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Preface

Search Theory is one of the original disciplines within the field of Operations Research.
It deals with the problem faced by a Searcher who wishes to minimize the time required
to find a hidden object, or “target.” The Searcher chooses a path in the “search space” and
finds the target when he is sufficiently close to it. Traditionally, the target is assumed to
have no motives of its own regarding when it is found; it is simply stationary and hidden
according to a known distribution (e.g., oil), or its motion is determined stochastically
by known rules (e.g., a fox in a forest).

The problems dealt with in this book assume, on the contrary, that the “target” is an
independent player of equal status to the Searcher, who cares about when he is found.
We consider two possible motives of the target, and divide the book accordingly. Book
I considers the zero-sum game that results when the target (here called the Hider) does
not want to be found. Such problems have been called Search Games (with the “zero-
sum” qualifier understood). Book II considers the opposite motive of the target, namely,
that he wants to be found. In this case the Searcher and the Hider can be thought of
as a team of agents (simply called Player I and Player II) with identical aims, and the
coordination problem they jointly face is called the Rendezvous Search Problem. This
division of the book according to Player II’s motives can be summarized by saying that
in a Search Game the second player (Hider) wishes to maximize the capture time T,
while in a Rendezvous Problem the second player (Rendezvouser) wishes to minimize
T. (In both cases, the first player wishes to minimize T.)

Of the two problems dealt with in the book, the area of Search Games (Book
I) is the older. These games stem in part from the “The Princess and the Monster”
games proposed by Rufus Isaacs (1965) in his well known book on Differential Games.
Beginning with the first search game with mobile hider to be solved (that on the circle,
by Alpern (1974), Foreman (1974), and Zelinkin (1972)), and the subsequent solutions
of search games on networks and regions in space by Gal (1979), the early work on such
games culminated in the classic book of Gal (1980). This work has stimulated much
subsequent research in the field including applications in computer science, economics,
and biology. Much of this research is covered in Book I which contains many new results
on Search Games as well as the classical results, presented with simpler exposition and
proofs. However there are many open questions, even some of a fairly elementary
nature, which are also covered here. For an extensive introduction to the area of Search
Games, see Chapter 1.



The Rendezvous Search Problem (Book II) is a more recent area of interest. It asks
how quickly two (or maybe more) players can meet together at a single location, when
placed in a known search region, without a common labelling of locations. Although
posed informally by Alpern as early as 1976, a rigorous formulation for the continuous
time version did not appear until Alpern (1995). Beginning with the early subsequent
papers of Alpern and Gal (1995) and Anderson and Essegaier (1995) on rendezvous
on the line, the interest in this problem has expanded to encompass many variations,
including multiple player rendezvous and different forms studied by V. Baston, A. Beck,
S. Fekete, S. Gal, J. V. Howard, W. S. Lim, L. Thomas, and others. Particular interest
has been paid to some discrete time rendezvous models, which have a separate history
going back to the original papers of Crawford and Haller (1990) on coordination games
in the economics literature, and Anderson and Weber (1990) in a search theory context.
Much of this work is surveyed in the paper of Alpern (2002a). An extensive introduction
to the field of Rendezvous Search can be found in Chapter 10.

Although both authors have worked in the two fields of Search Games and Ren-
dezvous Search Theory, the division of this book into two parts reflects the emphasis of
their work. As such, Book I (Search Games) was mainly written by Shmuel Gal, and
results in this part which are not otherwise ascribed are due to him. Similarly, Book II
(Rendezvous Search) was mainly written by Steve Alpern, with unascribed results there
due to him. Of course both authors take joint responsibility for this book as a whole.

We would like to put the work of this book into its historical context with respect to
earlier survey articles and books on search. Search Theory is usually considered to have
begun with the work of Koopman and his colleagues on “Search and Screening” (1946).
(An updated edition of his book appeared in 1980.) The problem of finding the optimal
distribution of effort spent in search is the main subject of the classic work of Stone
(1989, 2nd ed.), “Theory of Optimal Search”, which was awarded the 1975 Lanchester
Prize by the Operations Research Society of America. Much of the early work on
search theory surveyed by Dobbie (1968) was concerned with aspects other than optimal
search trajectories, and as such is very different from our approach. The later survey
of Benkoski, Monticino, and Weisinger (1991) shows how the determination of such
trajectories has come to be studied more extensively. Recent books on Search Theory
include those of Ahlswede and Wegener (1987), Haley and Stone (1980), Iida (1992),
and Chudnovsky and Chudnovsky (1989). The first book to introduce game theoretic
aspects of search problems was of course Gal (1980), but these are also considered in
Ruckle (1983a) and form the basis of the recent stimulating book of Garnaev (2000).
This volume is the first to cover the new field of rendezvous search theory.

xii PREFACE
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Rate of discovery of the searcher
Cost function (the payoff to the hider)
Expected cost
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A pure hiding strategy
The set of all pure hiding strategies
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The uniform hiding strategy
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A pure search strategy (a search trajectory)
The set of all admissible search trajectories
A mixed search strategy
Capture time
Time parameter
Value of the hiding strategy
Value of the search strategy
Minimal value obtained by a pure search strategy (the “pure
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Value of the search game
Maximal velocity of the hider
A point in the search space
Integer part
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Chapter 1

Introduction to Search Games

In this book we are mainly concerned with finding an “optimal” search trajectory for
detecting a target. In the search game part (Book I) we shall usually not assume any
knowledge about the probability distribution of the target’s location, using instead a min-
imax approach. The minimax approach can be interpreted in two ways. One could either
decide that because of the lack of knowledge about the distribution of the target, the
searcher would like to assure himself against the worst possible case (this worst-case
analysis is common in computer science and operations research), or, as in many mili-
tary situations, the target is a hider who wishes to evade the searcher as long as possible.
This approach leads us to view the situation as a game between the searcher and the
hider. In general, we shall consider search games of the following type. The search takes
place in a set Q called the search space. We shall distinguish between games in compact
search spaces, which are considered in Part I and games in unbounded domains which
are considered in Part II. The searcher usually starts moving from a specified point
O called the origin and is free to choose any continuous trajectory inside Q, subject
to a maximal velocity constraint. As to the hider, in some of the problems it will be
assumed that the hider is immobile and can choose only his hiding point, but we shall
also consider games with a mobile hider who can choose any continuous trajectory
inside Q. It will always be assumed that neither the searcher nor the hider has any
knowledge about the movement of the other player until their distance apart is less than
or equal to the discovery radius r, and at this very moment capture occurs.

Each search problem will be presented as a two-person zero-sum game. In order
to treat a game mathematically, one must first present the set of strategies available to
each of the players. These strategies will be called pure strategies in order to distin-
guish between them and probabilistic choices among them, which will be called mixed
strategies. We shall denote the set of pure strategies of the searcher by and the set
of pure strategies of the hider by A pure strategy is a continuous trajectory
inside Q such that S(t) represents the point that is visited by the searcher at time t.
As to the hider, we have to distinguish between two cases: If the hider is immobile,
then he can choose only his hiding point On the other hand, if he is mobile,
then his strategy H is a continuous trajectory H(t) so that, for any  H(t) is the
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point occupied by the hider at time t. The next step in describing the search game is to
present a cost function (the game-theoretic payoff to the maximizing hider) c(S, H),
where S is a pure search strategy and H is a pure hiding strategy. The cost c(S, H) has
to represent the loss of the searcher (or the effort spent in searching) if the searcher uses
strategy S and the hider uses strategy H. Since the game is assumed to be zero-sum,
c(S, H) also represents the gain of the hider, so that the players have opposite goals: the
searcher wishes to make the cost as small as possible, while the hider wishes to make it
large. A natural choice for the cost function is the time spent until the hider is captured
(the capture time). For the case of a bounded search space Q, this choice presents no
problems. But if Q is unbounded and if no restrictions are imposed on the hider, then he
can make the capture time as large as desired by choosing points that are very far from
the origin. We overcome that difficulty either by imposing a restriction on the expected
distance of the hiding point from the origin or by normalizing the cost function. The
details concerning the choice of a cost function for unbounded search spaces are pre-
sented in Chapter 6. Given the available pure strategies and the cost function c(S, H),
the value  guaranteed by a pure search strategy S is defined as the maximal cost
that could be paid by the searcher if he uses the strategy S; thus,

4

We define the minimax value of the game as

Then for any the searcher can find a pure strategy S, which guarantees that the
loss will not exceed A pure strategy that satisfies

will be called an search trajectory. If there exists a pure strategy      which
satisfies

then will be called a minimax search trajectory.
The value represents the minimal capture time that can be guaranteed by the

searcher if he uses a fixed trajectory, but in all the interesting search games the searcher
can do better on the average if he uses random choices out of his pure strategies. These
choices are called mixed strategies (see Appendix A).

If the players use mixed strategies, then the capture time is a random variable, so that
each player cannot guarantee a fixed cost but only an expected cost. Obviously, any pure
strategy can be looked on as a mixed strategy with degenerate probability distribution
concentrated at that particular pure strategy, so that the pure strategies are included in
the set of mixed strategies. A mixed strategy of the searcher will be denoted by s and a
mixed strategy of the hider will be denoted by h. The expected cost of using the mixed
strategies s and h will be denoted by c(s, h). We will use the notation to denote
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the expected cost guaranteed by a player (either the searcher or the hider) if he uses a
specific strategy. Thus, is the maximal expected cost of using a search strategy s:

will be called the value of strategy s. Similarly, the minimal expected cost of
using a hiding strategy h

will be called the value of strategy h. It is obvious that for any s and h,
because

If there exists a real number that satisfies

then we say that the game has a value . In this case, for any there exist a search
strategy and a hiding strategy that satisfy

Such strategies will be called strategies. In the case that there exists
such that then is called an optimal strategy.

The reader will have noticed that to avoid more cumbersome notation we have made
a rather versatile use of the letter . Its meaning will depend on the context: without
an argument, it denotes the value, as defined in (1.6). When its argument is a search
strategy, it is defined by equation (1.4); when a hiding strategy, by (1.5).

In general, if the sets of pure strategies of both players are infinite, then the game
need not have a value (for details, see Luce and Raiffa, 1957, Appendix 7). However,
in Appendix A we shall show that any search game of the type already described has
a value and an optimal search strategy. (The hider need not have an optimal strategy
and in some games he has only strategies.)

Keeping the previous framework in mind, we present a general description of the
material covered in Book I (Parts I and II). This book contains many new results on
search games, as well as the classical results presented with simpler exposition and
proofs. It also contains many open problems, even some of elementary nature, which
hopefully will stimulate further research.

In Part I we consider search games in compact spaces within the framework pre-
sented in Chapter 2. In Chapter 3 we analyze search games with an immobile hider in
networks and in multidimensional regions. Among the topics considered we investi-
gate the performance of the following natural search strategy: Find a minimal closed
curve L that covers all the search space Q. (L is called a Chinese postman tour.) Then,
encircle L with probability 1/2 for each direction. This random Chinese postman tour
is indeed an optimal search strategy for Eulerian networks and for trees, or if Q is
a two-dimensional region. An intriguing problem is to characterize the family of graphs
for which the optimality property of the random Chinese postman holds. The solution,
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found recently by Gal (2000), is presented. The difficulties associated with solving
search games for networks outside of the above family are presented. We also present
a dynamic programming algorithm for numerically finding an optimal search trajectory
against a known hiding strategy. This algorithm can sometimes help us to solve search
games that are difficult to handle analytically.

Problems with a mobile hider are usually more difficult. (This statement, however,
is not always true. For example, the solution of the search game on three arcs is easy for
a mobile hider but very difficult for an immobile hider.) Search games with a mobile
hider are analyzed in Chapter 4. We first present the solutions for the search game on
the circle and on k unit arcs connecting two points. We also present several new results
on networks that can be relatively quickly searched, including the figure eight network.
The k arcs game can serve as a useful introduction for the Princess and Monster game
in two (or more) dimensional regions, analyzed later in this chapter.

In Chapter 5 we consider four types of search games in compact spaces, which do
not fall into the framework of Chapters 3 and 4. We present in detail new results for
searching in a maze (i.e., a network with an unknown structure) and “high–low” search
in which the searcher gains a directional information in each observation. Then we
survey the problems of searching for an infiltrator who would like to reach a sensitive
zone and searching in discrete locations.

In Part II we consider search games in unbounded domains. The general framework
of such problems is described in Chapter 6. We introduce the normalized cost function
(called the competitive ratio in Computer Science literature). We show that solving
a search game using a normalized cost function is usually equivalent to restricting the
absolute moment of the hiding strategy by an upper bound.

In Chapter 7 we develop a general tool for obtaining minimax trajectories for
problems involving homogeneous unimodal functionals. We show that the minimax
trajectory is a geometric sequence. This enables us to easily find it by minimizing over
a single parameter (the generator of this sequence) instead of searching over the whole
trajectory space. The results obtained in Chapter 7 are used in Chapters 8 and 9 but the
proofs of the theorems are mainly for experts and can be skipped at first reading.

The linear search problem (LSP), i.e., finding a target with a known distribution
on the line, has been attracting much attention over several decades. This problem was
analyzed as a search game by Beck and Newman (1970) and by Gal (1980). In Chapter 8
we present the above classical results along with several variants. In addition we present
a new model of the linear search game when changing the direction of motion requires
some time and cannot be done instantaneously (as originally assumed in the LSP). We
also present a new dynamic programming algorithm for computing, with any desired
accuracy, the optimal search trajectory of the LSP for any known hiding distribution.

In Chapter 9, the last chapter of Book I, we use the tools developed in Chapter 7 to
solve several search games. At first we find a minimax trajectory for searching a set of
rays. This problem has recently attracted a considerable attention in computer science
literature. We then present some new results for the minimax search trajectory on the
boundary of a region in the plane. Then we analyze the minimax search trajectory for
a point in the plane. We also discuss several classical and new “swimming in the fog”
problems in which we have to find a minimax trajectory to reach a shoreline of a known
shape, starting from an unknown initial point. We then conclude by presenting an open
problem of searching for a submarine with a known initial location.



Part One

Search Games in
Compact Spaces



This page intentionally left blank 



Chapter 2

General Framework

The search spaces considered in Part I are closed and bounded subsets of a Euclidean
space. They are usually either a compact region (i.e., the closure of a connected bounded
open set) in a Euclidean space with two or more dimensions, or a network. In this book
a network will mean a finite connected set of arcs, called edges, which can intersect only
at their endpoints, called nodes. Examples of such networks are a circle, a tree, a set of
k arcs connecting two points, etc. Obviously, if a graph is given in the combinatorial
form of nodes and edges, then it can be embedded in a three-dimensional Euclidean
space in such a way that the edges intersect only at nodes of the network. (Two
dimensions are not sufficient for nonplanar networks.) Thus, we shall look upon each
Network as a subset of Each arc in the Network has a given length and an associated
distance function defined on it.

Definition 2.1 The distance d(x, y) between any two points x and y in a network Q is
defined as the minimum length among all the paths that connect x and y within Q. The
diameter D of Q is defined as the maximum distance between two of its points, that is,

We now describe more specifically a search game in the space Q, with the outline
given in Chapter 1. A pure search strategy S is a continuous trajectory inside Q that does
not exceed a fixed maximal velocity. The time unit will be chosen so as to normalize this
maximal velocity to 1. Such a trajectory S(t) is a continuous mapping
satisfying

We shall usually assume that the searcher has to start from a fixed point O to be called
the origin (i.e., S(0) = O), but we shall sometimes consider other possibilities such
as a chosen or a random starting point. The set of all pure search strategies is denoted
by A pure hiding strategy H is an arbitrary continuous trajectory inside Q with
maximal velocity not exceeding a given maximum hider velocity In the case
the hider is immobile and H is a single point, while if then the hider is mobile

for any



The case of a mobile hider also includes the possibility of i.e., a hider,
moving along a continuous trajectory, with an unbounded velocity. The set of all pure
hiding strategies is denoted by

We assume that the searcher and the hider cannot see one another until their distance
is less than or equal to the discovery (or detection) radius r and at that very moment
capture occurs (and the game terminates). In cases where Q is a network, then (for
convenience) r will be taken as zero. (Actually, r can usually be chosen as a small
positive number without introducing any significant changes in the results.) If Q is a
multidimensional region, then it will be assumed that r is very small in comparison
with the magnitude of Q. (To be more precise, we will assume that where µ ,
and are, respectively, the Lebesgue measure, of appropriate dimension, of Q and the
boundary of Q.) In order to simplify the presentation of the results, we shall generally
consider the case in which both the maximal velocity of the searcher and the radius of
detection are constants. However, we shall also extend the results to the case where the
maximal velocity of the searcher depends on his location and the radius of detection
depends on the location of the hider. We will call such a case an inhomogeneous search
space.

Whenever the search space Q is a Network or a subset of Euclidean space, it is
endowed with Lebesgue measure of the appropriate dimension (corresponding to length,
area, volume, etc.). To avoid a separate notation for the total measure of Q, we make
the following simplifying definition.

Definition 2.2 The Lebesgue measure of any measurable subset B of Q is denoted by
µ (B). The total measure of Q is denoted by µ = µ (Q).

The set of points of Q which have been “searched” by a trajectory S by time t is
denoted by That is,
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and H is a trajectory that satisfies

Obviously, the set that is discovered at time 0 does not depend on S. Its measure
will be denoted by

The following notion describes the maximum rate at which new points of Q can be
discovered.

Definition 2.3 The maximal discovery rate of the searcher is defined as,

Since the maximal velocity of the searcher is 1 it follows that for search in
a network. In case that Q is a two-dimensional region, the sweep width is 2r, so that
the maximal area of the strip that can be swept in one unit of time is 2r. By a similar
reasoning, is equal to for three-dimensional regions, and so on.

for some

for all



If no such t exists, then we say
A mixed strategy s (resp. h) of the searcher (resp. hider) is a probability measure

on In order to rigorously present such strategies, one has to introduce a
substantial amount of measure-theoretic machinery for and Such a construction
is briefly presented in Appendix A. In Gal (1980) full details are presented, including
the result that c(S, H) is Borel measurable in both variables, so that we can define the
payoff c, in the case that the searcher uses s and the hider uses h, as the expected value
of c with respect to the product measure s × h:

and that the searcher always has an optimal strategy. Thus, for any such search game,
the searcher can always guarantee an expected payoff not exceeding  , while the hider
can guarantee that the expected payoff exceeds

For the search games presented in this book, we shall generally use constructive
methods to find the value and the optimal strategies of the players. In
the case of a network, whenever we can obtain a solution of the game, it will be
an exact solution. On the other hand, the solutions that we get for the search games
in multidimensional regions depend on the fact that the detection radius r is small. In
this case, we shall present two strategies and and a function f(r) which satisfy
(see (1.7))

Since Pr (T > t) is monotonic nonincreasing in t, it follows from (2.4) that for any
positive number

The capture time, which is denoted by c(S, H) (and sometimes by T) represents
the loss of the searcher (and the gain of the hider). It is formally defined as

The fundamental results (see Appendix A) are that any search game as described
above has a value , i.e.,

Thus, and are strategies and ~ f(r) for small r.
In calculating the expected capture time of the search games to be considered, we

shall often use the following result, which is well known in probability theory (see, e.g.,
Feller, 1971, p. 150).

Proposition 2.4 The expected value E(T) ofa nonnegative random variable T satisfies

CHAPTER 2. GENERAL FRAMEWORK 11
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We now present a simple but useful result known as the scaling lemma, which will
enable us to normalize the arc lengths in some networks and will also be used for search
games in unbounded domains. It actually states that changing the unit length in Q
affects the search game in a very simple manner.

Proposition 2.5 (Scaling Lemma) Let be a search game in a set Q with an origin
O and a detection radius r. Assume that the value of is and that s, h are optimal

strategies. Consider a set with a metric which is obtained from Q by
an onto mapping with the following property for some

12 BOOK I. SEARCH GAMES

Similarly,

Define a search game in with an origin a detection radius
and the same maximal velocitiesfor the searcher and the hider as in Then the value

of satisfies and the optimal  strategies of are obtained by
applying the mapping to the trajectories in Q and changing the time scale by afactor
of

The proof is based on the simple observation that for any pair of trajectories S and
H, in Q, the capture time corresponding to and in would be multiplied
by A formal proof is given in Gal (1980).

An identical argument shows that an analogous result holds for the rendezvous
search problems discussed in Book II.

for all



Chapter 3

Search for an Immobile Hider

3.1 Introduction

In this chapter, we consider search games in compact spaces with an immobile hider. In
this case, a pure hiding strategy H is simply a point in the search space Q, and a mixed
hiding strategy h is a probability measure on Q. A pure search strategy S is a continuous
trajectory in Q, starting at the origin O, with maximal velocity not exceeding 1. Since
the hider is immobile, it can be assumed that the searcher will always use his maximal
velocity because any trajectory that does not use the maximal velocity is dominated by
a trajectory that uses the maximal velocity along the same path. A mixed search strategy
s is a probability measure on the set of these pure strategies.

A hiding strategy that plays an important role in some of the games to be presented is
the uniform strategy which chooses the hiding point in Q “completely randomly.”1

More precisely:

Definition 3.1 The uniform strategy is a random choice of the hiding point H such
that for all measurable sets

Recall (see Definition 2.2) that the use of µ without an argument means that the
argument is Q. That is,

Note that it makes more sense for the hider not to hide within distance r from O
using the uniform distribution on the rest of Q. However, since r is either 0 or very
small with respect to the magnitude of Q, we will not use this

Our next result shows that if the hider chooses his hiding point according to the
uniform strategy he ensures an expected evasion (capture) time of at least
where is the searcher’s maximal discovery rate, as introduced earlier in Definition 2.3.
This result holds not only for search strategies in (continuous search paths) but even
for the following larger class of generalized search strategies.

1Using normalized Lebesgue measure on Q.
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Definition 3.2 A generalized search strategy is defined by the sets that it
has “discovered” by time t. The sets X (t) are only required to satisfy the conditions

and

In particular, every continuous strategy defines a generalized strategy by the
formula (2.1).

(Note that we usually restrict the searcher to move along a continuous trajectory and
so do not allow generalized search strategies. These strategies will be discussed only in
this section in order to introduce the unrestricted search game, which will be solved in
Theorem 3.7.)

Theorem 3.3 If the hider chooses his hiding point according to the uniform strategy
then he ensures an expected capture time of at least against any generalized

search strategy and in particular against any trajectory

Proof. Let denote the measure of the set of points discovered at
time 0. (In the case that r = 0, which we shall generally assume for networks, we have

for the multidimensional spaces r is very small so that In any case
it follows from the definition of a generalized strategy that

in the case r = 0 and

(If we do not assume that the same analysis gives the slightly more complicated
estimate

The following result is an immediate consequence of the considerations used in the
above theorem.

Corollary 3.4 If S satisfies then for all the measure
of the points swept by S in the time interval (0, t] is equal to (i.e., S sweeps without
overlapping).

and hence by (2.4) we have

or simply

Consequently, for r = 0, the probability that a hider hidden according to the distribution
has been found by time t is given by

and
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Since the hiding strategy guarantees against any starting point of the
searcher, we also have the following.

Corollary 3.5 Let be a search game with value and be the search
game obtained from by allowing the searcher to choose his starting point. Then the
value of is also

The extension of the preceding discussion to search games with more than one
searcher is presented in the following result.

Corollary 3.6 Consider a search game with one immobile hider and J searchers, with
the j -th searcher having a maximal velocity Assume that all the searchers cooperate
in order to discover the hider (by at least one of them) as soon as possible. Let be the
Lebesgue measure ofa set, which can be swept by the j-th searcher in one unit of time,
and define the total rate of discovery Then Theorem 3.3 holds for this
game, with replacing

Proof. Let X(t)  denote the set of all points discovered by at least one of the
J searchers by time t. Then since X (t) is easily seen to be a generalized strategy
with respect to the parameter Theorem 3.3 applies to this game as claimed.

Note that since the uniform strategy is always available to the hider, Theorem 3.3
shows that is a lower bound for the value of any search game, even if generalized
search strategies are allowed. In fact, the following result of the authors shows that if
we allow generalized strategies (and mixtures of them), is always the value of
the resulting “unrestricted game.” Note that for all the search spaces Q, which we will
consider in this book, the measure space (Q, µ) has the following properties: there are
no atoms, and any subset of a measure zero set is measurable. Such a measure space is
called a Lebesgue space.

Theorem 3.7 The value of the unrestricted search game on any Lebesgue space Q is
given by where µ denotes the total measure µ (Q).

Proof. According to the Theorem 3.3, we need only present a generalized search
strategy that finds any hiding point in expected time not exceeding A simple
construction is to find any generalized search strategy X(t) that sweeps without over-
lapping during the time interval anddefine as the “reverse” of X (t) (i.e.,
any point first covered by X at time t is first covered by at time Then the

generalized (mixed) strategy that adopts X and equiprobably, discovers any
in expected time

For readers who are familiar with measure theory we present a formal proof of
the theorem as follows. For any Lebesgue space (Q, µ) there exists an invertible bi-
measurable map which takes one-dimensional Lebesgue measure

into the measure µ , (that is, for
(see Halmos, 1950). Define two generalized strategies X and by
and for For any hiding point

choose (H) and observe that
Consequently, if the searcher adopts X and equiprobably, then any point H will
have been discovered in expected time  as
claimed.
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The unrestricted game is similar to a discrete search game in which Q consists of
n cells of equal size. We now formulate and solve a more general discrete version of the
search game. In the game to be considered, Q consists of n cells of sizes
and the measure of Q is defined as It is assumed that the maximal rate of
discovery of the searcher is so that it takes him units of time to look at cell
number i. It is also assumed that if the hider is located in cell i and if the searcher starts
to look in this cell at time t, then the hider is discovered at time A pure
hiding strategy H is an element of the set {1, 2 , . . . , n } , while a pure search strategy s
is a permutation of the numbers (1, 2 , . . . , n). We now show that the result

also holds for this discrete version.

Proposition 3.8 The value of the discrete search game is An optimal hiding
strategy assigns a probability of to each cell, and an optimal search strategy

is to choose any permutation and to assign a probability 1/2 to this
permutation and a probability 1/2 to its “reverse”

Proof. For any permutation the strategy satisfies

For all the mixed strategy satisfies

Thus

A description of some other discrete search games is given in Chapter 5.
The expression can be looked upon as the value that is obtained if the searcher

is able to carry out his search with maximal efficiency. The games considered in this
book are obviously restricted by the fact that the searcher has to move along a continu-
ous trajectory so that the value does depend on the structure of Q. We shall have cases,
such as Eulerian networks (Section 3.2), in which the searcher can perform the search
with “maximal efficiency” which assures him a value of A similar result holds
for search in two-dimensional regions with a small detection radius (Section 3.7), and
in this case the searcher can keep the expected capture time below On
the other hand, in the case of a non-Eulerian network, we shall prove that the value
is greater than and that the maximal value is (Section 3.2). This value is
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obtained in the case that Q is a tree (Section 3.3). A more general family that contains
both the Eulerian networks and the trees as subfamilies is the weakly Eulerian net-
works (see Definition 3.24) for which the optimal search strategy has a simple structure
similar to that for Eulerian networks and the trees (Section 3.4). We shall also demon-
strate the complications encountered in finding optimal strategies in the case that Q is
not weakly Eulerian, even if the network simply consists of three unit arc connecting
two points (Section 3.5). Dynamic programming is sometimes an effective technique
for numerically computing an optimal search trajectory against a given hiding strat-
egy (Section 3.6). For example, this technique can be used to numerically verify the
optimality of rather complex strategies for the three-arcs search game.

3.2 Search in a Network

In our discussion, “network” will mean any finite connected set of arcs that intersect
only at their end points which we call nodes of Q. Thus, Q can be represented by a
set in a three-dimensional2 Euclidean space with nodes consisting of all points of Q
with degree plus, possibly, a finite number of points with degree 2. (As usual, the
degree of a node is defined as the number of arcs incident at that node.) Note that we
allow more than one arc to connect the same pair of nodes. The sum of the lengths of
the arcs in Q will be denoted by µ, and called either the total length or the measure.

In studying search trajectories in Q, we shall often use the term closed trajectory,
defined as follows.

Definition 3.9 A trajectory S(t) defined for is called “closed” if
(Note that a closed trajectory may cut itself and may even go through some of the

arcs more than once.) If a closed trajectory visits all the points of Q, then it is called
a tour.

We now consider a family of networks that lend themselves to a simple solution of
the search game. These are the Eulerian networks defined as follows.

Definition 3.10 A network Q is called Eulerian if there exists a tour L with length µ,
in which case the tour L will be called an Eulerian tour. A trajectory
which covers all the points of Q in time µ, will be called an Eulerian path. (Such a path
need not be closed.)

It is well known that Q is Eulerian if and only if the degree of every node is even
and that it has an Eulerian path starting at O if and only if the only nodes of odd degree
are O and another node A. In this case every Eulerian path starting at O must end at A
(see Harary, 1972).

Since the maximal rate of discovery in networks is 1, it follows from Theorem 3.3
that µ/2 is a lower bound for the value of the search game in any network. We now
show that this bound is attained if and only if Q is Eulerian.

Theorem 3.11 The value of the search game for an immobile hider on a network Q is
equal to µ/2 (half the total length of Q) if and only if Q is Eulerian.

2 Two dimensions are sufficient for planar networks.



Proof. First suppose that Q is Eulerian and that L is an Eulerian tour. Define as the
reverse path given by and define the mixed strategy to pick L and
equiprobably. For any hiding point H in Q, there is at least one with
and hence . Consequently

On the other hand, it follows from Theorem 3.3 that if the hider uses the uniform
strategy we have for any pure search strategy S. So if Q is Eulerian,
the value is half its total length.

Suppose now that = µ/2 and Q is not Eulerian. By the first assumption,
Corollary 3.4 says that any optimal strategy must be supported
by pure strategies S for which
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In other words, S must be an Eulerian path (not tour) starting at O. Consequently there
is a unique node A of Q with odd degree such that every Eulerian path ends at A. We
will construct a small modification of the uniform hider distribution such that for
every Eulerian path S we have

and hence

which contradicts our optimality assumption for
To construct let be the minimum length of the arcs incident at A. Define

the mixed strategy by first using and then simply moving any hider H with
to the point on the same arc with

That is, we move such hiders H a distance closer to A. For any Eulerian path S
and for H as above, we have where if S traverses
the arc containing H toward A and if this arc is traversed away from A. Since
any Eulerian path S traverses one more of the arcs incident at A toward A than away
from A, we have

completing the proof by establishing the required inequality (3.1).

Corollary 3.12 For an Eulerian network, the optimal strategies and the value of the
search game remain the same ifwe remove the usual restriction S(0) = O and instead
allow the searcher to choose his starting point.

The claim of the corollary is an immediate consequence of Corollary 3.5.

Remark 3.13 Corollary 3.12 does not hold for non-Eulerian networks because (unlike
the Eulerian case) the optimal hiding strategy usually depends on the starting point
of the searcher. In general, if we allow the searcher to choose an arbitrary starting

and hence



point, then the value of this game is µ/2 if and only if there exists an Eulerian path
(not necessarily closed) in Q. (If there exists such a path, L, then the searcher can
keep the expected capture time by an analogous strategy to of Theorem 3.11,
choosing the starting point randomly among the two end nodes of L. If there exists no
Eulerian path in Q, then the hider can keep the expected capture time above µ/2 by
using

We now establish an upper bound for the value, which holds for all networks.

Definition 3.14 A closed trajectory that visits all the points of Q and has minimal
length will be called a minimal tour (or a Chinese postman tour) and is usually denoted
by L. Its length will be denoted by

Lemma 3.15 Any minimal tour satisfies Equality holds only for trees.

Proof. Consider a network obtained from Q as follows. To any arc b in Q,
add another arc that connects the same nodes and has the same length as b. Since
every node of has even degree, it follows that has an Eulerian tour of length

If we now map the network into the original network Q
such that both arcs b and of are mapped into the single arc b of Q, then the tour

is mapped into a tour L of Q with the same length 2µ. If Q is not a tree, it contains
a circuit C. If we remove all new arcs in corresponding to this circuit, then the
resulting network is still Eulerian and contains Q but has total length less than 2µ .

Finding a minimal tour for a given network is called the Chinese postman problem.
This problem can be reformulated for any given network Q as follows. Find a set
of arcs, of minimum total length, such that when these arcs are duplicated (traversed
twice in the tour), the degree of each node becomes even. This problem was solved by
Edmonds (1965) and Edmonds and Johnson (1973) using a matching algorithm that
uses computational steps, where n is the number of nodes in Q. This algorithm
can be described as follows. First compute the shortest paths between all pairs of odd-
degree nodes of Q. Then, since the number of odd degree nodes is even, partition them
into pairs so that the sum of lengths of the shortest paths joining the pairs is minimal.
This can be done by solving a weighted matching problem. The arcs of Q in the paths
identified with arcs of the matching are the arcs that should be duplicated (i.e., traversed
twice). The algorithm is also described by Christofides (1975) and Lawler (1976). (An
updated survey on the Chinese postman problem is presented by Eiselt et al., 1995.)

Once an Eulerian network is given, one can use the following simple algorithm for
finding an Eulerian tour (see Berge, 1973). Begin at any node A and take any arc not
yet used as long as removing this arc from the set of unused arcs does not disconnect
the network consisting of the unused arcs and incident nodes to them. Some algorithms,
which are more efficient than this simple algorithm were presented by Edmonds and
Johnson (1973). Actually, it is possible to slightly modify Edmond’s algorithm in order
to obtain a trajectory (not necessarily closed), which visits all the points of Q and has
minimal length. This trajectory is a minimax search trajectory, and its length is the
minimax value of the game.

Example 3.16 Consider the graph in Figure 3.1 (having the same structure as
Euler’s Köninsberg bridge problem) in which all the four nodes have odd degrees.

19CHAPTER 3. SEARCH FOR AN IMMOBILE HIDER
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The duplicated arcs in the minimal tour can be either (based on the par-
tition {AB, OC}) or (based on {OB, AC})  or (based on {OA, BC}).
The corresponding sum of the lengths of the arcs is 5 or 4 or 5. Thus, the minimal
tour duplicates the arcs and d. The minimal tour can be traversed by the following
trajectory

with length 18.

Using the length of the minimal tour, we now derive an upper bound for the value
of the search game, with immobile hider, in a network in terms of the length of its
minimal tour.

Definition 3.17 The search strategy that encircles L equiprobably in each direction,
will be called the random Chinese postman tour.

Lemma 3.18 For any network Q, the random Chinese postman tour,   finds any point
H in expected time not exceeding Consequently

Proof. For any hiding point H, if a path of reaches H at time t, then the opposite
path reaches it not later than Consequently,   finds H in an expected time not
exceeding

with length A minimax search trajectory is based on duplicating arcs (having
minimal total length) in order to make all the node degrees even except for the starting
point O plus another node. It can be easily seen that the arcs that have to be duplicated
are and leading to the following minimax trajectory

(Note that such a search strategy was shown to be optimal for Eulerian networks, in
the beginning of Theorem 3.11. However, this strategy need not be optimal for other
networks.)
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A random Chinese postman tour of Figure 3.1 is to equiprobably follow (see (3.2))
or the same path in the opposite direction:

Combining Theorems 3.3 and 3.11 and Lemmas 3.15 and 3.18 we obtain the fol-
lowing result. (The last statement of the theorem will be proven in the next section in
Theorem 3.21.)

Theorem 3.19 For any network Q, the value  of the search game with an immobile
hider satisfies

The lower bound is attained ifand only if Q is Eulerian. The upper bound µ is attained
ifand only if Q is a tree.

3.3 Search on a Tree

We now consider the search game on a tree. Our main findings (Theorem 3.21) are that
the value of such a game is simply the total length of the tree ( = µ) and that a random
Chinese postman tour is optimal for the searcher. The optimal strategy for the hider is to
pick among the terminal nodes according to a certain recursively generated probability
distribution, which will be explicitly described.

The fact that is an immediate consequence of Theorem 3.19. The reverse
inequality is more difficult to establish. First observe that if x is any point of the tree
other than a terminal node, the subtree (the connected component, or components,
of Q – {x}, which doesn’t contain the starting point O) contains a terminal node y.
Since no trajectory can reach y before x, hiding at y strictly dominates hiding at x. So
we may restrict our hiding strategies to those concentrated on terminal nodes.

To motivate the optimal hiding distribution over the terminal nodes, we first consider
a very simple example. Suppose that Q is the union of two trees and that meet
only at the starting node O. Let denote the total length of Let denote the
probability that the hider is in the subtree Assume that the searcher adopts the
strategy of first using a random Chinese postman tour of and then at time starts
again from O to use a random Chinese postman tour of The expected capture time

resulting from such a pair of strategies can be obtained as in the proof of Lemma 3.18,
giving

Conducting the search in the opposite order gives an expected capture time of

Consequently, if the are known, the searcher can ensure an expected capture time of
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Since the two expressions in the bracket sum to it follows that the hider
can ensure an expected capture time of at least only if these expressions are
equal, or

This analysis shows that if  = µ, then an optimal hider strategy must hide in each
subtree with a probability proportional to its total length.

In general, an optimal hiding strategy will be constructed recursively by the
following algorithm.

Algorithm for hiding in a tree
First recall our above argument that the hiding probabilities are positive only for the
terminal nodes of Q. We start from the origin O with P(Q) = 1 and go toward the
leaves. In any branching we split the probability of the current subtree proportionally
to the measures of subtrees corresponding to the branches. When only one arc remains
in the current subtree we assign the remaining probability, p(A), to the terminal node
A at the end of this arc. We illustrate this method for the tree depicted in Figure 3.2.

From O we branch into and with proportions 1, 3, 6, and 3, respec-
tively. Thus, the probabilities of the corresponding subtrees are and
respectively. Since and C are leaves we obtain and
Continuing toward we split the probability of the corresponding subtree, with
proportions , and between and so that

Similarly,

In order to show that = µ. we shall demonstrate that the above described hiding
strategy is optimal for trees, i.e., guarantees an expected capture time of at least µ.
This proof begins with the following result.

Lemma 3.20 Consider the two trees Q and as depicted in Figure 3.3. The only
difference between Q and is that two adjacent terminal branches B of length
and of length (in Q) are replaced by a single terminal branch B of length

and

and
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Let be the value of the search game in Q and let be the value of
the search game in Then

Proof. Let be an optimal hiding strategy for the tree so that

We may assume, as explained above, that is concentrated on terminal nodes. Given
we construct a hiding strategy in h in the network Q as follows. For any node other than

or the hiding probability is the same for h and The probabilities
and of choosing and when using h are given by the formulae

and

for any pure trajectory

where is the probability of being chosen by and are the lengths
defined in the statement of the lemma (see Figure 3.3). We shall show that by
proving that for any search trajectory S in Q we have

In order to prove (3.5) we proceed as follows. Since the hider uses the strategy h that
chooses its hiding point at terminal nodes only, it is best for the searcher to use a search
trajectory, which has the following characteristics. Starting from the root O, it moves
via the shortest route to some terminal node, then moves via the shortest route to another
terminal node, and so on until all the terminal nodes have been visited. More precisely,
we can say that any search trajectory is dominated by one that visits the terminal nodes in
the same order (of first visits) and has the above “shortest route” property. Consequently,
there is a one-to-one correspondence (denoted by ~) between the set of undominated
search trajectories and the permutations of the terminal nodes. Bearing that in mind and
assuming (without loss of generality) that the search strategy S visits the terminal node

before visiting S can be represented by the following permutation of terminal
nodes:
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Let denote the time taken for the trajectory S to reach the
node and let denote the probability with which the mixed strategy h
chooses With this notation, the required inequality (3.5) is equivalent to

In order to prove (3.6), we will consider two search trajectories in

and

It follows from (3.3) that

Note that the nodes of are For i = 1,2 and let denote
the time taken for the trajectory to reach the node and let denote the time for

to reach It is easy to see that the following relations hold:

It follows from (3.7) and (3.8) that

Consequently,

Using (3.9), we obtain

and
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and now the required inequality (3.6) immediately follows from (3.4) and (3.10),
completing the proof.

Using Lemma 3.20, the next theorem uses induction on the number of terminal
nodes in order to show that the hiding strategy indeed guarantees an expected capture
time for any tree.

Theorem 3.21 Let Q be a tree with total length µ. Then

(i)

(ii)

(iii)

The optimal search strategy is the random Chinese postman tour.

An optimal hiding strategy can be constructed recursively using the Algorithm
for Hiding in a Tree.

 = µ.

If Q is a network which is not a tree, then < µ.

Proof. First we show that = µ. We know from Theorem 3.19 that so if
the theorem is false there is some tree Q with a minimal number of nodes, for which
 < µ. Clearly, Q cannot consist of a single arc O A, since in that case the hider ensures

a capture time of at least µ, by hiding at A . In all other cases, we can apply Lemma 3.20
to Q to obtain a tree with fewer nodes and a search value satisfying and
hence also This contradicts the assumed minimality of the counter-example Q
and thus proves that for any tree  = µ .

To prove that = µ, only for trees, note that by Theorem 3.19 Thus,
 = µ implies which implies, by Lemma 3.15, that Q is a tree.

3.4 When is the Random Chinese Postman Tour
Optimal?

In the case that the network Q is neither Eulerian nor a tree, it follows from Theorem 3.19
that µ/2 < < µ. Yet it may happen, for some networks, that the random Chinese
postman tour is an optimal search strategy (as in the cases of Eulerian networks and
trees). In this section we analyze such networks. In Section 3.4.1 we present, as a starter,
a family of networks for which the random Chinese postman tour is optimal, and in
Section 3.4.2 we present the widest family of networks with this property.

3.4.1 Searching weakly cyclic networks

Definition 3.22 A network is called weakly cyclic if between any two points there are
at most two disjoint paths.

An equivalent requirement, presented in [205], is that the network has no subset
topologically homeomorphic with a network consisting of three arcs joining two points.

The difficulty in solving search games for the three-arcs network is illustrated in
Section 3.5. Note that an Eulerian network may be weakly cyclic (e.g., if all the nodes
have degree 2) but need not be weakly cyclic (e.g., 4 arcs connecting two points).

It follows from the definition that if a weakly cyclic network has a closed curve
with arcs incident to it, then removing disconnects Q into k disjoint
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networks with belonging to (If and were connected then the
incidence points of with and with could be connected by three disjoint paths.)
Thus, any weakly cyclic network can be constructed by starting with a tree (which is
obviously weakly cyclic) and replacing some of its nodes by closed (simple) curves as,
for example, and in Figure 3.4 (all edges have length 1).

We now formally define the above operation:

Definition 3.23 Let be a connected subnetwork of a network Q. If we replace the
network Q by a network in which is replaced by a point B and all arcs in
that are incident to are incident to B in we shall say that is shrunk and B is
the shrinking node.

It is easy to see that if Q contains a set of disjoint closed (simple) curves
such that shrinking them transforms Q into a tree, then Q is weakly cyclic.

In order to obtain a feeling about optimal solutions for such networks, we consider
a simple example in which Q is a union of an interval of length l and a circle of
circumference µ – l with only one point of intersection as depicted in Figure 3.5.
Assume, for the moment, that the searcher’s starting point, O, is at the intersection.

Note that the length of the Chinese postman tour is (Remember that
the trajectory has to return to O.) We now show that the value of the game satisfies

and the optimal search strategy, is the random Chinese
postman tour.

The random Chinese postman tour guarantees capture time of at most by
Lemma 3.18. The following hiding strategy, guarantees (at least) hide with
probability at the end of the interval (at A) and with probability
uniformly on the circle. It can be easily checked that if the searcher either goes to A,
returns to O, and then goes around the circle or encircles and later goes to A, then the
expected capture time is equal to (µ + l)/2. Also, any other search trajectory yields a
larger expected capture time.
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Now assume that the starting point is different from O. In this case the value and
the optimal search strategy remain the same, but the optimal hiding strategy remains
only if the starting point is anywhere on the circle. As the starting point moves from O
to A, the probability of hiding at A decreases from 2l / (µ , + l) to 0.

The solution to search games on weakly cyclic networks was presented by Reijnierse
and Potters (1993). They showed that and presented an algorithm for con-
structing optimal hiding strategies. (The optimal search strategy is the random Chinese
postman tour.)

We now present a simpler version of Reijnierse and Potters’ algorithm. In our
construction we transform the network Q into an “equivalent” tree as follows: Shrink
each closed curve with circumference and replace it by an arc of length
that connects a new leaf (terminal node) to the shrinking node All other arcs and
nodes remain the same. Let be the optimal hiding strategy for the tree Then the
optimal hiding strategy for Q is obtained as follows:

For a leaf of Q (which is also a leaf of hide with the probability assigned to it
by

For a curve (represented by leaf in hide uniformly along it with overall
probability assigned by to leaf

No other arcs and nodes are ever chosen as hiding places.

We now use the above construction for the network Q depicted in Figure 3.4, in the
beginning of the subsection. The equivalent tree is depicted in Figure 3.2 (Section 3.3).

Note that the curves and are replaced by arcs O C and Thus, the optimal
hiding probability is the same for the leaves of Q and (replacing the leaves C and
by and hiding, uniformly, on with probability (i.e., probability density
and on with probability (i.e., probability density

3.4.2 Searching weakly Eulerian networks

Reijnierse and Potters (1993) conjectured that their algorithm for constructing the opti-
mal hiding strategy for the weakly cyclic network as well as the result hold for
the wider family of weakly Eulerian networks, i.e., networks obtained from a tree by
replacing some nodes with Eulerian networks. This conjecture was shown to be correct
by Reijnierse (1995). They also conjectured that implies that the network is
weakly Eulerian.

Gal (2000) provided a simple proof for the first conjecture and also showed that their
second conjecture is correct. In order to present these results we first formally define
the networks in question.

Definition 3.24 A network is called weakly Eulerian if it contains a set of disjoint
Eulerian networks such that shrinking them transforms Q into a tree.

An equivalent definition is that removing all the (open) arcs that disconnect the
network (the “tree part”) leaves a subnetwork(s) with all nodes having an even (possibly
zero) degree. (Note that in particular removing an arc leading to a terminal node leaves
the end node.) Obviously, any Eulerian network is also weakly-Eulerian. A weakly-
Eulerian network has the structure illustrated in Figure 3.6.
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Theorem 3.25 Let Q be a weakly Eulerian network and let denote the length of the
Chinese postman tour of Q. Then

1.

2.

3.

A random Chinese postman tour is an optimal search strategy.

An optimal hiding strategy for Q is obtained as follows: First construct a tree
by shrinking all the Eulerian subnetworks of Q, and adding at each shrinking

node a new leaf with half the length of the associated Eulerian subnetwork. Hide
in every terminal node of Q according to the optimal probability for hiding in
that node of the tree Hide uniformly on each Eulerian subnetwork of Q with
a total probability equal to the optimal probability of hiding at the end of the
associated “new leaf” of

Proof. We already know from Theorem 3.19 that the value of the search game on
Q satisfies We will show that the stated hiding strategy ensures an expected
capture time so that claims 1 and 3 will be established. Then claim 2 will then
follow from Lemma 3.18.

We first show that the length of a Chinese postman path in is equal to the
same as that for the original network Q. To see this, partition Q into the Eulerian parts
E (union of the Eulerian subnetworks) and the remaining treelike part T. Since E is a
union of networks, we have

If we denote the union of the “new leaves” of by and recall that
we calculate the length of the Chinese postman tour of as

Since is a tree, this implies that its total length is Consequently by
Theorem 3.21, there is an optimal hiding strategy h * on which guarantees an expected



CHAPTER 3. SEARCH FOR AN IMMOBILE HIDER 29

capture time of at least We will show how to adapt this to Q without changing
this time. We now assume that lengths of all the arcs of the Eulerian subnetworks are
rational. (We can do this because the value is a continuous function of the arc lengths.)
Thus we can find an arbitrarily small such that these lengths are even integer
multiples of On such an arc of length add k additional nodes of degree two
(called grid points), equally spaced at distances from an end node.
Do this for all the arcs in the Eulerian subnetworks. The optimal hiding strategy for
Q will be concentrated on the terminal nodes of Q and on these new grid points.

Before defining we introduce a new tree as follows: Shrink all the Eulerian
subnetworks, and at each shrinking node B add leaves of length whose total length
equals half the length of the corresponding Eulerian subnetwork. Identify the grid points
of the Eulerian subnetwork with the terminal nodes of these leaves. The tree is the
same as the tree except that instead of a single “new leaf” of length say for each
shrunk Eulerian network of length there are leaves of length Observe that the
optimal hiding strategy for a tree will put the same total probability (spread out equally)
at the ends of the small leaves of as on the single end of the corresponding
larger leaf in

An optimal hiding strategy for Q can now be induced on Q from the optimal
hiding strategy on with the probability of each grid point of Q equal to that of
the corresponding end of a small leaf. Suppose now that some search strategy S on Q
visits the grid and terminal nodes of Q in such a way that the expected time (relative
to to reach such a node is less than Let be the search strategy on that
visits its corresponding terminal nodes in the same order, moving between consecutive
nodes in least time. Note that our construction of ensures that the distance between
any pair of grid or terminal nodes in Q is at least as large as the distance between their
corresponding terminal nodes in This ensures that the search path will not get
to any terminal node of later than S gets to its corresponding node in Q. Hence
the expected time (relative to for S to reach the hiding point is also less than
contradicting the optimality of (and the value for Consequently no
search strategy S on Q finds an object hidden according to is expected time less than

establishing our claim.

The strategy given here is not uniquely optimal. For example, the simpler strategy
stated in the theorem, of hiding uniformly in each Eulerian subnetwork, is also optimal.
(Or that of hiding in the middle of each new arc.)

We now illustrate the result by an example: Let Q be the union of an Eulerian
network of measure and two arcs of lengths 1 and 2, respectively, leading to leafs

and (see Figure 3.7).
If then, would be a star with three rays of lengths 1, 2, and

respectively. Thus hides at with probability at with probability
and uniformly on with overall probability If the
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starting point is on the arc leading to with distance 1 from then would be
the tree depicted in Figure 3.8. Thus, the corresponding optimal hiding probabilities
for and would be and

respectively.
We now prove the second conjecture of Reijnierse and Potters (1993), i.e., that all

networks that are not weakly Eulerian have value strictly smaller than

Theorem 3.26 For any network Q, if then Q is weakly Eulerian.

Proof. Let L be a Chinese postman tour of Q (with length Let , i = 1, 2, be
the subnetworks of Q determined by the arcs traversed i times by L. Note that is
the union of Eulerian networks: all its nodes have even degree. Let be the network
consisting of and a version of in which all its arcs are doubled. The resulting
network is Eulerian and has total length

We shall show that under the hypothesis of the theorem, the removal from Q of (the
interior of) any arc b of results in a disconnected network Q – b. Consequently, the
removal of all such arcs leaves the network which has all even degree
nodes. Thus the original network Q will satisfy the equivalent definition given above
for a weakly Eulerian network.

Let b be any arc of the subnetwork with length l(b) > 0, and let be a mixed
hider strategy for Q guaranteeing a capture time of at least We will establish
that Q – b is not connected by showing that the alternative assumption of connectedness
lead to a contradiction of the of

Since Q – b is assumed to be connected, so is the network where
is the added arc parallel to b. Since is Eulerian and has total length its

Eulerian tour produces a Chinese postman tour of Q – b with length  The
random Chinese postman tour based on  finds all points of Q – b in expected time
not exceeding Denote the endpoints of b by A and C and its midpoint by B.
Since b cannot be a leaf of Q (because its terminal node would become disconnected
from the rest of Q), both of its endpoints A and C are visited by Consequently, we
may extend to a Chinese postman tour of Q in two ways and The tour
traverses b in both directions after its first arrival at A , the tour does the same when
it reaches C. The search strategies and based on random Chinese postman tours
of and each guarantee an expected capture time no more than for all hiding
points H in Q. However, if H belongs to the half arc [A , B], then it will be found by

with a smaller expected time, namely



Using instead of we can show that the same estimate holds for the probability
of hiding in [B, C]. Consequently, the probability of hiding in b when using is
less than Now consider the search strategy on Q, which first follows
goes in the shortest route to A, and then traverses the arc b. For any we
have and for any we have

Hence for sufficiently small we have

3.5 Simple Networks Requiring Complicated Strategies

In the previous sections we solved the search game for weakly Eulerian networks.
(Remember that this family includes Eulerian networks and the trees as “extreme”
cases.) We have shown that the random Chinese postman tour is optimal, and
only for this family. We now present a simple network, which is not weakly Eulerian
and hence has value strictly less than
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It follows that the probability   of hiding in [A , B] under the
strategy satisfies

and consequently

which contradicts the of for

Combining Theorems 3.25 and 3.26 we have the following summarizing result:

Summary 3.27 If Q is weakly Eulerian, then otherwise,

An equivalent statement is that random Chinese postman tour is an optimal search
strategy if and only if the network Q is weakly Eulerian.

Remark 3.28 Note that the value is and the optimal search strategy is a random
Chinese postman tour, independently of the specific starting point. If Q is not weakly
Eulerian, then the value may depend on the starting point O. (For example, in the
next section we show that the value does depend on O in the three-arcs network, see
Remark 3.33.)

We conjecture that the independence of the value on the starting point holds only
for weakly Eulerian networks.

Searching a network which is not weakly Eulerian is expected to lead to rather
complicated optimal search strategies. We shall show in the next section that even the
“simple” network with two nodes connected by three unit length arcs, requires a mixture
of infinitely many trajectories for the optimal search strategy.
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In this example, the network Q consists of k distinct equal length arcs,
connecting two points O and A . An immediate consequence of the scaling lemma
presented in Chapter 2 is that it is sufficient to consider the case in which all the arcs
have unit length. This example will also be considered in the next chapter, where we
deal with a mobile hider. If the number k of arcs is even, then the network Q is Eulerian,
and the solution of the game is simple. On the other hand, it turns out that the solution
is surprisingly complicated in the case that k is an odd number greater than 1, even if k
is equal only to 3. For this network so we know from the last section that

We will prove the stricter inequality:

Lemma 3.29 If Q is a set of k non-intersecting arcs of unit length, which join O and
A, and k is an odd number greater than 1, then

Proof. We will use a natural search strategy, based on the following definition:

Definition 3.30 For a given set consisting of k elements, choosing each element with
probability 1/k will be called an equiprobable choice.

We now proceed in establishing (3.12) by presenting the following search strategy
Starting from O make an equiprobable choice among the k arcs, and move along the
chosen arc to A. Then make an equiprobable choice among the k – 1 remaining arcs,
independently of the previous choice, and move along this arc back to O. Then move
back to A and so on until all the arcs have been visited. Since k is odd, any such path
ends at A.

Let H be any pure strategy (i.e., a point in Q) and assume that its distance from A
is d, so that its distance from O is 1 – d. Let m = (k – 1)/2, let be
the event that the hider is discovered during the time period (2(i – 1), 2i], and let
be the event that the hider is discovered during the time period (k – 1, k). Then

The case where Q consists of an odd number of arcs that connect two points has
been used as an example for situations in which but this case is interesting by
itself. It is amazing that the solution of the game is simple for any even k (and also, as
will be demonstrated in the next chapter, for any odd or even k if the hider is mobile), but
it is quite complicated to solve this game even for the case that k is equal only to 3. The
reasonable symmetric search strategy used in proving Lemma 3.29, which is optimal
for an even k, can assure the searcher an expected search time less than k/2 + 1/2k.
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We shall immediately show that is not an optimal strategy for an odd number of arcs.
(Incidentally, the fact that the search strategy is not optimal or even can be
easily deduced from the following argument. If the searcher uses then the hider can
guarantee a payoff that is close to k/2 + 1/2k only by hiding near A with probability

However, it can easily be verified that the payoff guaranteed by such a hiding
strategy does not exceed where is small. Thus, the value of the game has to be
smaller than k/2 + 1/2k, which implies that the strategy cannot be optimal or even

In order to demonstrate the complexity of this problem, we now consider the case of
k = 3. In this case, the symmetric search strategy satisfies
but we now present a strategy originally suggested by D. J. Newman, which satisfies

The strategy is a specific choice among the following family of search
strategies:

Definition 3.31 The family of search strategies is constructed as follows: Consider
a set of trajectories where i and j are two distinct integers in the set {1, 2, 3} and

The trajectory starts from O, moves along to A, moves along to
the point that has a distance ofa from A (see Figure 3.9), moves back to A, moves
to O along where and then moves from O to along

Let be a cumulative probability distribution function of a random variable
Then the strategy is a probabilistic choice ofa trajectory where

i is determined by an equiprobable choice in the set (1, 2, 3}, j is determined by an
equiprobable choice in the set {1, 2, 3} – {i), and is chosen independently, using the
probability distribution F.

Note that the symmetric strategy is a member of the family with the random
variable being identically zero.

We now show that there exists a search strategy with value less than
The distribution function that corresponds to the strategy is the following:
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(Note that F has a probability mass of 3/4 at Let be any hiding point
with distance from A . Then it is easy to see that

It is easy to check that the derivative of with respect to is equal to zero
for  and to –1/3 for Thus, it is sufficient to calculate

for where is small, and the calculation readily shows that

where is the symmetric strategy.
We now show that is the best search strategy in the family by presenting a

hiding strategy that satisfies for all

Definition 3.32 The hiding strategy is presented as follows. Make an equiprobable
choice ofan arc and hide at the point of that has a distance from
A, where is a random variable that has the probability density for
and zero otherwise.

It is easy to see that for all used by any search strategy

and

Thus,

It follows that if the searcher can use only search trajectories then and
presented previously are optimal strategies and the value of the restricted game is

for

for



(4 + ln2)/3. It is very plausible that and are optimal even if the searcher is not
restricted to trajectories. In order to show that, one would have to show that

(We have just proved this inequality for
Numerically, verifying that the value is indeed (4 + ln2)/3 (within any desired

accuracy level) can be done by dynamic programming, as will be described in the next
section. However, formally proving that fact has required a lot of effort: Bostock (1984)
solved a discrete version of the three-arcs game, allowing the searcher to choose his
trajectory more extensively than (but still limited to a subfamily of trajectories).
By letting the number of grid points tend to infinity he showed that and are optimal
under a weaker assumption on the search strategies. Finally, L. Pavlovic (1993a, 1993b,
and 1995b) has succeeded in proving that the value is indeed (4 + ln 2)/3 and that is
the optimal search trajectory, under no restrictions on the search trajectories. Pavlovic
also presented the optimal solution of the search game for any odd number k of arcs. The
optimal search strategy is randomly (equiprobably) choose the traversed arc, among the
untraversed arcs, until only three untraversed arcs remain; then use for these three arcs.

Remark 3.33 Unlike the weakly Eulerian networks, the value ofthe three-arcs network
depends on the starting point of the searcher. For example,3 assume that the searcher
starts at the middle of arc Then, by using the uniform hiding strategy, the hider
can guarantee an expected capture time (It can be verified
that the searcher’s best response is to go to one of the nodes, search and and
finally retrace in order to search the unvisited halfof

Remark 3.34 Solving the search game in a network with an arbitrary starting point
for the searcher, is an interesting problem, which has not been investigated yet. Let be
the value ofthis game. It is easy to see that where is the minimal length ofa
path (not necessarily closed) that visits all the points of Q. Indeed, sometimes
as happensfor networks with because the hider can guarantee expected capture
time by using the uniform strategy (Such an example is the three-arcs game,
which is much more tractable with an arbitrary starting point than under the usual
assumption of a fixed starting point known to the hider.) However, it is not clear for
which family of networks the equality holds. For example, does it hold for
trees ?

Remark 3.35 The problem of finding the optimal search strategy for a (general) network
has been shown by von Stengel and Werchner (1997) to be NP-hard. However, they also
showed that if the time of search is limited by a (fixed) bound, which is logarithmic in the
number ofnodes, then the optimal strategy can befound in polynomial time. The search
game on a network can, in general, be formulated as an infinite-dimensional linear
program. This formulation and an algorithm for obtaining its (approximate) solution
is presented by Anderson and Armendia (1990).

3This observation was made by Steve Alpern.
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for all S.
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The difficult problem of finding an optimal (minimax) search strategy for a (non
weakly Eulerian) network could be somewhat simplified if the following property holds.

Conjecture 3.36 Optimal strategies for searching for an immobile hider on any network
never use trajectories that visit some arcs (or parts ofarcs) more than twice.

Note that this property does not hold for best responses to all hiding strategies. For
example, in the three-arcs network, if the hiding probability is for each point

having distance from A , and for having distance
from A , then for a small the optimal search strategy is to go to A , then to one of

the unvisited then through A to the unvisited continue to and finally from
to through Thus, the segment is traversed three times. Moreover, in the

linear search problem, described in Section 8.1, there exist hiding distributions against
which the best response search trajectories visit the unit interval an infinite number
of times. Still, we conjecture that such a situation cannot occur against an optimal
hiding strategy. This property holds for the weakly Eulerian networks and also for the
three-arcs network.

3.6 Using Dynamic Programming for Finding Optimal
Response Search Trajectories

Dynamic programming (DP) is a useful numerical optimization scheme developed
by Bellman and others around 1960. It is based on the following recursive principle,
which we apply to search problems. Assume that we wish to minimize the expected
search time for an object that is hidden in one of n possible points with known hiding
probabilities. Any search trajectory is determined by a series of actions
such that each corresponds to going from the current location to a location that has not
been searched before. Rather than trying to determine all the optimal actions together,
DP determines one action in each step minimizing the sum of the expected immediate
cost plus the expected future cost. The optimality equation has the following form:

where

Z is the state of the search (i.e., the current “unsearched” part of the space and
the location of the searcher),

F(Z) is the current expected remaining search cost under an optimal trajectory,

A (Z ) = {a} is the current set of actions a available (i.e., what locations could be
searched next),

P(Z) is the probability that, at state Z, the object has not yet been found,

is the cost of action a at state Z (e.g. the time needed to go to a specific
next location),
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p(Z , a) is the probability of that the object is in this location (p(Z , a ) /P( Z ) is
the probability that the object is found at the present stage under the condition that
it has not been found before),

ø(Z, a) is the “new” state after using action a, (i.e., the updated unsearched part
and searcher’s location), and

F ( ø ( Z ,a)) is the new (minimal) expected remaining search time, after using
action a under the condition that the object has not been found at the present
stage.

Note that at each step the number of unsearched locations of the state space is
reduced by 1. Thus, the new search problem is reduced in some sense.

If the number of possible hiding locations is n then we will have to use the recursion
(3.14) for n steps and compute F(Z) for all the intermediate possible values of Z finally
obtaining the value of the optimal solution, where is the initial state, i.e., the
unsearched part being the whole space and the searcher at the origin O. The optimal
action for each state is obtained from the argmin of the right side of (3.14).

Such a technique would obviously be inefficient if the number of possible states
is an exponential function of n (e.g., search in a complete network with n nodes).
However, there are many interesting examples where the structure of the problem keeps
the number of possible states manageable (e.g., polynomial in n with a small degree).
For example, assume that we search the real line, starting from the origin, looking for
an object with n possible locations (on both sides of the origin). Then the number of
possible states is bounded by because at each stage the current undiscovered part of
the search space is determined by the two extreme right and left locations visited by the
searcher. We will present the DP algorithm for the search on the line in Section 8.7.

It is usually more convenient to use the recursive formula for the contribution f (Z)
of the current undiscovered part of the search space to the remaining expected search
time, f (Z) = P (Z) × F (Z). In other words, f is the sum of the original probabilities of
the unsearched locations multiplied by the remaining time to reach them by the optimal
search plan. Multiplying both sides of (3.14) by P(Z), the corresponding recursive
equation for f is

where, as in (3.14), we compute f(Z) for all the intermediate possible values of Z. In
the final step we obtain the value of the optimal solution, where is the initial
state, i.e., the unsearched part is the whole space and the searcher is at the origin O.
The optimal action for each state is obtained from the argmin of the right side of (3.15).
Here, there is no need to compute new conditional probabilities at each stage; the same
location probabilities can be used all the time.

We now illustrate the DP approach for the three-arcs problem of the previous
section. We would like to verify that the minimal expected search time against the
hiding strategy (given in Section 3.5) is (4 + ln2)/3. The numerical value of

can be approximated for any desired accuracy level using the following scheme.
For each arc divide the segment starting from A with length ln 2 into m intervals of
equal length For each interval, j, replace the (continuous) probability
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density of over this interval by one probability mass concentrated at the midpoint
of the interval at distance from A. (Choosing the center of gravity rather
than the midpoint would lead to more accurate result, with the same complexity. For
convenience, we present here the simpler version.) In the new (approximated) hiding
strategy the object can be at any one of n = 3m locations. For each stage, the current
state space depends on the number of arcs with unsearched locations.

In the first time period, before A has been visited, there are three such arcs so that
the state of the search can be described by the 4-tuple where for each

is the number of unsearched locations (near A ) on
arc j; and i, is the arc number where the searcher is now located (at distance

from A ). The next location to be searched is either the next point on arc i
or the left point of one of the other arcs. Thus, for i = 1, the recursive formula is

where is the sum of the probabilities over the unsearched locations.
A similar recursion holds for i = 2 and i = 3 (see Figure 3.10).
After one of the reduces to 0 (say then unsearched locations of the two

remaining arcs would be in two segments and with the
searcher either on arc 1 at distance from A (in this case or on arc 2 at
distance from A (with The corresponding two arcs recursive formula
used for i = 1 (similar recursion holds for i = 2) is

where takes the place of f in (3.15) and is the sum of probabilities
over the unsearched locations (on the two remaining arcs).
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Note that the recursive formulas for the transition between three and two arcs has
the following form (e.g., when and and

When becomes (i.e., arc i, say i = 2, has been completely searched) and only
one arc remains, the following boundary condition is used:

Note that in each of the above formulae the number of unsearched locations corre-
sponding to the right side states is smaller than the number of unsearched locations in
the right side. This enables us to recursively calculate the values and then
the f values The minimal search time is obtained by

(Due to symmetry we can assume that the search starts along arc 1.) The optimal
search trajectory is obtained step by step by using the alternative that produced the
minimal value at any given state in order to move into the next state.

For the location probability based on given Definition 3.32 we should obtain an
expected capture time approximately (4 + ln 2)/3. This would demonstrate, numeri-
cally, that the hider can indeed achieve (4 + ln2)/3. Since we have shown that the
searcher can guarantee capture time not exceeding (4 + ln 2)/3, it would follow that it
is indeed the value of the three-arcs game and that and are optimal strategies.4

The DP algorithm will be used later in Sections 8.7 and 16.8 (search on the line
and rendezvous search on the line).

3.7 Search in a Multidimensional Region

When considering search games with a mobile or an immobile hider in multidimensional
compact regions, we would like to avoid unnecessary complications, and thus we shall
make a rather weak assumption about the region Q. We shall use the following definition.

Such a computation has been carried out by Victoria Ptashnikov, who also removed several bugs from
the formulae.

4
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Definition 3.37 A compact region Q is called simple if the boundary of Q can be
represented as the union of two continuous single-valued functions in some coordinate
system (see Figure 3.11).

We shall usually make the following assumption.
Assumption 1. The compact region Q is the union of a finite number of simple

regions with disjoint interiors.
Note that we allow multiply connected regions with a finite number of “holes”

in them.
When considering search games in multidimensional regions, we assume that the

hider is captured at the first instant in which the distance between him and the searcher
is less than or equal to r, where the discovery radius r is a small positive constant. (The
case in which r is not a constant is considered in the next section.)

In this section, we are concerned with an immobile hider. Since Theorem 3.3 holds
for any search space Q, it follows that by using the uniform hiding strategy, the
hider can guarantee that the expected discovery time is greater than or equal to
(neglecting terms), where µ, is the Lebesgue measure of Q and is the maximal
discovery rate. Thus, the value of the game satisfies

An upper bound for can be derived by extending the notion of a tour (used for
networks) to multidimensional region:

Definition 3.38 A closed curve L that passes inside Q is called a tour if for any
there exists such that

It has been shown by Isaacs (1965, sec. 12.3) that if L is a tour with length then
the searcher can guarantee an expected capture time not exceeding by choosing
each one of the directions, of encircling L with probability 1/2. (We used such a search
strategy for Eulerian networks.) Thus, if we could find a tour whose length T satisfies

then we would have and in this case the strategies of the searcher
and the hider already described would be We now show that for any two-
dimensional region which satisfies a rather weak condition, it is possible to find a tour
whose length satisfies inequality (3.16).

Lemma 3.39 Let Q be a two-dimensional compact region that satisfies Assumption 1
with the boundary ofeach one ofthe simple regions composing Q having a finite length.
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Then for any there is an such that for any there exists a tour with length
less than

Proof. Let where is a simple region with area
If for each we could find a line that covers with length less than

then we could “link” these curves together and form a tour of Q by
adding m arcs. The length of such a tour for Q would not exceed

where D in the diameter of Q. Obviously, if r is small enough, then
so that we would have the required tour for Q. Thus, we may assume that Q is already
a simple region. Let and be the graphs of the continuous functions that bound Q.
We can now cover Q by parallel strips of width 2r each, as depicted in Figure 3.12.

Let be the lengths of the vertical line segments formed by these strips.
Then by moving alternately along these line segments and along the boundary of Q,
we form a covering line (not necessarily closed) for Q with length less than
where is the length of the boundary of Q. Due to the fact that and are Riemann
integrable, it follows that forany if r is small enough, then
Thus, the length of the covering line is less than

for a small enough r.

In proving Lemma 3.39 we used the fact that two-dimensional regions can be covered
by narrow strips with little overlap. The analog construction for three dimensions would
require covering the region with narrow cylinders, but in this case the overlap would
not be negligible. Thus, by using the uniform strategy, the hider can keep the expected
capture time above where It should be noted, though, that in the
next chapter we will show that the value of a search game with a mobile hider in a
multidimensional region satisfies

where

and this bound is obviously applicable for the search game with an immobile hider.

Remark 3.40 The result of this section extends to the case of J searchers. Thus, if is
the total rate of discovery of the searchers (see Corollary 3.6), then for two-dimensional
regions

as



where and are constants. We also allow the detection radius to depend on the
location of the hider. In this case, the detection radius is a function  whereby if
the hider is located at a point Z, then he can be seen from any point that satisfies

We assume that

where is a small number and is a continuous function that satisfies

The discovery rate of the searcher, is defined as 2 for two-
dimensional regions, for three-dimensional regions, and so on. The capture
time c(S, H) is given by

Such a search space will be referred to as an inhomogeneous search space. We will
show that results established in the first part of the section can be extended in a natural
way. We first extend Theorem 3.3 to the inhomogeneous case. In this case, the natural
randomization of the hider is given by choosing his location using a probability density
which is proportional to

Lemma 3.41 Let be the hiding strategy that uses the probability density
where

and µ is the Lebesgue measure. Then satisfies

Proof. A simple continuity argument (for details see Gal, 1980) implies that for any
search trajectory S, the Lebesgue measure of the strip that is swept during a small time
interval is less than If the hider uses then the probability
mass of such a strip is less than where is given by (3.18). Thus,

so that
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3.7.1 Inhomogeneous search spaces

In this section, we assume that the search space is a multidimensional compact region of
the same type considered in the previous section. However, here we allow the maximal
velocity of the searcher, which we denote by , to depend on the location of the
searcher. We assume that is a continuous function which satisfies
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We now extend the result established in the first part of the section and show that the
value of the search game with an immobile hider in a two-dimensional compact region
satisfies  where is given by (3.18) with

The inequality is an immediate consequence of Lemma 3.41.
An upper bound for the value can be obtained by constructing a tour (see

Definition 3.38), such that the time required to encircle it is less than

This can be done by dividing Q into several regions such that the variation of
in is small and then using the technique adopted in Lemma 3.39.

Remark 3.42 All the results presented for the networks in the previous sections can
easily be extended to the case in which the maximal velocity of the searcher, ,
depends on his location in the network Q. (The radius of detection is assumed to be
zero, as before.) In this case, the Lebesgue measure of Q, µ, should be replaced by
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Chapter 4

Search for a Mobile Hider

4.1 Introduction

The interest in search games with a mobile hider was motivated by the presentation of
the Princess and Monster game described by Isaacs (1965, sec. 12.4). In this game, the
Monster searches for the Princess in a totally dark room Q (both of them being cognizant
of its boundary). Capture occurs when the distance between the Monster and the Princess
is less than or equal to r, where r is small in comparison with the dimension of Q. As
a stepping stone for the general problem, Isaacs suggested a simpler problem in which
Q is the boundary of a circle. The Princess and Monster game on the boundary of a circle
was solved several years later by Alpern (1974), Foreman (1974), and Zelikin (1972),
under the additional assumption that the maximal velocity  of the hider, satisfies
(recall that the maximal velocity of the searcher is usually taken as 1). Their formulation
is a little different from the one that we usually adopt, in the sense that the searcher
does not start from a fixed point O. Instead, they assume that at t = 0 the initial relative
position of the searcher with respect to the hider has a known probability distribution.
(Alpern, 1974; Zelikin, 1972, assume a uniform distribution, while Foreman, 1974,
considers a general probability distribution.) A discretized version of this problem was
solved by Wilson (1972). An attempt to develop a technique for obtaining approximate
solutions of some discrete games with a mobile hider by restricting the memory of the
players was presented by Worsham (1974). Some versions of this game with a fixed
termination time were considered by Foreman (1977). A general solution of the Princess
and Monster game in a convex multidimensional region, was presented by Gal (1979,
1980). The solution will be presented in detail in Section 4.5. An important intermediate
step is solving the search game with a mobile hider on a network consisting of k arcs
connecting two points, which will be presented in Section 4.2. Some extensions were
made by Garnaev (1991) (the velocity vectogram of the searcher is a rhombus-type
set) and (1992) (the probability of detection depending on the distance between the
players). A new type of search strategy presented by Lalley and Robbins (1988), will
be described in Section 4.6.1.



Anderson and Armendia (1992) formulated the search game in a network as an
infinite-dimensional linear program. They obtained an optimality condition for the
strategies and an improvement technique (if the currently used strategies are not
optimal).

We now present the general framework of search games with a mobile hider, to
be considered in this chapter. We assume that the search space Q is either a network
or a compact multidimensional region. A pure strategy of the searcher is a continuous
trajectory inside Q which satisfies

S(0) = O and for any

A pure strategy of the hider is a trajectory inside Q, with H(0) an
arbitrary point chosen by the hider, which satisfies

for any

where is the maximal velocity of the hider.
The capture time T is the first instant t with or infinity if no

such t exists. As usual, we take r = 0 for the search in a network and assume that r is
a small positive number in the case that Q is a multidimensional region.

When considering the role of mixed search strategies, one immediately observes
that their advantage over pure search strategies is much greater in the case of a mobile
hider than in the case of an immobile hider. In order to see this fact, consider the case of
an immobile hider in an Eulerian network of length µ. In this case, by using a trajectory
(pure strategy) that traces an Eulerian curve, the searcher can guarantee an expected
capture time not exceeding µ, whereas the use of mixed strategies (tracing the curve
equiprobably in each direction) enables the searcher to guarantee an expected capture
time not greater than µ/2. Thus, the use of mixed strategies against an immobile hider
yields an improvement by a factor of 2.

On the other hand, if a mobile hider can move on a circle with maximal velocity
then no pure search strategy can guarantee capture. This is in fact true for any

network other than the line segment. However, Alpern and Asic (1985) showed that if
mixed strategies are allowed, then the search value is finite (see Section 4.4).

In the case of the circle (see Section 4.3), the use of a mixed search strategy enables
the searcher to achieve expected capture time not exceeding µ. Thus, the advantage of
using mixed strategies is much greater in the case of a mobile hider.

Remark 4.1 The problem of finding the minimal speed advantage of the searcher, which
guarantees capture using pure strategies only was investigated for a given network by
Fomin (1999) and for rectangular domains by Avetisyan and Melikyan (1999a, 1999b).
Note that having a search trajectory that guarantees capture actually guarantees it even
if the (mobile) hider can see the searcher (but, as usual, the searcher cannot see the
hider unless their distance is within the capture radius).

Remark 4.2 If only pure search strategies are used then, except for trivial cases, several
searchers are needed to guarantee capture. The interesting problem ofdetermining the
minimal number of such searchers in a given network, called the search number, was
considered by Parsons (1978a, 1978b) and Megiddo and Hakimi (1978). This problem
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In contrast to the unrestricted game, we shall be mainly concerned with games
in which both the searcher and the hider are restricted to move along continuous tra-
jectories, but it is interesting to note that in spite of that restriction, the value is still

for most games to be considered in this chapter. The first search space we
discuss is a network consisting of k arcs connecting two points (Section 4.2). Solving
the search game for the k arcs can give us a useful insight, which helps us to understand
how to solve the Princess and Monster game in multidimensional regions (Sections 4.5
and 4.6).

A remarkable property of most of the search games solved in this chapter is the
following. There exists a function P(t), which decreases exponentially in t, such that
for all t both the searcher and the hider can keep the probability of capture after time t
around P(t). In practice, this property may sometimes be more useful than the expected
capture time, since the cost function need not be T itself but may place a different (e.g.,
heavier) penalty on larger values of T. Indeed, this property can be used to show that the
optimal strategies obtained for the games in which the capture time serves as
a cost function are still optimal even if the capture time is replaced by a more
general cost function (Section 4.6.8). In other words, the optimal strategies
of these games are uniformly optimal for all reasonable cost functions. (Strategies
which guarantee P(t) are called uniformly optimal in Book II.) An exception to the
existence of uniformly optimal strategies was investigated by Alpern and Asic (1986)
(see Remark 4.16).
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has attracted much research. An important result for this game was obtained by Megiddo
et al. (1988), who showed that the problem of computing the search number is NP-hard
for general graphs but can be solved in linear time for trees.

As in the discussion in Section 3.1, it is worthwhile to consider the unrestricted game
(which is actually a discrete version of the search game) in which the physical constraint
of the continuity of the trajectories of the players is disregarded. In this game, the set
Q is divided into n “cells”  each with measure µ / n . The searcher and the
hider can move from one cell to another at the time instants
where The time interval may be regarded as the time required by the
searcher to sweep one cell. We assume that capture occurs at the end of the first time
interval in which both the searcher and the hider occupy the same cell. It is easy to
see that the value of the unrestricted game is because both the searcher and the
hider can guarantee this value by using completely random strategies, choosing each
cell with equal probability, 1/n, independently of previous choices, at each time instant

It is worthwhile to estimate the probability of capture after time t in the unrestricted
game, both in the case of a mobile and an immobile hider (assuming optimal play on
both sides). If the hider is immobile then, under optimal strategies, the probability of
capture after time t satisfies

On the other hand, if the hider is mobile, then
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Remark 4.3 The Princess andMonster game was also used in some biological models.
See Meyhofer et al. (1997) and Djemai et al. (2000).

4.2 Search on k Arcs

Solving the k arcs search is important because it gives an insight into the nature of
optimal search strategies for a mobile hider in more general domains and in particular
for multidimensional regions. Here we consider the following search game. The search
space Q is a set of k non-intersecting unit length arcs joining two points O
and A, as depicted in Figure 4.1.

(The solution of this problem in the case that the arcs have a common length different
from 1, is easily obtained by using the scaling lemma of Chapter 2.) The searcher has
to start moving from O with maximal velocity equal to 1. The hider can choose an
arbitrary starting point, and from this point he can move along any continuous trajectory
in Q with maximal velocity   . In this chapter, we shall usually assume that
The capture time T, which is the loss of the searcher (or the gain of the hider), is
the time elapsed until the searcher reaches a point that is occupied at the same time
by the hider. In order to avoid unnecessary complications, we make the following
assumption.

Non-Loitering Assumption. The searcher can pass but not stay at the points O or A.

This assumption is not needed for k = 2 (search on a circle) as we shall see in
Section 4.3.

We shall show that the optimal strategies of the searcher and of the hider are both
of the type to be defined.

Definition 4.4 Let Z be either the point O or the point A and let be any
nonnegative number. Then the (random) trajectory is defined by the following
rules. At time starting from the point Z, choose an integer i equiprobably from the
integers (1, 2,... ,k) and move along the arc with unit velocity to the end point of
this arc (O or A). Then make another equiprobable choice of an integer

independently of i, and move along until the other end point
(A or O) is reached, and so on.

Using Definition 4.4, we state the following theorem.



Theorem 4.5 For the search game on k arcs, an optimal strategy for the searcher is
U (O, 0). An strategy for the hider is to start at A, stay there until time
and then use the strategy The value of the game is

The theorem will be proved using three lemmas. The following sweeping lemma is
the fundamental one and will also be used in the next sections.

Lemma 4.6 (Sweeping Lemma) Let Q denote the network consisting of two nodes O
and A, connected by k unit length arcs. Define k “sweepers,” which move from O to A
at unit velocity during the time interval each along a different arc. Then

Proof. Strategy U (O, 0) for the searcher means: At time t = 0, the searcher makes
an equiprobable choice from the sweepers of the sweeping lemma and moves with the
chosen sweeper to A ; then at time t = 1 he makes an independent equiprobable choice
from k such sweepers that run from A to O, etc. We may look upon the hider as the
fugitive, and thus the sweeping lemma implies that if the searcher uses U(O, 0) and
if the hider has not been captured by time j – 1, then the probability of capture in the
time period is at least 1/k (independently of the previous part of the
trajectory). Thus,
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(a)

(b)

Any (continuous) hider trajectory H(t) will meet at least one sweeper by time
t = 1.

If the hider’s trajectory H(t) has velocity not exceeding one, then it will not
meet more than one sweeper by time t = 1.

Proof.

(a)

(b)

Let f (t) = d(H(t), O) denote the distance (in the network Q) of the hider from
the searcher starting node O at time t. Since H is continuous, so is the function H.
The function t – f(t) is continuous on the interval [0, 1] and is negative for t = 0
and non-negative for t = 1. So the Intermediate Value Theorem ensures that for
some with we have At time the hider is therefore at
distance from O along one of the k arcs – but so is one of the sweepers.

Let be the first time when the hider meets one of the sweepers – say, i. In
order to meet another sweeper before time 1, he must move to a different arc. If
he does this via the node O, he cannot catch the sweeper on that arc before time
1, as he has the same speed. So he would have to move to another arc via A.
However, he cannot reach A before sweeper i, hence not before time 1.

Lemma 4.7 If the searcher uses the strategy U(O,0) (see Definition 4.4), then for any
hiding strategy H



Theorem 4.5 is an immediate consequence of Lemmas 4.7 and 4.8. Actually, if
k > 1, then c(U(O, 0), H) < k for any hiding trajectory H. The above statement
holds because if H(1) = A, then c(U(O, 0), H) = 1, while if then the
capture time is equal to with probability 1/ k. Thus

It follows that for any hiding trajectory H we have

Lemma 4.8 Let be the strategy of the hider described as follows. Stay at point A
until time and then use (see Definition 4.4). Then for any search
trajectory S,

Proof. Using strategy for the hider means that he chooses each of
the sweepers (note that it is the hider who now moves with one of the sweepers)
with probability (and independently of previous choices) at the time instants

Now the searcher takes the role of the fugitive of the sweeping lemma. We shall use
the fact that the velocity of the searcher does not exceed the velocity of the hider and
the non-loitering assumption, which states that the searcher cannot wait for the hider at
either of the points O or A. Thus it can be assumed that at any one of the time instants

the probability that the searcher is either at O or at A is zero (this can
be achieved by the hider by using as a random variable uniformly distributed in any
small interval). Thus the condition of part (b) of the sweeping lemma is satisfied so that,
for any trajectory of the searcher, if the hider has not been captured by time
then the probability of capture in the time period is equal to 1 / k.
Thus, the probability that capture will occur in the time period
is equal to Hence

Therefore, any mixed Hiding strategy h satisfies c(U(O, 0), h) < k. Since v = k, it
follows that the hider does not have an optimal strategy (but obviously has
strategies) while the searcher does have an optimal strategy. This result is in accordance
with the results presented in Appendix A.
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Remark 4.9 It follows from the proof of Lemmas 4.7 and 4.8 that the searcher can
keep the probability of capture after t below is the integer part of t),
while the hider can keep the probability of capture after t above Thus,
if instead of choosing the capture time T as the cost function, we consider a more
general cost function W(T), where W is any monotonic nondecreasing function, then
the searcher can keep the value below

while the hider can keep the value above

If W is continuous on the left at the points T = 1 ,2 ,3 , . . . , then as
In other words, if the cost is a continuous nondecreasing function of the capture

time, then by using U(O,0), the searcher can guarantee the value f  (W), while the
hider can guarantee It follows that in this case, the value of the game is
f  (W) and the optimal strategies of the searcher and the hider are still the
same as those described in Lemmas 4.7 and 4.8.

It is interesting to note that the value of the game is equal to k irrespective of the
maximal speed of the hider as long as it is not less than unity. If is less than unity,
then the optimal strategies of the searcher and the hider may be quite complicated.
However, using an argument similar to the one previously presented in this section, it
seems to us that if k is large and is not too small, then the value of the game should be
approximately k, even for the case 0 <  < 1, because the hider can achieve a value of

by randomly choosing one of the arcs and moving along it with speed from
A to O, then using an independent equiprobabilistic choice of another arc and moving
along the chosen arc with maximal speed from O to A, and so on. If and
the searcher moves with maximal speed (unity), then, when reaching each of the points
O or A, the maximal amount of information, which may be available to the searcher
is that at that moment the hider is not located on any of the m last arcs visited by the
searcher. Thus, even if the searcher could rule out m arcs out of k each time he reaches
O or A, then his gain would be to increase the probability of capture for each period

from 1/k to 1 / ( k – m). Thus the expected capture time would decrease
at most to so that if k is large in comparison with 1/ the value obtained
in Theorem 4.5 would remain about the same even for  < 1.

Note that for an immobile hider (see Sections 3.2 and 3.5) the value v of the search
game on k parallel arcs is equal to k/2 for an even k and is approximately equal to k/2
for an odd k. Thus, for an immobile hider, For a mobile hider, v is doubled
and becomes and this is due to the fact that, contrary to the case of an immobile
hider, the searcher cannot rule out the arcs previously visited by him. We shall have the
same phenomenon for the case of a two-dimensional search space.



4.3 Search on a Circle

In this section, we consider searching for a mobile hider on a circle. As in the previous
section, we shall make the assumption that the maximal velocity of the hider is greater
than or equal to 1. By denoting the (known) starting point of the searcher by O and its
antipode by A, the problem reduces to a special case of the search game solved in the
previous section with k = 2 so that the value of the game is the length of the circle, µ.
However, we must be aware of the fact that, in the previous section, we restricted
the strategies of the searcher by the non-loitering assumption which requires that the
searcher cannot wait at O or at A. We now show that the result for k = 2 remains valid
even without this assumption. The searcher’s strategy U(O ,0) (see Definition 4.4),
which guarantees an expected capture time µ(= 2), remains the same, but the hider’s
strategy needs a little modification. At time t = 0, the hider should choose a random
point, uniformly distributed around A with distance (a small number). It is easy
to see that by staying at until and then using i.e., moving
from to randomly, the hider can make sure that the capture time will exceed

because the probability of capture at or at is zero, so that the
argument used in Lemma 4.8 is valid here as well.

It should be noted that the result v = µ , depends on the assumption that the initial
starting point of the searcher is known (S(0) = O). This result is no longer valid if
one changes this assumption. For example, if one assumes that S(0) has a uniform
distribution on the circle, as was done by Alpern (1974) and Zelikin (1972), then the
value is This result is demonstrated by the following theorem, which is taken
from Alpern (1974). (The optimal strategy below was given the name coin half tour by
Foreman, 1974.)

Theorem 4.10 Consider the search game with a mobile hider on the circle of circum-
ference µ , assuming that S(0) and H(0) are uniformly and independently distributed on
the circle. Then
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An optimal strategy for each player is to oscillate at speed 1 between his initial point
and its antipode, each time making an equiprobable choice between the clockwise and
counterclockwise directions, independently of previous choices.

Proof. Assume for convenience that µ = 2. For any t > 0, let and
Let

First we show that under the search strategy described by Theorem 4.10, the
probability of capture after time t satisfies

for any hiding trajectory H.
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We prove (4.5) as follows. Assume without loss of generality that I is even. Denote
the following events

Then the same considerations used in Lemma 4.7 lead to the inequalities

and

Since S(0) is uniformly distributed on the circle, it can be shown that regardless of the
hider’s motion H

Now (4.5) readily follows from (4.8) to (4.10). Thus,

The optimality of the hider’s strategy described by Theorem 4.10, is established rather
similarly, using Lemma 4.8 instead of Lemma 4.7, by proving that for any trajectory S,
if the hider uses then and thus

Note that the optimal search strategy is the same as in the case that S(0) is a fixed
known point, while the hiding strategy has to be modified due to the fact that the hider
does not know S(0).

The value would still be in the case that both S(0) and H(0) can be chosen by
the players because each one of them can guarantee an expected capture time not worse
than by choosing a uniformly distributed starting point and then using the Coin Half
Tour described above.

In contrast to the foregoing discussion, we shall see in Section 4.5 that in the case
of multidimensional search, the value of the game is not sensitive to any assumptions
about the location of S(0).

4.4 Quickly Searched Networks

In general, solving search games in a Network is difficult. Still, Alpern and Asic (1985)
(part a) found the following upper bound, demonstrating that the search value is finite:

Theorem 4.11 Let Q be a Network with m edges, n nodes, diameter D, and minimal
tour length Then for any searcher starting point the value of the search game with

the complement of E.



Proof. Consider the following mixed searcher strategy. Randomly pick one of the
arcs e. Move so as to arrive equiprobably at one of the endpoints of e at time D.
Observe that no arc can have length exceeding 2D, since otherwise the distance from
its midpoint to an end would exceed D. So it will always be possible to traverse the arc
so as to arrive at the opposite end at time 3D. (If e is a loop, then it should be traversed
equiprobably in either direction.) If the hider has not been found by time 3D, then repeat
the process in each time interval [3iD, 3(i + 1)D], making choices independently of
previously choices. Observe that in each time period, the probability that the searcher
will encounter the hider is at least p = 1 /2m. This is because the hider will start the
time period on some arc e and hence will meet the agent of the searcher starting at one
of the ends of e. The expected capture time is therefore not more than 3D/p = 6mD.
In the common case that no arc has length exceeding the diameter D, the period 3D
can be reduced to 2D and the value to 4mD.

If Q has many arcs but few nodes (for example, many multiple edges or loops),
and loitering strategies are allowed, then another strategy may be better. From time
0 to D move with probability n/(n + 2) to one of the nodes and wait there until
time choosing among them equiprobably. With probability 2/(n + 2) wait
until time D and then traverse a minimal tour of Q halfway around, equiprobably in
either direction. Repeat this process, with independent randomization, in each period
of length Whether or not the hider moves, he will meet the searcher in
a given period with probability 1/(n + 2), either when the searcher is waiting at a
node or when he is searching. Consequently the expected capture time does not exceed

For example, if Q is the graph with an even number m of unit length arcs connecting
n = 2 nodes, then D = 1 and So the two estimates are 4m (part a) and
4(1 +m/2) (part b). In this case estimate (b) is better for m > 2. For the complete graph
on n nodes there are m = n(n – l)/2 unit length arcs and we have D = 1 and
In this case the two estimates are 3n(n – 1) (part a) and at least (n+2)(1+n(n – 1)/4)
(part b). For n > 9 the estimate in part (a) is better.

What can we say about a lower bound for the value? In Chapter 3 we proved
Theorem 3.19, which stated that the value of the search game with an immobile hider
lies between µ/2 and µ , where µ is the sum of the lengths of the arcs of the network Q.
The lower bound is achieved for Eulerian networks, while the upper bound is achieved
for trees. It would be interesting to ask similar questions concerning the search for a
mobile hider. For example,

Assuming that O = S(0) is known to the hider, are there any networks with
(Recall that v = µ holds for the search on the circle or on k arcs under the non-loitering
Assumption.)

It is not too easy to find such a network. (In fact, it was conjectured in Gal, 1980,
that always hold.) However, Alpern and Asic (1985) showed that for the
figure eight network presented as follows.
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mobile hider satisfies

(a)

(b)

(If no arc has length exceeding D, then and

(This bound requires loitering strategies.)



4.4.1 The figure eight network

The “figure eight” network (see Figure 4.2) consists of two circles, each of unit
circumference and only one point in common, O. Thus µ = 2.

Denote the antipodes of O by A for the left circle, and B for the right circle and
denote the arcs from A to O by and and from B to O by and Each of these
arcs has length 1/2.

We shall now show that if the searcher starts at the center O of the figure eight
network, then
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Suppose the searcher begins by traversing the four possible arcs out of O equiprobably,
until arriving at one of the endpoints A or B at time 1/2. By this time he will have
captured the hider with probability at least 1/4. If capture has not occurred and the hider
has met only one of the possible paths of the searcher (the worst case from the searcher’s
point of view), then the game that remains at time 1/2 is the following: The searcher starts
at one of the ends, say A , with probability 1/3, and at the other end with probability 2/3.
The probability at each end is known to the hider. Call the value of this game (starting
at time 0) . For example, if the hider starts to the left of O and is not caught by time
1/2, he knows that at this time the hider is at A with probability 1/3. If he started to the
right of O then B will be the low probability starting point in the subgame. Assuming
the searcher plays optimally in the subgame, this strategy ensures an expected capture
time (and hence an estimate of ) given by

The estimation of is carried out in the following.

Lemma 4.12

Proof. Assume that A is the low (1/3) probability end. Suppose the searcher starts
by going at speed 1 from his starting point (A or B) equiprobably along either the top
pair of arcs or the bottom pair of arcs arriving at time 1 at the other end
(B or A ). Regardless of subsequent play, the optimal response of the hider is to meet a



possible searcher path from the low probability (A ) side of O at time just before If he
has not been captured by time then it is even more likely than at the beginning that the
searcher started at B, so he should go close to A, meeting a searcher path starting from B
just before time 1. If he has not been captured by time 1, the remaining game is the same
as the original one, with the starting probabilities on the ends reversed, so with optimal
play the expected remaining capture time is again Consequently, the hider will be
captured just before time with probability and just before time 1 with
probability . With the remaining probability the same game will be played
again (with A and B reversed) starting at time 1. Consequently, we have the estimate

Substituting this value of into the inequality (4.11) gives Writing this in
terms of the length µ of the network, we obtain the desired result.

Theorem 4.13 The value of the search game with mobile hider on the figure eight
network with the searcher starting at the center satisfies
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Solving the above inequality for gives

This can be achieved by a strategy that is consistent with the non-loitering assumption.

Remark 4.14 Note that if the starting point of the searcher is at a known antipode,
say A, then the value of the search game is 2 = µ . (The hider can use the
strategy for the graph that consists of the two arcs and with a random
small Since the non-loitering assumption prevents the searcher from ambushing at
O, this strategy is as effective as in the two arcs game as described in Section 4.2.)
The advantage of starting at O is that at time the hider does not know whether the
searcher sweeps from A to B or from B to A.

Can the expected capture time be reduced below Yes, if we do not limit the
searcher by the non-loitering assumption and allow the searcher to ambush at the node
O, with some (small) probability for some time interval. The fact that the searcher can
actually gain from ambushing can be deduced as follows. It is easy to see that, against
the hider’s best response involves crossing O once just before t = 2 and an additional
time before t = 3. Now, if the probability that the searcher ambushes at O for the
time interval [2,3] (and later continues to use is small enough then the hider’s best
response is still to cross O during Thus, if the hider is still at large at t = 2,
then the (conditional) capture time if the searcher ambushes is smaller than if he uses
So the expected capture time for a mixture of the above strategies is smaller than

We can effectively remove the limitation produced by the non-loitering assumption
(note that an ambush could be useful only at O) by considering the spectacles network
given by Figure 4.3.
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Instead of the central node, O, of the figure eight graph, we have here a very
short central interval. Thus, for the spectacles network, even with the non-loitering
assumption, the searcher can “ambush” by slowly moving in the central interval, say
during

Alpern and Asic (1985) conjectured that the spectacles graph (with an infinites-
imal central interval) achieves the minimum possible v/µ , under the non-loitering
assumption.

They also conjectured that when loitering is allowed, the quickest graph to find the
hider in is then n-leafed clover consisting of a central vertex, where the searcher
starts, to which n loops of equal length are attached. Both of the above conjectures are
still open problems.

Remark 4.15 Analyzing the effect of ambush strategies in a star consisting of a central
vertex O to which n line segments of equal length are attached, seems a “neat” problem.
However, even for this simple graph, finding the optimal search strategy, allowing
ambushing at the central node, seems quite complicated. (A reasonable search strategy
is, for each stage, either to visit a segment among those that were not inspected lately,
or, with a small probability, ambush at O).

Remark 4.16 Alpern and Asic (1986) investigated the effect of removing the non-
loitering assumption in the k-arcs game (see Section 4.2). They showed that allowing
the searcher to ambush at vertices (O or A) in the k-arcs game reduces the value below
k for k > 3. If k = 3, then the value remains 3, but the optimal strategies are not
“uniformly optimal” (see Remark 4.9). The analysis is quite complicated (probably
because of the lack of uniformly optimal strategies).

It should also be noted that if we allow the searcher an arbitrary starting point, then
the lower bound for the value decreases to µ/2 (= lower bound for an immobile hider).
This lower bound, v = µ/2, is obtained in the case that Q is any line segment [a, b]
and the searcher can choose his starting point. (The searcher can guarantee an expected
capture time not exceeding (b – a)/2 by choosing S(0) = a with probability  and
S(0) = b with probability 1/2, and moving with maximal speed to the other end of the
segment, while the hider can guarantee an expected capture time greater, or equal to
(b–a) / 2 by choosing a point H that is uniformly distributed in [a, b], and staying at H.)
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4.5 The Princess and the Monster in Two Dimensions

4.5.1 General framework

In this chapter, the domain of search is a two (or >2) dimensional convex1 region in
a Euclidean space. The searcher can move along any continuous trajectory that starts
from the origin O. The hider can choose his initial location and an arbitrary continuous
trajectory starting from that point and can move along his trajectory with maximal
speed In contrast to the search on k arcs, we will not require that but assume
that  is not too small. (The exact formulation of this condition will be presented in
Section 4.5.3.)

The notations that will frequently be used in this chapter are µ , the Lebesgue measure
of relevant search space; D, its diameter; and  the maximal rate of discovery of the
searcher (which is equal to 2r for two-dimensional sets, for three-dimensional
regions, etc.). The radius of detection r will be assumed to be small in relation to the
magnitude of Q. We shall proceed under the assumption that the detection radius is a
constant, and the maximal velocity of the searcher is 1, but in Section 4.6 we show how
to extend the results to the case in which both the radius of detection and the maximal
velocity of the searcher depend on the location inside Q.

For the case of an immobile hider in a two-dimensional region, it has been shown
in Section 3.7 that the value, , of the search game, satisfies For the case of
a mobile hider, we show in Section 4.5.2 that the searcher can guarantee an expected
capture time not exceeding The dual result is presented in Section 4.5.3.
We show there that the hider can make sure that the expected capture time will exceed

Thus, we demonstrate that the value of the Princess and Monster game in
a multidimensional region satisfies independently of the shape of the search
space, and we present strategies for both players. Specifically, we prove the
following theorem.

Theorem 4.17 For a convex two-dimensional region, Q, the value, v, of the search
game with a mobile hider satisfies

1 In Section 4.6.2 we show that our results also hold for nonconvex regions. We make this assumption in
order to simplify the presentation.

58 BOOK I. SEARCH GAMES

where as

This result can be extended to non-convex regions as well using a mild modifica-
tion of the optimal strategies, as discussed in Section 4.6.2. We conduct the detailed
proofs for two-dimensional regions, but in Section 4.6.3 we also show how to extend the
results to higher-dimensional regions and also discuss some other extensions, includ-
ing the result that our strategies remain even if a more general cost function
is used.
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4.5.2 Strategy of the searcher

In this section, we shall prove that for any bounded two-dimensional convex2 region
Q, if the detection radius r is small, then the searcher has a strategy that makes sure
that the expected capture time does not exceed where is small.

As an easy “starter” consider searching (for a mobile hider) in a narrow rectangle
with width 1 and height (k being any positive integer and r very small). Cover
Q by k parallel strips, each of height 2r. Consider k sweepers (each of them assigned
to a different strip) that move with speed 1 in the middle of the strip from one (narrow)
side to the other in the time segment (see Figure 4.4).

Then, just as in the k arcs network, at least one of these sweepers must meet the hider.
The problem now is very similar to the k arcs network, except for a small perturbation.
Assume that the searcher starts from one of the narrow edges. He can choose any
sweeper (with equal probability) to reach him by time and join him during the
time segment Then, at time  he can (randomly) join
another sweeper, etc. Just as in Lemma 4.7, the expected capture time would satisfy

We now construct the search strategy for any convex region Q. The search strategy
to be considered has the following general structure. The region Q is covered by a set

of parallel congruent rectangles with height much smaller than the width; a rectangle,
chosen randomly, is entered and examined by moving N times from one narrow side to
the other along randomly chosen heights; then another rectangle is randomly chosen,
etc. The number N should be large enough to “absorb” the effect of the time spent in
going from one rectangle to another, but on the other hand, N must not be so large
that too much time is spent in one rectangle. Having this idea in mind we proceed as
follows.

Let be the set with minimal area that is a union of the rectangles
where each with height and width 2a, is parallel to the

x axis as shown in Figure 4.5.

2We have already noted that convexity is not really needed (see Section 4.6.2).
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Let µ  be the area of Q and be the area of Then

For any let be the minimal length of a path that connects
and and passes inside As usual, D will denote the diameter of the relevant

search space
We shall give a constructive proof of the following theorem.

Theorem 4.18 Let r satisfy

and assume that

Then there exists a search strategy in such that for any evading trajectory H used
by the hider, the expected capture time satisfies

We use the following construction. Let

We first divide each rectangle of size (see Figure 4.5) by
horizontal lines, into narrow rectangles, so that all of these rectangles except
possibly one, have a width while the upper one has a width then split
each rectangle into two halves, each of length a, by a vertical line in the middle
and denoted by – the left rectangle and – the right rectangle, as depicted in
Figure 4.6.

where, by the convexity of Q,
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Thus, each rectangle m = 1 , . . . , M, has a height Since
(see Figure 4.5), then the number 2M of such rectangles satisfies

by (4.17) and (4.15).
Let N be a positive integer defined by

Let y be a random variable y with the density

The search strategy is composed of independent repetitions of the following step. At
time t = 0 make a random choice out of the narrow rectangles

elsewhere.
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such that each rectangle has a probability 1 /2M of being chosen, and also make
a random choice of N independent random variables where N is given by
(4.19) and all the have the probability density given by (4.20), and
where is the height of the chosen rectangle. (In the case of the upper rectangle, with
height then replaces in (4.20); if we define y to be identically
In order to describe the motion of the searcher within we shall use a coordinate
system with origin at the lower left corner of as depicted in Figure 4.7. At time
t = 0, the searcher starts moving as fast as possible to the point (i.e., on the
left vertical edge for i = 0 and on the right edge for i = 1). He rests at that point until
t = D and then moves with maximal velocity horizontally to the other vertical edge
(to if i = 0 and to if i = 1) and reaches it at time t = D + a, then he
moves vertically to i.e., to the point if i = 0 and to if i = 1. He
rests there until and at that moment he starts moving horizontally to
the other vertical edge, etc.

The important feature of the movement of the searcher, using is that at the time
segments

Proof. Consider a specific time segment given by

he moves, horizontally, along the intervals that join to We shall show
that for this kind of movement, the following proposition holds.

Proposition 4.19 If the searcher uses then, for any hider strategy, the probability p
of capture during the time segment satisfies

where



We shall distinguish between two cases. If n is odd and i = 0 or if n is even and
i = 1, then for any we define as the vertical line
segment of width which has a distance d ( t ) from the left vertical edge of where
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so that is given by

If n is even and i = 0 or if n is odd and i = 1, then for any we define
as the vertical line segment of width which has a distance

d ( t ) from the right vertical edge of in this case

In both cases we define

By an argument similar to those used in proving the sweeping lemma (4.6) of Section 4.2,
one can show that the following lemma holds.

Lemma 4.20 If H is any trajectory used by the hider, then for any n there exists at
least one time instant (see (4.22)) such that the point visited by the hider
at time satisfies (see (4.26)).

It follows from the lemma that for any n there exist m and i such that

Let if (4.27) holds and zero otherwise, and define

Then it follows from the foregoing discussion that

Assume that the searcher chooses the rectangle then it follows from
the definition of the random variable that the probability of capture during the time
segment is greater than or equal to the probability that at the time (see (4.27)) the
random interval given by



Since the random variables are independent, it follows that the probability
of capture during the time segment is greater than or equal to

Since for any nonnegative integers J, K

it follows that
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will contain the y-th coordinate of Now, it follows from (4.20) that for any point
b in the interval the probability that is greater than or equal to

Since each rectangle is chosen with probability
1/2M, it follows that the probability p of capture during the time segment

satisfies

so that (by (4.29))

Thus, it follows from (4.30) and (4.31) that
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We can now proceed with the proof of Theorem 4.18. First we note that (4.14),
(4.15), (4.17), and (4.19) imply that

Thus by (4.21), the probability p of capture in the time segment
satisfies

Now, since the search strategy is composed of independent repetitions of the step
described for the time segment then for any hiding trajectory
H, the probability of capture after the time instant satisfies

Thus the expected capture time satisfies (see (2.5))

(by (4.14) and (4.15)). This completes the proof of Theorem 4.18.
The following corollary is important for establishing the of for a more

general cost function (see Section 4.6.8).

Corollary 4.21 If the searcher uses the strategy described in the proof of Theorem 4.18,
then for any hiding trajectory H the probability that the capture time T exceeds t satisfies

with as

Proof. Let
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by (4.12), (4.14), (4.15), and (4.17)–(4.19):

Then it follows from (4.32) and (4.34) that if the searcher uses then for any H

Since both and as we obtained the desired result.

It should be noted that if the searcher uses the strategy presented in the proof, then
a part of his trajectory, which is near the boundary of might be slightly outside of the
original search space Q. However, if Q is convex, then we can make a slight modification
in and introduce a search strategy that uses trajectories entirely inside Q and still
guarantees that the result (4.16) of Theorem 4.18, holds. The strategy is defined as
follows. If the chosen rectangle is inside Q, then the movement is identical to the
one in However, if a part of is outside Q, as depicted in Figure 4.8, we make the
following modification.

Assume that in the strategy the searcher moves from the point to in
the time segment (see (4.22)) and then moves from the point to
in the time segment The movement in is as follows. The searcher moves from
the point to (see Figure 4.8) in the time segment



so that for a convex Q, the strategy guarantees the desired result by moving only
inside Q.

4.5.3 Strategy of the hider

The strategy of the hider to be considered in this section is defined as follows.

Definition 4.22 Choose a point using a uniform probability distribution in Q, and
stay there during the time period At the time t = u, choose a point
that is uniformly distributed in Q independent of move toward with velocity

in a straight line, and stay in  for a time period of length u. Then
choose a point uniformly distributed in Q and independent of and move
toward it, again with velocity in a straight line, and stay there for a time period of
length u, and so on. The “resting time ” u should satisfy two conditions:
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then moves with maximal velocity in a straight line from to and
stays there until the time instant

The searcher can arrive at before because the length of the segment that
joins to does not exceed

He then moves from to in the time segment

By using exactly the same method of proving (4.16), it can be shown that for any
hiding trajectory H, the expected capture time satisfies

etc.

(1)

(2)

It should not be too long, so that the area covered by the searcher in a time
interval of length u would be small relatively to µ .

On the other hand, in order to keep the probability of capture during motion
relatively small, the hider should not move too frequently and thus u should not
be too short.

Note that the hider need not randomly choose the time of changing his location; it
is enough that he moves relatively rarely.

Assume that the hider uses a strategy as described by Definition 4.22. Let

– the event capture occur at point

Now if it were possible to neglect the probability of capture during the motion from to
then for any search trajectory S, the expected capture time would approximately
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satisfy

Since each is uniformly distributed in Q and the maximal rate of discovery is 2r, it
then follows that for each the probability of being discovered at is at most 2ru/µ .
Thus, it follows from the independence of that

Thus, it would follow from (4.36) and (4.37) that for all S

so that if the parameter u of the hider’s strategy could be chosen to be small in
comparison with µ /2r, we would get the desired result.

We have presented the previous discussion in order to help the reader understand
the motivation behind the definition of the strategy and the idea of the proof of
Theorem 4.23, which follows.

We must also require that the maximal velocity of the hider, w, should not be too
small because when w reduces to zero, we approach the situation of an immobile hider
considered in the previous chapter, and the value of the search game should then be
approximately Such a condition is the following:

where

In the next theorem we show for any two-dimensional convex set, that if (4.39) holds,
then the hider can make sure that the expected capture time will exceed
The theorem is formulated and proved for two dimensions, but it can be easily extended
to three or more dimensions.

Theorem 4.23 Let the search space Q be any two-dimensional convex set. Denote



where satisfies condition (4.39). If the hider uses the strategy presented in
Definition 4.22, where

The first stage of the proof is to establish an upper bound for so as to show that
it is negligible in comparison to the other relevant terms. The following general lemma
concerning mixtures of uniform variables will be used.

Lemma 4.24 Let and be two independent random variables uniformly distrib-
uted in a convex (two dimensional) region, Q (i.e., with probability density 1/µ each).
Let be the random point
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then for any search trajectory S the expected capture time satisfies

The hiding points used in the proof are described by
Definition 4.22. Let and be the following events:

capture occurs while the hider is moving from

capture does not occur before the hider leaves

then (see (4.36) and (4.44))

where is a fixed constant. Then the probability density of does not exceed
4/µ .

Proof. Assume that (otherwise the role of and would be inter-
changed). Let x be any point inside Q. Choose small enough so that the disc

is inside Q. Now the event

occurs only if
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Since is a uniform random variable, it follows that for any the conditional
probability for the event (4.47) (and hence of (4.46)) does not exceed Thus, the
overall probability of (4.46) is at most so that the probability density of at any
point x inside Q, is at most 4/µ .

Then we establish the following proposition:

Proposition 4.25 (see (4.40) and (4.43)).

Proof. The hider moves from point to point in a straight line with velocity
Divide the time of movement into J equal sections where

Then the time duration of each section and the distance
traveled by the hider   Also, the location,                of the hider at the middle of the
j-th section, j = 1 , . . . , J, satisfies

Let be the part of the searcher’s trajectory that corresponds to the time the hider
moves from to We also divide into J arcs for where is the
part of the trajectory followed by the searcher during section j. Note that each section

is traversed during a time interval of length at most r.
Let be the event:

At some point of the distance between the searcher
and the hider does not exceed r.

Obviously (see (4.43)),

Let

Note that for each of the J time sections the distance traveled during half of the section
is at most r/2 for the searcher and for the hider. Thus, a necessary condition for
the validity of the event (see (4.50)) is the event

where is the middle point of j-th time segment.
We can now use Lemma 4.24 (and (4.52)) and get



so that by (4.51), (4.48), (4.39) and (4.40)

(see (4.45))
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We can now complete the proof of Theorem 4.23 as follows: For any search trajectory
S we now calculate the expected capture time, with the “resting” parameter u
of the hider’s strategy chosen as

If   is defined, as in (4.43), to be the event that capture does not occur before the hider
leaves the point then inequality (2.6) leads to the inequality

(where the integer N will be determined later)

(by (4.37) and Proposition 4.25)

Now if we choose and use we obtain

It can be easily seen that for as assumed,



Let

Then (4.45), (4.37), and Proposition 4.25 imply that, for any search trajectory, the
capture time T satisfies
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(because In Thus, by (4.55)

This completes the proof of Theorem 4.23.
The following corollary is important for establishing the of for a

more general cost function (see Section 4.6.8).

Corollary 4.26 If the hider uses the strategy (with an appropriately chosen u), then
for any bounded time interval the probability that the capture time T exceeds
t satisfies for any search trajectory

with as

Proof. For a (small) assume that the hider uses with

where

(note that as and let

Let be a positive number that satisfies
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Then (4.56)–(4.58) imply that for

It follows from Corollaries 4.21 and 4.26 that both the searcher and the hider can
keep the probability of capture before time t close to This is the
expression obtained, in a different context, by Koopman (1956) for the probability of
detection in a “random search” (see also Washburn, 1981).

4.6 Modifications and Extensions

4.6.1 A “non-localized” search strategy

Our search strategy, presented in Section 4.5.2, is characterized by extensively
searching a small part of Q for a relatively long period of time then moving to another
part of Q and so on. This type of strategy would not be efficient if the rules of the game
were changed in such a way that the hider is informed about the position of the searcher
from time to time. A search strategy that is robust to such a change of rules was presented
by Lalley and Robbins (1988b) as follows.

Assume that Q is a compact, convex region in with smooth boundary such
that any line tangent to meets Q in only one point. Let be i.i.d. random
variables with density sin Define a sequence of random points

on as follows. Let be uniformly chosen on Having defined
draw the chord in Q that makes an angle with the tangent to at and define

to be the second point of intersection of this chord with The trajectory of the
searcher is obtained by following the chords at unit speed.

Lalley and Robbins (1988b) proved that, as the above strategy guaran-
tees expected capture time and capture probability as in
Section 4.5.2. They have also shown that this strategy is robust to partial information:
even if the hider is given the position and direction of the searcher from time to time
(not too often though) then the hider will not be able to predict its course for very long.

It should be noted, though, that Lalley and Robbins’ strategy may be ineffective
for non-convex regions while our search strategy, described in Section 4.5.2, is also
effective for non-convex regions, as we show in the next subsection.
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4.6.2 Search in non-convex regions

The main result of Section has been shown to hold under the assumption
that the search space Q is convex. However, both the searcher’s strategy presented in
Section 4.5.2 and the hider’s strategy presented in Section 4.5.3 can be easily modified
for non-convex regions in such a way that the basic results still hold for that case as well.

Considering the searcher’s strategy, it is easy to perturb near the boundary of Q,
so that all the trajectories will pass inside Q. With regard to the hider’s strategy, we can
choose the points by the same method used by and the only problem is
to make the movement from to in such a way that the probability of capture
during this movement would still be negligible with respect to the probability of capture
at This requirement should be achievable if the detection radius is small enough.
(Note that even the existence of “Narrow passages” inside Q does not change the value,
as we show in Section 4.6.6.)

4.6.3 Multidimensional extensions

The results stated and proved in Sections 4.5.2 and 4.5.3 can be extended to any number
of dimensions greater than 2, by the same techniques used in Theorems 4.18 and 4.23.
For example, if Q is a three-dimensional compact region, then the construction of a
search strategy that keeps the expected capture time below can be made as
follows. Cover Q by a large number 2M of boxes ofdimension where
randomly choose one of the boxes, and move along N random horizontal segments that
join the two faces of size etc. A hiding strategy that can keep the expected
capture time above is the strategy presented by Definition 4.22 with
a parameter u that satisfies

4.6.4 The case of several searchers

We now consider a game in which J cooperative searchers seek a single mobile hider
in a multidimensional region. We do not assume that all the searchers have the same
characteristics so that each searcher i, i = 1 , . . . , J, may have a different maximal
speed and a different discovery radius Let be the maximal discovery rate of the
i-th searcher for two dimensions, for three dimensions, etc.). Then
the total discovery rate is defined as

Under the assumption that is small with respect to the dimension of Q and
that the maximal velocity of the hider is not too small, it is possible to establish a result
that is analogous to the one obtained for a single searcher; i.e., that This
follows from the fact that by adopting the strategy used in Section 4.5.3, the hider
can keep the probability of capture after time t close to the function On
the other hand, if each of the searchers adopts, independently, the strategy used
in Section 3.5.2, then the probability of capture after time t will also be close to
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4.6.5 The case of an arbitrary starting point

In Section 4.3, which dealt with a search for a mobile hider on a circle, we noted that
the result depends on the assumption that the searcher has to start from a
fixed point known to the hider and that if the starting point of the searcher is arbitrary
or if it is random, then the value would be substantially less than Obviously, that
phenomenon does not occur in the multidimensional search because Theorem 4.17 is
valid under any assumption about the location of the starting point, so that the result

is not sensitive to the assumption S(0) = O.

4.6.6 Loitering strategies

Assume that the search region Q is composed of two regions and that have
the same area, µ /2, and intersect at only one point, A. It may seem reasonable for the
searcher to loiter at A when the hider uses the strategy but the hider can easily modify
his strategy as follows. He chooses each i = 1,2 with probability 1/2 and stays in

all the time using for this chosen region. Then, for each t, if the searcher spends
time in and in then the probability that the capture time exceeds t is

Thus, even though ambushing at A seems natural it is actually ineffective.
Note that this is very different from the search in a network, e.g., the k( k > 3)

arcs network considered in Section 4.2 for which loitering gives an advantage to the
searcher (see Remark 4.16).

4.6.7 Non-homogeneous search spaces

In Section 3.7.1 we have shown that the results established for the search game with an
immobile hider can be extended to the case in which the maximal velocity of the searcher

(Z) depends on the location of the searcher, and the discovery radius r(Z) depends on
the location of the hider. Using the framework and definitions of Section 3.7.1 (i.e., that

(Z ) is continuous and satisfies and where
is continuous and positive and is small). We now extend the results of Sections 4.5.2
and 4.5.3 to this case.

In order to simplify the presentation, we describe this extension for two-dimensional
regions. In this case, if is small, then the value of the game satisfies

where µ  is the Lebesgue measure. The intuitive reason that the value should approximate
q is that both the searcher and the hider can guarantee that, except for negligible time
periods, the probability of detection in a small time interval Since both
the searcher and the hider can keep the probability of detection close to an exponential
function, it follows that the expected capture time is approximately q.
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In order to achieve the value q, the hider’s strategy should be modified as follows.
The hiding points should be chosen, independently, using the probability
density instead of the uniform density that was originally used.

With regard to the searcher, we first consider the simpler case in which (Z ) is a
constant, and only r(Z) depends on Z. In this case, the only modification needed in
is to construct the rectangles in such a way that the width of would be
proportional to where is the average of r(Z ) in It is also required that

where a is the length of If v (Z ) is not a constant, then
a substantial modification is needed in In this case, the region would not be a
rectangle, as in Figure 4.6. Instead, it would be a strip, as shown in Figure 4.9.

The distance between any point on the left boundary line and the corresponding
point on the right boundary line (at the same level) should be equal to the maximal
distance that can be traveled in a time interval of length 2a by a searcher moving
from in a horizontal direction. The region should then be divided into strips by
parallel horizontal lines. The width of the strip should be proportional
to where is the average of r(Z ) in this strip. It should also be required that

The fact that the above-described modifications of and guarantee the value
can be established by a technique similar to that used in Section 4.5.

4.6.8 A general cost function

It follows from Corollaries 4.21 and 4.26 of Section 4.5 that each one of the players of
the search game in a two-dimensional convex region can keep the probability of capture
after time t close to the function where

This result can be used to obtain the solution of the game in the case that the cost
function W is a monotonic non-decreasing function of the capture time T, rather than
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T itself. In this case, one would expect that the value of the game would satisfy

Actually (4.60) holds, under the following assumption about W.

Condition 4.27 There exist constants and : such that for all

Condition 4.27 is satisfied for a wide variety of functions including all the polynomi-
als, the bounded functions, and actually any reasonable function that does not increase
faster than all polynomials.

Theorem 4.28 Let Q be a (two-dimensional) search space. If the cost function W(T)
is a positive non-decreasing function of the capture time T that satisfies Condition 4.27,
then for any there exists a detection radius so that for any search game (inside
Q) with the strategies and presented in Sections 4.5.2 and 4.5.3 satisfy

and

with

where

The details of the proof are presented in Gal (1980).
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Chapter 5

Miscellaneous Search Games

This chapter presents several search games in compact spaces that are not included in
the framework described in Chapter 2. These games are interesting and have attracted
a considerable amount of research, some of it rather recently.

5.1 Search in a Maze

In Section 3.2 we examined the problem of searching for an immobile hider in a finite
connected network Q of total length µ. We now make the searcher’s problem more
difficult by depriving him of a view of the whole network Q and instead let him see
(and remember) only that part of Q that he has already traversed. We also let him
remember the number of untried arcs leading off each of the nodes he has visited.
Under these informational conditions, the network Q is known as a maze. The starting
point O is known as the entrance, and the position A of the hider is known as the exit.
In this section we present the randomized algorithm of Gal and Anderson (1990) for
minimizing the expected time for the searcher to find the exit in the worst case, relative
to the choice of the network and the positioning of its entrance and exit. This strategy
(called the randomized Tarry algorithm) may be interpreted as an optimal search strategy
in a game in which the maze (network with entrance and exit) is chosen by a player
(hider) who wishes to maximize the time required to reach the exit.

Finding a way for exiting a maze has been a challenging problem since ancient
times. Deterministic methods that ensure finding the exit were already known in the
19-th century. Lucas (1882) described such an algorithm developed by Trémaux, and
Tarry (1895) presented an algorithm which is now very useful in computer science for
what is known as depth-first search. An attractive description of depth-first search is
presented in Chapter 3 of Even (1979). The algorithms of Trémaux and Tarry mentioned
above each guarantee that the searcher will reach the exit by time 2µ . Fraenkel (1970,
1971) presented a variant of Tarry’s algorithm, that has an improved performance for
some cases but has the same worst-case performance of 2µ .

The worst-case performance of any fixed search strategy cannot be less than 2µ. This
can easily be seen by considering the family of “star” mazes consisting of n rays of equal



length µ/n, all radiating from a common origin O. The least time required to visit all
the nodes of this maze is (n – l)(2µ/n) + (µ/n) = 2µ – µ/n, which converges to 2µ.
Can this worst-case performance be improved by using mixed strategies and requiring
only that the expected time to find the exit is small? This question is related to the
following game: For a given parameter µ, Player II (the hider) chooses a maze with
measure µ  and specifies the entrance O and the exit A. Player I (the searcher) starts
from O and moves at unit speed until the first time T (the payoff to the maximizing
player II) that he reaches A. We will show that this game has a value that is equal to
the length µ, of the maze. Obviously, because the hider can always choose the
maze to be a single arc of length µ  going from O to A. On the other hand, we shall
show that the searcher has a mixed strategy that guarantees that the expected value of
T does not exceed µ. Consequently, Therefore this (optimal) search strategy
achieves the best worst-case performance for reaching the exit of a maze. This result
was obtained by Gal and Anderson (1990), on which the following discussion is based.

The optimal strategy generates random trajectories that go from node to node by
traversing the intervening arc at unit speed without reversing direction. Consequently,
it is completely specified by giving (random) rules for leaving any node that it reaches.
This strategy is based in part on a coloring algorithm on the passages of the maze.
A passage is determined by a node and an incident arc. Thus each arc has two passages,
one at each end. We assume that initially the passages are uncolored, but when we go
through a passage, we may sometimes color it either in yellow or in red. The strategy
has two components coloring rules and path rules, as follows. Since this strategy is in
fact a randomized version of Tarry’s algorithm, we will refer to it as the randomized
Tarry algorithm.
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Coloring rules
1.

2.

When arriving at any node for the first time, color the arriving passage in yellow.
(This will imply that there is at most one yellow passage at any node.)

When leaving any node, color the leaving passage in red. (This may require
changing a yellow passage to red.)

Path rules (how to leave a node)
1.

2.

3.

If there are uncolored passages, choose among them equiprobably.

If there are no uncolored passages but there is a yellow passage, choose it for
leaving the node.

If there are only red passages, stop.

Obviously, when adopting the above algorithm to exit a maze, the searcher would
use the obvious additional rule of stopping when the exit A is reached. However, for
analytical reasons we prefer to consider the full paths produced when the searcher
does not stop at A but continues until the single stopping rule 3 is applied. We call these
full paths tours and denote the set of all tours by The set is finite because there
are only finitely many randomizations involved in the generation of the tours.

To illustrate how the randomized Tarry algorithm generates tours of the maze,
consider the particular maze drawn in Figure 5.1 (all the arcs have unit length).
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All arcs have length 1 so that µ  = 7. For this maze a particular tour is given
by the node sequence (which determines the continuous path)

Note that the tour stops at O when all its passages become red. It traverses each
arc exactly once in each direction and consequently takes 14 (= 2µ) time units. The
following lemma shows that this behavior is not specific to the maze or the particular
tour chosen but always occurs.

Lemma 5.1 Let be any tour generated by the randomized Tarry algorithm for a
particular maze Q of total length µ and entrance O. Then   finishes at O at time 2µ,
after traversing every arc of Q exactly once in each direction.

Proof. The path rules ensure that a node will never be left via a red passage, so
coloring rule 2 guarantees that an arc will never be traversed more than once in either
direction. Consequently, the path must end and can have length at most 2µ .

We now show that cannot end at any node B other than O. Let k denote the degree
of B. Note that whenever is at B, it has arrived at B one more time than it has left. If
ends at B, all the passages at B must be red, and hence it must have already left B by all
k arcs. Hence it must have arrived at B at least k + 1 times, which is impossible, since
the k incoming arcs at B can each be traversed at most once in the incoming direction.

Next we show that at the time stops at O, all the arcs incident with any visited
node have already been traversed exactly once in each direction. Let denote the
node (other than O) that has been discovered first,  the node discovered second,
the node discovered third, and so on. When stops at O, the arc at O that led to the
discovery of has already been traversed into O so that the yellow passage of node

has been used. By path rule 2 this implies that all the passages out of have been
used. Since the number of times the trajectory entered is equal to the number of
times it left it follows that all the arcs incident with have been traversed in both
directions, and coloring rule 2 ensures that an arc cannot be traversed more than once
in any direction. Similarly, can be discovered by an arc from either O or We
have just shown that all the arcs incident with O or with have been traversed in both
directions so that the yellow passage of has been used so that all the arcs incident

to all nodes that have been reached by
with have been traversed exactly once in each direction. The same argument applies
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Finally, we use the assumed connectivity of Q to show that visits all nodes.
Assuming that there is an unvisited node, then there exists an unvisited node
that is adjacent to a visited node But this is impossible because all the arcs incident
with node have been traversed out of and so must have been discovered.

Since each tour visits all points of the maze before returning to the entrance at
time 2µ, an immediate consequence is the following.

Corollary 5.2 The randomized Tarry algorithm guarantees that the time to reach the
exit is smaller than 2µ.

We have already observed that the set of tours is finite. The following lemma com-
putes its cardinality, which is also the reciprocal of the probability of any particular tour.

Lemma 5.3 Let Q be a maze with I + 1 nodes. Denote by the degree of O and by
the degree of the remaining nodes i, i = 1, . . . , I. Then the cardinality K of the set
consisting of all tours is given by

Each tour is obtained with an equal probability of 1 / K .

Proof. If the randomization that produces the tours is carried out in a more
concentrated but equivalent manner, the calculation of K is simplified, and the claimed
formula easily obtained. Suppose that whenever a tour arrives at a new node B that
has degree k, the searcher labels the incoming passage k and assigns the numbers
1, . . . , k – 1 to the remaining passages at B according to a random permutation. Then
whenever the searcher has to leave B he always chooses the lowest numbered passage
that has not already been used for that purpose. There are (k – 1)! ways of making these
choices at B. At the start of his search, he does the same thing with respect to all the
passages at O. Consequently, the number of possible tours is the number K given by
the stated formula. Since every tour determines a particular permutation of this type
at each node, it occurs with probability 1 /K.

We now consider the main problem of evaluating the expected time taken for the
randomized Tarry algorithm to reach a point A of the maze (which might be taken as
the exit). For and any node A of Q, define to be the first time that the tour

reaches the node A, that is, Consequently, the expected
time for the randomized Tarry algorithm to reach A is given by

In order to estimate it will be useful to compare the performance of a tour with
the performance of its reverse tour defined by
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For example, the reverse tour of the tour given in (5.1) is expressed in node sequence
form as

Observe that while the time is greater than µ = 7, when averaged with the
smaller time of for its reverse path, we get (11+ 3)/2 = 7. This motivates
the following analysis. (The reversal mapping is a bijection of Consequently we
can just as well calculate by the formula

Observe that since by definition, and similarly we have by (5.3) that

If reaches A exactly once (which is the same as A having degree 1) then so does
and consequently If also reaches A at some later time,

then also reaches A  at some earlier time and hence
In either case, we have that

i.e.,

with equality if and only if A  is a node of degree 1. Combining (5.4) and (5.5), we have

Again, we have equality if and only if A  has degree 1. Since in this argument A  was
arbitrary, we have established the following.

Theorem 5.4 The randomized Tarry algorithm reaches every possible exit point in Q
in expected time not exceeding the total length µ of Q. Furthermore, except for nodes
of degree 1, it reaches all points in expected time strictly less than µ.

Since we have already observed that the hider can choose a maze in which the exit
lies at the end of a single arc of length µ  (which would take time µ  to reach), we have
the following.

Corollary 5.5  The value of the game in which the hider chooses a maze of total length
µ, with entrance and exit, and the searcher moves to minimize the (Payoff) time required
to find the exit, is equal to µ.
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We conclude this section by giving some comparisons of the randomized Tarry
algorithm with other possible methods of searching a maze. Notice that in the Tarry
algorithm a tour (such as given in (5.1) on the first return to O) may choose an arc that
has already been traversed (in the opposite direction), even when an untraversed arc is
available at that node. This may appear to be a foolish choice because the untraversed
node may lead to a new part of the maze (maybe even straight to the exit). Yet a
strategy that is based on giving priority to unvisited arcs leads to significantly inferior
performance in the worst case: 2µ  instead of µ, as shown in Gal and Anderson (1990).

The randomized Tarry algorithm requires only local information in each node. This
type of locally determined strategy is similar to some policies that could be employed in
a distributed computing environment to deal with incoming messages or queries directed
to an unknown node of the computer network. Such a model was used, for example,
by Golumbic (1987). Our strategy provides an alternative path finding mechanism that
uses only local information. Other local information schemes of searching an unknown
graph by several (decentralized) agents (ant-robots that leave chemical odor traces) are
described and analyzed by Wagner, Lindenbaum and Bruckstein (1996, 1998, 2000).

5.2 High–Low Search

In this section we consider games that are usually played on an interval or a discrete
subset of it. The hider chooses a point H in the interval, and the searcher tries to
approach it by a sequence of guesses of H, being told for each whether
it is too high or too low.

5.2.1 Continuous high–low search

The continuous version of the high–low search game was introduced by Baston and
Bostock (1985). In this version the hider picks a point H in the unit interval Q = [0, 1],
which is also the hider’s pure strategy space In each time period i = 1, 2 , . . . , the
searcher announces a “guess” and is told the direction of the error. The searcher
wishes to minimize the “sum of errors” cost function

Baston and Bostock found a pure search strategy that guaranteed that this sum was
always less than 0.628. (Note that the natural bisection strategy can’t guarantee cost
less than 1 against hiding at an end of the interval.)

Subsequently, Alpern (1985) continued the analysis in the following way. The infor-
mation feedback can be coded in a binary fashion as (too high) and

(too low). We may assume that if the searcher is told if then
all subsequent guesses will be the correct value H. The information available to the
searcher before making guess is the feedback sequence which may
be uniquely coded as a dyadic rational number of rank i (one with a power of 2 as its
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denominator, the power called the rank) by the formula

Thus the initial information is coded as and the information after the first
guess is either (if the first guess was too high) or
(if too low). Hence the pure strategy space consists of all maps (pure strategies)

where D is the set of all reduced proper dyadic rationals. For
example, the “halving” strategy, which always guesses at the middle of the uncertainty
interval (in which the hider is known to be), is given by the linear function S(d) = d.
In general, S and H determine by the beginning of period i, and then the next guess
is determined as

The cost function

is lower semicontinuous on the product space if the usual distance on [0,1] is
used for and the distance between two pure search strategies S and in is given by

for some enumeration  d(1), d(2),... of all the proper dyadic rational numbers. Since
under this metric is compact (it is homeomorphic to the Hilbert cube), the existence
of a value for this game follows from the minimax theorem of the authors (Alpern and
Gal, 1988, or Appendix A).

To eliminate some pure strategies from consideration, we say that S is effective if it
ensures that and undominated if there is no other strategy that is never worse
and sometimes better, in terms of the cost function c(S, H). Observe that the dyadic
rationals D form a dense subset of [0, 1]. It is shown in Alpern (1985) that

Theorem 5.6 A pure strategy is effective and undominated if and
only if it has an extension to an increasing homeomorphism1 of [0, 1] onto itself. In
particular, such strategies always make the next guess inside the current interval of
uncertainty of H.

The following result of the same paper completely determines the minimax search
strategy for the continuous high–low search game.

Theorem 5.7 There is a unique strategy satisfying

The strategy has a simple description in terms of a sequence of constants,
with and Suppose that (a, b) is the interval

1A mapping f such that both f and f – 1 are continuous.
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of uncertainty after the guesses have been made. Suppose that of these n
numbers, k more of them have been to the left of (a, b) than to the right. Then make the
next guess The are given by the formula

where the satisfy

and

Suppose that an initial guess has already been made and that the searcher
re-evaluates his strategy. Assume without loss of generality that was too low

The new uncertainty interval for H is (a, b), with the original
and b = 1. Suppose the searcher resets the time to 1 (as if starting a new game). If his
subsequent guesses are labeled his total cost is given by

so this is what he must minimax.
Next consider another case in which the first guess was too low and the

second guess was too high. Then and if the next guesses are
relabeled as the total cost function will be

so the variable part of the cost function,

must be minimaxed.
Finally, suppose that have both been too low and has been too high.

Then where and Then calling the fourth guess the total
cost is given by

So the searcher must minimax the variable part (depending on H) of the cost function,
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In general, if at some point in time exactly k of the guesses have been too low than too
high, and the uncertainty interval of H is (a, b), the searcher must minimax the function

With this in mind, we define auxiliary games where
is the original game. The idea is that is the game subject to the restriction that
the first k guesses must be 0 or more formally that the cost function is given by

The idea of the proof is to recursively decompose into the games and
to determine the minimax first move in After the first guess, the game
decomposes into and depending, respectively, on whether the guess is too
high or too low. The existence of a (minimax) strategy in which guarantees the
minimax value follows as described above for the case

By a simple scaling argument it is easy to see that the minimax value of
is given by If we know the optimal first guess in all games
then we know the optimal k-th guess in the original game as a function of the
high–low feedback.

In the case that there have been k more guesses that were too high than too low, we
obtain the reversed subgame with cost function

It is clear that by left-right symmetry the minimax value of is the same as that
of – namely,

Lemma 5.8 Any minimax strategy for must begin with an initial guess
and furthermore

Proof. After the first guess the maximizing hider can either obtain the subgame
or the subgame by respectively deciding that or

In the former case the minimax value is and in the latter it is
Consequently the minimax value is given by
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Lemma 5.9 For any minimax pure strategy for the searcher in must begin
with a first guess of Furthermore, the
minimax values satisfy

Proof. The idea of the proof is that after the first guess is made in
the remaining game resembles or respectively, depending on whether H < x
or H > x. (Note that H = x is never a best reply.) Observe that for a strategy S in
with and H < x we have

after renumbering the and calling the resulting strategy Thus the minimax value
in this case is given by x plus the minimax value of which is

Similarly, if x < H, we have

again after renumbering the and calling the resulting strategy (x, 1). Since the mini-
max value of is the minimax value of in this case is
given by

Combining these two estimates, we obtain
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It can be shown that these two lines intersect at x between 0 and 1 at a height of

The minimum is attained for given by the formula stated in the theorem.
Together, Lemmas 5.8 and 5.9 establish the main result, Theorem 5.7.

An algorithm is given in Alpern (1985) that recursively calculates the and hence
also the To within an error of the first five values are as follows:

Thus using only five stored constants, a simple computer program can be written (using
the algorithm of the above result) that carries out a pure high–low search that is nearly
pure minimax search. The first four guesses for the minimax strategy are given in the
following table, as functions of the previous high–low feedback.

5.2.2 Economic applications

The continuous high–low search game of Baston and Bostock has been adapted to suit
economic models of production and of wage bargaining by Alpern and Snower (1987,
1988a,b,c, 1989, 1991), and both these models have been extended by Reyniers (1988,
1989, 1990, 1992).

The first model considers the problem faced by a firm that supplies a perishable good
for which there is a fixed but uncertain demand. The full analysis is given in Alpern and
Snower (1987). We will call this unknown demand level H to make the links with the
Baston–Bostock game clear. We normalize the maximum value of H to 1, so that H is
assumed to lie in an interval In each period k = 1, 2 , . . . , the firm supplies a
quantity of the good. For example, in a so-called “newsboy” setting, the boy has to
decide how many newspapers to bring to his stand. If the a “stockout” occurs,
in which all the newspapers that are supplied are sold. In this case becomes the new
lower bound on H, so that in period k the uncertainty interval on H is
On the other hand, if the amount supplied was larger than the demand, the exact demand
H can be calculated from the surplus that remains, i.e., In
this case we may assume that a rational newsboy (or firm) will supply the exact amount
demanded, in all future periods Note that higher supply levels
yield more information about H, so that the firm may wish to sacrifice current profit to
increase information for the future.

If the good (newspaper) costs the newsboy C and is sold at a price P, then the single
period opportunity cost of supplying a quantity g when the actual demand is H is given
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as follows. This cost is by definition zero when g = H. If too much is supplied, the
cost is the total price paid by the newsboy for the unsold papers, C(g – H). On the
other hand if too little was supplied, the cost is the lost profit on the quantity shortfall,
(P – C)(H – g). Thus we have an asymmetric per period cost function

Note that in the case P = 2C, this normalizes to the same symmetric cost function
proposed by Baston and Bostock. It is easy to see that the only undominated

pure search (supplier) strategies S are determined by an increasing sequence
with the understanding that will be supplied until the first period

N = N ( S , H) when and thereafter In the case that
we take Hence the total cost to the supplier-newsboy is given by

where the second term is eliminated if A discount rate is included
to make the model more realistic. Alpern and Snower (1987) derive the minimax (or
minimax regret) strategy for this problem, the one satisfying

The case where some unsold inventory remains to be used in the next period was also
analyzed.

Subsequently, many variations on this model have been studied. Among these
include: a Bayesian approach to H (Alpern and Snower, 1987), a selling price P
(which determines demand) controlled by the supplier (Alpern and Snower, 1988b,
1989), a delay in which the sign of is not known to the supplier until period
k + 2 (Reyniers, 1988, 1990), an effect whereby stockouts decrease future demand
(Reyniers, 1989).

The second model adapts the Baston–Bostock high–low search game to the problem
of wage bargaining. In this model, the unknown quantity H represents the marginal
value to a firm of employing a specific worker (the searcher). We assume that the firm
has an informational advantage over the worker in terms of knowing H; perhaps the
firm gives the worker a test, without revealing his score. All the worker knows is that
his value H to the firm lies in an interval In each period k, the worker makes
a wage demand In the basic model, the firm acts myopically and simply accepts
any demand that gives it a profit in that period – namely, any  Unlike the
newsboy problem stated above (but like the Baston–Bostock model), the information
feedback is symmetric: the worker learns whether his wage demand (guess) was too
high or too low. At the beginning of each period, the worker knows that his true value H
is at least the highest accepted bid and no more than the lowest rejected bid

A pure search strategy S in this model is the same as in the Baston–Bostock
model discussed earlier (a map However in this model the cost
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function is not symmetric and not even continuous. The worker’s optimal
guess (demand) of his actual value H obviously gives him H (or H – L, where L is the
cost to him of laboring – but we ignore this in the basic model). So we measure his cost
relative to H. If his demand of is accepted, his cost is H – g. If it is rejected
because g > H, his cost is H (as he earns nothing). Thus

The total cost to the worker will be

When the uncertainty interval of H is very small, the relative cost of a rejected demand
becomes large. The problem is somewhat akin to the problem faced by a longjumper in
gauging his takeoff point. Every inch before the legal takeoff location wastes an inch
at the landing point, but going past that location results in a nullified jump. The basic
model of Alpern and Snower (1988) considers the minimization of assuming
a Bayesian or minimax approach to H.

Many variations of this basic model have been analyzed. For example, the firm
may act strategically to distort the worker’s learning process by sometimes not hiring
a worker who demands less than his value. If the worker is not aware of this, he may
lower his subsequent demands (Reyniers, 1992; see also Alpern and Snower, 1991).

5.2.3 Discrete high–low search
In the problems described in this section the search space Q is a known set n of points
(locations) that are linearly ordered. Gilbert (1962) and Johnson (1964) consider the
discrete search game, with an immobile hider under the additional assumption that if the
searcher looks at the K-th location and does not detect the hider at that location, he still
receives the information as to whether the number of the location he has just searched
is greater or less than the number of the location that contains the hider. Solutions of
this game were given only for

Gal (1974b) considers a discrete search game in which the immobile hider chooses
a number and at each step, i, the searcher gains the binary information
or The game proceeds until the searcher locates H, with the cost being the
number of steps made by the searcher during the game. A general solution for this
game is presented. The author shows that the optimal strategies of both players are
generally mixed strategies that are not unique and that the natural bisection strategy of
the searcher is usually not optimal. A continuous problem of this type in which H and

are real numbers in a certain interval and the information or has a
certain probability of being erroneous is presented and solved by Gal (1978). Another
continuous version in which the searcher receives the binary information or

and there is a travel cost of where b is a constant, in addition to
the fixed cost of observation is solved by Murakami (1976).
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Remark 5.10 An interesting generalization of high-low search in which H is a node
of a tree and is a chosen subtree has been considered by Ben-Asher, Farchi and
Newman (1999). In each step the searcher obtains the information whether H is in
the subtree or not. The authors present an algorithm of complexity n
being the number of nodes in the tree, for obtaining a minimax search strategy. Many
works on high low search, including problems in which the evader can lie, are briefly
described in Section 5.5 of Benkoski et al. (1991).

5.3 Infiltration Games

Assume that at time t = 0 an infiltrator enters a set Q through a known point O on the
boundary of Q, and for all moves inside Q (Figure 5.2). Suppose that the searcher
has to defend a “sensitive zone” so that he wishes to maximize the probability
of capturing the infiltrator before he reaches the boundary of B. (The infiltrator has the
opposite goal.) What are the optimal strategies of both players in this game?

Such a problem with a relatively simple structure is the case in which Q is a narrow
rectangle, as depicted in Figure 5.3.

A simpler, discrete problem with a similar flavor is the following: The search set is
an array of n ordered cells (vertices) with distance 1 between any two consecutive cells
and cell n + 1 is the target. At time 0 the infiltrator and the searcher are both located
at cell number 1. Thereafter, at the end of each time unit, the searcher can move to any
cell with distance not exceeding a certain integer while the infiltrator can only
move a distance of 1. Both players then stay at the chosen cell for the next time unit
and the searcher searches in his cell. The probability of capture is
for each time unit they stay in the same cell (independently of previous history) and
zero otherwise. (We make the usual assumption in this book that the players do not
receive any information concerning the movement of the other.) The infiltrator wins



CHAPTER 5. MISCELLANEOUS SEARCH GAMES 93

if he reaches the target (in finite time) without getting captured and loses otherwise.
What are the optimal strategies of the players?

This apparently simple problem, proposed in Gal (1980), is still open. However,
it attracted research in this area leading to interesting results by Lalley (1988), Auger
(1991a, 1991b), Alpern (1992), Pavlovic (1995a, 2002), Baston and Garnaev (1996),
Garnaev and Garnaeva (1996), and Garnaev et al. (1997). (A similar game with n = 2
and a more general detection function was considered by Stewart, 1981.)

Lalley considered the game under the simplifying assumptions that there is a safe
zone (say at cell number 0) at which the infiltrator is located at time 0 and can stay for
as long as he wants and remain safe from capture. He also made the assumption that
the infiltrator wins only if he arrives at the target by time t (where t is known to both
players).

Under the above assumptions Lalley presented a complete solution for
(denoted as the case “slow searcher”) as follows: The optimal infiltration strategy is
the following “random wait and run” strategy (called “Admiral Farragut” by Lalley):
wait in the safe zone until time where is uniformly distributed over the integers

and then go full speed ahead toward the target reaching it (if not caught)
at time Denote by

the number of wait and run strategies and let

and

The optimal search strategy (called “orderly  fallback” by Lalley) is to stay at cell
number 1 for the first time unit, then withdraw with speed 1 for time units; rest for one
time unit, then withdraw with speed 1 for time units.... There are m such segments
and the random variables satisfy the following relations:

Each is obtained by sampling without replacement from an urn containing r balls
marked q and m – r balls marked q – 1. (Note that if r = 0 then all are equal to
q – 1 and the searcher’s strategy is pure.)

The value of the game (the probability of successfully infiltrating) is given by

Since lies between and 1 it follows that the value of the game
is between and If then q = 1 and (obviously
approaching
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It is easy to see why the orderly fallback strategy is the best response to the ran-
domized wait and run strategy. Denote by the number of times the searcher meets
wait and run strategy number Since the number of time instances for
possible meeting is t – 1, it follows that

Then the probability of successful infiltration is

Since the function is convex it follows that minimizing (5.10) under the constraint
(5.9) leads to integers as close as possible to (t – 1)/m, i.e., q + 1 (r times) and
q (m – r times) with the minimal value given by (5.8). Such with the appropriate
randomization, are obtained in the orderly fallback strategy. Note that such an optimal
solution can be obtained for Thus , should not improve the chance of the
searcher to win the game. This a priori surprising result, was proved by Auger (1991b).

To see why the wait and run strategies are the best response to the orderly fallback
strategy, consider the simple case in which t – 1 = q × m so that the orderly fallback
strategy is pure and meets each wait and run strategy q times. We have to show that in
this case any infiltration trajectory meets the orderly fallback trajectory at least q times.
This follows from considering the location of the infiltrator versus the location of a
searcher who follows the orderly fallback trajectory: at time t = 0 the infiltrator is
below the searcher and by time t the infiltrator has to arrive at cell number n + 1 so that
at time t his location is above the searcher’s location. Thus the infiltrator has to “pass
thorough” the searcher’s trajectory, which means that their location has to coincide at
least q times.

We have just shown that for the simple case t – 1 = q × m the randomized wait
and run strategy and the orderly fallback trajectory are both best response to each other.
Thus, they have to be optimal strategies. The general case is more complicated by the
fact that the orderly fallback strategy includes some segments of length q – 1 and some
others of length q in a randomized fashion.

Auger (1991b) has demonstrated that, while the searcher does not benefit from
speed larger than 1 in Lalley’s problem, does give a definite advantage over

 for the original infiltration problem without the safe zone. In this paper Auger
also considered the simplest non-trivial case n = 3 (for n = 1, 2 the game is trivial,
yielding values and respectively). For n = 3 and        he showed that

He also suggested an approach for finding the solution for the
infinite time period by solving the game for a finite t and letting

An asymptotic solution for the original game with close to 1 (and ) was
obtained by Pavlovic (1995a) for and later (2002) for all n.

An interesting extension of the game with a safe zone is the infiltration on k arcs
introduced by Auger (199la). Denote the safe zone (cell 0) by O and the target (cell
n + 1) by A. Now, assume that there are k non-intersecting arcs (possibly with different
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number of vertices on each arc) that connect O and A , rather than the single arc in the
original problem. Denote the total number of vertices on the arcs, excluding O and A
by N. Then the number of wait and run strategies on the k arcs is kt – N. It turns out
that expression (5.8) for the value remains true with m (= the number of wait and run
strategies for the one arc) replaced by kt – N, where q and r in (5.6) and (5.7) are
obtained by replacing m by kt – N. A simplified proof of the result for a more general
case of limited resources is presented in Baston and Garnaev (1996) and Garnaev et al,
(1997). (The special case of the circle is presented in Garnaev and Garnaeva, 1996.)
They solved the game on the k arcs in which the searcher has limited resources and can
look for the infiltrator only L times, for any (If L = t – 1, then the game is
the infiltration on k arcs considered by Auger.) It is interesting to note that also in this
case the value is still given by (5.8) with t –1 replaced by L and m replaced by kt – N
in (5.6), (5.7) and (5.8).

Consider the infiltration on k > 1 arcs with no time bound for the infiltrator
Then and  r = t – 1. Thus,

Alpern (1992) has extended this result for a general graph. He showed that if O and A are
vertices of any graph and k is the minimal number of vertices separating them (minimal
cut), then the value of the infiltration game with no time bound is

5.4 Searching in Discrete Locations

Assume that a stationary object is hidden in one of n (labeled) locations. For each
location i, i = 1, ..., n there are three known parameters: the cost of a single
search in location i; the probability of finding the object by a single search in
location i if it is in this location; and the probability that the object is in location i.
The parameters and remain fixed while which is equal to a known a priori
probability at the beginning, is updated by Bayes’ law after each (unsuccessful) attempt.
The problem of finding the object in minimal expected cost is a classical problem
solved by Blackwell (see Matula, 1964). Although the functional equation obtained by
a dynamic programming formulation of this problem is complicated, the optimal policy
is easy to describe: at each stage look into the location which maximizes

Ross (1969) and (1983) extends the classical model to an optimal search or stop
problem. Using dynamic programming he characterizes the optimal search strategy for
the case that a (possibly location dependent) reward is earned if the object is found and
the searcher may decide to stop searching at any time.

Gittins (1989) obtains the classical result as a special case of his well known index for
multi-armed bandit processes. In his book he also presents the solution of the location
search within the context of a search game. (The results he presents there are based on
Roberts and Gittins, 1978, Gittins and Roberts, 1979, and Gittins, 1979.) The search
game is based on the assumptions of the classical model but the object is hidden in
one of the locations by an adversary who knows all the relevant parameters. Thus, at
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the beginning, the location of the object is not given by a known a priori distribution
but is determined by the hider as the worst probability distribution (for searching). For
simplicity the problem is solved under the assumption that The
general idea is for the hider to make all the locations equally “attractive”, with the same

for all i = 1, . . . , n such that

This aim is totally achievable if the hider is allowed to move the object after each
(unsuccessful) search. In this case the optimal strategy for the hider is to choose the
location of the object according to independently of previous
search history, for each time. (The optimal strategy of the searcher is exactly the same:
each time to search location i with probability Such a model, with a cost for
moving the object, was considered by Norris (1962). He obtained the above solution in
the special case that the cost of moving is zero.

However, in the original problem, in which the hider chooses the probability vector
once for the whole game, if he chooses in the beginning, then
after an unsuccessful search in location i the a posteriori probability of location i will
drop below and will increase above for all Thus, all the other locations will
be more attractive after the first search. Still, the optimal Hiding strategy is to choose the
probabilities near and the optimal strategy of the searcher is, for each time period to
choose the probabilities (exactly) for searching location i. The exact expression of
the Hiding strategy and the value are complicated because of the discreteness in time.

A neat solution that can be explicitly presented is obtained for the continuous version
of the search game (with a stationary target). Here, the time is continuous and the
detection of the object in location i is given by a Poisson process with rate The
optimal hiding probabilities are exactly given by (5.11) and, for each infinitesimal time
interval it is optimal to search during time period in location i. Thus,
the a posteriori probability distribution for the location of the object remains the same
all the time, being equal to the a priori distribution given by (5.11).

It is easy to extend Gittins’ continuous time results to the case of general For an
infinitesimal time interval, spending cost at location searching it during
leads to detection probability rather than Thus (5.11) is changed into:

The numbers are the optimal strategy for the hider as well as the
for the searcher for a single period. Note, however, that the length of such a period
at location i is proportional to so that the minimax search intensity, has to be
proportional to Thus,

(Thus, somewhat surprisingly, the search intensity is independent of the cost coefficients
The probability of detection in each period is with a search
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cost of Thus the expected (minimax) search cost is

In another interesting model the hider chooses a node in a graph and the search cost
is composed of the travel cost plus the cost of inspecting the chosen node i. The case
of linear ordered nodes is solved in Kikuta (1990, 1991). The more general case of a
tree is solved in Kikuta and Ruckle (1994) and Kikuta (1995).

It should be noted that if for all i, then the game can be transformed into the
search on an equivalent tree with no inspection cost, solved in Section 3.3 as follows.
To each node add a new arc of length c/2 with a terminal node at its end. The optimal
strategies for the equivalent tree (with no inspection cost) are optimal for the problem
with inspection cost, c, but the expected (optimal) cost is reduced by c/2. (If are not
all equal, then adding similar arcs, with length to each node, leads to a close but
not identical problem.)

Many other discrete search games have been considered by Ruckle in his book
“Geometric games and their applications” (1983). In particular, he describes a search
and pursuit game in a cyclic graph. This game is not just a discrete version of the
princess and monster on the circle because here the princess cannot be caught while
moving between vertices. Thus, the discrete analog of the Sweeping Lemma 4.6 for
k = 2 does not hold.

The problem of two competing players searching for the same object located in one
of a set of labeled boxes is considered by Nakai (1986), Garnaev and Sedykh (1990), and
by Fershtman and Rubinstein (1997). The problem of searching for different objects,
with each player trying to find his object before his opponent does, is discussed by
Nakai (1990).

Baston and Garnaev (2000) investigated another game in the framework of discrete
location search with a known hiding probability for each location. In this game the
searcher is opposed not by the hider but by a protector who can allocate resources to
locations making it more difficult for the searcher to find the object.

Remark 5.11 Kikuta and Ruckle (1997) and Ruckle and Kikuta (2000) considered
“Accumulation Games” described as follows. The hider hides material at various
locations and has to accumulate a given amount by a fixed time in order to win. The
searcher examines these locations and can confiscate any material he finds. The 1997
paper discusses discrete material and location versions of this game and the 2000 paper
studies accumulation of continuous material over two types of continuous regions: the
interval and the circle.
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Part Two

Search Games in
Unbounded Domains
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Chapter 6

General Framework

6.1 One-Dimensional Search Games

The work on search problems in unbounded domains was initiated by Bellman (1963)
(and independently by Beck, 1964) who introduced the following problem. “An immo-
bile hider is located on the real line according to a known probability distribution.
A searcher, whose maximal velocity is one, starts from the origin O and wishes to
discover the hider in minimal expected time. It is assumed that the searcher can change
the direction of his motion without any loss of time. It is also assumed that the searcher
cannot see the hider until he actually reaches the point at which the hider is located and
the time elapsed until this moment is the duration of the game.” This problem is usually
called the linear search problem (LSP). It has attracted much research, some of it quite
recent. A detailed discussion is presented in Chapter 8.

Beck and Newman (1970) presented a solution for the search on the real line con-
sidered as a game. As we have already pointed out in the introduction, if the capture
time is used as the cost function and no restrictions are imposed on the hider, then the
value of the game is infinite. Thus, in order to have a reasonable problem, one should
either assume that the hider is in some way restricted or that a normalized cost function
is used. Beck and Newman used the first method and allowed the (immobile) hider to
choose his location by using a probability distribution function h, which has to belong
to the class defined as follows.

Definition 6.1 The class is the set of all hiding strategies in Q, which satisfy the
condition that the expected distance of the hiding point H from the origin is less than
or equal to the constant In other words, any satisfies

where is the distance of H from the origin.

Such a restriction is the “natural” one for one-dimensional problems because
for all S so that condition (6.1) is necessary in order to get a finite



value for the game and, as we shall see in Chapter 8, condition (6.1) is also sufficient.
We shall also see in Chapter 8 that the optimal search strategy does not depend on the
constant so that there is no need for the searcher to know the value of

Another method of handling search games in unbounded domains, which is used
by Gal (1974a) and Gal and Chazan (1976), is to impose no restriction on the hiding
strategies but to normalize the cost function. Such a “natural” normalized cost function
is the function defined as
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where C is the capture time. Since it readily follows that the only
normalization of the type which yields a finite value is the normalization with

This approach will be referred to as using normalized cost.
Using a minimax criterion for a normalized cost is common in computer science lit-

erature for searching for a target under incomplete information (see, e.g., Papadimitriou
and Yannakis (1991); Koutsopias et al. (1996); Burley (1996); or Blum et al. (1997). It
is assumed that the goal of the searcher is to devise a strategy, so that the total distance
traversed has the best possible ratio to the shortest path. This type of ratio is used not
only for search problems but is generally used in the so-called online algorithms. The
analysis of such online algorithms is a very active research area in computer science
(see, for example, the book by Borodin and El-Yaniv (1998); an application for load
balancing by Berman et al. (2000); and some other applications, including the star
search, described in Section 9.2, by Schuierer (2001)). The quality of an online algo-
rithm is measured in such an analysis by comparing its performance with an optimal
offline algorithm. The ratio guaranteed by a specific strategy is called the competitive
ratio. Our minimax approach is equivalent to finding the minimal competitive ratio.

Actually, the two approaches just discussed (either restricting the hider by (6.1) or
using normalized cost) lead to equivalent results under the following scaling assumption
which holds for all the games to be considered in Part II.

Scaling Assumption. For any positive constant there exists a mapping of the
search space Q onto itself such that and for all

Under the scaling assumption, any game with the restriction (6.1), with being any
positive constant, can be easily transformed into the game having the restriction (6.1)
with This can be done by a construction that is similar to the one used in the
scaling lemma of Chapter 2 (Proposition 2.5), with

We now show that, under the scaling assumption, if the game with the normalized
cost function (6.2) has a finite value then the game with the restriction (6.1) with
is equivalent to it. Assume that the game with restriction (6.1), has a value . Let
be an hiding strategy that satisfies (6.1) with Then

for all S.
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Since any hiding strategy with is dominated by a hiding strategy with
we may assume that under If we define the hiding

strategy by

then the strategy satisfies for all S

On the other hand, assume that and let be an for the normalized
cost approach, that is,

where is the value of the search game with the normalized cost.
Let be sufficiently small so that

Denote

and define a hiding strategy by

Then satisfies

and for all S,

by

Under the scaling assumption, we can use the construction of the scaling lemma
with the mapping and obtain a hiding strategy with which
makes sure that the expected capture time exceeds

We have thus shown that so that the two approaches lead to equivalent results.

Remark 6.2 If Assumption 1 does not hold, then the two approaches may lead to
different results. Such an example, in which Q is the half line is
discussed in Section 8.2.1.

The normalizing approach is more convenient for us to work with than using the
“restrictive approach” (i.e., using (6.1)), and we shall generally use the cost function
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given by (6.2). Working with the normalizing approach also has the following advan-
tage: If is an search strategy for the normalizing approach, then for any
hiding strategy h that satisfies

Thus, is also for the restrictive approach. On the other hand, it can be
easily seen that an search strategy for the restrictive approach need not be an

strategy for the normalizing approach.
It should be noted that if the hider is mobile (see Section 8.5), then the appropriate

restriction is and the appropriate normalization is
where H(0) is the location of the hider at time t = 0.

We shall deal mainly with one-dimensional search games and present only a brief
discussion on multidimensional problems in Section 6.2. In Chapter 7, we develop
the main tools for obtaining minimax trajectories for a rather general family of search
games. These tools will enable us to solve the search games on the infinite line presented
in Chapter 8. We shall also use these tools in some of the games presented in Chapter 9,
including searching on a finite set of rays and in the plane.

6.2 Multidimensional Search Games

In this section, we discuss the framework of search games in the case that the search
space is the entire N-dimensional Euclidean space with The rules of the game are
similar to those used in Part I. The searcher has to start from the origin O and move along
a continuous trajectory, with maximal velocity not exceeding 1. The hider is immobile
and stays at a point H. The game terminates when the hider is within a distance of
r (>0) from the searcher. We shall be concerned with the appropriate restriction, which
has to be imposed on the hider’s strategies, in order to obtain a finite value for the
game. In Section 6.1 we noted that condition (6.1) is necessary and sufficient to obtain
a finite value for one-dimensional search games. Such a condition is not appropriate for
multidimensional search games. In order to find the adequate moment restriction, we
derive a necessary and sufficient condition for the finiteness of the value of the search
game in the entire plane. Such a condition is

First we show that (6.6) is indeed a necessary restriction. If we allow hiding strate-
gies with then the hider can use the strategy with the following
probability density f in the plane. Let and

if

otherwise.
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Since any trajectory S covers in each time interval [0, t] an area which does not exceed
2rt, it follows that, under the probability that the capture time exceeds t satisfies

Thus, for any S

which implies that On the other hand, if the hider’s strategy has to satisfy
condition (6.6), then the searcher can guarantee a finite capture time using the trajectory

defined as follows. Start by moving in a straight line to the circle with radius 2r around
the origin and encircle it, then move to the circle with radius 4r around the origin and
encircle it, then to the circle with radius 6r, etc. The trajectory satisfies, for all H,

Since and consequently it follows that for any
admissible h

so that the expected capture time guaranteed by is finite.
From the foregoing discussion, it follows that restriction (6.6) is the moment con-

dition that has to be used in the case of an unbounded two-dimensional search. By
using a similar argument, it is easy to show that the appropriate moment condition for
N-dimensional unbounded search is In the case that we use the approach
of normalizing the capture time, a similar argument leads to the conclusion that the
appropriate normalizing function is Thus, the normalized cost function should
be for N-dimensional search games.
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Chapter 7

On Minimax Properties of
Geometric Trajectories

7.1 Introduction

In this chapter we develop an important tool for finding minimax trajectories for
searching unbounded search spaces. The main results, which are extensively used
in Chapters 8 and 9, are Corollary 7.11 and Theorem 7.18. The proofs, as well as
most other mathematical details, are mainly for experts and can be skipped at first
reading.

In many search games, including the ones discussed in Chapters 8 and 9, finding
minimax search trajectories is a special case of the following game.

The searcher chooses a sequence of positive numbers We consider
both infinite sequences in which and doubly infinite sequences in which

The hider chooses an integer i. Let be the sequence X with indices
shifted i to the right:

Let the loss of the searcher be given as

where F is a functional (i.e., a mapping from the space of all positive sequences into
the real numbers) that satisfies several requirements to be specified in Section 7.2.

Finding minimax search trajectories for games of this type requires solving

for doubly infinite sequences).
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A typical example, extensively used in the linear search games of Chapter 8, amounts
to solving

for a given sequence
The positive geometric sequences

play a special role in searching for minimax solutions. Theorem 7.1, below, states
that for any positive sequence X, the cone spanned by contains a
sequence, which is “close enough” to a sequence

Theorem 7.1 Let be a positive sequence and let k be any positive integer.
Let be the (k +1) -dimensional convex cone spanned by the set

Thus,

will denote the closure of  Define

Then

(The case where is included. In this case (7.4) means (0, 0 , . . . , 0, 1)

Using Theorem 7.1 we shall show, in Section 7.2, that a minimax search strategy
can be found in the family of the geometric sequences This result will
extensively be used in Chapters 8 and 9.

The continuous version of the theorem follows.

Theorem 7.2 Let be any measurable positive function that is
bounded on any finite interval. Define

Suppose For any and D > 0, there exists a positive
number L and a nonnegative function such that is continuous
and the function defined by
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satisfies

and

for all

The proofs of Theorems 7.1 and 7.2 can be found in Appendix 2 of Gal (1980) or
in Gal and Chazan (1976).

Theorem 7.2 is needed for the continuous versions of the game, described in
Section 7.2.1, with the analogous property that in this case, the minimax solution is an
exponential function. This result will be used in Section 9.2. Finally, in Section 7.3, we
establish the uniqueness of the solution for functional belonging to a class that contains
problems in Chapters 8 and 9.

The results of this chapter are mostly based on Gal and Chazan (1976) and
Gal (1972).

7.2 Minimax Theorems

In essence our theorems are valid for any homogenous unimodal functional F. We
now formally present the required properties for F. We shall present in full detail the
theorems for the case in which X is a sequence and, at the end of the chapter, we briefly
present some of the results for the continuous functions.

We now consider the case in which X is positive infinite sequence
The case in which X is a doubly infinite sequence will be discussed separately.

At the first stage, we shall assume that F depends only on a finite number of terms
of X. Thus, in this case, there is a positive integer k such that

i.e.,

We require that F satisfy the following conditions for all

For functionals, which satisfy the homogeneity condition (7.6), the above
unimodality condition is equivalent to the more convenient condition:

for all and
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In addition, we assume that F satisfies the following two requirements, which
actually hold for all “reasonable” functionals that satisfy (7.5)–(7.7).

and

We now present two examples of F, which satisfy the above required conditions.

Example 7.3 Let be any nonnegative numbers and be
nonnegative numbers, not all zero. Define

It can be easily verified that conditions (7.5)–(7.9) hold.

Example 7.4 Let and

This type of functional is used in Section 9.3. We show there that F satisfies (7.5)-(7.9).

The unimodality condition of the homogenous functional F immediately leads to
the following result.

Lemma 7.5 Let F satisfy (7.6) and (7.7), X be a positive sequence and
a sequence of nonnegative numbers. If

(see (7.1)), then

Note that condition (7.6) implies that for any geometric sequence and any positive
integer i,

It follows from Lemma 7.5 that for any X, any linear combination of with
nonnegative coefficients is at least as good as X. However, by Theorem 7.1 this linear
combination can be made as close as desired to a geometric sequence. This is the idea
behind the following minimax theorem.
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Theorem 7.6 If F satisfies conditions (7.5)–(7.9), then for any positive sequence
we have

Theorem 7.6 implies that an optimal search strategy for the class
of games defined in Section 7.1 can be found among the geometric sequences This
follows from the fact that (7.13) and Theorem 7.6 imply that for any positive sequence X

Thus

which implies

(since the inf is obtained within the subset of geometric series).

Proof. Let us denote

If (7.14) does not hold, then there exists a positive sequence an integer
and a positive number such that for all

Without loss of generality, we may assume that so that (7.16) holds for all
Let If then Theorem 7.1 implies that for any

there exist nonnegative numbers such that the sequence

satisfies

It follows from Lemma 7.5 and (7.16) that

Using (7.5) and (7.18), we obtain
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which contradicts (7.15). Thus Theorem 7.6 has been proved for If
and (7.16) hold, then Theorem 7.1 implies that for any we can find a sequence
Y, given by (7.17), satisfying and for all Thus, by
Lemma 7.5 and (7.8) we would have

which contradicts

A similar argument can be used for the case a = 0.

We now illustrate the use of Theorem 7.6 by two simple examples.

Example 7.7 Let F be defined as

This is a special case of Example 7.3 and so satisfies the required conditions. It follows
from Theorem 7.6 thatfor any positive sequence

with an optimal solution

Example 7.8 Let

where This is also a special case of Example 7.3. Thus, it follows from
Theorem 7.6 that for any positive sequence

It can be easily verified that for the minimum of (7.19) is with the
optimal a = 1, while for the minimum of 7.19 is with the optimal a
satisfying

We now consider the case when F(X) may depend on an infinite number of terms
of X.
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Theorem 7.9 Let be a sequence of functional and assume that
each satisfies conditions (7.5 )–(7.9) and that for any positive sequence
we have

(see (7.8) and (7.9)) . Then

It should be noted that the inf in the right-hand side of (7.23) contains the end points
a = 0 and  because it may happen that

(see Gal, 1972).

Proof. Let

It has been established in the proof of Theorem 7.6 that for any integer k

Thus, it follows from (7.20) and (7.21) that for all k

Since is defined by (7.21) (or (7.22)) it follows from (7.24) that

Schuierer (2001) has shown that (7.20) can be replaced by

and the result corresponding to (7.23) is then

For any positive sequence X, define
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We now illustrate the use of Theorem 7.9. Let L be a positive integer and let
and be nonnegative sequences (not all zero). Let

Then

This result is established by using Theorem 7.9 with

Remark 7.10 Condition (7.20) in Theorem 7.9 can be omitted, and then instead of
(7.23), we obtain

The proof of (7.26) is similar to the proof of Theorem 7.9.

Theorem 7.9 can be extended to the case where X is a doubly infinite positive
sequence, i.e.,

In this case, if satisfies (7.5)–(7.9) and a monotonicity
condition as in (7.20), then

The proof of this result is almost identical to the proof of Theorem 7.9, and we do not
present it here. Inequalities (7.27) can be used to establish the following important result.

Corollary 7.11 Let L be a positive integer, and let and
be nonnegative sequences (not all zero). Then

Thus,

for any positive sequence X.
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We shall use this corollary extensively in the linear search problem (Chapter 8), the
Star search (Section 9.2), and in the rendezvous on the line (Section 17.4).

The next example will be useful for the linear or star search under the assumption
that the hider’s distance from the origin is at least 1 (see Remarks 8.2 and 9.5).

Example 7.12 Consider

where is an integer and  for all
Obviously, any X with a finite v has to satisfy as Thus, if we let

< i < 0 be any converging positive sequence, then

Now, for any let

and

Then we can use Theorem 7.9 and obtain

with M /(M – 1) as the optimal value for a. It now easily follows that

with i = 0, 1, . . . being a minimax solution.

Remark 7.13 Instead of considering the set of all positive sequences, we may consider
only a subset B of it. Let Then the modification of Theorem 7.6
(and Theorem 7.9) states that for any

The proof of this extension of Theorem 7.6 (and Theorem 7.9) is based on the following
argument. If then Theorem 7.1 implies that there exist nonnegative
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constants such that   “close” to the geometric sequence
On the other hand, Lemma 7.5 implies that if then

The cases and can be handled as in the proof of Theorem 7.6.

where belongs to the set B given by the condition

If then for all Thus, for both cases and I = 0,
q = 101 and = constant is a minimax solution.

If then we have to distinguish between two cases. If then we still
have for all so that

and the foregoing result still holds. On the other hand, if I = 0, then
Thus,

with the optimal a is 1/10, and where is a minimax
solution.

7.2.1 Minimax theorems for the continuous case

Some search games have the following structure: The searcher chooses a positive con-
tinuous function and the hider chooses a real number t. The
payoff (to the hider) is where and F is a functional, which
satisfies several continuity and unimodality conditions analogous to (7.5)–(7.9). The
continuous analog of Theorem 7.6 is the following equality

The full details are presented in Gal (1980, chapter 6.4). The general idea of the proof
is that for any positive X and any positive kernel ß, the positive function Y defined by
the convolution

Example 7.14 Let I be either 0  or Consider the expression

1,
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satisfies, for the relevant functionals,

On the other hand, it follows from Theorem 7.2 that, for any positive function X there
exists a kernel such that Y is as close as desired to an exponential function
This observation leads to (7.30).

In the present book we will use only two special cases of (7.30):

Case 1.

where is any measure, is extensively analyzed in the next section.

Case 2.

In this case (7.30) implies that

7.3 Uniqueness of the Minimax Strategy

In this section F(X ) has the form

where is a measure and for all This case will be
encountered in Chapters 8 and 9.

If F is given by (7.32), then (7.30) implies that

Thus, if the minimum of the right-hand side of (7.33) is obtained at then



118 BOOK I. SEARCH GAMES

where is a positive constant, is a minimax solution for the left-hand side of (7.33).
We now investigate the conditions under which (7.34) is the unique solution of that
problem. Such conditions are supplied by the following theorem.

Theorem 7.15 Let be a measure, which is not concentrated at and let
be a positive function, which is integrable on any finite interval.

Let f(b) be the bilateral Laplace transform of

Assume that f (b) attains its minimum at a point and that satisfies

If

for all

then

(a)

(b)

If is not arithmetic,1 then where is any positive constant.

If is arithmetic with span then where is a positive
periodic function having period

It should be noted that since f(b) is a smooth convex function, then condition (7.36)
is always satisfied if is an interior point of the interval of convergence of f (b), as
occurs in all our applications. (But condition (7.36) may sometimes hold even when

is an end point of the interval of convergence of f (b), or when f (b) converges at a
single point.)

Also note that the proof of Theorem 7.15 actually provides a direct proof for (7.33)
under the condition (7.36).

In order to establish Theorem 7.15 we first prove the following lemma.

Lemma 7.16 Let be the cumulative distribution function of a
probability measure which is not concentrated at satisfying

and let W(t) be a positive function, which is integrable on each finite interval. Assume
that for each the integral

1 We use arithmetic in the sense used by Feller (1971), namely, a measure A is arithmetic if it is concentrated
on a set of points of the form                     The largest  with this property is called the span of A .
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is defined and satisfies

Then

(a)

(b)

If is not arithmetic, W(t) is a constant.

If is arithmetic with span W(t) is periodic having period

Proof. Let i = 1, 2 , . . . , be a sequence of independent random variables, each
having the distribution P. Denote

and

Condition (7.39) implies that is a negative submartingale.2 Hence, there exists a
random variable such that

(see Breiman, 1968, chapter 5.4). We distinguish between two cases.
(a) is not arithmetic.

In this case, (7.38) implies that the random walk defined by (7.40) visits every interval
infinitely often, with probability 1. This, together with (7.42), implies that if W is a
continuous function, then it has to be a constant. If W is not continuous, define

and note that is a continuous function satisfying the conditions of the lemma and
so must be a constant It is easily verified that has the same value, for each
so that for all real t

On the other hand,

which implies that This proves Lemma 7.16(a).
(b) is arithmetic with span

In this case, (7.38) implies that the random walk defined by (7.40) visits every point
(where j is any integer) infinitely often, with probability 1. Hence, (7.42) implies

that W has the same value for each integer j. In the same manner, we define

2A sequence of ramdom variables is called a submartingale if  n = 1, 2, . . . , and

with probability 1
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where is any real number, and deduce that has the
same value for every integer j.

We can now prove Theorem 7.15.

Proof. Define a probability distribution function and a positive function
W(t) by

Since W(t) and satisfy the conditions of Lemma 7.16 ((7.38) follows from (7.36)
and (7.39) from (7.37)) it follows that where is a.s. a constant in
case (a), and a periodic function in case (b).

Example 7.17 Assume that the equation

with holds for all The function

converges for all b < 0, attaining its minimum at with and
Thus, it follows from (7.33) that if then equation (7.44) has no

positive solution.
If then equation (7.44) has the unique solution

where is any positive constant.
If then it is easily verified that equation (7.44) has two solutions of the type
(as well as any linear combination of them).

In the special case that the measure A has only atoms at the integers we obtain the
discrete version of Theorem 7.15.

Theorem 7.18 Let be a nonnegative sequence with the following
(bilateral) generating function

Assume that attains its minimum3 at a positive number and that
satisfies

3
Note that is convex for a > 0. Thus, a local minimum is also a global minimum.
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Then any positive sequence that satisfies, for all
the inequality

has the following form:

(i)

(ii)

If the span of is 1, then where is a positive constant.

then where is a positive periodic sequence with period

Proof. Define a discrete measure such that the measure of the point is
and the measure of any interval not containing integral points is zero. Define X(t)

as the step function for . Thus defined,
and X ( t ) satisfy the conditions of Theorem 7.15 with Since is

arithmetic, it follows that where is a periodic function with the
period length equal to the span of Thus, i f then and
if is an integer greater than 1, then where is a periodic sequence with
period

Note that condition (7.45) automatically holds if is an interior point of the interval
of convergence of

Remark 7.19 If condition (7.45) (resp. (7.36) for the continuous case) is not satisfied,
then it is proven by Gal (1972) that the minimax strategy is no longer unique up to a
multiplicative constant. Such a situation may occur only if the minimum of the generating
function is attained at a point a, which is an end point of the interval of convergence
of (or if converges only at a single point).

Theorem 7.18 will be extensively used in Chapters 8 and 9.

Example 7.20 Let and  for all other j. Then
and Thus, Theorem 7.18 implies that for any positive sequence

if

then is a constant. This is a well-known result: If a positive sequence
is concave then

It should be noted that, usually, the problem

where and does not have a unique (geometric) solution. For
example, any sequence which is strictly concave for satisfies

If the span of is  for every j that is not a multiple of
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and thus is a non-constant solution to the problem

Still, Corollary 7.11 implies that any such sequence satisfies

Some other examples and a more detailed discussion are given by Gal (1972).

Remark 7.21 If we remove the assumption that the sequence X is positive, then the
equation

has an infinite number of solutions for all real including This is so because
starting with any and if we recursively define

then such a sequence would satisfy (7.47).
A similar statement holds for all the other examples of Section 7.2. Thus, the

requirement that X be positive is indispensable for all the results of Chapter 7.



Chapter 8

Search on the Infinite Line

8.1 Introduction

The problem of searching for a target hidden on the infinite line has already been intro-
duced in Section 6.1. We first briefly present a short, informal, discussion on the linear
search problem (LSP), which was suggested by Bellman (1963) and, independently, by
Beck (1964).

A target is located on the real line, at a point z, with a known probability distribu-
tion F. A searcher, whose maximal velocity is 1, starts from the origin O and wishes
to discover the target in minimal expected time. (Changing the direction of motion can
be done instantaneously, except in Section 8.4.)

A search plan is equivalent to a list of turning points. There need not be a first
turning point. (Actually, we will show that “effective” trajectories start with infinite
“oscillations”). Thus, a search trajectory S is equivalent to the set of the turning
points At the i-th stage of his trajectory S the searcher goes
from the origin O to point then to and back to O.

Let I be the first integer thatsatisfies for z > 0 and
for z < 0. Then the time required for S to reach z is given by

It is obvious that the condition

is necessary for the finiteness of the expected search time because for any hiding point z,
the time to reach z is at least for any trajectory. On the other hand, if (8.2) is
satisfied, then there is a trajectory with a finite expected search time. Such a trajec-
tory is the “geometric” trajectory with since it reaches any point z
by time then the time to reach z by



A necessary and sufficient condition for a distribution on a compact interval to have
a nonterminating minimizing search strategy was presented by Baston and Beck (1995).
(Their paper actually proves this result for a more general cost function

The LSP with bounded resources (maximizing the probability of discovery) was
considered by Foley, Hill, and Spruill (1991). Recently, Hipke et al. (1999) have con-
sidered the minimax search in an interval. A comprehensive survey with some useful
insight is presented by Brass and Robertson (1988).

As Bruss and Robertson note, although it is immediately clear what the problem
is, it turns out to be much harder than one’s intuition would indicate. In general, an
effective general solution, from the computational point of view was not presented. In
fact, although the problem is interesting and has an “applicational appeal,” no algorithm
for solving the problem for a general probability distribution function has been found
during about 37 years since the LSP was first presented. We do have, however, a
dynamic programming algorithm for finding an approximate solution with any desired
accuracy. This algorithm is presented in detail in Section 8.7. The description of the
topics presented in this chapter is given in the end of the next section.

8.2 The Linear Search Problem as a Search Game

We now describe the LSP within the framework of a search game. Beck and Newman
(1970) have used the restrictive approach, but we will use the normalization approach,
(see Section 6.1). We shall usually assume that the hider is immobile and that capture
occurs the first time that the searcher passes the point occupied by the hider, but in
Sections 8.5 and 8.6 we shall consider some variations of the game in which these
assumptions do not hold.

As usual, we assume that the searcher can use any continuous trajectory S(S(t)
being the point visited by S at time t) that satisfies
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is bounded by (because In fact, Beck (1965) has
proved that condition (8.2) is both necessary and sufficient for the problem to have an
optimal search trajectory.

Beck and others (1964–1995) have done much work on finding the characteristic
properties of the optimal solution and presented optimal solutions for the following
distributions:

rectangular (go to one end point and then return to the other),

normal (Beck and Beck, 1986), and

triangular (infinite number of turning points!).

The hider can choose any real number H, and the cost function is given by

and for all



Property (b) readily follows from (8.4), while property (a) follows from the fact that
if there is a first left turning point, then the hider can obtain an arbitrarily large payoff
by choosing with being very small, while if there is a first right turning
point, then the hider can obtain any large payoff by choosing Thus, the set of
turning points is a doubly infinite sequence.

Remark 8.2 In the approach that we use, every admissible search trajectory has to
start by making an infinite number of small “oscillations ” near 0. This phenomenon
follows from the normalization we use to define the cost function. (Note, however, that
the discussion in Section 8.2.1 implies that, even if we use the nonnormalized cost
function with the restriction on the absolute moment of H, the optimal trajectory still
has an infinite number of oscillations near 0). In order to obtain a “practical” solution,
which does have a first turning point, one could assume that there is a positive (very
small) discovery radius r, so that all the points H with are discovered at t = 0.
From the optimal search strategy that we shall present, one can immediately obtain an
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where C(S, H) is the capture time. In the case that mixed strategies are used, we shall
denote the expected value of the normalized cost by

At first we shall identify some properties that a search trajectory must have in order
to be “efficient.” Such a property is obviously

because otherwise there exist hiding points H that are never discovered by S, i.e.,
Moreover, any mixed search strategy s with has to satisfy

condition (8.4) with probability 1. Thus, it can be assumed that all the relevant mixed
strategies make their probabilistic choice among the trajectories that satisfy (8.4).

We have already mentioned in Section 3.1 that, when searching for an immobile
hider, it can be assumed that the velocity along the search trajectory is 1. Using a
dominance argument of a similar type, it can be shown that it is sufficient to consider
search trajectories S(t) with or for all t > 0 except a denumerable
set of turning times defined as follows.

Definition 8.1 The trajectory S(t) has a left turning time (LT) at the time if there
exists an such that

Similarly, the trajectory S(t) has a right turning time (RT) at if

for and for

Obviously, between any two LT’s there exists at least one RT and between any two
RT’s there exists at least one LT.

We also have the following property:

The number of the turning points before is infinite, and
The number of the turning points after is infinite.

and

for and for

Let S be any search trajectory with
(a)
(b)

Then for any 



optimal strategy for the above-mentioned versions of the game by simply ignoring all
the turning points before a certain instant where is very small. Such a solution will
use trajectories which have a first turning point and do not have small “oscillations”,
(see Example 7.12 and Remark 9.5).

From our previous conclusions it follows that any search trajectory S can be repre-
sented by a doubly infinite sequence of positive numbers with the convention
that each with an even i represents the location of a LT, while if i is an odd integer,
then represents the location of a RT. For any even i, the searcher moves from the
point to and then to etc. For any time t, if the interval covered by that
time is [a(t), b(t)] then we can assume that the next turning point has to be outside
of that interval (because a turning point inside that interval just wastes time without
discovering any new points and can be skipped). Thus, we can consider only search
trajectories that satisfy

Such trajectories will be referred to as periodic and monotonic.
A minimax trajectory for the LSP will be derived in Section 8.2.1 and optimal

strategies will be derived in Section 8.3. In Section 8.4 we analyze the linear search when
changing the direction of motion requires some time and cannot be done instantaneously
(as originally assumed in the LSP). In Section 8.5 we present a minimax trajectory for
capturing a hider who moves away from the origin. In Section 8.6 we consider linear
search when there is some probability of not finding the target even when the searcher
visits it’s location. Finally, we describe in Section 8.7 a dynamic programming algorithm
for computing, with any desired accuracy, the optimal search trajectory of the LSP for
known hiding distribution.

8.2.1 The minimax search trajectory

In this section, we present the minimax pure strategy of the searcher. In other words,
we find a trajectory that minimizes , where

First we note that by property (8.5) of Section 8.2, any hiding point H has to satisfy
for some even i, or for some odd i. Since

where we have
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with the hider choosing the best response among choosing if on
the i-th stage S goes right and if on that stage S goes left.

We now use the results obtained in Chapter 7. It follows from Corollary 7.11 of
Section 7.2 that

In this case

with Thus, in this case the minimal cost assured by using a pure strategy
(fixed trajectory) is about 6.83. This result will be used for the rendezvous search on
the line with an unknown distribution (see Section 17.4 Book II). This solution was
presented by Baston and Gal (1998).

It should be noted that the trajectory is still minimax for the case
when the capture time is used as the cost function and the hider’s strategy has to satisfy

In order to show it we first note that
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Moreover, the minimax sequence is unique, up to a positive constant This
follows from Theorem 7.18 of Section 7.3 because theminimum of the (bilateral)
generating function, satisfies (Note that and

where j is any integer, represent the same trajectory.) Thus, the minimal
cost assured by using a pure strategy (fixed trajectory) is, by (8.6) and (8.7),

We will use a simplified notation choosing Thus writing will
actually mean with

Remark 8.3 Consider the case in which the hider is restricted to symmetric hiding
distributions. Then, for a given search trajectory S, the hider’s best response is to
choose with probability 1/2 and with probability 1/2, for
some i. Thus, the hider is captured either on the i + 1 stage or on the i + 2 stage (each
with probability 1/2). This leads to an average capture time of



On the other hand, any hiding strategy, which has atoms of probability masses
and at the points and 0, respectively, is an admissible strategy.
Thus

by Corollary 7.11 of Section 7.2.
The discussion presented in Section 6.1 implies that the minimax search trajectory,

just presented, and the optimal mixed strategies, to be presented in the next section,
are still optimal if one uses the capture time as the cost function, with the restriction

(rather than using the normalized cost function In order to obtain the
optimal search strategy in the case that the constraint is one has to use the
scaling lemma (Proposition 2.5) with the mapping but it is readily seen
that maps the optimal search strategy into itself. Thus, the minimax trajectory and the
optimal mixed strategy are uniformly optimal for all so that it is not necessary
to have any knowledge about the value of

8.2.2 Minimax trajectory on a half-line

We have already noted, in Section 6.1, that the equivalence between the two approaches
holds whenever the scaling assumption (of Section 6.1) holds. We now show that if
this assumption does not hold, then the two approaches may lead to different optimal
strategies.

Consider the same game described in Section 8.1, except that the search space Q
is the half line where If one uses the normalized cost function,
then the minimax pure value would be 9, the same as in Section 8.2 because by
Corollary 7.11, any search trajectory S satisfies

Now consider the case of using the capture time as the cost and restricting the hider
to strategies that satisfy If the searcher uses the trajectory definedby
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Consequently, the pure value is much less than 9.

8.3 Optimal Strategies

In the previous section, we showed that if the searcher wishes to use a fixed trajectory that
ensures him a minimal worst-case cost, then he should use the “geometric” trajectory

We now assume that the searcher wishes to minimize the expected cost,
looking for an optimal mixed strategy that achieves this goal. We shall use the same
method adopted by Beck and Newman (1970) to demonstrate that belongs to the
family of mixed strategies defined as follows.

Definition 8.4 For any a > 1, the strategy chooses a trajectory with
where u is a random variable uniformly distributed in the interval [0, 2).

The strategy is a random choice among the geometric trajectories with rate of
increase a. (The random variable u is restricted to [0, 2) because S is a periodic function
of u with period 2.) Each strategy has the following property.

Lemma 8.5 For any hiding point H,

which establishes (8.8).

then, for any H

Thus, for any admissible hiding strategy h, we have

Proof. Assume for convenience that H > 0. Then for any trajectory
the capture time C(S, H) satisfies

where (and i is even). Thus,
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Let

and

A numerical calculation gives: so that By using the searcher
can make sure that the expected cost does not exceed q, which is about half of the value
guaranteed by the fixed trajectory presented in the previous section. We now show that

is indeed an optimal strategy by proving that the value of the game is q. The proof
constructs an strategy of the hider.

Theorem 8.6 For any there exists a hiding strategy such that for all S,
we have

where q is given by (8.9).

Proof. Denote

and let be the mixed strategy that chooses the hiding point H using the probability
distribution function G defined as follows

The function (a + l)/(ln a) is unimodal for a > 1.

It thus follows that its derivative vanishes at Thus

In other words has density and has two probability
atoms, of mass each, at H = – R and H = R . Since the hiding point H satisfies
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and with a positive probability, we need consider (against
only search trajectories which have a first turning point (bigger than 1) and a last turning
point (at R). Let S be such a trajectory. Then we can assume that S starts by going from
0 to and back to 0, then to and back to 0, etc. The last two steps of S are of
length R each. Thus S can be represented by a set of positive numbers with

We denote for convenience The trajectory
S satisfies

Note that for search games in general the searcher has an optimal strategy and
that the game has a value, which implies that the hider has strategies. (See
Appendix A). However, the hider need not have an optimal strategy. An example demon-
strating this possibility is the search game with a mobile hider presented in Section 4.2.
The same phenomenon occurs in the LSP.

The intuitive reason for this fact is that if an optimal hiding strategy would have
existed, then it would have to use a probability density which is proportional to
for all However, such a probability density, obviously, does not exist.

Theorem 8.7 Any hiding strategy h satisfies
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where q is given by (8.9).

The details of the proof are given in Gal (1980, section 7.3).



It is worth noting that the worst possible outcome of using the search strategy
is a loss of

while the expected cost of the strategy which uses only minimax trajectories (a = 2),
is Thus, use of yields (the minimal) expected cost of 4.6 but risks a
maximal cost of 10.9, while use of which yields an expected cost of 5.3, minimizes
the maximal cost (which in this case is equal to 9). The expected cost of any search
strategy with lies between 4.6 and 5.3, while the maximal cost lies
between 9 and 10.9. All the strategies with the parameter a lying outside the segment

are dominated by the family with respect to the expected and the
maximal cost.

8.4 Search with a Turning Cost

In this section we consider a more realistic version of the LSP, which has not been
considered before in the literature. In this model the time spent in changing the direction
of moving is not 0, as is usually assumed in the LSP, but a constant d > 0. Here, any
search trajectory with a finite expected search time must have a first step because
starting with an infinite number of oscillations takes infinite time. Therefore, assume
for convenience that the search trajectory starts by going to then turning and
going to then turning and going to etc. (We can obviously assume that the
searcher always goes with his maximal speed, 1, as is always the case with an immobile
hider.) Thus

and denote

In this case the normalized cost function (in the worst case) is not bounded near 0.
Thus the reasonable cost function is the time to reach the target, C(S, H), under the
restriction For convenience we assume Thus we are interested in

We shall show that

The left inequality follows from equality (8.7), which implies that for any S and
any there always exist an as large as desired, with
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Thus, if the hider chooses h as

then and, for a large enough

with arbitrarily small.
In order to prove the right inequality of (8.13) we present a trajectory S that satisfies

for all

so that for any h with

We use the following approach. For any real a sufficient condition for
is the condition

which will hold if the following conditions hold:

Equality (8.14) is equivalent to

We now look for the minimal b which satisfies (8.15). It turns out that the general
solution of (8.15) is
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and



where is a nonnegative parameter. (Because by (8.15)
denoting it easily follows that which leads to (8.16).)

Using (8.16) for i = 0, 1 in (8.15) it follows that Since and
it easily follows that On the other hand, the value 9 + 2d can be

achieved by the following trajectory

8.5 Search for a Moving Hider

This problem is an extension of the search on the real line to the case of a moving hider.
At time t = 0, the hider is located at a point on the real line, and
at any the hider moves away from the origin with velocity w < 1. All the other
rules of the game are the same as the LSP.

For any search trajectory the loss of the searcher is equal to the
distance C (S, H) traveled by the searcher (until he meets the hider) divided by

We are interested in the minimax pure strategy of the searcher; thus, we want to find
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with the time to reach being (neglecting

Since the last equation guarantees expected time not exceeding 9 + 2d.
Is 9 + 2d the best possible constant? This is still an open problem. (Note that (8.14)

is a sufficient but not a necessary condition.)

Note that we need only consider turning points satisfying

because by the time the searcher reaches the hider has already traveled the distance
on the RHS of (8.17). Thus, any stage that does not satisfy (8.17) is inefficient.

Now, if the hider is captured during stage i + 2, then it is easily seen that the worst
case for the searcher occurs if at the end of stage i (when the searcher is at distance
from O) he “just” misses the hider who is at that time at distance from O, where

is small. This means that where (see (8.17))
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and that the hider is captured at distance d from O, where d satisfies

Since

it follows that

So in this case

where satisfies (8.18). It follows that for trajectories S that always discover the hider,

It will turn out that the minimax trajectory of (8.20) always discovers the hider, no
matter how large H (0) is, so that it is indeed the minimax search trajectory. We now
find the optimal solution of (8.20). First note that, by (8.18)

which readily implies that

Thus

where is any positive sequence.
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The solution of (8.22) is given by Theorem 7.18 of Section 7.3 by

which is equal to

This is obtained by the unique (up to a multiplicative constant) solution

the optimal a being

It easily follows from (8.24) and (8.21) that where is a constant.
This sequence gives the value of (8.20) as

In order to show that (8.25) is the value of the game, it remains to show that the
trajectory

always captures the hider. A sufficient condition for that is that for any H(0)

(see (8.17)) for any large enough i. This condition follows from the fact that, by (8.18),
we have

Note that if w = 0, then which is the minimax search trajectory obtained
in Section 8.2.

Remark 8.8 The problem of searching for a target that moves randomly on the real
line was considered by McCabe (1974).



8.6 Search with Uncertain Detection

The setting of this problem is the same as in Section 8.2 except that when the searcher
reaches the hiding point he is not sure to find the target. Instead we assume that the
probability of finding the hider on his k-th visit of the hiding point H is where

(For convenience we assume that when we search an interval, its end
points are visited twice.)

We shall now find the minimax periodic monotonic trajectory (see (8.5)). In this
case, if I satisfies

then (noting that the searcher reaches H from below on his odd number visit and from
above in the even number visit)

where

and

Inequality (8.27) implies that the maximum, over H, of (8.28) satisfies

by Corollary 7.11. Thus, expression (8.32) is the value that can be obtained by using a
periodic monotonic trajectory.

In order to obtain this value, one would have to use the trajectory

where is a constant and is the value of the a that minimizes (8.32). In this
trajectory, the positive and the negative rays are visited alternatively.

On the other hand, contrary to the linear search problems considered before, the
optimal trajectory need not be periodic and monotonic, as will be shown by the following
example.
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8.6.1 Search with a delay

Assume that we find the target only on our third encounter, i.e., and
for It follows from (8.32) that the value obtained by using periodic monotonic
trajectories is equal to

On the other hand, a smaller value can be obtained by the following trajectory
We use a nested set of turning points

(as in the LSP) but during stage j, instead of moving from 0 to and back to 0,
we move along the following four segments:

Then, the distance traveled at stage j is equal to

Now, for

or

the target is found at stage I + 2, so that

Thus,

Let be the a that minimizes

It turns out that If we choose then
which is less than the value obtained in (8.33).



It follows from the previous example that in some of the problems with probability
of detection less than 1, the optimal trajectory does not have the simple properties of
monotonicity and periodicity.

8.6.2 Geometric detection probability

The following simple model was presented as an open problem in Gal (1980) and is
still open. Assume that the searcher detects the hider with probability p each time he
passes the target point. In other words, the probability of capture in the i-th time the
searcher visits the point H is

so that (8.32) is equal to

Expression (8.35) represents the minimax value, obtained by monotonic and periodic
trajectories.

Thus, if the minimax trajectory is monotonic and periodic, then given by (8.35),
is the pure value of the game. The conjecture that the above geometric trajectory is the
minimax solution seems quite reasonable, but it is still not known whether the minimax
trajectory is indeed monotonic and periodic. A similar difficulty is associated with the
optimal mixed strategy.

8.7 A Dynamic Programming Algorithm for the LSP

In this section we return to the original formulation of the linear search problem (LSP)
as an optimization problem in which the probability distribution function (PDF) of the
target is known and we look for the trajectory S with the minimal expected search time.

We now present a dynamic programming (DP) algorithm for solving the LSP,
for any PDF, with any desired accuracy. This approach was suggested by Bruce and
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Thus (see (8.29) and (8.30))

and



Robertson (1988) for numerically solving the LSP for a probability distribution that has
a finite number of atoms. (It has also been used by Washburn, 1995, to find the best start-
ing point for such a distribution.) We will generalize the algorithm and obtain
solutions for the LSP for a general distribution function. We shall also show how to use
DP to solve the double linear search problem (to be described in the sequel), which is
equivalent to solving the rendezvous search on the line (see Section 16.3 Book II).

We now show how to use DP to produce an approximation, with any desired accu-
racy, for any PDF. We first find an trajectory for a distribution with a finite
support. Then we show how to extend the trajectory to get an trajectory for
a distribution with an unbounded support.

Assume that the target point Z has a PDF F, with a finite support. For any given
positive number e, let be an e-grid obtained from F by moving all the probability
mass of the interval into the grid point ie and similarly for

the corresponding random variable by
Let denote the minimal expected discovery time for the PDF’s

respectively. Then because any optimal trajectory for when used for
the original F yields a lower expected discovery time and any optimal trajectory for the
original F, used for yields a lower expected discovery time.

We now show that for a small e, is small. Let Put all the probability
mass of into 0. Then the distribution function obtained by this operation,

has an expected discovery time satisfying

because the original problem can be reduced to search with PDF (after time
by moving to then to and then returning to 0.

For choose where k is large. Then

(because dominates
Thus,

Recall that can be reduced to by adding time units at the beginning.
Thus, we get

Now recall that
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(–ie, –(i – 1)e) into –ie, and let be a random variable with PDF Also, let
be an e-grid obtained from F by moving all the probability mass of ((i – 1)e, ie) into
the grid point (i – 1)e and similarly for (–ie, –(i – 1)e) into –(i – 1)e, and denote



Thus, solving the LSP with the PDF gives the desired accuracy for a bounded F.
For a PDF F with an unbounded support, we can get an approximation with any

desired accuracy by truncating F at R, where R is large enough. Specifically, consider
the truncated distribution in which the probability mass of F that lies above R is
put at the point z = R and the probability mass of F that lies below – R is put at the
point z = –R. Since we assume a finite first absolute moment we can choose a large
enough R such that

(Note that (8.37) implies also that

Let be the optimal search time for and let denote a trajectory that guarantees
(8.36), for Extend as follows. After searching in the interval [ – R , R], if the
target has not been found, then go back to z = 0, reaching it at time and use the
following turning points: 2R, –4R, 8R, . . . . Denote the extended trajectory by
Now, for any z with

Combining (8.36) and (8.40) it follows that if e, k, and R are chosen as described,
then finding an optimal trajectory for and then extending it as described above
to would yield, for the original F, an expected time
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Choosing and we obtain

the time to reach z by is bounded by

(by (8.38)).
Now compare the expected search time of against denoted by to the

expected time of against F, denoted by For the discovery time
is the same while for the tails the discovery time under is at least (because
the end points of [ – R , R] are searched at time or Thus (by (8.37) and
(8.39)),

which shows that is an search trajectory as desired.



Thus, an algorithm for solving the LSP for an e-grid would enable us to solve any
LSP, with a general PDF, within any desired accuracy.

For convenience we take the measuring unit as e so that the point i has distance
i from the origin. Note that if there are n point masses on each side of the origin,
then the number of possible trajectories for F is at least because it exceeds the
number of possible sets of right turning points i.e., Thus we have to deal with
an exponential number of trajectories. However, our following dynamic programming
(DP) algorithm has a complexity of

Assume that there are (at most) n point masses on each side of the origin with
probabilities and denote

Q(i, j)– the probability that the target is above i or below – j :

which is equal to the second term of the right side of (8.42). Similarly,
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We shall recursively construct the following two functions:

VR(i, j) : Q(i, j) × the expected remaining time given that the interval covered is
( – j , i) and we are now at i, and

VL(i, j) : Q(i, j) × the expected remaining time given that the interval covered is
(–j, i) and we are now at – j.

The recursive formula for V R(i, j ) , –n < i, j < n is

To see why (8.42) holds, note that if the searcher decides to go from i to i + 1, then the
expected conditional remaining time satisfies

which is equal to the first term of the right side of (8.42), while if the searcher decides
to go from i to –j –1, then the expected conditional remaining time satisfies



The number of operations of the DP algorithm can be calculated as follows. We
first have a preprocessing stage of calculating Q(i, j) for requiring

number of operations. Then, the V R and VL calculations require opera-
tions, each of constant time (assuming constant table lookup time for the pre-calculated
function Q(i, j ) ) . Thus, the overall complexity of the DP algorithm is

Remark 8.9 A (discrete) two dimensional extension of the LSP aims to minimize the
expected time to reach n given points in the plane. It is called the “minimum latency
problem” (Blum et al., 1994). This problem is shown to be at least as hard as the
Travelling Salesman Problem and therefore is NP hard. (For approximation algorithms
see Goemans and Kleinberg, 1998.)

A similar approach can be used to solve the double linear search problem (DLSP)
in which two cooperating agents 1 and 2 are searching for a target that is hidden on
one of two infinite lines, line 1 or line 2. The probability of the target being on each
line is 1/2 with the same conditional probability distribution function (PDF) F ( z ) . As
the search begins, each agent is placed at the origin of the corresponding line and starts
to move, in a coordinated way, with maximal combined velocity normalized to 1. In
Book II we will show that DLSP is equivalent to rendezvous search on the line. Thus,
the DP algorithm yields (approximated) optimal strategies for two agents to meet on
the line.

As for the LSP, the DP approach finds the minimal expected discovery time for the
discretized problem, which amounts to using an e-grid with PDF (choosing e = 1)
and assuming that in the optimal solution for the following assumption holds: for
any time interval only one player moves.

We now present the DP scheme: Let E(i, j, k, l) be the event that the target is
above i or below –j on the first line or above k or below –l on the second line.

Denote

P = P(E(i, j, k, /)) = Q(i, j ) / 2 + Q(k, l)/2

(see (8.41)).
In order to use the DP algorithm for DSLP we need to calculate four value functions:

VRR(i, j, k, l), VRL(i, j, k, l), VLR(i, j, k, l), VLL(i, j, k, l).
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In order to complete the DP scheme we use the following boundary conditions:

The minimal expected discovery time is obtained at the last stage when i = j = 0:
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For example, VRL(i, j, k, l) = P× the expected remaining time given that the
first player covered (–j, i) and is now at i and the second player covered (– l , k) and is
now at –l.

The other three functions are defined in a similar way.
We now present one of the recursion formulas. (Obtaining the other three recursion

formulas is straightforward):

If one of the arguments is equal to n then we obtain a similar (simpler) recursion formula
with three possibilities (instead of four).

In the case that two arguments are equal to n, if these arguments are of the same
player, then the problem reduces to LSP; if the argument n appears (once) for both
players, then we obtain similar (simpler) recursion formulas with two possibilities
(instead of four).

If three arguments are equal to n, then we obtain the boundary condition of the LSP
of the corresponding player.

The complexity of our algorithm is since the V functions have to be calculated
for argument values.



Chapter 9

Star and Plan Search

9.1 Introduction

In this chapter we first present several search problems, which can be solved using
the tools developed in Chapter 7. The first search space, presented in Section 9.2, is a
finite set of rays radiating from the origin (a star), and the second, in Section 9.3, is the
boundary of an unbounded plane sector. Minimax search trajectories are found, for each
of these problems, using the results presented in Section 7.2. The continuous minimax
result, presented in Section 7.2.1, is used for obtaining the required search trajectory
for the search in the plane presented in Section 9.4. We then present, in Section 9.5,
several interesting problems of “swimming in a fog,” i.e., attempting to minimize the
time to reach the shore given its shape and some information about its location around
the starting point. Finally, in Section 9.6 we present a problem of detecting a submarine
with a known location (only) at t = 0. The optimal search strategy is still unknown.

9.2 Star Search

Suppose we are searching for an immobile hider in a star Q that consists of M (M > 1)
unbounded rays radiating from the origin O. This problem is an extension of the search
on the real line (M = 2), and the results that we obtain are indeed of a similar nature.
This problem was first considered by Gal (1974a) as a minimax problem. The search
problem with a known probability distribution of the target (on the star) is an extension of
the linear search problem (LSP). Considering a probability distributions with bounded
support, Kella (1993) found a sufficient condition under which an optimal policy has
the property that it visits every direction only once (thereby exhausting it). A special
case with this property, already mentioned in Section 8.1, is the LSP with a uniform
target distribution (or any other convex PDF).

There has been a great deal of interest in computer science in search problems
like the star search or the LSP. In these problems a searcher has to traverse a graph,
Q, from a starting point to a target but must operate with incomplete information.



The searcher starts with a limited amount of information about the environment to be
searched and learns additional information as the search proceeds (in our case about
the part of Q that contains the target). A model of this type was used by Papadimitriou
and Yannakis (1991) and by Burley (1996). The star search has been considered by
Baeza-Yates et al. (1993) within the context of searching sequentially for a record
that is known to be on one of M large tapes given that we have only one drive and
that we must rewind the current tape before searching any other. Kao et al. (1996)
call it the cow-path problem presenting it as an example of searching in an unknown
environment. Lopez-Otiz and Schuierer (1997, 1998), Brocker and Schuierer (1999),
Brocker and Lopez-Otiz (1999), and Schuierer (1999, 2001), used a model of this type
for searching a target in a polygon and other problems in computational geometry. The
optimal strategy for several searchers who start from the origin and search in parallel is
presented in Hammar et al. (1999). Recently, Jallet and Stafford (2001) reconstructed the
optimal solution obtained by Gal (1974a), using a different technique and also analyzed
the solution under some additional information: (a) When the maximal distance of the
object from the origin is given, and (b) When the probability that the object lies on each
ray is given. For the LSP (i.e., M = 2) the analysis for case (a) above was carried out
by Hipke et al. (1999). Somewhat similar ideas were used in finding competitive ratios
(i.e., worst-case analysis) for on-line algorithms. (See, for example, the on-line load
balancing algorithm for related machines, presented by Berman et al. (2000).)

The star search will be analyzed using the following framework. A pure strategy of
the hider is given by
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where is the ray number and is the distance from the origin (see
Figure 9.1).



Similar to the discussion presented in Section 8.1 for the search on the line (M = 2),
any admissible trajectory S of the searcher can be described by an infinite number of pairs

where and At the ith stage of the trajectory S, the
searcher starts from the origin, walks a distance (or if the hider is to be found at
this stage) along ray and returns to the origin O. The capture time C(S, H) is given
by

where is the number of the stage during which the hider is discovered.
We shall use the normalized cost function discussed in Section 6.1 and

used in Chapter 8. Thus the cost is the capture time divided by the distance of the hiding
point from the origin,

As usual, we denote the value of the search trajectory S by

In order to find the minimax search trajectory, we first establish several properties
of the search trajectories. At first, we introduce a new representation for the search
trajectories, which can be handled more conveniently than (9.1). This representation,
which will be used from now on, is

where is the distance traveled along the chosen ray at the ith stage, and is the
minimal stage number greater than i in which the same ray is visited again. The index

should satisfy the following three requirements.

For every i,

For every i, there exists an l < i such that

For every integer l, the set

contains M members.

For example, if M = 4 and the trajectory S satisfies (see (9.1))
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then because the next visit to ray number 3 (which is visited when i = –3)
occurs when i =3. Similarly, Thus,

because ray number 3 is visited when and after that when i = 3 > 1, ray
number 2 is visited when and after that when i = 2 > 1, ray number 1
is visited when and after that when i = 4 > 1, and ray number 4 is visited
when Similarly,

It is obvious that (9.3) does not define a unique trajectory but a class of M! (“equivalent”)
trajectories, which can be generated from one trajectory by changing the enumeration
of the M rays but for each of them,  is the same.

It is also obvious that if the function does not satisfy any one of the requirements
(9.4)–(9.6), then either after or before a certain stage the searcher will not visit a certain
ray, so that the value of such a trajectory is infinite.

For example, if M = 3 and the trajectory S satisfies (see (9.1))

then ray number 3 is not visited and indeed, for all contains only two
members.

On the other hand, if the trajectory S satisfies (9.4)–(9.6), then it follows from (9.4)
and (9.5) that for any visit on a specific ray there corresponds a following visit and also
a preceding visit on this ray. In addition, we note that if at least one ray is not visited,
then contains less than M members for all l. Thus, it follows from (9.6) that all the
rays are visited and from (9.4) and (9.5) that for each of them, there is no first visit and
no last visit.

It follows from dominance considerations that we need deal only with trajectories
having the monotonicity property defined as follows

Obviously, we may also assume that

A trajectory S satisfying conditions (9.4)–(9.8) will be called an admissible
trajectory. We shall show that for all M, there exist admissible trajectories.

For each admissible trajectory S

where
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This follows from the fact that against a known trajectory S, the best point for the hider
belongs to the set (see (9.1)).

A trajectory X satisfying

will be called a periodic trajectory. If S is a periodic (and monotonic) trajectory, then

It follows from Corollary 7.11 that

Furthermore, it follows from Theorem 7.18 that if

then

where is a positive constant.
Hence, the trajectory where is given by (9.14) and which

is obviously an admissible trajectory, is optimal among the periodic trajectories. We
shall show that it is the best (pure) strategy among all the possible trajectories.

To this end, we present the following lemmas.

Lemma 9.1 Every admissible trajectory satisfies

Proof. Any trajectory that does not satisfy (9.15) has an infinite value.

We now use an interchange argument to show that any non-monotonic trajectory is
dominated by some monotonic trajectory.

Lemma 9.2 For each trajectory there exists a trajectory
satisfying for every

and
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where is defined by (9.10). Furthermore, if there exists an satisfying .
then there exists a satisfying

Proof. We present an outline of the proof. The full details appear in Gal (1980)
(or Gal, 1974a). Assume that there exists an with

If for all then

Proof. Define

and

Replace the trajectory S by the trajectory which is identical to S before stage
and from stage on, the role of the rays visited at stages number and is
interchanged. It is easily seen that (9.18) implies

150

and for any other k

Thus,

It is possible to repeatedly apply the same operation on and obtain in the limit a
trajectory that satisfies (9.16).

We will also use the following lemma.

Lemma 9.3 Let

and, as in (9.13), let



Using Holder’s inequality (see Hardy et al., 1952), we obtain

so that the assumption of the lemma implies also that Using
Theorem 7.18 we obtain that and consequently, for all i.

Theorem 9.4 Let S be a search trajectory and let be defined by (9.10) and
If for all
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then for all i

Proof. The proof is given in two parts:
1. First assume that

Since S is an admissible strategy, we can use condition (9.6) together with (9.23) and
deduce that for every

being defined by (9.20). Using Lemma 9.3, we deduce that for every k,
Finally, we use (9.23) and (9.25) and establish (a).

In order to prove (b) note that assumption (9.24) together with (a) imply that

and

where is any positive constant.

(a)

(b)

(c)

It is now possible to show that the periodic trajectory defined by (9.14) is the minimax
trajectory for the searcher, guaranteeing a value of



This implies that the set defined by (9.6) consists of the integers
l – M + 1, l – M + 2, ...,l (because, otherwise, there would exist at least one inte-
ger with contradicting (9.26)). Similarly, consists of the
integers l – M, l – M + l,..., l – 1. Thus for every l: so that
establishing (b).

In order to prove (c), it remains to note that proposition (b) implies that

where is any positive constant.
If we choose then the stages i = 0 to i = 4 (for example) are carried out

by going a distance of 1 along the first ray (and returning to the origin), then a distance
of 3/2 along the second ray, then a distance of along the third ray and then a
distance of along the first ray, etc. The value of this game is

and as before. Thus, in this trajectory there is a first step that is to travel a
distance on the first ray and return to the origin. The second step is to travel a distance
of on the second ray and return to the origin, etc.
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so that (c) follows from the uniqueness Theorem 7.18 under assumption (9.23). This
completes the proof under assumption (9.24).

2. If there exists an integer satisfying

then we can use Lemma 9.2 and obtain a trajectory satisfying, for all

However, the existence of this trajectory contradicts part 1. Therefore, inequality (9.27)
cannot hold.

We now present, as an example, the optimal search strategy for the case where
M = 3. Using Theorem 9.4 we see that the optimal strategy has the form

We have previously discussed the fact that the optimal trajectory has no first step. In
order to apply it to a real world situation, one would have to assume that the object
cannot be hidden closer than from the origin. In this case we can modify the minimax
trajectory and define it to be



Remark 9.5 If we assume that the distance of the hider from O exceeds a known
constant, (say 1), then the minimax search trajectory has a first step, corresponding to
i = 0, and, for all the distance, traveled along the chosen ray satisfies
In this case the minimax trajectory (assuming that it is periodic) has to satisfy

Kella (1993) proved this conjecture under the assumption that, against symmetric
hiding distribution (i.e., the same probability distribution for all the M rays) there exists
an optimal search trajectory, which is periodic and monotonic. His proof is an extension
of the approach used by Beck and Newman (1970) to M > 2.

Note that if M = 2 (the line search considered by Beck and Newman), then the
optimality of periodic and monotonic trajectories is obvious. However, proving this
property for M > 2, which is the step needed to complete the proof of Gal’s conjecture,
may involve many technical details.

Kella (1993) used the fact that minimizes (9.29) to show that as
where is the unique positive root of
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This problem has been analyzed in Example 7.12. The minimax value obtained is equal to

with the minimax trajectory satisfying:

Note that as M becomes large, the minimax value satisfies

We now discuss optimal (mixed) strategies. It is very reasonable that the results
presented in Section 8.3 can be extended to M rays as was conjectured by Gal (1980,
p. 172). Specifically, the optimal (mixed) strategy should be periodic and monotonic
with where u is uniformly distributed in [0, M) and minimizes

and that
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Note that if M is large, then (9.28) and (9.30) imply that while if
M = 2 then the results of Sections 8.2.1 and 8.3 show that Thus, the
expected relative gain of using mixed strategies is about the same (albeit a little smaller
for large M).

9.3 Search on the Boundary of a Region

In the paper “Searching in the plane,” Baeza-Yates et al. (1993) discuss several search
problems. Most of these problems were already considered by Gal (1980), but they
also presented the following new search problem: We look for a target (point), which
lies on a continuous curve that bisects the plane into two halfplanes. We assume that
the searcher can shorten his path by moving off the curve (in the plane). The curve
considered in the 1993 paper is two rays, radiating from the origin O, for which the
following bow–tie search algorithm was presented: Walk along one ray some distance,
walk in the plane, in a straight line, to the second ray (to the last visited point) walk
along the second ray some distance, then return to the last point of departure on the first
ray and repeat. Baeza-Yates et al. present the best bow–tie search with exponentially
increasing distances on the rays and ask whether this search trajectory is optimal (among
all possible trajectories). We shall show that it is indeed optimal.

The above described problem is a generalization of the search on the infinite line
with the angle between the two rays, satisfying (Note that is the
LSP.) Let be the segment walked along the first ray if i is
even and along the second ray if i is odd (see Figure 9.2).

It is easy to see that if the target is discovered in the I + 2 stage at
then the time to reach H is
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and the normalized cost is

Since the worst case occurs if the target is discovered in the I + 2 stage with
for some I, it follows that

In order to use the general minimax theorems of Chapter 7 (Theorem 7.9) we have
to show that

is unimodal. is obviously a homogenous continuous
functional in the arguments

We will need the following inequality

which is actually the triangle inequality (with the Euclidean norm) for the vectors

The geometric meaning of (9.32) is that in Figure 9.3 (Actually, the
geometric construction depicted in this figure provides an alternative simple proof.)

We can now prove the unimodality condition (7.7)

Assume that and that Then

This leads us to the functional
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By (9.32), the LHS of (9.33) is greater than or equal to

which implies that
Also, it is easily checked that both sides of (7.8) are as since we are

restricted to a > 1 we do not need the condition (7.9) as
Now, since all the terms in (9.31) are nonnegative, the monotonicity conditions (7.20)

obviously holds. Thus, by (7.27) it follows that

The precise formula for the optimal a is given in Baeza-Yates et al. (1993).
Note that if is small, then the optimal a is with a small In the extreme

case the two rays coincide, and the problem is equivalent to searching on both
sides of a street, assuming that the time to cross the street is negligible. In this case it
is clear that the best plan is to use very small steps because there is no overhead when
switching from one side of the street to the other side. The situation is entirely different
when In this case the problem is equivalent to the search on the infinite line,
discussed in Chapter 8, and the minimax a is 2.



We have shown that a geometric bow–tie trajectory (with a given by (9.34)) is
optimal among all bow–tie trajectories. The dominance of the search pattern of bow-tie
over other possible patterns follows from the fact that the worst cases occur when the
target is at so that it is always optimal for the searcher to go from point (on
one ray) to (on the other ray) in the shortest possible path.

9.4 Search for a Point in the Plane

In this section, we use the continuous minimax result of Section 7.2.1 in order to find the
minimax search trajectory for the following search problem in the plane. The (immobile)
hider is located at a point in the plane, where is the distance from
the origin O and is the angle of OH (with respect to the horizontal axis). The searcher
chooses a trajectory starting from the origin. He discovers the hider at the moment when
H is covered by the area swept by the radius vector of his trajectory (see Figure 9.4).

We shall consider search trajectories which have the following “periodic and
monotonic” property, i.e., the angle of the radius vector is
always increasing, and X also satisfies for all .1 In addition, we
assume that is piecewise continuous and bounded on any finite interval. (Note
that here we present the search trajectory as a function of the angle not the time.)

The capture time C(S, H) is the length of the trajectory traveled by the searcher
until the hider is discovered. Thus,

the upper limit of the integral being equal to the value of at which the hider
is to be discovered. The part of the trajectory used until the hider is found, is illustrated
in Figure 9.4.

1The result is probably valid even without this assumption. The required step is a continuous extension of
the results in Section 9.2 that a minimax trajectory for the star search has to be periodic and montonic, a task
that seems to be quite complicated.
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Using the normalized cost function

Let be the value of b that minimizes (9.37). Then the minimax search
trajectory is where is a positive constant. (Note that and

where j is any integer, represent the same trajectory.) The solution is
determined up to a multiplicative constant as in all the other functionals considered in
Chapter 7.

It should be noted that, similarly to the previous problems, the spiral starts
with small “oscillations.” These oscillations can be avoided by assuming that the object
is outside a circle of radius around the origin (see Figure 9.5).

The optimal trajectory can now be modified by initially moving a distance along
a radius of this circle, in the direction where and then proceeding by using

for

we wish to find a trajectory that minimizes Thus we are
interested in

We note that with the worst case:

for some
Thus, (9.35) is equivalent to

Problem (9.36) is has the solution given by (7.31) (see Section. 7.2.1). Thus, the
minimax solution is

158 BOOK I. SEARCH GAMES



CHAPTER 9. STAR AND PLAN SEARCH

Remark 9.6 The search game just described takes place in the plane. However, the
object sought is not a point but an infinite ray. (This ray is represented, in polar coordi-
nates, by Thus, the preceding problem is essentially one dimensional.
This explains the fact that the capture time is normalized by (see (9.35)) and not
by

9.5  “Swimming in a Fog” Problems

The type of problem to be described in this section was presented by Bellman (1956) as
a research problem. A narrative-description of this problem is the following. A person
has been shipwrecked at a point O in a fog and wishes to minimize the maximum time
required to reach the shore, given its shape and some information about its location
around O. Similar problems can be considered in which the distribution of the location
of the boundary (shore) line is given and one would like to minimize the expected time
to reach it.

Gross (1955) considered the following formulation of that problem: Find a shortest
plane trajectory with the property that if the origin of the trajectory is covered in any way
by a given plane figure, some point of the trajectory lies on the boundary of the figure.
He presented a discussion about the nature of the solution for the cases in which this
figure is the circle, the equilateral triangle, a “keyhole”-shaped figure, and the infinite
strip of unit width.

Isbell (1957) found the trajectory, which guarantees reaching an infinite line with
unit distance from O in minimum time, and briefly considered a two-line problem. The
minimax search trajectory for a line at unit distance as described by Isbell (1957) is
shown in Figure 9.6.

Being at O, imagine a clock face (Figure 9.6). Walk toward 1 o’clock for
units. Then turn on the tangent that strikes the unit circle at 2 o’clock. Follow the circle
to 9 o’clock and continue on a tangent. Upon striking the line that is tangent to the unit
circle at 12 o’clock, all the tangents to the unit circle have been swept. The maximum
distance traveled in this minimax trajectory is

Gluss (1961a, 1961b) presented a solution of the minimax search for a circle with a
known radius and a known distance from O, and an approximate solution for minimizing
the expected distance traveled in the case that the shore is a line of unit distance from
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O uniformly distributed around O. An extensive survey on this problem is presented
by Finch (1999).

The problem of swimming in the fog with a compass was considered in a general
setting by Hassin and Tamir (1992). The problem can be formally described as follows:
Given an open bounded set Q in find a path S of minimum “size” such that for every

the set {z} + S intersects the boundary of Q.
They consider two models with different size function. The first model is of a

fisherman (say), in a small boat, lost at a big lake in a thick fog. The visibility is zero
but the fisherman can navigate by dead reckoning. At each point in time he can choose
a direction and a distance to travel. He has a map of the lake. His objective is to choose
a path S from his unknown starting point that minimizes the maximum distance that he
must travel to shore. Here, the size of S is its length.

In the second model a soldier is clearing a path outside of a mine-field under the
same assumptions of the first model (zero visibility, unknown starting point, having a
compass and a map) except that the objective now is to find a path S with minimum
(one-dimensional) measure.

The optimal solution of the two problems can be different, as the following simple
example (Figure 9.7) shows. In this example, the minimal length (Figure 9.7a) is 2,
while the minimal measure (Figure 9.7b) is only

However, Hassin and Tamir show that if Q is convex, then the optimal solution for
both models is the same with the objective function equal to the width of Q, i.e., the
minimum distance between a pair of distinct parallel lines that bound Q.

The minimax search for a line can be considered within the framework described
in Section 6.1. We obtain the following research problem. Let be the distance of
the line from the origin. Given the information that the expectation of satisfies

what are the minimax search trajectory (pure strategy) and the optimal
search strategy (mixed) of the searcher?

In contrast to the solution obtained by Isbell (1957), we expect a smooth min-
imax searching trajectory. If we could show that a result similar to the continuous
theorem (7.31) of Section 7.2.1 holds for this problem, then the minimax trajectory
would be an exponential spiral, and one could simply follow the technique presented in
Section 9.4. However, the functional involved does not seem to satisfy the unimodality
condition. Thus, an extension of those results is needed.



9.6 Searching for a Submarine with
a Known Initial Location

Assume that the search space is the entire plane. A submarine (the hider) starts moving,
with speed not exceeding  at time t = 0 from the origin O. The searcher starts
moving at t = 0 from a fixed point different from the origin (known to the hider).
We make our usual assumptions that the maximal speed of the searcher is 1, that his
discovery radius is r, and that he has no information about the path chosen by the
submarine, except of its starting point. The searcher wins if and only if he captures the
submarine at some time t. What are the optimal strategies of both players and what is
the probability of ultimate capture?2

It is easy to verify that the maximin probability P of ultimate capture satisfies

then the bound in (9.38) is close to 1. Thus, the above policy is nearly optimal for this
case. It seems that this policy is nearly optimal in general, but this is still an open
problem.

It can be seen that it is not a good policy for the hider to move in a straight line using
his maximal velocity. (In this case the searcher can capture him for sure by following an
easily calculated trajectory.) A policy that does seem to be good for the hider is to move
randomly for a certain period of time and only then to move in a straight line using his
maximal velocity. This observation seems also true for the infiltration problem (with
no safe zone) described in Section 5.3.

Remark 9.8 Thomas and Washburn (1991) considered ‘dynamic search games’ in
which the hider starts moving at time 0 from a location (cell) known to the both players,

This problem was presented to S. Gal by Rufus Isaacs; problems with a similar flavor were considered
by Koopman (1946) and Danskin (1968). See also Remark 9.7.

where R is the distance of the searcher’s starting point from the origin. The searcher
can achieve the probability of capture appearing in (9.38) at each of the time instants

picking a random angle where has a uniform probability distribution
and is independent of moving in a straight line a distance
from the point O, and moving back to the point O.

Remark 9.7 If
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while the searcher starts after a time delay known to both players. The distinguishing
feature of this game is that for each t the hider knows the trajectory of the searcher until
time t. A classic example of this type is the still unsolved Flaming Datum problem in
which a helicopter attempts to detect or destroy a submarine that has recently revealed
its position by torpedoing a ship (see also Danskin, 1968; Koopman, 1946, and 1980).
Search/Evasion games involving a submarine (the evader), which tries to penetrate
through a line guarded by the searcher, were considered by Agin (1967), Arnold (1962),
Beltrami (1963), Houdebine (1963), Langford (1973), Lindsey (1968), and Pavillon
(1963).

162 BOOK I. SEARCH GAMES



Book II

RENDEZVOUS SEARCH



This page intentionally left blank 



Chapter 10

Introduction to Rendezvous
Search

The rendezvous search problem asks how two unit speed searchers, randomly placed in
a known search region Q, can minimize the time required to meet. Although originally
posed informally by the first author (Alpern, 1976) about twenty five years ago, this
problem has started to receive attention only in the last dozen years. The rendezvous
search literature began with the pioneering article of Anderson and Weber (1990) on
discrete location rendezvous and the general continuous formalization of Alpern (1995).
Since then, the field has been expanding rapidly and has even received attention outside
the academic literature (Mathews, 1995; Alpern, 1998). Book II (Rendezvous Theory)
attempts to cover in detail most of the major developments in this area, expanding on
the more concise treatment given in the survey article (Alpern, 2002a) on which it is
based.

The rendezvous problem converts the min-max objectives of the search games con-
sidered in Book I into a min-min objective in which two players both wish to meet in
least expected time. This problem may arise in practice when two people shopping in
a supermarket (Alpern, 1998) realize that they have become separated, when parent
penguins return with food for their offspring in a large colony, when two partners have
to meet up after separately parachuting from a plane, or when rescuers search for a lost
hiker who wants to be found. The rendezvous that is sought need not be purely spatial
in nature, however. Two people with walkie-talkies containing a choice of several fre-
quencies (channels) may be viewed as rendezvousing on channel space. In this sense
the SETI (Search for Extraterrestrial Intelligence) program may be seen as a rendezvous
problem in which strategies involve searching with radio telescopes and choosing both
where to search and what frequency to search on.

In some ways rendezvous problems resemble their zero-sum search game prede-
cessors: the dynamics of motion (unit bounds on the speeds), the objective function
(the meeting, or capture time, T), the known domain of search Q. However, there are
several new aspects that are present in rendezvous search theory that did not arise in
the earlier search games. In zero-sum search games the possibility of communication
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or joint planning between the players could be safely ignored. However, in the case of
rendezvous we must first distinguish two very different versions, depending on whether
or not the players can meet in advance of play (before getting separated) to agree on the
strategies each will adopt if rendezvous proves necessary. If they can meet in advance,
then the optimization problem will allow them to choose distinct strategies (e.g., the wait
for mommy strategy pair where one agrees to wait while the other carries out an opti-
mal exhaustive search). This version is called the asymmetric (or player-asymmetric)
rendezvous problem, and the associated least expected meeting time is called the asym-
metric rendezvous value, denoted On the other hand, players may find themselves
facing the rendezvous problem without having established a joint strategy. In this case
the question we ask is what strategy should we advise the players to adopt, knowing
that we have to give them both the same advice. For example, we may know that there
are two hikers in a forest who need to meet (say, one has water, and the other food), and
that they both have radios, but we don’t know their names. So we cannot broadcast to
them individual, distinct, instructions (“John do this, Jane do that”). Or we may have
to write our advice in a handbook carried by all hikers. These cases are known as the
symmetric (or player-symmetric) rendezvous problem, and the (generally larger) least
expected meeting time is called the symmetric rendezvous value, denoted We note
that in this version of the problem, the strategy that we advise both players may have
to be a mixed strategy, involving independent randomization for the two players. (For
example, if the search space is the line and the players are initially pointed in the same
direction, then if they follow the same pure strategy, they will always remain the same
distance apart and will never meet.)

Another essential ingredient in rendezvous problems is the amount of spatial sym-
metry possessed by the search space Q and more important, the degree to which the
players can “see through” this symmetry by common notions such as direction. For
example, player-asymmetric rendezvousers on a circle might adopt the strategy of one
going clockwise while the other goes counterclockwise. However, this is only possible
only if they have a common notion of clockwise. Once this problem is appreciated, it
can often be dealt with on an ad hoc basis by appropriately defining the set of feasible
rendezvous strategies. However, the formalities required for a rigorous treatment of
spatial symmetry problem involve the specification of a group G of symmetries of Q,
as spelled out in detail in Chapter 12. The reader may ask why the spatial symmetry
problem did not arise in Book I. The answer is that in a zero-sum setting, if either player
randomizes his motion with respect to available symmetry (e.g., equiprobably choosing
between clockwise and counterclockwise in the circle), then it is the same as if both
players do so. Consequently if the spatially symmetric form of the game (e.g., uniform
initial location or equiprobable direction on the circle) is advantageous to either player,
this is the form that will be played. In addition, it is usual to start the search games
of Book I with a common knowledge initial location for the searcher. In this case the
players might lack only a common sense of direction.

Much of the basic rendezvous theory involves the determination or estimation of the
rendezvous values or These numbers represent the least expected
time for two players to meet given that they are placed randomly in a known search
space Q and can choose distinct or common strategies among those that are
feasible, given their common spatial notion summarized by the group G. Upper bounds



on the rendezvous values and can be obtained by evaluating the expected meeting
times for specific rendezvous strategies. Lower bounds require more subtle methods.
In addition, rendezvous theory seeks to determine the (optimal) strategies that lead to
these minimal meeting times.

To give the reader something a little bit more specific than the above generalities,
we present the two motivating problems originally proposed in (Alpern, 1976). Both
of these are player-symmetric problems, in that a common strategy for both players is
required.

Problem 10.1 (Astronaut Problem) Two astronauts land on a spherical body that is
much larger than the detection radius (within which they can see each other). The body
does not have a fixed orientation in space, nor does it have an axis of rotation, so that no
common notion of position or direction is available to the astronauts for coordination.
Given unit walking speeds for both astronauts, how should they move about so as to
minimize the expected meeting time T (before they come within the detection radius)?

Problem 10.2 (Telephone Problem) In each of two rooms, there are n telephones
randomly strewn about. They are connected in a pairwise fashion by n wires. At discrete
times t = 0,1,2,... players in each room pick up a phone and say “hello.” They wish
to minimize the time T when they first pick up paired phones and can communicate.
What common randomization procedure should they adopt for choosing the order in
which they pick up the phones? (This problem is equivalent to spatial rendezvous on a
complete graph.)

It is interesting to note that while much progress has been made in rendezvous
search over the last decade, these two problems that motivated the field are largely
unsolved. Almost nothing has been done on the Astronaut Problem (although some
work on planar rendezvous is discussed in Chapter 18). The Telephone Problem has
received considerable attention, particularly in the pioneering paper of Anderson and
Weber (1990), who obtained good upper bounds on the symmetric rendezvous value.

10.1 Relation to Coordination Games

Any work on rendezvous must mention the famous political science monograph,
The Strategy of Conflict (Schelling, 1960), which initiated the discussion of coordi-
nation problems. Schelling considered the one-shot problem faced by two players who
wish to meet at a common location. Each player makes a single choice of location, and
if they fail to meet at the first try, then there are no more chances. He emphasized the
importance of certain “focal points” that may stand out as prime candidates to players
with similar cultural backgrounds.

As a practical matter, no one can deny the significance of common backgrounds and
cultural conventions in aiding coordination, even of players who have never met before.
Our treatment of rendezvous problems differs greatly, however, from that of Schelling.
First, we normally (except for Chapter 13) will exclude the possibility of using focal
points by assuming that the players have no common labeling of locations, usually due to
symmetry properties of the search region Q. Second, our model is dynamic: early failure
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does not end the game because the players are allowed to search until they find each
other. For these reasons we do not view Schelling’s problems as true rendezvous search
problems, although they certainly lie within the larger area of coordination games.
In fact, we will briefly discuss certain dynamic extensions of Schelling’s problem in
Section 15.3.1.

10.2 Real-Life Rendezvous

The rendezvous problem has been faced by animals and people in the real world long
before it was analyzed by mathematicians. In this section we review some examples
that show the diversity of rendezvous situations. These actual problems may serve as a
basis for models that try to incorporate various realistic features. We begin with animal
players and go on to human players.

1. Regrouping of animal kin groups Animals that have fixed nests avoid the ren-
dezvous problem. However, for migratory or undersea animals, such focal points
may be lacking. Families or herds that need to periodically regroup under such
circumstances may need advanced rendezvous strategies.

Antarctic penguins live in very large colonies, and parents need to find their
offspring when returning with fish (to regurgitate) for them. In these colonies
there are no fixed family nesting sites, and after fishing parents apparently return
to the last place they saw their offspring to begin their search. The spatial elements
of this search have not received much attention, but the vocal recognition aspect
has been studied by Aubin and Jouventin (1998) to determine the what we call
the detection radius:

The king penguin, Aptenodytes patagonicus, breeds without a nest in colonies of several
thousand birds. To be fed, the chick must recognize the parents . . . chicks can discriminate
between the parental call and calls from other adults at a greater distance [than acoustic
calculations would suggest]. This capacity termed . . . “cocktail party effect” . . . enhances
the chick’s ability to find its parents. . . . In the genus aptenodytes, the difficulty is enhanced
because there is no nest . . . few if any landmarks to help in finding their partner.

Search for a mate For most animal populations, mating is more a problem of
female choice and male competition than of spatial rendezvous. However, for
some species with a low spatial density, simply finding a suitable (same species,
opposite sex) partner is a nontrivial rendezvous problem. For example, R. Lutz
and J. Voight are quoted in The Times (Issue 65084) that for the Octopus “the
chances to mate are so rare . . . that they cannot risk missing any. . . . Living in
the depths of the ocean, they seldom come across members of their own species
and their lives are short.”

Griffiths and Tiwari (1995) describe a specific case of this type of problem
played out by two birds, when a Spix’s macaw (Cyanopsitta spixii) from a captive
breeding program was released in the vicinity of the last observed wild bird of this
species. The sex of the wild bird was determined to be male by DNA testing of a
feather found by researchers, and a macaw of the opposite sex was released. The
two birds faced a rendezvous problem on a line, “woodlands that are associated

2.
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with the seasonal watercourses characteristic of the right bank of the Rio São
Francisco” (Juniper and Yamashita, 1990). We do not know, however, whether
males and females of this species have distinct strategies for searching for a mate,
so the player-symmetric form is probably the appropriate model. By the way, the
birds did rendezvous successfully. They were later seen flying together!

Regrouping of hikers or ships at sea When focal points are available but the
group is moving, both the ordering and current location ofa set of focal points must
be known. Before radio, ships traveling in convoy along a land mass would signal
when the next in an agreed sequence of identifiable shore points was operative.
When traveling along a new land path, sometimes even the sequence of focal
points cannot be agreed in advance. According to McNab (1994, p. 96), when
going in a widely spaced single file patrol during the Gulf War, his SAS unit
established and communicated the new rendezvous point (ERV) in the following
manner.

Every half hour or so we fixed a new ERV (emergency rendezvous), a point on the ground
where we could regroup if we had a contact and had to withdraw swiftly. If we came to a
prominent feature like a pile of old burial ruins, the lead man would indicate it as the new
ERV by a circular motion of the hand and this would be passed down the patrol.

Following a query on rendezvous at sea to a website specializing in nautical
history, the following two useful email replies were obtained.

Back in the late-16th, early-17th century, they [separated convoys] didn’t always meet
up again until they reached a pre-arranged rendezvous island, and sometimes not even
then. From limited reading of early Dutch voyages to the Indies it seems that it was not
very unusual for ships to become separated from their fleets in stormy weather at night,
particularly if they suffered rigging damage and their progress became unpredictable to
those who did not know of the damage. The jacht(s) of the fleet would search for the
missing vessel while the rest of the fleet continued – the jachts were faster and could sail
greater distance and catch up to the fleet (Burningham, 1999).

My period of specialization is the American Civil War. Vessels that needed to ren-
dezvous did so by pre-arrangement. Both sides in that war sometimes set up a pattern
of rendezvous points which were to be followed in order, if not visited on a particular
date. The practice was flawed because unforeseen delay or detention of one of the two
vessels intended to meet might force a warship to wait for weeks at a particular location
for a planned rendezvous. This time could have been more prosperously spent hunting
prizes or running from pursuers. For instance the commerce raider CSS ALABAMA was
to meet her collier AGRIPPINA in a series of ports for periodic refueling, but after the
first several meetings AGRIPPINA’s merchant captain took off for more interesting parts,
leaving ALABAMA to her own devices for fuel. The accounts do not say what was done to
LOOK for the other vessel at each place but rather seem to have consisted of steaming or
sailing about the point of rendezvous for a while until the other vessel showed up (Foster,
1999).

3.

Rendezvous search is also practiced by robots that are programed with strategies to
help them meet. See the book of Dudek and Jenkin (2000) or the article of Roy and
Dudek (2001) for more on robot rendezvous.



10.3 Rendezvous Strategies

Much of Book II is about rendezvous strategies. Often the strategies that are optimal in
a given context are quite complicated and very specific to the context. However, certain
types of generic strategies seem to occur very often and in a wide variety of contexts.
We mention some of these here.

To help put the reader in the frame ofmind of a rendezvouser, we quote the following
exchange between Millie and Densher in the film version of Henry James’ “Wings of
the Dove,” which recounts their mental states in their supposed earlier failed attempt to
meet without prior planning (symmetric rendezvous) in Venice.

“I thought I might see you wandering around.”
“I thought the same.”
“Where did you go?”
“San Marco, the Rialto, all the places we went together.”
“Maybe we just kept missing each other, me turning the corner just as you went the
other way.”
“I thought that, so I stayed in the same place and waited for hours.”
“Andwe still didn’t see each other.”

This passage illustrates a number of useful concepts. First, there is the real-life use
of focal points (San Marco, the Rialto) based on cultural conventions and shared history.
This is a strategic aspect ofrendezvous, mentioned earlier in our discussion of Schelling,
that we will normally exclude by making the search space spatially symmetric. However,
in the case where the two players have a common labeling ofpoints in the search space Q,
a FOCAL strategy is feasible. This is simply an agreement to meet at an agreed point.
That is, to go directly to that point and then wait there. While such strategies are in
general not optimal, we may consider the problem of determining the FOCAL strategy
with least expected meeting time (see Section 11.3).

The important idea of “staying in the same place” (we call this “waiting”) arises in
the above passage. In a player-asymmetric situation, a natural strategy pair to consider
is what we call the Wait For Mommy (WFM) strategy, where one player (Child) stays
still while the other (Mommy) carries out an exhaustive search, usually designed to
find a stationary object in least expected time. (Apparently our name for this strategy
is not so far-fetched, as it has been observed that the mother kangaroo teaches its baby
that if they are separated it should find the nearest bush and stay under it.) Sometimes
if the Child knows that Mommy is doing such a search and may reach him at certain
known times, he can decrease the expected meeting time by moving so as to meet an
approaching Mommy (if lucky), while returning to his start at all the known times. This
type of generic strategy is called Modified Wait For Mommy (MWFM).

It turns out that WFM is rarely optimal. In fact it is never optimal when the search
space Q is the line (see Theorem 16.13 and Corollary 16.14). On the circle, it is indeed
optimal when the players’ initial placements are uniform and they have no common
knowledge of direction (Corollary 14.11). But it is not optimal for any other initial
placement (Theorem 14.12). However, it seems that the MWFM strategy is reasonably
often optimal, as for the line when the initial distance D between the players is known
(see Definition 16.8 and Theorem 16.9). In this case the optimal strategy is for Mommy
to go a distance D in a random direction followed by 2D in the opposite direction,
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while Child first goes D/ 2 and back to start in a random direction; then D and back in
a random direction. The optimal strategy on a two dimensional grid found can also be
viewed as a MWFM strategy (Theorem 18.1). Another variation on the WFM strategy is
the Alternating Wait For Mommy (AWFM) strategy, in which the two players alternate
between searching out possible initial locations of their partner and coming back to
their own initial locations. This type of strategy is considered for rendezvous on an
n-dimensional grid in Section 18.2. (The strategy described above, for two players on
the line with known initial distance D can also be viewed as an AWFM.)

Neither the WFM or MWFM strategies are feasible in the player-symmetric version
of rendezvous search because they require an agreed allocation of the players to the two
roles (Mommy, Child). However, if there is a constant time required for an exhaustive
search of the search region Q, then the players may independently adopt the following
Randomized Wait For Mommy (RWFM) strategy: In each period of length choose to
exhaustively search with probability p and to wait for the whole period with probability
1 – p. Note that if they make opposite choices in some period, then they have adopted the
WFM and will definitely meet in that period. The probability of meeting when they both
choose to search will depend on the search region Q. This type of symmetric strategy
is used several times. See, for example, the strategy used in the proof of Theorem 12.4
(part 2), and the Anderson–Weber strategies for rendezvous on the complete graph

as described in Section 15.3.

10.4 Outline of Book II

We now give a brief chapter by chapter outline of Book II, Rendezvous Search Theory.
Chapter 11 gives the reader an easy introduction to rendezvous by analyzing three

specific easy versions of the rendezvous search problem. The problems that have been
chosen require no general theory. They serve to indicate the main branches of rendezvous
search and to motivate the subsequent material.

Chapters 12 through 15 (Part 3) are concerned with rendezvous on a compact search
region. Chapter 12 is the most theoretical and formal. It gives a precise definition
of the rendezvous values for a compact space and explains their dependence on the
given group of symmetries of Q that describes the common information available to
the players. Some of this material can be skimmed in the first reading and returned
to when required. Chapter 13 considers rendezvous on a labeled network. In most of
Book II, it is assumed that the players have no common labeling system for the points
of the search region Q. So for example FOCAL strategies are not feasible. However,
in Chapter 13 only, we take the alternative assumption of a common labeling of points.
The search region Q is taken to be a continuous or discrete network. The special cases
where Q is the interval or the circle are considered. The analysis of rendezvous on
the circle is continued in Chapter 14, without the assumption of a common labeling of
points. The assumptions of a common notion of direction and a lack of such a notion are
both considered. Chapter 15 considers some developments deriving from the Telephone
Problem 10.2 mentioned earlier. This is the problem of discrete time rendezvous on a
combinatorial graph. The players move to adjacent vertices in each time period, and are
considered to meet when they first occupy the same vertex. It differs from the network
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analysis of the previous chapter in that here the players may transpose their positions
on adjacent vertices without a meeting taking place.

The rendezvous problems mentioned above take place on a compact search region,
and usually begin with an independent placement of the two players. The next three
chapters (Part 4, Chapters 16 to 18) are concerned with rendezvous on an unbounded
region. In these, the initial placement is usually arranged by specifying the distribution
of the vector difference between the two players. Chapter 16 considers the asymmet-
ric rendezvous problem on the line, denoted the ARPL. The play begins with Nature
choosing the initial distance d between the players from a known distribution F. The
asymmetric rendezvous value is determined (along with optimal strategies) for
various classes of distributions F. The connection between rendezvous on the line and
the related Double Linear Search Problem is exploited in this chapter. In Chapter 16,
rendezvous search on the line is considered under various other assumptions such as
unequal speeds for the two players, player symmetry (requiring a common mixed strat-
egy for the players), bounded resources (each player has a bound on the total distance
he can travel), an unknown distribution F of the initial distance between the players,
several players who must meet, and finally, the case where the initial location of Player I
is known to Player II. Chapter 18 considers rendezvous in higher dimensions; most of
the analysis is for the plane, but dimensions above 2 are also analyzed.



Chapter 11

Elementary Results and
Examples

In this chapter we present some simple examples of rendezvous search that can be
analyzed in a fairly self-contained manner. These examples will serve to introduce the
reader to a sample of the variety of problems that will be considered in the rest of the
book. In some cases we present here only the most preliminary results on a problem,
indicating where further and stronger results can be found in subsequent chapters. The
approach taken here will be more expository and less formal than in the later chapters.

11.1    Symmetric Rendezvous on the Line

Suppose that two players are placed on a road, a river, or more generally any search
region that may reasonably be modeled as a line. Suppose further tthat they have not
been able, prior to this placement, to discuss the roles that each will take in trying to find
each other. This is what we call the player-symmetric, or simply symmetric, version
of the rendezvous problem. We assume that each has a maximum speed of 1. What
common advice should we give to the players to enable them to meet in least expected
time? This advice might be in a book (maybe this one!), or maybe we would broadcast
it over the radio (if we thought both would listen). In this problem neither player knows
the direction to the other. In general (see Section 17.2), the initial distance between
the players may be a random variable that depends on the method by which the players
arrived on the line (or by which they became separated and lost). However, even the case
we now consider, where the initial distance is a known constant D, presents significant
difficulties. For simplicity, we will take D = 2. This distance might be known, for
example, by the strength of some nondirectional signal that each might send to the
other. However, in this setting we must assume that such a signal is not able to carry any
information about direction, location, or planned strategy. So we may start the problem
by placing one of the players (say, I) at the origin facing right, and the other (II) at either
+2 or –2 and facing either left or right, with all four cases equiprobable.
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The simplest symmetric rendezvous strategy for this problem is probably to go at
unit speed 1 unit forward in a random direction and then back to your starting point, in
each time period of length 2. With probability 1/4 (corresponding to both players going
towards the other) the players meet 1 time unit into the period; otherwise they repeat the
problem at the beginning of the next period. Hence the expected time taken to meet
satisfies the equation so that One problem with
this strategy is that when the players are back at their starting points at, say, time t = 2
(assuming they did not meet at time t = 1), they have information that they neglect to
use – namely, that their partner is more likely to be in the direction not searched.

A better strategy for this problem is called the 1F2B strategy, which has period
three: At the beginning of each period, choose a random direction to call forward
(F). Go distance 1 in this direction and then distance 2 in the opposite backwards (B)
direction. Repeat, with independent randomization, at the beginning of each period. All
motion is carried out at speed 1. If both players adopt this strategy, how long will it take
on average to meet?

To compute the average meeting time of the strategy 1F2B (adopted by both players),
we first make the following observation: If they have not already met, the distance
between the players at the beginning of period k (time t = 3(k – 1)) is the same as their
initial distance of 2. This is true by assumption for period k = 1. Assume it is true at the
beginning of period k and that they do not meet during this period. The assumption that
they do not meet during period k implies that they did not choose opposite directions as
forward for this period because in that case they would either meet at time 3(k – 1) + 1
(if their forward directions pointed toward each other) or time 3 (k – 1) + 3 (if their
forward directions pointed away from each other). Consequently, they must have chosen
the same direction as forward. This means they were moving in parallel throughout the
period, at the same speed. So the distance between them remained constant, and is still
2 at the end of the period. This establishes the observation made at the beginning of
the paragraph. Consequently, if they have not met at the end of the first period, their
problem at time t = 3 is the same as their original problem. Thus if they both use this
strategy, they meet at time t = 1 with probability 1/4, at t = 3 with probability 1/4,
and they start the same problem again at time t = 3 with probability 1/2. Hence the
expected meeting time for the strategy 1F2B satisfies the equation

with solution

Since the symmetric rendezvous value for this problem is defined as the minimum
of the expected meeting time, over all symmetric strategies, we have the following.

Theorem 11.1 The symmetric rendezvous value for the problem where the players
are initially placed two units apart on a line and have no common notion of location or
direction on the line, satisfies

The upper bound of 5 can be improved and extended to known distributions (see
Section 17.2) of initial distance or to unknown initial distance (see Section 17.4), and
the problem can be analyzed for more than two players (see Section 17.5) and in
higher dimensions (see Section 18.2.2). However, it is remarkable that even for the
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one-dimensional case where the initial distance is a known constant, determining the
exact value of is still an open problem.

11.2 Multi-Rendezvous on the Circle

Some of the more interesting rendezvous problems consider the scenario where more
than two players have to meet at a common location. Perhaps several players are needed
to perform some task, such as putting up a tent or playing a baseball game. One such
problem considers the optimal rendezvous strategy for n players who are initially placed
evenly around a circle and wish to minimize the time taken for all of them to meet. For
multi-player problems of this type, information exchange is usually allowed between
players who meet.

To make this problem more precise, we place the n players i = 1, . . . , n consecu-
tively at unit length arcs apart along a circle of circumference n. We specify that they
do not have a common labeling of points on the circle or even a common notion of
direction (e.g., clockwise). (The way in which these assumptions can be formalized
using symmetry groups is described in Chapter 12.)

We consider the following strategy proposed in Alpern (2002a). It is to be used by
each of the n players, since we are considering the player-symmetric version. When
the game begins, each player i generates a random number uniformly from the unit
interval and also sets his “first meeting time” Subsequently will be set to the
first time when Player i meets another player. When play begins at time t = 0, each
player follows a random walk with step length 1/2 until he meets another player. Since
all motion is taken at speed 1, each step has time period 1/2 as well. When two players i
and j meet, they follow these rules, depending on the relative size of their first meeting
times and just prior to this meeting:

When it is a first meeting for both players, they both reverse their
directions and reset both their q’s to

Player i continues in the same direction he was going, and player j sticks with
i and vanishes as a player, so that no future meetings with j are considered.

The player with the larger value of q follows the other one forever and
vanishes as a player.

Let be the random variable describing the earliest time that a meeting occurs
between two players. There will be at least two players who meet at time and maybe
more. Of these, one will have the smallest value of q. Suppose this player k’s first
meeting is with player k + 1 at location A at time We will reset to the
minimum So according to the rules given above these two players will proceed
uninterrupted to the antipodal point of A, and furthermore all other players will stick
to one of these two. Thus all the players will be together at at time since
n/2 is the time taken to travel from A to The expected value of is calculated
as follows. We have except in the two cases that all the players initially go
clockwise or they all go counterclockwise. Consequently, its expected value satisfies
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the equation

So the expected meeting time is Clearly,
(n – 1)/2 is a lower bound on the n-player meeting time. If we denote by the
least expected time for all n of the original n players to meet at a single point following
the same (thus the s for symmetric) mixed strategy, we obtain the following estimate
showing that is asymptotic to n/2.

Theorem 11.2 The n-player symmetric rendezvous value for the circle is
asymptotic to n/2. More precisely, it satisfies the inequality

Most work on multiplayer rendezvous has been carried out in the context of the line.
See Section 17.5.

11.3 FOCAL Strategies on the Line

When the players have a common labeling of all points in the search space, they can
both go to an agreed point, waiting there until the other player arrives. Such a strategy is
called a FOCAL strategy, as it resembles Schelling’s notion of a focal point. In general,
FOCAL strategies (see Section 10.3) are not optimal in the sense of yielding a meeting in
least expected time. (An exception to this is when both players are uniformly distributed
on a labeled circle, in which case every FOCAL strategy is optimal ; see Theorem 13.11.)

When no FOCAL strategy is optimal, we may still seek the best focal strategy. Note
that in general, simply picking a common meeting point may not fully specify a strategy,
since there may be more than one way to reach it (multiple geodesics). However, for
the case where the search space Q is a line, a strategy that goes directly to a given point
and waits there is well defined.

Suppose that n players are placed on the labeled line independently according to a
known joint distribution, not necessarily independently. As stated above, every FOCAL
strategy for the line is completely specified by giving a point on the line. For such a
strategy, the meeting time is the initial distance of the furthest of the players from

Let be the random variable denoting the location of the player with the
minimum starting point and the location with the maximal starting point. Set

We now demonstrate an observation of S. Gal, that the optimal value for is the median
of the random variable Y. The meeting time T (for all players to be together at will
be given by

or
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Consequently,

Suppose we move to where is a very small number. In the top
alternative, we have and in the bottom alternative we have
Therefore the expected change in expected meeting time is given by

This formula neglects the small probability that a small change in changes the case. If
the second factor (involving probabilities) is not zero, then we can make an improvement
(reduction) in the expected meeting time by an appropriate sign for Consequently,
a necessary condition for the optimality of is that

That is, must be a median of the distribution of the random variable Y.
Considering the analogous situation on the plane, we do not have any closed form

solution for the optimal meeting point. This may be an interesting problem to investi-
gate. Suppose, however, that the n players are independently distributed according to
a common distribution whose support is a compact set K. Then in the asymptotic case
of a large number n of players, we should choose a focal point that minimizes the
maximum distance to a point in K.

A related problem arises in a worst case analysis of focal rendezvous strategies.
Suppose a minimizer (rendezvous coordinator) picks a focal point while a
maximizing Nature picks the n locations as initial locations for
n rendezvousers. The payoff is given by

which represents the time required for n player rendezvous assuming the focal strategy
is used by all the players. This zero sum game has been analyzed for a general metric

space K for n = 1 by Gross (1964), who called the value the “rendezvous value of the
metric space K.” It is interesting that n = 1 is the only value of n for which we would
not use the word rendezvous.

11.4 Rendezvous in Two Cells

We now consider the only solved case (n = 2) of the “telephone problem” described in
the previous chapter (Problem 10.2). This is equivalent to the problem of two players
who are independently and equiprobably placed in two cells at time t = 0. At each
time t = 1 , 2 , . . . , they may either stay (S) or move to the other cell (M). They are
said to meet at the first time T, when they occupy the same cell. Their common aim
is to minimize the expected value of the meeting time T. For this case (n = 2) the
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‘dark’ version (where the position of the other is not revealed after each move) is the
same as the ‘searchlight’ version (where it is revealed), since each player in the dark
version can infer the other’s location from the fact that they have not met. In the same
year two pairs of authors respectively analyzed the dark (Anderson and Weber, 1990)
and searchlight (Crawford and Haller, 1990) versions of this problem, for a general
number n of locations. Their analyses of the case n = 2 coincided in establishing that
the random strategy, of repeatedly choosing S or M equiprobably and independently of
previous choices, is optimal.

Theorem 11.3 If two players are randomly placed into two cells, as described above,
the optimal player-symmetric strategy for minimizing the expected meeting time is the
random strategy.

Proof. Associated with any strategy there will be a sequence of conditional meeting
probabilities

from which the expected meeting time may be calculated as

Note that this sum is decreasing in each Since the random strategy ensures a meeting
with conditional probability in each period, it suffices to show that for any
mixed strategy simultaneously adopted by both players, we have

To see this, suppose that T > i, which means the players have not met by time i. In the
case n = 2 (but not for higher n), this means that both players have followed exactly
the same sequence of moving and staying (they have always made the same choice).
Consequently, the mixed strategy that they are both adopting will give them the same
probability q of moving on step i + 1, and hence they will meet at time i + 1 with
probability 2q(1 – q) (if one moves and one stays), which is no more than 1/2.

An analysis of the dark case for general n, stated in terms of rendezvous on a complete
graph, is given in Section 15.3. The searchlight version is discussed in Section 15.3.1,
under the heading of “revealed actions.” In the searchlight version for n = 3, play-
ers who are initially at distinct locations should go on their next turn to the unique
unoccupied location, where they will surely meet. For n = 5, they should each go to
an unoccupied location. If they are still unlucky, they should go on their next move to
the unique location that has never been occupied. This strategy turns out to be slightly
better than using the random strategy on the two locations initially occupied.

for every



Part Three

Rendezvous Search on
Compact Spaces



This page intentionally left blank 



Chapter 12

Rendezvous Values of a
Compact Symmetric Region

This chapter gives a formal presentation of the rendezvous search problem on compact
regions. The assumption that Q is compact will restrict the application of these results
to the spaces considered in Chapters 13,14, and 15, so those and the present chapter are
together called Part 3. In particular, we define the rendezvous value R(Q) of a compact
(closed and bounded) search region Q. The value gives the least expected time for two
unit speed players to meet after a random (usually uniform) placement in the search
region Q. They are said to meet when they come within a given detection radius r,
which is usually zero for the one-dimensional search regions we will mainly study. In
any case we always assume that r is such that Q can be searched exhaustively in finite
time. We will show how the rendezvous value depends on a number of factors, some of
which we will have to add to the notation R (Q):

1.

2.

Player symmetry Are the players distinguishable in the sense that they can
agree in advance on distinct strategies (the player-asymmetric version), or are
they indistinguishable players (player-symmetric version) who must be told to
adopt the same (possibly mixed) strategy?

Spatial symmetry of search region If the search region is symmetric (e.g., the
circle), how much of this symmetry can the players ‘see through’ (e.g., common
notion of direction)?

Player symmetry will be discussed in Section 12.1, where we show that there are
in fact two rendezvous problems. The role of spatial symmetry will be explained in
Sections 12.2 and 12.3, where we give both an intuitive discussion and a formalization
based on symmetry groups. Sections 12.4 and 12.5 define the asymmetric and symmetric
rendezvous values and establish the existence of these values. Further properties of these
values are derived in Section 12.6. The material in this chapter is based mainly on the
first author’s original article (Alpern, 1995).



12.1 Player Symmetry

There are two distinct rendezvous values (and problems), depending on whether the two
players can distinguish between themselves or equivalently whether they are allowed to
use different strategies. If they can agree before the problem begins that, for example,
Player I will stay still while Player II exhaustively searches Q, then we call this the
asymmetric rendezvous problem. In this version any pair of pure strategies may be
employed by the players. The least expected meeting time in this case is called the
asymmetric rendezvous value, and denoted In the case that the players cannot
distinguish between themselves (and must use the same mixed strategy), the problem
they face (called the symmetric rendezvous problem) is more difficult, and has a generally
larger least expected meeting time called the symmetric rendezvous value. The
symmetry referred to here is player symmetry (which in other contexts is sometimes
called anonymity). Clearly since players in the asymmetric problem have a
larger set of feasible strategies available, and the objective function (meeting time) is
the same. In general we usually find that is strictly less than (An exception is
noted in Section 13.3.1 for the case that Q is an interval.)

For example, if there is a book carried by all hikers that says what to do if you
become separated from your hiking partner, the writer of that part of the book would
be dealing with a symmetric rendezvous problem: all hikers who read this book would
follow the same strategy (though with independent randomizations if the advice given
is mixed). On the other hand, if two paratroopers have a discussion in their plane before
jumping regarding how they will meet up after landing, this is clearly an asymmetric
problem. They can agree on distinct strategies. Sometimes there are symmetry break-
ing conventions that in practice convert apparently harder symmetric problems to the
easier asymmetric one: The parent searches while the child waits; after a telephone
disconnection, the original caller calls again. In problems of many-player rendezvous
(not considered until Chapter 17) a pair of players may initially be indistinguishable
(constrained to follow the same strategy), but when they meet, they can agree to adopt
distinct strategies.

12.2 Spatial Symmetry

An intuitive example of the role played by spatial (geometric) symmetries in the search
region was given in Alpern (1995). Although that example applies to the plane, which is
not compact, we will nevertheless repeat it here to motivate the discussion. The problem
concerns two players in the plane who wish to meet.

The first version of the problem has a flowing straight-line river (or canal), over
which there is a single bridge. These features allow the two players to “see through”
some of the symmetry of the plane (in fact, all of it). Each player can determine his
position exactly with respect to a map common to both. For example, we may take the
river as the y-axis, the bridge as the origin and assume that the river flows in the positive
direction along the y-axis. This makes the search region “fully labeled” (as defined and
described in Chapter 13), and the players can use strategies that depend on their initial
positions.
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The second version removes the bridge. This makes the problem slightly harder.
Each player can now observe his initial distance from the river and the side of the river
that he is on (the side from which the river flows to the right or to the left). A player’s
strategy could depend on this information.

The third version stops the river from flowing. Now each player knows only a single
parameter – his initial distance from the river.

The fourth version removes the river. Players in this situation can still see through
some symmetry of the plane in the sense that they presumably have a common sense of
the clockwise direction (or the notion of “up”). In the asymmetric player version, for
example, they could adopt distinct clockwise and counterclockwise spirals.

The fifth version puts the planar search region into Earth orbit, so that the players
no longer have a common notion of “up.” Assuming that they may land on this plane
from either direction, they no longer have a common notion of clockwise.

How can we model these five versions of the same rendezvous problem (or
10 problems, if we consider both possible assumptions regarding player symmetry)?
The answer, in this problem as well as more generally, lies in specifying a particu-
lar group of symmetries that the players cannot “see through.” In the first problem
there are no symmetries preventing the players from knowing their exact positions.
The symmetry group (set of all symmetries) describing this situation is the trivial one
consisting of just the identity transformation. In the second problem the group G of
symmetries that describes the players’ uncertainty is just the real line R, which acts
on the plane as translations in the direction of the positive direction of the river. If
we view the canal as the y-axis with the bridge as the origin, each player knows his
x-coordinate. His information space is in general the quotient group Q/G, and in
this case where the / indicates the equivalence classes of the set on the left of
the / via the action of the group of symmetries on the right of the /. (Readers unfamiliar
with these group theoretic notions need not worry: only very elementary notions of
symmetry will be needed in this book, and geometric language will always be used in
the first instance, with group notions added parenthetically.) In the third problem the
players know their own distance to the river, the y-axis. (The relevant symmetry
group additionally includes the 180° rotation, and the players’ information set Q/G is
now the positive real axis In the fourth problem the symmetries they
cannot see through consist of the group of all translations, rotations, and reflections.
The information set is a singleton, meaning they have no initial information about their
position. This will always be the case when the symmetry group, as in this case, is
transitive. (The symmetry group G is called transitive if given any two initial posi-
tions, there is a symmetry transformation in the group that takes the first position into
the second.) In the rest of this chapter we will mainly be concerned with rendezvous
problems where the symmetry group is transitive, and for this reason a strategy will
not depend on the player’s initial position. The fifth problem adds the reflection sym-
metries that interchange up and down, and removes the players’ abilities to have a
common sense of clockwise. This symmetry group is also transitive, but the set of
strategies available to the players is smaller than in the fourth problem, which is also
transitive.

In the rest of the book, we will always specify the relevant symmetry group for the
rendezvous problem. In most cases we will not have to explicitly describe the given
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group of symmetries: often this will be implicit in our description of the search space
(as in the terms labeled circle, directed circle, or undirected circle, in the next section).

12.3 An Example: The Circle

To illustrate the differing versions of the rendezvous problem that may be obtained by
specifying whether there is player symmetry and by the given symmetry group, we con-
sider the unit circumference circle C. We will consider three different versions of the
problem: (i) the players have a common labeling of all points, (ii) the players have a com-
mon notion of clockwise direction but have no common labeling of points, and (iii) the
players have no common notion of direction or labeling of points. These versions will be
formalized by specifying three symmetry groups, which we call The first
group consists of simply the identity transformation and consequently corresponds
to the case where the circle is completely labeled: the players have a common notion of
location. This is the case of no spatial symmetry. The symmetry group consists of
all rotations of the circle and corresponds to the case of a “directed circle”: the players
have no common notion of location but do have a common notion of, say, clockwise.
The symmetry group is the group of all symmetries of the circle: the rotations and
reflections. This corresponds to an undirected circle where the players have no common
notion of either location or direction. Note that both and act transitively on the
circle, so that in these versions of rendezvous search the player strategies do not depend
on their initial positions. In other words, the player acquires no new information upon
“landing” on the search region, and so may choose his strategy earlier.

We now consider four strategies for rendezvous on the circle and consider for which
situations (player symmetries and groups ) they are feasible.
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FOCAL This is the strategy where the two players go directly at maximum speed 1
to a common (focal) point. This is feasible only for the case corresponding to group

where the players have a common labeling of points. Since the two players do
the same thing, it is feasible for either the player-symmetric or player-asymmetric
problems.

OP-DIR (opposite directions) Player I goes clockwise at unit speed while player II
goes counterclockwise at unit speed. This strategy pair is feasible only for the player-
asymmetric version. Since it requires a common notion of direction, it is feasible
only for the labeled or directed circle, groups or

WFM (Wait For Mommy) On the circle, this strategy pair has one player (the child)
staying still, while the other (Mommy) goes around in a fixed direction at unit speed.
This strategy pair is feasible for the asymmetric player versions corresponding to
any of the symmetry groups. However, if there is a common notion of direction, the
child could improve the meeting time by moving in the opposite direction to that of
the mother.

CO-HA-TO (coin half tour) This is the strategy that is optimal for both players in the
search game on the circle (see Section 4.3). Each player goes half way around
the circle at speed 1 in a random direction in each time period of length 1/2. All
the random choices are made independently. Of the four rendezvous strategies listed



here, it is the only one that is a mixed strategy: it requires the use of (independent)
randomization.

The following strategies were suggested in Alpern (1995) as possibly optimal for the
six versions ofrendezvous on the circle corresponding to player symmetry or asymmetry
and the three spatial symmetry groups for the circle. The initial placement of the players
is assumed to be uniform.

Rendezvous strategies for the labeled, directed, and undirected circle

At this point, the above strategies are presented simply to aid the reader’s intuition
regarding the six versions of circle rendezvous and to illustrate the significance of the
given symmetry group and the presence or absence of player symmetry. In four of the
above six cases, the stated strategy has indeed found to be optimal: Theorem 13.10
(FOCAL), Theorem 14.7 (both cases of OP-DIR), and Corollary 14.11 (WFM). It is
still an open question whether CO-HA-TO is indeed optimal in the two remaining cases.

12.4 The Asymmetric Rendezvous Value

We are now ready to give a formal definition for the asymmetric and symmet-
ric rendezvous values of a compact metric space (Q, d). These values depend, of
course, on the given detection radius r and the given group of symmetries G. By a
symmetry (or isomorphism) of (Q, d), we mean a bijection of Q that preserves distance
(d(g(x), g(y)) = d(x, y) for all x, y in Q). Examples of symmetries are rotations and
reflections of a circle.

We will only give a formal definition for the rendezvous values for the important
case where the given symmetry group G acts transitively on the search region Q, which
essentially means that all points in Q look alike, and the players receive no additional
information when they are placed in Q at the start of the problem. Consequently a (pure)
strategy cannot depend on a player’s initial position. With this in mind, we define the
rendezvous strategy space S to consist of all continuous paths s with maximum speed 1
that start at a given point
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Note that in Book II we represent pure strategies by lowercase letters, in keeping with
the existing literature on rendezvous (rather than the upper case used to denote pure
search or hiding strategies in Book I.) The actual path followed by a player will depend
both on his chosen strategy s and his initial placement in terms of both position and
orientation in Q. The latter will be specified by the symmetry g chosen from the group
G, and the resulting path is g(s(t)),             For example, suppose that Q is the circle



C = [0, 1) mod 1, and s is the “forward” half-speed strategy s ( t ) = t/2. Then
if the randomly chosen symmetry is g(x) = 1/4 – x, the actual position of the player
at time t is 1 /4 – t/2. It is important to keep in mind this distinction between strategies
and paths.

The meeting time T corresponding to two paths (with arbitrary starting points)
is given by

and when G is the full group of all symmetries of the circle it becomes
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where is the given detection radius, usually taken to be zero in one-dimensional
problems. If the players choose strategies then their expected meeting time

is given by

where v denotes the invariant measure on the group G, which is simply the uniform
distribution for all the spaces considered in this book. In some cases (see the general
analysis for the circle in Chapter 13) we can let the initial placement of the players be
an additional parameter of the problem. The reason that we need let G act on only one
of the paths is that for g, To make the abstract
definition in equation (12.2) more concrete, observe that for (the rotation group
on the circle) we have

corresponding to the random direction in that we need to face Player II.
In any case, once we have defined the expected meeting time the asymmetric

rendezvous value can be defined simply as

A strategy pair with will be called optimal. For compact
search regions optimal asymmetric strategy pairs always exist. That is, the inf in
definition (13.1) can always be replaced by a min.

Theorem 12.1 For compact search spaces, there exists an optimal asymmetric
rendezvous strategy pair.



Proof. Endow the strategy space with the topology of uniform convergence on
compact sets, under which it is compact. The expected meeting timefunction
is lower semicontinuous in each variable. (This can be shown by a similar argument
used for search games in Book I.) Hence a minimum is achieved. The minimum is finite
because of our assumption that the search space can be fully searched in a finite time.
Consequently, the strategy pair where one player searches exhaustively while the other
remains stationary ensures that the meeting time is not more than the time required to
search the whole space.

12.5 The Symmetric Rendezvous Value

The definition of the symmetric rendezvous value is a bit more complicated, as mixed
strategies may be required. As noted earlier, the symmetric problem models situations
where a single plan (strategy) must be broadcast to two lost individuals whose names
are not known. So one cannot say “Jim stay still and Jack search.” In player-symmetric
rendezvous problems, a pure strategy may not be very advisable. For example, if both
players are lost on an undirected circle and facing in the same direction, then if they
adopt the same pure strategy, they will never meet. So mixed strategies are in gen-
eral needed. (An exception to this is the case of labeled networks as discussed in the
next chapter. For example, the optimality of the FOCAL strategy on a labeled circle.)
With this in mind, let denote the set of all mixed search strategies, that is, the
set of all Borel probability measures on We then define the symmetric rendezvous
value by
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If then is called an optimal symmetric strategy. As for asymmetric
rendezvous, optimal strategies always exist. In general, a symmetric strategy is a pair
of identical strategies.

Theorem 12.2 Optimal symmetric strategies exist for the symmetric rendezvous prob-
lem on any compact search region. That is, there is always an with

Proof. Endow the mixed strategy space with the so called weak* topology
that is defined by the sequential convergence for every
pure strategy This makes the space compact. The expected meeting time
map is lower semicontinuous on      and consequently has a minimum. This
minimum is finite because the expected meeting time for the “randomized wait for
mommy” strategy (RWFM) is finite. This is the strategy where a player equiprobably
searches the entire space in minimum time a, or waits for a time a and repeats this
randomization independently in each period of length a.

or

if we allow to act on mixed strategies.



12.6 Properties of Optimal Strategies and
Rendezvous Values

We consider the rendezvous search problem to be a team problem, because the two
rendezvousers have identical utility functions. However, we can also look at the problem
as a noncooperative game between the two rendezvousers. In this context it is obvious
that an optimal asymmetric strategy pair is a Nash equilibrium: If either player could
gain from a unilateral deviation from an optimal pair, then both would gain, and the
new pair would contradict the assumed optimality of the original pair. It is less obvious
but still true that the pair corresponding to an optimal symmetric strategy is
also a Nash equilibrium.

Theorem 12.3 If a mixed strategy is an optimal strategy for the symmetric rendezvous
problem, then the pair is a Nash equilibrium of the associated game.

Proof. Suppose on the contrary that there is a mixed strategy such that

By an arbitrarily small modification of (for example, changing it to if the
players have not met by some large time) we may assume that is finite. For any
probability p, let s (p) denote the mixed strategy that plays with probability p and
with probability 1 – p. Then the expected meeting time when both players adopt s(p)
is given by

Let Observe that and

and hence

by assumption.

Consequently, for sufficiently small positive values of p, we have
or This contradicts the assumed optimality of the
strategy

It is often useful to have upper bounds on the expected time to rendezvous (that is,
on the rendezvous values). If a search region Q can be exhaustively searched in finite
time, then regardless of player symmetry or spatial symmetry, the rendezvous value is
finite. More precisely, we have the following upper bounds on the rendezvous values.

Theorem 12.4 Let denote the length of a minimal Chinese Postman Tour (one that
comes within the detection distance of any point) on the search space Q. Then for any
transitive group G of symmetries of Q we have
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Proof. The first inequality is easily obtained by the WFM (Wait for Mommy)
strategy in which one player remains stationary while the other follows a minimal
Chinese Postman Tour equiprobably in either direction. If the stationary player is found
at time T going in one direction, then he will be found no later than when going
in the other direction. To obtain the second inequality, suppose both players adopt the
randomized WFM strategy (RWFM) in which they choose their roles equiprobably
(between the two in WFM above) in each time period of length They make their
choices independently of previous choices. Let denote the expected meeting time
for this symmetric strategy. In the first time period they will choose distinct roles with
probability 1/2. In this case the same argument as for the first inequality shows that they
will meet in expected time from the beginning of the period. With probability 1/2,
they will chose identical roles. Ignoring the possibility that they meet while both are
searching, we find that at worst they begin again at time and thus meet in expected
time Consequently, we have that

Of course, a better estimate can be obtained in those cases where we can determine
the probability that there is a meeting when both players choose to search rather than
stay still.
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Chapter 13

Rendezvous on Labeled
Networks

As indicated in the previous chapter, most of the difficulties faced by the rendezvousers
arise from their lack of a common labeling of location or a common notion of direction.
These problems of spatial symmetry of the search region Q were formalized through the
notion of a given group G of symmetries of Q. In this chapter, we will be concerned with
the case where the two players have a common labeling of all points of Q, or equivalently,
where the given group of symmetries of Q consists simply of the identity transformation.
This does not preclude the possibility that Q may possess some symmetry, only that the
players can “see through” any such symmetries via their labelings. For example, in the
previous section we briefly considered the problem of rendezvous on a labeled circle
(with the identity symmetry group called This is the only chapter where we will
make this assumption. In most of Book II we will in fact assume that G is transitive.

13.1 Networks and H-Networks

We will assume that our commonly labeled search region (Q, {identity}) is one-
dimensional and refer to it as a labeled network. The problem of rendezvous on a
labeled network may appear at first sight trivial, since (in either the asymmetric or sym-
metric contexts) the players can simply agree to meet at an agreed point. An example
of such a strategy is the FOCAL strategy described in Section 12.3, where both players
go directly to an agreed (focal) point. However, while such a simple strategy ensures
a fairly quick meeting and may be a good “satisfising” solution, it is not in general
optimal with respect to our least expected time criterion. This can be seen even in the
case of the circle (for the player-asymmetric case only), where the FOCAL strategy
has expected meeting time 1/3 while the OP-DIR strategy (clockwise–anticlockwise)
reduces this time to 1/4. It turns out that for the labeled circle the FOCAL strategy
is indeed optimal for the player-symmetric rendezvous problem (see Theorem 13.10).
The optimization of FOCAL strategies on the line was discussed among the examples
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Chapter 11. The reader should note that because the symmetry group implicit in labeled
network rendezvous (that consists of just the trivial identity symmetry) is not transitive,
the general analysis given in the previous chapter does not apply directly, although
most of the ideas are still applicable. In particular, a player’s strategy is now allowed to
depend on his initial location.

In this chapter we will assume that the compact search domain Q is a network.
As in Chapter 3 of Book I, this means that Q consists of a finite number of closed
intervals (arcs) that meet only at their ends (nodes). We will obtain results on optimal
rendezvous for general networks and sharper results for the particular cases of the
interval and the circle. This chapter is based mainly on the first author’s article (Alpern,
2002b), which is in turn a generalization of Howard’s work on the interval and circle
(Howard, 1999). Following those papers, we will consider in some cases a discrete
approximation to the original network, which we call an H-network, in which the
players move in discrete time among discrete locations (called nodes) placed along
the original network.

For a labeled network, the players know their location at time zero and can base
their subsequent motion on this knowledge. Consequently, a strategy f is a collection
of paths such that and The
interpretation of such a strategy is that the player’s location at time t will be if his
initial random placement puts him at x. If Players I and II choose respective strategies
f and g and their starting points are x and y, their meeting time is given by

Their expected meeting time will be given by

assuming their initial distributions over Q are and and the strategies f and g have
sufficient regularity (say piecewise continuous in terms of the initial locations x and y
in Q) so that is integrable.

The minimal expected meeting time for the asymmetric problem is given
by the asymmetric rendezvous value

The corresponding symmetric rendezvous value is defined by the optimization
problem

Note that in the symmetric problem we assume a common initial distribution for the
two players. Unlike the general player-symmetric problem discussed in the previous
chapter, in the fully labeled case we do not need to consider mixed strategies. We will
give an argument for this in the discrete context of the next section, where it is easier
to understand.
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In order to analyze rendezvous on labeled networks, we will use a discrete model
developed in Alpern (2002b) based on Howard (1999). Given a network Q, add to each
of the original arcs an odd number of additional nodes (of degree two). This ensures
that the (integer) graph length of each of the original arcs is even and consequently that
all circuits of the resulting discrete graph (based on the original nodes and additional
nodes) have even length. By the length of a path in a graph, we mean the number of arcs
it contains. We call a node “even” if it is an original node of Q or a new node that is an
even distance from an original node. Call the remaining nodes “odd.” The reason for
such a discretization is that if both players start (at the same time zero) at even nodes
and move to a distinct adjacent node in each period (resting is excluded), then they
cannot pass each other along an original arc without concurrently occupying a common
node, and ending the game. Note that if the lengths of the original continuous network
are all rational, then we can make the discrete length of each modified arc proportional
to its original continuous length. This discrete model of rendezvous is very different
from that discussed in Chapter 15 (Rendezvous on Graphs), and for this reason we will
call the discretizations discussed here networks, rather than graphs, and use the terms
nodes and arcs rather than vertices and edges.

13.2 Rendezvous on H-Networks

Let Q denote a graph with nodes Assume that all circuits have even length, so that
by Theorem 2.4 of (Harary, 1972) we can partition the nodes into such
that every path in Q alternates between and Such a (bipartite) graph, together
with two given probability distributions p and q on the even node set       will be called
an H-network. For example, the interval H-network I[n] introduced in Howard (1999)
has with consecutive integers
representing adjacent nodes in the network. The circle H-network Circ[n] introduced
in Alpern (2002b) is obtained from I[n] by adding an additional node labeled 2n – 1
and making it adjacent to the nodes 0 and 2(n – 1).

The asymmetric rendezvous problem for an H-network (Q, p, q)
begins at time t = 0 with Players I and II placed independently according to the
positive distributions p, q on the even nodes In each period they must move to a
distinct adjacent node. They are not allowed to remain at the same node in consecu-
tive periods. This ensures that both players will always be on nodes of the same parity
(even nodes at even integer times, odd nodes at odd integer times). Even if we allowed
players to stay still, it would not be in their interest to do so. A strategy s for a player
on an H-network specifies for each even node a path in the network Q
that starts at node i. This means that and are distinct adjacent nodes
of the network, and Let denote the set of all strategies. Players adopting
H-network strategies f and g and initially placed at even nodes i, j will meet at time

This discrete version has a positive probability that the game ends immediately, since
for each even node i we have regardless of the chosen strategies. For strategy
pairs (f, g) with all the        finite, the longest the game can continue is denoted by

The expected meeting time for two players adopting the strategy
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pair (f, g) is the discrete analog of (13.1) given by

As usual, any strategy pair minimizing (13.2) will be called optimal. The mini-
mum expected time will be called the asymmetric rendezvous value of the H-network
(Q, p, q) and denoted

The symmetric rendezvous problem is the same except that we assume
that q = p (players are placed with a common distribution) and that g = f (the players
must adopt a common strategy). There is no need for mixed strategies in the present
context. A strategy f minimizing will be called an optimal symmetric strategy,
and the corresponding value of will be called the symmetric rendezvous value of
(Q, p) and denoted Obviously, we have that For
the symmetric problem we shall adopt the same notations as defined above, except that
a single variable is used; for example, denotes the last time that players using f
may meet.

With reference to a given strategy s under consideration, it will be useful to think
of the paths as paths of a collection of agents of a player, with one agent starting
at each even node. The formula (13.2) for can be thought of as the expected time
for an agent of the Player I to meet an agent of Player II. In the symmetric version of
the problem, is the expected time for the agents starting at various nodes to meet
each other (simply one agent for each node). Since in this view agents at distinct nodes
may use distinct strategies, the problem can be viewed as a player-asymmetric one, and
consequently pure strategies will suffice.

For H-networks the set of strategies, or strategy pairs (for the asymmetric problem)
is rather large. To simplify the search for optimal strategies, it is useful to restrict the
search to a smaller set of strategies. With this in mind, we define geodesic and sticky
strategies. The first notion applies to a pair of strategies, while the second applies to an
individual strategy.

Definition 13.1 A pair ( f, g ) is called a geodesic strategy if  for any even node
and any consecutive times and when agent   first meets some distinct agents
(at time and (at time of the other player, we have

where denotes the graph distance (length of shortest path) in the network Q. The
corresponding condition must also hold for g.

Roughly speaking, a pair (f, g) is geodesic if all agents of a player follow time-
minimizing paths between times when they meet distinct agents of the other player.
For example, on the interval H-network an agent in a geodesic strategy pair can change
direction only when he meets an agent of the other player.

Theorem 13.2 Consider the asymmetric rendezvous problem on an H-network
(Q , p, q) with p, q > 0. A necessary condition for a strategy pair ( f , g) to be opti-
mal is that it is geodesic. A necessary condition for a strategy f to be optimal for the
symmetric rendezvous problem is that ( f,  f ) is geodesic.
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Proof. Suppose that (f, g) is an optimal strategy for the asymmetric problem that is
not geodesic. Then, in the notation of the definition of geodesic, we have the following
negation of (13.3):

Observe that the integers on both sides of this inequality must have the same parity, since
they are both lengths of paths from node to node Consequently,
we have the stronger inequality

We now modify the path on the time interval as follows. First we ensure that
the new path is at B at time Next observe that since

must be at an adjacent node to B at time Now we also let be at at
time sending it back to Bat time  Notice that, in the modified strategy,
has been reduced by at least 1, while no meeting times have increased. Since and
are assumed to be positive, it follows from (13.2) that the expected meeting time has
been reduced, which is impossible if (f, g) was optimal. This establishes the result for
the asymmetric problem. In the case that g = f (the symmetric problem), we follow
the modification of f with an identical modification of g, which gives a new symmetric
pair leading to the same contradiction.

Another important property, called sticky, applies to an individual strategy (rather
than a pair).

Definition 13.3 A strategy is sticky if for any time t, and any i,

implies for

Roughly speaking, a strategy of a player is sticky if whenever two agents of that
player meet, they stay together forever. Sticky strategies have the following optimality
property with respect to the symmetric problem.

Theorem 13.4 For any symmetric rendezvous problem on an H-network
(Q , p), there exists an optimal symmetric strategy that is sticky.

Proof. We view the symmetric problem for two rendezvousers as an asymmetric
one for n rendezvousers starting at the n distinct even nodes. They have the common
aim of minimizing the expected time taken for pairs of them to meet. Given any optimal
strategy we show how to successively modify it to make it
sticky, while keeping the expected meeting times the same.

We begin by making sure that condition (13.4) holds for t = 1. To do this, suppose
that some set of agents (denoting agents by their starting points) meet at time
t = 1. Observe that since f is optimal, the expected time for to meet the agents in

must be the same for all So pick any and set for
This does not change the expected meeting time. Doing the same modification for all
groups of agents who meet at time t = 1, we can assume that the resulting strategy,
that we again call f, satisfies the condition (13.4) for t = 1. Next suppose that two
agents meet for the first time at t = 2, and denote  by the set of all agents at that



196 BOOK II. RENDEZVOUS SEARCH

meeting node. Now by the modification done for t = 1, we know that no agent in the
set has met any agent in the set Consequently, all agents in have the same
expected additional time (from t = 2) to meet those in So set all the paths
(from time t = 2 onward) of agents equal to a particular one of these paths. This does
not change the expected meeting time. Continuing in this fashion, we obtain a sticky
strategy with the same expected meeting time as the original (optimal) one. (A more
detailed proof can be found in Alpern, 2002b.)

Note that the optimality of sticky strategies holds only for the symmetric rendezvous
problem. An H-network is given in (Alpern, 2002b) for which the asymmetric ren-
dezvous problem has a unique solution in strategies that are not sticky. It is drawn in
Figure 13.1. The even nodes are named and indicated by
small disks, while the odd nodes are indicated only by short lines. The initial distribu-
tion given there is not equiprobable, although it is the same for both players. Most of
the probability is equally on A, B, and C, a small amount is on D, and a much smaller
amount is on E.

The analysis given (Alpern, 2002b) shows that, up to labeling the two players, the
unique optimal asymmetric strategy pair is as follows (the underscore represents the
unlabeled intervening odd node, which it is simpler not to label):

In particular, note that but So the
unique optimal symmetric strategy is not sticky. This shows that Theorem 13.4 cannot
be extended to the asymmetric setting.

We give a brief heuristic argument to justify the claimed solution of (13.5). If all the
probability is equal (1/3 each) on A, B, and C, then we know that the unique optimal



asymmetric strategy is OP-DIR, in which f goes clockwise and g goes counterclock-
wise. Since nearly all the probability is on these nodes, the optimal strategy must still
begin this way. By time t = 2, the agents starting at these three main nodes will have
all met each other. The agent (of either player) starting at D has no choice but to go to
C. At time t = 2, agent and are both at node C. However, agent has met
all the major agents of the other player, and and consequently should
go along the line toward E to meet the remaining agent However, agent cannot
afford to do this, as he has not yet met the two major agents and Thus and

must part after meeting at t = 2 at node C. A more rigorous presentation of this
argument can be found in Alpern (2002b).

13.3 The Interval H-Network

The rendezvous problem on a finite interval was proposed by the first author. However
no progress was made on this problem until the elegant work of Howard (1999), who
solved the problem for certain initial distributions by modeling it by what we now call
an H-network. We recall the definition of this H-network I [ n , p, q] from the previous
section as with consecutive
integers adjacent in the network. Here p and q denote the given initial distribution of
the players over the set of even nodes While Howard considered the case of a com-
mon initial distribution, we will follow the more general presentation given by Alpern
(2002b) that allows distinct distributions p and q, as well as a given increasing (cost)
function of the meeting time T. The very recent work of Chester and Tutuncu (2001),
not discussed here, solves the version of this problem where the initial distribution is
centrally symmetric and decreasing as one moves away from the center.

Howard called the agents starting at the terminal nodes 0 and 2(n – 1) the left and
right sweepers, respectively, and observed that each of these should go directly towards
the opposite end, together with any other agents they meet. With this in mind, we may
graph strategies for I [n, p, q] in a triangle, using the horizontal coordinate for position
and the vertical coordinate for time. The left and right sweeper will always meet at time
n – 1 and location n – 1, which is the apex of the triangle. In Figure 13.2 we graph three
strategies for the interval H-network: Howard’s right strategy     the central strategy,
and the greedy strategy. All these are sticky strategies and so may be unambiguously
graphed as in the figure, with a single line style. In the right strategy each agent moves
to the right until he meets the right sweeper. In the central strategy, each agent moves to
the center node n – 1 and then (since remaining still is not allowed) oscillates between
that node and n. In the greedy strategy, agents maximize the number of meetings at
time t = 1, and then those at time t = 3, and so on. This family is well defined when
n is a power of in the figure).

Most of the analysis of this section will concentrate on conditions for which the
“right strategy” is optimal. We conjecture that the central strategy pair is optimal, for
the asymmetric or symmetric problem, when the distributions p and q are single peaked
at the center, and that the greedy strategy is optimal with respect to any concave cost
function c when the initial distributions are nearly uniform.
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13.3.1 Nondecreasing initial distributions

Howard (1999) showed that the “right strategy” pair is optimal for both the asym-
metric and symmetric problems, when the initial distributions on the interval H-network
are nondecreasing. More generally, the pair has the following optimality property.

Theorem 13.5 For any n, the “right” strategy pair is uniquely optimal for the
asymmetric (and hence the symmetric) interval rendezvous problem I[n, p, q], as long
as both p and q are strictly increasing. This result holds more generally for any cost
function c of the meeting time, as long as c is nondecreasing and convex.

Proof. We shall outline the proof given by Alpern (2002b), which incorporates an
earlier technique of Howard (1999). We will not prove the last part of the statement,
which can be found in the original article. We will show that any strategy pair (f, g)
that is not equal to cannot be optimal. We do this by slightly modifying one of
the strategies (say g) so that

In fact, we only modify g for a single coordinate (the agent starting at location 2k),
where k is the smallest integer such that either or is not equal to By relabeling
Players I and II, if necessary, we may assume that it is that is not equal to This
means that all agents of both players who start at any of the nodes 0, 2 , . . . , 2(k – 1)
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follow the “right strategy” of going to the right until they meet the right sweeper, but that
the agent of Player II who starts at node 2k does not move in that way. In Figure 13.3,
k = 3, and subscripts are raised for clarity. The six paths all agree
with the paths given by the “right strategy”     but the path (the thick line starting at
node is not equal to (It will not matter at all whether or not is equal
to Since (in the figure,     does not follow the “right strategy,” it makes some
left moves before reaching the right sweeper. Let A  denote the location where the last
of these “left moves” is begun.

To obtain the modified strategy we change after the point A so that it
moves to the right from A until it meets the right sweeper at D after m such moves. The
modification for Figure 13.3 is shown in Figure 13.4, where the modified path
after A is drawn in a thick grey line.

Note that the only path of f that meets later than does is the one we call
in the figure), that goes through C. In general, meets at B, m time units

later than when meets it at C. On the other hand, meets each of the m rightmost
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paths (the three paths in Figure 13.4) at least one time unit earlier than
the original path meets them, on the line AD rather than the line CB. That is,

for i = n – m + 1, . . . , n. All other meeting times are at
least as large for the strategy pair (f, g) as for Consequently,

because p is strictly increasing and

From this result we can deduce the following earlier result of Howard (1999).

Corollary 13.6 For any n, the Howard strategy pair is optimal for the asymmetric
(and hence the symmetric) rendezvous problem I[n, p, q] on the interval H-network,
as long as both p and q are nondecreasing.

Proof. Suppose, on the contrary, that for some nondecreasing distributions p, q,
and some strategy pair (f, g) we have

The formula (13.2) shows that the expected meeting time is continuous in p and q
for fixed strategies. Consequently, for all and in sufficiently small neighborhoods
of p and q in the (n – 1) – simplex of probability distributions, we also have that

However, this contradicts the previous theorem, since a neighborhood of a nondecreas-
ing density contains strictly increasing densities.

Howard (1999) used the above result to obtain the following solution to the
continuous version of the problem.

Theorem 13.7 Let         p (x)) denote the asymmetric continuous rendezvous
problem on the unit interval [0, 1], in which each player is independently initially
placed according to a common nondecreasing density function p. An optimal strategy
pair is the following continuous version of  each agent moves at unit speed to the right
until meeting the right sweeper and then moves with him to the left at unit speed. The
associated rendezvous value is

where is the distribution function corresponding to the density p. Since the optimal
strategy pair is symmetric, it is also the solution to the symmetric rendezvous problem,
which consequently has the same minimal time. That is,
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Proof. We briefly outline the proof given by Howard. Suppose there were a strategy
pair for giving a lower expected rendezvous time than the continuous
version of     described above. The interval [0,1] can be scaled to [0, 2(n – 1)] and the
claimed better strategy could be approximated by a strategy that moves as in the discrete
problem. This discrete strategy in would do better than where is the
discrete version of the density p. However this is impossible by Corollary 13.6.

13.4 The Circle and the Circle H-Network

We now consider the rendezvous problem on a labeled circle, with the equiprobable
initial distribution. Note that, under our assumption of a common labeling, the players
can rendezvous at least as well on the circle as the interval because they could agree not
to traverse some common location. This would effectively convert the circle rendezvous
problem into one of rendezvous on the interval that results from “cutting” the circle.
We will show that for the symmetric problem the players can indeed do this cutting
without increasing their meeting time. On the other hand, for the asymmetric problem
the players can exploit the circle topology by going in opposite directions.

As with the case of the interval discussed above, we attack the problem of rendezvous
on a labeled circle by considering its discrete analog, the H-network Circ[n, p]. Recall
that this is the H-network with node set and even nodes

Nodes i and j are adjacent if (mod 2n). We
will call the direction from i to i + 1 “clockwise.” We will show that, while in the
asymmetric problem they can benefit from the additional transition from node 2n – 1 to
node 0, in the symmetric problem they can make such a cut without increasing expected
meeting times.

13.4.1 Symmetric rendezvous on the labeled circle

We now consider the player-symmetric rendezvous problem on the circle H-network
with the equiprobable initial distribution that gives probability 1/n to

each of the n even nodes of the network. Later in the section we will interpret our results
in the context of the continuous unit circle by letting n go to infinity.

First note that since the players could agree to avoid a common odd node, they can
effectively choose to rendezvous on an interval network, and consequently we have

The main result of this section is the demonstration that in the symmetric problem the
rendezvousers cannot do better on the circle than on the interval (so equality holds in
(13.7). We do this by showing that any sticky symmetric strategy pair for the circle can
be adapted (by relabeling of nodes) for use on the interval network. Consequently if
we apply this process to an optimal sticky strategy pair for the circle network, we can
enable rendezvousers on the interval network to meet in expected time
so that
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To illustrate the relabeling algorithm, consider the symmetric sticky strategy for
Circ[6, p] drawn in Figure 13.5. Note that location 2n – 1 = 2(6) – 1 = 11 is also
drawn as location – 1, with an identified line above each.

If we rotate this picture 4 units in the counterclockwise direction (leftwards, as
drawn), then we get a strategy that is valid for the interval H-network I, as pictured in
Figure 13.6. That is, the node originally numbered j is now numbered j – 4 (mod 12).

The following result shows that the such a relabeling (rotation) is always possible.

Theorem 13.8 For every symmetric sticky strategy on the circle H-network Circ[n],
there is an even circular relabeling of the locations so that the resulting strategy is
feasible for the interval network I[n].

Proof. We show how to relabel the nodes of Circ[n] so that a given sticky strat-
egy f is a valid strategy for the resulting interval H-network. For each integer time

let P(t) denote the partition of into sets (that will be intervals)
whose agents have met by time t. That is, even nodes i and j belong to the same ele-
ment of P(t) if and only if For the strategy pictured in Figure 13.5,
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we have = 5 and

In the penultimate partition (i.e., P(4) in the example) there are two intervals
of agents (identified with their even starting points) that move together, one group going
clockwise and one counterclockwise, to meet at time (equals 5 in the example). Let
b denote the most counterclockwise agent in the counterclockwise moving group, so
that b = 2 in the example. Relabel the locations so that b becomes the right end of
the interval, 2(n – 1) (in the example, 2 becomes 10). A more rigorous version of this
proof is given in Alpern (2002b). Note that (unlike the illustrated example) the resulting
strategy for the interval network may go past the right end node 2(n – 1) or the left end
node 0, but this is not a problem. If desired, the strategy could be further modified to
keep it within the original interval.

If we combine the above result for the equiprobable density with the existence
(Theorem 13.4) of an optimal symmetric strategy for that is sticky, we see
that

Theorem 13.9 For the equiprobable distribution giving probability 1/n to each even
node, we have

An optimal symmetric strategy for is to agree to avoid a common odd node
and then play any optimal strategy for the resulting interval network In par-
ticular, it is optimal for the players to go to a commonly agreed even node and then
oscillate.

The approach used here can also be used to reduce any symmetric rendezvous
problem on Circ[n, p], for an arbitrary p, to a family of problems on the interval.

By approximating the uniform distribution on a continuous circle by a large circle
H-network with an equiprobable distribution we obtain the following continuous analog
establishing the optimality of the FOCAL strategy for symmetric rendezvous on a
labeled circle.

Theorem 13.10 Suppose two players are placed independently and uniformly on the
unit circumference circle and allowed to move at unit speed. They cannot see each
other but have a common labeling of all the points on the circle. An optimal symmetric
rendezvous strategy is to move at unit speed, via the shorter of the two possible arcs, to
a commonly agreed location. The symmetric rendezvous value equals 1/3.
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13.4.2 Asymmetric rendezvous on the labeled circle

We now consider the player-asymmetric rendezvous problem on a labeled circle C (of
unit circumference) with both initial distributions uniform. Howard showed that the
OP-DIR strategy pair described in Section 12.3 is indeed optimal. Unlike the analysis
given above for the symmetric case, we will not use discrete methods of approximation
(H-networks) to obtain this result.

It will be useful to begin by considering a half-sighted variant of the rendezvous
problem that gives the players additional, though asymmetric, information. For this
version, we will assume that Player I can see Player II (this is equivalent to his simply
knowing the starting position of Player II), but Player II cannot see Player I. If Players
I and II start at respective positions x and y on the labeled circle, this means that I
knows x and y, while II knows only y. We are making this assumption here for the sake
of argument, but in fact such information may be realistic. For example, in the model
of Thomas and Hulme (1997) described later in Chapter 18, a helicopter is attempting
rendezvous with a lost hiker in a forest. The helicopter can travel faster, but the hiker can
spot the helicopter a long way off. In this sense the information of the hiker resembles
that of Player I, at least when the helicopter is not out of sight.

We now formalize the half-sighted version of the player-asymmetric rendezvous
problem on the circle. By the symmetry of the circle, this is equivalent to assuming that
II starts at a fixed position 0 on the circle, while I starts uniformly. Given any Player II
path (a path starting at 0 and known to I), a simple calculation gives the optimal
response for the agent of Player I starting at x. This will be a unit speed path with
no change of direction, that intercepts g at the earliest possible time

Since it is not possible for two such paths (starting at distinct x ’s) to meet, it follows that
either all the paths go in the same direction, or there is a single starting point

with the following property : from all starting points x on the clockwise arc from to
0, goes clockwise; on the similar arc clockwise from 0 to it goes counterclockwise;
from either direction is optimal. Note that in particular for the stationary (constant)
strategy is the antipodal point from 0; for the clockwise strategy g(t) = t
the optimal response is given by for all so that all the paths go
in the same direction (counterclockwise).

To calculate the expected rendezvous time observe that the intervals

form a nondecreasing family of arcs of length (Lebesgue measure for
with J(1/2) = C. Consequently, the optimal expected meeting time for

the strategy g is given by

It follows that every strategy g of the blind Player II is optimal for the half-sighted
game, and that the rendezvous value for this version of the problem is 1/4. Summarizing
these results for the half-sighted version, we have the following.
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Theorem 13.11 For the half-sighted rendezvous problem on the circle, every strategy
of the blind player is optimal, and the optimal responses of the sighted player go at unit
speed without any changes of direction from every starting point. Furthermore, there is
at most one point of the circle where the optimal response direction changes (and the
response is nonunique). The asymmetric rendezvous value for the half-sighted version
is 1/4.

The asymmetric rendezvous value for the half-sighted version on the circle cannot
be larger than the for the original version. Hence the asymmetric rendezvous value for
the circle cannot be less than 1/4. On the other hand the OP-DIR strategy pair for the
circle achieves an expected meeting time of 1/4, so OP-DIR must be optimal and 1/4
must be the asymmetric rendezvous value. So we obtain the following result originally
due to Howard (1999).

Corollary 13.12 The optimal asymmetric strategy for the fully labeled circle C (sym-
metry group consisting only of the identity transformation), with initial uniform
distributions for both players, is the OP-DIR strategy of Section 12.3: one player goes
clockwise and the other counterclockwise, both at maximum (unit) speed. Assuming the
circumference is 1, this gives an asymmetric rendezvous value of

Since OP-DIR does not require that the players have a common labeling of points
on the circle, it is also feasible (and hence optimal) for the common direction prob-
lem (with a smaller feasible set of strategies) discussed in the following chapter (see
Corollary 14.11).
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Chapter 14

Asymmetric Rendezvous on
an Unlabeled Circle

The simplest compact search region that is one dimensional (a network) and possesses
varied types of symmetry is the circle. The circle has also provided a very natural setting
for studying the rendezvous problem, and we present the results of that study in this
chapter.

In Section 12.3 six versions of circle rendezvous were presented, along with the
original strategies suggested for them by the first author. These versions correspond to
the player-asymmetric or player-symmetric settings on the one hand, and three types
of common information of the other: common labeling of points, common notion of
direction, and no common notion of direction. We refer to the second distinction by
calling the problem rendezvous on the labeled circle, the directed circle, and the undi-
rected circle. These can be formalized by the respective symmetry groups and

as discussed earlier in Section 12.3.
Much of the analysis of the previous chapter concerned rendezvous on a labeled

circle C (presented as the unit interval [0, 1] mod 1), corresponding to the symmetry
group consisting only of the identity transformation. That is, the players had a
common labeling of all points. For the uniform initial distribution, we derived both
the result of J. V. Howard (1999) that the optimal strategy for the asymmetric version
is for the players to go at maximum speed in opposite directions (OP-DIR), and the
result of the first author[12] that in the symmetric version an optimal strategy is for the
players to go to an agreed location and then stop (FOCAL). These results agreed with
the strategies suggested Section 12.3.

In this chapter we will be concerned with player-asymmetric rendezvous in the two
cases in that no common labeling of points on the circle is available. The first (and easier)
case we will analyze is where the players merely have a common notion of direction
around the circle (e.g., clockwise). This corresponds to the rotation group This
version can be reduced to a one-sided search problem in which a single player searches
for a stationary object hidden on the circle (see Section 14.1). We will then study the
more difficult case where even that information in not available, so the players do not
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even have a common notion of “up” (that would determine clockwise). This corresponds
formally to the case of the full symmetry group

We now present the formal model for circle rendezvous, that applies both to the
directed circle and the undirected circle. The initial positions of Players I and II are
determined by choosing an arc of length and placing them randomly
at opposite ends. In the common-direction version, both players are initially placed
with clockwise as forward, while in the no-common-direction version they are faced
independently and equiprobably in either direction. The initial distance x between the
players is chosen according to a continuous positive density function w(x) defined on
the interval [0, 1/2], with  Notethat in this notation, the uniform
initial distribution corresponds to the constant density function                Note that the
directed clockwise distance y from Player I to Player II has a density function given by
w(y)/2 and consequently a corresponding cumulative distribution function W given by

for

This formula assumes that the density function w is defined for x > 1 /2, and to do this
we set w(x) = w(1 – x), because of our assumption that II is equally likely to be in
either direction from I. Note that the cumulative distribution function of the directed
distance y satisfies the identity

We shall call a distribution with property (14.2) symmetric. As we shall see in this
chapter, the common-direction rendezvous problem can be reduced to a one-sided search
problem on a single circle, while the more difficult no-common-direction problem can
be reduced to a problem in which two searchers with common aims coordinate so as to
find a stationary object hidden on one of their respective circles.

The results of this chapter are taken from the first author’s article [9], except for
sections 14.2 and 14.1.1, which are new. The results of section 14.5 rely on Appendix B
on Alternating Search, which is based on the first author’s article with John Howard [23].
The first result in this area is due to Howard (1999), who considered the special case of
the uniform initial distribution (our Corollary 14.11).

14.1 One-Sided Search on the Circle

In this section we consider a one-sided search problem in which a single unit speed
searcher on the circle tries to find a stationary object that is hidden a clockwise dis-
tance y from him, where y is chosen according to a symmetric cumulative distribution
function W. We do not need to assume that W has a continuous density. While this
problem is not in itself a rendezvous problem, its analysis will prove useful for both the
common-direction and no-common-direction rendezvous problems on the circle.

A rendezvous search strategy for this problem is a continuous function s with max-
imum speed (Lipshitz constant) 1, satisfying s (0) = 0. It possesses a derivative almost
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everywhere and the total distance it has traveled by time r (its total variation) can be
calculated simply as

Since s has a maximum speed of 1, it follows that for all r. The
interpretation of a search strategy s is that the searcher’s position at time t is s(t) mod 1,
with positive corresponding to clockwise motion. Observe that every search strategy s
determines a distribution giving the probability that the object will be found by
time t using search path s. We say that a strategy dominates strategy s if
for all Note that in this case the expected capture time for     cannot be more than
that for s. We will say a strategy is dominating if it dominates every other strategy.

It is intuitively obvious that the searcher should make full use of his maximum
speed (here assumed to be 1) in that it is not optimal to move at a lower speed over a
nontrivial time interval. It is easy to formulate this observation in a rigorous manner.
The following Lemma will not be used until the next section.

Lemma 14.1 Consider the one-sided search problem on the circle for an object hidden
according to a known distribution W. Any search strategy s is dominated by a strategy

that moves at maximum speed. That is

Such a strategy will be called“fast.” In particular, there is always a fast optimal search
strategy.

Proof. Assuming that the original strategy s does not have this property, we simply
define a new strategy that traces out the same path as s but always moves at speed 1. It
will thus reach any point that s reaches and reach it no later than s did. The new path
is formally defined by the formula

This ensures that if s has reached a location y at a time r, by which time it has traveled
a total distance (so that [var s](r) = r 0), then will reach location y at the
earlier time

We devote the rest of this section to determining a sufficient condition on W such
that the Columbus strategy (or its reverse) dominates every other
strategy. (The strategy is the one that goes all around the circle in a clockwise direction
at maximum speed 1, with corresponding distribution
Clearly, if W is the uniform distribution corresponding to the constant density function

on [0, 1/2], the Columbus strategy is dominating. We will show moreover
that the Columbus strategy is dominating for all initial distributions corresponding to
densities on [0, 1 /2] that are close to constant. For a constant function the ratio of the
maximum to the minimum is 1. With this in mind we define a notion that measures how
close to constant a function is. (This term will always be applied to continuous functions
on closed intervals, so the existence of the extrema below will not be a problem.)
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Definition 14.2 A positive function is called slowly varying if the ratio of its maximum
to its minimum does not exceed 2.

We now derive conditions sufficient for the Columbus strategy to be a dominating
search strategy. We would like to show that if by time r a strategy goes a maximum
distance a clockwise and counterclockwise, it has less chance of finding the
object than if it had gone clockwise the whole time, or This
motivates our sufficient condition (14.5) for the Columbus strategy to be dominating.

Theorem 14.3 Suppose that for all x, r with the distribution W
satisfies the condition

Then the Columbus search strategy that goes all around the circle clockwise at speed 1,
is dominating. The associated distribution of detection is

Proof. Let s be any other search strategy. Consider any time when the
searcher’s distance from his starting point 0 is less than r. By changing the sign of s, if
necessary, we can assume that (This means that his net motion is clockwise.)
Let a and b denote, respectively, the maximum distances that the searcher has reached
counterclockwise and clockwise of his starting point 0. It follows from our assumption
on r that b < r. Since the region searched by time r is precisely an arc going from
the point a counterclockwise of 0 to the point b clockwise of 0, the probability that the
object has been found is given by

Furthermore, the total distance (variation) [var s](r) that the searcher has traveled by
time r satisfies

Since s has maximum speed 1, it follows that so that

By (14.9) and the hypothesis (14.5) we have the required domination inequality with
x = min(a, b):

This result does not require that the initial distribution W is given by a density
function w. However, in that case we can say more.

Corollary 14.4 If the distribution W is given by a continuous density function w/2 as
in (14.1), and w is either increasing on [0, 1 /2] or is slowly varying, then the Columbus
search strategy that goes all around the circle clockwise at speed 1, is dominating.
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In particular, this strategy is optimal in the sense that it minimizes the expected time to
find the object.

Proof. Let a, r be given, with Observe that

So to establish the condition (14.5) of the previous theorem we need to show that
(14.12) is positive. But since the ratio of the lengths of the intervals of integration in
(14.12) satisfies

the “slowly varying” hypothesis ensures that the expression (14.12) is non-negative.
Now assume that w is increasing on [0, 1/2]. If the same observation (that
would work even with ratio 1) shows that (14.12) is non-negative. If r > 1/2, the fact
that w(y) = w(1 – y) ensures that any interval (arc) on the circle, with length at least
a and not containing the point 0, has an w integral exceeding that of [0, a]. Since this
is true of the interval [r, r — 2a], we are done.

It is worth noting that if w (y) is decreasing on
and w (l/2) > w(0)/2, then w is slowly varying.

Of course, the Columbus strategy is not always optimal. For example, if the object
is hidden at a distance 0.1 clockwise, 0.1 counterclockwise, and 0.2 clockwise with
respective probabilities then for sufficiently small it is clear that an
optimal strategy goes 0.1 clockwise, 0.2 counterclockwise, and finally 0.3 clockwise.

14.2 Asymmetric Rendezvous on a Directed Circle

We now consider the asymmetric rendezvous problem on the circle C when the play-
ers have only a common notion of direction. This problem is variously referred to as
common-direction rendezvous on the circle, or rendezvous on a directed circle. For-
mally, this corresponds to the case where the given symmetry group in the sense of
Chapter 12 is the group of Section 12.3 consisting of all rotations. We assume that
the distribution of the initial clockwise distance y from I to II is a known function W.
We may assume that both players are initially faced in the clockwise direction and that
this is common knowledge. (Equivalently, they could both begin by choosing to face
themselves in this direction.)

A strategy for a searcher is a unit speed function f with f (0) = 0. The number
f ( t ) gives the net clockwise distance traveled by time t. If the players adopt strategies
f and g and the initial placement is y, then they will meet at time
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Consequently, their expected meeting time is given by

An important general principle in the theory of rendezvous search is that when the
two players have a common notion of direction, the asymmetric rendezvous problem
is equivalent to a one-sided search problem (as in the previous section) where a single
searcher seeks a stationary object hidden according to a known distribution. The maxi-
mum speed of the searcher is assumed to be twice the speed of the rendezvousers. The
consequence of this observation is typically that the two rendezvousers should always
move in opposite directions at their common maximum speed.

To illustrate this equivalence in the case of the directed circle, consider the search
problem of the previous section, with the maximum speed of the searcher set at 2 (rather
than 1, as assumed in that section). Suppose the searcher follows the strategy z given by

If the object is hidden a distance y clockwise of the starting point 0 of the searcher,
then the searcher following strategy z will find it at time

that is, the same as the time T (f, g; y) (14.13) taken for the rendezvousers to meet.
Thus, we have shown the following equivalence on the circle of the common direction
rendezvous problem and the one-sided speed 2 search problem.

Theorem 14.5 Consider the asymmetric rendezvous and search problems on a directed
circle, with the parameter y distributed in both cases according to a common distribu-
tion W. If the search strategy z is related to the rendezvous strategy pair (f, g) by the
equation z(t) = f(t) – g(t), then z is optimal for the speed 2 search problem if and
only if (f, g) is an optimal pair for the common-direction rendezvous problem.

Note that according to equation (14.15) the rendezvous pair (f, g) determines the
search strategy z uniquely but that for a given z there are in general many solutions (f, g).
However we know from Lemma 14.1 that there is always a “fast” optimal strategy for
the search problem, one that moves at maximum speed 2. For such a search strategy
however, f and g must have speed one in opposite directions. More precisely, we must
have and This analysis establishes the following.

Corollary 14.6 Consider the common-direction asymmetric rendezvous problem on the
circle with the initial clockwise distance from Player I to Player II having distribution W.
There is an optimal strategy pair of the form (f, – f), where 2 f is a “fast” optimal
search strategy for the one-sided speed 2 search problem for a stationary object whose
initial position is distributed according to W. Consequently, f is optimal for the unit
speed search problem.

The reason that we established the connection between the two problems
(rendezvous and search) is that in the previous section we obtained optimal solutions
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for the search problem under certain assumptions about W. We can now use the above
Corollary to reinterpret those results in terms of common-direction rendezvous.

Theorem 14.7 Consider the asymmetric rendezvous problem on the directed circle C
(assuming the two players have a common notion of direction). Suppose the initial
distance between the players is chosen according to a positive continuous density func-
tion w. If w is either increasing on [0, 1 /2] or is slowly varying, then an optimal strategy
is for the players is the OP-DIR strategy of moving at maximum (unit) speed in opposite
directions around the circle.

Proof. Let W be the symmetric cumulative distribution function corresponding to
the density w. According to Corollary 14.4, the optimal search strategy under these
assumptions is the Columbus strategy that goes around the circle clockwise at
unit speed. It follows from the last corollary that the pair is an
optimal strategy pair for the rendezvous problem.

In particular, since the uniform distribution is given by the slowly varying constant
density we have the following.

Corollary 14.8 For the asymmetric rendezvous problem on the circle, with a uniform
initial distribution and a common notion of direction (symmetry group       ), the OP-DIR
strategy pair is optimal.

This result was obtained by Howard (1999) as a consequence not of Theorem 14.7
but rather of Corollary 13.12, by the following argument: Since Corollary 13.12 shows
that OP-DIR is optimal for the fully labeled circle (symmetry group ), and it is
feasible for the problem with less (coarser) information considered here it must
be optimal for this problem too.

14.3 Asymmetric Rendezvous on
an Undirected Circle: Formalization

In this section, taken (in part directly) from Alpern (2000), we consider the asymmetric
rendezvous problem on a circle under the assumption that the players have no common
labeling of points, nor any common notion of direction along the circle. We shall
informally call this the rendezvous problem on an undirected circle. For those interested
in a more formal description, we say that the given symmetry group is the full symmetry
group (defined in Section 12.3) on the circle, the group generated by rotations and
inversions. The initial placement of the players is the same as given in the previous
section, except that after placement they are randomly faced in either direction.The
distribution W of the initial clockwise distance from Player I to Player II is known
to both.

In the previous section, we showed how asymmetric rendezvous on a directed circle
was equivalent to a problem where a single searcher seeks a single stationary object
on a single circle. The case of rendezvous on an undirected circle is more complicated.
We will show that it is equivalent to a problem in which two searchers on two distinct
circles seek an object placed equiprobably on one of the circles. The two searchers can
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move at speed 2, but they move alternately (one at a time). This class of alternating
search problems (based on the analysis of the first author and John Howard [23]) is
discussed in Appendix B on Alternating Search, and some of the general results stated
there will be used to solve the two-circle problem that arises in this section.

We now formalize the asymmetric rendezvous problem on an undirected circle. For
this problem, a strategy f for Player I is the same as in the previous section, except that
f (t) now measures the net distance that he has traveled by time t in the direction he was
initially facing. The meeting time corresponding to a strategy pair (f, g) and an initial
distance y depends crucially on how the two players are initially faced. There are four
cases to consider based on the four ways a pair of players may be faced. For example,
if initially both players happen to be faced in the clockwise direction, then as in the
previous section (14.13) they meet at the first time t when f (t) – g (t) = y (mod 1).
The three other cases will be considered below. We now do a simple calculation to
determine the probability that players adopting strategies f and g will have met
by time r, assuming the initial cumulative distribution W (that is fixed in the analysis).

Define new variables by

and consider the four extreme values,

If the two players start with I facing clockwise and II facing counterclockwise, then
they will have met by time r if either or where y is the
initial clockwise distance from I to II. In particular, they will definitely have met if

so we may restrict strategies f, g so that never
exceeds 1. In general, they will have met by time r in this case with probability

There are four possible ways of initially facing the players, and the meeting probabilities
in the other three are as follows:

and

Since the four ways of initially facing the players are equally probable, it follows that
the probability that players using rendezvous strategy (f, g) will have met by time r
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is given by where

The expected time required to meet for players using the strategy (f, g) is then given by

14.4 Alternating Search on Two Circles

We now show that the problem of finding a rendezvous strategy pair (f, g) that minimizes
(14.21) is equivalent to the problem mentioned earlier of alternating search on two
circles. To do this, we will adopt a change of variables and work instead with the
equivalent variables and given in (14.16). We say these variables are equivalent in
the sense that given in a suitable set Z, we may uniquely solve for f and
g in (14.16) by the formulae

As f and g range over all pairs of maximum speed one functions, z ranges over the set
Z of pairs with combined speeds limited by 2:

It is useful to think of and as the paths of two searchers for a single
stationary hidden object who are located on distinct copies of the circle C, and move
one at a time at speed 2. (As the periods of alternation become small, the limiting case
has them both moving subject to a combined maximum speed of 2.) In this interpretation

measures the net clockwise distance that searcher i has traveled (on circle i) by
time t. The object is hidden equiprobably on either circle a clockwise distance y from the
relevant searcher (a location called 0), where y is chosen from the symmetric distribution
W. Nature’s hiding the object on circle 1 corresponds to the case where Nature would
place the two rendezvousers facing in opposite directions.

An equivalent linear version of this circular problem is obtained by having the two
searchers start at the origins of two lines, and having Nature place two objects on one
of the lines, one object at distance y and the other in the opposite direction at distance

Note that after choosing the number y, there are in general two ways
of placing the two objects, and we assume they are equally likely. The two searchers
wish to minimize the expected time taken to find one of the objects.

Observe that if the objects are placed on line 1, and Searcher 1 has searched the
interval   on   line  1, then the probability that he has found an object is given

which by (14.18) and (14.19),
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by Similarly, if the objects have been placed on line 2 and Searcher 2
has searched the interval then the probability he has found one object is

Hence the probability that an object has been found by time r, using
joint search strategies and is given by

which, of course, is the same as the second part of the formula (14.20) given in the
previous section for Thus we have shown that asymmetric rendezvous on the
circle is equivalent to the alternating search problem on two circles, or its linearized
version as the search for one of two objects placed on two lines. The importance of the
new scenario is that we may use the solution concepts for alternating search problems
established in Alpern and Howard (2000) and summarized in Appendix B on Alternating
Search.

To illustrate the connection between the two problems, consider the asymmetric
rendezvous problem on the circle with y chosen uniformly on [0, 1]. In the two circle
problem (this is easier to visualize than its linearized version) it seems intuitively clear
(proofs will wait until the next section) that each searcher should pick a single direc-
tion, and that the alternation between the two searchers’ motion is irrelevant. In any
alternation scheme the object will be found by time t with probability t, and hence in
expected time 1/2. One such scheme is for both searchers to move at speed 1 for times t,

That is, Solving for f and g from equation (14.16),
we obtain f (t) = t and g (t) = 0, or simply that Player II waits for Player I to find
him. Another scheme in the alternating search problem is for Searcher 1 to search his
circle first, and then for searcher 2 to searcher his circle. That is, for
and for This translates in the rendezvous problem to
both rendezvousers first moving forward at speed for
followed by rendezvous Player II reversing while rendezvous Player I continues in the
same direction Actually neither of these solutions
represents the general solution that we shall find later, as these are unstable solutions
in that they occur only for the uniform distribution and vanish entirely if the uniform
distribution is slightly perturbed (see Theorem 14.12).

In the alternating search problem it is quite possible that, for certain distributions W,
neither searcher follows a path on his circle that would be optimal (in the sense of min-
imizing the expected search time) if he knew for sure the object was on his circle.
However, as shown for more general problems of alternating search in Alpern and
Howard (2000), we may assume that neither player follows a path that is strictly dom-
inated. So assume from now on that W is a Columbus distribution, one for which a
searcher in the one-sided search problem on the circle (Section 14.1) should follow the
Columbus strategy of going around the circle at maximum speed in a single direction.
It follows that in the alternating search problem on two circles, all we need to find is
the optimal alternation function As described in Appendix B on Alternating Search,
this function determines which of the two searchers should be moving at any given
time or, more generally (if both are simultaneously moving), their individual speeds.
In the case that the two searchers move one at a time, we simply take to be a func-
tion whose derivative is step function taking the two values 2 and 0: when (t) is 2,
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searcher 1 is moving at speed 2, when searcher 2 is moving at speed 2. More
generally, is Searcher 1’s speed at time t, and is Searcher 2’s speed at
time t. Consequently, the formulae for the positions of the two searchers ( and ) are
given in terms of by

This formula holds for a general alternation function   that is nondecreasing and satisfies

and

Such a function has a derivative almost everywhere, that equals the derivative of and
determines the derivative of We have because by time 1 both circles will
be fully searched.

If an alternation rule is adopted, then the object will be found by time t with
probability

depending on whether it was hidden on circle 1 or circle 2. The unconditional probability
that it will be found by time t is given by

Consequently, we seek an (optimal) alternation rule that minimizes the expected time
required to find the object,

To briefly summarize this section, what we have done is the following. Given the
problem of finding asymmetric rendezvous strategies f, g to minimize we have
reduced it to finding the optimal “alternating search” pair Then, for W satisfying
the Columbus conditions of Section 14.1, we have further reduced it to finding the
optimal alternation function

14.5 Optimal Rendezvous on the Undirected Circle

We now complete the determination of optimal asymmetric rendezvous strategies for
the undirected circle for a class of initial distributions W that includes the uniform
distribution. This analysis combines three independent results:

1. The equivalence of asymmetric rendezvous on an undirected circle to the “alter-
nating search” problem faced by two searchers seeking a single object hidden on
one of their circles.
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2.

3.

Sufficient conditions on a distribution W for “Columbus search” to be dominating
in finding an object hidden on a single circle.

Conditions stated in Appendix B on Alternating Search, based on Alpern
and Howard (2000), giving optimal alternation rules for certain kinds of
distributions.

14.5.1 Monotone densities

Our first result, Theorem 14.9, determines an optimal rendezvous strategy for a large
class of monotone densities w that includes the uniform density The strategy
we determine is in fact uniquely optimal for all the densities we consider which are
strictly monotone. The optimal strategies will have one player going all around the circle
at maximum speed 1, while the other player will have to determine a single number c
that will determine the times when he changes direction. The time c depends on whether
w is increasing or decreasing, as follows. If w is increasing, define c to be the smallest
number in [1/2, 1] that maximizes the quotient W(y)/y. If w is decreasing, define c to
be the largest number in [0, 1/2] that minimizes the quotient (1 – W(y))/(1–y). In both
cases the number c separates the two regions where and where Here

denotes the concavification of W, the smallest concave function that is pointwise at
least as large as W.

Theorem 14.9 (monotone densities) Consider the asymmetric rendezvous problem on
the undirected circle C. (This corresponds to no common notion oflocation or direction,
as given by the symmetry group ) If the initial distance x between the players is given
by a monotone density w (x),  the following strategies are optimal, and
ensure a meeting by time 1. In both cases one player (I) goes all around the circle at
maximum speed one.

(i)

(ii)

If w is increasing, then Player II moves at maximum speed in a random direction
for time c/2, then reverses direction at maximum speed for time c/2, and finally
stays still from time c until time 1. If w is strictly increasing, this strategy is
uniquely optimal.

If w is decreasing and Player II stays still for time c, then
moves at speed one in a random direction for time (1 — c)/2, then reverses
direction until time 1. If furthermore w is strictly decreasing, this strategy is
uniquely optimal.

Proof. (i) Consider the alternating search problem on two circles with object distrib-
ution W having density w (x) / 2, where w (y) = w ( 1 – y) for The assumption
that w is increasing on [0, 1/2] ensures (by the proof of Corollary 14.4) that condi-
tion (14.5) holds, and that the only undominated way of searching for a single object
on one circle with distribution W is the Columbus search, a simple search in a single
direction at speed 1. So the analysis of Appendix B may be applied determine the opti-
mal alternation rule The assumption that w is increasing, together with the definition
of the cutoff time for this case given above, implies that the concavification
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of W has the following form.

By Theorem B.5 in Appendix B on Alternating Search (part 1, with 0 = a, c = b) we
see that the intervals [0, c] on the two circles must be searched alternately at speed 2.
That is,

The interleaving problem that remains at time c (normalized to time zero) has a concave
function W (that is strictly concave if w is strictly increasing). Hence the second part
of Theorem B.5 shows that an optimal strategy (uniquely if w is strictly increasing) for
the remaining time is for both searchers to move at speed one, so

If we interpret this solution in terms of the original rendezvous problem, by solving
(14.15) for f, g in terms of we get the claimed optimal strategy

on [0,1], on [0, c/2], on [c/2, c], on [c, 1].

(ii) If w is decreasing and then it is slowly varying. Conse-
quently, the Columbus strategy is undominated for searching an object on a single
circle. Proceeding as in (i), we have in this case that and the concavification
of W is given by

W is (strictly) concave on [0, c] so Theorem B.5 (part 2) gives the (uniquely) optimal
strategy there. W lies below on the interior of [c, 1] so Theorem B.5
(part 1) gives the (uniquely) optimal strategy on [c, (c + l)/2] and

on [(c + l)/2, c]. Solving (14.16) for the corresponding rendezvous
strategy, we get the claimed solution

on [0,1], on [0, c],

We complete this section with an example from Alpern (2000) of a monotone density
w on the initial undirected distance between the players, where we can determine
unique and explicit optimal rendezvous strategies. We determine the number c and the
concavification

and

and on

on

and
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Consider first the density that is increasing on the
interval [0, 1/2]. The corresponding symmetric density on [0, 1] is given by W(y) =

that is drawn in bold in Figure 14.1. We determine the cutoff
time by maximizing W(y)/y on [0.5, 1], For the concavification of
W is given by the tangent line to W, that is above W(y),
and for we have
is drawn as a thin line.

Consequently, by Theorem 14.9 (i), Player I moves in a fixed direction at unit speed
all the time, while II moves in a fixed direction at unit speed on the time interval
[0,0.3075], moves in the opposite direction at unit speed during the time interval
[0.3075, 0.715], and remains stationary during the time interval [0.715, 1].

14.5.2 Slowly varying densities

The next result applies to continuous densities w on [0, 1/2] that are slowly varying in
the sense that their maximum divided by their minimum is less than two. Such densities
are in a sense close to the uniform density, where this ratio has the minimum possible
value of 1. An example of the occurrence of this type of distribution has been seen in the
previous theorem, since the assumptions that w is decreasing and w (1/2) > w (0)/2,
together imply that w is slowly varying.

Theorem 14.10 (slowly varying densities) If the initial distance between the players
is given by a slowly varying density, then any optimal strategy has one player going all
around the circle at speed one, and the otherplayer back at his starting point at time 1,
by which time they have met.

Proof. If w is slowly varying, then Corollary 14.4 says that the Columbus strategy
is optimal for searching for an object hidden according to W on a single circle. Conse-
quently, for any alternation rule a we have equation (14.23), and the alternating search
problem has solution If we reinterpret this solution in
terms of the asymmetric rendezvous problem using (14.16), we get f (t) = 2t /2 = t
and since

The line W(c)y/c that is tangent to W at x = c
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We now consider how our last two theorems apply to the case of the uniform initial
distribution, given by the constant density Since the constant is both increas-
ing and decreasing, both parts of Theorem 14.9 (on monotone densities) apply (with
c = 1/2). Furthermore, a constant is certainly slowly varying, so Theorem 14.10 applies
as well, and in particular, the WFM strategy suggested in Section 12.3 is optimal. Hence
we obtain as a corollary the following result originally proved by Howard (1999) using
a direct argument applying to the uniform distribution.

Corollary 14.11 (uniform density) Consider the asymmetric rendezvous problem on
the undirected circle C (with its full symmetry group ). This means that the players
have no common notion of location or direction on C. Assume that the players are
initially uniformly distributed around the circle. Then any optimal strategy has one
player going all around the circle at speed one, and the otherplayer back at his starting
point at time 1, by which time they have met. In particular, the WFM (“WaitforMommy”)
pair is optimal.

14.5.3 Arbitrary distributions

Corollary 14.11 says that the “Wait for Mommy” (WFM) strategy pair is optimal for the
undirected circle when the initial distribution is uniform. This is in stark contrast to the
general results of the authors and Anatole Beck (Theorem 16.13 and Corollary 16.14)
that WFM is never optimal for asymmetric rendezvous on the line. The word “never” in
this context means “for no initial distribution of the initial distance between the players.”
However the following result shows that the nonoptimality of WFM is still true on the
circle in a generic sense.

Theorem 14.12 (arbitrary distributions) Consider the rendezvous problem on the
circle with no common locations or direction (symmetry group ). The only initial
distribution of initial distance between the players for which the WFM strategy is optimal
for asymmetric rendezvous is the uniform distribution.

Proof. Suppose that (WFM) is the optimal strategy for some
distribution W. Then in the alternating search problem on the circle, the solution is

that corresponds to on all of [0, 1]. By Theorem B.5 (part 1)
this implies that W never lies below its concavification W, because in that case we
would have on some nontrivial interval. Since by definition W is never above
its concavification, it follows that W must be concave. However, since W(l – y) =
1 – W (y), the concavity of W on [1/2, 1] implies the convexity of W on [0, 1/2]. So
we must have that W is concave and convex on [0, 1/2], which together with the fact
that W (l/2) = 1/2 implies that W (y) = y on [0, 1/2]. For we then have
W (y) = 1 – W (1 – y) = 1 – (1 – y) = y, since We have shown that
if WFM is optimal, then the initial distribution must be the uniform distribution given
by

It should be noted that even for the uniform distribution, WFM is not the unique
optimal strategy.
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Chapter 15

Rendezvous on a Graph

This chapter analyzes a discrete version of the rendezvous problem that includes and
generalizes the “telephone problem” that we described in the Introduction to Book II
(Chapter 10). At time 0 the two rendezvousers are randomly placed on the (finite) vertex
set of a graph In this context, the search region Q is identified with the
vertex set At each integer time i, each player stays still or moves to another vertex via
an edge e in the edge set Both players wish to minimize the first time i (denoted T)
when they occupy the same vertex. Of course if the graph X is not connected and
the players start at vertices in different components of the graph then they can never
meet. To avoid this problem we will assume that X is connected. As in the continuous
rendezvous problem formalized in Chapter 12, we need to consider how the symmetry
of the graph affects the difficulty ofrendezvous. So we assume that there is a given group
G of symmetries (isometries) of the graph For a graph, an isometry is a
bijection that preserves the notion of adjacency in the sense that
implies that For simplicity, we will restrict our attention to the case where
G is transitive. This implies in particular that the full group of all isometries of X is
transitive. Such a graph X, for which there is an isometry taking any vertex into any
other vertex, is called vertex-transitive. Roughly speaking, this means that all vertices
“look alike.” In this chapter the letter will always denote the number of vertices
in the graph X. Unless otherwise stated, all the results of this chapter are taken from
Alpern, Baston, and Essegaier (1999).

Let denote the set of all paths in X, functions from the natural numbers
into that preserve adjacency. We interpret this to include paths that stay at the same
vertex, by considering vertices to be self-adjacent. For pairs (r, s) of paths we define
discrete analogs of the meeting time and rendezvous value formulae given for continuous



models in Chapter 12.

where  varies over probability measures on the path space Since the group G is
transitive, the definition of the expected meeting time incorporates an equiprobable
initial distribution. A more general formulation of rendezvous on graphs is developed
in Alpern, Baston, and Essegaier (1999), including cases in which some vertices may
be distinguishable (the symmetry group G is not transitive). In that context the players
may be allowed to choose their initial location as part of their strategy.

It is important to note that rendezvous on a graph is not a discrete version of
network rendezvous. Recall that the notion of an H-network (see Chapter 13) was
defined to ensure that players who pass each other along an arc of the original (con-
tinuous) network will be simultaneously at a common node of the discrete analog,
so that they will meet. The situation in graph rendezvous context of this chapter is
quite different, however. Players who are at adjacent vertices in one period and have
transposed their positions at the next period are not considered to have met. This dis-
tinction was observed by Anderson and Weber (1990), who first proposed the graph
formulation.

The “telephone problem” described in Chapter 10 can be viewed as a rendezvous
problem on a graph. Consider the perspective of an observer who labels the set of
paired (that is, wired together) telephones as 1 , . . . , n , and notes the positions of the
two players in terms of these labels. Since the players may move in any way they like
from one telephone to another, their motions determine paths on the complete graph
with vertices 1, . . . , n, and edges between any two vertices (the last condition defines
what is meant by a complete graph). The possibility of generalizing this problem to
arbitrary connected graphs, where not all transitions are allowed, was suggested in the
pioneering article of Anderson and Weber (1990) (that mainly studied the problem on

and their suggestion was carried out in a paper by Alpern, Baston, and Essegaier
(1999), on which this chapter is mainly based.

We note that in the paper of Anderson and Weber (1990) on this subject, the problem
begins at time i = 1 and it is assumed that the initial positions of the players are chosen
randomly but distinctly. Consequently their formulae for meeting times differ from the
ones given here (that are as in Alpern, Baston, and Essegaier, 1999), where the problem
begins at time zero with the possibility of a common initial vertex (independent initial
placement).
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15.1 Asymmetric Rendezvous

The asymmetric rendezvous value of a graph can sometimes be determined exactly, as
we show in this section. If a graph has a distinguishable location, it may be possible
for the players to go directly there, and obtain an early meeting. However if such a
possibility is precluded by an appropriate assumption of symmetry, then the following
lower bound on the expected meeting time is obtained. This generalizes a similar result
of Anderson and Weber (1990).

Lemma 15.1 Let be a graph with a transitive isometry group G. Then

To present the remaining results of this section, we will need some definitions
relating to paths on graphs. A path is called Hamiltonian if it includes every vertex
exactly once. If a graph has a Hamiltonian path starting at any vertex, we will say that
it is efficiently searchable. A graph is called Hamiltonian if it has a Hamiltonian circuit
(a path whose final and initial vertices are adjacent is called a circuit). Certainly, any
Hamiltonian graph is efficiently searchable, but the converse is not true. Consider, for
example, the Petersen graph shown in Figure 15.1, that is efficiently searchable but not
Hamiltonian.

Since this graph is vertex transitive, the existence of a single Hamiltonian path
implies that there is one starting at any vertex. The following result is true more generally
without the transitivity assumption (see [15]) but we will need it only in that case, where
the proof is simple. Given the transitivity assumption, the hypothesis of efficiently
searchable is equivalent to the existence of a single Hamiltonian path.

Lemma 15.2 Let G be a transitive symmetry group on an efficiently searchable graph X.
Then the asymmetric rendezvous value satisfies

Proof. The proof uses a “Wait for Mommy” strategy, where one of the players is
stationary. Suppose that the moving player traverses a Hamiltonian path starting at his

Proof. Let denote the event that the two players occupy the same vertex at
time j. If Player I chooses the strategy (path) and Player II chooses

then the event

has probability (normalized counting measure on G) 1/n regardless of and Hence
F(k), defined as the probability that they meet within the first k steps 0, 1, . . . , k – 1
(or that is less than or equal to k/n. Consequently, for any strategy pair (r, s),
the expected meeting time satisfies
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initial vertex. The transitivity assumption implies that the stationary player’s position
is random (equiprobable), so he will be met by the moving player with probability 1/n
at each of the times 0, 1, . . . , n – 1, with an expected meeting time of (n – 1)/2.

Combining our two lemmas, we have the following result (Alpern, Baston, and
Essegaier, 1999).

Theorem 15.3 If X is a graph with a Hamiltonian path, and G is a transitive group of
isometries of X, then the asymmetric rendezvous value is given by

226

This result was proved earlier by Anderson and Weber (1990) for the special case
where X is a complete graph and G is the group of all permutations of the vertex set.
The results of this section may be seen as extension of their work. Note that this result
applies to the Peterson graph, with its full group of isometries. (A Hamiltonian path for
the Petersen graph can be obtained by first going around the five outer vertices, going
to the adjacent inner vertex, and then following the nonrepeating path along the inner
vertices.)

At this point it might seem appropriate to give an example of a graph X that has no
Hamiltonian path, together with a transitive group G of isometries, where
(n – 1)/2. However, if G is transitive, then the graph X must be vertex transitive. And
as far as we know, Lovasz’s conjecture (Lovasz, 1970), that all vertex transitive graphs
have Hamiltonian paths, is still open. If this conjecture is true, then the above theorem
holds without the assumption that X has a Hamiltonian path. The conjecture has in fact
been established for many classes of graphs, for example if n is prime. See Alspach
(1981) for more in this direction. In any case, the following is a weaker conjecture then
that of Lovasz.



Conjecture 15.4 If G is a transitive group of isometries of the graph X, then the
asymmetric rendezvous value is given by

15.2 Symmetric Rendezvous

In the symmetric rendezvous context, the “Wait For Mommy” (WFM) strategy is not
available. A natural strategy to consider is a simultaneous random walk, where in each
period the players pick an adjacent vertex randomly. Tetali and Winkler (1993) have
shown that this always gives an expected meeting time no more than and
give an example where the expected meeting time is about Of course, if the
agents cooperate, they can do better. To see this, observe that every connected graph
with n nodes can be searched from any starting point within 2n steps (double every arc
of a minimal spanning tree and follow an Eulerian circuit). Suppose that in each time
interval of length 2n –1 the agents search exhaustively with probability 1/2 and wait with
probability 1/2. Then in each time interval of length 2n – 1, the probability that one player
searches and one player waits (ensuring a meeting) is 1/2. Consequently, the players will
meet in expected time no more than
Note that this weak estimate neglects the possibility that two moving players may
meet. When this possibility is incorporated for a particular graph, the optimal moving
probability will exceed 1/2. Consider a circuit of minimal length that includes
all of the vertices. Let denote the maximum, over all vertices, of the minimum length
of a path starting at that vertex that visits all other vertices. If X is efficiently searchable,

and in any case Substituting for 2n in the previous estimate,
we obtain the following estimate for symmetric rendezvous on a graph.

Theorem 15.5 If G is any given group of isometries on a connected graph X, then the
symmetric rendezvous value satisfies

In the next two sections we will concentrate on two classes of graphs: the complete
graphs (the telephone problem) and the cycle graphs

15.3 Symmetric Rendezvous on a Complete Graph

As mentioned in the introduction to this chapter, the “telephone problem” (see
Chapter 10) can be viewed as one of symmetric rendezvous on the complete graph

with the full group G of all permutations of the vertices. The first author men-
tioned this important problem to E. J. Anderson, who subsequently with his colleague
R. Weber produced an elegant analysis that constitutes the first published work on ren-
dezvous search theory. Anderson and Weber (1990) proposed the following family of
strategies: if the search has not been successful by time (n – 1 )k , the next n – 1 steps
consist either of remaining still or going randomly to the n – 1 remaining locations,
with these two probabilities optimized to minimize the expected meeting time in the
case that both searchers use it. We call this the Anderson–Weber strategy and denote
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it by Note that for n = 2, it stays still or searches with probabilities (1/2, 1/2)
(we call this the random strategy) and in the case n = 3 these optimal probabilities are
(1/3, 2/3).

Note that on each player knows the location of the other player (namely, the
other node) after each period before the meeting time. Consequently, the symmetric
rendezvous problem on studied by Anderson and Weber (1990) is equivalent to
the repeated coordination game with revealed actions studied by Crawford and Haller
(1990) (see the following subsection for more on the revealed action version). For this
reason the following 1990 result, discussed and proved earlier as Theorem 11.3, may
be attributed to either pair of authors.

Theorem 15.6 and the random strategy (stay or move equiprobably) is
optimal.

For general n the family gives the following upper bound (Anderson and Weber,
1990) for

Theorem 15.7 which is asymptotic to 0.82888497n.

Anderson and Weber (1990) claimed (but did not rigorously prove) that is optimal
for It has been shown subsequently (Alpern, Baston and Essegaier, 1999; Alpern
and Pikounis, 2000) that is indeed optimal for if the strategy space available to
the players is limited in certain natural ways, that we outline below.

Their strategy is what we call a 2-Markov strategy, in which the same probability
vector over the five possible 2-step strategies listed below, is used
for each of the time intervals 1, 2 and 3, 4, and more generally 2k + 1, 2k + 2.

that has solution

This notation, due to Anderson and Weber, is explained as follows. The location a
is the location at time 2k. The location b is a randomly chosen location from the
other two possibilities. The location c is the unique remaining location after b has
been determined in the first step. Thus the Anderson–Weber strategy is given by
(1/3, 2/3, 0, 0, 0). Let denote the set of all strategies for that are m-step
Markovian in the above sense. The following result Alpern, Baston and Essegaier
(1999) established the optimality of the strategy within such a class, and we follow
the original proof.

Theorem 15.8 The Anderson–Weber strategy                 is optimal with respect to the
class

Proof. Given any probability vector in the simplex

it is easy to determine the expected meeting time in terms of the probabilities
and that the agents will meet after one or two steps, respectively.

So r = 1 – p – q is the probability that the original problem reoccurs at the end of
period 2. Then the expected meeting time satisfies the equation

228 BOOK II. RENDEZVOUS SEARCH



CHAPTER 15. RENDEZVOUS ON A GRAPH 229

It is easy to check that and denotes
transpose and

(Note that in this chapter Q does not denote the search region, so we may use it for the
above matrix.) We claim that  and both have maxima of 1/3 at so that
T is minimized there, with Note that

To establish the first claim, set so that which has a
maximum of 4/3, that equals Forthe second claim, set

and observe,

Recall that we have discussed in Chapter 12 the fact that a mixed strategy solution
to the symmetric rendezvous problem must be a symmetric Nash equilibrium in

the game where each player has utility given by the expected meeting time function
So to check that a strategy is a solution to the symmetric problem we can first ask if it is
Nash. If it fails this easier test, it is not the symmetric solution. M. Pikounis and the first
author have applied an easier version of this test to the symmetric Anderson–Weber
strategy – that it passed. For the weaker test, we see if any of the primary
strategies do better against a proposed mixed strategy s than does s itself. If so, s
cannot be Nash and hence cannot be optimal. If none of the primary strategies does
better against s than s itself, we will say s is locally Nash. The justification of this term is
given in Alpern and Pikounis (2000), where the following result is proven as Theorem 3.

Theorem 15.9 The Anderson–Weber strategy is locally Nash with respect to the
class

We note that Anderson and Weber (1990) do not make any optimality claims at all
for In fact they conjecture that it is not optimal.

We return now to a consideration of the strategy It was shown above that is
optimal among 2 step Markov strategies. Since a two-step Markov strategy is also a
four step Markov strategy, it is natural to ask whether it is still optimal in the larger class

(using standard inequalities)



of four step Markov strategies. This question has not been answered, but the following
weaker form of optimality within this class has been established in Alpern and Pikounis
(2000).

Theorem 15.10 The Anderson–Weber strategy is locally Nash with respect to the
class

We conclude this section with what should probably be called the Anderson–Weber
conjecture, since they were the first to suggest the optimality of

Conjecture 15.11 The Anderson–Weber strategy is optimal on

15.3.1 Revealed actions

Rendezvous search may be seen as a dynamic version of Schelling’s version of the
rendezvous problem described in Chapter 10. Unlike Schelling’s version, where failure
to meet in the first try ends the game, our version of rendezvous search has continued
efforts by the players, until they eventually meet. The word search is italicized to
emphasize that we have adapted the Schelling problem to the context of dynamic search
theory. A different dynamic version of Schelling’s problem was proposed by Crawford
and Haller (1990), who adapted it to the context of repeated coordination games with
revealed actions. In our terminology, Crawford and Haller considered the symmetric
rendezvous problem on the complete graph  under the assumption that each player’s
position is revealed at the end of each period. We may think of this as a search problem
in which a searchlight illuminates the search domain at repeated intervals (or after each
period of the discrete problem). Such searchlight versions have been studied in search
theory, for example by Baston and Bostock (1991).

In some cases (e.g., the line), the illumination provided by a searchlight would
make the subsequent optimal play quite trivial. However, this is not true for graph
problems such as where the telephone problem with revealed actions might cor-
respond, for example, to having the called phones ring (but too late for them to be
answered). However, each player would know the phone that was called in the previous
period.

The work that we describe below, taken from Ponssard (1994) and covering results
of Crawford and Haller (1990) and Kramarz (1996), belongs to the significant economic
literature on coordination games, that is a different offshoot of Schelling’s version of
rendezvous. It concerns a repeated game model of n × n coordination, where players
wish to use the same strategy but have no common labeling of strategies (rows, columns).
After each period, the strategies that were used are revealed. While not so appropriate for
the spatial search models considered in rendezvous search, this revelation (searchlight,
in our terms) accurately represents information available to players when the strategic
choice made in each period are publicly visible signals such as prices set by firms or
the choice of products to supply.

If n = 2, the random strategy is optimal, as in Anderson and Weber’s result of
given in the previous section. (For n = 2 the searchlight version is identical

to the original, as players who have not met can obviously deduce the location of their
partner, even though it is not explicitly revealed.) For n = 3 the optimal symmetric
move from the position (1, 0, 1) (from the point of view of an observer who puts a 1 in
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occupied positions) is clearly to go to the (middle) unoccupied position, that results in
a definite meeting in the next time step. For n = 5 consider the position (1, 1, 0, 0, 0)
(there is really only one position, up to symmetry). Two strategies immediately present
themselves. The first is to coordinate on the two occupied positions, giving an expected
additional time to meet of

15.4 Symmetric Search on

The cycle graph is given by the vertex set {0, 1, 2,..., n – 1} with i adjacent to j if
(mod n), and is best pictured by arranging these numbers (vertices) around a

circle. Search games on this class of graphs were first studied by Ruckle (1983a, 1983b).
In this section we consider the problem faced by two rendezvousers who are initially
placed randomly on the vertices. We will first follow Ruckle, in assuming the players
are restricted to directionally symmetric Markovian strategies. Since such strategies go
equiprobably in either direction, their use implicitly assumes that the players have no
common notion of direction around the circle. In this context we can derive optimal
rendezvous strategies. Then we relax Ruckle’s assumption and see how much this
reduces the expected meeting time.

15.4.1 Symmetric Markovian strategies

Ruckle considered the search game on where the players are initially randomly
placed and are constrained to use (directionally) symmetric Markovian strategies that
in each period move clockwise with probability p, anticlockwise with probability p,
and remain still with probability 1 – 2p . In Ruckle’s analysis the searcher and hider
chose their respective probabilities p and q to respectively minimize or maximize their
expected meeting time. Here, we follow the analysis of Alpern (1995), in assuming both
players must choose a common probability to minimize the expected
rendezvous time corresponding to the Markov chain in which both players move
with probability p.
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with

The second is to coordinate on the three unoccupied positions. In this case the players
will choose a common location with probability 1/3 and otherwise definitely meet in
the following period (by coordinating on the unique location that has always been
unoccupied). This strategy gives the lower (better) expected additional time of

Crawford and Haller (1990) show that the analyses given for the cases up to n = 5
are sufficient for the case of general n. Thus the searchlight version (ringing telephone
problem) of symmetric search on does not present all the difficulties of the unsolved
original (nonringing) telephone problem, that is still open for n = 3. However, the
multi-agent version of this problem is only partially solved, as discussed in Chapter 17.
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In order to evaluate the function we consider a reduced Markov chain with
n states, where the state is the clockwise distance from Player I to Player II (mod n).
The state 0 is absorbing; otherwise successive states are obtained by independent
randomization of the players, with a common “moving” probability p. For n > 4,
the transition probabilities for the reduced n-state Markov chain are
given by the formulae

If n = 4, there is a slight modification to the above probabilities. Namely,

The expected meeting time is the same as the expected number of periods that
the reduced Markov chain is in any of the nonabsorbing states {1, 2,..., n – 1}. If we
denote by B = B(p) the n – 1 × n – 1 submatrix of A corresponding to these states, and
let e and denote the column and row vectors consisting of all 1’s, then the expected
meeting time can be calculated as in the following lemma, taken from Alpern (1995).
The full justification of a more complicated version of the formula in the lemma is given
in Ruckle (1983b), where it is also shown that is convex.

Lemma 15.12 The expected rendezvous time for the Markovian strategy p on the cycle
graph is given by the formula

Using a direct analysis for n = 3, and the above lemma together with either form
of (15.1) for the entries of B, we obtain the following.

Theorem 15.13 Let and denote the optimal moving probabilities and symmetric
rendezvous values for the cycle graph when the players are restricted to a common,
directionally symmetric, Markovian strategy. Then
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Proof. First consider the case n = 3, that we discuss without any of the above
notation. Suppose the players are at distinct vertices of and they each move to
another vertex with probability 2p. With probability they will both move to the
unoccupied vertex and meet there. With probability (1 – 2p)(2p), one will stay still
and the other will find him. Consequently the probability that they meet in the next
period is that has a maximum of 1/3 when

This is the random strategy, in which a player goes equiprobably to
any of the three locations, independent of his previous location. If they don’t meet, they
will be in the same situation in the following period. The minimum expected additional
meeting time x, given that they start at distinct locations, consequently satisfies the
following equation:

that has a minimum on [0, 1/2] at and a symmetric rendezvous value of

When n = 5, we use the main transition probability formula (15.1), giving

This has a minimum on [0, 1/2] at with a corresponding

rendezvous value of about 4.88.

Numerical approximations of and for are given in Alpern (1995).
If the above strategies are modified so that with probability p the searcher moves not

just one step but k steps in a fixed direction, the expected meeting times can be reduced.
The following least expected meeting times for symmetric rendezvous strategies on
were calculated by S. Essegaier (1993) in his M.Sc. dissertation, supervised by Alpern:

A few observations can be made from this small table. Aside from n = 4, the
smallest number comes from a step length of n – 1. For odd n, the expected meeting

Therefore, x = 3 and
For n = 4 or 5 we use the Markov chain analysis and the previous lemma. First

consider the case n = 4. Using the n = 4 version of (15.1), we get



A sharper bound for even n of 1.15n + O (1) is also mentioned in Alpern, Baston
and Essegaier (1999).
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time decreases in step length up to n – 1. For even n, odd step lengths perform better
than even lengths.

Using the above analysis to concentrate on step lengths of n – 1, and fairly com-
plicated calculations, the following bounds for the symmetric rendezvous value of
were obtained in Alpern, Baston, and Essegair (1999).

Theorem 15.14
if n is odd,

if n is even.



Part Four

Rendezvous Search on
Unbounded Domains
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Chapter 16

Asymmetric Rendezvous on
the Line (ARPL)

Up to this point we have been assuming that the search region Q on which the
rendezvousers have to meet is compact (closed and bounded). We now consider an
important case where the search region is unbounded. Namely, the real line R. We
assume here that the players have no common labeling of the points and (except in
Section 16.2) no common notion of a positive direction on the line. The undirected
unlabeled line is the search region that has attracted the most attention in the literature,
both for the asymmetric and symmetric player cases. This search region models the
examples where two people become separated on a road or a beachline. Another non-
spatial example concerns the situation where two people carrying walkie-talkies with
rotary frequency dials attempt to find a common frequency to talk on, since the set of
frequencies form a line.

This chapter will be devoted to the (player-)asymmetric rendezvous problem on the
line (ARPL). The symmetric version is still unsolved even for the simplest cases – the
best results so far obtained will be presented in the next chapter.

Rendezvous on the line is similar to two previous search regions: the interval and
the circle. The main change from rendezvous on the interval (as studied in Chapter 13)
is that absolute location is no longer relevant because of the translational symmetry of
the full line. It is replaced by relative location. This is because the players do not have a
common labeling of points. In particular, the game will begin with a known distribution
of the distance between the players, rather than a joint distribution over two locations.
This is similar to the initial setup for rendezvous on the unlabeled circle (as studied in
Chapter 14). In particular, it is clear that if two rendezvousers on the circle know they
are very close together (relative to the circumference), then they can play as if they are
on a line, using the analysis of this chapter rather than that of Chapter 14.

We consider the following scenario, originally proposed by Alpern (1995) for ren-
dezvous on the line. At time t = 0, Nature places the two players a distance d apart on
the line and faces them independently and equiprobably in either direction. Each player
regards the direction he is initially facing as “forward.” The initial distance d is drawn
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from a known cumulative distribution function that we call F. The random initial facing
of the players is just a way of specifying that they have no common notion of direction
along the line. The players each have unit speed and wish to meet in the least expected
time. The set of rendezvous strategies for the case of the line may be written as

The number f (t) gives the player’s net forward motion at time t relative to his starting
point. For example, if his initial position is b and he is initially facing left, his actual
path is b – f (t) .

16.1 Asymmetric Rendezvous Value

The asymmetric rendezvous problem on the line (ARPL) was first analyzed by Alpern
and Gal (1995) (after the earlier introduction of the symmetric version). In the asym-
metric player version, where the players may adopt distinct strategies, we denote the
least expected meeting time by in the symmetric version by

The subsequent analysis is similar to that given earlier for the circle. We adopt the
same change of variables (see Section 14.3) from a rendezvous strategy pair ( f, g) for
the line to a new pair of variables

The variable will be relevant when the rendezvousers are initially facing in opposite
directions; when they are initially facing in the same direction. To determine whether
the rendezvousers have met by time u, we consider the four extreme values,

If the two players using strategies f and g were initially facing each other, then
they will have met by time u if and only if for some their net relative motion
towards each other, is at least as large as their initial distance or, equivalently,
if Similarly, if they were initially facing away from each other, they will
have met by time u if If Player I was initially facing Player II, but II was
facing away from I, they will have met by time u if and in the opposite
case if Since each of these four “facing” cases is equally likely, and the
initial distance d is drawn from the cumulative distribution function F, it follows that
the probability that players adopting the pair ( f, g) will have met by time u is given by
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For a given strategy pair (f, g) the expected meeting time is given by
Consequently the asymmetric rendezvous value is given by

The existence of the minimum (rather than infimum) is justified by the same general
arguments used in Chapter 12. Any pair (f, g) for which the minimum is attained will
as usual be called optimal.

To illustrate some of these ideas, suppose that F represents the atomic distribution
with all the mass at 1. That is, the initial distance between the players is known to be
1. In this case                 is 1 if otherwise it is 0. Take u = 2. That is, we
consider the probability that agent adopting some strategy pair will have met by time 2.

First consider the strategy pair where moves forward at speed 1 for one
time unit and then reverses at speed 1, while stays still up to time 1 and then moves
forward at unit speed. In Figure 16.1 we draw the parametric path for
in f, g space, together with the square determined by the four lines i = 1, 2.

Since the path has intersected three of the four sides of the square, the probability
that the players have met by time 2 is 3/4,                          In general, for the atomic
distribution, the meeting probability for any time t can take only the values i/4, where

The integer i is the number of the sides of the square determined by
the lines that the path has met by time t.

It is sometimes useful to determine the maximum probability that the players
can meet by a certain time u.

It follows from the fact that for any pair (f, g) we have and the
formula (16.4) that

Note that even if (f, g) is optimal we will in general have for some
values of t. However, it is useful to consider strategy pairs where this never happens.
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Definition 16.1 A strategy pair ( f, g) is called uniformly optimal if for every time u, it
maximizes the probability of meeting by time u. That is, for all t we have

If ( f, g) is a uniformly optimal strategy pair, then obviously both extremes of the
inequality (16.6) will be equal and hence equal to the value Consequently, ( f, g)
is optimal. In this case any other strategy pair that has a lower meeting probability for
some time t cannot be optimal. Hence we have the following.

Theorem 16.2 A uniformly optimal strategy pair is optimal. Furthermore, if there exists
a uniformly optimal strategy pair then all optimal strategy pairs must be uniformly
optimal.

16.2 Finiteness of

Of course, since the search region is unbounded, there may be no strategy pair that gives
a finite expected meeting time. However, we can obtain information on the finiteness
of by comparing rendezvous on the line with the special case where Player II
is stationary. That is, where g is identically zero. This problem, originally posed by
Bellman (1963) and Beck (1964) is known as the Linear Search Problem (LSP). It is
shown Chapter 8 (Book I) that the stationary object (Player II in our application) can
be found in finite expected
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direction rendezvous problem. Hence we have established the required inequalities.
Since the extreme values L(F)/2 and L(F) are finite if and only if F has finite mean,
the same must be true for the intermediate rendezvous value

We note that in fact the right-hand inequality of (16.7) is strict because the Wait For
Mommy (WFM) strategy is never optimal (see Corollary 16.14 below).

16.3 The Double Linear Search Problem (DLSP)

In the previous section we showed that the asymmetric rendezvous problem on a directed
line is equivalent to the Linear Search Problem, where a single searcher seeks a stationary
object that is hidden according to a known distribution. We now demonstrate that the
asymmetric rendezvous problem on the undirected line (where agents have no common
notion of direction) is equivalent to the following problem (the DLSP) posed by Alpern
and Beck (1999b). These equivalences use the same ideas as those given for the circle in
Chapter 14, where it was shown that the asymmetric rendezvous problem was equivalent
to a search problem on two circles.

Definition 16.4 In the Double Linear Search Problem (DLSP) a single object is ran-
domly placed a distance d from the origin of one of two given lines. That is, with
probability 1/4 in each of these four locations. The distance d is drawn from a known
cumulative distribution function F. Two searchers, starting at the origins of the two
lines, move until one of them has found the object. They may move alternately at speed
2 or more generally with combined speed 2. Their common aim is to find the object in
least expected time.

The DLSP can be defined more generally for an arbitrary distribution of the object
over the two lines that is not symmetric between the lines or on each line. But the above
doubly symmetric version will be adequate for our needs. The reader should also note
that in the original version of the DLSP given in Alpern and Beck (1999b), the searchers
had a combined speed of 1 rather than 2.

Figure 16.2 shows the four possible equiprobable locations of the object at
once an initial distance d is selected. Of course d is generally not known to the searchers
(except when the distribution F has a single atom).

As in the case of the search problem on two circles discussed in Chapter 14, we
denote the actual paths of the two searchers on their respective lines by and
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with speed restriction and initial positions
There is a one to one correspondence between asymmetric rendezvous pairs (f, g) and
DLSP strategies that is given by equation (16.1). The object in the DLSP will
have been found by time u by one of the two searchers if and only if it lies in the interval

on line 1 or the interval on line 2. The probability
it has been found by time u is therefore given by which
by equation (16.3) is the same as the probability that rendezvousers using (f, g)
will have met. Consequently, we have

Since these probabilities respectively determine the expected finding (in the DLSP) or
meeting (in the ARPL) times, we have the following.

Theorem 16.5 For any cumulative distribution function F, the rendezvous value
for asymmetric rendezvous on the (undirected) line is equal to the least expected time
in the Double Linear Search Problem. Optimal strategy pairs in either problem lead to
optimal pairs in the other according to equation (16.1). In this sense the two problems
are equivalent.

Note that the DLSP can be solved approximately, for any cumulative distribution
function F, by the DP algorithm described in Book I.

16.4 Meeting-Probability Maximization

In this section we consider the problem of evaluating the maximum probability
of rendezvousing by a given time u, as defined in (16.5). We do this by comparing it
with the maximum probability of finding the object in the Linear Search Problem (with
searcher speed 1) by time u, which we denote by We assume, of course, a common
cumulative distribution function F in the two problems. The study of the maximum
probability was initiated by Foley, Spruill, and Hill (1991) and continued in Alpern
and Beck (1997). The following is taken directly from Alpern and Beck (1999b).

Lemma 16.6 For any distribution F and any we have

Proof. (For this proof recall that in the LSP the searcher has maximum speed 1,
while in the DLSP a searcher has maximum speed 2 if the other is still.) We first show
that the left-hand side is not less than the right. Let be some time that
the maximum on the right-hand side is equal to Let be a
speed 2 path on line 1 in the DLSP that finds the object by time (if it is on line 1)
with the optimal probability and is thereafter constant at its final location
Similarly, let be a speed 2 search path on line 2 that remains still at the initial
location 0 until time and then moves at speed 2 until time u (a total moving time
of to find the object (if it is on line 2) with probability Then



But by (16.8) this is the same as when
we solve for f, g in terms of Since we are done.

To show that the right-hand side is at least as large as the left, assume that
for some pair f, g. Let denote the corresponding DLSP strategy pair with

For i = 1, 2, let be the total variation of
up to times. Let be the unit speed linear search path defined up to times by

The path covers the same interval during times as
the path covers during times [0, u]. Hence
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But since the pair has combined speed bounded by 2, it follows that
Consequently, the right-hand side of the equation to be established is at

least as big as the left-hand side .

We can use this result to solve the “minimax rendezvous problem” on the line, for
bounded distributions F, that was done by alternative means in Lim and Alpern (1996).
This problem tries to find the asymmetric strategy pair of rendezvous strategies that
minimizes the maximum time that it might take to meet. (Of course, for unbounded
distributions, where the initial distance d can be arbitrarily large, there is no such
maximum time.) So we restrict our attention to the case where D = inf{x: F(x) = 1}
is finite.

Theorem 16.7 If F is bounded then the “Wait For Mommy” (WFM) strategy is a
minimax strategy for the asymmetric rendezvous problem on the line and the minimax
rendezvous time is 3D. WFM is the strategy pair where one player stays still while the
other (Mommy) goes at speed 1, first a total distance D to the right and then reverses
and goes a distance 2D to the left.

Proof. Let denote the minimax rendezvous time, so that It follows from
(16.9), with that for some we have Since is a
probability, and hence cannot exceed 1, it follows that both and must
both equal 1. Since either t or must be less than or equal to it follows from the
nondecreasing nature of that is also equal to 1. This means that if one player
remains stationary, there is always a (linear search) strategy for the other that will still
find him in the minimax time But this is just another way of saying that Wait For
Mommy is a minimax strategy.

It is worth noting that any strategy for the “child” that puts him back at his starting
point at time D and 3D is also minimax, as long as “Mommy” searches as indicated
above.

16.5 Atomic Distribution

We now assume that the initial distance between the players is a known number D. It
turns out that in this case there is a strategy pair f, g that is uniformly optimal, and
consequently by Theorem 16.2 also optimal. In such a situation it is easiest to establish
the strong property of uniform optimality.
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For the atomic distribution with d = D the optimal and uniformly optimal strategy
for the Linear Search Problem is obvious: go right to D, then left to –D. (We will
denote this by FBB meaning forward D, back D, back D.) The resulting probability
maximizing function is given by

We can now calculate the probability maximizing function for the asymmetric
rendezvous problem using Lemma 16.6 (a maximizing value of t is also given).

It follows from (16.6) that the rendezvous value for the point distribution d = D
satisfies

with equality if there is a uniformly optimal strategy pair. We can now derive one such
a pair. An optimal interleaving of the undominated strategies on each line. Namely,

and is given (determined by the above values for t) by the
double linear search strategy Here, for example, the second

means that in the fourth period of length D/2 (since speeds at 2 here) the searcher
on line 2 moves back (leftward). This strategy can be described by giving the searchers’
motion (derivative) in each of four (unequal) time periods. The bottom row gives the
corresponding motions f, g of the rendezvousers.

The Double Linear Search strategy is described as follows: Searcher 1 goes
to +D; Searcher 2 goes to +D, Searcher 2 goes to –D; Searcher 1 goes to –D.
(The order of the first two stages and of the second two stages may be reversed without
affecting optimality.) The optimal rendezvous strategies that correspond to these optimal
DLSP strategies via (16.1) are the “Modified Wait For Mommy” strategies for the line,
as defined below.
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Definition 16.8 The “Modified Wait For Mommy” (MWFM) strategy pairs for ren-
dezvous on the line with known initial distance D are as follows, with all moves taken at
maximum speed 1. One of the players (Mommy) searches as if looking for a stationary
child. That is, by going D is one direction and then 2D in the other. This is the same as
in WFM. However, the other player (Child) is no longer stationary. Instead, he moves
a distance D/2, hoping to meet his Mommy earlier, and then returns to his start to try
to meet her there. If he has not met her by time D, then she is distance 2D away at
that time. So he moves a distance D in either direction, and then returns again to his
starting point at time 3D. The equiprobable meeting times for these strategy pairs are
D/2, D, 2D, 3D, with expected time 13D/8. If the distribution has a maximum D but
the mean is then the expected meeting time is

An optimal strategy for the atomic distribution with D = 1 is drawn in Figure 16.3.
We may also view the working out of the optimal MWFM strategy pair (f, g) for

the atomic distribution D = 1 by placing Player I at the origin. Figure 16.4 shows
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the actual path f of Player I in a thick line, and the four possible paths of
Player II in dotted and thin lines, drawn only until they intersect with Player I.

We see that and
with We see

that (f, g) is uniformly optimal. Summarizing the results for the atomic distribution,
we have the following.

Theorem 16.9 If the initial distribution between the players is a known number D,
the asymmetric rendezvous value is given by The unique optimal
rendezvous strategies are the MWFM strategies. Furthermore, these strategies are uni-
formly optimal. If F is a bounded distribution with mean and maximum D, then

This result was originally obtained by the authors in Alpern and Gal (1995), but the
presentation given here via the DLSP comes from Alpern and Beck (1999a). We call
the optimal strategy pair the Modified Wait For Mommy (MWFM) strategy. One player
(I, the Mommy) follows an optimal search path for an immobile hide, while the other
follows a path that returns to his start point at any time Mommy might find him there but
moves to possibly meet her earlier if he correctly guesses the direction of her approach.

The following three sections of this chapter make extensive use of the results of
Appendix B on Alternating Search to solve certain versions of the DLSP. So the reader is
advised to read that Appendix in order to understand the proofs. However, the statement
of results will be clear without any knowledge of Alternating Search,

16.6 Discrete Distributions

Recall that the optimal strategies for the rendezvous problem with the atomic initial dis-
tribution (d = D surely) considered in the previous section had the following property:
In the time intervals between the possible meeting times ({0.5, 1, 2, 3} in that case),
each player moves in a single direction at maximum speed. More generally, Alpern and
Gal (1995) proved directly (without reference to the later established equivalence of
the ARPL and the DLSP) that the italicized property holds for any discrete distribution
function F. That is, one for which the initial distance d can take on only a countable
number of possible values A time t is a possible meeting time for
the strategy pair (f, g) if, for some k and some choice of signs, it is the first time that

Theorem 16.10 Suppose that (f, g) is an optimal strategy pair for the asymmetric
rendezvous problem on the line with a discrete distribution of initial distance. Let

denote the possible meeting times. Then on each time interval
between possible meeting times, each player moves in a fixed direction at maximum
speed.

Proof. We give a new and simpler proof of this result based on the equivalence of
the DLSP and the ARPL given in Theorem 16.5. According to this equivalence, it is
enough to show that on any such interval one of the searchers in the DLSP
moves at speed 2 in a constant direction, since the desired property of the rendezvous
strategy pair (f, g) then follows from (16.1).
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Suppose that is the optimal DLSP strategy corresponding to (f, g) according
to (16.1), and that moves during this time period. Since corresponds to an undom-
inated way of searching line i for an object hidden at some point

it follows that it will be moving in a single direction during time
By the definition of the it follows that it will not find the hidden object during this
time. Consequently, Theorem B.3 of Appendix B on Alternating Search shows that
is moving at speed 2 during this interval.

The above result is similar in spirit to the result on the geodesity ofoptimal strategies
on labeled networks and can also be applied when the speeds of the players are unequal.

16.7 Arbitrary Distributions

We now obtain some weaker optimality results, valid for any distribution F of the initial
distance that has a finite mean (and hence finite value It is easier to first analyze
the Double Linear Search Problem and then reinterpret the results for the Rendezvous
Search Problem.

Before considering the DLSP we first consider the simpler LSP for a single line,
in which a single searcher seeks an object hidden according to a known distribution.
For this problem we define an important class of strategies that we call oscillation
strategies. (See also Section 8.1 of Book I.) Every strategy is dominated by one of these,
which is why they are important. Roughly speaking, an oscillation strategy simple goes
right and left from the origin, always going further in each direction than previously.
Obviously, there is no way to avoid traversing intervals that have already been searched
(corresponding to what will be called the “old part”).

Definition 16.11 Consider a sequence with and
These numbers determine the transits in which the player moves at unit speed from

to during the time interval from  to where
In some cases there is an initial transit  from 0 (that we label to Every non-initial
transit begins with an old part (from to that retraces
ground already covered, and ends with a new part (from to
that searches new territory. The path consisting of the successive transits is called an
oscillation strategy.

An optimal strategy for the DLSP will be made up of an oscillation strategy for
each line i, together with an alternation rule (see Appendix B on Alternating Search)
that determines which of the two searchers moves at any given time, or more generally
what their respective speeds are. That is, and determine DLSP strategies

and

In general it is possible that the optimal way of interleaving two oscillation strategies
may involve the interruption of a player’s transit. However, the following result shows
that in this case only the “new part” of the strategy (searching new territory) may be so
interrupted. Once the DLSP strategy z begins to retrace an interval already searched, it
continues at full speed 2 until it reaches the end of that interval.
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Theorem 16.12 Consider the DLSP problem for any distribution F. Given any
oscillation strategies and for the respective lines, any optimal alternation rule
will leave the “old part” of any non-initial transit uninterrupted. That is, for some
time t*, we will have and In partic-
ular, for each player there are nontrivial time intervals (namely, the “old parts” of all
non-initial transits) when he moves in a fixed direction at his maximum speed of 2.

Proof. Every non-initial transit begins with a “first part” that covers an interval that
has already been searched. The corresponding cumulative distribution (that gives
the probability that has found the object if it is on the same line) consequently has
zero density during this period. That is,

The fact that an optimal alternation rule will not interrupt an interval of zero density is
stated in Theorem B.4 of Appendix B on Alternating Search.

During any time interval when one of the DLSP searchers moves in a single
direction at speed 2, the corresponding rendezvous strategies f and g each move in
a single direction at speed 1. Consequently the previous result for the DLSP has the
following implication for the ARPL.

Theorem 16.13 Consider the asymmetric rendezvous problem on the line with an
arbitrary initial distribution F. Then for any optimal strategy pair there are nontrivial
time intervals on which each player is moving in a single direction (not necessarily the
same) at unit speed.

In the “Wait For Mommy” (WFM) strategy pair the “child” never moves, so this
strategy cannot be optimal. This was first proved directly by Gal (1999), but we obtain
it here as a corollary of the previous result (Theorem 16.13) from Alpern and Beck
(1999b).

Corollary 16.14 (Gal) For the asymmetric rendezvous problem on the line, there is no
distribution F for which Wait For Mommy is an optimal strategy pair.

16.8 Convex Distributions

Suppose that the initial distribution F has support [0, D] and is convex on this interval.
We first consider the DLSP problem with this F. In this case we can show that for any
oscillation strategies and on the two lines, there is always an alternation rule

such that the full transits of each searcher are uninterrupted by motions of the other
searcher. Furthermore, the individual strategies and can be assumed to each go
directly to +D and then to –D. Combining these results of Alpern and Beck (1999b),
it follows that the strategy pair that is optimal for the atomic distribution is also optimal
for convex distributions.

Theorem 16.15 Consider the DLSP with a convex initial distribution F on the interval
[0, D]. The optimal search strategy pairs all have the following form: First one
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player goes to an end. Then the other player goes to an end. Then either player goes to
his opposite end. Then the other player goes to his opposite end.

If we reinterpret this DLSP in terms of the equivalent ARPL, we obtain the following
result originally conjectured by Baston and Gal (1998) and proved by Alpern and Beck
(1999a).

Theorem 16.16 Consider the asymmetric rendezvous problem on the line with a convex
initial distribution F on [0, D]. Then the MWFM strategy is optimal. In particular, it
follows from the expected meeting time formula of in Definition 16.8 (of
MWFM) that the asymmetric rendezvous value for the uniform distribution (with mean

is 11D/8.

It is worth noting that, unlike the situation for the atomic distribution summarized in
Theorem 16.9, the MWFM strategy is no longer uniformly optimal for general convex
distributions.

Note that in Section 8.7 we have given an algorithm for finding approximate solutions
to the DLSP (and hence the ARPL) for a general distribution of initial distance. Other
algorithmic approaches are given by C. DiCairano (1999).
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Chapter 17

Other Rendezvous Problems
on the Line

In the previous chapter we analyzed the basic form of the asymmetric rendezvous
problem on the line (ARPL). That problem may be summarized as follows, italicizing
those aspects of the problem which we will alter in this chapter.

Two players are placed a distance d apart on the line and faced in random
directions. The distance d is drawn from a known distribution F. A strat-
egy for each player is a function measuring his net motion in the forward
direction. Both players have the same maximum speed (normalized to 1).
The total distance that such a strategy may travel is unbounded. The players
choose two strategies f and g, not necessarily the same, so as to minimize
the expected meeting time.

Many variations on the basic problem have been studied, including very recent work
not discussed here, on rendezvous when marks are left at the player’s starting points
(Baston and Gal, 2001). In this chapter each section will consider how the problem
changes when the italicized qualifiers are changed in one of the following ways.

1.

2.

3.

Unequal speeds Player I has maximum speed 1, while Player II has a maximum
speed

Player symmetry We consider the player-symmetric version of the problem,
where both players are constrained to adopt the same mixed strategy. Player
symmetry is also considered in some of the following sections.

Bounded resources Here we assume that Players I and II have respective
resources a and b that bound the total distance they may travel. There are two
cases for this version: If the distribution F (of the players’ initial distance) is
bounded, and the resource pair (a, b) is sufficiently large to ensure a meeting, we
consider how the expected meeting time can be minimized. On the other hand, if
the resources are too small to guarantee a meeting, we consider how the players
may maximize the probability of meeting.



17.1 Unequal Speeds

We will now analyze the version of the ARPL problem where Player I (called “Fast”)
has unit speed while Player II (“Slow”) has speed We will assume the simplest
distribution F of initial distance. Namely, the atomic distribution where the initial
distance is known to be 1. Recall from the previous chapter that the solution to this
problem for the original (common) speed bound M = 1 was the MWFM (Modified
Wait For Mommy) strategy pair. We choose a coordinate system with Fast starting at
the origin, and the four agents of Slow starting and facing in either direction.
Note that two of the agents of Slow start at each of the If Slow chooses the
strategy g(t), the paths of his four agents will

Depending on the four ways that the two players may initially be faced, there will be
four possible meeting times, the times when Fast meets each of the four agents of Slow.
We denote these by (For the MWFM strategy, Definition 16.8, with
M = 1 and D = 1, these are Without loss of generality, we may
assume that the first meeting of Fast with Slow will take place at time and location a,
for some value Note that for the case M = 1 discussed in the
previous chapter, we have a = 1/2. Theorem 16.10 shows that Fast and Slow should go
to location a at maximum speed. So Fast meets one of the agents of Slow who started
at +1 at time
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4. Unknown Initial Distribution We suppose that the initial distribution F is not
known to the players. In this case they choose strategies (of various types) so as
to minimize the maximum (relative to F ) of the ratio of where is the
expected rendezvous time and E(F) is the mean of the distribution F.

5. Multi-player Rendezvous We consider the problem in which n players
are randomly placed at consecutive integer positions on the line, and faced in
random directions. They move at unit speed until the first time that m of them
occupy a common position.

6. Asymmetric Information We suppose that one of the players (say Player II)
knows the initial position of the other. This problem may arise when Player I
starts from a known position such as a base camp and is called on a cell phone by
Player II who is mobile but needs medical attention. Under what conditions is it
optimal for Player I to wait for II to reach him?

At this time the other agent of Slow who started at + 1 will be at location 1 + ( 1 – a ) .
So if he reverses at time and moves at maximum speed M, he can meet Fast in
additional time

At this time Fast knows the direction of Slow and turns to find him. Slow should move
so that the closer of his two remaining agents to Fast will meet him first. That is, he
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should change directions. This will lead to a meeting at time satisfying

At time the distance between Fast and the remaining agent of Slow is
Hence Fast meets the remaining agent of Slow (who turns at time at time in
additional time

Starting with we may successively solve the numbered equations for the times
through obtaining,

The expected meeting time is given by

Since the parameter a appears linearly, we minimize by setting it equal to its two
extremes 1/(1 + M) or 1, according as its coefficient is, respectively,
negative or positive. Since this coefficient is zero when M is equal to the “golden mean”
or “golden section” we have the following.

Theorem 17.1 Consider the asymmetric rendezvous problem on the line, with the
players starting a distance 1 apart, and with maximum speeds 1 (for the Fast player)
and (for the Slow player). For both players should always move at their
maximum speeds, with Fast reversing at time and Slow reversing
at times and For Fast
always moves at his maximum speed 1, reversing at time 1. Slow stays still until time
t = 1; thereafter he moves at his maximum speed M, reversing at time 1 + 2/(1 + M).
The asymmetric rendezvous value for this problem is given by
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The two classes of strategies are shown in Figure 17.1 using a parametric drawing
in f, g space. The bold line shows the optimal strategy pair for and the dotted
line shows the optimal path for

17.2 Player Symmetry

We now consider the player-symmetric version of rendezvous on the line. We will
assume that the initial distribution has a maximum distance D and that the players
move in “steps” of length D/2. That is, players move at unit speed at all times and
may change direction only at times that are integer multiples of the step length D/2.
A pure strategy may be described in the following notation, introduced in Anderson
and Essegaier (1995):

This corresponds to picking a random direction to call forward (Ahead), going in this
direction for steps, then Backward for steps, and so on. In this notation the first
author’s simple strategy discussed in Chapter 11 as 1F 2B would be written as 1A2B,
with infinitely many independent repetitions until rendezvous is achieved. Note that this
is a mixed strategy because of the independent repeated choices of the forward direction
at time 3nD/2. A better strategy was obtained by Anderson and Essegaier (1995) using
an optimal mixture of the following four 6-step motions

This strategy, like 1A2B, has the property that if the players have not met after the period
of the strategy (six steps), then their distance at that time is the same as their initial dis-
tance. The “distance preserving” property ensures that the expected additional meeting



time after failure to meet at the end of a period is the same as the original expected
meeting time. This makes calculations of expected meeting times relatively easy.

However if the knowledge of failure to meet at the end of a period (6 steps) gives
the players additional information, then it may be that they can do better than simply
repeating with independent randomization. This was observed by Baston (1999), who
began his analysis by considering the following four 6-step strategies:
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Observe that if the players have not met by time 3 D (the period) then they must have
chosen the same direction as forward and the same letter strategy (both or both ß).
Furthermore, if they chose and then the former started in front of the latter; if they
chose and then the latter started in the common forward direction. Consequently
if the probabilities of the two subscripts in each case are nearly the same, and so there is a
good chance that they chose distinct subscripts, then they may wish to have the forward
player move back (add an additional B) while the backward player moves forward (add
an A). This gives a new improved set of four 7-step strategies,

If the players have not met by time 7D/2, then they must have chosen the same direction
as forward and adopted the same strategy. So the problem they face at time 7 D/2 is
the same as the original problem. Optimizing the probability distribution over these
four strategies leads to the following result of Baston (1999), that gives the best known
bound for the symmetric problem.

Theorem 17.2 For any bounded distribution F of initial distance, with maximum D
and mean the symmetric rendezvous value for the line satisfies

This represents a considerable improvement over the first author’s initial estimate
of when posing the problem in Alpern (1995), and a smaller improvement
over the estimate of obtained subsequently by Anderson and Essegaier
(1995). This symmetric problem appears difficult and it is not at all clear what properties
the optimal mixed strategy will possess. For example, we can ask how far the players
may move from each other or from their initial positions in an optimal strategy. In
Baston’s strategy, they move at most 3 units apart (if both choose 2A5B with different
forwards) but may move arbitrarily far from their initial positions (3D/2 further each
time 2A5B is picked).
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It is worth noting again that this seemingly easy rendezvous problem, of two indis-
tinguishable players who know they are a unit distance apart on the line, is still unsolved.
The problem looks harder now than when it was initially posed.

17.3 Bounded Resources

The assumptions of the rendezvous search problem usually allow the players to search
for each other indefinitely until they succeed in meeting. But what if they are traveling
in cars with finite fuel supplies or are hikers with limited stamina. This problem was
modeled by Alpern and Beck (1997, 1999b) by assuming individual limits for the
total distance (more precisely, the total variation) each player can travel. We call these
distance bounds a and b, for Players I and II, respectively. Without loss of generality
we may assume that Let denote the total variation
of a function over its full domain, and define (recalling that is the
set of unrestricted strategies)
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We shall be considering two types of optimization that players with bounded resources
may adopt: expected time minimization and rendezvous probability maximization. The
first of these is reasonable only when the players can ensure that they will meet before
running out of resources. Obviously, this presumes that the distribution F of their initial
distance is bounded, with some maximum value D. So what are the conditions on the
resource bounds a and b for which players can ensure a meeting even if their initial
distance is D (or less)? This question was answered in Alpern and Beck (1997) as
follows.

Theorem 17.3 Suppose that two players are placed a distance D apart on the line,
faced in random directions, and can travel respective total distances of a and b, where

They can guarantee a meeting if and only if

The sufficiency of this condition will be established in the following subsection,
where moreover expected time minimizing strategies with these resource bounds will
be given. The proof that these conditions are necessary can be found in Alpern and
Beck (1997).

This section now divides into two subsections, depending on whether or not 3a + 5b
exceeds 15D. When it does, we consider the expected time minimization problem.
When it doesn’t, we consider the problem of maximizing the probability of a meeting.

17.3.1 Expected time minimization for

The expected time minimization problem is easy to state. Recalling that denotes
the expected meeting time, we define (for bounded distributions F with maximum D

and



Recall from Section 16.5 that the optimal MWFM strategy pair for the unrestricted
problem with the atomic distribution had each player moving a distance
3D. So for this strategy is still feasible, and consequently should be
the same as the unrestricted asymmetric rendezvous value where the superscript
simply stands for asymmetric. If b = 0, then Player II is simply a stationary “object,”
and the problem reduces to the bounded resources Linear Search Problem studied by
Foley, Hill, and Spruill (1991). Finally, if and b = 0, then this is the original
Linear Search Problem posed by Bellman (1963) and Beck (1964).

Since the special cases of this problem are not fully solved, we naturally cannot
expect a complete solution to the more general problem (17.7). However, in the case
of the atomic distribution d = D we can give a complete solution which generalizes
that given in Section 16.5 for infinite resources. For simplicity, we normalize the initial
distance D to 1.

Theorem 17.4 Suppose that two unit speed players are placed a unit distance apart on
the line and faced in random directions. Players I and II can respectively travel a total
distance of at most a and b, where and Then their least expected
meeting time is given by

The detailed proof can be found in Alpern and Beck (1997). Here, we will give
sample optimal strategies for each of the regions I to IV which define a particular class.
These regions are drawn in Figure 17.2.

A typical example for Region I would be a = 2, b = 1.8. Here the solution is for
Player I to move forward at unit speed from time 0 to time 0.6, rest until time 1.4, and
then move backward at unit speed until time 2.8. Total distance traveled: 0.6 +1.4 = 2.
For Player 2, the optimal strategy is to move forward at unit speed until time 0.4, rest
until time 0.6, go backward at unit speed until time 1.4, rest until time 2.6, and finally
forward at unit speed until time 3.2. Total distance: 0.4 + 0.8 + 0.6 = 1.8. The four
meeting times are 0.6,1.4,2.6, and 3.2, as illustrated below in Figure 17.3. The expected
meeting time is 1.95.

If the resources are slightly increased to a = 2.6, b = 2, we enter Region II. The
optimal strategy for this case is drawn below in Figure 17.4.

The meeting time has been reduced to 1.8 by employing a more efficient method
of hitting all four sides of the square If we now increase a past 3 but
decrease b to 0.4, we get the same meeting time as in the first case considered. The
optimal strategy pair for this case is drawn below in Figure 17.5.
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satisfying the bounded resources asymmetric rendezvous value for the
line as
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Of course if both a and b are at least 3, the optimal strategy for the unrestricted
resource case, the MWFM strategy is optimal.

An important distinction worth observing between optimal strategies for the bounded
resources and unrestricted cases is that, unlike Theorem 16.13, periods of resting can
now be part of an optimal strategy. However as long as Player II has some resources
(i.e., b > 0), he can always improve the expected meeting time by moving, so that
WFM is still never optimal.

17.3.2 Probability maximization

According to Theorem 17.3, when the resource pair a, b available to the players does not
satisfy the required inequality the players cannot ensure they will meet.
Hence in that case the expected meeting time corresponding to any feasible strategy
in is infinite. So for this situation another optimization criterion suggests itself.
Namely maximizing the probability of a meeting. That is, we seek the rendezvous
probability value

We note that for this problem the distribution F need not be bounded. The results of
this subsection are taken from Alpern and Beck (1999b). (However, the reader should
be warned that the subscripts 2 and 4 (of M and Z) are transposed from that paper to
obtain consistency with previous chapters.)

where is the probability that players adopting strategies f and g will meet (eventu-
ally). That is, in the notation of the previous chapter. Strategies where
the maximum is achieved will be called probability maximizing, or (when the context
is clear) simply optimal. If we define the four maximum distances by in
(16.2), then is given by



We may classify strategies by the temporal order in which these four maxima are
achieved. That is, by the ordering of the four times and For example, if for
some strategy we have then the parametric plot of this strategy
hits the four sides of the bounding rectangle in cyclic clockwise order, and we say such
a strategy has order type 1234. By suitably changing the signs of f or g (or both), we
may assume that is the least of the four so for convenience we will assume that
all strategies have this property, or equivalently, that all order types begin with a 1.
Particular attention will be paid to the cyclic order types 1234 and 1432.

In the following subsections we will determine properties of optimal strategies for
arbitrary distributions, certain classes of distributions, and some particular distributions.
For this section we will say that a strategy is F-dominated by another if the latter has at
least as large a value of P for that F, and dominated if this holds for all F. We identify
a strategy (f, g) with its parametric plot in the plane.

Arbitrary Distributions
Even for arbitrary distributions F, it turns out that we may restrict our strategies to
certain types without reducing the maximum probability of meeting. The following
combines two observations of Alpern and Beck (1999b, Lemmas 2 and 3).

Theorem 17.5 For any distribution F and any strategy (f, g), there is an F-dominating
strategy with either of the following properties: The path between any consecutive
boundary points Z and is a single straight line, or it consists of two straight lines,
each parallel to a coordinate axis. Furthermore, if Z and are located on adjacent
sides of the bounding rectangle, then the path between them is a single straight line
parallel to one of the coordinate axes.

Proof. Let Z = (x, y) and be the consecutive boundary
points. The total variations of f and g over the intervening time interval I are at least

and So any modification of f and g which is restricted to I and has variations
and over I will not have a smaller meeting probability or a larger total

variation. This can always be achieved by a straight line between Z and and can also
always be achieved in two ways by successive lines parallel to the axes.

To establish the “furthermore” part, we give a brief outline of how to modify any
given strategy to another one which has the specified properties, a bounding rectangle
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Suppose that the four maximum distances are obtained respectively at first
times and denote the four boundary points of a strategy (f, g) by where

In this notation, we have
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which includes that of the original strategy and uses no more resources for either player.
So we may first modify the original strategy by applying the last claim of the first
paragraph (about lines parallel to the axes) four times: first to the origin and then to

and the next boundary point, and so on. Since the two original endpoints are inside
the new curve, the values of the relevant cannot decrease.

For the next modification suppose, for example, that immediately follows
and that the path between these has a horizontal as well as a vertical line. This implies
that and have distinct horizontal components If the original
path (shown in Figure 17.6 by a solid line) must have the vertical before the horizontal.
The modification here is to change the order, putting the horizontal line first (shown
in dashed lines in Figure 17.6). The new path has the same total variation in each
coordinate, the same and a new with the same horizontal coordinate as and
an increased value of Consequently, the meeting probability P of (17.9) cannot
be smaller than before. An analogous modification can be made for the alternate case

The Atomic Distribution
We now consider the problem of maximizing the rendezvous probability for the atomic
distribution with an atom at 1. That is, the players start at a known distance of 1
and have respective resources a and b. Since in this situation can only take the
values 0 or 1, it is clear from the rendezvous probability formula (17.9) that and
hence also its maximum value can take on only the values 0, 1/4, 2/4,
3/4, and 1. Graphically, the strategy (f, g) will satisfy if the parametric
plot of (f, g) meets k sides of the square with corners at (0,1), (1,0), (–1, 0), and
(0, –1), as pictured below in Figure 17.7. Since the atomic distribution is bounded
with maximum distance D = 1, we already have a necessary and sufficient condition
that Namely, the condition                                        of Theorem 17.3.
Necessary and sufficient conditions for the other possible values to be are
given in the first four parts of the following result of Alpern and Beck (1999b), which
is based in part on the strategies in the following figure.

Theorem 17.6 Suppose two players are placed a unit distance apart (the atomic distri-
bution A) on the line and faced in random directions so that neither knows the direction
of the other. Suppose the players can move at maximum speed 1 and have resources
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a, b that bound the total distance each can travel, where Then the maximum
probability with which they can meet is given by

Proof. The fact that is at least as large as the stated values is verified by
checking the strategies in the above figure. To show that there are no better strategies,
we adopt the “sum” metric in the plane in which the distance between two points is
the sum of the absolute values of the differences between corresponding coordinates.
(e.g., This is useful because of the fact
that the sum of the total variations of the two coordinates of any path cannot be less
than the distance between its endpoints. Note that the unit sphere with respect to this
metric is simply the square so that no side can be reached (from the origin) when
a + b < 1. Similarly, in order that three sides of be reached, two opposite sides
must be reached. Consequently, in this case combined resources (total variations) of 1
(to reach first side) plus 2 (to go between opposite sides), or are required. It
remains only to show that when two sides cannot be reached. We know
from the previous argument that two opposite sides cannot be reached. If two adjacent
sides are reached, we may assume by Theorem 17.5 that the boundary points are (x, y)
and (x, – y) or (x, y) and (–x, y) , in either case with x + y = 1. In the first case, the
resources required are and so that In the second
case we would need and hence (because

Concave distributions
We now show that when the initial distribution F is concave, we may further restrict
our optimality search to strategies of a special type. First we show that we need only
consider strategies with one of the two cyclic order types 1234 and 1432.
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Theorem 17.7 Let F be a concave distribution. Then every strategy is F-dominated
by a strategy with a cyclic order type, which we may take to be 1234 or 1432.

Proof. Let (f, g) be a given strategy with a noncyclic order type This
means that either is not adjacent to or is not adjacent to where 1 is considered
to be adjacent to 4.

First assume the former case, that is not adjacent to Since we are assuming
that this means that the type is either 1324 or 1342. Assume for the moment it
is 1324. The parametric plot of this strategy from may be assumed to be the three
straight lines parallel to the axes joining of the points and The line
joining and intersects the line joining and at some point X . So we may
rewrite the original path from as Now replace this path with
the order type 1234 path The new path consists of the same line
segments as the original, though they are traversed in different orders and directions.
Nevertheless, the total variations in each coordinate remain the same. Consequently the
1324 path is dominated by the one of cyclic order 1234. Note that the assumption of
concavity was not used in this part of the proof.

Now assume that is not adjacent to as in the case 1243. By the first part of
Theorem 17.5 we may assume that (f, g) is linear between the successive points

and by the “furthermore” part also that and Recall that
and denote the coordinates of
We will considerhere only the more difficult casewhere the other case can be

found in Alpern and Beck (1996). We will show that the original path is F-dominated
by the path which is linear between the points Call the
resulting strategy This is the same as the original path, except that the final
segment from       to       has been reflected 180° about Consequently, it uses the
same pair of total variations (resources) as (f, g). Since and we
have the same maxima and Hence we only need to show that

The individual calculations are as follows

Hence

< 0 (by the assumed concavity ofF).



17.4.1 Asymmetric strategies

Suppose the players can use distinct strategies against an unknown distribution of initial
distances. One natural strategy pair to consider is the best strategy of Wait For Mommy
(WFM) type. That is, one player stays still, while the other uses the best linear search
strategy to find him, or equivalently an object hidden equiprobably with d drawn
from a distribution F with mean In Chapter 8 we showed that a best strategy of this
type finds the object (or the stationary child-rendezvouser) in expected time at most

This result uses the minimax properties of geometric series derived in
Chapter 7. Baston and Gal (1998) made the following interesting heuristic extrapolation
argument to guess the best possible coefficient of Recall that for the asymmetric
rendezvous problem on the line with an atomic distribution (D = 1) WFM has expected
meeting time (1 + 3)/2 = 2, while the optimal (MWFM) strategy has expected meeting
time 13/8, an improvement of about 19%. A 19% improvement on would give
a bound of about for the rendezvous problem. While they presented a strategy
pair with expected meeting time the following result of Alpern and Beck (2000)
shows that their extrapolation is indeed very accurate in this case.

Theorem 17.8 Let denote the following asymmetric strategy pair. There are
infinitely many time periods with each of
length â times the previous one and In every period, each player
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17.4 Unknown Initial Distribution

In the usual formulation of the rendezvous search problem, the initial placement of the
players is assumed to have a known joint distribution in the search region Q. When
Q is the real line R (the subject of this chapter) it is the initial distance d whose
distribution F is assumed to be common knowledge. However, the initial placement
may be considered in the context of uncertainty rather than risk, in that there may be no
prior distribution accepted by the players. This type uncertainty is sometimes modeled
by assuming that what is not known is chosen maliciously, which gives a worst case
analysis, or what is known as a game against Nature. More generally, we may assume
that some antagonistic agent (Nature or other) chooses the initial placement of the two
rendezvousers. This problem was proposed by Alpern (1995) as follows (with the name
of the search region changed here to Q):

Adversary-rendezvous games: Suppose the two searchers’ initial posi-
tions in Q are chosen by another player who wishes to maximize their
meeting time. . . . This becomes a two-person zero-sum game where the
rendezvousers are a single player.

In the context of rendezvous on the line, it is the distribution F of the players’ initial
distance d that is chosen by the adversary player. Of course, the adversary can make
the meeting time arbitrarily large simply by choosing an F for which small values of d
are excluded. To avoid this, we limit the choice of distributions F to those with a given
mean This corresponds to the approach taken in Beck and Newman (1970) for the
case of a single searcher seeking a stationary object hidden on the line according to a
distribution chosen by an adversary, as discussed in Chapter 8.



where

Furthermore, this is the best possible bound of this type within the class of alternating
strategies.

Proof. The proof follows Alpern and Beck (2000), and analyzes this rendezvous
problem on the line in terms of the equivalent double linear search problem (DLSP) on
the line. The DLSP and its equivalence to the rendezvous problem ARPL are discussed
in the previous chapter. We assume a stationary object is hidden at a distance H from
the origin of one of two given lines. One searcher starts at the origin of each line. The
searchers alternate, each going at speed 2. A particularly significant class of DLSP
strategies are the alternating strategies A. An alternating strategy is an increasing
positive sequence interpreted as follows. In the n-th period one of the
searchers goes at speed 2 from a distance on one side of his origin to on the
other side. The two searchers move in alternate periods. In general (unless for
all i less than some integer) such a strategy involves an infinite number of oscillations in
arbitrarily small initial time segments. (However, the general strategy of this type may
be uniformly approximated by one that starts with an initial period where the searcher
moves from the origin at speed 2 on some initial time interval, and then the other does
the same.) For any alternating strategy, the time when the n-th period ends (with a
searcher reaching distance is given by
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moves in a fixed direction at maximum speed 1. At times odd, Player I reverses
direction. At time even, Player II reverses direction. Take

where

Then for any distribution F with mean the expected meeting time for these strategies
satisfies

If the object is hidden at distance H, with

then it will be found by strategy x equiprobably in one the periods n + k, k = 1, 2, 3, 4.
If found in period n + k, it will be found at time

Hence the expected time E(x, H) required to find it is given by
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The above formula for as a function of a has a minimum below 5.514, which is attained
at the value stated in the theorem for The rendezvous equivalent of the optimal DLSP
strategy is described in the statement of the theorem.

It is well known that in zero-sum games the minimizer can sometimes lower his worst
case expected payoff by choosing a mixed rather than a pure strategy, and this turns out
to be the case here. In this game a pure strategy for the rendezvousers (minimizers) is a
pair of trajectories. So the corresponding mixed strategies are probability distributions
over the pure strategy pairs Such strategies may also be considered “correlated
strategies” if one interprets the two rendezvousers as distinct players. The best known
strategy of this type is given in Baston and Gal (1998), which gives the following
estimate.

Theorem 17.9 There is a probability measure  on with the following property:
Let F be any distribution the of the initial distance between two rendezvousers on the

266 BOOK II. RENDEZVOUS SEARCH

Consider the problem in which the searcher picks so as to minimize the cost
function given by

in the worst case with respect to the unknown distance H. We can think of E (x, H) as the
expected time for the searchers to find an object at distance H or for rendezvousers using
the equivalent rendezvous strategy to find each other. Let (x) denote the maximum
cost of the strategy x, so

From the above calculation of E(x, H), we see that

We wish to show that the above expression is minimized when the alternating strategy
x consists of a sequence of integer powers of some constant greater than 1. It follows
from Corollary 7.11 on the optimality of geometric series that



17.4.2 Symmetric strategies

We now consider the player-symmetric version of the unknown initial distance linear
rendezvous problem. Recall that even for known initial distributions F, the players
cannot achieve a finite expected meeting time with a common pure strategy because
then if they start facing the same direction they will never meet. So the hardest reasonable
problem for the rendezvousers occurs when they are forced to choose the same mixed
strategy. The following is based on the strategy outlined in Baston and Gal (1998).

Theorem 17.10 There exists a mixed search strategy with the following property.
Let F be an initial distribution of distance between the players that has finite mean
If the two rendezvousers simultaneously adopt with independent randomization, then
their expected meeting time satisfies is no more than That is,

A better estimate, also taken from Baston and Gal (1998), is available if the
rendezvousers can randomize over their common mixed strategies.

Theorem 17.11 There exists a probability distribution over the mixed search strate-
gies with the following property. Let F be an initial distribution of distance between
the players that has finite mean If a mixed strategy is picked according to this distri-
bution and then adopted simultaneously by both players, the expected meeting time of
the total process is no more than 11.4

17.5 Multiplayer Rendezvous

We will consider two versions of multiplayer rendezvous on the line: the players may
wish either to minimize the expected time or the maximum time of some specified
type of multiple rendezvous. In both cases the problem begins by placing n agents
randomly at n consecutive integer locations on the line, which for simplicity we take
to be 1, 2, . . . , n. They are faced randomly in either direction. They move at maximum
speed 1 until the first time that a given number of them are at the same
location. Depending on the version, they may wish to minimize either the expected
or maximum value of The agents may or may not be required to use the same
strategy (player symmetry or player asymmetry).

Multiple rendezvous has certain aspects not present in the two-player version.
A strategy for a player must include instructions regarding what to do if he meets
another player. What information should he exchange? Which of the two players who
first meet should determine their future movements? Should players who meet stay
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line which has a finite mean Then the expected meeting time of two rendezvousers
who jointly choose their strategies based on satisfies



together, or should they split up to increase the region they can search? Note that this
last question of “stickiness” is not the same as the superficially similar notion discussed
for the context of labeled networks in Chapter 13. (There it was theoretical agents of a
single player who were required to stay together, while here we are talking about actual
physical players who may meet.)

Multiplayer rendezvous in another context is considered in the important recent
paper of Thomas and Pikounis (2001).

17.5.1 Expected time minimization

We first consider the player-symmetric version of the problem with m = n. That is,
we seek the least expected time required for all n of the agents to meet together at a
single location, given that they all use the same strategy. Clearly, such a minimizing
(optimal) strategy must be mixed, since if they all use the same strategy and are unlucky
enough to all begin facing the same direction, there will never be any meetings at all.
This problem may seem too difficult, as we saw earlier that even the two-player case
of symmetric rendezvous on the line is an open problem. However, it turns out that the
asymptotic value of the least expected time can be determined. In the following
analysis we will call the part of a player’s strategy that says what to do before he meets
anyone his Stage I strategy. As with the previous rendezvous strategies we have seen
(but not those to follow), such a strategy simply specifies a net motion function in a
player’s forward direction.

Unusually for rendezvous problems, in this version it is the lower bound on the
rendezvous value that is easy to determine. Note that this lower bound holds even for
the asymmetric version, where players may use distinct strategies.

Lemma 17.12 For any n ,

Proof. We prove this simple result for the rightmost inequality, as the symmetric
value cannot be smaller. Observe that no meeting of players can occur before time 1/2.
Let f and g be the strategies followed by the players who are placed at the two end
locations 1 and n. Their expected distance at time 1/2 is their initial distance, n – 1,
plus the average of the four values the second of which is clearly 0.
The expected time for the end players to meet has a lower bound given by 1/2 plus half
their expected distance at time 1/2, or
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Since a meeting of all n players requires in particular a meeting of the end players, the
result follows.

Better lower bounds on for small n are clearly obtainable by similar methods.
But as we shall see, this bound is exactly what will be needed to establish the asymptotic
value as n goes to infinity. The following result obtained by Lim, Alpern, and Beck
(1997) established a suitable asymptotic upper bound.



Theorem 17.13 The symmetric and asymmetric multiple rendezvous values and
are both asymptotic to n/2. In particular, they satisfy the inequality

Proof. Given the previous lemma, it is enough to establish the rightmost inequality.
To do this, we present a symmetric rendezvous strategy with the required expected time
to achieve a total meeting of all n players. All motion is, as usual, taken at maximum
speed 1.

Before describing the strategy in full, we first state a rule that overrides anything
that follows.

Overriding rule: If you meet someone who says “follow me,” then follow him.
That is, use the same future path.

Aside from this special rule, the strategy has three stages.
Stage I strategy: At each time t = 2k for integer k, choose a random direction

(equiprobably and independently of previous choices) to call forward. Go distance 1/2
in this direction, then distance 1 in the opposite direction, then forward again a distance
1/2. This brings you back to your starting point at time 2(k + 1). Repeat this until the
first time when you are back at your start after having met another player. Then proceed
to Stage II.

Stage II strategy: When beginning this Stage, you have recently met exactly one
other player while you were in Stage 1, and you are at your original starting location.
Go in the opposite direction from this meeting, a maximum distance of 1. If you meet
someone (either after time 1/2 or time 1), then return immediately to your starting point
and wait. If after time 1 in Stage II you have not met anyone new, go to Stage III.

Stage III strategy: Go back in the direction of your starting point (continuing past it),
instructing anyone you meet to follow you.

We now seek to determine the expected total meeting time for this strategy. Let
denote a particular way of all the possible chance moves being picked (by Nature
in the initial configuration and by the players in their independent randomizations).
Let denote the time when player i (the one starting at position i) enters Stage II.
Suppose that for some Player i enters Stage II at time 2k (that is, and
that his neighbor, say i – 1, has not entered this Stage by time 2k. Then Player i – 1
will meet Player i either at time 2k + 1/2 or 2k + 1. So at time 2(k + 1) he will be
back at his start after having met Player i. Consequently, In general, this
argument shows that for all i = 1 , . . . , n – 1 we have and by induction

There is a bidirectional domino effect according to which adjacent
players enter Stage II recursively after any player does.

We now compute the time required for all the players to meet at a single
location. Observe that at time Player 1 will be at location 0, having been in
Stage II for time 1. Similarly Player n will be at location n + 1 at time At these
respective times they will have satisfied the last sentence of the Stage II definition.
Consequently, they will begin Stage III and move toward each other at these respective
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times. Denoting their respective positions at time t by 1(t) and n(t), we have

Consequently, the two end players 1 and n meet (together with all intervening players)
at time

Hence we have

(since by symmetry where E denotes the expectation operator on
To estimate we may assume that n = 2, since for larger values of n we have
earlier meetings since Player 2 may go left by the Stage II rule. For n = 2 the two
players will meet after time if they both initially moved toward each
other (probability 1/4) and after time 3/2 if they initially moved away. So
we have or For general n we
have Substituting this value into (17.11) gives the required upper bound
(17.10).

The upper bound in (17.10) can easily be improved (see Lim, Alpern, and Beck,
(1997)). However, these improvements are not close to the best estimate that can be
obtained for small n. For example, Baston’s strategy for the symmetric rendezvous
problem with two players (Theorem 17.2) gives It is also worth noting
that the strategy given in the above proof is robust in that it does not require that the
players know the number of players n.

For small values of m and n, the asymmetric rendezvous value can be found by
branch and bound techniques. In particular, the problem of minimizing the expected
time for a pairwise meeting among three agents was solved in (Lim, Alpern, and Beck,
(1997), Theorem 5), where it is established that

17.5.2 Maximum time minimization

In certain applications it is important that the rendezvousers meet by a specified critical
time; meeting earlier may be only moderately useful, and meeting later may not even
be a possibility. For example, hikers may need to meet before nightfall to establish a
camp. Or one of the rendezvousers may be a medic who must meet the other (a patient)
early enough to apply the antidote to a certain condition (e.g., snakebite, heart attack).
In such cases it is useful to determine for each strategy the maximum time it may require
for a meeting to take place. The desired strategy is then the one which minimizes this
maximum. (Or in a specific application, any strategy whose maximum time is lower
than the critical time would be acceptable.)

The minimax multi-rendezvous problem for the line was introduced by Wei Shi Lim
and Alpern (1996) based on the following definition.

Definition 17.14 Suppose that n distinguishable players (who may use distinct strate-
gies) are arbitrarily placed at n consecutive integer locations on the line and faced



in either direction. The minimax time is the least time required to ensure that all n
players can meet together at a single point.

It is fairly easy to see that this problem is equivalent to one where the players move
in discrete time units (corresponding to a half unit of time) between adjacent points of
the grid of integers and half integers. Consequently, each minimax time will be of
the form k/2, for some integer k.

When n = 2, this is not a multiple rendezvous problem at all, but actually one
already solved in Theorem 16.7. It was shown there that for any bounded distribution
with maximum initial distance D, the WFM strategy pair is minimax, with maximum
rendezvous time 3D. Reinterpreting that result in the present context with D = 1 gives
the following.

Theorem 17.15

The first true case of multiplayer rendezvous is n = 3. It was shown by Lim and
Alpern (1996) that It was incorrectly claimed in that paper (Lemma 6 and
its consequence, Theorem 3, are false in that paper) that the exact value of was 4.
However, V. Baston (1999) subsequently discovered the following strategy (which we
call the Baston strategy), and demonstrated that it has a maximum three-way meeting
time of 3.5, which by the earlier result is the best possible.

Definition 17.16 The Baston Strategyfor three-person rendezvous on the line is given
in terms of the following Stage I (before any meeting) and Stage II (after any meeting)
rules.
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Stage I strategies: Player 1 reverses at time 0.5. Player 2 reverses at times 0.5,
1.5, 2.5. Player 3 reverses at times 0.5, 1.5, 2, and 2.5. (Between reversals players
go in a fixed direction at maximum speed 1).

Stage II strategies:

1.

2.

3.

4.

5.

6.

If Players 2 and 3 meet at time 0.5, then in the next time unit they first go
back to their starting points and then return to their meeting point. They
wait there until Player 1 meets up with them.

If Players 2 and 3 are the first to meet and this meeting occurs after time
0.5, they remain stationary at this meeting point until Player 1 meets up
with them.

If Players 1 and 2 meet at time 0.5, then they each go backward for time 1.5
(by which time one has met Player 3 and keeps him) and then forwardfor
time 1.5.

If Players 1 and 2 are the first to meet and this meeting occurs at time 1,
then Player 2 moves forward for time 0.5 and then backward for time 2,
while Player 1 moves backward for time 2 and then forward for time 0.5.

If Players 1 and 2 are the first to meet and they meet at time 2.5, then they
both move backward together (using Player 1’s orientation) for time 1.

The cases in which players 1 and 3 are the first to meet are similar to those
of (3.), (4.) and (5.) except that players 2 and 3 must have the opposite
orientation to Player 1 in the case corresponding to (5).



Subsequent to the discovery of this strategy by Baston (1999), Alpern and Lim
(2002) showed how to derive it as the unique optimal strategy. The combined work on
this problem can be summarized as follows.

Theorem 17.17 Furthermore the only strategy triple that has a maximum
meeting time of 3.5 is the Baston strategy.

The Baston strategy has the property that sometimes when two players meet they
must adopt different future paths. Another version of the problem outlaws such unsocial
behavior. The minimax rendezvous time when players who meet must stick together
is denoted by Consider the WFM strategy (1 Mommy, 2 Children) for this case.
Mommy goes in some direction until she reaches an unoccupied location, then turns
around until both children are collected. Children wait until Mommy finds them and
then are carried by her. The worst time for triple rendezvous is 5. This occurs in the
case where Mommy starts in the middle, reaches an unoccupied location at time 2, and
finds the last child at time 5. No other sticky strategy does better than this (Lim and
Alpern, 1996):

Theorem 17.18 If players who meet must stick together, then the minimax rendezvous
time for three players is

We now consider the problem when there are a large number of players. In this case
the problem amounts to finding a way for the two end players to realize that they are
end players, and which end they are on. Once this happens, they simply go toward each
other. The following asymptotic result is due to Lim and Alpern (1996); the specific
upper bound is from Gal (1999).

Theorem 17.19 The minimax rendezvous time required for n players randomly
placed on adjacent integers to all meet at a common point, is asymptotic to n/2. That
is, Furthermore,
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Proof. Since the end players cannot meet in time less than (n – 1 )/2, the asymptotic
result will follow from the claimed upper bound, which we establish by analyzing the
strategy given by S. Gal. In the following description k denotes denotes
going 1/2 forward and then 1/2 backward, and ß denotes going 1/2 backwards and then
1/2 forward. (Either or ß takes total time 1.) Each player begins with
a sequence of the following form

where each and if and if Since we have
chosen k so that there are sure to be enough sequences so that
each of the n players can adopt a different one. If two adjacent players are initially faced
in opposite directions, they will have met by time 2 (after both adopt Otherwise,
they are initially facing in the same direction and will meet when one of them uses
while the other uses ß. It follows that at time 2k + 2 the players who started at the end
positions 1 and n will be back at their initial positions and will each be aware of the



direction to all the remaining players. So at this time they should move in that direction
and tell anyone they meet to come with them. Consequently, there will be an n-way
meeting at time

It is worth noting that, since the maximum meeting time cannot be less than the
expected meeting time, the above result gives us another way of obtaining the earlier
result (the easy part of Theorem 17.12) that is asymptotic to n/2.

17.6 Asymmetric Information

In some real situations the two players may have different information about the initial
location of the other. For example, if two parachutists drop at different times, the location
of the first (to drop) may be known to the second but not the other way around. This
type of problem was first considered in the plane by Anderson and Fekete (2001). Their
analysis is given in the next chapter. The analysis given here is due to Alpern (2001).

We suppose that Player I starts at a position known to both, which we call 0. Player II
can be assumed to know the location 0 or simply to know the direction to I. In any case
it is easy to see that the following trajectory of II dominates any other motion:
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In this version of rendezvous on the line it is not necessary to assume that the
distribution of g(0) (Player II’s initial location) is distributed symmetrically around 0.
However, for notational convenience (to agree with that of Appendix B on Alternating
Search) we will assume that II’s initial location g(0) is equally likely to be positive or
negative. In the event that g(0) > 0 we define

and in the event that g(0) < 0 we define

Since we can assume that g(0) is not 0, the two cumulative probability distributions
and F2 determine a distribution F of the initial position g(0) on the line.

Suppose that Player I follows a path f ( t ) , with f(0) = 0 and maximum speed 1. If
g(0) > 0, then rendezvous will have occurred by time t if and only if
or equivalently if

Similarly if g(0) < 0 then the rendezvous time if and only if

Consequently, the rendezvous probability is given by
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and the expected meeting time is given by

It turns out that the problem of minimizing the above expected time for f is equivalent
to the problem of alternating search discussed in Appendix B on Alternating Search,
and that the analysis of that problem given by the first author and John Howard can
be effectively applied. The formula (17.12) shows that the meeting probability is the
probability that a single stationary object placed at g(0) according to F is found either
by a searcher going along the positive real axis with motion f ( t ) + t or by a searcher
going along the negative real axis with motion – f(t) + t (describing its distance from
the origin). If we write this in terms of the alternation rule with as
described in Appendix B on Alternating Search, we find the equivalence

In this equivalence the positive real axis is identified with ray 1 and the negative real
axis with ray 2. Consequently, we have the following.

Theorem 17.20 Consider the asymmetric information rendezvous problem on the line,
in which Player I is placed at 0 and Player II is placed equally likely on either the
positive or negative real lines. II’s initial distance from 0 has cumulative probability
distribution or conditioned on the respective ray. Then the least expected meeting
time (rendezvous value) is given by the value of the associated alternating
search problem as defined in Appendix B on Alternating Search.

The analysis given in Appendix B can be used to give a qualitative description of
the optimal Player I motion f(t) in certain cases. For example Theorem B.5 (part 2)
gives the following sufficient condition for waiting to be optimal for Player I.

Theorem 17.21 Suppose that Player II is symmetrically distributed in the asymmetric
information rendezvous problem on the line Then a sufficient condition for
“waiting” (that is, f(t) identically 0) to be optimal for Player I is that is concave.
If is strictly concave, then waiting is the unique optimal solution for Player I.

In some cases it is optimal for Player I to first move in one direction to meet an
oncoming Player II until he realizes he has gone in the wrong direction, and then to
move in the other direction. The following is an immediate consequence of Theorem B.3.

Theorem 17.22 Suppose that both distributions and are convex on their sup-
porting intervals. Then there is an optimal solution of the asymmetric information
rendezvous problem on the line in which Player I goes in a single direction until the
first moment he is sure that II was in the other direction and then turns and goes in that
direction until he meets II.

Situations in which and do not satisfy the conditions of the two previous
results can be solved by the algorithms given in Appendix B on Alternating Search
and more generally in Alpern and Howard (2000). For example, if the initial distance
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between the players is known to be 1, then Player I goes at speed 1 a distance 0.5 in
one direction and then a distance 0.5 in the other. He meets Player II equally probably
at times 0.5 and 1, so the rendezvous value is 0.75. If the initial distance is uniformly
distributed on [0, 1] then Player I can either wait, with average waiting time 0.5; or he
can follow the previous strategy, in which he meets in average time 0.25 if he guesses
the direction right and 0.75 if he guesses wrong.
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Chapter 18

Rendezvous in
Higher Dimensions

Up to now, most of the search regions Q on which the rendezvousers are assumed
to move have been one-dimensional. This chapter considers various ways in which
more difficult higher dimensional rendezvous problems may be analyzed. To make
this problem more tractable we will generally assume that the players are confined to
move on a grid that models n-dimensional space. Then we will consider versions of the
problem where the players have a common notion of direction, or one player knows the
starting location of the other, or they have differing speeds and detection distances.

Work on planar rendezvous for asymmetric players was initiated by Thomas and
Hulme (1997) and Anderson and Fekete (2001), and has been extended to higher dimen-
sions and player-symmetry by Alpern (2001). See also the very recent preprint of Chester
and Tutuncu (2001).

18.1 Asymmetric Rendezvous on a Planar Lattice

We first consider the asymmetric rendezvous problem on a planar lattice, where the
players have no common notion of locations or directions. As observers, we will adopt
Player I’s notion of North. As shown in Chapter 13, it is often useful to model a
continuous rendezvous problem by a discrete one. To avoid the problem of “passing
without meeting” (transposing positions on adjacent nodes), we begin with a placement
of both players on “even” nodes, so that when players always move to a distinct adjacent
node they will continue to be on nodes of the same parity. The general notion of even
and odd nodes described in Chapter 13 will not be needed here, as we will restrict our
attention to the specific network analyzed by Anderson and Fekete (2001). Anderson
and Fekete assume that the players have a common notion of a clockwise direction or,
equivalently, of how to get East when facing North (turn right). However, the strategy
they propose does not in fact require this assumption. We begin by assuming this
common notion of clockwise but then analyze the more restricted version of the game
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where the players cannot rely on this. In terms of the given group G of symmetries
described in Chapter 12, this means we first leave out the reflections from G, and then
we put them in.

The network consists of the integer lattice points (m, n) in the plane, with (m, n)
adjacent to the four other nodes (m, n ± 1) and (m ± 1, n) to which it is connected by
a vertical or horizontal line. This is essentially the “graph paper” lattice. In this setting,
even nodes (m + n = even) are adjacent only to odd nodes (m + n = odd). We will
consider starting positions in which both players are on nodes of the same parity (say
even). A move consists of one of the compass directions N = (0, 1), E = (1, 0), S =
(0, –1), and W = (–1 ,0 ) . However, while we may choose to view the problem from
Player’s I’s perspective, we cannot assume that Player II’s compass directions will be
the same. We may assume that Player II is randomly faced in one of the four compass
directions and that he calls this direction North.

Before proceeding with the two-dimensional analysis, it is worth formulating the
asymmetric rendezvous problem on the line (ASRL) in this discrete type of setting. If
the initial distance between the two players was two units (taking the atomic distribution
with D = 2) on a one-dimensional lattice, it was shown in Section 16.5 that the uni-
formly optimal strategy is given by the pair [E, E, W, W, W, W], [E, W, E, E, W, W].

Anderson and Fekete (2001) consider a specific initialization of the problem on the
planar lattice described above, in which Player I starts at the origin (0,0) and Player II
starts equiprobably at the four nodes (±1, ±1) and equiprobably calls any of the four
directions N. The information available to both players is that the other player is one
horizontal plus one vertical step away. We may consider that there are 16 equiprobable
agents of Player II, and I wishes to minimize the expected time required to meet an
agent. The initial locations and directions (say, the direction they call North) of these
16 agents are shown in Figure 18.1.

Anderson and Fekete analyzed a strategy pair that we call the A–F strategy, given
by Note that this is a
MWFM (Modified Wait for Mommy) strategy with Mommy’s exhaustive search given



by with the Child using back at his start at all even times. The following table
indicates the meeting times corresponding to depending on the initial direction
that II calls North (labeled in terms of what I calls it) and the initial location of Player II.

For each time t = 1, ..., 8, the number of entries of the 4 × 4 matrix of meeting times
that are equal to t is denoted by and the number that are less than or equal to t is
denoted by Thus in the A–F strategy Player I meets of the 16 Player II agents
at time t and of these agents by time t. For a general strategy we will let and
denote these numbers. For the A–F strategy we have

Anderson and Fekete establish the following result.

Theorem 18.1 The A–F strategy pair is optimal for the least expected time prob-
lem, so that the asymmetric rendezvous value for this problem is 69/16. Furthermore,
for any strategy pair, we have
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The expected meeting time is so for the A–F strategy this is

and

implies

Proof. We will not give a proof of the optimality of the A–F strategy here because
we will later independently prove the stronger result that this strategy is uniformly
optimal. However, we will prove (18.2), as we will need this later (Theorem 8.4) to
establish the stronger property of uniform optimality. So suppose that which
means that Player I meets at least three agents of II at time i at some location A. We
first show that at time i one of the players must be back at his start. Suppose not. Then
agents of Player II starting at a common node must be at distinct locations. Hence all the
agents that I meets at time i must come from different starting points. Since all Player
II agents are equally distant from their respective starting positions, the node A must
be equally distant (in the Manhattan or graph distance) from at least three of the start



points of Player II. The only such location is the origin, which we take as Player I’s
initial location. So the meeting must be, as claimed, at a starting point. (Note that this
implies that i is even.) By symmetry of the players, we will assume that A is one of the
starting points of II. At time i – 1 both Player I and one of the agents of II who started
at A must be at the same location. Hence as claimed. Since all agents of II must
be at their starting points at time i, and I is at one of these, he can meet at most one
agent of II at time i + 1.

We highlighted the constraints on the numbers because we will use these later to
prove a stronger property of the A–F strategy, uniform optimality (see Definition 16.1).
But first we will establish an extension of the class of optimal strategies. To do this, we
define a mixed rendezvous strategy (f*, g*) as follows. The strategy f * sends Player I
cyclically around the square with corners (±1, ±1), equiprobably in one of the eight
possible ways. These ways are determined by the first two moves (e.g., N, W for the
A–F pure strategy), with the second direction resulting from a left or right turn. The
strategy g* places Player II back at his starting point at all even integer times, moves
in a random direction (independently of previous choices) at all odd times, except that
the last odd move is the same direction as the first move.

To evaluate the expected meeting time for the mixed rendezvous strategy (f*, g*)
we can assume without loss of generality that Player I follows the pure strategy
determined by the first two choices N, E. The following table gives the location f of
Player I at times t and the probability that the first meeting time is at time t.

This table is explained as follows. The probability arises from the possibility that
II starts at (–1, 1) and moves E (in I’s notation) or starts at (1,1) and moves W. For
t = 3, 5 the probability is the probability that Player II starts at (just ahead
of I’s current position) and is lucky enough to move toward the oncoming Player I.
If he was unlucky, this gives the probability or The probability is the
probability that II started at (–1, 1), did not initially go E, and did not go S at move 7.
The later probability is 1/3 for our strategy, as going E is excluded. (Note that if we
used an entirely random strategy for the second player, this probability would have been
3/64 rather than 4/64). It follows that the expected meeting time is
Since Theorem 18.1 says that this is the rendezvous value, we obtain the following.

Theorem 18.2 The mixed strategy ( f * , g*) has one player (say, I) equiprobably choose
one of the eight cyclic search patterns, while the other player (say, II) chooses a strategy
that is back at his start at all even times, picks a random direction at times 1, 3, 5
(independently of previous choices), and moves in the same direction at time 7 as that
chosen at time 1. This strategy is optimal, giving an expected meeting time of 69/16,
equal to the rendezvous value.
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Note that if a mixed strategy is optimal for the asymmetric rendezvous problem, it
follows that every pair of pure strategies (f, g) that occurs with a positive probability
must be an optimal pair. Consequently, we have the following.

Corollary 18.3 A pure strategy pair (f, g) is optimal ifone of the players goes around
the square in a cyclic fashion while the other moves in any direction at times
1, 3, 5, moves in the opposite direction from the previous at times 2, 4, 6, and moves in
the same two directions at moves 7 and 8 as at moves 1 and 2. Such a strategy will be
called a generalized A–F strategy.

The description of a generalized A–F strategy given above shows that these strate-
gies do not rely on a common notion of the clockwise direction. So they are feasible
without this assumption. We will see below that for strategy pairs that do not rely on a
common sense of clockwise, the A–F strategies are uniquely optimal and furthermore
uniformly optimal. This will match the uniform optimality established for the similar
one-dimensional problem in Section 16.5.

However, if the players do have a common sense of clockwise (i.e., if reflections
are not included in the given symmetry group G or if the players approach a vertically
placed grid from the same direction), then there is another optimal strategy. This strategy
was found by Vic Baston and the first author, so we call it the A–B strategy. It is an
“AlternatingSearch For Mommy” (AWFM) strategy, in which Player I searches two of
the possible initial location ofPlayer II at times 2 and 6 (when II is back at his start), while
Player II searches two of the possible initial locations of Player I at times 4 and 8 (when I
is back at his start). Furthermore, Player I searches the two locations along upward
sloping diagonals from his start, while Player II searches along the two downward
sloping diagonals from his start. (Thus the players need a common notion of upward and
downward sloping diagonals, which is equivalent.) One version of this strategy (that we
call the A–B strategy) is ([N, E, S, W, S, W, N, E], [N, S, E, S, W, N, E, N]). This
strategy pair is plotted below in Figure 18.2, together with a version of II’s strategy
reflected in the NS axis.

Note that if the strategy for Player II is reflected about the NS axes (if he approaches
the grid from behind when it is placed vertically), he will also be searching the upward-
sloping diagonal. This corresponds to interchanging E and W in his strategy. So if
the original placement (from I’s point of view) has the diagonal between their initial



locations sloping upward, then they will not have met by time 8. The meeting times for
the A–B strategy are given below.

Observe that the number of meeting time at time i for this strategy are the same as
for the A–F strategy (18.1), so it follows that the A–F strategy is also optimal for the
“common clockwise” form of the game. However, it does not even guarantee a meeting
by time 8 if used in the “no common clockwise” version of the game.

Before dealing with the further optimality properties of the A–F strategy, we make
the following observation regarding the It follows from the condition on the
established in (18.2) that for any i and j, we have
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In particular, we have that

The bars over the numbers at the right will just be used to identify where these
numbers (5, 7, 9, 11) come from in the analysis below (also as stated earlier).

Theorem 18.4 A strategy pair (f, g) is optimal for the “no common clockwise” version
of the game if and only if it is a generalized A–F strategy. Furthermore, each of these
strategies is uniformly optimal.

Proof. Let (f, g) be any strategy pair for which

either for some t, or for all t.

Under this assumption we will show that (f, g)
must have for all t and it must be a generalized A–F strategy, thus establishing
both claims of the theorem. Without loss of generality we will assume that I starts
by going N to (0, 1). Regardless of g, I will meet two agents of II at (0, 1), so that

This argument relies on our requirement that players cannot
stay still.



Unless I turns (E or W) and II returns to his start (or the other way around), the
largest can be is 1 (corresponding to I continuing N and meeting an agent starting at
(–1, 1) or (l, 1) at location (0, 2)). In this case andby (18.3) we have

so we know that the first alternative in assumption (18.4) on (f, g) is impossible. This
proves that any strategy with cumulative distribution function (and hence any gener-
alized A–F strategy) is uniformly optimal. Finally, to show that only such strategies are
optimal, we only have to observe that the only way to get and is for II
to return to his start at time 8 while I continues to (–1 , 1).
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which violates our initial assumption (18.4). So we may assume without loss of gener-
ality that at time 2 Player I is at (1, 1) and Player II is back at his start. (A symmetric
case arises if I chooses NW and is at (–1, 1).)

If I does not go to (1, –1) in the next two steps, with II returning to his start at
time 4, the largest values for and are, respectively, 1 and 2, obtained by Player I
going to (–1, 1). (Note that the A–B strategy would contradict the previous sentence,
if it could be used in a “common clockwise” version.) However, any strategy using
these two steps is strictly dominated by the symmetric strategy going to (1, –1). Any
other strategy gives at most and hence at most and
Consequently, it has a cumulative distribution y satisfying

which again violates our assumption (18.4). So the strategy (f, g) must be as claimed
(and in particular a generalized A–F strategy) up to time 4.

If I does not move W to (0, – 1) at time 5, then and Hence

which again violates our assumption (18.4). Hence I must go W to (0, – 1) at time 5.
If at time 6, II is not back at his start, and I at (–1, –1), then and hence

Consequently,

again violating (18.4).
At time 6,1 is at (– 1, – 1) and there are three agents of II remaining at (– 1, 1). The

only way that to ensure a meeting at time 7 at (–1, 0) (that is, is for I to go
to (– 1, 0) while one of the agents of II at (– 1,1) also goes there. Player II must make
sure that it is not the agent that I already met at time 1 that he meets there (not for the
first time). The only way to ensure this is for II to go in the same direction at time 6
(move 7) as he went at time 0 (first move). So we may assume this, and consequently
we have
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18.2 The n -Dimensional Lattice

We now extend the model of Anderson and Fekete to higher dimensions. To this end, we
have the players move on the n-dimensional integer lattice consisting of all points in

whose coordinates are all integers. We consider that two such points (called nodes)
are adjacent if all of their coordinates are identical, except for one, where they differ
by 1. A node will be called even if the sum of its coordinates is even; otherwise it will be
called odd. In general, each player will be placed according to some distribution over
even nodes and must move to an adjacent node in each time period. This will ensure
that the players are always at nodes of the same parity and consequently avoids the
possibility that they might pass each other on an edge without meeting at a node. In
fact, the only starting position we will consider is where the initial difference vector
between the players has length two and is parallel to one of the coordinate axes. Since
the players are assumed to have no common labeling of nodes or directions (of the
coordinate axes), this is equivalent to placing Player I at the origin and placing Player II
equiprobably at one of the 2n nodes (where are the coordinate vectors) and
facing in one of the 2n possible directions in the lattice. (The strategies we propose
do not require that the players even have a common ordering of the vectors no
“right hand rule,” so this is analogous to the “no common clockwise” assumption of the
previous section.) Hence there are possible agents of Player II, and the
expected meeting time is the same as the expected time for Player I to meet the agents
of Player II. This problem generalizes that of Section 16.5 with D = 2 and n = 1.
For n = 2, the 16 possible initial placements of Player II at time zero are shown in
Figure 18.3. We denote this rendezvous problem by and denote the associated
player asymmetric and symmetric rendezvous values by and

18.2.1 Asymmetric rendezvous

A useful observation regarding this configuration is that Player I can make a Traveling
Salesman Tour of the four possible Player II starting locations, while still returning to his
own starting position between each inspection. That is, he can pick any ordering of the



four Player II starting locations ((0, 2), (2, 0), (0, –2), and (–2,0)) and inspect them
at times while returning to his own starting location at time

So Player II can adopt a strategy so that he is back at his start at
all times and similarly inspect Player I’s possible starting locations at time in some
arbitrary order. We call this strategy pair the Alternating Wait For Mommy (AWFM)
Strategy, since the two players alternate playing the role of Mommy and that of the
waiting Child. This strategy is well defined for all dimensions n, except that the upper
bound of 3 on the index i must be changed to 2n – 1. By time Player I
has searched all the initial locations of Player II, so the strategy has only to be defined
up to this time. For n = 1, this strategy is identical with that shown in Theorem 16.9 to
be uniformly optimal, the pair [E, E, W, W, W, W] and [E, W, E, E, W, W].

The AWFM strategy has a density of meeting times that is roughly linearly decreas-
ing from t = 0 to t = 8n – 2. Let denote the number of Player II agents that I meets
at time i, assuming AWFM is adopted. At time t = 1, Player I meets exactly
agent of Player II. (This is true for any strategy pair.) At time Player I is
at a starting point of II and will meet the remaining agents who started
there. At time Player I is back at his start and will meet the agents from
the 2n – 1 starting points of II not yet searched by I who go towards I’s start. Thus

Similarly at time Player I will meet all the agents of II at this
starting point of II except the one that found him at his start at the earlier time thus

In general, at times and Player I will meet exactly
agents of Player II.

For example, when n = 2, we have

Techniques similar to those used to prove Theorem 18.4 can also be applied to show
(Alpern, 2001) that these values of are maximal, at least for That is,

Theorem 18.5 For n = 2 and with the above starting situation, the AWFM strategy
pair maximizes the probability of meeting by time i, for all

Since there are agents in the n-dimensional problem and
we can calculate the expected meeting time for the AWFM strategy as
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Simplifying this expected meeting time and setting it as an upper bound for the ren-
dezvous value, we get the following estimate (which is exact for n = 1 as shown in
Section 16.5).

Theorem 18.6 For the asymmetric rendezvous problem on the n-dimensional integer
lattice, with no common directions or locations, and starting locations whose difference



18.2.2 Symmetric rendezvous

We now consider the player-symmetric version of the same problem. Recall that for
the atomic distribution with a known initial distance D = 2 on the line, the best
known estimate of Baston gives the estimate To get an estimate for the
symmetric rendezvous value we will restrict ourselves to the case of large n, as
even for n = 1 it is very hard to get exact values (see Section 17.2). The completely
random strategy, of repeatedly going one step in a random direction and then back to
your start, will meet on a given search with probability Consequently, it takes an
average of such trials for a meeting, and therefore the expected meeting time will
be A better strategy would be a randomized version of AWFM,
with each player choosing equiprobably between the two roles (of I or II in AWFM),
independently in each period of time 8n. We need 8n rather than 8n – 2 because we
need to allow the players to return back to their starting locations to begin the next
period. We may neglect the possibility that they meet while choosing the same strategy
and observe that if they choose distinct strategies then by Theorem 18.6 they will meet
in average time of 8n/3, counting from the beginning of the period. Therefore they will
meet in expected time where satisfies the equation
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has length 2 and is parallel to a coordinate axis, we have

In particular, we have

However the players can improve on this by randomizing between the two possible roles
more often. Suppose that n is large, k is large, and n/k is large, and the players divide
the period of 8n + 2k into k subperiods of length 8n/k + 2. The extra two time units are
needed simply to ensure that both players return to their respective starting positions
for the beginning of the next subperiod. Since our aim is an asymptotic estimate of
expected meeting time divided by n, and since n/k goes to infinity we have k/n going
to zero, we can simplify the calculations by viewing the length of the period as 8n
rather than 8n + 2k. Before beginning each full period, the players each choose an
order in which to search out the 2n possible starting locations of the other. In each
subperiod, they search the next 2n/k of these before returning to their start. Call this
the Randomized Alternating Wait For Mommy (RAWFM) strategy. If k is large, then
at any time within the full period they will have chosen opposite roles in about half the
previous subperiods, so the density of meeting probability (or of the number of agents
met) will be half that of the AWFM with distinct strategies.

Since we are only interested in the asymptotic behavior for large n (and large k and
n/k), we will use a continuous model. In both the asymmetric case (with AWFM) and

with solution
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the symmetric case (with RAWFM) the probability density of meeting times decreases
linearly with time. If it takes time t = a for a meeting to be certain, the density and
cumulative distributions are given by

For the asymmetric case, using AWFM, we have a = 8n and so the expected meeting
time is given by

This agrees with the value obtained by taking the limit in the discrete model covered by
Theorem 18.6. For the symmetric case we have a = 16n by the argument given above.
So the probability p that a meeting takes place using RAWFM within a period of length
8n is given by

Given that such a meeting takes place within the period, the conditional density for
is given by

and the expected meeting time is given by

So if this process is repeated independently in each period of length 8n, the expected
meeting time satisfies

Theorem 18.7 For the symmetric rendezvous problem on the n-dimensional integer
lattice, with no common directions or locations, and starting locations whose difference
has length 2 and is parallel to a coordinate axis, we have

or

and



18.3 Continuous Rendezvous in the Plane

The previous sections of this chapter have considered higher dimensional rendezvous
problems by restricting the players to a grid, or lattice, that in certain natural ways
approximates n-dimensional Euclidean space. In this section we consider some attempts
that have been made to directly attack the asymmetric rendezvous problem in the plane.

A natural formulation of the problem would be to place the players according to
some known joint distribution, specify a common detection radius, and ask how to
minimize the expected time for the players to come within this distance. In fact, all
the attacks on the planar problem have added some additional interesting aspect to this
problem. We shall discuss three of these. The first two are taken from the paper of
Anderson and Fekete (2001) and respectively discuss the problems in which the players
have a common sense of compass directions, and in which the initial location of one of
the players is known to the other. The third, taken from the article of Thomas and Hulme
(1997), considers the problem where a helicopter seeks a lost hiker: the helicopter goes
faster, but the hiker can detect the helicopter from far away.

18.3.1 Common notion of direction

As in the case of the circle (Section 14.2) and the line (Section 16.2) we begin by looking
at the rendezvous problem where the players have a common notion of direction. For
the plane, we may assume that the rendezvousers are two hikers who each have accurate
compasses and so have an identical idea of the compass directions. This problem, like
the similar common-direction rendezvous problems on the circle and line, turns out
to be equivalent to a one-person search problem for a stationary hidden object. (See
Book I, Sections 3.7 and 6.2, for a worst case analysis.)

The formal problem begins by picking a vector describing the difference between
the initial positions of Player II and Player I. If we take a coordinate system placing I
at the origin, this vector simply describes the initial position of II. The distribution of
Player II’s initial position in the plane is known to both players and denoted by F. As
described in Section 14.2, the optimal strategy pairs (f, g) for this problem involve the
players moving in opposite directions at their maximum speeds (that we take here to
be 1). The problem is equivalent to a pure search problem faced by a single searcher who
controls the speed 2 search pattern z(t) = f (t) – g(t). Thus this type of rendezvous
search problem is equivalent to that of a single searcher finding a stationary object
hidden according to F in the plane by following a speed 2 path from a given starting
point 0. If we are considering a least expected time problem, then the infinite time
path of the searcher must cover the support of F. Similarly, if we are considering a
minimax time problem with minimum time then the finite path must contain
the support of F. Once the optimal path z for the search problem has been found, the
rendezvousers should follow the unit speed motions z/2 and –z/2.

The problem of finding a stationary hidden object in the plane (in minimax or least
expected time) is in general very difficult. We present two examples that illustrate certain
classes of problems.

Example 18.8 Suppose the object is located at (0, 1) or (0, –1), each with probability
0.4; or it is located at (1, 0) or (–1, 0), each with probability 0.1. The minimax search
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strategies start by going directly to one of these points, and then follow three sides of the
square determined by these points. The minimax time is This strategy (going
first to a probability 0.4 location) finds the object in expected time
1.3486. However going first to the high probability locations and then to the low
probability locations gives the least expected time of
In general, the minimax problem is similar to the well known Traveling Salesman
Problem, while the least expected time problem is similar to the Minimum Latency
Problem (see Blum et al., 1994).

Example 18.9 Suppose the two rendezvousers know their distance (say 1) but not
the direction to the other. Assuming they view all directions as equally likely, this
results in a search problem of finding an object uniformly located on the unit circle
(starting at the origin). The search must start by going to the circle along some ray,
and then it is uniformly optimal to go around the circle (as in the “Columbus strategy”
of Section 14.1). The minimax search (or rendezvous) time is while the
least expected search (or rendezvous) time is For details and an elegant
interpretation of the resulting rendezvous strategies in terms of “kissing circles,” see
the original article of Anderson and Fekete (2001).

We believe that the assumption that the object is uniformly distributed on the circle
can be relaxed by using techniques like those in Section 14.1, so that the distribution
only needs to be close to uniform, in some sense. There are two differences with the
analysis given there: first, the searcher’s starting point on the circle is not specified, but
rather a choice variable; second, the searcher may opt to travel along a chord to reach
higher density parts of the circle quicker.

18.3.2 Asymmetric information

We now consider the scenario in which the initial position of one of the players (say, I)
is known to the other (II). This asymmetric information version of rendezvous has been
analyzed on the line in Section 17.6. Here we will make the additional assumption that
the initial distance D between the players is known (say, D = 2) and that the angle of the
line connecting them is uniformly distributed. Taking I’s initial location as our origin,
this means that II is initially placed uniformly along the circle of radius 2 centered at
the origin. Point capture will be required for a meeting to have occurred. We assume
that the players have a common notion of clockwise direction.

Two strategies immediately present themselves. First is the WFM (Wait For
Mommy), in which Player I waits at the origin until Player II reaches him at time 2, that
is also the expected meeting time. Alternatively, Player I could move out to a randomly
chosen point on the unit circle at t = 1, while Player II moves to the unique point on
this circle he can reach by time t = 1. Thus, starting at time 1, they could choose to
play the asymmetric rendezvous problem on the unit circle. Corollary 13.12 establishes
that the optimal strategy pair for this problem is OP-DIR, in which the players go at
unit speed around the circle in opposite directions. The expected meeting time for this
strategy on the unit circle (not the circle of circumference 1) is Hence the expected
meeting time for the combined strategy is and this is worse than the
expected time of 2 for WFM.
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More generally, the players could arrive at the unit circle at time 1 (as above)
but subsequently move along a circle of radius r(t) for where r(1) = 1 and

for t > 1. Depending on r ( t ) and the players have some angular speed
left to them that they can use to go in opposite angular directions (while keeping their
common distance to 0 at r(t)). The determination of the optimal function r(t) is an
optimal control problem. By numerically approximating the solution of the differential
equation corresponding to this control problem, Anderson and Fekete (2001) show that
the rendezvous value for this problem is about 1.97.

18.3.3 Asymmetric speed and detection radius

Thomas and Hulme (1997) consider a rendezvous problem in which a fast helicopter
and a slow hiker wish to rendezvous. The helicopter can see the hiker only if they
are very close, but the hiker can see (or hear) the helicopter from a further distance.
Unlike the other two-player rendezvous problems considered in this book, some new
information may be received by a player during the course of play. In particular, the
hiker may see the helicopter from a long distance. So a strategy for the hiker must take
this into consideration.

This problem presents complexities not seen in other versions of rendezvous and
needs to be attacked in a different manner, via simulation techniques. The search region
was divided into a hexagonal grid. Three strategies for the hiker were considered:
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1.

2.

3.

(S) Stationary

(RW) Random Walk: At each move, go randomly to one of the six neighboring
nodes, independently of the helicopter’s motion or location.

(HWA) Head When Audible: Use (S) until helicopter is detected, then head toward
helicopter along the estimated bearing.

Two strategies for the helicopter were considered:

1.

2.

(SCAN) Scanning Search: Move back and forth in parallel lines spaced according
to the helicopter’s detection radius.

(EXSQ) Expanding Square Search: This path starts at the center of the search
area and spirals out.

The distribution of meeting times was determined through simulations. Against a
stationary hiker (S), both SCAN and EXSQ perform identically, since the search is
exhaustive and non-overlapping. Against a randomly walking (RW) hiker, EXSQ has
a higher probability of finding the hike early, but eventually this reverses and SCAN
does better. Against an intelligent hiker who uses HWA the simulations indicate that
both SCAN and EXSQ are similar early on but that eventually SCAN does significantly
better.

The simulations also reveal that a type of role reversal may be useful, where the
helicopter tries to drag the hiker toward it. In this approach the helicopter adopts a
decreasing spiral path. The reader should go to the original article (Thomas and Hulme,
1997) to see the detailed results of these simulations.



Appendix A

A Minimax Theorem for
Zero-Sum Games

This appendix presents a general minimax theorem of the authors (Alpern and Gal,
1988), which establishes that every search game of the type considered in Book I
has a value. Recalling equation (2.3), this means that if we consider all mixed search
strategies s and all mixed hider strategies h, we have

where the cost function c is the expected capture time. Furthermore the inf on the left is
a min, which means there is an optimal mixed strategy for the searcher. (The hider may
have only strategies.) The original and most direct approach to this result is
given in Gal (1980, app. 1); the result given here is an extension Gal’s result and applies
to a wider class of zero-sum games. Although it is customary in the literature to have
the first player be the maximizer, we follow the approach taken in the main text, where
the first player (searcher) is the minimizer.

We will show that a result of the type (A.1) holds for a wide class of zero-sum
two-person normal-form games which includes the search games considered in Book I.
A zero-sum two person normal form game is characterized by a cost function c (some-
times called a payoff function), which Player 1 (the searcher, in our games) wants to
minimize and Player 2 (the hider, in our games) wants to maximize. The cost function
c is initially given in terms of the pure strategies of the two players,
Here is the set of pure strategies for the minimizing Player 1 and is the set of pure
strategies of the maximizing Player 2. We use the letters and only to make the
identification with search games clear, although this model applies to any game, and
the strategy sets and payoff may be very different for other games.

Keeping this framework in mind, we first consider games in which the number of
pure strategies is finite for each player; say, and
(This would be the case, for example, for the search game with immobile hider on a tree,
where denote the leaves of the tree and the denote the ways of searching all the



leaves in a given order.) For notational simplicity, we denote the payoffs corresponding
to pairs of pure strategies in the matrix notation

We may view the i, j-th entry of the m × n game matrix C as the amount the first
player (minimizer) pays the second player (maximizer). It may happen that the matrix
C will have a saddle point, i.e., an element such that

In this case, the game would be in a state of equilibrium if the first player chooses his
pure strategy and the second player chooses his pure strategy. The preceding

strategies would be optimal, and thus this game could be solved using only pure strate-
gies. Usually, however, such a saddle point does not exist because even in the simplest
games (e.g., matching pennies, where a player is at a disadvantage if
he always uses the same pure strategy. The fact that usually there exists no optimal
strategy in the set of pure strategies has led to the idea of using mixed strategies. Each
player, instead of selecting a specific pure strategy, may choose an element from the set
of his pure strategies according to a predetermined set of probabilities. Mixed strate-
gies for the first and the second players will be denoted by and

respectively, where is the probability that the
first player will choose his i-th pure strategy and is the probability
that the second player will choose his j-th pure strategy

When the first player plays a mixed strategy s and the second player a mixed strategy
h, the expected cost is given by the function

The fundamental theorem of two-person zero-sum finite games is due to Von
Neumann (see Von Neumann and Morgenstern, 1953). It states that

This minimax value of c is called the value of the game and denoted by v. An equivalent
result is that there exists a pair of mixed strategies and such that

Thus, c has a saddle point, or in other words, if the first player chooses the mixed
strategy and the second player uses the mixed strategy then each of them can
guarantee an expected payoff of v. Thus, is a pair of optimal strategies and the
game has a solution in mixed strategies, (e.g., in the matching pennies game,

and v = 0).
The situation is more complicated if the game has an infinite number of pure strate-

gies. In this case, the mixed strategies are probability measures on the set of pure
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strategies. Such a game is said to have a value v if, for any positive the first player
has a (mixed) strategy that limits him to an expected loss of at most and
the second player has a (mixed) strategy that guarantees him an expected payoff of
at least If one of the players has an infinite number of pure strategies while
the other player has only a finite number of pure strategies, then the game has a value.
However, if both players have an infinite number of pure strategies, then the existence
of a value is not assured. (For details see Luce and Raiffa, 1957, app. 7.)

In the search games considered in the main text, both players have an infinite number
of pure strategies. Nevertheless, Gal (1980, app. 1) has proved that any search game
has a value. Using the more general formulation of Alpern and Gal (1988) the minimax
theorem can be stated as follows.

Theorem A.1 Let X be a compact Hausdorff space and (Y, A) a measurable space. Let
f : X × Y be a measurable  function that is bounded below and lower semicontinuous on
X for all fixed y in Y. Let M be any convex set of probability measures (mixed strategies)
on (Y, A) and B(X) the regular probability measures on X. Then

For our search trajectories we use the topology of uniform convergence for any finite
interval. Since any is Lipshitz (with constant 1) it follows from the Ascoli theorem
that is compact. Under that topology is also Hausdorff (two distinct trajectories
always have disjoint neighborhoods). Since the capture time C(S, H) can only “jump”
down, it easily follows that it is lower semicontinuous in each of
its arguments (see Gal, 1980). Thus, we can use the general minimax theorem A.1 and
obtain

so that the search games considered in our book always have a value and an opti-
mal search strategy. Note that the lower semicontinuity implies that C(S, H) is Borel
measurable, in both arguments. Thus, the above integral
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Appendix B

Theory of Alternating Search

In some cases, particularly for the undirected circle and line, the asymmetric rendezvous
problem can be reduced to a problem in which two searchers act as a team to locate
a stationary hidden object. The object is placed in one of two disjoint regions, with a
searcher in each. The searchers can only move one at a time (hence the term “alter-
nating”), and each has a maximum speed of 2. To make the space of search strategies
closed, we also allow the limiting case in which the searchers can move simultaneously
with a combined speed of 2.

In this appendix we review the relevant results of Alpern and Howard (2000) on
the theory of alternating search at two locations. We will need only the special case of
this theory in which each search region is a ray (a copy of and each searcher
starts at the end (labeled 0). We will also assume that the object is equally likely to be
on either ray.

Let denote the probability that the object is placed in the interval
[0, t] on ray i, given that it is somewhere on ray i. Thus and are probability
distributions. The alternation of the two searchers may be described by a rule that
determines when each of the searchers is moving (at speed 2). In this interpretation, we
may let denote twice the total time up to t that Searcher 1 has been moving. In this
case, Searcher 1 will have covered the interval on ray 1, while Searcher 2 will
have covered the interval on ray 2. Hence the object will have been found
by time t with probability

The expected time to find the object will be and the least expected time
is denoted by

An for which the minimum is attained is called an optimal alternation rule. In order
to justify the existence of the minimum, we need to consider a wider class of alternation
rules The rule described above, with intervals of alternating motion of the searchers,
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could be described by a continuous piecewise linear function
which has intervals of slope 2 (when Searcher 1 moves) and intervals of slope 0 (when
Searcher 2 moves). As these intervals get smaller and smaller, the motions of the two
searchers become, in the limit, simultaneous motions. This is easily formalized as fol-
lows. We define an alternation rule to be any increasing function with maximum slope
(Lipshitz constant) 2, with The set of all such alternation rules is compact
with respect to the topology of uniform convergence on compact intervals. Since the
integral is lower semicontinuous in with respect to this topology, the
existence of the minimum is established. An alternation rule has a derivative almost
everywhere. We interpret the position of searcher 1 to be and that of searcher 2 to
be Their speeds are and which sum to 2.

In this presentation of the problem, the distributions and are given. This will
be the case when the two regions are each rays, and the starting points are the ends
of the rays. However, in general (e.g., alternating search on two circles) there may be
many ways of searching a given region (say region 1), and each way will determining
a different distribution We note that in the general case it is not necessarily true
that is minimized by taking two distributions and that individually
minimize the expected time to find the object if it is certain to be in that region. However,
we can say the following.

Lemma B.1 Suppose that dominates in the sense that it is at least as large for
all t. Then for any distribution we have

This inequality holds simply because we can write the moment as

and the latter will not increase when is replaced by The
importance of this observation is that if there is a strategy (like the Columbus strategy
in Chapter 14) or a family of search strategies for a given region that dominates any
strategy, we may assume that a strategy of this type is used.

We now list some results obtained in Alpern and Howard (2000) on optimal
alternation rules corresponding to various assumptions on the distributions and

Theorem B.2 Suppose an optimal alternation rule searches in the two rays alternately
in consecutive time intervals. Then the interval on line i for which has the higher
average density is searched first.

Theorem B.3 If one of the distributions is convex on an interval, then there is an
optimal alternation rule for which this interval (on line i) is traversed at maximum
speed without interruption.

Theorem B.4 If one of the distributions    is constant on an interval (which has density
zero and cannot contain the object), then any optimal alternation rule traverses this
interval (on line i) at maximum speed without interruption.

For the next result we assume that and we denote by the concavification
of F, that is, the smallest concave function satisfying for all x. The
following presents a complete characterization of the optimal solution in terms of the

and their concavifications.
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Theorem B.5 Suppose the object has a common conditional distribution F on both
rays.

1. If for all a < x < b, . (b), then there is
an optimal alternation rule which satisfies either on (a, (a + b)/2) and

on ((a + b)/2, b), or the reverse. That is, the intervals [a, b] on the two
rays are searched consecutively at speed 2.

If F is concave then the constant alternation rule which searches both
rays in parallel, is optimal. If it is strictly concave, then this strategy is uniquely
optimal.

2.

This work may be thought of as an extension of the Gittens Index to continuous time
and general distribution. See Gittens (1989).

B.1 Arbitrary Regions

The analysis given above for alternating search on two rays can be useful in solving
the more general problem of searching two arbitrary regions and In the general
problem, there is a searcher starting at a point The two searchers
move subject to a maximum combined speed of 2. If searcher i moves with maximum
speed all the time, there are many possible cumulative distribution functions of
capture time given that the hidden object lies in The minimum time required for
the two searchers to find the object is given by
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Appendix C

Rendezvous-Evasion Problems

The situations described in Books I and II are either search-evasion or rendezvous
search. The novel element that was introduced in the article (Alpern and Gal, 2002) on
which this appendix is based, is an uncertainty regarding the motives of the lost agent:
he may be a mobile or immobile hider (evader) as in Book I, or he may be a cooperating
rendezvouser who shares the same aim as the searcher, as in Book II. We assume that
the probability p of cooperation is known to the searcher and to the agent. In any given
search context (search space and player motions) G, we obtain a continuous family

of search problems, where is a search game with mobile or
immobile hider and is an asymmetric rendezvous problem. We obtain a unique
continuous value function that gives the least expected value of T for the given
(cooperation) probability p that the target wants to be found. As we shall show, this
uncertainty regarding a priori agent motives affects both the paths (strategies) chosen
by the searcher and the paths chosen by the (cooperating or evading) agent. One might
say that here we introduce the game theoretic notion of incomplete information into the
theory of search. Our formalization of the cooperative portion of the problem will be
that of asymmetric rendezvous search, where the searcher and agent may agree on the
roles (paths) they will take in the event that the agent gets lost and wants to be found.
For example a mother (the searcher) may tell her child (the agent) what to do in this
event, knowing, however, that this instruction may be disregarded if the child does not
want to be found. The child will follow these (rendezvous) instructions if he wants to
be found and may use the knowledge of these instructions in deciding on an evasion
strategy if he does not.

This uncertainty as to the agent’s aims is common, for example, when a teenager is
reported missing to the police by the parents. In such cases the police usually ascribe
a probability (1 – p in our notation) that the teenage is not lost or abducted but rather
a runaway who does not want to be found. Parents usually complain that the police
overestimate this probability, and indeed this is a subject of some controversy, as in the
following passage from Clancy (1999):

Bannister had gone to a local police station to make a report in per-
son . . . From a police detective . . . he’d heard “Look, its only been a few



weeks . . . She’s probably alive and healthy somewhere, and ninety nine out
of a hundred of these cases turn out to be a girl who just wanted to spread
her wings [an evader].” Not his Mary, Bannister had replied.

Another example of such incomplete information search is found in the novel Hunt
for Red October (Clancy, 1995) where a Russian submarine of that name becomes lost
to Soviet command. The difficulties faced by the Russian search effort are exactly those
formalized in this article, as they are uncertain whether the sub is indeed lost (their
first assumption) or is defecting to the West (as they gradually come to believe). The
current SETI (Search for Extraterrestrial Intelligence) Project is based on an implicit
assumption regarding not only the existence of EI but of a sufficiently large value
of p. In the SETI context, T would be the first time when transmitter and listener are
on the same frequency and the message is understood to be nonrandom. Search and
Rescue operations (seeking lost hikers, for example) also make judgements about p in
determining where to look first.

It would be natural for the searcher to behave in the following way: If p is relatively
high, then he assumes a cooperative agent and hence he first goes to the agreed meeting
point, switching into a search-evasion mode if the agent is not found at this location.
If p is small, then the searcher assumes an evading agent right from the start and acts
accordingly. This situation is characterized by a threshold value for p that separates
between the above two strategy types. For some cases this natural strategy is indeed
optimal. For example:

Immobile agent on a tree This can represent the following search problem.
A mother drives a teenager son to a roadside drop-off point O. From there he will
hike in a large park. If it rains, he will go to one of a group of huts (none of which are
at O), where he will wait, while the mother drives back to O and, covered with proper
raingear, begins a search. The Mother tells the child which hut he should go to if it
rains, knowing full well that if he is enjoying himself at that time he will disregard her
instructions. The huts and the drop-off point O are all connected by a network of paths
that forms a tree.

In this model the search domain will be a tree Q with a distinguished node called O
where the searcher must start his search. (In keeping with the search and rendezvous
literature, we will refer to the agents as “he” even when they adopt the “wait for mummy”
strategy, or when the motivating example includes females.) Each edge of Q has a certain
length, and the sum of these is called the length of Q, denoted µ - ( Q ) - For simplicity we
will normalize the length of the given tree so that µ  = 1. The agent in this problem is
immobile; he simply picks a node of the tree other than O and stays there. The searcher
moves along the tree at unit speed until he reaches the node chosen by the agent, aiming
to minimize the expected time to reach this node. With probability p, the agent is
a cooperator (or rendezvouser) who also wishes to minimize and with probability
1 – p the agent is an evader who wishes to aximize    Simple domination arguments
are sufficient to show that a cooperator will always chose a node adjacent to the starting
node O, while the evader will always chose a terminal node of Q. We will denote by
v(Q, O, p) the minimal expected time for this specific problem.

Denote by h*(q, o) an optimal hiding distribution for a tree q with root o (see
Section 3.3). We have the following theorem.
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Theorem C.1 Let Q be a unit-length tree with searcher starting node O. Let X be any
node at minimum distance to O and let Z be any node that determines a subtree

of maximum total length Denote by Q–z. Then the value
v(Q, O, p) of the rendezvous-evasion problem on (Q, O) with cooperation probability
p is given by

if

if

For Z is an optimal rendezvous strategy for the cooperator, a
traversal of a minimal tour of Q from O (equiprobably in either direction) is optimal
for the searcher, and an optimal strategy for the evader is to adopt h*(Q–z, O) with
probability and h*(Qz, O) with the complementary probability. For

X is an optimal rendezvous strategy for the cooperator, a move to
X followed by a minimal tour of Q from X (equiprobably in either direction) is optimal
of the searcher, and the strategy h*(Q, X) is optimal for the evader.

However, this situation, of the above (p ) threshold type strategy being optimal, does
not always hold.

Rendezvous-evasion in two cells The searcher and agent are initially placed at
time t = 0 into distinct cells, which we (and the players), respectively, call 1 and 2.
At each time t = 1, 2, 3, . . . , searcher and agent locate in cell and and meet at
the first time when they are in the same cell. We may assume (by relabeling in each
period) that the cooperator strategy is (2, 2, . . .) . For p close to 1, the optimal searcher
strategy is (2, b, b, ...) and the optimal evader strategy is (1, b, b, ...), where b denote
the Bernoulli strategy of picking either location equiprobably and independently of
previous choices. For p near 0 the optimal strategy for both searcher and evader is
(b, b, b, ...). These strategy pairs give respective expected meeting times of p(l) +
(1 – p) (1 + 2) = 3 – 2p and 2, which give the same time 2 when p = 1/2. However in
this intermediate case (p = 1 /2) both searcher strategies are dominated by the mixed
strategy 0.9(2, b, b, ...) + 0.1(1, 2, b, b, ...). Since a best response of the evader is
(1, b, b, ...), this mixed searcher strategy ensures that the expected meeting time is no
more than (0.9) (3 – 2p) + (0.1) (2p + (1 – p)) = 1.95 < 2, for p = 1/2. This analysis
shows that for intermediate values of p the optimal searcher strategy is not optimal for
either extreme case (p = 0 or 1). The determination of optimal strategies for all p, and
the corresponding optimal expected meeting time v(p), seems an interesting problem.

Alpern and Gal (2002) also analyze mobile agent on the line (the agent is assumed to
have a smaller speed than the searcher) and suggest additional other interesting problems
for further research:

Rendezvous-evasion in n cells The problem is the same as for two cells, except
that for n > 2 the two players can never achieve a common labeling of the cells. For
p = 1 the cooperator stays still while the searcher picks a random permutation of the
remaining cells. For p = 0 both searcher and evader should move randomly. What is
the solution for general p? See Anderson and Weber (1990) for a discussion of a related
problem.
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Mobile rendezvous-evasion on the circle The searcher and agent are placed
randomly (uniform probability density) on a circle of unit circumference and can both
move with unit speed. For the search game p = 0 it has been shown Alpern (1974), and
Zelikin (1972), that the optimal search strategy is “cohatu.” This is short for “coin half
tour”: at times i/2, i = 0, 1, 2, . . . , go half way around the circle equiprobably in either
direction. All evader responses give the same expected meeting time of v(0) = 3/4.
For the rendezvous problem p = 1, posed in Alpern (1995), the optimal strategy is
for the searcher to move clockwise while the cooperator moves counterclockwise (for
a proof see Section 14.2), with expected meeting time v(1) = 1/4. For p near to 1 the
searcher should use “clockwise-cohatu”: this means clockwise for (by which
time he will have met the cooperator) and then use cohatu. Any evader strategy that
goes clockwise for is an optimal response. Thus this strategy has an expected
meeting time of

The two strategies, cohatu and clockwise-cohatu, give the same expected time of 3/4
when p = 1/2. However, neither is optimal in this case (p = 1/2), since both
are dominated by a mixture of 0.9 (clockwise-cohatu) and 0.1 (counterclockwise–
clockwise-cohatu). The latter strategy goes in the indicated directions for times (0,
1/2) and (1/2, 1) and then in random directions. Against this mixture, an optimal evader
must go clockwise for the first half time unit. Thus, if clockwise-cohatu is used, then
the expected meeting time is the same (3/4) as for either of the two searcher strate-
gies already calculated. However, in the case that counterclockwise–clockwise-cohatu
is used, the searcher does better: The cooperator will be found in the same expected
time 1/2 + v(1) = 3/4 (no improvement), but the evader will be found in the smaller
expected time 1/4. This analysis is similar to that for two cells (there are two directions
on the circle), and as in that problem the solution for intermediate values of p would be
interesting. This analysis assumes that the searcher and agent have a common notion of
direction around the circle. The problem is also well defined (but distinct) without this
assumption.

Immobile rendezvous-evasion on networks To what extent does the dichotomy
of search strategies found for trees apply to other networks?

Two-sided ambiguity of aims In the analysis given in the article, only the aims
of the agent are uncertain. How should the problem be analyzed if the agent has a
probability of wanting to minimize T (otherwise he wants to maximize) and the
searcher has a similar probability

We believe that the introduction into search theory of models with uncertain target
motives can present many interesting new problems into the area that may stimulate
further research.
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non homogeneous, 75–76
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Dynamic search games, 161
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minimax property, 109, 116–117
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Geodesic strategy, 194
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minimax property, 107–122

Hamiltonian, 225–226
Hider

immobile, 13, 15, 17, 21, 36, 39, 43, 101
mobile, 39, 45–48, 58, 75, 104, 131

Hiding strategy, 3–4, 13, 22, 46
mixed, 11, 13
optimal 5,11,23,47,51
pure, 4, 9–10, 13, 16, 46
uniform, 13, 18, 35, 40

Infiltrator, 92–95
Isometry, 223, 225

Laplace transform, 118
lattice

planar, 277–283
n-dimensional, 284–287

Lebesgue measure, 13, 15, 40–43, 58, 75
Locally Nash strategy, 229–230
Lower semicontinuous function, 85, 187, 293,

296

Minimum Latency problem, 143, 289
Moment restriction, 101–104, 128, 132–134
MWFM strategy, 170, 245–246, 249, 252,

257–259

Network
circle and circle-H, 201–205
figure eight, 55–57
H, 193–197
interval H, 197–201
labeled, 191–193
weakly cyclic, 25–27
weakly Eulerian, 27–31

Non-loitering assumption, 48, 54, 56

OP-DIR strategy, 184, 204–205, 213
Optimal strategy, 5, 11, 167, 186–188,

194–197, 203, 211–213, 219–221,
245–249, 295

existence of, 11, 85, 186–187, 209, 239,
291–293

Origin, 12–13, 22, 37, 58, 62, 80, 101, 104,
145–157, 157–161, 261–262, 288–289

Other ARPLs
bounded resources, 124, 251, 256–263
player symmetry, 251, 254–256
unequal speeds, 251–254

Princess and monster game, 45, 58–77
general framework, 58
strategy of the hider, 67–73
strategy of the searcher, 59–67

Probability maximization, 242–243, 259–263
Probability of capture after time t, 47, 51, 52,

65, 72, 74, 76

Region, 39–43, 181–189
compact, 39–41, 43, 181–183, 185–189
simple, 39–43

Rendezvous value, 166, 181
asymmetric, 185–187
existence, 186, 187
properties, 188–189
symmetric, 187

RWFM strategy, 171, 187, 189

Scaling lemma, 12, 32, 48, 102
Search for a mobile hider, 45–77

circle, 52–53
discrete, 45, 47
figure eight, 55–57, see also network
infiltrator, 92–95
k arcs, 48–51,94–95
line, 134–136
multidimensional region, 58–77
network, 53–57 see also network
nonhomogeneous region, 75–76
submarine, 161–162

Search for an immobile hider, 13–43
discrete, 16, 35
in cells, 16
inhomogeneous region, 42
k arcs, 31–35
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network, 17–36, see also network
plane, 104–105, 145, 154–159
probability of detection less than 1,

137–139
three arcs, 31–35, 38–39
tree, 21–25
unbounded, 99–162

Search number, 46–47
Search space, 3, 4, 10, 13, 15, 37,40

inhomogeneous, 10, 13–21, 24–36, 42–43
Search strategy, 3, 4, 9, 13–21, 24–36, 46,

52–53, 79, 92–93, 95, 129
generalized, 13–15
mixed, 3, 13, 46, 96, 125, 187, 267, 291
optimal 12,23,47,51,129
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