
Potential Function Methods for Approximately
Solving Linear Programming Problems

INTERNATIONAL SERIES IN
OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Frederick S. Hillier, Series Editor Stanford University

Miettinen, K. M. / NONLINEAR MULTIOBJECTIVE OPTIMIZATION
Chao, H. & Huntington, H. G. / DESIGNING COMPETITIVE ELECTRICITY MARKETS
Weglarz, J. / PROJECT SCHEDULING: Recent Models, Algorithms & Applications
Sahin, I. & Polatoglu, H. / QUALITY, WARRANTY AND PREVENTIVE MAINTENANCE
Tavares, L. V. / ADVANCED MODELS FOR PROJECT MANAGEMENT
Tayur, S., Ganeshan, R. & Magazine, M. / QUANTITATIVE MODELING FOR SUPPLY

CHAIN MANAGEMENT
Weyant, J./ ENERGY AND ENVIRONMENTAL POLICY MODELING
Shanthikumar, J.G. & Sumita, U./APPLIED PROBABILITY AND STOCHASTIC PROCESSES
Liu, B. & Esogbue, A.O. / DECISION CRITERIA AND OPTIMAL INVENTORY PROCESSES
Gal, T., Stewart, T.J., Hanne, T./ MULTICRITERIA DECISION MAKING: Advances in MCDM

Models, Algorithms, Theory, and Applications
Fox, B. L./ STRATEGIES FOR QUASI-MONTE CARLO
Hall, R.W. / HANDBOOK OF TRANSPORTATION SCIENCE
Grassman, W.K./ COMPUTATIONAL PROBABILITY
Pomerol, J-C. & Barba-Romero, S. / MULTICRITERION DECISION IN MANAGEMENT
Axsäter, S. / INVENTORY CONTROL
Wolkowicz, H., Saigal, R., Vandenberghe, L./ HANDBOOK OF SEMI-DEFINITE

PROGRAMMING: Theory, Algorithms, and Applications
Hobbs, B. F. & Meier, P. / ENERGY DECISIONS AND THE ENVIRONMENT: A Guide

to the Use of Multicriteria Methods
Dar-El, E./ HUMAN LEARNING: From Learning Curves to Learning Organizations
Armstrong, J. S./ PRINCIPLES OF FORECASTING: A Handbook for Researchers and

Practitioners
Balsamo, S., Personé, V., Onvural, R./ ANALYSIS OF QUEUE1NG NETWORKS WITH

BLOCKING
Bouyssou, D. et al/ EVALUATION AND DECISION MODELS: A Critical Perspective
Hanne, T./ INTELLIGENT STRATEGIES FOR META MULTIPLE CRITERIA DECISION MAKING
Saaty, T. & Vargas, L./ MODELS, METHODS, CONCEPTS & APPLICATIONS OF THE

ANALYTIC HIERARCHY PROCESS
Chatterjee, K. & Samuelson, W./ GAME THEORY AND BUSINESS APPLICATIONS
Hobbs, B. et al/ THE NEXT GENERATION OF ELECTRIC POWER UNIT COMMITMENT MODELS
Vanderbei, R.J./ LINEAR PROGRAMMING: Foundations and Extensions, 2nd Ed.
Kimms, A./ MATHEMATICAL PROGRAMMING AND FINANCIAL OBJECTIVES FOR

SCHEDULING PROJECTS
Baptiste, P., Le Pape, C. & Nuijten, W./ CONSTRAINT-BASED SCHEDULING
Feinberg, E. & Shwartz, A./ HANDBOOK OF MARKOV DECISION PROCESSES: Methods

and Applications
Ramík, J. & Vlach, M. / GENERALIZED CONCAVITY IN FUZZY OPTIMIZATION

AND DECISION ANALYSIS
Song, J. & Yao, D. / SUPPLY CHAIN STRUCTURES: Coordination, Information and

Optimization
Kozan, E. & Ohuchi, A./ OPERATIONS RESEARCH/ MANAGEMENT SCIENCE AT WORK
Bouyssou et al/ AIDING DECISIONS WITH MULTIPLE CRITERIA: Essays in

Honor of Bernard Roy
Cox, Louis Anthony, Jr./ RISK ANALYSIS: Foundations, Models and Methods
Dror, M., L’Ecuyer, P. & Szidarovszky, F./ MODELING UNCERTAINTY: An Examination

of Stochastic Theory, Methods, and Applications
Dokuchaev, N./ DYNAMIC PORTFOLIO STRATEGIES: Quantitative Methods and Empirical Rules

for Incomplete Information
Sarker, R., Mohammadian, M. & Yao, X./ EVOLUTIONARY OPTIMIZATION
Demeulemeester, R. & Herroelen, W./ PROJECT SCHEDULING: A Research Handbook
Gazis, D.C. / TRAFFIC THEORY
Zhu/ QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING
Ehrgott & Gandibleux/ MULTIPLE CRITERIA OPTIMIZATION: State of the Art Annotated

Bibliographical Surveys
Bienstock, D. / Potential Function Methods for Approx. Solving Linear Programming Problems

POTENTIAL FUNCTION METHODS FOR
APPROXIMATELY SOLVING LINEAR
PROGRAMMING PROBLEMS: THEORY
AND PRACTICE

DANIEL BIENSTOCK
Department of IEOR
Columbia University
New York

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-47626-6
Print ISBN: 1-4020-7173-6

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2002 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Dordrecht

Contents

List of Figures
List of Tables
Preface

1.

1 Introduction

EARLY ALGORITHMS
1

2

2.

The Flow Deviation Method
1.1
1.2
1.3

Convergence Analysis
Analysis of the Flow Deviation method
Historical Perspective

The Shahrokhi and Matula Algorithm
2.1
2.2
2.2.1

The algorithm proper
Cut metrics and minimum congestion
Cut metrics and capacitated network design

THE EXPONENTIAL POTENTIAL
FUNCTION – KEY IDEAS

1

2

0.2.2
0.2.3
0.2.4

Handling more general problems
Handling large width
Leveraging block-angular structure

A basic algorithm for min-max LPs
1.1
1.2
1.3

The first stage
The second stage
Computing to absolute tolerance

Round-robin and randomized schemes for block-angular
problems
2.1
2.2

Basic deterministic approach
Randomized approaches

ix
xi

xiii

xv

1
3
5
8

11

13
19
22
23

27
27
28
30

30
31
32
33

39
41
43

vi APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

3.

3
4

5

6

2.3 What is best
Optimization and more general feasibility systems

Width, revisited
Alternative potential functions

A philosophical point: why these algorithms are useful

RECENT DEVELOPMENTS
1

2

3

4

4.

Oblivious rounding
1.1
1.1.1
1.1.2
1.1.3
1.1.4

Concurrent flows
The oracle
The deterministic algorithm
Handling general capacities
Comparison with the exponential potential function
method

Lower bounds for Frank-Wolfe methods
2.1 Lower bounds under the oracle model

The algorithms of Garg-Könemann and Fleischer
3.1 The Luby-Nisan algorithm and related work
Lagrangian Relaxation, Non-Differentiable Optimization
and Penalty Methods
4.0.1
4.0.2
4.0.3

Bundle and cutting-plane methods
Penalty methods
The Volume algorithm

COMPUTATIONAL EXPERIMENTS

1

2

3
4
5

0.1
0.2

Remarks on previous work
Outline of a generic implementation

Basic Issues
1.1
1.2
1.3
1.4

Choosing a block
Choosing
Choosing
Choosing

Improving Lagrangian Relaxations
Restricted Linear Programs

Tightening formulations
Computational tests
5.1
5.2
5.3

Network Design Models
Minimum-cost multicommodity flow problems
Maximum concurrent flow problems

44

44

47
48

48

51
51
54
55
57
59

62
62
64

66
67

69
70
70
71

73
74
76

78
78
79
80
81
83
86
88
89
90
91
93

Contents vii

6

5.4
5.5
5.6

More sophisticated network design models
Empirical trade-off between time and accuracy
Hitting the sweet spot

Future work

APPENDIX - FREQUENTLY ASKED QUESTIONS

References

Index

94
97
98

101

103

107

111

List of Figures

0.1

0.2

4.1

4.2

4.3

Time as a function of columns for dual simplex on
concurrent flow problems; best-fit cubic
Time as a function of correct digits for Barrier code
on instance netd9
Time as a function of column count for poten-
tial function method on RMFGEN concurrent flow
problems
Time as function of for instance rmfgen2
Time as function of for instance netd9

xvii

xviii

95
99

100

List of Tables

0.1
0.2
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10

CPLEX 6.6 dual on concurrent flow problems
Dual bounds on RMF26
Network design problems
TRIPARTITE instances.
Sample comparison with [GOPS98].
RMFGEN and MULTIGRID instances
Maximum concurrent flow problems
Behavior of approximation algorithm on SONET4
Behavior of approximation algorithm on SONET5
Behavior of approximation algorithm on instance
rmfgen2
Behavior of approximation algorithm on instance
netd9
Speedup of restricted LP in NX

xvi
xvi
90
92
92
93
94
96
97

98

99
100

Preface

After several decades of sustained research and testing, linear pro-
gramming has evolved into a remarkably reliable, accurate and useful
tool for handling industrial optimization problems. Yet, large problems
arising from several concrete applications routinely defeat the very best
linear programming codes, running on the fastest computing hardware.
Moreover, this is a trend that may well continue and intensify, as problem
sizes escalate and the need for fast algorithms becomes more stringent.

Traditionally, the focus in optimization research, and in particular,
in research on algorithms for linear programming, has been to solve
problems “to optimality.” In concrete implementations, this has always
meant the solution of problems to some finite accuracy (for example,
eight digits). An alternative approach would be to explicitly, and rig-
orously, trade off accuracy for speed. One motivating factor is that in
many practical applications, quickly obtaining a partially accurate solu-
tion is much preferable to obtaining a very accurate solution very slowly.
A secondary (and independent) consideration is that the input data in
many practical applications has limited accuracy to begin with.

During the last ten years, a new body of research has emerged, which
seeks to develop provably good approximation algorithms for classes of
linear programming problems. This work both has roots in fundamental
areas of mathematical programming and is also framed in the context
of the modern theory of algorithms. The result of this work has been a
family of algorithms with solid theoretical foundations and with growing
experimental success.

In this manuscript we will study these algorithms, starting with some
of the very earliest examples, and through the latest theoretical and
computational developments.

DANIEL BIENSTOCK

1. Introduction
Since its inception, Mathematical Programming has combined method-

ology (theory), computation (experimentation) and pragmatism. What
we mean by the last term is that Mathematical Programming arguably
focuses on solving models as opposed to problems. Semantics aside, we
frequently deviate from the mathematical ideal of being to solve an ar-
bitrary mathematical programming formulation of a problem, when an
alternative formulation will yield an easier solution which still addresses
the “real” underlying problem.

Putting it differently, we prove theorems so as to obtain robust and
fast algorithms; we deploy these using sophisticated implementations,
and we use careful modeling to effectively leverage the resulting systems.
Altogether, we obtain tools that we can trust because of their theoretical
pedigree and which empirically yield good results, while at the same
time tackling realistic problems. The focus is always that of obtaining
good results: even though we intellectually enjoy solving mathematical
puzzles, we are ready to substitute an algorithm/implementation/model
for another if proven more effective.

The premier tool of Mathematical Programming has always been Lin-
ear Programming. Linear programs arise directly in many applications
and also as subproblems of integer programs. As a result, we place a
premium on being able to solve large linear programs speedily. During
the last twenty years we have seen a number of important developments
in Linear Programming. Among others, we cite the Ellipsoid Method
(which underlined the issue of computational complexity, and which led
to important consequences in Combinatorial Optimization), the proba-
bilistic analysis of random linear programming instances (which tried to
provide an explanation as to why linear programs, in practice, are not ex-
ponentially difficult), Karmarkar’s algorithm (which catalyzed the field
of interior point methods), the effective implementation of steepest-edge
pivoting schemes (with important practical implications) and others. In
parallel to this, the field of Numerical Analysis (in particular, numer-
ical Linear Algebra) has greatly matured, yielding algorithms that are
faster and numerically more stable – a good example for this would be
the much improved Cholesky factorization routines now available. See
[SC86], [W97]. Moreover, there has been growing understanding of what
makes a “good” formulation. Finally, computational architectures and
software environments have vastly improved, yielding dramatically more
capable platforms and allowing algorithm implementors greater freedom
to concentrate on high-level algorithm design. The result of all these
positive developments, of course, has been a very visible improvement in
the performance of linear programming codes. As experts have put it,

xvi APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

the best LP codes are thousands or hundreds of times faster than those
available ten years ago and far more robust [B00], [D00].

In spite of this improvement, large linear programming instances aris-
ing from various practical applications frequently render linear program-
ming packages inadequate. Consider Table 0.1, showing running times
using the CPLEX LP solver package, and a modern computer, to solve
concurrent flow problems, a class of routing problems arising in network-
ing, that will be discussed at length later.

Here m is the number of rows, n is the number of columns, and
nonz is the number of nonzeros. The last two columns indicate the
time to optimality using the dual simplex method (with steepest edge
pivoting) and the number of iterations, respectively. Note that
and Thus, the running time appears to grow cubically with
the number of columns. Figure 0.1 overlays a best-fit cubic with a plot
of time as a function of columns.

Consider also Table 0.2. This table displays the performance of the
dual simplex method on problem RMF26, as a function of time. At
around 161000 seconds, the algorithm first proved a bound of 18.48,
which is close to the optimum. The table shows that just prior to that
point, the bound was still quite poor.

xvii

Finally, consider Figure 0.2. Here we present data on the network
design problem instance netd9 which will be discussed in Chapter 4
(Table 4.1). To produce this Figure, this problem instance was solved
using the Barrier code in CPLEX. To set an estimate of the accuracy of
the algorithm as a function of time, at each iteration of the Barrier code
we computed the relative deviation of the primal value (produced by the
Barrier code) from the eventual optimum LP value, the relative deviation
of the dual value from the LP value, and we used the maximum of these
two deviations as our error estimate. We then discarded the initial set of
iterations where this error bound was greater than 1.0. Figure 0.2 plots
running time as a function of the logarithm (base 10) of the inverse of
this error bound, which is an estimate of the number of correct digits
produced by the code. As we can see from this Figure, the code had
three digits of accuracy after roughly 87000 seconds. Further, until the
code had (slightly more than) two digits of accuracy, running time grew
faster than quadratically as a function of the inverse error. Finally, in
the period where the code had between two and four digits of accuracy,
running time was still growing as a positive power of the inverse error
(but slower than quadratically).

xviii APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

The situation exemplified by this data has led researchers to consider
approximation algorithms for linear programming, as an alternative to
the traditional focus on “exactly” solving problems. The idea of ap-
proximation has a long and distinguished record in all areas of science
and engineering. Surely, it should be a worthwhile scientific goal to
develop approximation algorithms for linear programming that are en-
dowed with solid mathematical foundations and which can be efficiently
implemented. As for the usefulness of such approximation algorithms, it
is abundantly clear from practical experience that obtaining a partially
accurate answer, quickly, can be much preferable to having to wait an
excessively long time for an “exact” solution (a misnomer given that
standard LP codes incur round-off error). What is more, in many prac-
tical industrial applications it is debatable whether the input data is
correct to more than two digits. Thus, in principle, we should be able to
use approximation algorithms for linear programming and yet achieve
the synergy between theory, computation and practicality mentioned
above.

The issue of how rough an approximation “can” be in order to remain
useful is difficult to quantify, and for good reason: this is entirely de-
pendent on the particular needs of the application. Suppose that a real

xix

application gave rise to a linear program with variables and con-
straints. In such a situation, being able to obtain a (guaranteed) factor
of 2 estimate of the LP value in (say) one day could well be preferable
to having to wait one year for an “exact” solution.

At the same time, one trend in the development of mathematical
programming has been that problem sizes demanded by applications
are constantly increasing. Whereas ten years ago it may have been
somewhat rare to have to solve a one-million variable linear program,
today many real applications routinely give rise to problems of this order
of magnitude. And in some applications we face much larger problems.
It is certain that in the future we will face problems that are vastly larger.
Given this likelihood, should we abandon the richness and flexibility
that we can achieve with today’s models, so as to be able to claim that
we “solve” problems to optimality? We would argue that as problems
become massive, and the asymptotic properties of algorithms become
visible, the need for provably good approximation schemes with good
experimental behavior will become pressing.

In this monograph we survey theoretical and experimental results on
approximation algorithms for linear programs, with special emphasis on
provably good potential function methods. In Chapter 1 we survey some
classical results that constitute the starting point for this field. Chap-
ter 2 describes some of the core results on exponential potential function
methods. Chapter 3 contains some fairly recent results on streamlined al-
gorithms based on exponential penalties. Chapter 4 presents our results
with an implementation of the exponential potential function method
for general block-angular linear programs.

Acknowledgment. This work was partially funded by NSF awards
NCR-9706029, CDA-9726385 and 29132-5538 (CORC).

Here K is the number of commodities, and for each k, (1.2) is the set of
flow conservation equations for commodity k, with the flow of com-
modity k on (i, j). Sometimes the problem may include upper bounds on
each Minimum cost multicommodity flow problems are (usually lin-
ear) optimization problems with constraints (1.1)-(1.3). Multicommod-

In addition, for each edge (i, j) there is an upper bound on the sum
of the flows of all commodities on (i, j). Here we are assuming that
the graph is directed (and that the demands are routed using directed
flows) but the problem and the solution techniques easily generalize. In
summary, a multicommodity flow is a solution to a linear system of the
form

Chapter 1

EARLY ALGORITHMS

Optimization problems in networking and telecommunications have
historically given rise to very difficult linear programming instances.
This is still true today – with the added hazard of massive problem size.
In particular, problems arising in this field contain routing components,
which can be abstracted as multicommodity flow problems. Although
there has been a large amount of research into multicommodity flow
problems, just why they are so difficult remains poorly understood.

Broadly speaking, in a multicommodity flow problem we are given a
graph in which multiple “demands” are to be routed. For the purposes
of this chapter, we may think of a demand as an origin-destination pair
of nodes and an amount to be routed from the origin to the destination.

2 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

ity flow problems are difficult because of the joint capacity constraints
(1.1), which can actually render the problem infeasible. In fact, it has
long been known that the pure feasibility problem can already be fairly
difficult. When a system (1.1)-(1.3) is infeasible, it is sometimes impor-
tant to know “how” infeasible it is. This question can be cast as an
optimization problem by replacing (1.1) with

and asking that be minimized, subject to (1.4), (1.2) and (1.3). Define

the congestion of a multicommodity flow f on an edge (i, j) as
Then in the above problem we are asking that commodities should be
routed so as to minimize the maximum congestion.

Alternatively, we could keep (1.1) and (1.3), and adjust (1.2) to obtain

In other words, we want to maximize the “throughput” of the net-
work: we want to route as large a common percentage of each demand
as possible while not exceeding any of the joint capacities. This is known
as the maximum concurrent flow problem. Both problems have impor-
tant applications in networking, and perhaps it is their min-max nature
that makes the underlying optimization problems difficult. Note that a
feasible solution (f,) to CONG, with yields the multicommod-
ity flow f which is feasible to (1.2)-(1.3) and which has maximum
congestion at most Using this fact, the minimum congestion and
maximum concurrent flow problems are easily seen to be equivalent.

Minimum congestion/maximum throughput problems arise in many
guises in networking applications, always with the common thread of
“packing” commodities into subgraphs of a network (paths, trees, etc)
so as to optimize a min-max or max-min measure of the packing. An-
other common property is that, when tackled as general linear programs,
these problems can be rather ferociously difficult. This fact has provided
motivation for studying these problems from the very earliest days and
continuing through today. The particular formulation described above
(which does arise directly) can be considered an abstracted form of the

Early Algorithms 3

general problem, which captures its significant characteristics. The ap-
proximation algorithms that we will describe, in turn, are easily adapted
to particular forms of the problem.

1. The Flow Deviation Method
In 1971, Fratta, Gerla and Kleinrock [FGK71] developed an iterative

approximation algorithm for various routing problems in telecommunica-
tions, the “Flow Deviation Method.” Their work is evocative of research
published much later, and in fact some of their techniques can be found
almost verbatim in articles published twenty years later. At the same
time, the Flow Deviation Method can be viewed as an amalgam of re-
search ideas developed in the sixties and before by the mathematical
programming community. We will examine the results in [FGK71] in
some detail, as they provide a good stepping stone to modern work, and
because a careful analysis reveals a surprise: the algorithm for the max-
imum throughput problem given in [FGK71] is provably good, thereby
predating similar results by some twenty years.

In [FGK71] the authors consider two closely related nonlinear opti-
mization problems. The central one has constraints (1.1), (1.2) and
(1.3), and its objective, to be minimized, is of the form

There is a concrete justification for this nonlinear objective arising from
the application (related to queueing delays), but, as quickly becomes
clear, the justification is serendipitous, because the crucial role for this
objective in [FGK71] is as a barrier function in an algorithm for finding
a multicommodity flow feasible to (l.l)-(l.3). A simple modification
to this algorithm solves the maximum concurrent flow problem. In this
role, the particular form of is unimportant (as stressed in [FGK71]),
other than

(i)

(ii)

The particular used in [FGK71] yields For completeness,
we define outside the range

In the remainder of this section we outline the algorithm used in
[FGK71] to solve the maximum concurrent flow problem, in slightly

is separable, or more precisely, for an

In the range is increasing, continuous and convex,

appropriate such that

and

4 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

modified form. We refer the reader to [BR00], [R01] for a rigorous anal-
ysis of the algorithm in [FGK71] that proves better bounds than those
we will obtain below.

It is instructive to first examine the central idea in this algorithm,
which in our view is the critical contribution. Suppose we are given a
flow vector f with throughput and suppose that f is strictly feasible,
i.e. all constraints (1.5) are slack. To fix ideas, suppose all capacities
are at most 50% utilized, and that this congestion level is attained on
some edge. Then it is a simple matter to increase throughput: simply
scale up all flows by a factor of 2. The new flow will still be feasible,
with throughput and will fully utilize the capacity of at least one
edge.

In general; since f is strictly feasible, there is a number (i.e.
the inverse of the maximum congestion) such that is feasible, with
throughput However, this comes at the cost of fully utilizing at least
one edge of the network, that is will have some edge with congestion
1. Given this new flow, we can ask the following question: can we
find a flow vector also with throughput but with (much) smaller
congestions than If we could magically find such a vector, we would
have an algorithm, because we could reset and go back to the
starting point above, scale up f, and so on. The way that the “magic” is
implemented in [FGK71] is to obtain g from by reducing the value of
a nonlinear function that penalizes congestion; namely given above.
We need a quick correction here: since equals at 1, we must
choose the quantity so that is also strictly feasible (in the 50%
example we would set, say).

Now we return to the description of the general algorithm. It relies
on an iterative routine (the Flow Deviation method, described below)
to implement the “magic” described above, i.e. to approximately solve
problems of the form

where is a parameter. This iterative routine, which will be de-
scribed later, requires as starting point a feasible solution to (1.9 - 1.10).

In outline, the algorithm for the concurrent flow problem is as follows,
where is the desired optimality tolerance, and is a related
parameter discussed later.

noting. First, for consider the flow produced in Step 4 at the end
of iteration t – 1, which has has throughput and maximum congestion

satisfies If algorithm FGK stops

Early Algorithms

Algorithm FGK

Step 1. Let be a feasible solution to CONG,with maximum
congestion Let

Step 2. Use the Flow Deviation method to compute, starting from
a feasible solution to with

Step 3. Let denote the maximum congestion of If
stop, is the maximum throughput, up to tolerance.

Step 4. Otherwise, is a multicommodity
flow with throughput i.e. is feasible for
CONG. Set and go to Step 2.

5

There are several technical details about this algorithm that are worth

iteration t is to compute another flow with equal throughput but
with hopefully much smaller congestions. Having achieved this purpose,
in Step 4 we use the free capacity available in every edge so as to scale
up the flow, and increase throughput, by a factor of

Another point is how to implement Step 1. This can be carried out
by individually routing every commodity, and then scaling down the
combined flow appropriately.

Finally, the implementation of Step 2 given above is somewhat dif-
ferent from that in [FGK71]. We will return to this point later. The
second term in the maximum is needed to avoid difficult cases of the
optimization problem in Step 2, where the value of the optimum is
very small.

1.1 Convergence Analysis
What can be proved about the FGK algorithm? First, one wonders

if the termination criterion is correct. Let m be the number of edges
in the graph. The following result, although not proved in [FGK71],
follows easily.

THEOREM 1.1 Suppose is small enough that and that

achieved on at least one edge (i, j). The objective in Step 3 of

6 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

(in Step 3) at iteration t, then where is the maximum
throughput.

Proof. Assume by contradiction that and let f* be a
multicommodity flow feasible for CONG, with throughput Then
the flow achieves throughput Moreover, for every edge
(i,j)

and consequently

Since the algorithm stopped at iteration t, and thus

Consider the value of in Step 2 (at termination). Since
from (1.13) we get

This implies which contradicts (1.14).

We note first that the properties of guarantee that for any small
enough, a value as desired exists. Using modern terminology, the
theorem states that the throughput produced by the algorithm at ter-
mination is with regards to the objective We may think
of Theorem 1.1 as specifying, for each fixed desired accuracy an
internal precision to be used in running algorithm FGK. Note that

could be very small compared to potentially outstripping the nu-
merical precision we can realistically expect from a modern computer
(the tighter analysis presented in [BR00], [R01] does not suffer from this
shortcoming). Another consequence is that algorithm FGK might stop
with a value very close to, but strictly smaller than 1. By scaling the
flows by a factor we obtain a multicommodity flow that is almost
feasible for (1.1)-(1.3) – more precisely the maximum relative infeasibil-
ity is at most – but no guarantee that (1.1)-(1.3) is infeasible.

For

k a maximum flow vector (with capacities). Let
be the minimum, over all commodities, of the throughput achieved by

Early Algorithms 7

The next point of interest regarding algorithm FGK is how many
iterations it will require to reach termination. This point was not ad-
dressed in [FGK71]. In order to obtain a provably fast algorithm we find
that we must make two adjustments to the generic algorithm.

The first issue concerns the relationship between and which is
defined by the particular function we choose: if is too small the
algorithm may converge slowly. We will make the additional assumption:

(iii) There is a value such that for all

For
The other issue concerns the initial value should this be too small

the algorithm will require many iterations. One way to address this issue
is simple and intuitive enough that it might be inadvertently chosen
when implementing Step 1 of FGK. First compute, for each commodity

this routing. Then we can assign throughput to
all commodities to obtain a flow as desired for Step 1.

The next Theorem parallels analysis found in work dating some twenty
years later than that in [FGK71].

THEOREM 1.2 Suppose satisfies (iii) and that the flows in Step 1 are
computed using a maximum flow algorithm, and scaling. Then, given

FGK converges in at most iterations of
Step 2.

Proof. If we obtain the initial flow vector as indicated above we will
have

Consider an iteration t where

If the algorithm does not stop at this iteration, then we will have

and consequently there are at most O(m) iterations such as (1.17). Using
the same technique, if is an integer such that the
number of iterations t where

i.e.

s.t. satisfies (1.18)-(1.19).

8 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

can be shown to be O(m). Finally, since another use
of the same idea shows that there are at most log K iterations t with

1.2 Analysis of the Flow Deviation method
Now we turn to the algorithm used in [FGK71] to solve the problem

in Step 2 of algorithm FGK. For convenience, we restate this
problem here:

The algorithm presented in [FGK71] is iterative and can be viewed
as a steepest descent method, or, more properly, a Frank-Wolfe method
(see [FW56]).

Flow Deviation Method

FD0. Let satisfy (1.18)-(1.19). Set

FD1. Let be an optimal solution to the linear program

FD2. Choose which minimizes over

FD3. Set If is not appreciably smaller
than stop. Otherwise set and go to 1.

Given that is convex, the above algorithm will converge to a global
optimum of although it is a classical result that the convergence will
be slow if the eigenvalue structure of the Hessian matrix of is not con-
venient. Parenthetically, we note that in [FGK71] the terminology “flow
deviation method” is sometimes used to refer just to one application of
FD1 - FD3. In [FGK71] the authors present the following analysis of
the convergence rate of the above algorithm.

Early Algorithms 9

Then g is convex,

where (2nd order Taylor expansion). Let be an upper
bound on [To see that such a finite bound exists, note that that

since for any we have for
any (i, j), where c is the constant in assumption (iii).] By our choice of

in FD1, replacing with any other flow vector will not decrease the
right-hand side of equation (1.21). In particular, we may use a flow
optimal for Putting together these facts and the above equations
we obtain

By definition and since is convex,

if we write and substitute in (1.23), we obtain

We choose in FD3 so as to minimize the left-hand side of (1.25). We
would like to argue that the minimum value that the quadratic
takes, over all possible is an upper bound on
This will follow if we can guarantee that the value of that
minimizes is such that (1.25) holds. The choice of H guarantees
that (1.25) is valid whenever

for each edge (i, j). On the other hand, if is such that (1.26) holds
with equality for some edge (i, j), then i.e.,

At iteration h, for write

10 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

from which it follows, since that indeed
achieves its minimum (over the reals) in the interval [0,), as desired.

Note that unless is already optimal, and a calcu-
lation shows that

In [FGK71] this equation is used to argue that the Flow Deviation
Method asymptotically converges to an optimal solution. Here, we will
instead tighten the analysis to obtain a complexity result for the algo-
rithm. First, we need to make an additional assumption on the barrier
function This assumption essentially states that as does
not grow “too fast”.

(iv) There is a value such that for all

For wehave Another ingredient that enters the mix
here is the parameter that in later work became known as the “width”.
For the purposes of the maximum concurrent flow problem, the width
equals the ratio of the largest demand to the smallest capacity.

all since algorithm FDO-FD3 strictly decreases Thus, an anal-
ysis shows that Combining these observations with
inequality (1.27), we obtain

The recursion given by this equation can be abstracted as

Given any this recursion satisfies

Thus, for Putting all these facts together,
and making use of equation (1.29) we obtain:

THEOREM 1.3 Suppose satisfies (i) - (iv), and suppose is at least a
fraction as large as the maximum throughput. Then algorithm
FD0-FD3 converges to a feasible flow z with

Now if we assume that then the same will hold for

Early Algorithms 11

in at most iterations.

Note that, as stated, Theorem 1.3 actually guarantees the stronger
condition Thus equation (1.28) can be used to detect
termination. As a corollary of this theorem, we now have:

THEOREM 1.4 Suppose satisfies (i) - (iv), and that we start algorithm
FGK by computing a maximum flow for each commodity, and scaling
to achieve feasibility. Then algorithm FGK finds a feasible flow, with
throughput after solving at most
linear programs with constraints (1.9)-(1.10).

Using a slightly tighter analysis, we can improve the bound in The-
orem 1.3 and through it, that in Theorem 1.4. The point is that, as
noted before, the condition guaranteed by Theorem
1.3 is stronger than needed. This condition is needed to handle the ini-
tial calls to the Flow Deviation method during the course of algorithm
FGK, where the quantity may be too small to approximate very
accurately (and it is unimportant that we do so). The following is easily
obtained:

LEMMA 1.5 Consider an iteration t of FGK where
for some integer Then

Inserting this result directly in Theorem 1.3 yields the improved itera-
tion bound for algorithm FGK, instead of that in
Theorem 1.4. We can obtain another improvement by noticing that al-
gorithm FGK from the outset is working with the final precision but
a more effective implementation is to gradually increase the precision
(by powers of two) until we obtain the desired Then we will have:

THEOREM 1.6 Algorithm FGK can be implemented so as to terminate
with a throughput after solving at most
linear programs with constraints (1.9)-(1.10).

In [BR00], [R01] we analyze an algorithm that follows that in [FGK71]
fairly closely, and show that our algorithm solves the maximum concur-
rent flow problem to relative error by solving
minimum-cost flow computations, where m and k are, respectively, the
number of edges and commodities.

1.3 Historical Perspective
Algorithm FGK approximately solves a sequence of nonlinear pro-

grams and through the algorithm given in Section 1.2, it produces
a sequence of Frank-Wolfe steps, i.e., linear programs with constraints

12 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

(1.18)-(1.19). Each of these problems breaks up into one shortest path
computation for each commodity and thus, putting aside Step 0 of algo-
rithm FGK, the entire procedure for the concurrent flow problem can
be viewed as sequence of shortest path problems.

To put it differently, steps FD1 - FD2 of the Flow Deviation Method
embody the following simple idea: in order to “improve” a given flow
with a given throughput, we compute edge weights that penalize conges-
tion (with weights increasing rapidly with congestion). Then each com-
modity we compute a shortest path between its ends using the computed
weights, and then we shift (“deviate”) some of flow of the commodity
to the computed path. The procedure then repeats using the new flow
vector. Conceptually, we might think of the deviation as transferring
weight from a “long” paths to a shortest path.

According to [FGK71], Dafermos and Sparrow [DS69] already de-
scribed an embryonic version of this idea, although in a more limited
setting. More generally, throughout the above we have been describing
the Flow Deviation Method as a “Frank-Wolfe” algorithm: this is the
technique whereby a nonlinear objective is linearized by replacing it with
its gradient, which is related to the classical steepest descent algorithm
for unconstrained optimization (see [FW56], [Lu]). It is also related
(consider step FD2) to Dantzig-Wolfe decomposition [DW]. In fact, the
extreme points of the polyhedron defined by (1.18)-(1.19) are the inci-
dence vectors of the shortest paths for all the commodities, scaled by
the demand amounts. Hence another implementation of the Flow De-
viation method is that it computes, for each commodity, that convex
combination of paths that yields the lowest possible objective.

Taking a step further back, algorithm FGK removes the troublesome
capacity constraints (1.5) and instead “penalizes” us when we get too
close to violating them by using the nonlinear function as a “barrier”.
See [FM68] for a general analysis of the penalty function technique,
which is closely related to the barrier function method. Courant [Cou43]
is viewed as an early proponent of this type of idea.

In summary, the Flow Deviation Method made use of several algorith-
mic ideas that were already fairly mature at the time of its development.
What seems to be novel is their application to a min-max problem, as
embodied, in particular, by Steps 2-4 of algorithm FGK, as well as
the first part of the convergence analysis of the Flow Deviation Method
proper, as described in Section 1.2.

Quite likely, step FD1 would be the most time-consuming when run-
ning the Flow Deviation Method. A simple improvement would be to
restrict each application of steps FD1 - FD3 to one commodity (and, for
example, to cycle through the commodities). In this approach each step

Early Algorithms 13

FD1 is substantially faster, while at the same time the more frequent
gradient updates may even yield faster convergence. Ideas of this sort
were used in more recent algorithms to be studied in later sections, and
parallel the improvement of the Gauss-Seidel scheme for solving linear
systems over Gauss-Jacobi.

It is also likely that, due to its steepest-descent pedigree, the Flow
Deviation Method may “tail-off”. In the context of its utilization in
algorithm FGK, one might then wish to replace the call in Step 2 with
a moderate number of iterations of FD1 - FD3. In particular, one might
use just one iteration. This is actually the approach used in [FGK71].
If we further restrict each iteration of FD1 - FD3 to one commodity
at a time, then we obtain an algorithm that is (a bit) reminiscent of the
Garg-Könemann [GK98] algorithm that we will discuss later.

2. The Shahrokhi and Matula Algorithm
Even though the Flow Deviation Method was always quite well-known

within the telecommunications community (and somewhat less known
within the optimization community) the above complexity analysis is
the first, as far as we know.

In the late 1980s, Shahrokhi and Matula [SM91] developed a differ-
ent technique for approximately solving the maximum concurrent flow
problem in the special case that all arc capacities are equal to a com-
mon value u. This is known as the uniform maximum concurrent flow
problem. Their technique relies on a penalty function (as opposed to
a barrier function) and can also be viewed as a Frank-Wolfe algorithm
(thus eventually breaking up into a sequence of shortest path computa-
tions) , but the similarities with the Flow Deviation Method end there.

In addition, the method in [SM91] introduced a component that is
conspicuously missing in algorithm FGK: the use of duality. In the
remainder of this section, we will outline the basic motivation for the
algorithm in [SM91], and how it naturally gives rise to duality.

The Shahrokhi-Matula algorithm is best viewed in the context of the
min-max congestion problem, which for convenience we restate here.

14 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

In an optimal solution to this problem we would expect flows to be
“balanced,” i.e. ideally no arc should carry “much more” flow than
any other arc. This suggests using a convex, increasing function and
replacing the above linear program with

To motivate this approach, consider the case of a directed graph with
vertex set {a, b, c, d} and arc set {(a, b), (b, c), (c, d), (a, d)}, where every
arc has unit capacity and one unit of flow is to be sent from a to d.
The optimal solution sends 1/2 units of flow along the path a, b, c, d and
another 1/2 along a, d. Suppose we choose for some
In this example problem PF takes the form

with solution Thus for the congestion achieved
by this solution is 3/4. For the congestion is 0.5056, i.e. still
more than 1% away from the optimum. The problem here is that our
choice for does not increase fast enough, and as a result the optimal
solution to problem PF will favor short paths over achieving minimum
congestion. We are drawn then to a function of the form for
appropriately chosen

To better motivate the use of an exponential potential/penalty func-
tion, it is useful to consider a generalization of the minimum congestion
problem CONG. Here we are given a convex set and a non-
negative matrix A. We are interested in the min-max “packing”
problem PACK(A,P) given by:

where e denotes the vector of 1s. In terms of problem CONG, the
capacity inequalities (1.31) can be represented by a system of the form

and P would denote the convex hull of flow vectors that satisfy

Early Algorithms 15

(1.32), (1.33). Thus is the value of problem CONG, i.e., the min-
imum congestion value. Equivalently, we may describe the minimum
congestion problem using a path formulation. In this formulation the
set P is homeomorphic to a product of simplices;

commodity k. Note that the system is feasible
precisely when and we may view the task of finding an approx-
imate solution to PACK(A,P) as a (strengthened) feasibility check.

For and define

The following theorem is adapted from [GK94].

THEOREM 1.7 Let an optimal solution to
Then

Proof. Suppose is an optimal solution to problem PACK(A,P).
Then the total penalty incurred by is at least and the total
penalty incurred by is at most and so
which yields the desired result.

The significance of this theorem, as applied to the minimum conges-
tion problem, is that we can adjust the parameter so that the solution
to problem PF is a flow vector whose congestion is optimal within any
desired tolerance. In particular, if we knew we could in princi-
ple set to obtain a solution with congestion at most
It is also striking that the Theorem does not make use of any combina-
torial features of the problem. Finally, the proof of Theorem 1.7 has a
hint of brute-force flavor: the principle at work is that if we choose
large enough, then a flow vector with a single highly congested edge will
be very suboptimal for problem PF.

In light of Theorem 1.7, let us consider the vector that minimizes
over P. Since and P are convex, we have that is a solution to the
linear optimization problem

which in the case of the minimum congestion problem is a minimum-cost
flow problem. But a simple calculation shows that

where for each commodity k, is homeomorphic to the simplex
i.e., the convex hull of paths corresponding to

16 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

where
This fact directs our attention toward the structure of optimal dual

solutions to problem PACK(A,P): if were optimal dual vari-
ables for the constraints then an optimal solution to
PACK(A,P) would also solve the linear program with objective A.
One of the dual constraints for PACK(A,P) (the one arising from the

column) is that the sum of dual variables equals 1, and therefore a
vector as just described may not be dual feasible, but will
be. One of the contributions of [SM91] (in the context of PACK(A,P))
was to show that, surprisingly, if is large enough, then whenever is a
near-optimal solution to PACK(A,P), the vector with entries

is near-optimal for the dual of PACK(A,P).
Hence, as a preamble to further study of this point, it is useful to

consider the nature of the dual of problem PACK(A,P) in more detail.
Using standard duality techniques the following result is easily obtained:

LEMMA 1.8

Moreover, if is an optimal primal solution to PACK(A,P)
and is the negative of an optimal dual solution to PACK(A,P),
then

Further, suppose where each is homeomorphic
to a simplex. Suppose where coordinate j appears in simplex
Let C(k) denote the set of all coordinates appearing in simplex Then:

[SM91] presents a proof for the special version of this result arising from
the (uniform) concurrent flow problem. Even though Lemma 1.8 is more
general, we will look at what duality says in this specific context, as it
provides useful insight.

Early Algorithms 17

Consider a flow f with maximum congestion and suppose we assign
to each edge (i, j) a nonnegative length Clearly,

Next, for each pair of vertices s, t let (s, t) the shortest path length
from s to t. Then we also have

where is the source node for commodity k, is its destination, and
is its demand. Consequently,

Lemma 1.8 states that

for appropriate where is the maximum congestion attained using
an optimal flow Further, by (1.39), only on edges (i, j) with
maximum congestion in (i.e., congestion), and by (1.40), the only
paths carrying positive flow in are shortest paths under the metric

Inequalities (1.43), usually credited to [OK71]. are closely related to
the “metric inequalities”, which have received a great deal of attention
from the combinatorial optimization community, particularly in the con-
text of network design problems (see e.g. [STODA94]). One frequent
algorithmic use of these inequalities is that where the left-hand side of
(1.43) is strictly greater than 1, proving that the capacities are in-
feasible for simultaneously routing all the demands.

In this context, we may choose very special length vectors A special
case is that of “cut” metrics. In a cut metric we set for edges (i, j)
crossing a cut C in a given direction, and otherwise. For such a
metric (1.43) simply states that the capacity of C, scaled by must be
at least as large as the sum of demands crossing C. Using the technique
in [SC86] (page 115), it is possible to show that in the case of a single
commodity, equation (1.44) implies the max-flow min-cut theorem, and
that the maximum in (1.44) is attained by a cut metric. However, in
the general multicommodity case, the reader may wonder how tight a

18 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

bound on is proved by using cut metrics alone. We will return to this
topic at the end of this chapter; however, for k commodities the ratio
between and the max min-cut can be as large as O(log k) [LR98] and
this is best possible [LLR94].

Returning to exponential penalties, the following result, generalized
to PACK(A,P), is adapted from [SM91].

LEMMA 1.9 Consider problem PACK(A,P). Let and let

Proof.
Denote by denote the row of A, written as a column vector. We

have

Consider a term appearing in (1.46). For such an index i we have

Therefore

Since this lemma suggests a strategy for an algorithm based
on the exponential potential function. Say that we want a solution with
(relative) error guarantee Then choose and search for
such that with penalties we have

The flaw in this argument is that it will only yield the absolute error
guarantee

In other words, problem instances where is very small could prove
troublesome. Now throughout this section, we have assumed that

Suppose we strengthen this assumption to and that
In the multicommodity flow setting, the first part of the assumption

be defined as in (1.37). Let Then

Early Algorithms 19

always holds, and the second one holds whenever there is at least one
nonzero commodity to be routed (and if not CONG is trivial). Hav-
ing made this assumption, we can then assume that for any

which changes and by the same scale factor, and thus rela-
tive errors are unchanged. In [SM91], the authors assume that the sum
of demands is 1, which achieves a similar result. Consequently, for any

we will have We will make the above assumption in
what follows.

Armed with this assumption, we can now take a second look at equa-
tion (1.47). Choose Suppose we could find with

that as desired. This is (roughly) the main thrust of the

algorithm in [SM91].
It is instructive to contrast Lemma 1.9 to Lemma 1.7 – in particular,

it appears that the choice may not be the only possible, in that
an algorithm that uses and that minimizes with absolute
error would also yield an with congestion. Later
chapters will examine the issue of choosing the “best” – one critical
consideration is that of numerical stability, and the second choice is
clearly preferable in this regard, as it gives rise to exponential functions
with smaller exponents.

As an aside, we note that the difficulty of approximating problems
with “small” optimal value is well-known to researchers. However, in
the context of the problems we study here, one can follow a different
line of analysis based on equation (1.48).

2.1 The algorithm proper

congestion problem CONG with uniform capacities, i.e., all values
are equal. Without loss of generality, for all (i, j).

tination node One important fact regarding this algorithm is that at
any iteration it explicitly stores a list of active paths for each commod-
ity – these are the paths currently used to route the commodity. Next
we present the algorithm in [SM91] in simplified (and slightly incorrect)
form.

– this only requires scaling P by a positive constant,

where Then we would have

The algorithm in [SM91] finds an solution to the minimum

As before, commodity k will have demand , source node and des-

Reroute units of flow from to Set
and go to Step 2.

Remark. Note that the set of active paths may change in Step 5. For
example, path may become inactive after the rerouting step.

In what follows, we assume that the sum of all demands is 1 – this
simply scales the value of problem CONG by a constant factor.

THEOREM 1.10 Algorithm SM terminates with an flow after
iterations and always maintains active paths; with

overall complexity

Proof. (Sketch). The key idea is to show that the potential function

20 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

Algorithm SM

Step 1. Let be a multicommodity flow where each commodity is
routed using a single path. Let

Step 2. For each edge (i, j), let

Step 3. For each commodity k, let denote the length of a shortest
path (active or not) from to using metric and let denote the
maximum congestion attained by flow If

then stop (is).

Step 4. For each commodity k, let be a longest active path for
commodity k, with length and let be a shortest (active or not)
for commodity k, both using metric Choose a commodity h such
that maximized.

Step 5. Let denote the sum of lengths of edges in and the
sum of lengths of edges in [Note that Set

and

Early Algorithms 21

is decreasing fast enough as a function of t. We have that for
any t, and since the sum of all demands is 1, the sum of flows on any

we can argue that is large enough, we will have the desired
result. In particular, if we could argue that
the number of iterations would be as claimed.

We can make this argument a bit more precise as follows. Consider
a particular iteration t. For simplicity we will assume that the amount
of flow rerouted in Step 5 is The critical fact to note is that the
percentage contribution to the potential function arising from the edges
of a particular path p is precisely the length of p, using the current
metric.

Now in iteration t, we reroute units of flow from a longest path
to a shortest path both being paths corresponding to some

commodity h. Consequently, after the rerouting, the contribution to the
potential function due to each edge in is decreased by a factor

of Similarly, the contribution to the potential function due to

each edge in is increased by a factor of In all other edges
the flow is unchanged, and so will be their contribution to potential. As
defined in the algorithm, has length and has length

Thus,

The particular choice of made in Step 5, then yields

since the sum of all edge lengths is at most 1.
Assume by contradiction that Now is also equal

to i.e., the difference in lengths between a longest active path
and a shortest overall path for commodity h. But commodity h was
chosen in the algorithm precisely so as to maximize this difference. We
conclude that, for any commodity k,

where as previously is the demand for commodity k. Summing these
equations and recalling that the sum of demands equals 1, we will have

edge never exceeds 1, and in particular Consequently, if

22 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

that

Now recall Lemma 1.9, and the analysis following the Lemma. The left-
hand side of inequality (1.51) is precisely the expression in
equation (1.45). Thus we will have that and
also, since that for small enough. We
conclude that when algorithm SM will correctly terminate
in Step 3.

As concluding remarks on the Shahrokhi-Matula algorithm, we note
that (a) The algorithm is best viewed as a coordinate descent method, in
the space of the path variables (as opposed to a Frank-Wolfe algorithm),
and (b) As was the case with the Flow Deviation method, it may be
possible to improve the worst-case iteration count by using a “powers
of 2” strategy that gradually improves the approximation quality until
the desired is attained.

2.2 Cut metrics and minimum congestion
We return now to the topic we touched on earlier in this chapter,

regarding how good a lower bound on is obtained by restricting the
metric in (1.43) to a cut metric that is to say given a set S of vertices

if and only if and If we denote by D(S) and
respectively, the total demand leaving S and the sum of capacities of arcs
leaving S, then the cut-metric inequality states

and we are interested in the quantity

where V is the set of vertices. As mentioned before, the max-flow min-
cut theorem implies that in the case of exactly one commodity,
as (1.52) states that if we scale all arc capacities by we can then
feasibly route the commodity; but in general

An extreme example for this inequality is provided by expander graphs.
In this discussion we will deal with undirected graphs (and flows). We
refer the reader to [LR98] and references therein for background on these
graphs, which, due to their favorable connectivity properties, have been
frequently used in the theoretical literature to obtain provably good
network designs. For the purposes of this manuscript, given and
 an (d)-expander graph is an undirected graph where every sub-
set S of vertices that is not too large has at least neighbors (this

Early Algorithms 23

is the so-called expansion property), and such that every vertex has de-
gree at most d. Expander graphs were originally proved to exist using
probabilistic arguments; a technical tour-de-force eventually produced
explicit constructions. In any event, for given (selected) d, one can
construct arbitrarily large (d)-expander graphs.

Consider such a graph, with, say, n vertices, and consider the mul-
ticommodity flow problem where there is one unit of demand between
each pair of vertices. The structure of the graph is seen to imply that
the average distance between any two vertices is Thus, in any
routing, the sum of edge congestions is On the other hand,
the total number of edges in the graph is at most We
conclude

At the same time, if we consider a cut separating a set S of vertices
from its complement where then Further,

proving an order of magnitude log n gap between and [LR98].
The proof that this bound is best possible also involved some highly

sophisticated and elegant mathematics, see [LLR94] and the references
cited there. In this case the underlying technical concept is that of
embedding a finite metric space into a standard metric space, e.g.
for some In [LLR94] it is proved (heavily relying on previous
work by other researchers) that given a set of V n points, a metric defined
on V, and a set P consisting of k pairs of elements of V , we can embed
V in such that the distance between the two elements of each pair in
P is distorted by at most O(log k). Using this fact, [LLR94] proves that,
for an arbitrary k-commodity flow problem, the gap between and
is at most O(log k).

2.2.1 Cut metrics and capacitated network design
Capacitated network design problems arise in many practical appli-

cations, especially in telecommunications. See, for example [AMW98],
[Ba96], [BCGT96], [MMV91]. In its simplest form (the so-called “net-
work loading problem”) we are given a network and a set of multicom-
modity demands to be routed. We have to assign, at minimum cost, in-
teger capacities on the edges of the network, for which a feasible routing
exists. In the case of a directed network, this problem may be formulated
as:

Therefore and

24 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

These mixed-integer programs tend to be quite difficult, due primarily
to two reasons: the poor quality of their continuous relaxation, and
the difficulty in solving the continuous relaxation itself. The reader
may notice that for fixed x we essentially recover the feasibility problem
CONG.

To address the first concern, various polyhedral approaches have been
proposed. The most common type of inequality that can be used to
strengthen the above formulation is the cutset inequality

where S is some some set of vertices, and D(S), have the same
meaning as above. These can be generalized to k-partition inequalities
for

Putting aside the issue of separating such inequalities (it can be done
effectively), and of the quality of the strengthened formulation (it is
good) one must next face the more significant obstacle of how to solve
the continuous relaxation. For problem instances of realistic size (say,
500 nodes) this difficulty can be insurmountable, at least by standard
methods.

To avoid this problem, some researchers (e.g. [STODA94]) have pro-
posed that one should work on the projection of the above formulation
to the space of the x variables. This gives rise to an alternative al-
gorithm where at any time one has a set of constraints (involving the
x variables only) that are known to be valid. This integer program is
solved (or nearly solved) and if the resulting solution is feasible for
the multicommodity flow problem with the given demands, we are done.
Otherwise (i.e., is infeasible) we find a metric inequality that is vio-
lated by we add this inequality to the working formulation and repeat
the process.

In its simplest form, this alternative algorithm just uses cutset in-
equalities in order to enforce feasibility. In essence, the problem then
being solved is:

Early Algorithms 25

The advantages of using a formulation based on the x variables only
is clear: the linear programs are incomparably easier to solve than those
using the full multicommodity flow formulation given above. At the
same time, we have to worry whether we have jumped from the frying
pan and into the fire: in trying to avoid a difficult linear program, we
may have made the integer programming component of the problem of
the problem even more difficult.

In fact, the expander graph example given in the previous section
shows that formulation (1.58 - 1.59), including the integral restriction,
can be a factor of smaller than the value of the linear program-
ming relaxation of (1.53 - 1.56). Of course, (1.58 - 1.59) could not in
general even guarantee feasibility for the multicommodity flow problem,
and one would need to use more general metric inequalities, but the same
expander graph example can be used to show that using k-partition in-
equalities with k bounded still yields a bound that is away from
the true linear programming value.

As we will argue later in this manuscript, solving the formulation
with constraints (1.53 - 1.56) should not be very difficult, at least to
reasonable accuracy, and perhaps this will yield a more effective solution
procedure for the network loading problem (see [B96]).

Chapter 2

THE EXPONENTIAL POTENTIAL
FUNCTION – KEY IDEAS

In this chapter we review some of the fundamental results on the
exponential potential function methods that were developed through the
middle ’90s. These results substantially built on, and were motivated
by, the work of Shahrokhi and Matula described in Chapter 1. We
will concentrate on the work by Grigoriadis and Khachiyan [GK94], and
Plotkin, Shmoys and Tardos [PST91]. More recent results will be covered
in Chapter 3.

The developments in [GK94] and [PST91] were among many extend-
ing and improving on the Shahrokhi-Matula approach. Also see [KPST90]
and [LMPSTT91]. An unrelated approach is described in [S91]. In
essence, the new algorithms were Frank-Wolfe algorithms, using expo-
nential potential functions to penalize infeasibilities, to find approxi-
mately feasible solutions to systems of inequalities. The contribution
from this work can be classified in three categories, which we outline
below and which will be examined in more detailed form later.

0.2.2 Handling more general problems

In previous sections we saw algorithms that while designed to han-
dle the concurrent flow problem, actually contained fairly little explicit
combinatorial elements. In fact, we saw that several of the theorems
could easily be generalized to problem PACK(A,P).

Thus, we are drawn to consider problems of the following general form:
find a vector satisfying:

where

28 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

where A is a matrix, b is an m-vector, and P is a polyhedron
over which it is “easy” to solve linear programs. Our relaxed objective
is to find with small relative violation of the linking constraints

Such an x will be called For now we assume for all i; in

problems of the form min { x satisfies (2.1) – (2.2)}. As we will
see, the techniques used to handle pure feasibility systems extend to
optimization problems through the simple trick of adding a “budget”
constraint.

0.2.3 Handling large width
It is well-known among practitioners of Lagrangian relaxation that,

whenever possible, a Linear Programming formulation should employ
“small” or “tight” upper bounds on variables – otherwise slow or no
convergence may be experienced.

It is possible to make this more precise in the context of algorithms,
such as the ones studied here, that make use of potential/penalty func-
tions to achieve feasibility. This can be motivated by a simple example.
Suppose we want to obtain a feasible solution to the system:

Suppose that we are at the point At this point,
the (relative) infeasibility for the first constraint of system (2.3) is ap-
proximately 85.7%, for the second constraint it is 9.99%, and for the
third it is 0.005%. Consequently, the gradient of the potential function
will be strongly dominated by the contribution from the first constraint,
i.e., we would expect the gradient to be proportional to a vector of the
form where the are very small positive
values. As a result, the step direction will be the vector
and therefore, the step size will be of the order of (otherwise the
violation of the third constraint will become much larger than O(l)).
The net result is that none of the violations improves by much (actually,

the special case where we obtain problem PACK(A,P).
In addition, we are of course interested in approximately optimization

More precisely: given we seek with

The exponential potentialfunction – key ideas 29

that of the third constraint worsens), and we expect that a large number
of iterations will be required to make each of the violations smaller than,
say, 1%.

On the other hand, in the above example the set P could have been
strengthened since the third constraint implies Using the
stronger representation for P, it is clear that if we use any reasonable
potential function the algorithm will quickly converge to a point with
small infeasibilities.

Returning to the original system (2.3), we observe that the slow con-
vergence is caused by the existence of points which substantially
violate one of the linking constraints. In terms of the general problem
(2.1)-(2.2) this motivates the following definition:

Definition: The width of the polyhedron with
with respect to P equals

In the case of the system (1.1)-(1.3), the width equals the maximum
congestion incurred by any flow, minus one. Sometimes we may wish to
use as the width; this is not a critical difference in the sense that
width is important when it is large.

The width parameter was formally introduced by Plotkin, Shmoys
and Tardos in [PST91]. They also provided a basic algorithm which,
under appropriate assumptions on A, b and P, given either proves

n, and is also proportional to We will examine this algorithm in
more detail later. In subsequent work extending this line of research,
the dependence on was improved to

One wonders whether this dependence can be improved upon, es-
pecially given that could be quite large. Klein and Young [KY98]
have constructed examples of PACK(A,P) where any Frank-Wolfe al-
gorithm must take iterations. Their examples are limited to
the range More significantly, their result only applies
to algorithms that access P solely through an oracle that solves linear
programs over P (in particular, their result does not apply to algorithms
that dynamically change P). This work will be analyzed in more detail
in Chapter 3.

(2.1)-(2.2) is infeasible or finds an Their algorithm
uses the exponential potential function and solves linear programs over
P, following the broad format described above. The worst-case number
of iterations of their basic algorithm depends polynomially on m and

30 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

Grigoriadis and Khachiyan [GK94] also provided an algorithm that
finds an solution to (a generalization of) PACK(A,P),
also by following the generic exponential potential function framework.
However, critically, the algorithm in [GK94], as well as the more elab-
orate algorithm in [PST91], both modify P, thus bypassing the Klein-
Young assumptions – one way to view their modification is that individ-
ual variable bounds are changed. As a result, the complexity of these
algorithms does not depend on and up to polynomial factors in the
size of the problems, is

It is important to recognize the impact of large width on stepsize,
when using a Frank-Wolfe algorithm: large width implies small stepsize.
Conversely, as we will see, techniques that reduce width immediately
guarantee a corresponding increase in stepsize, resulting on proved faster
convergence. From a practical standpoint, large width can give rise to
stepsizes that are numerically indistinguishable from zero, resulting in
aborted convergence (so-called “jamming”).

0.2.4 Leveraging block-angular structure
Consider a case of problem (2.1)-(2.2) which is block-angular, i.e.

where each is contained in a disjoint space
as discussed before. Each Frank-Wolfe step reduces to solving

K independent linear programs, one for each but one wonders if
there is a more fundamental strategy for taking advantage of the block
structure. We will discuss deterministic and randomized strategies that
solve only one block (on the average) per iteration, resulting in provably
faster algorithms. In addition, these techniques can be viewed as natural
strategies for handling large width problems.

1. A basic algorithm for min-max LPs
In this section we present an algorithm that finds solu-

tions to PACK(A,P). Our description largely follows that in [GK94],
although the algorithm in [PST91] is quite similar. In addition, our de-
scription temporarily puts aside the issue of how to take advantage of
possible “block-angular” structure of P. Also recall that

We assume that A has m rows, n columns and a maximum of Q
nonzeros per row.

The algorithm in [GK94] can be seen as operating in two phases. In
the first phase we find a lower bound on and also a point

such that satisfies
Thus, we are guaranteed a polynomial multiplicative error in our initial
estimate of In the second stage we progressively decrease the gap

The exponential potentialfunction – key ideas 31

between the lower and upper bounds on until the desired accuracy

is achieved. We will show that the overall procedure executes
Frank-Wolfe steps in order to estimate

to relative error of at most
For many problem classes, e.g. routing problems, this approach yields

much better worst-case complexity bounds than competing algorithms

This yields a problem PACK(A,P) with and In this
case, the subproblem we must solve in a Frank-Wolfe iteration breaks up
into N separate minimum-cost flow problems. Using Orlin’s algorithm
[OR88] we can solve these in time For
the sake of simplicity assume that the graph is dense enough that

Then our overall approach will have worst-case complexity

In contrast, a direct application of Vaidya’s algorithm for linear pro-
gramming [V90] to PACK(A,P) (which has variables and
roughly constraints) produces a bound of where
L is the maximum number of bits in a solution to PACK(A,P). This
is almost a factor LNM worse than (2.6) for fixed However, Vaidya’s
algorithm is a polynomial-time algorithm, and the bound (2.6) is not
polynomial – it depends exponentially in See [PST91] for other com-
parisons.

1.1 The first stage
In order to motivate the strategy employed by the algorithm in the

first stage, suppose we had a known upper bound on Since
it follows that

is nonempty, where for

Conversely, if we had a value such that then we would
know that In summary, if is such that
but then

when is not too small (i.e. fixed as a function of m and n). For
example, consider a maximum concurrent flow problem on a graph with
N nodes and M arcs, and with N commodities (that the number of
commodities is at most N can always be assumed through aggregation).

32 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

These observations suggest a simple algorithm. Start with a point
and initially set Then is nonempty; suppose

we were to repeatedly reduce by a factor of 2 until the first time that
becomes empty. The number of iterations needed to reach this

In order to compute an to the second stage runs
a binary search procedure. This procedure improves at each iteration
the gap between the upper bound and the lower bound on by a
factor of 2/3, until the gap is reduced to at most the desired accuracy

Step 0. Let be the bounds on produced by the first
stage, and let attain Set

Step 1. Using the algorithm described in the next section, find
with

the resulting vector yields a O(min{m, Q})-approximation on

1.2 The second stage

In particular, suppose our starting point is the optimal solution to the
linear program Then, clearly, and we
conclude that the first-phase algorithm requires O(log m) iterations, and

point is

Step 2. If then reset

Step 3. Otherwise, is an upper bound

Step 4. If stop. Else, reset and
go to Step 1.

Modulo the algorithm used in Step 1, the validity of this procedure is
clear.

In the next section we describe the algorithm used in [GK94] to carry
out Step 1. Here we will first analyze the overall workload we incur, to
show that it has the desired dependency on m and n.

As we will show in the next section, the algorithm for Step 1 requires
at most

an improved lower bound on

on and we reset

The exponential potentialfunction – key ideas 33

Frank-Wolfesteps over sets of the form for appropriate
To bound the workload resulting from all the executions of Step 1,

consider the ratio Each execution of Step 1 reduces the de-

nominator by a factor of 2/3, and the numerator does not increase.
Consider first the set of iterations, at the start of the procedure, during
which and as a consequence the ratio equals 1. Since each
such iteration (except the last) reduces by at least a factor of 2/3,
and since the initial vector in the execution of Step 0 is guaranteed
to satisfy the total number of iterations
with is at most O(min {log Q, log m}).

To account for the remaining iterations, note that the first time that

we have As a result, the number of Frank-

Wolfe steps resulting from iterations with is

where T is the smallest positive integer such that The sum in
(2.10) is dominated by the last term, and thus the expression in (2.10)
is bounded by

In summary, the total number of Frank-Wolfe steps resulting from iter-
ations with or is
as desired.

Next we describe how to carry out Step 1.

Consider one of the iterations of Step 1. Given the current iterate
and the current bounds we seek such that

Multiplying this equation by and writing

1.3 Computing to absolute tolerance

34 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

our objective becomes that of finding a vector such that

Further, and we start with a vector with

for appropriate where denotes the row of M. The reader
may wonder what theoretical significance the logarithm has, as opposed
to using a straight exponential function. In fact, it has none. At any
given point x, the gradient of (2.12) and that of are parallel,
and therefore a Frank-Wolfe algorithm will behave identically when using
either function, for any given choice of step sizes. However, the logarithm
simplifies the counting arguments and the presentation of the algorithm.
One nice feature that the potential function (2.12) satisfies is that its
gradient equals

where

which is a dual-feasible vector for PACK(A,P).
In addition, is convex. A quick proof of this fact is obtained by

showing that the function defined by
is convex. This reduces to proving that, given numbers

iterations, as desired.

Proceeding as in Section 1.1, since we will replace the set P
with (see (2.7), (2.8)). In what follows, we will use the notation

to refer to
To carry out the task at hand, [GK94] uses the potential function

In the remainder of this section, we describe an algorithm that, given
a convex set P, an arbitrary nonnegative matrix M, a vector
such that (and thus,), and a value with

computes a point such that

in at most Frank-Wolfe iterations. As applied to the
particular problem we are interested in, the bound we obtain is therefore

The exponential potentialfunction – key ideas 35

the matrix H defined by

is positive-semidefinite. This is proved by observing that, if we apply one
iteration of the Cholesky factorization algorithm [GV] to H, we obtain
a matrix of the same general form as H, and that for H is
positive-semidefinite. A different proof is obtained by appealing to the
Gershgorin circle theorem [GV].

In setting we are already gave a preview in Lemma 1.7. We are
also inspired by Lemma 1.8, Lemma 1.9, and the discussion in Section
2 just prior to Section 2.1. The following result (with a simple proof) is
proved in [GK94].

LEMMA 2.1 Let Then

Consequently

Corollary. Suppose for some Then if
satisfies we have

The immediate consequence of this lemma and its corollary is that
we should seek to minimize to some absolute tolerance. Of course,
for a given we have that and are interrelated; we must pick these
quantities so as to optimize the running time of our algorithm.

The following result, which is a strengthening of Lemma 1.9 (and with
similar proof) is given in [GK94]:

LEMMA 2.2 Let and be defined as in (2.13). Then

This Lemma, together with Lemma 2.1 shows that, at optimality, the

minimizing and in favor of choosing

linearization of is within an additive error O(1n m) of This
(again) argues in favor of a Frank-Wolfe algorithm for approximately

36 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

A more precise argument supporting this choice will emerge from an
analysis of the algorithm used in [GK94]. We first present this algorithm
in outline, assuming a specific choice for and

Algorithm GK (outline)

Step 0. Set Let

Step 1. Let be the optimal solution to

Step 2. For appropriate set

Step 3. If is small enough, stop.

Step 4. Otherwise, reset and go to 1.

Note that Step 2 implies for all t. In order to give this
algorithm substance, we must provide a choice of step size in Step 2,
and the termination criterion in Step 3 must be made precise. Suppose
that our choice of stepsize were such that we know a constant so
that at each iteration t,

(GK.a)If then

(GK.b) Otherwise,

Then, first of all, we will make Step 3 (and thus, the overall algorithm)
correct by setting

Step 3’. stop.

as the termination condition, formalizing Step 3. Assuming that a choice
for can be made so that (GK.a) and (GK.b) hold, there remains to
estimate the number of iterations needed until the termination condition
in Step 3’ is satisfied. To bound this number, we consider two kinds of
iterations:

(I) Those satisfying and

(II) Those satisfying but for which the termination con-
dition is not yet satisfied.

Clearly, the number of iterations of type (II) is at most

Iterations of type (I) are governed by rule (GK.a), and therefore they
number at most

The exponential potentialfunction – key ideas 37

By appealing to (2.15)-(2.16), we have that
and therefore the number of iterations of type (I) is at most

Recall that Also, by assumption and
satisfying So Thus,

the number of type (I) iterations is at most

We would like to finesse the choice of so that the maximum of (2.19)
and (2.18) is minimized. For given clearly we want to keep as small
as possible. But if then (2.19) dominates.

Hence, it appears sensible to choose With this choice,
both (2.19) and (2.18) are Now we can make the above algo-
rithm more precise:

We set and

In Step 2, the stepsize is

(independent of the iteration),

(Step 3’) The algorithm terminates as soon as an iteration fails to
decrease the potential by at least

As a consequence, the overall number of iterations will be
as desired.

There remains to show:

THEOREM 2.3 With the choice of parameters just indicated, algorithm
GK satisfies conditions (GK.a) and (GK.b).

Proof. Consider an iteration t. Let denote the current
potential. Let be the step direction in Step 1. Then

38 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

(thus). For In Also note that
Thus,

Since

[Parenthetically, this equation exemplifies how “width” is controlled by
the GK algorithm. More on this at the end of this chapter. The upper
bound Q is overly conservative in many special cases.] Therefore, by
(2.20), For and we
obtain:

Since we can
simplify this equation to

By construction in Step 1, minimizes the inner product with

fact, together with implies that the last term in (2.28) is
at most Hence

over In particular, This

Consider now the first term in the right-hand side of (2.29). Since
is convex we have

The exponential potentialfunction – key ideas 39

where denotes the minimum potential over Thus,

we must have More to the point, the algorithm
satisfies property (GK.b).

On the other hand, if the right-hand side of (2.31)
is less than

which together with (2.31) implies

since Suppose Then, by (2.31), the
potential decrease in iteration t is at least Conse-
quently, Step 3’ of algorithm GK is correct: if the algorithm terminates

This is precisely condition (GQ.a), as desired.

2. Round-robin and randomized schemes for
block-angular problems

Suppose we have a block-angular problem, i.e.
where each using the same notation as before. The algorithm
discussed in the previous section will of course work, but can we do better
than observe that each iteration consists of K separate “small” linear
programs?

As it turns out, the block-angular case not only gives rise to “easier”
subproblems, but the algorithmic techniques that we will present put a
sharper relief on, and take better advantage of, the relationship between
width, stepsize, and convergence rates, leading to better iteration counts.

As a starting point for the discussion, note that since one iteration of
algorithm GK, can be viewed as a sequence
of K block steps (Frank-Wolfe steps restricted to a block each), the de-
crease in potential could be accounted for incrementally.

40 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

However, in the above algorithm the steps for blocks 2, 3, . . . , K all use

instead “refresh” the gradient after each block step.
More precisely, consider the critical inequality (2.29) discussed in the

last section. The linear term on the right-side is (up to the additive
term) the linearization of the potential function at since as was
described above, is the gradient of at In the block
angular case we may write:

where for is the subvector of corresponding to
and similarly for and Note that is the gradient of

Radzik [R95] provided a a valid analysis of the round-robin
procedure, with step 1 above modified so that a step in block i is taken
provided the decrease in potential is large enough. Radzik’s method is
also closely related to a randomized algorithm that we described below.

the somewhat “stale” computed at the starting point, and we should

restricted to where Thus, term i can be viewed as
an estimation on the reduction of potential due to the step in This
suggests the so-called round-robin procedure, which replaces a single
Frank-Wolfe iteration as described in the previous section.

4 Update gradient: recompute and if i < K.

Suppose we were to analyze the improvement on the potential func-
tion due to one iteration of Steps 0-1 of the round-robin procedure (all
K blocks), and of algorithm GK, by incrementally accounting for the
improvement resulting from each block step.

Then the second order terms in both cases would be the same as
order of magnitude as that in (2.29), while (apparently) the first order
term in the round-robin procedure would be better. Thus, intuitively,
K consecutive block-steps in the round-robin procedure should yield at
least the same improvement in the potential function as one iteration
of GK. This argument is only superficially correct: it is only valid if

Step 0. Compute

Step 1. For

1 Let be the optimal solution to

2 Update

3 Update through the change in

The exponential potentialfunction – key ideas 41

2.1 Basic deterministic approach
The essential ideas on how to take advantage of block-angular struc-

ture can be found in [GK94], [PST91]. One important component is the
substitution of the set P with a different set over which we solve linear
programs, to better handle width. We already saw a basic form of this
approach in the previous sections; there we replaced P with sets of the
form (i.e., P augmented with upper bounds on the variables,
see (2.7)). The implication was that if every entry of Ax is
at most the number of nonzeros in the corresponding row of A.

When we have a block-angular problem, [GK94] and [PST91] elabo-
rate on this idea as follows. For let be the submatrix of
A corresponding to block i. Then we replace with

which is valid so long as we know that the set is
nonempty. This certainly holds in the cases considered in section 1.3.
As a special case, if each row of each has at most one nonzero (e.g.
in a multicommodity flow problem) then we essentially recover the set

As a consequence, if is such that then
i.e. guaranteeing width at most K.

Of course, we could have used this construct in conjunction with the
algorithm in Section 1 when handling a block-angular problem. The
algorithm we discussed there updates all variables in each iteration;
i.e. each iteration we counted in the analysis of that algorithm im-
plies K block-iterations; i.e. the actual count of block iterations would
be Using the improves the dependence on Q in the
above proofs to factors of K; and in particular, the stepsize can be in-
creased to

A variation of the above proof shows that this strategy improves the
block-iteration count to To fix ideas, in what follows we
will refer to this approach as the ALL-BLOCKS strategy.

Given this improvement, the reader may now wonder why we could
not simply view the general problem PACK(A,P) as a one-block prob-
lem, i.e. set A moment’s reflection shows that when

i.e. we recover the problem we are trying to solve,
and this “reduction” can hardly be viewed as a simplification.

potentially adds a substantial number of constraints to and quite
More to the point, in a general case the replacement of a by

42 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

possibly a Frank-Wolfe step will become much more difficult, in addition
to having to handle a much larger linear program – although the overall
nonzero count among all the is the same as the total nonzero
count in the original formulation of PACK(A,P).

Consider the special case where each row of has (at most) one
nonzero. In the multicommodity case, we replace shortest path com-
putations with theoretically more difficult minimum-cost flow problems.
However, an effective implementation of these ideas will carry out the
Frank-Wolfe iterations from a warm start, and in our experimentation
the improved convergence rate more than offsets the slightly worsened
running time per iteration. In fact, this observation holds true even for
much more general problems than multicommodity flow problems, even
when the matrices contain many nonzeros per row, provided that K
is large.

In [GK94] theauthors propose a procedure that, unlikeALL-BLOCKS,
leverages block-angular structure. To simplify notation, in the descrip-
tion we assume that the procedure has already been run some number
of times, and that is the current iterate, where

3 Update x by resetting

Notice that to a certain extent, this procedure appears to waste some
computational effort (a factor of K – 1 if all blocks are identical). Hence
one may wonder what benefit, it any, this procedure entails over the
ALL-BLOCKS strategy. Part of the answer lies in that since we only
use one block at a time, the effective width in BEST.1 is 1, rather than
K. This enables us to use the stepsize in (2.37), larger by a factor of
K than that in (2.36). A simple manipulation of the proof in Section 1.3
shows that this increase in stepsize yields a which is a factor of

Also, here we are now using

in contrast with (2.36).
The procedure is as follows:

Procedure BEST.

1 For each individually, compute the so-
lution to a Frank-Wolfe step restricted to block i, and the de-
crease in potential function that would result from updating

and leaving all unchanged.

2 Pick h such that

The exponential potentialfunction – key ideas 43

K larger than the decrease in potential achieved by the ALL-BLOCKS
strategy in one iteration. Of course, we cannot realize a decrease of
potential equal to - this would entail using all blocks, yielding
effective width K, not 1. But the block h that we pick is guaranteed

to have at least equal to and we recover the performance of
the ALL-BLOCKS strategy, but with the advantage of a stepsize that
is a factor of K longer, which is extremely significant from a numerical
standpoint.

Also note that the potential function improvement resulting from us-
ing the best block can be used to check termination: as soon as this
improvement is less than we can stop – i.e. the termination con-
dition in Step 3’ of algorithm GK modified to account for the improved
treatment of width: stop when the potential fails to decrease by at least

Using this rule, a modification of the proof in Section 1.3 shows
that we will obtain an solution to PACK(A, P) in at
most iterations of BEST, for a total of Frank-
Wolfe steps.

2.2 Randomized approaches
The analysis we just presented essentially argues that one Frank-Wolfe

iteration using a single randomly chosen block should yield a potential
decrease that is good enough to guarantee convergence. More precisely,
the expected value of the potential decrease is good enough to guarantee
convergence. [As a technical aside, it is possible that a random block it-
eration may fail to improve potential; and so we should only use the step
provided we actually get improvement]. In principle, this would yield
an algorithm that is a factor of K faster than one based on procedure
BEST or on the ALL-BLOCKS strategy. However, such an algorithm
might appear to converge in expectation only; there is a simple trick
that produces a provably good algorithm with the same asymptotic run-
ning time. In addition, we need some means to verify the termination
condition.

This trick (or similar versions of it) consists of occasionally running
one iteration of the ALL-BLOCKS strategy. This idea was applied to
multicommodity flow problems in [KPST90]. In [PST91], we follow up
(with probability 1/K) each iteration using a randomly chosen block
with one iteration of the ALL-BLOCKS strategy. (the procedure in
[PST91] is slightly different from the way we described it here; but it
reduces to our version when using the sets, as we are). In [GK94],
the approach is to repeatedly choose one of the following alter-
natives with equal likelihood: run one iteration using one block only, or

44 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

run one iteration of BEST. In either case the expected number of blocks
used per iteration is O(1).

In both cases, the resulting stochastic process and its analysis are
reminiscent of the classical gambler’s ruin problem (see, for example,
[F]), with potential acting as “wealth”. In either case, one can essentially
prove a bound on the expected number of Frank-Wolfe steps
needed until termination.

2.3 What is best
Which is the best approach to use with block-angular problems? Here

we give a quick view on this subject based on our experimentation with
large problems, mostly minimum-cost multicommodity flow problems
and network design problems on graphs with several hundred to sev-
eral thousand nodes, thousands of arcs, and thousands of commodities
(yielding linear programs with millions of variables).

First, it appears that the ALL-BLOCKS strategy is the weakest, pri-
marily because of its small step size, which leads to very small potential
improvement per iteration. This is the case even though in our imple-
mentation we conduct a line search to determine the best step size.

In our testing, both the round-robin and randomized strategies per-
formed well, with round-robin giving slightly better results. On the other
hand, most problem instances have non-uniform blocks, and occasionally
the BEST strategy was useful. In our implementation (described later)
we use a hybrid strategy, which seems to work best: on odd iterations
we run round-robin, and on each even iteration we run one step using
the current best block (best in terms of potential decrease, and as ob-
served and updated by the round-robin iterations). Further, as we will
see, with decreasing frequency we run a step that is somewhat stronger
than an ALL-BLOCKS iteration in terms of proving termination.

3. Optimization problems and more general
feasibility systems

The methodologies described so far apply to problems PACK(A,P)
only. In this section we outline how the same techniques can be applied
to more general feasibility problems, and through them, to optimization
problems.

As shown in [PST91], the paradigm of exponentially penalizing infea-
sibilities can be directly carried over to more general feasibility systems,
yielding provably good algorithms. A covering problem is that of finding
an approximately feasible solution to a system
or to prove that S is empty, where has m rows. Given

The exponential potentialfunction – key ideas 45

[PST91] assigns to it the penalty and shows that an algo-
rithm substantially similar to that described above finds an
solution to the problem

in Frank-Wolfe steps over P, for

(substantially) relaxed to the assumption that for all
thus encompassing a much wider class of problems, while retaining the
same complexity bound.

In fact, as shown in [PST91], the requirement that in can be

where we may (now) assume and that the feasible region is
nonempty. We may also assume using a trick we discussed
in the previous paragraph.

To find an solution to this linear program, we consider
feasibility systems of the form

and perform binary search over the “budget” parameter For
a given choice for B we can apply the potential reduction techniques
we have discussed in this Chapter; thus we will either find an

can be extended to handle systems for general A and
b (see [PST91]).

The techniques we have covered so far in this section are a necessary
prelude for what we axe really interested in, which is to solve optimiza-
tion problems. Suppose we have a linear program of the form

Using such a choice, if is such that
then and, in principle, we have reduced PACK(A,P)
to a similar problem with an additional variable, but at the possibly
nontrivial cost of sharpening the required tolerance to This trick

Finally, even the assumption can be avoided, through the sim-
ple expedient of adding a new variable, s, and replacing (in the packing
case) the system with and with

where is chosen so that for all

46 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

solution to (2.38)-(2.40), or conclude that this system is infeasible. In
the former case B becomes a new upper bound on the
value of the linear program, while in the latter, B becomes a new (strict)
lower bound. Thus the outcome of the binary search will be with

and
Of course, given that we are solving a linear program, we would also

like a duality proof of the near-optimality of Equivalently, we would
like an LP duality interpretation of the infeasibility of a system of the
form (2.38)-(2.40). The algorithmic techniques for packing problems
that we covered starting in Section 1 are less than satisfactory in this
context – recall the that the termination condition in Section 1.3 is
potential-based. On the other hand, the algorithm in [PST91] is more
transparently based on linear programming duality, and we will now out-
line how their algorithm certifies that a system (2.38)-(2.40) is infeasible.

One way to show this is to prove that the minimum value of
such that the system

is feasible, satisfies In [PST91] the following approach is used:
let be a scalar, and be a vector of the same dimension as
b. Define

Then a simple analysis shows that Thus, if we have that
(2.38)-(2.40) is infeasible, and, in fact, that is a lower bound on
LP. The algorithm in [PST91], when terminating with an infeasibility
proof, produces precisely such a vector where each is
an exponential penalty.

To obtain a better understanding of the relationship between this re-
sult and the techniques used in [GK94], it is useful to first scale constraint
(2.38) by and row i of (2.39) by thereby casting
(2.41)-(2.43) into the form PACK(M,P). In this case, (2.44) can be
viewed as a weak duality (or Farkas Lemma) proof that using
dual variables (compare this expression, for example, to (2.13)).

Later we will show that when the bound is not best pos-
sible; that is to say, we can manufacture from the a different vector
of duals that proves a strictly better lower bound than This issue,

The exponential potentialfunction – key ideas 47

and others related to the efficient implementation of the exponential
potential function method to approximately solve linear programs, are
discussed in the computational section of this monograph.

4. Width, revisited
The width parameter that we have discussed in previous sections plays

a fundamental role in the convergence rate of potential function meth-
ods, both from theoretical and numerical standpoints. If not properly
handled, it can lead to implementations with very poor convergence
properties.

The starting point for these difficulties is the first-order nature of the
algorithms we have been discussing. The reader is probably familiar
with the “zig-zagging” behavior of first-order algorithms for nonlinear
programming problems; that is not the problem we allude to. Instead,
first-order procedures can produce sequences of very small steps. In a
worst-case scenario, the step-lengths become numerically indistinguish-
able from zero, while the iterates are still far from optimality. Thus,
effectively, the algorithm converges to an incorrect point. This is the
so-called “jamming” or “stalling” effect. Now recall than in the above
procedures we are attempting to (approximately) minimize potential in
lieu of achieving feasibility for a linear system. In case of stalling, an
algorithm will converge to a point that is potentially quite infeasible for
the system we are interested in.

In terms of the exponential potential function, it is useful to look at
the critical section of the proof we presented. This is the set of equations
beginning with (2.22), continuing through with (2.25), (2.26) and (2.26),
and culminating with (2.29).

We are running a first-order method: thus at each iteration we ap-
proximate the potential function with its current gradient. In order for
this approach to succeed, the potential function should approximately
behave like its gradient in a neighborhood that is “large”: this will per-
mit the step-length to be large. Equation (2.25) is the key. Here the
potential decrease due to a constraint i is of the form
where is the step-length, is the current iterate, and is the solu-
tion to the step finding linear program, i.e. is the step-direction.
Critically, is the contribution, from row i, to the inner product
between and the gradient of at

Thus, we would like to behave like
we know that optimizes the current linearization and thus will

make the second expression as small as possible. But we know that for
is approximately z only for z small. Consequently, all

48 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

other factors being fixed, a choice of such that is large makes
it necessary to choose small. Let us repeat this statement in slightly
modified form: an increase in necessitates a proportional decrease

function (and the flow deviation method) achieve a a desired accuracy
while requiring, in the worst-case, a number of iterations that grows
proportional to (and polynomial in the overall size of the problem).
This is in marked contrast to interior point methods for linear program-
ming, whose dependence on grows as

Thus, the exponential penalty methods are not even polynomial-time
algorithms, and, asymptotically, they are clearly inferior to standard

in The largest possible value of over all i and is precisely
the width. Thus, in the worst case step-length is inversely proportional
to width. Conversely, an algorithm that maintains low width will achieve
correspondingly larger step-lengths.

From an experimental standpoint, controlling width is an important
and easily observable requirement. From a theoretical standpoint, the
more recent algorithms that use the exponential potential function frame-
work (see next chapter) can be viewed as exercising careful control over
width.

Finally, we note that to some degree width-related problems are a fix-
ture of Lagrangian relaxation schemes. The fact that we use an explicit
(and carefully chosen) potential function makes width control a more
deliberate and more carefully calibrated pursuit.

5. Alternative potential functions
The proofs we presented above heavily relied on using an exponential

potential function. But it should be clear that (with some effort) other
“rapidly increasing” potential functions should suffice to at least prove
polynomial-time convergence (after all, we achieved this end with the
rational barrier function in Chapter 1). For example, [GK96] analyzes a
Karmarkar-like logarithmic barrier function, and shows that under cer-
tain conditions better bounds for this function than for the exponential
function.

On the other hand, the quadratic penalty function (popular in the
context of penalty methods, see next chapter for a brief discussion),
does not seem to easily lead to provably low complexity approximation
algorithms.

6. A philosophical point: why these algorithms
are useful

As we have seen, the algorithms based on the exponential penalty

The exponential potentialfunction – key ideas 49

methods. In addition, a nonlinear programmer might even pinpoint
the critical failing of these algorithms, which leads to their asymptotic
behavior: they are first-order methods. Why are we pursuing this line
of research?

One justification, employed in e.g. [PST91], is that for particular
classes of linear programs, and small, but constant
the exponential penalty algorithms have a better provable asymptotic
behavior. Another justification is that “the proof is in the pudding”:
we are, after all, comparing worst-case asymptotic estimates, and in
the end what really matters is the actual experimental behavior of the
competing algorithms (see Chapter 4 for some rather stunning successes
of the exponential penalty methodology).

But there is a much more immediate advantage of the algorithms
we have described: they are thrifty. They effectively leverage the block-
angular structure of problems, whenever it exists, and in very large-scale
instances this capability constitutes the essential feature that separates
“usable” algorithms from the rest. Simply put, standard linear program-
ming methods will use a forbiddingly prodigious amount of storage when
applied on a very large problem instance – the ability to use one block
at a time is central to an algorithm’s ability to be at all runnable.

Clearly, this sort of motivation has always lurked behind the devel-
opment of classical decomposition schemes (such as the Dantzig-Wolfe
procedure, Benders’ decomposition, and even column generation ap-
proaches) and of Lagrangian relaxation schemes. What is different about
the exponential penalty methodology is that we are able to prove some-
thing about it, thus giving the field a measure of engineering precision.
We would argue that as problem sizes dramatically grow, this type of
precision will gain acceptance.

In summary, even though the exponential penalty methods are decom-
position schemes that only look at a tiny part of a problem at a time, and
even though they are first-order methods, they are not too bad. That is
to say, the bound is not a measure of how good the algorithms
are: it is simply a statement that they are not wildly inefficient.

Chapter 3

RECENT DEVELOPMENTS

In this chapter we survey several exciting research developments that
have taken place in the last few years regarding approximation of lin-
ear programs. First, Neal Young’s work on derandomization (perhaps a
more apropos term would be deconstruction) algorithms for covering and
packing problems that provides a “natural” justification for the use of
an exponential potential function. This work in turn gave rise to stream-
lined, and theoretically faster, algorithms for covering
or packing problems (see [GK98], [F00]) which avoid an explicit use of
an exponential potential function although at a fundamental level still
use it. This work also has resulted on lower bounds on the complexity
of Frank-Wolfe type algorithms [KY98].

Another field that has been reinvigorated is that of subgradient-based
algorithms. On the computational side, Barahona and Anbil’s work on
the “volume” algorithm [BA00] has provided new momentum to classical
Lagrangian relaxation methods for linear programming.

1. Oblivious rounding
Here we will describe the results in [Y95] on derandomizing algo-

rithms. This work has had significant impact on recent developments on
approximation algorithms for classes of linear programs.

To motivate the discussion, consider the classical (integral) set-covering
problem: we are given an 0 – 1 matrix A with m rows, and we want to
solve the integer program

52 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

where e is the vector of m 1s. This problem is NP-hard; instead we next
describe an approximation algorithm based on a very clever approach
described in [Y95].

The central idea is to imagine that we have access to a very powerful
computer that has, in fact, already solved SC. Alas, in order for us to
actually obtain the optimal cover, we must query an oracle to get one
element of the cover at a time – and, unfortunately, this oracle suffers
from randomness: it may repeat its answers, randomly. Each call to
the oracle is very expensive, and we would like to reduce the number
of calls as much as possible. In fact, we would like to deconstruct the
randomness of the oracle so as to obtain the optimal cover ourselves,
without resorting to the oracle at all (or the powerful computer). As
we will see next, we will fail at this task, but instead we will get a
deterministic algorithm that computes a provably near-optimal cover.

Now the details. Let be an optimal solution to this problem, and
let Suppose that there is an oracle such that each
call to the oracle returns a random member of chosen from the
uniform distribution. Clearly, after enough calls to the oracle we will be
able to construct but can we provide some nontrivial estimate?

index such that Thus, the probability that a call to
the oracle will return a column that covers i is at least In other
words, the probability that i is not covered is at most After
T calls, the probability that i is still not covered is at most

Given that there are m rows to cover,

for Thus, using this choice for T, after at most T
oracle calls with positive probability we will have obtained (which,
incidentally, was not required to be an optimal cover in this analysis).

As planned above, we would like to decrease our reliance in the oracle.
As a starting point, we would like to have a deterministic algorithm
which outputs a column of of A, with the following property:

Consider an index i, We know that there is at least one

Recent developments 53

With positive probability, T – 1 calls to the oracle will produce a set
of columns that cover all those rows of A not covered by

In other words, we obtain a hybrid algorithm that is a little less depen-
dent on the oracle than the initial, all-oracle procedure.

To see how this is possible, we can rewrite the middle term in (3.4) as

For any given row i, the term in (3.5) corresponding to i is at least

and thus the sum in (3.5) is lower-bounded by

Now let us pretend for a moment that the expression in (3.8) equals the
probability of failure for the all-oracle procedure, rather than an estimate
for it. In this sense, we can interpret (3.8) as stating that the probability
of failure, given the first choice made by the oracle, is proportional
to the number of rows not covered by j (since the oracle chooses columns
of with probability). Thus if we could influence the oracle so
as to favor those columns that cover more rows we would increase
our probability of success. [In fact, (3.8) can directly be interpreted as
an upper bound on the expectation on the number of uncovered rows
after T calls, with each potential choice for the first column returned by
the oracle making an appropriate contribution.]

But we cannot, of course, control the oracle. Instead, let us try the
next best approach: we will greedily pick, from among all columns,
that column that covers a maximum number of rows. Given this
deterministic choice, our probability of failure with T – 1 ensuing oracle
calls is at most

which, by choice of is at most the last expression in (3.8), and thus
is less than 1. Consequently, we have reached our goal: we now have
an algorithm that, after carrying out a deterministic task, only needs

54 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

T – 1 oracle calls to achieve positive probability of success. [Actually,
we have proved something stronger: the probability of failure is no more
than the upper bound 3.4 on the failure probability for the all-oracle
procedure.] In other words, if we remove from A those rows covered by

we have that the T – 1 calls to the oracle will cover all rows of the
resulting matrix with positive probability.

Note that we never used the fact that is a minimum cover. Hence,
we can proceed inductively: in the next step, we choose a column
so as to cover a maximum number of rows of the current matrix, or, in
other words, we choose so that, from among all columns, it covers
the maximum number of rows not already covered by By induction,
T – 2 oracle calls will cover all rows of A not covered by with
positive probability.

Continuing inductively, at step of our hybrid deterministic/oracle
procedure we choose a column so as to cover a maximum number of
rows not already covered by By the above analysis, the
probability that with T – t oracle calls we will cover the rows not covered

Suppose Then the probability that one oracle call will re-
turn a column that covers all remaining rows is positive. In other words,
there exists a column that covers all remaining rows, and therefore one
more application of our deterministic algorithm will find such a column.
Success! We have entirely removed the oracle from our procedure, and
in the process we have obtained a new proof of a classical result:

LEMMA 3.1 ([L75], [C79], [W82]) The greedy procedure finds a cover of

by is positive.

size at most

1.1 Concurrent flows
The previous analysis was provided to motivate the idea of oblivious

rounding. The name stems from the fact that the same methodology
can be used to round fractional solutions to integral solutions. This
can be done, for example, in the case of the set covering problem, with
equal performance bound as above. Instead we will focus here on a more
apropos example, the maximum concurrent flow problem introduced in
Chapter 1.

We will seek to apply the same methodology – to create an appropriate
oracle/random procedure that requires “few” calls to yield the optimal
solution, yet is easy enough to deconstruct, obtaining a deterministic,
provably good approximation algorithm.

In this setting it is most convenient to look at the problem in the
minimum congestion format. We will first consider the uniform case,

Recent developments 55

and later return to the general case. To refresh our memory, we are given
a network where each edge e has unit capacity, and a set of commodities
to route, where commodity has origin destination

and demand amount The objective is to (fractionally) route all
of the demands so as to minimize the maximum congestion. We will
assume that the demands have been scaled so that As noted
in Chapter 1 this only changes the value of the problem by a constant
factor.

Let f denote an optimal flow, with maximum congestion
Suppose that for each commodity k, the flow between and can be
decomposed into a set of paths S(k) between and We will denote
the flow routed on a given path p by f(p). Thus

1.1.1 The oracle
We can now describe the oracle: one call to the oracle returns, for

each commodity k, a random path chosen with probability
In order to build a solution to the maximum concurrent flow problem,

we call the oracle a large number T of times. Each time a path corre-
sponding to a commodity k is returned, we route an additional units
of flow along this path. At the end of the T calls, we scale the overall
flow by a factor of Denote by x the resulting flow. We claim that
given for large enough T, with positive
probability.

To prove this fact, consider the following random variables:

the path for commodity k that is returned by the oracle in call i,

the amount of flow of commodity k assigned to edge e in call i,

the total amount of flow assigned to edge e in call i.

We have:

By construction, is set to if and zero otherwise. Thus, the
expectation of each is and the expectation of is In other
words, is an average of T i.i.d. random variables, each with mean

56 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

and hence the expectation of itself is Now note that
since we are dealing with unit capacities, by definition.

Thus, the event that

implies that for some edge e,

In other words, for some edge e, is larger than its own expectation
by a constant factor.

In the probability literature, the study of such events falls under the
heading of “large deviations”. Generally speaking, the tightest bounds
on probabilities of large deviations are obtained through the Central
Limit Theorem [F], but such bounds can be algebraically cumbersome.
A more flexible approach involves the use of “transforms” or “moment
generating functions”. For a (number valued) random variable X, this
involves studying the behavior of as a function of the parameter t.
The study of this function has led to useful bounds (such as the Chernoff
bound) on large deviation probabilities, asymptotically nearly as tight
as those derived from the Central Limit Theorem.

To show that with high probability we will apply
this technique using

To this effect, we can rewrite (3.13) as

which is equivalent to

Since (because by assumption the sum of demands
is 1, implying) the probability of (3.13) holding is at most

which, since for fixed e the are independent, equals

Recent developments 57

The logarithm of the multiplicand in (3.19) is at most

which, since is at most

LEMMA 3.2 The probability that for a given edge e, is at

most

Finally, since there are m edges and the demands sum to 1,
and

LEMMA 3.3 For the probability that

In summary, we now have:

is positive.

1.1.2 The deterministic algorithm
We will next turn the T oracle calls into a deterministic algorithm

which after T iterations has a flow guaranteed to have congestion at
most We will proceed much in the same form as in the case
of the set-covering problem.

The starting point is inequality (3.15), which describes the event that
the final flow has excessively large congestion. We ask the question: in
which way could we influence the outcome of the first oracle call, so that
by the end of call T the probability of this event is as small as possible?

To proceed formally, a multicommodity flow vector where the flow of
each commodity is carried by a single path will be called a routing. As
introduced above, S(k) is the set of paths for commodity k obtained
in the flow decomposition of the optimal flow. Let S be the set of all
routings obtained by specifying, for each k, one path in S(k), and routing
all the demand for commodity k on this path. For let denote
the value of the flow on edge e assigned under routing r. We can rewrite
(3.18) as:

58 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

where P(r) is the probability that the oracle chooses routing r. This
expression equals

Thus, the probability that any edge has congestion at least is
at most

where the inequality follows from the fact the double summation in (3.26)
equals and thus, as argued regarding (3.21), the expression within

parentheses in (3.26) is at most
Now we can perform the same analysis as for the set-covering oracle.

If we could cause the oracle to favor those routings for which
is small, then according to (3.26) we

would increase the chances of success (or rather, the estimator (3.26) of
the failure probability would be decreased). Thus, we would prefer the
oracle to choose a routing that minimizes Of course,
we do not know the set S. Instead, let R denote the set of all routings
(thus, each element of r specifies a path for each commodity that carries
the full demand of that commodity). We will choose so as to
minimize, amount all Following this choice we will
perform T – 1 oracle calls.

An analysis similar to the above now shows that the probability of
failure for this mixed algorithm is at most

where the inequality follows since by choice of the left-hand side of
(3.27) is at most that of (3.26). Thus, we have successfully derandomized
one step of the all-oracle procedure. Note that the computation of the
routing (minimize the sum of flow amounts over all edges) breaks up
into a separate shortest path problem for each commodity.

Recent developments 59

Proceeding inductively, suppose that after j deterministic steps we
have chosen routings such that if we then were to run T – j oracle
steps (and then scale by) the resulting flow has positive probability
of success. The same analysis as employed for the first deterministic
step shows that if in step we choose a routing so as to
minimize

the probability of failure (congestion larger than after T – j – 1
oracle calls is at most

and that this value is strictly less than 1. Consequently, after proceeding
in this manner for T iterations, we will have completely derandomized
the algorithm (using no knowledge of the optimal routing or of). The
algorithm we have so far is

Algorithm Y

Step Y.0 For every edge e, set For every commodity k and
edge e, set

Step Y.1 For T do:

(a) For each commodity k, let denote the flow resulting by routing

(b) For each edge e, reset

Step Y.2 Reset

As a consequence of the above analysis, we now know:

units of flow along a shortest path from to using the metric w.
For each edge e, reset

LEMMA 3.4 Algorithm Y finds a flow x with

1.1.3 Handling general capacities
The previous analysis considered the unit capacity case. We will now

show how to adapt the analysis and the algorithm presented in the last
section so as to handle the general case. Here each edge e has capacity

and the congestion of a flow x on an edge e is

60 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

It would seem straightforward to replace, in the above equations, all
quantities (and and) with so as to obtain congestion
amounts. A careful look at the analysis shows that this breaks down
when going from equation (3.16) to (3.17). Here we previously needed

now we need The astute reader might then say, this
can be achieved without loss of generality by scaling all by a suitably
large factor. However, the result of this action will be to proportionally
decrease – with the consequence that the number T of iterations
proportionally increases (see Lemma 3.3).

The quantity can be as large as this ratio is the
“width” parameter discussed in Chapter 2 (or rather, an upper bound
for it). Thus, we can use instead of (3.16) the following to describe the
event that the final flow produced by the oracle has congestion larger
than

Proceeding as above, we obtain the following analogue of Lemma 3.2:

LEMMA 3.5 The probability that for a given edge e, is at

most

Further,

LEMMA 3.6 For the probability that is
positive.

Finally, we can produce a deterministic algorithm as we did above for
the unit capacity case. The only difference lies in Step 1(b) where the
edge weight update formula becomes

With this change, we have, analogously to Lemma 3.4,

LEMMA 3.7 Algorithm Y using weight update formula (3.31) finds a
flow x with

The number of iterations of this algorithm, T is proportional to and
inversely proportional to Suppose we try to remove the dependence
on for example by scaling up the demands so that However,
this will result in an equal increase in with no change in running time.

Recent developments 61

This difficulty can be traced, again, to the way that (3.17) was derived
from (3.16).

More precisely, on a given iteration the oracle (and its deterministic
counterpart) might decide to route all commodities on a given edge; and
as we saw above this introduces the dependence on We outline next
a way of overcoming this difficulty, which borrows ideas from the work
[PST91] and [GK94] we discussed in Chapter 2, and also from [GK96],
[GK98] and [F00].

(a)

(b)

and so that this bound is attained by at least one commodity.
This guarantees

The oracle we previously discussed routes, in each iteration, all flow
for each commodity along a single path. These paths are chosen so
that the expected value of the routing chosen by the oracle equals
the vector f. This, in fact, is the only property of the oracle that
the analysis above required (see eqs. (3.18)-(3.19)).

for each commodity k, it picks a random flow of units, feasible for
the capacities chosen from a distribution with mean

Consequently, the total flow routed by the oracle on any edge e in a
given iteration is at most As a result, the width is replaced by

K in (3.30), and T becomes

1

2

3

In the derandomization of the oracle, we now choose, for each com-
modity k, a minimum-cost flow, feasible for the capacities that
sends units from to This is different from the previous
derandomization in that we do not choose a single path for each
commodity. The rest of the deterministic algorithm, especially the
edge-weight update formula, remains the same as before.

We obtain a flow with congestion at most in at most

Thus we proceed with guesses (without exceeding K)

minimum-cost flow computations.

The final step is to couple the algorithm we just described with a
“powers of two” search for using guesses If a guess for is

Scale the demands by a common multiplier so that for the
maximum flow amount for commodity k and capacities is at most

valid (i.e. if) the above algorithm is correct; otherwise, it may
produce a flow with congestion larger than But in such a
case we have proved that our guess is in fact a lower bound for

Let be an upper bound on We now change the oracle, so that

62 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

until we have estimated up to a factor of two (or perhaps).
After that, one more run of the algorithm correctly finds a flow with
congestion at most The total number of minimum-cost flow
computations is

1.1.4 Comparison with the exponential potential function
method

For the sake of simplicity, let us assume that (as was essen-
tially the case in the previous section). At iteration h of the algorithm
we just described, the weight assigned to an edge e is

and the total flow currently routed on e is

Further, by construction the total flow of commodity k that has been
routed by iteration h is Therefore, the flow defined by

routes exactly units. For small, the weight assigned to
an edge e now becomes approximately

Suppose Writing the right-hand side of (3.34) is

between and In other words, the deterministic algorithm
penalizes congestion very much like the exponential potential function
method introduced in Chapter 2. It should be possible to prove a much
deeper correspondence between the two algorithms.

2. Lower bounds for Frank-Wolfe methods

plexity that grows as times a polynomial on the size of the problem.
We may wonder if this dependence on is the best we can do. A
difficulty in this regard is that we do not only want to let we
also want the problem size to go to infinity, ideally we should get an
algorithm that does well on both accounts. As we will see, only par-
tial progress has been made on proving satisfactory lower-bounds on the
complexity for finding solutions. At the same time, the
available results highlight the role of the width parameter.

All the algorithms we have discussed so far have com-

Recent developments 63

An initial lower bound analysis is given in [GK96]. Consider the
instance of the minimum congestion problem where the network consists
of m parallel edges, all of capacity 1, between vertices s and t, and we
wish to send 1 unit of flow from s to t. Thus the problem is

where

for “fixed” but the result already applies for O(1) approximation).
More precisely, the analysis in [GK96] considers the minimum length

set (We define).
Some comments: it makes sense to prove lower bounds on the length

of the sequence, since this is essentially the number of Frank-Wolfe of a
potential-function like algorithm, i.e. the number of linear programs to

single edge, and The assumption regarding the shows that
thus Thus and continuing

inductively we obtain the desired result.

Note that [GK96] considers the question of how many prob-
lems over P must be solved, in order to obtain an O(1) approximation
to (in [GK96] the result is presented as concerning

of a sequence where each that any algorithm
requires in order to achieve where is obtained from

and the solution of a linear program over the “restricted”

be solved. [On the other hand, since we do expect that the will be
monotonically decreasing, these linear programs may gradually become
more difficult and the iteration count perhaps loses some relevance]. It
also makes sense to modify the set P by progressively tightening bounds
on the variables (we saw this in action in our analysis of the oblivious
rounding algorithm for the minimum congestion problem, and in Chap-
ter 2, for instance).

Next we provide a sketch of a proof that iterations are
needed, under the assumption that each solution of a linear program
over a yields an extreme point of

from which it follows that (here supp denotes support).
This is proved by induction. At the first iteration, all flow is placed on a

To prove this, we will show that if

s.t.

(R) s.t.

64 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

2.1 Lower bounds under the oracle model
Klein and Young [KY98] consider the minimum number of iterations

needed to find an solutions to packing problems of the
form PACK(A,P) introduced in Chapter 2, under the assumption that
we can only access P through an “oracle” that solves linear programs
over P (and returns the solution vector).

Thus, P cannot be modified, in particular, we cannot impose tight (er)
upper bounds on variables. We feel that both models (can or can-
not modify P) are of importance. Certainly, we have seen that from
a theoretical viewpoint, the ability to tighten bounds on variables yields
Frank-Wolfe algorithms that require fewer iterations – in particular, this
technique was essential in avoiding a dependency on the width parame-
ter. From a practical standpoint the running time improvement can be
substantial, as we will discuss in Chapter 4. On the other hand, there
may be settings where the pure oracle model is meaningful. For example,
P may be a polyhedral set with exponentially many constraints, such
that a combinatorial procedure can efficiently solve linear programs over
P, but not so over P with restricted variable bounds.

One consequence of using the oracle model is that at each iteration
the support of the current solution grows by one unit. To motivate the
technique used in [KY98], consider the following example.

We have Consider a hypothetical Frank-Wolfe algorithm that
operates by solving linear programs over P (only). After one iteration,
only one variable is positive, and After two iterations, two
variables are positive (at most), and (still) Thus, we need at
least three iteration to obtain a nontrivial approximation to

To handle the general case, [KY98] consider problems of the form

Recent developments 65

where A is a 0 – 1 matrix, such that each entry is an independent
random variable equal to 1 with some fixed probability They
show that if B is any submatrix of A containing all the rows but with
“few” columns, then is significantly larger than –
larger than by a factor of if m is of the order of and p is
appropriately chosen. This proves the desired result (provided in more
detail below) since as argued in the small example above, when running
a Frank-Wolfe procedure that solves linear programs over P the support
of the current vector has cardinality no larger than the iteration count.

value where M is 0 – 1 and dense (but randomly chosen), has
positive probability of being high if M has enough rows. To fix ideas
(and as a generalization of the simple example given above), say that M
has c columns and rows, and that each row of M has only one
zero (randomly chosen). For a subset S of the columns, with
the probability that a row of M has a zero in S is Thus,
the probability that every row of M has a zero in S is approximately

Now to prove the resulting relating to note that a

Hence, the expected number of subsets S of the columns,
with and such that every row of M has no zero in S, is at
least Since there are c subsets S with we
conclude that there is some matrix M as described such that for every
subset S of columns with some row of M only contains 1s
in S. Consequently,

Now returning to the main result, Klein and Young showed that if A
is randomly chosen as described above, then with high probability every
submatrix of A with few columns contains a dense submatrix, which as
we just argued produces the desired result. The theorem in [KY98] is:

the entries in A are equal to 1 with probability p. Let be such

high probability the problem has width and any procedure that
computes an solution to (R) in the oracle model needs to
solve at least linear programs under P.

Note that this lower bound is essentially attained (at least up to poly-
logarithmic factors) by some of the algorithms in Chapter 2. At the
same time, note that the product appears both in the lower bound
and in the assumption on thus the overall bound can be viewed as
a lower bound on the number of iterations although this is

THEOREM 3.8 Consider an instance of problem (R) where and

that grows as (at most) a power of m slower than 1/2. Then with

66 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

somewhat misleading. The range on and that the theorem allows
is limited; an open area of research concerns proving stronger bounds
outside the range permitted by the theorem.

Finally, note that the oracle model (i.e. P remains fixed) is essential
toward including the width in the complexity lower bound; when we
allow our algorithm to modify P (as when we adjust variable bounds,
which we did in the case of algorithm GK in Chapter 2, the net effect is
to replace width with a combinatorial quantity (e.g. number of columns).

3. The algorithms of Garg-Könemann and
Fleischer

The algorithmic developments related to the oblivious rounding tech-
nique provided the starting point for a new line of research which still
continues, and which has produced the most efficient algorithms for var-
ious flow-type problems, including the maximum concurrent flow prob-
lem. The ideas described in Section 1 led to new algorithms in [GK98],
later improved and extended in [F00]

These algorithms are similar to Algorithm Y in that they employ es-
sentially the same broad scheme, in particular the weight-update formula
(3.31) and the idea of gradually increasing the flow of each commodity
(and later scaling appropriately). However, the key difference lies in
how these algorithms route flow, which can be viewed as a sophisticated
technique for avoiding width problems.

Consider, for example, the maximum concurrent flow problem. Recall
that Algorithm Y, when handling a given commodity, would route all of
the demand of that commodity along a shortest path. This causes the
width parameter to appear in our analysis of the algorithms in Section
1 (we could only bypass this issue by using minimum-cost flows).

In contrast, the algorithm for the maximum concurrent flow prob-
lem given in [GK98], [F00] routes flow much more carefully. Roughly
speaking, the modification to step Y.1(a), when considering a given
commodity k, is as follows. We compute a shortest path (for the current
metric) between and Then route as much demand as possible
along this path, without exceeding any capacity along it, and up to
units. Next, we reset the edge-weights. If there is some left-over demand
to route (i.e. if the bottleneck capacity on the shortest path is smaller
than) then a new shortest path path is computed, and used to route
as much of the left-over demand as possible, and so on until units are
routed. In more detail,

Recent developments 67

ii. Compute a shortest path P between and let u(P) denote the
minimum capacity on P.

iv. Reset If go to ii, else quit.
An additional difference lies in the explicit treatment of dual variables

(and of the dual problem). With these changes, the total complexity
(not just the iteration count) of the algorithm in [F00]
is (a similar bound is achieved in [GK98]). We refer
the reader to [GK98], [F00] for complete details. Recently, Karakostas
[Ka02] has elaborated on the ideas in [GK98], [F00], obtaining an algo-
rithm for the maximum concurrent flow problem that converges (up to
logarithmic factors) in time

The strategy we just described for routing flow of one commodity
can be related to the exponential potential function method with op-
timal (line-search) step-lengths. Using this method, if a shortest path
computation for commodity k produces a path whose minimum capac-
ity is much smaller than then the step-length computation will ef-
fectively reduce the amount of flow of commodity k that we (re)route
along this path. The results in [F00] suggest the following alternative to
the “round-robin” strategy described in Chapter 2, and which involves
choosing a threshold parameter (described below): once we start rout-
ing a given commodity k, we should stay with it, repeatedly rerouting
it until we achieve a cumulative step-length of and only then move to
the next commodity in the round-robin order. The spirit of this strat-
egy is to reroute flows at a uniform rate among all commodities, while
controlling width, resulting in potential decreases that can be uniformly
spread out among commodities. Further improvements (see [F00]) rely
on the combinatorial structure of the problem.

The quantity equals which for small approximately

equals This was exactly the step-length used in Chapter 2, see
eq. (2.36). The critical difference is that we now “gradually” achieve
this step-length, while carefully controlling width. A full explanation
of the algorithms in [GK98], [F00] in terms of potential functions is an
interesting topic for further research.

3.1 The Luby-Nisan algorithm and related work
Here we will briefly mention the algorithm due to Luby and Nisan

[LN93], which preceded Young’s work and shares some elements with it
and with the techniques described in the previous section.

iii. Route along P.

i. Set

68 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

The problem considered in [LN93] is the “positive” linear program

where and It is seen that this linear program is
equivalent to one of the form

where is possibly different from the A in (3.43), and e is the
vector of 1s. Let A be and note that the dual of (3.44) is

To obtain an approximate solution to (3.44), [LN93] uses a primal-
dual algorithm, which maintains a primal vector x and a dual vector .

1. Let denote the set of columns j such that is
“large” (appropriately defined).

2. We update the primal variables as follows. For is left

Initially, and
The typical iteration proceeds as follows:

unchanged. For we reset

for appropriately defined (the same is used for all).

3. We update the dual variables as follows: for each i, we reset

Note that the dual update is exponential in the change of the quantities
Ax.

Steps 1, 2 and 3 are repeated until is appropriately small. The
final step is to make the solutions feasible. To that effect, we compute

(using the final value of x) and we output the
primal solution A similar scaling step (but not quite identical,
see [LN93]) is used to obtain a dual feasible solution.

In [LN93] it is shown that this primal-dual pair proves
of v, provided that the set B in step 1, the quantity in step 2, and
the termination condition (in addition to a few other details) are appro-
priately defined as a function of Further, the number of iterations is
approximately

Recent developments 69

Of more interest here is the relationship of the algorithm to the stan-
dard exponential potential function method. At a given iteration t, let
x be the current primal vector, and set Thus is stated in
the same scale as the final solution Then it is seen that (3.46) is
equivalent to:

i.e. we are using exponential penalties. What is more, the quantity
can be shown to be of the order of Consequently, the penalties
employed by the Luby-Nisan algorithm are exactly those used by the
exponential potential function method. In fact, the quantity in 2 is
chosen so as to avoid high width (more precisely: a large fraction of the
constraints will see small width using the perturbation in 2).

It seems likely that a more careful analysis of the Luby-Nisan algo-
rithm will show a close correspondence with the standard exponential
potential function method. We note that the algorithm works for pure
“covering” linear programs (or, using the dual, for “packing” problems).
Recent work by Young [Y01] has generalized these ideas (together with
ideas from [GK98], [F00]) to handle simultaneous covering and packing
problems.

4. Lagrangian Relaxation, Non-Differentiable
Optimization and Penalty Methods

Non-differentiable optimization techniques encompass a wide array
of algorithms that can be used to tackle difficult linear programs, and
can also take advantage of special problem structure, e.g. block-angular
constraints. Even though the field is rich in deep theoretical results, tra-
ditionally, the focus of researchers working on these topics has largely
been different from the theoretical computer science emphasis on com-
plexity analysis. As a result, even though convergence results for non-
differentiable optimization techniques abound, usually these are not eas-
ily translatable into provably good bounds for convergence to approx-
imate solutions. Potentially, this may be just a matter of focus or se-
mantics. We discuss these techniques briefly, as a full survey would be
outside the scope of this monograph.

The classical non-differentiable optimization tool is subgradient-based
Lagrangian relaxation, which has long been popular among optimization
practitioners, because of its ease of implementation, general applicabil-
ity and (potential) computational success. Even though this technique is
popular, it is also frequently seen as lacking robustness – different prob-
lem instances may require vastly different algorithmic parameters. But
this may just be a symptom of inadequate theoretical understanding of

70 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

this technique and not of an inherent weakness. As far as we know, there
are no theoretical results on Lagrangian Relaxation that are as sharp as
some of the theorems we covered in this monograph.

During the last fifteen or twenty years far more sophisticated non-
differentiable optimization approaches have been developed. We discuss
some of these next.

4.0.1 Bundle and cutting-plane methods
Some interesting results are presented in [LNN95] concerning Bundle-

type methods (for example, the Level method). These can be classified
as “cutting-plane” algorithms (see below), and are rather more complex
(and implementationally far less trivial) than the standard subgradient-
based Lagrangian Relaxation. [LNN95] describes cutting-plane algo-
rithms whose running time to achieve error grow as however
these running times also depend exponentially on other problem data.
In addition, at each iteration these algorithms add a new inequality to
the formulation, and each iteration entails the solution of a quadratic
program. Nevertheless, the convergence analyses are quite interesting.
As far as we know the results in [LNN95] are the best of this type that
can be proved for Bundle methods.

In general, cutting-plane methods are applicable to problems with
nonlinear objective, or non-differentiable objective, and linear constraints.
For example, in the case of the minimum-congestion problem, we are in-
terested in optimizing a min-max function subject to linear constraints.
Cutting-plane methods approximate the objective by algorithmically in-
troducing inequalities that are added to a working formulation. Part
of the art (and theory) of these methods lies in adroitly choosing such
cutting planes in order to guarantee convergence. See, for example,
[GGSV96].

4.0.2 Penalty methods
A different approach is that of penalty methods. Such methods replace

a linear program

with a sequence of usually unconstrained problems of the form

where f is a “penalty” function, is a parameter which typically is
gradually increased, and The case where f is quadratic

Recent developments 71

has received much attention, since in that case the Hessian of G(x) can
be explicitly computed. See, for example, [FG99].

Cominetti and San Martin [CM94] (also see Cominetti and Dussault
[CM94]) consider the case where f is exponential; more precisely their
unconstrained problem is of the form

They show that there is an optimal solution to (LP) the solution to
is of the form

where is a fixed vector and is a fixed parameter. Thus, (see
[CM94]) algorithms can be devised that gradually let and thus
achieve convergence to

It is difficult to gauge how close these results are to proving polynomial-
time approximate convergence: the convergence theorems in [CM94],
[CM94] are all in terms of absolute errors. Also note that by (3.51),
for small approximately equals Hence, in order
to guarantee relative error we would have to choose dependent on
the optimal objective value and on the quantity which might be
difficult to estimate.

There are other (significant?) ways in which the exponential penalty
approach in [CM94] differs from the exponential potential function method
we have discussed in prior sections. Notably, there is no notion of a “bud-
get” in the unconstrained problem and it is not clear how the rate
at which is decreased reflects (or is affected by) problem size. Never-
theless, the similarities are undeniable, and perhaps a common ground
could be established.

4.0.3 The Volume algorithm
Recently, Barahona and Anbil [BA00] have presented an interesting

variation on the subgradient method for Lagrangian Relaxation which
includes two key ingredients. First, the algorithm in [BA00] maintains
a primal vector at each iteration when a Lagrangian is solved (with
solution , say), is updated using a formula of the form

where is chosen so to minimize (for example) the total square vio-
lation of the relaxed inequalities by (the new) Thus, rule (3.52) can be

s.t.

72 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

seen as an implementation of (half of) a Frank-Wolfe procedure. Second,
it is the vector that is used to compute the new Lagrange multipliers
(and not) through the standard subgradient update technique. There
is some theoretical justification for the use of a formula such as (3.52)
to update primal variables. This is the (very elegant) “volume” theorem
proved in [BA00] and outline below. Finally, this is an approach that
seems to enjoy some computational success.

In [BA00], the authors study optimization problems DCG of the form,

for appropriate vectors and b. This problem can be seen as the dual
of a “column generation” problem; i.e. the dual variables to constraints
(3.53) are the column weights in a column generation formulation. Thus,
it is of interest to study the structure of optimal dual variables to DCG.
The following theorem is proved in [BA00].

THEOREM 3.9 Let with small. Let be
the subset of inequalities (3.53) that are active at optimality. Then for

the optimal dual variable for constraint i is proportional to the
measure of the set

i.e. the measure of the face arising from constraint i, between and .

Note that one of the constraints in the dual to DCG is that the dual
variables are nonnegative and sum to 1. Also note that the measure
of the face that corresponds to constraint i is proportional to the vol-
ume of the polyhedron located “between” face i and the hyperplane

Consequently, we may view the optimal dual variable as
representing the probability a randomly chosen point near the optimum
lies in In [BA00] this idea is used to motivate an elaboration to the
standard subgradient-based Lagrangian relaxation method which, in ad-
dition, produces primal solutions. Some similar ideas can be found in
earlier work of Wolsey (unpublished).

To complete this section we theorize that it may be possible to view,
at least approximately, Lagrange multipliers obtained through the famil-
iar subgradient optimization formula as the gradient of an appropriate
(smooth) potential function. This conjecture, if valid, might lead to a
more satisfactory convergence analysis than now available.

Chapter 4

COMPUTATIONAL EXPERIMENTS
USING THE EXPONENTIAL POTENTIAL
FUNCTION FRAMEWORK

In this chapter we will describe our experiments using the exponen-
tial potential function framework. The focus of our work has been to
produce a general-purpose implementation of an algorithm for approx-
imately solving block-angular linear programs. All of the data sets for
which we present numerical results include a routing component. While
routing is not a real-life synonym for block-angularity, it is certainly the
case that many practical models involve networks and commodities to
route, in addition to other features. Further, our problem instances are
all derived from or motivated by problems in networking and telecom-
munications – in future work we plan to test our implementation on
problems arising in logistics.

Nevertheless, the instances we consider are fairly disparate and in
many cases include non-routing features. Our implementation handles
all these instances through a common interface, without requiring any a-
priori combinatorial information: the input simply consists of the values
of the coefficients in the constraint matrix, and the block structure.

More precisely, we consider a block-angular linear program (LP)

where the are polyhedra over which it is “easy” to optimize a linear
function. For convenience in the presentation, we also assume that
for every i.

As discussed in Chapter 2 the block-angular structure can be lever-
aged by the methodology we described to obtain a theoretically fast
approximation algorithm – as measured by the number of iterations. In

74 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

our implementation we have placed special emphasis on minimizing the
number of iterations, but little or no attention is paid to making the
individual iterations especially fast. In fact, a low-level but salient fea-
ture of our implementation is that it treats each block as a general
linear system, with block iterations solved by calling a general-purpose
LP solver. This deliberate algorithmic strategy, we believe, adds robust-
ness to the implementation while focusing attention on the most critical
issue: keeping the iteration count low. Finally, the key design ingredi-
ents in our system is that it should be “choice” and “parameter” free
from the point of view of a user – our implementation does not take any
algorithmic options from the user.

0.1 Remarks on previous work
Previous experiments using the exponential potential function method-

ology (see [LSS93], [GOPS98], [GK94]) focused on pure multicommod-
ity flow problems and concurrent flow problems, resulting overall in
quite substantial improvements over general-purpose linear program-
ming codes. We will describe some of the features of these implementa-
tions later. [A00] presents results using the ideas of [GK98] as applied
to a problem in VLSI design.

A reading of the first three references shows three related areas where
further improvements are possible. We comment on these next.

1 A central component of these implementations is that they exploit
special structure of the polyhedra so that each block iteration
runs fast. In fact, the algorithms discussed in these references can
only be applied to multicommodity flow problems, where linear pro-
grams with feasible set are either shortest-path problems or (single
commodity) minimum-cost flow problems. Accordingly, all of these
implementations rely, rather heavily, on using a fast minimum-cost
flow subroutine.

However, reducing the overall number of block iterations is arguably
a much more important algorithmic objective than making each it-
eration fast. This is certainly the case if the number K of blocks is
large and if all the blocks are roughly of the same size. The second
assumption is generally true for multicommodity flow problems, and
the first one is true for real-world multicommodity flow problems .
Should this scenario arise, then each block accounts for a diminish-
ing fraction of the overall problem size (as, say, both the number
of nodes and the number of commodities increase) and a theoretical
improvement in the per-block running time will yield decreasing re-
turns. At the same time, a reading of [LSS93], [GOPS98], [GK94]

same time, a reading of [LSS93], [GOPS98], [GK94] shows that the
actual number of block iterations can become quite large, and that
it can grow rather rapidly with problem size. These observations,
in our view, underscore the importance for achieving small iteration
count. Several features of our implementation seek to address this
point, and achieve experimental success.

2 There is an additional price to be paid for having an implementa-
tion that requires the blocks to have a particular structure. Or, to
put it differently, there are great advantages to an implementation
that treats each block as an arbitrary linear program. As we ar-
gue below, there are many instances of practical importance where
by carefully modifying the blocks we obtain a new system which is
much more effectively handled by the exponential potential function
method. Starting from a multicommodity flow problem, for exam-
ple, the new blocks will not be minimum-cost flow problems. The
per-block iteration time becomes comparatively more expensive, but
both the overall iteration count and the precision of the algorithm are
greatly enhanced. As it turns out, even though our implementation
solves the blocks as general LPs, it actually seems to achieve faster
running times, especially for large problems.

There is also a strictly practical consideration that favors the use of
a general-purpose block solver. It is fairly common for a practical
model to significantly “change” during its lifetime. What starts out
as a pure multicommodity flow sub-model may change, so that, for
example, only certain commodity-dependent paths can be used to
route flow. It is quite critical that an optimization module should
nimbly adapt to such (sudden) changes, even at the cost of reduced
performance.

3 An additional weakness of the basic framework, which is hinted at
by the numerical results in the above references, and which is quickly
found out in experimentation, is that the lower bounds proved by the
algorithm can improve rather slowly. We describe below a theoreti-
cal algorithmic construct that yields provably stronger lower bounds
than those obtained in [PST91] and which in some cases allow us to
(numerically) reach provable optimality.

In addition to focusing on the above issues, our implementation ex-
ploits an inherent strength of the methodology which, while theoretically
difficult to explain, can be clearly observed in experiments – the algo-
rithm quickly zeroes in on “good” columns.

Computational experiments 75

76 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

0.2 Outline of a generic implementation
For completeness, we next provide an outline of the basic exponential

potential function algorithm, as applied to linear program LP. This
largely follows the ideas in Chapter 2. In later sections we describe how
we have modified this basic implementation. In summary, the algorithm
approximately solves a sequence of feasibility systems, each consisting
of the original constraint system plus one “budget” constraint made up
by the objective row, and whose right-hand side value is a “guess” on
the optimal objective value. The algorithm applies binary search on this
guess so as to (approximately) optimize.

More precisely, given the algorithm seeks to find a vector
which violates constraints (4.1) with maximum

relative error at most and whose objective value is at most times
the value of LP, i.e. x is an vector. To this end,
given a scalar B, the algorithm considers feasibility systems FEAS(B)
of the form.

and either finds an solution to this system or determines that
it is infeasible. The set of iterations that accomplish this goal is called
a B-phase. Postponing a detailed description of a B-phase, the main
algorithm is as follows:

Main Algorithm

Step 0. Initialization. We start with and a valid upper
bound on the value of LP.

Step 1. Set where is an appropriately
chosen parameter. Run a B-phase to handle problem FEAS(B):
(a) If FEAS(B) is infeasible, set
(b)If FEAS(B) is set As we will see in Section 3,
this step is modified in our implementation, so that the solutions that
yield our upper bounds to LP are fully feasible, not just

Step 2. If exit. Otherwise, go to Step 1.

END

A smaller initial value than the choice in Step 0 can be used, provided
is known to be This goal is achieved by running

Computational experiments 77

the exponential potential function method on the system (4.1), (4.2)
directly. This description of the Main Algorithm is a bit simplified; in
our implementation the value is gradually approximated (i.e. Steps 1
and 2 are overlaid with).

which is to FEAS(B) for some

B-Phase

Step I. Set

Step II. Core Procedure. Run exponential potential reduction pro-
cedure to determine whether FEAS(B) has a solution or is
infeasible.
(a) If FEAS(B) is infeasible, exit;
(b) Otherwise, if go to Step 1, and if exit.

END

The core procedure (Step II) embodies the key algorithmic compo-
nents of the exponential potential framework. Given a parameter
this procedure iterates through vectors contained in P.
We write for the restriction of to and we denote
by m the number of rows in A. At iteration h we proceed as follows:

Block Iteration

1. Choose a block

2. For set

and let denote the restriction of the (row) vector to the coor-
dinates in .

3. Solve the linear program

with solution

4. For appropriate set

and

Next we describe the B-phases. Each B-phase starts with some

78 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

As discussed in Chapter 2, the choice of stepsize and the block index
k are important aspects of the overall algorithm. Further, in the above
description we have left out the lower bounding method, i.e. how to
detect case (a) of Step II of the B-Phase procedure – we will describe
how we prove lower bounds later.

The rest of this chapter is organized as follows. In Section 1 we ana-
lyze some low-level issues that arise when implementing the exponential
potential method. In Section 2 we discuss a general method for improv-
ing lower bounds obtained by a Lagrangian procedure.

1. Basic Issues.
When implementing the generic method described above, one must

make a number of low-level decisions; namely choosing the parameter
used in the binary search in the main algorithm, choosing the stepsize

in each block iteration, choosing the parameter in the exponential
function, and choosing the block k to be used in each block iteration.

As we have seen in Chapter 2, there are theoretically correct choices in
all four cases. Further, these issues have already been considered in pre-
vious experimental work. In this section we describe our choices, primar-
ily because they differ, sometimes markedly, from those of prior authors.
At the same time, with a couple of exceptions which will be noted, none
of our choices should be viewed as hard-and-fast rules. Rather, they are
the outcome of our experimentation, reflecting a compromise between
speed and numerical stability.

1.1 Choosing a block
As discussed in Chapter 2, the choice of block k to be used in each

block iteration has important theoretical ramifications. Radzik’s “round-
robin” approach is theoretically sound and easy to implement, and was
implemented e.g. in [GOPS98]. At the same time, recent theoretical
work ([GK98], [F00]) and common sense suggest making a choice that
in some regard guarantees a large potential decrease.

The round-robin approach should work well on large uniform prob-
lems (such as random multicommodity flow problems) but might have
difficulty handling problems with marked differences between blocks. On
the other hand, a “best-block” approach might quickly reduce the dis-
parities between blocks, in the sense that all block choices may end up
yielding roughly the same potential decrease.

In our implementation, odd iterations use the round-robin approach,
and even iterations implement a best-block approach, as follows: at any
iteration we keep track of a certain block which, when last used, yielded

Computational experiments 79

a potential decrease If this is an even iteration, we run block and
we update If this is an odd iteration, we run the block k chosen by
the round-robin approach, which results in a potential decrease and
if we reset and

Experimentally, this combined approach has resulted in increased ro-
bustness and visible (if small) reductions in the number of iterations.
Some practical problem instances we have looked at contained vastly
different blocks (in particular, one block that was different from, and
much more meaningful than all the other blocks) in which case the best-
block approach was essentially mandatory.

1.2 Choosing
From a theoretical standpoint, the stepsize to be used in each block

iteration can be given a pre-assigned value that guarantees convergence,
as discussed in Chapter 2. However, this choice may be overly conser-
vative, and it may be difficult to implement if it contains an explicit
estimate for the width (as it is in the algorithm in [PST91]). Some basic
experimentation quickly proves the benefits of choosing so as to yield
a maximum potential decrease, i.e. by carrying out a line-search to min-

imize where is the current iterate and is
the vector computed in Step 3 of the current block iteration.

It might at first appear to the reader that an approximate line-search
would suffice. Our experiments convinced us otherwise. In fact, our
overall implementation (of the Main Algorithm) often failed to converge
unless the line-searches were carried out to relatively high accuracy.

In [GOPS98] the authors use Newton’s method to drive the line-
search. Further, each line search was “warm-started” using the stepsize
computed in the last block iteration using the same block. It should be
noted that computing the optimum entails minimizing a function of
the form where the are parameters, and thus each itera-
tion of Newton’s method is relatively expensive (it involves all rows). In
addition, the may be very small or very large numbers, possibly result-
ing in (a) a slowly converging Newton’s method, or more important, (b)
a Newton’s method that fails to converge or to correctly converge due
to numerical instabilities. These numerical issues are synergistic with
the choice of the parameter see below. Furthermore, the stepsize pro-
cedure has to behave properly in the event that the optimal stepsize is
zero, or numerically zero – note that zero stepsize, in the case of an it-
eration using all the blocks, indicates that the current iterate minimizes
potential.

form Consequently, at the very start of this
B-phase the relative violation of the budget constraint
is much higher than all the other constraint violations. This has two
adverse consequences. First, the nature of the exponential potential
function is such that the algorithm will try to immediately even out the
infeasibilities among the various constraints, which will typically result
in a larger average infeasibility than prior to the budget change. Thus,
the effort that was expended in the prior execution of Step 1 has to some
degree gone to waste. Second, if (the parameter in the exponential
function) is large, there may be loss of precision in the evaluation of the
penalty function and in the computation of the stepsize.

In the next B-phase the (new) budget constraint will be of the

80 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

The successful experience in [GOPS98] notwithstanding, we were un-
able to obtain an accurate and reliable algorithm by using Newton’s
method only. In our implementation we combine Newton’s method with
binary search. We first run binary search to estimate to some de-
sired estimate (two digits of accuracy). Then we run Newton’s method,
starting with the estimate produced by the binary search, to compute an
estimate with three digits of accuracy. Next, we compute the potential
decrease using stepsize If this decrease is either negative (indicating
numerical error) or if this decrease is inferior to that obtained using the
value of computed last time we used the same block, then we rerun
Newton’s method, this time requiring five digits of accuracy, and obtain-
ing a new estimate This estimate is evaluated, and if it does not yield
a decrease in the potential function then the stepsize procedure returns
with a stepsize of 0. If a complete cycle of round-robin block iterations
yields a stepsize of 0 for every block, then our implementation runs one
iteration using all blocks at the same time, and if the resulting stepsize
is 0 the code terminates.

1.3 Choosing
Here we discuss the choice of the parameter used in Step 1 of

the Main Algorithm, in the binary search for the optimum objective
value. From a theoretical standpoint, the choice should be
“good enough”. However, our experiments indicate that this may not
be a robust choice. In fact, on selected “difficult” problems our code will
not converge when using

To see why this may happen, consider a problem (LP) where the
matrix A has a large number of rows, and consider an iteration of Step 1
of the Main Algorithm, resulting in case (b). At the end of this iteration
we will therefore have a point with for some

Computational experiments 81

Yet another reason why the choice may be undesirable is
that, when the difference between and is large (as might be the
case with a difficult problem instance), the system
may be infeasible. The attempt to find an approximately feasible solu-
tion to is a “mistake”: in a sense, in order to prove
infeasibility we may have to go “past” the desired value of From an
experimental point of view, it is quickly observed that such mistakes are
computationally costly.

In summary, it appears that a choice may be preferable. In
our implementation, we use One practical benefit arising from
this choice is that, after two “mistakes” we will have a proved 1% error
bound, i.e.

1.4 Choosing
We have seen in Chapter 2 that setting α of the form where

 is a small parameter and m is the number of constraints,
yields a provably good algorithm. In practice this choice may not be
ideal, primarily because it may prove too large – in the sense that the
exponential function becomes badly behaved. [GOPS98] describes an
adaptive rule for controlling Here we describe a describe a different
procedure.

One way to observe why a large value of α may impede practical
convergence is to consider, is to recall that the exponential potential
reduction method is a first-order method, and therefore may be slow
to converge when the Hessian matrix of the potential function is ill-
conditioned [Lu]. Consider a feasibility system

(where H has M rows and) for which we seek an solution.
and the system

where 1 is the vector of m 1’s, and

where is the row of H. For z is simply the vector of
relative violations of The two systems are equivalent in that the

82 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

exponential potential reduction method will generate the same sequence
of iterates in both cases. Consider the second system at iteration k. Then
it can be seen that the Hessian of the potential function is proportional
to diag Consequently, we can expect that if there is
a large disparity between violations of different constraints, and if
is large, then a steepest-descent algorithm for minimizing the potential
function may converge slowly. [To be more precise, one should look at
the projected Hessian (projected to) but we would expect that matrix
to be no less ill-conditioned.] For small enough, could
certainly be quite large.

We are left with a difficult choice: which piece of mathematics do we
believe? The working answer is that we believe both, but not at the
same time. We use the following rules for setting

1 Initially we expect classical first-order algorithm behavior (i.e. rapid

of (e.g. when using).

2 As soon as the code determines that we are “close” to the optimum,

3 When is too small, the minimizer of the potential function will be
potentially deep in the relative interior of the feasible region. Essen-
tially, then, we may be wasting iterations converging to a point that is
suboptimal for LP. The algorithm detects this situation when there
is an iteration that (a) worsens the objective value and (b) produces

convergence to a reasonably accurate solution). Here we use
This rule is also used every time that we shift to a new value

is reduced. More precisely, our code includes periodic calls to a
procedure that will be described below, which we will refer to as the
NX procedure. NX takes as input the current iterate and returns
a new iterate When a call to this procedure is successful,
(a) has better objective value and usually much smaller potential
than and (b) we have a tighter lower bound. When (a) holds we

reduce by 0.9, unless the lower and upper bounds are within 1% of
each other, in which case we reduce by 0.1. The logic here is that the
basic algorithm may have converged far enough that we are entering
the stage where a first-order method for minimizing potential may be
ineffective, in which case bad conditioning of the Hessian would play
a negative role.

a feasible iterate (maximum violation less than). In such a
situation, is increased by a factor of 2.

In our experiments, these rules provided a reasonably robust trade-off.

Computational experiments 83

2. Improving Lagrangian Relaxations
According to our experiments, the issue that emerges as most critical

when implementing the exponential potential framework, is how to prove
tight lower bounds quickly. Indeed, it appears that the basic framework
is not always able to fulfill this function effectively, in practice.

In Chapter 2 we saw how the algorithm in [PST91] proves lower
bounds for LP (eqs. (2.41)-(2.44)). For convenience, we briefly out-
line the approach here. Recall that denotes the value of LP. If we
can prove that whenever the system

is feasible, then we have proved that More precisely, is
is a scalar, and is a an m-vector, then defining

we have that is a lower bound on This is the approach used
in [PST91], with exponential penalties playing the roles of the Even
though this approach is theoretically sound (e.g. the algorithm in [PST91]
is a fully polynomial-time approximation scheme, and it relies on this
bound to yield the termination condition) in practice the bound may
not be as tight as desired. Furthermore, the computation of the bound
is expensive as it involves optimizing over all blocks. Thus, having gone
through the effort to compute this lower bound, it may pay off to invest
some additional computational time to tighten it.

First, note that (4.16) can be rewritten as

which,since can be restated as

The function minimized in the right-hand side of (4.18) is a Lagrangian,
which therefore is a lower bound on the value of LP3. Since
and r and we have that this lower bound is strictly
stronger than

(LP(v,U)) s.t.

84 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

In fact, we do not have to stop here, and a much stronger bound can
be frequently obtained. To this effect, we describe next a technique for
tightening Lagrangians. Suppose that we assign dual variables to
constraints (4.1) of LP. The resulting Lagrangian is:

Suppose minimizes the Lagrangian in (4.20) and let be the
resulting optimal value. The observation to be made is that if

then we should be able to obtain a stronger lower bound on than
In essence, when this situation arises the multipliers are poor

approximations to the optimal dual variables for constraints (4.14).
When this situation arises a simple procedure can be applied which

will usually yield superior dual variables. For fixed and any real U
denote:

The intuition here is that if U were an upper bound on then constraint
(4.22) would be redundant. Now we have

LEMMA 4.1 For any U,

Proof. Note that since with the linear program
LP(v,U) is simply a relaxation of LP. Now let
and assume by contradiction that

As a result of this lemma, we are led to the problem of finding
that maximizes (we remind the reader that is fixed).
Since is a continuous, monotonely nonincreasing function of U,
we have that exists, is unique and satisfies

One approach to computing would be to apply binary search (over
U) to However, computational experience suggests LP(v,U)
may be difficult to solve by direct methods even if we have a fast algo-
rithm for solving linear programs over P. [GK96] describes a technique

Computational experiments 85

that we could use to approximately solve LP(v,U). However, an al-
ternative approach is that of (simultaneously) searching for and the
corresponding optimal dual variable for constraint (4.22), and this turns
out to provide a much better insight.

Following this approach, for given U and (this value being a
guess for the negative of the dual variable for (4.22)), we have that

and consequently

or equivalently,

Since we have that for any

Finally,

LEMMA 4.2 Let be the negative of the optimal dual variable for con-
straint (4.22) in Then

Proof. This follows from the fact that and satisfy (4.24) with
equality.
In other words, we must maximize (as a function of nonnegative) the
left-hand side of (4.27), which we denote be the set
of extreme points of P. We have that

For each j, the quantity in the right-hand side of the above equation is,
as a function of either constant, or strictly increasing, or strictly de-
creasing. Thus, is a unimodal function of and we can maximize
it using binary search over provided that an upper bound on is

86 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

known. Here, each iteration in the binary search involves the solution of
a linear program over P.

In our implementation we use this Lagrangian strengthening proce-
dure. Note than an invocation of this procedure could be rather expen-
sive – it entails several optimizations over all blocks Thus, we use
it sparingly, in conjunction with a different procedure described in the
next section. Nevertheless, we obtain quite visible improvements on the
lower bound. At the same time, we wish to stress that it is not clear
whether similar improvements should be expected if the procedure were
to be used in conjunction e.g. with standard subgradient optimization
method, which tend to produce “good” dual variables: instead, the pro-
cedure should be viewed as a method for refining “poor” dual variables.

3. Restricted Linear Programs
Linear programming models arising from practical applications can

be extremely large, but in many cases this is due to the mathematical
intricacy of the modeling, as opposed to the the actual size of the under-
lying “real” problem. To put it differently, a model may try to capture
all possible combinations of several events, while in fact only a small
number of combinations will be realized in a good solution. In addition,
variables are linked through non-random logical constraints, e.g. vari-
able upper-bound inequalities, with the consequence that if a certain
variable is zero, then a number of other variables will also be zero (con-
sider, for example, location models). In other words, the model may
contain a very large number of variables, but only a small fraction of
these will be positive at optimality.

Should this situation arise, it is clear that a substantial speedup would
ensue if an algorithm could effectively “guess” the support of a near-
optimal solution. What is quite surprising is that even when the sup-
port of the optimal solution is relatively large the linear program
restricted to the columns in can be solved much faster (sometimes
astoundingly faster) than the original problem. This situation certainly
arises with routing or network design linear programs, as we will see
later in Table 4.10.

Of course, in order to leverage the advantage of a small , an al-
gorithm would have to discover a near-optimal support. The expo-
nential potential function framework, together with effective
width control, seems to rapidly find near-optimal supports. By
this we mean that after a small number of round-robin rounds the set of
variables with positive values will be (a) small and (b) near-optimal (if
infeasible). A theoretical explanation for this effect seems difficult. It

Computational experiments 87

may also be a general property of Lagrangian-type algorithms. In any
case, it is a property that we exploit to accelerate our algorithm.

We make use of the following procedure, which is periodically called
(more on this below), interspersed with block iterations, and which we
use to modify Step 1(b) of the Main Algorithm so that the solutions
output by our implementation are feasible (not simply). For
convenience, we assume that all variables are nonnegative. In the fol-
lowing description, and denote the current lower and upper bounds
on the value of LP.

Procedure NX

nx.0. After block iteration h, and is

a parameter. [In our implementation we used]. Let LP(h)
be LP, restricted to columns in Z(h), but containing all constraints.

nx.l. Solve LP(h). If infeasible, quit NX. Otherwise, let be its op-
timal solution and the vector of optimal dual variables corresponding
to inequalities (4.1).

nx.2. Set where is chosen so that

the potential at will be far smaller than at In other words, NX
will typically accelerate convergence. To put it differently, we are using
a subroutine call to an “exact” LP solver to enhance the performance of
our approximate LP solver.

A call to this procedure can be relatively expensive primarily because
of nx.3, but typically not, in our testing, because of nx.l. Nevertheless,
the benefits of the Lagrangian strengthening procedure and of using
optimal duals arising from the “good” set Z(h) are compounded, yielding
to sometimes dramatically improved bounds in a single iteration. In our
implementation, NX is called just after block iteration tK/2, where

provided the maximum relative infeasibility is “not too
large” (in our implementation, at most) and otherwise the call is

nx.3. Compute Where is the

current lower bound on the value of LP, we reset

END

An important point regarding this procedure is that it is not intended as
a crossover step. In fact, typically, will be far from optimal. On the
other hand, given that point is feasible (and, frequently,)

minimizes potential in the segment

88 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

skipped. The rationale behind these rules are (a) after many repeated
calls, the marginal utility of the procedure tends to diminish, and (b) if
the current iterate is very infeasible the support Z(h) may be quite poor
– in particular, LP(h) may be infeasible.

Another important implementation detail concerns the choice of algo-
rithm for nx.1. The default rule is that we use the barrier algorithm –
in our testing it provided the best mix of speed and reliability. And we
use it without crossover: by far this was the better choice with regards
to nx.3. We apply these default rules until the lower and upper bounds
we have proved for LP are “close” (less than), in which case we
use the dual simplex method, warm-started at the current iterate (for
the primal solution) and using the dual variables from the last call to
NX (for the dual solution).

Finally, in our implementation we use the solutions produced by NX
as the only source for upper bounds – consequently, our upper bounds are
“feasible”, at least to the tolerance of the underlying linear programming
solver.

In Section 5.6 we discuss experimental data supporting the use of
Procedure NX.

4. Tightening formulations
A type of constraint that tends to abound in many practical model is

the “variable upper bound” or VUB constraint. This is a constraint of
the general form,

where we have such an inequality for each j in some index set J. Network
design problems are a typical example: here the are commodity flows
and the is a capacity variable (there may be many capacity variables
but usually there are far fewer of those than there are commodities).
It is essentially folklore that linear programs with many VUBs can be
quite difficult (sometimes attributed to degeneracy).

These inequalities can also be difficult for the exponential potential
approach to handle. Normally, the indices give rise to “natu-
ral” blocks in the formulation. Thus, constraint (4.30) would be one of
those that we view as a linking constraint. In addition, we would use
another block to handle all variables As a consequence, when per-
forming a block iteration, the step direction may substantially violate
constraint (4.30). In other words, we may experience the width difficulty
analyzed in Chapter 2. The theoretically correct remedy we described
there (i.e., bounding the variables), while helpful, certainly falls short

Computational experiments 89

in practical applications (e.g. network design models with thousands
of commodities). A little reflection shows that the problem is caused
by our separating the variables from the x variables. This suggests
modifying our formulation so that the x variables not only appear in a
separate block but also appear in every block In addition, for
each the constraint

is added to those already in block k. After this transformation we no
longer have a “block-angular” formulation; nevertheless each block iter-
ation is still valid in the context of the original formulation.

The intuitive advantage of this transformation, in the case where
is large is clear: should we use an approach such as the round-robin block
iteration method on the original formulation, we only change the vari-
ables x very infrequently. Thus the infeasibilities of constraints (4.30)
may improve very slowly, leading to small step sizes and overall slow con-
vergence (and, on large examples, numerical stalling of the algorithm).
By using inequalities (4.31) we frequently refresh the x. Yet another ad-
vantage of this approach is that in e.g. network design models it is the

that appear significantly in the objective vector c of LP (and usually
the do not or are not as important). Thus the additional urgency to
frequently update the There is a price, of course, to using (4.31) –
the model becomes larger (but by at most a factor of two, in terms of
nonzeros). Moreover, the block LPs potentially become more difficult –
but this difficulty does not seem to be borne out in our testing, however.
We will return to these issues in the section on numerical experience.

Finally, we point out that it is quite easy to detect VUBs (4.30) and
to automatically reformulate a problem to include inequalities (4.31).

5. Computational tests
In this section we present numerical results with several classes of

problems. In all of our experiments, a problem was input as a file using
the LP format, with the rows of each block appearing consecutively and
delimited by the keyword BLOCK. All linear programs, regardless of any
implicit combinatorial nature, were solved as general linear programs
using CPLEX [ICP] (various releases). Block LPs were solved using
the dual simplex method. As stated above, the LPs encountered in the
NX procedure were solved either using the barrier method or the dual
simplex method. In our implementation, we set although
this precision was not always achieved (but was in many cases exceeded).

The numerical experiments listed below were carried out either on a
660 MHz ev5 Alpha computer, with 1GB of memory and 8MB of cache,

90 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

or on a 754 MHz ev6 Alpha computer, with 2GB of memory and 8MB
of cache.

5.1 Network Design Models
Network design problems are mixed-integer programs arising in sev-

eral practical contexts, in particular, telecommunications. Frequently,
these are quite difficult mixed-integer programs (see [BCGT96]). The
cut-and-branch and branch-and-cut approaches have been proven the
most effective in handling these problems by several researchers. On
the other hand, these approaches lead to some very difficult continuous
relaxations in the case of realistic large networks (e.g. 300 nodes).

We have already provided a description of these problems in Section
2.2.1, including the polyhedral strengthening of the basic formulation
(1.53 - 1.56) via the so-called cutset-inequalities (1.57). Some of the
examples we consider below include “survivability” modeling features,
and here we have some inequalities of the form

where is an integer (see [BM00], [MW97]).
All these examples involve real data (demands and costs) from the New
York City LATA. On these problems, we observed that CPLEX’s barrier
code was far superior to the dual simplex method, whenever the problem
was large enough, as was the case for all the instances listed below.

In Table 4.1, “n”, “m” and “nonz” are, respectively, the number of
columns, constraints and nonzeros after the linear program has been

Computational experiments 91

preprocessed by CPLEX. “Barr sec” is the time that the barrier code re-
quired to solve the problem to default tolerances, in seconds, excluding
the time required to compute the initial Cholesky factorization. “Barr
1% sec” is the time, in seconds, that the barrier code ran until the
half-sum of the “primal value” and “dual value” (as listed in CPLEX’s
output) was within 1% of the eventual optimum. is the time
it took our code to prove a lower bound B and an upper bound such
that indicates the time required to get a
0.1% error bound, with the quantity in parenthesis showing the actual
relative error proved at that point.

As stated above, the dual method (incl. using steepest edge pivot-
ing) was inferior to the barrier code, particularly in the more difficult
instances. For example, on instance netd9, after several days, dual sim-
plex had computed a bound that was more than 20% away from the
optimum. Also note that the time required by the barrier code to com-
pute the initial ordering of columns is nontrivial; on netd9 this was of
the order of 800 seconds.

5.2 Minimum-cost multicommodity flow
problems

There is an abundant bibliography concerning algorithms for multi-
commodity flow problems; see [GOPS98]. These problems arise in the
telecommunications industry, for example. Nevertheless, it is difficult
to obtain “real” large-scale instances, and researchers in this area have
traditionally relied on random problem generators.

In [GOPS98] the authors describe computational results with a code
for multicommodity-flow problems which is based on the exponential
potential reduction method. To test their code, they used the genera-
tors “RMFGEN”, “MULTIGRID” and “TRIPARTITE”. The first two
are multicommodity variations of well-known single-commoditynetwork
flow problems. The third one [GOPS98] generates problems that are dif-
ficult for the exponential potential reduction method. In this section, we
test our code on instances produced by these three generators provided
to us by the authors of [GOPS98] and on instances we obtained using
these generators. It is important to note that the behavior of each gen-
erator is consistent in terms of the difficulty of the instances it produces;
thus, we report on a sample of the problems only.

As noted before, block iteration reduces to a minimum-cost flow prob-
lem. In [GOPS98] these were handled using a network-simplex code,
warm started. However, we stress that we solve these problems as gen-
eral linear programs. In spite of this fact, we obtain nontrivial speed-ups
over the code in [GOPS98]. We attribute this fact to the decreased it-

92 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

eration count, which itself is due to the better lower bounds and to the
NX procedure.

The next two tables describe results with TRIPARTITE instances,
the last two of which we generated and were not run using the code in
[GOPS98]. In this table, the column headed shows the
number of block iterations solved in this run. For completeness, in table
4.3 we show statistics for the first two runs using a recent version of the
code in [GOPS98], run on a SUN Ultra 2 (approximately twice as slow
as our machine). We note that on TRIPARTITE problems the Barrier
method appears to be much more effective than the dual simplex; how-
ever, it does require significantly more memory. The 1%-approximation
CPLEX running times using the barrier method follow the same con-
vention as in Table 4.1; in the case the dual simplex method we report
the run time when the method was used with a 1% optimality tolerance.

The next table describes two instances created by RMFGEN, and an
instance created by MULTIGRID. The first problem was run using the
Barrier method; the other two using the steepest-edge Dual simplex
method because of memory limitations.

Minimum-cost multicommodity flow problems have attracted a great
deal of attention, generating a rich literature on this subject that is
simply too abundant to properly reference here. In addition, there is
an abundance of special-purpose codes for these problems. Many of

Computational experiments 93

these codes are essentially refined implementations of traditional linear-
programming algorithms (e.g. simplex or interior point) where the ex-
plicit knowledge of the matrix structure is used to speed up or short-cut
iterations. This can result in sometimes substantial improvements over
commercial LP solvers. Nevertheless (and not surprisingly) we have ob-
served that several of these codes also scale with problem size at the same
rate as commercial LP solvers. As a result, on large problem instances
our implementation is considerably faster (at least as an approximation
algorithm).

Another category is that of Lagrangian-based methods. In principle,
such methods might provide more competition (after all, our implemen-
tation can be viewed as a Lagrangian method). There are very many im-
plementations of Lagrangian relaxation; some comparisons have shown
our method to be much more effective; the lack of an adequate “library”
of problems makes a scientific comparison difficult.

5.3 Maximum concurrent flow problems
The maximum concurrent flow problem, described in Chapters 1 and

2 provided the original motivation for the development of exponential
function methods. As such, we would expect our algorithm to perform
well on these problems. In fact, the exponential potential method, as
used in the references we have provided, tackles the problem in implicit
form: rather than using (say) formulation LP0 (1.5 - 1.7) it simply keeps
track of edge penalties, which are used to reroute commodities, resulting
in an update of the edge penalties, and so on.

Our implementation cannot operate this way because it only receives
inputs as linear programs. For these experiments, we use the “minimum
congestion” formulation:

s.t.

94 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

Using the techniques of Section 4, for each edge (i, j) inequality 4.33
gives rise to the inequality

for each commodity k.
Our implementation appears to handle these problems exceptionally

well. In fact, we can solve many of these instances with as much as six
digits of accuracy. The following table displays running times RMFGEN
instances.

Figure 4.1 displays the running time of our algorithm as a function of
the number of columns for the instances in Table 4.5.

5.4 More sophisticated network design models
We conclude this section by describing our experience with some very

comprehensive network design instances that were provided to us by
AT&T Laboratories. Even though we cannot make this data publicly
available, we can however describe the underlying model in some detail.
As we will see, the pure routing component of this model is only a very
small fraction of the overall picture; the success of our implementation,

Computational experiments 95

in our opinion, underscores the potential usefulness of the exponential
potential approach to complex, large, difficult, real-life models.

The AT&T models we considered involve installing capacities in the
edges of a network so that multicommodity demands can be routed. In
addition,

There are several categories of demands, which are hierarchically or-
ganized, as are the capacity types. Somewhat simplifying the model,
demand of type 1 can be routed on capacities of types 1,2,3,…; de-
mand of type 2 can be routed on capacities of types 2,3, …, and so
on.

We can “lose” demand, at a cost.

Any given commodity can only be routed on certain edges, which are
part of the input.

Capacities are not bought for one edge at a time; rather, we buy
capacity for a “system” that comprises a subset of edges (e.g. a
tree, a path, a cycle). From a modeling standpoint, this gives rise to
variable upper-bound inequalities where the same capacity variable
appears in several inequalities.

96 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

The capacities themselves have to be packed into a higher category
of devices, which must also be bought, and which also involve subsets
of edges of the underlying network (but different subsets than those
used for the capacities themselves).

There are constraints specifying minimum ratios between capacity
amounts of the different hierarchies installed on any given edge of
the network.

Overall, this gives rise to a very complex formulation where the pure
routing component is quite nonstandard, and where the constraints in-
volving capacity variables only form a nontrivial subset of the model. In
addition, the formulation contains many coefficients with very large or
very small value.

We were given two problem instances, both corresponding to a net-
work with roughly 500 nodes.

1 The first instance, SONET4, has 475162 columns, 117477 rows, and
1884499 nonzeros. This problem was solved by CPLEX (Barrier) in
1640 seconds, and has value 1.621107. Table 4.6 shows the behavior
of our implementation. Almost immediately, our code had a feasible
solution that was correct to four digits and the bulk of the effort was
to find a matching lower bound; after less than five minutes the lower
bound was within 1.12% of the upper bound.

2 The second instance, SONET5, has 2984075 columns, 337678 rows,
and 11903433 nonzeros. With the variable upper-bound strengthen-
ing we employ, the number of rows that our implementation han-
dles swells to over 900000. This instance required five hours using
CPLEX’s Parallel Barrier method, with four CPUs employed, and
consuming over 4GB of memory. In contrast, the first call to NX by
our method yielded a solution with proved relative error
(at 130 seconds of running time). See Table 4.7.

Computational experiments 97

5.5 Empirical trade-off between time and
accuracy

As described in Chapter 2, the running time of the exponential poten-
tial method might grow proportional to Is this worst-case behavior
observed in practice? Our personal bias is that a more relevant issue is
how the algorithm scales with problem size while maintaining fixed at
a realistically practical value (in the telecommunications applications,

would be ample). Nevertheless, in this section we present some
empirical analyses of the behavior of our implementation as becomes
small. To some degree, these experiments are imperfect, and we cannot
make them better – our implementation will in general be unable to
attain an arbitrarily small due to the difficult numerical behavior of
the exponential function (and not because of a fundamental underlying
weakness of the overall algorithmic approach).

In Table 4.8 we study instance rmfgen2 (from Table 4.4). Here “lower
bound”, “upper bound” and “relative error”, are, respectively, the tight-
est lower bound proved so far, the best upper bound obtained by the
algorithm, and the relative gap between the two. Recall that our im-
plementation proves upper bounds through finding feasible solutions, so
the only source of error in this table concerns objective value. Figure
4.2 displays time as a function of for this problem instance.

In Table 4.9 and Figure 4.3 we study instance netd9 (from Table 4.1).
Figures 4.2 and 4.3 appear to show a sublinear dependence of running
time on accuracy. This observation was also made in [GOPS98]. Clearly,
further theoretical work is needed to understand this behavior.

It is worth noting the relatively vertical section of the plot for rm-
fgen2. Comparing with the entries in Table 4.8 we see that at this
point the algorithm had an upper bound that was close to the optimum
and was slowly improving, while the lower bound was essentially fixed,
and that this stage of the algorithm accounts for a large fraction of the
overall running time. These facts underscore our observation that lower
bound generation is the weakest ingredient of the exponential potential
approach.

98 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

5.6 Hitting the sweet spot
The NX routine in our implementation clearly plays a critical role.

An important empirical issue concerns the relative size of the support
of the optimal solution in practical instances, and how this affects our
implementation.

In Table 4.10 we show, for a variety of instances, the overall number of
columns, the number of columns in the restricted linear program solved
in the last call to NX, the sum of running times required to solve all
restricted LPs (“restricted LP cum. sec.”), the total number of calls to
NX, (“NX count”) and the running time needed by CPLEX to solve
the original LP (“full sec.”). Since the original LP and the restricted LPs
are in some cases solved using different methods (e.g. CPLEX’s barrier
may be used for the NX LP, and CPLEX’s dual for the overall LP) the
comparison between running times is strictly for qualitative purposes.

As we can see from this table, in general the calls to NX yield LPs
that are solved quickly. Instances netd9 and SONET5 show standard
behavior: the restricted linear programs arising here are fairly small,

Computational experiments 99

100 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

and their solution times are insignificant compared to that of the full
problem. But consider RMF26. Here the last call to NX produced a
restricted linear program with about one-third of all the variables. At
over seven hundred thousand variables, this linear program is not small.
More important, even though it comprises a large fraction of the overall
problem, it is solved nearly 500 times faster. Thus, the near-optimal
nature of the restricted set of variables acts to reduce the complexity of
the problem far beyond what could be expected by the relative decrease
in problem size.

As an additional point regarding RMF26, notice (Table 4.5) that the
calls to NX dominate in this instance the overall running time of our

Computational experiments 101

implementation – the “magic” of the exponential potential function is
that it quickly singles out the “right” one-third of the variables.

6. Future work
The NX routine plays a critical role in our implementation. Thus, it

would be of great interest to develop a better theoretical understanding
for its success. A first step would be to describe how fast the exponential
potential method converges to a near-optimal support.

In addition, the issue of reducing the number of iterations (and the
related issue of proving stronger lower bounds) remains quite critical,
in particular when considering more general classes of linear programs.
One possible venue of research concerns the full integration of a NX-
like step into the algorithm proper. By this we mean that, every so
often, we would carry out a more expensive step which is on the other
hand more accurate than the generic algorithm, and which serves to
accelerate potential reduction. NX is an example of this strategy; but
perhaps the approach of fully solving the “restricted” LP is excessive.
We have experimented with partially solving the restricted LP, with
mixed results. Part of the difficulty here is that, in general, a black-
box call to a generic LP solver may be a poor way to approximately
solve a linear program (the convergence tends to be rather abrupt). An
intriguing approach would be that of interleaving potential reduction
steps with pivoting-like steps.

Another crucial future area of work concerns the generalization of
the approach to broader classes of linear programs, in particular, linear
programs without block structure. We could view such problems as
consisting of a single block – the theory applies, of course, but also
predicts a small step size, which we have observed in practice, with the
result that the algorithm jams prematurely. A somewhat more promising
approach is that of viewing each variable as constituting a separate block.

Finally, an important direction of research concerns extremely large
problems, large enough that each individual block iteration is fairly ex-
pensive. Here we need a better understanding of the effect of coarsely
solving block LPs on convergence rate.

APPENDIX - FREQUENTLY ASKED
QUESTIONS

Q: When I need to solve a linear program, I simply run my
favorite LP code. It is fast, robust, and mature. Why do I
need to bother with approximation algorithms?

A: Clearly an enormous amount of progress has been achieved in the
field of traditional linear programming. What motivates the study of
approximation schemes is that very large problems arising in practice
overstrain the capabilities of even the best LP codes. And we can expect
larger problems to continue to arise. Thus, approximation algorithms
simply are a venue for delivering some useful information on extremely
difficult problems, in practicable time.

Q: But why the emphasis on provably good algorithms? Are
you simply just trying to write more papers?

A: The central issue here is that, apparently, “seat of the pants” data
might suggest that there is not enough correlation between the provably
good performance of a linear programming algorithm and its actual be-
havior in practice. The classical pieces of evidence in favor of this view
are the poor convergence of the Ellipsoid Method, and the very fast con-
vergence of the Simplex Method. Thus, in our insistence on provably
good bounds, are we engaging in gratuitous theoretical research?

Clearly, this is a complex issue. It reflects a schism between two com-
peting communities: the theoretical computer science community, and
the traditional mathematical programming community. We view the
theoretical component of the research on approximate algorithms for
linear programming as an integral part of a program that includes ex-
perimental testing as a critical component. Thus, theory not only guides
implementation but is also informed by it. Over time, this may result
in far more complex, theoretically faster algorithms which also do much
better in practice. In order for this to happen, the algorithms commu-
nity will probably need to expand its chest of tools so as to incorporate
methodology of nonlinear programming, and will need to become more
fully involved in experimental evaluation.

At the same time, as problem sizes become massive, experimentation
with and tuning of algorithms will become much more challenging. It
will be difficult to argue that a particular methodology is “good’ solely
on the basis of experimental data that only samples a tiny fraction of

104 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

the problem spectrum. Further, applications may well place a premium
on predictability of codes. A “provably good” label with the appropriate
focus may become a requirement in practice.

Q: You speak of “provably good” algorithms, but a conver-
gence rate of is laughable.

A: Newton’s method – embodied in the Interior Point methods for Lin-
ear Programming – provably achieves a convergence rate of and
its practical convergence, in particular on very difficult linear program-
ming instances, can be nothing short of wondrous. But this comes at a
steep computational linear algebra price. On a very large-scale model
each iteration of Newton’s method frequently becomes too slow to be
practical. In addition, the method can require an unrealistic amount of
storage. An important research objective in the nonlinear programming
community has always been that of developing algorithms that exhibit
Newton-like convergence behavior, while in also producing fast iterations
and requiring modest amounts of storage. This is a goal that should also
be considered by the algorithms community (see above response). The
challenge is that large problems are large enough that we can only afford
sophisticated linear algebra computations on submatrices that are tiny
compared to the overall model.

Over the last few decades, computational science has periodically been
punctuated by visible advances in computational machinery. This made
possible the leveraging of increasingly complex mathematical methodol-
ogy on ever larger problems. But at any one point in time, the largest
applications at that time were beyond the capabilities of the current
machinery. Such is the case right now (see e.g. Table 0.1). Of course,
a technological revolution could soon come about that would provide
a quantum improvement on our computing capabilities. In order for
such a revolution to be significant in the context of massive linear pro-
grams, it would have to be truly stupendous: in terms of today’s e.g.
large-scale routing problems, one would need to be able to carry out
Cholesky factorization of dense matrices with hundreds of millions of
rows and columns. And if we have to wait, say, five to ten years for
such an improvement in computing, then the size of “large” applications
will probably have increased as well. Think about future applications of
optimization to biology, cryptography, next-generation networking and
(above all) the design, manufacture and control of the computational
devices that would deliver this computing revolution.

Computational experiments 105

Hopefully, the optimization community will have more than heuristic
methods to offer in the solution of such future gargantuan problems. It
is also possible that the optimization community will not participate in
the solution of such problems, or that the problems may not even be
viewed as having an optimization component, but we hope that this is
an unlikely event.

Q: But I am a practical person. What do I get from these ap-
proximation algorithms?

A: See e.g. Tables 4.1, 4.5, 4.6 and 4.7. They show the behavior of one
piece of code, run unchanged and with no runtime options of three vastly
different problem classes. Certainly, other nontraditional methods may
achieve experimental success. Our admittedly preliminary testing shows
that many such methods scale poorly with problem size. Of course,
“the proof is in the pudding” and the next decade promises to be quite
exciting in this field.

References

[A00] C. Albrecht, Provably good global routing by a new approximation algorithm
for multicommodity flow. In Proceedings of the International Conference on Phys-
ical Design (ISPD), San Diego, CA, (2000), 19 – 25.

[AMW98] D. Alevras, M. Grötschel and R Wessäly, Cost-efficient network synthesis
from leased lines, Annals of Operations Research 76 (1998), 1 – 20.

[Ba96] F. Barahona, Network design using cut inequalities, SIAM J. Opt. 6 (1996),
823 – 837.

[BA00] F. Barahona and R. Anbil, The Volume Algorithm: producing primal solu-
tions with a subgradient method, Mathematical Programming 87 (200), 385 –
399.

[B96] D. Bienstock, Experiments with a network design algorithm using
linear programs (1996).

[BCGT96] D. Bienstock, S. Chopra, O. Günlük and C. Tsai (1996), Minimum Cost
Capacity Installation for Multicommodity Network Flows, Math. Programming
81 (1998), 177 – 199.

[BM00] D. Bienstock, G. Muratore, Strong inequalities for capacitated survivable
network design problems, Math. Programming 89 (2000), 127 – 147.

[BR00] D. Bienstock, O. Raskina, Asymptotic analysis of the flow deviation method
for the maximum concurrent flow problem (2000), to appear, Math. Programming.

[B00] R. Bixby, personal communication.

[C79] V. Chvatal, A greedy heuristic for the set-covering problem, Math. of Opera-
tions Research 4 (1979), 233 – 235.

[CM94] R. Cominetti and J.-P. Dussault, A stable exponential penalty algorithm
with superlinear convergence, J. Optimization Theory and Applications 83:2
(1994).

108 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

[CM94] R. Cominetti and J. San Martín, Asymptotic analysis of the exponential
penalty trajectory in linear programming, Mathematical Programming 67 (1994),
169 – 187.

[Cou43] R. Courant, Variational methods for the solution of problems of equilibrium
and vibration, Bull. Amer. Math. Soc. 49 (1943), 1 – 43 .

[DS69] S.C. Dafermos and F.T. Sparrow, The traffic assignment problem for a general
network, Journal of Research of the National Bureau of Standards - B, 73B
(1969).

[D00] R. Daniel, personal communication.

[DW] G.B. Danzig and P. Wolfe, The decomposition algorithm for linear program-
ming, Econometrica 29 (1961), 767 – 778.

[FM68] A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Un-
constrained Optimization Techniques, Wiley, New York (1968).

[F] W. Feller, An introduction to probability theory and its applications, Wiley, New
York (1966).

[FG99] A. Frangioni and G. Gallo, A Bundle Type Dual-Ascent Approach to Linear
Multicommodity Min Cost Flow Problems, INFORMS JOC 11 (1999) 370 –
393.

[GGSV96] J.-L. Goffin, J. Gondzio, R. Sarkissian and J.-P. Vial, Solving nonlin-
ear multicommodity flow problems by the analytic center cutting plane method,
Mathematical Programming 76 (1996) 131 – 154.

[ICP] ILOG CPLEX, Incline Village, NV.

[F00] L.K. Fleischer, Aproximating Fractional Multicommodity Flow Independent of
the Number of Commodities, SIAM J. Disc. Math., 13 (2000), 505 – 520.

[FW56] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval
Res. Logistics Quarterly 3 (1956), 149 – 154.

[GK98] N. Garg and J. Könemann, Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems, Proc. 39th Ann. Symp. on
Foundations of Comp. Sci. (1998) 300-309.

[FGK71] L. Fratta, M. Gerla and L. Kleinrock, The flow deviation method: an ap-
proach to store-and-forward communication network design, Networks 3 (1971),
97 – 133.

[GOPS98] A. Goldberg, J. Oldham, S. Plotkin and C. Stein, An Implementation of
a Combinatorial Approximation Algorithm for Minimum Multicommodity Flow,
IPCO 1988, R.E. Bixby, E.A. Boyd, R.Z. Rios-Mercado, eds., Lecture Notes in
Computer Science 1412, Springer, Berlin, 338 – 352.

[GK94] M.D. Grigoriadis and L.G. Khachiyan (1991), Fast approximation schemes
for convex programs with many blocks and couping constraints, SIAM Journal
on Optimization 4 (1994) 86 – 107.

REFERENCES 109

[GK95] M.D. Grigoriadis and L.G. Khachiyan, An exponential-function reduction
method for block-angular convex programs, Networks 26 (1995) 59-68.

[GK96] M.D. Grigoriadis and L.G. Khachiyan, Approximate minimum-cost multi-
commodity flows in time, Mathematical Programming 75 (1996),
477 – 482.

[GK96] M.D. Grigoriadis and L.G. Khachiyan, Coordination complexity of parallel
price-directive decomposition, Math. Oper. Res. 21 (1996) 321 – 340.

[GV] G.H. Golub and C.F. Van Loan, Matrix Computations, The Johns Hopkins
University Press, Baltimore and London (1996).

[Ka02] , G. Karakostas, Faster Approximation Schemes for Fractional Multicommod-
ity Flow Problems, Proc. 13th Ann. Symp. on Discrete Algorithms (2002).

[KPST90] P. Klein, S. Plotkin, C. Stein and E. Tardos, Faster approximation algo-
rithms for the unit capacity concurrent flow problem with applications to routing
and finding sparse cuts, Proc. 22nd Ann. ACM Symp. on Theory of Computing
(1990), 310 – 321.

[KY98] P. Klein and N. Young, On the number of iterations for Dantzig-Wolfe op-
timization and packing-covering approximation algorithms, Proceedings IPCO
1999, 320 – 327.

[LMPSTT91] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos and S.
Tragoudas, Fast approximation algorithms for multicommodity flow problems,
Proc. 23nd Ann. ACM Symp. on Theory of Computing (1991), 101-111.

[LR98] T. Leighton and S. Rao, An approximate max-flow min-cut theorem for uni-
form multicommodity flow problems with applications to approximation algo-
rithms, Proc. FOCS 29 (1988), 422 – 431.

[LSS93] T. Leong, P. Shor and C. Stein, Implementation of a Combinatorial Multi-
commodity Flow Algorithm, DIMACS Series in Discrete mathematics and The-
oretical Computer Science 12 (1993), 387-405.

[LNN95] C. Lemarechal, A. Nemirovskii and Y. Nesterov, New variants of bundle
methods, Math. Programming 69 (1995), 111 – 148.

[LLR94] N. Linial, E. London and Y. Rabinovich, The geometry of graphs and some
of its algorithmic applications, Proc. FOCS 35 (1994), 577 – 591.

[L75] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math-
ematics 13 (1975), 383 – 390.

[LN93] M. Luby and N. Nisan, A parallel approximation algorithm for positive linear
programming, Proc. 24th Ann. ACM Symp. on Theory of Computing (1993), 448
– 457.

[Lu] D. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-
Wesley, Menlo Park (1973).

[MMV91] T. Magnanti, P. Mirchandani and R. Vachani, Modeling and solving the
capacitated network loading problem, Working Paper OR 239-91, MIT (1991).

110 APPROXIMATELY SOLVING LARGE LINEAR PROGRAMS

[MW97] T. Magnanti and Y. Wang, Polyhedral Properties of the Network Restora-
tion Problem-with the Convex Hull of a Special Case (1997), to appear, Math.
Programming.

[OK71] K. Onaga and O.. Kokusho, On feasibility conditions of multicommodity
flows in networks, IEEE Transactions on Circuit Theory, 18 (1971), 425 – 429.

[OR88] J.B. Orlin, A faster strongly polynomial minimum cost flow algorithm, Op-
erations Research 41 (1993), 338 – 350.

[PK95] S. Plotkin and D. Karger, Adding multiple cost constraints to combinatorial
optimization problems, with applications to multicommodity flows, In Proceedings
of the 27th Annual ACM Symposium on Theory of Computing, (1995), 18-25.

[PST91] S. Plotkin, D.B. Shmoys and E. Tardos, Fast approximation algorithms for
fractional packing and covering problems, Math. of Oper. Res. 20 (1995) 495-
504. Extended abstract: Proc. 32nd Annual IEEE Symp. On Foundations of
Computer Science, (1991), 495-504.

[R95] T. Radzik, Fast deterministic approximation for the multicommodity flow prob-
lem, Proc. 6th ACM-SIAM Symp. on Discrete Algorithms (1995).

[R01] O. Raskina, Ph. D. Dissertation, Dept. of IEOR, Columbia University (2001).

[S91] R. Schneur, Scaling algorithms for multicommodity flow problems and network
flow problems with side constraints, Ph.D. Thesis, MIT (1991).

[SC86] A. Schrijver, Theory of Linear and Integer Programming, Wiley (1986).

[SM91] F. Shahrokhi and D.W. Matula, The maximum concurrent flow problem,
Journal of the ACM 37 (1991), 318 – 334.

[STODA94] M. Stoer and G. Dahl, A polyhedral approach to multicommodity sur-
vivable network design, Numerische Mathematik 68 (1994), 149 – 167.

[V90] P.M. Vaidya, An algorithm for linear programming which requires
arithmetic operations, Math. Programming 47, 175-201.

[W82] L. Wolsey, An analysis of the greedy algorithm for the submodular set covering
problem, Combinatorica 2 (1982), 385 – 393.

[W97] S. Wright, Primal-Dual interior point methods, Siam (1997).

[Y95] N. Young, Randomized rounding without solving the linear program, in Proc.
6th ACM-SIAM Symp. on Discrete Algorithms (1995), 170-178.

[Y01] N. Young, Sequential and parallel algorithms for mixed packing and cover-
ing, to appear, Proc. 42nd Annual IEEE Symp. On Foundations of Computer
Science(2001).

Index

28

Barrier Method, xvi, 88
block-angular constraints, 30, 73
Bundle Methods, 70

capacitated network design, 23, 90, 95
Chernoff bound, 56
concurrent flows, xv, 2, 54, 93
condition number, 82
cut metrics, 17, 22

exponential potential function, 13, 27

first-order methods, 47, 49
Flow Deviation Method, 3
Frank-Wolfe methods, 12

Lagrangian relaxation, 28, 70, 71, 83
lower bounds, 62

maximum concurrent flow problem, 2
min-max packing problem, 14

minimum congestion problem, 2
multicommodity flow problems, 1, 74, 91

near-optimal supports, 86
Newton’s Method, 79

Penalty Methods, 70
potential function, 12, 13, 27

randomized rounding, 51
restricted linear programs, 86
round-robin strategy, 40

set covering problems, 52
Simplex Method, xv
stepsize computation, 36, 42, 79

time vs. accuracy, 97

Volume Algorithm, 71

width, 28

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

