactured in living cells. A typical manufacturing process 
for a biologics from production to drug use is illustrated in Figure 13.1. 
As it can be seen in Figure 13.1, a typical biological manufacturing pro-
cess includes several critical stages such as cell bank, fermentation, puri-
fication, formulation, and fill/finish. As an example, for manufacturing 
of a recombinant-protein drug product, the manufacturing processes are 
highly complex including obtaining an expression of target genes, the 
optimization and fermentation of gene engineering cells, the clarification 
and purification of the products, the formulation and testing, aseptic fill-
ing and packaging. Each of these procedures contains multiple steps and 
requires strictly controlled conditions in order to guarantee the efficacy 
and safety of the biological products, such as the design of bioreactor, 
pH, OD, PO2, PCO2, temperature, concentration, etc. Indeed, since man-
ufacturing details are proprietary, these processes generally cannot be 
duplicated and differences in any step may result in variations of clinical 
relevance in important parameters, such as three-dimensional structure 
of the protein, the quantities of acid–base variants and posttranslational 
modifications. Thus, in practice, it is hard to produce an identical copy of 
a biological product.

In practice, since a small change or variation which occurs at any stage of a 
manufacturing process could result in a drastic change in clinical outcomes 
(e.g., safety and effectiveness) of the biosimilar product under study, it is sug-
gested that the manufacturing process be validated for QC and assurance. 
As indicated in the previous chapter, the ultimate goal of manufacturing 
process validation is to provide documented evidence that a manufactur-
ing process does reliably what it purports to do. Thus, a process validation 
study is necessarily conducted following a valid validation protocol. A vali-
dation protocol should identify critical stages of the manufacturing process. 
At each identified critical stage, appropriate testing procedures for critical 
quality attributes should be performed according to the sampling plans and 
acceptance criteria specified in the validation protocol. Corrected actions can 
then be taken where a problem is observed.

After regulatory approval of the biosimilar product under develop-
ment, it is always a great concern to the sponsor that the quality of raw 
materials, in-process materials, and final products can maintain consis-
tency at post-approval manufacturing process. Thus, it is suggested tests 
for comparability in raw materials, in-process materials, and final prod-
ucts be performed for QC and assurance of the products manufactured 
by the process.
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14.3  Consistency Index

In this section, we will focus on testing comparability in raw material, in-
process (in-use) material, and end product between manufacturing pro-
cesses. Tse et al. (2006) and Lu et al. (2007) considered testing comparability 
in terms of a proposed consistency index for traditional Chinese medicine 
(TCM). The concept of their proposed consistency index can be implemented 
for developing a valid statistical QC process for quality assurance of the raw 
materials, in-process materials, and final products of biosimilar products 
(Chow and Liu, 1995; Tse et al., 2006). In practice, raw materials are often from 
different resources and the final product may be manufactured in differ-
ent processes and/or sites (locations). As a result, variabilities from different 
resources such as process-to-process (or site-to-site or location-to-location), 
within process (site or location), stage-to-stage are inevitable. Thus, test for 
comparability (in terms of consistency) in raw materials, in-process materi-
als, and/or final products between manufacturing processes has become an 
important step in the QC process for the development of biosimilar products.

Tse et al. (2006) proposed a statistical QC method for assessing consistency of 
raw materials and/or final products between manufacturing processes. The idea 
is to construct a 95% confidence interval for a proposed consistency index under 
a prespecified sampling plan. If the constructed 95% confidence lower limit is 
greater than a prespecified QC lower limit, then we claim that the raw materials 
or final products of the manufacturing processes are consistent or comparable. 
To ensure that there is a desired (high) probability for establishing consistency 
or comparability between manufacturing processes (sites or locations) when 
truly there is no difference in raw materials or final products between manu-
facturing processes (sites or locations), an appropriate sampling plan which can 
draw representative samples at random is necessarily developed.

Let U and W be the characteristics of the biological products under investi-
gation from two different manufacturing processes (sites or locations), where 
X = log U and Y = log W follows normal distributions with means μX, μY and 
variances VX, VY, respectively. Similar to the idea of using P(X < Y) to assess 
reliability in statistical QC (Church and Harris, 1970; Enis and Geisser, 1971), 
Tse et al. (2006) proposed the following probability as an index to assess the 
consistency of raw materials and/or final products from two different manu-
facturing processes (sites or locations)

	
p P U

W
= − < <

−




1 1

1
δ

δ
, 	 (14.1)

where 0 < δ < 1 and is defined as a limit that allows for consistency. Tse et al. 
(2006) referred to p as the consistency index. Thus, p tends to 1 as δ tends to 1. 
For a given δ, if p is close to 1, materials U and W are considered to be identical. 
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It should be noted that a small δ implies the requirement of high degree of 
consistency between material U and material W. In practice, it may be dif-
ficult to meet this narrow specification for consistency. Under the normality 
assumption of X = log U and Y = log W, Equation 14.1 can be rewritten as
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where Φ(z0) = P(Z < z0) with Z being a standard normal random variable. 
Therefore, the consistency index p is a function of the parameters θ = (μX, 
μY, VX, VY), i.e., p = h(θ). Suppose that observations Xi = log Ui, i = 1, …, nX 
and Yi = log Wi, i = 1, …, nY are collected in an assay study. Then, using the 
invariance principle, the maximum likelihood estimator (MLE) of p can be 
obtained as
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Furthermore, it can be easily verified that the following asymptotic result 
holds.

Theorem 14.1

p̂ as given in Equation 14.2 is asymptotically normal with mean E(p̂) and vari-
ance Var(p̂). In other words

	

ˆ ( ˆ)
ˆ

, ,p E p
p

N− → ( )
Var( )

0 1 	 (14.3)

where E(p̂) = p + B(p) + o(1/n) and Var(p̂) = C(p) + o(1/n). The detailed expres-
sions of B(p) and C(p) are given as follows.

Proof

Based on the definitions of X– and V̂X, it is easy to show that

	 E X X( ) ,= µ



320 Biosimilars: Design and Analysis of Follow-on Biologics

	
E V n

n
VX

X

X
X( ) ,ˆ = − 1

	
Var( ) ,X V

n
X

X
=

and

	
Var( ) ( ) .V n

n
VX

X

X
X

ˆ = −2 1
2

2

Similarly

	 E Y Y( ) ,= µ

	
E V n

n
VY

Y

Y
Y( ) ,ˆ = − 1

	
Var( ) ,Y V

n
Y

Y
=

and

	
Var( ) .V n

n
VY

Y

Y
Y

ˆ =
−( )2 1

2
2

Applying expansion of p̂ at p, we have
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The other second-order partial derivatives are not considered because they 
will lead to expected values of order O(n−2) or higher. Taking expectation,
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and
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For the sake of simplicity, denote
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Then after some algebra, the partial derivatives are given as
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This completes the proof.

Based on the result of Theorem 14.1, an approximate (1 − α) × 100% confi-
dence interval for p, i.e., (LL(p̂), UL(p̂)), can be obtained. In particular,

	 LL p p B p z C p UL p p B p z C p( ) ( ) ( ) ( ) ( ) ( ) ,/ /ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= − − = − +α α2 2and 	 (14.6)

where zα is the upper α-percentile of a standard normal distribution.

14.4  Test for Comparability

For a valid statistical QC process, a testing procedure is necessarily performed 
according to some pre-specified acceptance criteria under an appropriate 
sampling plan that can draw representative samples at random. In this sec-
tion, following the idea of Tse et al. (2006), we propose a statistical QC method 
for assessing consistency of raw materials and/or final products between 
biosimilar products manufactured by different manufacturing processes 
(sites or locations). The idea is to construct a 95% confidence interval for a pro-
posed consistency index described earlier under a sampling plan. If the con-
structed 95% confidence lower limit is greater than a prespecified QC lower 
limit, then we claim that the raw material or final product has passed the QC 
and hence can be released for further processing or use. Otherwise, the raw 
materials and/or final product should be rejected. For a given component (the 
most active component if possible), the sampling plan is derived to ensure 
that there is a desired probability for establishing consistency between sites 
when truly there is no difference in raw materials or final products between 
sites. In what follows, details regarding the choice of acceptance criteria, sam-
pling plan, and the corresponding testing procedure are briefly outlined.

14.4.1  Acceptance Criteria

In terms of consistency, we propose the following QC criterion. If the prob-
ability that the lower limit LL(p̂) of the constructed (1 − α) × 100% confidence 
interval of p is greater than or equal to a prespecified QC lower limit, say, 
QCL exceeds a prespecified number β (say β = 80%), then we claim that U and 
W are consistent or similar. In other words, U and W are consistent or similar 
if P(QCL ≤ LL(p̂)) ≥ β, where β is a prespecified constant.
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It should be noted that the selection of β would reflect the degree of con-
sistency or comparability that the sponsor would like to achieve. In practice, 
it is suggested that β be selected based on the comparison between batches 
of the reference product manufactured by the same manufacturing pro-
cess of the reference product.

14.4.2  Sampling Plan

In practice, it is necessary to select a sample size to ensure that there is a high 
probability or consistency (or comparability), say β, between U and W when 
in fact U and W are consistent or comparable. It is then suggested that the 
sample size is chosen such that there is more than 80% chance that the lower 
confidence limit of p is greater than or equal to the QC lower limit, i.e., β = 0.8. 
In other words, the sample size is determined such that

	 P QC LL pL{ ( à)} .≤ ≥ β 	 (14.7)

Using Equation 14.7, this leads to
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Therefore, the sample size required for achieving a probability higher than β 
can be obtained by solving the following equation:
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Assuming that nX = nY = n, the common sample size is given by
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The result provided earlier suggests that the required sample size will 
depend on the choices of α, β, VX, VY, μX − μY, and p − QCL. As it can be seen 
from the expression in Equation 14.9 that larger sample size is required for 
smaller α and larger β, i.e., the interval is expected to have high confidence 
level (1 − α) and high chance that the lower confidence limit is larger than 
QCL. Furthermore, if we require QCL to be close to p, i.e., p − QCL is small, a 
relatively large sample size is required. The dependence of the sample size n 
on the other parameters VX, VY, and μX − μY is relatively unclear because these 
parameters are linked to the corresponding partial derivatives. A numerical 
study is conducted to explore the pattern. Given the large number of param-
eters involved in Equation 14.9, it is impractical to list the value of n for all the 
parameters combinations. However, for illustration purpose, we consider only 
a certain combination of parameters values in an attempt to explore the pat-
tern of dependence of n on the parameters. For the sake of simplicity, define
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Then, for given choices of α and β, the required sample size n is equal to 
(z1−β + zα/2)2S. In particular, in our study, δ = 0.10, 0.15, and 0.20; μX − μY = 0.5, 1.0, 
and 1.5; p − QCL = 0.02, 0.05, and 0.08. VX is chosen to be 1 and VY = 0.2, 0.5, 1.0, 2.0, 
and 5.0. For each combination of these parameters values, the corresponding 
value of S is listed in Table 14.1. Given the number of parameters involved and 
the complexity of the mathematical expression of S, it is not easy to detect a gen-
eral pattern. However, in general, the results suggest that S increases as μX − μY 
decreases, and as the variances Vx and Vy differ more from each other. In other 
words, smaller sample size is required if the difference between the population 
means is large or the variability of the two sites are of similar magnitude.

As an illustration, if for a study with δ = 0.2, VX = 1, VY = 0.5, μX − μY = 1.0, 
and an experiment we expect p − QCL to be not larger than 0.05, then results 
in Table 14.1 suggest that S = 3.024. Suppose a probability higher than β = 0.8 
at the α = 0.05 level of significance is required, the corresponding required 
sample size is given by

	 n z z S≥ + = + =−( ) ( . . ) ( . ) . ,. . /1 0 8 0 05 2
2 20 842 1 96 3 024 23 74

i.e., a sample of size at least 24 is required.

14.4.3  Testing Procedure

Hypotheses testing of the consistency index p can also be conducted based 
on the asymptotic normality of p̂. Consider the following hypotheses:

	 H p p H p p0 0 1 0: : .≤ >versus
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TABLE 14.1

Values of n/(z1−β + zα/2)2, Where n Is the Required Sample Size

δ = 0.10 δ = 0.15 δ = 0.20

∆ = 0.5 ∆ = 1.0 ∆ = 1.5 ∆ = 0.5 ∆ = 1.0 ∆ = 1.5 ∆ = 0.5 ∆ = 1.0 ∆ = 1.5

D = 0.02 VY = 0.2 5.693 5.376 4.955 13.403 12.681 11.702 24.861 23.594 21.810
0.5 4.518 4.289 4.196 10.655 10.134 9.921 19.820 18.901 18.520
1.0 3.939 3.336 3.237 9.310 7.894 7.662 17.370 14.761 14.333
2.0 4.231 2.962 2.226 10.020 7.021 5.280 18.756 13.163 9.906
5.0 5.728 4.159 2.469 13.595 9.876 5.866 25.534 18.558 11.032

D = 0.05 0.2 0.911 0.860 0.793 2.144 2.029 1.872 3.978 3.775 3.490
0.5 0.723 0.686 0.671 1.705 1.622 1.587 3.171 3.024 2.963
1.0 0.630 0.534 0.518 1.490 1.263 1.226 2.779 2.362 2.293
2.0 0.677 0.474 0.356 1.603 1.123 0.845 3.001 2.106 1.585
5.0 0.916 0.666 0.395 2.175 1.580 0.939 4.085 2.969 1.765

D = 0.08 0.2 0.356 0.336 0.310 0.838 0.793 0.731 1.554 1.475 1.363
0.5 0.282 0.268 0.262 0.666 0.633 0.620 1.239 1.181 1.158
1.0 0.246 0.208 0.202 0.582 0.493 0.479 1.086 0.923 0.896
2.0 0.264 0.185 0.139 0.626 0.439 0.330 1.172 0.823 0.619
5.0 0.358 0.260 0.154 0.850 0.617 0.367 1.596 1.160 0.690

Notation:	 ∆ = μX − μY, D = p − QCL.
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We would reject the null hypothesis in favor of the alternative hypothesis of 
consistency. Under H0, we have
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Thus, we reject the null hypothesis H0 at the α level of significance if

	

ˆ ( ˆ)
ˆ

.p p B p
p

Z− − >0

Var( ) α

This is equivalent to rejecting the null hypothesis H0 when

	
ˆ ( ˆ) ˆ .p p B p Z p> + +0 α Var( )

Again, for illustration purposes, Table 14.2 provides critical values of the pro-
posed test for consistency index for various combinations of the parameters. 
In particular, α = 0.1 p0 = 0.75, 0.85, and 0.9, δ = 0.10 and 0.20; μX − μY = 0.5, 1.0, 
and 1.5. VX is chosen to be 1 and VY = 0.2, 0.5, 1.0, 2.0, and 5.0. Note that the 
critical value is closer to the corresponding p0 either for larger sample size n, 
smaller δ, or smaller μX − μY.

14.4.4  Strategy for Statistical Quality Control

In practice, raw materials, in-process materials, and/or final products at dif-
ferent sites are manufactured sequentially in batches or lots. As a result, it 
is important to perform statistical QC on batches. A typical approach is to 
randomly select samples from several (consecutive) batches for testing. In 
this case, observations from the study would be subject to batch-to-batch 
variability. For the sake of administrative convenience, it is common to 
have equal number of observations from the batches. Consider the follow-
ing model:

	 X A i m j nij X i
X

ij
X

X X= + + = =µ ε , , , ; , , ,1 1… …

where
AiX accounts for the batch-to-batch variability for the observations collected 

in site 1 and is normally distributed with mean 0 and variance σb1
2

mX is the number of batches collected in the study at site 1
εijX are normal random variables with mean 0 and variance σ1

2
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Similarly,

	 Y A i m j nij Y i
Y

ij
Y

Y Y= + + = =µ ε , , , ; , , ,1 1… …

where
AiY accounts for the batch-to-batch variability for the observations collected 

in site 2 and is normally distributed with mean 0 and variance σb2
2

mY is the number of batches collected in the study at site 2
εijY are normal random variables with mean 0 and variance σ2

2

TABLE 14.2

Critical Values of the Proposed Test for Consistency Index p0

∆ = 0.5 ∆ = 1.0 ∆ = 1.5

p0 δ VY n = 15 n = 30 n = 50 n = 15 n = 30 n = 50 n = 15 n = 30 n = 50

0.75 0.10 0.2 0.7695 0.7640 0.7609 0.7683 0.7632 0.7604 0.7680 0.7629 0.7601
0.5 0.7673 0.7624 0.7597 0.7665 0.7619 0.7593 0.7665 0.7619 0.7593
1.0 0.7662 0.7616 0.7590 0.7646 0.7605 0.7582 0.7645 0.7604 0.7581
2.0 0.7668 0.7620 0.7594 0.7639 0.7600 0.7578 0.7620 0.7586 0.7567
5.0 0.7697 0.7640 0.7609 0.7667 0.7619 0.7593 0.7628 0.7592 0.7572

0.20 0.2 0.7907 0.7791 0.7727 0.7884 0.7777 0.7717 0.7878 0.7771 0.7712
0.5 0.7863 0.7760 0.7703 0.7846 0.7749 0.7695 0.7847 0.7749 0.7695
1.0 0.7839 0.7743 0.7689 0.7807 0.7721 0.7673 0.7805 0.7719 0.7671
2.0 0.7853 0.7753 0.7697 0.7793 0.7710 0.7664 0.7754 0.7682 0.7642
5.0 0.7915 0.7797 0.7731 0.7853 0.7752 0.7697 0.7771 0.7694 0.7651

0.85 0.10 0.2 0.8695 0.8640 0.8609 0.8683 0.8632 0.8604 0.8680 0.8629 0.8601
0.5 0.8673 0.8624 0.8597 0.8665 0.8619 0.8593 0.8665 0.8619 0.8593
1.0 0.8662 0.8616 0.8590 0.8646 0.8605 0.8582 0.8645 0.8604 0.8581
2.0 0.8668 0.8620 0.8594 0.8639 0.8600 0.8578 0.8620 0.8586 0.8567
5.0 0.8697 0.8640 0.8609 0.8667 0.8619 0.8593 0.8628 0.8592 0.8572

0.20 0.2 0.8907 0.8791 0.8727 0.8884 0.8777 0.8717 0.8878 0.8771 0.8712
0.5 0.8863 0.8760 0.8703 0.8846 0.8749 0.8695 0.8847 0.8749 0.8695
1.0 0.8839 0.8743 0.8689 0.8807 0.8721 0.8673 0.8805 0.8719 0.8671
2.0 0.8853 0.8753 0.8697 0.8793 0.8710 0.8664 0.8754 0.8682 0.8642
5.0 0.8915 0.8797 0.8731 0.8853 0.8752 0.8697 0.8771 0.8694 0.8651

0.90 0.10 0.2 0.9195 0.9140 0.9109 0.9183 0.9132 0.9104 0.9180 0.9129 0.9101
0.5 0.9173 0.9124 0.9097 0.9165 0.9119 0.9093 0.9165 0.9119 0.9093
1.0 0.9162 0.9116 0.9090 0.9146 0.9105 0.9082 0.9145 0.9104 0.9081
2.0 0.9168 0.9120 0.9094 0.9139 0.9100 0.9078 0.9120 0.9086 0.9067
5.0 0.9197 0.9140 0.9109 0.9167 0.9119 0.9093 0.9128 0.9092 0.9072

0.20 0.2 0.9407 0.9291 0.9227 0.9384 0.9277 0.9217 0.9378 0.9271 0.9212
0.5 0.9363 0.9260 0.9203 0.9346 0.9249 0.9195 0.9347 0.9249 0.9195
1.0 0.9339 0.9243 0.9189 0.9307 0.9221 0.9173 0.9305 0.9219 0.9171
2.0 0.9353 0.9253 0.9197 0.9293 0.9210 0.9164 0.9254 0.9182 0.9142
5.0 0.9415 0.9297 0.9231 0.9353 0.9252 0.9197 0.9271 0.9194 0.9151

Notation:	 ∆ = μX − μY.
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Therefore, the total variability of the most active component at the two sites 
is given by VarX VX b= = +σ σ1

2
1
2 and Var Y VY b= = +σ σ2

2
2
2 , respectively.

Furthermore, let X n Xi X ij
j

nX
. =

=∑1
1

/  and X m XX i
i
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1
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and
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Furthermore, the MLE of the total variability VX is given by V̂X = (1/nXmX)
SST1. The MLEs of σb2

2 , σ2
2, and VY, denoted by ˆ ,σb2

2  ˆ ,σ2
2  and V̂Y, respectively, 

can be obtained in a similar way using observations Yij. Comparison of the 
estimates σ̂b2

2  and σ̂b1
2  would give an idea of the magnitude of the batch-to-

batch variability at the two sites.

14.5  Other Comparability Tests

In addition to comparability tests for in vivo and in vitro critical quality attri-
butes that may be encountered in a manufacturing process, there are several 
important comparability tests during the development of biosimilar products. 
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These comparability tests include, but are not limited to, PK comparability 
test, PD comparability test, and clinical efficacy comparability study, which 
are briefly described later.

14.5.1  PK Comparability Test

The PK comparability test is nothing but test for equivalence in drug absorp-
tion profile between a test product and a reference product in terms of AUC 
(area under the blood or plasma concentration–time curve) and Cmax (maxi-
mum concentration). As discussed extensively in the first few chapters of 
this book, the PK comparability test includes the assessment of average 
bioequivalence, population bioequivalence, and individual bioequivalence 
(IBE). For average bioequivalence, two drug products are considered com-
parable if the 90% confidence interval of the geometric mean ratio (GMR) 
is within (80%, 125%). For highly variable drug products, the assessment of 
average bioequivalence may be done using the scaled average bioequiva-
lence (SABE) criterion.

For assessment of population bioequivalence, PBE criterion, PBE can be 
claimed if the following null hypothesis in

	 H Ha0 0 0:† † :†λ λ≥ <versus

is rejected at the 5% level of significance and the observed GMR is within the 
limits of 80% and 125%, where

	 λ δ σ σ θ σ σ= + − −2 2 2 2
0
2

TT TR PBE TRmax( , )

and θPBE is a constant specified in the 2003 FDA draft guidance. Note that 
PBE can be claimed if the one-sided 95% upper confidence bound for λ is less 
than a prespecified bioequivalence limit.

For assessment of IBE, IBE can be claimed if the null hypothesis

	 H Ha0 0 0:† † :†γ γ≥ <versus

is rejected at the 5% level of significance and the observed GMR is within the 
limits of 80% and 125%, where

	 γ δ σ σ σ θ σ σ= + + − −2 2 2 2 2
0

2
D WT WR IBE WR Wmax( , )

and θIBE is a constant specified in the 2003 FDA draft guidance. Note that IBE 
can be claimed if the one-sided 95% upper confidence bound for γ is less than 
a prespecified bioequivalence limit.
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14.5.2  PD Comparability Index

The following PD comparability index is often considered to compare PD 
responses between a test product (T) and a reference product (R)

	

f
E E E E

max E E E E
PD

R R T T

R R T
= ×

− −( )
− −

2
min max min max min

max min max

,†

,† mmin /T

j

T
j j

R
j
TT w y y( ) + −( )

−

=∑1
1

1

2
,

where
T is the number of time points
wj is the optional weight factor
Emax and Emin are from the PK/PD model (e.g., Emax model) or PD profile

This index is then transformed to scale within (0, 1). Thus, comparability is 
claimed if the lower 95% confidence interval limit of the defined index for 
T/R is greater than the lower limit of index value for R/R or ≥0.54, which is 
corresponding to 30% profile changes, provided that the point estimate of 
the index for T/R is greater than 0.8

14.5.3  Clinical Efficacy Comparability Study

Comparability in clinical efficacy is referred to as that the biosimilar is no 
better and no worse than the innovator. In practice, a couple of questions 
have been raised. First, is there a need to show biosimilar is better than the 
placebo? Second, should an equivalence trial or a non-inferiority trial be con-
ducted? To address the questions described earlier, the recent FDA guidance 
on non-inferiority trials is helpful.

In practice, the selection of equivalence limit (for equivalence trial) or non-
inferiority margin (for non-inferiority trial) is the key to the success of clini-
cal efficacy comparability study. A typical approach is to obtain information 
such as variability of the reference product from the comparison of a refer-
ence product to itself, which we will refer to as an R–R study. In an R–R 
study, the reference products could come from different lots (batches), manu-
factured at different times, and/or different times on shelf.

Once the acceptance criteria (i.e., the equivalence limit for equivalence 
trial or non-inferiority margin for non-inferiority trial) have been deter-
mined, Liao and Heyse (2011) considered T and R are comparable if (1) T 
and R are comparable in distribution for the clinical endpoint, if the 95% 
confidence interval of T–R is within an R–R plausibility interval (PI) and the 
point estimate of T/R is within (0.8, 1.25), and (2) T is clinically effective, if 
BTP > 0 and

	 B BTR PR+ − >( ) ,1 0λ



331Test for Comparability in Manufacturing Process

where
λ is the assay effect
B represents treatment effect

Note that condition (1) guarantees that T and R are comparable in distribu-
tion for the clinical endpoint, while condition (2) assures that T is clinically 
effective as compared to the placebo.

14.6  Concluding Remarks

In this chapter, we focus on statistical QC for testing comparability (consis-
tency) in raw material and/or end product of a biosimilar product obtained 
from different manufacturing processes or sites. The idea is to construct a 
95% confidence interval for a proposed consistency index under a sampling 
plan. If the constructed 95% confidence lower limit is greater than a prespeci-
fied QC lower limit, then we claim that the two manufacturing processes 
are comparable (or consistent in producing similar biological products). 
Sampling plan is derived to ensure that there is a desired high probabil-
ity for establishment of consistency between manufacturing processes or 
sites when truly there is no difference in raw materials and/or end products 
between manufacturing processes or sites.

When there are more than one test for comparability (e.g., there are more 
than one quality attribute) between manufacturing processes, the method 
proposed by Tse et al. (2006) can be modified and extended to test the follow-
ing consistency index:
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where 0 < δk < 1 and is the limit that allows for consistency for the kth quality 
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where pk can be estimated using Equation 14.2, based on the observations 
obtained from the kth quality attribute. In particular,
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where X–k, Y
–

k, V̂k,X, V̂k,Y are the sample means and sample variances based on 
the kth quality attribute of the biological products from the two manufactur-
ing processes or sites, respectively. Statistical properties of p̂, however, needs 
further research.

In its recent draft guidances on the assessment of biosimilarity of biosimi-
lar products, the FDA proposed the concept of totality-of-the-evidence for 
assessment of biosimilarity. The totality-of-the-evidence is, in effect, global 
biosimilarity across different domains (e.g., critical quality attributes at vari-
ous stages in a manufacturing process). The FDA seems to suggest that simi-
larity (comparability) in critical quality attributes should be demonstrated 
across different stages of the manufacturing process. The degree of similar-
ity or comparability in different stages, however, may have different degrees 
of impact on the clinical outcomes (i.e., safety and effectiveness). As a result, 
it is suggested that different criteria for similarity (comparability) in critical 
quality attribute at different stages of the manufacturing process should be 
considered for providing the totality-of-the-evidence for global similarity. 
In addition, since a small change or variation at any stage of the manufac-
turing process could have an impact on the safety and effectiveness of the 
biosimilar product under development, the manufacturing process must be 
validated. At each critical stage of the manufacturing process, sampling plan, 
acceptance criteria, and testing procedure must be described in detail in the pro-
tocol for process validation. Tests for comparability in critical quality attri-
butes between raw materials, in-process (in-use) materials, and end products 
of manufacturing processes should be conducted based on some prespeci-
fied criteria for comparability.
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15
Stability Analysis of Biosimilar Products

15.1  Introduction

Schellekens (2005) pointed out that small-molecule drug products tend to 
follow Arrhenius behavior (i.e., thermally dependent molecular motion) and 
thus have predictable stability based on acceleration studies. In contrast, the 
activity and biological function of proteins are highly dependent on their 
unique spatial conformation, which is the reason why biologics are much less 
stable than small-molecule compounds. First, proteins may shift between 
several related structures, in conformational changes, usually induced by 
the binding of a substrate molecule to an enzyme’s active site, or the physical 
region of the protein that participates in chemical catalysis. Second, many 
environmental factors such as temperature, pH, pressure, concentrated in 
organic salt or organic solvent will cause proteins lose their tertiary and 
secondary structure in a process called denaturation. Third, enzymolysis 
and hydrolysis will lead to protein degradation and the loss of their func-
tions. Accordingly, slight variations in the manufacturing process may affect 
protein stability and efficacy of the biopharmaceuticals. Thus, stability pro-
files of the biosimilar product and the reference biological products need 
to be studied by placing the product under stressed conditions. The rate of 
degradation and degradation profiles (oxidation, deamidation, aggregation, 
and other degradation reactions) should be compared. If unknown degra-
dation species are detected, they need to be studied to determine if they 
affect safety and efficacy. If differences in product purities and stability pro-
files are present between the biosimilar product and the reference biological 
products, these differences need to be justified using scientific knowledge or 
pre-clinical or clinical data.

Since biosimilars are often very sensitive to environmental factors, their 
assessment requires advanced analytical capabilities integrated stability pro-
grams in compliance with current good manufacturing practices (cGMP) 
in order to evaluate their quality and change with time while being stored 
under various conditions of temperature and humidity. Stability study 
requirements are described in ICH guidelines Q1A (R2) “Stability Testing of 
New Drug Substances and Products” and Q5C “Quality of Biotechnological 
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Products—Stability Testing of Biotechnologicals/Biological Products.” During 
early development, accelerated stability studies can help to provide key data 
and information on the effect of short-term exposure to environmental con-
ditions. Short-term stability studies are typically performed over a 6 month 
period. Long-term stability studies (12 months and longer) allow evaluation of 
the quality of the drug both during and beyond its projected shelf-life.

Stability studies are conducted not only to provide evidence on how the 
quality of a drug substance or drug product varies with time under the influ-
ence of a variety of environmental factors such as temperature, humidity, and 
light but also to establish a retest period for the drug substance or a shelf-life 
for the drug product and recommended storage conditions (Chow, 2007). For 
a newly developed biosimilar product, accelerated testing is required for 6 
months, and long-term testing is required for the length of shelf-life. Thus 
the cost of the stability studies can be substantial. This leads quite naturally 
to statistically designed stability studies, which are called matrix designs, or 
studies where a selected subset of the total number of possible samples for 
all factor combinations is tested at a specified time point.

In the next section, ICH stability guideline Q5C for biotechnology prod-
ucts is briefly described. Section 15.3 provides the definition and deter-
mination of expiration dating period (or shelf-life) of a biosimilar product 
following both the FDA and the ICH stability guidelines (FDA, 1987; ICH, 
1993, 2003). Sections 15.4 and 15.5 focus on the design and analysis of stabil-
ity studies, respectively. Section 15.6 provides brief concluding remarks of 
this chapter.

15.2  Regulatory Stability Guidelines on Biologicals

15.2.1  ICH/EMA Guidelines on Stability

Between 1993 and 2003, the ICH published a number of guidelines on stabil-
ity for drug substances and drug products. These guidelines are listed in 
Table 15.1. As can be seen from Table 15.1, ICH Q1A R2 is a revision of the 

TABLE 15.1

ICH Guidelines on Stability

Q1A—Stability testing for new drug substances and products (R2-2003)
Q1B—Stability testing of new drug substances and products (1996)
Q1C—Stability testing for new dosage forms (1996)
Q1D—Bracketing and matrixing designs for stability testing for new 
drugs substance and products (2002)

Q1E—Evaluation of stability data (2003)
Q5C—Stability testing of biotechnological/biological products (1995)
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parent guideline published in 1993, which defines the stability data package 
for registration of a new molecular entity as a drug substance/drug product. 
ICH Q1B makes recommendations on photostability testing, while ICH Q1C 
gives some recommendations on new dosage forms for authorized medici-
nal products. ICH Q1D provides specific principles for the bracketing and 
matrixing designs for stability studies. ICH Q1E suggests how to establish 
shelf-life or retest period based on the performed stability studies. The ICH 
Q5C is the main reference for biological medicinal substances and products. 
However, the principles defined in ICH Q1 guidelines are also applicable.

Table 15.2 lists guidances on stability by EU EMA. As can be seen from 
Table 15.2, CPMP/QWP/609/96 provides a declaration of storage condi-
tions. CPMP/QWP/2934/99 focuses on in-use stability testing, while CPMP/
QWP/159/96 discusses maximum shelf-life for sterile products after first 
opening or following reconstitution. It should be noted that although reg-
ulatory requirements for stability testing for biologics from EU EMA are 
slightly different from those of ICH, they are similar enough for the har-
monization of regulatory requirements for stability testing of biosimilars. 
Thus, in this chapter, we shall focus on the ICH Q5C stability guideline for 
biological products.

15.2.2  ICH Q5C Stability Guideline

15.2.2.1  Scope

The ICH Q5C stability guideline was published as an annex to the Tripartite 
ICH Guideline for Stability of New Drug Substance and Products. ICH Q5C 
intends to give guidance to applicants regarding the type of stability stud-
ies to be provided in support of marketing authorization applications for 
biological medicinal products. The ICH Q5C applies to well-characterized 
proteins and polypeptides, their derivatives, and products of which they are 
components, and which are isolated from tissues, body fluids, cell cultures, 
or produced using rDNA technology. Table 15.3 lists medicinal products cov-
ered by ICH Q5C.

15.2.2.2  Batch Selection

As indicated by the ICH Q5C guideline, stability evaluation should be done 
on active substances (bulk material), intermediates, and medicinal products 

TABLE 15.2

EU EMA Stability Guidelines on Biologicals

CPMP/QWP/609/96 Declaration of storage condition
CPMP/QWP/2934/99 In-use stability testing
CPMP/QWP/159/96 Maximum shelf-life for sterile products after 

first opening or following reconstitution
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(final container products). For stability data of drug substances, the ICH Q5C 
requires at least three batches representative of the manufacturing scale of 
production to be tested. Representative data are referred to as representa-
tive of (1) the quality of batches used in pre-clinical and clinical studies, 
(2)  the manufacturing process and storage conditions, and (3) containers/
closures. If the shelf-life to be claimed is longer than 6 months, a minimum of 
6 months stability data at the time of submission should be submitted. On the 
other hand, if the shelf-life to be claimed is less than 6 months, the minimum 
amount of stability data in the initial submission should be determined on a 
case-by-case basis. Data from pilot-plant-scale batches of an active substance 
produced at a reduced scale of fermentation and purification may be pro-
vided at the time the dossier is submitted to the regulatory agencies with a 
commitment to place the first three manufacturing scale batches into a long-
term stability program after approval.

In practice, stability data for intermediates may be critical to the production 
of a finished product. Thus, hold time and storage steps should be identified. 
The ICH Q5C suggests that the manufacturer should generate in-house data 
and process limits that assure their stability within the bounds of the devel-
oped process. Along this line, appropriate validation and/or stability studies 
should be performed.

For stability data of the final drug product, similarly, the ICH Q5C guide-
line requires at least three batches representative of the manufacturing scale 
of the production being tested. Drug product batches should be derived from 
different batches of the drug substance. If the shelf-life to be claimed is lon-
ger than 6 months, a minimum of 6 months of stability data at the time of 
submission should be submitted. On the other hand, if the shelf-life to be 
claimed is less than 6 months, the minimum amount of stability data in the 
initial submission should be determined on a case-by-case basis. Shelf-life 
should be derived from representative real-time/real-conditions data. Data 
can be provided during the review and evaluation process. Here, representa-
tive data are referred to as representative of (1) the quality of batches used 

TABLE 15.3

Coverage of ICH Q5C Stability Guideline

Cover Does Not Cover

Cytokines (IFN, IL, CSF, TNF) Antibiotics
EPO Allergenic extracts
Plasminogen activators Heparins
Blood products Vitamins
Growth hormones Whole blood
Insulins Cellular/blood components 

productsMonoclonal antibodies
Vaccines
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in pre-clinical and clinical studies, (2) manufacturing process and storage 
conditions, and (3) the use of final containers/closures.

15.2.2.3  Study Design

Regarding study design and sample selection criteria, the ICH Q5C guide-
line recommends that a bracketing design or a matrixing design be used (see, 
e.g., Chow, 1992; Helboe, 1992; Carstenson et al., 1992; Nordbrock, 1989, 1991, 
1994a,b,c; Fairweather et al., 1994; DeWoody and Raghavarao, 1997; Pong and 
Raghavarao, 2000; Chow, 2007). Samples can then be selected for the stability 
program on the basis of a matrixing system and/or by bracketing. A bracket-
ing design is a design that only samples on the extremes of certain design 
factors which are tested at all time points. Stability at the intermediate levels 
is considered being represented by the stability of the extremes. Bracketing 
is generally not applicable for drug substances. Bracketing can be applied 
to studies with multiple strength of identical or closely related formulation. 
In this case, only samples on the extremes of certain design factors (e.g., 
strength, container size, fill) are tested at all time points. A bracketing design 
can also be applied to studies with the same container closure system with 
either the fill volume and/or the container size change.

A matrixing design is a statistical design of a stability study that allows 
different fractions of samples to be tested at different sampling time points 
(see, e.g., Nordbrock, 1992; Chow, 2007). Each subset of samples represents 
the stability of all samples at a given time point. Differences in the samples 
should be identified as covering different batches, different strengths, and 
different sizes of the same container closure system. A matrixing design 
should be balanced such that each combination of a factor is tested to the 
same extent over the duration of the studies. It should be noted that all 
samples should be tested at the last time point before the submission of 
application. For the purpose of illustration, the following examples exhibit 
matrixing in a long-term stability study for one storage condition: (1) one-
half reduction eliminates one in every two time points (Table 15.4) and (2) 
one-third design eliminates one in every three time points (Table 15.5).

15.2.2.4  Storage Conditions

The ICH Q5C guideline also defines storage conditions such as humidity, 
temperature, accelerated/stress conditions, light, container/closure, and sta-
bility after reconstitution of the freeze-dried product. The ICH Q5C indi-
cates that products are generally distributed in containers protecting against 
humidity. If it is demonstrated that containers (storage conditions) provide 
sufficient protection against high and low humidity, relative humidities can 
be omitted. If humidity protecting containers are not used, appropriate data 
should be provided. While most biologics need precisely defined storage tem-
peratures, real-time/real-temperature studies are confined to the proposed 
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storage temperature. Requirements for light should be evaluated on a case-
by-case basis. For accelerated and stress conditions, shelf-life is established 
based on real-time/real-temperature data. In practice, accelerated studies 
can not only be supportive to established shelf-life but also provide infor-
mation on post-development changes, the validation of stability indicating 
tests. Accelerated testing conditions are normally one step higher than real 
storage conditions, which will help in elucidating the degradation profile. 
Stress testing can not only determine the best product stability indicators 
but also reveal patterns of degradation. They are representative of accidental 
exposures to other conditions. The ICH Q5C guideline indicates that accel-
erated and stress conditions should be carefully selected on a case-by-case 
basis. ICH Q1A recommends accelerated conditions (Table 15.6) related to 
long-term studies (ICH Q1A addresses climatic zones I and II).

TABLE 15.4

Example of Matrixing Design—One-Half 
Reduction

Strength

Time Point (Months)

0 3 6 9 12 18 24 36

S1
Batch 1 T T T T T T
Batch 2 T T T T T T
Batch 3 T T T T T

S2
Batch 1 T T T T T
Batch 2 T T T T T T
Batch 3 T T T T T

Key:	 T = Sample tested.

TABLE 15.5

Example of Matrixing Design—One-Third 
Reduction

Strength

Time Point (Months)

0 3 6 9 12 18 24 36

S1
Batch 1 T T T T T T
Batch 2 T T T T T T
Batch 3 T T T T T T T

S2
Batch 1 T T T T T T T
Batch 2 T T T T T T
Batch 3 T T T T T

Key:	 T = Sample tested.
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15.2.2.5  Testing Frequency

Shelf-lives for biological products usually vary. ICH stability guidelines are 
based on shelf-lives of 6 months to 5 years for most biological products. The 
recommended testing intervals for long-term studies in pre-licensing are 
given in Table 15.7.

15.2.2.6  General Principles

The ICH stability guideline suggests the following general principles for the 
evaluation of stability of biosimilar products. These general principles indi-
cate that the applicant should

	 1.	Develop data to support the claimed shelf-life.
	 2.	Consider any external conditions affecting potency, purity, and 

quality.
	 3.	The primary data to support the requested shelf-life should be based 

on long-term, real-time, real-condition stability studies. The design 
of the long-term stability program is critical.

	 4.	Retest periods are not appropriate for biotech/biological.

TABLE 15.6

Accelerated Testing Conditions

Long Term Accelerated Stress

≤−20° ± 5°C +5°C ± 3°C and/or 
+25°C ± 2°C/60%RH

Temperature, pH, light, oxidation, 
shaking, freeze/thaw, etc.

+5°C ± 3°C +25°C ± 2°C/60%RH
+25°C ± 2°C/60%RH or 
+35°C ± 2°C/65%RH

+40°C ± 2°C/75%RH

TABLE 15.7

Recommended Testing Intervals

Stability Demonstration

Long Term
Accelerated 
(6 Months) Storage Statement

Additional 
Statementa

+25°C ± 2°C/60%RH or 
+30°C ± 2°C/65%RH

+40 ± 2°C/75%RH No special storage 
conditioned

Do not refrigerate 
or freeze

+25°C ± 2°C/60%RH or 
+30°C ± 2°C/65%RH

— Do not store above 
+30°C or +25°C

Do not refrigerate 
or freeze

+5°C ± 3°C — Store at +2°C to +8°C Do not freeze
<0°C — Store at −XX°C —

a	 Where relevant.
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15.3  Stability Indicating Profile and Expiration Dating Period

15.3.1  Stability Indicating Assay

In practice, there is no single assay indicating stability. The stability indicat-
ing assay should be product-specific and allow the detection of any changes 
in purity, identity, and potency. The analytical methods must be validated 
at the time of submission. Stability studies for biologics and biosimilars can 
require a diverse range of protein analysis techniques conducted in accor-
dance with GLP or cGMP requirements such as

	 1.	1-D and 2-D SDS–PAGE
	 2.	Western blot
	 3.	 Isoelectric focusing
	 4.	Amino acid analysis
	 5.	Capillary electrophoresis (CE)
	 6.	Peptide fingerprinting
	 7.	Peptide mapping and sequencing by LC–MS/MS
	 8.	Total protein quantification
	 9.	Glycan characterization
	 10.	 Immunochemistry techniques
	 11.	cGMP cell-based bioassays

Note that alternative analytical techniques may also be required to investi-
gate post-translational modifications such as

	 1.	Di-sulfide bridge mapping by MALDI–MS
	 2.	Carbohydrate analysis
	 3.	Higher-order structure characterization by CD, NMR, FTIR
	 4.	Protein aggregation state analysis by dynamic light scattering

15.3.2  Expiration Dating Period

As indicated in the 1987 FDA stability guideline and the 1993 ICH stabil-
ity guideline, the expiration dating period of a drug product can be deter-
mined as the time at which the average drug characteristic remains within 
an approved specification (e.g., USP/NF) after manufacture (FDA, 1987; 
ICH, 1993; Chow, 2007). FDA suggests that an expiration dating period of a 
drug product be determined as the time point at which the 95% lower confi-
dence bound of the mean drug characteristic intersects the approved lower 
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specification of the drug product. The use of the one-sided 95% lower confi-
dence bound of the mean degradation of the drug product is to assure that 
the drug product will remain within the approved specification for the iden-
tity, strength, quality, and purity prior to the expiration date.

FDA’s approach for determination of the expiration dating period of a 
given batch of a drug product is briefly described in the following. For a 
given batch, let yj be the assay result at a time xj, j = 1, 2, …, n. The following 
simple linear model is usually assumed:

	 y x e j nj j j= + + = …α β , , , ,1

where α and β are unknown parameters, xj’s are deterministic time points (stor-
age times) selected in the stability study, and ej’s are measurement errors inde-
pendently and identically distributed as a normal (Gaussian) random variable 
with mean 0 and variance σ2. According to the method suggested by the FDA, 
for a fixed time point, the 95% lower confidence bound for α + βx is given by
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and y– is the average of yj’s
In practice, if L(x) is larger than the lower product specification, we claim 

that the product meets the product specification up to the time x.

15.4  Stability Designs

Since stability data are analyzed using a linear regression, the selection of 
observations that will give the minimum variance for the slope is made 
by taking one-half at the beginning of the study and one-half at the end. 
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The beginning of the stability study is usually called t = 0. Stability studies 
are typically done at several different times. In practice, there is no unique 
best design. Thus, the choice of design must use the fact that analyses will be 
done after additional data are collected. Nordbrock (1992; 2003) introduced 
several designs that are commonly considered in stability studies. These 
designs are briefly described later.

15.4.1  Basic Matrix 2/3 on Time Design

A complete long-term study for one strength of a dosage form in one package 
has three batches, with all three tested every 3 months in the first year, every 
6 months in the second year, and annually thereafter. Thus if a 36 month 
shelf-life is desired and the complete study is used, each of the three batches 
is tested at 0, 3, 6, 9, 12, 18, 24, and 36 months. The basic matrix 2/3 on time 
design has only two of the three batches tested at intermediate time points 
(other than at times of 0 and 36), as presented in Table 15.8. If an analysis is to 
be done after 18 months (e.g., for a registration application), the basic matrix 
2/3 on time design can be modified by testing all batches at 18 months.

15.4.2  Matrix 2/3 on Time Design with Multiple Packages

The first extension of the basic design is when one strength is packaged into 
three packages (i.e., when each batch is packaged into each of three pack-
ages). The basic matrix 2/3 on time design is applied to each package in a 
balanced fashion, as presented in Tables 15.9 and 15.10. Balance is defined as 
each batch is tested twice at each intermediate time point, and each package 

TABLE 15.8

Basic Matrix 2/3 on Time Design

Batch Test Times

A 0 3 9 12 24 36
B 0 3 6 12 18 36
C 0 6 9 18 24 36

TABLE 15.9

Matrix 2/3 on Time Design 
with Multiple Packages

Batch Pkg 1 Pkg 2 Pkg 3

A T1 T2 T3
B T2 T3 T1
C T3 T1 T2

Note:	 Pkg 1 = Package 1, etc.
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is tested twice at each intermediate time point. If an analysis will be done 
after 18 months (e.g., for a registration application), this design can be modi-
fied by testing all batch-by-package combinations at 18 months.

15.4.3 � Matrix 2/3 on Time Design with Multiple Packages 
and Multiple Strengths

When three strengths (say, 10, 20, and 30) are manufactured using differ-
ent weights of the same formulation, giving nine sub-batches, we further 
assume that there are three packages for each strength. In this case, the basic 
matrix 2/3 on time design can be applied to each of the nine sub-batches 
in a balanced fashion (see Table 15.11). In this design, each sub-batch is 
tested twice at each intermediate time point, each package is tested twice 
at  each  intermediate time point for each batch, each batch is tested six 
times at each intermediate time point, and each package is tested six times 
at each intermediate time point. If an analysis will be done after 18 months 
(e.g., for a registration application), this design can be modified by testing all 
batch-by-strength-by-package combinations at 18 months.

TABLE 15.10

Test Code Definitions

Code Test Times after Time 0

T1 3 9 12 24 36
T2 3 6 12 18 36
T3 6 9 18 24 36

Note:	 Batches are tested at time 0.

TABLE 15.11

Matrix 2/3 on Time Design with Multiple 
Packages and Multiple Strengths

Batch Strength Pkg 1 Pkg 2 Pkg 3

A 10 T1 T2 T3
A 20 T2 T3 T1
A 30 T3 T1 T2
B 10 T2 T3 T1
B 20 T3 T1 T2
B 30 T1 T2 T3
C 10 T3 T1 T2
C 20 T1 T2 T3
C 30 T2 T3 T1

Note:	 Pkg 1 = Package 1, etc.
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15.4.4  Matrix 1/3 on Time Design

A further reduction in the amount of testing is accomplished by reducing 
the testing in each of the preceding designs from 2/3 to 1/3. For example, the 
basic 1/3 on time design has one of the three batches tested at each interme-
diate time point, as presented in Table 15.12. If an analysis will be done after 
18 months (e.g., for a registration application), the basic matrix 1/3 on time 
design can be modified by testing all batches at 18 months.

15.4.5  Matrix on Batch × Strength × Package Combinations

If there are multiple strengths and multiple packages, one could also choose 
to test only a portion of the batch-by-strength-by-package combinations. An 
example of when this might be appropriate is when there are three batches, 
each made into two strengths, giving six sub-batches. Although three pack-
ages will be used, the batch size is small and only two packages can be man-
ufactured in each strength sub-batch. A matrix design on batch × strength × 
package combinations is presented in Table 15.13, with two packages selected 
for each of the six sub-batches, and where time is also matrixed by the factor 
1/2. This design is approximately balanced because two packages are tested 
per sub-batch, one or two strengths are tested for each selected package by 
batch, four sub-batches are tested for each package, etc. Similar statements 
for the balance on time can be made.

TABLE 15.12

Basic Matrix 1/3 on Time Design

Batch Test Times

A 0 3 12 36
B 0 6 18 36
C 0 9 24 36

TABLE 15.13

Matrix 1/2 on Time and Matrix on 
Batch × Strength × Package

Batch Strength Pkg 1 Pkg 2 Pkg 3

A 10 T1 T2 —
A 20 T2 — T1
B 10 T2 — T1
B 20 — T1 T2
C 10 — T1 T2
C 20 T1 T2 —
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15.4.6  Uniform Matrix Design

Another approach to design is the uniform matrix design, for which the 
same time protocol is used for all combinations of the other design factors 
(Murphy, 1996). The strategy is to delete certain times (e.g., 3, 6, 9, and 18 
month time points); therefore, testing is done only at 12, 24, and 36 months. 
This design has the advantages of simplifying the data entry of the study 
design and eliminating time points that add little to reducing the variability 
of the slope of the regression line. The disadvantage is that if there are major 
problems with the stability, there is no early warning because early testing 
is not done. Further, it may not be possible to determine if the linear model 
is appropriate (e.g., it may not be possible to determine whether there is an 
immediate decrease followed by very little decrease). However, the major 
disadvantage is that this design is probably not acceptable to some regula-
tory agencies.

15.4.7  Comparison of Designs

Nordbrock (1992, 2003) compared designs based on the power approach. 
This approach computes the probability that a statistical test will be signifi-
cant when there is a specified alternative slope configuration. Power can be 
computed easily in SAS. The strategy is to compute power for several designs 
and then to choose the design that has acceptable power and the smallest 
sample size (or cost). Acceptable power is not well defined at this stage. Other 
methods of comparing designs are given in Ju and Chow (1995) and Pong 
and Raghavarao (2000), where the criterion is the precision for estimating 
shelf-life.

When evaluating designs, it is also important to answer the question 
“What is the probability of being able to defend the desired shelf-life 
with the study?” (see, e.g., Nordbrock, 2003). In other words (assuming 
that the parameter is expected to decrease over time), what is the prob-
ability that the 95% one-sided lower confidence bound for the slope will 
be acceptable for specified values of the slope(s) for particular subsets 
of data, which may include, for example, only one strength and/or only 
one package? It is important to know at the design stage what the sta-
tistical penalty (with respect to shelf-life) might be if differences among 
packages and/or strengths are found. Similarly, Nordbrock (2009) com-
pared matrix designs to full designs using the probability of achieving 
the desired shelf-life.

15.4.8  Factors Acceptable to Matrix

In the foregoing, examples have been used to present possible matrix 
designs. In this section, a summary of when it is acceptable to matrix is 
given based on a document prepared by the PhRMA Stability Working 
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Group (Nordbrock and Valvani, 1995), on FDA presentations (Chen, 1996; 
Lin, 1997) and on ICH Q1D.

	 1.	 It is acceptable to matrix at all stages of development for a drug prod-
uct and also for a drug substance. It is acceptable for new drug appli-
cation (NDA) studies, investigational new drug application (IND) 
studies, supplements, and marketed product studies.

	 2.	 It is acceptable to matrix for all types of products, such as solids, 
semisolids, liquids, and aerosols.

	 3.	 It is acceptable to matrix after bracketing.
	 4.	 It is acceptable to matrix when there are multiple sources of raw 

materials (e.g., drug products).
	 5.	 It is acceptable to matrix if there are multiple sites of drug product 

manufacture.
	 6.	 It is acceptable to matrix when identical formulations are manufac-

tured into several strengths.
	 7.	 It is acceptable to matrix if formulations are closely related (e.g., dif-

ference in colorant or flavoring).
	 8.	Matrixing is applicable to the orientation of container during storage.
	 9.	Matrixing may be acceptable in certain cases when closely related 

formulations are used for different strengths (e.g., if an inactive is 
replaced by an active).

	 10.	Matrix across container and closure systems may be applicable if 
justified.

	 11.	 It is acceptable to matrix within a package composition type, e.g., of 
different sizes if the fill (i.e., head space) is the same, or if of the same 
size but different fills (head space). It may be acceptable to matrix if 
the container size and fill size change, if there is an adequate expla-
nation. It is not acceptable to matrix across package composition 
types (e.g., blisters and HDPE).

	 12.	 It is not acceptable to matrix across storage conditions. However, it is 
acceptable to do a separate matrix design for each storage condition.

	 13.	 It is not acceptable to matrix across parameters, such as dissolution 
and potency. However, it is acceptable to do a separate design for 
each parameter.

	 14.	Matrixing is applicable regardless of the method precision; how-
ever, it should be remembered that when using a matrix design, the 
resulting shelf-life is generally shorter than when a complete design 
is used. Also, when the method precision is larger, the difference 
between a complete design and a matrixed design will be larger (i.e., 
a larger penalty to the sponsor, resulting in a shorter shelf-life for the 
matrix design than the complete design).
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	 15.	Matrixing is applicable regardless of the stability of the product. 
However, comments similar to those in the preceding point apply, 
and it should be remembered that if a product has a poor stability 
profile (e.g., a shelf-life of 1 year), matrixing will usually result in an 
even shorter shelf-life.

	 16.	The latest guideline should be consulted for applicability.

15.4.9  General Rules

Several general rules should be followed when designing studies:

	 1.	Matrix designs should be approximately balanced (i.e., for all one-
way, two-way combinations of batch, package, and strength that are 
ever tested, approximately the same number of tests should be done 
cumulatively to every time point).

	 2.	When every batch-by-strength-by-package combination is not tested, 
every strength-by-package combination that is ever tested should 
be tested in at least two batches (i.e., for every package-by-strength 
combination that is ever tested, there should be at least two batches 
tested).

	 3.	Unless there are manufacturing restrictions such as in the foregoing 
example, it is probably acceptable to matrix on batch × strength × 
package combinations only when there are more than three strengths 
or more than three packages.

15.5  Statistical Analysis

Although there may be instances when a linear regression is not appropriate, 
the rest of this discussion assumes that a straight-line linear regression of 
the parameter of interest on time is relevant. Further, it is assumed that the 
parameter of interest is expected to decrease over time. For long-term data 
with a single package and a single strength, the ICH Q1E Guidance (ICH Q1E, 
2004) specifies that the 95% one-sided lower confidence bound for the mean 
regression line must be above the lower specification at all times prior to the 
shelf-life. When there are multiple strengths and/or multiple packages, accord-
ing to ICH Q1E, there are three possible approaches for analysis. The first 
approach is to analyze each package-by-strength combination separately—in 
other words, to do multiple analyses. The second approach is to model all data 
with one analysis, with separate intercepts and separate slopes for each batch 
by strength by package, without testing for poolability, so there is no reduced 
model. The third approach is to model all data with one analysis and test for 
poolability and then select the appropriate reduced model.
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15.5.1  Separate Analysis Approach

In the first approach, multiple analyses are conducted, with a separate 
analysis of each package-by-strength-by-batch. A shelf-life is calculated for 
each of the separate analyses, and the product shelf-life is the minimum of 
all the package-by-strength-by-batch shelf-lives.

15.5.2  One Analysis Approach without Testing Poolability

In the second approach, one analysis is done which includes all data. A 
shelf-life is estimated using individual intercepts, individual slopes, and 
the pooled mean square error from the entire data set. Shelf-life for each 
batch-by-package-by-strength is taken as the time the batch-by-package-by-
strength remains within acceptable limits, i.e., the time that the 95% one-
sided lower confidence bound for the mean regression line remains above 
specification.

If there are multiple batches but only one package and one strength, the 
SAS model is Y = B + A + B × A, where B is a class term for batch and A is the 
covariate for age. The 95% one-sided lower confidence bound for the mean 
regression line is calculated for each batch. The shelf-life of each batch is 
such that the confidence bound is within the specification at all times prior 
to the shelf-life. The shelf-life of the product is the minimum of the batch 
shelf-lives.

If there are multiple batches and multiple packages but only one strength, 
and if the initials for a particular batch are applicable to all packages, then 
the SAS model is Y = B + A + B × A + P × A + B × P × A, where B is a class term 
for batch, P is a class term for package, and A is the covariate for age. This 
model has separate slopes for each batch-by-package, separate intercepts for 
each batch, and a common intercept for all packages from the same batch. 
For example, if initials are tested using a bulk product (before the product 
is packaged), and all packages are entered into the study at the same time, 
then this model is typically appropriate. The 95% one-sided lower confidence 
bound for the mean regression line is calculated for each batch by package. 
The shelf-life of each batch-by-package is such that the confidence bound is 
within the specification at all times prior to the shelf-life. The shelf-life of the 
product is the minimum of all batch-by-package shelf-lives.

15.5.3  One Analysis Testing Poolability

When using the model-building (poolability test) approach, it is very impor-
tant that the full model reflect the manufacturing process. In this section, it 
is assumed that there are multiple strengths and multiple packages and that 
a batch is manufactured into multiple strengths by using different weights of 
the same exact formulation. It is assumed that a granulation batch is split into 
sub-batches, where each sub-batch is manufactured into a different-strength 
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product using different weights of the granulation, and it is assumed that 
every strength is manufactured from every granulation batch. It is further 
assumed that the time 0 samples are collected from each tablet sub-batch, 
and every tablet sub-batch is packaged into all packages.

The full model includes slope terms for all two-way interactions of pack-
age, strength, and batch, and it includes intercept terms that reflect the 
manufacturing process. The manufacturing process dictates that each tab-
let sub-batch must have a separate intercept in the full model, but there is 
no need to allow packages in each tablet sub-batch to have separate inter-
cepts. (Process validation provides evidence that the entire tablet sub-batch 
is uniform.)

Thus in the example, the full SAS model is

Y = B + S + B(S) + A + B × A + P × A + S × A + B × P × A + B × S × A 
+ P × S × A,

with B as a class term for granulation batch, P as a class term for package, 
S as a class term for strength, and A as a covariate for time. The model build-
ing begins by testing the slope two-way interactions to determine if any can 
be deleted, using a significance level of 0.25 when the batch is part of the 
term and 0.05 otherwise. Then the main-effect slope terms are tested, using 
the 0.25 (batch) or 0.05 (not batch) level. Terms that are not significant are 
deleted, except that any main-effect slope included in a non-deleted two-way 
slope term cannot be deleted.

After deleting slope terms, the intercept terms are tested (using the same 
criterion for significance as was used for slopes) and insignificant terms are 
deleted. Using the final model, the 95% one-sided lower confidence bound 
for the mean regression line(s) is (are) found, and a shelf-life is assigned for 
each package-by-strength combination such that the 95% one-sided lower 
confidence bound(s) is (are) within specification at all times prior to the shelf-
life. Slightly different algorithms for deleting terms from the full model have 
been proposed (Fairweather et al., 1995; Tsong et al., 2008).

Note that SAS programs for analysis of stability data developed by FDA 
statisticians are given in Chow (2007).

15.6  Concluding Remarks

Biological substances are complex molecules which include primary structure 
(e.g., the amino acid sequence of polypeptide chain), secondary structure (e.g., 
α-helix, β-sheet—stabilized by hydrogen bonds), tertiary structure (e.g., the 
three-dimensional structure of a single molecule folded into a compact globule, 
stabilized by non-specific hydrophobic interactions and specific interactions 
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such as salt bridges, H-bonds, and –S–S-bonds), and quaternary structure (e.g., 
assembly of several polypeptide chains: no-covalent interactions, –S–S-bonds). 
Thus, biological products are particularly sensitive to environmental factors 
such as temperature, oxidation, light, and ionic content. In practice, stringent 
conditions for storage are usually necessary. As a result, the evaluation of sta-
bility may necessitate complex analytical methodologies. Physicochemical tests 
alone are insufficient to characterize the product sufficiently to permit predic-
tion of the biological activity. In practice, the most commonly employed ana-
lytical tests include tests for deamidation (e.g., hydrolysis of asparagine and 
glutamine side chain amides), oxidation (e.g., of methionine, histidine, cysteine, 
tyrosine, and tryptophane residues), denaturation (e.g., loss of three-dimen-
sional structure), aggregation (e.g., association of monomers or native multim-
ers, covalent or non-covalent), and glycoproteins (e.g., most common instability 
of glycosylation hydrolysis of sialic acid residues).

As indicated earlier, during the early development of biosimilar prod-
ucts, accelerated stability studies can help provide key data and informa-
tion on the effect of short-term exposure to environmental conditions. 
Short-term stability studies are typically performed over a 6 month period. 
Long-term stability studies (12 months and longer) allow evaluation of the 
quality of the drug both during and beyond its projected shelf-life. Matrix 
designs described in this chapter are generally applicable to many situ-
ations and can result in significant savings, with the 1/3 matrix on time 
readily acceptable for stable products. There are two basic approaches 
when analyzing data from a matrix design. There are several methods 
used to evaluate and to compare potential designs.

For the estimation of expiration dating period (or shelf-life) of a drug, the 
FDA stability guideline requires that at least three batches, and preferably 
more, be tested in a stability analysis to account for batch-to-batch varia-
tion so that a single shelf-life is applicable to all future batches manufac-
tured under similar circumstances. Under the assumption that the drug 
characteristic decreases linearly over time, the FDA stability guideline 
indicates that if there is no documented evidence for batch-to-batch varia-
tion (i.e., all the batches have the same shelf-life), the single shelf-life can 
be determined, based on the ordinary least-squares method, as the time 
point at which the 95% lower confidence bound for the degradation curve 
of the drug characteristic intersects the approved lower specification limit. 
Along this line, a typical approach is to perform a stability analysis by 
combining the three batches as fixed batches. This method is referred to as 
stability analysis with fixed batches. However, as indicated in the 1987 FDA 
stability guideline, the batches used in long-term stability studies for the 
establishment of a drug shelf-life should constitute a random sample from 
the population of future population batches. In addition, the guideline 
requires that all estimated expiration dating periods be applicable to all 
future batches. In this case, a stability analysis with fixed batches may not 
be appropriate. Alternatively, it is suggested that statistical methods based 
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on a random-effects model be considered (see, e.g., Chow and Shao, 1991; 
Shao and Chow, 1994; Shao and Chen, 1997). This approach is referred to as 
stability analysis with random batches.

It should be noted that some drug products must be stored at specific tem-
peratures, such as −20°C (frozen temperature), 5°C (refrigerator temperature), 
and 25°C (room temperature) in order to maintain stability until use. In this 
case, a typical shelf-life statement usually consists of multiple phases with 
different storage temperatures. For example, a commonly adopted shelf-life 
statement could be 24 months at −20°C followed by 2 weeks at 5°C. As a 
result, the drug shelf-life is determined based on a two-phase stability study. 
However, no discussion of the statistical methods for the estimation of two-
phase shelf-life is available in either the FDA stability guidance or the ICH 
stability guidelines. Shao and Chow (2001) proposed a method for a two-
phase stability study using a two-phase linear regression based on the sta-
tistical principle described in both the FDA and the ICH stability guidelines 
(see also Chow, 2007).
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16
Assessing Biosimilarity 
Using Biomarker Data

16.1  Introduction

As indicated in Chow and Liu (2008), the assessment of bioequivalence 
for small-molecule drug products is performed under the Fundamental 
Bioequivalence Assumption. This Assumption considers pharmacokinetic 
responses such as AUC and Cmax as surrogate endpoints for clinical end-
points for the evaluation of the safety and efficacy of the drug products 
under study. Following a similar idea, statistical methods for the assessment 
of biosimilarity between a biosimilar product and an innovator product can 
be derived under a Fundamental Biosimilarity Assumption and a probability-
based criterion for biosimilarity using biomarker data by assuming that the 
biomarker is predictive of the clinical outcome of the biological products 
(Chow et al., 2010).

For the assessment of bioequivalence or similarity between drug prod-
ucts, several criteria have been proposed in the literature. For example, 
criteria for the assessment of average bioequivalence (ABE) based on aver-
age of bioavailability, population bioequivalence (PBE) based on total vari-
ability of bioavailability, and individual bioequivalence (IBE) based on 
inter- and intra-subject variabilities and the variability due to subject-by-
product interaction have been proposed in the FDA guidances (see, e.g., 
FDA, 2001, 2003). Among these criteria for the assessment of bioequiva-
lence, a common ground is that the comparison is moment-based, i.e., the 
comparison is based on the moments of the two populations. Alternatively, 
probability-based criteria, which are based on the comparison of the prob-
abilities, have also been proposed to evaluate equivalence/similarity. For 
example, Schall and Luus (1993) proposed a probability-based measure 
for the expected discrepancy in pharmacokinetic (PK) responses between 
drug products, which is based on the probability that the absolute differ-
ence of PK responses between drug products is smaller than a pre-specified 
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positive constant. Tse et al. (2006) proposed a probability-based index for 
traditional Chinese medicine to assess the consistency between raw mate-
rials from different resources and/or between final products by different 
manufacturing processes. The consistency index is defined by the probabil-
ity that the ratio of characteristics of the products from different resources 
is within a pre-specified interval. Thus, following these ideas, the similar-
ity of two drugs can be assessed by measures which are either moment-
based or probability-based.

For some drug products, the FDA indicates that an in vitro dissolution test 
may serve as a surrogate for an in vivo bioequivalence test by comparing 
the corresponding dissolution profiles. Two drug products are considered to 
have similar drug absorption profiles if their dissolution profiles (measure-
ment of drug release) are similar. These drug products include (1) pre-1962 
classified “AA” drug products; (2) lower strength products; (3) scale-up and 
post-approval changes; (4) products demonstrating in vitro and in vivo cor-
relation (Chow and Shao, 2002). Along this line, two drug products may be 
considered to have similar drug absorption profiles if their genomic profiles 
are similar, provided that there is a relationship between PK and genomic 
data and/or an appropriate adjustment is made to account for their differ-
ence. Thus, Chow et al. (2004) proposed to use genomic prediction as a sur-
rogate for the PK response in assessing bioequivalence. The objective of this 
chapter is to derive statistical methods for the assessment of average biosimi-
larity using biomarker(s) data according to both the moment-based criterion 
and the probability-based criterion under a parallel-group design, assuming 
that the biomarker(s) is/are predictive of clinical outcomes for the evaluation 
of safety and efficacy of the follow-on biologics.

In the next section, moment-based and probability-based criteria for the 
assessment of biosimilarity currently available in regulatory guidelines/
guidances or the literature are briefly reviewed. Following a similar idea 
of Chow et al. (2004), statistical methods for the assessment of biosimi-
larity using biomarker data are derived under both moment-based and 
probability-based criteria in Section 16.3. In Section 16.4, a numerical study 
was conducted to evaluate the performance of the derived methods under 
both the moment-based and probability-based criteria. Brief concluding 
remarks are given in the last section.

16.2  Assessment of Biosimilarity

16.2.1  Moment- and Probability-Based Criteria

In this section, we shall focus on both moment-based and probability-
based criteria to assess biosimilarity between biological products. In par-
ticular, the following criteria are considered. Let YT and YR be the same 
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study endpoints of interest for the test product T and reference product R, 
respectively. In particular, E(Yi) = μi, i = T, R.

16.2.1.1  Moment-Based Criterion

The two biological products are concluded to be biosimilar if the 90% con-
fidence interval for μT/μR falls within the similarity limit of (1 − ∆, 1/1 − ∆), 
where 0 < ∆ < 1 is a pre-specified constant.

16.2.1.2  Probability-Based Criterion

The two biological products are biosimilar if the 90% confidence lower bound 
of p is larger than p0, where 0 < p0 < 1 is a similarity limit and

	
p P Y
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R
= − < <

−








1 1
1

δ
δ

,
	

(16.1)

with 0 < δ < 1 as a pre-specified constant.

16.2.2  Assessing Biosimilarity Using Genomic Data

As indicated earlier, Chow et al. (2004) proposed to use the genomic pre-
diction x as a surrogate for the PK response in assessing bioequivalence. 
Their idea is briefly outlined in the following. Let x be a genomic predic-
tion of a PK response under consideration. Typically, x is a function of 
genomic data such as genetic markers, DNA sequence, mRNA transcrip-
tion profiling, linkage and physical maps, gene location, and quantita-
tive trait loci (QTL) mapping. In this chapter, the genomic prediction x is 
used as a surrogate for the PK response in assessing biosimilarity. More 
specifically, if we can claim biosimilarity between two drug products 
using x in place of the PK response but the same statistical test designed 
for PK data, can we claim biosimilarity between the two drug products 
without a bioavailability/bioequivalence study? The answer is affirma-
tive if x is a perfect prediction of the PK response. In practice, however, 
genomic prediction is usually not perfect, because of the existence of 
variability, model misspecification, and/or missing important genomic 
variables. The idea of Chow et al. (2004) is to evaluate the impact of the 
differences between the distribution of the genomic prediction and PK 
response on the assessment of bioequivalence/biosimilarity. For ABE, a 
tolerance limit for this difference was derived so that if the difference 
is within the tolerance limit, then ABE can be assessed by using the 
genomic prediction.
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Consider the usual model under a standard 2 × 2 crossover design as 
described in Chinchilli and Estinhart (1996):

	 y S eijk i ij ijk ijk= + + +µ γ ,

where
μi is the ith treatment effect (i = T, R)
γij is the fixed effect of treatment i in the sequence j with constraint 

γ ik
j

=∑ 0 for each i

(STjk, SRjk) are the random effects of the kth subject in the jth sequence that 
are independent and identically distributed bivariate normal random 
vectors with mean 0 and Var( ) ,†† , ,S i T Rijk Bi= =σ2  and Cov(STjk, SRjk) = 
ρσBTσBR

eijk are independent normal random errors with mean 0 and Var( ) ,eijk Wi= σ2  
i = T, R

(STjk, SRjk) and eijk are assumed independent

Let x be the genomic prediction of y. One of the concerns is how to 
test ABE by using xijk, the genomic prediction of yijk. Chow et al. (2004) 
assume that xijk values follow the same model of yijk but with all param-
eters changed. In particular, treatment effects μ are changed to ν values 
and variance components σ2’s are changed to τ2 values. Chow et al. (2004) 
then defined

	 ε = − − −( ) ( ).µ µ ν νT R T R

Note that ε = 0 if the genomic predictions are unbiased. Because of pos-
sible model misspecification and/or missing important genomic variables, 
however, ε may not be 0. Let y– or x– be the average of y-values or x-values 
with a dot in the subscript indicating over which index is being averaged. 
Also, let

δ̂y T Ry y= −⋅⋅ ⋅⋅

and
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y y y yy
j k

Tjk Rjk Tj Rj
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Then, δ̂y is normally distributed with mean δ = μT − μR and ( )n n sy1 2
2 22+ − /σ  is 

chi-square distributed with n1 + n2 − 2 degrees of freedom, where

	 σ σ σ ρσ σ σ σ= + − + +BT BR BT BR WT WR
2 2 2 22

δ̂y and sy2 are independent.
According to the 2003 FDA guidance on bioequivalence, ABE can be 

claimed if the 90% confidence interval for δ, denoted by ( ),δ δˆ ˆ
y y− + , falls 

within (−η, η), where

	

ˆ ˆ
. ,δ δy y n n

yt s
n n± + −= ± +0 95 2

1 2
1 2 2

1 1

ta,m denotes the ath quantile of the central t-distribution with m degrees of 
freedom.

Now, let ≤ ±δ� x  be the same as δ̂y± but calculated with y-data replaced by 
x-values. If ( ),δ δˆ ˆ

x x− +  is within (−η, η), it is of interest to know whether we 
can claim ABE. Statistically speaking, if the genomic prediction x is the per-
fect prediction of y, then we can claim ABE. However, there is a difference 
between the distributions of y and x. If ε is known, then a 90% confidence 
interval for δ = μT − μR is ( , )δ δˆ ˆ

x x− ++ +ε ε . Consequently, ABE can be claimed if

	 − < + + <− +η δ δ ηˆ ˆ .x xε εand

The parameter ε is typically unknown. If ε− ≤ ε ≤ ε+ and the bounds ε± are 
known, then ABE can be claimed if

	 − < + + <− − + +η δ δ ηˆ ˆ .x xε εand

The tolerance limits for ε to claim ABE are then given by

	 ˆ ˆˆ ˆ .ε ε− − + += − − = −η δ η δx xand

For PBE and IBE, Chow et al. (2004) considered a sensitivity analysis of pre-
diction bias and variation difference within some pre-determined limits. 
Note that in their study, Chow et al. (2004) assumed that a well-established 
relationship between PK data and genomic data could be identified and in 
particular the relationship is assumed to be linear. However, in many cases, 
this assumption may not be true. Thus, it may be misleading assuming a 
linear relationship when in fact the relationship is essentially nonlinear. Lu 
et al. (2009) study the impact of misspecification (or the departure from the 
linearity) on ABE assessment in terms of controlling type I error and requir-
ing the sample size to achieve a desired power.
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16.3  Statistical Test for Biosimilarity Using Biomarker Data

16.3.1  General Idea

For the assessment of biosimilarity, the primary study endpoint may be 
costly or time-consuming to observe. In such cases, it is desirable to find 
a surrogate response which is relatively easy or less expensive to observe. 
Following the ideas of Chow et al. (2004, 2010) proposed a valid statistical test 
for testing biosimilarity using data collected from surrogate or biomarker 
endpoints, assuming that there is a well-established relationship between the 
surrogate endpoint or biomarker and the primary study endpoint. Denote by 
y the primary study endpoint and by x the surrogate endpoint or biomarker. 
For simplicity, the following first-order model is considered:

	 log ,y xi i i= + +β β ε0 1 	 (16.2)

where
β0 and β1 are known coefficients
xi is normally distributed with mean μXi and variance σXi

2

εi are random normal errors with mean 0 and variance σYi2 , i = T, R
xi and εi are independent

It is easy to show that log(yi) is normally distributed with mean β0 + β1 μXi and 
variance β σ σ1

2 2 2
Xi Yi+ . Since yi is log-normally distributed

	
E yi i Xi Xi Yi( ) exp . ( ) .= = + + +{ }µ β β µ β σ σ 0 1 1

2 2 20 5
	

(16.3)

Suppose that the surrogate endpoint or biomarker x is observed from a two-
group parallel design. Let xij be the observation from the jth subject in the ith 
group, i = T, R and j = 1, 2, …, ni. Let ŷij = exp{β0 + β1xij} be the “predicted” value 
of the corresponding primary study endpoint. Denote by vi the expected 
value of ŷij. Then, based on the aforementioned assumptions,

	
v E yi ij Xi Xi= = + +{ }( ) exp . .ˆ  β β µ β σ0 1 1

2 20 5
	

(16.4)

16.3.2  Moment-Based Criterion for Assessing Biosimilarity

In this section, the confidence interval for the ratio of the means μT and μR, or 
equivalently, for log μT − log μR is derived under the moment-based criterion. 
Furthermore, the power of the proposed test for biosimilarity is derived to 
facilitate the determination of the required sample size to achieve a desired 
level of power.
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16.3.2.1  Confidence Interval Estimation

Similar to the assessment of bioequivalence between two drug products, say, 
treatment (T) versus reference (R), the following hypotheses are considered 
to assess biosimilarity between two biological products:
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where 0 < ∆ < 1 is a pre-specified constant; or equivalently

	 H HT R T R0 1: log : log ,log versus logµ µ δ µ µ δ− ≥ − < 	 (16.5)

where δ is a positive constant. From Equations 16.4 and 16.5,

	
log log µ µ σ β µ β σ σT R T R Wd Xd Xd Wdv v− = − + = + +( )log log . . ,0 5 0 52

1 1
2 2 2

	
(16.6)

where

	 µ µ µ σ σ σ σ σ σXd XT XR Wd WT WR Xd XT XR= − = − = −, .2 2 2 2 2 2, and
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Further, let zα, tα,n and χα ,
2

n be the αth-quantile of the standard normal 
distribution, the student t-distribution with n degrees of freedom, and 
the chi-squared distribution with n degrees of freedom, respectively. 
Note that it is in general not easy to construct an exact confidence interval 
for log μT − log μR, which is a linear combination of parameters involving 
variance components. However, for this type of parameters, the modi-
fied large-sample method (MLS) can be used to give an approximate 
confidence interval, which has better finite sample performance than 
many other approximation methods including the normal approximation 
method. Details can be found in Howe (1974), Graybill and Wang (1980), 



360 Biosimilars: Design and Analysis of Follow-on Biologics

Ting et al.  (1990), Hyslop et  al. (2000). Thus,  using the MLS method, a 
(1 − 2α) × 100% confidence interval of log vT − log vR is given as ( , )η ηˆ ˆl u , 
where
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ˆ ˆ log ˆ ( ˆ ˆ ) ˆ ˆ .d v vx T R XT XR XT XR= − = − + −( )log β µ µ β σ σ1 1

2 2 21
2

The idea of Schuirmann’s two one-sided tests can be used to test the hypoth-
eses defined in Equation 16.5 (Schuirmann, 1987). In particular, the null 
hypothesis H0 is decomposed into the following two one-sided hypotheses:

	 H HT R T R01 02: log log : log log .µ µ δ µ µ δ− > − < −and

Equivalently, both H01 and H02 are rejected at an α-level of significance if the 
(1 − 2α) confidence interval of log μT − log μR falls within (−δ, δ).

If σWd2  is known, then a (1 − 2α) × 100% confidence interval for log μT − log μR 
is ( . , . )η σ η σˆ ˆl Wd u Wd+ +0 5 0 52 2 . Consequently, the two biological products are 
claimed to be biosimilar according to the moment-based criterion if

	
ˆ . ˆ . .η σ δ η σ δl Wd u Wd+ > − + <0 5 0 52 2and 	 (16.7)

If σWd2  is unknown, suppose that σ σ σWd Wd Wd− +≤ ≤2 2 2  with σWd−
2  and σWd+

2  as the 
known limits. Then the two biological products are claimed to be biosimilar 
according to the moment-based criterion if

	
ˆ . ˆ . .η σ δ η σ δl Wd u Wd+ > − + <− +0 5 0 52 2and 	 (16.8)

16.3.2.2  Type I Error Rate and Power

Note that ( , )η ηˆ ˆl u  is a (1 − 2α) × 100% confidence interval for log vT − log vR. If 
the null hypothesis H0 : |log μT − log μR| ≥ δ is true, the type I error rate of the 
test for biosimilarity should be controlled at the nominal level α if the rule in 
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Equation 16.7 is adopted when σWd2  is known. But, if only the bounds for σWd2  are 
known, the type I error rate depends on the bounds for σWd2 . In particular, the 
type I error rate is smaller for larger bounds. Thus, in general, the rule given 
in Equation 16.8 is conservative which would lead to a smaller type I error rate 
than the nominal level α.

Suppose that the primary study endpoint y is observed and biosimilarity 
is assessed using the y data. Let yij be the observation of y from the jth subject 
in the ith treatment group, j = 1, …, ni; i = T, R. Let zij = log(yij), z n zi i ij

j
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based on the MLS method is given as ˆ , ˆ ,η ηy y− +( )  where
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with ˆ ˆ log ˆ . ( )d z z S Sy Ty Ry T R ZT ZR= − = − + −log µ µ 0 5 2 2 . Then, the power of 
claiming the two biological products are biosimilar using the y-data can be 
approximated by
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where V n nY i Xi Wi i Xi Wi
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β σ σ β σ σ∑∑  and Φ(·) 

is the cumulative distribution function of the standard normal distribu-
tion. The required sample size using the y-data can be obtained by taking 
the minimum of nT and nR such that the probability given in Equation 16.9 
is larger than the desired level. On the other hand, if only the x-data are 
observed and the rule given in Equation 16.8 is adopted, the power of the test 
for biosimilarity is approximately equal to

	
Φ Φδ σ σ δ σ σ

α
− − − −







− − + − − ++
−

−0 5 0 52 2

1

2 2. ( ) . ( )Wd Wd

X

Wd Wd

X

d
V

z d
V

zz1−






α ,
	

(16.10)

where d = log μT − log μR and V n nX i Xi i Xi
i T R

= + − 
− −

=∑  1
1
2 2 1

1
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,
. Note 

that the power based on the x-data given in Equation 16.10 is decreasing in 
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VX, σ σWd Wd+ −2 2  and σ σWd Wd
2 2− −. Thus, the power is smaller for larger bounds 

of σWd2 . However, the power of the test based on the x-data is not necessarily 
smaller than the power of the test based on the y-data since VX < VY. Similarly, 
the required sample size to achieve a desired power level is obtained as the 
minimum of nT and nR such that the probability given in Equation 16.10 is larger 
than the target level.

16.3.3  Probability-Based Criterion for Assessing Biosimilarity

To test whether two biological products are biosimilar based on the PB crite-
rion, the following hypotheses are considered:

	 H p p H p p0 0 1 0: : ,≤ >versus 	 (16.11)

where
p is defined in Equation 16.1
p0 is the similarity limit

16.3.3.1  Estimation

Based on the assumptions for Model 16.2, log YT − log YR follows a normal 
distribution N Xd LT LR( , )β µ σ σ1
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2 2 2= +1

2 , i = T, R. Then, the 
probability is equal to
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If σWT2  and σWR2  are known, then based on the x-data, p can be estimated by
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where ˆ ( ˆ ˆ )µ β µ µXd XT XR= −1 . However, in general, σWT2  and σWR2  are unknown. 
In this case, we assume σ σ σWT WR W

2 2 2+ ≤ +, where σW +
2  is known. Then, p can be 

estimated by
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On the other hand, based on the y-data, p can be estimated by
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(16.15)

where z–T − z–R, SZT2  and SZR2 , given in Section 3.2.2, are the unbiased estimators 
of β1μXd, σLT

2  and σLR
2  based on the y-data, respectively.

16.3.3.2  Power and Sample Size

The distribution of p̂ is needed in order to assess the power and for the 
required sample to achieve a target power level. Following the similar idea 
of Tse et al. (2006), it can be verified that
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and q = ( , , )β µ σ σ1

2 2
Xd LT LR , respectively. The derivations of B(θ), C(θ), B2(ψ), and 

C2(ψ) are outlined as follows.
Taking Taylor expansion of p̂ at p, we obtain
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The other terms of the second order partial derivatives are not considered 
because they will lead to expected values of order O(n−2) or higher. Note that 
z–T − z–R follows N n nXd T LT R LR( , )β µ σ σ1

1 2 1 2− −+  and that ( )n Si Zi Li− 1 2 2σ  is chi-square 
distributed with ni − 1 degrees of freedom. In addition, ∂ ∂ = ∂ ∂p pLT LR/ /σ σ2 2  
and ∂ ∂ = ∂ ∂2 2 2 2 2 2p pLT LR/ /( ) ( )σ σ . Consequently, E p p B O n( ) ( ) ( )ˆ = + + −q 2  and 
Var( ) ( ) ( )p C O nˆ = + −q 2 , where
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and
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The partial derivatives are given as
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Following similar ideas, we obtain the following results for p̂2:
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and
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with ∂p2/∂μXd, ∂ ∂p LT2
2/ σ , ∂ ∂2

2
2p Xd/ µ , and ∂ ∂2

2
2 2p LT/ ( )σ  being the same as 

∂p/∂μXd, ∂ ∂p LT/ σ2 , ∂ ∂2 2p Xd/ µ , and ∂ ∂2 2 2p LT/ ( )σ  in Equations 16.6 through 16.19, 
respectively, but with σ σWT WR

2 2+  being replaced by σW +
2  (including those in z1 

and z2). Consequently, an approximate (1 − α) × 100% lower confidence bound 
for p is given by
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The null hypothesis H0 defined in Equation 16.11 is rejected at an α level of 
significance if p̂L > p0. Thus, the power of the test based on the PB criterion 
can be approximated by

	
1 0

1− − +






−F

q
p p
C

z
( )

.α

Let n = nT = nR. Based on the expression of C(θ), the required sample size to 
achieve a power level of (1 − β) is given as
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Based on the asymptotic normality of p̂2, an approximate (1 − α) × 100% lower 
confidence bound for p2 is given as
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where p̂2 is obtained by replacing σ σWT WR
2 2+  with σW +

2  in Equation 16.13, 
B2( ),ψ̂  C2( )ŷ , and ˆ ( ˆ , ˆ , ˆ )y = µ σ σXd XT XR

2 2  are the estimators of B2(ψ), C2(ψ), and 
y = ( , , ),µ σ σXd XT XR

2 2  respectively. The detailed expressions of B2(ψ) and C2(ψ) 
are given in the Appendix. Using the x-data, the null hypothesis defined in 
Equation 16.11 is rejected at the α level of significance if p̂2L > p0. Thus, the 
power of the test based on the PB criterion can be approximated by
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Let n = nT = nR. Using the expression of C2(θ) given earlier, based on the x-data, 
the required sample size to achieve a power level (1 − β) is given as
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16.4  Numerical Study

For the MB criterion, a numerical study gets some insights into the effect of 
the random error and the bounds for its variance on the required sample 
size. Without loss of generality, assume β1 = 1 and for simplicity let n = nT = nR. 
Note that sample size calculations for both criteria do not include β0. In all 
the numerical studies conducted, α = 0.05 and 1 − β = 0.80. Let 1 − ∆ = 0.80, i.e., 
δ = 0.223, which is the limit for assessing ABE suggested by FDA (2003). For 
the chosen values of μXd, σXi

2 , and σWi2  (σWR2 0 04= . ), the required sample size n 
for the primary study endpoint y is presented in Table 16.1. The sample size is 
determined as the minimum n such that the power in Equation 16.9 is larger 
than 0.80. Suppose that the rule given in Equation 16.8 is adopted. Then, for 
simplicity, assume σ σWd Wd+ −= −2 2 . Several values of σWd+

2  are selected such that 
σ σ σWd XT XR+ ≥ −2 2 2  for all the chosen values of σXT

2  and σXR
2  in Table 16.1. Table 

16.2 shows the required sample sizes for surrogate study endpoint x, which is 
determined as the minimum n such that the power in Equation 16.10 is larger 
than 0.80. From the results presented in Table 16.1, for given values of μXd, σXd

2 , 

TABLE 16.1

Sample Sizes for the Study Endpoint y (Moment Based)

s =XT
2 0.10 s =XT

2 0.20 s =XT
2 0.30 s =XT

2 0.40

sXR
2 0.05 0.10 0.15 0.15 0.20 0.25 0.25 0.30 0.35 0.35 0.40 0.45

μXd = 0.00 σWT2 0 0= . 2 40 50 65 81 91 111 125 135 161 172 183 214

σWT2 0 0= . 4 46 53 66 88 94 110 133 139 158 183 186 209

σWT2 0 0= . 6 52 57 68 97 99 111 145 144 158 198 193 207

μXd = 0.04 σWT2 0 0= . 2 51 53 59 102 96 101 158 144 146 219 195 194

σWT2 0 0= . 4 62 60 64 120 107 107 183 158 153 251 212 202

σWT2 0 0= . 6 77 70 70 143 121 115 215 176 163 293 236 214

μXd = 0.08 σWT2 0 0= . 2 85 75 70 172 137 119 267 205 172 369 278 229

σWT2 0 0= . 4 110 92 81 213 164 135 326 242 194 447 326 257

σWT2 0 0= . 6 143 114 96 268 198 157 403 289 223 548 387 294
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and σWd2 , the sample size is increasing in σWi2  and σXi
2 , i = T, R. This pattern can 

be verified based on the power function given in Equation 16.9. On the other 
hand, the results in Table 16.2 suggest that the sample size is increasing in 
σWd+

2 . In other words, nX − nY is increasing in σWd+
2  for given values of the other 

parameters in Equation 16.9, where nx and ny are the sample sizes for the test 
based on the x-data and y-data, respectively. However, for the same value of 
μXd, σXi

2 , and β1, nX may be larger or smaller than nY. This pattern is consistent 
with the conclusion drawn at the end of Section 16.3. Similar to the results 
shown in Table 16.1, the sample size is increasing in σXi

2  for given values of 
μXd, σXd

2 , and σWd+
2 .

The performance of the test under the model defined in Equation 16.2 based 
only on the x-data is investigated by simulation. Using the sample sizes given 
in Table 16.2, the empirical power of the test according to the rule given in 
Equation 16.8 is obtained by a simulation study with 50,000 iterations. The 
results given in Table 16.3 suggest that the test shows very good performance 
when the two biological products are biosimilar. It should be noted that if the 
power in Equation 16.10 is approximated by

	
2 0 5 1

2

1Φ δ σ
α

− − − −






−+
−

. |log log | ,Wd T R

X

v v
V

z

when σ σWd Wd+ −= −2 2 , then the sample size, in general, is seriously overesti-
mated. For the combinations of parameter values given in Table 16.2, simula-
tion results show that most of empirical powers are larger than 0.88, which are 
much larger than the nominal value 0.80. Furthermore, it is worth noting that 
when the null hypothesis that |log μT − log μR|= δ is true, simulation results 

TABLE 16.2

Sample Sizes for the Study Endpoint x (Moment Based)

s =XT
2 0.10 s =XT

2 0.20 s =XT
2 0.30 s =XT

2 0.40

sXR
2

0.05 0.10 0.15 0.15 0.20 0.25 0.25 0.30 0.35 0.35 0.40 0.45

μXd = 0.00 σWd+ =2 0 0. 2 33 41 55 77 85 101 126 132 152 179 183 207

σWd+ =2 0 0. 4 36 45 60 86 93 112 140 145 168 198 201 229

σWd+ =2 0 0. 6 40 50 67 95 103 125 155 160 187 220 222 255

μXd = 0.04 σWd+ =2 0 0. 2 46 47 53 109 97 98 179 152 147 254 211 200

σWd+ =2 0 0. 4 52 53 58 126 109 108 205 170 162 291 235 220

σWd+ =2 0 0. 6 61 59 64 146 122 119 238 191 179 338 265 244

μXd = 0.08 σWd+ =2 0 0. 2 84 75 68 204 155 127 333 243 191 474 337 260

σWd+ =2 0 0. 4 102 87 77 247 181 144 405 283 217 575 394 295

σWd+ =2 0 0. 6 126 103 89 306 215 165 501 336 249 713 466 338
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TABLE 16.3

Power (%) of the Test Using x with Sample Sizes from Table 16.2

s =XT
2 0.10 s =XT

2 0.20 s =XT
2 0.30 s =XT

2 0.40

sXR
2 0.05 0.10 0.15 0.15 0.20 0.25 0.25 0.30 0.35 0.35 0.40 0.45

μXd = 0.00 σWd+ =2 0 0. 2 80.00 79.31 79.98 79.37 80.00 79.35 79.33 80.06 79.53 79.58 80.11 79.73

σWd+ =2 0 0. 4 79.49 79.25 79.22 79.65 79.72 79.64 79.72 79.97 79.58 79.62 79.64 80.01

σWd+ =2 0 0. 6 79.75 79.95 79.50 79.37 80.34 79.75 79.41 79.87 79.51 79.44 79.48 80.08

μXd = 0.04 σWd+ =2 0 0. 2 79.34 79.81 80.24 79.94 79.79 79.97 79.53 79.62 79.50 79.78 79.80 79.76

σWd+ =2 0 0. 4 79.08 80.25 79.92 79.71 80.09 80.07 79.40 79.82 79.41 79.74 79.79 79.59

σWd+ =2 0 0. 6 79.57 79.60 79.80 79.28 79.72 79.84 79.78 79.73 79.61 79.67 79.55 79.80

μXd = 0.08 σWd+ =2 0 0. 2 79.26 79.91 79.95 79.73 80.18 80.09 79.81 79.92 80.12 79.88 79.99 79.92

σWd+ =2 0 0. 4 79.38 79.66 80.14 79.82 79.84 80.16 79.52 79.75 80.24 79.83 79.90 79.61

σWd+ =2 0 0. 6 79.39 79.82 80.52 79.96 80.23 80.14 79.44 79.70 80.04 79.81 79.98 79.90
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(not shown here) with a sample size of 50 and 100 suggest that the type I error 
rate is controlled at the nominal level and is decreasing in σWd+

2  and σXi
2 .

For the PB criterion, a similar procedure is used to investigate the effect of the 
random error εi in Equation 16.2 and the bound for its variance. The biosimilar 
limit p0 is set to be 0.60. Let δ = 0.40 and σWR2 0 02= . . The corresponding sample 
sizes for selected values of other parameters are presented in Table 16.4 and 
Table 16.5 for the test based only on y-data and x-data, respectively.

TABLE 16.5

Sample Sizes for the Study Endpoint x (Probability Based)

s =XT
2 0.06 s =XT

2 0.08 s =XT
2 0.10 s =XT

2 0.12

sXR
2

0.14 0.16 0.18 0.14 0.16 0.18 0.10 0.12 0.14 0.10 0.12 0.14

μXd = 0.00 σW+ =2 0 0. 5 32 53 95 47 84 171 27 44 78 44 76 150

σW+ =2 0 0. 6 36 63 120 56 107 240 31 53 99 53 96 211

σW+ =2 0 0. 7 42 77 159 69 141 369 36 64 131 64 127 323

μXd = 0.04 σW+ =2 0 0. 5 33 56 100 50 89 184 29 47 83 47 81 162

σW+ =2 0 0. 6 38 66 128 59 114 261 33 56 106 56 103 230

σW+ =2 0 0. 7 44 82 170 73 152 408 38 69 141 69 137 359

μXd = 0.08 σW+ =2 0 0. 5 38 65 120 58 107 230 34 55 100 55 98 204

σW+ =2 0 0. 6 44 78 155 71 140 340 39 67 130 67 127 302

σW+ =2 0 0. 7 52 98 213 88 192 567 46 83 178 83 174 503

TABLE 16.4

Sample Sizes for the Study Endpoint y (Probability Based)

s =XT
2 0.06 s =XT

2 0.08 s =XT
2 0.10 s =XT

2 0.12

sXR
2 0.14 0.16 0.18 0.14 0.16 0.18 0.10 0.12 0.14 0.10 0.12 0.14

μXd = 0.00 σWT2 0 0= . 1 33 50 81 46 73 127 29 43 68 42 66 112

σWT2 0 0= . 2 38 60 100 55 91 167 35 53 86 53 84 151

σWT2 0 0= . 3 46 73 127 68 117 230 42 66 112 67 111 212

μXd = 0.04 σWT2 0 0= . 1 34 53 85 48 77 134 30 45 71 44 69 118

σWT2 0 0= . 2 40 63 105 58 96 177 36 55 91 55 89 160

σWT2 0 0= . 3 48 77 134 71 124 246 44 69 118 70 117 227

μXd = 0.08 σWT2 0 0= . 1 39 60 98 54 89 158 34 52 83 51 81 141

σWT2 0 0= . 2 45 72 122 67 112 214 41 64 107 64 105 195

σWT2 0 0= . 3 54 89 158 83 147 306 51 81 141 82 140 284
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The results in Table 16.4 suggest that the required sample size is increas-
ing in μXd, σWi

2 , and σXi
2 . The pattern shown in Table 16.4 is different from that 

exhibited in Table 16.1. The results in Table 16.5 indicate that the sample size 
is increasing in μXd, σW +

2 , and σXi
2 . However, these patterns do not hold for 

μXd and σXi
2  in Table 16.2. Note that the MB criterion is proposed for the ratio 

of means of YT and YR which depends on σXd
2  and σWd2  (or σWd+

2 ), but not on 
σXi

2  and σWi2 . On the other hand, the PB criterion is set for the ratio of YT and 
YR. Thus, σXi

2  and σWi2  play a role in the index p defined in the PB criterion. 
Consequently, the PB criterion requires small values of σXi

2  and σWi2  to ensure 
that p > p0.

Consider the case that only x-data are observed and the rule of the test is 
that two biological products are claimed to be biosimilar if p̂2L > p0. Based 
on the sample sizes given in Table 16.5, the empirical power of the test is 
obtained by a simulation study with 50,000 iterations. The results given in 
Table 16.6 suggest that the test shows good performance when the two bio-
logical products are biosimilar. Furthermore, the power of the test is much 
closer to the nominal value. For example, the powers in the third column are 
larger than those in the first column to about 2% in each block corresponding 
to a value of σXT

2  in Table 16.6. Additional simulations show that when the 
required sample size is smaller than 30, the corresponding power is in gen-
eral smaller than 0.75. This may be due to the inaccuracy of the normal 
approximation of p̂2 and/or the approximation of the bias and variance of 
p̂2 when the sample size is not sufficiently large. When the null hypothesis 
H0 : p = p0 is true, the simulation results given in Table 16.7 based on 50,000 
iterations with a sample size of 100 show that the resulting type I error rate 
is inflated but to a tolerable extent.

16.5  Concluding Remarks

Chow et al. (2010) compared the moment-based criterion with the 
probability-based criterion for the assessment of biosimilarity using bio-
marker data under a parallel-group design. The results indicate that the 
probability-based criterion is not only a much more stringent criterion but 
also is sensitive to any small change in variability. This justifies the use of 
the probability-based criterion for the assessment of biosimilarity if a certain 
level of precision and reliability of biosimilarity is desired.

As indicated earlier, biosimilars are fundamentally different from generic 
chemical drugs. Important differences include the size and complexity of the 
active substance and the nature of the manufacturing process. Unlike clas-
sical generics, biosimilars are not identical to their originator products and 
therefore should not be brought to market using the same procedure applied 
to generics. This is partly a reflection of the complexities of manufacturing 
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TABLE 16.6

Power (%) for the Test Using x with Sample Sizes from Table 16.5

s =XT
2 0.06 s =XT

2 0.08 s =XT
2 0.10 s =XT

2 0.12

sXR
2 0.14 0.16 0.18 0.14 0.16 0.18 0.10 0.12 0.14 0.10 0.12 0.14

μXd = 0.00 σW+ =2 0 0. 5 76.31 77.40 78.15 76.68 77.87 79.36 74.72 76.46 78.15 76.63 78.17 79.05

σW+ =2 0 0. 6 76.19 77.56 78.68 76.97 78.45 78.92 74.75 77.58 78.22 77.02 78.26 79.13

σW+ =2 0 0. 7 76.21 77.61 78.90 77.93 78.97 79.20 75.19 77.20 78.83 77.22 78.43 79.31

μXd = 0.04 σW+ =2 0 0. 5 75.93 77.77 78.18 77.20 78.13 79.02 75.82 77.35 78.07 77.51 78.35 79.23

σW+ =2 0 0. 6 76.43 77.70 78.56 77.15 78.50 79.15 75.83 77.28 78.20 77.49 78.43 79.35

σW+ =2 0 0. 7 76.20 78.09 78.37 77.66 78.86 79.21 75.75 77.43 78.78 77.81 78.67 79.51

μXd = 0.08 σW+ =2 0 0. 5 76.58 77.84 78.68 76.93 78.36 79.02 76.48 77.21 78.40 77.42 78.43 79.26

σW+ =2 0 0. 6 76.37 77.97 78.48 77.80 78.50 79.45 76.21 78.03 78.42 77.53 78.99 79.55

σW+ =2 0 0. 7 77.08 78.07 78.99 78.05 79.13 79.76 76.73 77.54 78.67 77.26 78.78 79.32
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TABLE 16.7

Type I Error Rate (%) for Testing Biosimilarity Based on x

s =XT
2 0.06 s =XT

2 0.08 s =XT
2 0.10 s =XT

2 0.12

sXR
2

0.14 0.16 0.18 0.14 0.16 0.18 0.10 0.12 0.14 0.10 0.12 0.14

μXd = 0.00 σW+ =2 0 0. 5 6.102 5.930 6.044 5.754 5.714 5.700 5.648 5.398 5.670 5.590 5.534 5.362

σW+ =2 0 0. 6 5.964 5.822 5.986 5.804 5.730 5.926 5.530 5.542 5.696 5.548 5.474 5.494

σW+ =2 0 0. 7 5.882 5.960 6.058 5.658 5.750 5.786 5.604 5.512 5.496 5.562 5.336 5.354

μXd = 0.04 σW+ =2 0 0. 5 5.846 5.852 5.856 5.824 5.794 5.506 5.520 5.616 5.662 5.672 5.364 5.418

σW+ =2 0 0. 6 5.818 5.914 5.874 5.776 5.592 5.928 5.626 5.898 5.502 5.624 5.488 5.420

σW+ =2 0 0. 7 5.916 5.996 6.058 5.728 5.826 5.674 5.666 5.392 5.746 5.544 5.544 5.294

μXd = 0.08 σW+ =2 0 0. 5 6.010 5.900 5.962 5.646 5.730 5.704 5.750 5.656 5.644 5.690 5.576 5.438

σW+ =2 0 0. 6 5.922 6.022 6.146 5.834 5.808 5.910 5.756 5.666 5.584 5.614 5.482 5.562

σW+ =2 0 0. 7 5.914 6.202 5.808 5.812 5.888 5.888 5.802 5.808 5.692 5.648 5.556 5.378



373Assessing Biosimilarity Using Biomarker Data

and safety and efficacy controls of biosimilars when compared to their small-
molecule generic counterparts (see, e.g., Chirino and Mire-Sluis, 2004; 
Schellekens, 2004; Crommelin et al., 2005; Roger, 2006; Roger and Mikhail, 
2007). As biological products are usually recombinant protein molecules 
manufactured in living cells, manufacturing processes for biological prod-
ucts are highly complex and require hundreds of specific isolation and puri-
fication steps. In practice, it is impossible to produce an identical copy of a 
biological products, as changes to the structure of the molecule can occur 
with changes in the production process. Since a protein can be modified (e.g., 
a side chain may be added, the structure may have changed due to protein 
misfolding, and so on) during the process, different manufacturing processes 
may invariably lead to structural differences in the final product, which may 
result in differences in efficacy and may have a negative impact on patient 
immune responses. As a result, the development of follow-on biologics or 
biosimilars is very sensitive to small variations during the manufacturing 
process. Thus, current regulation for the assessment of bioequivalence may 
not be appropriate (or may be too loose to be applied) for the assessment 
of biosimilarity of follow-on biologics. Even though the probability-based 
criterion is more stringent than the moment-based criterion, it is strongly 
recommended that biosimilarity in variability (perhaps, in addition to aver-
age biosimilarity) between a follow-on biologic and the innovator biological 
products be assessed.

In this chapter, we considered assessing biosimilarity between biological 
products using biomarker data based on both a moment-based criterion and 
a probability-based criterion under the Fundamental Biosimilarity Assumption. 
Statistical methods for the assessment of biosimilarity in the average of 
biomarker responses between follow-on biologics are derived under a par-
allel-group design based on both MB and PB criteria. Even though a simi-
lar idea can be applied to derive statistical methods for the assessment of 
biosimilarity in the variability of biomarkers between biosimilar products if 
the similarity between variabilities is of primary concern, further research 
is needed in this area.
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17
Current Issues in Biosimilar Studies

17.1  Introduction

Like bioequivalence assessment for the generic approval of small-molecule 
drug products, the process for assessing the biosimilarity of biosimilar prod-
ucts includes endpoint selection, criteria for biosimilarity, study design, sta-
tistical methods for data analysis, and regulatory submission, review, and 
approval. As indicated in the previous chapters, biosimilar products are 
made of living cells or organisms with mixed, complicated structures which 
are difficult, if not impossible, to characterize fully. Thus, standard meth-
ods for the assessment of bioequivalence for small-molecule drug products 
cannot be appropriately and directly applied to assess biosimilarity. Besides, 
biosimilar products are known to be sensitive to environmental factors such 
as light and temperature as a small change or variation at any critical stage 
of the manufacturing process could result in a drastic change in clinical 
outcomes.

Following the passage of the BPCI Act, in order to obtain input on specific 
issues and challenges associated with the implementation of the BPCI Act, 
the FDA conducted a 2 day public hearing on the Approval Pathway for 
Biosimilar and Interchangeability Biological Products on November 2–3, 2010, 
at the FDA in Silver Spring, Maryland. At the public hearing, several scien-
tific factors and/or practical issues were discussed. These scientific factors 
and/or issues that related to statistics include (1) How similar is considered 
to be (highly) similar? (2) What endpoints should be used for the assessment 
of biosimilars? (Or, is a clinical trial always required?) (3) What criteria for 
assessing biosimilars should be adopted? (Or, is the one-size-fits-all crite-
rion for PK parameters appropriate?) (4) Is a crossover design appropriate for 
assessing biosimilars? (5) Should tests for comparability in a manufacturing 
process in terms of critical quality attributes be conducted? and (6) Are there 
any differences in regulatory requirements for CMC (chemistry, manufac-
turing, and control)? In addition, the issues regarding the interpretation and 
assessment of drug interchangeability of biosimilar products were also dis-
cussed. Some of these scientific factors and/or issues were also discussed 
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at the subsequent public meeting for user fees held on December 16, 2011, at 
the FDA in Silver Spring, Maryland. On February 9, 2012, the FDA circulated 
three draft guidances for comments. One of the three draft guidances is 
related to scientific considerations for the assessment of biosimilar products. 
In this guidance, the FDA introduces the concept of stepwise approach and 
the totality-of-the-evidence for the assessment of biosimilarity. However, 
the issue of drug interchangeability was not mentioned (see, FDA, 2012a,b,c). 
To obtain public comments and input on the FDA’s draft guidances, a pub-
lic hearing was held on May 11, 2012, at the FDA in Silver Spring (see, e.g., 
Chow et al., 2013).

In this chapter, comments on these scientific factors and some current 
issues related to the assessment of biosimilarity and drug interchangeability 
will be described in the next two sections followed by a section of conclud-
ing remarks.

17.2  Scientific Factors

In this section we shall focus on the scientific factors of endpoint selection, 
one-size-fits-all criterion, the degree of similarity (i.e., how similar is con-
sidered highly similar?), study design, and test for comparability in critical 
quality attributes at various stages of manufacturing process.

17.2.1  Endpoint Selection

Endpoint selection is related to the following questions:

	 1.	 Is a pharmacokinetic/pharmacodynamic (PK/PD) or bioavailability/
bioequivalence (BA/BE) study sufficient for the assessment of 
biosimilarity?

	 2.	 Is a clinical trial always required for the assessment of biosimilarity?
	 3.	How many studies are required in order to achieve totality-of-the-

evidence to support biosimilarity as called for in the FDA draft 
guidance?

In addition, the following questions are commonly asked:

	 1.	What if we pass some of the studies but fail to pass the remaining 
studies?

	 2.	Which of these studies utilizing different study endpoints is telling 
the truth?

	 3.	Can these study endpoints translate one another?
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In what follows, an attempt will be made to address or at least to comment on 
these questions. First, endpoint selection depends upon the specific biosimi-
lar studies conducted. For example, AUC (area under the blood or plasma 
concentration time curve) and Cmax (maximum concentration) are the study 
endpoints for pharmacokinetic and/or bioavailability/bioequivalence stud-
ies, while in clinical investigations, outcomes such as response rate (efficacy) 
and the incidence rate of adverse events (safety) should be considered. 
Second, to address the question whether a clinical trial should always be 
conducted, we may revisit the definition of biosimilarity as described in the 
BPCI Act. A biological product that is demonstrated to be highly similar to 
an FDA-licensed biological product may rely on certain existing scientific 
knowledge about safety, purity (quality), and potency (efficacy) of the refer-
ence product. Thus, if one would like to show that the safety and efficacy of a 
biosimilar product are highly similar to those of the reference product, then 
a clinical trial must be conducted. In some cases, clinical trials for the assess-
ment of biosimilarity may be waived if there exists substantial evidence that 
surrogate endpoints or biomarkers are predictive of the clinical outcomes. 
On the other hand, clinical trials are required for the assessment of drug 
interchangeability in order to show that the safety and efficacy between a 
biosimilar product and a reference product are similar in any given patient of 
the patient population under study as described in the BPCI Act. Similarly, 
if it is required by the regulatory agencies to demonstrate that a biosimilar 
product is highly similar in purity (quality) to that of the reference product, 
then some in vitro studies for assessment of biological activities are required.

Third, how many studies are required in order to support biosimilarity 
between a biosimilar product and a reference product? Ideally, the sponsor 
should conduct as many studies as possible to demonstrate that the test prod-
uct is highly similar with the reference product in terms of important good 
drug characteristics such as identity, purity, strength, safety, quality, and stabil-
ity as described in the USP/NF (2000) if significant differences in these char-
acteristics have an impact on the clinical outcomes of the biosimilar product 
under investigation. For example, if it is known that a small change in a spe-
cific critical quality attribute at a specific stage of the manufacturing process 
would have an impact on the clinical outcomes, then a comparability study 
is necessary to conduct in order to show that there is no clinically meaning-
ful difference between the test product and the reference product in terms of 
the quality attributes at the specific stage of the manufacturing process of the 
biosimilar product. According to the FDA guidance, it is suggested that how 
many studies are required for the assessment of biosimilarity depends upon 
whether these studies are sufficient to achieve the totality-of-the-evidence 
for the assessment of biosimilarity. Thus, consultation and/or communica-
tion with members of the Biosimilar Review Committee (BRC) at the FDA is 
strongly recommended prior to the conduct of these biosimilar studies.

Regarding the question that “Which of these study endpoints is telling 
the truth?” since the development/manufacturing of a biosimilar product 
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is a very complex process, it cannot be fully described by a single or multiple 
endpoints in a single study or some study endpoints from some other biosim-
ilar studies alone. That is why the FDA requires that the totality-of-the-
evidence (including important quality attributes across all functional areas 
or domains of the manufacturing process) be achieved for an overall evalu-
ation of the biosimilar product under investigation. Finally, calibration stud-
ies need to be conducted in order to address the issue of translations among 
study endpoints which may be related to one another in certain ways.

17.2.2  One-Size-Fits-All Criterion

The one-size-fits-all criterion for bioequivalence assessment of small-molecule 
drug products has been in practice since the 1970s across all therapeutic areas. 
The one-size-fits-all criterion, which was developed based on the assessment 
of average of bioavailability (measurement of drug absorption), has been criti-
cized by many researchers and/or scientists from the academia and the phar-
maceutical industry (see, e.g., Chow and Liu, 2008). It is suggested that a more 
flexible criterion be considered (1) by adjusting for the intra-subject variability 
and/or therapeutic index (window) or (2) by adopting asymmetric boundaries 
(depending upon efficacy and safety therapeutic index). Along this line, the FDA 
published guidances for the assessment of individual bioequivalence (IBE) and 
population bioequivalence (PBE), which attempted to adjust the one-size-fits-all 
criterion by taking into consideration the intra-subject and inter-subject vari-
abilities and the variability due to subject by product interaction.

If we were to adopt the one-size-fits-all criterion for all required biosimilar 
studies, chances would be that we would pass some of the studies but fail 
other studies. In this case, it is suggested that flexible criteria for the assess-
ment of biosimilarity be considered for certain biosimilar studies because 
differences observed in some studies may be insensitive to the clinical out-
comes. For those studies which are less sensitive to clinical outcomes, it may 
be more appropriate to use a wider biosimilarity limit.

Regarding the use of a more flexible criterion for bioequivalence assess-
ment of small-molecule drug products, most recently, the FDA recommends 
the use of the scaled average bioequivalence (SABE) criterion for highly vari-
able drug products (Haidar et al., 2008). The SABE criterion for highly variable 
drug products is a flexible criterion adjusting for the variability of the ref-
erence product. EMA suggested a closely related approach (EMA, 2010c). 
Whether the SABE criterion can be applied to assessing biosimilar products 
has recently attracted much attention since biosimilar products usually have 
relatively large variability.

17.2.3  How Similar Is Similar?

As indicated in the BPCI Act, a biosimilar product is defined as one that 
is highly similar to the reference product. However, no definition regarding 
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highly similar was given, mentioned, or discussed in both the BPCI Act and 
the FDA draft guidances. This has raised the following questions. First: How 
similar is considered to be highly similar? What is the criterion for similar-
ity? How to define the degree of similarity for highly similar?

Current criteria for the assessment of bioequivalence in terms of PK 
responses such as AUC and Cmax are useful for determining whether a 
biosimilar product is similar to a reference product. However, they do not 
provide additional information regarding the degree of similarity. As indi-
cated in Chapters 4 and 5, we may consider a relative distance between 
“T and R,” denoted by d(T, R) and “R and itself,” defined as d(R, R), i.e.,

	
rd d T R

d R R
= ( , )
( , )

We may claim that T is highly similar to R if rd is close to 1. For example, 
rd could be within (90%, 110%), the limits used in the assessment of in vitro 
bioequivalence testing for locally acting drug products. Alternatively, we 
may consider assessing the average biosimilarity first and then comparing 
biosimilarity in variability. If we pass average biosimilarity, we may consider 
the two products to be similar. If we also pass biosimilarity in variability, we 
may claim that they are highly similar. These criteria for assessing similarity 
and high similarity have been proposed in the literature. In the recent draft 
guidances of the FDA, however, there is no definition of highly similar and 
little or no discussion regarding the degree of similarity was provided.

In practice, it is also of concern to the sponsor that “what if a biosimilar 
product turns out to be superior to the reference product?” A simple answer 
to the concern is that the test product under investigation is not similar. As 
indicated in Chapter 7, the concept of testing for non-inferiority consists of 
the concept of testing for equivalence and the concept of testing for superior-
ity. Thus, it is suggested that a non-inferiority test be performed. We may test 
for non-superiority once the non-inferiority has been established without 
paying any statistical penalty due to the nature of closed testing procedure.

17.2.4  Study Design

Unlike small-molecule drug products for which a crossover design is the 
design of choice for bioequivalence assessment, parallel design is often con-
sidered for the assessment of biosimilar products due to the fact that most bio-
similar products have relatively long half-lives. Although a parallel design can 
be employed to assess similarity between drug products, it suffers from the 
following drawbacks. First, we are unable to compare the test product and the 
reference product within each individual subject. In addition, we are unable 
to estimate within-subject (intra-subject) variability. In practice, it is recog-
nized that (1) biosimilar products are generally very sensitive to environmen-
tal factors such as light and temperature, (2) a small change (variation) at any 
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critical stage of the manufacturing process could cause a drastic change in 
clinical outcomes. To overcome this problem, the three-arm design proposed 
by Kang and Chow (2013) is useful. In practice, if a two-arm parallel group 
design is used, one may consider to randomly split the reference arm into two 
groups a large number of times in order to obtain some insight information 
regarding the comparison of the reference product with itself.

Alternatively, it is suggested that a Balaam’s design, which is a combina-
tion of a parallel design and a crossover design, be considered. Let T and R 
denote the test product and the reference product, respectively. The Balaam’s 
design can be expressed as:

Balaam’s design— (TT, RR, TR, RT), which is a 4 × 2 (four-sequence, two-period) 
crossover design. Note that the first two sequences constitute a repeated 
parallel design. Under Balaam’s design, we are able to estimate both within-
subject and between-subject variabilities for both the test product and the ref-
erence product. Alternatively, one may consider a 2 × 2 crossover design, i.e., 
(TR, RT), but repeat the second period. In other words, the following design is 
commonly considered as an alternative design to the Balaam’s design:

The 2 × 3 crossover design— (TRR, RTT).

In addition, the following 2 × 3 crossover designs are useful designs for the 
assessment of biosimilarity:

The 2 × 3 dual design— (TRT, RTR)
The 2 × 3 extra-reference design— (TRR, RTR)

Zhang et al. (2013) compared relative advantages and limitations of the 
previously described study designs for the assessment of biosimilarity and 
suggested that the 2 × 3 extra-reference design (TRR, RTR) be used for achiev-
ing the desired power with an adequate control of the overall type I error rate.

For the assessment of drug interchangeability in terms of alternating and 
switching, the BPCI Act indicated that for a biological product that is admin-
istered more than once to an individual, the risk in terms of safety or dimin-
ished efficacy of alternating or switching between the use of the biological 
product and the reference product is not greater than the risk of using the 
reference product without such alternation or switch. An appropriate study 
design should allow the assessment of T–T, T–R, R–T, and R–R for switching 
and the assessment of R–T–R and T–R–T for alternating. For this purpose, 
the study designs for switching, alternating, and switching/alternating as 
described in Chapter 11 may be useful.

17.2.5  Test for Comparability in Critical Quality Attributes

As clearly stated in the BPCI Act, a biosimilar product is defined as a prod-
uct that is highly similar to the reference product notwithstanding minor 
differences in clinically inactive components, and there are no clinically 
meaningful differences in terms of safety, purity, and potency. Based on this 
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definition, we would interpret that a biological medicine is biosimilar to a 
reference biological medicine if it is highly similar to the reference in safety, 
purity, and potency. In other words, a biological product that is demonstrated 
to be highly similar to an FDA-licensed biological product may rely on certain 
existing scientific knowledge about safety, purity, and potency of the refer-
ence product. High similarity in purity is viewed as high similarity in critical 
quality attributes at critical stages of the manufacturing process including 
raw materials, in-process (or in-use) materials, and end-product. Thus, tests 
for comparability in critical quality attributes play an important role for 
achieving the totality-of-the-evidence for the assessment of biosimilarity.

Tests for the comparability in critical quality attributes involve (1) the 
establishment of product specifications at each critical stage of the manu-
facturing process and release targets for the end-product; (2) in-process or 
in-use materials quality assurance and quality control; and (3) test for sta-
bility. Since a small change and/or variation at each critical stage of the 
manufacturing process could result in a drastic change in clinical outcomes 
(e.g., safety and/or efficacy), it is suggested that much tighter acceptance cri-
teria or release targets should be used for controlling variabilities associ-
ated with each critical stage of the manufacturing process and, consequently, 
improving the quality of the product.

As indicated earlier, the manufacturing process for a biological product 
is very complex and involves the characterization of mixed structures. As 
a result, protocols should be developed for comparability studies which 
include sampling plans, acceptance criteria, and testing procedures in order 
to obtain representative samples (data) for an accurate and unbiased assess-
ment of the comparability between (1) different batches of the same manu-
facturing process, (2) different manufacturing processes (locations), (3) and a 
test product and a reference product. Under an approved protocol of a compa-
rability study, statistical methods can be derived based on the sampling plan 
and acceptance criteria employed (see, e.g., Chow and Liu, 1995). Although 
general principles for testing comparability of biological products have been 
described, specific guidances for sampling plans and/or acceptance criteria 
for specific quality attributes at critical stages of a specific manufacturing 
process are still not available.

17.3  Current Issues

For the assessment of biosimilarity and drug interchangeability, there are 
many practical issues in addition to the scientific factors outlined in the 
previous section. These practical issues are briefly described later. For each 
practical issue, valid statistical methods are necessarily developed under a 
valid study design.
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17.3.1  Reference Standards

In practice, important information regarding the reference product is gener-
ally not available. Thus, it is important to conduct an R–R study (i.e., a study 
comparing the reference product to itself). Note that for an R–R study, the 
reference product could come from two different manufacturing processes 
(locations) or different batches from the same manufacturing process in 
order to obtain important information regarding the reference product. The 
R–R study will provide not only the information regarding the variability 
associated with the reference product but also establish baseline (i.e., similar-
ity between R and R) for a comparison (i.e., comparison between T vs. R and 
R vs. R).

For this purpose, prospectively, one may consider a three-arm parallel 
design (i.e., one arm with test product and two arms with the reference prod-
uct) proposed by Kang and Chow (2013). For a post-study approach for a 
two-arm study, one could randomly split the reference arm into two groups, 
say R1 and R2 of equal sample size, a large number of times. One can then 
establish a standard (or specification) for the reference product. Based on 
the established standards, the determination of the degree of similarity for 
highly similar is possible.

17.3.2  Criteria for Biosimilarity

Current thinking regarding the criteria for biosimilarity is based on the con-
cept of bioequivalence in average bioavailability or of individual/PBE which 
takes variabilities (both inter-subject and intra-subject variabilities) into 
consideration. Due to the complexity, heterogeneity, and complication mech-
anisms of biological drug products, difference in variability between biosim-
ilar and innovator biological products in PK, PD, and clinical responses 
will be much larger than the difference observed between the conventional 
generic and the innovator chemical drug product. Therefore, biosimilarity in 
average alone may not be sufficient to establish biosimilarity. On the other 
hand, because of masking effect, the aggregate metrics for population and 
IBE fail to address the closeness of the distributions of the responses between 
the biosimilar and the innovator biological products (Liu, 1998; Carrasco and 
Jover, 2003). Disaggregate metrics can address the masking effect suffered by 
the aggregate metrics and find the sources of in-equivalence. However, deter-
mination of individual equivalence margins with different interpretations 
is not an easy task. In addition, because of the involved multiparameters, 
any procedure will tend to be conservative if it is based on a disaggregate 
metric for the evaluation of equivalence between follow-on and innovator 
biological products, especially in small samples. Furthermore, all current 
methods derived from the probability-based, moment-based, aggregate, or 
disaggregate criteria are based on the normality assumption, which is either 
extremely difficult to verify or simply not true. To resolve the previously 



383Current Issues in Biosimilar Studies

mentioned dilemmas regarding the evaluation of equivalence (similarity), 
Chow and Liu (2010) proposed the following concept of stochastic equiva-
lence or stochastic non-inferiority:

Let F(x) and G(y) be the cumulative distribution functions of the responses 
for biosimilar and innovator biological products, respectively. Assuming 
that a large response value indicates better efficacy, the follow-on and inno-
vator biological products are said to be stochastically equivalent (two-sided) 
if the absolute difference between F(x) and G(x) is within some prespecific 
margins for all x. In other words, metric θ = sup|F(x) − G(x)|, and the hypoth-
esis for equivalence becomes
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Similarly, the biosimilar product is said to be stochastically non-inferior to 
the innovator counterpart if the difference between F(x) and G(x) is larger 
than –η. The corresponding hypothesis is given as
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However, the hypotheses in Equations 17.1 and 17.2 can be used only for the 
evaluation of equivalence with respect to one study endpoint such as AUC or 
some primary efficacy endpoint. They cannot be utilized to assess whether 
the equivalence in a product characteristic such as AUC can be extrapo-
lated to equivalence in a primary efficacy endpoint. Both well-defined prod-
uct characteristics and primary efficacy endpoint are measured for each 
patient. Therefore, group means of a well-defined product characteristic 
can be computed for each dose level for the biosimilar and the innovator’s 
product, respectively. Using the group means of the well-defined character-
istic as the independent variable, a simple linear regression equation can be 
fit to the primary efficacy endpoint (dependent variable) for the biosimilar 
and innovator’s biological products, respectively. It follows that the concept 
of the relative potency in the parallel-line bioassay can then be employed to 
investigate the ability to extrapolate the equivalence in product characteristic 
to the equivalence in efficacy (Finney, 1979). In other words, if the relative 
potency between the biosimilar and the innovator’s biological products is 
within some predefined margins, then it can be concluded that equivalence 
in the product characteristic can be extrapolated to equivalence in efficacy. 
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Figure 17.1 provides a graphical depiction of the application of the parallel-
line assay to the evaluation of the extrapolation ability of equivalence in prod-
uct characteristic to equivalence in efficacy. Let ρ be the relative potency of the 
biosimilar product to the innovator’s biological product. The hypothesis of 
extrapolation ability is as follows:

	 H0 : ρ ≤ ρL  or  ρ ≤ ρU  versus  Ha : ρL < ρ < ρU,	 (17.3)

where 0 < ρL < 1 < ρU.
Even though the methods based on Kolmogorov–Smirnov type of 

statistics have been extensively investigated (Serfling, 1980), relatively 
little literature exists on the statistical tests for stochastic equivalence 
or non-inferiority. One method is to employ the naïve asymptotic con-
fidence band for θ = sup|F(x) − G(x)| or θ = sup[F(x) − G(x)] as the test 
statistics for Hypotheses 17.1 and 17.2. If the (1 – 2α) × 100% confidence 
band is totally contained within the band formed by the equivalence 
margins (−η, η), then equivalence between the biosimilar and the origi-
nator’s biological products can be concluded at the α significance level. 
Similarly, if the (1 – α) × 100% lower confidence band is above the lower 
band formed by the lower margin –η, then non-inferiority of the biosimi-
lar product to the innovator’s biological product can be established at 
the α significance level. Derivation of the test statistics for Hypotheses 
17.1 and 17.2 at the boundary margins of the null hypothesis and the cor-
responding distribution and confidence interval require further research. 
However, permutation and bootstrap techniques can also be used to find 
the distribution of the test statistics and the corresponding confidence 
intervals empirically.
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FIGURE 17.1
Parallel-line assays to evaluation of extrapolation ability.
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17.3.3  Criteria for Interchangeability

As pointed out by Chow (2013), there is clear distinction between biosimilar-
ity and interchangeability of biosimilar products according to the definitions 
given in the BPCI Act. The assessment of biosimilarity focuses on the com-
parison between T (test product) and R (reference product). However, inter-
changeability is referred to the comparison (relative risk) between a number 
of Ts and R. In the recent FDA draft guidances on biosimilar products, drug 
interchangeability and criteria for assessing interchangeability were not 
mentioned. Based on past experience with small-molecule drug products, 
it is recognized that drug interchangeability (in terms of the concepts of 
drug prescribability and drug switchability) is related to the variability due 
to subject-by-drug interaction. However, it is not clear whether criterion for 
interchangeability should be based on the variability due to subject-by-drug 
interaction or the variability due to subject-by-drug interaction adjusted for 
intra-subject variability of the reference drug. Unlike small-molecule drug 
products, the BPCI Act gives a clear definition of drug interchangeability in 
terms of the concepts of switching and alternating (see Chapter 11).

Current issues regarding drug interchangeability of biosimilar products 
include (1) the definition and interpretation of the interchangeability in 
terms of switching and alternating as described in the BPCI Act, (2) crite-
ria for interchangeability, and (3) appropriate study designs and develop-
ment of valid statistical methods for data analysis. As the BPCI Act states, 
the interchangeability is expected to produce the same clinical result in any 
given patient, which can be interpreted as that the same clinical result can be 
expected in every single patient. In reality, conceivably, lawsuits may be filed 
if adverse effects are recorded in a patient after switching from one product 
to another. Chow (2013) interpreted the interchangeability as producing the 
same clinical result in any given patient with certain assurance. If this inter-
pretation is acceptable to the FDA, then criteria for interchangeability based 
on either variability or CV can be developed.

17.3.4  Criteria for Comparability

The concept of testing for comparability involves (1) the validation of a man-
ufacturing process and (2) the testing for comparability between manufac-
turing processes.

The primary objective of process validation is to provide documented evi-
dence that a manufacturing process does reliably what it purports to do. To 
accomplish this prospectively, a validation protocol is usually developed. A 
validation protocol should include: (1) critical stages of the manufacturing 
process, (2) equipment to be used at each critical stage, (3) possible prob-
lems, (4) tests to be performed, (5) sampling plans, (6) testing plans, (7) accep-
tance criteria, (8) pertinent information, (9) test or specification to be used 
as reference, and (10) validation summary. When a problem is observed in 
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the manufacturing process, it is crucial to locate at which stage the problem 
occurred so that it can be corrected and the manufacturing process can do 
what it purports to do.

For testing comparability between manufacturing processes of a biosimilar 
product and a reference product, critical quality attributes at critical stages 
of the manufacturing processes need to be identified. Since small changes or 
variations can occur at any of the critical stages of the manufacturing pro-
cesses, these could result in drastic changes in clinical outcome. Therefore, it 
is suggested that sources of variations and the possible causes of variations 
be identified, eliminated, and/or control for quality assurance/control dur-
ing the process of manufacturing. In practice, sources of variations can be 
classified into the categories of (1) expected and controllable, (2) expected 
but not controllable, (3) unexpected but controllable, and (4) unexpected and 
uncontrollable. For those critical quality attributes that are expected and/or 
controllable, statistical processes with tighter criteria for quality assurance/
control are necessarily developed. Once the process is out of control (i.e., out 
of in-house QA/QC specifications), appropriate actions must be taken to 
reduce or control the variability in order to improve the quality. The impact of 
the variability on clinical outcomes should be examined whenever possible.

17.3.5  Determination of Non-Inferiority Margin

As indicated in Chapter 7, testing for non-inferiority consists of testing for 
equivalence and testing for superiority (both statistical superiority and clini-
cal superiority). As a result, non-inferiority is considered a one-sided equiva-
lence. Thus, the non-inferiority margin is the same as the equivalence limit. 
In clinical research, the determination of equivalence limit or non-inferiority 
margin is critical and yet extremely controversial.

After a series of internal discussions, a draft guidance on non-inferiority 
clinical trials is currently being distributed by the FDA for comments (FDA, 
2010). Basically, this draft guidance consists of four parts, which are (1) a gen-
eral discussion of regulatory, study design, scientific, and statistical issues 
associated with the use of non-inferiority studies when these are used to 
establish the effectiveness of a new drug, (2) details of some of the issues 
such as the quantitative analytical and statistical approaches used to deter-
mine the non-inferiority margin for use in non-inferiority studies, (3) Q&A 
of some commonly asked questions, and (4) five examples of successful and 
unsuccessful efforts for determining non-inferiority margins and the con-
duct of non-inferiority studies.

In principle, the 2010 FDA draft guidance is very similar to the ICH E10 
guideline. However, the 2010 FDA draft guidance provides more details 
regarding study design and statistical issues. For example, the 2010 FDA 
draft guidance defines two non-inferiority margins, namely M1 and M2, 
where M1 is defined as the entire effect of the active control assumed to 
be present in the non-inferiority study, and M2 is referred to as the largest 
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clinically acceptable difference (degree of inferiority) of the test drug com-
pared to the active control. As indicated in the 2010 FDA draft guidance, 
M1 is based on (1) the treatment effect estimated from the historical experi-
ence with the active control drug, (2) the assessment of the likelihood that the 
current effect of the active control is similar to the past effect (the constancy 
assumption), and (3) the assessment of the quality of the non-inferiority trial, 
particularly looking for defects that could reduce a difference between the 
active control and the new drug. On the other hand, M2 is a clinical judg-
ment which is never to be larger than M1, even if for active control drugs 
with small effects, a clinical judgment might argue that a larger difference is 
not clinically important. Ruling out a difference between the active control 
and the test drug that is larger than M1 is a critical finding that supports the 
conclusion of effectiveness.

As indicated in the draft guidance, there are essentially two different 
approaches to analysis of the non-inferiority study: one is the fixed mar-
gin method (or the two confidence interval method) and the other one is 
the synthesis method. In the fixed margin method, the margin M1 is based 
on estimates of the effect of the active comparator in previously conducted 
studies, making any needed adjustment for changes in trial circumstances. 
The non-inferiority margin is then prespecified and it is usually chosen as 
a margin smaller than M1 (i.e., M2). The synthesis method combines (or syn-
thesizes) the estimate of treatment effect relative to the control from the non-
inferiority trial with the estimate of the control effect from a meta-analysis of 
historical trials. This method treats both sources of data as if they came from 
the same randomized trial to project what the placebo effect would have 
been had the placebo been present in the non-inferiority trial.

17.3.6  Bridging Bioequivalence Studies

Generic drugs are very crucial for the health and welfare of the people of 
developing countries. For example, in some countries, generic drugs in fact 
account for more than 70% of total prescriptions. To ensure efficacy, safety, 
and quality of the generic drugs, approval of generic drugs is a very impor-
tant task for the regulatory authorities in developing countries. However, the 
generic drugs in these countries are either from foreign countries or from 
local generic sponsors of their own countries. Consequently, the approval of 
generic copies is a very complicated and challenging issue that the regula-
tory authorities of the developing countries have to face.

In this subsection we describe one of the situations often encountered for 
the approval of generic drugs in developing countries. In what follows, a new 
region is denoted as a generic name for the developing countries. Suppose 
that for some reasons such as the price of the innovative drug or the market 
size of the new region, the innovative drug product of the original region 
was not marketed in the new region. After the patent of the innovative drug 
product expired in the original region, a generic copy manufactured in 
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the original region was approved by the regulatory authority of the orig-
inal region. However, because of its affordability, this generic copy of the 
original  region was introduced and approved by the regulatory authority 
for marketing in the new region. Another generic copy of the innovative 
drug manufactured by a local sponsor is seeking for marketing approval 
in the new region. However, equivalence between two generic copies does 
not imply bioequivalence between the local generic copy and the innovative 
drug (Chow and Liu, 1997; Fleming, 2000). To ensure the equivalent efficacy 
and safety of the local generic copy, therefore, the regulatory authority in the 
new region may still require the evidence of average bioequivalence between 
the local generic copy and the innovative drug despite the fact that the latter 
is not available in the new region.

Because the generic copy from the original region has been approved 
by both the original and the new regions, following the bridging concept 
suggested in the ICH E5 Guideline on Ethnic Factors in the Acceptability of 
Foreign Clinical Data (ICH, 1998), one could utilize the data provided by the 
bioequivalence study conducted in the original region to evaluate aver-
age bioequivalence between the local generic copy of the new region and 
the innovative drug of the original region. This problem is referred to as 
the bridging bioequivalence problem and the innovative drug of the original 
region is called the original reference formulation. Suppose that a local 
bioequivalence study is conducted to compare the local generic copy to 
the generic copy of the original region. In this local bioequivalence study, 
the generic copy of the original region serves as the reference formula-
tion. On the other hand, the generic copy of the original region is the test 
formulation in the bioequivalence study conducted in the original region. 
As a result, average bioequivalence of the generic copy manufactured by 
the local sponsor in the new region to the original reference formulation in 
the original region can be evaluated through the generic copy of the origi-
nal region. Therefore, the local bioequivalence study in the new region 
is referred to as the bridging bioequivalence study (BBES). The generic 
copy made by the local sponsor in the new region is designated as the 
test formulation, and the generic copy of the original region is referred 
to as the bridging reference formulation. We also call the bioequivalence 
study conducted in the original region for comparing the bridging refer-
ence formulation with the original reference formulations as the original 
bioequivalence study (OBES). However, to avoid bias, it is very crucial that 
both bioequivalence studies have the same inclusion/exclusion criteria, the 
same design, the same sampling time points, the same amount of blood 
drawn at each time point, and most important of all, the same analytical 
procedures for the determination of the plasma concentrations of active 
ingredients.

For the assessment of biosimilarity in foreign countries, it is suggested that 
the concept of bridging bioequivalence studies be considered.
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17.3.7  Assessing Biosimilarity Using Biomarker

For some drug products, the FDA indicates that in vitro dissolution testing may 
serve as a surrogate for an in vivo bioequivalence testing by comparing the dis-
solution profiles between drug products. Two drug products are considered, 
in some cases, to have a similar drug absorption profile if their dissolution pro-
files are similar. These drug products include (1) pre-1962 classified “AA” drug 
products, (2) lower-strength products, (3) scale-up and post-approval change, 
and (4) products demonstrating in vitro and in vivo correlation (Chow and 
Shao, 2002). Along this line, Chow et al. (2004) proposed assessing bioequiva-
lence using genomic data. In other words, under the assumption that two drug 
products will have a similar drug absorption profile if their genomic profiles 
are similar provided that there is a well-established relationship between the 
PK parameters and the genomic data. This concept is useful in establishing 
bioequivalence especially between a new (or modified) formulation and a ref-
erence formulation of an innovative drug product going off patent protection 
if it is accepted by the regulatory agencies.

Let x be a genomic prediction of a PK response under consideration. 
Typically, x is a function of genomic data such as genetic markers, DNA 
sequence, mRNA transcription profiling, linkage and physical maps, gene 
location, and quantitative trait loci (QTL) mapping. Chow et al. (2004) 
attempted to use the genomic prediction x as a surrogate for the PK response 
in assessing bioequivalence. More specifically, if we can claim bioequivalence 
between two drug products using x in place of the PK response but the same 
statistical test designed for PK data, can we claim bioequivalence between 
the two drug products without a bioavailability/bioequivalence study? 
The answer is affirmative if x is a perfect prediction of the PK response. In 
practice, however, genomic prediction is usually not perfect, because of the 
existence of variability, model misspecification, and/or missing important 
genomic variables. The idea of Chow et al. (2004) is to evaluate the impact of 
the differences between the distribution of the genomic prediction and PK 
response on the assessment of bioequivalence. For ABE, a tolerance limit for 
this difference is derived so that if the difference is within the tolerance lim-
its, then ABE can be assessed by using the genomic prediction. For PBE and 
IBE, Chow et al. (2004) considered a sensitivity analysis of prediction bias 
and variation difference within some predetermined limits.

Similarly, under certain assumptions, we may use biomarker data to assess 
biosimilarity.

17.3.8  Stepwise Approach and Totality-of-the-Evidence

The concept of the stepwise approach is easy to comprehend. However, the 
term “stepwise approach” can be easily mistaken for “stepwise regression” in 
statistics. Thus, it is suggested that the term “stepwise approach” be changed 
to “step-by-step approach” in order to clarify the confusion.
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One of the major concerns of the step-by-step approach proposed for the 
demonstration of evidence of biosimilarity is the control of the overall type 
I error rate for achieving the needed totality-of-the-evidence. In practice, the 
evidence obtained at different steps could carry different weights of clinical 
importance, which may or may not achieve statistical significance. In addition, 
the order of the step-by-step testing procedures may have an impact on the final 
test results. Also, the possible multiplicity of the variables could affect the type 
I error rate; this calls for clarification. At each step of the approach, the “residual 
uncertainty” is to be evaluated, which is still needed to demonstrate biosimi-
larity satisfactorily. At the end of the series of steps, the draft guidance presents 
clinical studies and thereby appears to leave the impression that the clinical 
program and its data are needed only if there is still “residual uncertainty” 
after evaluating the preceding steps (including structural analysis, functional 
assays, and studies in animals). On the other hand, the BPCI Act requires, not 
in a sequential manner, “a clinical study or studies (including the assessment of 
immunogenicity and PK/PD) that are sufficient to demonstrate safety, purity 
and potency.” It would be important to clarify the differing interpretations.

The concept of totality-of-the-evidence is, in effect, global biosimilarity 
across different domains. FDA seems to suggest that similarity should be 
demonstrated across different domains. The degree of biosimilarity in differ-
ent domains, however, may have different degrees of impact on the clinical 
outcomes (i.e., safety and effectiveness). Therefore, it is suggested that differ-
ent criteria for biosimilarity in different domains should be considered. Thus, 
the criteria and degrees of biosimilarity in different domains will have an 
impact on the totality-of-the-evidence for global similarity. Chow et al. (2011) 
proposed a totality biosimilarity index based on reproducibility probability, 
which may be helpful in achieving the totality-of-the-evidence for the assess-
ment of biosimilarity. However, several questions regarding the selection of 
biosimilarity criteria at different functional areas or domains and the assign-
ment of different weights at different domain remain unsolved.

17.3.9  Contamination in a Manufacturing Process

In practice, virus contamination of the cell culture during the manufacturing 
process is possible. Virus contamination could raise potential safety concern. 
It usually begins with the advent of recombinant continuous cell lines, which 
replicate indefinitely and can be cultured in large bioreactors. Continuous 
cell lines are derived from tumors. Some continuous cell lines produce large 
quantities of endogenous retrovirus-like particles. Continuous cell lines sup-
port the replication and amplification of some viruses that can potentially 
contaminate cell culture processes. A typical example of virus contamina-
tion in the manufacturing process is the recent incidence of Genzyme Corp., 
which is briefly described in the following.

As reported by the Boston Globe, June 17, 2009, Genzyme, the state’s 
largest biotechnology company, has halted production of two drugs 
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(Cerezyme and Fabrazyme) for rare genetic disorders after a virus was 
discovered in the production equipment at its Allston plant. Cerezyme 
is used to treat Gaucher disease, an enzyme deficiency in which fatty 
substances accumulate in the spleen, liver, lungs, bone marrow, and—
sometimes—the brain. It can cause bruising, enlarged organs, and lung 
and kidney ailments. Fabrazyme treats Fabry disease, in which a missing 
or faulty enzyme prevents the body from breaking down oils, waxes, and 
fatty acids that build up in the eyes and kidneys, as well as the nervous 
and cardiovascular systems.

The drugs are used by 8000 people worldwide and cost about $200,000 per 
patient annually. The diseases treated by these enzyme replacement drugs 
are rare. About 5500 people worldwide, for example, depend on Cerezyme, 
the best-selling Genzyme drug, while about 2500 use Fabrazyme. Fabrazyme 
treats Fabry disease, which prevents the body from breaking down oils and 
fats that build up in the eyes and kidneys. As a result of the plant’s shut-
down, Cerezyme patients could go without one or two treatments, while 
those taking Fabrazyme may need to skip up to four doses. Patients usually 
receive the drugs intravenously every two weeks. The missed doses will not 
cause significant health problems because most patients’ bodies have been 
cleansed of the fatty substances, and it takes more than a few skipped treat-
ments for them to return.

Since an FDA inspection of the Allston plant found “significant deviations 
from current good manufacturing practice in the manufacture of licensed 
therapeutic drug products, bulk drug substances, and drug components,” 
Genzyme has spent a lot of effort scrambling to regain its footing after detect-
ing a virus at its Allston plant. Federal regulators warned doctors to look 
for foreign particles in five Genzyme drugs used to treat rare genetic disor-
ders, including two—Cerezyme and Fabrazyme—that have been rationed 
because of the viral contamination detected in the Allston Landing plant last 
summer. The five drugs represent roughly half of Genzyme’s $4.6 billion in 
annual sales. In addition, Genzyme receives an FDA consent decree includ-
ing an up-front disgorgement fee of $175 million.

As the result of Genzyme’s disaster, WHO cell substrate guidance docu-
ment is being revised. More biotechnology companies are implementing viral 
process barriers (see Figure 17.2) and recognize that emergency preparedness 
is important. In addition, new innovative virus detection and identification 
technologies are being developed and implemented. Biotechnology compa-
nies seem to be more open about their virus contamination experience than 
in the past. However, sharing the database of contamination experience still 
maintains corporate confidentiality.

17.3.10  Meta-Analysis for Biosimilarity Review

As indicated in Chapter 1, no generic copies of the brand-name drug can be 
made unless the FDA determines that they work as well as the brand-name drug 
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based on bioequivalence testing. When a generic drug is claimed bioequiva-
lent to the brand-name drug, it is assumed that they will reach the equivalent 
therapeutic effect, or that they are therapeutically equivalent. This statement 
is true only under the Fundamental Bioequivalence Assumption. A patient may be 
switched, in many cases, from the brand-name drug to its generic copy, pro-
vided that the generic copy has been shown to be bioequivalent to the brand-
name drug. An interesting question for physicians and patients is whether the 
brand-name drug and its generic copies can be used interchangeably, espe-
cially when different generic copies of the same innovator drug product are 
available and competition among generic copies is fierce. The same question 
arises, but in different context, and in view of the statements of the BPCI Act, 
about the interchangeability of biosimilars and brand-name biologics.

As more generic drugs become available, the quality, safety, and efficacy 
of generic drugs have become a public concern because it is very likely that 
a patient may switch from one generic drug to another. This situation is par-
ticularly true in developing countries where only cheaper generic copies are 
available. There is a tremendous debate on the quality, safety, and efficacy of 
generic drugs because they are not identical in terms of inactive ingredients 
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that are binded and bulked, coated and colored, and may vary from one ver-
sion to another. The current FDA guidance and many regulatory agencies 
around the world require only that evidence of equivalence in average bio-
availabilities between the brand-name drug and its generic copies be pro-
vided. Bioequivalence between generic copies of the brand-name drug is not 
required. Therefore, whether the brand-name drug and its generic copies can 
be used interchangeably has become a safety concern. To address this issue, 
Chow and Liu (1997) proposed the performance of a meta-analysis based on 
average bioequivalence for bioequivalence review. The idea of a meta-analysis 
is to provide an overview of bioequivalence among generic drugs based on data 
from independent bioequivalence trials (or submissions). The purpose is not 
only to assess bioequivalence among generic drugs of the same brand-name 
drug but also to provide a tool to monitor the performance of the approved 
generic copies of the same brand-name drug. In Chow and Liu’s approach, a 
rather restricted, yet strong, assumption of inter-subject and intra-subject vari-
ances is made, which limits its practical use. To overcome this problem, Chow 
and Shao (1999) proposed an alternative method for meta-analysis that relaxes 
the assumption. The proposed alternative meta-analysis increases statistical 
power when the inter-subject variability is not too large.

Note that the concept of meta-analysis for bioequivalence review for 
small-molecule drug products can be applied to drug interchangeability of 
biosimilar products since the concepts of switching and alternating for inter-
changeability involve the reference product (R) and a number of biosimilar 
products (i.e., a number of Ts which have been demonstrated to be highly 
similar to the reference product). Meta-analysis based on data from approved 
biosimilar products provides the opportunity for the regulatory agency to 
monitor whether there is a potential risk of switching and/or alternating 
between the approved biosimilar products and the reference product.

17.3.11  Profile Analysis

The bootstrap procedure described in Section 4.2.3 has received much atten-
tion and criticisms since it was introduced by the FDA. Major criticisms are 
described later.

First, the statistical properties of this procedure are unknown. It includes 
two aspects. One is that the statistical model, which should be used to 
describe the profile data, is not clearly defined in the FDA draft guidances. 
In addition, even under an appropriate statistical model, the statistical prop-
erties of the bootstrap procedure are still unknown. More specifically, it is 
not clear whether the bootstrap sample mean is a consistent estimator for 
E(rd). As a result, the 95% percentile of the bootstrap samples may not be an 
appropriate 95% upper bound for E(rd). These questions are not addressed in 
the FDA draft guidances.

Second, no criteria are given regarding the passage or failure of the bio-
equivalence/biosimilarity study. This is the issue that confuses most 
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researchers/scientists in practice. After the conduct of a valid trial and an 
appropriate statistical analysis following the FDA draft guidance, the spon-
sor still cannot tell if its product has passed or failed the bioequivalence/
biosimilarity test. This is a direct consequence of our first point (i.e., the sta-
tistical properties of the recommended bootstrap procedure are unknown).

Third, the simulation study using different random number generation 
schemes may produce contradictory results. It is possible for a good product 
to fail the bioequivalence/biosimilarity test simply because of bad luck. It is 
also possible for a bad product to pass the bioequivalence/biosimilarity test 
with an “appropriate” choice of random number generation scheme. As a 
result, researchers/scientists tend to rely more on the descriptive statistics 
of the two products in order to assess their bioequivalence/biosimilarity 
instead of the bootstrap procedure. The proposed bootstrap procedure rec-
ommended by the FDA is not as reliable as it should be.

As a result, further research of profile analysis becomes a problem of inter-
est in practice. More specifically, the questions of interest include (1) What 
statistical model should be used to describe the profile data? (2) Is E(rd) 
defined by the FDA a good parameter for characterizing the bioequivalence 
between test and reference products? (Can we define the test-to-reference 
distance and reference-to-reference variability differently?) and (3) What 
bioequivalence/biosimilarity limits should we use to evaluate the in vitro 
bioequivalence between two products based on appropriate model, param-
eter, and bioequivalence criterion?

17.4  Concluding Remarks

For the assessment of bioequivalence of small-molecule drug products, we 
claim that a test drug product is bioequivalent to a reference (innovative) 
drug product if the 90% confidence interval for the ratio of means (in%) of 
a primary PK parameter is completely within the bioequivalence limits of 
(80%, 125%). This one size-fits-all criterion focuses only on average bioavail-
ability and ignores the heterogeneity of variability. Thus, it is not scientifi-
cally/statistically justifiable for the assessment of biosimilarity. In practice, 
it is then suggested that appropriate criteria, which can take the heteroge-
neity of variability into consideration be developed since biosimilars are 
known to be variable and sensitive to small variations in environmental 
conditions.

At the FDA public hearing, commonly asked questions were: “How sim-
ilar is considered similar?” and “How the degree of similarity should be 
measured and translated to clinical outcomes (e.g., safety and efficacy)?” 
These questions are closely related to drug interchangeability of biosimi-
lars or follow-on biologics which had been shown to be biosimilar to the 
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innovative product. For the assessment of bioequivalence for chemical 
drug products, a crossover design is often considered, except for drug 
products with relatively long half-lives. Since most biosimilar products 
have relatively long half-lives, it is suggested that a parallel-group design 
should be considered. However, a parallel-group design does not provide 
independent estimates of variance components such as the inter- and 
intra-subject variabilities and the variability due to subject-by-product 
interaction. Thus, it is a major challenge for assessing biosimilars under 
a parallel-group design. Although EMA of the EU has published several 
product-specific guidances based on the concept papers, it has been criti-
cized that there are no objective standards for the assessment of biosimilars 
because it depends upon the nature of the products. Product-specific stan-
dards seem to suggest that a flexible biosimilarity criterion should be con-
sidered and the flexible criterion should be adjusted for variability and/or 
the therapeutic index of the innovative (or reference) product. As described 
earlier, there are many uncertainties for the assessment of biosimilarity 
and interchangeability of biosimilars. As a result, it is a major challenge 
to both clinical scientists and biostatisticians to develop valid and robust 
clinical/statistical methodologies for the assessment of biosimilarity and 
interchangeability under the uncertainties. In addition, how to address 
the issues of quality and comparability in the manufacturing process is 
another challenge to both the pharmaceutical scientists and the biostat-
isticians. The proposed general approach using the biosimilarity index 
(derived based on the concept of reproducibility probability) may be use-
ful. However, further research on the statistical properties of the proposed 
biosimilarity index is required.

Although FDA has circulated three draft guidances to assist the spon-
sors for demonstrating biosimilarity of biosimilar products, many scien-
tific factors and statistical issues remain unanswered. In addition, many 
other issues such as manufacturing and marketing need to be addressed 
(Simoens et al. 2011).
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