
Lecture Notes in Artificial Intelligence 4772
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Henri Prade V.S. Subrahmanian (Eds.)

Scalable Uncertainty
Management

First International Conference, SUM 2007
Washington, DC, USA, October 10-12, 2007
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Henri Prade
Université Paul Sabatier
IRIT
118 route de Narbonne, 31062 Toulouse Cedex, France
E-mail: prade@irit.fr

V.S. Subrahmanian
University of Maryland
Department of Computer Science and UMIACS
AV Williams Building, College Park MD 20742, USA
E-mail: vs@cs.umd.edu

Library of Congress Control Number: 2007936370

CR Subject Classification (1998): I.2, F.4.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-75407-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75407-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12168651 06/3180 5 4 3 2 1 0

Preface

Although there has been extensive work on the management of uncertainty, rela-
tively little work has been done on efficient and scalable methods to manage the
uncertainty that arises in real-world applications. While the artificial intelligence
community has studied mathematical models of uncertainty and developed many
useful applications, the database community has focused on building uncertainty
tools directly into underlying database infrastructure.

The goal of the Scalable Uncertainty Management (SUM) conference is to
take the first steps toward bringing together artificial intelligence researchers,
database researchers, and practitioners to see how the best theoretical techniques
can be made to scale up to the needs of large-scale applications.

SUM 2007 used a rigorous refereeing procedure to review all papers. Papers
by the PC chairs were reviewed by a subcommittee unknown to the PC chairs.
After this review process, we accepted a total of 20 papers which are presented
in this volume.

October 2007 Henri Prade
V.S. Subrahmanian

Organization

SUM 2007 was organized by the University of Maryland Institute for Advanced
Computer Studies (UMIACS), University of Marlyand College Park.

Executive Committee

Conference General Chair Didier Dubois (Paul Sabatier University,
France)

Program Chairs Henri Prade (Paul Sabatier University, France)
V.S. Subrahmanian (University of Maryland,

USA)
Publicity Chair Andrea Pugliese (University of Calabria, Italy)

Program Committee

Chitta Baral (Arizona State University, USA)
Leo Bertossi (Carleton University, Canada)
Bir Bhanu (University of California-Riverside, USA)
Val Breazu-Tannen (University of Pennsylvania, USA)
Rama Chellappa (University of Maryland, USA)
Laurence Cholvy (ONERA, France)
Jan Chomicki (State University of NY-Buffalo, USA)
Amol Deshpande (University of Maryland, USA)
Guy De Tre (Ghent University, Belgium)
Luc de Raedt (K.U. Leuven, Belgium)
Michael Dekhtyar (Tver State University, Russia)
Debabrata Dey (University of Washington - Seattle, USA)
Juergen Dix (Tech. University Clausthal, Germany)
Thomas Eiter (Tech. University of Vienna, Austria)
Ronald Fagin (IBM Almaden, USA)
Andrew Frank (Tech. University of Vienna, Austria)
Lise Getoor (University of Maryland, USA)
John Grant (Towson University, USA)
Eyke Huellermeier (University of Magdeburg, Germany)
Edward Hung (Hong Kong Polytechnic University)
Anthony Hunter (University College London, UK)
Michael Kifer (State University of New York - Stonybrook, USA)
Sarit Kraus (Bar-Ilan University Israel)
Mounia Lalmas (Queen Mary University London, UK)
Weiru Liu (Queen’s University Belfast, UK)
Laks V.S. Lakshmanan (University of British Columbia, Canada)

VIII Organization

Thomas Lukasiewicz (University of Rome “La Sapienza”, Italy)
Serafin Moral (University of Granada, Spain)
Nicola Leone (University of Calabria, Italy)
Raymond Ng (University of British Columbia, Canada)
Mads Nygaard (Norwegian University of Science and Tech., Norway)
Simon Parsons (City University of New York)
Gabriella Pasi (University of Milan, Italy)
Antonio Picariello (University of Naples, Italy)
Mike Pitarelli (State University of NY - Utica, USA)
Andrea Pugliese (University of Calabria, Italy)
Nick Roussopoulos (University of Maryland, USA)
Emad Saad (Abu Dhabi University, UAE)
Daniel Sanchez (University of Granada, Spain)
Maria-Luisa Sapino (University of Turin, Italy)
Yufei Tao (Chinese University of Hong Kong)
Nic Wilson (Cork Constraint Computation Center, Ireland)

Referees

Amol Deshpande
Anthony Hunter
Antonio Picariello
Axel Polleres
Chitta Baral
Daniel Sanchez
Debabrata Dey
Didier Dubois
Edward Hung
Emad Saad
Eyke Huellermeier
Francesco Calimeri
Francesco Ricca
Gabriella Pasi

Gerardo Simari
Gerhard Navratil
Guy De Tr
Henri Prade
Hui Wan
Jan Chomicki
John Grant
Juergen Dix
Laks V.S. Lakshmanan
Leopoldo Bertossi
Lise Getoor
Luigi Palopoli
Mads Nygaard
Mantas Simkus

Maria Luisa Sapino
Massimo Ruffolo
Michael Dekhtyar
Michael Fink
Mounia Lalmas
Rama Chellappa
Ronald Fagin
Serafin Moral
Thomas Lukasiewicz
Val Tannen
V.S. Subrahmanian
Weiru Liu

Sponsoring Institutions

This conference was supported in part by the University of Maryland Institute
for Advanced Computer Studies

Table of Contents

Probabilistic Planning in Hybrid Probabilistic Logic Programs 1
Emad Saad

Top-k Retrieval in Description Logic Programs Under Vagueness for
the Semantic Web . 16

Thomas Lukasiewicz and Umberto Straccia

A Fuzzy Set-Based Approach to Temporal Databases 31
J. Campaña, M.C. Garrido, N. Maŕın, and O. Pons

Finding Most Probable Worlds of Probabilistic Logic Programs 45
Samir Khuller, Vanina Martinez, Dana Nau, Gerardo Simari,
Amy Sliva, and V.S. Subrahmanian

Managing Uncertainty in Schema Matcher Ensembles 60
Anan Marie and Avigdor Gal

The Consistency Extractor System: Querying Inconsistent Databases
Using Answer Set Programs . 74

Monica Caniupan and Leopoldo Bertossi

Incomplete Statistical Information Fusion and Its Application to
Clinical Trials Data . 89

Jianbing Ma, Weiru Liu, and Anthony Hunter

Quality Measures in Uncertain Data Management . 104
Ander de Keijzer and Maurice van Keulen

Learning Different User Profile Annotated Rules for Fuzzy Preference
Top-k Querying . 116

A. Eckhardt, T. Horváth, and P. Vojtáš

Composable Markov Building Blocks . 131
Sander Evers, Maarten M. Fokkinga, and Peter M.G. Apers

Tractable Probabilistic Description Logic Programs 143
Thomas Lukasiewicz

Valued Hesitation in Intervals Comparison . 157
Meltem Öztürk and Alexis Tsoukiàs

Aggregates in Generalized Temporally Indeterminate Databases 171
Octavian Udrea, Zoran Majkić, and V.S. Subrahmanian

X Table of Contents

An Indexing Technique for Fuzzy Numerical Data . 187
Carlos D. Barranco, Jesús R. Campaña, and Juan M. Medina

Combining Uncertain Outputs from Multiple Ontology Matchers 201
Ying Wang, Weiru Liu, and David Bell

Preferred Database Repairs Under Aggregate Constraints 215
Sergio Flesca, Filippo Furfaro, and Francesco Parisi

Consistent Data Integration in P2P Deductive Databases 230
L. Caroprese and E. Zumpano

Learning from Imprecise Granular Data Using Trapezoidal Fuzzy Set
Representations . 244

Ronald R. Yager

Refining Aggregation Functions for Improving Document Ranking in
Information Retrieval . 255

Mohand Boughanem, Yannick Loiseau, and Henri Prade

A Qualitative Bipolar Argumentative View of Trust 268
Henri Prade

Author Index . 277

Probabilistic Planning in Hybrid Probabilistic

Logic Programs

Emad Saad

College of Computer Science and Information Technology
Abu Dhabi University

Abu Dhabi, UAE
emad.saad@adu.ac.ae

Abstract. In this paper, we present a new approach to probabilistic
planning based on logic programming, by relating probabilistic planning
to hybrid probabilistic logic programs with probabilistic answer set se-
mantics [32]. We show that any probabilistic planning problem, P , can be
translated into a hybrid probabilistic logic program whose probabilistic
answer sets correspond to trajectories in P , with associated probabilities.
We formally prove the correctness of our approach. Moreover, we show
that the complexity of finding a plan for a probabilistic planning problem
in our approach is NP-complete. In addition, we show that any proba-
bilistic planning problem, P , can be encoded as a classical logic program
with answer set semantics, whose answer sets corresponds to valid tra-
jectories in P . We also show that probabilistic planning problems can be
encoded as proportional satisfiability problems.

1 Introduction

An important limitation to classical planning, in general, and logic-based plan-
ning, in particular, is that it underlies strong and unrealistic assumptions which
limits its applicability to many real-world domains [23]. Therefore, based on the
success of the classical planning as propositional satisfiability (SAT planning)
[15], a probabilistic planning approach has been presented in [22]. The proba-
bilistic extension to SAT planning in [22] is developed by converting a proba-
bilistic planning problem into a stochastic satisfiability problem and solving the
stochastic satisfiability problem instead to generate plans. However, the prob-
lems with SAT planning in general are that [23] translating a planning problem
as propositional satisfiability (SAT) problem causes an explosion in the size of
the problem representation compared to the other planning approaches, which
affects the performance of the planner. Moreover, encoding a planning problem
as a SAT problem affects the planning problem structure which makes it not
obvious to clearly understand the planning process. Consequently, this leads to
a difficulty in using our knowledge and intuition about the planning process
to construct search heuristics. Moreover, solving a probabilistic planning prob-
lem as a stochastic satisfiability problem is NPPP -complete [23]. But, on the
other hand, SAT planning has a number of advantages. These include that [23]

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 E. Saad

SAT problem is a central widely studied problem in computer science, therefore,
many techniques have been developed to solve the problem. The existence of
many efficient solvers that solve the SAT problem.

Another successful logic based approach to classical planning is answer set
planning [35]. In answer set planning, a planning problem, P , is solved by trans-
lating P into a logic program with answer set semantics whose answer sets cor-
responds to trajectories in P . It has been shown in [18] that the answer sets of
a logic program are equivalent to the models of a corresponding SAT problem.
Therefore, efficient SAT solvers are employed to find the answer sets of logic
programs [18], and hence, they can be used to efficiently solve classical planning
problems in answer set planning. An important limitation to answer set planning
is that it considers only certain domains, which limits its applicability to many
real-world domains. As pointed out in [34], the choice of logic programs with
answer set semantics for planning underlies many desirable advantages over the
other approaches, e.g., SAT planning. These include that logic programs with
answer set semantics is non-monotonic and hence appropriate for knowledge rep-
resentation and reasoning tasks. In addition, it is easier in logic programs with
answer set semantics than SAT to represent the properties of actions.

A probabilistic extension to (normal) logic programs with answer set seman-
tics has been presented in [32], by introducing the notion of Normal Hybrid
Probabilistic Programs (NHPP). NHPP allows non-monotonic negation and in-
herits the advantages of (normal) logic programs. Two different semantics have
been provided for NHPP namely; probabilistic answer set (stable probabilistic
model) semantics and well-founded probabilistic model semantics. It was shown
in [32] that the relationship between the probabilistic answer set semantics and
the well-founded probabilistic model semantics preserves the relationship be-
tween the answer set semantics and the well-founded semantics for normal logic
programs [10]. Moreover, the probabilistic answer set semantics and the well-
founded probabilistic model semantics naturally extend the answer set semantics
[11] and the well-founded semantics [10] of normal logic programs.

In this paper we relate probabilistic planning to Normal Hybrid Probabilistic
Logic Programs with probabilistic answer set semantics introducing a novel logic
based probabilistic planning approach that is a probabilistic extension to answer
set planning to account for probabilistic domains.

The contributions of this paper are as follows. We show that any probabilistic
planning problem, P , can be translated into a program in NHPP whose proba-
bilistic answer sets correspond to trajectories in P , with associated probabilities.
We formally prove the correctness of our approach. We show that the complexity
of finding a plan for a probabilistic planning problem in our approach is NP-
complete. In addition, we show that any probabilistic planning problem, P , can
be encoded as a classical normal logic program, Π , with answer set semantics,
where the answer sets of Π correspond to valid trajectories in P . However, plan
evaluation in classical normal logic programs is not as intuitive as in NHPP.
Moreover, we show that probabilistic planning problems can be encoded as SAT
problems. The importance of that is probabilistic planning problems can be now

Probabilistic Planning in Hybrid Probabilistic Logic Programs 3

solved as SAT problems instead of stochastic satisfiability problems. This devel-
opment is the first work that relates probabilistic planning to a logic program-
ming paradigm in general and to a probabilistic logic programming approach in
particular.

2 Syntax and Semantics of NHPP

Now, we present the basic notions associated to the language of NHPP [6,32].

2.1 Probabilistic Strategies

Let C[0, 1] denotes the set of all closed intervals in [0, 1]. In the context of NHPP,
probabilities are assigned to primitive events (atoms) and compound events (con-
junctions or disjunctions of atoms) as intervals in C[0, 1]. Let [a1, b1], [a2, b2] ∈
C[0, 1]. Then the truth order asserts that [a1, b1] ≤t [a2, b2] iff a1 ≤ a2 and
b1 ≤ b2. The type of dependency among the primitive events within a compound
event is described by probabilistic strategies, which are explicitly selected by the
user. We call ρ, a pair of functions 〈c, md〉, a probabilistic strategy (p-strategy),
where c : C[0, 1] × C[0, 1] → C[0, 1], the probabilistic composition function.
Whereas, md : C[0, 1] → C[0, 1] is the maximal interval function. The maximal
interval function md of a certain p-strategy returns an estimate of the probability
range of a primitive event, A, from the probability range of a compound event
that contains A. The composition function c returns the probability range of a
conjunction (disjunction) of two events given the ranges of its constituents. For
convenience, given a multiset of probability intervals M = {{[a1, b1], . . . , [an, bn]}},
we use cM to denote c([a1, b1], c([a2, b2], . . . , c([an−1, bn−1], [an, bn])) . . .). Ac-
cording to the type of combination among events, p-strategies are classified into
conjunctive p-strategies and disjunctive p-strategies. Conjunctive (disjunctive)
p-strategies are employed to compose events belonging to a conjunctive (disjunc-
tive) formula (please see [6,31] for the formal definitions).

2.2 The Languages of NHPP

Let L be an arbitrary first-order language with finitely many predicate symbols,
constants, function symbols, and infinitely many variables. In addition, let S =
Sconj∪Sdisj be an arbitrary set of p-strategies, where Sconj (Sdisj) is the set of
all conjunctive (disjunctive) p-strategies in S. The Herbrand base of L is denoted
by BL. An annotation denotes a probability interval. The building blocks of the
language of NHPP are hybrid basic formulae. Let us consider a collection of
atoms A1, . . . , An, a conjunctive p-strategy ρ, and a disjunctive p-strategy ρ′.
Then A1∧ρ. . .∧ρAn and A1∨ρ′ . . .∨ρ′An are called hybrid basic formulae. bfS(BL)
is the set of all ground hybrid basic formulae formed using distinct atoms from
BL and p-strategies from S, such that for any collection of equivalent hybrid
basic formulae, X = {A1 ∗ρ A2 ∗ρ . . . ∗ρ An, A2 ∗ρ A1 ∗ρ . . . ∗ρ An, . . .}, where
∗ ∈ {∧, ∨}, only one Ai1 ∗ρ Ai2 ∗ρ . . . ∗ρ Ain ∈ X is in bfS(BL).

4 E. Saad

Definition 1 (Rules). A normal hybrid probabilistic rule (nh-rule) is an ex-
pression of the form

A : μ ← F1 : μ1, . . . , Fn : μn, not (G1 : μn+1), . . . , not (Gm : μn+m)

where A is an atom, F1, . . . , Fn, G1, . . . , Gm are hybrid basic formulae, and μ, μi

(1 ≤ i ≤ m + n) are annotations.

The intuitive meaning of an nh-rule, in Definition 1, is that, if for each Fi : μi,
the probability interval of Fi is at least μi and for each not (Gj : μj), it is not
provable that the probability interval of Gj is at least μj , then the probability
interval of A is μ. A normal hybrid probabilistic program over S (nh-program)
is a pair P = 〈R, τ〉, where R is a finite set of nh-rules with p-strategies from S,
and τ is a mapping τ : BL → Sdisj . The mapping τ associates to each atomic
hybrid basic formula A a disjunctive p-strategy that will be employed to combine
the probability intervals obtained from different rules having A in their heads.
An nh-program is ground if no variables appear in any of its rules.

2.3 Probabilistic Answer Set Semantics

A probabilistic interpretation (p-interpretation) is a mapping h : bfS(BL) →
C[0, 1].

Definition 2 (Probabilistic Satisfaction). Let P = 〈R, τ〉 be a ground nh-
program, h be a p-interpretation, and r be

A : μ ← F1 : μ1, . . . , Fn : μn, not (G1 : β1), . . . , not (Gm : βm) ∈ R.
Then

• h satisfies Fi : μi (denoted by h |= Fi : μi) iff μi ≤t h(Fi).
• h satisfies not (Gj : βj) (denoted by h |= not (Gj : βj)) iff βj �t h(Gj).
• h satisfies Body ≡ F1 : μ1, . . . , Fn : μn, not (G1 : β1), . . . , not (Gm : βm)
(denoted by h |= Body) iff ∀(1 ≤ i ≤ n), h |= Fi : μi and ∀(1 ≤ j ≤ m), h |=
not (Gj : βj).

• h satisfies A : μ ← Body iff h |= A : μ or h does not satisfy Body.
• h satisfies P iff h satisfies every nh-rule in R and for every formula F ∈
bfS(BL), we have
– If F = A is atomic then

cτ(A){{μ|A : μ ← Body ∈ R such that h |= Body}} ≤t h(A).

– If F = A1 ∗ρ . . . ∗ρ An is not atomic then

cρ{{(h(A1), . . . , h(An)}} ≤t h(F).

A probabilistic model of an nh-program P (p-model) is a p-interpretation of P
that satisfies P . We say that h is a minimal p-model of P (w.r.t. ≤t) if there is
no other p-model h′ of P such that h′ <t h.

Probabilistic Planning in Hybrid Probabilistic Logic Programs 5

Probabilistic answer set semantics is defined in two steps. First, we guess a p-
model h for a certain nh-program P , then we define the notion of the probabilistic
reduct of P with respect to h—which is an nh-program without non-monotonic
negation. Second, we determine whether h is a probabilistic answer set for P or
not by verifying whether h is the minimal (least) p-model of the probabilistic
reduct of P w.r.t. h. It must be noted that every nh-program without non-
monotonic negation has a unique minimal (least) p-model [31].

Definition 3 (Probabilistic Reduct). Let P = 〈R, τ〉 be a ground nh-program
and h be a probabilistic interpretation. The probabilistic reduct P h of P w.r.t. h
is P h = 〈Rh, τ〉 where:

Rh =

⎧⎨
⎩ A : μ ← F1 : μ1, . . . , Fn : μn

A : μ ← F1 : μ1, . . . , Fn : μn,
not (G1 : β1), . . . , not (Gm : βm) ∈ R and

∀(1 ≤ j ≤ m), βj �t h(Gj)

⎫⎬
⎭

The probabilistic reduct P h is an nh-program without non-monotonic negation.
For any not (Gj : βj) in the body of r ∈ R with βj �t h(Gj) is simply satisfied
by h, and not (Gj : βj) is removed from the body of r. If βj ≤t h(Gj) then the
body of r is not satisfied and r is trivially ignored.

Definition 4 (Probabilistic Answer Set). A probabilistic interpretation h is
a probabilistic answer set of an nh-program P if h is the least p-model of Ph.

3 Probabilistic Planning

In this section we review the basic definitions associated to probabilistic planning
as described in [16]. As usual, a literal is an atom or the negation of an atom. A
state is a finite set of distinct literals and an expression E is a conjunction of a
set of literals. Intuitively, a state gives a complete description of the world at a
certain time point. If a literal l belongs to a state s, then we say l is true in s,
and l is false in s if ¬ l is in s. The truth of an expression E with respect to
a state s is determined recursively over the propositional connectives as usual.
Let s be a state and E be an expression. The probability of E w.r.t. s is given
by Pr(E|s) = 1 if s |= E , otherwise, Pr(E|s) = 0. An action, ac(c1, . . . , cn),
is defined by a set of triples {〈t1, p1, e1〉, . . . , 〈tn, pn, en〉}, where ac is an n-ary
action name and each ci is a constant in L and for each 1 ≤ i ≤ n,

• ti is an expression called a precondition of an action ac(c1, . . . , cn) that
corresponds to an effect ei.

• pi is the conditional probability that ei is true given that ti is true, where
0 ≤ pi ≤ 1.

• ei is a set of literals called an effect of ac(c1, . . . , cn).

The set of all preconditions ti must be exhaustive and mutually exclusive where
∀ i

∑
s pi Pr(ti|s) = 1, ∀ i, j, s ti �= tj ⇒ Pr(ti ∧ tj |s) = 0. We use

aci(c1, . . . , cn) to denote the triple 〈ti, pi, ei〉. We write ac to denote an action
name whenever it is clear from the context.

6 E. Saad

Definition 5. Let s be a state, ac be an action, and aci be 〈ti, pi, ei〉. Then, a
probabilistic transition function Φ is a mapping from the set of all pairs (aci, s)
into a set of states, where the state Φ(aci, s) resulting from executing ac in s is
defined as:

• l ∈ Φ(aci, s) and ¬ l /∈ Φ(aci, s) if l ∈ ei and the precondition ti of aci holds
in s.

• ¬ l ∈ Φ(aci, s) and l /∈ Φ(aci, s) if ¬ l ∈ ei and the precondition ti of aci

holds in s.
• l ∈ Φ(aci, s) iff l ∈ s and ¬ l ∈ Φ(aci, s) iff ¬ l ∈ s, otherwise.

Uncertainty in the initial states of the world is represented by a probability
distribution over the possible world initial states. The probability distribution
over states s′ resulting from executing an action ac in a state s is given by
Pr(s′|s, ac) = pi . P r(s) if aci = 〈ti, pi, ei〉 ∈ ac, s |= ti, and s′ = Φ(aci, s),
otherwise, Pr(s′|s, ac) = 0.

Example 1. Consider the following robot planning task from [16]. A robotic arm
is trying to grasp a block; the grasping operation is not always successful, es-
pecially when the robot’s gripper is wet. The robot is able to hold a block
(HB) with a probability 0.95 after executing the pickup action in the state of
the world in which the gripper is dry (GD), and is unable to hold the block
(¬HB), after executing the pickup action in the same state of the world, with
0.05 probability. On the other hand, executing the pickup action in the state
of the world in which the gripper is wet (¬ GD) yields HB with 0.5 prob-
ability and ¬ HB with 0.5 probability. Let us assume that, initially, the ro-
bot is not holding the block (¬HB), and the gripper is dry (GD) with prob-
ability 0.7. Therefore, there are two possible initial states s1 = {GD, ¬HB}
and s2 = {¬GD, ¬HB}, with the probability distribution Pr(s1) = 0.7 and
Pr(s2) = 0.3.

Therefore, the pickup action is represented by the triples pickup1 = 〈GD, 0.95,
{HB}〉, pickup2 = 〈GD, 0.05, {¬HB}〉, pickup3 = 〈¬GD, 0.5, {HB}〉, pickup4 =
〈¬ GD, 0.5, {¬ HB}〉. The probability distribution resulting from executing the
pickup action in the initial states consists of four states where:

• s
′

1 = {GD, HB} = Φ(pickup1, {GD, ¬HB}), where pickup1 = 〈GD, 0.95,
{HB}〉 and Pr(s′1|s1, pickup) = 0.95 × Pr(s1) = 0.95 × 0.7 = 0.665.

• s
′

2 = {GD, ¬HB} = Φ(pickup2, {GD, ¬HB}), where pickup2 = 〈GD, 0.05,
{¬ HB}〉 and Pr(s′2|s1, pickup) = 0.05 × Pr(s1) = 0.05 × 0.7 = 0.035.

• s
′

3 = {¬GD, HB} = Φ(pickup3, {¬GD, ¬HB}), where pickup3 =
〈¬ GD, 0.5, {HB}〉 and Pr(s′3|s2, pickup) = 0.5 × Pr(s2) = 0.5 × 0.3 = 0.15.

• s
′

4 = {¬GD, ¬HB} = Φ(pickup4, {¬GD, ¬HB}), where pickup4 =
〈¬GD, 0.5, {¬HB}〉 and Pr(s′4|s2, pickup) = 0.5×Pr(s2) = 0.5×0.3 = 0.15.

Probabilistic Planning in Hybrid Probabilistic Logic Programs 7

Let s be an initial state, s̃I be a random variable over the initial states, s′ be
a state, and 〈ac1, ac2, . . . , acn〉 be a sequence of actions. The probability that s′

holds after executing 〈ac1, ac2, . . . , acn〉 in s is given by

Pr(s′|s, 〈ac1, ac2, . . . , acn〉) =
∑
s′′

Pr(s′′|s, ac1) Pr(s′|s′′, 〈ac2, . . . , acn〉),

where Pr(s′|s, 〈〉) = 1 if s′ = s, otherwise, Pr(s′|s, 〈〉) = 0, where, 〈〉 is an empty
sequence of actions. The probability that an expression E is true after executing
〈ac1, . . . , acn〉 in a state s is given by

Pr(E|s, 〈ac1, . . . , acn〉) =
∑
s′

Pr(s′|s, 〈ac1, . . . , acn〉) Pr(E|s′).

However, the probability that E is true after executing 〈ac1, . . . , acn〉 in the initial
states s̃I is given by

Pr(E|s̃I , 〈ac1, . . . , acn〉) =
∑

s

Pr(E|s, 〈ac1, . . . , acn〉) Pr(s̃I = s)

For example, to compute the probability that HB holds after performing the
pickup action in the possible initial states s1 and s2, from Example 1, we consider
all resulting states in which HB is satisfied. There are two states, s′1 and s′3, of the
world in which the robot can hold the block after executing the action pickup
in s1 and s2. Therefore, Pr(HB|s̃I , pickup) = Pr(s′1|s1, pickup)Pr(HB|s′1) +
Pr(s′3|s2, pickup)Pr(HB|s′3) = 0.665 + 0.15 = 0.815, since Pr(HB|s′1) =
Pr(HB|s′3) = 1.

A probabilistic planning problem is a 4-tuple P = 〈s̃I , G, T , A〉, where

• s̃I is a random variable over states that represents the initial agent knowledge
about the world at the time of execution.

• G is an expression represents the goal to be satisfied.
• T is the probability threshold for the goal G to be achieved, where 0 ≤ T ≤ 1.
• A is a set of actions from which plans are formed.

We say that 〈ac1, . . . , acn〉 is plan for P iff each aci belongs to A and
Pr(G|s̃I , 〈ac1, . . . , acn〉) ≥ T .

4 Probabilistic Answer Set Planning

Probabilistic answer set planning is a new approach to solve probabilistic plan-
ning problems using the probabilistic answer set semantics of NHPP. This is
achieved by providing a translation from a probabilistic planning problem, P ,
into an nh-program, ΠP , in NHPP, where the nh-rules in ΠP encode (i) the
initial probability distribution over states (s̃I), (ii) the probabilistic transition
function Φ (which causes a transition from a probability distribution over states
to another probability distribution), (iii) the goal (G), (iv) and the set of ac-
tions (A) appear in P . The probabilistic answer sets of ΠP correspond to valid

8 E. Saad

trajectories in P , with associated probabilities. The nh-program translation of
a probabilistic planning problem is mainly adapted from [34]. We assume that
the length of plans we are searching for is known, which is traditional in en-
coding planning problems. We use a special predicate time(T), where T is a
non-negative integer, to describe the time moment where the world in. In addi-
tion, we use the predicates (i) holds(L, T) to represent the fact that a literal L
holds at time moment T , (ii) occ(AC, T) to describe that an action AC executes
at time moment T , and (iii) state(T) to represent a possible state of the world at
time moment T . As customary in logic programming, we use lower case letters
to represent constants and upper case letters to represent variables.

Let ΠP = 〈R, τ〉 be the nh-program translation of a probabilistic planning
problem, P = 〈s̃I , G, T , A〉, where τ is any arbitrary assignment of disjunctive
p-strategies and R is the set of nh-rules described as follows.

– Each action of the form ac = {ac1, . . . , acn} ∈ A is represented in R by the
set of facts

action(aci) : [1, 1] ←
In addition, literals that describe the states of the world are encoded in R
by the nh-rules

literal(A) : [1, 1] ← atom(A) : [1, 1] (1)
literal(¬A) : [1, 1] ← atom(A) : [1, 1] (2)

where atom(A) : [1, 1] is a set of facts that describe the properties of the
world. However, the following nh-rules specify that A and ¬A are contrary
literals.

contrary(A, ¬A) : [1, 1] ← atom(A) : [1, 1] (3)
contrary(¬A, A) : [1, 1] ← atom(A) : [1, 1] (4)

– To encode the initial probability distribution over the possible initial states
we proceed as follows. Let sI1 , sI2 , . . . , sIn be the set of possible initial states,
where for each 1 ≤ i ≤ n, sIi = {lIi

1 , . . . , lIi
m}, and the initial probability

distribution, over these initial states, be Pr(s̃I = sIi) = [pi, pi]. Moreover,
let sI = sI1 ∪ sI2 ∪ . . . ∪ sIn , s′I = sI1 ∩ sI2 ∩ . . . ∩ sIn , and ŝI = sI − s′I . We
denote s′′I = { l | l ∈ ŝI ∨¬l ∈ ŝI}. Intuitively, for any literal l in ŝI , if l or ¬l
belongs to ŝI , then s′′I contains only l. Therefore, to generate the set of all
possible initial states we have the following set of nh-rules. For each literal
l ∈ s′I , the fact

holds(l, 0) : [1, 1] ← (5)

belongs to R. This fact asserts that the literal l holds at time moment 0. This
set of facts represents the set of literals that hold in every possible initial
state. In addition, for each literal l ∈ s′′I , the nh-rules

holds(l, 0) : [1, 1] ← not (holds(¬l, 0) : [1, 1]) (6)
holds(¬l, 0) : [1, 1] ← not (holds(l, 0) : [1, 1]) (7)

Probabilistic Planning in Hybrid Probabilistic Logic Programs 9

belong to R. The above nh-rules says that the literal l (similarly ¬l) holds at
time moment 0, if ¬l (similarly l) does not hold at the time moment 0. This
set of nh-rules corresponds to the fact that, for any possible initial state,
sIi , either l or ¬l belongs to sIi . The initial probability distribution over
the initial states is encoded in R as follows. For each possible initial state
sIi = {lIi

1 , . . . , lIi
m}, the nh-rule

state(0) : [pi, pi] ← holds(lIi
1 , 0) : [1, 1], . . . , holds(lIi

m, 0) : [1, 1] (8)

belongs to R. The above nh-rule says that the probability of a state at time
moment 0 (a possible initial state) is [pi, pi] if the literals lIi1 , . . . , l

I
im

holds
at the time moment 0.

– For each action ac = {ac1, . . . , acn}, where ∀ (1 ≤ i ≤ n), aci = 〈ti, pi, ei〉,
ti = lt

i

1 ∧ . . . ∧ lt
i

k , and ei = {le
i

1 , . . . , le
i

m}. Then, ∀ (1 ≤ j ≤ m), le
i

j ∈ ei, we
have

holds(le
i

j , T + 1) : [1, 1] ← time(T) : [1, 1], occ(aci, T) : [1, 1],

holds(lt
i

1 , T) : [1, 1], . . . , holds(lt
i

k , T) : [1, 1] (9)

belongs to R. This nh-rule states that if the action ac occurs at time moment
T and the literals lt

i

1 , . . . , lt
i

k (the precondition ti) hold at the same time
moment, then the literal le

i

j holds at the time moment T + 1.
– The following nh-rule encodes the frame axioms. For any literal L we have

holds(L, T + 1) : [1, 1] ← time(T) : [1, 1], holds(L, T) : [1, 1],
not (holds(L′, T + 1) : [1, 1]), contrary(L, L′) : [1, 1],

literal(L) : [1, 1], literal(L′) : [1, 1] (10)

belongs to R. The above nh-rule states that if L holds at the time moment T
and its contrary does not hold at the time moment T + 1, then L continues
to hold at the time moment T + 1.

– In addition, we add the following nh-rule in R to encode the fact that a
literal A and its negation ¬A cannot hold at the same time.

inconsistent : [1, 1] ← not (inconsistent : [1, 1]), atom(A) : [1, 1],
time(T) : [1, 1], holds(A, T) : [1, 1], holds(¬A, T) : [1, 1] (11)

where inconsistent is a special literal that does not appear in P .
– Action generation rules are represented in R by the following nh-rules.

occ(ACi, T) : [1, 1] ← time(T) : [1, 1], action(ACi) : [1, 1],
not (abocc(ACi, T) : [1, 1]) (12)

abocc(ACi, T) : [1, 1] ← time(T) : [1, 1], action(ACi) : [1, 1],
action(ACj) : [1, 1], occ(ACj , T) : [1, 1], ACi �= ACj (13)

The above two nh-rules generate action occurrences once at a time, where
ACi and ACj are variables representing actions.

10 E. Saad

– Let G = g1 ∧ . . . ∧ gm be a goal expression, then G is encoded in R as an
nh-rule of the form

goal : [1, 1] ← time(T) : [1, 1], holds(g1, T) : [1, 1], . . . , holds(gm, T) : [1, 1]
(14)

– Probability distribution over states is represented in R using the following
nh-rules. For each action ac = {ac1, . . . , acn}, where ∀ (1 ≤ i ≤ n), aci =
〈ti, pi, ei〉, ti = lt

i

1 ∧ . . . ∧ lt
i

k , and ei = {le
i

1 , . . . , le
i

m}, then, for each aci ∈ ac,
we have

state(T + 1) : [pi ∗ V, pi ∗ V] ← state(T) : [V, V], occ(aci, T) : [1, 1],

time(T) : [1, 1], holds(lt
i

1 , T) : [1, 1], . . . , holds(lt
i

k , T) : [1, 1],

holds(le
i

1 , T + 1) : [1, 1], . . . , holds(le
i

m, T + 1) : [1, 1] (15)

where V is an annotation variable ranging over [0, 1] acts as a place holder.
The above nh-rule says that the probability of a state at time moment T +1
is [pi ∗ V, pi ∗ V] if the effect ei of an action ac becomes true in the same
state, after executing an action ac in a state of the world at time T , whose
probability is [V, V], in which the precondition ti is true.

Example 2. The nh-program translation, ΠP = 〈R, τ〉, of the probabilistic plan-
ning problem P = 〈s̃I , G, T , A〉 presented in Example 1 proceeds as follows,
where τ is any arbitrary assignment of disjunctive p-strategies and R consists
of the following nh-rules, in addition to the nh-rules (1), (2), (3),(4), (10), (11),
(12), (13):

action(pickup1) : [1, 1] ← action(pickup2) : [1, 1] ←
action(pickup3) : [1, 1] ← action(pickup4) : [1, 1] ←

where pickup is in A. Properties of the world are described by the atoms gD
(gripper dry) and hB (holding block), which are encoded in R by the nh-rules

atom(gD) : [1, 1] ← atom(hB) : [1, 1] ←

The set of possible initial states are encoded by the nh-rules:

holds(¬hB, 0) : [1, 1] ←
holds(gD, 0) : [1, 1] ← not (holds(¬gD, 0) : [1, 1])
holds(¬gD, 0) : [1, 1] ← not (holds(gD, 0) : [1, 1])

The initial probability distribution over the possible initial states is encoded by
the nh-rules

state(0) : [0.7, 0.7] ← holds(gD, 0) : [1, 1], holds(¬hB, 0) : [1, 1]
state(0) : [0.3, 0.3] ← holds(¬gD, 0) : [1, 1], holds(¬hB, 0) : [1, 1]

Probabilistic Planning in Hybrid Probabilistic Logic Programs 11

Effects of the pickup action are encoded by the nh-rules

holds(hB, T + 1) : [1, 1] ← time(T) : [1, 1], occ(pickup1, T) : [1, 1], holds(gD, T) : [1, 1]
holds(¬hB, T + 1) : [1, 1] ← time(T) : [1, 1], occ(pickup2, T) : [1, 1], holds(gD, T) : [1, 1]
holds(hB, T + 1) : [1, 1] ← time(T) : [1, 1], occ(pickup3, T) : [1, 1], holds(¬gD, T) : [1, 1]
holds(¬hB, T + 1) : [1, 1] ← time(T) : [1, 1], occ(pickup4, T) : [1, 1], holds(¬gD, T) : [1, 1]

The goal is encoded by the nh-rule

goal : [1, 1] ← holds(hB, T) : [1, 1]

Probability distributions over states are encoded by

state(T + 1) : [0.95 ∗ V, 0.95 ∗ V] ← time(T) : [1, 1], occ(pickup1, T) : [1, 1], state(T) : [V, V],
holds(gD, T) : [1, 1], holds(hB, T + 1) : [1, 1]

state(T + 1) : [0.05 ∗ V, 0.05 ∗ V] ← time(T) : [1, 1], occ(pickup2, T) : [1, 1], state(T) : [V, V],
holds(gD, T) : [1, 1], holds(¬hB, T + 1) : [1, 1]

state(T + 1) : [0.5 ∗ V, 0.5 ∗ V] ← time(T) : [1, 1], occ(pickup3, T) : [1, 1], state(T) : [V, V],
holds(¬gD, T) : [1, 1], holds(hB, T + 1) : [1, 1]

state(T + 1) : [0.5 ∗ V, 0.5 ∗ V] ← time(T) : [1, 1], occ(pickup4, T) : [1, 1], state(T) : [V, V],
holds(¬gD, T) : [1, 1], holds(¬hB, T + 1) : [1, 1]

5 Correctness

In this section we prove the correctness of the probabilistic answer set plan-
ning. We show that the probabilistic answer sets of the nh-program transla-
tion of a probabilistic planning problem, P , correspond to trajectories in P ,
with associated probabilities. Moreover, we show that the complexity of find-
ing a plan for P in probabilistic answer set planning is NP-complete. Let the
domain of T be {0, . . . , n}. Let P = 〈s̃I , G, T , A〉 be a probabilistic planning
problem, Φ be a probabilistic transition function associated with P , s0 is a
possible initial state, and ac0, . . . , acn be a collection of actions in A. We say
that s0 acj0

0 s1 . . . acjn
n sn+1 is a trajectory in P if si+1 = Φ(acji

i , si), where
∀(0 ≤ i ≤ n), si is a state, aci is an action, and acji

i = 〈tji

i , pji

i , eji

i 〉 ∈ aci.
A trajectory s0 acj0

0 s1 . . . acjn
n sn+1 in P is said to achieve an expression G if

sn+1 |= G. Moreover, let RG be the set of all trajectories s0 acj0
0 s1 . . . acjn

n sn+1
in P that achieve G. We say 〈ac0, . . . , acn〉 achieves G if RG is not empty.

Theorem 1. Let P = 〈s̃I , G, T , A〉 be a probabilistic planning problem and
G = g1 ∧ . . . ∧ gm. Then, G is achievable from P iff G′(t) ≡ holds(g1, t) :
[1, 1], . . . , holds(gm, t) : [1, 1] is true (satisfied) in some probabilistic answer set
of ΠP , for some 0 ≤ t ≤ n.

Theorem 1 says that any probabilistic planning problem, P , can be translated
into an nh-program, ΠP , such that a trajectory in, P , that achieves the goal G is
equivalent to a probabilistic answer set h of ΠP that satisfies a related goal G′.
Probability of a state st at time moment t is captured in a probabilistic answer
set h of ΠP by h(state(t)).

12 E. Saad

Lemma 1. Let h be a probabilistic answer set of ΠP and 〈ac0, . . . , acn〉 (possibly
empty) be a plan for P. Then,

∑
h|=G′(n+1)

h(state(n + 1)) = [Pr(G|s̃I , 〈ac0, . . . , acn〉), P r(G|s̃I , 〈ac0, . . . , acn〉)]

where G = g1∧ . . .∧gm and G′(n+1) ≡ holds(g1, n+1) : [1, 1], . . . , holds(gm, n+
1) : [1, 1].

Lemma 1 shows that the probability that a goal G is true after executing a
sequence of actions 〈ac0, . . . , acn〉 in the possible initial states s̃I is equivalent to
the summation of the probability intervals h(state(n+1)) over the probabilistic
answer sets h of ΠP that satisfy a related goal G′(n + 1). The following theorem
follows directly from Lemma 1.

Theorem 2. Let h be a probabilistic answer set of ΠP and 〈ac0, . . . , acn〉 (pos-
sibly empty) be a plan for P. Then, Pr(G|s̃I , 〈ac0, . . . , acn〉) ≥ T iff

∑
h|=G′(n+1)

h(state(n + 1)) ≥ [T , T].

Probabilistic answer set planning produces totally ordered plans using flat repre-
sentation of the probabilistic planning domains. A totally ordered plan is a finite
sequence of actions that must be executed in order, however, flat representation
of probabilistic planning domains is the explicit enumeration of world states [20].
Hence, Theorem 4 follows directly from Theorem 3.

Theorem 3 ([20]). The plan existence problem for totally ordered plans in flat
representation of probabilistic planning domains is NP-complete.

Theorem 4. The plan existence problem in probabilistic answer set planning is
NP-complete.

6 Probabilistic Planning Using Answer Sets

In this section we show that probabilistic planning problems can be encoded as
classical normal logic programs with classical answer set semantics. Excluding
nh-rules (8) and (15) from the nh-program translation, ΠP , of a probabilistic
planning problem, P , yields an nh-program, denoted by Πnormal

P , with only
annotations of the form [1, 1]. As shown in [32], the syntax and semantics of
this class of nh-programs is equivalent to classical normal logic programs with
answer set semantics.

Theorem 5. Let Πnormal
P be the normal logic program resulting from ΠP after

deleting the nh-rules (8) and (15). Then, a trajectory s0 acj0
0 s1 . . . acjn

n sn+1 in P
achieves G = g1∧. . .∧gm iff G′

(n+1) ≡ holds(g1, n+1) : [1, 1], . . . , holds(gm, n+
1) : [1, 1] is true in some answer set of Πnormal

P .

Probabilistic Planning in Hybrid Probabilistic Logic Programs 13

Theorem 5 shows that classical normal logic programs with answer set semantics
can be used to solve probabilistic planning problems in two steps. The first step
is to translate a probabilistic planning problem, P , into a classical normal logic
program whose answer sets corresponds to valid trajectories in P . From the
answer sets of the normal logic program translation of P , we can determine the
trajectories RG in P that achieve the goal G. The second step is to calculate the
probability that the goal is satisfied by∑

s0 ac
j0
0 s1...acjn

n sn+1∈RG

Pr(s0)
n∏

i=0

pji

i .

Now, we show that any probabilistic planning problem can be encoded as a SAT
problem. Hence, state-of-the-art SAT solvers can be used to solve probabilistic
planning problems. In [18], it has been shown that any normal logic program, Π ,
can be translated into a SAT problem, S, where the models of S are equivalent to
the answer sets of Π . Hence, the normal logic program encoding of a probabilistic
planning problem P can be translated into an equivalent SAT problem, where
the models of S correspond to valid trajectories in P .

Proposition 1. Let P be a probabilistic planning problem and Πnormal
P be a

normal logic program translation of P. The models of the SAT problem encoding
of Πnormal

P are equivalent to valid trajectories in P.

However, in encoding probabilistic planning problems in normal logic programs, (i)
explicit representation of probabilities, (ii) explicit assignment of probabilities to
states, (iii) and the direct propagation of probabilities through states, rely on an
externalmechanismtonormallogicprogramssyntaxandsemanticsandnotonnormal
logic programs syntax and semantics themselves. These issues can be overcome
naturally by encoding probabilistic planning problems in NHPP. The idea of a two
stepsolutionforprobabilisticreasoningtasksusingtheanswersetsoflogicprogramsis
not new. A similar idea has been used in [2] for reasoning with causal Bayes nets.

7 Conclusions and Related Work

We presented probabilistic answer set planning, a new probabilistic planning
approach, by relating probabilistic planning to NHPP. Probabilistic answer set
planning is built upon classical answer set planning to account for probabilistic
domains. The translation from a probabilistic planning problem into an NHPP
program mainly relies on a similar translation from classical planning problems
into normal logic problems described in [34]. Probabilistic planning approaches
can be classified into two main categories of approaches; probabilistic extension
to classical planning approaches and decision-theoretic approaches. Decision-
theoretic planning approaches search for a plan that has a maximum expected
utility (see [3] for detailed survey on decision-theoretic planning), however, in ad-
dition to our approach is declarative, probabilistic answer set planning is search-
ing for a plan that has maximum probability value of success.

Probabilistic planning approaches that are extensions to classical planning ap-
proaches include probabilistic extensions to partial order planning, planning as

14 E. Saad

propositional satisfiability, and heuristic based planning. In [16] a probabilistic
partial order planning approach is presented. Moreover, [16] is extended in [8] to
generate contingent plans for probabilistic domains. Although, we use the same
probabilistic planning problems characterizationpresented in [16], our approach is
different, since our approach is a logic based. Based on planning as satisfiability ap-
proach [15] for deterministic domains, a probabilistic planning approach has been
developed, in [22], for probabilistic domains. A probabilistic planning problem in
[22] is solved by converting a probabilistic planning problem into a stochastic sat-
isfiability problem and solving the stochastic satisfiability problem instead. Our
approach is similar in spirit to [22] in the sense that both approaches are logic based
approaches. However, solving stochastic satisfiability problem is NPPP -complete,
but, probabilistic answer set planning is NP-complete. The probabilistic planning
approach in [5] is based on another classical planning approach (heuristic based
planner) [4]. Unlike [4], [5] produces probabilistic contingent plans. Similar to [5,8],
[23] produces probabilistic contingent plans. However, [23] employs a different ap-
proach. Similar to [22], [23] is based on planning as satisfiability approach (logic
based approach). In [23], the search for probabilistic contingent plans is achieved
by solving a corresponding stochastic satisfiability problem compiled from a prob-
abilistic contingent planning problem.

References

1. Baral, C.: Knowledge representation, reasoning, and declarative problem solving.
Cambridge University Press, Cambridge (2003)

2. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In:
Logic Programming and Non-monotonic Reasoning. Springer, Heidelberg (2004)

3. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: structural assump-
tions and computational leverage. Journal of AI Research 11, 1–94 (1999)

4. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial
Intelligence 90(1-2), 297–298 (1997)

5. Blum, A., Langford, J.: Probabilistic planning in the Graphplan framework. In:
Proc. of the 5th European Conference on Planning (1999)

6. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic program. Journal of Logic
Programming 43(3), 187–250 (2000)

7. Dekhtyar, M., Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs:
algorithms and complexity. In: Proc. of UAI Conference, pp. 160–169 (1999)

8. Draper, D., Hanks, S., Weld, D.: Probabilistic planning with information gathering
and contingent execution. In: Proc. of the 2nd International Conference on Artificial
Intelligence Planning Systems, pp. 31–37 (1994)

9. Eiter, T., et al.: Declarative problem solving in dlv. In: Logic Based Artificial
Intelligence (2000)

10. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of ACM 38(3), 620–650 (1991)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICSLP. MIT Press, Cambridge (1988)

12. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3-4), 363–385 (1991)

Probabilistic Planning in Hybrid Probabilistic Logic Programs 15

13. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of Logic Programming 17, 301–321 (1993)

14. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propo-
sitional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

15. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and
stochasticsearch.In:Proc.of13thNationalConferenceonArtificialIntelligence(1996)

16. Kushmerick, N., Hanks, S., Weld, D.: An algorithm for probabilistic planning.
Artificial Intelligence 76(1-2), 239–286 (1995)

17. Lifschitz, V.: Answer set planning. In: Proceedings of ICLP (1999)
18. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT

solvers. Artificial Intelligence 157(1-2), 115–137 (2004)
19. Lukasiewicz, T.: Probabilistic logic programming. In: 13th European Conference

on Artificial Intelligence, pp. 388–392 (1998)
20. Littman, M., Goldsmith, J., Mundhenk, M.: The computational complexity of

probabilistic planning. Journal of Artificial Intelligence Research 9, 1–36 (1998)
21. Littman, M., Majercik, S.: Large-scale planning under uncertainty: A survey. In:

NASA Workshop on Planning and Scheduling in Space (1997)
22. Majercik, S., Littman, M.: MAXPLAN: A new approach to probabilistic planning.

In: Proc. of the 4th International Conference on Artificial Intelligence Planning,
pp. 86–93 (1998)

23. Majercik, S., Littman, M.: Contingent planning under uncertainty via stochastic
satisfiability. Artificial Intelligence 147(1–2), 119–162 (2003)

24. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information &
Computation 101(2) (1992)

25. Ng, R.T., Subrahmanian, V.S.: Stable semantics for probabilistic deductive data-
bases. Information & Computation 110(1) (1994)

26. Niemela, I., Simons, P.: Efficient implementation of the well-founded and stable
model semantics. In: Joint International Conference and Symposium on Logic Pro-
gramming, pp. 289–303 (1996)

27. Poole, D.: The Independent choice logic for modelling multiple agents under un-
certainty. Artificial Intelligence 94(1-2), 7–56 (1997)

28. Saad, E.: Incomplete knowlege in hybrid probabilistic logic programs. In: Fisher,
M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI),
vol. 4160, Springer, Heidelberg (2006)

29. Saad, E.: Towards the computation of the stable probabilistic model semantics.
In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314,
Springer, Heidelberg (2007)

30. Saad, E.: A logical approach to qualitative and quantitative reasoning. In: 9th
European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU’07) (2007)

31. Saad, E., Pontelli, E.: Towards a more practical hybrid probabilistic logic program-
ming framework. Practical Aspects of Declarative Languages (2005)

32. Saad, E., Pontelli, E.: Hybrid probabilistic logic programs with non-monotonic
negation. In: International Conference of Logic Programming, Springer, Heidelberg
(2005)

33. Saad, E., Pontelli, E.: A new approach to hybrid probabilistic logic programs.
Annals of Mathematics and Artificial Intelligence Journal 48(3-4), 187–243 (2006)

34. Son, T., Baral, C., Nam, T., McIlraith, S.: Domain-dependent knowledge in answer
set planning. ACM Transactions on Computational Logic 7(4), 613–657 (2006)

35. Subrahmanian, V.S., Zaniolo, C.: Relating stable models and AI planning domains.
In: International Conference of Logic Programming, pp. 233–247 (1995)

Top-k Retrieval in Description Logic Programs Under
Vagueness for the Semantic Web

Thomas Lukasiewicz1,2 and Umberto Straccia3

1 DIS, Sapienza Università di Roma, Via Ariosto 25, I-00185 Roma, Italy
lukasiewicz@dis.uniroma1.it

2 Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Wien, Austria
lukasiewicz@kr.tuwien.ac.at

3 ISTI-CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy
straccia@isti.cnr.it

Abstract. Description logics (DLs) and logic programs (LPs) are important rep-
resentation languages for the Semantic Web. In this paper, we address an emerg-
ing problem in such languages, namely, the problem of evaluating ranked top-k
queries. Specifically, we show how to compute the top-k answers in a data-
complexity tractable combination of DLs and LPs under vagueness.

1 Introduction

Description logics (DLs) and logic programs (LPs) are important representation lan-
guages for the Semantic Web. In this paper, we address an emerging issue, namely, the
problem of evaluating ranked top-k queries in a combination of such languages under
vagueness. Under the classical semantics, an answer to a query is a set of tuples that
satisfy a query. The information need of a user, however, very often involves so-called
vague predicates. For instance, in a logic-based e-commerce process, we may ask “find
a car costing around $15000” (see [12]); or in ontology-mediated access to multimedia
information, we may ask “find images about cars, which are similar to a given one”
(see, e.g., [11,19]). Unlike the classical case, tuples now satisfy these queries to a de-
gree (usually in [0, 1]). Therefore, a major problem is that now an answer is a set of
tuples ranked according to their degree. This poses a new challenge when we have to
deal with a huge amount of facts. Indeed, virtually every tuple may satisfy a query with
a non-zero degree, and thus has to be ranked. Of course, computing all these degrees,
ranking them, and then selecting the top-k ones is likely not feasible in practice.

In this work, we address the top-k retrieval problem for a data complexity tractable
combination of DLs and LPs under a many-valued semantics. In our language, at the
extensional level, each fact may have a truth value, while at the intensional level many-
valued DL axioms and LP rules describe the application domain.

2 Preliminaries

The truth space that we consider here is the finite set [0, 1]m = { 0
m , 1

m , . . . , m−1
m , m

m}
(for a natural number m > 0), which is pretty common in fuzzy logic. Throughout the

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 16–30, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 17

ID MODEL TYPE PRICE KM COLOR AIRBAG INTERIOR TYPE AIR COND ENGINE FUEL

455 MAZDA 3 Sedan 12500 10000 Red 0 VelvetSeats 1 Gasoline
34 ALFA 156 Sedan 12000 15000 Black 1 LeatherSeats 0 Diesel

1812 FORD FOCUS StationVagon 11000 16000 Gray 1 LeatherSeats 1 Gasoline

Fig. 1. The car table

ID HOTEL PRICE Single PRICE Double DISTANCE s

1 Verdi 100 120 5Min 0.75
2 Puccini 120 135 10Min 0.5
3 Rossini 80 90 15Min 0.25

Fig. 2. The hotel table

paper, we assume m = 100 in the examples with usual decimal rounding (e.g., 0.375
becomes 0.38, while 0.374 becomes 0.37).

A knowledge base K consists of a facts component F , a DL component O, and an
LP component P , which are all three defined below.

Facts Component. F is a finite set of expressions of the form

〈R(c1, . . . , cn), s〉 ,

where R is an n-ary relation, every ci is a constant, and s is a degree of truth (or
simply score) in [0, 1]m. For each R, we represent the facts 〈R(c1, . . . , cn), s〉 in F
by means of a relational n + 1-ary table TR, containing the records 〈c1, . . . , cn, s〉.
We assume that there cannot be two records 〈c1, . . . , cn, s1〉 and 〈c1, . . . , cn, s2〉 in TR

with s1 �= s2 (if there are, then we remove the one with the lower score). Each table is
sorted in descending order with respect to the scores. For ease, we may omit the score
component and in such cases the value 1 is assumed.

Example 1 ([12]). Suppose we have a car selling site, and we would like to buy a car.
The cars belong to the relation CarTable shown in Fig. 1. Here, the score is implicitly
assumed to be 1 in each record. For instance, the first record corresponds to the fact

〈CarTable(455 , MAZDA3 ,Sedan, 12500 , 10000 , Red , 0 , VelvetSeats, 1 ,Gasoline), 1〉 .

Example 2 ([15,20]). Suppose we have information about hotels and their degree of
closeness to the city center, computed from the walking distance according to some pre-
defined function, and we would like to find a cheap hotel close to the city center. The
hotels belong to the relation CloseHotelTable shown in Fig. 2. The column s indicates
the degree of closeness. For instance, the first record corresponds to the fact

〈CloseHotelTable(1 , Verdi , 100 , 120 , 5Min), 0.75〉 .

Semantically, an interpretation I = 〈Δ, ·I〉 consists of a fixed infinite domain Δ and
an interpretation function ·I that maps every n-ary relation R to a partial function
RI : Δn → [0, 1]m and every constant to an element of Δ such that aI �= bI if a �= b
(unique name assumption). We assume to have one object for each constant, denoting
exactly that object. In other words, we have standard names, and we do not distinguish

18 T. Lukasiewicz and U. Straccia

Cars � Vehicles
Trucks � Vehicles
Vans � Vehicles
LuxuryCars � Cars
PassengerCars � Cars
∃1:CarTable � Cars
Sedan � Cars
StationWagon � Cars
∃9:CarTable � Seats
Mazda � CarMake
AlfaRomeo � CarMake
Ford � CarMake

LeatherSeats � Seats
VelvetSeats � Seats
MidSizeCars � PassengerCars
SportyCars � PassengerCars
CompactCars � PassengerCars
Vehicles � ∃1:hasMaker
Vehicles � ∃1:hasPrice
∃1:hasPrice � Vehicles
∃1:hasMaker � Vehicles
∃2:hasMaker � CarMaker
Cars � ∃1:hasKm
∃2:hasFuel � FuelType

Fig. 3. A car selling ontology

between the alphabets of constants and the objects in Δ. Note that, since RI may be a
partial function, some tuples may not have a score. Alternatively, we may assume RI

to be a total function. We use the former formulation to distinguish the case where a
tuple c may be retrieved, even though the score is 0, from the case where a tuple is not
retrieved, since it does not satisfy the query. In particular, if a tuple does not belong to
an extensional relation, then its score is assumed to be undefined, while if RI is total,
then the score of this tuple would be 0.

An interpretation I is a model of (or satisfies) a fact 〈R(c1, . . . , cn), s〉, denoted
I |= 〈R(c1, . . . , cn), s〉, iff RI(c1, . . . , cn) � s whenever RI(c1, . . . , cn) is defined.

DL Component. O is a finite set of axioms having the form

C1 � . . . � Cl � C

(called concept inclusion), where all Ci and C are concept expressions. Informally,
C1�. . .�Cl � C says that if c is an instance of Ci to degree si, then c is an instance of C
to degree at least min(s1, . . . , sl). A concept expression is either an atomic concept A
or of the form ∃i :R, where R is an n-ary relation and i ∈{1, . . . , n}. Informally, ∃i :R
is the projection of R on the i-th column. These concepts are inspired by the description
logic DLR-Lite [2], a LogSpace data complexity family of DL languages, but still with
good representation capabilities.

We recall that despite the simplicity of its language, the DL component is able to
capture the main notions (though not all, obviously) to represent structured knowledge.
In particular, the axioms allow us to specify subsumption, concept A1 is subsumed by
concept A2, using A1 � A2; typing, using ∃i :R � A (the i-th column of R is of
type A); and participation constraints, using A � ∃i :R (all instance of A occur in the
projection of R on the i-th column).

Example 3. Consider again Example 1. An excerpt of the domain ontology is des-
cribed in Fig. 3 and partially encodes the web directory behind the car selling site
www.autos.com. For instance, the axiom

Vehicles � ∃1:hasPrice

dictates that each vehicle has a price.

www.autos.com

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 19

Semantically, an interpretation I = 〈Δ, ·I〉 maps every atom A to a partial function
AI : Δ → [0, 1]m. In the following, c denotes an n-tuple of constants, and c[i] denotes
the i-th component of c. Then, ·I has to satisfy, for all c ∈ Δ:

(∃i :R)I(c) = sup
c′∈Δn, c′[i]=c, RI(c′) is defined

RI(c′) .

Then, I |= C1 � . . . � Cl �C iff, for all c ∈Δ, min(C1
I(c), . . . , Cl

I(c)) � CI(c)
whenever all Ci

I(c) are defined.

LP Component. P is a finite set of vague rules of the form (an example of a rule is
shown in Example 4 below.)

R(x)← ∃y.f(R1(z1), . . . , Rl(zl), p1(z
′
1), . . . , ph(z′

h)) ,

where

1. R is an n-ary relation, every Ri is an ni-ary relation,
2. x are the distinguished variables;
3. y are existentially quantified variables called the non-distinguished variables;
4. zi, z

′
j are tuples of constants or variables in x or y;

5. pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple cj a score pj(cj) ∈
[0, 1]m. Such predicates are called expensive predicates in [3] as the score is not
pre-computed off-line, but is computed on query execution. We require that an n-
ary fuzzy predicate p is safe, that is, there is not an m-ary fuzzy predicate p′ such
that m < n and p = p′. Informally, all parameters are needed in the definition of p;

6. f is a scoring function f : ([0, 1]m)l+h → [0, 1]m, which combines the scores
of the l relations Ri(c′i) and the n fuzzy predicates pj(c′′j) into an overall score
to be assigned to the rule head R(c). We assume that f is monotone, that is,
for each v, v′ ∈ ([0, 1]m)l+h such that v � v′, it holds f(v) � f(v′), where
(v1, . . . , vl+h) � (v′1, . . . , v′l+h) iff vi � v′i for all i. We also assume that the
computational cost of f and all fuzzy predicates pi is bounded by a constant.

We call R(x) the head and ∃y.f(R1(z1), . . . , Rl(zl), p1(z′1), . . . , ph(z′h)) the body
of the rule. We assume that relations occurring in O may appear in rules in P and that
relations occurring in F do not occur in the head of rules and axioms (so, we do not
allow that the fact relations occurring in F can be redefined by P or O). As usual in
deductive databases, the relations in F are called extensional relations, while the others
are intensional relations.

Example 4. Consider again Example 2. The following rule may be used to retrieve a
cheap single room in a hotel close to the city center:

q(x1, x2) ← CloseHotelTable(x1, x2, x3, x4, x5) · cheap(x3) ,

where

cheap(price) = max(0, 1 − price
250

) .

In the rule, cheap is a fuzzy predicate that computes the degree of cheapness of a given
price. The overall score to be assigned to the retrieved hotels 〈c1, c2〉 is computed as

20 T. Lukasiewicz and U. Straccia

the product (which is here the scoring function) of the degree of the closeness of a hotel
(that is, the score of CloseHotelTable(c1, c2, c3, c4, c5)) and the degree of cheapness of
it (cheap(c3)). Clearly, the product is a monotone score combination function. We will
see that the instances of q(x1, x2) together with their score will be

ID HOTEL s

1 Verdi 0.45
2 Puccini 0.26
3 Rossini 0.17 .

Semantically, an interpretation I is a model of a rule r of the form R(x)← ∃y.φ(x, y),
where φ(x, y)=∃y.f(R1(z1), . . . , Rl(zl), p1(z′1), . . . , ph(z′h)), denoted I |= r, iff
for all c ∈Δn such that RI(c) is defined, the following holds (where φI(c, c′) is ob-
tained from φ(c, c′) by replacing every Ri by RIi and every constant c by cI):

RI(c) � sup
c′∈Δ×···×Δ, φI(c, c′) is defined

φI(c, c′) .

We say I is a model of a knowledge base K, denoted I |= K, iff I is a model of each
expression E ∈ F ∪O∪P . We say K entails R(c) to degree s, denoted K |= 〈R(c), s〉,
iff for each model I of K, it is true that RI(c)� s whenever RI(c) is defined. The
greatest lower bound of R(c) relative to K is glb(K, R(c)) = sup{s | K |= 〈R(c), s〉}.

Example 5. The table in Example 4 reports the greatest lower bound of the instances
of q(x1, x2). In particular, glb(K, q(1 ,Verdi)) = 0.45.

Example 6. Consider again Example 3. Now, suppose that in buying a car, preferably
we would like to pay around $12000 and the car should have less than 15000 km. Of
course, our constraints on price and kilometers are not crisp as we may still accept
to some degree, e.g., a car’s cost of $12200 and with 16000 km. Hence, these con-
straints are rather vague. We model this by means of so-called left-shoulder functions
(see Fig. 4 for some typical fuzzy membership functions), which is a well known fuzzy
membership function in fuzzy set theory. We may model the vague constraint on the
cost with ls(x; 10000, 14000) dictating that we are definitely satisfied if the price is less
than $10000, but can pay up to $14000 to a lesser degree of satisfaction. Similarly, we
may model the vague constraint on the kilometers with ls(x; 13000, 17000).1 We also
set some preference (weights) on these two vague constraints, say the weight 0.7 to
the price constraint and 0.3 to the kilometers constraint, indicating that we give more
priority to the price rather than to the car’s kilometers. The rules encoding the above
conditions are represented in Fig. 5. Rule (1) in Fig. 5 encodes the preference on the
price. Here, ls(p; 10000, 14000) is the function that given a price p returns the degree
of truth provided by the left-shoulder function ls(· ; 10000, 14000) evaluated on the in-
put p. Similarly, for rule (2). Rule (3) encodes the combination of the preferences by
taking into account the weight given to each preference. The table below reports the
instances of Buy(x, p, k) together with their greatest lower bound.

1 Recall that in our setting, all fuzzy membership functions provide a truth value in [0, 1]m.

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 21

dcba
0

1

x cba
0

1

x ba
0

1

x ba
0

1

x

(a) (b) (c) (d)

Fig. 4. (a) Trapezoidal function trz (x;a, b, c, d), (b) triangular function tri(x; a, b, c), (c) left
shoulder function ls(x;a, b), and (d) right shoulder function rs(x;a, b)

Pref1 (x, p) ← min(Cars(x), hasPrice(x, p), ls(p; 10000, 14000)) ; (1)
Pref2 (x, k) ← min(Cars(x), hasKM (x, k), ls(k; 13000, 17000)) ; (2)
Buy(x, p, k) ← 0.7 · Pref1 (x, p) + 0.3 · Pref2 (x, k) . (3)

Fig. 5. The car buying rules

ID PRICE KM s

455 12500 10000 0.56
34 12000 15000 0.50
1812 11000 16000 0.60 .

The basic inference problem that we are interested in here is the top-k retrieval problem,
which is formulated as follows.

Top-k Retrieval. Given a knowledge base K, retrieve k tuples 〈c, s〉 that instantiate
the query relation R with maximal scores (if k such tuples exist), and rank them in
decreasing order relative to the score s, denoted

ansk(K, R) = Topk{〈c, s〉 | s = glb(K, R(c))} .

Example 7. It can be verified that the answer to the top-2 problem for Example 6 is

ID PRICE KM s

1812 11000 16000 0.60
455 12500 10000 0.56 .

Whereas for Example 5 the answer to the top-2 problem is

ID HOTEL s

1 Verdi 0.45
2 Puccini 0.26 .

3 Top-k Query Answering for Deterministic KBs

We next provide a top-down top-k query answering algorithm.
We say that K is deterministic if for each relation symbol R there is at most one

axiom or rule in K having R in its head. Given K, we first note that we can remove the O

22 T. Lukasiewicz and U. Straccia

component by transforming axioms into rules. Indeed, can rewrite C1 � . . . � Cl � C
as σC ← min(σC1 , . . . , σCl

), where

σC =
{

A(x) if C = A
R(x1, . . . , xi−1, x, xi+1, . . . , xn) if C = ∃i :R ,

and A is an atomic concept name. So, without loss of generality, we assume that O is
empty. Obviously, we may also use a more expressive O component in which we con-
sider axioms of the form f(C1, . . . , Cl) � C instead, where f is a score combination
function. The translation (and so semantics) would be σC ← f(σC1 , . . . , σCl

).
Concerning the computation of the top-k answers, of course, we always have the

possibility to compute all answers, to rank them afterwards, and to select the top-k ones
only. However, this requires computing the scores of all answers. We would like to
avoid this in cases in which the extensional database is large and potentially too many
tuples would satisfy the query.

A distinguishing feature of our query answering procedure is that we do not deter-
mine all answers, but collect, during the computation, answers incrementally together
and we can stop as soon as we have gathered k answers above a computed threshold.

Overall, we build a procedure on top of current technology for top-k retrieval in
databases, specifically on RankSQL [9]. In the database we store the facts and new
derived facts and use RankSQL to retrieve incrementally new tuples. On top of it, we
have a reasoning module, which deals with the rules of the KB.

The presentation of our algorithm proceeds as follows. We first present a top-k an-
swering procedure for deterministic KBs. Then we address the more general case of
non-deterministic KBs as well. In the following, given an intensional relation Q, we
denote by rQ the set of all rules r : Q(x) ← φ ∈ P (that is, the set of all rules
r in P having Q in their head). Given r : Q(x) ← φ ∈ P , we denote by s(Q, r)
the set of all sons of Q relative to r (that is, the set of all intensional relation sym-
bols occurring in φ). We denote by p(Q) the set of all parents of Q, that is, the set
p(Q) = {Ri : Q ∈ s(Ri, r)} (that is, the set of all relation symbols directly depending
on Q).

The procedure TopAnswers is detailed in Fig. 6. We assume that facts are stored into
database tables, as specified in the facts component description. We also use some auxil-
iary functions and data structures: (i) for each intensional relation P , rankedList(P) is
a database relation containing the current top-ranked instances of P together with their
score. For each P , the tuples 〈c, s〉 in rankedList(P) are ranked in decreasing order
with respect to the score s. We do not allow 〈c, s〉 and 〈c, s′〉 to occur in rankedList(P)
with s �= s′ (if so, then we remove the tuple with the lower score); (ii) the variable
dg collects the relation symbols that the query relation Q depends on2; (iii) the array
variable exp traces the rule bodies that have been “expanded” (the relation symbols oc-
curring in the rule body are put into the active list); (iv) the variable in keeps track of
the relation symbols that have been put into the active list so far due to an expansion (to
avoid, to put the same relation symbol multiple times in the active list due to rule body
expansion); (v) δ is a threshold with the property that if we have retrieved k tuples for Q

2 Given a rule, the relation in the head directly depends on the relations in the body. Depends on
is the transitive closure of the relation “directly depends on” with respect to a set of rules.

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 23

Procedure TopAnswers(K, Q, k)
Input: KB K, intensional query relation symbol Q, k � 1;
Output: Mapping rankedList such that rankedList(Q) contains top-k answers of Q
Init: δ = 1, for all rules r : P (x) ← φ in P do

if P intensional then rankedList(P) = ∅;
if P extensional then rankedList(P) = TP endfor

1. loop
2. Active := {Q}, dg := {Q}, in := ∅,

for all rules r : P (x) ← φ do exp(P, r) = false;
3. while Active �= ∅ do
4. select P ∈ A where r : P (x) ← φ, Active := Active \ {P}, dg := dg ∪ s(P, r);
5. 〈t, s〉 := getNextTuple(P, r)
6. if 〈t, s〉 �= NULL then insert 〈t, s〉 into rankedList(P),

Active := Active ∪ (p(P) ∩ dg);
7. if not exp(P, r) then exp(P, r) = true ,

Active := Active ∪ (s(P, r) \ in), in := in ∪ s(p, r);
endwhile

8. Update threshold δ;
9. until rankedList(Q) does contain k top-ranked tuples with score above δ

or rL′ = rankedList ;
10. return top-k ranked tuples in rankedList(Q);

Procedure getNextTuple(P, r)
Input: intensional relation symbol P and rule r : P (x) ← ∃y.f(R1(z1), . . . , Rn(zl)) ∈ P;
Output: Next tuple satisfying the body of the r together with the score

loop
1. Generate next new instance tuple 〈t, s〉 of P,

using tuples in rankedList(Ri) and RankSQL
2. if there is no 〈t, s′〉 ∈ rankedList(P, r) with s � s′ then exit loop

until no new valid join tuple can be generated
3. return 〈t, s〉 if it exists else return NULL

Fig. 6. The top-k query answering procedure

with the score above δ, then we can stop, as it is guaranteed that any new tuple being
an instance of Q has a score below δ. The threshold δ is determined by the RankSQL
system and is described in more detail in [3,6].

Overall, the procedure works as follows. Assume, we are interested in determining
the top-k answers of Q(x). We start with putting the relation symbol Q in the active
list of relation symbols Active. At each iteration step, we select a new relation sym-
bol P from the queue Active and get a new tuple (getNexTuple(P, r)) satisfying the
rule body r whose head contains P with respect to the answers gathered so far. If the
evaluation leads to a new answer for P (〈t, s〉 �= NULL), we update the current an-
swer set rankedList(P) and add all relations Pj directly depending on p to the queue
Active. At some point, the active list will become empty and we have actually found
correct answers of Q(x). A threshold will be used to determine when we can stop

24 T. Lukasiewicz and U. Straccia

retrieving tuples. Indeed, the threshold determines when any newly retrieved tuple for
Q scores lower than the current top-k, and thus cannot modify the top-k ranking (step
9). So, step 1 loops until we do not have k answers above the threshold, or two succes-
sive loops do not modify the current set of answers (step 9). Step 2 initializes the active
list of relations. Step 3 loops until no relation symbol has to be processed anymore. In
step 4, we select a relation symbol to be processed. In step 5, we retrieve the next answer
for P . If a new answer has been retrieved (step 6, 〈t, s〉 �= NULL), then we update the
current answer set rankedList(P) and add all relations Pj that directly depend on P to
the queue Active. In step 7, we put once all intensional relation symbols appearing in
the rule body of P in the active list for further processing.

Finally, the getNextTuple procedure’s (see Fig. 6) main purpose is, given a relation
symbol P and a rule r : P (x) ← φ, to get back the next tuple (and its score) satisfying
the conditions of the rule r. It essentially converts r into a RankSQL query to be sub-
mitted to the database engine (the translation is pretty standard) and returns the next top
ranked unseen tuple.

Example 8. For instance, consider

Buy(x, p, k) ← 0.7 · Pref1 (x, p) + 0.3 · Pref2 (x, k)

as described in Example 6. Step 2 of the getNextTuple procedure can be implemented
as the RankSQL query

SELECT p1.id, p1.price, p2.km
FROM rankedList(Pref1) p1, rankedList(Pref2) p2
WHERE p1.id = p2.id AND (exclude already processed tuples for rule r)
ORDER BY 0.7*p1.s + 0.3*p2.s
NEXT 1

The NEXT k statement allows incrementally to access to the next k tuples of the query
(see the iMPro algorithm in [3]). We also use the condition “exclude already processed
tuples for rule r” to guarantee that we do not join tuples twice for the rule r. This can be
implemented using additional flags in rankedList(Prefi). Afterwards, we can proceed
with the other steps of the getNextTuple procedure.

For more details on RankSQL, the interested reader may refer to [9,8]. Using Rank-
SQL [9] has a further advantage as it directly provides us the threshold δ (see [3,6]) to
be used to stop the computation.

Example 9. Assume that we have the following query rule

Q(x) ← min(R1(x, y), R2(y, z)) ,

where Q is the query relation, and R1 and R2 are extensional relations with tables as
described in Fig. 7, left side. A top-2 retrieval computation is reported in Fig. 7, right
side. In this case, the threshold δ is computed as (see [6])

δ1 = t⊥
1 .score · t�

2 .score

δ2 = t�
1 .score · t⊥

2 .score

δ = max(δ1, δ2) ,

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 25

ID R1 R2

1 a b 1.0 m h 0.95

2 c d 0.9 m j 0.85

3 e f 0.8 f k 0.75

4 l m 0.7 m n 0.65

5 o p 0.6 p q 0.55
...

...
...

...
...

...
...

TopAnswers
It. Active P Δr rankedList(P) δ

1. Q Q 〈e, k, 0.75〉 〈e, k, 0.75〉 0.8

2. Q Q 〈l, h, 0.7〉 〈e, k, 0.75〉, 〈l, h, 0.7〉 0.75

3. Q Q 〈l, j, 0.7〉 〈e, k, 0.75〉, 〈l, h, 0.7〉, 〈l, j, 0.7〉 0.75

4. Q Q 〈l, n, 0.65〉 〈e, k, 0.75〉, 〈l, h, 0.7〉,
〈l, j, 0.7〉, 〈l, n, 0.65〉 0.7

Fig. 7. Facts and computation of Example 9

TopAnswers
It. Active P Δr rankedList(P) δ

1. Q Q 〈1,Verdi , 0.45〉 〈1, Verdi , 0.45〉 −
2. Q Q 〈2,Puccini , 0.26〉 〈1, Verdi , 0.45〉, 〈2, Puccini , 0.26〉 0.25

Fig. 8. Facts and computation of Example 10

where t⊥i is the last tuple seen in Ri, while t�i is the top ranked one in Ri. With ti.score
we indicate the tuple’s score.

The first call of getNextTuple(Q) finds the tuple 〈e, k, 0.75〉. In the second call,
we get 〈l, h, 0.7〉. In the third call, we get 〈l, j, 0.7〉. Finally, in the fourth call, we re-
trieve 〈l, n, 0.65〉. As now rankedList(Q) contains two answers not smaller than the
threshold 0.7, RankSQL will stop in providing new tuples in the getNextTuple proce-
dure, and we return {〈e, k, 0.75〉, 〈l, h, 0.7〉}. Note that no additional retrieved answer
may have a score above 0.7. Indeed, the next one would be 〈o, q, 0.55〉. Hence, in this
case, not all tuples are processed.

Example 10. Consider Example 4 and the query

q(x1, x2) ← CloseHotelTable(x1, x2, x3, x4, x5) · cheap(x3) .

The top-2 computation is shown in Fig. 8. After the second iteration, RankSQL stops
(see [3]) in providing new tuples in the getNextTuple as we have already two tuples
for q above the threshold, and RankSQL also knows that any successively retrieved
tuple have a score below 0.25 · 1.0 = 0.25 (1.0 is assumed as the highest possible score
for the degree of cheapness of the price for the single room in hotel Rossini). Of course,
in the worst case, RankSQL has to sequentially scan the whole table as we may not
know in advance how the fuzzy predicate cheap evaluates on the tuples. In fact, the tuple
with the lowest degree of closeness may end up with the highest degree of cheapness.

Let us briefly discuss the computational complexity. Let K be a KB. As we have seen,
the O component can be translated into P , and thus O = ∅ can be assumed. Let DQ

be the set of relation symbols that depend on the query relation symbol Q. Of course,
only relation symbols in DQ may appear in Active . Let ground(F ∪ P) denote the
grounding of the logic program F ∪ P . For a rule ri of the form Ri(x)← ∃y.φi(x, y),
let ki be the arity of the body of the rule r, and let k be the maximal arity for all rules

26 T. Lukasiewicz and U. Straccia

in P . Let pi be of arity ni, and let n be the maximal arity of relation symbols. Therefore,
the number of ground instances of this rule is bounded by |HU |ki , and thus is bounded
by |HU |k, where HU is the Herbrand universe of F ∪ P . Similarly, the number of
ground instance of Ri is bounded by |HU |ni , and thus is bounded by |HU |n. Let ci be
the cost of evaluating the score of the rule body of ri.

Now, observe that any tuple’s score is increasing as it enters in rankedList . Hence,
the truth of any ground instance of relation symbol Ri is increasing as Ri enters in
the Active list (step 6), except it enters due to step 7, which may happen one time
only. Therefore, each Ri will appear in Active at most O(|HU |ni · m + 1) times,3 as a
relation symbol is only re-entered into Active if a ground instance of Ri(x) evaluates
to an increased value, plus the additional entry due to step 7. As a consequence, the
worst-case complexity is

O(
∑

Ri∈DQ

ci · (|HU |ni · m + 1)) .

If for ease we assume that the cost ci is O(1) and that m is a fixed parameter (that is,
a constant), then we get a worst-case complexity of

O(|ground(F ∪ P)|) ,

and so TopAnswer is exponential with respect to |F ∪ P| (combined complexity), but
polynomial in |F| (data complexity), and so is as for classical Datalog. The complexity
result is not surprising as we resemble a top-down query answering procedure for Data-
log. We have the following termination and correctness result (termination is guaranteed
by the finiteness of [0, 1]m and the monotonicity of the score combination functions).

Theorem 1. Let K be a deterministic KB, and let Q be a query. Then, TopAnswers(K,
Q, k) terminates with TopAnswers(K, Q, k)= ansk(K, Q).

4 Top-k Query Answering for General KBs

Our top-k retrieval algorithm is based on the fact that whenever we find k tuples with
score above the threshold we can stop. Unfortunately, if R is in the head of more than
one rule, this is no longer true, and we have to modify slightly the computation of the
threshold. Note that since interpretations involve partial functions, e.g., R(x) ← R1(x)
and R(x) ← R2(x) are not the same as Q(x) ← max(R1(x), R2(x)) (in the latter
case, x has to belong to both R1 and R2, while in the former case, it suffices that x
belongs either to R1 or to R2).4

To accommodate the case where not always |rR| � 1, we have to make the following
modifications to the TopAnswer procedure as shown in Fig. 9. Essentially, we process
all rules related to a selected relation symbol P (step 4.1), and the threshold is updated
according to step 8, where each δr, for r ∈ rQ, is the threshold determined by RankSQL

3 We recall that m is the parameter in [0, 1]m.
4 If for an application we may live with Q(x) ← max(R1(x),R2(x)), then this guarantees that

we may restrict our attention to deterministic KBs.

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 27

Procedure TopAnswersGen(K, Q, k)
Input: KB K, intensional query relation Q, k � 1;
Output: Mapping rankedList such that rankedList(Q) contains top-k answers of Q
Init: δ = 1, ∀r ∈ rQ.δr = 1, for all rules r : P (x) ← φ in P do

if P intensional then rankedList(P) = ∅;
if P extensional then rankedList(P) = TP endfor

1. loop
2. Active := {Q}, dg := {Q}, in := ∅,

for all rules r : P (x) ← φ do exp(P, r) = false;
3. while Active �= ∅ do
4. select P ∈ A, Active := Active \ {P};
4.1 for all r : P (x) ← φ ∈ P , dg := dg ∪ s(P, r);
5. 〈t, s〉 := getNextTuple(P, r)
6. if 〈t, s〉 �= NULL then insert 〈t, s〉 into rankedList(P),

Active := Active ∪ (p(P) ∩ dg);
7. if not exp(P, r) then exp(P, r) = true ,

Active := Active ∪ (s(P, r) \ in), in := in ∪ s(p, r);
endfor

endwhile
8. Update threshold as δ = maxr∈rQ δr;
9. until rankedList(Q) does contain k top-ranked tuples with score above δ

or rL′ = rankedList ;
10. return top-k ranked tuples in rankedList(Q);

Fig. 9. The top-k query answering procedure for general KBs

as for the deterministic case. Here, we have to use max, since a tuple instantiating the
query relation Q may be derived for some of the rules in rQ. The following example
illustrates the basic principle behind the TopAnswersGen procedure.

Example 11. Consider the rules

r1 : Q(x) ← R1(x) ;
r2 : Q(x) ← P (x) ;
r3 : P (x) ← R2(x)

and facts in Fig. 10, left side. The top-2 computation is shown in Fig. 10, right side.
After step 5, we can stop, since we already have two answers with a score above the

threshold 0.4, and we do not need to continue anymore. Note that any successively
retrieved answer, e.g., 〈e, 0.3〉 has a score below the threshold 0.4.

The complexity is as for the deterministic case, and we have the following termination
and correctness result.

Theorem 2. Let K be a general KB, and let Q be a query. Then, TopAnswersGen(K,
Q, k) terminates with TopAnswersGen(K, Q, k)= ansk(K, Q).

28 T. Lukasiewicz and U. Straccia

R1

ID s

a 0.5
b 0.4
e 0.3
f 0.1

R2

ID s

c 0.7
d 0.2
g 0.1
h 0.05

TopAnswers
It . Active P Δr rankedList(P) δ δr1 δr2

1. Q Q 〈a, 0.5〉 〈a, 0.5〉 1.0 0.5 1.0

2. P P 〈c, 0.7〉 〈c, 0.7〉 − − −
3. Q Q 〈b, 0.4〉 〈a, 0.5〉, 〈b, 0.4〉 1.0 0.4 1.0

Q Q 〈c, 0.7〉 〈c, 0.7〉, 〈a, 0.5〉, 〈b, 0.4〉 0.7 0.4 0.7

4. P P 〈d, 0.2〉 〈c, 0.7〉, 〈d, 0.2〉 − − −
5. Q Q 〈d, 0.2〉 〈c, 0.7〉, 〈a, 0.5〉, 〈b, 0.4〉, 〈d, 0.2〉 0.4 0.4 0.2

Fig. 10. Facts and computation of Example 11

5 Related Work

While there are many works addressing the top-k problem for vague queries in
databases (cf. [1,3,5,4,6,7,9,8,10]), little is known for the corresponding problem in
knowledge representation and reasoning. For instance, [21] considers non-recursive
fuzzy logic programs in which the score combination function is a function of the score
of the atoms in the body only (no expensive fuzzy predicates are allowed). The work
[16] considers non-recursive fuzzy logic programs as well, though the score combina-
tion function may consider expensive fuzzy predicates. However, a score combination
function is allowed in the query rule only. We point out that in the case of non-recursive
rules and/or axioms, we may rely on a query rewriting mechanism, which, given an
initial query, rewrites it, using rules and/or axioms of the KB, into a set of new queries
until no new query rule can be derived (this phase may require exponential time relative
to the size of the KB). The obtained queries may then be submitted directly to a top-k
retrieval database engine. The answers to each query are then merged using the disjunc-
tive threshold algorithm given in [16]. The works [17,15] address the top-k retrieval
problem for the description logic DL-Lite only, though recursion is allowed among the
axioms. Again, the score combination function may consider expensive fuzzy predi-
cates. However, a score combination function is allowed in the query only. The work
[19] shows an application of top-k retrieval to the case of multimedia information re-
trieval by relying on a fuzzy variant of DLR-Lite. Finally, [18] addresses the top-k
retrieval for general (recursive) fuzzy LPs, though no expensive fuzzy predicates are
allowed. Closest to our work is clearly [18]. In fact, our work extends [18] by allowing
expensive fuzzy predicates, which have the effect that the threshold mechanism de-
signed in [18] does not work anymore. Furthermore, in this paper, we made an effort to
plug-in current top-k database technology, while [18] does not and provides an ad-hoc
solution. Though we have not yet performed experimental evaluations, we hope that
this choice, beside allowing a more expressive language, will provide better efficiency.

6 Summary and Outlook

The top-k retrieval problem is an important problem in logic-based languages for the
Semantic Web. We have addressed this issue for a combination of a fuzzy DL and LP.

Top-k Retrieval in Description LPs Under Vagueness for the Semantic Web 29

An implementation of our algorithm is under development, by relying on RankSQL.
Other main topics for future work include: (i) Can we apply similar ideas to more ex-
pressive DLs and/or non-monotonic LPs? (ii) How can we approach the top-k problem
under a probabilistic setting, or more generally under uncertainty, possibly relying on
emerging top-k retrieval systems for uncertain database management [13,14]?

Acknowledgments. Thomas Lukasiewicz is supported by the German Research Foun-
dation (DFG) under the Heisenberg Programme. We thank the reviewers for their con-
structive and useful comments, which helped to improve this work.

References

1. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases:
Mapping strategies and performance evaluation. ACM TODS 27(2), 153–187 (2002)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Proc. KR-2006, pp. 260–270 (2006)

3. Chang, K.C.-C., Hwang, S.-W.: Minimal probing: Supporting expensive predicates for top-k
queries. In: Proc. SIGMOD-2002, pp. 346–357 (2002)

4. Fagin, R.: Combining fuzzy information: An overview. SIGMOD Rec. 31(2), 109–118
(2002)

5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proc.
PODS-2001 (2001)

6. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational
databases. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) DBISP2P 2003. LNCS,
vol. 2944, pp. 754–765. Springer, Heidelberg (2004)

7. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.: Adaptive
rank-aware query optimization in relational databases. ACM TODS 31(4), 1257–1304 (2006)

8. Li, C., Chang, K.C.-C., Ilyas, I.F.: Supporting ad-hoc ranking aggregates. In: Proc. SIGMOD-
2006, pp. 61–72 (2006)

9. Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: RankSQL: Query algebra and optimization for
relational top-k queries. In: Proc. SIGMOD-2005, pp. 131–142 (2005)

10. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible databases.
ACM TODS 29(2), 319–362 (2004)

11. Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information retrieval. J.
ACM 48(5), 909–970 (2001)

12. Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., Donini, F.M.: Vague knowledge bases
for matchmaking in P2P e-marketplaces. In: Proc. ESWC-2007, pp. 414–428 (2007)

13. Ré, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on probabilistic data. In:
Proc. ICDE-2007, pp. 886–895 (2007)

14. Soliman, M.A., Ilyas, I.F., Chang, K.C.: Top-k query processing in uncertain databases. In:
Proc. ICDE-2007, pp. 896–905 (2007)

15. Straccia, U.: Answering vague queries in fuzzy DL-Lite. In: Proc. IPMU-2006, pp. 2238–
2245 (2006)

16. Straccia, U.: Towards top-k query answering in deductive databases. In: Proc. SMC-2006,
pp. 4873–4879 (2006)

17. Straccia, U.: Towards top-k query answering in description logics: The case of DL-Lite. In:
Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI),
vol. 4160, pp. 439–451. Springer, Heidelberg (2006)

30 T. Lukasiewicz and U. Straccia

18. Straccia, U.: Towards vague query answering in logic programming for logic-based informa-
tion retrieval. In: Proc. IFSA-2007, pp. 125–134 (2007)

19. Straccia, U., Visco, G.: DLMedia: An ontology mediated multimedia information retrieval
system. In: Proc. DL-2007 (2007)

20. Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124, 361–370 (2001)
21. Vojtáš, P.: Fuzzy logic aggregation for semantic web search for the best (top-k) answer. In:

Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web. Capturing Intelligence, ch. 17, pp.
341–359. Elsevier, Amsterdam (2006)

A Fuzzy Set-Based Approach to Temporal

Databases

J. Campaña1, M.C. Garrido2, N. Maŕın1, and O. Pons1,�

1 Dept. Computer Science and A.I.,
University of Granada, 18071 - Granada, Spain

{jesuscg,nicm,opc}@decsai.ugr.es
2 Junta de Andalućıa
cglupi@gmail.com

Abstract. The primary aim of temporal databases is to offer a common
framework to those DB applications that need to store or handle differ-
ent types of temporal data from a variety of sources since they allow the
concept of time to be unified from the point of view of meaning, repre-
sentation and manipulation. Although at first sight the incorporation of
time into a DB might appear to be a direct and even simple task, it is,
however, quite complex because not only must new structures and spe-
cific operators be included but the semantics of classical manipulation
sentences (insert, update or delete) must be changed when temporal data
are present. In addition, temporal information is not always as precise
as desired since it is affected by imprecision due to the use of natural
language or to the nature of the source. In this paper, we deal with the
problem of the update and query operations when time is expressed by
means of a fuzzy interval of dates. Throughout the text, we will see how
the delete and insert operations are particular cases of the update process
and will therefore be implicitly presented in the paper.

Keywords: Fuzzy Data, Temporal Database, Fuzzy Interval.

1 Introduction

Temporal databases (TDB), in the broadest sense, offer a common framework for
all database applications that involve certain temporal aspects when organizing
data. These databases allow the time concept to be unified in terms of the
representation, the semantics and the manipulation.

Although there is nothing new about database (DB) applications involving
temporal data and they have in fact been developed since relational databases
were first used, application programmers were responsible for designing, repre-
senting, programming and managing the necessary temporal concepts.

One of the first formalizations of the concept of granularity in the time domain
can be seen in [Clif88], but the approach to this problem from the DB and the
temporal reasoning points of view came later and was first studied in depth in
� Corresponding author.

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 31–44, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

32 J. Campaña et al.

1990. In this sense, the papers by Duncan [Dun98], Goralwalla [Gora98] and
Bettini [Bett98a] are very relevant because of the introduction of the concept of
calendar and the extension of the granularity definition.

Up until now, most work (both theoretical and practical) carried out on this
topic has used the relational DB model as a starting point (since it is the most
complete and consolidated model) with the results based on the extension of the
table schemata [Tans93], the range of operators to be used [Elma90] and on the
addition of specific integrity constraints related to the new data types [Snod95]
[Etzi98] [Bett00].

There are other interesting proposals about the architecture of a system that
supports the time concept, as can be seen in [Bett98b]. In line with the theoretical
results obtained, much effort has therefore been devoted to achieving a temporal
language either as an extension of SQL [Sard90] [Snod98] or of Quel [Snod87].

Other approaches to temporal databases deal with the problem of imperfect
temporal data in the sense that we do not know exactly when an event hap-
pened but we have approximate information about it. In [Dyre98] this problem
is tackled from the probability theory point of view by assigning a probability
distribution to the set of possible instants. The authors call this interpretation
valid-time indeterminacy. The main inconvenience of this proposal is that in
many cases it is very difficult (or even impossible) for the user to give the under-
lying mass function that associates a probability to every chronon. More over,
if the user does not provide the mass function, the method proposed is useless
and some important information provided by the user is wasted. This problem
is also dealt with in [Chou05] by attaching a probability distribution to every
chronon.

On the other hand, certain authors working in the area of soft computing
have opted to study temporal data affected by imprecision from the possibility
theory point of view, which is more flexible and better represents users’ appre-
ciations. In the case of relational databases (as in our case), Kurutach’s paper
[Kuru98] presents a preliminary study of this topic with a formal representation
of fuzzy-temporal data and various query-related operators. Nevertheless, cru-
cial operations such as insert, update and delete (which have strong constraints)
are not addressed.

A significant survey of papers relating to spatio-temporal databases can be
found in [Calu04]. More specifically in [Dragi04] and [Bord04] the fuzzy sets
theory is used to perform temporal interpolation in a GIS object-oriented data-
base. In [Tre97] the problem of fuzzy time is also addressed in an object-oriented
environment, something which is beyond the scope of this paper.

In summary, there are a wide range of interesting proposals on this topic but
there are still many important problems to be solved, such as the ones being
tackled in this paper.

The paper is organized as follows. The second section explores the prelimi-
nary concepts and includes a brief summary of temporal databases, fuzzy sets
and fuzzy database operators. Section 3 introduces our particular way of rep-
resenting and interpreting fuzzy time. Section 4 examines the manipulation of

A Fuzzy Set-Based Approach to Temporal Databases 33

fuzzy temporal data focusing on the update operator since delete and insert are
particular cases of it. In order to complete the DML, Section 5 describes different
types of queries on a fuzzy TDB and explains how to compute a final fulfillment
degree for the selected tuples. Finally, Section 6 presents some of our conclusions
and indicates some missing points for future lines of research.

2 Preliminaries

In this section we will introduce some previous concepts on classical temporal
databases, give a brief explanation of fuzzy numbers, and summarize the main
operators of the Fuzzy SQL language, since these topics form the basis of this
paper.

2.1 Temporal Databases

TDB provide suitable data types and operators for handling time. In terms
of the TDB, time is an application-based ordered sequence of points of the
same granularity; in other words, one of several measurement units will be used
depending on requirements: a second, a day, a week, etc..

From the point of view of the real world, there are basically two ways to
associate concepts to a fact:

1. Punctual facts: a fact is related to a single time mark that depends on the
granularity and provides information about the time when it happened (e.g.
birthdays, the date of purchase, an academic year, etc.).

2. Time periods: a fact is related to a period represented by a starting and an
ending instant and so the duration (or valid time) of the fact is implicit (e.g.
[admission date, discharge date], [contract start date, contract end date],
etc.).

The time dimension may appear with many semantics according to the prob-
lem to be represented. In many situations, time periods are used to express the
validity of the data representing a fact. This way of interpreting time is called
valid time.

In a TDB, however, in addition to the valid time, another interesting use of
the time dimension is to reflect the instant when the fact was stored (this may be
calculated using the system time) and is called the transaction time. Certain
applications only use one of the two dimensions while others use both. When
this is the case, the TDB is called a bitemporal database. In order to take one or
both interpretations into account, table schemata in the TDB must be extended
with specific attributes, as shown in Figure 1 for Tables EMP (employees) and
DPT (departments).

When only the valid time interpretation is used, the schema must be extended
in order to include the attributes VST (Valid Start Time) and VET (Valid End
Time), and a valid time relation (VTR) is obtained.

34 J. Campaña et al.

TransactionTransaction

TimeTime

EMPNAM EMPID SALARY BOSS TST TETEMPNAM EMPID SALARY BOSS TST TETEMPEMP

DPTNAM DPTOID BUDGET MNGR TST TETDPTNAM DPTOID BUDGET MNGR TST TETDPTDPT

EMPNAM EMPID SALARY BOSS VST VET EMPNAM EMPID SALARY BOSS VST VET EMPEMP

DPTNAM DPTOID BUDGET MNGR VST VET DPTNAM DPTOID BUDGET MNGR VST VET DPTDPT

ValidValid

TimeTime

TransactionTransaction

TimeTime

EMPNAM EMPID SALARY BOSS TST TETEMPNAM EMPID SALARY BOSS TST TETEMPEMP

DPTNAM DPTOID BUDGET MNGR TST TETDPTNAM DPTOID BUDGET MNGR TST TETDPTNAM DPTOID BUDGET MNGR TST TETDPTNAM DPTOID BUDGET MNGR TST TETDPTDPT

EMPNAM EMPID SALARY BOSS VST VET EMPNAM EMPID SALARY BOSS VST VET EMPNAM EMPID SALARY BOSS VST VET EMPNAM EMPID SALARY BOSS VST VET EMPEMP

DPTNAM DPTOID BUDGET MNGR VST VET DPTNAM DPTOID BUDGET MNGR VST VET DPTNAM DPTOID BUDGET MNGR VST VET DPTNAM DPTOID BUDGET MNGR VST VET DPTDPT

ValidValid

TimeTime

Fig. 1. Schema extensions in a temporal database

When only the transaction time interpretation is used, the schema must be ex-
tended in order to include the attributes TST (Transaction Start Time) and TET
(Transaction End Time), and a transactional time relation (TTR) is obtained.
If both interpretations are necessary at the same time, then all the previously
mentioned attributes must be included in the schema. In the following sections
of this paper, we will focus on the valid time approach since we are dealing with
imprecise data and system timestamps are always precise.

Following on with our example of the time relation EMP, each tuple represents
a version of the available information about an employee, and every version is
valid only when used in its time interval [VST,VET]. The current version (also
called the valid tuple) takes the special undefined value in the attribute VET
since the interval is still open. In the Table 1 an instance of EMP is shown.

Table 1. Instance of EMP valid-time relation

EMPNAM EMPID SALARY BOSS EXPERTISE VST VET
GRANT 1245 1500 9877 TRAINEE 15-06-1997 31-05-1998
GRANT 1245 1800 9877 JUNIOR 01-06-1998 Undefined

REDFORD 9877 1200 4588 TRAINEE 20-08-1994 31-01-1996
REDFORD 9877 1500 4588 JUNIOR 01-02-1996 31-03-1997
REDFORD 9877 2200 9989 SENIOR 01-04-1997 Undefined
BROWN 1278 2800 4588 JUNIOR 01-05-2005 10-08-2008
STREEP 6579 4000 9877 TRAINEE 15-06-1997 Undefined

At first sight, the inclusion of time features in a DB seems to be easy and
direct, but extending schemata with these new attributes has many complex
consequences, such as:

– In a VTR, the old primary key is not unique. The new primary key is the
result of combining the previous value for the key and one of the valid time
attributes, VST or VET. In the case of Table EMP, the primary key is not
EMPID (employee’s code) but EMPID+VST or EMPID+VET.

– There is only one valid tuple for each entity at a given time. Every operation
must be strictly controlled so that the valid time periods of the same entity
do not overlap.

– Internal implementation of common operations is completely different from
those implemented in a non-temporal database. For instance, when an UP-
DATE is required, the current version of the tuple is closed and a new version

A Fuzzy Set-Based Approach to Temporal Databases 35

of it is created with the modified data. In this case, the user is responsible
for giving the valid time; when closing the active version, the value of the
attribute VET is updated with the previous grain to the value of the VST
of the new version. In a similar way, the DELETE operation is carried out
by closing the active version (i.e. updating the value of the attribute VET)
whereas the INSERT operation involves creating a new tuple, the valid one.

However, it is not always possible for the user to give an exact but an imprecise
starting/ending point for a fact validity period. In this case, the fuzzy set theory
is a very suitable tool for not missing such information since fuzzy time values
can be represented and managed.

This paper explores the fuzzy representation of time together with the UP-
DATE and the SELECT operations when the time is expressed in fuzzy terms.
It should be noted that the study of the UPDATE operation also includes the
DELETE and the INSERT operations as particular cases; therefore, the results
obtained can be extrapolated to the whole data manipulation language.

2.2 Fuzzy Numbers

A fuzzy value is a fuzzy representation of the real value of a property (attribute)
when it is not precisely known.

In this paper, following Goguen’s Fuzzification Principle [Gogu67], we will call
every fuzzy set of the real line a fuzzy quantity. A fuzzy number is a particular
case of a fuzzy quantity with the following properties:

Definition 1
The fuzzy quantity A with membership function μA(x) is a fuzzy number
[Dubo85a] if:

1. ∀ α ∈ [0, 1], Aα = {x ∈ R | μA(x) ≥ α} (α-cuts of A) is a convex set.
2. μA(x) is an upper-semicontinuous function.
3. The support set of A, defined as Supp(A) = {x ∈ R | μA(x) > 0}, is a

bounded set of R, where R is the set of real numbers.

We will use
∼
R to denote the set of fuzzy numbers, and h(A) to denote the height

of the fuzzy number A. For the sake of simplicity, we will use capital letters at
the beginning of the alphabet to represent fuzzy numbers.

The interval [aα, bα] is called the α-cut of A. Therefore, fuzzy numbers are
fuzzy quantities with α-cuts which are closed and bounded intervals: Aα =
[aα, bα] with α ∈ (0, 1].

If there is at least one point x verifying μA(x) = 1 we say that A is a normal-
ized fuzzy number.

A trapezoidal shape is sometimes used to represent fuzzy values. This rep-
resentation is very useful as the fuzzy number is completely characterized by
four parameters (m1, m2, a, b) and the height h(A) when the fuzzy value is not
normalized (as shown in Figure 2). We will use modal set to denote all the values

36 J. Campaña et al.

1

A

m -a m

α

aα αm2 m +b1 1 2b

h(A)

Fig. 2. Trapezoidal fuzzy number

in the interval [m1, m2], i.e. the set {x ∈ Supp(A) | ∀ y ∈ R, μA(x) ≥ μA(y)}.
The values a and b are called left and right spreads, respectively.

In our approach, we will use trapezoidal and normalized fuzzy values inter-
preted as possibility distributions on the domain of the dates.

2.3 FSQL (Fuzzy SQL)

The FSQL language [Gali98] [Gali06] extends the SQL language in order to
express flexible queries. Due to its complex format, we only show here a brief
summary with the main extensions to the select command.

– Linguistic Labels: These labels will be preceded by the symbol $ to distin-
guish them easily and have associated a trapezoidal possibility distribution.
So, for example, we can define the labels $Short, $Normal, $Tall, ... on the
Height attribute.

– Fuzzy Comparators: Besides the typical comparators (=, >...), FSQL in-
cludes the fuzzy comparators shown in table 2. Like in SQL, fuzzy com-
parators compare one column with one constant or two columns of the same
type.

Possibility comparators are less restrictive than necessity comparators
are. For example, NFEQ uses the following equation:

ΘNFEQ(p̃, p̃′) = inf
d∈U

max (1 − μ
�p(d), μ

�p′(d)) (1)

Table 2. Fuzzy Comparators for FSQL (Fuzzy SQL)

Comparator for:
Possibility Necessity Semantics

FEQ NFEQ Fuzzy EQual (Possibly/Necessarily Equal)
FGT NFGT Fuzzy Greater Than
FGEQ NFGEQ Fuzzy Greater or Equal
FLT NFLT Fuzzy Less Than
FLEQ NFLEQ Fuzzy Less or Equal
MGT NMGT Much Greater Than
MLT NMLT Much Less Than

A Fuzzy Set-Based Approach to Temporal Databases 37

– Fulfilment thresholds (γ): For each simple condition a fulfilment threshold
may be established (default is 1) with the format:

<condition> THOLD γ

indicating that the condition must be satisfied with minimum degree γ ∈
[0, 1] to be considered. The reserved word THOLD is optional and may be
substituted by a traditional crisp comparator (=, ≤...).

Example 1. Find the people that are necessarily taller than label $Tall (in
minimum degree 0.8):

SELECT * FROM Person WHERE Height NFGT $Tall THOLD 0.8

– Function CDEG(<attribute>): It shows a column with the fulfilment degree
of the condition imposed on a specific attribute. If logic operators appear,
the calculation of this compatibility degree is carried out as table 3 shows.
We use the minimum T-norm and the maximum T-conorm, but the user
may change these values by modifying a view (FSQL_NOTANDOR). In this view
the user can set the function to be used for every logic operator (NOT, AND,
OR). Obviously, that function must be implemented in the FSQL Server or
by the user himself.

Table 3. Default CDEG computation with logic operators

<Condition> CDEG(<Condition>)

<cond1> AND <cond2> min(CDEG(<cond1>),CDEG(<cond2>))
<cond1> OR <cond2> max(CDEG(<cond1>),CDEG(<cond2>))

NOT <cond1> 1 - CDEG(<cond1>)

– Fuzzy Constants: We can use the fuzzy constants detailed in table 4.

Table 4. Fuzzy constants that may be used in FSQL queries

F. Constant Significance
UNKNOWN Unknown value but the attribute is applicable.
UNDEFINED The attribute is not applicable or it is meaningless.
NULL Total ignorance: We know nothing about it.
$[a,b,c,d] Fuzzy trapezoid (a≤b≤c≤d).
$label Linguistic Label: It may be a trapezoid or a scalar.
[n,m] Interval “Between n and m” (a=b=n and c=d=m).
#n Fuzzy value “Approximately n” (b=c=n and n–a=d–n=margin).

3 Fuzzy Time Representation

In the introduction to this paper, we saw that in classical TDB, valid time is
managed thanks to the extension of the tables schemata by adding two new at-
tributes - the valid start time (VST) and the valid end time (VET) - to determine
the fact period of validity expressed by a tuple.

38 J. Campaña et al.

In this paper we will consider that the information provided by the VST
and VET attributes is fuzzy in that we are not completely sure about when the
current values of the tuple began to be valid. For example, in our case, we cannot
say when an employee was promoted from the junior to the senior category.

A more immediate solution to this problem is to soften the VST and the VET
in such a way that they may contain a fuzzy date (for a day granularity) repre-
sented by means of a fuzzy number and interpreted as a possibility distribution.
This means that if we use the parametrical representation for fuzzy numbers, we
need to store four values for the VST and four values for the VET, as shown in
Figure 3. Since the meaning of the attributes VST and VET is the period of time
during which the values of a tuple are possibly valid, it is more convenient to
summarize the information given by the two fuzzy attributes in a fuzzy interval.
This situation can be represented by the trapezoidal fuzzy set shown in Figure 4
which incorporates the semantics of our problem. Let us call this attribute the
fuzzy validity period (FVP).

As this figure shows, the right side of the interval (VET) is set to the maximum
value of the date domain (31/12/2050 in our example) in order to specify that
the associated tuple is currently valid, while the left side of the interval is the
part that reflects the imprecision about the starting time point of the interval
or VST.

9877

9877

BOSS

JUNIOR

TRAINEE

EXPERTISE

~ 31-05-1998~15-06-199715001245GRANT

~undefined~01-06-199815001245GRANT

VETVSTSALARYEMPIDEMPNAM

9877

9877

BOSS

JUNIOR

TRAINEE

EXPERTISE

~ 31-05-1998~15-06-199715001245GRANT

~undefined~01-06-199815001245GRANT

VETVSTSALARYEMPIDEMPNAM

(01-06-1998,01-06-1998,2,2) (31-12-2050,31-12-2050,0,0)

Fig. 3. Sample tuple with fuzzy VST and VET

The advantage of this representation is that both periods of time and fuzzy
dates can be represented in an unified way. Let us consider a parametrical rep-
resentation such as (m,m,a,b) which represents a central time point with some
imprecision on both sides, and this is interpreted as a fuzzy date.

01/06/199830/05/1998

1

Days

31/12/2050

Fig. 4. Fuzzy Period of Time for a Valid Tuple

A Fuzzy Set-Based Approach to Temporal Databases 39

In [Medi94] a generalized fuzzy DB model is presented which supports this
representation for fuzzy data and the corresponding implementation in a classical
relational DB system (Oracle).

4 Update Operation with Fuzzy Periods of Time

As we explained in the introduction, information is never deleted in a TDB when
an update operation is carried out. The process is to leave the old version of the
data in the DB and to add the new version with any suitable modifications made,
closing the old one and setting as the valid end time the immediately previous
granule to the valid start time of the inserted tuple. It should be noted that
closing the old version of a tuple is a deletion operation in the TDB environment
whereas adding a new version corresponds to an insert operation.

One key point that arises when the time period considered is fuzzy is that we
cannot identify the time point immediately prior to a given one for a concrete
granularity since there are many values with different possibility degrees. Com-
puting this value is very important for the update operation since we need to
close the old version for the new one to be valid.

Definition 2
Let us use μO(x) to denote the membership function associated to the fuzzy
interval of the old version of the tuple to be updated and μN (x) the membership
function associated to the new fuzzy interval. Then, the membership function of
the fuzzy interval (μ′O(x)) that serves to close the validity time of the old one is
(see Figure 5):

μ′O(x) =
{

μO(x) ∀x | μN (x) = 0
1 − μN (x) ∀x | μN (x) > 0

Fig. 5. Fuzzy value O’ that closes a version of a tuple with new valid time N

We will use closing interval to denote all the values x ∈ D such that 0 <
μN (x) < 1 and 0 < μ′O(x) < 1.

40 J. Campaña et al.

It can be seen how in the closing interval of the domain D, the greater the pos-
sibility of belonging to the new interval, the smaller the possibility of belonging
to the old one, which makes sense since the interval is finishing for the old valid
time but starting for the new valid time. It is obvious that the non-overlapping
condition required for the crisp TDB is no longer valid, but the function used
to close the old version guarantees that the overlapping degree will never reach
value 1 for the sake of consistency (it is not possible for two versions to be valid
with possibility degree 1).

5 Querying the Fuzzy TDB

Once we are able to represent fuzzy periods of valid time, queries about a
crisp/fuzzy date or period to the valid time relations can be solved computing
the corresponding fulfillment degree between the time we are querying about
(QT) and the database valid time (FVP). In the next section we explain the
most representative types of queries. In order to illustrate all the cases, let us
consider the fuzzy TDB instance represented in Table 5.

Table 5.

EMPNAM EMPID SALARY BOSS EXPERTISE FVP
GRANT 1245 1500 9877 TRAINEE (15/06/1997, 31/05/1998, 2,2)
GRANT 1245 1800 9877 JUNIOR (02/06/1998, 31/12/2050,2,0)

REDFORD 9877 1200 4588 TRAINEE (20/08/1994, 31/01/1996, 2,3)
REDFORD 9877 1500 4588 JUNIOR (03/02/1996, 31/03/1997,3,4)
REDFORD 9877 2200 9989 SENIOR (04/04/1997, 31/12/2050,4,0)
BROWN 1278 2800 4588 JUNIOR (01/05/1996,10/08/97,0,0)
STREEP 6579 4000 9877 TRAINEE (15/06/1997,31/12/2050,0,0)

NEWMAN 5546 2300 9877 SENIOR (18/06/1997,29/04/1998,8,10)

5.1 Queries About a Precise Date

In this case, QT is a date d and the system must find the tuples whose FVP
includes d in the support set, that is, those tuples for which the membership of
this date to the fuzzy period is greater than 0. Once found, the fulfillment degree
of the resulting tuple will be computed as:

μFV P (d)

It should be noted that this degree will be 1 when the date d belongs to the
modal set of the fuzzy interval.

As explained before, it may happen that not only one but two versions of the
same tuple have a validity period that includes d in the support set. This is the
case when the mentioned date belongs to the closing interval of two consecutive
periods. In this case, the answer will be the tuple whose validity time best fits
the query date.

A Fuzzy Set-Based Approach to Temporal Databases 41

03/02/9631/01/96

1

Days

31/12/205004/04/97

μFVP1(x)

31/03/97

μFVP2(x)

d

0.75

0.25

Fig. 6. Membership degrees when date d belongs to the closing interval of two tuples

Example 2. One example of this type of query is Find the expertise level of
employee number 9877 on 1st April 1997. This situation can be graphically seen
in figure 6 and the formal expression of this query using FSQL syntax is:

fsql> SELECT empnam,expertise,CDEG(fvp) FROM employees
WHERE empid=9877 AND
fvp FEQ TO_DATE(’01/04/1997’) THOLD 0.0;

EMPNAM EXPERTISE FVP CDEG(FVP)

REDFORD JUNIOR (03-02-1996, 31-03-1997,3,4) 0.75
REDFORD SENIOR (04-04-1997, 31/12/2050,4,0) 0.25

5.2 Queries About a Fuzzy or Crisp Period of Time

In this case, QT is another fuzzy interval of dates and the system should find
the tuples whose FVP includes QT and compute to what degree this inclusion
is fulfilled. This situation can be modelled by means of the implication:

QT −→ FV P

If we assume that the implication function I(QT (d), FV P (d)) used is the
material implication, then the fulfillment degree of this fuzzy inclusion will be:

N(FV P |QT) = minx∈DI(μQT (x), μFV P (x))

N(FV P |QT) = minx∈D{(1 − μQT (x)) ⊕ μFV P (x)}

If the t-conorm considered is the maximum, the resulting measure is a neces-
sity. Note that this measure includes the classical sets inclusion as a particular
case.

If more than one version of a tuple give a positive result for the inclusion
degree, then the best answer will be the one with the highest degree.

Example 3. One example of this type of query is Find the boss of employee
number 9877 by the beginning of April 1997 (01/04/97,04/04/97,0,2). The formal
expression of this query using FSQL syntax is:

42 J. Campaña et al.

fsql> SELECT e.empnam, e.expertise, e.boss, CDEG(e.fvp)
FROM employees WHERE e.empid=9877 AND
$[’01/04/1997’,’05/04/1997’,0,2] NFEQ fvp THOLD 0.0;

EMPNAM EXPERTISE BOSS CDEG(FVP)

REDFORD SENIOR 9989 0,25

where NFEQ (necessity-based fuzzy equal) computes to what degree the left side
fuzzy set is included in the right side one using the expression given above.

5.3 Simultaneous Events

The problem now is to compute to what degree two events are simultaneous. This
operation is very useful since joins are based on it. The simultaneity degree or
temporal equality between two periods of time can be carried out computing the
degree to which both fuzzy/crisp sets -FV P1 and FV P2- are mutually included
one in the other, that is, we should compute:

⊗{N(FV P1/FV P2), N(FV P2/FV P1)}

as the final value for the fuzzy equality degree between the two fuzzy sets where
⊗ stands for a T-norm (minimum is our case).

Example 4. A query of this type could be Find employees with the boss 9877
during the same period of time. The formal expression of this query using FSQL
syntax is:

fsql> SELECT e.empnam,f.empnam,CDEG(*)
FROM employees e, employees f WHERE e.boss=9877
AND f.boss=9877 AND e.empid<>f.empid AND (f.fvp NFEQ e.fvp) >0
and (e.fvp NFEQ f.fvp) >0

E.EMPNAM F.EMPNAM CDEG(*)

GRANT NEWMAN 0,4

where CDEG(*) computes the minimum of the fulfillment degrees obtained.

6 Conclusions and Future Work

In this paper we have shown the advantages of representing imprecise temporal
data with a fuzzy parametrical representation. On this temporal data, we have
explained how an update operation can be carried out by taking into account
that no deletion is possible when temporal information is stored. As a result of
this operation, a modification to the old version of the tuple is needed by chang-
ing some of the parameters that define it. As a consequence of our approach, the
queries return a set of tuples together with a fulfillment degree when a query

A Fuzzy Set-Based Approach to Temporal Databases 43

is made on these fuzzy temporal data. The paper also analyzes the different
types of queries that can be made on these data. We are currently analyzing the
behavior of other linguistic operators (after, before, short time, long time ago,
etc.) and considering a wider range of temporal data. We are also studying the
problem of primary keys in the presence of fuzzy intervals instead of VST and
VET attributes and trying to find out new indexing techniques that take the
new primary keys into account.

Acknowledgments. This paper has been partially supported by research project
TIC-1570.

References

[Bett98a] Bettini, C., Wang, X., Jajodia, S.: A general framework for time granulari-
ties and its application to temporal reasoning. Annals of Mathematics and
Artificial Intelligence 22, 29–58 (1998)

[Bett98b] Bettini, C., Wang, X., Jajodia, S.: An architecture to inter-operability in
temporal databases. En Temporal Databases, 36–55 (1998)

[Bord04] Bordogna, G., Chiesa, S.: Representing and Querying Imperfect Spatio-
Temporal Information in an Object-Oriented Framework. In: de Caluwe,
R., de Tré, G., Bordogna, G. (eds.) Spatio-Temporal Databases Flexible
Querying and Reasoning (2004) ISBN: 978-3-540-22214-9

[Calu04] de Caluwe, R., de Tr, G., Bordogna, G. (eds.): Spatio-Temporal Databases
Flexible Querying and Reasoning (2004) ISBN: 978-3-540-22214-9

[Chou05] Chountas, P., Petrounias, I.: Modeling and Representation of Uncertain
Temporal Information. Requirements Eng. 5, 144–156 (2005)

[Clif88] Clifford, J., Rao, A.: A simple general structure for temporal domains. In:
Proc. de IFIP Working Conference on Temporal Aspects in Information
Systems, pp. 17–28. Elservier, Amsterdam (1988)

[Dragi04] Dragizevic, S.: Fuzzy Sets for the representation of the spatial and temporal
dimensions in GIS databases. In: de Caluwe, R., de Tr, G., Bordogna, G.
(eds.) Spatio-Temporal Databases Flexible Querying and Reasoning (2004)
ISBN: 978-3-540-22214-9

[Dyre98] Dyresson, C.E., Snodgrass, R.T.: Supporting Valid-Time Indeterminacy.
ACM Trans. on Database Systems 23(1), 1–57 (1998)

[Dubo85] Dubois, D., Prade, H.: Fuzzy Numbers. An Overview. In: Bezdek (ed.) The
Analysis of Fuzzy Information. CRS Press, Boca Raton (1985)

[Dun98] Duncan, D.E.: Calendar: Humanity’s Epci Struggle to Determine a True
and Accurate Year. Avon books Inc., New York (1998)

[Elma90] Elmarsi, R., Wuu, G.T.: A Temporal Model and Query Language for ER
Databases (1990)

[Etzi98] Etzion, O., Jajodia, S., Sripada, S. (eds.): Temporal Databases: Research
and Practice. LNCS, vol. 1399. Springer, Heidelberg (1998)

[Gali98] Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A Server for Fuzzy SQL
Queries. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) FQAS
1998. LNCS (LNAI), vol. 1495, pp. 164–174. Springer, Heidelberg (1998)

[Gali06] Galindo, J., Urrutia, A., Piattini, M.: Fuzzy Databases: Modeling, Design
and Implementation. Idea Group Publishing, Hershey, USA (2006)

44 J. Campaña et al.

[Gogu67] Goguen, J.A.: L-Fuzzy Sets. Journ. of Math. Anal. and Applications 18,
145–174 (1967)

[Gora98] Goralwalla, I.A., Leontiev, Y., Ozsu, M.T., Szafron, D., Combi, C.: Tem-
poral Granularity for Unanchored Temporal Data. In: Proc. de ACM Con-
ference on Information and Acnowledge Management, pp. 414–423. ACM
Press, New York (1998)

[Jens01] Jensen, C.S., Lomet, D.B.: Transaction timestamping in temporal data-
bases. In: Proc. of 17th VLDB conference (2001)

[Kuru98] Kurutach, W.: Handling Fuzziness in Temporal Databases. In: Proc. of
IEEE Int. Conf. on Systems, Man and Cybernetics, vol. 3, pp. 2762–2767
(1998)

[Medi94] Medina, J.M., Pons, O., Vila, M.A.: GEFRED: A Generalized Model of
Fuzzy Relational Databases. Information Sciences 76, 87–109 (1994)

[Medi95] Medina, J.M., Cubero, J.C., Pons, O., Vila, M.A.: Towards the Implemen-
tation of a Generalized Fuzzy Relational Database Model. Fuzzy Sets and
Systems 75, 273–289 (1995)

[Sard90] Sarda, N.L.: Extensions to SQL for historical databases. IEEE Transactions
on Knowledge and Data Engineering 2, 220–230 (1990)

[Snod87] Snodgrass, R.T.: The temporal Query language TQuel. ACM Transactions
on Database Systems 12, 247–298 (1987)

[Snod95] Snodgrass, R.T., Ahn, I., Ariav, G., Batory, D.S., et al. (eds.): The TSQL2
temporal query language. Kluwer Academic Publishers, Dordrecht (1995)

[Snod98] Snodgrass, R.T., Bohlen, M.H., Jensen, C.S., Steiner, A.: Transitioning
Temporal Support in TSQL2 to SQL3. In: Etzion, O., Jajodia, S., Sripada,
S. (eds.) Temporal Databases: Research and Practice. LNCS, vol. 1399, pp.
150–194. Springer, Heidelberg (1998)

[Tans93] Tansel, A., Clifford, J., Gadia, S.: Temporal Databases: Theory, Design and
Implementation. Bejamin Cummings (1993)

[Torp99] Torp, K., Jensen, C.S., Snodgrass, R.T.: Effective Timestamping in Data-
bases. VLDB Journal 8, 267–288 (1999)

[Tre97] Van der Cruyssen, B., de Caluwe, R., de Tre, G.: A Theoretical Time Model
for Dealing with Crisp and Fuzzy Time. In: Proceeings of NAFIPS (1997)

[TSQL2a] Snodgrass, R.: Temporal Support in Standard SQL. In: Intelligent Database
Programming and Design (1998)

[TSQL2b] Snodgrass, R. (ed.): The TSQL2 Temporal Query Language. Kluwer Aca-
demic Publishers, Dordrecht (1995)

Finding Most Probable Worlds
of Probabilistic Logic Programs

Samir Khuller, Vanina Martinez, Dana Nau,
Gerardo Simari, Amy Sliva, and V.S. Subrahmanian�

University of Maryland College Park, College Park, MD 20742, USA
{samir,mvm,nau,gisimari,asliva,vs}@cs.umd.edu

Abstract. Probabilistic logic programs have primarily studied the problem of en-
tailment of probabilistic atoms. However, there are some interesting applications
where we are interested in finding a possible world that is most probable. Our first
result shows that the problem of computing such ”maximally probable worlds”
(MPW) is intractable. We subsequently show that we can often greatly reduce the
size of the linear program used in past work (by Ng and Subrahmanian) and yet
solve the problem exactly. However, the intractability results still make computa-
tional efficiency quite impossible. We therefore also develop several heuristics to
solve the MPW problem and report extensive experimental results on the accu-
racy and efficiency of such heuristics.

1 Introduction

Probabilistic logic programs (PLPs) [1] have been proposed as a paradigm for prob-
abilistic logical reasoning with no independence assumptions. PLPs used a possible
worlds model based on prior work by [2], [3], and [4] to induce a set of probability
distributions on a space of possible worlds. Past work on PLPs [5,1] focuses on the
entailment problem of checking if a PLP entails that the probability of a given formula
lies in a given probability interval.

However, we have recently been developing several applications for cultural adver-
sarial reasoning [6] where PLPs and their variants are used to build a model of the be-
havior of certain socio-cultural-economic groups in different parts of the world.1 Such
PLPs contain rules that state things like “There is a 50 to 70% probability that group
g will take action(s) a when condition C holds.” In such applications, the problem of
interest is that of finding the most probable action (or sets of actions) that the group
being modeled might do. This corresponds precisely to the problem of finding a “most
probable world” that is the focus of this paper.

In Section 2 of this paper, we recall the syntax and semantics of such programs
[5,1]. We state the most probable world (MPW) problem by immediately using the lin-
ear programming methods of [5,1] - these methods are exponential because the linear

� Authors listed in alphabetical order; the authors were funded in part by grant N6133906C0149,
ARO grant DAAD190310202, AFOSR grants FA95500610405 and FA95500510298, and
NSF grants 0540216 and IIS0412812.

1 Our group has thus far built models of the Afridi tribe in Pakistan, Hezbollah in the Middle
East, and the various stakeholders in the Afghan drug economy.

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 45–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

46 S. Khuller et al.

programs are exponential in the number of ground atoms in the language. Then, in Sec-
tion 4, we present the Head Oriented Processing (HOP) approach where a (usually)
smaller linear program is introduced. We show that using HOP, we can often find a
much faster solution to the MPW problem. We define a variant of HOP called Semi-
HOP that has slightly different computational properties, but is still guaranteed to find
the most probable world. Thus, we have three exact algorithms to find the most probable
world.

Subsequently, in Section 5, we develop a heuristic that can be applied in conjunction
with the Naive, HOP, and SemiHOP algorithms. The basic idea is that rather than
examining all worlds, only some fixed number of worlds is explored using a linear
program that is reduced in size. Section 6 describes a prototype implementation of our
APLP framework and includes a set of experiments to assess combinations of exact
algorithm and the heuristic. We assess both the efficiency of our algorithms, as well as
the accuracy of the solutions they produce.

2 Overview of Action Probabilistic Logic Programs

Action probabilistic logic programs (APLPs) are an immediate and obvious variant of
the probabilistic logic programs introduced in [5,1]. We assume the existence of a logi-
cal alphabet that consists of a finite set Lcons of constant symbols, a finite set Lpred of
predicate symbols (each with an associated arity) and an infinite set V of variable sym-
bols. Function symbols are not allowed in our language. Terms and atoms are defined in
the usual way [7]. We assume that a subset Lact of Lpred are designated as action sym-
bols - these are symbols that denote some action. Thus, an atom p(t1, . . . , tn), where
p ∈ Lact, is an action atom. Every (resp. action) atom is a (resp. action) wff. If F, G are
(resp. action) wffs, then (F ∧ G), (F ∨ G) and ¬G are all wffs (resp. action wffs).

Definition 1. If F is a wff (resp. action wff) and μ = [α, β] ⊆ [0, 1], then F : μ is
called a p-annotated (resp. ap-annotated—short for “action probabilistic” annotated)
wff. μ is called the p-annotation (resp. ap-annotation) of F .

Without loss of generality, throughout this paper we will assume that F is in conjunctive
normal form (i.e. it is written as a conjunction of disjunctions).

Definition 2 (ap-rules). If F is an action formula, A1, A2, ..., Am are action atoms,
B1, . . . , Bn are non-action atoms, and μ, μ1, ..., μm are ap-annotations, then F : μ ←
A1 : μ1 ∧ A2 : μ2 ∧ ... ∧ Am : μm ∧ B1 ∧ . . . Bm is called an ap-rule. If this
rule is named c, then Head(c) denotes F : μ; Bodyact(c) denotes A1 : μ1 ∧ A2 :
μ2 ∧ ... ∧ Am : μm and Bodystate(c) denotes B1 ∧ . . . Bn.

Intuitively, the above ap-rule says that an unnamed entity (e.g. a group g, a person p
etc.) will take action F with probability in the range μ if B1, . . . , Bn are true in the
current state (we will define this term shortly) and if the unnamed entity will take each
action Ai with a probability in the interval μi for 1 ≤ i ≤ n.

Definition 3 (ap-program). An action probabilistic logic program (ap-program for
short) is a finite set of ap-rules.

Finding Most Probable Worlds of Probabilistic Logic Programs 47

1. kidnap: [0.35, 0.45] ← interOrganizationConflicts.
2. kidnap: [0.60, 0.68] ← notDemocratic ∧ internalConflicts.
3. armed attacks: [0.42, 0.53] ← typeLeadership(strongSingle) ∧ orgPopularity(moderate).
4. armed attacks: [0.93, 1.0] ← statusMilitaryWing(standing).

Fig. 1. Four simple rules for modeling the behavior of a group in certain situations

Figure 1 shows a small rule base consisting of some rules we have derived automatically
about Hezbollah using behavioral data in [8]. The behavioral data in [8] has tracked
over 200 terrorist groups for about 20 years from 1980 to 2004. For each year, values
have been gathered for about 300 measurable variables for each group in the sample.
These variables include tendency to commit assassinations and armed attacks, as well
as background information about the type of leadership, whether the group is involved
in cross border violence, etc. Our automatic derivation of these rules was based on a
data mining algorithm we have separately developed [9]. We show 4 rules we have
extracted for the group Hezbollah in Figure 1. For example, the third rule says that
when Hezbollah has a strong, single leader and its popularity is moderate, its propensity
to conduct armed attacks has been 42 to 53%. However, when it has had a standing
military, its propensity to conduct armed attacks is 93 to 100%.

Definition 4 (world/state). A world is any set of ground action atoms. A state is any
finite set of ground non-action atoms.

Note that both worlds and states are just ordinary Herbrand interpretations. As such, it
is clear what it means for a state to satisfy Bodystate.

Definition 5. Let Π be an ap-program and s a state. The reduction of Π w.r.t. s, de-
noted by Πs is {F : μ ← Bodyact | s satisfies Bodystate and F : μ ← Bodyact ∧
Bodystate is a ground instance of a rule in Π}.

Note that Πs never has any non-action atoms in it.

Key differences. The key differences between action probabilistic LPs (APLPs) and
the programs of [5,1] are that APLPs have a bipartite structure (action atoms and state
atoms) and they allow arbitrary formulas (including ones with negation) in rule heads
([5,1] do not). They can easily be extended to include variable annotations and annota-
tion terms as in [5]. Likewise, as in [5], they can be easily extended to allow complex
formulas rather than just atoms in rule bodies. Due to space restrictions, we do not do
either of these in the paper. However, the most important difference between our paper
and [5,1] is that this paper focuses on finding most probable worlds, while those papers
focus on entailment, which is a fundamentally different problem.

Throughout this paper, we will assume that there is a fixed state s. Hence, once we
are given Π and s, Πs is fixed. We can associate a fixpoint operator TΠs with Π, s
which maps sets of ground ap-annotated wffs to sets of ground ap-annotated wffs as
follows.

Definition 6. Suppose X is a set of ground annotated action atoms. We first define
an intermediate operator UΠs(X) as follows. UΠs(X) = {F : μ | F : μ ← A1 :

48 S. Khuller et al.

μ1 ∧ · · · ∧ Am : μm is a ground instance of a rule in Πs and for all 1 ≤ j ≤ m, there
is an Aj : ηj ∈ X such that ηj ⊆ μj}.

Intuitively, UΠs(X) contains the heads of all rules in Πs whose bodies are deemed
to be “true” if the action atoms in X are true. However, UΠs(X) may not contain all
ground action atoms. This could be because such atoms don’t occur in the head of a
rule - UΠs(X) never contains any action wff that is not in a rule head.

In order to assign a probability interval to each ground action atom, we use the same
procedure followed in [5]. We use UΠs(X) to set up a linear program CONSU (Π, s, X)
as follows. For each world wi, let pi be a variable denoting the probability of wi being
the “real world”. As each wi is just a Herbrand interpretation, the notion of satisfaction
of an action formula F by a world w, denoted by w �→ F , is defined in the usual way.

1. If F : [�, u] ∈ UΠs(X), then � ≤ Σwi �→F pi ≤ u is in CONSU (Π, s, X).
2. Σwipi = 1 is in CONSU (Π, s, X).

We refer to these as constraints of type (1) and (2), respectively. To find the lower (resp.
upper) probability of a ground action atom A, we merely minimize (resp. maximize)
Σwi �→Api subject to the above constraints. We also do the same w.r.t. each formula
F that occurs in UΠs(X) — this is because this minimization and maximization may
sharpen the bounds of F . Let �(F) and u(F) denote the results of these minimizations
and maximizations, respectively. Our operator TΠs(X) is then defined as follows.

Definition 7. Suppose Π is an APLP, s is a state, and X is a set of ground ap-wffs. Our
operator TΠs(X) is then defined to be {F : [�(F), u(F)] | (∃μ) F : μ ∈ UΠs(X)} ∪
{A : [�(A), u(A)] | A is a ground action atom }.

Thus, TΠs(X) works in two phases. It first takes each formula F : μ that occurs in
UΠs(X) and finds F : [�(F), u(F)] and puts this in the result. Once all such F :
[�(F), u(F)]’s have been put in the result, it tries to infer the probability bounds of all
ground action atoms A from these F : [�(F), u(F)]’s.

Given two sets X1, X2 of ap-wffs, we say that X1 ≤ X2 iff for each F1 : μ1 ∈ X1,
there is an F1 : μ2 ∈ X2 such that μ2 ⊆ μ1. Intuitively, X1 ≤ X2 may be read as
“X1 is less precise than X2.” The following straightforward variation of similar results
in [5] shows that

Proposition 1. 1. TΠs is monotonic w.r.t. the ≤ ordering.
2. TΠs has a least fixpoint, denoted T ω

Πs
.

3 Maximally Probable Worlds

We are now ready to introduce the problem of finding the most probable world. As ex-
plained through our Hezbollah example, we may be interested in knowing what actions
Hezbollah might take in a given situation.

Definition 8 (lower/upper probability of a world). Suppose Π is an ap-program and
s is a state. The lower probability, low(wi) of a world wi is defined as: low(wi) =
minimize pi subject to CONSU (Π, s, T ω

Πs
). The upper probability, up(wi) of world

wi is defined as up(wi) = maximize pi subject to CONSU (Π, s, T ω
Πs

).

Finding Most Probable Worlds of Probabilistic Logic Programs 49

Thus, the low probability of a world wi is the lowest probability that that world can
have in any solution to the linear program. Similarly, the upper probability for the same
world represents the highest probability that that world can have. It is important to
note that for any world w, we cannot exactly determine a point probability for w. This
observation is true even if all rules in Π have a point probability in the head because
our framework does not make any simplifying assumptions (e.g. independence) about
the probability that certain things will happen.

We now present two simple results that state that checking if the low (resp. up) proba-
bility of a world exceeds a given bound (called the BOUNDED-LOW and BOUNDED-
UP problems respectively) is intractable. The hardness results, in both cases, are by
reduction from the problem of checking consistency of a generalized probabilistic logic
program. The problem is in the class EXPTIME.

Proposition 2 (BOUNDED LOW COMPLEXITY). Given an ap-program Π , a state
s, a world w, and a probability threshold pth, deciding if low(w) > pth is NP -hard.

Proposition 3 (BOUNDED UP COMPLEXITY). Given an ap-program Π , a state
s, a world wi, and a probability threshold pth, deciding if up(w) < pth is NP -hard.

The MPW Problem. The most probable world problem (MPW for short) is the prob-
lem where, given an APLP Π and a state s as input, we are required to find a world wi

where low(wi) is maximal. 2

A Naive Algorithm. A naive algorithm to find the most probable world would be:

1. Compute T ω
Πs

; Best = NIL; Bestval = 0;
2. For each world wi,

(a) Compute low(wi) by minimizing pi subject to the set CONSU (Π, s, T ω
Πs

) of
constraints.

(b) If low(wi) > Bestval then set Best = wi and Bestval = low(wi);
3. If Best = NIL then return any world whatsoever, else return Best.

The Naive algorithm does a brute force search after computing T ω
Πs

. It finds the low
probability for each world and chooses the best one. Clearly, we can use it to solve the
MPW-Up problem by replacing the minimization in Step 2(a) by a maximization.

There are two key problems with the naive algorithm. The first problem is that in Step
(1), computing T ω

Πs
is very difficult. When some syntactic restrictions are imposed, this

problem can be solved without linear programming at all as in the case when Π is a
probabilistic logic program (or p-program as defined in [1]) where all heads are atomic.

The second problem is that in Step 2(a), the number of (linear program) variables in
CONSU (Π, s, T ω

Πs
) is exponential in the number of ground atoms. When this number

is, say 20, this means that the linear program contains over a million variables. However,
when the number is say 30 or 40 or more, this number is inordinately large. This paper
focuses primarily on improving Step 2(a).

2 A similar MPW-Up Problem can also be defined. The most probable world-up problem
(MPW-Up) is given an APLP Π and a state s as input, and tries to find a world wi where
up(wi) is maximal. Due to space constraints, we only address the MPW problem.

50 S. Khuller et al.

4 HOP: Head-Oriented Processing

We can do better than the naive algorithm. Given a world w, state s, and an ap-program
Π , let Sat(w) = {F | c is a ground instance of a rule in Πs and Head(c) = F : μ
and w �→ F}. Intuitively, Sat(w) is the set of heads of rules in Πs (without probability
annotations) whose bodies are satisfied by w.

Definition 9. Suppose Π is an APLP, s is a state, and w1, w2 are two worlds. We say
that w1 and w2 are equivalent, denoted w1 ∼ w2, iff Sat(w1) = Sat(w2).

In other words, we say that two worlds are considered equivalent iff the two worlds
satisfy the formulas in the heads of exactly the same rules in Πs. It is easy to see that
∼ is an equivalence relation. We use [wi] to denote the ∼-equivalence class to which a
world wi belongs. The intuition for the HOP algorithm is given in Example 1.

Example 1. Consider the set CONSU (Π, s, T ω
Πs

) of constraints. For example, consider
a situation where CONSU (Π, s, T ω

Πs
) contains just the three constraints below:

0.7 ≤ p2 + p3 + p5 + p6 + p7 + p8 ≤ 1 (1)

0.2 ≤ p5 + p7 + p8 ≤ 0.6 (2)

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 1 (3)

In this case, each time one of the variables p5, p7, or p8 occur in a constraint, the other
two also occur. Thus, we can replace these by one variable (let’s call it y for now). In
other words, suppose y = p5 + p7 + p8. Thus, the above constraints can be replaced by
the simpler set

0.7 ≤ p2 + p3 + p6 + y ≤ 1

0.2 ≤ y ≤ 0.6

p1 + p2 + p3 + p4 + p6 + y = 1

The process in the above example leads to a reduction in the size of CONSU (Π, s, T ω
Πs

).
Moreover, suppose we minimize y subject to the above constraints. In this case, the
minimal value is 0.2. As y = p5 + p7 + p8, it is immediately obvious that the low
probability of any of the pi’s is 0. Note that we can also group p2, p3, and p6 together
in the same manner.

We build on top of this intuition. The key insight here is that for any ∼-equivalence
class [wi], the entire summation Σwj∈[wi]pj either appears in its entirety in each con-
straint of type (1) in CONSU (Π, s, T ω

Πs
) or does not appear at all (i.e. none of the

pj variables associated with worlds wj in [wi] appear in any constraint of type (1) in
CONSU (Π, s, T ω

Πs
)). This is what the next result states.

Proposition 4. Suppose Π is an ap-program, s is a state, and [wi] is a ∼-equivalence
class. Then for each constraint of the form

� ≤ Σwr �→F pr ≤ u (4)

in CONSU (Π, s, T ω
Πs

), either every variable in the summation Σwj∈[wi]pj appears in
the summation in (4) above or no variable in the summation Σwj∈[wi]pj appears in the
summation in (4).

Finding Most Probable Worlds of Probabilistic Logic Programs 51

Example 2. Here is a toy example of this situation. Suppose Πs consists of the two very
simple rules:

(a ∨ b ∨ c ∨ d) : [0.1, 0.5] ← .

(a ∧ e) : [0.2, 0.5] ← .

Assuming our language contains only the predicate symbols a, b, c, d, e, there are 32
possible worlds. However, what the preceding proposition tells us is that we can group
the worlds into four categories. Those that satisfy both the above head formulas (ignor-
ing the probabilities), those that satisfy the first but not the second head formula, those
that satisfy the second but not the first head formula, and those that satisfy neither. This
is shown graphically in Figure 2, in which pi is the variable in the linear program corre-
sponding to world wi. For simplicity, we numbered the worlds according to the binary
representation of the set of atoms. For instance, world {a, c, d, e} is represented in bi-
nary as 10111, and is thus w23. Note that only three variables appear in the new linear
constraints; this is because it is not possible to satisfy ¬(a ∨ b ∨ c ∨ d ∨ e) and (a ∧ e)
at once.

Fig. 2. Reducing CONSU (Π, s, T ω
Πs

) by grouping variables. The new LPs are called
RedCONSU (Π, s, T ω

Πs
) and S RedCONSU (Π,s, T ω

Πs
), as presented in Definition 10 and 12.

Effectively, what we have done is to modify the number of variables in the linear
program from 2card(Lact) to 2card(Πs) - a saving that can be significant in some cases
(though not always!). The number of constraints in the linear program stays the same.
Formally speaking, we define a reduced set of constraints as follows.

Definition 10 (RedCONSU (Π, s, T ω
Πs

)). For each equivalence class [wi], RedCONSU

(Π, s, T ω
Πs

) uses a variable p′i to denote the summation of the probability of each of the
worlds in [wi]. For each ap-wff F : [�, u] in T ω

Πs
, RedCONSU (Π, s, T ω

Πs
) contains the

constraint:
� ≤ Σ[wi] �→F p′i ≤ u.

52 S. Khuller et al.

Here, [wi] �→ F means that some world in [wi] satisfies F . In addition, RedCONSU

(Π, s, T ω
Πs

) contains the constraint

Σ[wi]p
′
i = 1.

When reasoning about RedCONSU (Π, s, T ω
Πs

), we can do even better than mentioned
above. The result below states that in order to find the most probable world, we only
need to look at the equivalence classes that are of cardinality 1.

Theorem 1. Suppose Π is an ap-program, s is a state, and wi is a world. If
card([wi]) > 1, then low(wi) = 0.

Going back to Example 1, we can conclude that low(w5) = low(w7) = low(w8) = 0.
As a consequence of this result, we can suggest the Head Oriented Processing (HOP)
algorithm which works as follows. Before presenting HOP, we present some simple
notation. Let FixedWff (Π, s) = {F |F : μ ∈ UΠs(T ω

Πs
)}. Given a set X ⊆ FixedWff

(Π, s), we define Formula(X, Π, s) to be

∧
G∈X

G ∧
∧

G′∈FixedWff (Π,s)−X

¬G′.

Here, Formula(X, Π, s) is the formula which says that X consists of all and only those
formulas in FixedWff (Π, s) that are true. Given two sets X1, X2 ⊆ FixedWff (Π, s),
we say that X1 ≈ X2 iff Formula(X1, Π, s) and Formula(X2, Π, s) are logically
equivalent.

HOP Algorithm.

1. Compute T ω
Πs

. bestval = 0; best = NIL.
2. Let [X1], . . . , [Xn] be the ∼-equivalence classes defined above for Π, s.
3. For each equivalence class [Xi] do:

(a) If there is exactly one interpretation that satisfies Formula(Xi, Π, s) then:
i. Minimize p′i subject to RedCONSU (Π, s, T ω

Πs
) where [wi] is the set of

worlds satisfying exactly those heads in Xi. Let Val be the value returned.
ii. If Val > best, then {best = wi; bestval = Val}.

4. If bestval = 0 then return any world whatsoever otherwise return best.

Theorem 2 (correctness of HOP). Algorithm HOP is correct, i.e. it is guaranteed to
return a world whose low probability is greater than or equal to that of any other world.

Step 3(a) of the HOP algorithm is known as the UNIQUE-SAT problem—it can be
easily implemented via a SAT solver as follows.

1. If
∧

F∈X F ∧
∧

G∈X̄ ¬G is satisfiable (using a SAT solver that finds a satisfying
world w) then
(a) If

∧
F∈X F ∧

∧
G∈X̄ ¬G ∧ (

∨
a∈w ¬a ∨

∨
a′∈w̄ a′) is satisfiable (using a

SAT solver) then return “two or more” (two or more satisfying worlds exist)
else return “exactly one”

2. else return “none.”

Finding Most Probable Worlds of Probabilistic Logic Programs 53

The following example shows how the HOP algorithm would work on the program
from Example 2.

Example 3. Consider the program from Example 2, and suppose X = {(a∨ b∨ c∨d∨
e), (a ∧ e)}. In Step (3a), the algorithm will find that {a, d, e} is a model of (a ∨ b ∨
c ∨ d ∨ e) ∧ (a ∧ e); afterwards, it will find {a, c, e} to be a model of (a ∨ b ∨ c ∨ d ∨
e) ∧ (a ∧ e) ∧ ((¬a ∨ ¬d ∨ ¬e) ∨ (b ∨ c)). Thus, X has more than one model and the
algorithm will not consider any of the worlds in the equivalence class induced by X as
a possible solution, which avoids solving the linear program for those worlds.

The complexity of HOP is also exponential. However, HOP can sometimes be prefer-
able to the Naive algorithm. The number of variables in RedCONSU (Π, s, T ω

Πs
) is

2card(T ω
Πs

), which is much smaller than the number of variables in CONSU (Π, s, T ω
Πs

)
when the number of ground rules whose bodies are satisfied by state s is smaller than
the number of ground atoms. The checks required to find all the equivalence classes [Xi]
take time proportional to 22∗card(T ω

Πs
). Lastly, HOP avoids solving the reduced linear

program for all the non-singleton equivalence classes (for instance, in Example 3, the
algorithm avoids solving the LP three times). This last saving, however, comes at the
price of solving SAT twice for each equivalence class and the time required to find the
[Xi]’s.

A variant of the HOP algorithm, which we call the SemiHOP algorithm, tries to
avoid computing the full equivalence classes. The SemiHOP algorithm omits finding
pairs of sets that represent the same equivalence class, and therefore does not need to
compute the checks for logical equivalence of every possible pair, a computation which
can be very expensive.

Proposition 5. Suppose Π is an APLP, s is a state, and X is a subset of FixedWff
(Π, s). Then there exists a world wi such that {w | w �→ Formula(X, Π, s)} ⊆ [wi].

We now define the concept of a sub-partition.

Definition 11. A sub-partition of the set of worlds of Π w.r.t. s is a partition W1, . . . , Wk

where:

1.
⋃k

i=1 Wi is the entire set of worlds.
2. For each Wi, there is an equivalence class [wi] such that Wi ⊆ [wi].

The following result - which follows immediately from the preceding proposition - says
that we can generate a subpartition by looking at all subsets of FixedWff (Π, s).

Proposition 6. Suppose Π is an APLP, s is a state, and {X1, . . . , Xk} is the power set
of FixedWff (Π, s). Then the partition W1, . . . , Wk where Wi = {w | w �→ Formula
(Xi, Π, s)} is a sub-partition of the set of worlds of Π w.r.t. s.

The intuition behind the SemiHOP algorithm is best presented by going back to con-
straints 1 and 2 given in Example 1. Obviously, we would like to collapse all three
variables p5, p7, p8 into one variable y. However, if we were to just collapse p7, p8 into
a single variable y′, we would still reduce the size of the constraints (through the elim-
ination of one variable), though the reduction would not be maximal. The SemiHOP
algorithm allows us to use subsets of equivalence classes instead of full equivalence
classes. We first define a semi-reduced set of constraints as follows.

54 S. Khuller et al.

Definition 12 (S RedCONSU (Π, s, T ω
Πs

)). Let W1, . . . , Wk be a subpartition of the
set of worlds for Π and s. For each Wi, S RedCONSU (Π, s, T ω

Πs
) uses a variable p�

i

to denote the summation of the probability of each of the worlds in Wi. For each ap-wff
F : [�, u] in T ω

Πs
, RedCONSU (Π, s, T ω

Πs
) contains the constraint:

� ≤ ΣWi �→F p�
i ≤ u.

Here, Wi �→ F implies that some world in Wi satisfies F . In addition, S RedCONSU

(Π, s, T ω
Πs

) contains the constraint

ΣWip
�
i = 1.

Example 4. Returning to Example 1, S RedCONSU (Π, s, T ω
Πs

) could contain the fol-
lowing constraints: 0.7 ≤ p2 + p3 + p5 + p6 + y′ ≤ 1, 0.2 ≤ p5 + y′ ≤ 0.6, and
p1 + p2 + p3 + p4 + p5 + p6 + y′ = 1 where y′ = p7 + p8.

SemiHOP Algorithm.

1. Compute T ω
Πs

.
2. bestval = 0; best = NIL.
3. For each set X ⊆ FixedWff (Π, s) do:

(a) If there is exactly one interpretation that satisfies Formula(X, Π, s) then:
i. Minimize p�

i subject to S RedCONSU (Π, s, T ω
Πs

) where Wi is a subpar-
tition of the set of worlds of Π w.r.t. s. Let Val be the value returned.

ii. If Val > best, then {best = wi; bestval = Val}.
4. If bestval = 0 then return any world whatsoever otherwise return best.

Theorem 3 (correctness of SemiHOP). Algorithm SemiHOP is correct, i.e. it is
guaranteed to return a world whose low probability is greater than or equal to that
of any other world.

The key advantage of SemiHOP over HOP is that we do not need to construct the
set [wi] of worlds, i.e. we do not need to find the equivalence classes [wi]. This is a
potentially big saving because there are 2n possible worlds (where n is the number
of ground action atoms) and finding the equivalence classes can be expensive. This
advantage comes with a drawback - the size of the set S RedCONSU (Π, s, T ω

Πs
) can be

a bit bigger than the size of the set RedCONSU (Π, s, T ω
Πs

).

5 Heuristic Methods for Finding a Maximally Probable World

In the preceding sections, we have developed three sets of constraints associated, re-
spectively, with the naive algorithm, HOP, and SemiHOP. In all cases, the set of con-
straint variables can be enormous, even though HOP and SemiHOP try to reduce the
number of variables. In this section, we develop a heuristic algorithm to reduce the
number of variables even further. To see how the algorithm works, let C be the set of
constraints generated by either Naive, HOP, or SemiHOP. The constraints have one
of the forms

� ≤ q1 + · · · + qr ≤ u (5)

q1 + · · · + qm = 1. (6)

Finding Most Probable Worlds of Probabilistic Logic Programs 55

Suppose we make an a priori commitment to only look at some set Sk of k variables
from the linear program. In this case, we could eliminate variables not in Sk from any
summation in (5). Thus, we might weaken (5) and (6) above to

� ≤ Σ{q1,...,qr}∩Sk
qi ≤ u (7)

Σ{q1,...,qm} ∩Sk
qi ≤ 1. (8)

Let C′ be the modification of the constraints in C derived in this way. It is immediately
apparent that as all the lower bounds are set to �, a solution to C′ may or may not
exist. Rather than weakening the lower bound from � to 0 (which would guarantee
a solution), we wondered how “close” to � one can get while still having a solvable
system of equations.

As a consequence, our binary heuristic works as follows by only modifying lower
bounds of such constraints. We start with C′ and see if it is solvable by itself. If so, we
minimize each variable in Sk subject to C′ and return the variable (and value) with the
highest value. If not, we try to decrease the lower bounds of one or more constraints in
C′ as follows. Suppose c� is one such constraint of the form

�� ≤ Σqi∈Sk
qi ≤ u

Furthermore, suppose this constraint was derived from a constraint of the type shown
in Equation (5). In this case, we try to replace �� by ��

2 . If this yields a solvable set
of equations, we try to replace ��

2 by 3×��

4 - if the resulting system of equations is
unsolvable, we try to replace it with 5×��

8 and so forth. Effectively, we try to keep the
lower bounds of constraints as close to those in C as possible, while still being solvable
when terms not in Sk are eliminated from the summations in Equation (5). We will call
this the binary heuristic due to the fact that it resembles a binary search.

Once we have completed this process of modifying the lower bounds of constraints
in C′ (let the resulting system of constraints be called C•) we minimize each and every
variable in Sk subject to the constraints in C•. The variable with the highest minimal
value is returned (together with its value).

Example 5. Suppose we have the same set CONSU (Π, s, T ω
Πs

) as in Example 1. If we
now choose the set of four variables Sk = {p2, p4, p6, p8}, C′ contains the following
constraints:

0.7 ≤ p2 + p6 + p8 ≤ 1
0.2 ≤ p8 ≤ 0.6
p2 + p4 + p6 + p8 ≤ 1

If the algorithm starts by considering the first constraint in C′ it replaces it with 0.35 ≤
p2 + p6 + p8 ≤ 1, which yields an unsolvable set of constraints. The lower bound gets
succesively replaced by 0.525, 0.4375, and 0.39375, which finally yields a solvable
system. At this point, the algorithm decides to accept this value as the lower bound for
the constraint. The same process is also carried out for the other constraint.

56 S. Khuller et al.

6 Implementation and Experiments

We have implemented four of the algorithms described in this paper—the naive, HOP,
SemiHOP, and the binary heuristic algorithms—using approximately 6,000 lines of
Java code. The binary heuristic algorithm was applied to each of the (CONSU

(Π, s, T ω
Πs

), RedCONSU (Π, s, T ω
Πs

), and S RedCONSU (Π, s, T ω
Πs

)) constraint sets;
we refer to these approximations as the naivebin, HOPbin, and SemiHOPbin algo-
rithms respectively. Our experiments were performed on a Linux computing cluster
comprised of 16 dual-core, dual-processor nodes with 8GB RAM. The linear constraints
were solved using the QSopt linear programming solver library, and the logical formula
manipulation code from the COBA belief revision system and SAT4J satisfaction li-
brary were used in the implementation of the HOP and SemiHOP algorithms.

For each experiment, we held the number of rules constant at 10 and did the fol-
lowing: (i) we generated a new ap-program and sent it to each of the three algorithms,
(ii) varied the number of worlds from 32 to 16,384, performing at least 4 runs for each
value and recording the average time taken by each algorithm, and (iii) we also mea-
sured the quality of the SemiHOP and all algorithms that use the binary heuristic by
calculating the average distance from the solution found by the exact algorithm. Due
to the immense time complexity of the HOP algorithm, we do not directly compare its
performance to the naive algorithm or SemiHOP. In the results below we use the met-
ric ruledensity = Lact

card(T ω
Πs

) to represent the size of the ap-program; this allows for

the comparison of the naive, HOP and SemiHOP algorithms as the number of worlds
increases.

Running time. Figure 3 shows the running times for each of the naive, SemiHOP,
naivebinary, and SemiHOPbinary algorithms for increasing number of worlds. As ex-
pected, the binary search approximation algorithm is superior to the exact algorithms in
terms of computation time, when applied to both the naive and SemiHOP contstraint
sets. With a sample size of 25%, naivebinary and SemiHOPbinary take only about
132.6 seconds and 58.19 seconds for instances with 1,024 worlds, whereas the naive
algorithm requires almost 4 hours (13,636.23 seconds). This result demonstrates that
the naive algorithm is more or less useless and takes prohibitive amounts of time, even
for small instances. Similarly, the checks for logical equivalence required to obtain
each [wi] for HOP cause the algorithm to consistently require an exorbitant amount
of time; for instances with only 128 worlds, HOP takes 58,064.74 seconds, which is
much greater even than the naive algorithm for 1,024 worlds. Even when using the
binary heuristic to further reduce the number of variables, HOPbin still requires a pro-
hibitively large amount of time.

At low rule densities, SemiHOP runs slower than the naive algorithm; with 10
rules, SemiHOP uses 18.75 seconds and 122.44 seconds for 128 worlds, while the
naive algorithm only requires 1.79 seconds and 19.99 seconds respectively. However,
SemiHOP vastly outperforms naive for problems with higher densities—358.3 sec-
onds versus 13,636.23 seconds for 1,024 worlds—which more accurately reflect real-
world problems in which the number of possible worlds is far greater than the number
of ap-rules. Because the SemiHOP algorithm uses subpartions rather than unique

Finding Most Probable Worlds of Probabilistic Logic Programs 57

Fig. 3. Running time of the algorithms for in-
creasing number of worlds

Fig. 4. Running time of naivebin and Semi-
HOPbin for large number of worlds

equivalence classes in the RedCONSU (Π, seconds, T ω
Πs

) constraints, the algorithm
overhead is much lower than that of the HOP algorithm, and thus yields a more ef-
ficient running time.

The reduction in the size of C′ afforded by the binary heuristic algorithm allows us
to apply the naive and SemiHOP algorithms to much larger ap-programs. In Figure 4,
we examine the running times of the naivebin and SemiHOPbin algorithms for large
numbers of worlds (up to about 1.23794×1027 possible worlds) with a sample size for
the binary heuristic of 2%; this is to ensure that the reduced linear program is indeed
tractable. SemiHOPbinary consistently takes less time than naivebinary, though both al-
gorithms still perform rather well. For 1.23794×1027 possible worlds, naivebinary takes
on average 26,325.1 seconds while SemiHOPbinary requires only 458.07 seconds. This
difference occurs because, |S RedCONSU (Π, s, T ω

Πs
)| < |CONSU (Π, s, T ω

Πs
)| that is

the heuristic algorithm is further reducing an already smaller constraint set. In addition,
because SemiHOP only solves the linear constraint problem when there is exactly
one satisfying interpretation for a subpartition, it performs fewer computations over-
all. Figure 5 contains additional experiments running SemiHOPbinary on very large
ap-programs (from 1,000 to 100,000 ground atoms). Even for such a large number of
worlds, the running time is only around 300 seconds for a 2% sample rate.

Quality of solution. Figure 6 compares the accuracy of the probability found for the
most probable world by SemiHOP, naivebinary, and SemiHOPbinary to the solu-
tion obtained by the naive algorithm, averaged over at least 4 runs for each number
of worlds. The results are given as a percentage of the solution returned by the naive
algorithm, and are only reported in cases where both algorithms found a solution. The
SemiHOP and SemiHOPbinary algorithms demonstrate near perfect accuracy; this
is significant because in the SemiHOPbinary algorithm, the binary heuristic was only
sampling 25% of the possible subpartitions. However, in many of these cases, both the
naive and the SemiHOP algorithms found most probable worlds with a probability
of zero. The most probable world found by the naivebinary algorithm can be between
75% and 100% as likely as those given by the regular naive algorithm; however, the
naivebinary algorithm also was often unable to find a solution.

58 S. Khuller et al.

Fig. 5. Running time of the SemiHOPbinary

algorithm for very large numbers of possible
worlds

Fig. 6. Quality of the solutions produced by
SemiHOP, naivebin , and SemiHOPbin as
compared to Naive

7 Conclusions and Related Work

Probabilistic logic programming was introduced in [5,1] and later studied by several
authors [10,11,12,13]. This work was preceded by earlier—non-probabilistic—papers
on quantitative logic programming of which [14] is an example. [10] presents a
model theory, fixpoint theory, and proof procedure for conditional probabilistic logic
programming. [11] combines probabilistic LP with maximum entropy. [15] presents a
conditional semantics for probabilistic LPs where each rule is interpreted as specifying
the conditional probability of the rule head, given the body. [12] develops a semantics for
logic programs in which different general axiomatic methods are given to compute
probabilities of conjunctions and disjunctions, and [13] presents an approach to a
similar problem. gp-programs were implemented by [16], based on the DisLOG
system [17].

However, all works to date on probabilistic logic programming have addressed the
problem of checking whether a given formula of the form F : [L, U] is entailed by a
probabilistic logic program. This usually boils down to finding out if all interpretations
that satisfy the PLP assign a probability between L and U to F .

Our work builds on top of the gp-program paradigm [5]. Our framework modifies
gp-programs in three ways: (i) we do not allow non-action predicates to occur in rule
heads, while gp-programs do, (ii) we allow arbitrary formulas to occur in rule heads,
whereas gp-programs only allow the so-called “basic formulas” to appear in rule heads.
(iii) Most importantly, of all, we solve the problem of finding the most probable model
whereas [5] solve the problem of entailment.

This is justified because in certain classes of applications, a p-program describes
probabilities on possible worlds, and we are interested in finding that world which has the
highest probability. Such an example could be a market model of bidding in a specialized
auction, such as an electricity auction, which contains rules specifying what actions a
potential competitor might take in a given situation. Here, the organization coming up
with the model might want to know the most likely scenarios (worlds) that they have to

Finding Most Probable Worlds of Probabilistic Logic Programs 59

face. We have been working on an economic application about what may occur in a given
market when certain actions such as “reduce price of fruit by 10%” are taken (e.g., by
increasing supply). Of course, this can be viewed as an entailment problem (take the
conjunction of positive atoms in a world, conjoin that with the conjunction of negative
atoms in that world, solve a linear program for each world, and choose the best one). This
corresponds to the naive (exact) solution in this paper which is easily shown to not work at
all once the amount of worlds exceeds a small number. What we do in this paper is provide
algorithms to find the world that has the maximal probability, and to our knowledge, we
are the first to do this. We further provide two approximation algorithms that have been
experimentally shown to produce solutions within about 10-15% of the optimal solution
in a small fraction of the time required to find the best solution.

References

1. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information and
Computation 101(2), 150–201 (1992)

2. Hailperin, T.: Probability logic. Notre Dame Journal of Formal Logic 25 (3), 198–212 (1984)
3. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Information

and Computation 87(1/2), 78–128 (1990)
4. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)
5. Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective and

conditional probabilities in deductive databases. In: Furukawa, K. (ed.) Proc. of the 8th Int.
Conf. on Logic Programming, pp. 565–580. The MIT Press, Cambridge (1991)

6. Subrahmanian, V., Albanese, M., Martinez, V., Reforgiato, D., Simari, G.I., Sliva, A., Udrea,
O., Wilkenfeld, J.: CARA: A Cultural Adversarial Reasoning Architecture. IEEE Intelligent
Systems 22(2), 12–16 (2007)

7. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)
8. Wilkenfeld, J., Asal, V., Johnson, C., Pate, A., Michael, M.: The use of violence by

ethnopolitical organizations in the middle east. Technical report, National Consortium for the
Study of Terrorism and Responses to Terrorism (2007)

9. Ernst, J., Martinez, V., Simari, G.I., Sliva, A.: Mining rules about behaviors of terror groups. In
preparation for submission to a conference (2007)

10. Ngo, L., Haddawy, P.: Probabilistic logic programming and bayesian networks. In: Asian
Computing Science Conf., pp. 286–300 (1995)

11. Lukasiewicz, T., Kern-Isberner, G.: Probabilistic logic programming under maximum entropy.
In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, Springer,
Heidelberg (1999)

12. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with uncertainty.
IEEE Trans. on Knowledge and Data Engineering 13(4), 554–570 (2001)

13. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. In: Int. Conf. on Logic
Programming, pp. 391–405 (1997)

14. vanEmden,M.:Quantitativedeductionanditsfixpoint theory. JournalofLogicProgramming4,
37–53 (1986)

15. Lukasiewicz, T.: Probabilistic logic programming. In: European Conference on Artificial
Intelligence, pp. 388–392 (1998)

16. Pillo, A.: Implementation and investigation of probabilistic reasoning in deductive databases.
Diploma Thesis, University of Wuerzburg (1998)

17. Seipel, D., Thöne, H.: DISLOG - A system for reasoning in disjunctive deductive databases.
In: DAISD 1994, pp. 325–343 (1994)

Managing Uncertainty in Schema Matcher

Ensembles

Anan Marie and Avigdor Gal

Technion – Israel Institute of Technology
{sananm@cs,avigal@ie}.technion.ac.il

Abstract. Schema matching is the task of matching between concepts
describing the meaning of data in various heterogeneous, distributed data
sources. With many heuristics to choose from, several tools have enabled
the use of schema matcher ensembles, combining principles by which
different schema matchers judge the similarity between concepts. In this
work, we investigate means of estimating the uncertainty involved in
schema matching and harnessing it to improve an ensemble outcome.
We propose a model for schema matching, based on simple probabilistic
principles. We then propose the use of machine learning in determining
the best mapping and discuss its pros and cons. Finally, we provide a
thorough empirical analysis, using both real-world and synthetic data,
to test the proposed technique. We conclude that the proposed heuristic
performs well, given an accurate modeling of uncertainty in matcher
decision making.

1 Introduction

Schema matching is the task of matching between concepts describing the mean-
ing of data in various heterogeneous, distributed data sources. It is recognized
to be one of the basic operations required by the process of data and schema
integration [21], and thus has a great impact on its outcome.

Research into schema matching has been going on for more than 25 years now
(see surveys such as [25] and various online lists, e.g., OntologyMatching,1) first
as part of a broader effort of schema integration and then as a standalone re-
search. Due to its cognitive complexity, schema matching has been traditionally
considered to be AI-complete, performed by human experts [15]. The move from
manual to semi-automatic schema matching has been justified in the literature
using arguments of scalability (especially for matching between large schemata
[14]) and by the need to speed-up the matching process. Researchers also argue
for moving to fully-automatic (that is, unsupervised) schema matching in set-
tings where a human expert is absent from the decision process. In particular,
such situations characterize numerous emerging applications triggered by the
vision of the Semantic Web and machine-understandable Web resources [26]. In
these applications, schema matching is no longer a preliminary task to the data
integration effort, but rather ad-hoc and incremental.
1 http://www.ontologymatching.org/

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 60–73, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Managing Uncertainty in Schema Matcher Ensembles 61

The AI-complete nature of the problem dictates that semi-automatic and au-
tomatic algorithms for schema matching will be of heuristic nature at best. Over
the years, a significant body of work was devoted to the identification of schema
matchers, heuristics for schema matching. Examples of algorithmic tools pro-
viding means for schema matching include COMA [6] and OntoBuilder [13], to
name but a couple. The main objective of schema matchers is to provide schema
mappings that will be effective from the user point of view, yet computationally
efficient (or at least not disastrously expensive). Such research has evolved in
different research communities, including databases, information retrieval, infor-
mation sciences, data semantics, and others.

Although these tools comprise a significant step towards fulfilling the vision of
automated schema matching, it has become obvious that the consumer of schema
matchers must accept a degree of imperfection in their performance [4, 12]. A
prime reason for this is the enormous ambiguity and heterogeneity of data de-
scription concepts: It is unrealistic to expect a single schema matcher to identify
the correct mapping for any possible concept in a set. This argument has also
been validated empirically [12]. Another (and probably no less crucial) reason
is that “the syntactic representation of schemas and data do not completely
convey the semantics of different databases” [22]; i.e., the description of a con-
cept in a schema can be semantically misleading. [2] went even further, arguing
philosophically that even if two schemata fully agree on the semantics and the
language is rich enough, schemata may still not convey the same meaning, due
to some hidden semantics, beyond the scope of the schemata. Therefore, [18]
argues that “[w]hen no accurate mapping exists, the issue becomes choosing the
best mapping from the viable ones.”

Choosing a heuristic that can stand up to this challenge is far from being triv-
ial. The number of schema matchers is continuously growing, and this diversity
by itself complicates the choice of the most appropriate tool for a given applica-
tion domain. In fact, due to effectively unlimited heterogeneity and ambiguity of
data description, it seems unavoidable that optimal mappings for many pairs of
schemata will be considered as “best mappings” by none of the existing schema
matchers. Striving to increase robustness in the face of the biases and short-
comings of individual matchers, several tools have enabled the use of schema
matcher ensembles,2 combining principles by which different schema matchers
judge the similarity between concepts. The idea is appealing since an ensemble of
complementary matchers can potentially compensate for the weaknesses of each
other. Indeed, several studies report on encouraging results when using schema
matcher ensembles (e.g., see [6, 19, 8]).

In this work, we investigate means of estimating the uncertainty involved in
schema matching and harnessing it to improve an ensemble outcome. We propose
a model for schema matching, based on simple probabilistic principles. We then
propose the use of machine learning in determining the best mapping and discuss
its pros and cons. Finally, we provide a thorough empirical analysis, using both
real-world and synthetic data, to test the proposed technique.

2 The term ensemble is borrowed from [14, 8].

62 A. Marie and A. Gal

The specific contribution of this work are as follows:

– On a conceptual level, we provide a new model for schema matching, ex-
plaining the process uncertainty using simple probabilistic terms.

– We propose a new schema matching heuristic for combining existing schema
matchers. The heuristic utilizes a näıve Bayes classifier, a known machine
learning technique. While näıve Bayes classifiers were introduced before in
the schema matching research, this technique was never applied to schema
matcher ensembles.

– We present a thorough empirical analysis of the model and the heuristic,
using a large data set of 230 real-world schemata as well as synthetic data.
Our comparative analysis shows that the proposed heuristic performs well,
given an accurate modeling of uncertainty in matcher decision making.

The rest of the paper is organized as follows. Section 2 presents the schema
matching model. Section 3 introduces the new heuristic, followed by a compar-
ative empirical analysis in Section 4. We conclude with an overview of related
work (Section 5) and future research directions (Section 6).

2 Model

Let schema S = {A1, A2, ..., An} be a finite set of some attributes. We set no
particular limitations on the notion of schema attributes; attributes can be both
simple and compound, compound attributes should not necessarily be disjoint,
etc. For any schemata pair S and S′, let S = S × S′ be the set of all possible
attribute mappings between S and S′. Let M (S, S′) be an n × n′ similarity
matrix over S, where Mi,j represents a degree of similarity between the i-th
attribute of S and the j-th attribute of S′. The majority of works in the schema
matching literature define Mi,j to be a real number in (0, 1). M (S, S′) is a binary
similarity matrix if for all 1 ≤ i ≤ n and 1 ≤ j ≤ n′, Mi,j ∈ {0, 1}.

Schema matchers are instantiations of the schema matching process. Schema
matchers differ in the way they encode the application semantics into M . Some
matchers (e.g., [27]) assume similar attributes are more likely to have similar
names. Other matchers (e.g., [19]) assume similar attributes share similar do-
mains. Others yet (e.g., [3]) take instance similarity as an indication to attribute
similarity.

Let Σ be a set of possible schema mappings, where a schema mapping σ ∈ Σ
is a set of attribute mappings, σ ⊆ S. Definition 1 defines the output of a schema
matching process in terms of matrix satisfiability.

Definition 1 (Matrix Satisfaction). Let M (S, S′) be an n × n′ similarity
matrix over S and let σ be a set of schema mappings. A schema mapping σ ∈ Σ
is said to satisfy M (S, S′) (denoted σ |= M (S, S′)) if

(
Ai, A

′
j

)
∈ σ → Mi,j > 0.

σ ∈ Σ is said to maximally satisfy M (S, S′) if σ |= M (S, S′) and for each
σ′ ∈ Σ such that σ′ |= M (S, S′), σ′ ⊂ σ.

Managing Uncertainty in Schema Matcher Ensembles 63

Fig. 1. Illustration of Matcher Behavior

We can therefore define the output of a schema matching process to be a sim-
ilarity matrix M (S, S′) and derive the output schema mapping to be σ ∈ Σ
that maximally satisfies M (S, S′). Handling constraints such as 1 : 1 cardinality
constraints can be done by matrix manipulation, a topic which is beyond the
scope of this paper.

When encoding the application semantic in a similarity matrix, a matcher
would be inclined to put a value of 0 for each pair it conceives not to match,
and a similarity measure higher than 0 (and probably closer to 1) for those
attribute matches that are conceived to be correct. This tendency, however, is
masked by “noise,” whose sources are rooted in missing and uncertain informa-
tion. Therefore, instead of expecting a binary similarity matrix, with a 0 score
for all incorrect attribute mappings and a unit score for all correct attribute
mappings, we would expect the values in a similarity matrix to form two proba-
bility distributions over [0, 1], one for incorrect attribute mappings (with higher
density around 0), and another for correct mappings.

Figure 1 provides an empirical validation for our hypothesis, based on more
than 106,000 attribute mappings of 115 ontology pairs.3 Figure 1(a) shows a
distribution with a higher density around 0 that represents the similarity values
that were assigned to incorrect attribute mappings by an OntoBuilder algorithm
dubbed Precedence [13]. Figure 1(b) reflects a set of normalized similarity values
of correct attribute mappings. Normalization was achieved by dividing all simi-
larity values in a matrix by the highest value in that matrix. Figure 1 illustrates

3 Detailed description of the data set we have used is given in Section 4.2.

64 A. Marie and A. Gal

that for this data set our hypothesis indeed stands and matchers indeed choose
similarity values using two different distributions. Figure 1(c) and Figure 1(d)
were generated using a beta distribution. According to [24]: “[t]he beta distrib-
ution can be used to model a random phenomenon whose set of possible values
is in some finite interval [c, d]—which by letting c denote the origin and taking
d − c as a unit measurement can be transformed into the interval [0, 1].” A beta
distribution has two tuning parameters, a and b. To receive a density function
that is skewed to the left (as in the case of false attribute mappings, Figure 1(c))
we require that b > a. For right skewed density functions (as in the case of true
attribute mappings, Figure 1(d)) one needs to set a > b. Based on the training
data, and using a confidence level of 95% (α = 0.05), the a value of the distrib-
ution of incorrect values is 2.3010 with a confidence interval of [2.2827, 2.3192].
We also have b = 13.1242 with a confidence interval [13.0413, 13.2072]. The
confidence levels of the distribution of the correct attribute mappings are less
concentrated. We have a = 0.6071 with a confidence interval of [0.4871, 0.7270]
and b = 0.1739 with a confidence interval of [0.1680, 0.1798].

Consider a set of m schema matcher outputs
{
M (1), . . . , M (m)

}
between two

schemata S and S′. M
(l)
i,j is the degree of similarity that matcher l associates with

mapping the i-th attribute of S to the j-th attribute of S′. A schema matching
ensemble is a set of schema matchers. An ensemble aggregates the similarities
assigned by individual matchers to reason about the resulting aggregated ranking
of alternative mappings. Such an aggregation can be modeled in various ways,
one of which is presented next.

3 Näıve Bayes Heuristic

In this section we present a new heuristic for schema matching, using our schema
matching model, presented in Section 2. Recall that the values in a similarity
matrix are assumed to form two probability distributions over [0, 1], one for
incorrect attribute mappings and another for correct mappings (see Figure 1).
The näıve Bayes heuristic attempts, given a similarity degree, to use Bayes
theorem to classify an attribute mapping to one of the two groups. The näıve
Bayes method is a simple probabilistic classifier that applies Bayes theorem
under a strong (näıve) independence assumptions.

Given an attribute mapping (Ai, Aj) and an ensemble of matchers’ out-
put

{
M (1), M (2), ..., M (m)

}
, a feature vector of (Ai, Aj) is defined to be〈

M
(1)
i,j , M

(2)
i,j , ..., M

(m)
i,j

〉
, where M

(l)
i,j is the (i, j) similarity value of M (l). Let

F be an m dimension feature space. We would like to predict the most likely
target value (v = +1 or v = −1), based on the observed data sample. +1 stands
for a correct mapping while −1 stands for an incorrect mapping. Formally, our
target function is

fc : F → {+1, −1} (1)

Managing Uncertainty in Schema Matcher Ensembles 65

The Bayesian approach to classifying a new instance (attribute mapping in our
case) is to assign the most probable target value, vMAP , given the attribute
values

〈
M

(1)
i,j , M

(2)
i,j , ..., M

(m)
i,j

〉
that describe the instance:

vMAP = argmaxvj∈{+1,−1}P
{
vj |M (1)

i,j , M
(2)
i,j , ..., M

(m)
i,j

}
(2)

Eq. 2, together with Bayes theorem and under the simplifying assumption that
the similarity values are conditionally independent given the target value, is used
to specify the target value output of the näıve Bayes classifier vNB to be:

vNB = argmaxvj∈{+1,−1}P {vj}
m∏

l=1

P
{

M
(l)
i,j |vj

}
(3)

P {vj} is estimated by counting the frequency with which each target value

vj ∈ {+1, −1} occurs in the training dataset. P
{
M

(l)
i,j |vj

}
, the probability to

observe a mapping with similarity degree equal to M
(l)
i,j given that the mapping is

correct/incorrect is taken from the estimated distribution of correct and incorrect
mappings, as suggested in Section 2.

Example 1. To illustrate the näıve Bayes heuristic, consider a näıve Bayes classi-
fier with two matchers (a bivariate instance space). Each mapping is represented
by a vector of length 2, consisting of the similarity values of the Precedence
and Graph matchers. Figure 1 provides an illustration of the two Precedence
matcher distributions used by the classifier and Table 1 (Section 4.2) provides
the tuning parameters for the distributions. The number of training negative
mappings is Nneg = 104387 and the number of positive training mappings
is Npos = 1706. Consider a new mapping pair with a similarity value vector−→μ = 〈μprec, μgraph〉 = 〈0.5, 0.6〉 and assume that the maximum values in the
Precedence and Graph similarity matrices are maxprec

μ = 0.6 and maxgraph
μ = 0.8,

respectively. The probability of the mapping to be negative, given the vector of
similarity measures −→μ = 〈0.5, 0.6〉 is

P (neg|−→μ) =
Nneg

Nneg + Npos
· Pα

prec
neg ,β

prec
neg

(μprec) · P
α

graph
neg ,β

graph
neg

(μgraph) (4)

=
104387

104387 + 1706
· 0.0097 · 0.0034 = 3.2449e − 005 (5)

where Pαprec
neg ,βprec

neg
and Pαgraph

neg ,βgraph
neg

are the density functions of the beta distri-
butions of the Precedence and Graph matchers, respectively. To evaluate the
probability of the given mapping to be positive, one needs to first normal-
ize the values in −→μ yielding a vector −→μ ′ = 〈μ′prec, μ

′
graph〉 = 〈0.5

0.6 , 0.6
0.8 〉, fol-

lowed by calculating Npos

Nneg+Npos
·Pαprec

pos ,βprec
pos

(μ′prec) ·Pαgraph
pos ,βgraph

pos
(μ′graph), yield-

ing P (pos|〈0.83, 0.75〉) = 0.0057. Therefore, the näıve Bayes heuristic will deter-
mine this mapping to be positive.

The time complexity of the näıve Bayes heuristic is O(n2), since each entry in
the matrix requires a constant number of computations. As a final comment, it

66 A. Marie and A. Gal

is worth noting that the näıve Bayes heuristic no longer guarantees, in an by
itself, a 1 : 1 cardinality constraint. To enforce this requirements, a constraint
enforcer [16], such as an algorithm for solving Maximum Weight Bipartite Graph
problem, should be applied to the resulting binary matrix of the heuristic.

4 Experiments

We now present an empirical evaluation of our heuristic. We report in details
on our experimental setup (Section 4.1), the data that was used (Section 4.2),
and the evaluation methodology (Section 4.3). We then present in Section 4.4
the experiment results and provide an empirical analysis of these results.

4.1 Experiment Setup

In our experiments we have used three matchers, briefly discussed below. De-
tailed description of these matchers can be found in [13]:

Term: Term matching compare attribute names to identify syntactically simi-
lar terms. To achieve better performance, terms are preprocessed using sev-
eral techniques originating in IR research. Term matching is based on either
complete word or string comparison.

Composition: A composite term is composed of other terms (either atomic
or composite). Composition can be translated into a hierarchy. Similarity is
determined based on the similarity of their neighbors.

Precedence: In any interactive process, the order in which data are provided
may be important. In particular, data given at an earlier stage may restrict
the availability of options for a later entry. When matching two terms, we
consider each of them to be a pivot within its own schema, thus partitioning
the graph into subgraphs of all preceding terms and all succeeding terms.
By comparing preceding subgraphs and succeeding subgraphs, we determine
the confidence strength of the pivot terms.

The näıve Bayes heuristic uses each of the three matchers as input to its
feature vector. The Näıve Bayes heuristic was implemented using Java 2 JDK
version 1.5.0 09 environment, using an API to access OntoBuilder’s matchers
and get the output matrices.

We have also experimented with each of the three matchers and a weighted
linear combination of them into a combined matcher. This combination also
included a fourth matcher, called Value, which uses the domain of attributes
as evidence to their similarity. The combined matcher is clearly dependent on
the other matchers and therefore violates the näıve Bayes heuristic assumption.
The experiments were run on a laptop with Intel Centrino Pentium m, 1.50GHz
CPU, 760MB of RAM Windows XP Home edition OS.

4.2 Data

For our experiments, we have selected 230 Web forms from different domains,
such as dating and matchmaking, job hunting, Web mail, hotel reservation, news,

Managing Uncertainty in Schema Matcher Ensembles 67

and cosmetics. We extracted each Web form ontology (containing the schema
and composition and precedence ontological relationships) using OntoBuilder.
We have matched the Web forms in pairs (115 pairs), where pairs were taken
from the same domain, and generated the exact mapping for each pair.4 The
ontologies vary in size and the proportion of number of attribute pairs in the
exact mapping relative to the target ontology. Another dimension is the size
difference between matched ontologies.

We ran the four matchers and generated 460 matrices. For each such matrix,
we have applied an algorithm for solving Maximum Weight Bipartite Graph
problem, to generate a 1 : 1 schema mapping, as a baseline comparison.

Table 1. Beta parameters

Matcher αpos βpos αneg βneg

Term 0.2430 0.0831 0.2951 4.6765

Graph 0.4655 0.1466 0.8360 9.1653

Precedence 0.6071 0.1739 2.3010 13.1242

Combined 0.6406 0.2040 2.6452 16.3139

In addition, we have generated 100 synthetic schema pairs. For each pair S
and S′ we have uniformly selected its schema sizes from the range [30, 60]. As an
exact mapping we selected a set of n mapping pairs, where n takes one of three
possible values, n1 = min (|S| , |S′|), n2 = 0.5n1, and n3 = 2n1. For n1 we have
enforced a 1 : 1 cardinality constraint. n2 represents a situation in which not
all attributes can be mapped and n3 represents a matching that is not of 1 : 1
cardinality. Then, using the beta distributions learned from the training data for
each of the four matchers we have created, for each schema pair, four synthetic
matrices, one per a matcher using a beta generator class cern.jet.random.Beta
distributed with colt.jar jar file. The entries of a matrix use (αpos, βpos) and
(αneg, βneg) parameters (See Table 1) for the beta distribution of the positive
mapping measures and the negative mapping measures, respectively.

4.3 Evaluation Methodology

We use two main evaluation metrics, namely Precision and Recall. Precision
is computed as the ratio of correct element mappings, with respect to some
exact mapping, out of the total number of element mappings suggested by the
heuristic. Recall is computed as the ratio of correct element mappings, out of
the total number of element mappings in the exact mapping. Both Recall and
Precision are measured on a [0, 1] scale. An optimal schema matching results in
both Precision and Recall equal to 1. Lower precision means more false positives,
while lower recall suggests more false negatives. To extend Precision and Recall to
the case of non 1 : 1 mappings, we have adopted a correctness criteria according
4 All ontologies and exact mappings are available for download from the OntoBuilder

Web site, http://ie.technion.ac.il/OntoBuilder).

68 A. Marie and A. Gal

to which any attribute pair that belongs to the exact mapping is considered to
be correct, even if the complex mapping is not fully captured. This method aims
at compensating the matchers for the 1 : 1 cardinality enforcement.

It is worth noting that our test was conducted on a wide range of real-world
schemata. Such a real world challenge was tried at the 2006 OAEI ontology
matching evaluation [10] with average performance of 39.25% Precision, 40.40%
Recall, and 39.82% F-Measure.5

4.4 Results and Analysis

We are now ready to present our results and empirical analysis. We present a
comparative analysis of the proposed heuristic with existing heuristics, using the
full data set. We then analyze two obstacles in successfully using the heuristic
and describe two additional experiments, aimed at evaluating the impact of each
such obstacle on the heuristic performance.

Comparative Performance Analysis. In our first experiment we provide a
comparative analysis of the performance of the näıve Bayes heuristic with four
heuristics that enforce a mapping cardinality of 1 : 1. Figure 2 illustrates the
results. The x axis represents the four different data sets, with Precision on the
y axis in Figure 2(left) and Recall in Figure 2(right).

Fig. 2. Comparative Performance Analysis

In terms of Precision, the näıve Bayes heuristic outperforms all other heuris-
tics. For the real data set, this improvement in Precision comes at the cost of
Recall. This disadvantage disappears in the simulated data, where the näıve
Bayes heuristic dominates other heuristics, even for the simulated data with n1,
where the 1 : 1 cardinality constraint holds (although not enforced for the pro-
posed heuristic). For this case, the Graph heuristic comes in very close behind.

Two main reasons may explain this behavior. First, the näıve assumption
of independence does not hold in our case, since OntoBuilder heuristics are all
heavily based on syntactic comparisons. Second, it is possible that the training
data set, based on which the beta distributions are determined, does not serve
5 See http://keg.cs.tsinghua.edu.cn/project/RiMOM/oaei2006/main.html for details.

Managing Uncertainty in Schema Matcher Ensembles 69

Fig. 3. Illustration of Matcher Behavior after Outlier Elimination

as a good estimator for the matchers decision making. We shall now investigate
these hypotheses in more depth.

Cleaning the Data. In this experiment we have eliminated from the real-world
data set some of the matrices that have a high percentage of outliers. In statis-
tics, an outlier is an observation that is numerically distant from the rest of the
data. Outliers in our matrices involve correct attribute mappings with very low
similarity measures and incorrect attribute mappings with relatively high simi-
larity measures. To compute (either positive or negative) outliers, we define Q1
and Q3 to be first and third quartiles, respectively, over all the similarity mea-
sures of the positive (negative) mappings, and IQR to be the interquartile range
Q3−Q1. An outlier is a mapping that its similarity measure μ < Q1−1.5 · IQR
or μ > Q3 + 1.5 · IQR. We have ranked all the Combined heuristic matrices in
a decreasing order of outlier numbers and chose the top 51 schema pairs (153
matrices), based on which we have regenerated the beta distributions for all
heuristics. Figure 3 presents the beta distribution of the Preference heuristic
for the new data set. Compared with Figure 1, we see that the distribution of
normalized values of correct attribute mappings remain stable. The distribu-
tion of incorrect attribute mappings is tighter here, yielding lower variance. As
a result, we expect less false negatives and increasing Recall. The confidence
levels of the new distributions reveal a slightly different story. Again, we are
looking at a confidence level of α = 0.05. For the incorrect attribute mappings
we have a = 3.3045 with a confidence interval of [3.2680, 3.3409] and b = 26.8633
with a confidence interval of [26.5499, 27.1768]. For correct attribute mappings,

70 A. Marie and A. Gal

Table 2. Change of Precision and Recall between Data Sets

Matcher Change in Precision Change in Recall

Term −8.13% −5.97%

Graph −8.97% −8.88%

Precedence −7.15% −6.37%

Combined −8.76% −9.06%

NB −4.28% 1.93%

a = 0.5831 with a confidence interval of [0.4076, 0.7586] and b = 0.2 with a
confidence interval of [0.191, 0.209]. For all parameters, we observe an increased
confidence interval, suggesting a possibly higher rate in probability estimation.

Table 2 summarizes the changes in Precision and Recall between the full data
set and the reduced one. The results show that indeed Recall was increased
for the näıve Bayes heuristic. It comes at the cost of Precision, indicating an
increase in the number of false positives in parallel. A somewhat surprising result
was that all other matchers performed worse on the reduced set. In any event,
these changes were not extremely big, which leads us to hypothesize that the
näıve Bayes heuristic performance in both data sets was impaired by the invalid
assumption of matcher independence.

Simulating Matcher Independence. To test the performance of the näıve
Bayes heuristic in a setting of matcher independence, we have used the synthetic
matrices. In this synthetic data sets, while all values in each matrix were gener-
ated using the same distribution, a specific attribute pair is assigned a value by
a matcher independently of other matchers.

A comparison of the performance of the näıve Bayes heuristic with the same
three heuristics we have used before are given in Figure 2 above. We observe
that Precision improves for all matchers, when using the synthetic data and
keeping the 1 : 1 cardinality constraints. This is most likely due to the way
the matrices are generated. The amount of improvement depends on the beta
distribution parameters of each matcher. For example, the Term matcher has a
weaker distinction between correct and incorrect mappings, yielding less accurate
prediction. This may also explain the reduced Recall for the Term matcher, while
all other matchers increase their Recall measure.

The näıve Bayes heuristic dominates the other matchers for all synthetic data,
indicating that indeed the matcher independence assumption serves as an obsta-
cle to better performance. Another interesting observation involves the ability of
the näıve Bayes heuristic to manage non 1 : 1 mappings. The other four match-
ers show a sharp decline in Precision for n2, since about half of their attribute
mappings are bound to be incorrect. For n3 we see an increase in Precision,
since the range of possibilities of mapping correctly has significantly increased.
For Recall, we see deterioration with the n3 data set, due to the inability of
these matchers to choose attributes that violate the 1 : 1 cardinality constraint.
We note that the näıve Bayes heuristic maintains an almost perfect Precision and

Managing Uncertainty in Schema Matcher Ensembles 71

Recall for all three synthetic data sets, which means, among other things, that
the specific method for measuring Precision and Recall for the n2 and n3 data
sets could not affect the true effectiveness of the heuristic.

5 Related Work

In this section we focus on two specific aspects that are most relevant to this
work, namely uncertainty management in schema matching and the use of ma-
chine learning in schema matching.

5.1 Uncertainty Management

Attempts to provide clear semantics to schema matching involves model theory
for schema mappings [1, 18, 2]. In [1] mappings were represented using schema
morphisms in categories. Roughly speaking, a category is a collection of schemata
and their inter-schema mappings, represented as a morphisms. A morphism can
be composed in an associative manner. Morphisms are designed so that they
preserve integrity constraints among schemata. The work in [18] provides explicit
semantics to mappings, using models and satisfiability. [2] provides a formal
model of schema matching for topic hierarchies, rooted directed trees, where
a node has a “meaning,” generated using some ontology. A schema matcher
(schema matching method in the authors own terminology) is a function from a
mapping to a boolean variable. The limitations in this line of models, with respect
to uncertainty modeling was presented in [18, 2] and discussed in Section 1.

The research described in [12] proposes a model that represents uncertainty
(as a measure of imprecision) in the matching process outcome. In [11], building
on the results of [12], the current “best mapping” approach was extended into
one that considers top-K mappings as an uncertainty management tool. In this
work, we propose a model for estimating the level of uncertainty in matcher
decision making and offer a heuristic to harness uncertainty and improve on
existing matching methods.

5.2 Machine Learning and Schema Matching

Machine learning has been used for schema matching in several works. Autoplex
[3], LSD [7], and iMAP [5] use a näıve Bayes classifier to learn attribute map-
pings probabilities using instance training set. SEMINT [17] use neural networks
to identify attribute mappings. APFEL [9] determine heuristic weights in an en-
semble and threshold levels using various machine learning techniques, namely
decision trees in general and C4.5 in particular, neural networks, and support
vector machines. C4.5 was also used in [28], using WordNet relationships as fea-
tures. sPLMap [23] use näıve Bayes, kNN, and KL-distance as content-based
classifiers. All these works applied machine learning directly to the schemata,
while our approach is to apply it to the similarity matrix outcome.

72 A. Marie and A. Gal

6 Conclusions

In this work we have presented a heuristic for schema matching, based on a prob-
abilistic model of matchers and a well-known machine learning classifier. We have
empirically analyzed the properties of the näıve Bayes heuristic using both real
world and synthetic data. Our empirical analysis shows that the proposed heuris-
tic performs well, given an accurate modeling of uncertainty in matcher decision
making. We have also discussed the current limitations of the heuristic, and in
particular its näıve assumption regarding matcher independence. Therefore, fu-
ture research involves fine tuning the similarity measure distribution estimation.
We will also look into more advanced methods (e.g., discriminant analysis [20])
that do away with the independence assumption of the näıve Bayes classifier.

References

[1] Alagic, S., Bernstein, P.: A model theory for generic schema management. In:
Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp. 228–246. Springer,
Heidelberg (2002)

[2] Benerecetti, M., Bouquet, P., Zanobini, S.: Soundness of schema matching meth-
ods. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp.
211–225. Springer, Heidelberg (2005)

[3] Berlin, J., Motro, A.: Autoplex: Automated discovery of content for virtual data-
bases. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001.
LNCS, vol. 2172, pp. 108–122. Springer, Heidelberg (2001)

[4] Cudré-Mauroux, P., et al.: Viewpoints on emergent semantics. Journal on Data
Semantics 6, 1–27 (2006)

[5] Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: imap: Discover-
ing complex mappings between database schemas. In: Proceedings of the ACM-
SIGMOD conference on Management of Data (SIGMOD), pp. 383–394. ACM
Press, New York (2004)

[6] Do, H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In: Proceedings of the International conference on Very Large Data
Bases (VLDB), pp. 610–621 (2002)

[7] Doan, A., Domingos, P., Halevy, A.: Reconciling schemas of disparate data
sources: A machine-learning approach. In: Aref, W.G. (ed.) Proceedings of the
ACM-SIGMOD conference on Management of Data (SIGMOD), Santa Barbara,
California, pp. 509–520. ACM Press, New York (2001)

[8] Domshlak, C., Gal, A., Roitman, H.: Rank aggregation for automatic schema
matching. IEEE Transactions on Knowledge and Data Engineering (TKDE) 19(4),
538–553 (2007)

[9] Ehrig, M., Staab, S., Sure, Y.: Bootstrapping ontology alignment methods with
apfel. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 186–200. Springer, Heidelberg (2005)

[10] Euzenat, J., Mochol, M., Svab, O., Svatek, V., Shvaiko, P., Stuckenschmidt, H.,
van Hage, W., Yatskevich, M.: Introduction to the ontology alignment evaluation
2006. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg
(2006)

Managing Uncertainty in Schema Matcher Ensembles 73

[11] Gal, A.: Managing uncertainty in schema matching with top-k schema mappings.
Journal of Data Semantics 6, 90–114 (2006)

[12] Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling
and evaluating automatic semantic reconciliation. VLDB Journal 14(1), 50–67
(2005)

[13] Gal, A., Modica, G., Jamil, H., Eyal, A.: Automatic ontology matching using
application semantics. AI Magazine 26(1), 21–32 (2005)

[14] He, B., Chang, K.-C.: Making holistic schema matching robust: an ensemble ap-
proach. In: Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, August 21-24,
2005, pp. 429–438 (2005)

[15] Hull, R.: Managing semantic heterogeneity in databases: A theoretical perspective.
In: Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS), pp. 51–61. ACM Press, New York (1997)

[16] Lee, Y., Sayyadian, M., Doan, A., Rosenthal, A.: eTuner: tuning schema matching
software using synthetic scenarios. VLDB Journal 16(1), 97–122 (2007)

[17] Li, W.-S., Clifton, C.: SEMINT: A tool for identifying attribute correspondences
in heterogeneous databases using neural networks. Data & Knowledge Engineer-
ing 33(1), 49–84 (2000)

[18] Madhavan, J., Bernstein, P., Domingos, P., Halevy, A.: Representing and reason-
ing about mappings between domain models. In: Proceedings of the Eighteenth
National Conference on Artificial Intelligence and Fourteenth Conference on In-
novative Applications of Artificial Intelligence (AAAI/IAAI), pp. 80–86 (2002)

[19] Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with Cupid. In:
Proceedings of the International conference on Very Large Data Bases (VLDB),
Rome, Italy, pp. 49–58 (September 2001)

[20] Marcoulides, G., Hershberger, S.: Multivariate Statistical Methods. Lawrence Erl-
baum Associates, Mahwah (1997)

[21] Melnik, S.: Generic Model Management: Concepts and Algorithms. Springer, Hei-
delberg (2004)

[22] Miller, R., Haas, L., Hernández, M.: Schema mapping as query discovery. In:
Abbadi, A.E., Brodie, M., Chakravarthy, S., Dayal, U., Kamel, N., Schlageter, G.,
Whang, K.-Y. (eds.) Proceedings of the International conference on Very Large
Data Bases (VLDB), pp. 77–88. Morgan Kaufmann, San Francisco (2000)

[23] Nottelmann, H., Straccia, U.: Information retrieval and machine learning for prob-
abilistic schema matching. Information Processing and Management 43(3), 552–
576 (2007)

[24] Ross, S.: A First Course in Probability, 5th edn. Prentice-Hall, Englewood Cliffs
(1997)

[25] Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal
of Data Semantics 4, 146–171 (2005)

[26] Srivastava, B., Koehler, J.: Web service composition - Current solutions and open
problems. In: Workshop on Planning for Web Services (ICAPS-03), Trento, Italy
(2003)

[27] Su, W., Wang, J., Lochovsky, F.: Aholistic schema matching for web query in-
terfaces. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M.,
Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.)
EDBT 2006. LNCS, vol. 4254, pp. 77–94. Springer, Heidelberg (2006)

[28] Xu, L., Embley, D.: A composite approach to automating direct and indirect
schema mappings. Information Systems 31(8), 697–886 (2006)

The Consistency Extractor System: Querying
Inconsistent Databases Using Answer Set Programs

Monica Caniupan1 and Leopoldo Bertossi2

1 Universidad del Bio-Bio
Departamento de Sistemas de Informacion Concepcion, Chile

mcaniupa@ubiobio.cl
2 Carleton University, School of Computer Science

Ottawa, Canada
bertossi@scs.carleton.ca

Abstract. We present the Consistency Extractor System (ConsEx) that uses an-
swer set programming to compute consistent answers to first-order queries posed
to relational databases that may be inconsistent wrt their integrity constraints.
Among other features, ConsEx implements a magic sets technique to evaluate
queries via disjunctive logic programs with stable model semantics that specify
the repair of the original database. We describe the methodology and the system;
and also present some experimental results.

1 Introduction

For several reasons, databases may become inconsistent wrt certain integrity constraints
(ICs) they are supposed to satisfy [1, 6]. However, in most of the cases only a small por-
tion of the database violates the ICs, and the inconsistent database can still be queried
and give us useful and correct information. In order to characterize this correct data, the
notion of consistent answer to a query was introduced in [1], along with a mechanism
for computing those answers.

Intuitively, an answer to a query Q in a relational database instance D is consistent
wrt a set IC of ICs if it is an answer to Q in every repair of D , where a repair of D is an
instance over the same schema that satisfies IC and is obtained from D by deleting or
inserting a minimal set -under set inclusion- of whole database tuples. More precisely,
if a database instance is conceived as a finite set of ground atoms, then for a repair D′

of D wrt IC it holds: (a) D′ satisfies IC , denoted D′ |= IC , and (b) the symmetric
difference D�D′ is minimal under set inclusion [1].

The algorithm for consistent query answering (CQA) in [1] is based on a first-order
query rewriting of the original query. The new query is posed to the original database,
and the usual answers are the consistent answers to the original query. This algorithm
has limitations wrt the class of ICs and queries it can handle. CQA based on first-order
query rewriting was later extended [17, 22, 27], but it is still limited in its applicability
(cf. Section 6), which is explained by the intrinsic data complexity of CQA (cf. [6, 7]
for surveys in this direction).

In several papers [2, 25, 3, 4, 20, 9, 10], database repairs have been specified as
the stable models of disjunctive logic programs with stable model semantics [23] (aka.

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 74–88, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The ConsEx: Querying Inconsistent Databases Using Answer Set Programs 75

answer set programs). It turns out that the data complexity of query evaluation from
disjunctive logic programs with stable model semantics [19] matches the data complex-
ity of CQA. In this line, the approach in [10] is the most general and also the more
realistic, in the sense that it takes into consideration possible occurrences of null values
and the way they are used in real database practice, and these null values are also used
to restore consistency wrt referential ICs.

In ConsEx we implement, use and optimize the repair logic programs introduced in
[10]. In consequence,ConsEx can beused forCQAwrtarbitrary universal ICs, acyclic sets
of referential ICs, and NOT-NULL constraints. The queries supported are Datalog queries
with negation, which goes beyond first-order queries. Consistent answers to queries can
be computed by evaluating queries against the repair programs, e.g. using the DLV system,
that implements the stable model semantics of disjunctive logic programs [28].

The ConsEx system implements the most general methodology for CQA wrt the class
of ICs and queries that can be handled. To achieve this goal, ConsEx computes and
optimizes the logic programs that specify database repairs or represent queries. These
programs are internally passed as inputs to DLV, which evaluates them. All this is done
in interaction with IBM DB2 relational DBMS. ConsEx can be applied to relational
databases containing NULL, and all the first-order ICs and (non-aggregate) queries
used in database practice and beyond.

Using logic programs for CQA in a straightforward manner may not be the most
efficient alternative. As shown in [12], a more efficient way to go is to apply the so-
called magic sets (MS) techniques, that transform the combination of the query program
and the repair program into a new program that, essentially, contains a subset of the
original rules in the repair program, those that are relevant to evaluate the query.

Classically, MS optimizes the bottom-up processing of queries in deductive (Data-
log) databases by simulating a top-down, query-directed evaluation [5, 15]. More re-
cently, the MS techniques have been extended to logic programs with stable models
semantics [21, 24, 18, 26]. In [12] it was shown how to adopt and adapt those tech-
niques to our repair programs, resulting in a sound and complete MS methodology for
the repair programs with program constraints. In Section 3, we briefly describe this
particular MS methodology, which is the one implemented in the ConsEx system. In
Section 5, we show that the use of MS in the evaluation of queries improves consider-
ably the execution time of queries.

In this paper we describe both the methodologies implemented in ConsEx (more de-
tails about them can be found in [12]), and the features, functionalities, and performance
of this system (again, more details and proofs of results can be found in [13]).

2 Preliminaries

We consider a relational database schema Σ = (U , R, B), where U is the possibly in-
finite database domain with null ∈ U , R is a fixed set of database predicates, each of
them with a finite, and ordered set of attributes, and B is a fixed set of built-in pred-
icates, like comparison predicates, e.g. {<, >, =, �=}. There is a predicate IsNull(·),
and IsNull(c) is true iff c is null . Instances for a schema Σ are finite collections D
of ground atoms of the form R(c1, ..., cn), called database tuples, where R ∈ R,

76 M. Caniupan and L. Bertossi

and (c1, ..., cn) is a tuple of constants, i.e. elements of U . The extensions for built-in
predicates are fixed, and possibly infinite in every database instance. There is also a
fixed set IC of integrity constraints, that are sentences in the first-order language L(Σ)
determined by Σ. They are expected to be satisfied by any instance for Σ, but they
may not.

A universal integrity constraint is a sentence in L(Σ) that is logically equivalent to a
sentence of the form [10]: ∀x̄(

∧m
i=1 Pi(x̄i) →

∨n
j=1 Qj(ȳj)∨ϕ), where Pi, Qj ∈ R,

x̄ =
⋃m

i=1 x̄i, ȳj ⊆ x̄, and m ≥ 1. Here ϕ is a formula containing only disjunctions
of built-in atoms from B whose variables appear in the antecedent of the implication.
We will assume that there exists a propositional atom false ∈ B that is always false in
the database. Domain constants different from null may appear in a UIC. A referential
integrity constraint (RIC) is a sentence of the form:1 ∀x̄(P (x̄) → ∃z̄ Q(ȳ, z̄)), where
ȳ ⊆ x̄ and P, Q ∈ R. A NOT NULL-constraint (NNC) is a denial constraint of the
form: ∀̄x̄(P (x̄) ∧ IsNull(xi) → false), where xi ∈ x̄ is in the position of the attribute
that cannot take null values.

Notice that our RICs contain at most one database atom in the consequent. E.g. tuple-
generating joins in the consequent are excluded, and this is due to the fact that RICs will
be repaired using null values (for the existential variables), whose participation in joins
is problematic. It would be easy to adapt our methodology in order to include that kind
of joins as long as they are repaired using other values in the domain. However, this
latter alternative opens the ground for undecidability of CQA [11], which is avoided in
[10] by using null values to restore consistency.

Based on the repair semantics and the logic programs introduced in [10], CQA as
implemented in ConsEx works for RIC-acyclic sets of universal, referential, and NNCs.
In this case, there is a one-to-one correspondence between the stable models of the
repair program and the database repairs [10]. That a set of ICs is RIC-acyclic essentially
means that there are no cycles involving RICs (cf. [12, 10] for details). For example,
IC = {∀x(S(x) → Q(x)), ∀x(Q(x) → S(x)), ∀x(Q(x) → ∃yT (x, y))} is RIC-
acyclic, whereas IC ′ = IC ∪ {∀xy(T (x, y) → Q(y))} is not, because there is a cycle
involving the RIC ∀x(Q(x) → ∃yT (x, y)). In the following, we will assume that IC is
a fixed, finite and RIC-acyclic set of UICs, RICs and NNCs. A database instance D is
said to be consistent if it satisfies IC . Otherwise, it is inconsistent wrt IC .

In particular, RICs are repaired by tuple deletions or tuple insertion with null values.
Notice that introducing null values to restore consistency makes it necessary to modify
the repair semantics introduced in [1], which does not consider RICs or null values.
This is needed in order to give priority to null values over arbitrary domain constants
when restoring consistency wrt RICs. It becomes necessary to modify accordingly the
notion of minimality associated to repair as shown in the following example (cf. [10]
for details).

Example 1. The database instance D = {P (a,null), P (b, c), R(a, b)} is inconsistent
wrt IC : ∀ xy (P (x, y) → ∃zR(x, z)). There are two repairs: D1 = {P (a,null),
P (b, c), R(a, b), R(b,null)}, with Δ(D, D1) = {R(b,null)}, and D2 = {P (a,null),

1 For simplification purposes, we assume that the existential variables appear in the last attributes
of Q, but they may appear anywhere else in Q.

The ConsEx: Querying Inconsistent Databases Using Answer Set Programs 77

R(a, b)}, with Δ(D, D2) = {P (b, c)}. For every d ∈ U � {null}, the instance D3 =
{P (a,null), P (b, c), R(a, b), R(b, d)} is not a repair, because it is not minimal. �

Database repairs can be specified as stable models of disjunctive logic programs. The
repair programs introduced in [10] build on the repair programs first introduced in [3]
for universal ICs. They use annotation constants to indicate the atoms that may become
true or false in the repairs in order to satisfy the ICs. Each atom of the form P (ā) (except
for those that refer to the extensional database) receives one of the annotation constants.
In P (ā, ta), the annotation ta means that the atom is advised to made true (i.e. inserted
into the database). Similarly, fa indicates that the atom should be made false (deleted).2

For each IC, a disjunctive rule is constructed in such a way that the body of the rule
captures the violation condition for the IC; and the head describes the alternatives for
restoring consistency, by deleting or inserting the participating tuples (cf. rules 2. and
3. in Example 2).

Annotation t� indicates that the atom is true or becomes true in the program. It is
introduced in order to keep repairing the database if there are interacting ICs; and e.g.
the insertion of a tuple may generate a new IC violation. Finally, atoms with constant
t�� are those that become true in the repairs. They are use to read off the database atoms
in the repairs. All this is illustrated in the following example (cf. [10] for the general
form of the repair programs).

Example 2. Consider the database schema Σ = {S (ID ,NAME), R(ID ,NAME),
T (ID ,DEPTO), W (ID ,DEPTO ,SINCE)}, the instance D = {S(a, c), S(b, c),
R(b, c), T (a,null), W (null , b, c)}, and IC = {∀xy(S(x, y) → R(x, y)), ∀xy(T (x, y)
→ ∃zW (x, y, z)), ∀xyz(W (x, y, z)∧IsNull(x) → false)}. The repair program Π(D ,
IC) contains the following rules:

1. S(a, c). S(b, c). R(b, c). T (a,null). W (null , b, c).
2. S(x, y, fa) ∨ R(x, y, ta) ← S(x, y, t�), R(x, y, fa), x �= null , y �= null .

S(x, y, fa) ∨ R(x, y, ta) ← S(x, y, t�), not R(x, y), x �= null , y �= null .
3. T (x, y, fa) ∨ W (x, y, null, ta) ← T (x, y, t�), not aux(x, y), x �= null , y �= null .

aux(x, y) ← W (x, y, z, t�), not W (x, y, z, fa), x �= null , y �= null , z �= null .
4. W (x, y, z, fa) ← W (x, y, z, t�), x = null .
5. S(x, y, t�) ← S(x, y).

S(x, y, t�) ← S(x, y, ta).
6. S(x, y, t��) ← S(x, y, t�), not S(x, y, fa).

���
��

(Similarly for R, T and W)

7. ← W (x, y, z, ta), W (x, y, z, fa).

The rules in 2. establish how to repair the database wrt the first IC: by making S(x, y)
false or R(x, y) true. Conditions of the form x �= null in the bodies are used to capture
occurrences of null values in relevant attributes [10]. The rules in 3. specify the form
of restoring consistency wrt the RIC: by deleting T (x, y) or inserting W (x, y, null).
Here, only the variables in the antecedent of the RIC cannot take null values. Rule 4. in-
dicates how to restore consistency wrt the NNC: by eliminating W (x, y, z). Finally, the

2 In order to distinguish a predicate P that may receive annotations in an extra argument from
the same predicate in the extensional database, that does not contain annotations, the former is
replaced by P .

78 M. Caniupan and L. Bertossi

program constraint 7. filters out possible non-coherent stable models of the program,
those that have an W -atom annotated with both ta and fa.3 Relevant program con-
straints can be efficiently generated by using a dependency graph [12], which captures
the relationship between predicates in the ICs (cf. Section 4).

The program has two stable models:4 M1 = {S(a, c, t�), S(b, c, t�), R(b, c, t�), T (a,

null , t�), W (null , b, c, t�), W (null , b, c, fa), R(a, c, ta), S(a, c, t��), S(b, c, t��), R(b, c, t��),

R(a, c, t�), R(a, c, t��), T (a,null , t��)}, M2 = {S(a, c, t�), S(b, c, t�), R(b, c, t�), T (a,

null , t�), W (null , b, c, t�), W (null , b, c, fa), S(a, c, fa), S(b, c, t��), R(b, c, t��), T (a,null ,
t��)}. Thus, consistency is recovered, according to M1 by inserting atom R(a, c)
and deleting atom W (null , b, c); or, according to M2 by deleting atoms {S(a, c),
W (null , b, c)}. Two repairs can be obtained by concentrating on the underlined atoms
in the stable models: {S(a, c), S(b, c), R(b, c), R(a, c), T (a,null)} and {S(b, c), R(b,
c), T (a,null)}, as expected. �

As established in [4, 10], repair programs are a correct specification of database repairs
wrt RIC-acyclic sets of UICs, RICs, and NNCs.

To compute consistent answers to a query Q, the query is expressed (or simply given)
as a logic program, e.g. as non-recursive Datalog program with weak negation and built-
ins if Q is first-order [29]. In this program the positive literals of the form P (s̄), with
P an extensional predicate, are replaced by P (s̄, t��), and negative literals of the form
not P (s̄) by not P (s̄, t��). We obtain a query program Π(Q), that is “run” together
with the repair program Π(D , IC). In this way, CQA becomes a form of cautious or
skeptical reasoning under the stable models semantics. Notice that for a fixed set of ICs,
the same repair program can be used with every instance (compatible with the schema)
and with every query we want to answer consistently, so it can be generated once, and
ConsEx will store it.

For the repair program in Example 2, the Datalog query Q : Ans(x) ← S(b, x),
becomes the program Π(Q) consisting of the rule Ans(x) ← S(b, x, t��). The com-
bined program Π(D , IC , Q) := Π(D , IC) ∪ Π(Q) has two stable models, both of
them containing the atom Ans(c). Therefore, the consistent answer to Q is (c).

3 Magic Sets for Repair Programs

The magic set (MS) techniques for logic programs with stable model semantics take
as an input a logic program -a repair program in our case- and a query expressed as
a logic program that has to be evaluated against the repair program. The output is a
new logic program, the magic program, with its own stable models, that can be used
to answer the original query more efficiently. As shown in [12], the stable models of
the magic program are relevant in the sense that they contain extensions for the pred-
icates that are relevant to compute the query. Also, they are only partially computed,
i.e. each of them can be extended to a stable model of the original program (ignoring
the “magic” predicates introduced in the magic program). This happens because the

3 For the program in this example, given the logical relationship between the ICs, this phenom-
enon could happen only for predicate W , as analyzed in [12].

4 In this paper, stable models are displayed without program facts.

The ConsEx: Querying Inconsistent Databases Using Answer Set Programs 79

magic program contains special auxiliary rules, the magic rules, that guide the course
of query evaluation, avoiding unnecessary instantiation of rules and, as a consequence,
achieving a faster computation of stable models. In this way, we may obtain less and
smaller stable models. The stable models of the magic program are expected to pro-
vide the same answers to the original query as the models of the program used as input
to MS.

The magic sets techniques for logic programs with stable model semantics intro-
duced in [21], for the non-disjunctive case but possibly unstratified negation, and in
[24] (improved in [18]), with disjunction but stratified negation, are sound and com-
plete, i.e. they compute all and only correct answers for the query. In [26] a sound
but incomplete methodology is presented for disjunctive programs with program con-
straints of the form ← C(x̄), where C(x̄) is a conjunction of literals (i.e. positive or
negated atoms). The effect of these programs constraints is to discard models of the rest
of the program that make true the existential closure of C(x̄).

Our repair programs are disjunctive, contain non-stratified negation, and have pro-
gram constraints; the latter with only positive intensional literals in their bodies. In
consequence, none of the MS techniques mentioned above could be directly applied
to optimize our repair programs. However, as shown in [12] (cf. also [13] for details),
the following sound and complete MS methodology can be applied to repair programs
(with program constraints): First, the program constraints are removed from the repair
program. Next, a combination of the MS techniques in [18, 21] is applied to the re-
sulting program. The disjunction is handled as in [18], and negation as in [21]. This
combination works for repair programs because in them, roughly speaking, negation
does not occur in odd cycles. For this kind of programs, soundness and completeness
of MS can be obtained from results in [18, 21].5 Finally, the program constraints are
put back into the magic program obtained in the previous step, enforcing the magic
program to have only coherent models.

The MS techniques currently implemented in DLV cannot be applied to disjunctive
programs with program constraints. On the other side, when the program does not con-
tain program constraints, DLV applies MS internally, without giving access to the magic
program. As a consequence, the application of MS with DLV to repair programs (with
program constraints) is not straightforward. ConsEx, that uses DLV for evaluation of
logic programs, solves this problems as follows: First, ConsEx produces a magic pro-
gram for the combination of the query and repair programs (as briefly mentioned above)
without considering the program constraints. Next, the original program constraints are
added to the magic program. Finally, this expanded magic program is given to DLV for
evaluation, as any other logic program. This is the MS methodology implemented in
the ConsEx system, which is correct for repair programs. An example below shows this
process in detail.

The MS technique sequentially performs three well defined steps: adornment, gen-
eration and modification, which will be illustrated using Example 2 with the query
program Ans(x) ← S(b, x, t��).

5 Personal communication from Wolfgang Faber. Actually, this combination is the MS tech-
nique implemented in DLV. Correctness is guaranteed for disjunctive programs with unstrati-
fied negation appearing in even cycles, which is what we need.

80 M. Caniupan and L. Bertossi

The adornment step produces a new, adorned program, in which each intensional
(defined) predicate P takes the form PA, where A is a string of letters b, f , for bound
and free, resp., whose length is equal to the arity of P . Starting from the query, adorn-
ments are created and propagated. First Π(Q) : Ans(x) ← S (b, x, t��) becomes:
Ansf (x) ← S bfb(b, x, t��), meaning that the first and third arguments of S are bound,
and the second is a free variable. Annotation constants are always bound.

The adorned predicate S bfb is used to propagate bindings (adornments) onto the
rules defining predicate S, i.e. rules in 2., 5., and 6. As an illustration, the rules in
5. become S bfb(x, y, t�) ← S(x, y) and S bfb(x, y, t�) ← S bfb(x, y, ta), resp. Ex-
tensional (base) predicates, e.g. S appearing as S(x, y) in the first adorned rule, only
bind variables and do not receive any annotation. Moreover, the adorned predicate S bfb

propagates adornments over the disjunctive rules in 2. The adornments are propagated
over the literals in the body of the rule, and to the head literal R (x, y, ta). Therefore,
this rule becomes:6 S bfb(x, y, fa) ∨ Rbfb(x, y, ta), ← S bfb(x, y, t�), Rbfb(x, y, fa).
Now, the new adorned predicate Rbfb also has to be processed, producing adornments
on rules defining predicate R. The output of this step is an adorned program that con-
tains only adorned rules.

The iterative process of passing bindings is called sideways information passing
strategies (SIPS) [5]. There may be different SIPS strategies, but any SIP strategy
has to ensure that all of the body and head atoms are processed. We follow the strat-
egy adopted in [18], which is implemented in DLV. According to it, only extensional
predicates bind new variables, i.e. variables that do not carry a binding already. As
an illustration, suppose we have the adorned predicate P fbf and the rule P (x, y, z) ∨
T (x, y) ← R(z), M(x, z), where R is a extensional predicate. The adorned rule is
P fbf (x, y, z) ∨ T fb(x, y) ← R(z), Mfb(x, z). Notice that variable z is free according
to the adorned predicate P fbf . However, the extensional atom R(z) binds this vari-
able, and propagates this binding to M(x, z), where z becomes bound , producing the
adorned predicate Mfb.

The next step is the generation of magic rules; those that will direct the computa-
tion of the stable models of the rewritten program obtained in the previous step. For
each adorned atom PA in the body of an adorned non-disjunctive rule, a magic rule
is generated as follows: (a) The head of the magic rule becomes the magic version of
PA, i.e. magic PA, from which all the variables labelled with f in A are deleted. (b)
The literals in the body of the magic rule become the magic version of the adorned rule
head, followed by the literals (if any) that produced bindings on atom PA. For example,
for the adorned literal S bfb(x, y, ta) in the body of the adorned rule S bfb(x, y, t�) ←
S bfb(x, y, ta), the magic rule is magic S bfb(x, ta) ← magic S bfb(x, t�). For
disjunctive adorned rules, first, intermediate non-disjunctive rules are generated by
moving, one at a time, head atoms into the bodies of rules. Next, magic rules are gener-
ated as described for non-disjunctive rules. For example, for the rule S bfb(x, y, fa) ∨
Rbfb(x, y, ta) ← S bfb(x, y, t�), Rbfb(x, y, fa), we have two non-disjunctive rules: (a)
S bfb(x, y, fa) ← Rbfb(x, y, ta), S bfb(x, y, t�), Rbfb(x, y, fa); and (b) Rbfb(x, y, ta)
← S bfb(x, y, fa), S bfb(x, y, t�), Rbfb(x, y, fa). There are three magic rules for rule

6 For simplification purposes, conditions of the form x �= null are omitted from the disjunctive
rules.

The ConsEx: Querying Inconsistent Databases Using Answer Set Programs 81

(a): magic Rbfb(x, ta) ← magic S bfb(x, fa); magic S bfb(x, t�) ← magic S bfb(x,
fa); and magic Rbfb(x, fa) ← magic S bfb(x, fa).

At this step also the magic seed atom is generated. This corresponds to the magic
version of the Ans predicate from the adorned query rule, e.g. for rule Ansf (x) ←
S bfb(x, y, t��), the magic seed atom is magic Ansf .

The last phase is the modification step, where magic atoms constructed in the gener-
ation stage are included in the body of adorned rules. Thus, for each adorned rule, the
magic version of its head is inserted into the body. For instance, the magic versions of
the head atoms in rule S bfb(x, y, fa)∨Rbfb(x, y, ta) ← S bfb(x, y, t�), Rbfb(x, y, fa),
are magic S bfb(x, fa) and magic Rbfb(x, ta), resp., which are inserted into the body
of the adorned rule, generating the modified rule S bfb(x, y, fa) ∨Rbfb(x, y, ta) ←
magic S bfb(x, fa), magic Rbfb(x, ta), S bfb(x, y, t�), Rbfb(x, y, fa). From the modi-
fied rules the rest of the adornments are now deleted. Thus, the previous modified rule
becomes S(x, y, fa) ∨R(x, y, ta) ← magic S bfb(x, fa), magic Rbfb(x, ta), S(x, y,
t�), R(x, y, fa).

The final, rewritten, magic program consists of the magic and modified rules, the
magic seed atom, and the facts of the original program. In our case, it also contains the
set of original program constraints that were not touched during the application of MS.
Since in the MS program only magic atoms have adornments, the program constraints
can be added as they come to the program. The program MS(Π) below is the magic
program for the program Π consisting of the query program Ans(x) ← S(b, x, t��)
plus the repair program in Example 2.

Program MS(Π): magicAnsf.

magic S bfb(b, t��) ← magic Ansf.
magic S bfb(x, ta) ← magic S bfb(x, t�).
magic S bfb(x, t�) ← magic S bfb(x, t��).
magic S bfb(x, fa) ← magic S bfb(x, t��).
magic Rbfb(x, ta) ← magic S bfb(x, fa).
magic S bfb(x, t�) ← magic S bfb(x, fa).
magic Rbfb(x, fa) ← magic S bfb(x, fa).

magic S bfb(x, fa) ← magic Rbfb(x, ta).
magic S bfb(x, t�) ← magic Rbfb(x, ta).
magic Rbfb(x, fa) ← magic Rbfb(x, ta).
magic Rbfb(x, ta) ← magic Rbfb(x, t�).
magic Rbfb(x, t�) ← magic Rbfb(x, t��).
magic Rbfb(x, fa) ← magic Rbfb(x, t��).
Ans(x) ← magic Ansf , S (b, x, t��).

S (x, y, fa) ∨ R (x, y, ta) ← magic S bfb(x, fa),magic Rbfb(x, ta), S (x, y, t�), R (x, y, fa).
S (x, y, fa)∨R (x, y, ta) ← magic S bfb(x, fa),magic Rbfb(x, ta), S (x, y, t�), not R(x, y).

S (x, y, t�) ← magic S bfb(x, t�), S (x, y, ta). S (x, y, t�) ← magic S bfb(x, t�), S(x, y).

R(x, y, t�) ← magic Rbfb(x, t�), R(x, y, ta). R(x, y, t�) ← magic Rbfb(x, t�), R(x, y).

S (x, y, t��) ← magic S bfb(x, t��), S (x, y, t�), not S (x, y, fa).

R(x, y, t��) ← magic Rbfb(x, t��), R(x, y, t�), not R(x, y, fa).

← W (x, y, z, ta), W (x, y, z, fa).

Notice that MS(Π) contains rules related to predicates S, R, but no rules for pred-
icates T, W , which are not relevant to the query. Therefore the program constraint will
be trivially satisfied. Program MS(Π) (with the same facts of the original repair pro-
gram) has only one stable model: M = {S(b, c, t�), S(b, c, t��), Ans(c)} (displayed
here without the magic atoms), which indicates through its Ans predicate that (c) is the
consistent answer to the original query, as expected. We can see that the magic program
has only those models that are relevant to compute the query answers. Furthermore,

82 M. Caniupan and L. Bertossi

 Relevant
Predicates

Identification

 Dependency
Graph

Construction

MS
Rewriting

 Database
Connection

Answers
Collection

DLVDB

Query
Processing

RIC - acyclic
Checking

Consistency
Checking

ConsEx System

Consistent
Answers

ICs

Query

Options

Repair Program
Construction

Connection

Fig. 1. ConsEx Architecture

(a) (b)

Fig. 2. ConsEx: Database Connection and Main Menu

these are partially computed, i.e. they can be extended to stable models of the program
Π(D , IC , Q). More precisely, except for the magic atoms, model M is contained in
every model of the original repair program Π(D , IC , Q) (cf. Section 2).7

4 System Description

In Figure 1, that describes the general architecture of ConsEx, the Database Connection
module receives the database parameters (database name, user and password) and con-
nects to the database instance. We show in Figure 2 (a) the connection screen; and in
Figure 2 (b), the main menu, obtained after connecting to the database.

The Query Processing module receives the query and ICs; and coordinates the tasks
needed to compute consistent answers. First, it checks queries for syntactic correctness.
Currently in ConsEx, first-order queries can be written as logic programs in (rather
standard) DLV notation, or as queries in SQL. The former correspond to non-recursive

7 In [13] it has been shown that the magic program, and the original repair program are query
equivalent under both brave and cautious reasoning.

The ConsEx: Querying Inconsistent Databases Using Answer Set Programs 83

Datalog queries with weak negation and built-ins, which includes first-order queries.
SQL queries may have disjunction (i.e. UNION), built-in literals in the WHERE clause,
but neither negation nor recursion, i.e. unions of conjunctive queries with built-ins.

After a query passes the syntax check, the query program is generated. For DLV
queries, the query program is obtained by inserting the annotation t�� into the literals
in the bodies of the rules of the query that do not have a definition in the query program
(but are defined in the repair program). For SQL queries, the query program is obtained
by first translating queries into equivalent Datalog programs, and then by adding the
annotation t�� to the program rules as for the DLV queries.

Given a query, there might be ICs that are not related to the query. More precisely,
their satisfaction or not by the given instance (and the corresponding portion of the
repairs in the second case) does not influence the (standard or consistent) answers to
the query. In order to capture the relevant ICs, the Relevant Predicates Identification
module analyzes the interaction between the predicates in the query and those in the ICs
by means of a dependency graph [12], which is generated by the Dependency Graph
Construction module. We can use our running example to describe this feature and other
system’s components.

The dependency graph G(IC) for the ICs in Example 2 contains as nodes the predi-
cates S, R, T, W , and the edges (S, R), (T, W). Then, for the query Ans(x) ← S(b, x)
the relevant predicates are S and R, because they are in the same component as the
predicate S that appears in the query. Thus, the relevant IC to check is ∀xy(S(x, y) →
R(x, y)), which contains the relevant predicates (cf. [12] for more details).

Next, ConsEx checks if the database is consistent wrt the ICs that are relevant to the
query. This check is performed by the Consistency Checking module, which generates
an SQL query for each relevant IC, to check its satisfaction. For example, for the rele-
vant IC ∀xy(S(x, y) → R(x, y)) identified before, ConsEx generates the SQL query:
SELECT * FROM S WHERE (NOT EXISTS (SELECT * FROM R WHERE R.ID = S.ID AND

R.NAME = S.NAME) AND ID IS NOT NULL AND NAME IS NOT NULL), asking for violating
tuples.

If the answer is empty, ConsEx proceeds to evaluate the given query directly on the
original database instance, i.e. without computing repairs. For example, if the query is
Q : Ans(x) ← S(b, x), the SQL query “SELECT NAME FROM S WHERE ID=’b’”,
is generated by ConsEx and posed to D. However, in Example 2 we do have {(a, c)}
as the non-empty set of violations of the relevant IC. In consequence, the database is
inconsistent, and, in order to consistently answer the query Q, the repair program has
to be generated.

The RIC-acyclic Checking module uses the dependency graph to check if set of ICs
is RIC-acyclic. If it is, the generation of programs is avoided, and a warning message
is sent to the user. Otherwise, the Repair Program Construction module generates the
repair program, which is constructed “on the fly”, that is, all the annotations that appear
in it are generated by the system, and the database is not affected. The facts of the
program are not imported from the database into ConsEx. Instead, suitable sentences to
import data are included into the repair program, as facilitated and understood by DLV.

The repair program may contain, for each extensional predicate P , the import sen-
tence #import(dbName, dbUser , dbPass , “SELECT * FROM P”,P), retrieving the

84 M. Caniupan and L. Bertossi

tuples from relation P that will become the facts for predicate P in the program. As a
result, when the program is evaluated by DLV, the database facts will be imported di-
rectly into the reasoning system. These data import sentences are required at this stage
only if ConsEx will run the original repair program without any magic sets optimiza-
tion, which is an option given by the system.

The MS Rewriting module generates the magic version of a program. It includes
at the end appropriate database import sentences, which are generated by a static in-
spection of the magic program. This requires identifying first, in the rule bodies, the
extensional database atoms (they have no annotation constants). Next, for each of these
extensional atoms, it is checked if the magic atoms will have the effect of bound-
ing their variables during the program evaluation. That is, it is checked if the con-
stants appearing in the query will be pushed down to the program before query evalua-
tion. For example, in the magic program MS(Π) for the query Ans(x) ← S(b, x)
shown in Section 3, the following rules contain database atoms: (a) S (x, y, t�) ←
magic S bfb(x, t�), S(x, y); and (b) R (x, y, t�) ← magic Rbfb(x, t�), R(x, y). In
(a), the variable x in the extensional atom S(x, y) will be bound during the evaluation
due to the magic atom magic S bfb(x, t�) appearing in the same body. This magic atom
is defined in the magic program by the rule magic S bfb(x, t�) ← magic S bfb(x, t��),
where atom magic S bfb(x, t��) is defined in its turn by the rule magic S bfb(b, t��) ←
magic Ansf . Since magic Ans f is always true in an MS program, magic S bfb(b, t��)
will be true with the variable x in S(x, y) eventually taking value b. As a consequence,
the SQL query in the import sentence for predicate S will be: “SELECT * FROM S

WHERE ID = ‘b′”. A similar static analysis can be done for rule (b), generating an
import sentence for relation R. The generated import sentences will retrieve into DLV
only the corresponding subsets of the relations in the database.

The resulting magic program is evaluated in DLV, that is automatically called by
ConsEx, and the query answers are returned to the Answer Collection module, which
formats the answers and returns them to the user as the consistent answers.

5 Experimental Evaluation

Several experiments on computation of consistent answers to queries were run with
ConsEx. In particular, it was possible to quantify the gain in execution time when using
magic sets instead of the direct evaluation of the repair programs. The experiments were
run on an Intel Pentium 4 PC, processor of 3.00 Ghz, 512 MB of RAM, and with Linux
distribution UBUNTU 6.0. The database instance was stored in the IBM DB2 Universal
Database Server Edition, version 8.2 for Linux. All the programs were run in the version
of DLV for Linux released on Jan 12, 2006.

We considered a database schema with eight relations, and a set of ICs composed
of two primary key constraints, and three RICs. In order to analyze scalability of CQA
trough logic programs, we considered two databases instances D1, and D2, with 3200
and 6400 stored tuples, resp. The number N of inconsistent tuples, i.e. participating in
an IC violation varied between 20 and 400.8

8 The files containing the database schema, ICs, the queries, and the instances used in the exper-
iments are available in http://www.face.ubiobio.cl/∼mcaniupa/ConsEx

The ConsEx: Querying Inconsistent Databases Using Answer Set Programs 85

Database Instance D1 Database Instance D2

Fig. 3. Running Time for the Conjunctive Query with Free Variables

Database Instance D1 Database Instance D2

Fig. 4. Running Time for the Partially-Ground Conjunctive Query with Free Variables

Here, we report the execution time for two conjunctive queries, in both instances. The
first query is of the form, Ans(x̄) ← P (ȳ),R(z̄), with x̄ ⊆ ȳ∪z̄, with free variables (an
open query), joins (ȳ ∩ z̄ �= ∅), and no constants. The second query contains joins and
is also partially-ground, like the query used in Section 3. Both queries fall in the class
of Tree-queries for which CQA is tractable under key constraints [22]. However, since
we are also considering RICs, which are repaired by inserting tuples with null values,
it is not possible to use the polynomial time algorithm for CQA presented in [22]. Even
more, it is not clear that the tractability result in [22] carries over to the queries and ICs
used in our experiments.

In the charts, R&Q indicates the straightforward evaluation of the repair program
combined with the query program, whereas its magic sets optimization is indicated with
MS. Figure 3 shows the running time for the first query in the two instances. We can
see that MS is faster than the straightforward evaluation. For N = 200 (in both data-
base instances), the MS methodology returns answers in less than ten seconds, while
the straightforward evaluation returns answers after one minute. Moreover, the execu-
tion time of the MS methodology is almost invariant wrt percentage of inconsistency.
Despite the absence of constants in the query, MS still offers a substantial improve-
ment because the magic program essentially keeps only the rules and relations that are
relevant to the query, which reduces the ground instantiation of the program by DLV.

Figure 4 shows the execution time for the second, partially-ground query in both
database instances. Again, MS computes answers much faster than the straightforward
evaluation. In this case, MS has an even better performance due to the occurrence of

86 M. Caniupan and L. Bertossi

constants in the query, which the magic rules push down to the database relations. This
causes less tuples to be imported into DLV, and the ground instantiation of the magic
program is reduced (wrt the original program).

Furthermore, MS shows an excellent scalability. For instance, MS computes answers
to queries from database instances D1 and D2 in less than ten seconds, even with a
database D2 that contains twice as many tuples as D1.

6 Conclusions

We have seen that the ConsEx system computes database repairs and consistent an-
swers to first-order queries (and beyond) by evaluation of logic programs with stable
model semantics that specify both the repairs and the query. In order to make query
answering more efficient in practice, ConsEx implements sound and complete magic
set techniques for disjunctive repair programs with program constraints [12]. Moreover,
ConsEx takes advantage of the smooth interaction between the logic programming en-
vironment and the database management systems (DBMS), as enabled by DLV. In this
way, it is possible to exploit capabilities of the DBMS, such as storing and indexing.
Furthermore, bringing the whole database into DLV, to compute repairs and consis-
tent answers, is quite inefficient. In our case, it is possible to keep the instance in the
database, while only the relevant data is imported into the logic programming system.

The methodology for CQA based on repair logic programs is general enough to cover
all the queries and ICs found in database practice (and more). On the other side, we
know that CQA has a high intrinsic data complexity [16, 7]. The excellent performance
exhibited by the magic sets techniques makes us think that CQA is viable and can be
used in practical cases. Most likely real databases do not contain such a high percentage
of inconsistent data as those used in our experiments.

Implementations of other systems for CQA have been reported before. The Queca
system [14] implements the query rewriting methodology presented in [1], and can be
used with universal ICs with at most two database atoms (plus built-ins) and projection-
free conjunctive queries. The system Hippo [17] implements first-order query rewriting
based on graph-theoretic methods. It works for denial constraints and inclusion depen-
dencies under a tuple deletion repair semantics, and projection-free conjunctive queries.
The system ConQuer [22] implements CQA for key constraints and a non-trivial class
of conjunctive queries with projections. Comparisons in terms of performance between
ConsEx and these more specialized and optimized systems, for the specific classes of
ICs and queries they can handle, still have to be made.

In ConsEx, consistency checking of databases with SQL null values and repairs that
appeal to SQL null values both follow the precise and general semantics introduced in
[10]. However, when queries are answered in ConsEx, the query answer semantics is
the usual logic programming semantics that treats nulls as any other constant. A seman-
tics for query answering in the presence of SQL nulls that is compatible with the IC
satisfaction and repair semantics used in ConsEx is proposed in [8]. Its implementa-
tion in ConsEx is left for future work. We also leave for future work the extension of
CQA to broader classes of queries, in particular, to aggregate queries by means of logic
programs as done in [13].

The ConsEx: Querying Inconsistent Databases Using Answer Set Programs 87

Acknowledgements. Research supported by an NSERC Discovery Grant, and the Uni-
versity of Bio-Bio (UBB-Chile) (Grant DIUBB 076215 4/R). L. Bertossi is Faculty
Fellow of IBM Center for Advanced Studies (Toronto Lab.). We are grateful to Claudio
Gutiérrez and Pedro Campos, both from UBB, for their help with the implementation of
algorithms and the interface of ConsEx. Conversations with Wolfgang Faber and Nicola
Leone are very much appreciated.

References

[1] Arenas, M., Bertossi, L., Chomicki, J.: Consistent Query Answers in Inconsistent Data-
bases. In: Proc. ACM Symposium on Principles of Database Systems (PODS 99), pp. 68–
79. ACM Press, New York (1999)

[2] Arenas, M., Bertossi, L., Chomicki, L.: Answer Sets for Consistent Query Answering in In-
consistent Databases. Theory and Practice of Logic Programming 3(4-5), 393–424 (2003)

[3] Barcelo, P., Bertossi, L.: Logic Programs for Querying Inconsistent Databases. In: Dahl, V.,
Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 208–222. Springer, Heidelberg (2002)

[4] Barcelo, P., Bertossi, L., Bravo, L.: Characterizing and Computing Semantically Correct
Answers from Databases with Annotated Logic and Answer Sets. In: Bertossi, L., Katona,
G.O.H., Schewe, K.-D., Thalheim, B. (eds.) Semantics in Databases. LNCS, vol. 2582, pp.
1–27. Springer, Heidelberg (2003)

[5] Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.: Magic Sets and Other Strange Ways to
Implement Logic Programs (extended abstract). In: PODS 1986, pp. 1–15. ACM Press,
New York (1986)

[6] Bertossi, L., Chomicki, J.: Query Answering in Inconsistent Databases. In: Logics for
Emerging Applications of Databases, pp. 43–83. Springer, Heidelberg (2003)

[7] Bertossi, L.: Consistent Query Answering in Databases. ACM Sigmod Record 35(2), 68–76
(2006)

[8] Bravo, L.: Handling Inconsistency in Databases and Data Integration Systems. PhD. Thesis,
Carleton University, Department of Computer Science (2007), http://homepages.
inf.ed.ac.uk/lbravo/Publications.htm

[9] Bravo, L., Bertossi, L.: Consistent Query Answering under Inclusion Dependencies. In:
CASCON 2004, pp. 202–216 (2004)

[10] Bravo, L., Bertossi, L.: Semantically Correct Query Answers in the Presence of Null Val-
ues. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S.,
Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS,
vol. 4254, pp. 33–47. Springer, Heidelberg (2006)

[11] Cali, A., Lembo, D., Rosati, R.: On the Decidability and Complexity of Query Answering
over Inconsistent and Incomplete Databases. In: PODS 2003, pp. 260–271. ACM Press,
New York (2003)

[12] Caniupan, M., Bertossi, L.: Optimizing Repair Programs for Consistent Query Answering.
In: SCCC 2005, pp. 3–12. IEEE Computer Society Press, Los Alamitos (2005)

[13] Caniupan, M.: Optimizing and Implementing Repair Programs for Consistent Query An-
swering in Databases. PhD. Thesis, Carleton University, Department of Computer Science
(2007), http://www.face.ubiobio.cl/∼mcaniupa/publications.htm

[14] Celle, A., Bertossi, L.: Querying Inconsistent Databases: Algorithms and Implementation.
In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau,
K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 942–956.
Springer, Heidelberg (2000)

http://homepages.inf.ed.ac.uk/lbravo/Publications.htm
http://homepages.inf.ed.ac.uk/lbravo/Publications.htm
http://www.face.ubiobio.cl/~mcaniupa/publications.htm

88 M. Caniupan and L. Bertossi

[15] Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg
(1990)

[16] Chomicki, J., Marcinkowski, J.: On the Computational Complexity of Minimal-Change In-
tegrity Maintenance in Relational Databases. In: Bertossi, L., Hunter, A., Schaub, T. (eds.)
Inconsistency Tolerance. LNCS, vol. 3300, pp. 119–150. Springer, Heidelberg (2005)

[17] Chomicki, J., Marcinkowski, J., Staworko, S.: Computing Consistent Query Answers using
Conflict Hypergraphs. In: CIKM 2004, pp. 417–426. ACM Press, New York (2004)

[18] Cumbo, C., Faber, W., Greco, G., Leone, N.: Enhancing the Magic-Set Method for Disjunc-
tive Datalog Programs. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132,
pp. 371–385. Springer, Heidelberg (2004)

[19] Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of
Logic Programming. ACM Computing Surveys 33(3), 374–425 (2001)

[20] Eiter, T., Fink, M., Greco, G., Lembo, D.: Efficient Evaluation of Logic Programs for
Querying Data Integration Systems. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916,
pp. 163–177. Springer, Heidelberg (2003)

[21] Faber, W., Greco, G., Leone, N.: Magic Sets and their Application to Data Integration.
Journal of Computer and System Sciences 73(4), 584–609 (2007)

[22] Fuxman, A., Fazli, E., Miller, R.J.: ConQuer: Efficient Management of Inconsistent Data-
bases. In: SIGMOD 2005, pp. 155–166. ACM Press, New York (2005)

[23] Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Data-
bases. New Generation Computing 9, 365–385 (1991)

[24] Greco, S.: Binding Propagation Techniques for the Optimization of Bound Disjunctive
Queries. IEEE Transac. on Knowledge and Data Eng. 15(2), 368–385 (2003)

[25] Greco, G., Greco, S., Zumpano, E.: A Logical Framework for Querying and Repairing
Inconsistent Databases. IEEE Transactions on Knowledge and Data Eng. 15(6), 1389–1408
(2003)

[26] Greco, G., Greco, S., Trubtsyna, I., Zumpano, E.: Optimization of Bound Disjunctive
Queries with Constraints. Theory and Practice of Logic Programming 5(6), 713–745 (2005)

[27] Lembo, D., Rosati, R., Ruzzi, M.: On the First-Order Reducibility of Unions of Conjunctive
Queries over Inconsistent Databases. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski,
S., Mesiti, M., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.)
EDBT 2006. LNCS, vol. 4254, pp. 358–374. Springer, Heidelberg (2006)

[28] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computa-
tional Logic 7(3), 499–562 (2006)

[29] Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)

Incomplete Statistical Information Fusion and Its
Application to Clinical Trials Data

Jianbing Ma1, Weiru Liu1, and Anthony Hunter2

1 School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast BT7 1NN, UK

{jma03,w.liu}@qub.ac.uk
2 Department of Computer Science, University College London,

Gower Street, London WC1E 6BT, UK
a.hunter@cs.ucl.ac.uk

Abstract. In medical clinical trials, overall trial results are highlighted in the
abstracts of papers/reports. These results are summaries of underlying statistical
analysis where most of the time normal distributions are assumed in the analysis.
It is common for clinicians to focus on the information in the abstracts in order
to review or integrate several clinical trial results that address the same or simi-
lar medical question(s). Therefore, developing techniques to merge results from
clinical trials based on information in the abstracts is useful and important. In re-
ality information in an abstract can either provide sufficient details about a normal
distribution or just partial information about a distribution. In this paper, we first
propose approaches to constructing normal distributions from both complete and
incomplete statistical information in the abstracts. We then provide methods to
merge these normal distributions (or sampling distributions). Following this, we
investigate the conditions under which two normal distributions can be merged.
Finally, we design an algorithm to sequence the merging of trials results to ensure
that the most reliable trials are considered first.

Keywords: Normal distribution, Merging statistical data, Consistency analysis.

1 Introduction

Clinical trials are widely used to test new drugs or to compare the effect of different
drugs [10]. Overall trial results are summarized in abstracts of papers/reports that re-
port the trial details. Given that there is a huge number of trials available and details of
reports are very time consuming to read and understand, clinicians, medical practioners
and general users mainly make use of this highly summaritive information in the ab-
stracts to obtain an overall impression about drugs of interest. For example, many clini-
cal trials have been carried out to investigate the intraocular pressure-lowering efficacy
of drugs, such as travoprost, bimatoprost, and latanoprost, [2,4,9,11,13,14,15,16,18].
When an overview or survey of a collection of clinical trials is required, a merged or
integrated result is desirable.

When the full details about the statistics used in the trials are available, merging the
results from these trials is usually a matter of systematic use of established techniques

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 89–103, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

90 J. Ma, W. Liu, and A. Hunter

from statistics. However, in reality, it is impossible to read all the details about each
trial. Most of the time, information in abstracts is most useful for the following reasons.
First, it is common that a person reads the abstract of a paper before reading the full
paper/report when deciding if the trial is relevant. Second, with more and more infor-
mation available on the Web, obtaining an abstract is much easier and most of the time
it is free while getting a full paper can be more difficult and expensive (one may need
to pay a fee). Third, in the field of clinical trials, abstracts often provide sufficient infor-
mation about trial analysis for a clinician to update their knowledge (such as about the
pros and cons of a particular treatment). Therefore, we concentrate here on developing
techniques to merging information solely provided in the abstracts.

As a convention, clinical trials usually use normal distributions to record trial results.
So it is a natural idea to merge normal distributions to a single one as the integrated
result. There is a classical method to merge normal distributions [3]. However, when
using this method to merge two identical normal distributions, the merged result is
a different normal distribution which is counterintuitive, since we would expect the
merged result to be the same as the original distribution. Some other methods have
been proposed to integrate probability distributions ([3,12,19]) or to learn the integrated
probability distributions ([6,8]). But these methods generally do not lead to a normal
distribution as a result, so they are not suitable for our purposes. Furthermore, in some
abstracts about clinical trials, information about underlying statistics can be incomplete,
e.g., the standard deviations are not given. To deal with this, we need to make use of
some background knowledge in order to construct an adequate normal distribution to
facilitate merging.

In this paper, we first propose approaches to constructing normal distributions from
both complete and incomplete statistical information in the abstracts. We then provide
methods to merge normal distributions. We also study how to measure if two normal
distributions are in conflict (or consistent), in order to decide if they should be merged.
To sequence a merging of multiple trials data, we introduce the notion of reliability to
sort the merging sequence. An algorithm is designed to merge trials results based on
both reliabilities of trials and consistencies among trials.

The remainder of this paper is organized as follows. Section 2 provides some pre-
liminary knowledge about normal distributions and introduces the notion of degrees of
consistency of normal distributions. Section 3 introduces categories of statistical infor-
mation commonly found in abstracts and how they are related to normal distributions.
Section 4 contains our merging methods for merging complete and incomplete statisti-
cal information. In Section 5, we give a definition for measuring conflict among normal
distributions and how this is used to decide if a merging shall take place. Section 6
investigates how a collection of clinical trials results should be sequenced for merging
and an algorithm is designed to implement this. Finally, in Section 7, we conclude the
paper.

2 Preliminaries

We start with some basic concepts about normal distributions. We then define the notion
of conflict (or consistency) of two normal distributions.

Incomplete Statistical Information Fusion and Its Application to Clinical Trials Data 91

Definition 1. A random variable X with mean value μ and variance σ2 is normally
distributed if its probability density function (pdf for short) f is defined as follows:

f(x) =
1√
2πσ

exp(− (x − μ)2

2σ2)

In statistics, a normal distribution associated with a random variable is denoted as X ∼
N(μ, σ2). For the convenience of further calculations in the rest of the paper, we use
notation X ∼ N(μ, σ) instead of X ∼ N(μ, σ2) for a normal distribution of variable
X . That is, we use a standard deviation rather than a variance because this will greatly
simplify mathematical equations in Section 4.

A normal distribution with X ∼ N(0, 1) is called a standard normal distribu-
tion. Any normal distribution N(μ, σ) can be standardized by letting a random variable
Z = X−μ

σ , then Z ∼ N(0, 1) is a standard normal distribution. For N(0, 1), the stan-
dard normal distribution table in statistics [20] provides sufficient information for fur-
ther calculations of probabilities, such as the probability of an interval that the variable
falls in.

In statistics, random samples of individuals are often used as the representatives of
the entire group of individuals (often denoted as a population) to estimate the values of
some parameters of the population. The mean of variable X of the samples, when the
sample size is reasonably large, follows a normal distribution. The standard error of
the mean (SEM for short), which is the standard deviation of the sample mean, is given
by SEM = σ√

n
, where σ is the standard deviation of X of the population and n is the

number of samples chosen from the population. We can write X̄ ∼ N(μ, SEM). When
σ is unknown, the standard deviation s of the samples is often used to replace σ.

To help define the degree of consistency of normal distributions, we introduce the
following well-known result.

Let v1 and v2 be two vectors. The angle between two vectors can be computed as
follows:

cos(v1, v2) =
< v1, v2 >

‖ v1 ‖2‖ v2 ‖2

where < v1, v2 > is the inner product of the vectors and ‖ v ‖2 is the L2 norm.

Definition 2. Let two normal distributions have f1(.) and f2(.) as their pdfs respec-
tively. The degree of consistency of the two normal distributions, denoted as c(f1, f2)
is defined as follows:

c(f1, f2) =
< f1, f2 >

‖ f1 ‖2‖ f2 ‖2

where < f1, f2 > is the inner product given by:

< f1, f2 >=
∫ +∞

−∞
f1(x)f2(x)dx

and ‖ f ‖2 is the L2 norm given by:

‖ f ‖2=
∫ +∞

−∞
f2(x)dx

92 J. Ma, W. Liu, and A. Hunter

The degree of consistency c(f1, f2) defined above is in (0,1]. When f1 and f2 are iden-
tical normal distributions, c(f1, f2) = 1, while c(f1, f2) → 0 when ‖ μ1 − μ2 ‖→ ∞.
Value c(f1, f2) increases along with the closeness of f1 and f2.

3 Statistical Information in Abstracts

In abstracts of papers about clinical trials, information about underlying statistics can
be summarized into the following four categories.

– Category I: A normal distribution can be identified when both μ and σ are given.
– Category II: A normal distribution can be identified when only μ is given.
– Category III: A normal distribution can be constructed when a confidence interval

is given.
– Category IV: A normal distribution can be constructed if at least two sentences,

each of which gives a probability value of the variable in a particular range, are
available in the abstract.

After looking through a large collection of abstracts of clinical trials on IOP reduc-
tions using different drugs, we believe that the above four categories cover a significant
proportion of statistical information in abstracts [2,4,9,11,13,14,15,16,18]. In this paper,
we concentrate on how to model and merge these four types of information.

For each category of statistical information, we try to interpret it in terms of a normal
distribution. We use X to denote the random variable implied in the context of each
sentence.

For the first category, a normal distribution is explicitly give, for example, sentence
“Mean IOP reduction at 6 months was -9.3+/-2.9 mmHg in the travoprost group” can
be interpreted as follows

X ∼ N(−9.3, 2.9)

For the second category, a normal distribution can be defined with a missing standard
deviation. For instance, sentence “There was at least 90% power to detect a mean IOP
change from baseline of 2.9 mmHg” can be interpreted as

X ∼ N(2.9, σ)

where σ is unknown. To make use of this information, we need to draw on background
knowledge about the interval that σ lies. From our investigation, this information can
be obtained either through a clinician or from some text books on this specific topic.
Therefore, we can assume that this background knowledge is available and can be used
during merging.

For the third category of information, a confidence interval [a, b] is given. It is then
possible to convert this confidence interval into a normal distribution as follows

μ =
a + b

2
, σ =

b − a

2k

As a convention, the presented analysis of clinical trials results usually use the 95%
confidence interval. In this case, we have k = 1.96. However, if a given confidence

Incomplete Statistical Information Fusion and Its Application to Clinical Trials Data 93

interval is not the usual 95% confidence interval (say, it uses the p-confidence interval),
it is possible to use the standardization of the normal distribution as P (Z ∈ [−k, k]) =
p. Then value k can be found by looking up the standard normal distribution table.

For example, from sentence “Bimatoprost provided mean IOP reductions from base-
line that ranged from 6.8 mmHg to 7.8 mmHg (27% to 31%)”, it is possible to get a
normal distribution N(μ, σ) with full information.

For the fourth category of information, a sentence like “By month 3, 85% of partici-
pants in the bimatoprost group had a mean IOP reduction of at least 20%” can be used
to define a probability of the variable in a particular range, such as

P (X ≥ 0.2b) = 0.85

where b is the baseline IOP value.
It is possible to generalize this expression to P (X ≥ x) = p and then further to

P (
X − μ

σ
≥ x − μ

σ
) = p

using the standardization technique.
By looking up the standard normal distribution table, it is possible to determine the

value for (x − μ)/σ. Similarly, if another sentence is given in the abstract with another
range for X , then another equation (x

′ − μ)/σ = y
′

can be obtained, therefore, the
values of μ and σ can be calculated. In a situation where only one of such sentence
is given but μ is provided, a normal distribution can still be constructed. Otherwise, it
would be difficult to use this piece of information. From our analysis of abstracts, it
seems that it is very rare that only one of these sentences is given, usually, two or more
such descriptions are available.

To summarize, from our case study, usually we can get normal distributions from all
the four type of information we normally find in abstracts.

4 Merging Normal Distributions

In this section, we discuss how to merge two normal distributions when either full
information or partial information about them is available.

4.1 Normal Distributions with Full Information

Let the normal distributions associated with two random variables X1 and X2 be as
following

X1 ∼ N(μ1, σ1), X2 ∼ N(μ2, σ2)

We want to merge them into a new normal distribution with random variable X as
X ∼ N(μ, σ). An intuitive idea for merging is to let the merged μ divide the two
distributions equally. Since in general σ1 	= σ2, we cannot simply let μ = μ1+μ2

2 . We
define the following criterion that μ should satisfy

P (X1 ≤ μ) + P (X2 ≤ μ) = P (X1 ≥ μ) + P (X2 ≥ μ). (1)

Indeed, the above equation ensures that the merged μ divides the two distributions
equally.

94 J. Ma, W. Liu, and A. Hunter

Proposition 1. Assume we have X1 ∼ N(μ1, σ1), X2 ∼ N(μ2, σ2), and let μ be the
merged result that satisfies (1), then we have

μ =
μ1σ2 + μ2σ1

σ1 + σ2

The proof of this and other subsequent propositions are given in the Appendix.
It is easy to see that if σ1 = σ2, then μ = μ1+μ2

2 . In particular, if two normal
distributions are the same, then the merged μ should not be changed, which is exactly
what we want.

From Proposition 1, we notice that the coefficients of μ1 (also X1) and μ2 (X2) in
calculating μ are σ2

σ1+σ2
and σ1

σ1+σ2
, respectively. So when calculating σ, we still use

these two coefficients for X1 and X2 and the variance σ2 should satisfy

σ2 =
σ2

σ1 + σ2

∫ +∞

−∞
f1(X1)(x − μ)2dx +

σ1

σ1 + σ2

∫ +∞

−∞
f2(X2)(x − μ)2dx (2)

where f1(X1) and f2(X2) are the pdfs for X1 and X2 respectively.

Proposition 2. Assume we have X1 ∼ N(μ1, σ1), X2 ∼ N(μ2, σ2), and let variance
σ2 be the merged result that satisfies (2), then we have

σ =

√
σ1σ2(1 +

(μ1 − μ2)2

(σ1 + σ2)2
)

It is easy to check that such a σ satisfies the following properties.

Proposition 3. Assume we have X1 ∼ N(μ1, σ1), X2 ∼ N(μ2, σ2), and the merged
result of these two distributions is X ∼ N(μ, σ), then

1. If μ1 = μ2 and σ1 = σ2, then σ = σ1 = σ2.
2. If σ1 = σ2, but μ1 	= μ2, then σ > σ1 = σ2.
3. If σ1 	= σ2, but μ1 = μ2, then min(σ1.σ2) ≤ σ ≤ max(σ1, σ2).

Proof: The proof is straightforward and omitted.
Unfortunately, it does not satisfy the associative property.

Example 1. The following two normal distributions are constructed from [15,16]. In
[15], the baseline IOP (Intraocular Pressure) in the latanoprost 0.005% group is
(Mean(SD)) 24.1(2.9) mm Hg. We use XNM to denote the normal distribution of the
baseline IOP in the latanoprost 0.005% group, so we get XNM ∼ N(24.1, 2.9).
Similarly, in [[16]], the corresponding baseline IOP is 23.8(1.7) mm Hg, so we get
XPY ∼ N(23.8, 1.7).

Based on Propositions 1 and 2, we get

μ=
24.1 ∗ 1.7 + 23.8 ∗ 2.9

1.7 + 2.9
= 23.9 σ =

√
1.7 ∗ 2.9 ∗ (1 +

(24.1 − 23.9)2)
(1.7 + 2.9)2

) = 2.2

Incomplete Statistical Information Fusion and Its Application to Clinical Trials Data 95

So the merged normal distribution is XNMPY ∼ N(23.9, 2.2) and it is closer to
XPY than to XNM . This is natural because XPY with a smaller standard deviation
means that this normal distribution is more accurate and most of the values will be
closer to its mean value. Therefore, the merged result has a mean value that is closer to
this distribution.

There is another well known method for merging two normal distributions [3] which
gives

μ =
μ1σ

2
2 + μ2σ

2
1

σ2
1 + σ2

2
σ =

√
σ2

1σ2
2

σ2
1 + σ2

2
(3)

The above two equations come from the mathematical result of the distribution of X1 +
X2. A drawback of this equation is that when the two original normal distributions are
the same, the merged σ is different from the original one. This is not intuitively what
we want to get from a merging. Therefore, we start from the assumption that the mean
value μ should divide the two normal distributions equivalently that is how we have
obtained the different equations from above to calculate μ and σ.

4.2 A Special Case Considering the Sample Mean

Now we consider situations where variable X denotes the mean of the samples. From
SEM = σ√

n
, we get n = σ2

SEM2 . Let X1 be the mean of m1 variables whose standard
deviation is σ1 and X2 be the mean value of m2 variables whose standard deviation is
σ2. Provided that m1 and m2 are reasonably large, X1 and X2 both follow a normal
distribution as

X1 ∼ N(μ1, SEM1), X2 ∼ N(μ1, SEM2)

respectively. When we consider merging two clinical trials results, we need to assume
that the populations of the two samples are similar (or even the same), therefore, it
is reasonable to assume that σ1 = σ2. Under this assumption, we have the following
merging result

Proposition 4. Let X1 ∼ N(μ1, SEM1) and X2 ∼ N(μ1, SEM2), then for the
merged normal distribution, we have

μ =
μ1 ∗ SEM2

2 + μ2 ∗ SEM2
1

SEM2
1 + SEM2

2

Proposition 5. Let X1 ∼ N(μ1, SEM1) and X2 ∼ N(μ1, SEM2), then for the
merged normal distribution, we have

SEM =

√
SEM2

1 ∗ SEM2
2

SEM2
1 + SEM2

2

96 J. Ma, W. Liu, and A. Hunter

Although the above merging results happen to be similar to the pair of equations in (3),
we need to point out that they are used in different circumstances. Unlike equations in
(3) which solve the sum of two normal distributions, Propositions 4 and 5 deal with the
merging of the sample means and with the assumption that the standard deviations of
the populations of the two samples are equivalent.

Here if the two normal distributions are the same, the SEM2 will be a half of the
original one. This satisfies the property that the variation of the mean is in counter pro-
portion to the sample size, so when the sample size is doubled (after merging), SEM2

is halved. It is also easy to prove that the above merging method has the associative
property.

Example 2. The mean IOP reduction is a variable which is the mean of the distribution
of samples. When the sample size is reasonably large, it follows a normal distribution.
In [16], the mean IOP reduction of the travoprost 0.004% group at the end of three
months is XPY ∼ N(9.4, 3.1), while in [11], the corresponding mean IOP reduction
at the end of three months with the same drug is XHS ∼ N(8.7, 3.8).

Based on Proposition 4 and Proposition 5, we get:

μ =
9.4 ∗ 3.82 + 8.7 ∗ 3.12

3.82 + 3.12 = 9.1 SEM =

√
3.82 ∗ 3.12

3.82 + 3.12 = 2.4

So the merged normal distribution is XPY HS ∼ N(9.1, 2.4). We can see that the
merged SEM is significantly smaller than the original ones, because SEM decreases
when a sample size increases.

4.3 Normal Distributions with Missing Standard Deviations

We consider situations where one of the two standard deviations (or standard errors of
the mean) in two normal distributions is missing. As we have observed, in medical do-
mains there is usually an interval that contains σ or SEM . For example, in the clinical
trials, σ for baseline IOP is usually in [1.5, 4.0] mm Hg. We can then use the interval
for merging. Without loss of generality, we assume that σ2 (or the SEM2) is unknown,
but it is in an interval.

Proposition 6. Let X1 ∼ N(μ1, σ1) and X2 ∼ N(μ2, σ2) be two normal distributions
where μ1, σ1, μ2 are given but σ2 is in interval [a, b]. Then the merged μ based on
Proposition 1 is as follows

If μ1 > μ2, then μ ∈ [μ1a+μ2σ1
σ1+a , μ1b+μ2σ1

σ1+b]
If μ1 = μ2, then μ = μ1

If μ1 < μ2, then μ ∈ [μ1b+μ2σ1
σ1+b , μ1a+μ2σ1

σ1+a]

Proposition 7. Let X1 ∼ N(μ1, σ1) and X2 ∼ N(μ2, σ2) be two normal distributions
where μ1, σ1, μ2 are given but σ2 is in interval [a, b]. Then the merged σ based on
Proposition 2 is as follows

If μ1 = μ2, or b ≤ σ1 +
8σ3

1
(μ1−μ2)2

, then σ ∈ [
�

σ1a(1 + (μ1−μ2)2

(σ1+a)2
),
�

σ1b(1 + (μ1−μ2)2

(σ1+b)2
)]

If μ1 �= μ2 and a ≥ σ1 + (σ1+b)3

(μ1−μ2)2
, then σ ∈ [

�
σ1b(1 + (μ1−μ2)2

(σ1+b)2
),
�

σ1a(1 + (μ1−μ2)2

(σ1+a)2
)]

Incomplete Statistical Information Fusion and Its Application to Clinical Trials Data 97

Proposition 8. Let X1 ∼ N(μ1, SEM1) and X2 ∼ N(μ2, SEM2) be two normal
distributions where μ1, SEM1, μ2 are known but SEM2 is in interval [a, b]. Then the
merged μ based on Proposition 4 is as follows

If μ1 > μ2, then μ ∈ [μ1a2+μ2SEM2
1

SEM2
1 +a2 ,

μ1b2+μ2SEM2
1

SEM2
1+b2

]
If μ1 = μ2, then μ = μ1

If μ1 < μ2, then μ ∈ [μ1b2+μ2SEM2
1

SEM2
1 +b2

,
μ1a2+μ2SEM2

1
SEM2

1 +a2]

Proposition 9. Let X1 ∼ N(μ1, SEM1) and X2 ∼ N(μ2, SEM2) be two normal
distributions where μ1, SEM1, μ2 are known but SEM2 is in interval [a, b]. Then the
merged SEM based on Proposition 5 is as follows

SEM ∈
[√SEM2

1 + a2

SEM2
1 a2 ,

√
SEM2

1 + b2

SEM2
1 b2

]

In situations where both standard deviations (or the SEMs) are missing, the only
method we can use is to let the merged μ = μ1+μ2

2 and leave the new σ (or the SEM)
still in the interval [a, b].

5 Consistency Analysis of Two Normal Distributions

Merging should take place when two normal distributions refer to the trials that have
been undertaken in similar conditions. More specifically, we shall consider the follow-
ing conditions. First, both trials should be for the same variable (e.g, both for the mean
IOP reduction), for the same drug used (e.g, both for travoprost 0.004%), and for the
same duration (e.g, both for 12-months). Second, they should be under a similar trial
design (e.g, both are cross-over designs) and with similar participants (e.g, the average
age should be approximately equivalent). Third, the two distributions from two trials
should not be contradict with each other, that is, we need to define a kind of measure to
judge how consistent (or conflicting) the two distributions are and give a threshold to
indicate whether two distributions can be merged.

Proposition 10. Let f1 and f2 be the pdfs for X1 ∼ N(μ1, σ1) and X2 ∼ N(μ2, σ2)
respectively, then the degree of consistency of X1 and X2 based on Definition 2 is

c(f1, f2) =

√
2σ1σ2

σ2
1 + σ2

2
exp(− (μ1 − μ2)2

2(σ2
1 + σ2

2)
)

Definition 3. Let X1 ∼ N(μ1, σ1) and X2 ∼ N(μ2, σ2) be two normal distributions
with f1 and f2 as their pdfs respectively. They are consistent and can be merged if
c(f1, f2) ≥ t holds where t is pre-defined threshold for consistency (such as 0.9).

The degree of inconsistency (or conflict) can be defined as 1 − c(f1, f2). The threshold
is application dependent and can be tuned to suit a particular application.

98 J. Ma, W. Liu, and A. Hunter

When variables X1 and X2 denote the means of samples, the above proposition still
holds except that we should replace σs with SEMs. In a situation where a standard
deviation is missing from one of the normal distributions, we assume the two given
normal distributions share similar conditions, so we simply let the missing standard
deviation be equal to the existing one. Then the above equation is reduced to:

c(f1, f2) = exp(− (μ1 − μ2)2

4σ2
1

)

When both of the standard deviations are not given, as discussed in Section 4, if we
know that σ ∈ [a, b], then we have

c(f1, f2) ∈ [exp(− (μ1 − μ2)2

4a2), exp(− (μ1 − μ2)2

4b2)]

For this case if the given threshold t also falls within this interval, it would be hard to
tell whether t ≥ c(f1, f2) holds. A simple method is to compare t with the middle value
of the interval, if t is less than the middle value, a merge shall take place otherwise a
merge may not be appropriate.

Example 3. (Con’t Example 1) For the two normal distributions in Example 1, we have
c(f1, f2) > 0.9, so these two distributions can be merged.

If we use the two normal distributions of the baseline IOP of the travoprost 0.004%
group in [[11], data collected at 10am] and [16], we have X1 ∼ N(28.0, 3.1), X2 ∼
N(25.4, 3.0), which gives c(f1, f2) < 0.9, so we advise that these two distributions
should not be merged. However, if t is changed to be 0.8, they can be merged. This
example also reveals that in our definition of consistency between two normal distrib-
utions, the values of means from the distributions play more dominating roles than the
standard deviations.

6 Sequencing the Merge of Multiple Trials Data

When there are more than two (potentially many) clinical trials data to be merged, the
sequence of merging is very important because our merging methods of two normal
distributions are not associative. For the four categories of information we summarized
in Section 3, we can get a normal distributions with full information for three types
and for the 2nd category, we get a distribution with a missing standard deviation. Since
merging a full distribution with an incomplete distribution results in σ (or SEM) being
in an interval, this result will make any subsequence merging more complicated. To
address this issue, we merge full and incomplete distributions separately first and then
merge the merged results from these two separate sequences.

To decide which trial should be the first data to consider, we consider reliabilities.
Unlike the use of reliabilities in the form λ1P1 + λ2P2 where the λi, i = 1, 2 are used
to denote the reliabilities of the sources [1,5,7,17], we use the reliability information to
rank clinical trials data. Reliability information is usually provided separately as extra
information, for clinical trials, we do not have this information, so we take the number

Incomplete Statistical Information Fusion and Its Application to Clinical Trials Data 99

of samples used in a trial as a measure of reliability. That is, the larger the sample size,
the more reliable the trial result.

Given a set of trials results that are modeled with incomplete distributions (σ is
missing), we rank them based on their sample sizes as (we denote each trial result as μ)
μ1, μ2, . . . , μn. Then the merging of these results are as follows. We first find all the μs
that are consistent with μ1 (the most reliable one) and calculate their average (including
μ1). The result is denoted as μ1

1. We delete these entries from the above sequence, and
we then repeat this procedure for the current most reliable μ in the remaining sequence,
and so on. When the initial sequence is empty, we get a new set of μs: μ1

1, μ
1
2, . . . , μ

1
n1

.
When n1 = n, no merging has been taken. That is all trials data are inconsistent with

each other. We return μ1 as the merged result as it is the most reliable one. If n1 < n,
we repeat the above merging procedure for the new sequence μ1

1, μ
1
2, . . . , μ

1
n1

.
This merging procedure is described in the following algorithm.

Algorithm Merge(μs)
Begin

Ψ1 = {< μ1, 1 >, < μ2, 2 >, . . . , < μn, n >}, Ψ2 = {}, m = n;
//Here < μi, i > means that μi is the ith most reliable one.
while n �= 1 do

while |Ψ1| > 0 do
Let < μi, i > have the minimal i (or, the most reliable one) in Ψ1, and let
S = {< μi1 , i1 >, < μi2 , i2 >, . . . , < μij , ij >} containing all the elements
in Ψ1 where the μik , 1 ≤ k ≤ j are consistent with μi based on Def 3 (note that
μi itself is in S), let μ

′
i = (

�j
k=1 μik)(|S|), and Ψ2 = Ψ2 ∪ {< μ

′
i, i >}.

Let Ψ1 = Ψ1 \ S.
End of while
If |Ψ2| = m, Return μ

′
1 in Ψ2 as the result.

Else Let Ψ1 = Ψ2, m = |Ψ2|, and Ψ2 = {}.
End of while

Return μ1 in the Ψ1 which has the index 1.

This algorithm stops when no further merging is possible, either because all trials
are in conflict or all the results have already been merged into one.

In terms of computational complexity, the number of consistency checks is O(n3),
and the number of arithmetic calculation is O(n). So the complexity of the algorithm is
O(n3).

When we replace the set of trials results in the above algorithm with a set of complete
normal distributions N(μ1, σ1), N(μ2, σ2), . . . , N(μn, σn), this algorithm merges
these full distributions except that the calculation of averages of μs should be replaced
by the equations in Proposition 1 and Proposition 2.

Finally, we merge the results of these two separate sequences to obtain a final result.

7 Conclusion

In this paper, we investigated different types of statistical information implied in ab-
stracts (of papers/reports) about clinical trials. We summarized four types of statistical

100 J. Ma, W. Liu, and A. Hunter

information and three out of these four types would enable us to get a full normal
distribution about a trial result. The 2nd category provides us with only incomplete dis-
tributions. Based on this, we developed methods to merge these types of information.
We also defined how to measure the degree of consistency between two distributions.
An algorithm was designed to sequence multiple merges.

There are a number of issues we will further look at. First, the threshold used in
consistency checking would have an effect on the final result of merging, we will ex-
periment with different threshold values to see how much effect they have. Second, the
algorithm divides trials results based on whether a distribution is complete. There can
be other sequences for merging which may be able to merge consistent results (cur-
rently in the two separate sequences) at an earlier stage. We will need to experiment
on this to see what sequence provides the most suitable merging and what conditions
are required. Third, we will consider some necessary background knowledge in order
to select trials from a large collection of trials data in order to perform a merge.

Acknowledgement. This work is funded by the EPSRC projects with reference num-
bers: EP/D070864/1 and EP/D074282/1.

References

1. Boussion, N., Soulez, G., Guise De, J., Daronat, M., Qin, Z., Cloutie, G.: Geometrical accu-
racy and fusion of multimodal vascular images: a phantom study. Med. Phys. 31(6) (2004)

2. Chiselita, D., Antohi, I., Medvichi, R., Danielescu, C.: Comparative analysis of the effi-
cacy and safety of latanoprost, travoprost and the fixed combination timolol-dorzolamide; a
prospective, randomized, masked, cross-over design study. Oftalmologia 49(3), 39–45 (2005)

3. Catherine, M., Alison, C., Christophe, M., William, J.: Experimental issues of functional
merging on probability density estimation. Artificial Neural Networks, Conference Publica-
tion No. 440 pp. 7–9 (1997)

4. Cantor, L.B., Hoop, J., Morgan, L., Wudunn, D., Catoira, Y.: Bimatoprost-Travoprost Study
Group, Intraocular pressure-lowering efficacy of bimatoprost 0.03% and travoprost 0.004$ in
patients with glaucoma or ocular hypertension. Br J Ophthalmol 90(11), 1370–1373 (2006)

5. Delmotte, F., Borne, P.: Modeling of reliability with possibility theory. IEEE Trans.
SMC 28(1), 78–88 (1998)

6. DasGupta, S.: Learning mixtures of Gaussians. In: Proc. IEEE Foundations of Computer
Science (1999)

7. Elouedi, Z., Mellouli, K., Smets, P.: Assessing sensor reliability for multisensor data fusion
within the transferable belief model. IEEE Trans. on SMC-Part B 34(1), 782–787 (2004)

8. Freund, Y., Mansour, Y.: Estimating a mixture of two product distributions. In: Estimating a
mixture of two product distributions, ACM Press, New York (1999)

9. Gracia-Feijo, J., Martinez-de-la-Casa, J.M., Castillo, A., Mendez, C., Fernandez-Vidal, A.,
Garcia-Sanchez, J.: Circadian IOP-lowering efficacy of travoprost 0.004$ ophthalmic solu-
tion compared to latanoprost 0.005%. Curr. Med. Res. Opin. 22(9), 1689–1697 (2006)

10. Greenhalgh, T.: How to Read a Paper: The Basics of Evidence-Based Medicine. BMJ Press
(1997)

11. Howard, S., Silvia, O.N., Brian, E., John, S., Sushanta, M., Theresa, A., Michael, V.: The
Safety and Efficacy of Travoprost 0.004%/Timolol 0.5% Fixed Combination Ophthalmic
Solution. Ame J. Ophthalmology 140(1), 1–8 (2005)

Incomplete Statistical Information Fusion and Its Application to Clinical Trials Data 101

12. Molina, C., Niranjan, M.: Pruning with replacement on limited resource allocating networks
by F-projections. Neural Computation 8, 345–356 (1996)

13. Michael, T., David, W., Alan, L.: Projected impact of travoprost versus timolol and la-
tanoprost on visual field deficit progression and costs among black glaucoma subjects. Trans.
Am. Ophthalmol Soc. 100, 109–118 (2002)

14. Noecker, R.J., Earl, M.L., Mundorf, T.K., Silvestein, S.M., Phillips, M.P.: Comparing bi-
matoprost and travoprost in black Americans. Curr. Med. Res. Opin. 22(11), 2175–2180
(2006)

15. Nicola, C., Michele, V., Tiziana, T., Francesco, C., Carlo, S.: Effects of Travoprost Eye Drops
on Intraocular Pressure and Pulsatile Ocular Blood Flow: A 180-Day, Randomized, Double-
Masked Comparison with Latanoprost Eye Drops in Patients with Open-Angle Glaucoma.
Curr. Ther. Res. 64(7), 389–400 (2003)

16. Parmarksiz, S., Yuksel, N., Karabas, V.L., Ozkan, B., Demirci, G., Caglar, Y.: A comparison
of travoprost, latanoprost and the fixed combination of dorzolamide and timolol in patients
with pseudoexfoliation glaucoma. Eur. J. Ophthalmol. 16(1), 73–80 (2006)

17. Rogova, G., Nimier, V.: Reliability in information fusion: literature survey. In: Proc. of In-
formation Fusion, pp. 1158–1165 (2004)

18. Stefan, C., Nenciu, A., Malcea, C., Tebeanu, E.: Axial length of the ocular globe and hy-
potensive effect in glaucoma therapy with prostaglandin analogs. Oftalmologia 49(4), 47–50
(2005)

19. Arora, S., Kannan, R.: Learning mixtures of arbitrary Gaussians. In: STOC(STOC 2001), pp.
6–8 (2001)

20. Standard probability Table: http://onlinepubs.trb.org/onlinepubs/nchrp/
cd-22/v2appendixc files/image002.gif

Appendix

Proof of Proposition 1: From P (X1 ≤ μ)+P (X2 ≤ μ) = P (X1 ≥ μ)+P (X2 ≥ μ)
and P (X1 ≤ μ) + P (X2 ≤ μ) + P (X1 ≥ μ) + P (X2 ≥ μ) = 2, we get:

P (X1 ≤ μ) + P (X2 ≤ μ) = 1.

By using the standardization of the normal distributions, we get

P (
X1 − μ1

σ1
≤ μ − μ1

σ1
) + P (

X2 − μ2

σ2
≤ μ − μ2

σ2
) = 1.

So it is equivalent to say: μ−μ1
σ1

+ μ−μ2
σ2

= 0. Therefore, we have

μ =
μ1σ2 + μ2σ1

σ1 + σ2

Proof of Prop 2: From f(X) = σ2
σ1+σ2

f1(X1) + σ1
σ1+σ2

f2(X2), we get

DX =
σ2

σ1 + σ2
D1X +

σ1

σ1 + σ2
D2X

http://onlinepubs.trb.org/onlinepubs/nchrp/cd-22/v2appendixc_files/image002.gif
http://onlinepubs.trb.org/onlinepubs/nchrp/cd-22/v2appendixc_files/image002.gif

102 J. Ma, W. Liu, and A. Hunter

Now Let us compute D1X first. Let z = x−μ1
σ1

,

D1X =
∫ +∞

−∞

1√
2πσ1

exp(− (x − μ1)2

2σ2
1

)(x − μ1σ2 + μ2σ1

σ1 + σ2
)2dx

=
∫ +∞

−∞

σ2
1√
2π

exp(−z2

2
)(z +

μ1 − μ2

σ1 + σ2
)2dz

=
σ2

1√
2π

(
∫ +∞

−∞
exp(−z2

2
)z2dz + 2

μ1 − μ2

σ1 + σ2

∫ +∞

−∞
exp(−z2

2
)zdz

+(
μ1 − μ2

σ1 + σ2
)2

∫ +∞

−∞
exp(−z2

2
)dz)

=
σ2

1√
2π

(
√

2π + 0 + (
μ1 − μ2

σ1 + σ2
)2

√
2π)

= σ2
1(1 + (

μ1 − μ2

σ1 + σ2
)2)

Similarly, we get D2X = σ2
2(1+(μ1−μ2

σ1+σ2
)2). So after some simple calculation, we have

DX = σ1σ2(1 + (μ1−μ2
σ1+σ2

)2), σ =
√

DX =
√

σ1σ2(1 + (μ1−μ2
σ1+σ2

)2)

Proof of Prop 4: μ = μ1∗m1+μ2∗m2
m1+m2

=
μ1∗ σ2

SEM2
1

+μ2∗ σ2

SEM2
2

σ2

SEM2
1

+ σ2

SEM2
2

= μ1∗SEM2
2+μ2∗SEM2

1
SEM2

1+SEM2
2

Proof of Prop 5: SEM = σ√
m1+m2

= σ�
σ2

SEM2
1

+ σ2

SEM2
2

=
√

SEM2
1 ∗SEM2

2
SEM2

1 +SEM2
2

Proof of Proposition 6: If μ1 = μ2, it is straightforward that μ = μ1. The remaining
part of the proposition is equivalent to prove that when μ1 > μ2, μ = μ1σ2+μ2σ1

σ1+σ2
,

denoted as g(σ2), is an increasing function of σ2, while when μ1 < μ2, a decreasing
function. As the differential of g(σ2) is g

′
(σ2) = (μ1−μ2)σ1

(σ1+σ2)2 , the result is straightfor-
ward.

Proof of Proposition 7: Let g(σ2) denote σ1σ2(1 + (μ1−μ2
σ1+σ2

)2), then σ is an increas-
ing or decreasing function of σ2 is equivalent to say that g(σ2) is an increasing or
decreasing function of σ2. The differential of g(σ2) is g

′
(σ2) = σ1(1 + (μ1−μ2

σ1+σ2
)2) −

2σ1σ2
(μ1−μ2)2

(σ1+σ2)3 .

It is obvious that if μ1 = μ2, g
′
(σ2) = σ1 > 0. If μ1 	= μ2, the +/− sign of g

′
(σ2) is

equivalent to the +/− sign of σ1(σ1+σ2)3+σ1(σ1+σ2)(μ1−μ2)2−2σ1σ2(μ1−μ2)2,
and consequently equivalent to the +/− sign of (σ1 + σ2)3 − (σ2 − σ1)(μ1 − μ2)2.

When condition b ≤ σ1 + 8σ3
1

(μ1−μ2)2 holds, if σ2 < σ1, obviously the sign of g
′
(σ2) is

+; moreover, if σ2 ≥ σ1, then (σ2 − σ1)(μ1 − μ2)2 ≤ (b − σ1)(μ1 − μ2)2 ≤ 8σ3
1 ≤

(σ1 + σ2)3, the sign of g
′
(σ2) is still +.

Incomplete Statistical Information Fusion and Its Application to Clinical Trials Data 103

When μ1 	= μ2 and condition a ≥ σ1 + (σ1+b)3

(μ1−μ2)2
holds, we have (σ2 − σ1)(μ1 −

μ2)2 ≥ (a − σ1)(μ1 − μ2)2 ≥ (σ1 + b)3 ≥ (σ1 + σ2)3, so the sign is −.

Proof of Proposition 8: The proof is similar to the proof the Proposition 6, except that

g
′
(SEM2) =

2(μ1 − μ2)SEM2
1 SEM2

(SEM2
1 + SEM2

2)2

Proof of Proposition 9: Simply notice that SEM2
1 +SEM2

2
SEM2

1 SEM2
2

is an increasing function of
SEM2.

Proof of Proposition 10: It is easy to computer that

‖ f1 ‖2=

√
1

2
√

πσ1
, ‖ f2 ‖2=

√
1

2
√

πσ2

and

< f1, f2 >=
√

aexp(−c)
2
√

πσ1σ2
,

where

a =
2σ2

1σ
2
2

σ2
1 + σ2

2
, c =

(μ1 − μ2)2

2(σ2
1 + σ2

2)

Therefore

c(f1, f2) =
< f1, f2 >

‖ f1 ‖2‖ f1 ‖2
=

√
2σ1σ2

σ2
1 + σ2

2
exp(− (μ1 − μ2)2

2(σ2
1 + σ2

2)
)

Quality Measures in Uncertain Data

Management

Ander de Keijzer and Maurice van Keulen

Faculty of EEMCS, University of Twente
POBox 217, 7500AE Enschede, The Netherlands

{a.dekeijzer,m.vankeulen}@utwente.nl

Abstract. Many applications deal with data that is uncertain. Some ex-
amples are applications dealing with sensor information, data integration
applications and healthcare applications. Instead of these applications
having to deal with the uncertainty, it should be the responsibility of the
DBMS to manage all data including uncertain data. Several projects do
research on this topic. In this paper, we introduce four measures to be
used to assess and compare important characteristics of data and sys-
tems: uncertainty density, answer decisiveness and adapted precision and
recall measures.

1 Introduction

Many applications somehow depend on uncertain data. Currently, most of these
applications handle this uncertainty themselves, or just ignore the uncertainty
associated with the data. Since the uncertainty is associated with the data, the
database would be the logical system to store and handle this uncertainty.

In recent years, the interest in management of uncertain data has increased
greatly. Several projects on the subject have been initiated. A few examples
in the relational setting are Trio [7], MystiQ [3] and ORION [4] and in the
semistructured setting PXML [5] and IMPrECISE [6].

Since the topic management of uncertain data is relatively new to the database
area, there is currently in our opinion a lack of means to assess and compare
important characteristics of data and systems.

The contribution of this paper is the introduction of four measures for uncer-
tain data and data management systems: uncertainty density, answer decisive-
ness, and specifically adapted notions of precision and recall measures to assess
answer quality. We have tried to define the measures in a generic way to enable
comparison between relational and XML systems.

The paper is organized as follows. Section 2 gives a short introduction into
uncertain data and uncertain data management. In this paper we will use our
own system IMPrECISE as a reference system for uncertain XML data and Trio
as a reference system for uncertain relational data. We subsequently introduce
the four measures for uncertain data in Section 3. The experiments in Section 4
are geared towards evaluating the behavior of the measures to validate their use-
fulness. Sections 5 and 6 contain conclusions and directions for future research.

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 104–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Quality Measures in Uncertain Data Management 105

�
◦

1

•
�
◦

1

•
�

◦
.8

��������

•������
•������ ◦

.2

����������������

•������
•������

movies

movie

title
Die Hard

title
Die Hard:

With a Vengeance

year
1988

year
1995

movies

Title Year conf

Die Hard 1988 .8
Die Hard: With a Vengeance 1995 .2

(b) Trio representation

(a) IMPrECISE representation

Fig. 1. Example movie database in IMPrECISE and Trio

2 Uncertain Data

Although all of the mentioned projects have their own unique details, they do
have one aspect in common. In every project, the central theme is uncertain
data. If we consider data to represent, or describe objects in the real world, then
uncertain databases describe possible appearances of these objects.

As an example, we show a movie database with one movie that is the result of
an integration between two different movie databases. Figure 1 shows this inte-
grated database for two representative systems: IMPrECISE as a representative
of an XML-based system (Figure 1(a)) and Trio as an representation of a rela-
tional system (Figure 1(b)). The databases show a movie database containing
the title and year. Both databases hold information on one movie, but both the
title and the year of the movie are uncertain. The title of the movie is either
“Die Hard” or “Die Hard: With a Vengeance” and the year of the movie is either
1988 or 1995 respectively. Note that in Trio this single movie is captured in one
x-tuple containing two alternative representations, or simply alternatives.

Another central concept in uncertain databases, is that of possible worlds. A
possible world is a possible representation of the real world and is constructed
by taking one possibility or alternative for each of the real world objects. In the
previous example, there are 2 possible worlds, since only 1 real world object with
2 possible representations is captured in the database. Note that the alternatives
for title and year are dependent here. Independent alternatives resulting in 4
possible worlds can of course also be represented in both systems. For the case
where a real world object possibly doesn’t exist, indicated by an empty possibility
node in IMPrECISE or a question mark in Trio, this inexistence is also a possible
appearance of the real world object when constructing the possible worlds.

Querying uncertain data results in uncertain answers. If probabilities are as-
sociated with the data, these are accessible in the query result as well. Query
languages for uncertain data closely resemble query languages for normal data.
In Trio the query language is called TriQL and is a superset of SQL. In

106 A. de Keijzer and M. van Keulen

IMPrECISE the query language is a probabilistic version of XQuery. Although
the syntax of the languages are (almost) equal to their normal counterparts,
the semantics of course differs. Instead of returning answers to the questions,
the system returns possible answers. The possible answers can be obtained by
evaluating the query for each possible world. Of course this is the semantics
behind query evaluation and in neither of the systems it is the actual execution
plan.

2.1 IMPrECISE

We use the IMPrECISE system for the experiments in Section 4, so we give
some more detail on this system here. The IMPrECISE system uses XML as a
data model. The advantage of XML is that it more naturally and generically
captures uncertainty. because it closely resembles a decision tree. The expres-
siveness is, because of the tree structure, high. We introduced two new kinds
of nodes, probability nodes (�) and possibility nodes (◦). The root node is al-
ways a probability node, child nodes of probability nodes are possibility nodes,
child nodes of possibility nodes are regular XML nodes and these, in turn, have
probability nodes as child nodes.

Probability nodes indicate choice points. Sibling child nodes are mutually ex-
clusive, which introduces possibilities. Each possibility has an associated proba-
bility. Probabilities of sibling possibility nodes sum up to at most 1. More details
on this model can be found in [6].

IMPrECISE is developed as an XQuery module for the MonetDB/XQuery
DBMS [2]. In this way, it demonstrates the power of this XML DBMS and the
XQuery language as well.

3 Measures

The measures we introduce in this section can be used for all data models, as
long as local possibilities or alternatives can be identified. In IMPrECISE prob-
abilities are always local, because the probability associated with a possibility
node expresses the likelihood of the subtree of that particular possibility node
to hold the correct information about the real world. In Trio, probabilities are
associated with alternatives, which indicate the likelihood of an alternative being
correct in the real world. This type of probability is also local. The number of
choice points in IMPrECISE is equal to the number of probability nodes, since
at each of these nodes a choice for one of the possibility nodes has to be made. In
Trio the choice points are determined by the number of x-tuples in the relation.
For each x-tuple one alternative has to be chosen.

We first define some notation. Let Ncp be the number of choice points in the
data (i.e., probability nodes in IMPrECISE), Nposs,cp the number of possibilities
or alternatives of choice point cp, and let Pmax

cp be the probability of the most
likely possibility of choice point cp.

Quality Measures in Uncertain Data Management 107

�

◦
1

•

�

◦

.8

�����

•��
�

•
��

� ◦

.2
�����

•��
�

•
��

�

mv

t
DH

t
DHWaV

y
1988

y
1995

Ncp = 2,

Nposs,1 = 1, Nposs,2 = 2
Pmax

1 = 1, Pmax

2 = .8

Dens= 1 − 1
2
(1
1

+ 1
2
)

= 1
4

= .25
Dec= 1

2
(1 + .8

1.2
)

= 5
6

= .83

(a) Example A

�

◦
1

•

������

◦
1

•

�
��

�

◦

.8
��
�

•

◦

.2
��

�

•

mv

t
DH

y
1988

y
1995

Ncp = 3,

Nposs,1 = Nposs,2 = 1,

Nposs,3 = 2, Pmax

3 = .8
Pmax

1 = Pmax

2 = 1,

Dens= 1 − 1
3
(1
1

+ 1
1

+ 1
2
)

= 1
6

= .17
Dec= 1

3
(1 + 1 + .8

1.2
)

= 8
9

= .89

(b) Example B

�

◦
1

•

���������

◦
1

•

�
��

�

◦

.4

�����

•

◦
.3

•

◦

.3
�����

•

mv

t
DH

y
1988

y
1995

y
1996

Ncp = 3,

Nposs,1 = Nposs,2 = 1,

Nposs,3 = 3, Pmax

3 = .4
Pmax

1 = Pmax

2 = 1,

Dens= 1 − 1
3
(1
1

+ 1
1

+ 1
3
)

= 2
9

= .22
Dec= 1

3
(1 + 1 + .4

1.6×log2 3
)

= 1
3
(2 + .4

2.536
) = .72

(c) Example C

Fig. 2. Examples of uncertainty density and decisiveness

3.1 Uncertainty Density

An often used measure for the amount of uncertainty in a database is the number
of possible worlds it represents. This measure, however, exaggerates the perceived
amount of uncertainty, because it grows exponentially with linearly growing
independent possibilities. Furthermore, we would like all measures to be numbers
between 0 and 1. We therefore propose the uncertainty density as a measure for
the amount of uncertainty in a database. It is based on the average number of
alternatives per choice point:

Dens = 1 − 1
Ncp

Ncp∑
j=1

1
Nposs,j

Dens is 0 for a databases that contains no uncertainty. Dens decreases if
there is more certain data in the database for the same amount of uncertain
data (compare Figures 2(a) and 2(b)). Dens rises if a choice point contains
more alternatives (compare Figures 2(b) and 2(c)). If all choice points contain n
alternatives, Dens is (1− 1

n), which approaches 1 with growing n. The uncertainty
density is independent of the probabilities in the database. It can be used, for
example, to relate query execution times to, because query execution times most
probabily depend on the number of alternatives to consider.

3.2 Answer Decisiveness

Even if there is much uncertainty, if one possible world has a very high prob-
ability, then any query posed to this uncertain database will have one, easy to

108 A. de Keijzer and M. van Keulen

distinguish, most probable answer. We say that this database has a high an-
swer decisiveness. In contrast, if there is much uncertainty and the probabilities
are rather evenly distributed over the possible worlds, then possible answers to
queries will be likely to have similar probabilities. We have defined the answer
decisiveness as

Dec =
1

Ncp

Ncp∑
j=1

Pmax
j

(2 − Pmax
j) × log2(max(2, Nposs,j))

Dec is 1 for a database that contains no uncertainty, because each term in the
sum becomes 1

(2−1)×log2 2 = 1. If at each choice point j with two alternatives,
there is one with a probability close to one (i.e., Pmax

j is close 1), then all terms
for j are also close to 1 and Dec is still almost 1. When Pmax

j drops for some j,
then Dec drops as well. Dec also drops when choice points occur with growing
numbers of alternatives. This is accomplished by the log2(max(2, Nposs,j)) fac-
tor (compare Figures 2(b) and 2(c)). We have taken the logarithm to make it
decrease gradually.

3.3 Answer Quality

Querying uncertain data results in answers containing uncertainty. Therefore,
an answer is not correct or incorrect in the traditional sense of a database query.
We need a more subtle notion of answer quality.

In the possible world approach, an uncertain answer represents a set of pos-
sible answers each with an associated probability. In Trio, it is possible to work
with alternatives without probabilities, but these can be considered as equally
likely, hence with uniformly distributed probabilities. The set of possible an-
swers ranked according to probability has much in common with the result of
an information retrieval query. We therefore base our answer quality measure on
precision and recall [1]. We adapt these notions, however, by taking into account
the probabilities of the possible answers. Correct answers with high probability
are better than correct answers with a low probability. Analogously, incorrect
answers with a high probability are worse than incorrect answers with a low
probability.

XQuery answers are always sequences. The possible answers to an XQuery on
an uncertain document, however, largely contain the same elements. Therefore,
we construct an amalgamated answer by merging and ranking the elements of
all possible answers. This can be accomplished in XQuery with the function in
Figure 3. The effectiveness of this approach to querying a probabilistic database
can be illustrated with an example. Suppose we query a probabilistic movie
database asking for horror movies: //movie[.//genre="Horror"]/title. Even
though the integrated document may contain thousands of possible worlds, the
amalgamated answer is restricted to the available movie titles considered to be
possibly belonging to a horror movie, which will be few in number.

Quality Measures in Uncertain Data Management 109

declare function rank results($pws as element(world)*)

as element(answer)*

{
for $v in distinct-values($pws/descendant::text())

let $ws := $pws[./descendant::text()[.=$v]]

,$rank := sum($ws/@prob)

order by $rank descending

return <answer rank="{$rank}">{$v}</answer>
};

Fig. 3. XQuery function for ranking query results

HA C

Prec = |C|
|A|

Rec = |C|
|H|

Fig. 4. Precision and recall

Precision and recall are traditionally com-
puted by looking at the presence of correct
and incorrect answers. Let H be the set of
correct answers to a query (as determined
by a human), A the set of answers (the el-
ements of the amalgamated query answer),
and C the intersection of the two, i.e., the set
of correct answers produced by the system
(see Figure 4).

We adapt the precision and recall mea-
sures by taking into account the probabilities: An answer a is only present in the
amount prescribed by its probability P (a). This reasoning gives us the following
definitions for precision and recall.

Prec =
∑

a∈C
P (a)

|C|+
∑

a∈(A−C)
P (a)

Rec =
∑

a∈C
P (a)

|H|

For example, say the answer to the query “Give me all horror movies” is
“Jaws” and “Jaws 2”. If the system returns this answer, but with a confidence
of 90% for both movies, then precision and recall are both 90%. If, however, it
also gives some other (incorrect) movie with a confidence of 20%, then precision
drops to 82% and recall stays 90%.

4 Experiments

4.1 Set Up

The contributions of this paper are the uncertainty density, decisiveness, and
answer quality measures. The purpose of the experiments hence is not to validate
or compare systems or techniques, but an evaluation of the behavior of the
measures to validate their usefulness.

As application of uncertainty in data, we selected data integration. In our
research on IMPrECISE, we attempt to develop data management functionality
for uncertain data to be used for this application area. When data sources con-
tain data overlap, i.e., they contain data items referring to the same real world

110 A. de Keijzer and M. van Keulen

name repr. #pws #nodes
2x2 tree 16 469
4x4 tree 2,944 7,207
6x6 tree 33,856 25,201
6x9 tree 2,258,368 334,616

2x2 +rule tree 4 328
4x4 +rule tree 64 2,792
6x6 +rule tree 256 8,328
6x9 +rule tree 768 21,608
6x15 +rule tree 3,456 87,960

2x2 dag 16 372
4x4 dag 2,944 1,189
6x6 dag 33,856 2,196
6x9 dag 2,258,368 13,208

2x2 +rule dag 4 280
4x4 +rule dag 64 761
6x6 +rule dag 256 1,243
6x9 +rule dag 768 1,954
6x15 +rule dag 3,456 4,737

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

nu
m

be
r

of
 n

od
es

number of possible worlds

tree
tree + rule

dag
dag + rule

Fig. 5. Data sets (pws = possible worlds)

objects, they may conflict and it is not certain which of the sources holds the
correct information. Moreover, without human involvement, it is usually not pos-
sible for a data integration system to establish with certainty which data items
refer to the same real world objects. To allow for unattended data integration, it
is imperative that the data integration system can handle this uncertainty and
that the resulting (uncertain) integrated source can be used in a meaningful way.

The data set we selected concerns movie data: Data set ‘IMDB’ is obtained
from the Internet Movie DataBase from which we converted title, year, genre
and director data to XML. Data set ‘Peggy’ is obtained from an MPEG-7 data
source of unknown but definitely independent origin. We selected those movies
from these sources that create a lot confusion: sequels, documentaries, etc. of
‘Jaws’, ‘Die Hard’, and ‘Mission Impossible’. Since the titles of these data items
look alike, the data integration system often needs to consider the possibility of
those data items referring to the same real-world objects, thus creating much
uncertainty in the integration result. The integrated result is an XML document
according to the aforementioned probabilistic tree technique [6].

To create integrated data sets of different sizes and different amounts of un-
certainty, we integrated 2 with 2 movies selected from the sources, 4 with 4, 6
with 6, and 6 with 15 movies. We furthermore performed this integration with
(indicated as ‘+rule’) and without a specific additional rule that enables the
integration system to much better distinguish data about different movies. This
results in data sets with different characteristics. To be able to investigate un-
certainty density, we additionally experiment with the data represented as tree
as well as DAG. Although our implementation of the DAG representation does
not produce the most optimally compact DAG yet, it suffices to experiment with
its effect on uncertainty density. See Figure 5 for details of the data sets and an
indication of the compactness of the representation.

Quality Measures in Uncertain Data Management 111

 0

 1

 2

 3

 4

 5

 6

 10 100 1000 10000 100000 1e+06 1e+07

number of possible worlds

tree
tree + rule

dag
dag + rule

(a) Uncertainty density (%)

 95

 96

 97

 98

 99

 100

 10 100 1000 10000 100000 1e+06 1e+07

number of possible worlds

tree
tree + rule

(b) Decisiveness (%)

Fig. 6. Uncertainty density and decisiveness

4.2 Uncertainty Density

Figure 6(a) shows the uncertainty density for our data sets. There is a number
of things to observe.

– Density values are generally rather low. This is due to the fact that inte-
gration produces uncertain data with mostly choice points with only one
alternative (certain data) and relatively few with two alternatives (uncer-
tain data). For example, the ‘6x9 tree’ case has 74191 choice points with one
alternative and 5187 choice points with two alternatives.

– When comparing the lines for ‘tree’ with ‘dag’, and ‘tree + rule’ with ‘dag +
rule’, we observe that the dag-versions have a considerable higher uncertainty
density. This can be explained by the fact that the DAG representation
shares common subtrees. Most commonality appears for certain data that
occurs in all possible worlds. Hence, relatively more nodes are devoted to
uncertainty in the DAG representation. The uncertainty density measure
correctly exhibits this behavior.

– When comparing the lines for ‘tree’ with ‘tree + rule’, and ‘dag’ with ‘dag
+ rule’, we observe that the additional rule not only reduces the number
of possible worlds, but also reduces the uncertainty density. The knowledge
of the rule reduces uncertainty, but the amount of certain information stays
the same. Therefore, it is logical that the uncertainty density goes down.

– The ‘+ rule’ lines drop with growing database size, while the other two
do not. Database growth in this experiment means additional movies in
both data sources. The specific rule we used in this experiment helps the
integration system to determine which pairs of data items from both sources
cannot possibly refer to the same real world object. The density measure

112 A. de Keijzer and M. van Keulen

correctly shows that the additional movies cause relatively more confusion
without the rule than with it.

In general, we can say that important characteristics concerning the amount
of uncertainty in the database can be assessed successfully with the uncertainty
density measure. Moreover, it does not suffer from the disadvantage of exagger-
ation that the number of possible worlds has.

4.3 Answer Decisiveness

Figure 6(b) shows the answer decisiveness for our data sets. This experiment
focuses on the tree representation only, because the answers produced by a query
is independent of the representation, hence the answer decisiveness does not
depend on the representation. There are a number of things to observe.

– Decisiveness values are generally rather high. This has the same reason as
why density is generally low: there are mostly choice points with only one
alternative and few with two alternative, hence in most cases it is easy to
make a choice for an answer because there is only one to choose from.

– Similar patterns in the lines for decisiveness can be observed when compar-
ing with uncertainty density. Both measures are related, because the more
alternatives per choice point on average, the higher the uncertainty density,
but also the lower the decisiveness. Decisiveness only starts to deviate from
density if the associated probabilities ensure that it is easy to choose the
most likely possible answer. The probability assignment logic in our system,
however, is still in its infancy and is apparently not capable of giving good
decisiveness despite high uncertainty density.

 95

 96

 97

 98

 99

 100

 0 1 2 3 4 5

an
sw

er
 d

ec
is

iv
en

es
s

(%
)

uncertainty density (%)

tree
tree + rule

uniform distribution

Fig. 7. Density vs. Decisiveness

The relationship between the den-
sity and decisiveness measures is il-
lustrated by Figure 7. The straight
line marked ‘uniform distribution’ is
drawn for the situation where the
probabilities are always uniformly dis-
tributed and, for simplicity, where
there are only choice points with at
most two alternatives (which is the
case for our test data and which makes
the line straight). In this situation,
uncertainty density fully determines
answer decisiveness. The fact that the
lines are not on the straight line shows
that the probability assignment logic
of our system has some impact on de-
cisiveness despite the uncertainty den-
sity, but the impact is (as expected) rather limited. We expect that an integration
system with better probability assignment logic will produce points much higher

Quality Measures in Uncertain Data Management 113

Table 1. Answer quality (‘X’ marks an incorrect answer)

(a) Query 1: //movie[.//genre="Horror"]/title (All horror movies)

Poll. P(a) Answer Prec Rec

2 79.4% “Jaws” 79.4% 79.4%
79.4% “Jaws 2”

5 77.4% “Jaws” 69.5% 77.4%
77.4% “Jaws 2”
22.6% X “Ma@ing of Steven Spielberg’s ’Jaws’, The”

10 85.4% “Jaws” 74.5% 85.4%
85.4% “Jaws 2”
29.2% X “Ma@ing of Steven Spielberg’s ’Jaws’, The”

20 85.4% “Jaws” 74.5% 42.7%
14.6% X “Ma@ing of Steven Spielberg’s ’Jaws’, The”

(b) Query 2: //movie[./year="1995"]/title (All movies produced in 1995)

Poll. P(a) Answer Prec Rec

2 100.0% “Die Hard: With a Vengeance” 100.0% 100.0%
100.0% “Behind the Scenes: Die Hard - With a Vengeance”
100.0% “Making of Steven Spielberg’s ’Jaws’, The”

5 79.4% “Die Hard: With a Vengeance” 56.3% 64.3%
58.8% “Behind the Scenes: Die Hard - With a Vengeance”
54.8% “Making of Steven Spielberg’s ’Jaws’, The”
20.6% X “Behind th@ Scenes: Die Hard - With a Vengeance”
11.3% X “Ma@ing of Steven Spielberg’s ’Jaws’, The”
5.6% X “Jaws”
5.6% X “Jaws 2”

10 85.4% “Die Hard: With a Vengeance” 47.1% 56.3%
41.7% “Behind the Scenes: Die Hard - With a Vengeance”
41.7% “Making of Steven Spielberg’s ’Jaws’, The”
21.9% X “Behind th@ Scenes: Die Hard - With a Vengeance”
14.6% X “Ma@ing of Steven Spielberg’s ’Jaws’, The”
7.3% X “Jaws”
7.3% X “Jaws 2”
7.3% X “Die Hard 2”

20 78.1% “Die Hard: With a Vengeance” 52.6% 53.8%
41.7% “Behind the Scenes: Die Hard - With a Vengeance”
41.7% “Making of Steven Spielberg’s ’Jaws’, The”
7.3% X “Behind th@ Scenes: Die Hard - With a Vengeance”

(c) Query 3: //movie[./title="Jaws 2"]/year (When has Jaws 2 been produced?)

Poll. P(a) Answer Prec Rec

2 69.1% “1978” 62.6% 69.1%
10.3% X “1975”

5 66.1% “1978” 59.4% 66.1%
5.6% X “1975”
5.6% X “1995”

10 78.1% “1978” 72.8% 78.1%
7.3% X “1995”

20 78.1% X “197@” 0.0% 0.0%
7.3% X “@995”

114 A. de Keijzer and M. van Keulen

in the graph. Most importantly, the decisiveness measure can be effectively used
to measure the quality of the probability assignment logic.

4.4 Answer Quality

To obtain test data suitable for evaluating our answer quality measure, we took
one of the data sources: an IMDB document with 9 movies. We made two copies
of it, randomly polluted them by corrupting text nodes, and then integrated
them. We made sure we didn’t pollute the same text nodes, so ‘the truth’ is still
available in the combined data of both sources and an ideal integration system
would be able to reconstruct it. We furthermore took three queries and posed
them to the data integration result of data sources with increasing pollution. A
pollution of 2 means that 2 randomly chosen text nodes in both source have been
corrupted by changing a randomly chosen character to ‘@’. This pollution not
only affects the data integration, also in some of the answers we see these mod-
ified strings appear. Although they are seemingly almost correct, we classified
these answers as incorrect.

Table 1 shows the answer quality measurements for the three queries. Even
though our system produces the correct answers in most cases, the confidence
scores the system produces are rather modest. This is due to the naive proba-
bility assignment explained earlier. Our adapted precision and recall measures
effectively reflect this aspect of reduced answer quality. Missing answers (as in
Query 1 / Pollution 20, and Query 3 / Pollution 20) is of course worse than just
modest confidence scores; indeed radically lower recall is given to these cases.

5 Conclusions

In this paper we introduced several new measures for assessment and comparison
of important characteristics of uncertain data and uncertain data management
systems: uncertainty density, decisiveness, and modifications of two existing an-
swer quality measures, precision and recall.

In contrast with the number of possible worlds as a measure for the amount
of uncertainty present in the database, the uncertainty density measure doesn’t
exaggerate this uncertainty. The uncertainty density is based on the average
number of alternatives per choice point, hence it also takes into account the
amount of certain data.

The answer decisiveness is an indication how well in general a most likely
answer can be distinguished among a set of possible answers. Even in the presence
of much uncertainty, if one possible world has very high probability, then any
query posed to this uncertain database will have one easily distinguishable most
likely answer. The decisiveness is an indication of how well the confidence scores
in the document were assigned. The ratio between decisiveness and density also
shows this fact. The ratio can be used to evaluate how much the probabilities
deviate from uniform distribution, i.e., how much the system tends to confidently
give a high probability to one answer, hence aiding the user or application in
selecting the most probable answer.

Quality Measures in Uncertain Data Management 115

High decisiveness does of course not mean that the answers the system so
adamantly claims to be the most probable ones, are indeed the correct answers.
Therefore, we introduced adapted precision and recall measures to evaluate an-
swer quality which takes into account the probabilities assigned to the answers.

6 Future Research

As a next step of this research, we plan to improve IMPrECISE and validate the
improvements using the quality measures. For this purpose, a central component
in the system which assigns the probabilities, called “The Oracle”, has to be
improved. “The Oracle” determines, at integration time, how likely it is that
two elements refer to the same real world object. An improved “Oracle” will
give a increased values for decisiveness, precision and recall.

The current DAG implementation does not produce the most compact repre-
sentation of uncertain data possible. We have identified some patterns that can
be used to improve the current implementation.

One of the reasons for inefficiency in querying at the moment, is confidence
computation. In order to speed up this process we plan to investigate if prove-
nance, or lineage as used in Trio is suitable for our model.

Another item on our agenda is to release IMPrECISE as a module of Mon-
etDB/XQuery. Before we can do this, the probabilistic query functionality has
to be extended and some operators and functions dealing with the confidences
associated with possibility nodes, have to be made available.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,
Reading (1999)

2. Boncz, P.A., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In:
Proc. of SIGMOD, Chicago, IL, USA, pp. 479–490 (2006)

3. Boulos, J., Dalvi, N.N., Mandhani, B., Mathur, S., Re, C., Suciu, D.: MYSTIQ:
a system for finding more answers by using probabilities. In: Proc. of SIGMOD,
Baltimore, Maryland, USA, pp. 891–893 (2005)

4. Cheng, R., Singh, S., Prabhakar, S.: U-DBMS: A database system for managing
constantly-evolving data. In: Proc. of VLDB, Trondheim, Norway, pp. 1271–1274
(2005)

5. Hung, E., Getoor, L., Subrahmanian, V.S.: PXML: A probabilistic semistructured
data model and algebra. In: Proc. of ICDE, Bangalore, India, pp. 467–478 (2003)

6. van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic xml approach to data
integration. In: Proc. of ICDE, Tokyo, Japan, pp. 459–470 (2005)

7. Mutsuzaki, M., Theobald, M., de Keijzer, A., Widom, J., Agrawal, P., Benjelloun,
O., Sarma, A.D., Murthy, R., Sugihara, T.: Trio-One: Layering uncertainty and
lineage on a conventional DBMS. In: Proc. of CIDR, Monterey, USA, pp. 269–274
(2007)

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 116–130, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Learning Different User Profile Annotated Rules for
Fuzzy Preference Top-k Querying

A. Eckhardt, T. Horváth, and P. Vojtáš

Charles University, P. J. Šafárik University, Czech Academy of Science
Alan.Eckhardt@mff.cuni.cz, Tomas.Horvath@upjs.sk,

vojtas@cs.cas.cz

Abstract. Uncertainty querying of large data can be solved by providing top-k
answers according to a user fuzzy ranking/scoring function. Usually different
users have different fuzzy scoring function – a user preference model. Main
goal of this paper is to assign a user a preference model automatically. To
achieve this we decompose user’s fuzzy ranking function to ordering of
particular attributes and to a combination function. To solve the problem of
automatic assignment of user model we design two algorithms, one for learning
user preference on particular attribute and second for learning the combination
function. Methods were integrated into a Fagin-like top-k querying system with
some new heuristics and tested.

1 Introduction and Motivation

Huge amount of data accessible to different users with different preferences and
context are a challenge for both uncertainty modeling and query optimization. We are
addressing two problems – size of data represented in an uncertainty model and
different user profiles. In this paper we use as a running example following data (in a
real application this can be a sample for learning user preferences).

Table 1. Illustrative example

Users evaluation
Hotels properties User1 User 2

Name Distance Price Equipment grade num. grade num.
Apple 100 m 99 $ nothing poor 1 poor 1
Danube 1300 m 120 $ tv good 2 poor 1
Cherry 500 m 99 $ Internet good 2 good 2
Iris 1100 m 35 $ internet, tv excellent 3 excellent 3
Lemon 500 m 149 $ nothing poor 1 excellent 3
Linden 1200 m 60 $ internet, tv excellent 3 poor 1
Oak 500 m 149 $ internet, tv good 2 excellent 3
Pear 500 m 99 $ tv good 2 good 2
Poplar 100 m 99 $ internet, tv good 2 poor 1
Rhine 500 m 99 $ nothing poor 1 good 2
Rose 500 m 99 $ internet, tv excellent 3 good 2
Spruce 300 m 40 $ internet good 2 good 2
Themse 100 m 149 $ internet, tv poor 1 poor 1
Tulip 800 m 45 $ internet, tv excellent 3 good 2

Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying 117

To illustrate our approach, imagine two users evaluating these hotels, using
linguistic expressions (here also represented by natural number, later embedded into
[0,1]). We want to create a general user model from these evaluations. This model
will be used when performing top-k query on the database. Without this model, user
has to state his/her preferences explicitly, which is often found annoying by most
users.

We would like to have a solution with a formal model and practical usability. We
look for the simplest solution which is still sufficient for user requirements. We
suggest using some formalism with monotone rules. Nevertheless our data are usually
not monotone, indeed projection of hotel evaluation to price and distance attributes in
our example looks like

Fig. 1. Projections of attributes of objects to evaluation

Main contributions of this paper are

• a proposal of a method specifying attribute domain ordering in such a way,
that user evaluation can be described by monotone rules according to these
orderings which can be found in Section 3.1

• an inductive method for generalized annotated programs working on a fuzzy
completion of data (hence able to find rules between attributes with different
fuzzy/preference degrees) located in Sections 2.4 and 3.2

• efficient heuristics for finding top-k answers tested on an implementation
and evaluated on experiments, studied in Section 4.1

First and second contribution are illustrated in following table.

Table 2. Rules corresponding to table 1

user_1_evaluation = excellent IF distance >= 500 AND price <= 99 AND
equipment=tv AND equipment=internet

user_1_evaluation = good IF (distance >= 300 AND equipment=tv) OR
(price <= 120 AND equipment=internet)

user_2_evaluation = excellent IF distance ∈ <300;1100> AND price ∈
<35;35> ∪ <149;149>

user_2_evaluation = good IF distance ∈ <300;1100>

USER 1 price-evaluation

0

1

2

3

0 50 100 150 200

price

ev
al

u
at

io
n

USER2 price-evaluation

0

1

2

3

0 50 100 150 200

price

ev
al

u
at

io
n

118 A. Eckhardt, T. Horváth, and P. Vojtáš

Advantage of our method is that our rules can mix different fuzzy degrees in rule
head and body (here hidden in generated domain ordering).

The task of creating rules of user preferences is for obtaining a global ordering of
data. However, if the size of data is very large, we can not compute the user rating for
every object. This deductive step is based on [5] which allows handling large data sets
without the need to process every object separately. The typical query got from user
will be of the form: “Show me the five most appealing hotels”. We need only to find
the best five hotels in database.

2 Models

We would like to base our solution in concordance with formal models and have our
solution transferable to other domains and systems (this is not a proprietary solution
for a specific domain nor a direct querying of a relational database).

2.1 Representation of Preferences and the Data Model

We work with the usual relational data model and would like to have model theoretic,
proof theoretic and fixpoint semantics. Just for purpose of this paper we assume a set
of attributes A1,…,An with attribute domains D1,…,Dn (e.g. A1=distance,
D1=[100,1300]). The identificator is denoted by A with domain D (here A=Hotel,
D={Apple, Danube,…}).

We work with user preferences being total (linear) orders here. Our position is that
having partially ordered preferences (without contradictions, cycles) we can proceed
with a linear extension of this (note that using the axiom of choice, any partial
ordering can be extended to a linear one). We use finite subsets of the unit interval of
real numbers [0, 1] for preference degrees.

For arbitrary set X, we use a fuzzy function f: X → [0, 1] as a representation of

ordering x f< y iff f(x) < f(y).

We assume we have extensional data in one table
iDDR ∏×⊆ in which D

attribute is a key (i.e. object attribute model where an object of interest is represented
by uniquely assigned values, here Π denotes Cartesian product, indeces running
through 1,…,n). For a tuple (x, x)∈R, where x = (x1, …, xn)

iD∏∈ this generates a

mapping dataR : D →
iD∏ .

Our model assumes that we have an evaluation of objects for each user uj, which
can be represented as a fuzzy function]1,0[: →Df ju

A
 with generated global ordering

ju
Af

< of domain D of classified attribute A generated by user (the ordering is

sometimes written as ju
A<).

First step of our solution assumes (depending on user uj) attribute domains Di and

orderings j

i

u
A< such that users evaluation, data mapping and induced @ are not

contradictory and build a monotone mapping e such that following diagram #1
commutes (i.e. object with same properties are evaluated equally).

Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying 119

Fig. 2. Commutative diagram

Further we assume these orderings j

i

u
A< can be represented by fuzzy functions j

i

u

Af .

Let us note that these are very strong assumptions in general, in practice for finite
domains and a finite subset of [0, 1],

j

i

u

Af is often possible to find (subject to some

decrease of precision of our method).
Finally, to complete the commutative diagram #2, we have to find a fuzzy

aggregation function (an annotation function) @: [0,1]n → [0,1] such that above
diagram commutes.

This is an order theoretic content of our induction method. To have sound model
and proof theoretic semantics we need some formal models.

2.2 Different Models of Logic Programming

In this paragraph, we describe two formal models of logic programming. We need
them both, because first is more appropriate for deductive tasks and the second is
more suitable for induction.

Fuzzy logic programming. In fuzzy (many valued) logic we refer to [9] and [13], we
work with fuzzy logic in narrow sense, i.e. a truth functional many valued logic. In
our example atoms can be predicate hotels_properties, or its decomposition to binary
predicates hotel_distance, hotel_price, hotel_equipment and also user_1_evaluation
(or also with propositionalization of these).

Note that truth functions of fuzzy conjunctions & and disjunctions ∨ are all fuzzy
aggregation operators (so it suffices do deal with them). A fuzzy aggregation operator
@ is an n-ary operation and has truth function @•, which is order preserving. Usually
we assume that @•(0,…,0) = 0 and @•(1,…,1) = 1 hold, but sometimes we relax
these.

Implications →1, …, →n have truth functions implicators I1=→1
•, …, In =→n

•. Any
formula built from atoms using aggregations is called a body B=@(B1,... ,Bn). A rule
of fuzzy logic programming (FLP) is a graded implication (H @(B1,...,Bn).r),
where H is an atom called head, @(B1,...,Bn) is a body and r∈Q∩[0,1] is a rational
number. Note that we do not have negation here (it is hidden in the choice of attribute

120 A. Eckhardt, T. Horváth, and P. Vojtáš

domain ordering). A fact is a graded atom (B.b). A finite set P of FLP rules and facts
is said to be a logic program.

Let L be the Herbrand base. A mapping f: L →[0,1] is said to be a fuzzy Herbrand
interpretation, f can be extended to all formulas along the complexity of formula
using the truth function of connectives. A graded formula (ϕ.x) is true in an
interpretation f

f |=FLP ϕ.x iff (ϕ)≥x.

A pair (x;θ) consisting of a real number 0<x≤1 and a substitution θ (substituting
for some, not necessary all, domain variables) is a correct answer for a program P and
a query “?-A” if for arbitrary interpretation f, which is a model of P, we have

() xAf ≥∀ θ (here 0 θA∀ denotes the denotes the universal quantification of remaining

free variables in θA (θ need not to bound all variables)).
 In [13] the computational model uses conjunctors C1,...,Cn residual to

implicators, I1, …, In , modus ponens [9] .

{(B. b), (H ←I B. r)} |=FLP (H. Ci(b,r))

Our semantics is sound and approximately complete (see [13]). We have also
fixpoint semantics based on Datalog production operator corresponding relational
model was studied in [15].

In this paper the computational part of the deduction (querying) model will be
based on some heuristics making the query answering more efficient and still
preserving the semantics.

Generalized annotated programs. In [12] M. Kifer and V. S. Subrahmanian
introduced generalized annotated logic programs (GAP). GAP unifies and generalizes
various results and treatments of many valued logic programming.

The language of GAP also consists of qualitative and quantitative parts. The
qualitative part is the usual language of predicate logic. The quantitative part of the
language consists of annotation terms. If A is an atomic formula and α is an
annotation term, then A:α is an annotated atom. If α∈[0, 1] then A:α is constant-
annotated (or c-annotated). When α is an annotation variable, then A:α is said to be
variable-annotated (or v-annotated).

If A:ρ is a possibly complex annotated atom and B1:µ1, ..., Bk:µk are variable-
annotated atoms, then A:ρ(µ1, …, µk) ← B1:µ1 & ... & Bk:µk is an annotated clause.

Let us note, here we restrict to rules with atoms in the body of a rule have only
variable annotations (to avoid problems with discontinuous restricted semantics).
Only facts can have constant annotations.

Herbrand base BL and interpretations f: BL → [0,1] are same as in FLP. Suppose f:
BL → [0,1] is an interpretation, µ∈[0,1] and A is ground atom, then f |=GAP A:μ, i.e. f
is a model of A:μ iff f(A) ≥ μ. The rest of satisfaction is defined similarly as in the
two valued logic. Especially an annotated rule is true in the interpretation f

f |=GAP A:ρ (µ1, …, µk) ← B1:µ1 & ... & Bk:µk

if for all assignments e of annotation variables we have
f(A) ≥A ρ(e(µ1), …, e(µk)) ← f(B1) ≥B1 e(µ1) & … & f(Bk) ≥Bk e(µk)

fuzzy
B

f

f

B

fuzzy

Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying 121

Equivalence of FLP and GAP programs. In [13] we have introduced following
transformations :

Assume C= A:ρ ← B1:μ1 &… ...& Bk:μk is an annotated clause. Then flp(C) is the
fuzzy rule A← ρ(B1,...,Bk).1, here ρ is understood as an n-ary aggregator operator.

Assume D = A←i @(B1,...,Bn).r is a fuzzy logic program rule. Then gap(D) is the
annotated clause A:Ci(@(x1,...,xn),r) ← B1:x1,...,Bn:xn (we abstract from technical
details here, more in [13]).

In [13] the following is proved. Assume C is an annotated clause, D is a fuzzy
logic program rule and f is a fuzzy Herbrand interpretation. Then

f is a model of C iff f is a model of flp(C),
f is a model of D iff f is a model of gap(C)

Transformations can be extended also to programs and in this case they have same
computed answers (in substitutional semantics of [13]).

2.3 Induction

An extension of classical Inductive Logic Programming (ILP) [3] task to our many-
valued Fuzzy Logic Programming model (FLP) is considered in our approach. We
call this task Fuzzy Inductive Logic Programming (FILP) [10]. The most important
requirement to FILP is that its formal model must be a generalization of the classical
ones (as our many valued logic is a generalization of the classical one).

When learning from entailment, given is a set of examples E = P ∪ N, consisting
of positive P and negative N examples (facts). Given is the background knowledge B
(definite program). The task is to find a hypothesis H (definite clauses), such that the
following conditions hold:

(∀e∈P) H∧B |= e (crisp-completeness of H)
(∀e∈N) H∧B |≠ e (crisp-consistency of H)

In the previous chapter we defined concepts necessary to formulate the FILP task
(i.e. fuzzy Herbrand interpretation, fuzzy definite clause, fuzzy model …). These
allow us to define the FILP task taking into account that it has to be a generalization
of the classical ILP task. We face a problem. A straightforward rewriting of classical
ILP definition does not make sense because we have no clear positive and negative
examples. From the semantics of truth values (see previous chapter) it is clear, that
e:α∈E holds in all degrees α’≤α and need not hold in all degrees α’’>α. Thus the
conditions of completeness and consistency will be different from the classical ones.

When learning from fuzzy entailment, given is a set of fuzzy examples E (fuzzy
facts). Given is the fuzzy background knowledge B (fuzzy definite program). The task
is to find a fuzzy hypothesis H (fuzzy definite clauses), such that the following
conditions hold:

(∀e.α∈E) H∧B |=FLP e.α (fuzzy-completeness of H)
(∀e.α∈E) (∀β>α) H∧B |≠ FLP e.β (fuzzy-consistency of H)

Nevertheless, these definitions seem to be very similar but they are still very
different. First, the fuzzy meaning of a model, entailment, fact, definite program and

122 A. Eckhardt, T. Horváth, and P. Vojtáš

definite clause differ from the classical meaning of these concepts. Second, in the
FILP task we do not have only positive and negative examples. Indeed we have
examples with truth values belonging to the interval [0, 1]. However, the FILP task
differs more from the classical ones it still remains its generalization (the proof is
in [10]).

As we see, the deductive part of FLP is computationally not difficult, because we
know all truth functions of connectives and aggregations. In the inductive part it is the
opposite. In the beginning of induction we have just the known connectives or
aggregations. But these need not to fit the data we are learning from. There can be
(infinitely) many unknown types of connectives and aggregations (and thus
hypotheses) our data correspond to.

There can be several approaches to solve the FILP task. For example, we can use
just the known connectives, aggregations, and try to find some hypotheses. Another
approach can be the genetic algorithms, where we can find some previously unknown
connectives, aggregations in rules. We can construct several approaches by this way.
All these approaches need to implement an own deductive part, because the inference
is different from the classical Prolog inference (even though the fuzzy inference rules
are the generalization of the Prolog inference rules).

Our approach to FILP task is to induce Generalized Annotated Programs (GAP)
where we use the equivalence of FLP and GAP and the fact that GAP deals just with
crisp connectives.

We construct an alternative approach to our FILP task as follows: we transform
FILP task to Inductive Generalized Annotated Programming (IGAP) task [10]. We
find an IGAP hypothesis (GAP program) which we transform back to FILP
hypothesis (FLP program).

When learning from GAP entailment, given is a set of GAP examples E (GAP
facts). Given is the GAP background knowledge B (GAP definite program). The task
is to find a GAP hypothesis H (GAP definite clauses), such that the following
conditions hold:

(∀e.α∈E) H∧B |=GAP e.α (gap-completeness of H)
(∀e.α∈E) (∀β>α) H∧B |≠ GAP e.β (gap-consistency of H)

3 Methods

In previous chapter we have introduce semantic models. Nevertheless these are not
very efficient when implemented. In this chapter we describe methods which were
implemented and tested and still preserving the semantics of our FLP and GAP
programs.

3.1 Learning Local Preferences

First step needed in our method is the monotonization of data. For each body attribute

Ai we have to find an ordering j

i

u
A< (generating fuzzy function

ju

iAf
< resp.) which

enables to find monotone GAP rules explaining to global object evaluation. Main

Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying 123

problem is whether the overall evaluation of a hotel depends on the price according to
some ordering (e.g. expressed by fuzzy linguistic values small, large, medium,…).

There are several known methods for monotonization, for example we can use
linear (e.g. giving fuzzy functions small or large) or quadratic regression (e.g. giving
fuzzy functions medium (cup) or boundary (cap)). These methods return the fuzzy
function, which is then used as the ordering of domain. However, when data are not
distributed uniformly across the attribute domain, regression may make wrong results.
Suppose that we have much more hotels with small price than hotels with medium
price and hotels with large price are only few. With least square regression, each hotel
is treated equivalently, so the regression will fit mostly to cheap hotels, while more
costly hotels are neglected. The error of regression however will be acceptable,
because there are only few costly hotels.

Discretization of attribute domain. Because of these reasons, we propose a new
method to handle complicated distributions of objects across the attribute domain. We
illustrate our method on determining the ordering of the attribute domain price for
user 1 and user 2. First, we need to discretize the attribute domain. Neither equidistant
nor equipotent method is good for our purpose. The best are intervals corresponding
to overall notion of small, medium and large price (we do not consider fuzzy
partitions in this paper). We obtain intervals [35,70),[70,100) and [100,150). We
associate a number with each rating – poor = 1, good = 2 and excellent = 3. Then the
process continues with computing the average of all ratings of hotels with the price in
a certain interval.

10/4 2)/4*1 3*(3
1

)(Pref

))70,35([Pref

)70,35[)(

)70,35[)(

1

1 =+==
∑

∑

∈
∈

∈
∈

hprice
Hotelsh

hprice
Hotelsh

User

User

h

Computation above is made for all intervals, thus we get a representative rating for
every interval for every user.

Determining the ordering of discretized domain. Now, on a discretized attribute
domain, a traditional method for regression is used, working with representants for
each interval. The problem is what values to use as x-coordinate of representants of
interval i. The middle of interval i may be used, but more suitable will be the average
price of hotels in i (or some other clustering method). Then, the tuple {representant,
the average price of hotels in i} forms the centroid of hotels in i.

As we can see in Figure 3, the trend is clearly decreasing for User 1, while for
User 2, his/her ordering is more complicated, corresponding to fuzzy border
values.

As we work only with four types of fuzzy functions (small, large, medium, border),
the quadratic regression is most suitable for us.

Note that main purpose of our attribute ordering is to monotonize our data and
make the inductive rule learning better corresponding to user preferences. So
measures of learning quality are the parameter we optimize here.

124 A. Eckhardt, T. Horváth, and P. Vojtáš

Fig. 3. Representants for different users

3.2 IGAP

Our approach to IGAP is based on multiple use of a classical ILP system with
monotonicity axioms in the background knowledge (illustrated in algorithm 1 [10]).

Algorithm 1. Our fuzzy completion translation method for IGAP

Input: Annotated E, Annotated B, Ordering of Attributes.
Output: Annotated H.

1. Initialize the two-valued hypothesis H*=∅.
2. Find out every n classes of truth values which are present in E (TV1< … < TVn).
3. Find out every m1, …, mk classes of truth values which are present in B for every

predicate p1, …, pk (TVp1,1 < … < TVp1,m1, …, TVpk,1 < ... < TVpk,mk).
4. Transform the annotated background knowledge B to a two-valued background

knowledge B* by an extra attribute TV (pi(x1, …, xis):TVpi,j⇒pi(x1, …, xis,
TVpi,j)).

5. Add monotonicity axioms to B* for every annotated predicate pi, i∈{1, …, k}
 (pi(x1, …, xis, X) ← le(X, Y), pi(x1, …, xis, Y).,
 le(TVpi,1, TVpi,2)., …, le(TVpi,mi-1, TVpi,mi).)
6. For all TVi, where 1<i≤n do the following:

a. split the example set E to negative E-={e:α∈E|α<TVi} and positive
E+={e:α∈E|α≥TVi} parts.

b. With the ILP system compute the hypothesis Hi* for the two-valued
background knowledge B, positive E+, and negative E- examples.

c. Add the hypothesis Hi
* to H*.

7. Transform two-valued hypothesis H* to annotated hypothesis H by transforming
the extra attributes TV in literals back (pi(x1, …, xis, TVpi,j)⇒pi(x1, …, xis):TVpi,j).

Informally, we search every present truth values of examples and background

knowledge predicates. Then we transform predicates in B to crisp form, thus
achieving crisp background knowledge B*. Then we extend B* with the “monotonicity
axioms” which states that if the predicate holds with truth Y it also holds in truth X
less or equal to Y. Predicates “le” states the relation less or equal. This corresponds to
natural meaning of truth values to B*. Then we split the example set to positive and

[35,70) [100,150)

2

3

[70,100)

1

User 2

[35,70) [100,150)

2

3

[70,100)

1

User 1

Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying 125

negative parts according to truth values present in E as follows: learning rules that
guarantee our annotation function has value at least α, every example higher or equal
than α belongs to positive example set, the others create the negative example set
(note that when learning witness for α in B* all truth values take part). Thus, the
hypothesis for the grade α holds in grade “at least” α, what agree with the natural
meaning of truth in GAP.

Notice, that it can happen that we do not cover all example e:α right in the grade α, but
in grade δ<α. So, that means, that our algorithm can find hypotheses that are not complete.
On the other hand, the consistency condition is always fulfilled (proved in [10]).

4 Implementation

In this Section we describe experimental implementation of main parts of our system.

4.1 Heuristics for Top-k Search

We base our work in deductive step on [5], which introduced a top-k search. There
are other methods for flexible search, such that proposed in [20], [14], [11] or [8].

 Top-k search is a method of finding k best objects according to user criteria (an
aggregation function) without the need of ranking and ordering all objects in database.
There are several algorithms proposed in [5], also proved to be instance optimal.
However, in practice, instance optimality is often not sufficient – performance is not
satisfying. In [7], we have proposed some heuristics for these algorithms, which
improve the speed of algorithms.

The paradigm of top-k search is working with ordered lists. Each list corresponds
to an attribute Ai and it contains objects ordered by user preference on Di. The
ordering of a domain according to an arbitrary fuzzy function was discussed in [4].
The overall score of an object is computed from its attributes values.

We obtain data from lists with sequential access. Reducing the number of sequential
accesses is the first task. Some algorithms use also direct access similar to a new query
to database, which returns the attribute value for an object. This direct access is mostly
very costly, so reducing the number of direct accesses is another goal.

Because of space limitations, we can not explain heuristics in more detail; they are
however presented in Section 5.

4.2 TOKAF

We proposed and implemented a system Tokaf [26] for performing top-k queries over
RDF data. The system is aimed to be used as a middleware; its possible integrations
are proposed in Figure 4. As a Java library, Tokaf can be used either on the server
side, for example in a Web service, or on the client side. In both cases, it gathers
information from local or Web data sources and combines them into one ordered list.
Further manipulation and presentation of this list to the user is not the aim of Tokaf.

There are several implemented classes for standard user scoring functions,
normalizers for Jena and Sesame, all five algorithms proposed in [5] and heuristics
described in [7].

126 A. Eckhardt, T. Horváth, and P. Vojtáš

In the future we plan to incorporate our system into Semantic Web Infrastructure
described in [24].

4.3 IGAP

Our algorithm is implemented in Java. It does not read any inputs from file or
database. Objects are represented in form similar to RDF format attribute(object,
value). This representation enables us to easily handle missing attribute values. We
use ILP system ALEPH [21] with standard settings. We use ALEPH because it is able
to work with rules in the background knowledge what is important in case we want to
introduce monotonicity axioms.

IGAP contains several packages for preprocessing: There are implemented several
methods on discretisation of continuous attribute domains (equidistant, equipotent).
For attribute ordering detection there are implemented methods of regression (linear,
polynomial) and qualitative models (QUIN algorithm [1]).

Hypotheses are represented in following structures:

hypotheses(hypothesis, time_of_computing, accuracy), rules(hypothesis, rule,
rule_coverage), attributes(hypothesis, rule, attribute, value), where value states for
truth value (in case of fuzzy attribute) or real value (in case of crisp attribute). Notice,
that the head attribute is included in this structure too.

5 Experiments

We present results of experiments of one of our new heuristics - MissingValues. This
heuristic is compared to the direct implementation of algorithm from [5], which is
denoted as Parallel access in Figure 5. Experiments was done in local environment
with a testing set of 100 000 objects with five attributes, which were stored in RDF
database Sesame [25].

We can see from Figure 5 that the number of accesses is much lower for
MissingValues, especially for smaller values of k. This is reasonable, because users
want a small set of recommendations; no one will go through the list of 1000 objects.
The number of accesses can not exceed the number of objects, which is 100 000.

Web browser

Java application

Server

Tokaf

Local data source
(Jena) Online data source

Tokaf

Client

Local data source
(Sesame)

1 100 200 300 400 500 600 700 800 900 1000

0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

80 000

90 000

100 000

Number of accesses

Parallel access
MissingValues

Output size (k)

N
um

be
r

of
 a

cc
es

se
s

 Fig. 4. Use cases of Tokaf Fig. 5. Testing MissingValues heuristic

Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying 127

We further experimented with attribute domain ordering detection module in
IGAP. First we tried linear regression. This method is the fastest but not suitable to
detect ordering types, where middle or marginal values are preferable.

There is another method to attribute domain ordering detection using IGAP itself.
This proceed as follows: we try to learn a hypothesis separately for every of the four
basic types of orderings (lower-best, higher-best, middle-best and marginal-best)
using just one attribute (for what we try to detect the domain ordering) in learning
process for objects. ALEPH does not learn any rule for the wrong type of ordering. If
ALEPH learns some rules for more than one type of ordering, we use that ordering
type where the hypothesis has higher accuracy. Nevertheless this method turned out to
be not satisfactory. We detect the ordering of the domain of attribute price for the user
2 as “lower-best” instead of “marginal-best” what should be the correct ordering
(giving higher accuracy of learning). The reason is, we did not find right coordinates
of minima of fuzzy function.

Finally, we used quadratic polynomial regression to ordering detection as follows.
We compute the quadratic polynomial and its global maximum respectively
minimum. This point we mark as the “middle point” from what the middle-best
respectively marginal-best types of orderings can be detected. If the middle point is
out of used domain or lies in its margins we can assume lower-best or higher-best
ordering types. The results can be seen on Figure 6.

Fig. 6. Detected basic types of orderings by using polynomial regression

The computation with these basic types of orderings (local preferences) from figure 6
gives us following results for the user 2 (for user 1 the results are similar to those in
table 2):

excellent(A) :- distance(A, 0.3), price(A, 1.0). [Accuracy = 1]

good(A) :- distance(A, 0.3). [Accuracy = 1]

USER 1 distance-quadratic

0

1

2

3

0 500 1000 1500 2000

distance

ev
al

u
at

io
n

USER 1 price-quadratic

0

1

2

3

0 50 100 150 200

price

ev
al

u
at

io
n

USER 2 distance-quadratic

0

1

2

3

0 500 1000 1500 2000

distance

ev
al

u
at

io
n

USER 2 price-quadratic

0

1

2

3

0 50 100 150 200

price

ev
al

u
at

io
n

128 A. Eckhardt, T. Horváth, and P. Vojtáš

We interpret these rules as following:

user_2_evaluation = excellent IF distance ∈ <300;1100> AND price ∈
<35;35> ∪ <149;149>

user_2_evaluation = good IF distance ∈ <300;1100>

As can be seen, the results are very similar to results for user 2 from the table 2. All
the rules have high accuracy.

Global quality of learning was measured by accuracy weighted average (weighted
by truth value annotating the head of the rule). The idea is, that learning bad rules for
excellent hotel (in focus of user) is more punished than learned bad rules for hotels
not that much interesting for user. This measure was the highest by above mentioned
orderings for both users.

6 Related Work and Conclusion

To create a more suitable set of rules using ILP in [2] an algorithm called FS FOIL
was developed, that extends the original FOIL algorithm, modified to be able to
handle first order fuzzy predicates where cover compares confidence and support of
fuzzy predicates. A version of FOIL that handles membership degree has already been
developed in [19] but the rules induced still keep a classical meaning. In [16] a system
enriching relational learning with several types of fuzzy rules - flexible, gradual and
certainty - was introduced. In this approach a fuzzy rule is associated by crisp rules
where the truth of a head is the same or complementary of the truth of a body (on an
α-cut). These types of rules are considered in [17], too, where hypotheses are
computed by a fixed T-norm and are more flexible as in [16]. All these approaches
are using vague linguistic hedges and are implemented in FOIL. These approaches
have some disadvantages: [19] uses only Lukasiewicz logic, [17] and [19] deals with
fixed types of fuzzy rules, moreover in [17] the truth values of the head of a rule and
the body have the same truth value (or they are complements α and 1-α) while in [19]
a fixed t-norm (aggregation) is used in learning.

We do not know about any inductive GAP system.
Our FILP task does not consider probability distributions as in probabilistic models

[18, 6]. Embedding of FILP to Bayesian Logic Programs (BLP) is studied in [22] . In
[23] the transformations of GAP to several frameworks are introduced.

To conclude, we have presented models, methods and experimental
implementation of a system supporting top-k answers to user fuzzy preference
queries. Main contributions of this paper are a method for monotonization of data
using user preferences. This enables to use our inductive method for generalized
annotated programs working on a fuzzy completion of data. Efficient heuristics for
finding top-k answers was implemented and tested too.

Acknowledgement. Supported by Czech projects 1ET100300517 and 1ET 100300419
and Slovak projects NAZOU and VEGA 1/3129/06.

Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying 129

References

[1] Bratko, I., Šuc, D.: Learning qualitative models. AI Magazine 24, 107–119 (2003)
[2] Bodenhofer, U., Drobics, M., Klement, E-P.: FS-FOIL: An Inductive learning method for

extracting interpretable fuzzy descriptions. Int.J. Approximate Reasoning 32, 131–152
(2003)

[3] Džeroski, S., Lavrač, N.: An introduction to inductive logic programming. In: Džeroski,
S., Lavrač, N. (eds.) Relational data mining, pp. 48–73. Springer, Heidelberg (2001)

[4] Eckhardt, A., Pokorný, J., Vojtáš, P.: A system recommending top-k objects for multiple
users preferences. In: Proc. of Fuzz-IEEE, London (to appear, 2007)

[5] Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. In:
Extended abstract appeared in Proc. PODS 2001, pp. 102–113 (2001)

[6] Getoor, L., et al.: Learning probabilistic relational models. In: Džeroski, S., Lavrač, N.
(eds.) Relational data mining, pp. 307–335. Springer, Heidelberg (2001)

[7] Gurský, P., Lencses, R., Vojtáš, P.: Algorithms for user dependent integration of ranked
distributed information. In: Böhlen, M.H., Gamper, J., Polasek, W., Wimmer, M.A. (eds.)
TCGOV 2005. LNCS (LNAI), vol. 3416, pp. 123–130. Springer, Heidelberg (2005)

[8] Güntzer, U., Balke, W., Kiessling, W.: Optimizing Multi-Feature Queries for Image
Databases. In: Proc. of the 26th VLDB Conference, Cairo, Egypt (2000)

[9] Hájek, P.: Metamathematics if fuzzy logic. Kluwer, Dordrecht (1999)
[10] Horváth, T., Vojtáš, P.: Induction of Fuzzy and Annotated Logic Programs. In:

Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI),
 vol. 4455,

[11] Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational
database. In: Proc. of VLDB, pp. 754–765, Berlin (2003)

[12] Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and
its applications. J. Logic Programing 12, 335–367 (1992)

[13] Krajči, S., Lencses, R., Vojtáš, P.: A comparison of fuzzy and annotated logic
programming. Fuzzy Sets and Systems 144, 173–192 (2004)

[14] Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database
systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

[15] Pokorný, J., Vojtáš, P.: A data model for flexible querying. In: Caplinskas, A., Eder, J.
(eds.) ADBIS 2001. LNCS, vol. 2151, pp. 280–293. Springer, Heidelberg (2001)

[16] Prade, H., Richard, G., Serrurier, M.: Enriching relational Learning with fuzzy predicates.
In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS
(LNAI), vol. 2838, pp. 399–410. Springer, Heidelberg (2003)

[17] Prade, H., Richard, G., Dubois, D., Sudkamp, T., Serrurier, M.: Learning first order fuzzy
rules with their implication operator. In. Proc. of IPMU (2004)

[18] De Raedt, L., Kersting, K.: Probabilistic Inductive Logic Programming. In: Ben-David,
S., Case, J., Maruoka, A. (eds.) ALT 2004. LNCS (LNAI), vol. 3244, pp. 19–36.
Springer, Heidelberg (2004)

[19] Shibata, D., et al.: An induction algorithm based on fuzzy logic programming. In: Zhong,
N., Zhou, L. (eds.) Methodologies for Knowledge Discovery and Data Mining. LNCS
(LNAI), vol. 1574, pp. 268–273. Springer, Heidelberg (1999)

[20] Tao, T., Zhai, C.: Best-k Queries on Database Systems. In: Proceedings of the 15th ACM
international conference on Information and knowledge management (2006)

[21] Srinavasan, A.: The Aleph Manual. Technical Report, Comp.Lab. Oxford University

pp. 260–274 Springer, Heidelberg (2007) .

130 A. Eckhardt, T. Horváth, and P. Vojtáš

[22] Vojtáš, P., Vomlelová, M.: Transformation of deductive and inductive tasks between
models of logic programming with imperfect information. In: Proceedings of IPMU,
2004: Editrice Universita La Sapienza, Roma, pp. 839–846 (2004)

[23] Vojtáš, P., Vomlelová, M.: On models of comparison of multiple monotone
classifications. In: Proc. IPMU 2006, Paris, France, Éditions EDK, Paris, pp. 1236–1243
(2006)

[24] Yaghob, J., Zavoral, F.: Semantic Web Infrastructure using DataPile. In:
IEEE/WIC/ACM WI 2006, Los Alamitos, California, pp. 630–633 (2006) ISBN 0-7695-
2749-3

[25] http://www.openrdf.org
[26] Sources and libraries of Tokaf system, http://sourceforge.net/projects/tokaf//

Composable Markov Building Blocks

Sander Evers, Maarten M. Fokkinga, and Peter M.G. Apers

University of Twente, The Netherlands

Abstract. In situations where disjunct parts of the same process are
described by their own first-order Markov models and only one model
applies at a time (activity in one model coincides with non-activity in
the other models), these models can be joined together into one. Under
certain conditions, nearly all the information to do this is already present
in the component models, and the transition probabilities for the joint
model can be derived in a purely analytic fashion. This composability
provides a theoretical basis for building scalable and flexible models for
sensor data.

1 Introduction

In order to deal with time series of sensor data, it is useful to have a statistical
model of the observed process. This helps to smooth noisy readings, detect faulty
observations, or fill in incomplete data, by keeping track of in what states the
process is most likely to be. For example, in object localization, if we have a
sequence of position observations 3–2–4–18–5–4 and a model that assigns a low
likelihood to objects moving back and forth fast, we know we can disregard
the 18 reading. The parameters of such a statistical model can be obtained from
domain expert knowledge or by (supervised or unsupervised) learning from data.

When the state space of a statistical model is large and heterogeneous, these
parameters become hard to obtain. Therefore, like in all large and complex prob-
lems, it is fruitful to look for composability of statistical models; composability
is often the key to flexibility and scalability. In this article, we consider a specific
opportunity for composability, where several disjunct parts of the state space
can be described by their own first-order Markov models (we have investigated
first-order Markov models because these are the most simple). We present a
mathematical result about the conditions under which these models are com-
posable, and the method to perform this composition.

In order to illustrate this result, we use a running example about activity
recognition, where the heterogeneity of the state space stems from the fact that
different types of sensors are used for several subclasses of activities. This par-
ticular example actually has a very small state space, and we stress the fact that
it is used only for illustration of the mathematical procedure; it is not meant as
a realistic application.

Fig. 1a shows this example, which consists of three component models body,
object and computer, which are associated with three different types of sensors:

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 131–142, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

132 S. Evers, M.M. Fokkinga, and P.M.G. Apers

– Motion sensors on the body are used to classify the activities walking and
climbing stairs.

– Sensors on a coffee cup and a book register interaction with these objects,
and are used to classify coffee drinking and book reading.

– From desktop computer interactions, the activities logging in, reading mail,
reading an article, and writing a document are classified.

Each is a first-order Markov model that, in addition to the states just mentioned,
contains a state of non-activity. In this state the monitored person is considered
to be doing ‘something else’, which cannot be observed more precisely in that
model. Furthermore, there can only be one activity at a time, i.e. the activities of
one model coincide with non-activity in the other models. Our goal is to compose
these models together into one.

We have investigated the conditions under which this model composition can
happen in a purely analytic fashion, without assuming or adding any other infor-
mation apart from the structure of the transition graph between the component
models (Fig. 1b). The main result is that when this structure is ‘sparse enough’,
all inter-component transition probabilities can be deduced from the component
models. The technique that we present checks this condition and deduces the
probabilities, and is novel to the best of our knowledge.

The remainder of this article is structured as follows. In Sect. 2, we formalize
the problem; Sect. 3 reduces it to a set of linear equations; in Sect. 4 we present
a specialized method to solve this system; in Sect. 5 we apply this method to
our problem; Sect. 6 discusses some related work and Sect. 7 concludes.

(a) Three component models: body, object and
computer

(b) A possible
inter-component
transition graph

Fig. 1. Running example: activity recognition

Composable Markov Building Blocks 133

2 Markov Models and Pseudo-aggregated Components

In this section, we give a quick introduction to Markov models, and we formalize
the relation between a global Markov model G and its component models.

Consider a process that can be in one of the states of a finite set SG at each
subsequent point in (discrete) time. One of the simplest and most used models
that probabilistically relates the states in such a series to each other is the homo-
geneous first-order Markov model. Informally, the first-order Markov condition
means that the state at time τ +1 (represented by the stochastic variable Xτ+1)
is only dependent on Xτ , i.e. for guessing the next state, knowledge of the cur-
rent state obsoletes all knowledge of previous states. Formally, this is expressed
using conditional independence:

P(Xτ+1 = t|Xτ = s) = P(Xτ+1 = t|X0..τ = (x0, x1, . . . , xτ−1, s))

The parameters of a first-order Markov model consist of the conditional prob-
abilities P(Xτ+1 = t|Xτ = s) with s, t ∈ SG. We consider homogeneous models,
which means that these conditional probabilities are the same for all values of τ .
This allows one to specify all these parameters using a transition function G, in
which G(s, t) = P(Xτ+1 = t|Xτ = s). Often, this function is represented by a
matrix, for which we will also use the symbol G; furthermore, we will also use
G to refer to the corresponding Markov model itself. In the remainder of this
article, when we mention a Markov model, a first-order heterogeneous Markov
model is implied.

The probabilities in a Markov model can be interpreted as observation fre-
quencies. An observation of G consists of a consecutive sequence [x0, x1, x2, . . .]
of states (xi ∈ SG); each subsequence [s, t] corresponds to an observed transi-
tion from s to t. We denote the number of distinct [s, t] subsequences by #[s, t].
The longer the sequence we observe, the more the frequency #[s, t]/#[s,] con-
verges to G(s, t). (We use [s,] to denote any observed transition from s; #[s,]
is almost equal to the number of s occurrences in the sequence.)

Learning a model from the data works the other way around: the G(s, t) para-
meters are estimated by using the observed frequencies #[s, t]/#[s,]. In princi-
ple, to check the Markov condition for the observed data, one should also calcu-
late the frequencies with added prefixes to ensure e.g. that #[r, s, t]/#[r, s,] ≈
G(s, t); but in practice, Markov models are also successfully used when this
condition does not hold.

Now, consider the situation in which we assume the data originates from a
Markov model G with states {1, . . . , n}, but we cannot distinguish between the
states m through n (with m < n) in our observations. For example, our body
sensor can only distinguish between three states: climbing stairs, walking, and a
“rest state” of non-activity. When we use the observed transition frequencies to
estimate a Markov model, we arrive at a different model C with |SC | = n states.
This model is called the pseudo-aggregation of G with respect to the partition
SC = {{1}, {2}, . . . , {m − 1}, {m, . . . , n}}. (In the formal definition of pseudo-
aggregation[1], the parameters of the pseudo-aggregated model C are directly
defined in terms of the G parameters, i.e. without referring to observations.)

134 S. Evers, M.M. Fokkinga, and P.M.G. Apers

The goal of this article is to reconstruct the unknown global Markov model G
(in our running example, SG = {cs, wa, dc, rb, li, rm, ra, wr}; each activity is ab-
breviated to two letters) from several known pseudo-aggregations, the component
models, which have a special form:

– Each partition SC consists of one or more singleton states and exactly one
non-singleton “rest” state. In our running example:

• Sbody = {{cs}, {wa}, {dc, rb, li, rm, ra, wr}},
• Sobject = {{dc}, {rb}, {cs, wa, li, rm, ra, wr}}, and
• Scomputer = {{li}, {rm}, {ra}, {wr}, {cs, wa, dc, rb}}.

– Each state s from SG corresponds to a singleton state {s} in exactly one of
the SC partitions. We say that the state belongs to a specific C model. The
model to which state s belongs is written Cs. For example, Ccs = body.

For clarity of exposition we will hereafter slightly transcend this formalization
and identify the singleton states with their only member, so cs can actually mean
{cs}. Also, we will abbreviate the non-singleton state of each pseudo-aggregation
to rest.

To illustrate the situation, consider the example global observation sequence
shown in Fig. 2, with its three corresponding component sequences. Because
of the special partitioning form, at each point τ , the accurate current state is
observed by one component; the other components observe their rest state. By
calculating frequencies, each of the component sequences gives rise to a C model;
the goal is to reconstruct the G model from only these C models. Of course, if we
would be able to use the C sequences directly, we could paste them together into
the G sequence and use that to construct the G model. However, this assumes
an important condition, namely that the C sequences are recorded at the same
time. If this is not the case, we can not reconstruct a global sequence; this
article shows that under certain conditions one can do without it, and just use
the probabilities (frequencies) from the C models.

Note that, even if the Markov condition holds for the global observation data,
it generally does not hold for the local observation data. For example, if the
(dc, rest) transition in the object component always corresponds to (dc, li) in
the global model, and there is no (li, dc) transition possible, then (in an object
sequence) #[dc, rest, dc]/#[dc, rest,] = 0, although #[rest, dc]/#[rest,] > 0.
Pseudo-aggregation means we treat it as a Markov chain regardless. This does
not invalidate our approach, because pseudo-aggregation does not affect the
stationary distribution (see next section).

τ 0 1 2 3 4 5 6 7 8 . . .

global [cs, wa, wa, dc, li, rm, ra, rb, wa, . . .]

body [cs, wa, wa, rest , rest , rest, rest , rest, wa, . . .]
object [rest , rest , rest , dc, rest , rest, rest , rb, rest , . . .]

computer [rest , rest , rest , rest , li, rm, ra, rest, rest , . . .]

Fig. 2. Global and component observation sequences

Composable Markov Building Blocks 135

The ‘certain conditions’ that we mentioned pertain chiefly to the graph of
possible transitions between the components. We introduce some terminology
for this:

– If the states s, t ∈ SG belong to the same component model (Cs = Ct), we
will call the transition from s to t an intra-component transition; otherwise
(Cs �= Ct), it is called an inter-component transition.

– A possible transition (s, t) is one with G(s, t) > 0.
– A state that is involved in at least one possible inter-component transition

is called a border state.
– The directed graph consisting of all border states as vertices and all possi-

ble inter-component transitions (s, t) as edges is called the inter-component
transition graph.

In the remainder of the article, we will show how to reconstruct G when:

– we know the inter-component transition graph (i.e. we know which inter-
component transitions are have G(s, t) > 0), and

– this inter-component transition graph does not contain direction-alternating
cycles (a concept that we will explain in section 4).

In our example, the border states are {wa,dc,rb,li,ra}. An example inter-component
transition graph is shown in Fig. 1b. Note that it is not derived from the component
models; it is extra information that we add.

3 Transforming to the Domain of Long-Run Frequencies

In the global model G, the transition probabilities G(s, t) for intra-component
transitions can be taken directly from the C model to which the states belong:
G(s, t) = Cs(s, t). The problem lies with the inter -component transitions: we
know for which transitions G(s, t) > 0, but we don’t know the exact values.
However, the information about transitions from and to the rest states in the C
models can make it possible to deduce them in a completely analytic fashion.
To do this, we first transform the problem from the domain of conditional prob-
abilities G(s, t) into (unconditional) long-run frequencies F (s, t). In Sect. 5, we
will transform the solution back.

The unconditional long-run frequency F (s, t) is the frequency with which a
transition from s to t would occur compared to the total number of transitions
(instead of to the transitions from s). To transform conditional frequencies into
unconditional frequencies, we need to know the proportion of the total time
spent in each state. These proportions are known[2] to be equal to the stationary
distribution πG, which is the normalized left eigenvector of the transition matrix
G corresponding to eigenvalue 1, i.e. the solution to:

πGG = πG∑
s

πG(s) = 1

136 S. Evers, M.M. Fokkinga, and P.M.G. Apers

The existence and uniqueness of πG are guaranteed when the Markov model is
irreducible and ergodic. (We will come back to these notions in Sect. 7.) It is well
known how to calculate a stationary distribution given a transition matrix, but
we cannot calculate πG directly because we do not know the complete G matrix.
Instead, we use the stationary distributions of the C matrices; it is known ([1],
Lemma 4.1) that even though C is a pseudo-aggregation (which ‘illegitimately’
assumes the Markov condition), πC is equivalent to πG up to aggregation. For
each state s, we use the model Cs to which it belongs:

πG(s) = πCs(s)

Using this, we can simply calculate F (s, t) for all intra-component transitions
from Cs(s, t) by multiplying it by the proportion of time spent in s:

F (s, t) = πG(s) · Cs(s, t)

We need to solve F (s, t) for inter -component transitions. From the inter-
component transition graph, we know which of these frequencies are 0. We solve
the rest of them by equating, for each border state s, the summed frequencies of
incoming transitions (including self-transitions) to the proportion of time spent
in s (because every time unit spent in s is preceded by a transition to s), and
doing the same for the outgoing transitions (because every time unit spent in s
is followed by a transition from s):

∑
r

F (r, s) = πG(s)

∑
t

F (s, t) = πG(s)

Moving all the known quantities to the right-hand side gives:

∑
r|Cr �=Cs

F (r, s) = πG(s) −
∑

r|Cr=Cs

F (r, s)

∑
t|Cs �=Ct

F (s, t) = πG(s) −
∑

t|Cs=Ct

F (s, t)

We are then left with a system of linear equations, with twice as much equations
as there are border states, and as much unknowns as there are inter-component
transitions. In principle, we could solve these equations using a standard method
such as Gauss-Jordan elimination, but in the next section we present a technique
that is tailored to the special structure of this system. It has the benefit that it
directly relates the conditions under which the system has one unique solution to
the inter-component transition graph, and that it checks these conditions (and
solves the equations) in a time proportional to the number of inter-component
transitions.

Composable Markov Building Blocks 137

4 Distributing Vertex Sum Requirements

In this section, we abstract from the Markov model problem, and present a
method for solving a system of linear equations associated with a directed graph:
each edge corresponds to an unknown, and each vertex corresponds to two equa-
tions (one for the incoming and one for the outgoing edges).

Formally, we represent the system by a directed graph G = (V, E), with vertex
set V and edge set E ⊆ V ×V , and two vertex sum requirements f+, f− : V → R,
which specify for each v ∈ V the sum of the weights on its outgoing and incoming
edges, respectively (loops count for both). A solution to the system is a weight
distribution f : E → R matching these requirements, i.e.

f+(v) =
∑

w|(v,w)∈E

f(v, w)

f−(v) =
∑

u|(u,v)∈E

f(u, v)

for all v ∈ V . In this section, we present a necessary and sufficient condition on
the structure of G for the uniqueness of such a distribution, and an algorithm to
determine it (if it exists at all). For the proof and algorithm, we use an undirected
representation of G, which we call its uncoiled graph.

Definition 1. Given directed graph G = (V, E) with n vertices {v1, v2, . . . , vn},
we define its uncoiled graph U = (S + T, E′). U is an undirected bipartite graph
with partitions S = {s1, s2, . . . , sn} and T = {t1, t2, . . . , tn} of equal size |S| =
|T | = n, representing each vertex vi twice: as a source si and as a target ti.
E′ contains an undirected edge {si, tj} iff E contains a directed edge (vi, vj).
Furthermore, we represent f+ and f− together by a function f± : S + T → R:

f±(si)
def= f+(vi)

f±(ti)
def= f−(vi)

The transformation to an uncoiled graph is just a matter of representation;
from U and f±, the original G and f−, f+ can easily be recovered. An example
directed graph G and its uncoiled graph U in two different layouts are shown
in Fig. 3. Every vertex vi in G corresponds to two vertices si and ti in U (in
Fig. 3b, these are kept close to the spot of vi; Fig. 3c more clearly shows the
partitioning in S and T). Every edge in G corresponds to an edge in U ; if it
leaves from vi and enters vj , its corresponding edge in U is incident to si and tj .

Fig. 3a also shows partial vertex sum requirements for G: f+(v1) = 5 and
f−(v1) = 3, and a partial weight distribution that matches these requirements:
f(v1, v1) = 3 and f(v1, v2) = 2. In fact, this f has been deduced from f− and f+:
because v1 has only one incoming edge, we can solve f(v1, v1) = f−(v1) = 3. With
this information, we can also solve f(v1, v2) = f+(v1) − f(v1, v1) = 5 − 3 = 2.
This illustrates the basic principle of how Algorithm 1 works.

138 S. Evers, M.M. Fokkinga, and P.M.G. Apers

f+:5

f−:3

v1f :3 ��
f :2 �� v2

��
v3

����������������
v4

��

(a) Directed graph G
(with partial
f−, f+, f)

f±:5

s1

f ′:3
f ′:2

���������� s2

f±:3

t1 t2

s3

������������
s4

t3 t4

(b) Uncoiled graph U
(with partial
f±, f ′)

f±:5

s1
f ′:3

f ′:2 ���������
f±:3

t1

s2

��
��

��
��

��
��

� t2

s3

���������
t3

s4

�������������
t4

(c) U (alt. layout
dividing S and
T)

Fig. 3. Uncoiling

For graph U , these same requirements and distribution are represented by f±

and f ′, respectively (see Fig. 3b, 3c). The assertion that f ′ matches f± is

∀v ∈ S + T. f±(v) =
∑

w|{v,w}∈E′

f ′{v, w}

The algorithm works on this new representation: it solves f ′ from f±. After-
wards, the solution f ′ is translated to the corresponding f . We now state the
sufficient condition to find this solution: U should not contain a cycle.

Lemma 1. A cycle in U represents a direction-alternating cycle in G and vice
versa. A direction-alternating cycle is a sequence of an even number of distinct
directed edges (e1, e2, . . . , e2m) in which:

– e1 and e2m have a common source
– ei and ei+1 have a common target, for odd i
– ei and ei+1 have a common source, for even i (smaller than 2m)

Theorem 2. For each directed graph G without direction-alternating cycles and
weight-sum functions f+ and f−, if there exists a matching weight distribu-
tion f , it is unique. Algorithm 1 decides whether it exists; if so, it produces the
solution.

Proof. The algorithm works on the uncoiled graph U , which contains no cy-
cles because of Lemma 1; hence, it is a forest. For each component tree, we
pick an arbitrary element as root and recurse over the subtrees. The proof is
by induction over the tree structure; the induction hypothesis is that after a
call SolveSubtree(root,maybeparent), the unique matching distribution on all
the edges in the subtree rooted in root has been recorded in f ′. To satisfy the
hypothesis for the next level, we consider the f± requirements for the roots

Composable Markov Building Blocks 139

Input: directed graph G = (V, E) and weight sums f+, f−

Output: unique weight distribution f that matches the sums

(V ′, E′) ← uncoiled graph of G (as in Def. 1)
f± ← projection of f+, f− on V ′ (as in Def. 1)
f ′ ← the empty (partial) function
visited ← ∅
while visited �= V ′ do

root ← an arbitrary element of (V ′ − visited)
SolveSubtree(root, ∅)
if f±(root) �=

�
w f ′{root, w} then error ‘no distribution exists’

end
foreach (vi, vj) ∈ E do f(vi, vj) ← f ′{si, tj}
procedure SolveSubtree(root,maybeparent)

// maybeparent records the node we came from, to prevent going back
if root ∈ visited then error ‘cycle detected’
visited ← visited ∪ {root}
foreach v ∈ (V ′ − maybeparent) such that {root, v} ∈ E′ do

SolveSubtree(v, {root})
f ′{root, v} ← f±(v) −

�
w f ′{v, w}

end
end

Algorithm 1. Finding the unique weight distribution

of the subtrees. By the induction hypothesis, these all have one unknown term,
corresponding to the edge to their parent: thus, we find a unique solution for
each edge at the current level. �	

Remark. The algorithm contains two additional checks:

– When the root of a component is reached, the f± equation for this root is
checked. If it holds, the existence of a matching distribution f is established
(for this component).

– When visiting a node, it is checked whether it was visited before. If it was, U
contains a cycle. As we will show next, this means that no unique matching
distribution exists.

Theorem 3. A directed graph G with a direction-alternating cycle has no unique
weight distribution matching a given f+, f−.

Proof. Given such a cycle (e1, e2, . . . , e2m) and a matching weight distribution f ,
we construct another matching weight distribution g:

g(ei) = f(ei) + c, for all odd i

g(ei) = f(ei) − c, for all even i

g(e) = f(e), for all other edges e �	

140 S. Evers, M.M. Fokkinga, and P.M.G. Apers

5 Finishing the Transition Model Construction

In Sect. 3, we ended with a set of equations to solve, namely
∑

r|Cr �=Cs

F (r, s) = πG(s) −
∑

r|Cr=Cs

F (r, s)

∑
t|Cs �=Ct

F (s, t) = πG(s) −
∑

t|Cs=Ct

F (s, t)

for all border states s. To solve these, we use Algorithm 1, with (V, E) the
inter-component transition graph: vertices V are the border states, and edges E
are the inter-component transitions. The unknown inter-component transition
probabilities that we want to solve correspond to the edge weights in f , and
the vertex sum requirements correspond to the right-hand sides of the above
equations:

f−(s) = πG(s) −
∑

r|Cr=Cs

F (r, s)

f+(s) = πG(s) −
∑

t|Cs=Ct

F (s, t)

The weight distribution f that the algorithm yields gives us the unknown F
values. So, we now know F (s, t) for all (s, t):

F (s, t) = πCs(s) · Cs(s, t) for all intra-component (s, t) transitions
F (s, t) = f(s, t) for (s, t) in the inter-component transition graph
F (s, t) = 0 for other (s, t) (for which G(s, t) = 0)

We arrive at the desired matrix G of conditional probabilities by normalizing
the rows:

G(s, t) =
F (s, t)∑
x F (s, x)

6 Related Work

A probabilistic model with a state space of n variables that can each take k values
requires, in the general case, kn parameters (one for each possible combination of
values), so scales exponentially in n. A widely used method to avoid this problem
is using a graphical model like a Bayesian network[3,4]; because it assumes many
conditional independences between variables, the number of parameters can grow
linearly with the number of variables (each variable is represented by a node in
the graph; if a node has a maximum of p parents, the model has at most (k−1)kpn
parameters). However, in this article we are not concerned with scalability in the
number of variables; we assume one (process) variable, and are concerned with

Composable Markov Building Blocks 141

scalability in k, the number of values. Even if we would model the sets of values
that can be distinguished by the component models as a separate variables,
constructing a (dynamic) Bayesian network would be of no use: the fact that
the process can be in one state at a time constitutes a very clear dependence
between all the variables.

To summarize, instead of a condition on the dependence graph between vari-
ables, we investigated a condition on the transition graph between values of the
same (process) variable. Presently, we are not familiar with any other work in
this direction.

7 Conclusion and Future Work

We have presented a technique to compose Markov models of disjunct parts of
a state space into a large Markov model of the entire state space. We review the
conditions under which we can apply this technique:

– The inter-component transition graph should be known, and should not con-
tain any direction-alternating cycles.

– The Markov chain G should be irreducible and ergodic, in order to calculate
the stationary distribution πG. We refer to [2] for the definition of these
terms; for finite chains, it suffices that all states are accessible from each
other (i.e. the transition graph is strongly connected) and that all states are
aperiodic: the possible numbers of steps in which you can return to a given
state should not be only multiples of n > 1.

An example class of inter-component transition graphs satisfying these condi-
tions is formed by those with symmetric edges (only two-way transitions), that
forms a tree when the two-way connections are represented by an undirected
edge.

In this article, we have only considered the theoretical situation where the
C models are perfect pseudo-aggregations of one model G. In practice, this will
probably never be the case. Even when the observation sequences are generated
by a perfect Markov model, they would have to be infinitely long to guarantee
this. The consequence using imperfect pseudo-aggregations is that the stationary
distributions πC will not perfectly agree with another, and πG is only approxi-
mated. We leave it to future research to determine when an acceptable approxi-
mation can be reached. A second open question is how to deal with inter-model
transition graphs which do contain some direction-alternating cycles. Perhaps
some additional information could be used to determine the best solution (in a
maximum likelihood sense); without this information, the distribution of maxi-
mum entropy could be used.

Acknowledgements

This research is funded by NWO (Nederlandse Organisatie voor Wetenschap-
pelijk Onderzoek; Netherlands Organisation for Scientific Research), under

142 S. Evers, M.M. Fokkinga, and P.M.G. Apers

project 639.022.403. The authors would like to thank Richard Boucherie for
his comments on the article.

References

1. Rubino, G., Sericola, B.: Sojourn times in finite Markov processes. Journal of Ap-
plied Probability 26(4), 744–756 (1989)

2. Ross, S.M.: Introduction to Probability Models, 8th edn. Academic Press, London
(2003)

3. Charniak, E.: Bayesian networks without tears. AI Magazine 12(4), 50–63 (1991)
4. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.

Prentice-Hall, Englewood Cliffs (2004)

Tractable Probabilistic Description Logic Programs

Thomas Lukasiewicz�

Dipartimento di Informatica e Sistemistica, Sapienza Università di Roma
Via Ariosto 25, I-00185 Roma, Italy

lukasiewicz@dis.uniroma1.it

Abstract. We propose tractable probabilistic description logic programs (or pro-
babilistic dl-programs) for the Semantic Web, which combine tractable descrip-
tion logics, normal programs under the answer set semantics, and probabilities.
In particular, we introduce the total well-founded semantics for probabilistic dl-
programs. Contrary to the previous answer set and well-founded semantics, it
is defined for all probabilistic dl-programs and all probabilistic queries. Further-
more, tight (resp., tight literal) query processing under the total well-founded
semantics coincides with tight (resp., tight literal) query processing under the pre-
vious well-founded (resp., answer set) semantics whenever the latter is defined.
We then present an anytime algorithm for tight query processing in probabilistic
dl-programs under the total well-founded semantics. We also show that tight lit-
eral query processing in probabilistic dl-programs under the total well-founded
semantics can be done in polynomial time in the data complexity and is com-
plete for EXP in the combined complexity. Finally, we describe an application of
probabilistic dl-programs in probabilistic data integration for the Semantic Web.

1 Introduction

During the recent five years, formalisms for dealing with probabilistic uncertainty have
started to play an important role in research related to the Web and the Semantic Web
(which is an extension of the current Web by standards and technologies that help ma-
chines to understand the information on the Web so that they can support richer dis-
covery, data integration, navigation, and automation of tasks; see [1]). For example,
the order in which Google returns the answers to a web search query is computed by
using probabilistic techniques. Besides web search and information retrieval, other im-
portant web and semantic web applications of formalisms for dealing with probabilistic
uncertainty are especially data integration [18] and ontology mapping [15].

The Semantic Web consists of several hierarchical layers, where the Ontology layer,
in form of the OWL Web Ontology Language [19], is currently the highest layer of suf-
ficient maturity. OWL consists of three increasingly expressive sublanguages, namely,
OWL Lite, OWL DL, and OWL Full, where OWL Lite and OWL DL are essentially very
expressive description logics with an RDF syntax. As shown in [11], ontology entail-
ment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the
description logic SHIF(D) (resp., SHOIN (D)). As a next step in the development
of the Semantic Web, one aims especially at sophisticated reasoning capabilities for the
Rules, Logic, and Proof layers of the Semantic Web.

� Alternative address: Institut für Informationssysteme, Technische Universität Wien, Favoriten-
straße 9-11, A-1040 Wien, Austria; e-mail: lukasiewicz@kr.tuwien.ac.at.

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 143–156, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

144 T. Lukasiewicz

In particular, there is a large body of work on integrating rules and ontologies, which
is a key requirement of the layered architecture of the Semantic Web. One type of in-
tegration is to build rules on top of ontologies, that is, for rule-based systems that use
vocabulary from ontology knowledge bases. Another form of integration is to build
ontologies on top of rules, where ontological definitions are supplemented by rules or
imported from rules. Both types of integration have been realized in recent hybrid in-
tegrations of rules and ontologies, called description logic programs (or dl-programs),
which are of the form KB =(L, P), where L is a description logic knowledge base,
and P is a finite set of rules involving queries to L in a loose coupling [7,8] (see also [7]
for more background, detailed examples, and further references on dl-programs).

Other research efforts are directed towards formalisms for uncertainty reasoning in
the Semantic Web: An important recent forum for uncertainty in the Semantic Web is
the annual Workshop on Uncertainty Reasoning for the Semantic Web (URSW) at the In-
ternational Semantic Web Conference (ISWC); there also exists a W3C Incubator Group
on Uncertainty Reasoning for the World Wide Web. There are especially extensions of
description logics [10], ontology languages [6,17], and dl-programs [14] by probabilis-
tic uncertainty (to encode ambiguous information, such as “John is a student with the
probability 0.7 and a teacher with the probability 0.3”, which is very different from
vague/fuzzy information, such as “John is tall with the degree of truth 0.7”).

In particular, the probabilistic dl-programs in [14] are one of the most promising ap-
proaches to probabilistic dl-programs for the Semantic Web, since they faithfully gen-
eralize two well-established logic programming and uncertainty formalisms, namely,
answer set programming and Bayesian networks. They also generalize Poole’s inde-
pendent choice logic (ICL) [16], which is a powerful representation and reasoning
formalism for single- and also multi-agent systems. The ICL combines logic and prob-
ability, and generalizes many important uncertainty formalisms, in particular, influence
diagrams, Bayesian networks, Pearl’s causal models, Markov decision processes, and
normal form games. Moreover, it allows for natural notions of causes and explanations
as in Pearl’s causal models. It is also closely related to other seminal approaches to
probabilistic logic programming, such as P-log [2] and Bayesian logic programs [12].

Since the Web contains a huge amount of data, an important feature of web and
semantic web formalisms should be that they allow for efficient algorithms. However,
no such algorithms are known so far for the probabilistic dl-programs in [14].

In this paper, we try to fill this gap. We propose an approach to probabilistic
dl-programs that is defined on top of tractable description logics (rather than SHIF(D)
and SHOIN (D) as in [14]), and show that this approach allows for tight query
processing with polynomial data complexity. In the course of this, we also provide some
other new results around probabilistic dl-programs, which are summarized as follows:

– We provide novel reductions of tight query processing and of deciding consistency
in probabilistic dl-programs to computing the answer sets of the underlying normal
dl-programs. These reductions significantly simplify previous reductions of [14],
which additionally require to solve two (in general quite large) linear optimization
problems resp. to decide the solvability of these linear optimization problems.

– We define a novel well-founded semantics of probabilistic dl-programs, called the
total well-founded semantics, since it defines tight answers for all probabilistic

Tractable Probabilistic Description Logic Programs 145

queries, contrary to the previous well-founded semantics of [14], which defines
tight answers only for a quite restricted class of probabilistic queries. The total well-
founded semantics is defined for all probabilistic dl-programs, contrary to the an-
swer set semantics, which is only defined for consistent probabilistic dl-programs.

– As for other nice semantic features of the total well-founded semantics, we show
that the tight answers under the total well-founded semantics coincide with the tight
answers under the well-founded semantics of [14], if the latter are defined. For
literal queries, the tight answers under the total well-founded semantics coincide
with the tight answers under the answer set semantics, if the latter are defined.

– We provide an anytime algorithm for tight query processing in probabilistic dl-
programs under the total well-founded semantics, along with a precise characteri-
zation of its anytime error. Furthermore, we show that tight query processing under
the total well-founded semantics can be done in polynomial time in the data com-
plexity and is complete for EXP in the combined complexity.

– We describe an application of probabilistic dl-programs in probabilistic data inte-
gration for the Semantic Web, where probabilistic dl-programs allow for dealing
with probabilistic uncertainty and inconsistencies. We especially discuss different
types of probabilistic data integration that can be realized with our approach.

2 Description Logics

The probabilistic dl-programs of this paper assume that the underlying description logic
allows for decidable conjunctive query processing. The tractability and complexity re-
sults of this paper (see Section 8) additionally assume that the underlying description
logic allows for conjunctive query processing in polynomial data complexity. We use
DL-Lite here, but the tractability and complexity results also hold for the variants of DL-
Lite in [5]. In this section, we recall the syntax and semantics of DL-Lite. Intuitively,
description logics model a domain of interest in terms of concepts and roles, which
represent classes of individuals resp. binary relations between classes of individuals.

Syntax. We first define concepts and axioms and then knowledge bases and conjunctive
queries in DL-Lite. We assume pairwise disjoint sets A, R, and I of atomic concepts,
(atomic) roles, and individuals, respectively. We use R− to denote the set of all inverses
R− of roles R ∈R. A basic concept B is either an atomic concept A∈A or an exists
restriction ∃R, where R ∈R∪R−. An axiom is either (1) a concept inclusion axiom
B �φ, where B is a basic concept, and φ is either a basic concept B or its negation ¬B,
or (2) a functionality axiom (funct R), where R ∈R∪R−, or (3) a concept membership
axiom B(a), where B is a basic concept and a ∈ I, or (4) a role membership axiom
R(a, c), where R ∈R and a, c ∈ I. A (description logic) knowledge base L is a finite set
of axioms. A conjunctive query over L is of the form Q(x)= ∃y (conj (x,y)), where x
and y are tuples of distinct variables, and conj (x,y) is a conjunction of assertions B(z)
and R(z1, z2), where B and R are basic concepts and roles from R, respectively, and
z, z1, and z2 are individuals from I or variables in x or y.

Example 2.1. A university database may use a knowledge base L to characterize stu-
dents and exams. E.g., suppose (1) every bachelor student is a student; (2) every master

146 T. Lukasiewicz

student is a student; (3) professors are not students; (4) only students give exams and
only exams are given; (5) john is a student, mary is a master student, java is an exam,
and john has given it. These relationships are encoded by the following axioms in L:

(1) bachelor student � student ; (2) master student � student ;
(3) professor � ¬student ; (4) ∃given � student ; ∃given−1 � exam ;

(5) student(john); master student(mary); exam(java); given(john, java) .

Semantics. The semantics of DL-Lite is defined as usual in first-order logics. An inter-
pretation I = (ΔI , ·I) consists of a nonempty domain ΔI and a mapping ·I that assigns
to each A∈A a subset of ΔI , to each o∈ I an element of ΔI (such that o1 �= o2 implies
oI1 �= oI2), and to each R ∈R a subset of ΔI × ΔI . We extend ·I to all concepts and
roles, and we define the satisfaction of an axiom F in I, denoted I |=F , as usual. A tu-
ple c of individuals from I is an answer for a conjunctive query Q(x)=∃y (conj (x,y))
to a knowledge base L iff for every I = (ΔI , ·I) that satisfies all F ∈L, there exists a
tuple o of elements from ΔI such that all assertions in conj (c,o) are satisfied in I.
In DL-Lite, computing all such answers has a polynomial data complexity.

3 Description Logic Programs

We adopt the description logic programs (or dl-programs) of [7,8], which consist of a
description logic knowledge base L and a generalized normal program P , which may
contain queries to L (called dl-queries). Note that these dl-programs can be extended
by queries to other formalisms, such as RDF theories. We first define the syntax of
dl-programs and then their answer set and their well-founded semantics. Note that in
contrast to [7,8], we assume here that dl-queries may be conjunctive queries to L.

Syntax. We assume a function-free first-order vocabulary Φ with finite nonempty sets
of constant and predicate symbols Φc and Φp, respectively, and a set of variables X . We
assume that (i) Φc is a subset of I (since the constants in Φc may occur in concept and
role assertions of dl-queries) and that (ii) Φ and A (resp., R) have no unary (resp., bi-
nary) predicate symbols in common (and thus dl-queries are the only interface between
L and P). A term is a constant symbol from Φ or a variable from X . If p is a predicate
symbol of arity k � 0 from Φ, and t1, . . . , tk are terms, then p(t1, . . . , tk) is an atom.
A literal is an atom a or a default-negated atom not a. A (normal) rule r is of the form

a ← b1, . . . , bk,not bk+1, . . . ,not bm , (1)

where a, b1, . . . , bm are atoms and m � k � 0. We call a the head of r, denoted H(r),
while the conjunction b1, . . . , bk,not bk+1, . . . ,not bm is the body of r; its positive
(resp., negative) part is b1, . . . , bk (resp., not bk+1, . . . ,not bm). We define B(r) as the
union of B+(r)= {b1, . . . , bk} and B−(r)= {bk+1, . . . , bm}. A (normal) program P
is a finite set of normal rules. We say P is positive iff it is “not”-free.

A dl-query Q(t) is a conjunctive query. A dl-atom has the form DL[S1 � p1, . . . ,
Sm � pm; Q(t)], where each Si is a concept or role, pi is a unary resp. binary predicate
symbol, Q(t) is a dl-query, and m � 0. We call p1, . . . , pm its input predicate symbols.
Intuitively, � increases Si by the extension of pi. A (normal) dl-rule r is of the form (1),

Tractable Probabilistic Description Logic Programs 147

where any b ∈B(r) may be a dl-atom. A (normal) dl-program KB = (L, P) consists of
a description logic knowledge base L and a finite set of dl-rules P . We say KB =(L, P)
is positive iff P is positive. Ground terms, atoms, literals, etc., are defined as usual. We
denote by ground(P) the set of all ground instances of dl-rules in P relative to Φc.

Example 3.1. A dl-program KB = (L, P) is given by L as in Example 2.1 and P con-
sisting of the following dl-rules, which express that (1) the relation of propaedeutics
enjoys the transitive property, (2) if a student has given an exam, then he/she has given
all exams that are propaedeutic to it, (3) if two students have a given exam in common,
then they have given the same exam, and (4) unix is propaedeutic for java , and java is
propaedeutic for programming languages :

(1) propaedeutic(X, Z) ← propaedeutic(X, Y), propaedeutic(Y, Z) ;

(2) given prop(X, Z) ← DL[given(X, Y)], propaedeutic(Z, Y) ;

(3) given same exam(X, Y)← DL[given � given prop; ∃Z(given(X, Z)∧given(Y, Z))] ;

(4) propaedeutic(unix , java); propaedeutic(java, programming languages) .

Answer Set Semantics. The Herbrand base HBΦ is the set of all ground atoms con-
structed from constant and predicate symbols in Φ. An interpretation I is any I ⊆HBΦ.
We say I is a model of a ∈HBΦ under a description logic knowledge base L, denoted
I |=L a, iff a ∈ I . We say I is a model of a ground dl-atom a =DL[S1 � p1, . . . , Sm �
pm; Q(c)] under L, denoted I |=L a, iff L∪

⋃m
i=1Ai(I) |= Q(c), where Ai(I)= {Si(e) |

pi(e)∈I}. We say I is a model of a ground dl-rule r iff I|=LH(r) whenever I|=LB(r),
that is, I |=L a for all a ∈B+(r) and I �|=L a for all a ∈B−(r). We say I is a model of
a dl-program KB =(L, P), denoted I |=KB , iff I |=L r for all r ∈ ground(P).

Like ordinary positive programs, each positive dl-program KB has a unique least
model, denoted MKB , which naturally characterizes its semantics. The answer set se-
mantics of general dl-programs is then defined by a reduction to the least model se-
mantics of positive ones, using a reduct that generalizes the ordinary Gelfond-Lifschitz
reduct [9] and removes all default-negated atoms in dl-rules: For dl-programs KB =
(L, P), the dl-reduct of P relative to L and an interpretation I ⊆HBΦ, denoted P I

L,
is the set of all dl-rules obtained from ground(P) by (i) deleting each dl-rule r such
that I |=L a for some a ∈B−(r), and (ii) deleting from each remaining dl-rule r the
negative body. An answer set of KB is an interpretation I ⊆HBΦ such that I is the
unique least model of (L, P I

L). A dl-program is consistent iff it has an answer set.
The answer set semantics of dl-programs has several nice features. In particular,

for dl-programs KB = (L, P) without dl-atoms, it coincides with the ordinary answer
set semantics of P . Answer sets of a general dl-program KB are also minimal mod-
els of KB . Furthermore, positive and locally stratified dl-programs have exactly one
answer set, which coincides with their canonical minimal model.

Well-Founded Semantics. Rather than associating with every dl-program a (possibly
empty) set of two-valued interpretations, the well-founded semantics associates with
every dl-program a unique three-valued interpretation.

A classical literal is either an atom a or its negation ¬a. For sets S ⊆HBΦ, we
define ¬S = {¬a |a ∈S}. We define LitΦ =HBΦ ∪ ¬HBΦ. A set of ground classi-
cal literals S ⊆LitΦ is consistent iff S ∩ {a, ¬a} = ∅ for all a ∈HBΦ. A three-valued

148 T. Lukasiewicz

interpretation is any consistent I ⊆LitΦ. We define the well-founded semantics of dl-
programs KB =(L, P) via a generalization of the operator γ2 for ordinary normal pro-
grams. We define the operator γKB as follows. For every I ⊆HBΦ, we define γKB(I)
as the least model of the positive dl-program KBI =(L, P I

L). The operator γKB is anti-
monotonic, and thus the operator γ2

KB (defined by γ2
KB (I)= γKB(γKB (I)), for every

I ⊆HBΦ) is monotonic and has a least and a greatest fixpoint, denoted lfp(γ2
KB) and

gfp(γ2
KB), respectively. Then, the well-founded semantics of the dl-program KB , de-

noted WFS (KB), is defined as lfp(γ2
KB) ∪ ¬(HBΦ − gfp(γ2

KB)).
As an important property, the well-founded semantics for dl-programs approximates

their answer set semantics. That is, for all consistent dl-programs KB and � ∈LitΦ,
it holds that � ∈WFS (KB) iff � is true in every answer set of KB .

4 Probabilistic Description Logic Programs

In this section, we recall probabilistic dl-programs from [14]. We first define the syntax
of probabilistic dl-programs and then their answer set semantics. Informally, they con-
sist of a dl-program (L, P) and a probability distribution μ over a set of total choices B.
Every total choice B along with the dl-program (L, P) then defines a set of Herbrand
interpretations of which the probabilities sum up to μ(B).

Syntax. We now define the syntax of probabilistic dl-programs and queries addressed
to them. We first define choice spaces and probabilities on choice spaces.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆ HBΦ. Any
A∈C is called an alternative of C, and any element a ∈A is called an atomic choice
of C. Intuitively, every alternative A∈C represents a random variable and every atomic
choice a ∈A one of its possible values. A total choice of C is a set B ⊆ HBΦ such
that |B ∩ A| = 1 for all A∈ C (and thus |B| = |C|). Intuitively, every total choice B
of C represents an assignment of values to all the random variables. A probability μ
on a choice space C is a probability function on the set of all total choices of C. Intu-
itively, every probability μ is a probability distribution over the set of all variable as-
signments. Since C and all its alternatives are finite, μ can be defined by (i) a mapping
μ :

⋃
C → [0, 1] such that

∑
a∈A μ(a)= 1 for all A∈C, and (ii) μ(B) = Πb∈Bμ(b)

for all total choices B of C. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A probabilistic dl-program KB =(L, P, C, μ) consists of a dl-program (L, P), a
choice space C such that (i)

⋃
C ⊆ HBΦ and (ii) no atomic choice in C coincides with

the head of any r ∈ ground(P), and a probability μ on C. Intuitively, since the total
choices of C select subsets of P , and μ is a probability distribution on the total choices
of C, every probabilistic dl-program is the compact encoding of a probability distrib-
ution on a finite set of normal dl-programs. Observe here that P is fully general and
not necessarily stratified or acyclic. An event α is any Boolean combination of atoms
(that is, constructed from atoms via the Boolean operators “∧” and “¬”). A conditional
event is of the form β|α, where α and β are events. A probabilistic query has the form
∃(β|α)[r, s], where β|α is a conditional event, and r and s are variables.

Example 4.1. Consider KB = (L, P, C, μ), where L and P are as in Examples 2.1 and
3.1, respectively, except that the following two (probabilistic) rules are added to P :

Tractable Probabilistic Description Logic Programs 149

friends(X, Y) ← given same exam(X, Y),DL[master student (X)],

DL[master student(Y)], choicem ;

friends(X, Y) ← given same exam(X, Y),DL[bachelor student (X)],

DL[bachelor student(Y)], choiceb .

Let C = {{choicem,not choicem}, {choiceb,not choiceb}}, and let the probability μ
on C be given by μ : choicem, not choicem, choiceb, not choiceb �→ 0.9, 0.1, 0.7,
0.3. Here, the new rules express that if two master (resp., bachelor) students have given
the same exam, then there is a probability of 0.9 (resp., 0.7) that they are friends. Note
that probabilistic facts can be encoded by rules with only atomic choices in their body.
Our wondering about the entailed tight interval for the probability that john and bill are
friends can then be expressed by the probabilistic query ∃(friends(john , bill))[R, S].

Answer Set Semantics. We now define a probabilistic answer set semantics of proba-
bilistic dl-programs, and the notions of consistency and tight answers.

Given a probabilistic dl-program KB = (L, P, C, μ), a probabilistic interpretation
Pr is a probability function on the set of all I ⊆HBΦ. We say Pr is an answer set of
KB iff (i) every interpretation I ⊆ HBΦ with Pr (I)> 0 is an answer set of (L, P ∪
{p ← | p ∈B}) for some total choice B of C, and (ii) Pr (

∧
p∈B p)=μ(B) for every

total choice B of C. Informally, Pr is an answer set of KB =(L, P, C, μ) iff (i) every
interpretation I ⊆HBΦ of positive probability under Pr is an answer set of the dl-
program (L, P) under some total choice B of C, and (ii) Pr coincides with μ on the
total choices B of C. We say KB is consistent iff it has an answer set Pr .

Given a ground event α, the probability of α in a probabilistic interpretation Pr , de-
noted Pr(α), is the sum of all Pr(I) such that I ⊆HBΦ and I |= α. We say (β|α)[l, u]
(l, u ∈ [0, 1]) is a tight consequence of a consistent probabilistic dl-program KB under
the answer set semantics iff l (resp., u) is the infimum (resp., supremum) of Pr(α ∧
β) / Pr(α) subject to all answer sets Pr of KB with Pr(α)> 0 (note that this infimum
(resp., supremum) is naturally defined as 1 (resp., 0) iff no such Pr exists). The tight
answer for a probabilistic query Q =∃(β|α)[r, s] to KB under the answer set semantics
is the set of all ground substitutions θ (for the variables in Q) such that (β|α)[r, s]θ is a
tight consequence of KB under the answer set semantics. For ease of presentation, since
the tight answers for probabilistic queries Q =∃(β|α)[r, s] with non-ground β|α can be
reduced to the tight answers for probabilistic queries Q =∃(β|α)[r, s] with ground β|α,
we consider only the latter type of probabilistic queries in the following.

5 Novel Answer Set Characterizations

In this section, we give novel characterizations of (i) the consistency of probabilistic dl-
programs and (ii) tight query processing in consistent probabilistic dl-programs under
the answer set semantics in terms of the answer sets of normal dl-programs.

As shown in [14], a probabilistic dl-program KB = (L, P, C, μ) is consistent iff the
system of linear constraints LC� (see Fig. 1) over yr (r ∈R) is solvable. Here, R is the
union of all sets of answer sets of (L, P ∪ {p ← | p ∈B}) for all total choices B of C.
But observe that LC� is defined over a set of variables R that corresponds to the set
of all answer sets of the underlying normal dl-programs, and thus R is in general quite

150 T. Lukasiewicz

�

r∈R, r �|=
�

B

−μ(B) yr +
�

r∈R, r|=
�

B

(1 − μ(B)) yr = 0 (for all total choices B of C)
�

r∈R, r|=α

yr = 1

yr � 0 (for all r ∈ R)

Fig. 1. System of linear constraints LC α

large. The following theorem shows that the consistency of probabilistic dl-programs
can be expressed in terms of answer sets of normal dl-programs only, without addition-
ally deciding whether a system of linear constraints is solvable.

Theorem 5.1 (Consistency). Let KB =(L, P, C, μ) be a probabilistic dl-program.
Then, KB is consistent iff, for every total choice B of C such that μ(B)> 0, the dl-
program (L, P ∪ {p ← | p ∈B}) is consistent.

Similarly, as shown in [14], computing tight answers for probabilistic queries can
be reduced to computing all answer sets of normal dl-programs and solving two linear
optimization problems. More specifically, let KB =(L, P, C, μ) be a consistent proba-
bilistic dl-program, and let Q =∃(β|α)[r, s] be a probabilistic query with ground β|α.
Then, the tight answer for Q to KB is given by θ = {r/l, s/u}, where l (resp., u) is the
optimal value of the subsequent linear program (2) over yr (r ∈R), if (2) has a solution,
and it is given by θ = {r/1, s/0}, if (2) has no solution.

min (resp., max)
�

r∈R, r |= α∧β yr subject to LC α (see Fig. 1). (2)

But the linear program (2) is defined over the same (generally quite large) set of vari-
ables as the system of linear constraints LC� above. The following theorem shows that
the tight answers can also be expressed in terms of answer sets of normal dl-programs
only, without additionally solving two linear optimization problems.

Theorem 5.2 (Tight Query Processing). Let KB =(L, P, C, μ) be a consistent prob-
abilistic dl-program, and let Q =∃(β|α)[r, s] be a probabilistic query with ground β|α.
Let a (resp., b) be the sum of all μ(B) such that (i) B is a total choice of C and (ii) α∧β
is true in every (resp., some) answer set of (L, P ∪ {p ← | p ∈B}). Let c (resp., d) be
the sum of all μ(B) such that (i) B is a total choice of C and (ii) α∧¬β is true in every
(resp., some) answer set of (L, P ∪ {p ← | p ∈B}). Then, the tight answer θ for Q
to KB under the answer set semantics is given as follows:

θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{r/1, s/0} if b =0 and d = 0;

{r/0, s/0} if b =0 and d �= 0;

{r/1, s/1} if b �=0 and d = 0;

{r/ a
a+d , s/ b

b+c} otherwise.

(3)

6 Total Well-Founded Semantics

In this section, we define a novel well-founded semantics for probabilistic dl-programs,
called the total well-founded semantics, since it is defined for all probabilistic queries

Tractable Probabilistic Description Logic Programs 151

to probabilistic dl-programs, as opposed to the well-founded semantics of [14], which
is only defined for a very limited class of probabilistic queries. Furthermore, the total
well-founded semantics is defined for all probabilistic dl-programs, as opposed to the
answer set semantics, which is only defined for consistent probabilistic dl-programs.

More concretely, given a probabilistic dl-program KB =(L, P, C, μ) and a prob-
abilistic query Q =∃(β|α)[r, s] with ground β|α, the tight answer θ for Q to KB
under the well-founded semantics of [14] exists iff both ground events α ∧β and α
are defined in every S =WFS (L, P ∪{p ← | p ∈B}) such that B is a total choice
of C. Here, a ground event φ is defined in S iff either I |=φ for every interpretation
I ⊇S ∩HBΦ, or I �|= φ for every interpretation I ⊇S ∩HBΦ. If α is false in every
WFS (L, P ∪ {p ← | p ∈B}) such that B is a total choice of C, then the tight an-
swer is defined as θ = {r/1, s/0}; otherwise, the tight answer (if it exists) is defined
as θ = {r/u

v , s/u
v }, where u (resp., v) is the sum of all μ(B) such that (i) B is a total

choice of C and (ii) α ∧ β (resp., α) is true in WFS (L, P ∪{p ← | p ∈B}).
We define the total well-founded semantics as follows, taking inspiration from the

novel answer set characterization of tight answers in the previous section.

Definition 6.1 (Total Well-Founded Semantics). Let KB =(L, P, C, μ) be a proba-
bilistic dl-program, and let Q =∃(β|α)[r, s] be a probabilistic query with ground β|α.
Let a (resp., b−) be the sum of all μ(B) such that (i) B is a total choice of C and (ii)
α∧β is true (resp., false) in WFS(L, P ∪{p ← | p ∈B}). Let c (resp., d−) be the sum
of all μ(B) such that (i) B is a total choice of C and (ii) α∧¬β is true (resp., false) in
WFS (L, P ∪{p ← | p ∈B}). Let b =1−b− and d =1−d−. Then, the tight answer θ for
Q to KB under the total well-founded semantics (TWFS(KB)) is defined by Eq. (3).

The following theorem shows that for probabilistic queries Q =∃(�)[r, s], where � is
a ground literal, the tight answers under the total well-founded semantics coincide with
the tight answers under the answer set semantics (if they exist). This result is a nice
semantic feature of the total well-founded semantics. It also paves the way for an effi-
cient computation of tight answers to such queries under the answer set semantics via
the bottom-up fixpoint iteration of the well-founded semantics of normal dl-programs.

Theorem 6.1. Let KB = (L, P, C, μ) be a consistent probabilistic dl-program, and
let Q =∃(�)[r, s] be a probabilistic query with ground literal �. Then, the tight an-
swer for Q to KB under the total well-founded semantics coincides with the tight an-
swer for Q to KB under the answer set semantics.

The next theorem shows that the total well-founded semantics generalizes the well-
founded semantics of [14], that is, the tight answers under the former coincide with the
tight answers under the latter, as long as the tight answers under the latter exist.

Theorem 6.2. Let KB =(L, P, C, μ) be a probabilistic dl-program, and let Q =∃(β |
α)[r, s] be a probabilistic query with ground β|α. Then, the tight answer for Q to KB
under the total well-founded semantics coincides with the tight answer for Q to KB un-
der the well-founded semantics of [14] (if it exists).

7 Algorithms

In this section, we provide an anytime algorithm for tight query processing in proba-
bilistic dl-programs under the total answer set semantics.

152 T. Lukasiewicz

Algorithm tight answer

Input: probabilistic dl-program KB = (L, P, C, μ), probabilistic query Q= ∃(β|α)[r, s]
with ground β|α, and error threshold ε ∈ [0, 1].

Output: θ = {r/l′, s/u′} such that |l − l′| + |u − u′| � ε, where {r/l, s/u} is the tight
answer for Q to KB under the total well-founded semantics.

Notation: B1, . . . , Bk is a sequence of all total choices B of C with μ(B1)� · · · � μ(Bk).

1. a := 0; b := 1; c := 0; d := 1; v := 1; i := 1;
2. while i � k and v > 0 and v·max(a,d)

(a+d)·(a+d+v)
+ v·max(b,c)

(b+c)·(b+c+v)
>ε do begin

3. S := WFS(L, P ∪ {p ← | p ∈ Bi});
4. if α ∧ β is true in S then a := a + μ(Bi)
5. else if α ∧ β is false in S then b := b − μ(Bi);
6. if α ∧ ¬β is true in S then c := c + μ(Bi)
7. else if α ∧ ¬β is false in S then d := d − μ(Bi);
8. v := v − μ(Bi);
9. i := i + 1

10. end;
11. if b = 0 and d = 0 then return θ = {r/1, s/0}
12. else if b = 0 and d 	= 0 then return θ = {r/0, s/0}
13. else if b 	= 0 and d = 0 then return θ = {r/1, s/1}
14. else return θ = {r/ a

a+d
, s/ b

b+c
}.

Fig. 2. Algorithm tight answer

By Definition 6.1, computing the tight answer for a probabilistic query to a proba-
bilistic dl-program KB =(L, P, C, μ) under TWFS (KB) can be reduced to computing
the well-founded models of all normal dl-programs (L, P ∪{p ←| p ∈B}) such that B
is a total choice of C. Here, the number of all total choices B is generally a non-neglec-
table source of complexity. We thus propose (i) to compute the tight answer only up to
an error within a given threshold ε ∈ [0, 1], (ii) to process the B’s along decreasing pro-
babilities μ(B), and (iii) to eventually stop the computation after a given time interval.

Given a (not necessarily consistent) probabilistic dl-program KB =(L, P, C, μ), a
probabilistic query Q = ∃(β|α)[r, s] with ground β|α, and an error threshold ε ∈ [0, 1],
algorithm tight answer (see Fig. 2) computes some θ = {r/l′, s/u′} such that |l − l′| +
|u − u′| � ε, where {r/l, s/u} is the tight answer for Q to KB under TWFS (KB).
More concretely, it computes the bounds l′ and u′ by first initializing the variables a,
b, c, and d (which play the same role as in Definition 6.1). It then computes the well-
founded semantics S of the normal dl-program (L, P ∪{p ← | p ∈Bi}) for every total
choice Bi of C, checks whether α ∧ β and α ∧ ¬β are true or false in S, and updates a,
b, c, and d accordingly. If the possible error in the bounds falls below ε, then it stops
and returns the bounds computed thus far. Hence, in the special case where ε =0, the
algorithm computes in particular the tight answer for Q to KB under TWFS (KB). The
following theorem shows that algorithm tight answer is sound.

Theorem 7.1. Let KB be a probabilistic dl-program, let Q = ∃(β|α)[r, s] be a proba-
bilistic query with ground β|α, and let θ = {r/l, s/u} be the tight answer for Q to KB

Tractable Probabilistic Description Logic Programs 153

under TWFS (KB). Let θ′= {r/l′, s/u′} be the output computed by tight answer for
the error threshold ε ∈ [0, 1]. Then, |l − l′| + |u − u′| � ε.

Algorithm tight answer is actually an anytime algorithm, since we can always in-
terrupt it, and return the bounds computed thus far. The following theorem shows that
these bounds deviate from the tight bounds with an exactly measurable error (note that it
can also be shown that the possible error is decreasing along the iterations of the while-
loop). For this reason, algorithm tight answer also iterates through the total choices Bi

of C in a way such that the probabilities μ(Bi) are decreasing, so that the error in the
computed bounds is very likely to be low already after few iteration steps.

Theorem 7.2. Let KB be a probabilistic dl-program, let Q = ∃(β|α)[r, s] be a proba-
bilistic query with ground β|α, let ε ∈ [0, 1] be an error threshold, and let θ = {r/l, s/u}
be the tight answer for Q to KB under TWFS (KB). Suppose we run tight answer on
KB , Q, and ε, and we interrupt it after line (9). Let the returned θ′= {r/l′, s/u′} be
as specified in lines (11) to (14). Then, if v = 0, then θ = θ′. Otherwise,

|l − l′| + |u − u′| � v·max(a,d)
(a+d)·(a+d+v)

+ v·max(b,c)
(b+c)·(b+c+v)

.

The algorithm is based on two finite fixpoint iterations for computing the well-
founded semantics of normal dl-programs, which are in turn based on a finite fixpoint
iteration for computing the least model of positive dl-programs, as usual.

8 Complexity

In this section, we finally provide tractability and complexity results.
The following theorem shows that tight query processing in probabilistic dl-pro-

grams KB =(L, P, C, μ) in DL-Lite (where L is in DL-Lite) under TWFS (KB) can be
done in polynomial time in the data complexity. The result follows from the polynomial
data complexity of (a) computing the well-founded semantics of a normal dl-program
(see above) and (b) conjunctive query processing in DL-Lite. Here, |C| is bounded by
a constant, since C and μ define the probabilistic information of P , which is fixed as a
part of the program in P , while the ordinary facts in P are the variable input.

Theorem 8.1. Given a probabilistic dl-program KB in DL-Lite and a probabilistic
query Q =∃(�)[r, s] with ground literal �, the tight answer θ = {r/l, s/u} for Q to KB
under TWFS (KB) can be computed in polynomial time in the data complexity.

The next theorem shows that computing tight answers is EXP-complete in the com-
bined complexity. The lower bound follows from the EXP-hardness of datalog in the
combined complexity, and the upper bound follows from Theorem 7.1.

Theorem 8.2. Given a probabilistic dl-program KB in DL-Lite and a probabilistic
query Q =∃(β|α)[r, s] with ground β|α, computing the tight answer θ = {r/l, s/u}
for Q to KB under TWFS (KB) is EXP-complete in the combined complexity.

9 Probabilistic Data Integration

A central aspect of the Semantic Web is data integration. To some extent, dl-programs
already perform some form of data integration, since they bring together rules and on-
tologies, and also allow for connecting to other formalisms, such as RDF theories. In

154 T. Lukasiewicz

this section, we illustrate that probabilistic dl-programs allow for data integration with
probabilities. Thus, probabilistic dl-programs are a very promising formalism for prob-
abilistic data integration in the Rules, Logic, and Proof layers of the Semantic Web.

In addition to expressing probabilistic knowledge about the global schema and about
the source schema, the probabilities in probabilistic dl-programs can especially be used
for specifying the probabilistic mapping in the data integration process. Below we il-
lustrate two different types of probabilistic mappings, depending on whether the prob-
abilities are used as trust or as mapping probabilities.

The simplest way of probabilistically integrating several data sources is to weight
each data source with a trust probability (which all sum up to 1). This is especially
useful when several redundant data sources are to be integrated. In such a case, pieces
of data from different data sources may easily be inconsistent with each other.

Example 9.1. Suppose that we want to obtain a weather forecast for a certain place by
integrating the potentially different weather forecasts of several weather forecast insti-
tutes. For ease of presentation, suppose that we only have three weather forecast insti-
tutes A, B, and C. In general, one trusts certain weather forecast institutes more than
others. In our case, we suppose that our trust in the institutes A, B, and C is expressed
by the trust probabilities 0.6, 0.3, and 0.1, respectively. That is, we trust most in A,
medium in B, and less in C. In general, the different institutes do not use the same data
structure to represent their weather forecast data. For example, institute A may use a
single relation forecast(place , date,weather , temperature,wind) to store all the data,
while B may have one relation forecastPlace(date,weather , temperature,wind) for
every place, and C may use several different relations forecast weather (place , date,
weather), forecast temperature(place,date,temperature), and forecast wind(place ,
date,wind). Suppose that the global schema G has the relation forecast rome(date,
weather , temperature,wind), which may e.g. be posted on the web by the tourist in-
formation of Rome. The probabilistic mapping of the source schemas of A, B, and C to
the global schema G can then be specified by the following KBM =(∅, PM , CM , μM):

PM = {forecast rome(D, W,T, M) ← forecast(rome, D, W, T, M), instA;

forecast rome(D, W,T, M) ← forecastRome(D, W, T, M), instB ;

forecast rome(D, W,T, M) ← forecast weather (rome, D, W),

forecast temperature(rome, D, T), forecast wind(rome, D, M), instC} ;

CM = {{instA, instB , instC}} ;

μM : instA, instB , instC
→ 0.6, 0.3, 0.1 .

The mapping assertions state that the first, second, and third rule above hold with the
probabilities 0.6, 0.3, and 0.1, respectively. This is motivated by the fact that three
institutes may generally provide conflicting weather forecasts, and our trust in the insti-
tutes A, B, and C are given by the trust probabilities 0.6, 0.3, and 0.1, respectively.

When integrating several data sources, it may be the case that the relationships be-
tween the source schema and the global schema are purely probabilistic.

Example 9.2. Suppose that we want to integrate the schemas of two libraries, and that
the global schema contains the predicate symbol logic programming , while the source
schemas contain only the concepts rule-based systems resp. deductive databases .

Tractable Probabilistic Description Logic Programs 155

These predicate symbols and concepts are overlapping to some extent, but they do
not exactly coincide. For example, a randomly chosen book from rule-based systems
(resp., deductive databases) may belong to the area logic programming with the prob-
ability 0.7 (resp., 0.8). The probabilistic mapping from the source schemas to the global
schema can then be expressed by the following KBM = (∅, PM , CM , μM):

PM = {logic programming(X) ← DL[rule-based systems(X)], choice1 ;

logic programming(X) ← DL[deductive databases(X)], choice2} ;

CM = {{choice1,not choice1}, {choice2,not choice2}} ;

μM : choice1,not choice1, choice2,not choice2
→ 0.7, 0.3, 0.8, 0.2 .

10 Conclusion

We have proposed tractable probabilistic dl-programs for the Semantic Web, which
combine tractable description logics, normal programs under the answer set semantics,
and probabilities. In particular, we have introduced the total well-founded semantics
for probabilistic dl-programs. Contrary to the previous answer set and well-founded se-
mantics, it is always defined. Furthermore, tight (resp., tight literal) query processing
under the total well-founded semantics coincides with tight (resp., tight literal) query
processing under the previous well-founded (resp., answer set) semantics in all cases
where the latter is defined. We have then presented an anytime algorithm for tight query
processing in probabilistic dl-programs under the total well-founded semantics. Note
that the total well-founded semantics and the anytime algorithm are not limited to DL-
Lite as underlying description logic; they hold for all probabilistic dl-programs on top
of description logics with decidable conjunctive query processing. We have also shown
that tight query processing in probabilistic dl-programs under the total well-founded se-
mantics can be done in polynomial time in the data complexity and is complete for EXP
in the combined complexity. Finally, we have described an application of probabilistic
dl-programs in probabilistic data integration for the Semantic Web.

Instead of being based on the loosely integrated normal dl-programs KB =(L, P)
of [7,8], probabilistic dl-programs can also be developed as a generalization of the
tightly integrated normal dl-programs KB =(L, P) of [13] (see [4]). Essentially, rather
than having dl-queries to L in rule bodies in P (which also allow for passing facts as
dl-query arguments from P to L) and assuming that Φ and A (resp., R) have no unary
(resp., binary) predicate symbols in common (and so that dl-queries are the only in-
terface between L and P), the tightly integrated normal dl-programs of [13] have no
dl-queries, but Φ and A (resp., R) may very well have unary (resp., binary) predicate
symbols in common, and so the integration between L and P is of a much tighter nature.
Nearly all the results of this paper carry over to such tightly integrated probabilistic dl-
programs. As an important feature for the Semantic Web, they also allow for expressing
in P probabilistic relations between the concepts and roles in L, since we can freely use
concepts and roles from L as unary resp. binary predicate symbols in P .

An interesting topic for future research is to investigate whether one can also develop
an efficient top-k query technique for the presented probabilistic dl-programs: Rather
than computing the tight probability interval for a given ground literal, such a technique
returns k most probable ground instances of a given non-ground expression.

156 T. Lukasiewicz

Acknowledgments. This work has been supported by the German Research Founda-
tion (DFG) under the Heisenberg Programme and by the Austrian Science Fund (FWF)
under the project P18146-N04. I thank the reviewers for their constructive and useful
comments, which helped to improve this work.

References

1. Berners-Lee, T.: Weaving the Web. Harper, San Francisco, CA (1999)
2. Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets. In:

Proc. LPNMR-2004, pp. 21–33 (2004)
3. Calı̀, A., Lukasiewicz, T.: An approach to probabilistic data integration for the Semantic

Web. In: Proc. URSW-2006 (2006)
4. Calı̀, A., Lukasiewicz, T.: Tightly integrated probabilistic description logic programs for the

Semantic Web. In: Dahl, V., Niemelä, . (eds.) ICLP 2007. LNCS, vol. 4670, pp. 428–429.
Springer, Heidelberg (2007)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Proc. KR-2006, pp. 260–270 (2006)

6. da Costa, P.C.G., Laskey, K.B.: PR-OWL: A framework for probabilistic ontologies. In:
Proc. FOIS-2006, pp. 237–249 (2006)

7. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming
with description logics for the Semantic Web. In: Proc. KR-2004, pp. 141–151 (2004)

8. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics for descrip-
tion logic programs in the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004.
LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)

9. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive databases.
New Generation Computing 17, 365–387 (1991)

10. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): A probabilistic extension of SHOQ(D) for
probabilistic ontologies in the Semantic Web. In: Flesca, S., Greco, S., Leone, N., Ianni, G.
(eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer, Heidelberg (2002)

11. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfia-
bility. J. Web Sem. 1(4), 345–357 (2004)

12. Kersting, K., De Raedt, L.: Bayesian logic programs. CoRR, cs.AI/0111058 (2001)
13. Lukasiewicz, T.: A novel combination of answer set programming with description logics for

the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 384–398. Springer, Heidelberg (2007)

14. Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reason. 45(2),
288–307 (2007)

15. Pan, R., Ding, Z., Yu, Y., Peng, Y.: A Bayesian network approach to ontology mapping. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 563–577. Springer, Heidelberg (2006)

16. Poole, D.: The independent choice logic for modelling multiple agents under uncertainty.
Artif. Intell. 94(1–2), 7–56 (1997)

17. Udrea, O., Deng, Y., Hung, E., Subrahmanian, V.S.: Probabilistic ontologies and relational
databases. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 1–17. Springer,
Heidelberg (2005)

18. van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML approach to data integration.
In: Proc. ICDE-2005, pp. 459–470 (2005)

19. W3C. OWL web ontology language overview, W3C Recommendation (February 10, 2004),
Available at www.w3.org/TR/2004/REC-owl-features-20040210/

I

www.w3.org/TR/2004/REC-owl-features-20040210/

Valued Hesitation in Intervals Comparison

Meltem Öztürk1 and Alexis Tsoukiàs2

1 CRIL Université d’Artois
ozturk@cril.univ-artois.fr

2 LAMSADE - CNRS, Université Paris Dauphine
tsoukias@lamsade.dauphine.fr

Abstract. The paper presents a valued extension of the recently introduced con-
cept of PQI interval order. The main idea is that, while comparing objects repre-
sented by interval of values there is a zone of hesitation between strict difference
and strict similarity which could be modelled through valued relations. The paper
presents suitable definitions of such valued relations fulfilling a number of inter-
esting properties. The use of such a tool in data analysis and rough sets theory is
discussed in the paper.

Keywords: interval orders, PQI interval orders, valued relations, valued simi-
larity, uncertainty modelling.

1 Introduction

Comparing objects described under form of intervals dates back to the work of Luce,
[1], where difference of utilities are perceived only when beyond a threshold (for a
comprehensive discussion on the concepts of semi-order and interval order see [2,3]).
The basic idea introduced in such works is that when we compare objects under form
of intervals they can be considered as different (preferred) iff their associated intervals
have an empty intersection. Otherwise they are similar (indifferent). However, such an
approach does not distinguish the specific case where one interval is “more to the right”
(in the sense of the reals) of the other, but they have a non empty intersection. Such a
situation can be viewed as an hesitation (denoted Q) between preference (dissimilarity,
denoted P) and indifference (similarity, denoted I) and merits a specific attention.

Recently Tsoukiàs and Vincke [4] gave a complete characterisation of such a struc-
ture (denoted as PQI interval order), while in [5] and [6] a polynomial algorithms for
the detection of such a structure in an oriented graph are provided. In this paper we
extend such results considering the situation of hesitation under a continuous valuation
of preference and indifference. The idea is that the intersection of the two intervals can
be more or less large thus resulting in a more or less large hesitation represented by a
value in the interval [0,1] for preference and indifference.

The paper is organised as follows. In the next section we introduce the basic nota-
tion and results on regular interval orders and semi-orders. In section 3 we introduce
the concept of PQI interval order and semi-order. In section 4 we present a general
frame work for the characterisation of preference structures with three binary relations
(P, Q and I) and introduce a functional representation for preference (dissimilarity) and

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 157–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

158 M. Öztürk and A. Tsoukiàs

indifference (similarity) fulfilling a number of nice properties. Further research direc-
tions are included in the conclusions. The paper updates and extends results appeared
originally in [7].

2 Interval Orders

In the following we will consider objects represented under form of intervals of val-
ues. Given a finite set A of objects we associate to each element of A two functions
l : A �→ R and u : A �→ R (the left and right extreme of x respectively) such that
∀x l(x) < u(x). Such a representation is equivalent to the one where to each element
x of A is associated a function g(x) and threshold function t(x). We have l(x) = g(x)
and u(x) = g(x)+ t(x). In the rest of the paper we will only use the (l(x), u(x)) repre-
sentation. Given the finite structure of set A, when we compare intervals we can restrict
inequalities to their strict part without loss of any generality.

Further we consider a structure of two binary relations P ⊆ A × A and I ⊆ A × A
(respectively named preference and indifference). From a data analysis point of view
we can consider indifference as a similarity relation and the union of preference and
its inverse as a dissimilarity relation. Hereafter, for sake of simplicity, we will only use
the terms of preference and indifference such that: P is asymmetric and irreflexive, I is
symmetric and reflexive, P ∪ I is complete and P ∩ I = ∅.

Given any two binary relations V, W on the set A we denote V.W (x, y) if and only if
∃z : V (x, z)∧W (z, y). We denote V ⊆ W for the formula ∀x, y V (x, y)⇒W (x, y).

We are now able to give some basic definitions and theorems.

Definition 1. [2]. A 〈P, I〉 preference structure on a set A is a PI interval order iff
∃ l, u : A �→ R such that:
∀ x : u(x) > l(x);
∀ x, y : P (x, y) ⇔ l(x) > u(y);
∀ x, y : I(x, y) ⇔ l(x) < u(y) and l(y) < u(x).

Definition 2. [2]. A 〈P, I〉 preference structure on a set A is a PI semi order iff ∃ l :
A �→ R and a positive constant k such that:
∀ x, y : P (x, y) ⇔ l(x) > l(y) + k;
∀ x, y : I(x, y) ⇔ |l(x) − l(y)| < k.

Such structures have been extensively studied in the literature (see for example [2]). We
recall here below the two fundamental results which characterise interval orders and
semi orders.

Theorem 1. [2]. A 〈P, I〉 preference structure on a set A is a PI interval order iff
P.I.P ⊂ P .

Theorem 2. [2]. A 〈P, I〉 preference structure on a set A is a PI semi order iff P.I.P
⊂ P and I.P.P ⊂ P .

Valued Hesitation in Intervals Comparison 159

3 PQI Interval Orders

Recently [4] suggested that, while the conditions under which the relation P holds
could be considered fixed, the conditions under which the relation I holds contain two
different situations: One called “indifference” (where one interval is included to the
other) and the other called “weak preference” or “hesitation between indifference and
preference” (where the intersection of the two intervals is non empty, but one interval
is “more to the right of the other”). More formally we consider preference structures
composed of three preference relations: P (which is asymmetric and irreflexive), Q
(which is asymmetric and irreflexive) and I (which is symmetric and reflexive), P ∪
Q ∪ I being complete and mutual intersections being empty and we have the following
results.

Definition 3. [4] A 〈P, Q, I〉 preference structure on a finite set A is a PQI interval
order, iff ∃ l, u : A �→ R such that, ∀x, y ∈ A, x �= y:
- u(x) > l(x);
- P (x, y) ⇔ u(x) > l(x) > u(y) > l(y);
- Q(x, y) ⇔ u(x) > u(y) > l(x) > l(y);
- I(x, y) ⇔ u(x) > u(y) > l(y) > l(x) or u(y) > u(x) > l(x) > l(y).

Theorem 3. [4] A 〈P, Q, I〉 preference structure on a finite set A is a PQI interval
order, iff there exists a partial order Il such that:
i) I = Il ∪ Iu ∪ Io where Io = {(x, x), x ∈ A} and Iu = I−1

l ;
ii) (P ∪ Q ∪ Il)P ⊂ P ;
iii) P (P ∪ Q ∪ Iu) ⊂ P ;
iv) (P ∪ Q ∪ Il)Q ⊂ P ∪ Q ∪ Il;
v) Q(P ∪ Q ∪ Iu) ⊂ P ∪ Q ∪ Iu.

Definition 4. [4] A PQI semi order is a PQI interval order such that ∃ k > 0 con-
stant for which ∀x : u(x) = l(x) + k.

In other words, a PQI semi order is a 〈P, Q, I〉 preference structure for which there
exists a real valued function l : A �→ R and a positive constant k such that ∀ x, y:
- P (x, y) ⇔ l(x) > l(y) + k;
- Q(x, y) ⇔ l(y) + k > l(x) > l(y);
- I(x, y) ⇔ l(x) = l(y); (in fact I reduces to Io).

Theorem 4. [4] A 〈P, Q, I〉 preference structure is a PQI semi order iff:
i) I is transitive
ii) PP ∪ PQ ∪ QP ⊂ P ;
iii) QQ ⊂ P ∪ Q;

4 Valued Hesitation

The existence of a zone of hesitation between strict preference and indifference and
the introduction of valued relations in order to take in account such an hesitation has
been first considered by Roy ([8,9]) in the case of the so-called pseudo-orders and

160 M. Öztürk and A. Tsoukiàs

extensively studied in [10]. However, in this case they consider preference structures
with two thresholds which is equivalent to a representation with intervals whose length
is within an interval of values. The hesitation occurs between the extremities of this
second interval.

In our case we consider preference structures with only one threshold. The hesita-
tion is due to the interval structure of the information associated to each object. The
above results however, although introduce the idea that comparing objects represented
by intervals implies the existence of a zone of hesitation between preference and indif-
ference, are unable to give a “measure” of such an hesitation.

Consider three objects whose cost is for the first (x) in the interval [10, 18], for the
second (y) in the interval [11, 20] and for the third (z) in the interval [17, 20]. Using
the previous approach we get Q(x, y), Q(x, z) and I(y, z). However, it is intuitively
clear that the hesitation which occurs when objects x and y are compared is not the
same with the hesitation which occurs when objects x and z are compared. Moreover,
although objects y and z are considered indifferent it is again intuitively clear that they
are indifferent to some extend and not identical.

The basic idea introduced is that the extend to which the two intervals have a non
empty intersection could be a “measure” of the hesitation between preference and indif-
ference. Such an idea dates back to Dubois and Prade ([11]), but applied to conventional
preference structures where a distribution of possibility can be associated to alternatives
under the form of a fuzzy number. In this approach we consider flat distributions of un-
certainty in the sense that any value of the interval has the same possibility to represent
the “real” value. From this point of view it is meaningful to compare lengths of intervals
in order to have a “measure” of the uncertainty. The approach however, easy generalises
in the case of specific uncertainty distributions.

First of all we will present a general framework for the fuzzification of preference
structures having the three relations P , Q and I and then we will propose a model in
order to calculate the evaluation of each relation.

We begin by introducing some basic notions and notations: We are going to use the
symbols of T and S in order to represent T-norms and T-conorms respectively as contin-
uous representations of conjunction and disjunction operators in the case of continuous
valuations. n will represent the negation operator (for a discussion about such operators
in the frame of fuzzy sets theory see [12]).

T-norms and T-conorms are related by duality. Pairs of t-norms and t-conorms satisfy
the generalisation of the De Morgan law as in the following:

Definition 5 (De Morgan Triplets). Let T be a t-norm, S a t-conorm and n a strict
negation then 〈T, S, n〉 is a De Morgan triple iff ∀x, y ∈ [0, 1]:

n(S(x, y)) = T (n(x), n(y)).

Several De Morgan Triplets have been suggested in the literature. Zadeh and
Lukasiewicz triplets (see [12]) are the most used ones in preference modelling. We
denote them respectively by (Tmin, Smin, n) and (LT, LS, n) (see Table 4). The ex-
tension of the properties of binary relations in the valued case is straightforward and
omitted for sake of space in this paper. The reader can see the relevant details in [13]

Valued Hesitation in Intervals Comparison 161

Table 1. De Morgan triplets

Names t-norms t-conorms
Zadeh min(x, y) max(x, y)
Lukasiewicz max(x + y − 1, 0) min(x + y, 1)

and [14]. We only introduce in the following two notions that we need for the rest of
the paper:

Definition 6 (Zero divisor). [15] An element x ∈]0, 1[is called a zero divisor of a
t-norm T iff ∃y ∈]0, 1[T (x, y) = 0. A t-norm without zero divisors is called positive.

Definition 7 (Archimedean). [15] A continuous t-norm T is Archimedean iff ∀x ∈
]0, 1[T (x, x) < x.

It is easy to see that Lukasiewicz t-norms have a zero divisor and are Archimedean and
that the minimum operator is positive.

We are ready now to give the characterisation of a fuzzy preference structure having
P , Q and I that we call fuzzy 〈P, Q, I〉 preference structure. Our study is inspired from
the work of De Baets et al. ([16]) concerning the case of partial preference structures
fuzzification.

Definition 8 (Fuzzy 〈P, Q, I〉 preference structure). Consider a de Morgan triplet
M = (T, S, n) and three valued binary relations P, Q and I . A 〈P, Q, I〉 structure on
the set A is a fuzzy preference structure w.r.t. M iff:

1. P and Q are irreflexive and T-asymmetric,
2. I is reflexive and symmetric,
3. T (P, I) = 0, T (P, Q) = 0 and T (Q, I) = 0,
4. S(P, S(Q, I)) is S-complete.

We show by the help of the two next propositions that in order to have a real fuzzy
preference structure defined in the whole unit interval [0, 1], continuous, Archimedean
t-norms having zero divisors must be used.

Proposition 1. Consider a de Morgan triplet M = (T, S, n) with a t-norm without zero
divisors. If all the conditions of definition 8 are satisfied for a fuzzy 〈P, Q, I〉 structure
with M , then the fuzzy relations P, Q and I are crisp.

Proof. see [17]. �
Hence, it is better to have a zero divisor in order to have fuzzy relations. In this case we
know another result concerning non-Archimedean t-norms.

Proposition 2. Consider a de Morgan triplet M = (T, S, n) with a continuous non-
Archimedean t-norm with zero divisors. If all the conditions of definition 8 are satisfied
for a fuzzy 〈P, Q, I〉 structure with M , then ∃xς ∈ [0, 1[such that ∀x, y,

p(x, y) < 1 =⇒ p(x, y) < xς ,

q(x, y) < 1 =⇒ q(x, y) < xς ,

i(x, y) < 1 =⇒ i(x, y) < xς .

Proof. see [17]. �

162 M. Öztürk and A. Tsoukiàs

Hence, in order to use the whole unit interval [0, 1], continuous, Archimedean t-norms
having zero divisors must be used. Such t-norms are called nilpotent and are φ-transform
of the Lukasiewicz t-norm. For that reason an alternative definition of fuzzy 〈P, Q, I〉
preference structure can be given:

Definition 9 (L-Fuzzy 〈P, Q, I〉 preference structure). Consider a Lukasiewicz triplet
L = (LT, LS, n) and three valued binary relations P, Q and I . A 〈P, Q, I〉 structure on
the set A is a L-fuzzy preference structure w.r.t. L if:

1. P and Q are irreflexive and LT-asymmetric,
2. I is reflexive and symmetric,
3. LT (P, I) = 0, LT (P, Q) = 0, LT (Q, I) = 0, LT (P, Q−1) = 0, (exclusivity),
4. LS(P, LS(Q, I)) is LS-complete.

Although the definition 9 utilizes the whole unit interval, it presents some weaknesses.
Three critics can be done:

1. The asymmetry condition with a t-norm having zero divisor allows the co-existence
of strictly positive p(x, y) and p(y, x) for the same couple which can be contradic-
tory to the semantics of preference relation or must be avoided in some situations.

2. The exclusivity condition with a t-norm having zero divisor do not permit us to
forbid the co-existence of relations with contradictory semantics. For example, de-
pending on the context of preference modelling, one may want to forbid the co-
existence of P and Q−1, since in the majority of cases if there some credibility for
the sentence “x is strictly preferred to y”, the sentence “y is weakly preferred to x”
should not be credible at all.

3. Finally, within some context or for some decision maker it may be important to have
a stronger completeness, in the sense that for every couple x, y, the characteristic
relation or its converse should take the value 1. Again, positive t-conorms do not
satisfy such conditions.

For all these reasons, we propose the use of different triangular norms for each condi-
tion.

Definition 10 (Flexible Fuzzy 〈P, Q, I〉 preference structure). Consider De Morgan
triplets Mi = (Ti, Si, ni) with i ∈ {1, . . . , 6}. A 〈P, Q, I〉 structure on the set A is a
flexible fuzzy preference structure w.r.t Mi if:

1. P and Q are irreflexive, P is T1-asymmetric and Q is T2-asymmetric,
2. I is reflexive and symmetric,
3. T3(P, I) = 0, T4(P, Q) = 0, T5(Q, I) = 0 and T6(P, Q−1) = 0, (exclusivity),
4. S1(P, S1(Q, I)) is S1-complete.

We define the characteristic relation R as R = S1(P, S1(Q, I)).
Before analysing all the possibilities concerning the use of different t-norms, we

make some assumptions:

i. The asymmetry conditions use the min operator: T1 = T2 = min,
ii. The exclusivity between P and Q−1 makes use of the min operator: T6 = min,

Valued Hesitation in Intervals Comparison 163

iii. ∀x, y, if r(x, y) = 1 and r(y, x) = 0 then p(x, y) = 1, q(x, y) = 0, i(x, y) = 0,
iv. ∀x, y, if r(x, y) = 1 and r(y, x) = 1 then i(x, y) = 1, p(x, y) = 0, q(x, y) = 0.

Assumptions i and ii are related to the critics 1 and 2 and assumptions iii and iv are
natural conditions very frequently used in preference modelling and decision analysis.
Unfortunately they are not sufficient to conclude our analysis. The determinations of
T3, T4, T5 and S1 are less natural and need more detailed study.

We begin by the completeness condition. Considering the characteristic relation R
one can distinguish three different states: r(x, y) = 1, r(x, y) = 0 and 0 < r(x, y) < 1.
R is S1-complete means that ∀x, y, S1(R(x, y), R(y, x)) = 1. Therefore, we analyse
different permutations of the states of R and R−1 and we obtain nine cases where some
of them are already defined by the previous assumptions (see Table 2).

Table 2. Values of p, q and i whit our hypotheses

R\R−1 0]0, 1[1

0 ? ? P −1

]0, 1[? ? ?
1 P ? I

Now we are interested in unknown cases. For the completeness condition there are
two possibilities. S1 may be positive (S+

1) or negative1 (S−
1):

– If S1 is positive, then
• if r(x, y) = 0 then r(y, x) = 1 because R is S-complete: S+

1 (r(x, y),
r(y, x))= S+

1 (0, r(y, x)) = r(y, x) = 1,
• if r(x, y) = 1 then 0 ≤ r(y, x) ≤ 1 because in this case there is no condition

on r(y, x),
• if 0 < r(x, y) < 1 then r(y, x) = 1 because of the definition of positive

t-norms.
These results allow us to complete some cases of the Table 2, especially the ones
which do not satisfy the completeness condition and we obtain the first collum of
Table 3.

– If S1 is negative, then
• if r(x, y) = 0 then r(y, x) = 1 because R is S-complete: S−

1 (r(x, y),
r(y, x))= S−

1 (0, r(y, x)) = r(y, x) = 1,
• if r(x, y) = 1 then 0 ≤ r(y, x) ≤ 1 because in this case there is no condition

on r(y, x),
• if 0 < r(x, y) < 1 then 0 < r(y, x) ≤ 1 because S−

1 is negative and has a zero
divisor.

Like in the previous case, we complete the Table 2 thanks to these results and we
obtain the second collum of Table 3.

In order to complete our analysis, exclusivity conditions must be studied for the five
cases expressed in Table 3 by “ ? ”. Before beginning the analysis, let us mention that

1 A De Morgan triplet with an involutive negation which is not positive.

164 M. Öztürk and A. Tsoukiàs

Table 3. Values of p, q and i when r is S+-complete and S−-complete

R\R−1 0]0, 1[1

0 incomplete incomplete P −1

]0, 1[incomplete incomplete ?
1 P ? I

R\R−1 0]0, 1[1

0 incomplete incomplete P −1

]0, 1[incomplete ? ?
1 P ? I

some symmetries and similarities can help us to decrease the number of cases to analyse:
cases (r(x, y) = 1, 0 < r(y, x) < 1) and (r(y, x) = 1, 0 < r(x, y) < 1) are symmetric
and provide similar results. Thus, analysing the cases (r(x, y) = 1, 0 < r(y, x) < 1)
for positively and negatively completeness and (0 < r(x, y) < 1, 0 < r(y, x) < 1) for
positively completeness will be sufficient in order to finalise our analysis.

As in the completeness condition, for each t-norm of exclusivity conditions (T3, T4
and T5), there are two possibilities: Ti (i = 3, 4, 5) can be positive (and will be denoted
by T +

i) or negative (and will be denoted by T−
i). All the permutation of these two

possibilities for three t-norms (there are 23 = 8 of them) are analysed and the results
are presented in Table 4 (the detailed analysis of these cases are not presented in this
paper for the sake of space, an interested reader can see in [17]). Remark that in each
case of Table 4 we present only relations which can be valued. For example having an
empty case, like the first case of the first line, means that in this case we can only have
crisp relations. When there are some relations in a case, like the second column of the
first line, it means that these relations can be valued while the remaining ones are crisp.
In the case of the second column of the first line, the indifference can be valued while
P and Q are crisp.

Briefly, we remark in Table 4 that lines 1 and 3 correspond to crisp 〈P, Q, I〉 prefer-
ence structures or 〈P, Q, I〉 preference structures having only the indifference relation
as a valued one. Cases 6 and 8 do not have a natural interpretation. Lines 2, 7, 4 and 5
provide fuzzy 〈P, Q, I〉 preference structures with one crisp and two valued relations. In
lines 2 and 7, there are some relative positions having Q = 1 and some others 0 < I ≤ 1
and 0 < P ≤ 1 while lines 4 and 5 provide some relative positions having P = 1 and
some others 0 < I ≤ 1 and 0 < Q ≤ 1. The interpretations of the two first cases are
not so natural (how to interpret the fact of having a valued “strict preference” while the
weak preference is always crisp?). With lines 4 and 7, the strict preference appears as an
upper bound of the weak preference relation where the preference becomes sure. For all
these reasons lines 4 and 5 appear as the most favorable ones, between the eight ones,
in order to fuzzify 〈P, Q, I〉 preference structures. Such structures are strongly related
to fuzzy 〈P, I〉 preference structures but may have additional utility for the construction
of models where the strict preference needs to be marked strongly.

As an example, we propose in the following a model used for the comparison of
intervals where the situation of two disjoint intervals must be presented by a crisp strict
preference relation, while other situations may have valued presentation.

Let x and y be two elements of a finite set A, having an interval representation such
that x : [l(x), u(x)] and y : [l(y), u(y)] with ∀x, l(x) < u(x). We define first of all the
characteristic relation of our model:

Valued Hesitation in Intervals Comparison 165

Table 4. Relations which can be valued when different T3, T4, T5 and S1 are used

Positively or negatively complete Positively complete
Exclusivity and and

r(x, y) = 1, 0 < r(y, x) < 1 0 < r(x, y) < 1, 0 < r(y, x) < 1

1)
T+

3 (P, I) = 0 I
T+

4 (P, Q) = 0
T+

5 (Q, I) = 0

2)
T −

3 (P, I) = 0 P, I P, I, P −1

T+
4 (P, Q) = 0

T+
5 (Q, I) = 0

3)
T+

3 (P, I) = 0 I
T −

4 (P, Q) = 0
T+

5 (Q, I) = 0

4)
T+

3 (P, I) = 0 Q, I Q, I, Q−1

T+
4 (P, Q) = 0

T −
5 (Q, I) = 0

5)
T+

3 (P, I) = 0 Q, I Q, I, Q−1

T −
4 (P, Q) = 0

T −
5 (Q, I) = 0

6)
T −

3 (P, I) = 0 P, I P, I, P −1

T+
4 (P, Q) = 0 Q, I Q, I, Q−1

T −
5 (Q, I) = 0

7)
T −

3 (P, I) = 0 P, I P, I, P −1

T −
4 (P, Q) = 0

T+
5 (Q, I) = 0

8)
T −

3 (P, I) = 0 P, Q, I P, Q, I,Q−1, P −1

T −
4 (P, Q) = 0

T −
5 (Q, I) = 0

Definition 11. The credibility of the assertion “x is at least as good as y (r(x, y))” is
such that

∀x, y ∈ A, r(x, y) = max(0, min(1, max(
u(x) − l(y)
u(y) − l(y)

,
u(x) − l(y)
u(x) − l(x)

))).

Different values of the relation R for different interval comparison case are presented
in Table 5.

166 M. Öztürk and A. Tsoukiàs

The characteristic relation covers the strict preference, the indifference and the hes-
itation among the two previous relations. The second step is to define all these valued
relations in terms of R. For this purpose we make use of the symmetric and the asym-
metric part of R:

Ra(x, y) = min
[
1, max

(
0, min

(
u(x) − u(y)
u(x) − l(x)

,
l(x) − l(y)
u(y) − l(y)

))]
, (1)

Rs(x, y) =
max [0, (min(u(x) − l(y), u(x) − l(x), u(y) − l(y), u(y) − l(x)))]

min(u(x) − l(x), u(y) − l(y))
(2)

As in the crisp case, R is the union of P, Q and I where P, Q are asymmetric and I
is symmetric. For that reason, we propose to define Ra and Rs such as:

Ra = S(P, Q) and Rs = I.

The indifference can be directly obtained from equation 2. For P and Q we have to
separate the relation Ra. For this purpose we add a new hypothesis which says that the
strict preference P exists only in the case of two disjoint intervals:

∀x, y ∈ A, p(x, y) ⇐⇒ l(x) ≥ u(y).

As a result we define our three relations as in the following:

p(x, y) =
{

Ra
I (x, y) if l(x) ≥ u(y),

0 ifnot; (3)

q(x, y) =
{

Ra
I (x, y) if l(x) < u(y),

0 ifnot; (4)

i(x, y) = Rs
I(x, y). (5)

Table 5 illustrates all the values of the three relations for each interval comparison
case.

Such a model has nice properties:

Proposition 3. Suppose that a binary relation P and valued relations Q and I are
defined as in equations 3-5, then
i. P and Q are irreflexive and min-asymmetric,
ii. I is reflexive and symmetric,
iii. Tmin(P, I) = 0, Tmin(P, Q) = 0, LT (Q, I) = 0, Tmin(P, Q−1) = 0,
iv. LS(P, LS(Q, I)) is LS-complete.

Proof. see [17]. �
The relations between the characteristic relation R and the three preference relations
are presented in the following proposition.

Valued Hesitation in Intervals Comparison 167

Proposition 4. Suppose that the three valued relations P , Q and I are defined as in
equations 3-5, then:

i. LS(P, Q) = Rd

ii. I = min(R, R−1)
or explicitly, ∀(x, y) ∈ A × A

i. p(x, y) + q(x, y) = 1 − r(y, x)
ii. i(x, y) = min{r(x, y), r(y, x)}

Proof. see [17]. �

Table 5. Relations of the interval comparison with valued hesitation

r(x, y) p(x, y) q(x, y) i(x, y)

x
y 1 1 0 0

x
y

cb a 1 0 min
(

a
||x||

, b
||y||

)
max

(
c

||x||
, c
||y||

)

x
y

c a 1 0 0 1

x
y

1 0 0 1

x
y

c a 1 0 0 1

x
y

c max
(

c
||x||

, c
||y||

)
0 0 max

(
c

||x||
, c
||y||

)

x
y

0 0 0 0

168 M. Öztürk and A. Tsoukiàs

5 Discussion

What do we get with such results? What can we do with such valued relation? We
consider two cases.

The first, obvious, case concerns the domain of preference modelling. Having a func-
tional representation of the type described in the above section enables to give an ex-
plicit representation of the uncertainty and hesitation which appears when we compare
intervals and to overcome the difficulty associated to the use of crisp thresholds. In
fact if a discrimination problem exists this will concern any type of comparison. There-
fore even if we fix a discrimination threshold there always exists an interval around the
threshold for which a discrimination problem has to be considered (and that recursively
for any new threshold introduced). The valued representation solves this problem. In
this particular case the solution does not require the introduction of two thresholds, but
gives a valued version for preference and indifference in all cases intervals are com-
pared.

The second case concerns more generally the problem of comparing objects not
necessarily for preference modelling reasons. As already introduced we can always
consider the concept of indifference equivalent to the one of similarity, the concept of
preference becoming a directed dissimilarity. Establishing the similarity among objects
is a crucial problem for several research fields such as statistics, data analysis (in arche-
ology, geology, medical diagnosis etc.), information theory, classification, case based
reasoning, machine learning etc. A specific area of interest in the use of similarity rela-
tions is in rough sets theory ([18]).

In rough sets we consider objects described under a set of attributes and we establish
a relation of indiscernibility (which is a crisp equivalence relation) in order to take in
account our limited descriptive capability. In other terms real objects might be differ-
ent, but due to our limited descriptive capability (represented by the set of attributes) we
might be obliged to consider them as identical (indiscernible). Indiscernibility classes
are then used in order to induce classification rules. However, equivalence relations can
be very restrictive for several real cases where the more general concept of similarity
is more suitable (see [19,20]). The use of a valued similarity has been considered in
[21,22,23,24] for several different cases. Thanks to such a relation it is possible to in-
duce classification rules to which a credibility degree is associated. By this way it is
possible to enhance the classification capability of a data set although a confidence de-
gree inferior to 1 has to be accepted. The approach described in this paper enables to
give a theoretical foundation for the case where objects have to compared on attributes
with continuous scales and where either a discrimination threshold has to be considered
or the objects are represented by intervals.

6 Conclusion

In this paper we present some results concerning the extension of PQI interval orders
under continuous valuation. Particularly we propose a general frame work for the char-
acterization of fuzzy preference structures with P, Q and I and give the functional rep-
resentation for these three relations such that the portion of interval which is common is

Valued Hesitation in Intervals Comparison 169

considered as a “measure” of the hesitation associated to the interval comparison. Such
functions fulfill a number of nice properties in the sense that they correspond to a fuzzy
preference structure as defined in [14].

The use of such valued preference relations not only enhance the toolkit of preference
modelling, but enables a more flexible representation in all cases where a similarity
among objects is under question. The particular case of rough sets theory is discussed
in the paper. Several research directions remain open such as:

– the problem of aggregating such valued relations in order to obtain a comprehensive
relation (crisp or valued) when several attributes or criteria are considered;

– a further analysis of the formal properties fulfilled by such valued relations;
– the analysis of such preference structures under the positive/negative reasons frame-

work as introduced in [25] and discussed in [26].

References

1. Luce, R.D.: Semiorders and a theory of utility discrimination. Econometrica 24, 178–191
(1956)

2. Fishburn, P.C.: Interval Orders and Interval Graphs. J. Wiley, Chichester (1985)
3. Pirlot, M., Vincke, Ph.: Semi Orders. Kluwer Academic, Dordrecht (1997)
4. Tsoukiàs, A., Vincke, Ph.: A characterization of pqi interval orders. Discrete Applied Math-

ematics 127(2), 387–397 (2003)
5. Ngo The, A., Tsoukiàs, A., Vincke, Ph.: A polynomial time algorithm to detect PQI interval

orders. International Transactions in Operational Research 7, 609–623 (2000)
6. Ngo The, A., Tsoukiàs, A.: Numerical representation of pqi interval orders. Discrete Applied

Mathematics 147, 125–146 (2005)
7. Oztürk, M., Tsoukiàs, A.: Positive and negative reasons in interval comparisons: Valued pqi

interval orders. In: Proceedings of IPMU 2004, pp. 983–989 (2004)
8. Roy, B., Vincke, P.: Relational systems of preference with one or more pseudo-criteria: Some

new concepts and results. Management Science 30, 1323–1335 (1984)
9. Roy, B., Vincke, Ph.: Pseudo-orders: definition, properties and numerical representation.

Mathematical Social Sciences 14, 263–274 (1987)
10. Perny, P., Roy, B.: The use of fuzzy outranking relations in preference modelling. Fuzzy Sets

and Systems 49, 33–53 (1992)
11. Dubois, D., Prade, H.: Decision making under fuzziness. In: Advances in fuzzy set theory

and applications, pp. 279–302. North Holland, Amsterdam (1979)
12. Dubois, D., Prade, H.: Fuzzy sets and systems - Theory and applications. Academic press,

New York (1980)
13. Fodor, J., Roubens, M.: Fuzzy preference modelling and multicriteria decision support.

Kluwer Academic Publishers, Dordrecht (1994)
14. Perny, P., Roubens, M.: Fuzzy preference modelling. In: Słowiński, R. (ed.) Fuzzy sets in

decision analysis, operations research and statistics, pp. 3–30. Kluwer Academic, Dordrecht
(1998)

15. Ovchinnikov, S.N.: Modelling valued preference relation. In: Kacprzyk, J., Fedrizzi, M.
(eds.) Multiperson decion making usingfuzzy sets and possibility theory, pp. 64–70. Kluwer,
Dordrecht (1990)

16. Van De Walle, B., De Baets, B., Kerre, E.: Charaterizable fuzzy preference structures. Annals
of Operations Research 80, 105–136 (1998)

170 M. Öztürk and A. Tsoukiàs

17. Ozturk, M.: Structures mathématiques et logiques pour la comparaison des intervalles. Thése
de doctorat, Université Paris-Dauphine (2005)

18. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht
(1991)

19. Slowinski, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In:
P., W., (eds) Advances in Machine Intelligence & Soft-computing, Bookwrights, Raleigh,
pp. 17–33 (1997)

20. Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on
similarity. IEEE Transactions on Data and Knowledge Engineering 12, 331–336 (2000)

21. Greco, S., Matarazzo, B., Slowinski, R.: Handling missing values in rough set analysis of
multi-attribute and multi-criteria decision problems. In: Zhong, N., Skowron, A., Ohsuga, S.
(eds.) New Directions in Rough Sets, Data Mining, and Granular-Soft Computing. LNCS
(LNAI), vol. 1711, pp. 146–157. Springer, Heidelberg (1999)

22. Stefanowski, J., Tsoukiàs, A.: On the extension of rough sets under incomplete information.
In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711,
pp. 73–81. Springer, Heidelberg (1999)

23. Stefanowski, J., Tsoukiàs, A.: Valued tolerance and decision rules. In: Ziarko, W., Yao, Y.
(eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 212–219. Springer, Heidelberg (2001)

24. Stefanowski, J., Tsoukiàs, A.: Incomplete information tables and rough classification. Com-
putational Intelligence 17, 454–466 (2001)

25. Perny, P., Tsoukiàs, A.: On the continuous extension of a four valued logic for preference
modelling. In: Proceedings of the IPMU 1998 conference, Paris, pp. 302–309 (1998)

26. Tsoukiàs, A., Perny, P., Vincke, Ph.: From concordance/discordance to the modelling of posi-
tive and negative reasons in decision aiding. In: Bouyssou, D., Jacquet-Lagrèze, E., Perny, P.,
Słowiński, R., Vanderpooten, D., Vincke, P. (eds.) Aiding Decisions with Multiple Criteria:
Essays in Honour of Bernard Roy, pp. 147–174. Kluwer Academic, Dordrecht (2002)

Aggregates in Generalized Temporally Indeterminate
Databases

Octavian Udrea1, Zoran Majkić2, and V.S. Subrahmanian1

1 University of Maryland College Park, Maryland 20742 USA
2 Universitá di Roma La Sapienza, Via Salaria 113 I-00198, Rome, Italy
{udrea,vs}@umiacs.umd.edu, zmajkic@dis.uniroma.it

Abstract. Dyreson and Snodgrass as well as Dekhtyar et. al. have provided a
probabilistic model (as well as compelling example applications) for why there
may be temporal indeterminacy in databases. In this paper, we first propose a
formal model for aggregate computation in such databases when there is uncer-
tainty not just in the temporal attribute, but also in the ordinary (non-temporal)
attributes. We identify two types of aggregates: event correlated aggregates, and
non event correlated aggregations, and provide efficient algorithms for both of
them. We prove that our algorithms are correct, and we present experimental re-
sults showing that the algorithms work well in practice.

1 Introduction

In many application domains, we cannot be sure of the exact time an event would occur.
For example, even though Fedex may tell us that a package will be delivered sometime
today, if our chronon is “minute”, then there is uncertainty about exactly at what time
the package will be delivered. Dyreson and Snodgrass [1] present a large set of con-
vincing examples ranging from carbon-dating of archeological artifacts to scheduling
applications where such uncertainty is the norm, not the exception, followed by an ex-
cellent framework for reasoning about such temporal indeterminacy. Later, Dekhtyar et.
al. [2] built a rich temporal-probabilistic database algebra in which they could do away
with many assumptions (e.g. independence) that extended the framework of Dyreson
and Snodgrass.

Both the preceding works are time centric in the sense that uncertainty only exists in
the temporal attributes of a relation. However, there are many applications where uncer-
tainty can occur either in the temporal attributes or in the data (non-temporal) attributes,
or in both. Our first major contribution is the concept of a “Generalized Probabilistic
Temporal (GPT)” database that can handle both kinds of uncertainty. For example, al-
most every manufacturing company around today uses statistical models to estimate
demand for a given product [3, chap.4] - independently of whether the product is high
end (e.g. energy) or technology focused (e.g. digital cameras) or plain simple food (e.g.
pasta). Such models estimate demand over time. They may estimate other parameters
as well (e.g. price). Likewise, the entire agricultural sector is a poster child for tempo-
ral probabilistic data. Statistical models are used to predict how much of a particular
crop (e.g. wheat) may be available, what the prices are likely to be, and so on. Such

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 171–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

172 O. Udrea, Z. Majkić, and V.S. Subrahmanian

models are used by market analysts to make investments (e.g. into grain futures), by
governments to decide what to import and when and in what quantity, and so forth [3].
In general, almost all applications involving economic principles are subject to uncer-
tainty about supply, uncertainty about demand. Most of these uncertainties vary with
time (e.g. demand for winter coats is usually small in the summer months).

Table 1 shows a sample data set about an energy market (virtually all US energy
is sold by energy producers to energy distributors one day ahead using very complex
statistical estimates of supply and demand). In this application, an energy producer is
estimating demand (the Quantity field) for a given market as well as the Price (per
unit of energy) to be charged for that quantity. For example, the quantity estimated for
tomorrow in New York may be 5600 or 5700 units (with some probabilities) and the
price per unit in the NY market may be be 115,600 or 115,700 per unit. Natural queries
that corporate executives may be interested in include:

Q1: What is the expected demand in NY tomorrow?
Q2: What is my expected income tomorrow ?
Q3: On which day during the next 2 weeks period will I have the highest income?

Table 1. Day-ahead energy market example

Event Id Market Price Quantity TP-case statement
1 NY 5600 [.6, .7] 115600 [.5, .7] {〈(10 ∼ 14), (10 ∼ 14), 0.4, 0.8, u〉}

5700 [.3, .4] 115700 [.4, .6]
2 Bos 5500 [.1, .1] 104300 [.6, .8] {〈(11 ∼ 13), (11 ∼ 13), 0.5, 0.9, u〉}

5600 [.2, .2] 105000 [.3, .4]
3 Wash 5650 [.5, .7] 90500 [.5, .7] {〈(10 ∼ 12), (10 ∼ 12), 0.4, 0.8, u〉}

5700 [.3, .5] 92000 [.4, .6]

All of these queries are aggregate queries. Our second major contribution is the devel-
opment of a declarative semantics for aggregate queries in GPT databases. Aggregates
are of obvious interest in applications such as the above - a government might want to
know the total expected wheat production in a given time period, while a manufacturer
might want to know which market has the maximum profit margins.

Aggregate queries involving temporal probabilistic attributes fall into two general
categories. Non-event correlated aggregates (NECA) are aggregates where all tuples in
a GPT-relation are treated in “one pass.” For example, queries (Q1) and (Q2) above
fall into this category. In contrast, an event-correlated aggregate (ECA) is really an
“aggregate over an aggregate.” Query (Q3) falls into this category because we first need
to find, for each day, the expected income for that day (this is an aggregate) and then we
need to find the day that maximizes the expected income (which is an aggregate over
the previously computed aggregates). Our third major contribution is the development of
algorithms to efficiently compute NECA queries and ECA queries on GPT databases. In
particular, we should mention that ECA queries can be speeded up by a “pre-aggregate”
computation.

Our fourth major contribution is a prototype implementation of our algorithms to-
gether with an experimental evaluation showing that our algorithms are very efficient.
For instance, a SUM event-correlated aggregate can be computed in about 1.7 seconds

Aggregates in Generalized Temporally Indeterminate Databases 173

over a database of 15,000 events in a disk-resident DB; when the number is increased
to 500,000 disk-resident events, this can be done in about 5.1 seconds.

In this paper, we first extend the TP database model of Dekhtyar et. al. [2] to incorpo-
rate uncertainty in both the temporal and the data attributes – this is done in Section 2.
We then develop a declarative definition of NECA and ECA aggregate queries in Sec-
tion 4. Section 5 provides algorithms to compute the answers to NECA and ECA
queries. Section 6 describes our prototype implementation.

2 GPT Database Model

2.1 Technical Preliminaries

This section provides a brief overview of temporal probabilistic databases from [2]. We
assume that τ = {1, 2, . . . , N} for some integer N denotes the set of all legal time
points — this time is discrete and modeled by the natural numbers. Throughout this
paper, we will assume that τ is arbitrary but fixed. We assume the existence of a set of
time point variables ranging over τ .

Definition 1 (Temporal constraint)

(i) If ti is a time point variable,op ∈ {<, ≤, =, �=, ≥, >}, v ∈ τ , then (ti op v) is a
temporal constraint.

(ii) If t1, t2 ∈ τ and t1 ≤ t2, then (t1 ∼ t2) is a temporal constraint (shorthand for
(t1 ≤ t ≤ t2); we abuse notation and write (t1) instead of (t1 ∼ t1)).

(iii) If C1 and C2 are temporal constraints then so are (C1 ∧ C2), (C1 ∨ C2) and
(¬C1).

We use Sτ to denote the set of all temporal constraints. The set sol(C) of solutions of a
temporal constraint C is defined in the usual way. For example, sol((12 ∼ 14) ∨ (18 ∼
23)) = {12, 13, 14, 18, 19, 20, 21, 22, 23}.

Definition 2 (Probability Distribution Function (PDF)). A function ℘ : Sτ × τ →
[0, 1] is a PDF if (∀D ∈ Sτ) (∀t �∈ sol(D)) (℘(D, t) = 0). Furthermore, ℘ is a re-
stricted PDF if (∀D ∈ Sτ) (

∑
t∈sol(D) ℘(D, t) ≤ 1).

This definition of a PDF is rich enough to capture almost all probability mass functions
(e.g. uniform, geometric, binomial, Poisson, etc.)[4]. Furthermore, probability density
functions can be approximated by PDFs via a process of quantization.

Definition 3 (TP-case). A TP-case is a 5-tuple 〈C, D, L, U, δ〉 where (i) C and D are
temporal constraints, (ii) ∅ ⊂ sol(C) ⊆ sol(D), (iii) 0 ≤ L ≤ U ≤ 1, and (iv) δ is a
restricted PDF.

The last column of Table 1 shows TP-cases for each of the three events. Consider the
first event shown there - the associated TP-case {〈(10 ∼ 14), (10 ∼ 14), 0.4, 0.8, u〉}
says that the event with Event Id 1 will be true at some time between 10 and 14 with 40
to 80% probability. In general, C specifies the time points when an event is valid while
D specifies the time points over which the PDF δ is applicable. Since sol(C) ⊆ sol(D),
it follows that δ assigns a probability to each time point t ∈ sol(C).

174 O. Udrea, Z. Majkić, and V.S. Subrahmanian

Table 2. Probabilistic flattening of a GPT-tuple

Event Id Market L1, U1 Price L2, U2 Quantity L3, U3 TP-case statement

1 NY [1,1] 5600 [.6,.7] 115600 [.5,.7] {〈(10 ∼ 14), (10 ∼ 14), 0.4, 0.8, u〉}
1 NY [1,1] 5600 [.6,.7] 115700 [.4,.6] {〈(10 ∼ 14), (10 ∼ 14), 0.4, 0.8, u〉}
1 NY [1,1] 5700 [.3,.4] 115600 [.5,.7] {〈(10 ∼ 14), (10 ∼ 14), 0.4, 0.8, u〉}
1 NY [1,1] 5700 [.3,.4] 115700 [.4,.6] {〈(10 ∼ 14), (10 ∼ 14), 0.4, 0.8, u〉}

Definition 4 (TP-case statement). A TP-case statement Γ is a set of TP-cases, where
(∀γi, γj ∈ Γ) ((i �= j) → sol(γi.C ∧ γj.C) = ∅). We define sol(Γ) =

⋃
{sol(γi.C) |

γi ∈ Γ}.

The last column of Table 1 shows TP-cases for each of the three events in that relation.

Definition 5 (P-tuple). Suppose [R] = (A1, ..., Ak) is a relation scheme in 1NF. A P-
tuple over [R] is a k-tuple pt = (〈V1, f1〉, ..., 〈Vk, fk〉) where for all i ∈ [1, k], Vi ⊆
dom(Ai) and fi is a function that maps each value in Vi to a probability interval (i.e.,
a closed subinterval of [0, 1]). For each attribute Ai we will call Vi the value set for that
attribute.

If we eliminate the last column of Table 1, we would have a P-relation.

2.2 GPT Relations

In the following, we define a GPT tuple (or event) as a complex structure composed
of an unique identifier, its temporal information Γ , and the set of probabilistic data (a
P-tuple). For a relation R, we denote by [R] the relation scheme of R.

Definition 6 (GPT tuples and relations). A general probabilistic temporal tuple over
the relation scheme [R] = (A1, ..., Ak) is a tuple gpt = (Id, pt, Γ), where Id is the
event’s identifier, pt = (〈V1, f1〉, ..., 〈Vk, fk〉) is a P-tuple and Γ is a TP-case statement.
A GPT-relation over R is a finite set of GPT-tuples over R.

Example 1. The example given in Table 1 is a GPT-relation.

Definition 7 (FP-scheme). Suppose [R] = (A1, ..., Ak) is a relation scheme in 1NF
and L and U are probabilistic attributes where dom(L) = dom(U) = [0, 1]. We say
that [fpR] = (A1 : [L1, U1], ..., Ak : [Lk, Uk]) is an FP-scheme over [R] with data
attributes A1, ..., Ak and their probability intervals [Li, Ui], i ∈ [1, k].

An FP-scheme resembles a simple relational scheme, but each attribute is “tied” to a
probability interval. We now show how a given GPT relation can be “flattened” to an
FP-scheme.

Definition 8 (Probabilistic flattening of GPT tuples). For a given GPT-tuple gpt =
(Id, pt, Γ), where pt = (〈V1, f1〉, ..., 〈Vk, fk〉), the probabilistic flattened relation, TP
(gpt) of gpt, is given by: TP (gpt) = {(Id, 〈v1, L1, U1〉 , . . . , 〈vk, Lk, Uk〉 , Γ)|
(v1, . . . , vk) ∈ V1 × . . . × Vk ∧ [Li, Ui] = fi(vi))}. The probabilistic flattening of
a GPT-relation is the union of the probabilistic flattening of its GPT-tuples.

Aggregates in Generalized Temporally Indeterminate Databases 175

Intuitively, we can flatten the P-tuple part of a GPT-tuple by taking the cartesian product
of all the Vi’s. We then append the TP-case part of the P-tuple to each of the resulting
tuples to get a flattened GPT-tuple.

Example 2. The probabilistic flattened relation (TP relation) of the event with Id = 1
in Table 1 is shown in Table 2.

Remark. Each tuple in the probabilistic flattening of an event can be regarded as a TP-
tuple. We will call such a tuple an FPT-tuple to emphasize that it was obtained through
flattening and therefore its tuple data is an FP-scheme - meaning each data attribute is
tied to a probability interval.

We now introduce the notion of a semi-annotated version of an FPT-tuple. This is
done by taking each solution of a TP-case associated with that tuple and replacing the
TP-case part of the FPT-tuple by that solution. In addition, the probabilities associated
with that time point (solution of TP-case constraints) are added to the tuple.

Definition 9 (Semi annotation). Let fpt = (Id, d, Γ) be a TP-tuple over the rela-
tional scheme [R] = (A1, ..., Ak) with d = (〈v1, L1, U1〉, ..., 〈vk, Lk, Uk〉) as its data
tuple. Then the semi-annotated relation for fpt, denoted SANN(fpt), is defined as fol-
lows: SANN(fpt) = {(Id, d, eT ime, Lt, Ut) |∃ γi = 〈Ci, Di, Li, Ui, δi〉 ∈ Γ, s.t.
(eT ime ∈ sol(Ci)) ∧ ([Lt, Ut] = [Li · x, Ui · x], x = δi(Di, eT ime))}. The semi
annotated relation of an event gpt = (Id, pt, Γ), denoted SANN(gpt), is the union of
all semi-annotated relations of its FPT-tuples.

Table 3 shows part of the semi-annotated version of the GPT-relation shown in Figure 1.

Table 3. Semi-annotated relation (partial)

Event Id Market L1, U1 Price L2, U2 Quantity L3, U3 eTime Lt, Ut

1 NY [1,1] 5600 [.6,.7] 115600 [.5,.7] 10 [.08,.016]
1 NY [1,1] 5600 [.6,.7] 115600 [.5,.7] 11 [.08,.016]
1 NY [1,1] 5600 [.6,.7] 115700 [.4,.6] 10 [.08,.016]
1 NY [1,1] 5600 [.6,.7] 115700 [.4,.6] 11 [.08,.016]
1 NY [1,1] 5700 [.3,.4] 115600 [.5,.7] 10 [.08,.016]
1 NY [1,1] 5700 [.3,.4] 115600 [.5,.7] 11 [.08,.016]
1 NY [1,1] 5700 [.3,.4] 115700 [.4,.6] 10 [.08,.016]
1 NY [1,1] 5700 [.3,.4] 115700 [.4,.6] 11 [.08,.016]

All operations of the temporal probabilistic algebra proposed in [2] can be extended
to GPT-relations. We do not do this here as the focus of this paper is on aggregates
which, to our knowledge, have never been defined for temporally indeterminate
databases.

3 Probabilistic Context

As we have seen in the previous section, the GPT model represents uncertainty both at
the event and tuple data levels. As such, the computation of aggregates requires that we
“combine” probability intervals. In other words, if priceNY = 5600 with probability
in [.6, .7] and priceBos = 5500 with probability [.1, .1], what is the probability that

176 O. Udrea, Z. Majkić, and V.S. Subrahmanian

priceNY + priceBos = 11, 100 ? Clearly, this depends upon the relationship between
prices in Boston and NY. If, for example, there are some power plants that can provide
power to both Boston and NY, then there should be a correlation in price. On the other
hand, if Boston and NY share no common power plants, then the prices are probably
independent of each other.

Lakshmanan et. al. [5,6] have proposed a very general notion of conjunction and
disjunction strategies. Given two events e1, e2, each with probability intervals I1, I2
respectively, they define a conjunction strategy ⊗ to be an associative, commutative
function that returns a probability interval I1 ⊗ I2 for the conjunction e1 ∧ e2. Con-
junction strategies are required to satisfy several other axio that we do not mention
here. Disjunction strategies ⊕ do the same for disjunction. They show that these strate-
gies are rich enough to express a wide variety of relationships between events such as
independence, ignorance, positive and negative correlations, etc.

We will now define the concept of a probabilistic context that describes in precise
terms how probability intervals for data (and temporal) attributes can be combined. For
the rest of the paper, let SC be the set of probabilistic conjunctive strategies and SD the
set of disjunctive strategies.

A probabilistic context (defined below) associates a conjunction and disjunction
strategy with any set of attributes.

Definition 10. (Probabilistic context) Let [R] be a GPT relation scheme and 2[R] be
the power set of the set of attributes in [R]. A probabilistic context over [R] denoted by
ctx(R) is a pair 〈⊗ctx, ⊕ctx〉, where:

(1) ⊗ctx : 2[R] → SC is a function that maps a set of attributes to a probabilistic
conjunction strategy. Intuitively, for W ∈ 2[R] probability intervals would be com-
bined using ⊗ctx(W) for any |W |-ary operator applied to values of the attributes
in W . For singleton subsets {A} ⊆ [R], ⊗ctx({A}) would be used in aggregate
computations on A.

(2) ⊕ctx : 2[R] → SD is a function that maps a set of attributes to a probabilistic
disjunctive strategy.

For the example described at the beginning of this section, using the independence
conjunction strategy the result of priceNY + priceBos would be 〈11100, [.06, .07]〉.

4 Temporal Probabilistic Aggregates Declarative Semantics

In this section, we define the formal semantics for the event and non-event correlated
aggregation operators and show how these relate to aggregates on semi-annotated GPT
relations. We should note that even though the semantics for event correlated aggre-
gation are based on their semi-annotated counterpart, our implementation computes
such aggregates directly on GPT relations. We start off with some simple examples that
illustrate the differences between the two types of aggregation.

Example 3. Consider the relation shown in Table 1. We would like to answer the query
What is the total expected demand? Let us assume that events are mutually independent

Aggregates in Generalized Temporally Indeterminate Databases 177

(i.e. the independence conjunctive strategy is used for aggregation over the Quantity at-
tribute). Then the result of this query is the value 〈V, f〉, where V = {310400, 311900,
311100, . . .} and f(310400) = [.15, .392], f(311900) = [.12, .336], f(311100) =
[.06, .168], and so on. The TP-cases do not play a role in answering this query. When
computing such aggregates, we only need ensure that different values from any sin-
gle value set of the Quantity attribute are not aggregated. We will denote this type of
aggregation non-event correlated aggregation.

Example 4. Let us consider the same relation, but with the query When does the max-
imum demand occur? One way to answer this query is via the following steps: (i) we
find the set of time points T such that each time point in T is a solution to at least
one TP-case in the relation; (ii) for each such time point t ∈ T , we add up the value
of the Quantity attributes for all events e that have t ∈ sol(e.Γ); (iii) choose the
time point with the largest value for the aggregated attribute. Step (i) would give us
T = {10, 11, 12, 13, 14}. For step (ii), part of the result is shown in Table 4(a) - again,
assuming events are mutually independent. We call this type of aggregation event cor-
related aggregation.

Note: The reader may also notice that the query for this example actually includes two
different aggregates - a SUM and a MAX operator; we use a combination of the two to
illustrate why grouping by time points is relevant to the problem. In later sections, we
will provide a much more efficient algorithm called ECA-interval that does not require
examining each time point that is a solution of a TP-case.

Table 4. (a) Event correlated aggregation; (b) Non event correlated aggregation

eTime SumOfQuantity

10 206100 [.25, .49]
207600 [.2, .42]
206200 [.2, .42]

207700 [.16, .36]

.

14 115600 [.5, .7]
115700 [.4, .6]

eTime Sum(Price)

{〈(10 ∼ 14), (10 ∼ 14), 0.4, 0.8, u〉, 16750 [.03,.049]
〈(10 ∼ 11), (10 ∼ 11), 0.4, 0.8, u〉, 16800 [.018,.035]
〈(10 ∼ 12), (10 ∼ 12), 0.4, 0.8, u〉} 16850 [.06,.126]

16900 [.036,.09]
16950 [.03,.056]
17000 [.018,.04]

4.1 Aggregation Operators

Definition 11 (Aggregation operator). An aggregation operator agg is a function
that takes a GPT-relation gpR and an attribute A ∈ [gpR] as input and returns a GPT-
relation gpR′ containing at most one data attribute Aagg = 〈Vagg , fagg〉. The values of
Aagg are only over the values of attribute A.

An aggregation operator produces a GPT-relation. For non-event correlated aggrega-
tion, the temporal attribute can be a simple union of all TP-case statements in gpR and
the resulting relation would contain at most one tuple. For event correlated aggregation,
gpR′ may contain multiple tuples, each with its own event ID and set of TP-case state-
ments. If the aggregation is performed over a data attribute in gpR, then gpR′ would
contain one data attribute with the aggregation result. However, if the aggregation is

178 O. Udrea, Z. Majkić, and V.S. Subrahmanian

performed over the temporal attribute1, gpR′ will not contain any data attributes. Since
aggregation on data attributes is a much more challenging problem, we will focus on
such aggregates for the rest of the paper.

Due to the generality of aggregate operators as defined above, we believe an infor-
mal classification is in order. Useful temporal aggregate operators are most likely to
include min, max and count; sums or average computations over time points do not
make sense. Data aggregate operators can be classified into base operators such as sum,
min, max, count and derived aggregate operators such as avg or stdev. Derived oper-
ators are usually expressions involving base aggregates, data values and constants; for
example, avg = sum

count . Computing such expressions is straightforward given the prob-
abilistic context and the methods for combining probabilistic value sets that we have
already informally described.

In this paper we focus on base aggregate operators such as SUM, MIN, etc. For no-
tation purposes, for an aggregation operator agg we denote by aggr the corresponding
relational aggregation operator. We denote by opagg the corresponding arithmetic oper-
ator used to compute aggr. For instance, if agg = SUM , opagg = +. We expect that
the binary opagg operator is commutative and associative. Finally, we denote by op∗agg

the extension of opagg to multisets of real numbers.

4.2 Non Event Correlated Aggregation

This section will explore how non-event correlated aggregation can be performed on
GPT tuples. As mentioned before, we will consider data tuple aggregates, as temporal
data aggregates are straightforward problem.

Definition 12 (Non-event correlated GPT-aggregation). Suppose R is a GPT-
relation with probability context ctx(R), A ∈ [R] be an attribute and agg is an ag-
gregation operator. For each tuple t ∈ R, we denote by 〈Vt, ft〉, the value set and
probability function for attribute A. Then, agg(R, A) =def {(Id∗, 〈V, f〉, Γ)}, where:

(i) Id∗ is a new, dynamically created event ID.
(ii) V = {op∗agg(V

′) | V ′ ∈ xt∈RVt}, where x is the cartesian product operator.
(iii) Let ⊗ = ⊗ctx({A}) and ⊕ = ⊕ctx({A}). Then ∀ v ∈ V , the function f is defined

by f(v) =
⊕

{ f(v1)⊗. . .⊗f(vN)| (v1, . . . , vN) ∈ xt∈RVt and op∗agg({v1, . . . ,
vN}) = v }, where

⊕
is the extension of ⊕ to sets of probability intervals.

(iv) ∀Γ ′ ∈ [R].Γ, ∀ti ∈ sol(Γ ′), ti ∈ sol(Γ).

This definition gives a method of computing non-event correlated probabilistic ag-
gregates directly on GPT-relations. The reader may note that the intuition given in
Example 3 is formalized here. The corresponding definition for non-event correlated
aggregation for semi annotated relations is straightforward.

Example 5. For the GPT relation in Table 1, we choose ⊗ctx({Price}) to be the in-
dependence conjunction strategy and ⊕ctx({Price}) to be the ignorance disjunctive
strategy defined in [5] as [l1, u1] ⊕ig [l2, u2] = [max(l1, l2), min(1, u1 + u2)]. The re-
sult of the SUM non-event correlated aggregate over the Price attribute can be found
in Table 4(b).

1 Example: What is the number of time points when the expected demand will exceed a certain
threshold?

Aggregates in Generalized Temporally Indeterminate Databases 179

4.3 Event Correlated Aggregation

We now define event correlated aggregation based on its semi-annotated counterpart.
There are several advantages of defining aggregation for GPT relations in terms of its
semi-annotated version: (i) correctness (i.e. commutativity with the semi-annotation
function) is implied and (ii) the definition is less restrictive as to the form of the resulting
GPT relation, which allows for more freedom in choosing an appropriate algorithm.

Definition 13 (World). Let R be a GPT relation and let R′ = SANN(R) be its
semi-annotated form. Let ctx(R) be the probability context over R, let Ak ∈ [R]
be a data attribute in [R] and let [Lk, Uk] be the probability interval for Ak in R′.
Suppose x ∈ τ is a time point. A world for x, R and Ak is any subset w of the set
π(Id,eT ime,Ak,Lk,Uk)(σ(eTime=x)(R′)) such that ∀ t1, t2 ∈ w, t1.Id �= t2.Id 2. A max-
imal world for a time point x is a world w′ such that � ∃w′′ another world for x such
that w′ ⊂ w′′.

Intuitively, a maximal world for a time point represents a possible combination of values
from the value sets for Ak. This is conceptually similar to an element in the cartesian
product present in Definition 12. Furthermore, a maximal world contains tuples for
all possible events that contain such values. For a time point x, a relation R and an
attribute A ∈ [R], we denote by Wx(R, A) the set of maximal worlds over R and A
w.r.t. x. Furthermore, given an aggregate operator agg and its relational counterpart
aggr, we denote by aggr(Wx(R, A)) = {y|∃ w ∈ Wx(R, A) s.t. aggr(w, A) = y}.
In short, aggr(Wx(R, A)) is the set of all possible values obtainable through relational
aggregation through aggr over any maximal world w and the attribute A. Similarly, we
define agg−1

r (y, Wx(R, A)) = {w ∈ Wx(R, A)|aggr(w, A) = y}.

Definition 14 (Semi annotated aggregation). Let R be a GPT relation and let R′ =
SANN(R) be its semi-annotated form. Let ctx(R) be the probability context over R,
let Ak ∈ [R] be a data attribute in [R] and let [Lk, Uk] ∈ [R′] be its corresponding
probabilistic attribute in the semi-annotated form. Let agg be an aggregation operator
and aggr the corresponding relational aggregate. We define the semi-annotated version
of agg as aggFL(R′, Ak) = {t|t = (Id∗, eT ime, Aagg

k , [Lk, Uk]agg)}, where ∀ x ∈
R′.eT ime, ∀ y ∈ aggr(Wx(R, A)), ∃! t ∈ aggFL(R′, Ak), t = (Id∗, eT ime, Aagg

k ,
[Lk, Uk]agg) such that:

(1) t.Id∗ is a new, dynamically generated event identifier.
(2) t.eT ime = x and t.Aagg

k = y.
(3) Let ⊗ = ⊗ctx({Ak}) and ⊕ = ⊕ctx({Ak}). Let

⊕
be the extension of ⊕ to a

multiset of probability intervals and
⊗

the similar extension of ⊗. For a world w ∈
Wx(R, Ak), let w.[Lk, Uk] be the multiset of probability intervals that appear in
that world. Let I be the multiset {[L, U]|∃ w ∈ agg−1

r (y, Wx(R, A)) s.t. [L, U] ∈
w.[Lk, Uk]}. Then t.[Lk, Uk]agg =

⊕
(I).

This definition formalizes the intuition given in Example 4 for the semi-annotated ver-
sion of the GPT relation. In short, we perform all possible combinations of values in

2 Note that w is a set, therefore duplicate tuples for the values in Ak are ignored.

180 O. Udrea, Z. Majkić, and V.S. Subrahmanian

the value set of Ak, while grouping them by time point and insuring that two differ-
ent values from the same value set do not participate in the same aggregate value. We
can now define event correlated aggregation for GPT relations. We denote by π−Id the
projection operation that selects all attributes of a GPT relation except the event Id.

Definition 15 (Event correlated aggregation). Let R be a GPT relation, let A ∈ [R]
be a data attribute in [R]. Let ctx(R) be the probabilistic context over R, let agg be an
aggregate operator and let aggFL be its semi-annotated counterpart. The result of the
application of agg to attribute A in [R] is a GPT relation that satisfies the following:
π−Id(SANN(agg(R, A))) = π−Id(aggFL(SANN(R, A))).

5 Algorithms for Computing Aggregates

Aggregate computation in the GPT model poses a series of new challenges due to the
presence of uncertainty both in temporal and regular attributes.

Problem 1. NECA aggregation is directly defined on GPT relations. ECA aggrega-
tion on the other hand is defined w.r.t. the semi-annotated version of a GPT-relation.
However, semi-annotation involves an significant space blowup which we would like
to avoid. As such, our algorithms (both for NECA and ECA aggregation) work directly
with GPT relations.

Problem 2. Let us consider a GPT relation R and an attribute A ∈ [R] such that ∀ t ∈ R,
t.A = 〈Vt, ft〉, |V | ≤ c, where c is an arbitrary constant. Let agg be an aggregation
operator. According to Definition 12 (for NECA) and Definitions 14 and 15, in the worst
case scenario the space complexity of the result would be O(cN), where N = |R|.

It is obvious that in the case of Problem 2, an exponential complexity (both in space
and time) is unacceptable. Furthermore, it is unlikely that a result with a data size ex-
ponential in the size of the initial relation would be of any use to an end user. As such,
we see two possible scenarios: either the size of the input relation is limited by a se-
lection query (as is usually the case with aggregates on relational data) or aggregate
computations are run in sequence, as is the case in Example 4. For the sake of gener-
ality, we will assume the existence of a restrict method 3 that restricts the set of values
Vt that are to be considered for further computation for any tuple t at any intermediate
step. We assume the existence of such a method for both event and non-event correlated
aggregations.

5.1 NECA Algorithm

We now present the NECA algorithm for computing non-event correlated aggregates on
GPT-relations. The algorithm takes advantage of our earlier assumption that opagg is as-
sociative and commutative. Likewise, Lakshmanan et. al. [5] assume that all conjunctive
and disjunctive strategies are associative and commutative - something we assumeas well.

3 If aggregates are run in sequence, then the restrict method can be easily provided by the query
planner. For Example 4, we would only look at the maximum value from any value set Vt for
a tuple t, knowing that a MAX query is to be applied next. If the selection query case holds,
then the restrict method can simply let all values in Vt go through.

Aggregates in Generalized Temporally Indeterminate Databases 181

Algorithm: NECA(R,A,agg,ctx(R))
Input: GPT relation R, attribute A ∈ [R],aggregation
operator agg, probabilistic context ctx(R).
Output: GPT relation Ragg representing the result of
non-event correlated aggregation.
Notation: ⊗ = ⊗ctx({A}),⊕ = ⊕ctx({A});
1. Γ ← ∅;
2. V ← ∅;
3. f ← null;
4. for all t ∈ R do
5. Γ ← Γ ∪ t.Γ ;
6. if V = ∅ then
7. 〈V, f〉 ← t.A;
8. else
9. V ′ ← V x t.A.V ;
10. V ← ∅;
12. for all (v1, v2) ∈ V ′ do
13. V ← V ∪ {v1 opagg v2};
14. V ← restrict(V);
15. for all v ∈ V do
16. f(v)← 0;
17. for all (v1, v2) ∈ V ′ s.t. v1 opagg v2 = v
do
18. f(v)← f(v)⊕ (f(v1)⊗ t.A.f(v2));
19. endfor
20. endif
21. endfor
22. Ragg ← {(Id∗, Γ, 〈V, f〉)};
23. return Ragg ;

Algorithm: ECA-timepoint(R,A,agg,ctx(R))
Input: GPT relation R, attribute A ∈ [R],aggregation
operator agg, probabilistic context ctx(R).
Output: GPT relation Ragg representing the result of
event correlated aggregation.
Notation: (t, L, U) is the TP-case statement that only
contains t as a solution.
1. Ragg ← ∅;
2. for all t ∈ τ do
3. R′ ← σt∈sol(Γ)(R);
4. R′′ ← NECA(R′, A, agg, ctx(R));
5. [L, U]← [1, 1];
6. for all u ∈ R′ and γ ∈ u.Γ do
7. if t ∈ sol(γ) then
8. [L, U] ← [L, U] ⊕ctx ({Γ}) [γ.L ·
δ(γ.D, t), γ.U · δ(γ.D, t)];
9. endfor
10. Ragg ← Ragg ∪
{(Id∗, (t, L, U), R′′.Aagg};
11. endfor
12. return Ragg ;

Fig. 1. (a) The NECA algorithm; (b) The ECA-timepoint algorithm

The algorithm performs an incremental computation by analyzing one tuple in the
input relation at a time and maintaining an intermediate result. The restrict method is
used at each step to restrict the number of values from the intermediate value set that
are to be considered further during the computation. As an example if the query planner
can determine that a MIN aggregate is to be executed on this result, the restrict method
would only select the smallest value computed at each step.

Theorem 1 (NECA correctness). The NECA algorithm terminates and the resulting
GPT relation is correct w.r.t. Definition 12 when restrict is the identity function.

Let us assume that the set returned by the restrict method is bounded by O(r) and the
size of the value sets for attribute A are bounded by an arbitrary constant c. For each
tuple, at most O(r) values held in the intermediate result are combined with at most
O(c) values from the new tuple. This operation is performed for each tuple in the input
relation, therefore the complexity of the NECA algorithm is O(n) · O(c · r)

5.2 ECA Algorithms

In this section, we present two algorithms to compute ECA aggregates. We remind the
reader that even thought the declarative semantic in Definition 15 is based on the semi-
annotated corresponding aggregate, our methods avoid the space blowup required by
semi-annotation and compute aggregates directly on GPT relations. The first algorithm,
ECA-timepoint, is a simple method for computing event correlated aggregation. The
second algorithm ECA-Interval, is far more efficient.

182 O. Udrea, Z. Majkić, and V.S. Subrahmanian

ECA-timepoint is based on the NECA algorithm. A simple probabilistic flattening
of the result of the ECA-timepoint yields the corresponding semi-annotated aggregate.
However, as our experiments will show, the ECA-timepoint algorithm is resource con-
suming both in terms of execution time and space, as the result is dependent on the
granularity of temporal information.

The correctness of the ECA-timepoint algorithm follows directly from Definition 15
as the probabilistic flattening of the resulting relation yields the same result as semi-
annotated aggregation. The complexity of the algorithm is clearly O(|τ |) ·O(NECA),
since the for loop on line 6 is run only for events that have t as a solution, while the
complexity of the NECA algorithm is higher.

We try to address the disadvantages of ECA-timepoint with the more advanced ECA-
interval algorithm which makes use of interval constraints to perform the computation
of each aggregate value only once. The ECA-interval algorithm uses a pre-aggregation
relation that contains partial information to be included in the result. Simply put, a
pre-aggregate is a GPT relation that contains temporal data (Γ) and an IDS attribute.
Each tuple in the pre-aggregate corresponds to a tuple in the result independent of the
aggregate operator used. The result will replicate the temporal attribute and aggregate
all events whose IDs are in the IDS set4.

Table 5. Pre-aggregate relation

Γ IDS

{〈(10), .2, .38〉} {1, 3}
{〈(11), .34, .57〉, {1, 2, 3}
〈(12), .34, .57〉}
{〈(13), .23, .41〉} {1, 2}
{〈(14), .08, .16〉} {1}

Example 6. For the GPT relation in Table 1, we choose ⊕ctx(Γ) to be the independence
disjunction strategy. The pre-aggregate relation for this case is shown in Table 5.

Theorem 2. The ECA-interval algorithm terminates and produces a correct result w.r.t.
Definition 15 when restrict is the identity function.

6 Experimental Results

We have developed a 6570 line Java implementation of the algorithms described in this
paper. Our experiments were run on a Pentium 4 3.2Ghz machine with 1GB of RAM.
The GPT database was built on top of PostgreSQL 8.0. The series of experiments de-
scribed in this section were run on synthetically generated data with between 14,500
events and 500,000 events, all data being stored on disk. During the experiments we
have identified several factors that impact the performance and storage space require-
ments for our algorithms. Among these were: (i) the data size; (ii) the type of aggregate
query - SUM queries are much more expensive than MIN, MAX, COUNT ; this

4 In a non-event correlated manner.

Aggregates in Generalized Temporally Indeterminate Databases 183

method pre aggregate(R,ctx(R))
Input: GPT relation R, probabilistic context ctx(R).
Output: GPT relation Pre with attributes Γ and IDS. The IDS attribute contains a set of event IDs that correspond to
the TP-case statements in the tuple.
Notation: ⊗ = ⊗ctx({Gamma});⊕ = ⊕ctx({Gamma}); (t, L, U) is the TP-case statement that only contains t
as a solution.
Comments: The computeLU method for a time point used here follows the computation of L,U for a time point in line 8 of
the ECA-timepoint algorithm 5.
1. Pre← ∅;
2. for all t ∈ R do
3. Γ ← t.Γ ;
4. for all u ∈ Pre do
5. if sol(Γ) ∩ sol(u.Γ) �= ∅ then
6. for all γ1 ∈ Γ, γ2 ∈ u.Γ s.t. sol(γ1) ∩ sol(γ2) �= ∅ do
7. u.Γ ← u.Γ − {γ2};
8. u.Γ ← u.Γ ∪ {〈x, computeLU(x)〉|x ∈

sol(γ2)− sol(γ1)};
9. Γ ← Γ − {γ1};
10. Γ ← Γ ∪ {〈x, computeLU(x)〉|x ∈ sol(γ1)− sol(γ2)};
11. Γ ′ ← {〈x, computeLU(x)〉|x ∈ sol(γ1) ∩ sol(γ2)};
12. Pre← Pre ∪ {Γ ′, u.IDS ∪ {t.Id}};
13. goto 4;
14. endfor
15. endif
16. endfor
17. Pre← Pre ∪ {(Γ, {t.Id})};
18. endfor
19. return Pre;

Algorithm: ECA-interval(R,A,agg,ctx(R))
Input: GPT relation R, attribute A ∈ [R],aggregation operator agg, probabilistic context ctx(R).
Output: GPT relation Ragg representing the result of event correlated aggregation.

1. Pre← pre aggregate(R, ctx(R));
2. for all t ∈ Pre do
3. R′ ← NECA(σId∈t.IDS(R), A, agg, ctx(R));
4. Ragg ← Ragg ∪ {Id∗, t.Γ, R′.Aagg};
5. endfor
6. return Ragg .

Fig. 2. The ECA-interval algorithm

also involves the restrict method bounds; (iii) the “overlapping” factor l - which mea-
sures the degree of temporal overlap between events. Strictly speaking, l was computed
as an average on the multiset {x|∃ t ∈ τ s.t. ∃ x different events with t as a
solution}.

Impact of Size. We measured the impact of the input relation size on the running time
of queries. We fixed the restrict method to select only the maximum value from each
value set, similarly to Example 4. The overlapping factor was l ≈ 8.5. We applied a
SUM aggregate both in non-event and event correlated manner, plotting the running
time for each of the three algorithms. The time taken to construct the pre-aggregate
relation was measured independently. Figure 3(a) shows the experimental results. We
can easily see that the non-event correlated aggregation is only slightly faster than the
ECA-interval algorithm. The reason for this is that in the ECA-interval case, once the
pre-aggregated relation is computed, the NECA algorithm is applied to small subsets of
the tuples in the input relation, whereas in the NECA case, the algorithm is applied to the
whole relation. We can also see that the ECA-interval outperforms the ECA-timepoint

184 O. Udrea, Z. Majkić, and V.S. Subrahmanian

0

5

10

15

20

25

30

14500 65000 132000 197000 291000 345000 404000 467000 513000

R
u

n
ni

ng
 ti

m
e

[s
]

(a
ve

ra
ge

 o
ve

r 1
0

ru
n

s)

Input relation size [no events]

Algorithm running time

NECA

ECA-timepoint

Pre-aggregate

ECA-interval

Pre-aggregate + ECA-
interval
Semi-annotated

Parallel ECA-interval

0

5

10

15

20

25

5 10 15 20 25 30 35 40 45 50 55 60

R
u

n
n

in
g

 ti
m

e
[s

]
(a

ve
ra

g
e

o
ve

r
10

 r
u

n
s)

Overlapping factor

Overlapping impact on ECA

ECA-timepoint

Pre-aggregate

ECA-interval

NECA

Fig. 3. (a) Running time analysis; (b) Overlap impact on performance

Result storage space

0

2

4

6

8

10

12

14

16

5 10 15 20 25 30 35 40 45 50 55 60

Overlapping factor

S
to

ra
ge

 s
iz

e
[M

B
]

NECA
ECA-timepoint
Pre-aggregate
ECA-interval
Pre-agg+ECA-int

Fig. 4. Overlap impact on storage space

algorithm. Moreover, the parallelized version of the ECA-interval algorithm using 40
worker threads is as efficient as the semi-annotated version of the aggregation.

Impact of Overlapping Factor. We fixed the input relation size to 255000 events and
we measured the impact of the overlapping factor on the relative performance of the
ECA-interval and ECA-timepoint algorithms. The NECA algorithm is not affected by
these experiments, as it does not consider temporal information in the process of com-
puting an aggregate value. The restrict method was the same as mentioned above. The
results in Figure 3(b) show that once the overlapping factor starts to increase, the ECA-
interval algorithm slowly tends toward the same running time as ECA-timepoint due to
the increased number of single time point constraints in the pre-aggregation relation.
However, as the overlapping factor increases over a certain threshold, more events will
correspond to the same tuple in the result - since τ is finite, it can only mean the size of
the overlapping intervals increases, meaning ECA-interval is much more efficient than
ECA-timepoint.

Size of output. We measured the storage space needed for the results of the aggregation.
The critical factor here is again the overlapping factor. The NECA algorithm only pro-
duces one tuple, and thus is storage space is minimal with a reasonable restrict method

Aggregates in Generalized Temporally Indeterminate Databases 185

- the only variations are due to the representation of a compact union of all temporal
information. The overlapping factor was fixed to the same value as in the first set of
experiments. The ECA-timepoint is the most inefficient from this point of view, since it
stores one tuple for each time point, whereas the ECA-interval algorithm minimizes the
storage space for event correlated aggregation. The results can be seen in Figure 4.

7 Related Work and Conclusions

The business world is full of economic models that are full of uncertainty about sup-
ply (of a resource) and demand (for the resource). Supply and demand usually have a
temporal aspect to them - supply and demand for sweaters is far greater in the winter
months than in the summer. In this paper, we have used a real-world energy model [7]
that we have worked on to motivate the need for reasoning about uncertainty in domains
where time plays a role.

Though there has been a long history of work on uncertainty in databases [8,5], the
first to recognize the subtle interplay between time and uncertainty were Dyreson and
Snodgrass [1] who, in a pioneering paper, laid out a large set of motivating examples and
proposed a probabilistic model for temporal data. They extended temporal relational
DBMSs to include probabilities about when an event might occur. They proposed an
extension of SQL to query such databases and came up with elegant structures to store
PDFs. Their work assumed that events were independent. To address this, Dekhtyar et.
al. [2] proposed a temporal-probabilistic DB algebra in which they showed how such
independence assumptions could be eliminated. The formalisms of both [1,2] assume
that uncertainty occurs only in the temporal attributes. In this paper, our GPT model al-
lows uncertainty to occur both in the temporal attributes, as well as in the data attributes
of relations. Our notion of a probabilistic context allows the user to make assumptions
about the relationships between events when he asks a query - the GPT data model
supports answering queries based on any such probabilistic context.

Our second (and really the primary) contribution focuses on aggregate computa-
tions in GPT-databases. Past work on aggregates focused either solely on temporal data
[9,10,11] or on probabilistic data [12].

We should add that there has been a long history of work on reasoning about both
time and uncertainty in the AI community [13,14,15,16] but none of this work addresses
aggregate computation.

In short, in this paper, we have proposed a model for aggregate computation in GPT
databases that allows us to represent, for example, the output of statistical models of
supply and demand in a database and then to process all kinds of interesting aggregate
queries. Our algorithms have all been implemented and work very efficiently.

References

1. Dyreson, C.E., Snodgrass, R.T.: Supporting valid-time indeterminacy. ACM Trans. Database
Syst. 23, 1–57 (1998)

2. Dekhtyar, A., Ross, R., Subrahmanian, V.S.: Probabilistic temporal databases, I: algebra.
ACM Trans. Database Syst. 26, 41–95 (2001)

186 O. Udrea, Z. Majkić, and V.S. Subrahmanian

3. Wilkinson, N.: Managerial Economics: A Problem-Solving Approach. Cambridge University
Press, Cambridge (2005)

4. Ross, S.M.: A first course on probability. Prentice Hall College Div. Englewood Cliffs (1997)
5. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: Probview: a flexible proba-

bilistic database system. ACM Trans. Database Syst. 22, 419–469 (1997)
6. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with uncer-

tainty. IEEE Transactions on Knowledge and Data Engineering 13, 554–570 (2001)
7. Wolfram, C.D.: Strategic bidding in a multi-unit auction: An empirical analysis of bids to

supply electricity. RAND Journal of Economics 29(4), 703–772 (1998)
8. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with uncer-

tainty. Knowledge and Data Engineering 13, 554–570 (2001)
9. Yang, J., Widom, J.: Incremental computation and maintenance of temporal aggregates. The

VLDB Journal 12, 262–283 (2003)
10. Gendrano, J.A.G., Huang, B.C., Rodrigue, J.M., Moon, B., Snodgrass, R.T.: Parallel algo-

rithms for computing temporal aggregates. In: ICDE 1999, pp. 418–427 (1999)
11. Zhang, D., Markowetz, A., Tsotras, V.J., Gunopulos, D., Seeger, B.: Efficient computation

of temporal aggregates with range predicates. In: Symposium on Principles of Database Sys-
tems (2001)

12. Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate operators in probabilistic databases. J.
ACM 52, 54–101 (2005)

13. Baral, C., Tran, N., Tuan, L.: Reasoning about actions in a probabilistic setting. In: Proc. of
AAAI’02, Edmonton, Alberta, Canada, pp. 507–512. AAAI Press (2002)

14. Dean, T., Kanazawa, K.: Probabilistic Temporal Reasoning. In: Proceedings AAAI, St. Paul,
MN, USA, pp. 524–529. AAAI Press / The MIT Press (1988)

15. Dubois, D., Prade, H.: Processing Fuzzy Temporal Knowledge. IEEE Transactions on Sys-
tems, Man and Cybernetics 19, 729–744 (1989)

16. Lehmann, D., Shelah, S.: Reasoning with time and chance. Information and Control 53, 165–
198 (1982)

An Indexing Technique for Fuzzy Numerical Data

Carlos D. Barranco1, Jesús R. Campaña2, and Juan M. Medina2

1 Division of Computer Science, School of Engineering, Pablo de Olavide University,
Ctra. de Utrera Km. 1, 41013 Sevilla, Spain

cbarranco@upo.es
2 Dept. of Computer Science and Artificial Intelligence, University of Granada,

Daniel Saucedo Aranda s/n, 18071 Granada, Spain
{jesuscg,medina}@decsai.ugr.es

Abstract. This paper introduces an indexing technique for fuzzy nu-
merical data which relies on the classical, well-known and well-spread
B+tree index data structure. The proposed indexing technique is specif-
ically devised to increase the performance of query processing when a
possibility measured flexible condition is involved. The proposal relies
on the use of an indexing data structure implemented in virtually every
database management system. This feature makes the proposal a good
candidate to be used, with very low implementation effort, in a fuzzy
database management system created as an extension of a classical one.
The paper includes a performance analysis of the proposed indexing tech-
nique in contrast with other purpose equivalent techniques in order to
evaluate the suitability of the proposal.

1 Introduction

The fuzzy set theory provides computer science scholars and practitioners with
a good tool for managing imprecise and vague data. This tool is used to develop
novel applications that are able to manage fuzzy data, and which usually per-
form better in classical and non-classical problems than crisp solutions. Many of
these fuzzy applications are prototypes that have not usually been conceived to
process a large amount of data, and for this reason, the fuzzy data management
subsystem has largely been overlooked in application design and implementa-
tion. These applications usually manage and store the fuzzy data directly using
files with some proprietary or text format. When a database management system
(DBMS) is used for this task, the DBMS is generally unable to manage fuzzy
data so the applications must include a bridge to store fuzzy data as crisp data
components. This bridge encloses fuzzy data management and query methods
at the application layer and is generally poorly optimized.

As these novel applications prove their potential, they are likely to be incor-
porated into real-world environments. This kind of environment requires high
performance, scalability and availability for applications.

If we focus on data access, the poor fuzzy data management subsystems of
these applications do not contribute to providing the required performance, scal-
ability and availability levels. The former case, when fuzzy data is directly stored

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 187–200, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

188 C.D. Barranco, J.R. Campaña, and J.M. Medina

and managed in files, is clearly inappropriate and does not deserve further discus-
sion as the first step to improving these systems is moving towards a DBMS. In
the second case, when fuzzy data is stored in a crisp DBMS, applications should
take advantage of the high performance, scalability and availability provided by
the DBMS. However, this increase in performance, scalability and availability
provided by the DBMS is reduced since all fuzzy data processing is carried out
at the application level. This increases data traffic between the DBMS and the
bridge and its computational power requirements as flexible query results are
determined in this component so all the potential results of the fuzzy query
must be retrieved from the DBMS. Moreover, the bridge is usually a specific
development which is generally poorly optimized and unable to work in scalable
configurations, and so the fuzzy data bridge becomes a new bottle-neck.

A DBMS with fuzzy data (imprecise and uncertain) processing capabilities,
i.e. a fuzzy DBMS (FDBMS), is a very convenient solution. Since building a
complete and efficient DBMS requires a lot of effort, authors believe that it
should not be developed from scratch. The performance of current DBMS could
be harnessed if a FDBMS is built on top of them. The article [1] proposes the
idea of taking advantage of the extension mechanism of current object-relational
DBMS in order to create user-defined data types to seamlessly store, query and
manage fuzzy data as native database objects.

Although this kind of FDBMS inherits the desirable features of the host
DBMS, specific indexing mechanisms for fuzzy data would be required to achieve
a significant increase in performance. While there has been much research into
fuzzy database models, there has been less work on indexing mechanisms for ef-
ficiently accessing fuzzy data. Moreover, existing fuzzy data indexing proposals
are hard to implement using the extension mechanisms of current DBMSs as the
proposals generally require specific data structures and algorithms.

This paper proposes an indexing technique for fuzzy numerical data which is
devised to improve the processing performance of a query including a possibility
measured atomic flexible condition. The proposal relies on a B+tree data struc-
ture. As this data structure has not been specifically designed (nor is it optimal)
for fuzzy numerical data indexing, a lower performance than other proposals
which rely on specific data structures should be expected. Nevertheless, it is
also simple and well optimized and virtually available in every current DBMS,
which would reduce implementation, integration and optimization efforts if the
proposed technique is incorporated into a FDBMS from the extension of a crisp
DBMS. In our opinion, the difference in performance is not likely to be signifi-
cant, and would be offset by the reduction in the implementation effort required.
The paper measures and analyzes the performance of the proposal.

This paper introduces the concepts of fuzzy numerical data and possibility mea-
sured atomic flexible conditions which are used throughout this paper in Sect. 2.
In Sect. 3, related work on fuzzy data indexing and the indexing principle, on
which this paper and other considered proposals are based, are described. Section4
presents the considered and proposed indexing techniques. Section 5 studies the
procedure for evaluating the performance of these indexing techniques. Section 6

An Indexing Technique for Fuzzy Numerical Data 189

analyzes the performance results. Finally, Section 7 includes our concluding re-
marks and suggests our future lines of research.

2 Basic Concepts

The proposed indexing technique was described in the previous section as a tech-
nique for fuzzy numerical data to improve the performance of query processing
when a possibility measured atomic flexible condition is involved. This section
defines these concepts in the context of this paper.

A fuzzy numerical value, for the purposes of this paper, is a convex possibility
distribution on an underlying domain in which a linear order relation is defined.

Also for the purposes of this paper, a fuzzy condition is a restriction imposed
on the values of an attribute which contains a fuzzy numerical value for each row.
This restriction is specified as a fuzzy numerical value to which the restricted
attribute value must be equal. A fuzzy condition can be partially fulfilled. When
a fuzzy condition is applied on an attribute of a table containing fuzzy numerical
values, it results in two fuzzy sets of rows: those possibly satisfying the condition
and those necessarily satisfying it.

This paper only focuses on possibility measured conditions since necessity
measured conditions, which can take advantage of a more efficient indexing
schema, warrant specific work. Nevertheless, as the possibility degree is always
greater than or equal to the necessity degree, the proposed indexing schema can
be used as a preselection filter for the resulting rows of a necessity measured
atomic flexible condition.

The possibility degree is therefore called the fulfillment degree of the condi-
tion in the rest of the paper. This degree is computed as shown in (1), where
D(A) is the underlying domain associated to the fuzzy attribute A, ΠA(r) is the
possibility distribution which describes the fuzzy value of the attribute A for the
row r, and μC the membership function defining the fuzzy condition C.

Π(C/r) = sup
d∈D(A)

(ΠA(r)(d) ∧ μC(d)) . (1)

A fuzzy condition is combined with a crisp relational comparator to set a
threshold for its fulfillment degree. This minimum specifies the degree of flexibil-
ity in which the fuzzy condition is applied, from 1 (no flexibility) to 0 (maximum
flexibility). The typical expression for applying a threshold T is Π(C/r) ≥ T ,
except when the threshold is 0. In the latter case, the expression Π(C/r) > T
is applied. The combination of a fuzzy condition with a threshold is called an
atomic flexible condition for the purposes of this paper and is notated 〈C, T 〉.

An example of a query including a possibility measured atomic flexible con-
dition is the following:

SELECT * FROM tbl WHERE FEQ(f,[a,b,c,d])>=T

The previous query is expressed using the SDS [1] query language. It returns
a table containing the rows from tbl table whose value for the attribute f is

190 C.D. Barranco, J.R. Campaña, and J.M. Medina

possibly equal to the fuzzy numerical constant value represented as a trapezoidal
possibility distribution [a, b, c, d], with a fulfillment degree which is greater than
or equal to the threshold value T.

3 Related Work

The seminal paper [2] claims the need for specific indexing techniques for fuzzy
databases, and proposes two indexing principles for flexible querying using possi-
bility and necessity measures on fuzzy attributes described as possibility distribu-
tions. This section introduces briefly the currently proposed indexing techniques
and describes the aforementioned indexing principle for possibility measured
flexible conditions and includes some discussion about it.

3.1 Fuzzy Data Indexing Techniques

Two fuzzy data indexing techniques are proposed in [3,4] and [5,6,7]. The first
technique creates one index structure for each fuzzy predicate associated to a
fuzzy attribute, whereas the second is based on a crisp multidimensional indexing
technique. Unfortunately, these indexing techniques are only applicable when the
number of potential flexible conditions which can be used to build queries is finite
and low, and this is not the case with fuzzy numerical values.

The paper [8] proposes an indexing technique for convex possibility distri-
butions defined on an ordered domain that relies on a crisp multidimensional
indexing method. This technique is suitable for numerical fuzzy data indexing,
on which this paper focuses, and is described in Sect. 4.

3.2 Indexing Principle for Possibility Measured Flexible Conditions

The latter indexing technique and this paper’s proposal are based on the indexing
principles proposed in [2]. The following is a brief introduction to it.

Preselection Criteria. The indexing principle allows the rows which do not
satisfy an atomic flexible condition to be filtered out of a table.

Recalling (1), in the basic case when the threshold of an atomic flexible con-
dition is zero, a row r possibly satisfies a fuzzy condition C if, and only if, the
expression in (2) is satisfied, where supp(A(r)) and supp(C) are the support of
the fuzzy sets A(r) and C. The support of a fuzzy set S on D characterized by
the membership function μS is defined as supp(S) = {d ∈ D, μS(d) > 0}.

Π(C/r) > 0 ⇐⇒ ∃d ∈ D, d ∈ A(r), d ∈ C ⇐⇒ A(r) ∩ C �= ∅ ⇐⇒
supp(A(r)) ∩ supp(C) �= ∅ .

(2)

If the threshold of the atomic flexible condition is greater than zero, (2) can
be reformulated as shown by (3). In this equation A(r)T and CT are T -cuts of

An Indexing Technique for Fuzzy Numerical Data 191

A(r) and C, respectively. A T -cut of a fuzzy set S is defined as ST = {d ∈
D, μS(d) ≥ T }.

Π(C/r) ≥ T ⇐⇒ ∃d ∈ D, μA(r)(d) ≥ T, μC(d) ≥ T ⇐⇒ A(r)T ∩ CT �= ∅ .
(3)

Equation 2 is an effective indexing principle, as every row which satisfies it
must be included in the set of rows satisfying the flexible condition. In order
to apply this principle it is only necessary to index the support of the data
on the restricted attribute in a fast access data structure. Equation 3, on the
other hand, is not an effective indexing principle for flexible conditions with a
threshold greater than zero. The application of the indexing principle requires
every possible T -cut (i.e. for every possible value for T inside [0, 1]) to be indexed.
To overcome this drawback the weakened indexing principle in (4), which only
requires the support of the fuzzy numerical data to be indexed, is defined. As
it is a weakened principle, it is otherwise only useful to preselect the resulting
rows of a query as false positives must be filtered out.

A(r)T ∩ CT �= ∅ ⇒ supp(A(r)) ∩ CT �= ∅ . (4)

A Unified Preselection Criterion. In our opinion, the previous preselection
criteria defined in (2) and (4) can be generalized and reformulated as the unified
preselection criterion shown in (5), where the preselection function ps is defined
in (6). In the latter, base is defined as (7) shows. Henceforth, the interval resulting
from (7) when applied to a flexible condition 〈C, T 〉 will be called the base of
the flexible condition.

〈C, T 〉 ⇒ ps(C/r, T), 0 ≤ T ≤ 1 . (5)

ps(C/r, T) ⇐⇒ supp(A(r)) ∩ base(〈C, T 〉) �= ∅, 0 ≤ T ≤ 1 . (6)

base(〈C, T 〉) =
{

supp(C) , T = 0
CT , 0 < T ≤ 1 . (7)

When the fuzzy data and the fuzzy conditions are modeled using convex
possibility distributions defined over a linearly ordered underlying domain, their
support and every T -cut is an interval. In this case, the preselection criteria can
be reformulated as a conjunction of range conditions as shown in (8). For this
equation, inf(S) and sup(S) correspond, respectively, to the infimum and the
supremum of a crisp set S.

ps(C/r, T) ⇐⇒ sup(supp(A(r))) ≥ inf(base(〈C, T 〉))∧
inf(supp(A(r))) ≤ sup(base(〈C, T 〉)) .

(8)

The previous indexing principle relies on the assumption that each attribute
value and fuzzy condition is represented by a possibility distribution whose sup-
port is a closed interval.

192 C.D. Barranco, J.R. Campaña, and J.M. Medina

4 Considered and Proposed Indexing Techniques

This paper contrasts the performance of two fuzzy data indexing techniques
based on the previously described indexing principle. The following subsections
will describe these techniques.

4.1 Fuzzy Data Indexing with a G-Tree

The article [8] proposes the use of a G-tree [9] for indexing the lower and upper
bounds of the interval representing the support of the possibility distributions
modelling the indexed fuzzy data. A G-tree is a combination of a B-tree and a
grid file for indexing multidimensional data points. This index structure supports
single point queries as well as range queries.

In this approach, an interval corresponds to a two-dimensional data point.
For each interval [l, u], a point (l, u) is inserted in the indexing structure. The
preselection row set of a flexible condition 〈C, T 〉 is obtained by retrieving all
entries in the index satisfying the range query m ≤ x ≤ ubase(〈C,T 〉), lbase(〈C,T 〉) ≤
y ≤ M , where m and M are the minimum and maximum values of the attribute
domain. This range condition is a translation of the preselection criteria of (8) to
the described two-dimensional mapping scheme. For the rest of the paper, this
technique is called GT for the sake of conciseness.

4.2 Fuzzy Data Indexing with B+Trees

The seminal idea of this alternative proposal was depicted in [10]. This paper
reformulates it so that its performance may easily be compared with GT. This
technique takes advantage of classical B+tree indexing structures [11,12] for
indexing the intervals representing the support of the indexed fuzzy numerical
data. Throughout the remainder of this paper this technique is called 2BPT.

2BPT indexes an interval by means of two B+tree structures: one indexes the
values of the lower bound of the indexed intervals, whereas the other indexes the
upper bound values.

The preselection row set for a flexible condition 〈C, T 〉 is calculated by fol-
lowing these steps:

1. The range condition sup(supp(A(r))) ≥ inf(base(〈C, T 〉)) from the preselec-
tion criterion of (8) is applied by using the B+tree that indexes the upper
bound values of data support. The resulting set is named U〈C,T 〉.

2. Likewise, the range condition inf(supp(A(r))) ≤ sup(base(〈C, T 〉)) from (8)
is applied. This range condition will be processed by using the B+tree that
indexes the lower bound values of data support. The resulting set is named
L〈C,T 〉.

3. The preselection row set PS〈C,T 〉 is populated by the rows satisfying the two
previous range conditions. Thus, this set is PS〈C,T 〉 = U〈C,T 〉 ∩ L〈C,T 〉.

It can easily be seen that 2BPT doubles the overhead due to tree traverse
because it uses two trees, and this should lead to lower performance in com-
parison with GT, which only uses one. Otherwise, 2BPT does not suffer from

An Indexing Technique for Fuzzy Numerical Data 193

GT’s performance degradation caused by low bucket usage due to its partition-
ing method, which is extremely sensitive to data distribution because of its fixed
nature. The counteraction of these factors enables the proposed fuzzy indexing
technique to perform in a similar way to the G-tree based technique.

5 Performance Evaluation of Fuzzy Indexing Techniques

Aquantitativeperformanceevaluationmustbecarriedout inorder toassess towhat
extent 2BPT performs like GT. This section describes the index performance
measures used, the influential factors on index performance which have been taken
into account, and the experiments carried out to assess these measures.

5.1 Performance Measures

Index performance is measured as the saving in time when a query is processed
by taking advantage of it, in contrast to the case when the query is processed
using sequential access. Obviously, this time saving is inversely related to the
time required to apply the indexing mechanism, which can be divided into the
time necessary to access index data and the time to process this data.

As the data of a large index is usually stored in the secondary memory, the
time required to access this data is much greater than the time to process it,
and so the data processing time is generally neglected.

The data access time is clearly dependent on the amount of data. Since sec-
ondary storage devices are block-based, the data block is their information trans-
fer unit instead of bytes or bits. In order to achieve an independent performance
measure of the indexing techniques, a performance measure based on the num-
ber of data blocks accessed by the index technique would be appropriate. Any
hardware or OS-dependent techniques for reducing the access time are ignored
because the amount of data, not the time to access it, is taken into account.
Such a performance measure should also consider the cardinality of the query
results, as the amount of data accessed by the index causes a smaller impact
when processing high cardinality queries.

A candidate performance measure that meets the previous consideration is the
index efficiency. This measure is defined as (9) shows, where d is the minimum
number of data blocks in which the result set can be fitted, and i is the number of
blocks of index data accessed by the technique. Since this measure considers the
minimum number of data blocks which fits the query result (rather than the real
number which is dependent on the physical layout of the data due to DBMS and
operating system policies), it therefore corresponds to the worst performance case.

eff =
d

d + i
. (9)

5.2 Index Performance Influential Factors

A large number of factors affect the performance of the indexing techniques
for fuzzy data. On the one hand, there is the set of physical and logical factors

194 C.D. Barranco, J.R. Campaña, and J.M. Medina

related to the classical indexing techniques on which these indexes for fuzzy data
are based. Although these factors could increase index efficiency when tuned,
they are basically hardware or particular case dependent and so studying them
does not provide a good insight into the general performance of the considered
indexing techniques under general conditions. On the other hand, there is a set of
factors related to the indexed data and the processed queries which would affect
index performance. The indexing principle, on which both studied techniques
are based, computes the preselection set as the intersection of two intervals: the
fuzzy data support and the flexible condition base. For this reason, as the extent
of these intervals together with the amount of indexed data grows, the number
of resulting rows is greater and so the impact of the index overhead is smaller.

The extent of the support of a fuzzy set is measured as proposed in (10), where
usupp(S) and lsupp(S) are the upper and lower bounds of the interval representing the
supportof the fuzzysetS and,DM andDm arethemaximumandminimumvaluesof
the domain D on which the fuzzy set S is defined. For the purpose of this paper, the
result of this formula is called the imprecision degree of the fuzzy set S.

impr(S) =
usupp(S) − lsupp(S)

DM − Dm
. (10)

The imprecision factor of the fuzzy set modeling a flexible condition is not
the only one related to the extent of the base of a flexible query. This extent
is reduced as the threshold of the flexible query increases. The speed of this
reduction is determined by the sharpness of the transition of the possibility
distribution from values of low possibility to values of high possibility.

The proposed way to measure the sharpness of fuzzy sets defined by a possi-
bility distribution on an ordered underlying domain is the one defined in (11),
where usupp(S) and lsupp(S) are the upper and lower bounds of the interval rep-
resenting the support of the fuzzy set S, core(S) = {d ∈ D, μS(d) = 1} is the
core of a fuzzy set, and ucore(S) and lcore(S) are the upper and lower bounds of
the interval representing the core of the fuzzy set S. For the purposes of this
paper, this value is called the fuzziness degree of the fuzzy set S.

fuzz(S) =
ucore(S) − lcore(S)

usupp(S) − lsupp(S)
. (11)

To sum up, five influential factors on the fuzzy index performance have been
identified. These are the amount of indexed data, the imprecision of the fuzzy
data and the imprecision, the fuzziness and the threshold of flexible queries.

5.3 Experiments

The performance of the two compared fuzzy data indexing techniques has been
assessed taking into account different data and query scenarios.

Different data sets have been employed to create different data scenarios. In
order to evaluate the influence of the amount of indexed data, the cardinality
of data sets has been fixed to 6,250, 12,500, 25,000, 50,000 and 100,000 data
elements. The data of each one is randomly generated using a uniform distributed

An Indexing Technique for Fuzzy Numerical Data 195

random generator in the interval [−1000000, 1000000] and ensuring that each
data element has the same fixed imprecision and fuzziness degree for the entire
set. 110 data sets for each cardinality have been evaluated, each with a fixed
imprecision degree ranging from 0 to 0.9 and a fixed fuzziness degree ranging
from 0 to 1, at 0.1 increments. The imprecision degree 1 is ignored because in
this case all data elements in the data set are the same. A total 550 data sets
comprising a total 21,312,500 random fuzzy data elements are considered in this
experiment.

In the same way, different flexible query scenarios have been considered. Each
data set has been queried using randomly generated atomic flexible conditions.
In order to ensure that the influential parameter spectrum has been equally
considered, the possibility distributions modeling the applied flexible condition
are generated thereby ensuring fixed imprecision and fuzziness degrees. Similarly,
the spectrum of threshold values is explored by fixing threshold values ranging
from 0 to 1 at 0.1 steps. For each fixed combination of imprecision, fuzziness
degree and threshold, 20 atomic fuzzy conditions are randomly generated. A
total of 26,620 random queries are applied to each data set, which results in an
evaluation of 14,641,000 queries.

The experiment is isolated from physical and logical factors relating to the
underlying indexing techniques by fixing the same factor values for both indexing
techniques. The values for these factors are chosen to minimize the row size,
which generates worse case performance measures.

6 Results

Our results yield a global approximation of the efficiency of the indexing techniques
of 0.42 with a 0.9 standard deviation for 2BPT, and 0.43 with a 0.6 standard
deviation for GT. This means that there is a difference of approximately 2%.

In order to assess the importance of the considered influential factors, a deeper
analysis of the results has been conducted. The first considered factor is the data-
base size which results in larger index structures and may result in an increase
in the cardinality of the results. Figure 1 shows the mean efficiency of the com-
pared techniques for different database sizes. The figure shows that even though
GT is slightly more efficient than 2BPT, the performance of the 2BPT tech-
nique is quite similar. The fluctuation of the efficiency for GT is related with the
fluctuation of block usage in its indexing data structure as will be shown below.

Another important factor for index efficiency is the imprecision degree of
the indexed data. Figure 2 shows the mean efficiency measured for different
imprecision degrees of the considered data sets. It can be seen that the efficiency
of 2BPT is similar, and in some cases greater, than of GT for data sets comprising
highly imprecise data. The efficiency is much different for data sets composed of
slightly imprecise data, especially when the data sets consist exclusively of crisp
data, which is a very extreme case of a fuzzy database. Once again, fluctuation
of efficiency for GT can be observed.

196 C.D. Barranco, J.R. Campaña, and J.M. Medina

Fig. 1. Comparison of efficiency under different database sizes

Fig. 2. Comparison of efficiency under different data imprecision degrees

Figure 3 shows the aforementioned imprecision fluctuation of GT in contrast
with the stability of 2BPT. The block usage of GT is strongly data dependent, as
this indexing technique does not ensure minimum block usage. In contrast, 2BPT
ensures a minimum block usage of 0.5, which results in an average block usage of
0.73, whereas an average block usage of 0.52 is measured for GT. Figure 4 shows
a fluctuation in block usage in the case of GT (with its subsequent fluctuation
in efficiency) in contrast to the stability of 2BPT in block usage and therefore
in its efficiency.

With regards to the set of influential query factors, Figure 5 shows the relation
between query imprecision and index efficiency. It can be seen that 2BPT is more

An Indexing Technique for Fuzzy Numerical Data 197

Fig. 3. Comparison of efficiency stability under different database sizes and data im-
precision degrees

Fig. 4. Comparison of block usage stability under different database sizes and data
imprecision degrees

198 C.D. Barranco, J.R. Campaña, and J.M. Medina

Fig. 5. Comparison of efficiency under different query imprecision degrees

Fig. 6. Comparison of efficiency and different query fuzzyness and threshold degrees

affected by this factor than GT. Nevertheless, 2BPT is equally efficient with the
exception of very low imprecision queries and crisp ones in particular.

Query fuzziness is another considered factor in index efficiency. A small in-
fluence of this factor for 2BPT and a negligible influence for GT have been
observed. Similarly, the results show that the query threshold has a slight effect
on the efficiency of 2BPT, and practically none on the efficiency of GT. Figure 6
shows a graphical representation of the influence of these factors.

7 Concluding Remarks and Future Work

This paper proposes an indexing technique which improves the performance of
query processing when it involves a possibility measured atomic flexible condition
which is used to query fuzzy numerical data. Experimental results show that the
mean performance of 2BPT is similar to GT. In addition, results reveal that

An Indexing Technique for Fuzzy Numerical Data 199

2BPT is a more stable indexing method than GT since it is extremely sensitive
to data distribution issues that lead to a low block usage.

The insignificant difference of efficiency observed and the enormous difference
of implementation effort of GT in contrast with 2BPT makes the latter a good
candidate to be implemented in an FDBMS, particularly when it is built as an
extension of a classical DBMS where the B+tree indexing technique is available.
2BPT offers a practically immediate indexing mechanism (with a low implemen-
tation cost) for fuzzy numerical data with an almost similar index efficiency,
whereas GT requires a specific data structure and algorithm implementation.

This paper focuses on possibility measured atomic flexible conditions. Future
work would focus on providing and studying indexing mechanisms for queries
involving necessity measured conditions, which should be aimed at reducing
implementation costs as this proposal does. Additionally, further research effort
should be spent on indexing mechanisms for other imprecis and uncertain data
types, such as scalar fuzzy data, fuzzy objects and fuzzy collections.

Acknowledgment

This work has been partially supported by the Ministry of Education and Cul-
ture of Spain (“Ministerio de Educación y Cultura”) and the European Social
Fund under the grant TIC2003–08687–C02–2, and by the Council for Innova-
tion, Science and Corporations of Andalusia (Spain) (“Consejeŕıa de Innovación
Ciencia y Empresa”) under the grant TIC–1570.

References

1. Cubero, J.C., Maŕın, N., Medina, J.M., Pons, O., Vila, M.A.: Fuzzy object man-
agement in an object-relational framework. In: Proceedings of X Intl. Conf. on
Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems (IPMU), pp. 1767–1774 (2004)

2. Bosc, P., Galibourg, M.: Indexing principles for a fuzzy data base. Information
Systems 14(6), 493–499 (1989)

3. Bosc, P., Pivert, O.: Fuzzy querying in conventional databases. In: Fuzzy logic for
the management of uncertainty, pp. 645–671. John Wiley & Sons, Inc. Chichester
(1992)

4. Petry, F.E., Bosc, P.: Fuzzy databases: principles and applications. International
Series in Intelligent Technologies. Kluwer Academic Publishers, Dordrecht (1996)

5. Yazici, A., Cibiceli, D.: An index structure for fuzzy databases. In: Proceedings of
the Fifth IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1375–1381
(1996)

6. Yazici, A., Cibiceli, D.: An access structure for similarity-based fuzzy databases.
Information Sciences 115(1-4), 137–163 (1999)

7. Yazici, A., Ince, C., Koyuncu, M.: An indexing technique for similarity-based fuzzy
object-oriented data model. In: Christiansen, H., Hacid, M.-S., Andreasen, T.,
Larsen, H.L. (eds.) FQAS 2004. LNCS (LNAI), vol. 3055, pp. 334–347. Springer,
Heidelberg (2004)

200 C.D. Barranco, J.R. Campaña, and J.M. Medina

8. Liu, C., Ouksel, A., Sistla, P., Wu, J., Yu, C., Rishe, N.: Performance evaluation of
g-tree and its application in fuzzy databases. In: CIKM ’96: Proceedings of the fifth
international conference on Information and knowledge management, pp. 235–242.
ACM Press, New York (1996)

9. Kumar, A.: G-tree: a new data structure for organizing multidimensional data.
IEEE Transactions on Knowledge and Data Engineering 6(2), 341–347 (1994)

10. Barranco, C.D., Campaña, J.R., Medina, J.M.: On an indexing mechanism for
imprecise numerical data for fuzzy object relational database management systems.
In: Proceedings of 11th Int.l Conf. on Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU), vol. 2, pp. 2205–2212 (2006)

11. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dexes. Acta Informatica 1(3), 173–189 (1972)

12. Comer, D.: Ubiquitous b-tree. ACM Comput. Surv. 11(2), 121–137 (1979)

Combining Uncertain Outputs from Multiple

Ontology Matchers

Ying Wang, Weiru Liu, and David Bell

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast, BT7 1NN, UK

{ywang14,w.liu,da.bell}@qub.ac.uk

Abstract. An ontology matching method (or a matcher) aims at match-
ing every entity (or concept) in one ontology to the most suitable entity
(or entities) in another ontology. Usually it is almost impossible to find
a perfect match in the second ontology for every entity in the first ontol-
ogy, so a matcher generally returns a set of possible matches with some
weights (uncertainty) attached to each pair of match. In order to improve
a matching result, several matchers can be used and the matched results
from these matchers are combined with suitable approaches. In this pa-
per, we first propose two new matchers among three matchers we use.
We then address the need of dealing with uncertainties in mapping by
investigating how some uncertainty reasoning frameworks can be used to
combine matching results. We apply both the Dempster Shafer theory of
evidence (DS theory) and Possibility Theory to merge the results com-
puted by different matchers. Our experimental results and comparisons
with related work indicate that integrating these theories to deal with
uncertain ontology matching is a promising way to improve the overall
matching results.

1 Introduction

Ontology mapping (or matching) is a very important task in the Semantic Web
and it has attracted a large amount of effort (e.g., [1,2,3,4,5,6]). Good surveys
on recent developments of ontology mapping can be found in [7,8]. Most of
the earlier work in this area did not consider uncertainty or imprecision in a
mapping, however, in most cases, the mappings produced are imprecise and
uncertain. For instance, most automatic ontology mapping tools use heuristics
or machine-learning techniques, which are imprecise by their very nature. Even
experts are sometimes unsure about the exact matches between concepts and
typically assign some certainty rating to a match [9], so a matching result is
often associated with a weight which can express how close the two entities are
as a match. The need to consider the uncertainty in a mapping began to emerge
in a number of papers (e.g., [10,11,12,13,14]) in which Dempster Shafer theory,
Bayesian Networks, and rough sets theory are used to deal with different aspects
of mapping or ontology descriptions (e.g., concept subsumptions).

In this paper, we further investigate how to combine the weights associated
with matchers. We first propose two new matchers, a linguistic-based matcher

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 201–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

202 Y. Wang, W. Liu, and D. Bell

which extends Lin’s approach [15] by considering the path length of two words
in the WordNet as a punishment coefficient to adjust a similarity measure from
Lin’s approach, and a structure-based matcher which utilizes the similarity mea-
sures between two words (w1 and w2), a father node of w1 with w2 and all the
child nodes of w1 with w2. This matcher takes both the semantics and the struc-
ture of an ontology into account. We then discuss how the mapping results from
different matchers can be combined. We consider both the Dempster Shafer the-
ory of evidence (DS theory) and Possibility Theory and apply them to combine
the outcomes obtained by three different and independent matchers (the above
two plus the standard edit distance-based matcher).

Each matcher returns a match with a weight. We interpret these weights in
terms of both DS theory and Possibility Theory and then use their corresponding
merging operators to merge the matched results. Our study shows that these two
theories are suitable for different situations and using both theories significantly
improves the matching results in terms of precision and recall, as illustrated
in our experiments. Therefore, integrating uncertainty merging methods into
ontology mapping is promising to improve the quality of mapping.

The rest of the paper is organized as follows. Section 2 introduces the basic
concepts. Section 3 describes the main ideas in our approach and the mapping
matchers used. Section 4 gives the background information about the experi-
ments and the results. Section 5 discusses related work. Section 6 concludes the
paper with discussions on future research.

2 Background

2.1 Ontologies and Ontology Mapping

There are many definitions about ontologies and a commonly used one is “An
ontology is a formal, explicit specification of a shared conceptualization.” [16].
We use the following notation to formally define an ontology. An ontology O is
defined as a tuple: O = (C, R, F, A, I) where C is a set of concepts, such as cars
or persons; R is a set of relations, such as mother−of(x, y) denotes that y is x’s
mother; F is a set of functions; A is a set of axioms and I is a set of instances,
namely objects appearing in concepts in C, such as Alan. In this paper an entity
of an ontology is defined as follows: eij are entities of Oi with eij ∈ {Ci, Ri, Ii},
and entity index j ∈ N [1].

The overall objective of ontology mapping can be described as in [6]: given
two ontologyies O1 and O2, for each entity e (or element, concept) in ontology
O1 finding the corresponding element(s) in ontology O2, which has/have the
same or similar semantics with e, and vice versa. Ontology mapping functions
and some relative functions that will be used are:

– map Oi1 → Oi2 : representing the mapping function between the two ontolo-
gies

– map(ei1j1) = ei2j2 : representing the mapping of two entities

Combining Uncertain Outputs from Multiple Ontology Matchers 203

– sim(ei1j1 , ei2j2): representing the degree of similarity between two entities
computed by a matcher

– sim(ef
i1j1

, ei2j2): representing the degree of similarity between father node
(ef

i1j1
) of ei1j1 and ei2j2 computed by a matcher

– sim(ec
i1j1

, ei2j2): representing the degree of similarity between a child node
(ec

i1j1
) of ei1j1 and ei2j2 computed by a matcher

2.2 Uncertainty Theories

Uncertainty is pervasive in information. Uncertain information is usually mod-
eled numerically using Probability Theory, Possibility Theory, or DS theory.

The Dempster-Shafer theory of evidence: DS theory defines mass func-
tions on frame of discernment denoted Θ = {θ1, θ2, . . . , θn} which contains mu-
tually exclusive and exhaustive possible answers to a question. A mass function
assigns some positive values in [0, 1] to some subsets of Θ. If a mass function
gives a positive value to a subset A, then this value represents the probability
mass of an agent’s belief that the true value of the answer is exactly in A ex-
cluding any of its subsets. Since A can be a subset with more than one element,
DS theory can be regarded as a generalization of probability theory in which
a probability value has to be assigned to individual elements. When multiple
mass functions are provided from independent sources on the same frame of
discernment, the combined impact of these mass functions is obtained using a
mathematical formula called Dempster’s combination rule. DS theory provides
a flexible way to model uncertain information and a convenient mechanism to
combine two or more distinct pieces of evidence [17,18].

Possibility Theory: Possibility Theory was developed out of Zadeh’s fuzzy
set theory [19], it is a simple yet powerful theory for modeling and reasoning
with uncertain and imprecise knowledge or information. At the semantic level, a
basic function in Possibility Theory [20] is a possibility distribution denoted as π
which assigns each possible word in the frame of discernment Ω - a value in [0, 1]
(or a set of graded values). From a possibility distribution, two measures are
derived, a possibility measure (demoted as Π) and a necessity measure (denoted
as N). The former estimates to what extent the true event is believed to be
in the subset and the latter evaluates the degree of necessity that the subset is
true. In terms of merging, there are two main families of merging operators for
merging possibility distributions, namely, conjunctive and disjunctive. A typical
conjunctive merging operation is the minimum (min) and a typical disjunctive
one is the maximum (max).

3 Ontology Matching

Many mapping approaches make use of different aspects of information to dis-
cover mappings between ontologies. In this paper, we design our mapping method
by utilizing three different matchers, two of which are name-based matchers and
one is a structure-based matcher.

204 Y. Wang, W. Liu, and D. Bell

3.1 Name-Based Matchers

They are often used to match names and name descriptions of ontology enti-
ties. The names of ontology entities are composed of several words, so first we
adopt two different matchers based on name-based method: Edit distance-based
matcher and Linguistic-based matcher to compute similarity of two words, then
we exploit a method to compute a similarity of the names of ontology entities
based on this.

Edit distance-based matcher: Edit distance is a simply implemented method
to compare the degree of similarity of two words. It takes two strings and com-
putes the edit distance between these two strings. That is, the number of in-
sertions, deletions, and substitutions of characters required to transform one
string into another. For example, the edit distance between test and tent is
1. In this paper, we develop an edit distance-based matcher which uses edit
distance method to compute the similarity between two words. The similarity
measurement between words w1 and w2 is defined as:

simed(w1, w2) =
1

1 + ed(w1, w2)
(1)

where ed(w1, w2) denotes the edit distance of two words. We choose the form
stated above because it returns a similarity value in [0,1].

Linguistic-based matcher: Linguistic-based matcher uses common knowledge
or domain specific thesauri to match words and this kind of matchers has been
used in many papers [21,22]. In this paper, we use an electronic lexicon Word-
Net for calculating the similarity values between words. WordNet is a lexical
database developed by Princeton University which is now commonly viewed as
an ontology for natural language concepts. It is organized into taxonomic hi-
erarchies. Nouns, verbs, adjectives and adverbs are grouped into synonym sets
(synsets), and the synsets are organized into senses (i.e., corresponding to dif-
ferent meanings of the same concept). The synsets are related to other synsets
at the higher or lower levels in the hierarchy by different types of relationships.
The most common relationships are the Hyponym/Hypernym (i.e., Is-A rela-
tionships) and the Meronym/Holonym (i.e., Part-Of relationships) [23]. In this
paper, we only use the Hyponym/Hypernym relationships from WordNet.

Lin in [15] proposed a probabilistic model which depends on corpus statis-
tics to calculate the similarity values between words using the WordNet. This
method is based on statistical analysis of corpora, so it considers the probability
of word1 (sense1) and word2 (sense2) and their most specific common subsumer
lso(w1, w2) appearing in the general corpus. However, since the words in given
ontologies are usually application specific, this general corpus statistics obtained
using the WordNet can not reflect the real possibility of domain-specific words.
To improve Lin’s method, we propose to calculate a punishment coefficient ac-
cording to the ideas in the path length method [24]. The path length method
regards WordNet as a graph and measures the similarity between two concepts

Combining Uncertain Outputs from Multiple Ontology Matchers 205

(words) by identifying the minimum number of edges linking the concepts. It
provides a simple approach to calculating similarity values and does not suffer
from the disadvantage that Lin’s method does, so we integrate Lin’s method and
a punishment coefficient to calculate the similarity values between words. First,
we outline Lin’s approach. The main formulas in this method are as follows:

simLin(s1, s2) =
2 · log(p(s1, s2))

log(p(s1)) + log(p(s2))
(2)

p(s) =
freq(s)

N
(3)

freq(s) =
∑

n∈words(s)

count(n) (4)

where: p(s1, s2) is the probability that the same hypernym of sense s1 and sense
s2 occurs, freq(s) denotes the word counts in sense s, p(s) expresses the proba-
bility that sense s occurs in some synset and N is the total number of words in
WordNet.

The punishment coefficient which is based on the theory of path length of
WordNet is denoted as: 1

2αl. Its meaning is explained as follows: α is a constant
between 0 and 1 and is used to adjust the decrease of the degree of similarity
between two senses when the path length between them is deepened and l ex-
presses the longest distance either sense s1 or sense s2 passes by in a hierarchical
hypernym structure. Because sense s1 and sense s2 occupy one of the common
branches, this value has to be halved.

Therefore in our method, the similarity value calculated by Lin’s method is
adjusted with this coefficient to reflect more accurate degree between two senses
s1 and s2. The revised calculation is:

simnew(s1, s2) =
2 · log(p(s1, s2))

log(p(s1)) + log(p(s2))
• 1

2
αl (5)

Word w1 and word w2 may have many senses, we use s(w1) and s(w2) to
denote the sets of senses for word w1 and word w2 respectively as s(w1) =
{s1i | i = 1, 2, ..., m}, s(w2) = {s1j | j = 1, 2, ..., n}. where the numbers of senses
that word w1 and word w2 contain are m and n. We decide to choose the max-
imum similarity value between two words w1 and w2, so the similarity between
words is:

sim(w1, w2) = max(simnew(s1i, s2j)), 1 ≤ i ≤ m, 1 ≤ j ≤ n (6)

Calculating similarities of names of ontology entities: We can compute
similarities between pairs of words according to two matchers stated above,
next we calculate similarities of names of ontology entities based on the re-
sults obtained from the two matchers separately. The names of ontology entities
are composed of several words, for instance, PersonList, actually is Person
and List. We preprocess these kinds of names before we start to calculate the

206 Y. Wang, W. Liu, and D. Bell

similarities of these names. We split a phrase (name of entity) and put the
individual words into a set like set = {Person, List} and then we deal with
these words as follows:

1. Calculate similarities of every pair of words within both sets by using one of
the matchers (Edit distance-based matcher or Linguistic-based matcher).

2. For each word in one set, compute similarity values between this word and
every word from the other set and then pick out the largest similarity value.
Finally attach this value to the word. Repeat this step until all of the words
in the two sets have their own values.

3. Compute the final degree of similarity of names using the sum of similarity
values of all words from two sets divided by the total counts of all words.

For example, we calculate similarity of two phrases: PersonName and Person-
Sex. First, we split these two phrases into two sets: set1 = {Person, Name},
set2 = {Person, Sex}. Second, we calculate similarity values of each pair from
two sets, such as the similarity value between Person in set1 and Person in
set2, the similarity value between Person in set1 and Sex in set2, then choose
the largest value from these two values and attach this value to Person in set1.
Repeat this step until Name, Person (in set2) and Sex have their own largest
value. Finally, the sum of these four similarity values is divided by the total
cardinality (i.e. four) of these words.

3.2 Structure-Based Matcher

We regard each ontology as a model of tree, and in terms of tree structure
we propose a Structure-based Matcher which determines the similarity between
two nodes (entities) based on the similarities of their father nodes and children
nodes. Such similarity values are obtained using a path length method based on
WordNet, so we first introduce the method. We take WordNet as a hierarchical
structure and the idea of the path length method is to find the sum of the
shortest path passing from two concepts (words) to their common hypernym.
We measure the similarity between two words by using the inverse of the sum
length of the shortest paths:

simpath(w1, w2) =
1

llength + rlength
(7)

where: llength is the shortest path from word node w1 to its common hypernym
with word node w2 and rlength denotes the shortest path from w2 to its common
hypernym with w1. After calculating similarities between words, we can obtain
similarities between names of entities.

Given twonames of entitieswhichbelong to different ontologies,we can calculate
the values of simpath(ei1j1 , ei2j2), simpath(ef

i1j1
, ei2j2) and simpath(ec

i1j1
, ei2j2).

Then our Structure-based matcher is defined to calculate similarities between two
entities utilizing these values with suitable weights: α1, α2 and α3

Combining Uncertain Outputs from Multiple Ontology Matchers 207

simstr(ei1j1 , ei2j2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 ∗ simpath(ei1j1 , ei2j2) + α2 ∗ simpath(ef
i1j1

, ei2j2)+
α3 ∗

∑
simpath(ec

i1j1
, ei2j2)

∃father node and children nodes;
α1 ∗ simpath(ei1j1 , ei2j2) + α2 ∗ simpath(ef

i1j1
, ei2j2)

∃father node and � ∃children nodes;
α1 ∗ simpath(ei1j1 , ei2j2) + α3 ∗

∑
simpath(ec

i1j1 , ei2j2)
∃children nodes and � ∃father nodes;
α1 ∗ simpath(ei1j1 , ei2j2)
� ∃father node and children nodes.

(8)
where α1,α2,α3 separately denotes different weights distributed to similarities
between ei1j1 and ei2j2 , the father node of ei1j1 and ei2j2 , a child node of ei1j1

and ei2j2 . In formula (8),
∑

αi = 1. We assign different values to these three
weights as follows

⎧⎪⎪⎨
⎪⎪⎩

α1 = 0.5, α2 = 0.3, α3 = 0.2 ∃father node and children nodes;
α1 = 0.5, α2 = 0.5 ∃father node and � ∃children nodes;
α1 = 0.5, α3 = 0.5 ∃children nodes and � ∃father node;
α1 = 1, � ∃father node and children nodes.

3.3 Combining Mapping Results from Three Matchers

Using Dempster Shafer Theory of Evidence to combine the three
matchers: We deploy DS theory to model and combine the outputs from the
three ontology matchers described above in Sections 3.1 and 3.2.

Definition 1 (Frame of Discernment). A set is called a frame of discern-
ment (or simply a frame) if it contains mutually exclusive and exhaustive possible
answers to a question. The set is usually denoted as Θ.

Definition 2 (Mass Function). A function m: is called a mass function on
frame Θ if it satisfies the following two conditions:

1. m(∅) = 0
2.

∑
A m(A) = 1

where ∅ is the empty set and A is a subset of Θ.

Definition 3 (Dempster’s Combination Rule). If m1 and m2 are two mass
functions on frame Θ from distinct sources, then m = m1 ⊕ m2 is the resulting
mass function after combing m1 and m2.

In terms of ontology mapping, let O1 and O2 be two ontologies. For an entity
ei1j1 in O1, we get its mappings with all the names in O2, and the frame of
discernment is Θ = ei1j1 × O2.

Based on this frame, we have three mass functions m1, m2 and m3 representing
the normalized similarity values which are in [0,1] of all the possible mappings

208 Y. Wang, W. Liu, and D. Bell

between ei1j1 and all the entities in O2 form the three matchers respectively.
In this situation, we interpret the similarity value between a pair of names as
the mass value assigned to this pair, an element of the frame. After combining
these three mass functions using Dempster’s combination rule, a unified mapping
result is obtained taking into account the result from each matcher.

Using Possibility Theory to combine the three matchers: Possibility
theory and the body of aggregation operations from fuzzy set theory provide
some tools to address the problem of merging information coming from several
sources. In possibility theory, a possibility distribution π1(u) : Θ → [0, 1] assigns
each element in Θ a value in [0, 1] representing the possibility that this element
is the true world, where Θ is a frame of discernment. There are two families
of merging operators to combine two possibility distributions: the conjunctive
operators (e.g., minimum operator) and the disjunctive operators (e.g., the max-
imum operator) [25]. We use the normalized minimum operator to combine two
sets of matching data.

Definition 4. Let π1 and π2 be two possibility distributions and π be the com-
bined distribution with minimum operator, then

∀ω, π(ω) = min(π1(ω), π2(ω)) (9)

Definition 5. Let the degree of consistency of π1 and π2 be defined as

h(π1, π2) = supω∈Ωπ1(ω) ∗ π2(ω) = max(min(π1(ω), π2(ω))) (10)

When using this theory, we interpret the similarity values as degrees of possibility
of element in a frame - a frame of the form ei1j1 × O2, where ei1j1 is an entity
in O1. From the three matchers, we get three possibility distributions π1, π2
and π3 and we combine them using the minimum operator as showed above. An
advantage of using this theory is that we do not have the restriction that the two
pieces of information must come from distinct sources as required by Dempster’s
combination rule.

4 Experiments

4.1 Dataset

We have proposed two different ways to combine mapping results from three
matchers. We now present the experimental results that demonstrate the perfor-
mance of our matchers and combination methods on the OAEI 2006 Benchmark
Tests. In our experiments, we only focus on classes and properties in ontologies.

Generally, almost all the benchmark tests in OAEI 2006 describe Bibliographic
references except Test 102 which is about wine and they can be divided into five
groups [26] in terms of their characteristics: Test 101-104, Test 201-210, Test
221-247, Test 248-266 and Test 301-304. A brief description is given below.

Combining Uncertain Outputs from Multiple Ontology Matchers 209

– Test 101-104: These tests contain classes and properties with either exactly
the same or totally different names.

– Test 201-210: The tests in this group change some linguistic features com-
pared to Test 101-104. For example, some of the ontologies in this group
have no comments or names, names of some ontology have been replaced
with synonyms.

– Test 221-247: The structures of the ontologies have been changed but the
linguistic features have been maintained.

– Test 248-266: Both the structures and names of ontologies have been
changed and the tests in this group are the most difficult cases in all the
benchmark tests.

– Test 301-304: Four real-life ontologies about BibTeX.

In our evaluation, we choose Test 101, Test 103, Test 104, Test 205, Test
223 and Test 302 of OAEI 2006 Benchmark Tests and take Test 101 as the
reference ontology. All the other ontologies are compared with Test 101. The
reason for selecting them as test cases are:

1. They are well known in the field of ontology mapping.
2. They have normal classes, object properties and datatype properties hierar-

chy, so we can obtain regular results by using these three matchers.
3. Test 101-104 have similar structures and names of entities, while the struc-

tures and names of Test 205, 223, 302 are different from the reference on-
tology, i.e. Test 101, so we can use these datasets to test performance of
matchers and combination methods.

For Test 101, Test 103, Test 104 and Test 205 each test contains 33 classes and
64 properties; Test 223 has 66 classes and 65 properties; Test 302 has 13 classes
and 30 properties.

4.2 Experimental Evaluation Metrics

To evaluate the performance of mapping, like many other papers that use re-
trieval metrics, Precision, Recall and f-measure to measure a mapping method,
we use these measures to evaluate our methods as well. Precision describes
the number of correctly identified mappings versus the number of all mappings
discovered by the three approaches. Recall measures the number of correctly
identified mappings versus the number of possible existing mappings discovered
by hand. f-measure is defined as a combination of the Precision and Recall. Its
score is in the range [0, 1].

precision =
|mm ∩ ma|

|ma| (11)

recall =
|mm ∩ ma|

|mm| (12)

f − measure =
2 ∗ precision ∗ recall

precision + recall
(13)

210 Y. Wang, W. Liu, and D. Bell

where mm and ma represent the mappings discovered by hand and by a method
proposed in our paper respectively.

4.3 Single Matchers vs. Combination of Matchers

Figure 1 shows the f-measure of the three single matchers and combination
methods on the five datasets, which includes Test 101 vs Test 103, Test 101
vs Test 104, Test 101 vs Test 205, Test 101 vs Test 223, Test 101 vs Test 302.
Each single matcher is marked as follows: Ed for Edit distance-based matcher; L
for Linguistic-base matcher; S for Structure-based matcher ; DS for Dempster’s
combination rule; PT for the minimum merging operator in Possibility Theory.

Fig. 1. Single matchers vs. combination methods

From Figure 1, we can see that almost for every group of tests, the f-measures
of results using Dempster’s combination rule is better than or equivalent to that
of a single matcher, the minimum operator of Possibility Theory performs well
except for Test101 vs Test 205, which has the results lower than other single
matchers results. For Test 101 vs Test 103, Test 101 vs Test 104 and Test 101
vs Test 223, Edit distance-based matcher obtains better results than the other
two single matchers because these three groups of tests have almost the same
names of entities. For Test 101 vs Test 205 and Test 101 vs Test 302, Linguistic-
based matcher gets better results than the other two single matchers because
Linguistic-based matcher can obtain good results for those different names which
have the same meaning.

4.4 Comparison of Systems Utilizing Different Matchers

We use the combination mechanisms in both DS theory and Possibility The-
ory to combine the matching results from our three matchers. We now compare
the outputs from the two combination rules to the results obtained from falcon,
ola and ctxMatch2-1 algorithms which were used in the EON 2005 Ontology

Combining Uncertain Outputs from Multiple Ontology Matchers 211

Table 1. Comparison of Experiment Results

Datasets DS PT falcon ola ctxMatch2-1
p r f p r f p r f p r f p r f

101-103 100 98.97 99.48 100 98.97 99.48 100 100 100 100 100 100 87 34 48

101-104 100 98.97 99.48 100 98.97 99.48 100 100 100 100 100 100 87 34 48.89

101-205 46.88 46.39 46.63 30.29 29.90 30.09 88 87 87.5 43 42 42.5 36 4 7.2

101-223 100 98.97 99.48 100 98.97 99.48 100 100 100 100 100 100 83 31 45.14

101-302 45.83 45.83 45.83 43.75 43.75 43.75 97 67 79.26 37 33 34.89 0 0 0

Alignment Contest 1, and the details are given in Table 1. In Table 1, p for
precision, r for recall, f for f-measure, DS for Dempster’s combination rule, and
PT for the minimum merging operator in Possibility Theory. Overall, we believe
that the two combination rules we use are very satisfactory, with Dempster’s
combination rule outperforming the minimum rule in Possibility Theory slightly
for pair 101 vs 205. Although on every pair of ontologies, our results of two
combination rules are less ideal than the falcon system, however, our results are
better than ola system on two out of five pairs of matching, and the results
are much better than the ctxMatch2-1 system. The performances of these five
different approaches are all very good for Test 101 vs 103 and vs 104 and Test
101 vs Test 223, but none of the systems performed exceptionally well for Test
205 and Test 302. Below we analyze the reasons for this.

For Test 101 vs 103 and vs 104, the two ontologies to be matched contain
classes and properties with exactly the same names and structures, so every
system that deploys the computation of similarities of names of entities can get
good results. Test 223 has more classes than Test 101 to 104 and the structure of
its ontology is changed although the linguistic features remains the same and its
class names are generally the same as the reference ontology. These similarities in
the linguistic features and class names enable these matching systems to perform
well.

Test 205 describes the same kind of information as other ontologies, i.e. pub-
lications, however, the class names in it are very different from those in the
reference ontology Test 101. Even though we employed three matchers to calcu-
late similarities between names, the results are still not very satisfactory. Test
302 is a real-life BibTeX ontology which also includes different words compared
to Test 101 describing publications so the results are similar to Test 205, so we
do not get good results from these two datasets.

Our linguistic-based matcher does not consider the structures between words
and assumes that all the words are equally important. However, different words
in a name have different degrees of importance, therefore, this is one aspect that
we will need to improve further. In our structure-based matcher, we adopt the
idea of assigning different weights to different aspects when matching two words.
The weights are predefined but we think these could be learned in our next step
of research.
1 http://oaei.ontologymatching.org/2005/results/

212 Y. Wang, W. Liu, and D. Bell

5 Related Work

In a mapping process, if only syntactic or element-level matching is performed,
as in the case for name matching without the use of a thesaurus, inaccura-
cies can occur [27]. This affects the results of mapping, but so far only a few
ontology mapping methods have considered dealing with the uncertainty
issue.

Nagy et al [10] and Besana [11] both recognized the importance of uncertainty
in ontology mapping, and both of them used DS theory to assist mapping. They
believed that different matchers have uncertainties associated with them, so they
combine the results obtained from different matchers using DS theory and it is
possible to give a uniform interpretation, consistent with the uncertainty inher-
ited in the problem. Although Nagy et al utilized Dempster’s combination rule
into ontology mapping, it is not clear how they applied the theory. For example,
they did not explicitly define a Frame of Discernment. Besana [11] exploited
DS theory into a more complicated process. He considers not only combining
ontology matching results using DS theory, but also uncertain mappings using
DS theory.

In [12] a Bayesian Networks based approach was designed and a system called
BayesOWL was proposed. In this approach, the source and target ontologies are
first translated into Bayesian networks (BN); the concept mapping between the
two ontologies are treated as evidential reasoning between the two translated
BNs. Probabilities, which are required for constructing conditional probability
tables (CPT) during translation and for measuring semantic similarity during
mapping, are learned using text classification techniques, where each concept
in an ontology is associated with a set of semantically relevant text documents,
which are obtained by ontology guided web mining. This approach used Bayesian
Networks, but the networks are sophisticated and it is not easy to construct them
from an ontology expressed by OWL.

Holi and Hyvönen [13] observed that in the real world, concepts are not al-
ways subsumed by each other, and cannot always be organized in a crisp sub-
sumption hierarchies. Many concepts only partly overlap each other, so they
present a new probabilistic method to model conceptual overlap in taxonomies,
and an algorithm to compute the overlap between a selected concept and other
concepts of a taxonomy by using Bayesian networks. This method focused on
the uncertainty of description languages of ontologies. Although it is not re-
lated to the mapping, it can be used as a measure of semantic distance between
concepts.

Zhao et al [14] proposed a novel similarity measure method based on rough
set theory and formal concept analysis (RFCA) to realize ontology mapping
tasks. The authors combined rough set theory into the similarity computation
formula of formal concept analysis (FCA). Although the authors did not consider
uncertainty in the process of mapping explicitly, they applied the rough set
theory to measure the similarities of concepts of ontologies. So, in some case,
they did consider the uncertainty problem.

Combining Uncertain Outputs from Multiple Ontology Matchers 213

6 Conclusion

In this paper, we utilize three independent matchers to deal with ontology map-
ping and they are: Edit distance-based matcher, Linguistic-based matcher and
Structure-based matcher. In the Linguistic-based matcher, we improved Lin’s
method which computes similarity value between words. In the Structure-based
matcher, we adopt the structure of ontology to calculate similarity values be-
tween two entities and it considers the impact of the direct relative nodes (father
and/or children) to one entity.

Following this, we investigated how the problem of uncertainty in ontology
mapping can be dealt with. We considered both the Dempster-Shafer theory
and Possibility Theory to combine the uncertain mapping results from different
matchers stated above. We applied our ontology mapping systems (two combina-
tion rules with three matchers) to a set of ontologies used for ontology mapping
competitions. The experimental results show that it is efficient and feasible to
exploit these uncertainty theories to deal with uncertainty factors in the process
of ontology mapping.

As future work, on the one hand, we will design new matchers to handle some
situations that are not considered here, for example, how to get accurate n:1,
1:n or n:n mapping results. On the other hand, we will continue investigating
the uncertainty issues in ontology mapping and consider how to use different
uncertainty theories to deal with different situations in ontology mapping.

References

1. Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In: Bussler, C.J.,
Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 76–91.
Springer, Heidelberg (2004)

2. Ehrig, M., Staab, S.: Qom - quick ontology mapping. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683–697.
Springer, Heidelberg (2004)

3. Noy, N.F., Musen, M.A.: Prompt: Algorithm and tool for automated ontology
merging and alignment. In: Proceedings of the 17th National Conference on Ar-
tificial Intelligence and 12th Conference on Innovative Applications of Artificial
Intelligence (AAAI/IAAI 2000), pp. 450–455 (2000)

4. Noy, N.F., Musen, M.A.: Anchor-prompt: Using non- local context for semantic
matching. In: Workshop on Ontologies and Information Sharing at the 17th Inter-
national Joint Conference on Articial Intelligence (IJCAI 2001) (2001)

5. Kalfoglou, Y., Schorlemmer, W.M.: Information-flow-based ontology mapping. In:
Proceedings of the International Federated Conferences (CoopIS/DOA/ODBASE
2002), pp. 1132–1151 (2002)

6. Su, X., Gulla, J.A.: Semantic enrichment for ontology mapping. In: Meziane, F.,
Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 217–228. Springer, Heidelberg
(2004)

7. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
Journal of VLDB 10(4), 334–350 (2001)

8. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal
of Data Semantics 4, 146–171 (2005)

214 Y. Wang, W. Liu, and D. Bell

9. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. SIGMOD
Record. 35(3), 34–41 (2006)

10. Nagy, M., Maria Vargas-Vera, E.M.: Dssim-ontology mapping with uncertainty. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

11. Besana, P.: A framework for combining ontology and schema matchers with demp-
ster shafer. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 196–200. Springer,
Heidelberg (2006)

12. Pan, R., Ding, Z., Yu, Y., Peng, Y.: A bayesian network approach to ontology
mapping. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 563–577. Springer, Heidelberg (2005)

13. Markus Holi, E.H.: Modeling degrees of conceptual overlap in semantic web on-
tologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 98–99. Springer, Heidelberg (2005)

14. Zhao, Y., Wang, X., Halang, W.A.: Ontology mapping based on rough formal
concept analysis. In: Proceedings of the Advanced International Conference on
Telecommunications and International Conference on Internet and Web Applica-
tions and Services (AICT/ICIW’06), p. 180 (2006)

15. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the
15th International Conference on Machine Learning (ICML’98), pp. 296–304 (1998)

16. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl-
edge Acquisition Journal 5(2), 199–220 (1993)

17. Liu, W.: Propositional, Probabilistic and Evidential Reasoning: Integrating Nu-
merical and Symbolic Approaches (2001)

18. Liu, W.: Analyzing the degree of conflict among belief functions. Journal of Arti-
ficial Intelligence. 170(11), 909–924 (2006)

19. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Journal of Fuzzy Sets
and Systems 100, 9–34 (1999)

20. Dubois, D., Prade, H.: Possibility Theory (1988)
21. Tang, J., 0003, Y.L., Li, Z.: Multiple strategies detection in ontology mapping. In:

Proceedings of the 14th international conference on World Wide Web (WWW’05)
(Special interest tracks and posters) pp. 1040–1041 (2005)

22. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cu-
pid. In: Proceedings of 27th International Conference on Very Large Data Bases
(VLDB’01), pp. 49–58 (2001)

23. Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E.G.M., Milios, E.E.: Seman-
tic similarity methods in wordnet and their application to information retrieval on
the web. In: Proceedings of 7th ACM International Workshop on Web Information
and Data Management (WIDM 2005), pp. 10–16 (2005)

24. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: Proceedings of 14th International Joint Conference for Artificial Intelli-
gence (IJCAI’95), pp. 448–453 (1995)

25. Dubois, D., Prade, H.: Possibility theory in information fusion. In: the 11th Inter-
national Workshop on Non-Monotonic Reasoning (NMR’02), pp. 103–116 (2002)

26. Qu, Y., Hu, W., Cheng, G.: Constructing virtual documents for ontology matching.
In: Proceedings of 15th World Wide Web Conference (WWW’06), pp. 23–31 (2006)

27. Cross, V.: Uncertainty in the automation of ontology matching. In: Proceed-
ings of the 4th International Symposium on Uncertainty Modeling and Analysis
(ISUMA’03), pp. 135–140 (2003)

Preferred Database Repairs Under Aggregate
Constraints

Sergio Flesca, Filippo Furfaro, and Francesco Parisi

DEIS - Università della Calabria
Via Bucci - 87036 Rende (CS) Italy

{flesca,furfaro,fparisi}@deis.unical.it

Abstract. A framework for computing preferred repairs in numerical databases
violating a given set of strong and weak aggregate constraints is introduced,
which is based on a transformation into an Integer Linear Programming (ILP) in-
stance. Aggregate constraints are linear inequalities on aggregates retrieved from
the input data. While strong constraints express mandatory conditions, weak con-
straints define conditions which are expected to be satisfied, even if this is not
mandatory. Thus, preferred repairs are repairs which make the data satisfy all the
given strong constraints and as many weak constraints as possible. An experi-
mental validation of the proposed approach is provided, proving its effectiveness.

1 Introduction

A great deal of attention has been devoted to the problem of extracting reliable in-
formation from databases containing pieces of information inconsistent w.r.t. integrity
constraints. Several works in this area deal with “classical” forms of constraint (such
as keys, foreign keys, functional dependencies), and propose different strategies for up-
dating inconsistent data reasonably, in order to make it consistent by means of minimal
changes. Indeed, these kinds of constraint often do not suffice to manage data consis-
tency, as they cannot be used to define algebraic relations between stored values. In
fact, this issue frequently occurs in several scenarios, such as scientific databases, sta-
tistical databases, and data warehouses, where numerical values of tuples are derivable
by aggregating values stored in other tuples. In our previous work [12], we introduced
a new form of integrity constraint, namely aggregate constraint, which enables condi-
tions to be expressed on aggregate values extracted from the database. In that work, we
addressed the problem of repairing and extracting reliable information from data vio-
lating a given set of aggregate constraints. The following example, which will be used
throughout the rest of the paper, describes a scenario where aggregate constraints can
be effectively used to check data consistency.

Example 1. Table 1 represents the cash budget of a company for year 2006, that is
a summary of cash flows (receipts, disbursements, and cash balances). Values ‘det’,
‘aggr’ and ‘drv’ in column Type stand for detail, aggregate and derived, respectively.
Specifically, an item of the table is aggregate if it is obtained by aggregating items of
type detail of the same section, whereas a derived item is an item whose value can be
computed using the values of other items of any type and belonging to any section.

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 215–229, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

216 S. Flesca, F. Furfaro, and F. Parisi

Table 1. A cash budget for year 2006

Section Subsection Type Value

t1 Receipts beginning cash drv 3000
t2 Receipts cash sales det 2200
t3 Receipts receivables det 650
t4 Receipts total cash receipts aggr 2450

· · · · · · · · · · · ·

· · · · · · · · · · · ·
Disbursements payment of accounts det 1300 t5
Disbursements capital expenditure det 100 t6
Disbursements long-term financing det 600 t7
Disbursements total disbursements aggr 1000 t8
Balance net cash inflow drv 450 t9
Balance ending cash balance drv 3450 t10

A cash budget must satisfy the following integrity constraints (which can be ex-
pressed by means of aggregate constraints):

κ1 : for each section, the sum of the values of all detail items must be equal to the value
of the aggregate item of the same section;

κ2 : the net cash inflow must be equal to the difference between total cash receipts and
total disbursements;

κ3 : the ending cash balance must be equal to the sum of the beginning cash and the
net cash inflow.

Table 1 was acquired by means of an OCR tool from a paper document. The original
cash budget was consistent, but some symbol recognition errors occurred during the
digitizing phase, as constraints 1) and 2) are not satisfied on the acquired data, that is:

a) in section Receipts, the aggregate value of total cash receipts is not equal to the sum
of detail values of the same section: 2200 + 650 �= 2450;

b) in section Disbursements, the aggregate value of total disbursements is not equal to
the sum of detail values of the same section: 1300 + 100 + 600 �= 1000;

c) the value of net cash inflow is not to equal the difference between total cash receipts
and total disbursements: 2450 − 1000 �= 450. �

The strategy proposed in [12] for repairing data inconsistent w.r.t. a given set of ag-
gregate constraints is based on the notions of value-update and card-minimal repair.
According to this approach, a card-minimal repair is a set of value updates making data
consistent and having minimum cardinality. Repairing data by means of card-minimal
repairs is well-suited for several contexts dealing with numerical data acquired auto-
matically, such as balance-sheet analysis and sensor networks, where assuming that the
minimum number of errors occurred in the acquisition phase is often reasonable.

In general, there may be several card-minimal repairs for a database violating a given
set of aggregate constraints. For instance, it is possible to repair the data reported in
Table 1 by decreasing attribute Value in tuple t2 down to 1800 and increasing attribute
Value in tuple t8 up to 2000. An alternative repair consists of decreasing attribute Value
in tuple t3 down to 250 and increasing attribute Value in tuple t8 up to 2000. This work
stems from the idea that exploiting well-established information on the context where
the data acquisition takes place can allow us to choose the most reasonable repairs
among those having minimum cardinality. As a matter of fact, consider our running

Preferred Database Repairs Under Aggregate Constraints 217

example in the case that, for all the years preceding 2006, the value of cash sales was
never less than 2000 and the value of receivables was never greater than 400. Then, the
value of cash sales for the current year is not likely to be less than 2000, and the value
of receivables is not likely to be greater than 400. These likely conditions can be inter-
preted as weak constraints, in the sense that their satisfaction is not mandatory. Weak
constraints can be exploited for defining a repairing technique where inconsistent data
are fixed in the “most likely” way. Specifically, the most likely ways of repairing incon-
sistent data are those corresponding to card-minimal repairs satisfying as many weak
constraints as possible. For instance, if we consider the above-mentioned weak con-
straints in our running example, the repair decreasing attribute Value in tuple t3 down
to 250 can be reasonably preferred to that decreasing attribute Value in tuple t2 down to
1800, since the former yields a database which satisfies both the weak constraints.

Related Work. Several works have investigated a number of issues related to repairing
inconsistent data. Some of them [2,3,7,8,9,10,13,16,18] have addressed the consistent
query answer (CQA) problem [1]. Informally, a tuple t is a consistent answer of a
query q posed on D if t is in all the answers of q evaluated on every repaired database
obtained from D. The above-cited works mainly differ on: (i) the type of integrity con-
straints considered (functional dependencies, inclusion dependencies, universal con-
straints, etc.), (ii) the type of update operations allowed in the repair (insertion/deletion
of tuples, value updates). See [4,11] for a more detailed survey on these works.

In several contexts, such as the scenario presented in our running example, the prob-
lem of computing a repair (rather than computing the consistent answer of a single
query) is relevant. This problem has been addressed in [5,6,14], where repairs consist-
ing of value updates have been considered. Specifically, in [14], the computation of
repairs has been studied for categorical data in the presence of constraints expressed
as first order formulas. In [5], numerical data inconsistent w.r.t. denial constraints have
been considered. In [6], repairs on categorical data in the presence of functional and in-
clusion dependencies have been studied. However, none of these work has investigated
the repairing problem for data inconsistent w.r.t. strong and weak aggregate constraints.
In our previous work [12], we only characterized the complexity of the CQA problem
and the repair existence problem in the presence of strong aggregate constraints.

Main contributions. In this work we introduce the notion of weak aggregate con-
straints, expressing conditions which are likely to hold on aggregate information sum-
marizing the actual data. We exploit weak aggregate constraints to define preferred
(card-minimal) repairs, i.e., card-minimal repairs which are the most “reasonable”
ones, in the sense that they satisfy as many weak aggregate constraints as possible. We
first investigate some issues related to the existence of preferred repairs from a theoret-
ical standpoint. Then, we tackle the problem of computing preferred card-minimal re-
pairs. Specifically, we introduce a restricted but expressive class of aggregate constraints
(namely, steady aggregate constraints), and define a transformation of the problem of
computing preferred repairs in the presence of steady aggregate constraints to Integer
Linear Programming (ILP). This transformation allows us to compute a preferred card-
minimal repair by using any ILP solver. We also prove the effectiveness of the proposed
approach through several experiments in a real-life scenario. These experiments show

218 S. Flesca, F. Furfaro, and F. Parisi

that, in practical cases, the computation of a preferred repair is fast enough to be used
in (semi-)automatic data acquisition systems.

2 Preliminaries

We assume classical notions of database scheme, relation scheme, and relations. In
the following we will also use a logical formalism to represent relational databases,
and relation schemes will be represented by means of sorted predicates of the form
R(A1 : Δ1, . . . , An : Δn), where A1, . . . , An are attribute names and Δ1, . . . , Δn are
the corresponding domains. Each Δi can be either Z (infinite domain of integers) or
S (strings). Attributes [resp. constants] defined over Z will be said to be numerical
attributes [resp. numerical constants]. The set of attribute names {A1, . . . , An} of re-
lation scheme R will be denoted as AR, whereas the subset of AR consisting of the
names of the attributes which are a key for R will be denoted as KR. Given a ground
atom t denoting a tuple, the value of attribute A of t will be denoted as t[A].

Given a database scheme D, we will denote as MD (namely, Measure attributes)
the set of numerical attributes representing measure data. That is, MD specifies the
set of attributes representing measure values, such as weights, lengths, prices, etc. For
instance, in our running example, being D the database scheme consisting of the only
relation scheme CashBudget, we have MD = { Value }.

2.1 Aggregate Constraints

Given a relation scheme R(A1, . . . , An), an attribute expression on R is defined recur-
sively as follows:

- a numerical constant is an attribute expression;
- each numerical attribute Ai (with i ∈ [1..n]) is an attribute expression;
- e1ψe2 is an attribute expression on R, if e1, e2 are attribute expressions on R and ψ is

an arithmetic operator in {+, −};
- c× (e) is an attribute expression on R, if e is an attribute expression on R and c a

numerical constant.

Let R be a relation scheme and e an attribute expression on R. An aggregation function
on R is a function χ : (Λ1 × · · · × Λk) → Z, where each Λi is either Z or S, and is
defined as follows:

χ(x1, . . . , xk) = SELECT sum (e)
FROM R
WHERE α(x1, . . . , xk)

where α(x1, . . . , xk) is a boolean formula on x1, . . . , xk, constants and attributes of R.

Example 2. The following aggregation functions are defined on the relational scheme
CashBudget(Section, Subsection, Type, Value) of Example 1:

χ1(x, y) = SELECT sum (Value)
FROM CashBudget
WHERE Section=x AND Type=y

χ2(x) = SELECT sum (Value)
FROM CashBudget
WHERE Subsection=x

Preferred Database Repairs Under Aggregate Constraints 219

Function χ1 returns the sum of Value of all the tuples having Section x, and Type z.
For instance, χ1(‘Disbursements’, ‘det’) returns 1300 + 100 + 600 = 2000, whereas
χ1(‘Receipts’, ‘aggr’) returns 2450. Function χ2 returns the sum of Value of all the tuples
where Subsection=y. In our running example, as Subsection is a key for the tuples of
CashBudget, the sum returned by χ2 is an attribute value of a single tuple. For instance,
χ2(‘cash sales’) returns 2200, whereas χ2(‘receivables’) returns 650. ��

Definition 1 (Aggregate constraint). Given a database scheme D, an aggregate con-
straint κ on D is an expression of the form:

κ : ∀x1, . . . , xk

(
φ(x1, . . . , xk) =⇒

n∑
i=1

ci · χi(Xi) ≤ K

)
(1)

where:

1. c1, . . . , cn, K are numerical constants;
2. φ(x1, . . . , xk) is a (possible empty) conjunction of atoms containing the variables
x1, . . . , xk;

3. each χi(Xi) is an aggregation function, where Xi is a list of variables and con-
stants, and variables appearing in Xi are a subset of {x1, . . . , xk}.

Given a database D and a set of aggregate constraints AC, we will use the notation
D |= AC [resp. D �|= AC] to say that D is consistent [resp. inconsistent] w.r.t. AC.

Observe that aggregate constraints enable equalities to be expressed as well, since an
equality can be viewed as a pair of inequalities. In the following, for the sake of brevity,
equalities will be written explicitly.

Example 3. Constraint κ1 defined in Example 1 can be expressed as follows:
κ1 : ∀ x, y, z, v CashBudget(x, y, z, v) =⇒ χ1(x, ‘det’) − χ1(x, ‘aggr’)=0 ��

For the sake of brevity, in the following any aggregate constraint whose body consists
of an empty conjunction of atoms is denoted by writing only its head. For instance, the
constraints κ2 and κ3 of Example 1 can be expressed as follows:

κ2: χ2(‘net cash inflow’) − (χ2(‘total cash receipts’) − χ2(‘total disbursements’)) = 0

κ3: χ2(‘ending cash balance’) − (χ2(‘beginning cash’) + χ2(‘net cash balance’)) = 0

We now introduce a restricted but expressive form of aggregate constraints,
namely steady aggregate constraints. Before providing the definition of steady aggre-
gate constraints, we introduce some preliminary notations. Given a relation scheme
R(A1, . . . , An) and a conjunction of atoms φ containing the atom R(x1, . . . , xn),
where each xj is either a variable or a constant, we say that the attribute Aj corre-
sponds to xj , for each j ∈ [1..n]. Given an aggregation function χi, we will denote as
Ω(χi) the union of the set of the attributes appearing in the WHERE clause of χi and
the set of attributes corresponding to variables appearing in the WHERE clause of χi.
Given an aggregate constraint κ where the aggregation functions χ1, . . . , χn occur, we
will denote as A(κ) the set of attributes

⋃n
i=1 Ω(χi). Given an aggregate constraint κ

having the form (1), we will denote as J (κ) the set of attributes A corresponding to
either variables shared by at least two atoms in φ, or constants appearing in atoms of φ.

220 S. Flesca, F. Furfaro, and F. Parisi

Definition 2 (Steady aggregate constraint). Given a database scheme D, an aggre-

gate constraint κ on D is said to be steady if
(
A(κ) ∪ J (κ)

)
∩ MD = ∅.

Example 4. Consider the constraint κ1 of our running example. Since A(κ1) =
{Section, T ype}, J (κ1)=∅, and MD={V alue}, κ1 is a steady aggregate constraint.
Reasoning analogously, it is easy to see that constraints κ2 and κ3 are steady too. ��

2.2 Repairing Inconsistent Databases

Updates at attribute-level will be used in the following as the basic primitives for re-
pairing data violating aggregate constraints. Given a relation scheme R in the database
scheme D, let MR = {A1, . . . , Ak} be the subset of MD containing all the attributes
in R belonging to MD.

Definition 3 (Atomic update). Let t = R(v1, . . . , vn) be a tuple on the relation
scheme R(A1 : Δ1, . . . , An : Δn). An atomic update on t is a triplet < t, Ai, v

′
i >,

where Ai ∈ MR and v′i is a value in Δi and v′i �= vi.

Update u =< t, Ai, v
′
i > replaces t[Ai] with v′i, thus yielding the tuple u(t) =

R(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn). We denote the pair < tuple, attribute> updated by an

atomic update u as λ(u). For instance, performing u =< t5, Value, 300 > in the case
of our running example, results in the tuple: u(t5) = CashBudget(‘Disbursements’,
‘payment of accounts’, ‘det’, 300), and λ(u) =< t5, V alue >.

Definition 4 (Consistent database update). Let D be a database and U =
{u1, . . . , un} be a set of atomic updates on tuples of D. The set U is said to be a
consistent database update iff ∀ j, k ∈ [1..n] if j �=k then λ(uj) �= λ(uk).

Informally, a set of atomic updates U is a consistent database update iff for each pair of
updates u1, u2 ∈ U , either u1 and u2 do not work on the same tuples, or they change
different attributes of the same tuple. The set of pairs < tuple, attribute > updated
by a consistent database update U will be denoted as λ(U) = ∪ui∈U{λ(ui)}. Given
a database D and a consistent database update U , performing U on D results in the
database U(D) obtained by applying all atomic updates in U .

Definition 5 (Repair). Let D be a database scheme, AC a set of aggregate constraints
on D, and D an instance of D such that D �|= AC. A repair ρ for D is a consistent
database update such that ρ(D) |= AC.

Example 5. A repair ρ1 for CashBudget w.r.t. AC = {κ1, κ2, κ3} consists of decreasing
attribute Value in the tuple t2 down to 1800 and increasing attribute Value in the tuple
t8 up to 2000, that is, ρ1 = { < t2, Value, 1800 >, < t8, Value, 2000 > }. ��
In general, given a database D inconsistent w.r.t. a set of aggregate constraints AC,
different repairs can be performed on D yielding a new consistent database. Indeed,
they may not be considered “reasonable” the same. For instance, if a repair exists for D
changing only one value in one tuple of D, any repair updating all values in all the tuples
of D can be reasonably disregarded. To evaluate whether a repair should be considered
“relevant” or not, we use the ordering criterion stating that a repair ρ1 precedes a repair
ρ2 if the number of changes issued by ρ1 is less than ρ2.

Preferred Database Repairs Under Aggregate Constraints 221

Example 6. A repair for CashBudget is: ρ′ = {< t2, Value, 1800 >, <
t5, Value, 300 >, < t9, Value, 1450 >, < t10, Value, 4450 >}. Observe that ρ′ con-
sists of more atomic updates than ρ1, where ρ1 is the repair defined in Example 5. ��

Definition 6 (Card-minimal repair). Let D be a database scheme, AC a set of ag-
gregate constraints on D, and D an instance of D. A repair ρ for D w.r.t. AC is a
card-minimal repair iff there is no repair ρ′ for D w.r.t. AC such that |λ(ρ′)| < |λ(ρ)|.

Example 7. In our running example, the set of card-minimal repairs is {ρ1, ρ2},
where ρ1 is the repair defined in Example 5, and ρ2 = { < t3, Value, 250 >,
< t8, Value, 2000 > }. The repair ρ′ defined in Example 6 is not card-minimal as
|λ(ρ′)| = 4 > |λ(ρ1)|. ��

3 Preferred Repairs

Generally, several card-minimal repairs may exist for a database which is not consis-
tent w.r.t. a given set of aggregate constraints. All the possible card-minimal repairs
preserve as much information as possible, and in this sense they can be considered
equally reasonable. Further information on the data to be repaired could be exploited
to rank card-minimal repairs. For instance, in our running example, historical data re-
trieved from balance-sheets of past years could be exploited to find conditions which are
likely to hold for the current-year balance-sheet, so that card-minimal repairs could be
ordered according to the number of these conditions which are satisfied in the repaired
database. These conditions can be expressed as weak aggregate constraints, that is ag-
gregate constraints with a “weak” semantics: in contrast with the traditional “strong”
semantics of aggregate constraints (according to which the repaired data must satisfy
all the conditions expressed), weak aggregate constraints express conditions which rea-
sonably hold in the actual data, although satisfying them is not mandatory.

Example 8. The two conditions defined in our running example (that is, “it is likely that
cash sales are greater than or equal to 2000”, and “it is likely that receivables are less
than or equal to 400”) can be expressed by the following weak aggregate constraints:

ω1 : χ2(‘cash sales’) ≥ 2000
ω2 : χ2(‘receivables’) ≤ 400

where χ2 is the aggregation function defined in Example 2. ��

Intuitively, a card-minimal repair satisfying n1 weak constraints is preferred to any
other card-minimal repair satisfying n2 < n1 weak constraints. We exploit this ordering
criterion implied by weak constraints on the set of card-minimal repairs to define the
notion of preferred (card-minimal) repairs.

Let D be a database scheme, D an instance of D, and ω a weak aggregate con-
straint on D having the form (1) (see Definition 1). We denote the set of ground
weak constraints obtained from the instantiation of ω on D as gr(ω, D), i.e.,
gr(ω, D) = {θ(ω) | θ is a substitution of variables x1, . . . , xk with constants such that
φ(θx1, . . . , θxk) is true in D}. Given a set of weak constraints W on D, we denote as
gr(W , D) the set of ground weak constraints obtained from the instantiation of every

222 S. Flesca, F. Furfaro, and F. Parisi

ω ∈ W on D, i.e., gr(W , D) =
⋃

ω∈W{gr(ω, D)}. Let ρ be a card-minimal repair
for D w.r.t. a set of aggregate constraints AC on D, and W be a set of weak con-
straints on D. We will denote as γ(ρ, W , D) the number of ground weak constraints in
gr(W , ρ(D)) which are not satisfied.

Definition 7 (Preferred repair). Let D be a database scheme, AC a set of aggregate
constraints on D, W a set of weak aggregate constraints on D, and D an instance of D.
A card-minimal repair ρ for D w.r.t. AC is said to be a preferred repair for D w.r.t. AC
and W iff there is no card-minimal repair ρ′ for D w.r.t. AC such that γ(ρ′, W , D) <
γ(ρ, W , D).

Example 9. As explained in Example 7, in our running example the set of card-minimal
repairs is {ρ1, ρ2}. Let W = {ω1, ω2} be the set of weak constraints defined in Exam-
ple 8. Both ω1 and ω2 are ground weak constraints and gr(W , D) = gr(W , ρ1(D)) =
gr(W , ρ2(D)) = {ω1, ω2}. Since both ω1 and ω2 are violated by ρ1(D), it holds that
γ(ρ1, W , D) = 2, whereas γ(ρ2, W , D) = 0 since ρ2(D) satisfies both ω1 and ω2.
Thus, ρ2 is a preferred repair w.r.t. AC and W . ��

In our previous work [12], several issues related to the problem of repairing and ex-
tracting reliable information from data violating a given set of aggregate constraints has
been investigated. Specifically, the complexity of the following two problems have been
characterized: (i) the problem of deciding whether a repair exists (NP-complete), and
(ii) the problem of checking whether a repair is card-minimal (coNP-complete). The
following theorem extends these results to the case of preferred repairs.

Theorem 1. Let D be a database scheme, AC a set of aggregate constraints on D, W
a set of weak constraints on D, and D an instance of D. The following hold:

- given an integer k, deciding whether there is a preferred repair ρ for D w.r.t. AC and
W such that γ(ρ, W , D) ≥ k is in NP, and is NP-hard even in the case that AC and
W consist of steady constraints only;

- given a repair ρ for D w.r.t. AC, deciding whether ρ is a preferred repair for D w.r.t.
AC and W is in coNP, and is coNP-hard even in the case that AC and W consist of
steady constraints only.

4 Computing a Preferred Repair

Although steady aggregate constraints are less expressive than (general) aggregate con-
straints, Theorem 1 states that both the preferred-repair existence problem and the
preferred-repair checking problem are hard also in the presence of steady constraints
only. From a practical standpoint, this loss in expressiveness is not dramatic, as steady
aggregate constraints are expressive enough to model conditions ensuring data con-
sistency in several real-life contexts. In fact, all the aggregate constraints used in our
running example are steady.

In this section, we define a technique for computing preferred repairs for a database
w.r.t a set of steady aggregate constraints and a set of steady weak constraints. This
technique is based on the translation of the preferred-repair evaluation problem into an

Preferred Database Repairs Under Aggregate Constraints 223

instance of Integer Linear Programming (ILP) problem [15]. Our technique exploits the
restrictions imposed on steady aggregate constraints w.r.t. general aggregate constraints
to accomplish the computation of a repair. As will be explained later, this approach does
not work for (general) aggregate constraints.

We first show how a set of steady aggregate constraints can be expressed by means
of a system of linear inequalities. Then, in order to model the problem of finding a pre-
ferred repair, we increment this system of inequalities with an appropriate set of linear
inequalities and define an appropriate objective function, thus obtaining an optimization
problem.

4.1 Expressing Steady Aggregate Constraints as a Set of Inequalities

Let D be a database scheme, AC a set of steady aggregate constraints on D and D an
instance of D. Let κ be a steady aggregate constraint in AC. We recall that κ is of the
form (1) (see Definition 1). Let Θ(κ) be a set containing every ground substitution θ of
variables x1, . . . , xk with constants such that φ(θx1, . . . , θxk) is true on D.

For the sake of simplicity, we assume that each attribute expression ei occurring in
an aggregation function χi appearing in κ is either an attribute in MD or a constant.
We associate a variable zt,Aj with each pair 〈t, Aj〉, where t is a tuple in D and Aj is
an attribute in MD. The variable zt,Aj is defined on the same domain as Aj . For every
ground substitution θ ∈ Θ(κ), we will denote as T (θ, χi) the set of the tuples involved
in the aggregation function χi. More formally, assume that the aggregation function χi

is defined on the variables xi1 , . . . , xim , where xi1 , . . . , xim is a subset of {x1, . . . , xk},
and let ri be an instance of relation Ri appearing in the aggregation function χi and
αi be the formula appearing in the WHERE clause of χi. The set T (θ, χi) is defined
as follows: T (θ, χi) = {t : t ∈ ri ∧ t |= αi(θxi1 , . . . , θxim)}. For every ground
substitution θ ∈ Θ(κ), the translation of χi w.r.t. θ, denoted as P(θ, χi), is defined as
follows:

P(θ, χi) =

{∑
t∈T (θ,χi) zt,Aj if ei = Aj ;

ei · |T (θ, χi)| if ei is a constant.

For every ground substitution θ in Θ(κ), we define Q(κ, θ) as
∑n

i=1 ci·P(θ, χi). The
whole constraint κ is associated to the set S(κ) consisting of the inequalities Q(κ, θ) ≤
K for each θ ∈ Θ(κ). The translation of all aggregate constraints in AC produces a
system of linear inequalities, denoted as S(AC, D), consisting of the set of inequalities
in {∪κ∈AC S(κ)}.

It is easy to see that this construction is not possible for a non-steady aggregate
constraint. In fact, consider a repair ρ for D w.r.t. AC, for each substitution θ ∈ Θ(κ)
it is possible that the set of tuples T (θ, χi) evaluated on D is different from the set of
tuples T (θ, χi) evaluated on ρ(D).

For the sake of simplicity, in the following we associate each pair 〈t, Aj〉 such that
t ∈ D and Aj ∈ MD with an integer index i. Therefore we will write zi instead of
zt,Aj . The set of all indexes corresponding to pairs 〈t, Aj〉 such that zt,Aj appears in
S(AC, D) will be denoted as IAC . Thus, S(AC, D) can be written as A×Z ≤ B, where
Z is the vector of variables zi such that i ∈ IAC .

224 S. Flesca, F. Furfaro, and F. Parisi

Example 10. Consider the database CashBudget whose instance is shown in Table 1
and the set of aggregate constraints AC = {κ1, κ2, κ3} of our running example. We
associate the pair 〈ti, V alue〉, where ti is the i-th tuple of relation CashBudget with the
integer i. As every pair 〈ti, V alue} is involved in at least a constraint in AC, it holds
that IAC = {1, . . . , 10}. Thus, zi (with i ∈ {1, . . . , 10}) is the variable associated with
〈ti, V alue〉. The translation of constraints in AC is the following, where we explicitly
write equalities instead of inequalities:

S(κ1) :=

�
z2 + z3 = z4

z5 + z6 + z7 = z8
S(κ2) :=

�
z4 − z8 = z9 S(κ3) :=

�
z1 + z9 = z10

S(AC, D) consists of the system obtained by assembling all the equalities reported
above (basically, it is the intersection of systems S(κ1), S(κ2) and S(κ3)). ��

4.2 Evaluating Preferred Repairs

Let D be a database scheme, D be an instance of D, AC be a set of steady aggregate
constraints on D, and W be a set of steady weak constraints on D. In the following we
will use the above-defined notations Θ(κ) and Q(κ, θ), for κ ∈ AC ∪W and θ ∈ Θ(κ).
We will denote the current database value corresponding to the variable zi as vi (with
i ∈ IAC). That is, if zi is associated with the pair 〈t, Aj〉, then vi = t[Aj]. Every
solution s of S(AC, D) corresponds to a repair ρ(s) for D w.r.t. AC. In particular, for
each variable zi which is assigned a value ẑi different from vi, repair ρ(s) contains an
atomic update assigning the value ẑi to the pair 〈t, Aj〉 which zi corresponds to, that
is ρ(s) contains the atomic update 〈t, Aj , ẑi〉. It is easy to see that, in general ρ(s) is a
non-minimal and non-preferred repair.

In order to decide whether a solution s of S(AC, D) corresponds to a preferred re-
pair, we must decide whether ρ(s) is a card-minimal repair and whether γ(ρ(s), W , D)
is minimum w.r.t. all others card-minimal repairs, i.e., ρ(s) violates the minimum num-
ber of weak constraints in gr(W , D). To accomplish this, we must count the number
of variables of s which are assigned a value different from the corresponding source
value in D, and we must count the number of ground weak constraints which are not
satisfied by ρ(s). This is achieved as follows. For each i ∈ IAC , we define a variable
yi = zi − vi on the same domain as zi. Variables yi will be exploited for detecting
whether zi is assigned in a solution s of S(AC, D) a value different from vi. For each
weak constraint ω ∈ W having the form (1) (see Definition 1) and for each ground
substitution θ ∈ Θ(ω), we define the variable σω,θ = K − Q(ω, θ). Variables σω,θ will
be exploited for detecting whether for the substitution θ ∈ Θ(ω), the weak constraint
ω is not satisfied: if in a solution s of S(AC, D) the variables in Q(ω, θ) are assigned
values entailing that σω,θ < 0 then the ground weak constraint θ(ω) is not satisfied by
repair ρ(s). Consider the following system of linear (in)equalities:

S(AC, W , D) :=

⎧⎨
⎩

A × Z ≤ B
yi = zi − vi ∀ i ∈ IAC
σω,θ = K − Q(ω, θ) ∀ ω ∈ W and θ ∈ Θ(ω)

As shown in [17], if a system of equalities has a solution, it has also a solution where
each variable takes a value in [−M, M], where M is a constant equal to n · (ma)2m+1,

Preferred Database Repairs Under Aggregate Constraints 225

where m is the number of equalities, n is the number of variables and a is the maximum
value among the modules of the system coefficients. It is straightforward to see that
S(AC, W , D) can be translated into a system of linear equalities in augmented form
with m = |IAC | + |gr(W , D)| + r and n = 2 · |IAC | + |varW | + r, where r is the
number of rows of A and varW is the union of the sets of new variables appearing in
equations σω,θ = K − Q(ω, θ), for ω ∈ W and θ ∈ Θ(ω) 1.

In order to detect if a variable zi is assigned (for each solution of S(AC, W , D)
bounded by M) a value different from the original value vi (that is, if |yi| > 0), a new
binary variable δi will be defined. Every δi will have value 1 if the value of zi differs
from vi, 0 otherwise. Analogously, in order to detect if for a substitution θ the ground
weak constraint θ(ω) is not satisfied (that is, if σω,θ < 0) a new binary variable μω,θ

will be defined. Every μω,θ will have value 1 if θ(ω) is not satisfied, 0 otherwise. To
express these conditions, we add the following constraints to S(AC, W , D):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yi ≤ M · δi ∀ i ∈ IAC
−M · δi ≤ yi ∀ i ∈ IAC
−M · μω,θ ≤ σω,θ ∀ ω ∈ W and θ ∈ Θ(ω)
δi ∈ {0, 1} ∀ i ∈ IAC
μω,θ ∈ {0, 1} ∀ ω ∈ W and θ ∈ Θ(ω)

(2)

The system obtained by assembling S(AC, W , D) with inequalities (2) will be denoted
as S′(AC, W , D). For each solution s′ of S′(AC, W , D), the following hold: (i) for
each zi which is assigned in s′ a value greater than vi, the variable δi is assigned 1 (this
is entailed by constraint yi ≤ M ·δi); (ii) for each zi which is assigned in s′ a value less
than vi, the variable δi is assigned 1 (this is entailed by constraint −M · δi ≤ yi); (iii)
for each Q(ω, θ) whose variables are assigned in s′ values such that Q(ω, θ) > K , the
variable μω,θ is assigned 1 (this is entailed by constraint −M ·μω,θ ≤ σω,θ). Moreover,
for each zi which is assigned in s′ the same value as vi (that is, yi = 0), variable δi is
assigned either 0 or 1, and for each σω,θ which is assigned in s a value greater than or
equal to 0, variable μω,θ is assigned either 0 or 1.

Obviously each solution of S′(AC, W , D) corresponds to exactly one solution for
S(AC, W , D) (or, analogously, for S(AC, D)) with the same values for variables zi.
Vice versa, for each solution of S(AC, D) whose variables are bounded by M there is at
least one solution of S′(AC, W , D) with the same values for variables zi. As solutions
of S(AC, D) correspond to repairs for D, each solution of S′(AC, W , D) corresponds
to a repair ρ for D such that, for each update u = 〈t, A, v〉 in ρ it holds that |v| ≤ M .
Repairs satisfying this property will be said to be M-bounded repairs.

In order to consider only the solutions of S′(AC, W , D) where each δi is 0 if yi = 0
and where each μω,θ is 0 if σω,θ ≥ 0, we consider the following optimization problem
S∗(AC, W , D), whose goal is minimizing the weighted sum of the values assigned to
variables δi and μω,θ (with i ∈ IAC , ω ∈ W and θ ∈ Θ(ω)):

S∗(AC, W , D) :=

{
min (

∑
i∈IAC

W · δi +
∑

ω∈W∧θ∈Θ(ω) μω,θ)

S′(AC, W , D)

1 Observe that the size of M is polynomial in the size of the database, as it is bounded by
log n + (2 · m + 1) · log(ma).

226 S. Flesca, F. Furfaro, and F. Parisi

where S′(AC, W , D) is the system of inequalities defined above and W = NW +
1, where and NW is the number of variables μω,θ, that is the cardinality of the set
{μω,θ | ω ∈ W ∧ θ ∈ Θ(ω)}. Basically, the objective function of S∗(AC, W , D) entails
that it is preferable that some δi is assigned 0 (i.e., a database value is not updated) with
respect to assign 0 to all μω,θ (i.e., all weak constraints are satisfied).

Theorem 2. Let D be a database scheme D, AC be a set of steady aggregate con-
straints on D, W be a set of steady weak constraints on D and D be an instance of D.
Every (optimal) solution s∗ of S∗(AC, W , D) corresponds to a preferred repair ρ(s∗)
for D w.r.t. AC and W .

Basically, given an (optimal) solution s∗ of S∗(AC, W , D), the values ẑi, ŷi, δ̂i,
σ̂ω,θ, ûω,θ of variables zi, yi, δi, σω,θ , uω,θ defines the set of atomic updates per-
formed by the repair ρ(s∗). The value (

∑
i∈IAC

δ̂i)/W represents the number of
atomic updates performed by any card-minimal repair for D w.r.t. AC, whereas the
value

∑
ω∈W∧θ∈Θ(ω) μ̂ω,θ represents minimum number of the ground weak constraints

which are not satisfied by any preferred repair.

Example 11. The optimization problem obtained for our running example where AC =
{κ1, κ2, κ3} and W = {ω1, ω2} is shown in Fig. 1, where θ is the empty substitution.

min(
�10

i=1 3 · δi + μω1,θ + μω2,θ)������������
�����������

z2 + z3 = z4

z5 + z6 + z7 = z8

z4 − z8 = z9

z1 − z9 = z10

y1 = z1 − 3000
y2 = z2 − 2200
y3 = z3 − 650
y4 = z4 − 2450

y5 = z5 − 1300
y6 = z6 − 100
y7 = z7 − 600
y8 = z8 − 1000
y9 = z9 − 450
y10 = z10 − 3450
σω1,θ = z2 − 2000
σω2,θ = 400 − z3

yi − Mδi ≤ 0 ∀i ∈ [1..10]
−yi − Mδi ≤ 0 ∀i ∈ [1..10]
−M · μω1,θ ≤ σω1,θ

−M · μω2,θ ≤ σω2,θ

zi, yi ∈ Z ∀i ∈ [1..10]
δi ∈ {0, 1} ∀i ∈ [1..10]
μω1,θ ∈ {0, 1}
μω2,θ ∈ {0, 1}

Fig. 1. Instance of S∗(AC, W, D) obtained for the running example

The problem above admits only one optimum solution wherein the value of the
objective function is 6, as δi = 0 for i ∈ [1..10] except for δ3 = δ8 = 1, and
μω1,θ = μω2,θ = 0. It is easy to see that this solution correspond to the preferred
repair ρ2. ��

5 Experimental Results

We experimentally validated the proposed technique on database instances con-
taining real-life balance-sheet data, and we used LINDO API 4.0 (available at
www.lindo.com) as ILP solver. We considered three balance-sheets, which will be
denoted as B1, B2, B3, published by three different companies and sharing the same
scheme. We defined (strong) aggregate constraints expressing the actual algebraic rela-
tions among the balance items defined in the standard. Moreover, for each balance sheet,

Preferred Database Repairs Under Aggregate Constraints 227

Fig. 2. Time needed (a) and average number of iterations (b) for computing a preferred repair

we defined weak constraints associating numerical intervals to each balance item (these
intervals were retrieved from the balance-sheets published by the same companies in
the previous 5 years).

Starting from the values reported in B1, B2, B3, we generated the corresponding
database instances D1, D2, D3, containing 112, 256, and 378 tuples, respectively (each
tuple contains exactly one measure attribute). Then, we simulated acquisition errors by
randomly changing the measure values represented in the database instances. Specif-
ically, for each Di, we generated 100 database instances D1

i , . . . , D
100
i , containing a

number of erroneous values between 0% and 30% of the number of items occurring in
the source balance sheet Bi.

The diagram in Fig. 2(a) depicts the amount of time needed for computing a preferred
repair vs. the percentage of erroneous values. From this experiment we can draw the
conclusion that our technique can be effectively employed in real-life scenarios. In fact,
the number of items occurring in a balance sheet is unlikely to be greater than 400, and
the typical percentage of errors occurring in acquisition phase performed by means of
OCR tools is less than 5% of acquired data. In this range, our prototype takes at most
1.5 seconds to compute a preferred repair.

Further experiments were conducted to test the practicality of using our technique
as the core of a semi-automatic system for fixing data acquisition errors. We simulated
the following iterative process. At each step, a preferred repair is computed, and it is
validated by an user w.r.t. the original data. If the user finds that the repair does not
reconstruct the original values, a new iteration is run, on the database instance where
one of the wrongly re-constructed values is fixed. The process continues until an ac-
cepted repair is generated, i.e., the original data is re-constructed correctly. Therefore,
we analyzed the impact of using weak constraints on the number of iterations needed
for completing this process.

The table in Fig. 2(b) reports the average number of iterations which were necessary
for returning an accepted repair, for different percentages of erroneous values (these
results were obtained for B2). The first row refers to the case that only strong aggre-
gate constraints were considered, whereas the second row refers to the case that also
weak aggregate constraints were considered. It is worth noting that the use of weak
constraints considerably reduces the (average) number of iteration performed in the
repairing process.

228 S. Flesca, F. Furfaro, and F. Parisi

6 Conclusions and Future Works

We have introduced a framework for computing preferred repairs in numerical data-
bases violating a given set of strong and weak aggregate constraints, which exploits
a transformation into integer linear programming. Experimental results prove the ef-
fectiveness of the proposed approach. Further work will be devoted to investigating
theoretical issues related to the CQA problem in the presence of weak aggregate con-
straints.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent Query Answers in Inconsistent Data-
bases. In: Proc. Symposium on Principles of Database Systems (PODS), pp. 68–79 (1999)

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Answer Sets for Consistent Query Answering in
Inconsistent Databases. Theory and practice of logic program 3(4-5), 393–424 (2003)

3. Arenas, M., Bertossi, L.E., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar aggrega-
tion in inconsistent databases. Theoretical Computer Science 3(296), 405–434 (2003)

4. Bertossi, L.E., Chomicki, J.: Query Answering in Inconsistent Databases. In: Logics for
Emerging Applications of Databases, pp. 43–83 (2003)

5. Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A.: Complexity and Approximation of Fix-
ing Numerical Attributes in Databases Under Integrity Constraints. In: Bierman, G., Koch,
C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 262–278. Springer, Heidelberg (2005)

6. Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A Cost-Based Model and Effective Heuristic
for Repairing Constraints by Value Modification. In: Proc. ACM SIGMOD, pp. 143–154
(2005)

7. Calı́, A., Lembo, D., Rosati, R.: On the Decidability and Complexity of Query Answering
over Inconsistent and Incomplete Databases. In: Proc. ACM Symposium on Principles of
Database Systems (PODS), pp. 260–271 (2003)

8. Chomicki, J., Marcinkowski, J., Staworko, S.: Computing consistent query answers using
conflict hypergraphs. In: Proc. International Conference on Information and Knowledge
Management (CIKM), pp. 417–426 (2004)

9. Chomicki, J., Marcinkowski, J., Staworko, S., Hippo, A.: A System for Computing Consis-
tent Answers to a Class of SQL Queries. In: Bertino, E., Christodoulakis, S., Plexousakis,
D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS,
vol. 2992, pp. 841–844. Springer, Heidelberg (2004)

10. Chomicki, J., Marcinkowski, J.: Minimal-Change Integrity Maintenance Using Tuple Dele-
tions. Information and Computation (IC) 197(1-2), 90–121 (2005)

11. Chomicki, J., Marcinkowski, J.: On the Computational Complexity of Minimal-Change
Integrity Maintenance in Relational Databases. In: Inconsistency Tolerance, pp. 119–150
(2005)

12. Flesca, S., Furfaro, F., Parisi, F.: Consistent Query Answer on Numerical Databases under
Aggregate Constraint. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp.
279–294. Springer, Heidelberg (2005)

13. Fuxman, A., Miller, R.J.: ConQuer: Efficient Management of Inconsistent Databases. In:
Proc. ACM SIGMOD International Conference on Management of Data pp. 155–166 (2005)

14. Franconi, E., Laureti Palma, A., Leone, N., Perri, S., Scarcello, F.: Census Data Repair: a
Challenging Application of Disjunctive Logic Programming. In: Nieuwenhuis, R., Voronkov,
A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 561–578. Springer, Heidelberg (2001)

Preferred Database Repairs Under Aggregate Constraints 229

15. Gass, S.I.: Linear Programming Methods and Applications. McGrawHill, New York (1985)
16. Greco, G., Greco, S., Zumpano, E.: A Logical Framework for Querying and Repairing In-

consistent Databases. IEEE TKDE 15(6), 1389–1408 (2003)
17. Papadimitriou, C.H.: On the complexity of integer programming. Journal of the Association

for Computing Machinery (JACM) 28(4), 765–768 (1981)
18. Wijsen, J.: Database Repairing Using Updates. ACM Transactions on Database Systems

(TODS) 30(3), 722–768 (2005)

Consistent Data Integration in P2P Deductive

Databases

L. Caroprese and E. Zumpano

DEIS, Univ. della Calabria, 87030 Rende, Italy

{lcaroprese,zumpano}@deis.unical.it

Abstract. Data Integration in Peer-to-Peer (P2P) systems is concerned
with the ability of physically connect autonomous sources (peer) for sha-
ring and reuse information and for the creation of new information from
existing one. In a P2P system a query can be posed to any peer and the
answer is provided by integrating locally stored data with data provided
from its neighbors. Anyhow, while collecting data for answering queries,
imported data may corrupt the local database due to the violation of
some integrity constraint, therefore inconsistencies have to be managed.
This paper contributes to the proposal of a logic based framework for
data integration and query answering in a Peer-to-Peer environment. It
is based on [11,12] in which the Preferred Weak Model Semantics, captur-
ing a different perspective for P2P data integration, has been proposed:
just data not violating integrity constraints are exchanged among peers
by using mapping rules. The motivation of this work stems from the
observation that the complexity of computing preferred weak models in
[11,12] does not let the approach to be implemented in practical appli-
cations. Therefore, a more pragmatic solution seems to be desirable for
assigning semantics to a P2P system. First, the paper proposes a rewrit-
ing technique that allows modeling a P2P system, PS, as a unique logic
program, Rewt(PS), whose stable models correspond to the preferred
weak models of PS. Then, it presents the Well Founded Model Seman-
tics, that allows obtaining a deterministic model whose computation is
polynomial time. This is a (partial) stable model obtained by evaluating
with a three-value semantics a logic program obtained from Rewt(PS).
Finally, the paper provides results on the complexity of answering queries
in a P2P system.

1 Introduction

Data Integration in Peer-to-Peer (P2P) systems is currently widely regarded
as a significant area both in industry and academia. It is concerned with the
ability of physically connect autonomous sources (peer) for sharing and reuse
information and for the creation to new information from existing ones. This
paper contributes to the proposal of a logic based framework for modeling P2P
systems. Each peer, joining a P2P system, can both provide or consume data and
has information about its neighbors, i.e. about the peers that are reachable and
can provide data of interest. In a P2P system each peer exhibits a set of mapping

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 230–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Consistent Data Integration in P2P Deductive Databases 231

rules, i.e. a set of semantic correspondences to its neighbor peers. Therefore, the
entry of a new peer in the system is extremely simple as it just requires the
definition of the mechanism for exchanging data within its neighborhood.

By using mapping rules as soon as it enters the system, a peer can participate
and access all data available in its neighborhood, and through its neighborhood
it becomes accessible to all the other peers in the system.

This paper extends previous works in [11,12] in which a different interpretation
of mapping rules, that allows importing from other peers only tuples not violating
integrity constraints, has been proposed. This new interpretation of mapping
rules has led to the proposal of a semantics for a P2P system defined in terms
of Preferred Weak Models. Under this semantics only facts not making the local
databases inconsistent can be imported, and the preferred weak models are the
consistent scenarios in which peers import maximal sets of facts not violating
integrity constraints.

The following example will intuitively introduce the proposed semantics.

3

s p(X)

p(X) q(X)

r(b)q(X) r(X)

r(a)q(X),q(Y),X=Y
t q(X),q(Y),X =Y

P P P1 2

Fig. 1. A P2P system

Example 1. Consider the P2P system depicted in Fig. 1 consisting of three peers
P1, P2 and P3 where:

– P3 contains two atoms: r(a) and r(b),
– P2 imports data from P3 using the mapping rule q(X) ←↩ r(X)1. Moreover

imported atoms must satisfy the constraint ← q(X), q(Y), X �= Y stating
that the relation q may contain at most one tuple, and

– P1 imports data from P2, using the mapping rule p(X) ←↩ q(X). P1 also
contains the rules s ← p(X) stating that s is true if the relation p contains
at least one tuple, and t ← p(X), p(Y), X �= Y , stating that t is true if the
relation p contains at least two distinct tuples.

The intuition is that, with r(a) and r(b) being true in P3, either q(a) or q(b)
could be imported in P2 (but not both, otherwise the integrity constraint is
violated) and, consequently, only one tuple is imported in the relation p of the
peer P1. Note that, whatever is the derivation in P2, s is derived in P1 while t
is not derived; thus the atoms s and t are, respectively, true and false in P1. �

Therefore, due to the specified mechanism for collecting data, a query, that can
be posed to any peer in the system, is answered by using locally stored data and
1 Please, note the special syntax we use for mapping rules.

232 L. Caroprese and E. Zumpano

all the information that can be imported, without corrupting the local database,
from its neighbors.

The main motivation for this work relies in the observation that a P2P system
may admit many preferred weak models and the computational complexity is
prohibitive: in [11,12] it has been shown that i) deciding whether an atom is true
in some preferred model is Σp

2 -complete and ii) deciding whether an atom is true
in every preferred model is Πp

2 -complete. Therefore, a more pragmatic solution
for assigning semantics to a P2P system, that can be effectively implemented in
current P2P systems, is needed. Based on this observation, the paper proposes
an equivalent characterization of the Preferred Weak Model semantics, called
Total Stable Model Semantics, that models a P2P system, PS, with a unique
disjunctive logic program, Rewt(PS), such that the preferred weak models of
PS can be extracted from the stable models of Rewt(PS). Moreover, it presents
the Well Founded Model Semantics, that allows obtaining a deterministic model,
whose computation is polynomial time. This model is obtained by evaluating,
with a three-value semantics, the logic program obtained from Rewt(PS). The
paper also provides some results on the computational complexity of answering
queries in a P2P system.

2 Background

It is assumed there are finite sets of predicate symbols, constants and variables.
A term is either a constant or a variable. An atom is of the form p(t1, . . . , tn)
where p is a predicate symbol and t1, . . . , tn are terms. A literal is either an atom
A or its negation not A. A (disjunctive) rule is of the form H ← B, where H is a
disjunction of atoms (head of the rule) and B is a conjunction of literals (body of
the rule). A rule is normal if just an atom appears in its head. It is assumed that
each rule is safe, i.e. variables appearing in the head or in negated body literals
also appear in some positive body literal. A (disjunctive) program is a finite set
of rules. A program P is normal if each rule in P is normal; it is positive if the
body of each rule in P is negation-free. A term (resp. literal, rule, program) is
ground is no variable appears in it. The set of all ground atoms obtained from
predicate symbols and constants occurring in a program P , is called Herbrand
base of P and is denoted as HB(P). Given a rule r, ground(r) denotes the set
of all ground rules obtained from r by replacing variables with constants in all
possible ways. Given a program P , ground(P) =

⋃
r∈P ground(r). A rule with

empty head is a constraint. A normal ground rule with empty body is a fact. In
this case the implication symbol (←) can be omitted. A ground program is Head
Cycle Free (HCF) [3] if there are not two distinct atoms, occurring in the head of
one of its rule, mutually dependent by positive recursion. A disjunctive program
P is HCF if ground(P) is HCF. An interpretation is a set of ground atoms.
The truth value of a ground atom, a literal and a rule with respect to an inter-
pretation M is as follows2: valM (A) = A ∈ M , valM (not A) = not valM (A),
valM (L1, . . . , Ln) = min{valM (L1), . . . , valM (Ln)}, valM (L1 ∨ . . . ∨ Ln) =
2 Assuming that max(∅) = false and min(∅) = true.

Consistent Data Integration in P2P Deductive Databases 233

max{valM (L1), . . . , valM (Ln)} and valM (H ← B) = valM (H) ≥ valM (B),
where A is an atom, L1, . . . , Ln are literals, H ← B is a rule and false < true.
An interpretation M is a model for a program P (or M |= P), if all rules in
ground(P) are true w.r.t. M (i.e. valM (r) = true for each r ∈ ground(P)). A
model M is said to be minimal if there is no model N such that N ⊂ M . The set
of minimal models of a program P is denoted as MM(P). An interpretation M
is a stable model of P if M is a minimal model of the positive program PM (reduct
of P w.r.t. M), where PM is obtained from ground(P) by (i) removing all rules r
such that there exists a negative literal not A in the body of r and A ∈ M and (ii)
removing all negative literals from the remaining rules [16]. It is well known that
stable models are minimal models (i.e. SM(P) ⊆ MM(P)) and that for pos-
itive programs, minimal and stable models coincide (i.e. SM(P) = MM(P)).
Given a program P, its normalized version, denoted as Normalized(P), is the
normal program obtained from P by replacing each rule A1 ∨ . . .∨Ah ← B, with
h > 1, with the rules Ai ← B, not A1, . . . , not Ai−1, not Ai+1, . . . , not Ah,
∀ i ∈ [1, h]. If P is HCF, its stable models coincide with the stable models of its
normalized version, i.e. SM(P) = SM(Normalized(P)).

Partial stable models. Given a program P, a partial interpretation assigns
a definite truth value either true or false only to some atoms of HB(P) and
assigns the undefined truth value to the rest of atoms in HB(P). Formally, a
partial interpretation of a program P is a pair 〈T, F 〉, where T and F are subsets
of HB(P) such that T ∩ F = ∅. The truth value of atoms in T (resp. F) is true
(resp. false), whereas the truth value of atoms in HB(P)−(T ∪F) is undefined.
The truth values are ordered so that false < undefined < true; moreover
not undefined = undefined. Given two partial interpretations M1 = 〈T1, F1〉
and M2 = 〈T2, F2〉, M1 � M2 if T1 ⊆ T2 and F1 ⊇ F2. The truth value of rules
with respect to a partial interpretation M is defined as previously specified. A
partial model of P is a partial interpretation that satisfies all rules in ground(P).
A partial model 〈T, F 〉 of P is total if it assigns to all atoms of HB(P) a definite
truth value (i.e. T ∪ F = HB(P)). A partial model M is said to be minimal if
there is no model N such that N �= M and N � M . A partial (total) model
M = 〈T, F 〉 of P is a stable partial (total) model if it is a minimal model of PM ,
where PM is obtained from ground(P) by replacing all negative literals not A
with: (i) true if not A is true in M , i.e. A ∈ F , (ii) false if not A is false in M ,
i.e. A ∈ T , (iii) undefined if not A is undefined in M , i.e. A �∈ (T ∪ F). Note
that, in the construction of PM rules having a false atom in the body can be
deleted, moreover true atom in the body can be deleted. Therefore, the above
definition of PM generalizes the one previously reported. It is well known that
〈T, HB(P) − T 〉 is a total stable model of P under the three-value semantics if
and only if T is a stable model of P under the two-value semantics. A partial
stable model M of a program P contradicts another partial stable model N if
there exists an atom that is true (resp. false) in M and false (resp. true) in N .
A partial stable model M of a program P is a deterministic partial stable model
if it does not contradict any other stable partial model. Given a program P and
the set of its deterministic stable models, DM, the algebraic structure (DM, �)

234 L. Caroprese and E. Zumpano

is a lattice. The set DM has a maximum, the max-deterministic model, and a
minimum, the well founded model. If P is normal, its well founded model can be
computed in polynomial time by using the alternating fixpoint approach [17,20].

3 P2P Systems: Syntax and Semantics

3.1 Syntax

A (peer) predicate symbol is a pair i : p, where i is a peer identifier and p is a
predicate symbol. A (peer) atom is of the form i : A, where i is a peer identifier
and A is a standard atom. A (peer) literal is a peer atom i : A or its negation
not i : A. A conjunction i : A1, . . . , i : Am, not i : Am+1, . . . , not i : An, φ, where
φ is a conjunction of built-in atoms3, will be also denoted as i : B, with B equals
to A1, . . . , Am, not Am+1, . . . , not An, φ.

A (peer) rule can be of one of the following three types:

1. standard rule. It is of the form i : H ← i : B, where i : H is an atom
and i : B is a conjunction of atoms and built-in atoms.

2. integrity constraint. It is of the form ← i : B, where i : B is a conjunc-
tion of literals and built-in atoms.

3. mapping rule. It is of the form i : H ←↩ j : B, where i : H is an atom,
j : B is a conjunction of atoms and built-in atoms and i �= j.

In the previous rules i : H is called head, while i : B (resp. j : B) is called body.
Negation is allowed just in the body of integrity constraints. The concepts of
ground rule and fact are similar to those reported in Section 2. The definition
of a predicate i :p consists of the set of rules in whose head the predicate symbol
i : p occurs. A predicate can be of three different kinds: base predicate, derived
predicate and mapping predicate. A base predicate is defined by a set of ground
facts; a derived predicate is defined by a set of standard rules and a mapping
predicate is defined by a set of mapping rules.

An atom i : p(X) is a base atom (resp. derived atom, mapping atom) if
i : p is a base predicate (resp. standard predicate, mapping predicate). Given
an interpretation M , M [D] (resp. M [LP], M [MP]) denotes the subset of base
atoms (resp. derived atoms, mapping atoms) in M .

Definition 1. P2P System. A peer P i is a tuple 〈Di, LP i, MPi, ICi〉, where
(i) Di is a set of facts (local database); (ii) LP i is a set of standard rules; (iii) MPi

is a set of mapping rules and (iv) ICi is a set of constraints over predicates defined
by Di, LP i and MP i. A P2P system PS is a set of peers {P1, . . . , Pn}. �

Without loss of generality, we assume that every mapping predicate is defined
by only one mapping rule of the form i : p(X) ←↩ j : q(X). The definition of a
mapping predicate i :p consisting of n rules of the form i :p(X) ←↩ Bk, with k ∈
3 A built-in atom is of the form XθY , where X and Y are terms and θ is a comparison

predicate.

Consistent Data Integration in P2P Deductive Databases 235

[1..n], can be rewritten into 2 ∗n rules of the form i :pk(X) ←↩ Bk and i :p(X) ←
i : pk(X), with k ∈ [1..n]. Given a P2P system PS = {P1, . . . , Pn}, where
Pi = 〈Di, LP i, MP i, ICi〉, D, LP, MP and IC denote, respectively, the global
sets of ground facts, standard rules, mapping rules and integrity constraints,
i.e. D =

⋃
i∈[1..n] Di, LP =

⋃
i∈[1..n] LP i, MP =

⋃
i∈[1..n] MPi and IC =⋃

i∈[1..n] ICi. In the rest of this paper, with a little abuse of notation, PS will
be also denoted both with the tuple 〈D, LP , MP, IC〉 and the set D ∪ LP ∪
MP ∪IC; moreover whenever the peer is understood, the peer identifier will be
omitted.

3.2 Semantics

This section reviews the Preferred Weak Model semantics for P2P systems [11,12]
which is based on a special interpretation of mapping rules. Observe that for each
peer Pi = 〈Di, LP i, MPi, ICi〉, the set Di ∪ LP i is a positive normal program,
thus it admits just one minimal model that represents the local knowledge of
Pi. In this paper it is assumed that each peer is locally consistent, i.e. its local
knowledge, say Ki, satisfies ICi (Ki |= ICi). Therefore, inconsistencies may be
introduced just when the peer imports data from other peers. The intuitive
meaning of a mapping rule i : H ←↩ j : B ∈ MP i is that if the body conjunction
j : B is true in the source peer Pj the atom i : H can be imported in Pi only if it
does not imply (directly or indirectly) the violation of some integrity constraint
in ICi. The following example will clarify the meaning of mapping rules.

Example 2. Consider the P2P system in Fig. 2. P2 contains the fact q(b), whereas
P1 contains the fact s(a), the mapping rule p(X) ←↩ q(X), the standard rules
r(X) ← p(X) and r(X) ← s(X) and the constraint ← r(X), r(Y), X �= Y . If
the fact p(b) is imported in P1, the fact r(b) will be derived. As r(a) is already
true in P1, because it is derived from s(a), the integrity constraint is violated.
Therefore, p(b) cannot be imported in P1 as it indirectly violates an integrity
constraint. �

2

q(b)r(X) s(X)
r(X) p(X)

 r(X),r(Y),X =Y

p(X) q(X)
s(a)

P P1

Fig. 2. A P2P system

Before formally presenting the preferred weak model semantics some notation is
introduced. Given a mapping rule r = H ←↩ B, the corresponding standard logic
rule H ← B will be denoted as St(r). Analogously, given a set of mapping rules
MP, St(MP) = {St(r) | r ∈ MP} and given a P2P system PS = D ∪ LP ∪
MP ∪ IC, St(PS) = D ∪ LP ∪ St(MP) ∪ IC.

236 L. Caroprese and E. Zumpano

Given an interpretation M , an atom H and a conjunction of atoms B:

– valM (H ← B) = valM (H) ≥ valM (B),
– valM (H ←↩ B) = valM (H) ≤ valM (B).

Therefore, if the body is true, the head of a standard rule must be true, whereas
the head of a mapping rule could be true.

Intuitively, a weak model M of a P2P system PS is an interpretation that
satisfies all standard rules, mapping rules and constraints of PS and such that
each atom H ∈ M [MP] (i.e. each mapping atom) is supported from a mapping
rule H ←↩ B whose body B is satisfied by M . A preferred weak model is a
weak model that contains a maximal subset of mapping atoms. This concept is
justified by the assumption that it is preferable to import in each peer as much
knowledge as possible.

Definition 2. (Preferred) Weak Model. Given a P2P system PS =
D ∪ LP ∪ MP ∪ IC, an interpretation M is a weak model for PS if {M} =
MM(St(PSM)), where PSM is the program obtained from ground(PS) by
removing all mapping rules whose head is false w.r.t. M .

Given two weak models M and N , M is said to preferable to N , and is
denoted as M � N , if M [MP] ⊇ N [MP]. Moreover, if M � N and N �� M ,
then M � N . A weak model M is said to be preferred if there is no weak model
N such that N � M .

The set of weak models for a P2P system PS will be denoted by WM(PS),
whereas the set of preferred weak models will be denoted by PWM(PS). �

Observe that in the previous definition St(PSM) is a positive normal program,
thus it admits just one minimal model. Moreover, note that the definition of
weak model presents interesting analogies with the definition of stable model.

2

 p(X),p(Y),X =Y

p(X) q(X) q(a)

q(b)

P P1

Fig. 3. The system PS

Example 3. Consider the P2P system PS in Fig. 3. P2 contains the facts q(a)
and q(b), whereas P1 contains the mapping rule p(X) ←↩ q(X) and the constraint
← p(X), p(Y), X �= Y . The weak models of the system are M0 = {q(a), q(b)},
M1 = {q(a), q(b), p(a)} and M2 = {q(a), q(b), p(b)}, whereas the preferred weak
models are M1 and M2. �

An alternative characterization of the preferred weak model semantics, called
Preferred Stable Model semantics, based on the rewriting of mapping rules into
prioritized rules [7,25] has been proposed in [11,12].

Consistent Data Integration in P2P Deductive Databases 237

4 Computing the Preferred Weak Model Semantics

The previous section has reviewed the semantics of a P2P system in terms of
preferred weak models. This section presents an alternative characterization of
the preferred weak model semantics that allows modeling a P2P system PS
with a single logic program Rewt(PS). The logic program Rewt(PS) is then
used as a computational vehicle to calculate the semantics of the P2P system as
its (total) stable models correspond to the preferred weak models of PS. With
this technique the computation of the preferred weak models is performed in a
centralized way, however the program Rewt(PS) will be used as a starting point
for a distributed technique. Let’s firstly introduce some preliminary concepts and
definitions. Given an atom A = i : p(x), At denotes the atom i : pt(x) and Av

denotes the atom i : pv(x). At will be called the testing atom, whereas Av will
be called the violating atom.

Definition 3. Given a conjunction

B = A1, . . . , Ah, not Ah+1, . . . , not An, B1, . . . , Bk, not Bk+1, . . . , not Bm, φ (1)

where Ai (i ∈ [1.. n]) is a mapping atom or a derived atom, Bi (i ∈ [1.. m]) is a
base atom and φ is a conjunction of built in atoms, we define

Bt = At
1, . . . , A

t
h, not At

h+1, . . . , not At
n, B1, . . . , Bk, not Bk+1, . . . , not Bm, φ (2)

�

From the previous definition it follows that given a negation free conjunction of
the form

B = A1, . . . , Ah, B1, . . . , Bk, . . . , φ (3)

then
Bt = At

1, . . . , A
t
h, B1, . . . , Bk, φ. (4)

In the following, the rewriting of standard rules in LP , mapping rules in MP
and integrity constraints in IC, is reported.

Definition 4. Rewriting of a mapping rule. Given a mapping rule4 m =
H ←↩ B, its rewriting is defined as Rewt(m) = {Ht ← B; H ← Ht, not Hv }. �

Intuitively, to check whether a mapping atom H generates some inconsistencies,
if imported in its target peer, a testing atom Ht is imported in the same peer.
Rather than violating some integrity constraint, it (eventually) generates the
atom Hv. In this case H , cannot be inferred and inconsistencies are prevented.

Definition 5. Rewriting of a standard rule. Given a standard rule4

s = H ← B, its rewriting is defined as Rewt(s) = {H ← B; Ht ← Bt; Av
1 ∨

. . . ∨ Av
h ← Bt, Hv }. �

4 Recall that B is of the form (3).

238 L. Caroprese and E. Zumpano

In order to find the mapping atoms that, if imported, generate some inconsi-
stencies (i.e. in order to find their corresponding violating atoms), all possible
mapping testing atoms are imported and the derived testing atoms are inferred.
In the previous definition, if Bt (that is of the form (4)), is true and the violating
atom Hv is true, then the body of the disjunctive rule is true and therefore it
can be deduced that at least one of the violating atoms Av

1 , . . . , A
v
h is true (i.e. to

avoid such inconsistencies at least one of atoms A1, . . . , Ah cannot be inferred).

Definition 6. Rewriting of an integrity constraint. Given an in-
tegrity constraint5 i = ← B, its rewriting is defined as Rewt(i) =
{Av

1 ∨ . . . ∨ Av
h ← Bt}. �

If the body Bt (that is of the form (2)), in the previous definition is true, then it
can be deduced that at least one of the violating atoms Av

1, . . . , A
v
h is true. This

states that in order to avoid inconsistencies at least one of atoms A1, . . . , Ah

cannot be inferred.

Definition 7. Rewriting of a P2P system. Given a P2P system PS =
D ∪ LP ∪ MP ∪ IC, then

– Rewt(MP) =
⋃

m∈MP Rewt(m)

– Rewt(LP) =
⋃

s∈LP Rewt(s)

– Rewt(IC) =
⋃

i∈IC Rewt(i)

– Rewt(PS) = D ∪ Rewt(LP) ∪ Rewt(MP) ∪ Rewt(IC) �

Example 4. Consider again the P2P system PS presented in Example 3. From
Definition (7) we obtain:

Rewt(PS) ={q(a); q(b);
pt(X) ← q(X);
p(X) ← pt(X), not pv(X);
pv(X) ∨ pv(Y) ← pt(X), pt(Y), X �= Y }

The stable models of Rewt(PS) are:

M1 = {q(a), q(b), pt(a), pt(b), pv(a), p(b)},
M2 = {q(a), q(b), pt(a), pt(b), p(a), pv(b)}. �

Definition 8. Total Stable Model. Given a P2P system, PS, and a stable
model M for Rewt(PS), the interpretation obtained by deleting from M its
violating and testing atoms, denoted as T (M), is a total stable model of PS.
The set of total stable models of PS is denoted as T SM(PS). �

Example 5. For the P2P system PS reported in Example 4, T SM(PS) =
{{q(a), q(b), p(b)}, {q(a), q(b), p(a)}}. �

5 Recall that B is of the form (1).

Consistent Data Integration in P2P Deductive Databases 239

The following theorem shows the equivalence of preferred stable models and
preferred weak models.

Theorem 1. For every P2P system PS, T SM(PS) = PWM(PS). �

Observe that this rewriting technique allows computing the preferred weak mo-
dels of a P2P system with an arbitrary topology. The topology of the system
will be encoded in its rewriting. As an example, if a system PS is cyclic, its
rewriting Rewt(PS) could be recursive.

5 Well Founded Model Semantics

As stated before, a P2P system may admit many preferred weak models (to-
tal stable models) whose computational complexity has been shown to be pro-
hibitive. Therefore, a more pragmatic solution for assigning semantics to a P2P
system that can be effectively implemented, is needed. Based on this observa-
tion, this section proposes the use of the Well Founded Model Semantics as a
mean to obtain a deterministic model whose computation is guaranteed to be
polynomial time.

In more details, the rewriting presented in Section 4 allows modeling a P2P
system by a single disjunctive logic program. By assuming that this program is
HCF, it can be rewritten into an equivalent normal program for which a well
founded model semantics can be adopted. Such a semantics allows computing
a deterministic model describing the P2P system, in a polynomial time by cap-
turing the intuition that if an atom is true in a total stable (or preferred weak)
model of the P2P system PS and is false in another one, then it is undefined in
the well founded model.

Theorem 2. Let PS = D ∪ LP ∪ MP ∪ IC be a P2P system, then Rewt(PS)
is HCF iff there are not two distinct atoms occurring in the body of a rule in
ground(LP ∪ IC) mutually dependent by positive recursion. �

In the rest of this section, it is assumed that each P2P system PS is such
that Rewt(PS) is HCF. Such a system PS will be called an HCF P2P system.
From the previous hypothesis, it follows that Rewt(PS) can be normalized as
SM(Rewt(PS)) = SM(Normalized(Rewt(PS))).

Definition 9. Rewriting of an HCF P2P system. Given an HCF P2P
system PS, Reww(PS) = Normalized(Rewt(PS)). �

Therefore, the preferred weak models of an HCF P2P system, PS, correspond to
the stable models of the normal program Reww(PS). The next step is to adopt
for Reww(PS) a three-valued semantics that allows computing deterministic
models and in particular the well founded model.

Definition 10. Well Founded Semantics. Given an HCF P2P system, PS,
and the well founded model of Reww(PS), say 〈T, F 〉, the well founded model
semantics of PS is given by 〈T (T), T (F)〉. �

240 L. Caroprese and E. Zumpano

Example 6. Consider again the HCF P2P system, PS, reported in Example 4.
The rewriting of PS is:

Reww(PS) ={q(a); q(b);
pt(X) ← q(X);
p(X) ← pt(X), not pv(X);
pv(X) ← pt(X), pt(Y), X �= Y, not pv(Y);
pv(Y) ← pt(X), pt(Y), X �= Y, not pv(X)}

The well founded model of Reww(PS) is 〈{q(a), q(b), pt(a), pt(b)}, ∅〉 and the
well founded semantics of PS is given by 〈{q(a), q(b)}, ∅〉. The atoms q(a) and
q(b) are true, while the atoms p(a) and p(b) are undefined. �

The evaluation of the program Reww(PS) allows computing the well founded
semantics of PS in a centralized way and in a polynomial time. A future work will
present a technique allowing to compute the well founded model in a distributed
way.

6 Query Answers and Complexity

As regards the complexity of computing preferred weak models, the results have
been presented in [11,12] by considering analogous results on stable model se-
mantics for prioritized logic programs [25]. Specifically, it has been shown that
deciding whether an atom is true in some preferred weak model is Σp

2 -complete,
whereas deciding whether an atom is true in every preferred weak model is
Πp

2 -complete.
The rest of this section presents the corresponding results for HCF P2P

systems.

Theorem 3. Let PS be an HCF P2P system, then

1. Deciding whether an interpretation is a preferred weak model of PS is
P -time.

2. Deciding whether an atom is true in some preferred weak model of PS is
NP-complete.

3. Deciding whether an atom is true in every preferred weak model of PS is
coNP-complete.

4. Deciding whether an atom is true in the well founded model of PS is
P -time. �

Observe that the complexity of query answering reduces w.r.t. the general case
presented in [11,12] of one level in the polynomial hierarchy. Moreover, if the
well founded model semantics is adopted it becomes polynomial time. As for a
further research it is planned to investigate, the structure of the P2P systems
whose rewriting let to an HCF program.

Consistent Data Integration in P2P Deductive Databases 241

7 Related Work

Recently, there have been several proposals considering the issue of manag-
ing the coordination, the integration of information as well as the computation
of queries in an open ended network of distributed peers [4,5,8,10,14,15,21,23,27].

The problem of integrating and querying databases in a P2P environment has
been investigated in [10,15]. In both works peers are modeled as autonomous
agents which can export only data belonging to their knowledge, i.e. data which
are true in all possible scenarios (models).

In [10] a new semantics for a P2P system, based on epistemic logic, is pro-
posed. The paper also shows that the semantics is more suitable than traditional
semantics based on FOL (First Order Logic) and proposes a sound, complete and
terminating procedure that returns the certain answers to a query submitted to
a peer.

In [15] a characterization of P2P database systems and a model-theoretic
semantics dealing with inconsistent peers is proposed. The basic idea is that if
a peer does not have models all (ground) queries submitted to the peer are true
(i.e. are true with respect to all models). Thus, if some databases are inconsistent
it does not mean that the entire system is inconsistent.

In [21] the problem of schema mediation in a Peer Data Management System
(PDMS) is investigated. The semantics of query answering in a PDMS is defined
by extending the notion of certain answer.

In [27] several techniques for optimizing the reformulation of queries in a
PDMS are presented. In particular the paper presents techniques for pruning
semantic paths of mappings in the reformulation process and for minimizing the
reformulated queries. The design of optimization methods for query processing
over a network of semantically related data is also investigated in [23].

As for a comparison with previous approaches in the literature, let’s consider
again the P2P system reported in Example 1. The approach, here proposed,
states that either q(a) or q(b) could be imported in P2, otherwise a violation
occurs. Anyhow, whatever is the derivation in P2, s is derived in P1 while t is
not derived; thus the atoms s and t are, respectively, true and false in P1.

The epistemic semantics proposed in [10] states that both the atoms q(a) and
q(b) are imported in the peer P2 which becomes inconsistent. In this case the
semantics assumes that the whole P2P system is inconsistent and every atom is
true as it belongs to all minimal models. Consequently, t and s are true.

The semantics proposed in [15] assumes that only P2 is inconsistent as it has
no model. Thus, as the atoms q(a) and q(b) are true in P2 (they belong to all
models of P2), then the atoms p(a) and p(b) can be derived in P1 and finally t
and s are true.

8 Conclusion

This paper contributes to the proposal of a logic based framework for data in-
tegration and query answering in P2P systems. Each peer, participating in a

242 L. Caroprese and E. Zumpano

P2P system, can both provide or consume data and has information about its
neighbors, i.e. about the peers that are reachable and can provide data of inter-
est. Queries can be posed to any peer in the system and the answer is provided
by using locally stored data and all the information that can be consistently
imported from its neighbors. This paper, continues the work in [11,12] in which
a new semantics, called the preferred weak model semantics, has been proposed.
In more details, it stems from the observation that in practical applications a
pragmatic solution, whose computational complexity does not result to be pro-
hibitive, is needed for assigning semantics to a P2P system. To this aim, the
paper has proposed a rewriting technique that allows modeling a P2P system
PS into a unique logic program Rewt(PS), whose (total) stable models corre-
spond to the preferred weak models of PS. Moreover, the paper has presented
the well founded model semantics, that allows obtaining a deterministic model
whose computation is polynomial time. This model is obtained by evaluating the
normal version of Rewt(PS), called Reww(PS), with a three-valued semantics.
The evaluation of the program Reww(PS) allows computing the well founded
semantics of PS in a centralized way. A future work will present a technique
allowing to compute the well founded model in a distributed way. Finally, the
paper has presented some results on the complexity of query answering under
the proposed semantics.

References

1. Arenas, M., Bertossi, L., Chomicki, J.: Consistent Query Answers in Inconsistent
Databases. In: Symposium on Principles of Database Systems, pp. 68–79 (1999)

2. Baral, C., Lobo, J., Minker, J.: Generalized Disjunctive Well-Founded Semantics
for Logic Programs. Annals of Mathematics and Artificial Intelligence 5(2-4), 89–
131 (1992)

3. Ben-Eliyahu, R., Dechter, R.: Propositional Sematics for Disjunctive Logic Pro-
grams. In: Joint International Conference and Symposium on Logic Programming,
pp. 813–827 (1992)

4. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopulos, J., Serafini, L., Za-
ihrayen, I.: Data Management for Peer-to-Peer Computing: A Vision. In: WebDB,
pp. 89–94 (2002)

5. Bertossi, L., Bravo, L.: Query Answering in Peer-to-Peer Data Exchange Systems.
In: Extending Database Technology Workshops (2004)

6. Brewka, G., Eiter, T.: Preferred Answer Sets for Extended Logic Programs. Arti-
ficial Intelligence 109(1-2), 297–356 (1999)

7. Brewka, G., Niemela, I., Truszczynski, M.: Answer Set Optimization. In: Interna-
tional Joint Conference on Artificial Intelligence, pp. 867–872 (2003)

8. Cal̀ı, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability and
complexity of query answering over inconsistent and incomplete databases. In:
Symposium on Principles of Database Systems, pp. 260–271 (2003)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Inconsistency
Tolerance in P2P Data Integration: an Epistemic Logic Approach. In: International
Symposium on Database Programming Languages, pp. 692–697 (2004)

Consistent Data Integration in P2P Deductive Databases 243

10. Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Logical foundations of
peer-to-peer data integration. In: Symposium on Principles of Database Systems,
pp. 241–251 (2004)

11. Caroprese, L., Greco, S., Zumpano, E.: A Logic Programming Approach to Query-
ing and Integrating P2P Deductive Databases. In: The International Florida AI
Research Society Conference, pp. 31–36 (2006)

12. Caroprese, L., Molinaro, C., Zumpano, E.: Integrating and Querying P2P Deduc-
tive Databases. In: International Database Engineering & Applications Sympo-
sium, pp. 285–290 (2006)

13. Fernàndez, J.A., Lobo, J., Minker, J., Subrahmanian, V.S.: Disjunctive LP + In-
tegrity Constraints = Stable Model Semantics. Annals of Mathematics and Artifi-
cial Intelligence 8(3-4), 449–474 (1993)

14. Franconi, E., Kuper, G.M., Lopatenko, A., Zaihrayeu, I.: Queries and Updates in
the coDB Peer to Peer Database System. In: International Conference on Very
large Data Bases, pp. 1277–1280 (2004)

15. Franconi, E., Kuper, G.M., Lopatenko, A., Zaihrayeu, I.: A Robust Logical and
Computational Characterisation of Perto-Peer Database Systems. In: International
Workshop on Databases, Information Systems and Peer-to-Peer Computing, pp.
64–76 (2003)

16. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: Joint International Conference and Symposium on Logic Programming, pp.
1070–1080 (1988)

17. Van Gelder, A.: The Alternating Fixpoint of Logic Programs with Negation. In:
Symposium on Principles of Database Systems, pp. 1–10 (1989)

18. Greco, G., Greco, S., Zumpano, E.: Repairing and Querying Inconsistent Data-
bases. Transactions on Knowledge and Data Engineering, 1389–1408 (2003)

19. Gribble, S., Halevy, A., Ives, Z., Rodrig, M., Suciu, D.: What can databases do for
peer-to-peer? In: WebDB, pp. 31–36 (2001)

20. Lonc, Z., Truszczynski, M.: On the Problem of Computing the Well-Founded Se-
mantics. Computational Logic, 673–687 (2000)

21. Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data man-
agement systems. In: International Conference on Database Theory, pp. 505–516
(2003)

22. Lenzerini, M.: Data integration: A theoretical perspective. In: Symposium on Prin-
ciples of Database Systems, pp. 233–246 (2002)

23. Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In: Inter-
national Conference on Very Large Data Bases, pp. 572–583 (2003)

24. Pradhan, S., Minker, J.: Using Priorities to Combine Knowledge Bases. Interna-
tional Journal of Cooperative Information Systems 5(2-3), 333 (1996)

25. Sakama, C., Inoue, K.: Prioritized logic programming and its application to com-
monsense reasoning. Artificial Intelligence 123(1-2), 185–222 (2000)

26. Seipel, D., Minker, J., Ruiz, C.: Model Generation and State Generation for Dis-
junctive Logic Programs. Journal of Logic Programming 32(1), 49–69 (1997)

27. Tatarinov, I., Halevy, A.: Efficient Query reformulation in Peer Data Management
Systems. In: SIGMOD, pp. 539–550 (2004)

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 244–254, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Learning from Imprecise Granular Data Using
Trapezoidal Fuzzy Set Representations

Ronald R. Yager

Machine Intelligence Institute
Iona College

New Rochelle, NY 10801
yager@panix.com

Abstract. We discuss the role and benefits of using trapezoidal fuzzy representa-
tions of granular information. We focus on the use of level sets as a tool for
implementing many operations involving trapezoidal fuzzy sets. Attention is
particularly brought to the simplification that the linearity of the trapezoid brings in
that it often allows us to perform operations on only two level sets. We investigate
the classic learning algorithm in the case when our observations are granule objects
represented as trapezoidal fuzzy sets. An important issue that arises is the adverse
effect that very uncertain observations have on the quality of our estimates. We
suggest an approach to addressing this problem using the specificity of the
observations to control its effect. Throughout this work particular emphasis is
placed on the simplicity of working with trapezoids while still retaining a rich
representational capability.

1 Introduction

The coming of age of the semantic web and other related technologies is making avail-
able huge amounts of granular, linguistic and imprecise, information. Our interest here is
on the task of providing for the efficient representation and manipulation of granular
information for learning and information fusion. We focus here on trapezoidal fuzzy
subset as they can provide a very convenient object for the representation of granule
information [1, 2] in many applications. This convenience is based on a number of
features associated with trapezoidal fuzzy subsets.

One significant benefit of using trapezoidal representations occurs in the informa-
tion input process where a user provides a formalization of some data or observation.
Here starting with an imprecise perception or description of the value of some attribute
the user must represent it in terms of some formal granular object. As noted by Zadeh
[3, 4] this representation step affords the user considerable freedom in their selection
of the representing granule. Various considerations can effect a user's choice of
representation. Foremost among these is what Zadeh calls cointention [3], the ability of
the representing object to convey the meaning of the concept it is being used to
represent. We see that the form of the trapezoidal fuzzy subset allows the modeling of
a wide class of granular type objects. Triangular, interval and point valued subsets are
all special cases of trapezoids. Using trapezoids we also have the freedom of being or
not having to be symmetric. Another positive feature of the trapezoid representation is

 Learning from Imprecise Granular Data Using Trapezoidal Fuzzy Set Representations 245

the ease of acquiring the necessary parameters. Here we need only four parameters all
of which are related to real features of the attribute being modeled. They are not
cognitively complex features.

An additional consideration in selecting a representation of our datum is the facility
with which the representing object can be manipulated in the context of the application.
Many mathematical operations can easily be preformed using trapezoidal representations.
Specifically many operations can be defined using level sets, which are intervals in the
case of trapezoids. Furthermore these definitions often just make use of the end points of
the intervals. Thus many operations on trapezoids can be performed just using the end
points of intervals. A further significant advantage of the use of trapezoids is that
working with level sets is greatly facilitated by the linearity of the trapezoid. There is a
linear relationships between the bounding points of the level sets. This linearity often
results in a situation in which we only need perform operations on two level sets to obtain
a total implementation.

Our interest will be particularly on the role of trapezoids in the type of operations
that occur in learning.

2 Basic Features of Trapezoidal Fuzzy Subsets

In figure 1 we show a standard normal trapezoidal fuzzy subset on the real line. As we
see this fuzzy subset is specified by four parameters, a, b, c and d. An important
feature of a trapezoid is its linear nature. Because of this many linear operations can
be easily implemented with trapezoids.

1

a b c d

Fig. 1. Standard Normal Trapezoidal Fuzzy Subset

The membership grade F(x) of a normal trapezoidal fuzzy subset can be easily
obtained from the four parameters, a, b, c, d

F(x) = 0 x ≤ a
F(x) = x - a

b - a
a < x ≤ b

F(x) = 1 b ≤ x ≤ c
F(x) = d - x

d - c
c < x ≤ d

F(x) = 0 x > d

246 R.R. Yager

The area under a standard trapezoidal fuzzy subset can be obtained using well
know principles about the area of primary geometric figures. It is easy to shown that

Area = = 0.5 (c + d) - 0.5 (a + b)

In figure 2 we show some special cases of normal trapezoid fuzzy subsets. In
figure 2.1 we see an interval fuzzy subset is a trapezoid where a = b and d = c. We see
a triangular fuzzy subset is a trapezoid where b = c. We see a singleton is a trapezoid
where a = b = c = d. In last figure is another special case trapezoidal fuzzy subset
where where a = b. This is is clearly non–symmetric.

For the special cases of trapezoids the calculation of the area reduces to the following

 1) Interval case: a = b and c = d Area = c - b
 2) Triangular case, b = c Area = d - a

2

 3)Singleton point case, a = b = c = d Area = 0
 4) For the case with a = b Area = c + d

2
 - a

a d

1 1

a b
d

1

a=b=c=d

1

c da = b

2. 2 Triangular2. 1 Interval

2.3 Singleton 2. 4 Left End

Fig. 2. Special Cases of Trapezoidal Fuzzy Sets

 Learning from Imprecise Granular Data Using Trapezoidal Fuzzy Set Representations 247

In point of fact the specification of a trapezoidal fuzzy subset requires five parameters
rather than only four. In addition to a, b, c, and d we must also specify the largest
membership grade αmax. In the preceding when we referred to normal fuzzy subsets we

implicitly assumed αmax = 1. In the sub-normal case, where αmax < 1, while the general

shape of the fuzzy subsets doesn't change the calculation of the membership grades and
area must modified.

As can be easily shown in the case where αmax < 1 then we get for the membership
grade

 E(x) = 0 x ≤ a
 E(x) = αmax x - a

b - a
 a < x ≤ b

 E(x) = αmax b < x ≤ c

 E(x) = αmax d - x
d - c

 c < x ≤ d

 E(x) = 0 x > d

We see a very easy linear relationship between the membership grades of the
normal fuzzy subset F and the subnormal fuzzy subset E, E(x) = αmaxF(x). Here we

see an example of the fundamental linearity of trapezoids.
An even more dramatic manifestation of the linear nature of trapezoids appears

when we calculate the area under subnormal trapezoids. If E is a fuzzy subset the type
shown in figure 1 except that its maximal membership grade is αmax then

 Area = αmax (c + d
2

 - a + b
2

)

Here we clearly see the simplicity that the linearity associated with trapezoids brings.

3 Level Sets and Trapezoidal Fuzzy Subsets

It is the convenience and simplicity that the linearity associated with trapezoids brings
to working with level sets that makes the trapezoidal fuzzy subset so useful for many
applications. We recall that if F is a fuzzy subset the α-level set Fα is a crisp set such

that Fα = {x/F(x) ≥ α}.

We note that for any unimodal fuzzy subset of the real line, such as a trapezoid the
level sets are interval subsets of the real line, Fα = [Lα, Uα] We note that for α1 > α2

then Fα1
 ⊆ Fα2

. Here then Lα1
 ≥ Lα2

 and Uα1
 ≤ Uα2

.

Two special subsets associated with F are worth noting - the core and support of F,
Core(F) = {x/F(x) = } and Sup(F) = {x /F(x) ≠ 0}. We see that since F(x) ≤ 1 that the
Core(F) = {x/F(x) ≥ } = F1. On the other hand Sup(F) = Fα as α→ 0. By default we

shall denote F0 as Sup(F).

In the following we shall assume normal fuzzy subsets, in this case F1 = [L1, U1]

= [b, c] and F0 = [L0, U0] = [a, d].

248 R.R. Yager

As a result of the linearity of the trapezoid F any other level set can be obtained
directly and easily from these two level sets. Consider Fα = [Lα,.Uα] here with 1 – α

denoted as α we have Lα = α L
1

 + α L0 = α b + α a and Uα = α U
1

 + α U0 = α c +

α d. Thus every α-level set can be obtained directly from the core and support of the
trapezoid. Actually we can get the bounds of every level set from any two other level
sets, Fα1

 and Fα2
. Assume Fα1

 = [Lα1
, Uα1

] and Fα2
 = [Lα2

, Uα2
]. We can show

that for any 0 ≤ α ≤ 1

Lα = 1
(α1 - α2)

 [Lα1
 (α - α2) + Lα2

 (α1 - α)]

Uα = 1
(α1 - α2)

 [Uα1
 (α - α2) + Uα2

 (α1 - α)]

Thus we can uniquely specify the any trapezoidal fuzzy subset by providing any
two level sets. From a pragmatic point of view it seems that requesting from a user the
core set of F, F1, and F0.5 = {x/F(x) ≥ 0.5} might be the most appropriate as users

can more easily supply F0.5 rather than F0. We shall refer to the F0.5 as the middle

level set and denote it as Fm.

The specification of all level sets of a normal trapezoidal fuzzy subset can easily be
to obtained using the middle and core sets. We see that if we have these two level sets
F1 = [L1, U1] = [a, b] and F0.5 = [L0.5, U0.5] = [g, h] then for any other α, Fα =

[Lα, Uα] where Lα = 2 (a (α - 0.5) + g (1 - α)) and Uα = 2 (b (α - 0.5) + h (1 - α)).

Another important feature of the level sets is their role in the representation
theorem. Let A be a fuzzy subset of X and let b [0, 1]. We define b ⊗ A to be a
fuzzy subset E of X such that E(x) = b A(x). Here we are multiplying the
membership grades of A by b. Using this we can obtain the decomposition property of
fuzzy sets [5]. Any fuzzy subset A can be expressed

A = α ⊗ Aα∪
α ∈ [0, 1]

We see for any x ∈ X that A(x) = [α]Max
x ∈ Aα

.

4 Trapezoidal Preserving Operations

A useful feature for operations involving trapezoids is closure where an operation
involving trapezoids results in another trapezoid. While the union and intersection of
normal trapezoids are not trapezoids other operations satisfy this closure property. A
particular interest here is on arithmetic operations.

The extension principle introduced by Zadeh [6] provides a method for extending
arithmetic operators to fuzzy subsets [7]. Assume G: R × R → R is an arithmetic
operation that is defined. Using the extension principle if A and B are two fuzzy

 Learning from Imprecise Granular Data Using Trapezoidal Fuzzy Set Representations 249

subset of R then G(A, B) = D where D = {A(x) ∧ B(y)

G(x, y)
}∪

x, y ∈ R

 and hence for any

z ∈ R we get

D(z) = [A(x) ∧ B(y)]Max
All x, y ∈ R

s⋅ t ⋅
G(x, y) = z

.

It can be shown that this extended operator can be expressed in terms of level sets [6]
if D = G(A, B) then Dα = G(Aα, Bα). Since Aα and Bα are crisp subsets of R then

Dα = {G(x, y)}∪
x ∈ Ax
y ∈ Bx

. Thus the operation can be performed at each level. We further

note that in the case of trapezoids since each level set is an interval the operation Dα =

G(Aα, Bα) can be performed using interval operations. Here then if A and B are

trapezoids then Aα = [LAα, UAα] and Bα = [LBα, UBα].

A question that naturally arises is what operations G always results in normal
trapezoids when A and B are normal trapezoids. One necessary condition is that Dα =

G(Aα, Bα) is always an interval. Another necessary condition is that with the core

and support of D denoted respectively as

In order to see which operations are trapezoid preserving we must first provide
some results from interval arithmetic. Consider two intervals I1 = [L1, U1] and

I2 = [L2, U2]. The basic operations of interval arithmetic are:

I1 + I2 = [L1 + L2, U1 + U2]

I1 - I2 = [L1 - U2, U1 - L2]

I1 I2 = [Min(L1 L2, L1 U2, U1 L2, U1 U2), Max((L1 L2, L1 U2, U1 L2, U1 U2)]

I1 / I2 = [Min(L1/L2, L1/U2, U1/L2, U1/U2), Max(L1/L2, L1/U2, U1/L2, U1/U2)]

If all the values are positive then we can simplify the calculations of I1 I2 and

I1/I2. In particular I1 I2 = [L1 L2, U1 U2] and I1/I2 = [L1/U2, U1/L2].

Another property is that if a ≥ 0 then a I1 = [aL1, aU1] and if a < 0 then a I1 =

[aU1, aL1].

Furthermore Min(I1, I2) = [Min(L1, L2), Min(L1, L2)] and Max(I1, I2) =

[Max(L1, L2), Max(L1, L2)].

We observe all the above arithmetic operations result in intervals.

 D1 = [LD1, UD1] and D0 = [LD0, UD0]

then for any other for any level set of D, Dα = [LDα, UDα] we have LDα = α LD1
 + LD0 and UDα = α UD1 + α UD0α .

250 R.R. Yager

We can consider some more complex operation. If w1 and w2 are non-negative

values then
w1I1 + w2I2 = [w1L1 + w2L2, w1U1 + w2U2]

w1I1 - w2I2 = [w1L1 - w2U2, w2U1 - w2U2]

Let us now consider the trapezoidal preserving nature of these preceding operations.
While the multiplication and division of trapezoids is not trapezoidal preserving.we now
indicate an important operation which is trapezoidal preserving [8].

Theorem: If A and B are two trapezoids then D = w1A + w2B is a trapezoid.

Essentially we have shown that for linear operators G, G(A, B) are trapezoids. More
generally it can be shown that if A1, A1, ...An are normal trapezoids then

D = w1A1 + w2A2 + wnAn
is a normal trapezoid.

In the preceding we have indicated that linear arithmetic operations are trapezoidal
preserving. That is operation such as weighted averages of trapezoids lead to
trapezoids. Not only are they trapezoidal preserving but are easily implemented by
simply performing the arithmetic operation on the end points of two level sets. With
this facility it appears that trapezoidal fuzzy subsets can often provide a very useful
representation of granular information. Furthermore we feel that the using the α = 1
and α = 0.5 level sets are perhaps the easiest level sets for a use to describe. Here they
just must the end points of these represented interval.

5 Learning from Granular Observations

An important problem in many modern domains is learning from observations. This
fundamental to data mining. We now show the facility for performing this task with
granular observations using trapezoidal representations.

Assume V is variable whose domain X is a subset [a, b] of the real line. Let E be the
current estimate of the value of V and let D be new observation of the value of V. In this
case a common approach for obtaining a new estimate F of the value of V is [9, 10]

F = E + λ(D - E) = λD + λE

where λ ∈ [0, 1] is our learning rate. The larger λ the faster the learning but the more
the system is prone to sporadic observations. We shall consider the situation in which
our observations are granular. Here we shall use normal trapezoids as our
representation of both the granular observations and the learned values. In the
following we denote the level sets associated with E, F and D as Eα = [L_Eα, U_Eα],

Fα = [L_Fα, U_Fα] and Dα = [L_Dα, U_Dα] respectively.

Since the calculation of F = λ D + λ E is a linear operation we can completely
determine F by calculating Fα for any two level sets In this case any level set Fαcan

simply be obtained as

Fα = [λ L_Dα L_Eα, λ U_Dα U_Eα] + λ + λ

 Learning from Imprecise Granular Data Using Trapezoidal Fuzzy Set Representations 251

Thus to completely determine F all we need calculate is

We illustrate the preceding with the following example

Example: In the following we let the domain of V, X = [0, 10]. Assume the current
estimate E is expressed by the following two level set E1 = [4, 6] and E0.5 = [3, 7].

We further assume our granular observation D is described using the level sets D1 =

[5, 8] and D0.5 = [4, 10]. Using a learning rate λ = 0.2 we obtain that our new

estimate F has level sets

F1 = [(.2)(5) + (.8)(4), ((2)8 + (.8)6] = [4.2, 6.4]

 F0.5 = [(.2)(4) + (8)7, (.2)(10) + (.8)7] = [3.2, 7.6]

We further recall that if F1 = [L1, U1] and F0.5 = [LM, UM] then for any level set

Fα = [Lα Uα] we have

Lα = (2L1(α - 1/2) + 2LM(1 - α)

 Uα = (2U1(α - 1/2) + 2UM(1 - α)

Thus in this case

Lα = (2)(4.2)(α - 1/2) + 2(3.2)(1 - α) = 2.2 + 2α

 Uα = (2)(6.4)(α - 1/2) + 2(7.6)(1 - α) = 8.8 - 2.4α

Here then for example F0 = [2.2, 8.8].
The simplicity of these calculations can not be over emphasized. Furthermore

while we have worked with F1 and F0.5 the calculations could have just as easily

been performed with with any level sets such as F1 and F0.

6 Managing the Imprecision in Granular Observations

When working with granular information as opposed to precise values there is one
additional aspect that must be considered in the process of estimating the value of a
variable. This aspect revolves around the uncertainty or quality associated with our
estimate. Consider three examples of estimates of V, A, B, C. Assume there
associated level sets are

A1 =[5, 5] and A0.5 = [5, 5]

 B1 = [4, 8] and B0.5 = [3, 10]

 C1 = [0, 10] and C0.5 = [0, 10]

It is clear that A provides more information about the value of V, it says it is
precisely 5. While the case of B provides less information than A it is a better then
that provided by C.

F1 = [λL_D1 + λ L_E1, λ U_D1 + λ U_E1]
F0.5 = [λ L_D0.5 + λ L_E0.5, λ U_D0.5 + λ U_E0.5]

.

252 R.R. Yager

A well established measure of the amount of information contained in a fuzzy
subset is the measure of specificity [11]. We shall use this to characterized the quality
of information contained in our estimate. Let A = [c, d] be an interval subset of the
domain X = [a, b]. The specificity [11] of this interval valued fuzzy subset of is

SP(A) = 1 - Length(A)
b - a

 = 1 - d - c
b - a

In this case of an interval it is simply inversely related to the size of the interval.
Using the extension principle we can extend this measure to a trapezoidal fuzzy

subset F [8] .In particular it can be shown that

SP(F) = 1 - Length(F0.5)
b - a

 = SP(FM)

It is simply the specificity of the 0.5 level set. This is very nice and simple.
As we noted the specificity is related to the uncertainty as well as the usefulness of

the information. We see the bigger Length(F0.5) the less specific.

Consider now the effect of learning on the specificity of the estimate. Using our
learning algorithm with E our previous estimate, D our current observation and F our
new estimate, all trapezoids, we have

and hence

Since Sp(F) = 1 - Length(FM)
b - a

 then

Sp(F) = 1 - λ Length(DM) + λ Length(EM)
b - c

 = λ Sp(D) + λ Sp(E)

Thus the specificity of the new estimate F is a weighted average of the specificity
of the observation and the specificity of the current estimate.

What we can see is that very uncertain observations, those with small specificity
(relatively large values for Length(DM)) will tend to decrease the specificity of our

estimate. As an extreme example consider the case when D is the completely uncertainty
value, D = [a, b]. In this case D0.5 = [a, b] and hence SP(D) = 0. Thus here

Sp(F) = λ 0+ λ Sp(E) = λ Sp(E).

In this case we have just decreased our specificity without gaining any real
information about the value of the variable.

It appears reasonable that we should try to reduce the effect of observations that are
too imprecise on the learning process. In the following we shall suggest one method
for accomplishing.

Consider the learning algorithm F = E + λ(D - E) whereλ is our learning rate, our
openness to learn from the current observation D. We now suggest modifying the

Fα = [λ L_Dα + λ L_Eα, λ U_Dα + λ U_Eα]

Length(Fα) = λ(U_Dα − L_Dα) + λ(U_Eα - L_Eα)
Length(Fα) = λ Length(Dα) + λ Length(Eα)

 Learning from Imprecise Granular Data Using Trapezoidal Fuzzy Set Representations 253

learning rate by a term σ ∈ [0, 1] related to the specificities of D and E. We shall use
as our modified learning algorithm

F = E + λσ(D - E)

Here the σ is a term relating the specificities SP(E) and SP(D). Considerable possi-

bilities exist for formulating σ here we shall just suggest some.
One possible form for σ is as shown in figure 3. In this we have

σ = 1 if SP(D) ≥ SP(E)

 σ =Sp(D)

Sp(E)
 if SP(D) < SP(E)

We can of course make the decay much slower when SP(D) ≤ SP(E). Instead of

using Sp(D)

Sp(E)
 we can use (Sp(D)

Sp(E)
)r where r ∈ [0, 1].

Sp(D)Sp(E)

1

1
0

Fig. 3. Calculation of

More generally we can obtain σ using a fuzzy model [12] based on the relationship
between SP(D) and SP(E). For example if

SP(D) is A1 and SP(E) is B1 then σ = g1

SP(D) is A2 and SP(E) is B2 then σ = g2

SP(D) is Aq and SP(E) is Bq then σ = gq

We shall not discuss this further as we realize the method of determining σ may be
context dependent. The important point we want to emphasize here is the need for
controlling the effect of new observations based upon their uncertainty or quality.

7 Conclusion

We discussed the role and benefits of using trapezoidal representations of granular
information. Throughout this work we emphasized the simplicity of working with
trapezoids while still retaining a rich representational capability. Attention was
particularly brought to the simplification that the linearity of the trapezoid brings by

σ

254 R.R. Yager

often allowing us to perform operations on only two level sets. We investigated the
classic learning algorithm in the case when our observations are granule objects
represented as trapezoidal fuzzy sets. An important issue that arose was the adverse
effect that very uncertain observations have on the quality of our estimates. We
suggested an approach to addressing this problem using the specificity of the
observations to control its effect.

References

[1] Lin, T.S., Yao, Y.Y., Zadeh, L.A.: Data Mining, Rough Sets and Granular Computing.
Physica-Verlag, Heidelberg (2002)

[2] Zadeh, L.A.: From imprecise to granular probabilities. Fuzzy Sets and Systems, 370–374
(2005)

[3] Zadeh, L.A.: Generalized theory of uncertainty (GTU)-principal concepts and ideas.
Computational Statistics and Data Analysis (to appear)

[4] Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU)-An outline. Information
Sciences 172, 1–40 (2005)

[5] Zadeh, L.A.: Similarity relations and fuzzy orderings. Information Sciences 3, 177–200
(1971)

[6] Zadeh, L.: The concept of a linguistic variable and its application to approximate
reasoning: Part 1. Information Sciences 8, 199–249 (1975)

[7] Dubois, D., Prade, H.: Operations on fuzzy numbers. International Journal of Systems
Science 9, 613–626 (1978)

[8] Yager, R.R.: Using trapezoids for representing granular objects: applications to learning
and OWA aggregation, Technical Report MII-2712 Machine Intelligence Institute, Iona
College, New Rochelle, NY 10801 (2007)

[9] Zaruda, J.M.: Introduction to Artificial Neural Systems. West Publishing Co. St. Paul,
MN (1992)

[10] Larose, D.T.: Discovering Knowledge in Data: An introduction to Data Mining. John
Wiley and Sons, New York (2005)

[11] Yager, R.R.: On measures of specificity. In: Kaynak, O., Zadeh, L.A., Turksen, B.,
Rudas, I.J. (eds.) Computational Intelligence: Soft Computing and Fuzzy-Neuro
Integration with Applications, pp. 94–113. Springer-Verlag, Berlin (1998)

[12] Yager, R.R., Filev, D.P.: Essentials of Fuzzy Modeling and Control. John Wiley, New
York (1994)

Refining Aggregation Functions for Improving

Document Ranking in Information Retrieval

Mohand Boughanem1, Yannick Loiseau2, and Henri Prade1

1
Irit-Cnrs, Université de Toulouse, 118 route de Narbonne,

31062 Toulouse cedex9, France
{bougha,prade}@irit.fr

2
Limos, Complexe scientifique des Cézeaux, 63177 Aubière cedex, France

loiseau@isima.fr

Abstract. Classical information retrieval (IR) methods use the sum for
aggregating term weights. In some cases, this may diminish the discrim-
inating power between documents because some information is lost in
this aggregation. To cope with this problem, the paper presents an ap-
proach for ranking documents in IR, based on a refined vector-based
ordering technique taken from multiple criteria analysis methods. Dif-
ferent vector representations of the retrieval status values are considered
and compared. Moreover, another refinement of the sum-based evalua-
tion that controls if a term is worth adding or not (in order to avoid noise
effect) is considered. The proposal is evaluated on a benchmark collection
that allows us to compare the effectiveness of the approach with respect
to a classical one. The proposed method provides some improvement of
the precision w.r.t Mercure IR system.

1 Introduction

The purpose of information retrieval (IR) is to find out documents that are
relevant with respect to the user’s information needs. The most commonly used
method is to rank documents according to their relevance to a query stated by
the user to represent these needs. The results of the performance evaluation of
such a system depends on the rank of relevant documents among those retrieved
by the IR system. The method used for rank-ordering the documents is therefore
crucial for the result of the evaluation of a query.

In classical information retrieval systems, documents and queries are usually
represented by sets of weighted terms. Term weights are computed from sta-
tistical analysis. More precisely, the weight of a term in a document is usually
estimated by combining the term frequency tf in the document and the inverse
document frequency of the term idf [1,2]. Weights in the query terms, on the
other hand, express user preferences.

To evaluate to what extent a document is relevant to a query, a retrieval status
value (rsv) is computed by aggregating the above weights for the terms present
in the query, in a way that reflects the query structure (expressing disjunction
or conjunction). Then documents are ranked on the basis of the rsv’s. Different

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 255–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

256 M. Boughanem, Y. Loiseau, and H. Prade

kinds of aggregation functions have been discussed for combining the weights of
the terms (pertaining to the same document) that are present in the considered
query (assumed here to be without any user’s preference weighting). Candidate
operators for aggregation that are found in the literature are sum or average,
similarity-based evaluation, p-norms [3,4], fuzzy logic conjunctive or disjunctive
operations [5,6,7]. However, this type of approach leads to a loss of information
(e.g. [8]), since individual keyword values are combined together.

A consequence is that it is impossible to discriminate documents having the
same global relevance value. As an example, let us consider a three-terms query,
aggregated by the average. This is only an example, and remarks similar to the
ones below apply to other aggregation operators, including min and other fuzzy
logic connectives. Let us suppose that the evaluation of the query q = t1∧t2∧t3 on
two documents d1 and d2 gives the following results (using normalized weights):

rsv(q, d1) =
w(t1, d1) + w(t2, d1) + w(t3, d1)

3

=
0.1 + 0.7 + 0.7

3
= 0.5;

rsv(q, d2) =
w(t1, d2) + w(t2, d2) + w(t3, d2)

3

=
0.5 + 0.5 + 0.5

3
= 0.5.

The issue is to know whether the user prefers a document with a medium
relevance for all its criteria, or having a high relevance for most of them. This
example not only raises an ambiguity problem between documents having ap-
parently the same relevance, but more generally points out the problem of the
impact of terms having weights much higher than others. If we want to privilege
d1 over d2, this problem can be dealt with by using operators such as Ordered
Weighted Average [5], which focus on the weights with high values and model
quantifiers such as most of [9,10,11], provided that such a quantifier is specified
in the query. But this does not give a way of preferring d2 to d1 if we consider
that one low weight can be a serious reason for discounting a document.

In this paper, we try another road. We no longer plan to aggregate the weights,
but rather to rank-order the documents directly on the basis of the vectors of the
weights of the terms present in the query, using decision making ideas that handle
multiple criteria values (here replaced by the relevance value of each query term).
The idea has been recently suggested by the authors in a conference paper [12],
but new criteria for comparing vectors are considered, and a new experimentation
is reported.

This alternative method is described in section 2. The section 3 presents the
results of experiments carried out on CLEF collection [13].

2 Multicriteria Ranking

At least two approaches can be used to compare objects according to multiple
criteria. The first one is to aggregate these criteria, then to compare the obtained

Refining Aggregation Functions for Improving Document Ranking in IR 257

values. This corresponds to the classical information retrieval approach, consid-
ering the relevance with respect to each query term relevance as a criterion to
fulfil. The second method amounts to compare the criteria evaluation vectors di-
rectly by using a refinement of Pareto ordering ((t1, . . . , tn) >Pareto (t′1, . . . , t

′
n)

iff ∀i, ti ≥ t′i,and ∃j, tj > t′j). This later method is discussed in this paper. We
briefly discuss the aggregation approach first.

2.1 Aggregation Schema

Query terms are usually weighted in order to allow the user to express his pref-
erences and assess the importance of each term. Therefore, the result of the
evaluation of a query on a document is a vector of the weights of the terms
of the document present in the query, usually modified for taking into account
preferences about the importance of the terms in the query. This is why classical
IR aggregation methods use weighted conjunction (or disjunction) operators. In
conjunctive queries, these operators can be weighted average or weighted mini-
mum. Similar ideas apply to disjunctions as well.

However, this kind of aggregation is too restrictive. To relax the conjunction,
ordered weighted operators, such as average (OWA1 [5]) or minimum (OWmin
[14]) have been introduced. The idea underlying this type of aggregation is to give
low importance to the smallest weights in the evaluation vector, thus minimizing
the impact of small terms, which amounts to model a most of quantifier (e.g.
[11]).

The OWmin operator uses an auxiliary vector of levels of importance in order
to minimize the impact of low weighted terms on the final relevance value. Thus,
as for OWA, the term weights vectors are ordered and discounted by impor-
tance levels, using the minimum instead of the average for computing the global
evaluation.

Two weighting methods are considered, based on Dienes implication and on
Gödel implication respectively (e.g. [14]). For a vector T = t1, . . . , tn representing
the indexing weights for a document, ti is the relevance degree between the ith

query term and the document. The vector is assumed to be decreasingly ordered
(i.e. ti ≥ ti+1). Let W = (w1, . . . , wn) be the level of importance vector, also
assumed to be decreasingly ordered, i.e. wi ≥ wi+1, with w1 = 1. The idea is to
give more importance (wi high) to the terms with a high relevance degree. The
OWmin aggregation using Dienes implication will be:

OWminD(T, W) = min
i

(max(ti, 1 − wi))

while the Gödel implication is defined by

wi → ti =
{

1 if wi ≤ ti
ti otherwise

which gives:
OWminG(T, W) = min

i
(wi → ti)

1 Ordered weighted averaging operators.

258 M. Boughanem, Y. Loiseau, and H. Prade

In both cases, if the smallest wi’s are zero, these weighted aggregations amount
in practice to restrict the minimum to the ti’s with high values (since small ti’s
will be replaced by 1 in the aggregation, and the high values of ti’s, corresponding
to values of wi’s equal or close to 1, will remain unchanged).

However, as already said, we want to rank-order documents by taking ad-
vantage of the full weights vector associated with each document, rather than
using an aggregated value. This means that we keep the idea of using weights
for modifying the indexing weights and restricting the focus of the evaluation,
but we no longer compute an aggregated value (taken above as the minimum).

In order to compare vectors, the classical Pareto partial ordering has to be
refined, since no pairs of documents should remain incomparable. In the follow-
ing, we use refinements of the min or the sum operations, which do refine the
Pareto ordering, to be compared with the sum operation, which is the classical
operator used in IR.

2.2 Refining the Minimum Aggregation

There exist two noticeable refinements of the min operation, called discrimin
and leximin, see e.g. [15,16]. They allow to distinguish between vectors having
the same minimal value.

Discrimin: Two evaluation vectors are compared using only their distinct com-
ponents. Thus, identical values having the same place in both vectors are dropped
before aggregating the remaining values with a conjunction operator. Thus, only
discriminating term weights are considered. In the context of information re-
trieval, given two vectors representing the weights of terms in query q for docu-
ments d1 and d2, expressing term-document relevance. For instance:

rsv(q, d1) = (1, 0.5, 0.1, 0.3),
rsv(q, d2) = (0.2, 0.7, 0.1, 1).

Using min as an aggregation, these two vectors would get the same score.
The discrimin procedure “drops” the third term, giving rsv(q, d1) = 0.3 and
rsv(q, d2) = 0.2 and allowing to rank these documents.

Leximin: It is a discrimin applied on vectors with increasingly re-ordered com-
ponents. Considering two vectors:

rsv(q, d1) = (1, 0.5, 0.1, 0.2),
rsv(q, d2) = (0.2, 0.7, 0.1, 1).

Using the discrimin, both values are 0.2. Since the leximin sorts the values before
comparing them, the 0.2 values are also dropped, giving rsv(q, d2) = 0.7 and
rsv(q, d1) = 0.5, thus ranking d2 before d1.

Formally speaking, the leximin order between two vectors W = (w1, . . . , wn)
and w′ = (w′1, . . . , w

′
n) where the w′is and the w′i

′
s are increasingly ordered is

defined by W >lex W ′ iff w1 > w′1 or ∃k such that ∀i = 1, k wi = w′i and wk+1 >
w′k+1.

Refining Aggregation Functions for Improving Document Ranking in IR 259

Note that such a refinement will be sensitive to the way the computed weights
wi and w′i are rounded, since this clearly influences the fact that two weights
may be regarded as equal.

2.3 Refining the Sum Aggregation

Despite the sum is an efficient way to aggregate the terms weights better than
min aggregation, its use may lead to some problems as described in the intro-
duction.

In this paper, we test a way to refine the sum by keeping track of individual
weights information to some extent. The operator used is a truncated sum that
progressively misses weights according to their values. Given the ordered vector
of term weights W = (w1, . . . , wn), it amounts to the lexicographic ordering of
vectors of the form (w1+· · ·+wn, w1+· · ·+wn−1, . . . , w1+w2, w1), for w1 ≤ w2 ≤
. . . ≤ wn. Such an ordering is closely related to the notion of Lorenz dominance
(see, e.g. [17]). Therefore, the sum of all weights is first considered, as in classical
systems, the sum of n − 1 weights if the two sums are equal, and so on.

Several variants could be thought of. The first one, called LexiSum, is the
above one; the second one, called LexiSumR uses the vector (w1 + · · ·+wn, w2 +
· · · + wn, . . . , wn−1 + wn, wn) that deletes small weights first. Lastly, two other
variants might be considered based on the comparison of vectors of the form
(w1, w1 + w2, . . . , w1 + · · · + wn−1, w1 + · · · + wn) and of the form (wn, wn +
wn−1, . . . , wn + · · · + w2, wn + · · · + w1) that progressively cumulate weights.

However, we shall not report tests about these two last proposals since the
first one is formally equivalent to leximin (up to some possible rounding effects),
while the other privileges the maximum of the w′is.

3 Experimental Results

In this section, we present the results of experiments on the English subset of
the CLEF20012 collection, in order to evaluate the merit of the vector-based
ranking of documents.

3.1 Description of the Experiments

The goal of the experiment is to evaluate the potential enhancement of the
global performance of the information retrieval system, and to compare the re-
sults that are obtained using several ranking methods with the one provided by a
classical approach. It compares results obtained with several aggregation strate-
gies, namely the weighted sum aggregation underlying the classical approach
(used in Mercure [18]) and the different vector refinements of the sum, and the
leximin-based ranking method that refines the minimum(possibly applied with
an OWmin).
2 Cross Language Evaluation Forum: http://www.clef-campaign.org

http://www.clef-campaign.org

260 M. Boughanem, Y. Loiseau, and H. Prade

The Mercure information retrieval system. The proposed refined methods
are compared to the results of the Mercure system [18]. In this system, the weight
wt of a term t for a document is computed using a formula derived from the Okapi
system [19]:

wt =
tf

0.2 + 0.7 × dl
Δl

+ tf
× (log(

ntot

n
)) (1)

where tf is the term frequency in the document, dl is the document length, Δl

is the average document length in the collection, ntot is the size of the collection
and n is the number of documents containing the term.

The final similarity degree Sqd between a query q and a document d, giving
the relevance of the document for the query, is computed as:

Sqd =
∑
t∈q

λt × wtd

where λt is an importance weight for the term in the query (here always 1) and
wtd is the index term weight for document d, given by equation 1.

3.2 CLEF Collection

The collection used in this experimentation is the English part of the CLEF2001
collection, containing more than 110,000 articles from the 1994 Los Angeles
Times.

During the indexing stage, terms frequencies are computed for each document.
These terms are stemmed using the Porter algorithm [20], and stop-words (i.e.
words that bring no information) are removed.

Together with the collection of documents, a set of topics, which are evaluated
on the given documents by human experts, are available. These topics, identi-
fied by a number, are described by a title, a short description of the topic, and a
narrative part pointing out relevance criteria. They are used as a basis for gen-
erating the queries to be evaluated by the IR system. Moreover, the documents
estimated to be relevant by experts are provided for each topic.

As an example, the topic 41 is defined as:

title: Pesticides in Baby Food
description: Find reports on pesticides in baby food.
narrative part: Relevant documents give information on the discovery of pes-

ticides in baby food. They report on different brands, supermarkets, and
companies selling baby food which contains pesticides. They also discuss
measures against the contamination of baby food by pesticides.

It may also happen that the description is much richer than the title, as in
the example:

title: Israel/Jordan Peace Treaty
description: Find reports citing the names of the main negotiators of the Mid-

dle East peace treaty between Israel and Jordan and also documents giving
detailed information on the treaty.

Refining Aggregation Functions for Improving Document Ranking in IR 261

narrative part: A peace treaty was signed between Israel and Jordan on 26
October 1994 opening up new possibilities for diplomatic relations between
the two countries. Relevant documents will give details of the treaty and/or
will name the principal people involved in the negotiations.

where the description specifies that the names of the negotiators must be in
relevant document. Note that this information is not present in the title, and
that using only titles to generate queries can lead to retrieved documents that
were not judged relevant by experts. On the other hand, adding all description
terms may be too restrictive, as seen in section 4.

3.3 Evaluations and Results

To evaluate the approach, we used a set of 50 queries automatically built from
the title of the topics (short queries) and the title and the description of the
topics (long queries), considered as keywords conjunctions.

To estimate the quality of the information retrieval system, two measures are
used. The recall is the ratio of relevant documents retrieved to those relevant in
the collection, and the precision is the ratio of relevant documents among the
documents retrieved. Since the precision at x, denoted Px, which is the ratio
of relevant documents in the x first retrieved documents, is easier to estimate,
it is usually used to represent the system performance. Precisions at 5, 10, etc.
noted P5, P10, are thus computed. MAP is the mean average precision for a
set of queries. An average precision of a query is obtained by averaging the
precision values computed for each relevant retrieved document of rank x. Exact
precision is the mean of R-precision for a set of queries. R-precision of a query
is the precision after R documents have been retrieved, where R is the number
of known relevant documents in the collection for the query.

Table 1. Precision of the Mercure system

P5 P10 P15 P20 Exact MAP

short queries 0.4851 0.3936 0.3319 0.2883 0.4352 0.4622
long queries 0.4936 0.3979 0.3418 0.3064 0.4874 0.5100

Comparison of ranking methods. We will evaluate the ranking method
presented in sections 2 w.r.t. the one used in Mercure. To apply these ordered
weightings, the vectors containing the weights of each query term in the docu-
ment are decreasingly ordered. As the queries considered here do not introduce
further preference levels, the ordered vectors are then weighted using a kind
of most of -like operator as in section 2.1, based on Dienes or Gödel implica-
tions. This type of operator gives more importance to the highest term weights,
minimizing the impact of the lowest ones. The weighting vector is computed
according to the query length l, wi = 1 if i ≤ l/2 and a decreasing linear func-
tion from 1 to 0 is used when i ranges between l/2 and l. Moreover, a threshold of

262 M. Boughanem, Y. Loiseau, and H. Prade

3 terms is kept with a weight of 1, to avoid too short queries. When two doc-
uments have the same relevance value, we compared them using the different
lexicographic-based ordering method.

Moreover, the numerical precision of term degrees is not meaningful, since
resulting from the normalization, which leads some values to differ only at the
fifth decimal. Since the lexicographical comparisons need to decide if values
are equal, the relevance degrees used between terms and documents have been
rounded. The results depend on this rounding, and several precision levels have
been tested to estimate the impact of the rounding on the system performances.
We present here only the best results, obtained with one decimal value rounding.

We used 50 queries, using different aggregating and ranking methods, to es-
timate the document relevance degrees.

Table 2 shows the results of refined methods compared with the classical
approach using the sum. Values are percentage of improvement.

Table 2. Improvement of multicriteria methods w.r.t the sum (in %)

Ranking method P5 P10 MAP

LexiSumR 0 -3.22663 -3.00736
LexiSum -0.865801 -2.15955 -3.59152

Short queries Leximin + OWG -0.865801 -1.62602 -8.54608
Leximin + OWD -0.865801 -2.69309 -9.75768
Leximin -1.75222 -2.69309 -8.71917

LexiSumR 1.72204 4.8002 0.588235
LexiSum 0 0.527771 -1.11765

Long queries Leximin + OWD -9.48136 -9.62553 -14.4902
Leximin -16.3695 -20.3317 -21.1569
Leximin + OWG -18.0916 -20.8595 -22.5882

First of all, we notice that most of refined ordering procedures do not bring a
significant benefit in terms of performances comparing to the classical sum, for
both short and long queries, except for LexisumR in the case of long queries.

We also clearly notice that both Lexisum and LexisumRoperators behave
better than Leximin and its variants, specially for long queries. This is not sur-
prising since Lexim and its variants perform an exact matching, i.e. a document
is retrieved if and only if it contains all query terms. This is a hard constraint
which is not suitable for IR, in particular because of the synonymy problem.
Indeed a document could be relevant to a query even though it does not contain
a given term of that query. This problem is even much more crucial for long
queries. As it can be seen in Table 2, the performances of Leximin for long
queries decrease up to 20%, which is not surprising since the long queries are
more likely to contain terms that are not present in documents.

However, as LexiSum operators behaves as a best matching procedure they
seem to be more suitable for IR. The results of LexiSumR for long queries are
even better than those of the classical approach, improving P10 up to 4.8%. This
last result is quite interesting in IR. Indeed as the precision at top documents

Refining Aggregation Functions for Improving Document Ranking in IR 263

is improved this implies that our approach is more suitable for high precision
evaluation, where good precision at top retrieved documents is desirable. Indeed,
it improves the number of relevant documents retrieved in the top of the list, but
can miss some relevant documents at a lower rank. This improvement is thus
obtained to the expense of the average performance.

As it was mentioned above, the length of queries seems to have different effects
depending on the method used, from small improvement to huge deterioration.
We recall that short queries are built from the title field only and they have 2.58
terms in average while long queries are built from both the title and the descrip-
tion fields and they have 6 terms in average. We have tried to better investigate
this point by evaluating whether adding only spefic terms of the description field
to long queries could have any impact. This evaluation is discussed in the next
section.

4 Refined Sum by Expanding Queries

We recall that the queries are automatically built by extracting terms from a
natural language description of the need, some of these terms can be useful or
even necessary, but others can degrade the system, and are just adding noise.
Indeed, these terms may to be not relevant for evaluating documents, being meta-
descriptive terms that are never in documents, or cannot bring any additional
information.

This suggests to build the query only with terms that are discriminant enough,
that is terms having non-uniform weights among the retrieved documents. In-
deed, terms having quite the same weights in all documents are not useful to
discriminate them. This can be seen as a kind of blind relevance feedback, but
terms are extracted from the topic description instead of the top retrieved doc-
uments themselves, and the terms selection is based on the variability of their
weights with respect to possibly relevant documents.

We assume here that terms present in the titles of the topics are more likely
relevant than the terms of the description.

The evaluation is done in two steps. First, the queries are built from topic ti-
tles only and submitted to the system. The second step identifies terms from the
topic description that have non homogeneous weights in the 20 top retrieved doc-
uments. The lack of homogeneousness is established by comparing the maximum
and the minimum weights of a term in the given documents. If the difference is
greater than a chosen threshold, then the term is assumed to be able to discrim-
inate more precisely documents, and its weight is therefore added to the current
sum made of the weights of the title term and of the heterogeneous weights of
description terms already handled. Documents are then re-ranked.

Figure 1 shows the average length of queries obtained with different values of
required heterogeneity. This figure may be compared with Fig. 2, showing the
repartition of the term/doc weights in the collection. Since most of the weights
are between 0.05 and 0.35, the number of terms added to the queries stabilize
for a difference greater than 0.3.

264 M. Boughanem, Y. Loiseau, and H. Prade

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 q
ue

ry
 le

ng
th

Heterogeneity level

Fig. 1. Average length of queries depending on the heterogeneity level

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

po
rt

io
n

of
 te

rm
/d

oc
 (

%
)

Normalized weight

Fig. 2. Repartition of weights in the collection

Refining Aggregation Functions for Improving Document Ranking in IR 265

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on
 im

pr
ov

em
en

t (
%

)

Heterogeneity level

P5
P10
P15
P20

Exact
MAP

Fig. 3. Refined queries compared to long queries

The same correlation can be observed in Fig. 3. This figure shows the improve-
ment in precisions obtained with the expanded queries compared to queries built
using keywords from titles and descriptions, with respect to the heterogeneity
level. The maximum of improvement is obtained for an intermediate level. We
can deduce that short queries, using only keywords from titles, which are equiv-
alent to an expansion with a level of 1, are not rich enough to retrieve all the
relevant documents. On the other hand, adding too much terms from the descrip-
tion leads to consider terms that will not improve the search, such as terms used
to describe the need but that cannot be considered as significant keywords, terms
that are never in relevant documents, or terms having quite the same weight in
all documents, and are therefore not discriminant. By adding these terms, the
impact of relevant terms in the final sum used for ranking documents is min-
imised, leading to performances decreasing. Filtering these terms to keep only
those that are susceptible to bring additional information, that is terms having
sufficiently different weights among documents, minimise this side effect, and
improve greatly the performances. Indeed, as shown in Fig. 3, the intermediate
level of 0.28 improve the sum by 7.9% at P15 and by 5.17% at P5.

5 Conclusion

In this paper, we have presented a new approach to rank documents according to
their relevance, using flexible aggregation methods and refined vector-based rank

266 M. Boughanem, Y. Loiseau, and H. Prade

ordering methods. This approach was evaluated on a subset of the CLEF2001
collection. We compared the refined rank-ordering approach (possibly using some
ordered weighting method) with the classical approach based on relevance scores
aggregated by a weighted sum. These experiments suggest the effectiveness of
the refined rank-ordering approach, as it outperforms sum aggregation methods
to some extent.

We have also refined the sum aggregation by expanding queries only with
description terms that are discriminant enough, to avoid the noise induced by
having too long queries. This method obtained quite good results.

These first preliminary results indicate that ranking documents can take ad-
vantage of the full weights vector, rather than using an aggregated value. In
future works, we plan to evaluate the approach on larger collections, such as
TREC collections, and secondly to explore other variants of the flexible aggre-
gation/ranking techniques. Indeed, the statistical result of system performance
are heavily dependent on the collection. Moreover, the ranking techniques ex-
plored, from the decision making field, are only a subset of the one available.

Such a vector-based approach is not restricted to textual IR, but could be
applied to any documents retrieval system using several criteria for describing
them, such as in picture or audio sources.

References

1. Grossman, D., Frieder, O.: Information Retrieval: Algorithms and Heuristics.
Kluwer Academic Publishers, Dordrecht (1998)

2. Salton, G., McGill, M.: Introduction to modern information retrieval. McGraw-Hill,
New York (1983)

3. Salton, G., Fox, E., Wu, H.: Extended boolean information retrieval. Communica-
tions of the ACM 26, 1022–1036 (1983)

4. Robertson, S.E.: The probability ranking principle. Journal of Documentation 33,
294–304 (1977)

5. Yager, R.: On ordered weighted averaging aggregation operators in multicriteria
decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190
(1988)

6. Dubois, D., Prade, H.: A review of fuzzy sets aggregation connectives. Information
Sciences 3, 85–121 (1985)

7. Fodor, J., Yager, R., Rybalov, A.: Structure of uni-norms. International Journal of
Uncertainty, Fuzzyness and Knowledge Based Systems 5, 411–427 (1997)

8. Schamber, L.: Relevance and information behavior. Annual Review of Information
Science and Technology 29, 3–48 (1994)

9. Kraft, D.H., Bordogna, G., Pasi, G.: Fuzzy set techniques in information retrieval.
In: Fuzzy Sets in Approximate Reasoning and Information Systems, pp. 469–510.
Kluwer Academic Publishers, Dordrecht (1999)

10. Bordogna, G., Pasi, G.: Linguistic aggregation operators of selection criteria in
fuzzy information retrieval. Int. J. Intell. Syst. 10, 233–248 (1995)

11. Losada, D., Dı́az-Hermida, F., Bugaŕın, A., Barro, S.: Experiments on using fuzzy
quantified sentences in adhoc retrieval. In: Handschuh, H., Hasan, M.A. (eds.) SAC
2004. LNCS, vol. 3357, pp. 1059–1064. Springer, Heidelberg (2004)

Refining Aggregation Functions for Improving Document Ranking in IR 267

12. Boughanem, M., Loiseau, Y., Prade, H.: Improving document ranking in informa-
tion retrieval using ordered weighted aggregation and leximin refinement. In: 4th
Conf. of the European Society for Fuzzy Logic and Technology and 11me Rencon-
tres Francophones sur la Logique Floue et ses Applications, EUSFLAT-LFA 2005,
Barcelonnan, Spain pp. 1269–1274 (2005)

13. Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.): Evaluation of Cross-
Language Information Retrieval Systems. In: Peters, C., Braschler, M., Gonzalo,
J., Kluck, M. (eds.) CLEF 2001. LNCS, vol. 2406, pp. 3–4. Springer, Heidelberg
(2002)

14. Dubois, D., Prade, H.: Semantic of quotient operators in fuzzy relational databases.
Fuzzy Sets and Systems 78, 89–93 (1996)

15. Dubois, D., Fargier, H., Prade, H.: Beyond min aggregation in multicriteria deci-
sion (ordered) weighted min, discri-min, leximin. In: Yager, R., Kacprzyk, J. (eds.)
The Ordered Weighted Averaging Operators, pp. 181–192. Kluwer Academic Pub-
lishers, Dordrecht (1997)

16. Moulin, H.: Axioms of Cooperative Decision-Making. Cambridge University Press,
Cambridge (1988)

17. Dubois, D., Prade, H.: On different ways of ordering conjoint evaluations. In: Proc.
of the 25th Linz seminar on Fuzzy Set Theory, Linz, Austria, pp. 42–46 (2004)

18. Boughanem, M., Dkaki, T., Mothe, J., Soule-Dupuy, C.: Mercure at TREC-7. In:
Proc. of TREC-7. pp. 135–141 (1998)

19. Robertson, S.E., Walker, S.: Okapi-keenbow at TREC-8. In: Proc. 8th Text Re-
trieval Conf. TREC-8, pp. 60–67 (1999)

20. Porter, M.: An algorithm for suffix stripping. Program 14, 130–137 (1980)

H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772, pp. 268–276, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Qualitative Bipolar Argumentative View of Trust

Henri Prade

Institut de Recherche en Informatique de Toulouse (IRIT-CNRS)
Universitè de Toulouse, 118 route de Narbonne

31062 Toulouse Cedex 9, France
prade@irit.fr

Abstract. The paper views trust as a matter of levels ranging from full trust to
full distrust on a finite scale. The level of trust of an agent w. r. t. an informa-
tion source or another agent may not be precisely assessed due to the lack of
information. Assessing a level of trust is viewed as a decision problem, which
is handled in an argumentative manner. The interest of an argumentation
approach is to be able to articulate reasons for supporting trust or distrust.
Moreover, the updating trust process takes advantage of the bipolar nature of
the representation, and is based on information fusion methods that are able to
handle conflicts. The integration of these different features provides a novel
view of trust evaluation.

Keywords: Trust; distrust; reputation; argumentation; bipolar information; class-
ification.

1 Introduction

Trust evaluation has become an important issue in computer sciences in different
distributed artificial intelligence areas such as Semantic Web (Berners-Lee et al.,
2001; Shadbolt et al., 2006), and Multiple Agent Systems (Ramchurn et al., 2004), for
seeking to minimize the uncertainty in interactions, in particular for e-commerce
applications and security issues (Kagal et al. 2001). A rapidly increasing literature
with a variety of representation settings, emphasizing different aspects of trust
modeling and management, has been developing in the past five years. See (Sabater
and Sierra, 2005) for an introductory survey of this literature in computer sciences.

Castelfranchi and Falcone (1998; 2001) in their cognitive approach to trust
modeling advocate that 'only agents with goals and beliefs can trust'. Trust is
generally viewed as a mental attitude towards another agent, and is also a matter of
deciding to rely or not on some other agent for some particular purpose. Trust is based
on the evaluation of past behavior (and possibly on what can be expected).

However, one can distinguish between different types of trust. An agent A may trust
B, either i) as a source of information (B is well-informed and does not lie); or ii) for its
judgments (the diagnosis, the decisions made by B are generally good); or iii) for its
engagements (when B promises to do something, it tries to do it). Depending on which
trust bears, the contents of the arguments relevant for trust evaluation will be different.
Note also that one may also trust a particular piece of information rather than an
information source when the information is asserted by many sources and can be

 A Qualitative Bipolar Argumentative View of Trust 269

checked, or trust a particular judgment rather than an agent, independently from its
quality of judge, if the judgment is convincingly explained (using correct inference
patterns, and trustable pieces of information in the explanation).

There is still a need for more advanced models of trust that go beyond the dynamic
assessment of numbers in a numerical scale, and where the reasons of the assessment
of a particular level of trust can be laid bare. The paper proposes a qualitative bipolar
argumentative modeling of trust. The approach is qualitative since only a finite
number of levels is assumed in the trust scale. It is bipolar since trust and distrust can
be independently assessed, and trust evaluation may remain imprecise when
information is insufficient (Dubois and Prade, 2006). It is argumentative since trust
assessment is the result of a decision process, based on arguments in favor or against
a classification of the agent or the source to be evaluated, at a particular trust level.

The paper is organized in the following way. Section 2 discusses the representation
of trust evaluations using a bipolar univariate scale. Section 3 views trust evaluation
as a diagnosis or classification problem, which is handled in Section 4 in an
argumentative manner. Section 5 is devoted to a discussion of the updating
mechanism for trust when new information becomes available. Section 6 discusses
the relations and the differences of the approach with respect to related works.

2 Representing Trust Evaluation

Trust may be just binary, when an agent has to decide if it will trust or not an
information source, or another agent for a particular purpose. However, trust may also
be graded (rather than binary), if one needs to assess to what extent an agent or a
source is trustable, and what can be expected from the agent or the source.

When classifying agents or sources according to their "trustability", a scale with
discrete levels is generally enough (except in case where precise statistics are
available about the times when the information source was wrong). In the following,
we use a bipolar univariate scale, named 'trust scale', of the form

S = {− n, …, − 2, − 1, 0, + 1, + 2, …, + n},

where + n stands for 'full trust', − n stands for 'full distrust', 0 is neutral (no particular
trust or distrust), − n, …, − 2, − 1 are levels that correspond to "negative trust", while
+ 1, + 2, …, + n are levels of "positive trust". Note that any level − k (with k > 0) of
negative trust can be turned into a level + k of (positive) distrust, while a positive
level of trust + k (with k > 0) might be viewed as a negative level − k of distrust.

Trust with respect to a source or an agent may be unknown, ill known, or roughly
known. In that respect, a particular trust evaluation will be represented in the
following as an interval in the scale S, ranging from 'full distrust' (− n) to 'full trust'
(+ n). Such an interval will be denoted [t_ , t+], where t_ ∈ S and t+ ∈ S with the
following intended meaning the ill known trust τ is not larger than t+ (τ ≤ t+) and not
smaller than t_ (t_ ≤ τ). Clearly, t_ and t+ are not in general defined from each other, due
to incomplete information. The quantity − t_ (resp. t+) may be, somewhat abusively,
called "level of distrust" (resp. "level of trust").

Thus, [t_, t+] = [+ n, + n] and [t_, t+] = [− n, − n] correspond respectively to 'full
trust' and to 'full distrust', while [t_, t+] = [− n, + n] expresses a state of total ignorance
about the value of trust τ. This state of total ignorance is not to be confused with

270 H. Prade

Note that an obvious consistency condition should hold between "trust" and
"distrust" (using the abusive vocabulary), namely

corresponding to r (potentially imprecise) evaluations of the trust in o according to the
agents (or sources) ao(j)'s. This information can be summarized into a unique interval
R(o) by fusing the different intervals in Rep(o), into

- R(o) = ∩j [t
_(ao(j)), t+(ao(i))] provided that R(o) ≠ ∅,

or into
- R(o) = ∪j [t

_(ao(j)), t+(ao(i))] in case of inconsistency.

 However, the intersection fusion mode presupposes that the agents ao(j) have partial,
but consistent evaluations of the trust in o and are all considered as perfectly reliable.
The case where the agents are unequally reliable will be discussed later. In case of
inconsistency, the disjunctive fusion is very cautious by taking all the points of view
into account, but may lead to a very imprecise evaluation of the reputation.

Lastly, it has been often pointed out that trust may be topic-dependent. A source of
information may be reliable on some particular topic and less reliable on some other
topic. In such a case, the trust in o, for topic t, of agent or source a, will be denoted
τ(a, t)(o), which will be represented by an interval indexed by t and a.

3 Evaluating Trust: A Diagnostic Point of View

An agent a may evaluate its trust into an object o (a source or another agent) on the
basis of two types of information: on the one hand the observed behavior of o, and on
the other hand the reputation of o according to the other agents.

Reputation information may be viewed as an input information used by agent a
for revising or updating its own trust evaluation based on its perception (this will be
the topic of Section 5). Reputation information could also contribute to provide direct
arguments in favor or against some trust evaluation, using pieces of knowledge such
as "if t_ > ρ then o should have a high reputation (all the higher as ρ is high)", or "if if
t+

 < σ then o should have a poor reputation (all the poorer as σ is small)". However,
the only arguments that we shall consider in the paper, for the sake of simplicity, are

'neutral' that is encoded by [t_, t+] = [0, 0]! More generally, when t_ > 0, the trust τ is
positive, even if it is imprecisely assessed, while when t+ < 0, the trust τ is negative
and thus corresponds to a clear state of distrust. When t_ < 0 and t+ > 0, the situation
remains ambiguous in the sense that it is not known if the trust τ is positive or
negative.

t_ ≤ t+.
In other words, in case one would have t_ > t+, it would mean an inconsistent state of
information about the actual level of trust.

In this setting, reputation will be naturally defined as what is commonly known of
the way other agents (dis)trust the considered agent/source. Thus reputation Rep(o) of
an object o (source or adgent) is represented by a set of intervals of the form

Rep(o) = {[t_(ao(1)), t+(ao(1))], …, [t_(ao(r)), t+(ao(r))]},

 A Qualitative Bipolar Argumentative View of Trust 271

the ones that can be built from the known behavior of o, and from the knowledge of
the expected behavior of an object having its trust level in some area (the
argumentation aspect will be discussed in the next section).

Indeed trust evaluation requires having some observed or reported behavior
(leaving reputation aside), and the definition of the trust categories in terms of
possible behaviors. Let F(o) be the base of behavioral facts regarding o. We assume
that F(o) only contains two types of literals, the gi's pertaining to good points, and the
bj's referring to bad points. The base F(o) is supposed to be given here, but may be
itself the result of an inference or learning process. So F(o), which is assumed to be
consistent, may include literals of the form gi, ¬gk, bj, or ¬bh. In other words, F(o)
may report that good points are present (gi), or are not present (¬gk), in the behavior
of o, and the same for the bad points (bj, or ¬bh). Moreover, a complete preorder rank-
orders the good points (some are more important or better than others), and rank-
orders the bad points as well (some are worse than others).

Let K be the knowledge base made of if then rules relating levels of trust to
agent/source behaviors. This means that K contains rules expressing that t_ is all the
higher as no important bad points, or important good points are reported in the
behavior of o, and rules expressing that t+

 is all the smaller as no important good
points, or important bad points are reported. For instance, one may have rules such
that "if it is fully trustable what it says is always true" (for a source), or "if it
is fully unreliable there are situations where it did not do at all what he
promised"

More precisely, the rules are of one of the forms:

Generally speaking, the idea is that a very trustable source provides very good
results, that a reasonably trustable source provides reasonably good results, that a
source that is at least moderately trustable does not provide bad results and so on.

Evaluating the trust in o from F(o) and K, amounts to find ρ maximal and σ
minimal such as t_ ≥ ρ and t+

 ≤ σ are consistent, i.e., such that ρ ≤ σ, and such that

or the weaker requirement
t_ ≥ ρ, t+

 ≤ σ, K and F(o) are consistent together.
These correspond to the logical formulations of a model-based, and consistency-

based diagnosis (or classification) respectively, viewing F(o) as the effects and t_ ≥
ρ and t+

 ≤ σ as "the causes"; see (Le Berre and Sabbadin, 1997) for the more general
case when K may be pervaded with uncertainty, and F(o) is prioritized. It is very close
to a decision problem (where a candidate decision would replace t_ ≥ ρ and t+

 ≤ σ, K
would stand for the knowledge about the world, and F(o) for a set of goals.

It is also worth noticing that depending on K and F(o), the result may remain
imprecise, namely such that ρ < σ.

"if t_ ≥ ρ (where ρ ≤ 0) then ¬bh" (bh is all the less bad as ρ is high);
"if t_ ≥ ρ (where ρ > 0) then gi" (gi is all the better as ρ is high);
"if t+

 ≤ σ (where σ ≥ 0) then ¬gk" (gk is all the less good as σ is small);
"if t+

 ≤ σ (where σ < 0) then bj" (bj is all the worse as σ is small).

(t+
 ≤ − n),

t_ ≥ ρ, t+
 ≤ σ, K − F(o)

(t_ ≥ + n),

(t_ ≥ + n),

272 H. Prade

4 Argumentation-Based Evaluation

Then trust evaluation may be easily turned into an argumentation-based evaluation.
Generally speaking, an argument in favor of a claim c is a minimal consistent subset
of formulas S that logically entail c. In the following, the arguments used have rather
an abductive format. Namely, an argument in favor of a trust evaluation te will be of
the form S, te ⏐− f, where f is an observed behavioral fact (where ⏐− denotes a
consequence relation). There are two kinds of arguments in favor of trusting o to

pointing out that a bad point is avoided and those of the form

pointing out that a good point is reached. The argument is all the stronger as a better
point is reached. It tends to increase ρ, since the high values of ρ should be
associated by the rules in K with stronger good points. Similarly, there are two kinds
of arguments against trusting o to some level, i. e., having t+

 ≤ σ for some σ. Namely
those pointing out that a good point is not reached or that a bad point is satisfied, i. e.
arguments of the form

if t+

 ≤ σ then ¬gk, t+

 ≤ σ ⏐− ¬gk where ¬gk ∈ F(o);
if t+

 ≤ σ then bj, t+

 ≤ σ ⏐− bj where bj ∈ F(o).

Arguments against trusting o to some level, i. e., having t+

 ≤ σ for some σ, tend to
decrease σ , since the small values of σ should be associated by the rules in K with
stronger bad points.

The above arguments have an abductive form, and correspond to the types of
arguments introduced in (Amgoud and Prade, 2006) in favor, or against a potential
decision. They also have weak counterparts, corresponding to consistency-based
diagnosis, where instead of concluding on a fact f (i. e., ⏐− f), one would only
conclude to the consistency with f (i. e., ⏐⁄− ¬f).

The strongest arguments in favor, and against trusting o provide the highest ρ,
say ρ(o), and the smallest σ, say σ(o). When ρ(o) ≤ σ(o), we have obtained a trust
evaluation under the form of a regular interval [ρ(o), σ(o)]. Naturally it may happen
in practice that ρ(o) > σ(o). In such a case, if one wants to be cautious, it seems
natural to give priority to σ(o) that reflects the negative part of the information
(pessimism), and to decrease the value of ρ(o) to ρ∗(o) = σ(o). This may be also a
principle for revising trust information at the light of reputation information, as we are
going to see.

5 Revising Trust

Let [ρΤΕ(o), σΤΕ(o)] be the interval obtained by agent a at the end of the trust
evaluation process. Assume that another interval [ρR(o), σR(o)] encodes the result of
the reputation assessment (after the fusion step), as described at the end of Section 2.

some level, i. e., having t_ ≥ ρ for some ρ. Namely, the arguments of the form

some level, i. e., having t_ ≥ ρ for some ρ. Namely, the arguments of the form

if t_ ≥ ρ then ¬bh, t_ ≥ ρ − ¬bh where ¬bh ∈ F(o)

if t_ ≥ ρ then gi, t_ ≥ ρ− gi where gi ∈ F(o)

 A Qualitative Bipolar Argumentative View of Trust 273

Then there are basically two possible situations (the two intervals are consistent or
not), and several possible attitudes for agent a (be pessimistic, give priority to its own
evaluation, …).

If the two intervals are consistent, one may perform the intersection and obtain the
more accurate interval [max(ρΤΕ(o), ρR(o)), min(σΤΕ(o), σR(o))]. In case of
inconsistency, being pessimistic, one may prefer the most negative information,
namely [min(ρΤΕ(o), ρR(o)), min(σΤΕ(o), σR(o))]. However, in case of inconsistency,
agent a may also privilege its own judgment, and keep its own evaluation [ρΤΕ(o),
σΤΕ(o)], even if it is more positive.

These different fusion modes can be generalized to fuzzy evaluations. The fuzzy
evaluations may be naturally produced through discounting operations. First, when
synthesizing the reputation information Rep(o) = {[t_(ao(1)), t+(ao(1))], …, [t_(ao(r)),
t+(ao(r))]} in Section 2, by taking the intersection of the intervals (in case of
consistency), or the union (in case of inconsistency), the equal reliability of the other
agents has been assumed. Let πj denote the characteristic function of the
interval [t_(ao(j)), t+(ao(j))], and let θj ∈ [0, 1] be the reliability level of this information.
Assuming the normalization condition maxj θj = 1, intersection and union are
generalized by

πR(o) = minj max(1 − θj, π
j) (intersection)

and by
πR(o) = maxj min(θj, π

j) (union)

When all the other agents have equal reliability, i. e., for all i, θj = 1, we recover the
standard intersection and union, as expected, while if the reliability is 0, the
information is ignored.

Let πΤΕ be the characteristic function of the interval [ρΤΕ(o), σΤΕ(o)]. If agent a
chooses to give priority to its own evaluation, considering the reputation information
only if it is consistent, it will use consistency-driven prioritized fusion operators
(Dubois, Prade, Yager, 1999) for computing the resulting evaluation, here denoted
πΤΕ+R(o):

πΤΕ+R(o) = min(πΤΕ, max(1 − cons(πΤΕ, πR(o)), πR(o)) (intersection)
πΤΕ+R(o) = max(πΤΕ, min(cons(πΤΕ, πR(o)), πR(o)) (union)

where the consistency of πΤΕ and πR(o) is evaluated as

cons(πΤΕ, πR(o)) = maxt min(πΤΕ(t), πR(o)(t)).

Note that when cons(πΤΕ, πR(o)) = 1, one recovers the standard intersection and
union, while when cons(πΤΕ, πR(o)) = 0, the information πΤΕ is kept unaltered.

Besides, the pessimistic attitude that privileges the smallest evaluation, would
correspond to perform the minimum operation, now extended to general possibility
distributions, rather than to intervals. See (Dubois and Prade, 1980) for the definition.

Lastly, another type of revision or updating can take place when the information in
F(o) are expanded, modified, or challenged due to the arrival of new pieces of
information, leading to revise [ρΤΕ(o), σΤΕ(o)] in a way or another (making it more
precise, or more imprecise, and possibly moving the interval inside S).

274 H. Prade

6 Related Works

Many models of trust have been already proposed (Sabater and Sierra, 2005). Trust
may be a binary notion (an agent trusts or does not trust another agent), a graded
notion, generally in a numerical way, or may be even fuzzily graded. There are only a
few works that distinguish between trust and distrust, starting with (McKnight and
Chervany, 2001). De Cock and Pinheiro da Silva (2006) use both a grade of trust μ
and an independent grade of distrust ν. Their model refer to the setting of Atanassov
(1986)'s intuitionistic fuzzy sets, where the sum of the degree of membership and the
degree of non-membership to an intuitionistic fuzzy set of an element is always less
or equal to 1. Indeed they assume μ + ν ≤ 1, with μ ∈ [0, 1] and ν ∈ [0, 1]. However,
the pair (μ, ν), can be turned into an interval information [μ, 1 − ν] (e.g. Dubois et
al., 2005). This interval is somewhat similar to the one used in Section 2 (on another
scale!); however, our interval is more the imprecise evaluation of a degree of trust
than a pair of independent evaluations propagated separately. Guha et al., (2004) also
distinguish between trust and distrust, but aggregate them into one value.

Since human opinions about others are vague, some authors (e. g., Carbo et al.,
2003; 2004) value reputation by means of fuzzy terms. Here our fuzzy view of
reputation is rather the result of an aggregation process of different opinions having
different levels of reliability. Moreover our representation framework could be
extended by modeling our evaluation of trust by means of fuzzy intervals extending
interval [t_, t+] by means of membership functions expressing for instance that trust is
"rather positive even if it might be slightly negative".

Stranders (2006) seems to be the first to use a form of argumentation for trust
evaluation viewed as a decision process, taking inspiration from (Amgoud and Prade,
2004), using fuzzy rules also. Our proposal, which is simpler rather use the different
forms of arguments presented in (Amgoud and Prade, 2006).

Other works propose Bayesian network-based trust models (Wang and Vassileva,
2004; Melaye and Demazeau, 2005; Melaye et al., 2006) for modeling social multi-
agent processes, where dynamic aspects are handled by a Bayesian Kalman filter.
Although, we have indicated some basic mechanisms leading to revision of trust
values, the paper has mainly focused on trust evaluation rather than trust dynamics in
a multiple-agent world. This latter aspect is left for further research in our approach.

7 Concluding Remarks

The paper has outlined a new approach for trust evaluation. The evaluation is
qualitative, thanks to the use of a discrete scale and of qualitative fusion modes. It is
bipolar in distinguishing positive and negative features. It leaves room for an
imprecise evaluation, when the information that would be necessary for a more
precise assessment is missing, or when the opinions of the other agents are conflicting
and lead to an inconsistent reputation assessment. The approach accommodates
inconsistency by using appropriate fusion modes. Lastly, the evaluation relies on the
use of arguments, which make the result of a trust evaluation easier to explain.

Besides, it is worth noticing that the problem of trust evaluation presents some
similarities with the problem of experts' calibration and pooling, which has been
considered in different uncertainty settings (Cooke, 1991; Sandri et al., 1995). This is
a topic for further investigation.

 A Qualitative Bipolar Argumentative View of Trust 275

References

Amgoud, L., Prade, H.: Using arguments for making decisions: A possibilistic logic approach.
In: Proc. 20th Conf. of Uncertainty in Artificial Inelligence (UAI’04), Banff, Canada, July
7-11, 2004, pp. 7–11. AUAI Press (2004)

Amgoud, L., Prade, H.: Explaining qualitative decision under uncertainty by argumentation. In:
Proc. 21st National Conference on Artificial Intelligence, July 16-20, 2006, pp. 219–224.
AAAI Press, Boston, Massachusetts, USA (2006)

Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)
Ben-Naim, J., Weydert, E.: Information merging with trust. Extended abstract.In: Workshop on

Logics and Collective Decision making (LCD’07), Lille, France (March 13-14, 2007)
Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. A new form of Web content that

is meaningful to computers will unleash a revolution of new possibilities. Scientific
American (May 2001)

Carbó Rubiera, J.I., Molina, J.M., Dávila Muro, J.: Trust management through fuzzy reputation.
Int. J. Cooperative Inf. Syst. 12(1), 135–155 (2003)

Carbó Rubiera, J.I., Garcĺa, J., Molina, J.M.: Subjective trust inferred by Kalman filtering vs. a
fuzzy reputation. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q.,
Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) Conceptual Modeling for Advan-
ced Application Domains. LNCS, vol. 3289, pp. 496–505. Springer, Heidelberg (2004)

Castelfranchi, C., Falcone, R.: Principles of trust for MAS: Cognitive anatomy, social
importance, and quantification. In: Demazeau, Y. (ed.) ICMAS 1998, Paris, France, July 3-
7, 1998, pp. 72–79. IEEE Computer Society Press, Los Alamitos (1998)

Castelfranchi, C., Falcone, R.: Social trust: A cognitive approach. In: Castelfranchi, C., Tan, Y.
(eds.) Trust and Deception in Virtual Societies, pp. 55–90. Kluwer Acad. Publ., Dordrecht
(2001)

Castelfranchi, C., Falcone, R., Pezzulo, G.: Trust in information sources as a source for trust: a
fuzzy approach. In: AAMAS 2003, Melbourne, Australia, pp. 89–96. ACM, New York
(2003)

Cooke, R.: Experts in Uncertainty. Oxford University Press, Oxford (1991)
De Cock, M., da Silva, P.P.: A many valued representation and propagation of trust and

distrust. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI),
vol. 3849, pp. 114–120. Springer, Heidelberg (2006)

Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in
fuzzy set theory - The case of Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 156, 485–
491 (2005)

Dubois, D., Prade, H.: Fuzzy Sets & Systems: Theory and Applications. Academic Press, New
York (1980)

Dubois, D., Prade, H.: Bipolar representations in reasoning, knowledge extraction and decision.
In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński,
R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 15–26. Springer, Heidelberg (2006)

Dubois, D., Prade, H., Yager, R.R.: Merging fuzzy information. In: Bezdek, J., Dubois, D.,
Prade, H. (eds.) Fuzzy Sets in Approximate Reasoning and Information Systems. The
Handbooks of Fuzzy Sets Series, pp. 335–401. Kluwer, Boston, Mass (1999)

Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Proc.
International World Wide Web Conference (WWW2004), pp. 403–412 (2004)

Kagal, L., Cost, S., Finin, T., Peng, Y.: A framework for distributed trust management. In:
Proc. 2nd Workshop on Norms and Institutions in MAS, at the 5th Inter. Conf. on
Autonomous Agents, Montreal, May 28-June1 (2001)

276 H. Prade

Le Berre, D., Sabbadin, R.: Decision-theoretic diagnosis and repair: representational and
computational issues. In: Proc. 8th Inter. Workshop on Principles of Diagnosis (DX’97), Le
Mont Saint-Michel, France, September 14-18, 1997, pp. 141–145 (1997)

McKnight, D.H., Chervany, N.L.: Trust and distrust definitions: One bite at a time. In: Falcone,
R., Singh, M., Tan, Y.-H. (eds.) Trust in Cyber-societies. LNCS (LNAI), vol. 2246, pp. 27–
54. Springer, Heidelberg (2001)

Melaye, D., Demazeau, Y.: Bayesian dynamic trust model. In: Pěchouček, M., Petta, P., Varga,
L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 480–489. Springer, Heidelberg
(2005)

Melaye, D., Demazeau, Y., Bouron, T.: Which adequate trust model for trust networks? In:
Maglogiannis, I., Karpouzis, K., Bramer, M. (eds.) Artificial Intelligence Applications and
Innovations, 3rd IFIP Conference on Artificial Intelligence Applications and Innovations
(AIAI 2006), Athens, Greece. IFIP 204, June 7-9, 2006, pp. 236–244. Springer, Heidelberg
(2006)

Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. The Knowledge
Engineering Review 19, 1–25 (2004)

Sabater, J., Sierra, C.: Review on computational trust and reputation models. Artif. Intell.
Rev. 24(1), 33–60 (2005)

Sandri, S., Dubois, D., Kalfsbeek, H.W.: Elicitation, assessment and pooling of expert
judgements using possibility theory. IEEE Trans. on Fuzzy Systems 3, 313–335 (1995)

Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intelligent
Systems 21(3), 96–101 (2006)

Stranders, R.: Argumentation Based Decision Making for Trust in Multi-Agent Systems.
Master’s Thesis in Computer Science, Delft University of Technology, p. 138 (June 2006)

Wang, Y., Vassileva, J.: Bayesian Network Trust Model in Peer-to-Peer Networks. In: Moro,
G., Sartori, C., Singh, M.P. (eds.) AP2PC 2003. LNCS (LNAI), vol. 2872, pp. 23–34.
Springer, Heidelberg (2004)

Author Index

Apers, Peter M.G. 131

Barranco, Carlos D. 187
Bell, David 201
Bertossi, Leopoldo 74
Boughanem, Mohand 255

Campaña, Jesús R. 31, 187
Caniupan, Monica 74
Caroprese, L. 230

de Keijzer, Ander 104

Eckhardt, A. 116
Evers, Sander 131

Flesca, Sergio 215
Fokkinga, Maarten M. 131
Furfaro, Filippo 215

Gal, Avigdor 60
Garrido, M.C. 31

Horváth, T. 116
Hunter, Anthony 89

Khuller, Samir 45

Liu, Weiru 89, 201
Loiseau, Yannick 255
Lukasiewicz, Thomas 16, 143

Ma, Jianbing 89
Majkić, Zoran 171

Marie, Anan 60
Maŕın, N. 31
Martinez, Vanina 45
Medina, Juan M. 187

Nau, Dana 45

Öztürk, Meltem 157

Parisi, Francesco 215
Pons, O. 31
Prade, Henri 255, 268

Saad, Emad 1
Simari, Gerardo 45
Sliva, Amy 45
Straccia, Umberto 16
Subrahmanian, V.S. 45, 171

Tsoukiàs, Alexis 157

Udrea, Octavian 171

van Keulen, Maurice 104
Vojtáš, P. 116

Wang, Ying 201

Yager, Ronald R. 244

Zumpano, E. 230

	Front Matter
	Probabilistic Planning in Hybrid Probabilistic Logic Programs
	Top-k Retrieval in Description Logic Programs Under Vagueness for the Semantic Web
	A Fuzzy Set-Based Approach to Temporal Databases
	Finding Most Probable Worlds of Probabilistic Logic Programs
	Managing Uncertainty in Schema Matcher Ensembles
	The Consistency Extractor System: Querying Inconsistent Databases Using Answer Set Programs
	Incomplete Statistical Information Fusion and Its Application to Clinical Trials Data
	Quality Measures in Uncertain Data Management
	Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying
	Composable Markov Building Blocks
	Tractable Probabilistic Description Logic Programs
	Valued Hesitation in Intervals Comparison
	Aggregates in Generalized Temporally Indeterminate Databases
	An Indexing Technique for Fuzzy Numerical Data
	Combining Uncertain Outputs from Multiple Ontology Matchers
	Preferred Database Repairs Under Aggregate Constraints
	Consistent Data Integration in P2P Deductive Databases
	Learning from Imprecise Granular Data Using Trapezoidal Fuzzy Set Representations
	Refining Aggregation Functions for Improving Document Ranking in Information Retrieval
	A Qualitative Bipolar Argumentative View of Trust
	Back Matter

