

EE ENetworks in Action

International Series in Operations

For other titles published in this series, go to

www.springer.com/series/6161

4044040

Research & Management Science

Volume 140

Networks in Action

Text and Computer Exercises in Network
Optimization

Gerard Sierksma • Diptesh Ghosh

All rights reserved.

with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

This work may not be translated or copied in whole or in part without the written

permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY

Springer is part of Springer Science+Business Media (www.springer.com)

Gerard Sierksma

9700 AV Groningen
The Netherlands

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection

Indian Institute of Management

Vastrapura, India

Department of Production and

diptesh@iimahd.ernet.in

ISSN 0884-8289
ISBN 978-1-4419-5512-8 e-ISBN 978-1-4419-5513-5
DOI 10.1007/978-1-4419-5513-5

Diptesh Ghosh

Ahmedabad-380015

Quantitative Methods

Springer New York Dordrecht Heidelberg London

© Springer Science+Business Media, LLC 2010

Library of Congress Control Number: 2009940317

Fac. of Economics and Business
University of Groningen

g.sierksma@rug.nl

Preface

One of the most well-known of all network optimization problems is the shortest
path problem, where a shortest connection between two locations in a road network
is to be found. This problem is the basis of route planners in vehicles and on the
Internet. Networks are very common structures; they consist primarily of a finite
number of locations (points, nodes), together with a number of links (edges, arcs,
connections) between the locations. Very often a certain number is attached to the
links, expressing the distance or the cost between the end points of that connection.

Networks occur in an extremely wide range of applications, among them are:

road networks; cable networks;
human relations networks; project scheduling networks;
production networks; distribution networks;
neural networks; networks of atoms in molecules.

In all these cases there are “objects” and “relations” between the objects. A net-
work optimization problem is actually nothing else than the problem of finding a
subset of the objects and the relations, such that a certain optimization objective is
satisfied.

Why a book with computer exercises on network optimization? First of all, net-
work problems in practice are mostly very large and extremely complicated. Only
with the assistance of computers high quality solutions can be obtained. Most books
in this field only offer exercises that support the understanding of the theory. The
case studies, that are discussed in the literature, are usually not suitable for class-
room analysis, since the data sets are missing, or are much too large to handle in a
classroom setting.

This book contains a wide range of not too large network optimization problems,
that need to be analyzed and solved by using the computer. The emphasis of the
book is not on solution techniques. The reader may find her favorite software on

VI

optimization are provided in Chapter C of the book.
Even the first theoretical chapter is written in the spirit of the book. The reader

learns the basic concepts within the framework of networks and computer tech-
niques.

The prerequisites for this book are minimal. All theoretical concepts are clearly
explained. However, the reader is highly recommended to use this book in com-
bination with a textbook on the subject. Our suggestion is Graphs, Networks, and
Algorithms by D. Jungnickel [18]. This book contains a collection of major network
optimization problems together with the main solution techniques. It also contains a
wide range of interesting examples. The book is clearly written and very accessible.
(Further suggestions for textbooks are given in the Chapter C of the book.) The litera-
ture list contains suggestions on this subject as well. We advice the reader to examine
some introductory graph theory and linear programming/optimization theory.

What actually is the subject that this book refers to? An Internet search on the
term “network optimization” does not result in many textbooks. The reason is obvi-
ous. Network optimization is related to a broad range of disciplines, including:

quantitative logistics; supply chain logistics;
combinatorial optimization; network theory;
integer programming; integer linear programming;
operations research; management science;
discrete mathematics; finite mathematics;
algorithmic graph theory; computer science.

The closest related disciplines to network optimization are combinatorial opti-
mization and quantitative logistics. Combinatorial optimization deals with problems
where solutions are combinations of the “objects” and the “relations” in the problem.
The number of such solutions is finite but typically very large. A decision maker
needs to choose a solution that satisfies a pre-specified objective. Quantitative lo-
gistics deals with logistics and supply chain management problems that have been
formulated in mathematical terms. So literature on the subjects of combinatorial op-
timization and quantitative logistics are usually the best choices to know more about
network optimization.

In order to avoid that the book would become a disconnected set of exercises,
we use the fictitious company Global Telecom Company (GTC) as a common theme
throughout. The international market for telecommunication is still one of the fastest
growing markets in the world. There is an increasing demand for more and more
customer-specific products and services. Also in this market, the supply chains from
product-suppliers via manufacturers, distribution centers, warehouses and retailers to
the final customers have made a shift from “make-to-stock” to the customer-specific
“make-to-order” concept. Outsourcing and focusing on core-business have become
the key success factors. Demand-supply chain management, where all links in the
production network cooperate, is a key issue for surviving and for obtaining the
necessary competitive advantage over other supply networks. Finding the balance
between on one hand maximizing the customer service, and on the other hand min-

Preface

the Internet. Some suggestions for associated readings and Internet sites related to

VII

imizing the total costs, wastes, and inventories is done on a supply chain/network
scale. GTC operates in this scenario.

GTC has businesses in various countries across the world. The company manages
a large worldwide telecommunication system, and produces sophisticated equipment
for telecommunication. GTC operations are divided into a number of largely in-
dependent operation divisions, such as “Research & Development”, “Cables”, and
“Services”. One of the main goals of GTC is to extend its position as an important
supplier of telecommunication services, with an emphasis on a continuous improve-
ment of the price-quality relations of its products and services.

These facts justify a look at network optimization from a telecommunication
point of view. The problems have been carefully selected and formulated and reflect
a high degree of realism, although the reality is not always reached completely. When
faced with the choice between realism on one hand and didactic justification on the
other, we have often chosen for the latter. We have formulated problems with data
sets that are manageable and surveyable for the student, but too large to be solved
“by inspection”.

The exercises in the book have been extensively tested in classroom settings.
Many of our students’ suggestions to improve the clarity of the questions have been
implemented. However, we are eager to obtain further suggestions on improving the
book. These may be sent by email to the authors’ addresses (g.sierksma@rug.
nl and diptesh@iimahd.ernet.in). Nevertheless, some questions may not
be completely clear to the reader. In such cases, the reader is challanged to formulate
her/his own interpretation of the question. Even a number of alternative scenarios
may be considered. In practical situations, when the management is not completely
clear about the formulation of a problem, a pro-active approach of proposing al-
ternative scenarios may be effective, especially in understanding the problem more
clearly.

Many persons have contributed to the final version of this book. We would espe-
cially like to mention the contributions of Matthijs Streutker, who provided the first
version of the chapter on facility location, and devised the software for solving the
problems, and Marc-Jan Menkhorst for providing the first version of the chapter on
matching. Any errors that remain in the book are of course the responsibility of the
authors.

Groningen, Gerard Sierksma
Ahmedabad, Diptesh Ghosh

Preface

Contents

Preface . V

A The Modeling and Implementing Process . 1

B Network Theory . 3
B.1 Graphs and Networks . 3
B.2 Solution Techniques . 7
B.3 Graph Representations . 9

C References with Comments . 11

1 Shortest Paths . 17
1.1 Introduction . 17
1.2 Applications . 18

1.2.1 Scheduling truck movement through cities 18
1.2.2 Making investment plans . 18

1.3 A Linear Programming Formulation . 20
1.4 Algorithms for Shortest Path Problems . 22

1.4.1 Dijkstra’s algorithm . 22
1.4.2 Bellman-Ford’s algorithm . 26

1.5 Other Path Problems . 27
1.5.1 The longest path problem . 27
1.5.2 The bottleneck shortest path problem. 28
1.5.3 The hop-constrained shortest path problem 28
1.5.4 The Hamiltonian path problem . 29
1.5.5 The stochastic shortest path problem . 29

1.6 Exercises on Shortest Path Problems . 30

2 Minimum Spanning Trees . 37
2.1 Introduction . 37
2.2 Applications . 39

X Contents

2.2.1 Designing networks for disasters . 39
2.2.2 Group technology . 40
2.2.3 Storing large but similar data . 40

2.3 Linear Programming Formulations . 40
2.4 Algorithms for Minimum Spanning Trees . 43

2.4.1 Prim’s algorithm . 44
2.4.2 Kruskal’s algorithm . 47

2.5 Other Tree Problems . 48
2.5.1 The Steiner tree problem . 48
2.5.2 The capacitated minimum spanning tree problem 49
2.5.3 The degree constrained minimum spanning tree problem . . . 50
2.5.4 The most reliable minimum spanning tree problem 50

2.6 Exercises on Minimum Spanning Tree Problems 50

3 Network Flows . 61
3.1 Introduction . 61
3.2 Applications . 63

3.2.1 Production planning . 63
3.2.2 Tourist reservation system . 64
3.2.3 Staff allocation . 65

3.3 Linear Programming Formulations . 67
3.4 Algorithms for Network Flow Problems . 72

3.4.1 Ford-Fulkerson’s algorithm . 72
3.5 Other Network Flow Problems . 75

3.5.1 The multicommiodity flow problem . 75
3.5.2 The reliable network flow problem . 75
3.5.3 The network cut problem . 76

3.6 Exercises on Network Flow Problems . 77

4 Matchings . 87
4.1 Introduction . 87
4.2 Applications . 90

4.2.1 Constructing university timetables . 90
4.2.2 Constructing 3-dimensional models from 2-dimensional data 90
4.2.3 Crew pairing . 91

4.3 Linear Programming Formulations . 91
4.3.1 The maximum cardinality matching problem 92
4.3.2 The maximum weight matching problem 92
4.3.3 The non-bipartite matching problem . 93
4.3.4 The bottleneck matching problem . 95

4.4 Algorithms for Matchings . 96
4.5 Other Matching Problems . 98

4.5.1 The stable marriage problem . 98
4.5.2 The 3-dimensional stable matching problem 99

4.6 Exercises on Matching Problems . 100

Contents XI

5 Facility Location . 117
5.1 Introduction . 117
5.2 Applications . 121

5.2.1 Cluster analysis . 122
5.2.2 Locating undesirable facilities . 122

5.3 Linear Programming Formulations . 122
5.3.1 The uncapacitated facility location problem 122
5.3.2 The capacitated facility location problem 124
5.3.3 The p-median problem . 126
5.3.4 The p-center problem . 128

5.4 Algorithms for Location Problems . 130
5.4.1 An exact algorithm: Branch and bound 130
5.4.2 A non-exact algorithm: Greedy heuristic 133

5.5 Other Facility Location Problems . 136
5.5.1 The competitive facility location problem 136
5.5.2 The multi-objective facility location problem 136

5.6 Exercises on Facility Location Problems . 137

6 Cyclic Routing on Networks . 143
6.1 Introduction . 143
6.2 Applications . 148

6.2.1 Manufacturing of printed circuit boards 148
6.2.2 Order picking in warehouses . 149
6.2.3 Postal delivery routing . 149

6.3 (Integer) Linear Programming Formulations . 150
6.3.1 The traveling salesman problem . 150
6.3.2 The Chinese postman problem . 155

6.4 Algorithms for Routing Problems . 157
6.4.1 Traveling salesman problem . 157
6.4.2 Chinese postman problem . 167

6.5 Other Routing Problems . 169
6.5.1 The bottleneck traveling salesman problem 169
6.5.2 The prize-collecting traveling salesman problem 170
6.5.3 The generalized traveling salesman problem 171
6.5.4 The rural postman problem . 171

6.6 Exercises on Network Routing Problems . 171
References . 181

Index . 183

A

The Modeling and Implementing Process

Mathematical models do not exist in vacuum, but are typically representations of
real-life problem situations. Therefore, even in a book of problems in network op-
timization, it is important to point out the position of optimization modeling and
solution in real life problem solving. Hence this chapter.

Modeling and solving a practical problem is usually a long process of advanc-
ing insight. The person on the work floor, who actually faces the problem, often
intuitively feels the presence of a problem, and gradually, in a step-by-step process,
identifies the actual problem. Only then it is time to think of solving the problem, and
possibly implementing a computer decision support system to help the organization
more accurate and effective in the future when similar problems arise. Very often
organizations do not take enough time to analyze the problem in enough detail and
buy expensive software that does not meet their needs sufficiently.

Decision-making begins with a situation in which a certain problem is recog-
nized. The modeling process starts by calling on an analyst (or a team of analysts).
The analyst formulates the problem by constructing a precise verbal statement of ob-
jectives, constraints on solutions, appropriate assumptions, descriptions of processes,
data requirements, alternatives for action, and metrics for measuring progress. This
process of formulation is extremely important: it does not make sense to solve a
problem that is not the problem of the company.

The next step is to translate the problem from verbal, qualitative terms into a
logical, quantitative model. Such a model is a number of rules, usually embedded
in a computer program. A mathematical model, for instance a network model, is a
collection of functional relationships. Models usually never include every aspect of
the problem to be solved. However, they should include the more important and rel-
evant aspects. Including too few aspects often leads to very elegant models that do
not solve the real problem, while including too many aspects may lead to a realistic
model that is too complicated to solve in reasonable time. The process of restricting
the model to the most relevant aspects also forces the decision maker to set priorities,
and using the solutions as bench marks when the less important aspects are taken into
account, if necessary. The statements of the abstractions, introduced in the construc-
tion of the model, are called the assumptions. One of the main questions always is:

1

©
Optimization, International Series in Operations Research & Management Science 140,

 Springer Science + Business Media, LLC 2010DOI 10.1007/978-1-4419-5513-5_1,

G. Sierksma and D. Ghosh (eds.), Networks in Action: Text and Computer Exercises in Network

2 A The Modeling and Implementing Process

Does the model represent the relevant aspects of the problem? Or, do we solve an
abstraction too far away from reality?

It may be clear that the above process is only possible in good cooperation be-
tween the decision maker(s) and the analyst(s). Otherwise, the assumptions may be
become an unnecessary obstacle between the analyst and the decision maker. The
analyst may be only willing to use the computer solutions, if he/she agrees on the
assumptions.

During the modeling process the analyst may calculate temporary solutions, just
as to validate the modeling process. If a solution does not make sense at all to the de-
cision maker, the modeling process needs to be reconsidered. As soon as the analyst
and the decision maker agree, the actual solution process of the model can start. This
also includes the calculation and analysis of different scenarios, where the usually
uncertain data is subject to change. This, so called ‘what if’ analysis highly con-
tributes to the level of acceptance of the new system. The final most important aspect
is of course the level of acceptance and the actual use of the system by the company.

Even when computer systems are applied, the users should always keep in mind
that the non-tangible and qualitative aspects of the problems should not be neglected
and denied; the systems implemented are indeed decision support systems, with a lot
of emphasis on the term ’support’. Decision support systems are devoted to aiding
decision makers under varying circumstances: limited resources, conflicting goals,
changing conditions, complex interpersonal dynamics, uncertainty in for instance
demand, and unyielding deadlines. The goal of computer systems is to provide a
framework for the decision-making process, and to provide optimal solutions with
respect to given measures of merit.

Since companies operate in a dynamic world, problems and solutions of yester-
day may not be relevant for to day anymore. Therefore it is important to the company
to establish controls that recognize a changing situation and signal the need to update
the decision support system.

Finally, it seems to be a common human trait to resist against changes. Therefore
the most tedious part is to get the system and the solutions implemented in the orga-
nization. So the art of building models also includes the art to carry along the people
in the organization that are likely to be affected by the innovation.

B

Network Theory

B.1 Graphs and Networks

Network optimization needs to use many terms and notions used in graph theory. In
this chapter we seek to introduce most of the graph theory terms and notions used
in the book. We also introduce some concepts used in the study of algorithms. To
explain these concepts, we will make use of a fictitious map of one of the facilities
of the fictitious Global Telecom Company (GTC). The map is shown in Figure B.1
and is drawn to scale.

Fig. B.1. Map of one of the facilities at GTC (to scale)

If we want to depict the connectivity among various points in the facility, we can
have a schematic representation of the map as shown in Figure B.2. In this figure,
the locations of the map have been replaced by points, depicted as labeled circles. In
Figure B.2 for example, point 1 represents the Security building in the map, point 2

©
Optimization, International Series in Operations Research & Management Science 140,

 Springer Science + Business Media, LLC 2010

G. Sierksma and D. Ghosh (eds.), Networks in Action: Text and Computer Exercises in Network

DOI 10.1007/978-1-4419-5513-5_2,

3

4 B Network Theory

Fig. B.2. The map of Figure B.1 represented as a graph

represents the Reception desk, point 3 represents Warehouse 1, and so on. The lines
between the points show that the buildings represented by the points are connected
by a direct road segment. Figure B.2 is known as a graph. The points 1, 2, . . . , 10 are
referred to as nodes (or vertices) of the graph, and the lines between the nodes are
referred to as edges (or links) in the graph. Hence a graph is just a collection of nodes
and edges linking pairs of nodes. In some graphs, we allow more than one edges to
connect a pair of nodes. As a special case of such graphs, an edge may connect a
node to itself. Graphs with such possibilities are called multigraphs. Graphs that are
not multigraphs are called simple graphs.

Notice that the representation that we made does not faithfully represent the ge-
ographical properties of the map; for example, the edges between 4 and 7, and 6 and
7 are drawn approximately equal, although the distance between the two production
facilities in the map is distinctly more than the distance between Production Facility
1 and the Canteen. This is because the graph is just a representation that emphasizes
more on the connectivity between various points rather than a faithful representation
of geography.

If we want to convey information about the distances between each pair of points
in the map, we make use of weighted graphs (see Figure B.3), also referred to as net-
works. Next to each edge in a weighted graph, there is a number denoting the weight
(or cost, or length) of that edge. In Figure B.3, the weights denote the distances be-
tween the corresponding nodes in 100 meter units. So from it we can interpret that
the distance between the Security building and the Reception desk is 200 meters.

Next let us assume that the road segments in Figure B.1 are one way roads. Let us
suppose that one can go in the direction from the Security building to the Mainframe
Room, but not in the other direction. The only other permissible directions of travel
are from the Mainframe Room to Warehouse 2, down the straight road from Ware-
house 2 to the Reception desk, from Production Facility 2 to Production Facility 1 to
the Canteen, and from the Reception desk to Warehouse 1. These directional prop-
erties can be depicted in a directed graph (or digraph), which is a graph in which all
edges have a direction assigned. Directed edges are also known as arcs. Figure B.4

B.1 Graphs and Networks 5

Fig. B.3. The map of Figure B.1 represented as a weighted graph

shows how the directed graph with all the directional properties mentioned above is
depicted.

Fig. B.4. A directed graph representing the map of Figure B.1

Sometimes, in a graph, some (but not all) edges are directed. A graph with both
directed and undirected edges is called a mixed graph. Obviously, undirected graphs
and directed graphs are both special cases of mixed graphs. Mixed graphs, and hence
directed graphs, have weighted versions too.

Simple graphs in which each pair of nodes is connected by an edge are called
complete graphs. Therefore, a complete graph on n (n ≥ 2) nodes (denoted by Kn)
has
(n

2

)
edges. A complete graph on five nodes is shown in Figure B.5.

In some cases, it is possible to divide the the set of nodes in a graph into two
disjoint sets, such that all edges in the graph join a node in one set to a node in
the other, and no edge joins nodes in the same set. Such graphs are called bipartite
graphs. Simple bipartite graphs, in which all nodes of one set are connected to each
node of the other set, are called complete bipartite graphs. If one of the two sets of

6 B Network Theory

Fig. B.5. The complete graph K5

nodes has m nodes in it, and the other set has n nodes, then the complete bipartite
graph is denoted by Km,n, (m, n≥ 1). Figure B.6 depicts the complete bipartite graph
K3,2.

Let us consider the problem of traveling between nodes 5 and 9 in the graph of
Figure B.2. There are several ways to do it. One may take a direct route from node 5
through nodes 6 and 10 to node 9. Another way could be from node 5 through nodes
6, 7, 4, and 10 to node 9. In graph theory, these routes are called walks. A walk is
an alternating sequence of nodes and edges, starting and ending with nodes, where
each edge joins the node preceding it with the node succeeding it. In this text we will
denote the two walks as 5 – 6 – 10 – 9, and 5 – 6 – 7 – 4 – 5 – 10 – 9, respectively.
A walk in which no two nodes are the same is called a path. So the walk 5 – 6 –
10 – 9 is a path, while the walk 5 – 6 – 7 – 4 – 5 – 10 – 9 is not. Walks and paths
have equivalents in directed and mixed graphs (directed walk and mixed walk, and
directed path and mixed path, respectively). A path in a graph which starts and ends
at the same node is called a cycle or tour. In Figure B.2, 5 – 6 – 7 – 4 – 5 denotes a
cycle. A graph which does not contain a cycle is called an acyclic graph. The length
of a walk, path, or cycle, is the sum of the weights of the edges in it for weighted
graphs, and the number of edges in it for unweighted graphs. As in other cases,
cycles have equivalents, called directed and mixed cycles, respectively, in directed
and mixed graphs. Walks, paths, cycles, and tours can also be described by the edges
or arcs in them. For example, the path 5 – 6 – 10 – 9 can be denoted by the set {5 –
6, 6 – 10, 10 – 9}.

B.2 Solution Techniques 7

Fig. B.6. The complete bipartite graph K3,2

B.2 Solution Techniques

In network optimization (and indeed in many other fields) we need to define system-
atic procedures to do particular operations. In most cases, we need the procedure to
be finite, i.e., if one follows the procedure, one should be able to finish the task in
finite time. Such well defined procedures that get over in finite time are called algo-
rithms. They are called exact if they are guaranteed to output optimal solutions, other-
wise they are called approximate. Approximate algorithms are also called heuristics.

Now, let us consider the problem of finding a shortest path between two pre-
specified nodes in a graph. For example, let us suppose that one wants to find a
shortest path between Warehouse 1 and Warehouse 2 in the map in Figure B.1. If one
is willing to look at all paths, compare them and output the cheapest, then one has to
consider the following seven options (in terms of nodes in the graph in Figure B.2):

(1) 3 – 2 – 1 – 8 – 9 – 10;
(2) 3 – 2 – 1 – 8 – 5 – 6 – 10;
(3) 3 – 2 – 1 – 8 – 5 – 4 – 7 – 6 – 10;
(4) 3 – 2 – 4 – 7 – 6 – 10;
(5) 3 – 2 – 4 – 7 – 6 – 5 – 8 – 9 – 10;
(6) 3 – 2 – 4 – 5 – 6 – 10; and
(7) 3 – 2 – 4 – 5 – 8 – 9 – 10.

8 B Network Theory

If we generalize this problem to a weighted complete graph with n nodes (n≥ 2), we
see that there are ∑

n−2
i=0

(n−2)!
(n−2−i)! different paths between any two nodes. (It is left to

the reader to check this formula.) This is a daunting number — even if we employed
a computer that could enumerate and evaluate a million paths each second, it would
take 551.86 years to find a shortest path in a weighted K20 graph.

Algorithms that evaluate all solutions and return the best are called complete enu-
meration (or exhaustive enumeration) algorithms, and are normally the algorithms
of last resort. Typically, there are much smarter ways of solving these problems. For
example, there is an algorithm for the shortest path problem due to E.W. Dijkstra
(which we describe in Chapter 1) which performs an order of n2 computations. In
Table B.1 we illustrate the comparison between ∑

n−2
i=0

(n−2)!
(n−2−i)! and n2 as n increases.

Table B.1. The growth of the functions ∑
n−2
i=0

(n−2)!
(n−2−i)! and n2 as n increases

n ∑
n−2
i=0

(n−2)!
(n−2−i)! n2

2 1 4
3 2 9
4 5 16
6 65 36
8 1957 64
10 109601 100
20 1.74 ×1016 400
30 8.29 ×1029 900
40 1.42 ×1045 1600
50 3.37 ×1061 2500

Several network optimization problems, such as the shortest path problem, the
minimum spanning tree problem, and the matching problem have such efficient al-
gorithms. These problems are thus called “easy” problems, which effectively means
that given the number of bits required to code the input data in binary digits (say k),
an algorithm exists which will solve any instance of the problem input in a number
of elementary steps which is a polynomial in k. For our purpose, elementary steps
include adding or subtracting or multiplying or dividing or comparing two numbers
(i.e., for any two numbers a and b, a+b, a−b, a×b, a÷b, and “ is a≥ b”).

Unfortunately, there are network optimization problems for which it is not clear
whether such algorithms exist. These are called “hard” (or NP-hard) problems. Ex-
amples of these problems are network location problems, like the k-median problem
and the facility location problem (see Chapter 5), and some network routing prob-
lems, like the traveling salesperson problem (see Chapter 6). For hard problems, typ-
ically, the solution technique is a refinement of a complete enumeration algorithm.
Consequently, in general, we are able to solve easy problems of sizes much larger
than that of hard problems. For solving large instances of hard problems, one relies
on heuristics, which aim to yield good quality solutions within reasonable times. Un-

B.3 Graph Representations 9

like exact algorithms that always output optimal solutions, and thus can be compared
only on the basis of their execution time and computer memory usage, heuristics can
also be compared on the basis of the quality of solutions they output.

B.3 Graph Representations

Graphs are typically stored in computers in one of two forms, an adjacency matrix,
or an incidence matrix.

For a mixed graph with a node set N = {1,2, . . . ,n} without weights, the adja-
cency matrix is a n× n matrix. If (and only if) the graph has an arc from node i to
node j, then the adjacency matrix has a 1 in the (i, j) position, otherwise the position
contains a 0. If the graph has an edge between two nodes i and j, then that edge is
considered to be a shorthand for two arcs, one from i to j and another from j to i.
Accordingly, the adjacency matrix has a 1 in the (i, j) position as well as the (j, i)
position. As an example consider the graph shown in Figure B.7.

Fig. B.7. A simple graph

Its adjacency matrix representation is the following.

1 2 3 4 5
1 0 1 0 0 1
2 1 0 0 1 0
3 0 1 0 1 0
4 0 0 1 0 1
5 0 0 0 1 0

If the graph is a weighted graph, then instead of a position in the matrix contain-
ing either a 1 or a 0, the position would either contain a 0 for a nonexistent arc, or
the weight of that edge.

The maximum number of edges in a graph with n nodes is n(n−1). If the graph
has far fewer than this number of edges, then the representation can be made more

10 B Network Theory

efficient by using incidence matrices. For a graph with n nodes and m edges, an in-
cidence matrix is a n×m matrix, where each row corresponds to a node and each
column to an edge. In the column (say column k) corresponding to an edge connect-
ing nodes i and j, only the (i,k) and (j,k) positions have a 1, and the others have
a 0. The incidence matrix representation for the graph in Figure B.2, for example,
is given below. Observe that this representation is less efficient than the adjacency
matrix representation if the number of edges in the graph exceeds the number of
nodes.

1–
2

1–
8

2–
3

2–
4

4–
5

4–
7

5–
6

5–
8

6–
7

6–
10

8–
9

9–
10

1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 1 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0
4 0 0 0 1 1 1 0 0 0 0 0 0
5 0 0 0 0 1 0 1 1 0 0 0 0
6 0 0 0 0 0 0 1 0 1 1 0 0
7 0 0 0 0 0 1 0 0 1 0 0 0
8 0 1 0 0 0 0 0 1 0 0 1 0
9 0 0 0 0 0 0 0 0 0 0 1 1

10 0 0 0 0 0 0 0 0 0 1 0 1

If the graph is a directed graph, then the incidence matrix is called a node arc
incidence matrix. The node arc incidence matrix of a directed graph with n nodes
and m arcs has n rows and m columns. If the kth column represents an arc from i to j,
then the (i,k) position of the matrix contains a -1 (instead of a 1 as in the earlier case)
and the (j,k) position contains a 1 as in the previous case. Thus a node arc incidence
matrix is a (-1, 0, 1)-matrix while the incidence matrix is a (0, 1)-matrix. The node
arc incidence matrix representation for the graph in Figure B.4, for example, is the
following.

2→
1

1→
8

2→
3

4→
2

5→
4

7→
4

6→
5

5→
8

6→
7

10
→

6
8→

9
9→

10

1 1 -1 0 0 0 0 0 0 0 0 0 0
2 -1 0 -1 1 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0
4 0 0 0 -1 1 1 0 0 0 0 0 0
5 0 0 0 0 -1 0 1 -1 0 0 0 0
6 0 0 0 0 0 0 -1 0 -1 1 0 0
7 0 0 0 0 0 -1 0 0 1 0 0 0
8 0 1 0 0 0 0 0 1 0 0 -1 0
9 0 0 0 0 0 0 0 0 0 0 1 -1

10 0 0 0 0 0 0 0 0 0 -1 0 1

Note that each column in this matrix has exactly two non-zero elements, a 1 denoting
the head of the corresponding arc, and a -1 denoting the tail of the arc.

C

References with Comments

Apart from Jungnickel’s book [18] mentioned in the preface, we suggest (in alpha-
betical order of the first author’s surname) the following textbooks:

1. Linear Programming by V. Chvátal [11]
This is one of the best introductions on linear programming and optimization.
Most of the concepts and techniques are introduced using illustrative examples.

2. Introduction to Operations Research by F.J. Hillier and G.J. Lieberman [16]
This is a standard work on general operations research.

3. Operations Research; Models and Methods by P.A. Jensen and
J.F. Bard [17]
This is again a standard reference on general operations research.

4. Linear Optimization and Extensions by J.M. Padberg [23]
This book on linear optimization grew out of a series of lectures and contains a
chapter that relates combinatorial optimization with linear optimization.

5. Theory of Linear and Integer Programming by A. Schrijver [25]
This book provides a thorough mathematical treatment of the theory of linear
and integer optimization. It is aimed at an advanced level.

6. Linear and Integer Programming; Theory and Practice by G. Sierksma [27]
This book on linear programming/optimization contains a large number of case
studies, including several on network optimization.

7. Operations Research: an Introduction by H.A. Taha [30]
This is another standard work on general operations research.

8. Model Building in Mathematical Programming, and Model Solving in Mathe-
matical Programming by H.P. Williams [31, 32]
These two books on building and solving mathematical models are very well
written, and cover aspects of model building and solving that are dealt with very
cursorily in other introductory books. The first book also contains a number of
case studies on mathematical modeling.

9. Operations Research: Applications and Algorithms by W.L. Winston [34]
This again is a major standard work on general operations research.

©
Optimization, International Series in Operations Research & Management Science 140,

 Springer Science + Business Media, LLC 2010

G. Sierksma and D. Ghosh (eds.), Networks in Action: Text and Computer Exercises in Network 11

DOI 10.1007/978-1-4419-5513-5_3,

12 C References with Comments

Other more advanced books and papers on network optimization are the follow-
ing (again in alphabetical order of the first author’s surname). One of the following
symbols follow each of the titles.

CO: meaning that this is a reference on combinatorial optimization;
GL: meaning that this is a reference on general logistics;
GN: meaning that this is a reference on the theory of graphs and networks;
IP: meaning that this is a reference on general integer programming;
OR: meaning that this is a reference on general operations research.

All references also have a short description of the main characteristics.

1. Local Search in Combinatorial Optimization edited by E. Aarts and J.K. Lenstra [1].
(CO)
This book deals with local search techniques for finding good quality solutions
for optimization problems. Practical instances of hard problems like the facility
location problem and the traveling salesman problem that we cover in our book
can be solved using local search methods.

2. Network Flows; Theory, Algorithms and Applications by R.K. Ahuja, T.L. Mag-
nanti, and J.B. Orlin [2]. (CO)
This book is one of the most complete works on network optimization. It can be
used as a thorough and advanced reference for the problems in our book.

3. Graphs and Applications; an Introductory Approach by J.M. Aldous and R.J.
Wilson [3]. (GN)
This book arose out of a British Open University course on graphs and networks.
It is very suitable as an introduction on the concepts used in our book

4. Linear Programming and Network Flows by M.S. Bazaraa, J.J. Jarvis, and H.D.
Sherali [4]. (IP)
A considerable portion of this book is devoted to network optimization problems
and algorithms for such problems. It has less coverage than Ahuja et al., but
covers individual topics more elaborately.

5. Routing and Scheduling of Vehicles and Crews; the State of the Art by L.D.
Bodin, B.L. Golden, A.A. Assad, and M.O. Ball [5]. (CO)
Although this paper is not very recent, it provides an elaborate overview of ve-
hicle routing problems and solution techniques. It is a good reference for our
chapter Cyclic Routing.

6. Graph Theory with Applications by J.A. Bondy and U.S.R. Murty [6]. (GN)
This is, in our opinion, still one of the best accounts on the theory of graphs and
networks. It is very suitable as secondary reading to our book.

7. Team Formation: Matching Quality Supply and Quality Demand by B.H. Boon
and G. Sierksma [7]. (CO)
This paper describes the modeling process of designing optimal soccer and vol-
leyball teams by solving a matching problem. It is a good reference for our chap-
ter Matchings.

8. Logistical Management: the Integrated Supply Chain Process by D.J. Bowersox
and D.J. Closs [8]. (GL)

C References with Comments 13

This book focuses on business logistics, which includes all activities to move
products and information to, from, and between the members of the supply
chain. This textbook may serve as a thorough introduction to the fundamental
logistics management issues.

9. The Logic of Logistics; Theory, Algorithms, and Applications for Logistics
Management by J. Bramel and D. Simchi-Levi [9]. (GL)
This book mainly deals with the mathematical aspects of logistics: vehicle rout-
ing, inventory, and warehouse location.

10. Combinatorial Optimization by W.J. Cook, W.H. Cunningham, W.R. Pulley-
blank, and A. Schrijver [10]. (CO)
This book is written by four leading scholars in the field of network optimization.
The book starts on an elementary level and proceeds quickly to a more advanced
level.

11. Network and Discrete Location; Models, Algorithms, and Applications by M.S.
Daskin [12]. (CO)
This text introduces the reader to the key classical location problems. Parts of the
book can be used as supplementary reading for our chapter Facility Location.

12. Handbook of Combinatorial Optimization by D.-Z Du and P. Pardalos [13]. (CO)
This series of three handbooks deals with algorithmic approaches for discrete
and combinatorial problems, and brings together different aspects of these fields,
with emphasis on recent developments.

13. Optimization Algorithms for Networks and Graphs by J.R. Evans and E. Mini-
eka [14]. (CO)
This book contains an elementary treatment of the main network optimization
problems, including a nice chapter on network location theory. This last chapter
is especially recommended.

14. Combinatorial Optimization; Theory and Algorithms by B. Korte and J. Vy-
gen [19]. (CO)
This is a well-written advanced graduate text, covering the major topics in com-
binatorial optimization. Applications are mentioned only occasionally.

15. The Traveling Salesman Problem; a Guided Tour of Combinatorial Optimization
edited by E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys [20].
(CO)
The major topics of combinatorial optimization are treated from the perspective
of the Traveling Salesperson problem. This creative idea makes the book very
readable and is highly recommended as secondary reading on our book.

16. A First Course in Combinatorial Optimization by J. Lee [21]. (CO)
This book can be seen as an introduction in the mathematics of combinatorial
optimization. It targets mainly on the graduate level.

17. Discrete Location Theory by P.B. Mirchandani and R.L. Francis [22]. (CO)
This book consists of twelve papers written by experts in the field of discrete
location theory. The book is suitable as further reading for our chapter Facility
Location.

18. Combinatorial Optimization: Algorithms and Complexity by C.H. Papadim-
itriou and K. Steig1itz [24]. (CO)

14 C References with Comments

This book is still seen as one of the most comprehensive texts on combinato-
rial optimization. Special attention is payed to the techniques for analyzing the
complexity of algorithms.

19. Combinatorial Optimization: Polyhedra and Efficiency by A. Schrijver [26].
(CO)
This state-of-the-art reference work consist of three volumes. Volume A: Paths,
Flows, Matchings. Volume B: Matroids, Trees, Stable Sets. Volume C: Multi-
flows, Disjoint Paths, Hypergraphs. Volume A is particularly suited as a refer-
ence reading for our book.

20. Routing Helicopters for Crew Exchanges on Offshore Locations by G. Sierksma
and G.A. Tijssen [28]. (CO)
This case study describes the model building and model solving aspects of a
real-life vehicle routing problem with split demands.

21. Designing and Managing the Supply Chain; Concepts, Strategies, and Case
Studies by D. Simchi-Levi, P. Kaminski, and E. Simchy-Levi [29]. (GL)
Supply Chain Management concerns the efficient integration of all suppliers,
factories, warehouses, and stores/retailers within a chain/network, in order to
minimize the total system costs, and to maximize the final customer’s service,
such as to acquire a competitive advantage over all other competing supply
chains/networks. This introductory book discusses the basic topics of Supply
Chain Management, among others inventory management, logistics network de-
sign, distribution systems, and decision support systems.

22. Graphs: an Introductory Approach by R.J. Wilson and J.J. Watkins [33]. (GN)
This is a very good introduction on the theory of graphs and networks.

23. Integer Programming by L.A. Wolsey [35]. (IP)
This is a textbook suitable for advanced undergraduate and masters level pro-
grams. It is aimed at users of integer programming techniques, who wish to
understand why problems are sometimes difficult to solve, and how nevertheless
good solutions can be obtained.

Apart from the books and papers listed above, certain websites are also useful re-
sources for our book. We list them below. This list is not comprehensive, but provides
a starting point for optimization sites on the Internet.

• Frequently asked questions on linear programming/optimization:
http://www-unix.mcs.anl.gov/otc/Guide/faq/
linear-programming-faq.html

• Tutorial on graph theory:
http://www.cs.usask.ca/resources/tutorials/csconcepts/
1999_8/tutorial/

• Tutorial on linear programming/optimization (due to H. Greenberg):
http://carbon.cudenver.edu/˜hgreenbe/courseware/
LPshort/intro.html

• A page devoted to the traveling salesperson problem (includes the CONCORDE
TSP Solver):
http://www.tsp.gatech.edu/

C References with Comments 15

• On optimization software in general (decision tree for optimization sofware):
http://plato.la.asu.edu/guide.html

• The COIN-OR project has a collection of open-source solvers:
http://www.coin-or.org/

• NEOS project (http://www-neos.mcs.anl.gov/) has a collection of
solvers:
http://www-neos.mcs.anl.gov/neos/solvers/index.html

• Free linear programming/optimization solvers are pointed to in the Linear Pro-
gramming FAQ as well as in the INFORMS resources page. Informs Resource
Collection (formerly known as Mike Trick’s page):
http://www.informs.org/resources/

• The Sci.op-Research Newsgroup deals with general operations research prob-
lems (available through GOOGLE R© groups):
http://groups.google.com/group/sci.op-research?hl=en

1

Shortest Paths

1.1 Introduction

The traffic in a particular city is controlled by seven groups of technicians in seven
major junctions of the city. These seven junctions are labeled A, B, C, D, E, F, and
G, and their interconnections along the road network in the city are schematically
depicted by the network in Figure 1.1. The numbers next to the connections in the

Fig. 1.1. The road network

network depict the time in minutes required to go from one end of the connection to
the other end. The stations communicate with each other using sophisticated commu-
nication equipments. GTC holds a contract for the maintenance of this equipment.
If there is a malfunction in the equipment at any of the junctions, GTC dispatches

©
Optimization, International Series in Operations Research & Management Science 140,

 Springer Science + Business Media, LLC 2010

G. Sierksma and D. Ghosh (eds.), Networks in Action: Text and Computer Exercises in Network

DOI 10.1007/978-1-4419-5513-5_4,

17

18 1 Shortest Paths

maintenance crew from its base station at junction A to the junction at which the
equipment malfunctions.

One major consideration for GTC is to minimize downtime, i.e., the time taken
by GTC crew to reach the malfunctioning unit after they are informed of the mal-
function. Therefore, the crew at location A need to know the quickest route through
which they can reach any of the other six junctions if the need arises.

This problem is known as the shortest path problem in a network. It is one of the
most common problems that occur in network optimization, and is very well studied.
It is historically called the shortest path problem, since the cost associated with an
edge in a network often represents the length of the edge.

Formally stated, in a shortest path problem, one is given a weighted network
N = (V,E,w) and two nodes s, t ∈V which are connected. we denotes the weight of
the edge e ∈ E. These weights are often referred to as costs or lengths of the edges.
A path P = {e1,e2, . . . ,ek} is said to have length ∑e∈P we. The required output in the
shortest path problem is a path P? between s and t whose length is the minimum
among the lengths of all paths between s and t in the network. If the network is a
directed network, then one of s and t is designated as the source, and the other is
designated as the destination. In directed networks the shortest path problem is one
of finding a shortest length directed path from the source node to the destination
node.

1.2 Applications

Several real-life problems can be modeled as shortest path problems. This section
provides two such examples. Other situations where decisions are made using the
shortest path problem are described in the problems at the end of the chapter.

1.2.1 Scheduling truck movement through cities

Trucks transporting bulk items on long inter-state routes are often either not allowed
to pass through cities except during some restricted times of the day, or have to
submit route plans that are approved by city authorities. In either case, transporters
need to decide how to travel through the city so as to cause minimum disturbance.
This problem can be modeled as a shortest path problem in which the roads that the
trucks can take form a network, the entry point to the city is the source node, the
exit point is the destination node, and the expected time for the truck to traverse a
particular road segment is taken as its weight.

1.2.2 Making investment plans

Investors need to plan investments in order to maximize returns at a future date from
a sum of money invested at present. Typically, they consider different investment
options, each with its own rate of return and duration. The investor’s problem can be

1.2 Applications 19

solved using a variation of the shortest path problem. The modeling of the problem
is not straightforward, hence the following example would be useful.

Consider that an investor is thinking of investing e1 and aims to maximize the
returns from this investment at the end of three years. She has two investment options.

Option 1: Investment generates 10% (i.e., e0.10) returns with a duration of one
year; and

Option 2: Investment generates 15% (i.e., e0.15) returns with a duration of two
years.

She can invest only money that she has at hand at the beginning of each year. Notice
that the total returns are not additive in the returns generated, but multiplicative. If
the investor invests e1 in Option 1 at present and at the end of the first year takes
the e1.10 it yields and invests in Option 2, then the total returns that she gets is not
[0.10+0.15], i.e. 25%, but [(1.10)× (1.15)−1.00], i.e. 26.5%.

A possible way of modeling this is a network with four nodes, one labeled 0
representing the current time, and three others labeled 1, 2, and 3, representing the
beginnings of the next three years. At each node i, i 6= 3, an arc is drawn to connect
it to node i+1, representing the possibility of investing in Option 1 at the beginning
of that year. In addition, at each node i, i 6= 2, 3, an arc is drawn to connect it to node
i+2. These arcs represent the possibility of investing in Option 2 at the beginning of
the year.

Since the return from an investment is computed by multiplying returns rather
than adding them, the problem is converted to a shortest path problem by taking
logarithms of the returns rather than the returns themselves. The length of a path in
the network with these weights is then the logarithm of the return on a unit investment
if the investor follows the investment policy represented by the path. The weight
associated with each arc of the first type in the network is thus log(1.10) and the
weight associated with each arc of the second type is log(1.15). The network for
the investor’s problem in the current setup is shown in Figure 1.2. The broken lines
represent the arcs of the first type while the solid lines represent the arcs of the second
type.

Fig. 1.2. Network denoting investment possibilities

A path on this network joining node 0 to node 3 describes an investment strategy;
for example, the path 0 – 1 – 3 denotes the strategy of investing in Option 1 now, and

20 1 Shortest Paths

at the end of the first year, taking all the money and investing in Option 2. The sum of
the weights of the arcs on each path is the logarithm of the return from the investment
strategy represented by the path. The investor’s objective is then to find the longest
path in the network.1

1.3 A Linear Programming Formulation

Shortest path problems can be solved to optimality using the linear programming
technique. The technique is best explained for directed networks. This does not pose
a serious restriction to the applicability of linear programming to shortest path prob-
lems. An edge between two nodes i and j in a network, with a weight wi j, can be
represented as a pair of arcs, one from i to j and the other from j to i, both with a
weight of wi j. The linear programming problem then interprets the weight on each
arc as the cost to transmit one unit of flow from the tail of the arc to the head, and
tries to find a cheapest way of transmitting one unit of flow from the source node to
the destination node. We denote the directed weighted network by N = (V,A,w), the
source node by s and the destination node by t.

In the linear programming formulation of the shortest path problem, a non-
negative decision variable xi j is defined for each arc i→ j in the network. It rep-
resents the amount of flow through that arc if one unit of flow is to be sent as cheaply
as possible from the source node to the destination node. Since the objective of the
formulation is to obtain a cheapest route from s to t, it is represented as follows:

Maximize ∑
i→ j∈A

wi jxi j. (1.1)

The only set of constraints required in the formulation needs to ensure that for
each node j in the network, the flow into node j equals the flow out node j, i.e.,

(total inflow into node j) = (total outflow out of node j).

These constraints are called flow conservation constraints. The flow into the source
node and the flow out of the destination node are taken to be one unit each.

Conventionally, constraints are expressed with only a constant on the right hand
side. Therefore the flow conservation constraints are modified in one of two different
ways. For node j, either we can say that

(total inflow into node j)− (total outflow out of node j) = 0,

or we can say that

(total outflow out of node j)− (total inflow into node j) = 0.

1 A similar model has also been used to decide on waste water treatment strategies in Kuwait.
(See A.A. Elimam, D. Kohler, Two engineering applications of a constrained shortest-path
model, European Journal of Operational Research, 103, (1997) pp. 426–438.)

1.3 A Linear Programming Formulation 21

Following the convention, the flow conservation constraint at node j in a network
N = (V,A,w) can be represented as follows:

∑ j→k∈A x jk = 1 if j = s
∑i→ j∈A xi j = 1 if j = t

∑i→ j∈A xi j−∑ j→k∈A x jk = 0 if j 6= s, t

 (1.2)

The complete formulation to obtain a shortest path from node s to node t in a
directed weighted network N = (V,A,w) is shown in Figure 1.3. In this formulation
we use flow conservation constraints in the form of constraint (1.2).

Minimize

z = ∑
i→ j∈A

wi jxi j

Subject to

∑
s→k∈A

xsk = 1

∑
i→t∈A

xit = 1

∑
i→ j∈A

xi j− ∑
j→k∈A

x jk = 0 for each j 6= s, t

xi j ≥ 0 for each i→ j ∈ A

Fig. 1.3. Linear programming formulation of the shortest path problem

A shortest path from the source node s to the destination node t can be con-
structed from the optimal solution to this formulation. The optimal solution contains
arcs i→ j for which xi j > 0, and other arcs p→ q for which xpq = 0. Any path from
s to t using only such arcs i→ j for which xi j > 0 in an optimal solution to the linear
programming formulation is a shortest path from s to t. If there is a unique shortest
path, then all the decision variables in the optimal solution to the linear program-
ming formulation have values of either 1 or 0. If there are multiple shortest paths,
then some of the decision variables may take up non-integer values in an optimal
solution to the linear program.

As an illustration of the formulation process, Figure 1.4 shows a linear program-
ming formulation for obtaining a shortest path from location A to location D in the
network in Figure 1.1. In each of the constraints, the inflows and outflows have been
grouped using parentheses.

22 1 Shortest Paths

Minimize

z = 5(xAB + xBA)+3(xAF + xFA)+7(xBC + xCB)+4(xCD + xDC)+

6(xCG + xGC)+4(xBE + xEB)+9(xDE + xED)+2(xEG + xGE)+

6(xEF + xFE)+5(xAG + xGA)

Subject to

xAB− xAF − xAG = 1 (Flow balance for A)

xCD + xED = 1 (Flow balance for D)

(xAB + xCB + xEB)− (xBA + xBC + xBE) = 0 (Flow balance for B)

(xBC + xDC + xGC)− (xCB + xCD + xCG) = 0 (Flow balance for C)

There are three more similar constraints for nodes E, F, and G.

xAB, xBA, xAF , . . . , xFE , xAG, xGA ≥ 0 (Non-negativity constraints)

Fig. 1.4. Formulation of the shortest path problem for the road network in Figure 1.1

1.4 Algorithms for Shortest Path Problems

Linear programming implementations can solve shortest path problems, but the exe-
cution time required to solve such problems on large networks can be reduced signif-
icantly by implementing special purpose algorithms. Obviously, even though a very
large number of paths exist between any two nodes in a moderate sized network,
efficient algorithms look at only a very small subset of these paths to come up with
a shortest path. In this section, two such algorithms are presented.

1.4.1 Dijkstra’s algorithm

One of the most efficient algorithms for computing shortest paths is due to E.W. Di-
jkstra (1959). Consider a weighted directed network N = (V,A,w), where the entries
wi j of w satisfy wi j ≥ 0 for any pair of nodes i and j in the network. The source
and destination nodes in the network are labeled s and t, respectively. Dijkstra’s al-
gorithm works by iteratively finding a guaranteed shortest route from s to a node in
the network for which the shortest path was not guaranteed in any previous iteration
of the algorithm. It stops when the destination node t is the one to which it finds a
shortest route at an iteration.

In Dijkstra’s algorithm, each node in the network is associated with a label. The
label associated with a node, say node j, has two parts. At any iteration of the algo-
rithm, the first part stores the length of the shortest path found up to the end of the
previous iteration of the algorithm from the source node s to node j. If no connection
has been established until that point, then the length is taken to be ∞. Whenever the

1.4 Algorithms for Shortest Path Problems 23

first part of the label at node j is finite, the second part of the label stores the prede-
cessor of node j in the shortest path that the algorithm has found from s to j up to the
end of the previous iteration. The predecessor of the source node s is taken to be s
itself. In the following, the two parts of the label for node j are referred to as label j1
and label j2 respectively, and the label in its entirety is represented as a vector of the
form (label j1, label j2).

At the beginning of any iteration in Dijkstra’s algorithm, the nodes in V can be
divided into two sets: V1 such that for each v ∈ V1, the algorithm has been able to
guarantee that the path that it found from s to that node by the end of the previous
iteration was indeed a shortest path to that node, and V2 containing the remainder of
the nodes. Notice that since all wi j values are non-negative, the set V1 always contains
s, and is thus never empty.

During any iteration, the algorithm first considers each node v in V2 to see if
the shortest route that it has found to v from s could be improved in this iteration.
To do this, it finds out whether there exists a node u in V1, such that an arc u→ v
exists in A, and that labelv1 > labelu1 + wuv. If no such node u exists in V1, then
the labels of the nodes in V2 remain unchanged during the iteration. If one or more
such nodes exist in V1, then the algorithm chooses that u0 in V1 which minimizes the
value labelu01 + wu0v. The value of labelv1 is then updated by this value, and labelv2
is replaced by u0. Once the algorithm has finished trying to update the labels of all
the nodes in V2, it picks up a node, say v0, in V2 for which the value of labelv01 is the
minimum among all nodes in V2. It then transfers this node from V2 to V1. The reason
for this transfer is the following. The shortest route from s to v0 could either consist
solely of intermediate nodes from V1, or could include intermediate nodes from V2.
In the former case, the predecessor of v in such a shortest path would be a node from
V1, and since the algorithm has already guaranteed shortest paths to all nodes in V1,
therefore the shortest path to v is also guaranteed. If the shortest path contains any
intermediate node v′ in V2, then the length of this path cannot be less than labelv′1.
Since labelv01 ≤ labelv′1, such a path cannot be shorter than the path already found
by the algorithm. Hence the path to v found by the algorithm is guaranteed to be
shortest. A pseudocode of Dijkstra’s algorithm is given in Figure 1.5.

In order to illustrate the working of Dijkstra’s algorithm, we refer to the network
in Figure 1.1. The network is undirected, but can easily be converted into a directed
network using the technique described at the beginning of Section 1.3. Consider the
problem of finding a shortest path between A and D in the network. Initially, the
label of node A is (0,A), and that of all other nodes is (∞,*). Set V1 to {A} and V2 to
{B,C,D,E,F,G}. In the first iteration, three arcs, namely A→ B, A→ F , and A→G
are considered by the algorithm. Since labelB1, labelF1, and labelG1 are all infinite,
the labels at nodes B, F, and G are updated to (5,A), (3,A), and (5,A), respectively.
Now, among the nodes in V2, node F has the lowest value in the first part of its label.
Hence F is transferred from V2 to V1. The second iteration thus starts with V1 = {A,F}
and V2 = {B,C,D,E,G}. The arcs considered at this iteration are A→ B, A→G, and
F→ E. Check that among these arcs, arc A→ B and arc A→G cause no relabeling,
while arc F → E causes the label of node E to change to (9,F). At this stage, among

24 1 Shortest Paths

Algorithm DIJKSTRA
Input: A directed weighted connected network N = (V,A,w), a source node s and a desti-

nation node t.
Output: A shortest path in N from s to t.

Step 1 (Initialization): Set the label of s to (0,s) and the labels of all other nodes to (∞,∗).
Set V1←{s} and V2←V \{s}.

Step 2 (Termination): If t ∈ V1, then re-create the shortest path from s to t by starting from
the second part of the label of t, and tracking predecessors along the shortest path, until s
is reached. Output the shortest path and terminate. Else go to Step 3.

Step 3 (Iteration): For each arc u→ v ∈ A such that u ∈ V1 and v ∈ V2, check if labelv1 >
labelu1 +wuv. If so, then replace labelv1 with labelu1 +wuv, and labelv2 with u. Let v0 =
argmin{labelv1 : v ∈V2}. Transfer node v0 from V2 to V1. Go to Step 2.

Fig. 1.5. Pseudocode for Dijkstra’s algorithm

all nodes in V2, node B and G have the lowest value in the first part of their labels.
At the end of the second iteration, node B is transferred from V2 to V1.

Figure 1.6 depicts the execution of Dijkstra’s algorithm on the network in Fig-
ure 1.1. The label associated with each node is shown next to the node. To avoid
cluttering the diagram, if a node has a label (∞,*), then the label is not shown in the
diagram. Also, at the end of each iteration, the members of V1 are shown using nodes
colored gray, while the members of V2 are shown using nodes colored white.

Dijkstra’s algorithm belongs to a class of network algorithms called label cor-
recting algorithms. At any point in the execution of this algorithm, each node carries
a label that stores information about a shortest path found to that node thus far, and
at each iteration of the execution, some of the labels could be updated depending on
whether a shorter path to that node has been found.

Also notice that in the algorithm a shortest path to exactly one of the nodes of the
network is obtained at the end of each stage. This node is the one that is transferred
from V2 to V1 at the end of the iteration. For a network with n nodes, we are therefore
sure that a shortest path between any two nodes in a network would be found in at
most n iterations, and in each iteration no more alternatives than the number of arcs
in the network would be checked. Thus, this algorithm is quite efficient in terms of
execution time, even for large networks.

The shortest path problem is not well-defined for networks with edges with neg-
ative weights. If a network has an edge with negative weight, then the length of a
shortest path between any two nodes of the network can be made arbitrarily small
by traversing the negative weight edge a sufficient number of times. So Dijkstra’s
algorithm obviously fails on these types of networks.

However, the algorithm may also fail in a directed network with negative arcs.
One of the reasons for its failure is the assumption in the initial step that the shortest
path to the source node is guaranteed to be zero. This assumption is made when
in Step 1 of Dijkstra’s algorithm (see Figure 1.5) we set labels to 0, and include s

1.4 Algorithms for Shortest Path Problems 25

Fig. 1.6. Dijkstra’s algorithm in action

in V1. This assumption may not be valid if the network has a negative weight arc.
Consider the network shown in Figure 1.7. If the source node for the shortest path in

Fig. 1.7. A network on which Dijkstra’s algorithm fails

26 1 Shortest Paths

the network is A and the destination node is C, then it is easy to see that Dijkstra’s
algorithm returns the path A – C with length 3, while a shorter path A – B – C with
length 1 exists.

Thus there is a need for an algorithm to deal with directed networks with negative
arc weights. Such an algorithm is described in the next subsection.

1.4.2 Bellman-Ford’s algorithm

The algorithm due to R.E. Bellman (1958) and L.R. Ford (1962) uses labels similar to
those used in Dijkstra’s algorithm. However, it does not make use of the partitioning
of nodes that is used in Dijkstra’s algorithm. Bellman-Ford’s algorithm starts by
setting the label of the source node s to (0,s) and the labels of all other nodes to
(∞,*). During each iteration, it considers all arcs in the network. For an arc u→ v,
if labelv1 > labelu1 + wuv, then the label of node v is changed to (labelu1 + wuv,u).
At the end of each iteration, the algorithm checks if the label of any of the nodes
had changed during the iteration. If some label had changed, then the next iteration
starts; otherwise, the first part of the label at any node u is the length of a shortest
path to u from the source node s, and the second part of the label is the predecessor to
u on a shortest path from s to u. The shortest path can then be traced backwards from
u using the second part of the labels. A pseudocode of Bellman-Ford’s algorithm is
given in Figure 1.8.

Algorithm BELLMAN-FORD
Input: A directed weighted connected network N = (V,A,w), a source node s and a desti-

nation node t.
Output: A shortest path in N from s to t.

Step 1 (Initialization): Set the label of s to (0,s) and the labels of all nodes except s to (∞,∗).
Set iter ctr←0 and change flag←FALSE.

Step 2 (Termination): If iter ctr = 0, then go to Step 3. Else if change flag ←FALSE, then
re-create the shortest path from s to t by starting from the second part of the label of t,
and tracking predecessors along the shortest path, until s is reached. Output the shortest
path and terminate. Else set change flag←FALSE and go to Step 3.

Step 3 (Iteration): For each arc u→ v ∈ A check if labelv1 > labelu1 + wuv. If so, then re-
place labelv1 with labelu1 +wuv, labelv2 with u, and set change flag←TRUE. Set iter ctr
←iter ctr + 1. Go to Step 2.

Fig. 1.8. Pseudocode for Bellman-Ford’s algorithm

As an illustration of this algorithm, consider a directed network with negative arc
weights as shown in Figure 1.9. Assume that the source node is A and the destination
node is D. Also assume that the algorithm considers arcs in the order A→ B, A→ F ,
B→C, C→ D, C→ G, E→ B, E→ D, E→ G, F → E, G→ A.

1.5 Other Path Problems 27

Fig. 1.9. A directed network with negative weight arcs

Initially the label of A is (0,A) and that of each of the other nodes is (−∞,*). In
the first iteration, A→ B causes the label of B to be set to (−5,A), A→ F causes the
label of F to be set to (3,A), B→C causes the label of C to be set to (2,B), C→ D
causes the label of D to be set to (6,C), C→G causes the label of G to be set to (8,C),
and F → E causes the label of E to be set to (9,F). None of the other arcs cause any
relabeling at any of the nodes in the network. At the end of the second iteration, the
labels of the nodes A through G are (0,A), (−5,A), (2,B), (6,C), (9,F), (3,A), and
(7,E); the third iteration does not cause any change in the labels. Therefore at the end
of the third iteration, the algorithm terminates and outputs the shortest path from A
to D as A→B→C→D with length six units.

Notice that at the end of the execution of this algorithm, the shortest paths from A
to all other nodes in the network are also obtained. In this regard, the Bellman-Ford
algorithm is more general than Dijkstra’s algorithm. On the other hand, since at each
iteration, the Bellman-Ford checks all the arcs in the network for possible relabeling
opportunities, it is slower in execution than Dijkstra’s algorithm.

1.5 Other Path Problems

1.5.1 The longest path problem

In this chapter, we have primarily dealt with the problem of finding a shortest path
between any pair of nodes in a network. However sometimes, finding the longest
path between a pair of nodes in a network becomes important.

Consider for example, a network describing the interconnections between tasks
in a complex project. Each arc in the network represents a task, and the weight of

28 1 Shortest Paths

an arc represents the time required to complete the task represented by the arc. For
any node in the network, the arcs leading to the node represent the tasks that need
to be completed before any task represented by an arc with a tail at that node can
be started. A dummy start node s is present in such networks and all tasks which do
not need any other task to be completed before they can start have a tail at that node.
A dummy stop node t is also present, and all tasks such that the starting of no other
task depend on their completion are led to that node.

A longest path from s to t in such networks is called a critical path in such project
networks. Its length denotes the time the project would require to complete, and the
tasks represented by the arcs in the critical path are those in which any delay is bound
to cause a delay in the completion of the project.

Formally stated, in a longest path problem, one is given a weighted network
N = (V,E,w) and two nodes s and t, s, t ∈ V . we denotes the weight of the edge
e ∈ E. A path P = {e1,e2, . . . ,ek} is said to have a length of ∑e∈P we. The required
output in the longest path problem is a path P? between s and t whose length is the
maximum among the lengths of all paths between s and t in the network.2

1.5.2 The bottleneck shortest path problem

Often when computing a shortest path from a source point to a destination point in
logistical problems, one wants to ensure that none of the segments in the path is too
long. This is particularly important, for example, while planning routes in sparsely
populated regions, where it is very difficult to send repair crews and equipments over
long distances. In such situations, one aims to obtain paths for which the length of
the longest segment in the path is as small as possible. This problem is commonly
referred to as the bottleneck shortest path problem.

Formally stated, in a bottleneck shortest path problem, one is given a weighted
network N = (V,E,w) and two nodes s, t ∈ V . we denotes the weight of the edge
e∈ E. A path P = {e1,e2, . . . ,ek} has a bottleneck objective value of maxe∈P we. The
required output in the shortest bottleneck path problem is a path P? between s and t
whose bottleneck objective value is the minimum among all paths between s and t in
the network.3

1.5.3 The hop-constrained shortest path problem

The hop constrained shortest path problem occurs frequently while optimizing the
transmission of signals over a telecommunication network. In a telecommunication
network, the nodes represent repeaters. When a signal passes through a repeater, the
signal quality deteriorates significantly. Therefore, for a meaningful transmission of

2 For a more detailed treatment of this problem, see H. Kerzner, Project Management: A
Systems Approach to Planning, Scheduling, and Controlling, 8th Ed., (2003), Wiley.

3 The bottleneck shortest path problem has been discussed in O. Berman, D. Einav, G. Han-
dler, The constrained bottleneck problem in networks, Operations Research, 38, (1990),
pp. 178–181.

1.5 Other Path Problems 29

signals, it is often prescribed that the signal should not pass through more than a pre-
specified number of repeaters. The optimization problem in such a case becomes one
of finding a shortest (or cheapest) way of transmitting a signal from a source node to
a destination node, while ensuring that the number of nodes that the signal crosses
en-route is no more than a pre-specified number.

Formally stated, in a hop-constrained shortest path problem, one is given a
weighted network N = (V,E,w), two nodes s, t ∈ V , and a number k ≥ 1. we de-
notes the weight of the edge e ∈ E. A path P = {e1,e2, . . . ,er} is said to have a
length of ∑e∈P we. The required output in the hop-constrained shortest path problem
is a path P? between s and t having at most k+1 edges whose length is the minimum
among the lengths of all paths between s and t having at most k +1 edges.

1.5.4 The Hamiltonian path problem

Consider a situation in which a machine is supposed to operate on several jobs. Each
job requires a special setting on the machine, and changing from one job to another
requires the machine to be reconfigured. The time required to reconfigure the ma-
chine depends on the jobs immediately before and after the reconfiguration. The
objective in this problem is to complete all jobs with the minimum total reconfig-
uration time. If this problem is represented on a network, the nodes of the network
correspond to jobs, and the arc from node i to node j has a weight representing the
time required to reconfigure the machine from processing job i to processing job j.
The problem of finding a shortest path in such a network that passes through each of
the nodes is called the Hamiltonian path problem.

Formally stated, in the Hamiltonian path problem, one is given a weighted net-
work N = (V,E,w), and two nodes s, t ∈V . A path P = {e1,e2, . . . ,er} is said to have
a length of ∑e∈P we. The required output in a Hamiltonian path problem is a path P?

between s and t passing through each of the nodes in the network exactly once, whose
length is the minimum among the lengths of all such paths in the network.4

1.5.5 The stochastic shortest path problem

In all the problem statements in this chapter, we have assumed that the weights of
the edges and arcs in the networks are known in advance. In practical situations,
this assumption may not be valid. Consider for example, a road network in which
the weights on the arcs represent the time taken to traverse the corresponding road
segment, and in which a shortest path problem is one of finding the quickest way
to go from one particular junction to another. The weights in such a network are
stochastic, since the time required to traverse a road segment depends on traffic con-
ditions. Problems of finding appropriately defined best paths in such networks are
called stochastic shortest path problems.

4 For more details on this problem, see E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,
D.B. Shmoys, (Eds.), The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization, 1990, Wiley.

30 1 Shortest Paths

Obviously, since the weights on the arcs are stochastic, the conventional defi-
nition of a shortest route is no longer valid; different routes may be shortest with
different probabilities. So several objectives are considered in such problems. One
may want to set a threshold value of the length of a desirable path, and obtain a
path that has length not exceeding this value with the highest probability. Alterna-
tively, one may set a probability value and compute a path that will be shortest with
a probability higher than this value.5

1.6 Exercises on Shortest Path Problems

The Services Department of GTC manages the relationships between the company
and its customers. It handles all interactions with private customers ranging from
new subscriptions and connections through maintenance and repair work. Recently,
the company has launched the project Gold Service, which includes a 24 hours ser-
vice. This means that if a customer reports a problem, then a technician makes a
site call within 24 hours. Technicians move from one customer to another, and need
not go back to the facility where the technician is stationed, except at the end of
the working day. The calculation of shortest or fastest routes between two customer
sites is not easy in practice, mainly because the circumstances in the road network
change rapidly and regularly. Therefore, the company is testing a system which ad-
vises a technician about the route he has to take to the next customer, just after he
has finished serving a customer.

The road map of the city is schematically depicted in Figure 1.10. There are 50
customer sites denoted by the dots, and labeled 1, . . . , 50. A line denotes a direct
road connection between two sites. Attached to each road is a number, denoting
the distance between the connected sites in kilometers. For instance, the distance
between site 22 and site 27 is 3.9 kilometers.

Problem 1.1. Solution by Inspection and Computer
It may be required to obtain a quick idea of distances between arbitrary pairs of sites,
for instance if the computer system fails and the calculations need to be done by
inspection. Suggest by inspection, as short a route as possible between the following
pairs of sites. Do not use more than 20 seconds to determine each separate path.

(1) From site 8 to site 31.
(2) From site 5 to site 38.
(3) From site 1 to site 48.
(4) From site 4 to site 41.
(5) From site 24 to site 30.
(6) From site 9 to site 47.

5 For further reading on this problem, see D.P. Bertsekas, J.N. Tsitsiklis, An analysis
of stochastic shortest path problems, Mathematics of Operations Research 16, (1991),
pp. 580–595.

1.6 Exercises on Shortest Path Problems 31

Now use a computer program to calculate shortest routes (in kilometers) between
the pairs of sites given above. It is normal that the computer calculations yield better
results.

In order to obtain an idea about the time required to go from one location to
another, we can also make use of a road map in which the travel times are given
for each connected pair of locations. We have depicted the schematic road map in
Figure 1.11 with the travel times in minutes. Travel times are of course less precisely
determined than distances, and may also change suddenly. These uncertainty aspects
have to be taken into account when performing realistic calculations based on them.

Problem 1.2. What Happens If
Use the time network depicted in Figure 1.11 to respond to the following. Unless
specified each part is independent of the others.

(a) Calculate quickest routes (in minutes) between the pairs of sites from Prob-
lem 1.1.

(b) Determine for each of these quickest routes the range within which the travel time
between the sites 8 and 10 may change without changing the calculated quickest
route.

(c) What could be a plausible reason for the range in (b) in the case of Problem 1.1
pair (1) being much larger than the one for Problem 1.1 pair (2)?

(d) Show, using tolerance intervals, that the shortest route in case of Problem 1.1
pair (6) is not unique. Calculate an alternative optimal solution. Answer the same
questions for Problem 1.1 pair (3).

(e) Due to an accident, no traffic is possible between the sites 8 and 10. Show that
the length of any shortest route that contains road segment 8 – 10 is changed as
if the value of road segment 8 – 10 is pegged to its upper tolerance value with
respect to that quickest route.

(f) Determine a second quickest route between 8 and 31 for the network in Fig-
ure 1.11. Show that the “length” (in minutes) of this route can also be determined
by using tolerance intervals.

(g) Quickest routes sometimes need to be determined in the presence of restrictions
that certain roads of the network have to be included (or excluded) in the route.
Such problems may occur when cable work activities are executed in certain
streets and the work in process has to be checked. Determine quickest routes in
the following situations.
1. From site 27 to site 16, including road segment 21 – 22.
2. From site 35 to site 26, including road segment 31 – 34.
3. From site 39 to site 3, including road segment 16 – 17.
4. From site 44 to site 14, including road segment 27 – 28.
5. From site 15 to site 14, including road segments 16 – 10 and 12 – 22.
6. From site 26 to site 48, including road segments 35 – 40 and 40 – 41. Deter-

mine a second best and a third quickest route as well.

32 1 Shortest Paths

Fig. 1.10. Schematic road map with distances in kilometers

1.6 Exercises on Shortest Path Problems 33

Fig. 1.11. Schematic road map with travel times in minutes

34 1 Shortest Paths

7. A driver goes from site 37 to site 43 and has to pass the road segments 35 – 40
and 40 – 41. Is this possible to do within 35 minutes?

The management of GTC has decided to replace its old cable network. The Re-
search & Development (R&D) department has been asked to design a new cable
that has ten times more capacity than the old cable. The cable has to be developed
within the next five years. In this period all the three activities, viz. actual research,
testing, and evaluation, have to be carried out. These three activities will be exe-
cuted simultaneously. The most expensive part of the project concerns wages and
training of the research employees. The company has already employed a number of
researchers, but during the five years extra researchers will be needed. These extra
researchers need to undergo special training due to the specific character of the work.
R&D requires a lower number of researchers during the testing period than during
the evaluation and research periods. It has decided to work with half-yearly planning
periods because, in general, the nature of the work changes noticeably every half
year. The company has to design a schedule of hiring and firing people. The next
question is on determining an optimal hiring-firing schedule.

Problem 1.3. Manpower Planning
The numbers of extra research employees needed for the research and development
of the new cable for the next ten consecutive half-year periods are listed in Table 1.1.
The half-year periods are labeled 1, . . . , 10. The training of a new researcher requires
an investment of e8,000. Firing a person is expensive, it costs e24,000 per fired
person. Moreover, if there are fewer people under contract than required, it costs the
company an average of e32,000 per person per half-year.

Table 1.1. Extra researcher requirement for the project

Period 1 2 3 4 5 6 7 8 9 10
Extra researchers 9 7 6 12 11 8 13 11 7 10

(a) Determine a hiring-firing schedule to minimize cost, such that the number of
employed researchers is as high as possible during each period. Use a shortest
path problem formulation for solving this problem. What is the total number of
redundant researchers in your solution?

(b) In the periods 3 and 6 the expected work pressure is lower than normal. Deter-
mine an optimal solution for which the number of researchers under contract is
minimal during these periods.

1.6 Exercises on Shortest Path Problems 35

Problem 1.4. Subsidizing Connections
In order to test the new cable, the company has decided to connect the university,
located at site 3 of the network of Figure 1.10, to the R&D building of GTC, located
at site 46, using its cable network.

The City Council desires that two clinics associated with the city hospital, which
are located at sites 8 and 20, be connected by a high capacity cable. So it wants to find
out how much subsidy to give to GTC such that it is profitable for GTC to connect
the two sites 8 and 20 with the new cable.

The City Council has decided to subsidize the laying of cable on the paths 8 –
10 – 16 – 20 and 29 – 28 – 31 – 34. The cables on either of the two paths cannot be
interrupted. In order to minimize the disruption to the traffic circulation, it has also
decided that work on laying cable on the paths 8 – 10 – 16 – 20, 16 – 19 – 26 – 38 –
37 – 42, 29 – 28 – 31 – 34 – 39 – 27 – 22 – 12 – 6, and 48 – 45 – 44 – 40 – 32 – 33
has to be executed in the directions 8→10→16→20, 16→19→26→38→37→42,
29→28→31→34→39→27→22→12→6, and 48→45 →44→40→32→33, respec-
tively. Actually, the subsidy also yields some extra profit for GTC. The construction
costs are a multiple of the distances from Figure 1.10, ine1,000’s per km. The subsi-
dies on road segment 8→10 is e3,500, on road segment 29→28 is e6,800, on road
segment 10→16 is e6,600, on road segment 28→31 is e2,900, on road segment
16→20 is e4,900, and on road segment 31→34 is e2,200.

(a) Is it true that the subsidy is high enough, i.e., is it profitable for GTC to connect
the sites 3 and 46 via the subsidized paths?

Knowing that GTC is also considering a new cable between the sites 2 and 50,
and having confidence in a positive effect of the subsidies stated above, the City
Council has approved an extra subsidy on paths 45 – 44 – 40 – 32 and 27 – 22 –
12 – 6. The subsidy on road segment 40→32 is e3,200, on road segment 12→6 is
e7,700, on road segment 44→40 is e4,700, on road segment 22→12 is e7,100, on
road segment 45→44 is e2,800, and on road segment 27→22 is e6,900.

(b) Explain why it is not possible to use a shortest path algorithm to decide on the
profitability for GTC to lay the cable on the two paths.

(c) After a re-calculation the City Council has decided to decrease the subsidy on
29 – 28 from e6,800 to e5,500. Answer the same question as in part (b).

(d) Determine a solution (need not be optimal) for the following situation. The sites
3 and 46, and the sites 2 and 50 need to be connected by a cable, one between
3 and 46, and one between 2 and 50. If the two cables connect two sites with
subsidy, then the subsidy is given only once.

2

Minimum Spanning Trees

2.1 Introduction

GTC has been assigned the job of interconnecting six departments, labeled A, B,
C, D, E, and F, of a university, at minimum cost. Practical considerations make it
impossible to connect several pairs of departments directly to one another. In fact
the only direct connections possible are the ones between departments A and B, A
and D, B and C, B and D, B and E, C and D, C and F, D and E, and E and F. These
connections are shown in the network of Figure 2.1, in which the nodes correspond
to departments and edges correspond to possible direct connections. The numbers
next to the edges denote the cost of making those connections in e100 units. GTC is
required to connect the six departments as cheaply as possible.

Fig. 2.1. Possible direct connections among the departments

It is easy to predict some of the properties of the network solution that GTC
would come up with. First, the network solution obviously needs to connect all six

©
Optimization, International Series in Operations Research & Management Science 140,

 Springer Science + Business Media, LLC 2010

G. Sierksma and D. Ghosh (eds.), Networks in Action: Text and Computer Exercises in Network

DOI 10.1007/978-1-4419-5513-5_5,

37

38 2 Minimum Spanning Trees

departments, i.e., it needs to span all the nodes in the network of Figure 2.1. Second,
there should not be more than one path between any pair of departments in the net-
work solution, i.e., it should be acyclic. This means for example, that all of the four
edges A – B, B – C, C – D, and A – D should not be simultaneously present in the
solution. These four edges together link the four departments, A, B, C, and D, at a
cost of e1500. However, if any one of the four, say C – D, is removed from the so-
lution, the four departments still remain connected, but the connection cost reduces
to e900. A network with no cycles is called a tree, and so the network solution that
GTC suggests has to be a spanning tree, i.e., an acyclic subset of edges linking all the
nodes in the network. Since the objective is to obtain a minimum cost solution, GTC
needs to find a minimum spanning tree, which is a spanning tree in the network, the
sum of whose connection costs is the minimum possible. One such network solution
is shown in Figure 2.2. The thicker lines in the figure represent the connections that

Fig. 2.2. A network solution (a minimum spanning tree)

are present in the network solution. The total connection cost for this network solu-
tion is e1800. This chapter deals with the construction of such minimum spanning
trees.

Formally stated, in a minimum spanning tree, one is given a connected weighted
network N = (V,E,w) where each of the entries we of w denote the weight associated
with the edge e ∈ E. A spanning tree T in the network is a subset of edges of N such
that no subset of edges in T form a cycle, and for each node in the network, there is
an edge in T that is incident on it. The weight of the tree T is the sum ∑e∈T we. One
is required to output a spanning tree in N with the minimum weight.

Notice that a minimum spanning tree is not the union of edges of the shortest
paths between all pairs of nodes in a network. For example, in the solution shown in
Figure 2.2, the cost of the connection between the departments C and F is e1500,
although a direct connection between them is possible at a cost of e700. The reader
can verify that the connections in a spanning tree forced to contain the edge C – F
will cost at least e1900.

2.2 Applications 39

Also notice that a minimum spanning tree in a network may not be unique. In
the example above, the minimum spanning tree is unique. However, if a network has
a pair of equal length paths between a pair of nodes, then that network may have
multiple minimum spanning trees; see e.g., Figure 2.3.

Fig. 2.3. Network with multiple minimum spanning trees

2.2 Applications

Minimum spanning trees have a variety of applications. Some of them are described
below.

2.2.1 Designing networks for disasters

Consider a situation in which the transportation network in an area has been com-
pletely damaged due to some natural disaster, like a flood. In order to supply essential
commodities to the population centers in the area, a part of the road network needs
to be developed as soon as possible. A design problem in such cases is to find out
how to connect the population centers to each other and to a depot, so that essential
commodities can be routed from the depot to the population centers. Since construc-
tion takes time, the problem reduces to one of finding a minimal network linking
all the population centers to the depot. This problem can be modeled as a minimum
spanning tree where the nodes in the network are the population centers and the
depot, the edges are possible connections between the population centers, and the
weights on the edges represent the distance between the population centers that the
edge connects.

40 2 Minimum Spanning Trees

2.2.2 Group technology

Group technology is a manufacturing philosophy that takes into account the simi-
larities in parts and assemblies of a group of products in order to classify them into
families. Products in a single family share commonalities in design, manufacturing,
and other design processes. One important problem in group technology is to decide
on the partitioning of products into families. This problem can be modeled using
minimum spanning trees. A network of the products is constructed as follows. Each
product corresponds to a node in the network. The dissimilarities between a pair of
products is quantified and is represented in the network as the cost of the edge join-
ing the nodes corresponding to the products. The more dissimilar the products are,
the larger is the cost of the corresponding edge. A minimum spanning tree for the
network thus obtained is then constructed. The part families are then generated by
removing an appropriate number of the high cost edges in the minimum spanning
tree.

2.2.3 Storing large but similar data

In many studies in genetics, one needs to store large amounts of data in the most
efficient manner possible. The different elements of data are voluminous, but similar
to each other, and vary from one another only at a few places. A common way of
representing such data is to store one data element in its entirety and store others by
just keeping track of how they differ from another stored data element. Of course,
an important problem here is to find out the sequence of storage of the different data
elements, so that the total storage is minimized. This problem can be solved using
minimum spanning trees. Consider a network where each node corresponds to one
element. Each pair of nodes in the network is linked using edges. The cost of each
such edge is the amount by which the data corresponding to the two nodes differ. A
minimum spanning tree is then constructed on this network and one node is chosen as
the reference node. The element corresponding to this node is the reference element,
and the data corresponding to this element is written out in full. Each neighbor of
this element is next considered and the data for the element are written down by first
pointing to the reference data element, and then noting down the difference from that
element. Continuing in this way, data for each element are stored. In order to retrieve
data about an arbitrary element, one needs to start at the reference node, and compute
a path to the element. Then one needs to note the data corresponding to the reference
element, and then make changes in the data as prescribed by nodes along the path
until one reaches the element of interest.

2.3 Linear Programming Formulations

There are many different linear programming formulations for the minimum span-
ning tree problem. In this section two intuitively appealing formulations are pre-
sented. Both formulations naturally occur as integer linear programs, but relaxing

2.3 Linear Programming Formulations 41

the requirement that some of the decision variables need to be integers in these for-
mulations does not affect their optimal solutions.

In the first formulation, a decision variable xi j is defined for each edge
i – j in E. For any edge i – j in E, xi j = 1 in an optimal solution implies that i –
j is included in the minimum spanning tree output, and xi j = 0 implies that it is not.
The objective is to generate a spanning tree with minimum cost, i.e., to minimize
the sum of the weights of the edges included in the solution. Hence the objective is
mathematically expressed as:

Minimize ∑
i− j∈E

wi jxi j. (2.1)

The formulation needs to constrain the solution set to include only spanning trees
in the network. A spanning tree in a network with n (n ≥ 1) nodes has exactly n−
1 edges. So the formulation includes a constraint that the number of edges in the
minimum spanning tree output by the formulation has |V |−1 edges. This is achieved
by specifying the constraint:

∑
i− j∈E

xi j = |V |−1. (2.2)

A second condition stipulates that no cycles should be present in the set of edges
that define a minimum spanning tree. The formulation implements this by ensuring
that for each subset S of V , the number of edges in the solution output that are mem-
bers of S is strictly less than |S|, where |S| denotes the number of elements of S. This
is implemented using the following set of constraints:

∑
i− j∈E; i, j∈S

xi j ≤ |S|−1 for each S⊆V. (2.3)

When |S| = 1, constraint set (2.3) is meaningless, since in the networks consid-
ered here, there are no loops (edges that connect a node to itself). When |S| = 2,
constraint set (2.3) implies that no xi j value can exceed 1. Further, for any set S⊂V ,
with |S| ≥ 3, constraint set (2.3) is meaningless unless there are at least |S| edges with
both ends in S. Again when S = V , constraint set (2.3) reduces to constraint (2.2).
Thus, in any reasonably sparse network, only a small subset of the 2|V | constraints of
the constraint set (2.3) is required.

Due to a special structure of the constraint coefficients called total unimodularity,
it can be shown that relaxing the condition that “each xi j can attain only values of
0 or 1” to the condition that “each xi j must lie between 0 and 1” does not affect the
values of xi j’s in any optimal solution to the formulation. Furthermore, in the relaxed
problem, the condition that xi j ≤ 1 need not be added, since constraint (2.3) for
subsets of V with two nodes ensure that xi j cannot exceed 1.

The first formulation to obtain a minimum spanning tree in a network N =
(V,E,w) is shown in its entirety in Figure 2.4. As an illustration of the formulation,
Figure 2.5 shows the linear programming formulation for the network in Figure 2.1.
Notice that the number of constraints in this formulation is small compared to the
26 +1 constraints prescribed in the general formulation in Figure 2.4.

42 2 Minimum Spanning Trees

Minimize

z = ∑
i− j∈E

wi jxi j

Subject to

∑
i− j∈E

xi j = |V |−1

∑
i− j∈E
i, j∈S

xi j ≤ |S|−1 for each S⊂V, S 6= /0

xi j ≥ 0 for each i− j ∈ E

Fig. 2.4. First linear programming formulation of the minimum spanning tree problem

The second formulation is closely related to the first. Given a network N =
(V,E,w), here too, for each edge i – j in E, a variable xi j is defined. If xi j = 1 in
an optimal solution, then edge i – j is included in the optimal solution output, and
if xi j = 0, then it is not. As in the first formulation, the objective is to minimize the
weight of the tree output; hence the objective of the formulation is:

Minimize ∑
i− j∈E

wi jxi j. (2.4)

The number of edges included in any optimal solution is |V |−1, so the first constraint
in the formulation is again:

∑
i− j∈E

xi j = |V |−1. (2.5)

This formulation differs from the first formulation in the way it avoids cycles.
Assume a set T containing |V | − 1 edges from E in the network N. It is intuitively
obvious and also easy to show that if and only if T contains a cycle, there would
be at least two nodes in V which will not be connected to each other by an edge
in T . The current formulation makes use of this result to avoid cycles. It arbitrarily
chooses a node s ∈V , constructs all proper subsets S of V containing s, and for each
S, constrains at least one edge in any feasible solution to connect a node in S to a
node outside S. It achieves this using the constraint set:

∑
i− j∈E

i∈S, j/∈S or
i/∈S, j∈S

xi j ≥ 1 for each S⊂V such that s ∈ S. (2.6)

The second formulation to obtain a minimum spanning tree in a network N =
(V,E,w) is shown in its entirety in Figure 2.6.

2.4 Algorithms for Minimum Spanning Trees 43

Minimize

z = 3xAB +4xAD +3xBC +2xBD +5xBE +5xCD +7xCF +6xDE +4xEF

Subject to

xAB + xAD + xBC + xBD + xBE + xCD + xCF + xDE + xEF = 5 (Constraint (2.2))

xAB ≤ 1 (Constraint (2.3), S = {A, B})

xAD ≤ 1 (Constraint (2.3), S = {A, D})

There are seven more similar constraints in which |S|= 2.

xAB + xAD + xBD ≤ 2 (Constraint (2.3), S = {A, B, D})

xBC + xBD + xCD ≤ 2 (Constraint (2.3), S = {B, C, D})

xBD + xBE + xDE ≤ 2 (Constraint (2.3), S = {B, D, E})

xAB + xAD + xBC + xBD ≤ 3 (Constraint (2.3), S = {A, B, C, D})

xAB + xAD + xBD + xDE ≤ 3 (Constraint (2.3), S = {A, B, D, E})

There are five more similar constraints in which |S|= 4.

xAB + xAD + xBC + xBD + xBE + xCD + xDE ≤ 4 (Constraint (2.3), S = {A, B, C, D, E})

xAB + xAD + xBC + xBD + xCD + xCF ≤ 4 (Constraint (2.3), S = {A, B, C, D, F})

There are four more similar constraints in which |S|= 5.

xAB, xAD, xBC, xBD, xBE ,xCD, xCF , xDE , xEF ≥ 0 (Non-negativity constraints)

Fig. 2.5. First formulation of the minimum spanning tree problem for the network in Figure 2.1

As an illustration, the second formulation for obtaining a minimum spanning tree
in the network in Figure 2.1 is shown in Figure 2.7. In this case, the node s is the node
A in the network.

2.4 Algorithms for Minimum Spanning Trees

There are several specialized algorithms for obtaining minimum spanning trees in
networks, but most of them depend on the following result.

Assume that we have a connected weighted network, and have a set of edges
in the network that we know are part of some minimum spanning tree on
that network. Let these edges and the nodes that they are incident on define

44 2 Minimum Spanning Trees

Minimize

z = ∑
i− j∈E

wi jxi j

Subject to

∑
i− j∈E

xi j = |V |−1

∑
i− j∈E,

i∈S, j/∈S or
i/∈S, j∈S

xi j ≥ 1 for each S⊂V such that s ∈ S

xi j ∈ {0,1} for each i− j ∈ E

Fig. 2.6. Second linear programming formulation of the minimum spanning tree problem

components of the network. Then for each of the components, the least cost
edge that connects the component to any of the other components will be
part of at least one minimum spanning tree in the network.

For example, consider Figure 2.8. Assume that we known that the subset of edges
A – D, B – E, and E – G are present in a minimum spanning tree in the network.
These edges define four components in the network, shown in the bottom right hand
diagram in Figure 2.8. Consider the component formed by the edges B – E and E – G,
and nodes B, E, and G. There are three edges, namely A – B, D – E, and F – G, that
connect this component to other components in the network. Of these, edge A – B
has the lowest cost. So according to the result, there is at least one minimum spanning
tree on this network that contains the edge A – B, in addition to the edges A – D,
B – E, and E – G.

We will next present two popular algorithms for finding minimum spanning trees
that are based on the result described above.

2.4.1 Prim’s algorithm

The algorithm that we describe here is due to R.C. Prim (1957), and is known as
Prim’s algorithm.

Consider a weighted connected network N = (V,E,w) (|V | = n ≥ 2). Prim’s al-
gorithm starts by constructing another network N′ = (V,T,w) where T = /0. Clearly
then, N′ has n components. Prim’s algorithm chooses one of the components of N′

at random and uses the result, described earlier, on this component. To do this, it
considers all edges in E that connect the component to other components in N′ and
chooses the least cost edge among these. This edge is then added to T and the first
iteration is over.

2.4 Algorithms for Minimum Spanning Trees 45

Minimize

z = 3xAB +4xAD +3xBC +2xBD +5xBE +5xCD +7xCF +6xDE +4xEF

Subject to

xAB + xAD + xBC + xBD + xBE + xCD + xCF + xDE + xEF = 5 (Constraint (2.5))

xAB + xAD ≥ 1 (Constraint (2.6), S = {A})

xAD + xBC + xBD + xBE ≥ 1 (Constraint (2.6), S = {A, B})

xAB + xBD + xCD + xDE ≥ 1 (Constraint (2.6), S = {A, D})

There are three more similar constraints in which A ∈ S and |S|= 2.

xAD + xBD + xBE + xCD + xCF ≥ 1 (Constraint (2.6), S = {A, B, C})

xBC + xBE + xCD + xDE ≥ 1 (Constraint (2.6), S = {A, B, D})

There are eight more similar constraints in which A ∈ S and |S|= 3.

xBE + xCF + xDE ≥ 1 (Constraint (2.6), S = {A, B, C, D})

xBC + xCD + xEF ≥ 1 (Constraint (2.6), S = {A, B, D, E})

There are eight more similar constraints in which A ∈ S and |S|= 4.

xCF + xEF ≥ 1 (Constraint (2.6), S = {A, B, C, D, E})

xDE + xEF ≥ 1 (Constraint (2.6), S = {A, B, C, D, F})

There are three more similar constraints in which A ∈ S and |S|= 5.

xAB, xAD, xBC, xBD, xBE ,xCD, xCF , xDE , xEF ∈ {0,1} (Integrality constraints)

Fig. 2.7. Second formulation of the minimum spanning tree problem for the network in Fig-
ure 2.1

At each of the subsequent iterations, Prim’s algorithm chooses the component of
N′ that has the largest cardinality and applies the result on it to pick another edge to
include in T . Since this procedure increases the cardinality of the chosen component
by 1 but does not alter the cardinality of any of the other components, Prim’s algo-
rithm is said to “grow” a tree in the network, which becomes a minimum spanning
tree at the end of the algorithm’s execution.

An implementation of Prim’s algorithm works by creating and maintaining three
sets called ADDED, TO-ADD, and TREE. ADDED stores the nodes in the com-
ponent of N′ that Prim’s algorithm decides to augment at each iteration. TO-ADD
contains the nodes in all other components of N′. TREE contains the edges that have

46 2 Minimum Spanning Trees

Fig. 2.8. Components in a network

been added to T . We initialize ADDED and TREE to empty sets and add all nodes in
the network to TO-ADD. In the course of the algorithm, we will deplete the TO-ADD
set and populate the ADDED and TREE sets. We choose any node from TO-ADD
and move it to ADDED. In each step of the algorithm, we choose a node u from
TO-ADD and v from ADDED, such that the cost of the connection between u and v
is the minimum among all the connections between nodes in TO-ADD and ADDED.
(If there are ties, then these are broken arbitrarily, thus leading to alternate minimum
spanning trees.) Then we remove u from TO-ADD and add it to ADDED, and add the
edge u – v to TREE. For a connected network containing n nodes, the algorithm stops
after n− 1 iterations, (note that in a network with n nodes, any minimum spanning
tree has exactly n− 1 edges), and the edges in TREE define a minimum spanning
tree for the network.

Let us illustrate Prim’s algorithm on the network in Figure 2.1. Initially ADDED
and TREE are empty sets, while TO-ADD = {A, B, C, D, E, F}. We arbitrarily put
A in the ADDED set in the beginning of the first iteration. Then we will choose B as
the node u, A as the node v in the first iteration since A – B has the least cost among
all edges connected to nodes in ADDED. At the end of this iteration, ADDED =
{A, B}, TO-ADD = {C, D, E, F}, and TREE = {A – B}. In the next iteration, the
algorithm considers all edges connecting nodes in ADDED to nodes in TO-ADD.
Therefore, it considers the edges A – D, B – C, B – D, and B – E. Of these the lowest
cost edge is B – D. Therefore, the algorithm adds B – D to TREE, and moves node
D from TO-ADD to ADDED. The algorithm proceeds and stops after five iterations.
The edges in TREE at the end of each iteration are shown in Figure 2.9.

2.4 Algorithms for Minimum Spanning Trees 47

Fig. 2.9. Prim’s algorithm in action

2.4.2 Kruskal’s algorithm

Kruskal’s algorithm, due to J. Kruskal (1956), uses the same ideas as used in Prim’s
algorithm, but applies it in a slightly different way. Instead of growing a single tree,
the algorithm grows a forest, and finally combines them together to form a minimum
spanning tree.

Consider a weighted connected network N = (V,E,W) (|V | = n ≥ 2), on which
Kruskal’s algorithm is to be run. Kruskal’s algorithm starts by constructing another
network N′ = (V,T,W) where T = /0. Here too, since T = /0, N′ has n components.
At each iteration, Kruskal’s algorithm chooses the minimum cost edge in E that
connects two different components in N′ and includes it in T . As a result, the two
components that the edge is adjacent to coalesce into one component at the end
of the iteration. This algorithm generates a minimum spanning tree because of the
following reason. Let e be the edge that is chosen to be included in T at a particular
iteration. Let e be incident on components C1 and C2 in N′. Since e is a least cost

48 2 Minimum Spanning Trees

edge that joins any two components at that iteration, it is surely a least cost edge that
joins C1 (or C2) to any of the other components. So according to the result stated
earlier, e must be in a minimum spanning tree.

Implementations of Kruskal’s algorithm maintain a list of edges in the network
N sorted in non-increasing order of costs. We call this list LIST. They also maintain
a list CMP of components of the network N′ at each iteration, and a set TREE that
would contain the edges in the minimum spanning tree at the termination of the
algorithm. Initially, LIST contains all the edges in E arranged in non-increasing order
of costs, and TREE is empty. Since TREE is empty, each of the nodes in N form one
component in CMP. At each iteration, a lowest cost edge in LIST is removed from
it. If the endpoints of the edge are in different components in CMP, then the edge is
added to TREE. Else the next least cost edge is chosen from LIST. The iteration is
over when one edge has been added to TREE.

Let us now illustrate Kruskal’s algorithm on the network in Figure 2.1. Initially,
TREE is empty, LIST = {A – B, A – D, B – C, B – D, B – E, C – D, C – F, D – E} and
CMP = {{A}, {B}, {C}, {D}, {E}, {F}}. In the first iteration, B – D is taken out of
LIST. Since the endpoints of B – D, i.e., nodes B and D are in different components
in CMP, B – D is added to TREE, and component {B, D} replaces components {B}
and {D} in CMP. In the next iteration, A – B is added to TREE and component
{A, B, D} replaces components {A} and {B, D} in CMP. The algorithm stops after
five iterations. Figure 2.10 depicts the contents of LIST and CMP at the end of each
iteration. The edges marked with thick lines are the ones included in TREE at the
end of the iteration.

2.5 Other Tree Problems

2.5.1 The Steiner tree problem

Consider a situation where the transportation links to a set of locations have been
destroyed by a natural calamity. In order to make rescue operations most effective,
one is required to connect the locations with large populations to a central relief
camp. However, in order to construct makeshift transportation networks, it may be
cost effective to route them through locations with small populations, simply because
such locations are favorably located. This problem of using intermediate locations in
a network to connect a pre-specified set of locations with a minimum cost tree is
called the Steiner tree problem.

Formally stated, in a Steiner tree problem, one is given a network N = (V,E,w)
and a subset of nodes Vs. The objective in the problem is to output a tree spanning all
nodes of Vs (and some nodes in V \Vs if required) such that the sum of the weights
of the edges of the tree is the minimum possible.1

1 For more details on this problem, see F.K. Hwang, D.S. Richards, P. Winter, The Steiner
Tree Problem, 1992, North Holland.

2.5 Other Tree Problems 49

Fig. 2.10. Kruskal’s algorithm in action

2.5.2 The capacitated minimum spanning tree problem

Consider a wired computer network in which several “dumb” terminals need to be
connected to a central computer. In order to minimize costs, these terminals should
be connected in a spanning tree topology. Each tree of nodes branching off from the
central computer is connected to the central computer at a single port. Since these
terminals exchange data with the central computer, and since a port of a computer
has a fixed capacity, while constructing the spanning tree, one should ensure that
the number of dumb terminals connected to a single port, i.e., the size of any subtree
branching from the central computer should not exceed a fixed value. A spanning tree
that has a restriction that none of the subtrees that branch from a pre-specified node
has more than a fixed number of nodes is called a capacitated spanning tree. So the
problem of designing such a computer network is called the capacitated minimum
spanning tree problem.

50 2 Minimum Spanning Trees

Formally stated, in a capacitated minimum spanning tree problem, one is given a
network N = (V,E,w), a node v ∈V , and an integer k, and one is required to output
a minimum cost tree spanning V such that none of the subtrees rooted at v has more
than k nodes in it.2

2.5.3 The degree constrained minimum spanning tree problem

Consider a wired computer network in which the computers themselves act as
routers. If one wants to build such a network at minimum cost, then the topology
that one would choose would be a spanning tree. However, computer failures can
affect the network severely, for example, if a computer is directly connected to r
(r ≥ 1) other computers, then if it fails, the network is immediately broken up into r
sub-networks which cannot communicate with each other. In order to minimize this
kind of a problem, one can consider building minimum spanning tree networks in
which each node cannot be connected to more than a pre-specified number of other
nodes. The design of this type of networks is called a degree constrained minimum
spanning tree problem.

Formally stated, in a degree constrained minimum spanning tree problem, one is
given a network N = (V,E,w) and a positive integer k, and one is required to output a
spanning tree in which no node has a degree more than k, and the sum of the weights
of the edges of the tree is as small as possible.3

2.5.4 The most reliable minimum spanning tree problem

In critical situations, it is more important that all nodes in a network stay connected
than finding a minimum cost connection. In such cases, the problem is to output,
given a network N = (V,E,w) and the probability of each edge failing, a spanning
tree that has the highest probability of remaining intact. This problem is called the
most reliable minimum spanning tree problem.

2.6 Exercises on Minimum Spanning Tree Problems

In a project similar to the one described in the introduction to this chapter, GTC has
been provided with 50 locations to connect in a certain country. These locations need
to be connected in such a way that any two of these locations are able to communi-
cate with each other. All the connections need not be direct. Due to high bandwidth
requirements, GTC will use high capacity cables for the connections, and wants to
know the costs of laying the cable under various circumstances. In Figure 2.11 we
have schematically depicted the 50 locations and all possible direct connections. The
numbers attached to the connections in Figure 2.11 refer to the distances (in 10 kilo-
meter units) between locations. The cost of the cable is e5,000 per kilometer.

2 For more details on this problem, see K. Chandy and T. Lo, The capacitated minimal span-
ning tree problem, Networks 3, (1973), pp.173–182.

3 For more details on this problem, see S.C. Narula and C.A. Ho, Degree constained mini-
mum spanning tree, Computers & Operations Research 7, (1980), pp.239–249.

2.6 Exercises on Minimum Spanning Tree Problems 51

Fig. 2.11. Schematic map with 50 locations (distances in 10 kilometer units, costs in e5,000
per kilometer)

52 2 Minimum Spanning Trees

Problem 2.1. Reliable Cable Connections
Since the high capacity cable is expensive, GTC wants to know the minimum length
of the cable needed to connect the 50 selected locations from Figure 2.11 in accor-
dance to its contract.

(a) Calculate the minimum length of cable needed to connect all locations in Fig-
ure 2.11. Also give the list of connections that are used for the cabling.

(b) GTC regrets that the locations 9 and 17 are not directly connected in the solution
of part (a). There can be taken two ways to get 9 and 17 connected — adding
a direct cable between 9 and 17 to the solution of Problem 2.1(a) and deleting a
most expensive connection in the cycle thus created, or repeating the calculations
of Problem 2.1(a) with the extra restriction that the connection 9 – 17 has to be
in the new solution. Compare both methods. Will both methods always give the
same result? Explain your answer.

(c) The cable system designed in part (a) is not very reliable, in the sense that there
is only one connection between any pair of locations. Why is this so?
Determine, by inspection, a most vulnerable connection in your solution to part
(a), in the sense that if the cable on this connection breaks down, the most number
of pairs of locations will not be able communicate anymore.

(d) Design a reliable cable connection, in the sense that if the cable between any
two locations breaks down, there is still a connection (although possibly indirect)
between these locations. Is your design the cheapest possible?

Problem 2.2. What Happens If
In another country, GTC can obtain the rights to construct a main cable network that
will connect the 46 major towns of this country. The country is very mountainous
and a number of large lakes and rivers makes the construction of the cable network
very delicate for the environment. These regions are called “vulnerable” and no in-
dustrial activity is normally allowed in these regions. Therefore, if GTC lays cable in
vulnerable regions, it has to pay the government a certain amount of money, called
“environmental price” for environmental restoration activities. In Figure 2.12 the 46
cities are schematically depicted. Attached to the regions (connections between the
cities) are the costs of laying the cable (first number) plus the environmental price
GTC has to pay to the government (second number).

(a) Is it possible to lay the cables in such a way that each pair of cities are connected
and the total cost does not exceed e9,500,000?

(b) Since the cabling project is important for the country, the government is open to
negotiating with GTC on regions where the environmental price could be low-
ered. In case the answer to part (a) is “no”, then choose a number of regions on
which GTC should start negotiations with the government.
GTC realizes that the government is willing to lower the prices by a maximum of
15% in five regions. Is there a cable system that satisfies the budget of the com-
pany and the margins of the government? At what percentage reduction would
such a project just be feasible?

2.6 Exercises on Minimum Spanning Tree Problems 53

Fig. 2.12. Schematic road map with 46 locations (connection cost = cable cost + environmental
cost, costs in e1,000)

54 2 Minimum Spanning Trees

(c) Actually, the price of traversing the region between the cities 5 and 13 could not
be determined with the same accuracy as the other prices. How much can the
price of intersecting the region between 5 and 13 change before a different cable
network is more profitable for GTC?

(d) After a consultation round with all people and organizations involved, it is de-
cided that the links 6 – 9 and 15 – 17 have to be included in the new cable
network, whereas the links 24 – 26 and 31 – 39 will not be included. Determine
a minimal cost solution, without the reductions.
The government was willing to lower the price for the edges 6 – 9 and 15 – 17
by 10% on top of the negotiations from part (b). Was this 10% enough for the
project to be financially feasible?

The following problem is based on the network of Figure 2.12. The links 6 – 9
and 15 – 17 have to be included in the cable network, while the links 24 – 26 and
31 – 39 are not in the cable network. The subsidies from the government are not
taken into account.

Problem 2.3. Adding Locations to Networks
In the region between the nodes 22, 23, 27, and 28 of Figure 2.12, there is a small
town where recently the building activities of a new university are started. The town
is expected to expand by at least 10,000 people. The whole building process is ex-
pected to take another four years. It is decided that this town will be connected with
the main cable system after two years from now. The town is located 20 kilometers
from city 22, 28 kilometers from city 23, 20 kilometers from 27, and 25 kilometers
from 28.

In order to connect the new university town to the main cable network, GTC
considers the following two scenarios:

1. The university town becomes part of the main cable network from the start of
the building activities.

2. The town is connected to the main cable network after two years.

In the first scenario the cables have to be maintained for the first two years, which
incurs extra costs. In the second scenario all other towns need to be able to communi-
cate during the first two years without the benefit of the links through the university
town.

The cost of one kilometer cable is now e5,000, after two years it is expected
to drop to e4,000. On the other hand, the price the government asks for recovering
the damage is expected to rise as follows: At the moment the prices are e130,000
(for the region between the town and city 22), e110,000 (for the region between
the town and city 23), e135,000 (for the region between the town and city 27), and
e95,000 (for the region between the town and city 28). After two years, the prices
are e145,000, e140,000, e145,000, and e120,000, respectively.

2.6 Exercises on Minimum Spanning Tree Problems 55

In case of the second scenario, the company would incur an additional cost of
e100,000, primarily because all construction equipment must be shipped into the
region after two years.

What would be the total costs of maintaining the cables during the first two years
in order that the first scenario is more profitable?

Problem 2.4. Expanding Networks
Figure 2.13 is a schematic reproduction of the map of 48 locations labeled 1, . . . , 48
in a certain region. For these 48 locations a cable network has to be designed that
connects each pair of locations. The numbers attached to the connections denote the
costs of laying cable there. However, there are two areas where a cable network was
constructed recently: these are 10 – 9 – 5 – 6 – 7 and 34 – 33 – 28 – 29 (see the thick
lines in Figure 2.13).

(a) Determine a least cost cabling solution for connecting these locations.
(b) The solution of part (a) shows that all connections in location 22 are used in the

cable network. This makes this location quite vulnerable. How much worse is a
cabling solution if no more than 3 cable connection end at location 22?

Problem 2.5. Grouping Machines for Efficiency
One of the production facilities of GTC has 19 machines and produces 22 products.
The facility contains three production halls, and the machines should be placed in
these three halls in such a way that similar products (these are products that, to a
large extent, need the same machines) are manufactured in the same hall as much
as possible. Table 2.1 contains the Machine-Product Incidence (MPI) matrix. The
matrix consists of 0’s and 1’s (the 0’s are not shown in the table). An entry of 1 in
position (i, j) means that machine i can manufacture product j, while an entry of 0 in
that position means that this is not possible. So the similarity between two products
is reflected by the similarity of the corresponding columns in the MPI matrix — the
more common 0’s and 1’s, the more similar the corresponding products are.

(a) Determine a grouping of the machines in the three halls using a minimum span-
ning tree. Take the ratio of the number of products that can be manufactured on
only machine M1 to the number of products that can be manufactured on at least
one of the two machines M1 and M2 as the “distance” between the two machines
M1 and M2. Here, what do you mean by an optimal solution?

(b) What will the grouping be if not more than 10 machines can be placed in any of
the halls. Repeat your calculations when the maximum number of machines per
hall is 8, 9, 11, . . . machines per hall. Compare the results you obtain.

(c) Another production facility of GTC company has a similar problem. The MPI
matrix for this facility is depicted in Table 2.2. In this facility, there are 20 ma-
chines and 26 products. Answer the questions in parts (a) and (b) for this facility.

56 2 Minimum Spanning Trees

Fig. 2.13. Schematic road map with 48 locations (bold lines refer to existing cables, costs in
e1,000)

2.6 Exercises on Minimum Spanning Tree Problems 57

Table 2.1. Machine-Product Incidence Matrix for Problem 2.5(a,b) (row labels: machines,
column labels: products)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1 1
7 1 1 1 1 1 1
8 1 1 1 1 1 1
9 1 1 1 1 1 1

10 1 1 1 1 1 1
11 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1
13 1 1 1 1 1
14 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1
17 1 1 1 1 1 1
18 1 1 1 1 1 1
19 1 1 1 1 1 1

58 2 Minimum Spanning Trees

Table 2.2. Machine-Product Incidence Matrix for Problem 2.5(c) (row labels: machines, col-
umn labels: products)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1
8 1 1 1 1
9 1 1 1 1 1 1 1

10 1 1 1 1 1 1
11 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1
18 1 1 1 1
19 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1

2.6 Exercises on Minimum Spanning Tree Problems 59

Problem 2.6. Designing a Radio Telescope
The astronomical society ASTRO wants to build a large radio telescope. The tele-
scope will consist of thirteen sensors laid out in a four armed spiral in the country-
side. Figure 2.14 shows the location of the sensors marked A, B, . . . , M. Each of
these sensors continuously collect vast amounts of data, and these data need to be
sent to a central processing station located at A for analysis. GTC has been asked to
provide the physical connection to make this data transfer possible. The cable con-
nections that ASTRO requires need to be reliable, and so the cost of laying cable is
quite high, about e10 per meter of cable laid.

Fig. 2.14. Schematic map of the telescope sensors, the access points, and the cities

(a) What is GTC’s minimum investment in cable laying in order to complete the
project?

60 2 Minimum Spanning Trees

GTC knows that the JOM telecommunication company already has cable laid out
in the area, and is wondering whether it can make use of JOM cables to reduce
ASTRO’s cabling costs. JOM has indicated that it can provide four access points
in the area (marked 1, 2, 3, and 4 in Figure 2.14), and that these access points are
connected to each other. GTC is considering a deal with JOM whereby it will pay
JOM some money to use JOM’s network via the access points to transmit data.

(b) What is the maximum amount that GTC should be willing to pay JOM?

Under the previous scheme, JOM has agreed to charge GTC e23,500 for using its
access points. Executives at JOM inform GTC of a second scheme. They say that
under the new scheme, GTC could use one or more of their access points in the area
by paying e7,500 per access point used.

(c) Is this new scheme more attractive to GTC than the previous one?

Two neighboring villages X and Y want to make use of the connections to link them-
selves up to one another and to the JOM network. They are willing to pay GTC
e25,000 each to connect them to the network.

(d) Is it profitable for GTC to connect the villages to the network? Which scheme of
JOM should GTC consider if they plan to connect the two villages to the JOM
network?

3

Network Flows

3.1 Introduction

The schematic diagram of the telecommunication network of GTC in a particular
region is shown in Figure 3.1. Each node in the network represents a major network

Fig. 3.1. Existing telecommunication network

hub, while each edge in the network represents a link between two such hubs. In the
figure, there is a vector containing two numbers along each edge. The first entry of
the vector indicates the cost of sending one GBps of data along that edge (in e100
units), while the second entry indicates the bandwidth available along that edge (in
100GBps units). GTC is considering a request to provide a bandwidth of 600GBps
between the points A and H in the network and is wondering what the minimum cost
of providing this bandwidth would be.

©
Optimization, International Series in Operations Research & Management Science 140,

 Springer Science + Business Media, LLC 2010

G. Sierksma and D. Ghosh (eds.), Networks in Action: Text and Computer Exercises in Network

DOI 10.1007/978-1-4419-5513-5_6,

61

62 3 Network Flows

This problem is a typical example of a minimum cost flow problem. The solution
to the problem consists of a collection of edges in the network, which can be com-
bined to form paths, and the amount of flow along each of the edges. The sum of the
costs of this collection of edges, each weighted by the amount of flow it carries, is
the minimum cost that has to be incurred to route the required amount of flow.

In GTC’s case, GTC has to come up with a set of paths from A to H, such that
the sum of the capacities of the paths is at least 600GBps. However, if more than one
path includes the same edge, then the sum of the flows along the paths cannot exceed
the capacity of the common edge. For example, a solution including paths A – G – H
and A – E – G – H has a total capacity of 300GBps although the individual capacities
of both the paths are 300GBps each, since both the paths include the common edge
G – H. See that a feasible solution to GTC’s problem is given by the collection of
arcs A – B, A – E, A – G, B – C, E – C, C – F, F – H, and G – H, which constitutes the
paths A – G – H, A – E – C – F – H, and A – B – C – F – H. In the solution, the path
A – G – H provides a bandwidth of 300GBps bandwidth, the path A – E – C – F – H
provides 200GBps, and the path A – B – C – F – H provides the remaining 100GBps.
The total cost of this solution is e800,000.

Formally stated, in a minimum cost flow problem, one is given a connected net-
work N = (V,E,C,K) where C = (ce) is a vector of costs of each edge e ∈ E, and
K = (ke) is a vector of capacities along each edge e ∈ E. One is also given a source
node s ∈ V , a destination node t ∈ V , and an amount B of flow that has to be sent
from s to t through the network. A solution to the problem is a collection of edges
E ′ ⊆ E and flows fe along the edges e ∈ E ′, such that the collection corresponds to
a set of paths from s to t whose combined capacity is enough to send B units of flow
from s to t. The cost of the solution is the sum ∑e∈E ′ ce fe. One is required to find a
solution having the minimum possible cost.

A special case of the minimum cost flow problem is one where the amount of
flow to be sent from the source node to the destination node does not exceed the
capacities of each of the arcs, i.e., B ≤ mine{ke}. In this case, all the flow would be
sent through one path only, and that path is the cheapest path from the source node
to the destination node through the network. This happens in particular when the
amount of flow to be transmitted satisfies B = 1, and all edge capacities are infinite.
Notice that the problem then is identical to the shortest path problem described in
Chapter 1. Therefore the shortest path problem can be considered as a special case
of the minimum cost flow problem.

Next consider another problem. A trucking company that has to move truck-
loads of cables from point to point along a road network. The road network can
be represented by Figure 3.2, in which each of the arcs correspond to a one-way
road segment. The two numbers along each arc in the figure correspond to the cost
of transporting one truckload of cable along that road segment and the capacity (in
truckloads/hr units) of the road segment. We need to find out the maximum rate at
which cable can be transported from node A to node F in the network.

An inspection of the road network shows that it is possible to tansport a maximum
of 80 truckloads of cable per hour. Each hour, 20 truckloads can pass through the
segment A – B – C – F, 10 truckloads through A – B – E – F, 30 truckloads through

3.2 Applications 63

Fig. 3.2. A road transport network

A – F, and a further 20 truckloads through A – D – E – F. Notice that the costs of
transportation of cables are superfluous in this situation, because the situation does
not restrict the company’s transportation plan through a budget. This type of problem
is commonly called the maximum network flow problem.

Formally stated, in a maximum network flow problem, one is given a network
N = (V,E,K) where K = (ke) is a vector denoting the capacities of each e ∈ E, a
source node s∈V , and a destination node t ∈V . One is required to find the maximum
amount of flow that can be routed through the network N from s to t without violating
any capacity restriction.

3.2 Applications

Network flow problems arise very frequently in real-life applications. In the remain-
der of the section, we outline some illustrative situations where these problems can
be solved to aid decisions.

3.2.1 Production planning

Production processes that involve more than one operations can often be represented
naturally as networks. This representation allows managers to answer various ques-
tions about the processes by solving network flow problems.

Consider for example, a production process involving two steps, a preprocessing
step and a finishing step. Assume that the preprocessing step can be done at two
sites, A and B, and the finishing step can be done at two other sites, C and D. The

64 3 Network Flows

output of preprocessing at site A can be finished at either C or D, while the output of
preprocessing at B can only be finished in D. Site A can preprocess up to 200 tonnes
of raw material each month, while site B can preprocess up to 150 tonnes. Site C
can finish up to 50 tonnes of material each month, while site D can finish up to
200 tonnes. The cost of operation at sites A, B, C, and D are e40, e20, e15, and
e30 per tonne, respectively. Any amount of material can be transported to each of the
sites, and from C and D to the finished materials site. The cost of such transportation
is e10 per tonne.

This production process can be represented by the network in Figure 3.3. In the

Fig. 3.3. A network representation of the production process

figure, the node s represents the source of the raw material and the node t represents
the finished materials shed. Site A is represented by the pair of nodes a1 and a2 and
the arc connecting them. A unit of flow through a1→ a2 represents a unit of material
being processed at site A. Sites B, C, and D are represented in a similar manner.

If a manager wants to supply a demand of, say, 200 tonnes each month, and
wants to find the cheapest way to produce it, then she can solve a minimum cost
flow problem on the network in Figure 3.3 after adding an inflow of 200 tonnes at
s and an outflow of 200 tonnes at t. If the manager wants to find out the maximum
production capacity of the production process, then she can solve a maximum flow
problem from s to t on the same network.

3.2.2 Tourist reservation system

Consider a tourist route that starts at point A, goes through point B, and ends at point
C. All of A, B, and C are tourist destinations, and tourists would like to book passage
on a tourist bus to either go from A to B, or from A to C, or from B to C. A tour
operator wants to decide how many tourists to pick up at points A and B in order
to maximize fare collection. Suppose that the tourist bus can carry 80 tourists at any
point of time. On a particular day, 50 tourists want to go from A to B, 40 tourists
want to go from A to C, and 60 tourists want to go from B to C. The fare from A to
B is e100, from A to C is e170, and from B to C is e120.

The tour operator’s problem can be modeled using the network shown in Fig-
ure 3.4. The arcs in the network have costs and capacities as usual. Each unit of
flow in the network represents the fate of one tourist in the reservation system. In

3.2 Applications 65

Fig. 3.4. A network representation of the tour operator’s problem

the figure, nodes A, B, and C correspond the three points of the tourist route. The
inflow at node P represents the demand for passage from A to B, the inflow at node
Q represents the demand for passage from A to C, the inflow at node R represents
the demand for passage from B to C. The inflow at node P can either be routed along
the path P→ A→ B, or through P→ B to reach node B. The former path represents
tourists who are sold tickets on the bus, and the latter represent tourists who want to
go from A to B but do not succeed to obtain tickets on the bus. Notice that not more
than 80 units can flow through P→ A→ B due to the capacity restriction on A→ B.
Similar routings are possible for inflows at nodes Q and R. The outflows at B and
C ensure that a tourist who obtains a ticket is taken to precisely that destination that
she or he wants to reach.

Solving a minimum cost flow problem on this network, given the inflows and the
outflows, provides the tour operator with the decision on how many tourists of each
category to book on the bus. The flow on P→ A gives the number of tourists to book
who want to go from point A to point B. Similarly, the flows on Q→ A and R→ B
gives the numbers of tourists to book who want to go from point A to point C, and
from point B to point C, respectively. The objective function value multiplied by −1
gives the maximum revenue from ticket sales that the operator can expect.

3.2.3 Staff allocation

Consider the network of highways between six cities labeled A, B, . . . , F shown in
Figure 3.5. The edges in the network represent highways and the numbers next to
the edges represent the number of lanes in the highway. According to intelligence re-
ports, there is a possibility of criminals transporting contraband from A to F through
this network. In order to intercept the contraband, the police department wants to

66 3 Network Flows

Fig. 3.5. A network of highways connecting six cities

position officers along the network to check vehicles. A police officer can check
vehicles coming down one lane at a time. Therefore, since the highway segment
between A and B is a four lane highway, the department has to assign four police
officers to check for contraband along it. The police department wants to find out the
minimum number of police officers that it requires to check for contraband.

Notice that contraband can be transported using any combination of lanes in
the highway network. So in order to find the minimum number of police officers
that need to be assigned on the job, one needs to find out the maximum number of
lane combinations possible to go from A to F. This can be found by finding out the
maximum flow that can be sent from A to F through the network, assuming each unit
of flow to be a vehicle being sent through a lane combination denoting a path from A
to F. The maximum number of units that can be sent from A to F through the network
therefore is also the minimum number of officers who need to be assigned to ensure
that the contraband is intercepted if it is sent through the network.

The decision problem of finding out on which highway segments to assign police
officers can also be solved through a related problem called a minimum cut problem.
The maximum flow problem can be solved using a linear program (see the next
section). From the celebrated maximum flow - minimum cut theorem, it can be seen
that the shadow prices for the capacity constraints in this formulation assume values
of either 1 or 0. It turns out that assigning police officers to those highway segments
whose capacities have a shadow price of 1 would ensure that the contraband would
be intercepted, while assigning the minimum number of officers.1

1 For a more detailed treatment on the maximum flow - minimum cut theorem, see C.H. Pa-
padimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall, Inc., USA, pp. 117–120.

3.3 Linear Programming Formulations 67

3.3 Linear Programming Formulations

Both the minimum cost flow problem and the maximum network flow problem can
be modeled effectively as linear programs. In this section we describe these formu-
lations. In formulations of network flow problems, whenever a flow is possible from
a node i to a node j in the network, a decision variable xi j is defined to denote the
amount of flow.

Since edges in networks allow flows in both directions, each edge i – j between
two nodes i and j in the network is replaced by a pair of arcs, i→ j from i to j, and
j→ i from j to i. If the edge i – j had a cost ci j associated with it, both the arcs i→ j
and j→ i have the same cost ci j associated with them. The capacities of the two arcs
depend on the situation being modeled. Let us consider an example of bandwidth
allocation, when there is a flow of xi j along arc i→ j and a flow of x ji on j→ i. Then
the implication is a residual flow of |xi j− x ji| along edge i – j. In such a case, the
individual capacities on the arcs are not important, but flows along these arcs need to
obey the constraint

−ki j ≤ xi j− x ji ≤ ki j, (3.1)

where ki j is the capacity of edge i – j.
In certain other situations however, the allocation of capacities is handled differ-

ently. For instance in a road network with roads which allow traffic in both directions,
the capacity along a road segment denotes the number of cars that can travel on that
segment during a period. If we replace such an edge with two arcs, then we need to
ensure that the sum of the flows along the two arcs does not exceed the capacity of
the edge. In other words, in this situation, if an edge i – j has a capacity ki j, and the
edge is replaced with two arcs i→ j and j→ i, then each of the arcs has a capacity
of ki j. In addition, the flows xi j and x ji along the two arcs must obey the constraint

xi j + x ji ≤ ki j. (3.2)

Once we have converted edges to arcs in a network, we have a directed network.
Let A denote the set of arcs in the directed network that we generate. In a minimum
cost flow problem, the objective is to minimize the cost of transmitting the required
amount of flow from the source node to the destination node. So given that the cost of
transmitting one unit of flow from node i to node j is ci j, the objective in a minimum
cost flow problem is to

Minimize ∑
i→ j∈A

ci jxi j. (3.3)

There are two sets of constraints that define feasible flows along the network. In
the first set of constraints, the net outflow at the source node equals the net inflow at
the destination node, and both are equal to the amount of flow that has to be trans-
mitted. For all other nodes in the network, the net flow, i.e., the difference between
the outflow and the inflow at the node must be zero. This leads to the following
constraints, for each k ∈V ,

68 3 Network Flows

∑
i:i→k∈A

xik− ∑
j:k→ j∈A

xk j =

−B if k is the source node
B if k is the destination node
0 otherwise;

(3.4)

where B is the total amount of flow to be transmitted.
These constraints are called the flow balance constraints. Notice that in our for-

mulation the left hand side of the constraint corresponds to the net inflow at any node.
We could also rewrite these constraints to represent the net outflow at any node. The
flow balance constraints in such cases would look like

∑
i:k→i∈A

xki− ∑
j: j→k∈A

x jk =

 B if k is the source node
−B if k is the destination node

0 otherwise.
(3.5)

It is advisable to restrict oneself to one of these conventions while formulating
network flow problems.

The second set of constraints in the formulation is concerned with the capacities
of flows along the arcs. For arcs that have individual capacities specified, we could
use constraints enforcing these capacities. For example, if a link i→ j has a capacity
of ki j then it is expressed in the formulation by the constraint

xi j ≤ ki j. (3.6)

However, if no such individual capacities are available, for example when the
arcs are a result of creating a directed network from an undirected network, one may
use constraints of the form (3.1) or (3.2) described earlier.

This formulation to obtain an optimal, i.e., minimum cost routing of a flow of
magnitude B from a source node s to a destination node t through a network N =
(V,E,w) where the edge set E has been replaced with an appropriate arc set A is
shown in its entirety in Figure 3.6.

Figure 3.8 shows the formulation of the example of the minimum cost flow prob-
lem described in Section 3.1. The network for this problem, shown in Figure 3.1, is
an undirected network, and the first step is to create a directed network from it. This
is done by simply replacing each edge i – j in the network with a pair of arcs i→ j
and j→ i. The directed network is shown in Figure 3.7 in which the numbers next to
each pair of arcs denote the costs of sending flows along the arcs.

Maximum network flow problems can also be solved using linear programming.
As in other network flow formulations, the decision variables that are used are xi j’s,
one for each arc i→ j in the network, denoting the amount of flow that is to be
sent along that arc. The objective is to maximize the flow from the source node (or
the flow to the destination node). This flow is normally represented in a novel way
using a “back-arc”. A back-arc is an artificially added arc from the destination node
to the source node. This arc has infinite capacity. Thus in principle, any amount of
flow sent from the source node to the destination node can return via the back-arc
to the source node. Given the problem described on the network in Figure 3.2, the
network in Figure 3.9 shows the modified network with the back-arc. The back arc
is represented in the figure with broken lines.

3.3 Linear Programming Formulations 69

Minimize

z = ∑
i→ j∈A

ci jxi j

Subject to

∑
i:k→i∈A

xki− ∑
j: j→k∈A

x jk =

B
−B

0

if k is the source node
if k is the destination node
otherwise.

for each k ∈V

xi j ≤ ki j for each i→ j ∈ A

xi j ≥ 0 for each i→ j ∈ A

Fig. 3.6. Linear programming formulation of the minimum cost flow problem

Fig. 3.7. Directed version of network in Figure 3.1

The linear program then aims to maximize the flow along the back arc while
maintaining the flow balance constraints at the nodes, and obeying capacity con-
straints on the arcs. Mathematically expressed, therefore, the objective is to

Maximize xback-arc (3.7)

where xback-arc is a decision variable representing the flow along the back-arc.

70 3 Network Flows

Minimize

z = 5xAB +5xBA +2xAE +2xEA +6xAG +6xGA +6xBC +6xCB +4xBE +4xEB +9xCD +9xDC +

xCE + xEC +2xCF +2xFC +7xDF +7xFD +5xEG +5xGE +8xFH +8xHF +5xGH +5xHG

Subject to

(xBA + xEA + xGA)− (xAB + xAE + xAG) =−600 (Condition (3.4) at A)

(xGH)+ xFH)− (xHG + xHF) = 600 (Condition (3.4) at H)

(xAB + xCB + xEB)− (xBA + xBC + xBE) = 0 (Condition (3.4) at B)

(xBC + xDC + xEC + xFC)− (xCB + xCD + xCE + xCF) = 0 (Condition (3.4) at C)

(xCD)+ xFD)− (xDC + xDF) = 0 (Condition (3.4) at D)

There are three more similar constraints for nodes E, F, and G.

xAB− xBA ≤ 10 (Capacity on A – B)

xAB− xBA ≥ −10 (Capacity on A – B)

xAE − xEA ≤ 15 (Capacity on A – E)

xAE − xEA ≥ −15 (Capacity on A – E)

There are twenty more capacity constraints on all other edges.

xAB,xBA,xAE ,xEA,xAG,xGA,xBC,xCB,xBE ,xEB,xCD,xDC,

xCE ,xEC,xCF ,xFC,xDF ,xFD,xEG,xGE ,xFH ,xHF ,xGH ,xHG ≥ 0 (Nonnegative flows)

Fig. 3.8. Formulation of the minimum cost flow problem for the minimum cost flow problem
in Section 3.1

There are two sets of constraints in a linear programming formulation to solve
maximum network flow problems. The first set of constraints is the set of flow bal-
ance constraints. Since there are no external inflows and outflows, the flow balance
constraint for any node k is

∑
i:i→k∈A

xik− ∑
j:k→ j∈A

xk j = 0. (3.8)

As in the case of minimum cost flow problems, this constraint can also be written as

∑
j:k→ j∈A

xk j− ∑
i:i→k∈A

xik = 0. (3.9)

The second set of constraints is the set of capacity constraints. For each arc i→ j
with capacity ki j, the constraint is

xi j ≤ ki j. (3.10)

3.3 Linear Programming Formulations 71

Fig. 3.9. The network in Figure 3.2 with back-arc

Note that since the back-arc has infinite capacity, it is not necessary to include a
capacity constraint for the back-arc.

Figure 3.10 shows the full formulation of the maximum flow problem on a net-
work N = (V,E,K) where the edge set E has been appropriately replaced with an arc
set A, and where the source node is s (∈ V) and the destination node is t (∈ V). A
back-arc t→ s of infinite capacity is assumed to have been included in A. The formu-
lation that results from the implementation of this model on the maximum network
flow problem situation described in Section 3.1 is shown in Figure 3.11.

Minimize

z = xts

Subject to

∑
i:k→i∈A

xki− ∑
j: j→k∈A

x jk = 0 for each k ∈V.

xi j ≤ ki j for each i→ j ∈ A, except t→ s

xi j ≥ 0 for each i→ j ∈ A

Fig. 3.10. Linear programming formulation of the maximum network flow problem

72 3 Network Flows

Minimize

z = xFA

Subject to

(xFA)− (xAB + xAD + xAF) = 0 (Flow balance at A)

(xAB)− (xBC + xBE) = 0 (Flow balance at B)

There are four more constraints implementing flow balance at D, E, and F.

xAB ≤ 30 (Capacity of A→ B)

xAD ≤ 20 (Capacity of A→ D)

There are seven more capacity constraints for the other arcs.

xAB,xAD,xAF ,xBC,xBE ,xCF ,xDE ,xEF ,xFA ≥ 0 (Nonnegative flows)

Fig. 3.11. Linear programming formulation for the maximum network flow problem in Sec-
tion 3.1

3.4 Algorithms for Network Flow Problems

Apart from linear programming, there are other efficient algorithms for solving net-
work flow problems. Among these, the algorithms for solving minimum cost flow
problems are too advanced for this text. Hence we discuss only one algorithm for the
maximum network flow problem in this section.

3.4.1 Ford-Fulkerson’s algorithm

A commonly used algorithm for determining the maximum flow that can be routed
through a network from a given source node to a given destination node is described
in this section. This algorithm is due to L.R. Ford and D.R. Fulkerson (1956). It tries
to find successive paths from the source node to the destination node which can send
more flow between them. Since each of the paths thus found increase the total flow
possible from the source node to the destination node, they are called augmenting
paths.

Given a network, the first step is to find out a path from the source node to the
destination node. This is an augmenting path. The amount of flow that can be sent
through this path is obviously the minimum of the capacities of the arcs along this
path. This flow is often referred to as an augmenting flow. Once an augmenting flow
has been sent along this path, the algorithm needs to find out whether more any

3.4 Algorithms for Network Flow Problems 73

flow can be sent from the source node to the destination node, using other paths in
the network. This check is done by forming the residual network. In the residual
network, the capacities of the arcs that were not on the augmenting path do not
change in any way. The capacities of the arcs along the augmenting path however do
change. There are two types of arcs on the augmenting path: the unsaturated ones,
for which the amount of flow is less than the arc capacity, and the saturated arcs, for
which the flow is equal to the arc capacity. In the residual network, the capacities of
the unsaturated arcs are reduced by the augmenting flow value.

The way the algorithm deals with saturated arcs is more interesting. These arcs
are removed from the residual network and are replaced with arcs in the opposite
direction, with the same capacity as the original saturated arc. This operation seems
counter-intuitive, but has an interesting explanation. Let vs and vd be the source and
destination arcs, and i→ j be a saturated arc along the augmenting path vs p→
i→ j→ q vd . The notation v w means that there is a path from node v to node
w that includes other non-specified nodes. Let the augmenting flow be of amount f1.
Since i→ j is saturated by the augmenting flow, no more flow can be sent along
the path from i to j. However, if the replacement suggested above is accepted, then
there exists an arc j → i in the residual network with the capacity of the original
i→ j. Assume that there is an augmenting path vs k→ j→ i→ l vd . Let the
augmenting flow on this path be f2. Clearly f2 ≤ f1. Then both augmenting flows can
be realized by sending a flow amounting to f1− f2 along vs p→ i→ j→ q vd ,
and flows amounting to f2 along each of vs p→ i→ l vd and vs k→ j→
q vd .

Once the residual network has been formed after sending one augmenting flow,
the algorithm tries to send more augmenting flows along the residual network. It
stops when no augmenting flow is possible in the residual network at any stage. The
maximum flow that can be sent from the source node to the destination node is the
sum of the augmenting flows obtained at each step. For the part of the maximum
flow that an individual arc i→ j carries, we compute the sum of flows along i→ j
in each iteration of the algorithm and subtract from it the sum of flows along j→ i
in each iteration.

As an example to illustrate the working of the algorithm, it is applied here to find
the maximum flow from node A to node F in the network shown in Figure 3.2. The
residual network at the beginning of each iteration is shown in the left hand side of
Figure 3.12, and the augmenting path found in that iteration is shown in the right,
with the flow depicted by thicker lines. The numbers along each of the arcs in each
of the networks in Figure 3.12 refer to the capacities along the arcs.

The residual network at the beginning of the first iteration is the original net-
work in Figure 3.2. A→ B→ C→ F is an augmenting path in this network, and
the augmenting flow is of min{30,20,30} = 20 units. Arcs A→ B and C→ F are
unsaturated, and B→C is saturated. Therefore the residual network at the beginning
of the second iteration has the capacities of A→ B and C→ F reduced by 20 units,
and the arc B→C replaced by arc C→ B with capacity 20 units.

The steps of the algorithm on the network in Figure 3.2 are described in Table 3.1.
The maximum flow that can be sent over the network from node A to node F is

74 3 Network Flows

Fig. 3.12. Ford-Fulkerson’s algorithm in action

3.5 Other Network Flow Problems 75

Table 3.1. Ford-Fulkerson’s algorithm at work

Iteration Augmenting Path Augmenting Flow
1 A→ B→C→ F 20
2 A→ B→ E→ F 10
3 A→ F 30
4 A→ D→ E→ F 20
5 none 0

20 + 10 + 30 + 20 = 80 units. A→ B carries 30 units of this flow, A→ F carries 30
units, A→D carries 20 units, B→C carries 20 units, B→ E carries 10 units, D→ E
carries 20 units, C→ F carries 20 units, and E→ F carries 30 units.

3.5 Other Network Flow Problems

3.5.1 The multicommiodity flow problem

Consider a country-wide rail network through which two commodities, wheat and
cement, have to be transported. The same rakes are used to transport both commodi-
ties. The demand and supply points for both commodities are known in advance,
as are the requirements and supply capacities of both commodities at the individual
demand and supply points. The rake availabilities and transportation costs are also
known along each link in the rail network. In essence therefore, the problem is to
transport the two commodities so that the demands for the commodities are met in
a way such that the total transportation cost is minimized. The problem does not
decompose into two independent minimum cost flow problems since the two com-
modities share the same rakes. Such problems are known as multicommodity flow
problems.

In formal terms, in a multicommodity flow problem, one is given a network N =
(V,A,C,K1,K2, . . . ,Km) where for each i = 1, . . . ,m, Ki is the vector of the costs of
sending one unit of flow of type i through each arc of the network. One is also given a
set of source nodes for each flow with their supply capacities and a set of destination
nodes for each flow with their demands. The objective is to route the flows through
the network at minimum cost such that all demands are met.2

3.5.2 The reliable network flow problem

Consider a telecommunication network which is used by several branches of a bank
to process transactions with a central computer at the main branch. Each bank gen-
erates a certain number of transactions per unit time, and the computer at the main

2 For more details on this problem, see R.K. Ahuja, T.L Magnanti, and J.B. Orlin, Network
Flows: Theory Algorithms and Applications, Chapter 17: Multicommodity Flows, 1992,
Prentice Hall.

76 3 Network Flows

branch is capable of handling all transactions. However the network that the bank
uses consists of links which are not reliable; one or more links can go down at any
point of time. This would cause the network to fail to communicate all transactions
from the branches to the central computer. The bank’s objective is to find out what
proportion of transactions it can expect will go through with 90% probability. As a
related problem, it may want to re-design the network in order for it to allow all trans-
actions to go through at any point of time with say, 90% probability. These problems
are known as reliable network flow problems.

Formally stated, a reliable network flow problem, one is given a network N =
(V,A,C,K) and sets of source nodes and destination nodes, in which each arc in A has
a probability associated with it. This is the probability that it would be functional at
any point in time. The objective is to compute the probability distribution of network
flow characteristics such a maximum flow, or amount of flow transferable within a
given budget through the network.3

3.5.3 The network cut problem

Consider a road network linking two cities, A and B. The government believes that
illegal substances are being smuggled into A from B using this network, and wants
to set up a surveillance system to check such smuggling. If the surveillance team is
deployed on a road segment, they will check each car passing on that road for illegal
substances. Each person in the team can check only one lane of a road at a given
time. The government’s problem is to find out the minimum number of persons that
it needs to put on the team so that all cars moving from B to A are checked at some
point on their journey. This problem is called the minimum cut problem.

Formally, in a minimum cut problem, one is given a network N = (V,A,C,K),
a source node and a destination node. A cut is defined by a subset S ⊆ A such that
deletion of S from N creates two components of N, where the source and destination
nodes lie in different components. For a given S, let the source node lie in component
N1 and the destination node in component N2. Let S1 ⊆ S be a set of arcs with tail
in N1 and head in N2. The capacity of the cut S is defined as ∑e∈S1

ce. The objective
is to find a cut with minimum capacity. Interestingly this problem can be formulated
as the dual of the maximum flow problem on the same network.4 An interesting
related problem is the maximum cut problem in which the objective is to find a cut
with maximum capacity. This problem arises in VLSI design and can be used to

3 For more details on this problem, see M. Rios, V. Marianov, M. Gutierrez, Survivable ca-
pacitated network design problem: New formulation and Lagrangean relaxation, Journal of
the Operational Research Society 51, (2000), pp.574–582.

4 For more information on this problem, see P. Elias, A. Feinstein, and C. E. Shannon,
Note on maximum flow through a network. IRE Transactions on Information Theory IT-2,
(1956), pp.117–119.

3.6 Exercises on Network Flow Problems 77

model cluster analysis problems. It is more difficult to solve than the minimum cut
problem.5

3.6 Exercises on Network Flow Problems

Problem 3.1. Transportation Schedules
GTC manufactures its network cables at six different factories in the country. From
these factories, the cables are transported to the 44 cable depots, which are ware-
houses in different parts of the country. From the cable depots the cables are trans-
ported to the places were they are actually demanded.

Figure 3.13 contains a schematic road map of 50 locations, labeled 1, . . . , 50.
Factories where the network cables are manufactured are located in the locations
8, 11, 21, 24, 33, and 36. After production, the cable is stored on spools. The to-
tal production of each factory is given in units of ten cable spools. This number is
given next to the factory location in Figure 3.13. The remaining 44 locations in Fig-
ure 3.13 refer to the 44 cable depots, where the cable spools are stored until they
are needed. The demand of the various depots is the number next to the correspond-
ing node in Figure 3.13 (also in units of ten spools, and with a negative sign). The
spools are transported by means of trucks which always carry precisely ten spools;
the transportation costs per truck, called “truck costs”, are shown as numbers next to
the corresponding road segments in the network of Figure 3.13.

(a) GTC wants to know a cheapest way of transporting spools to the cable depots in
such a way that all depot demands are satisfied.
Since more spools are produced than are demanded, the company also wants to
know which factories manufacture spools that are not shipped. How many spools
are left at these factories?

(b) There are rumors that, because of the heavy traffic, the government is considering
to levy toll on vehicles that use a certain road segment. It is not known yet which
segment would be taxed, but road segments 38→40, 33→38, 12→10, 35→31,
and 29→34 are considered as the most likely ones.
GTC is wondering whether the change of one road segment into a toll road will
affect the cheapest transportation schedule from Problem 3.3(a). Determine for
each of the above five road segments the maximum toll fee that can be charged
on that segment without the current transportation plan becoming costlier than
some other plan.

(c) There is also a possibility that the direction of traffic on the road segment 33→34
will be reversed, i.e., it will become a one-way-traffic from 34 to 33. Determine
a cheapest transportation plan under this new circumstance.

5 For more details on this problem, see F. Barahona, M. Grötschel, M. Jünger and G. Reinelt,
An application of combinatorial optimization to statistical physics and circuit layout design,
Operations Research 3, (1988), pp.493–513.

78 3 Network Flows

Fig. 3.13. Supplies, demands (in units of 10 spools), and truck costs (in e) on a road map with
50 locations

3.6 Exercises on Network Flow Problems 79

Fig. 3.14. Supplies and demands (in units of 10 spools), and truck costs (in units of e10) on a
road map with 50 locations

Problem 3.2. More Transportation Schedules
In another country GTC has to deal with similar questions as in Problem 3.1. In
Figure 3.14 the road map for this country is depicted with 50 locations. There are
six cable depots, labeled A, B, C, D, E, and F. All numbers in this figure are given
in units of ten spools. The inventories at the various depots are the positive numbers
next to the depot labels. For instance, in depot C there are 1,400 cable spools in
stock. The locations with labels 1, . . . , 44 are points where cable is needed, so called
demand locations. The numbers next to these labels (with a negative sign) refer to

80 3 Network Flows

the number of spools demanded at these points. For instance, 650 spools needed at
location 17. The numbers attached to the road segments are the transportation costs
(in e10 units). For instance, the cost of transporting ten spools with one truck is
e290 on the road segment 22→40.

(a) Determine a transportation plan such that all demands are satisfied at minimum
truck costs.

(b) It is observed that unacceptable situations occur when trucks arrive from differ-
ent directions at demand locations. Is it possible to make a feasible transporta-
tion plan such that all demands are satisfied and the unacceptable situations are
avoided? Explain your answer.

(c) If the answer to the previous question is “no”, how will you change the invento-
ries (supplies) in the various depots so that such a plan can be constructed.

(d) Also try to construct a transportation plan without the unacceptable situations, by
changing the traffic direction on certain road segments.

Problem 3.3. Vulnerable Connections
A cable network contains two points where two campuses of a university are located.
Between these campuses there is a high level of communication that demands a lot
of capacity of the cable system. GTC is worried about the connections with an unde-
sirable high utilization degree because these connections are the most vulnerable.

Consider the network of Figure 3.15. This network represents a cable network
on 48 locations. Location 1 contains the university campus U1 and location 47 the
university campus U2. During the last weeks the communication from U1 to U2 was
not without troubles, which were probably caused by an exceptionally high utiliza-
tion degree of some of the cable connections. GTC wants to know these “bottleneck”
connections with very degree of high utilization. The number attached to a cable con-
nection in Figure 3.15 is the estimated flow capacity available for the communication
from U1 to U2. The direction of a connection refers to the direction in which there is
flow capacity left for the communication from U1 to U2. It is estimated that a total
capacity of 900 units is needed in order to satisfy the flow demand from U1 to U2.

(a) Is it possible that a flow of 900 units can be sent through the network from U1 to
U2?
Determine, in case the traffic between the two universities is maximal, the cable
connections on which the utilization degree is at least 90%.
Determine, by inspection, a set of connections, all cables in which have a utiliza-
tion degree of 100%, for which the total flow on this set is equal to the maximum
possible flow from U1 to U2 and that without which, no communication is pos-
sible between U1 and U2.

(b) Due to repair activities, the connection unit in location 21 is limited to a flow of
only 400 units. Is it still possible to send a flow of 900 units from U1 to U2?
Determine the maximum possible flow from U1 to U2 while the repair activities
go on. Compare the solution with the one from part (a).

3.6 Exercises on Network Flow Problems 81

(c) It turns out that in the optimal solution of part (b), the flow on the arc 48→47
is rather high, namely 570 units, so that there is full capacity utilization. The
company considers such a bottleneck close to a source location (here 1) or a
destination location (here 47) as undesirable, and is thinking about increasing the
cable capacity between 48 and 47. Why, in this specific situation, can the cable
capacity be increased with an arbitrary amount without changing the maximum
possible flow from 1 to 47?

The following problem refers to Problem 1.4 and the remark preceding it; it con-
cerns the R&D of a new type of cable. This cable will be manufactured in a number
of factories across the country.

Problem 3.4. Production Planning
One of the cable factories, where the new cable is manufactured (see Problem 1.4),
has four identical machines available for the production of the cable. Depending on
the fact that different clients demand for different specifications, the company has
divided the total demand into 21 different “jobs”, each job consisting of a cable
demand with a unique specification. For each job, there is a specific release date (the
beginning of the day when the job becomes available for processing), and a specific
due date (the beginning of the day by which the job must be completed). Each job has
a certain processing time (i.e., the number of machine days required for completing
the job). Table 3.2 contains the relevant data for the 21 jobs that have to be carried
out in the coming planning period of 18 days, namely, for each job the values of the
processing time (in machine days), the release date, and the due date are listed. A
machine can only work on one job at a time, and each job can be processed by at
most one machine at a time. Preemption is possible, meaning that the processing of a
job can be interrupted and and can be continued on a different machine on a different
day.

(a) Formulate the problem of determining a feasible schedule that completes all jobs
after their release dates and before their due dates as a network flow problem.

(b) Determine a solution to the problem from part (a).
(c) At the beginning of this 18 days period, one of the machines breaks down. Is

there a feasible schedule if there are three machines during the whole planning
period? If not, when must the machine be fixed for a feasible schedule?

Problem 3.5. Department Selection
GTC has obtained an order for modernizing the message transmission system be-
tween nine government departments in the state capital. GTC is willing to accept the
order only if they can select a subset of the capitals for which the total net profit is
maximal. The net profit is the difference between the total cost and the total revenue.
The importance of connecting two departments depends on the amount of transmis-
sion flow between the departments, and can be seen as a “revenue” of this connection.

82 3 Network Flows

Fig. 3.15. Cable system of Problem 3.3

3.6 Exercises on Network Flow Problems 83

Table 3.2. Data for Problem 3.4

Job Processing time Release date Due date

1 1.7 3 6
2 2.4 2 6
3 1.2 5 7
4 1.9 1 4
5 2.6 1 5
6 3.0 4 9
7 2.5 3 7
8 3.2 6 11
9 1.8 5 8

10 3.2 7 12
11 2.7 4 7
12 3.0 8 12
13 1.9 7 9
14 2.3 6 9
15 2.8 9 13
16 3.7 9 15
17 2.9 11 15
18 1.6 11 15
19 4.1 12 18
20 3.1 13 18
21 2.4 12 15

For each two departments, the value of the revenue is given in Table 3.3 (in e1,000
units). The cost of including a department into the network is given in the second
column of Table 3.3.

Table 3.3. Data for the selection problem of Problem 3.5

Revenue (in e1,000 units)
Dept. Including Dept.: 1 2 3 4 5 6 7 8 9

costs
1 890 — 410 510 70 420 390 180 290 150
2 1,380 — 260 150 270 290 110 440 120
3 780 — 140 450 470 210 350 130
4 1,250 — 140 210 120 90 140
5 1,015 — 380 80 460 110
6 940 — 210 390 260
7 1,190 — 250 280
8 675 — 200
9 980 —

84 3 Network Flows

(a) What is the total net profit if all capitals are included in the system?
(b) Which capitals are selected if the total net profit is to be maximized? Compare

this answer with the answer to part (a).
(c) Is it possible that the answer to part (b) is not unique, so that there are at least two

different sets of capitals with the same optimal net profit? Explain your answer.

Fig. 3.16. Road Map of the urbanized region of cities X and Y

Problem 3.6. Managing Road Checkpoints
Two large cities X and Y are located on different sides of the state border. The region
between X and Y is highly urbanized. The official customs post between the two
states is abolished some time ago. However, the governments of both states want
to get an idea of the commodity flows from X to Y. To that end they want to open a
number of checkpoints along the roads that are used when traveling from X to Y. The
road map with the relevant road segments is depicted in Figure 3.16. After careful
examination of the commodity flows, it is decided that vehicles traveling only in
one direction will be checked, besides the fact that in this heavily urbanized region
already many roads are one-way. The road segments and their directions are depicted
in Figure 3.16. There is a total of 47 junctions. GTC has obtained the order to build
the communication system between the checkpoints. The first question to be solved
is the number and the location of the checkpoints. Since the budget for building
the communication system is rather restricted and GTC only wants to build a high
quality system, the number of checkpoints is rather crucial. Therefore, GTC and the
contractor have decided to determine a minimum number of checkpoints that need

3.6 Exercises on Network Flow Problems 85

to be built. One of the major conditions is that, given the directions of commodity
flow, all vehicles that travel from X to Y can be checked. The costs for building each
checkpoint and constructing the communication system is estimated at e300,000.

The two governments want to know a minimum price for the construction of a
reliable checking system.

(a) Determine the minimum number of checkpoints for the road system of Fig-
ure 3.16, together with their locations. What is the minimum amount of money
needed for this operation.

(b) Answer the same questions as in part (a), but with the direction of traffic on the
road segment 32 – 25 reversed.

(c) Answer the question in part (a), if all flow directions in Figure 3.16 are reversed,
and commodity flow from Y to X is considered.

4

Matchings

4.1 Introduction

GTC has five managers Anna, Boris, Caren, Derek, and Elija, labeled A, B, C, D, and
E, respectively. It also has five projects labeled P1 through P5. Figure 4.1 shows the
ability of each of the executives to handle projects — a link between a manager and
a project indicates that the manager has the skill set required to handle the project. A

Fig. 4.1. Capabilities of different executives

manager can handle at most one project, and each project, if assigned to a manager,
needs to be assigned to exactly one manager. GTC wants to find out how to assign
projects to managers such that the maximum number of projects will be assigned.

This problem, and others similar to it in nature in which solutions correspond
to pairing of entities are referred to as matching problems. The solutions to these
problems are called matchings. Formally stated, matchings are subsets of edges in
a network such that no two edges in the set are incident on the same node of the
network. Thus, a solution to GTC’s problem would be the set of edges {A – P3,
B – P2, C – P5}.

©
Optimization, International Series in Operations Research & Management Science 140,

 Springer Science + Business Media, LLC 2010

G. Sierksma and D. Ghosh (eds.), Networks in Action: Text and Computer Exercises in Network

DOI 10.1007/978-1-4419-5513-5_7,

87

88 4 Matchings

However, the matching above is not an optimal solution to GTC’s problem. In
the problem they require a maximum cardinality matching, also called a maximal
matching, i.e., a matching which has the maximum cardinality among all matchings.
An optimal solution to their problem is the matching {A – P1, B – P2, C – P3, D –
P5}; see Figure 4.2 in which the thicker lines illustrate the matching. Note that this

Fig. 4.2. A maximal matching

is one of several maximal matchings possible. Also note that even though there are
five managers and five projects, the best solution here is able to allocate managers to
four projects only. This is because Anna is the only person who is competent to be
assigned to either P1 or P4, and the project that she is not assigned to remains unas-
signed in the solution. A matching, such that for each node in the network exactly
one edge in the matching is incident on it, is called a perfect matching.

Next, consider approaches in which choosing one matching over another is not
determined by the cardinality of the matching alone. To make such choices, one
needs to attach weights on the edges in the network. For example, in addition to
having the required skill set for being assigned to a project, suppose that there is a
measure of the suitability of a manager for a project (where a higher value indicating
a higher suitability), and one wants to find the best way of matching managers to
projects. The problem is depicted by a weighted graph as in Figure 4.3. The weights
on the edges indicate the measure of suitability of managers to projects. Combi-
nations that are not represented in the network are assumed to have extremely low
measures. In this case, the objective is to obtain a maximum weight matching, i.e., a
matching in which the sum of the edge weights is maximum. In situations where the
underlying graph is bipartite, such a maximum weight matching problem is called an
assignment problem. In this example, the matching {A – P4, C – P5, D – P3, E – P3}
is the best assignment possible.

In the problems described so far in this chapter, the underlying networks are bi-
partite. It does not make sense in the problems discussed earlier to assign a project to
another project, or a manager to another manager. However, not all matching prob-
lems are defined on bipartite graphs.

4.1 Introduction 89

Fig. 4.3. A weighted matching problem

Consider for example, that seven managers (labeled A, B, . . . , G) need to form
two member teams to deal with projects in the departments. Teams can work only
when the two members in the team get along with each other. The inter-personal
relations between managers are depicted in the left-hand side of Figure 4.4 by a
network in which managers are represented by nodes, and there is an edge between
two nodes if the managers they represent get along well with each other. For instance,
manager A can get along with one among B, D, F, and G, but not with C or E. This
network is obviously not bipartite. However, we have a matching problem since a
solution would be a subset of the edges, no two of which are incident on the same
node. This problem is known in the literature as the roommate problem. A solution

Fig. 4.4. A matching problem on a non-bipartite graph and its solution

to the problem (shown in the right-hand side of Figure 4.4) is the subset of edges
{A – B, C – G, D – E}. F is unable to team up with anyone in this solution. Note
that this is an optimal solution, but not the only optimal solution for this problem.
Another optimal solution for example would be the set {A – G, B – C, E – F}, which
leaves D without a teammate.

90 4 Matchings

The last type of matching problems described here is called the bottleneck match-
ing problem. Consider the assignment problem discussed earlier and illustrated using
Figure 4.3. Assume that the objective is to find a maximum cardinality assignment of
managers to projects, but to ensure such that the minimum value of the capability of
an manager assigned to a particular project is the largest possible. This ensures that
the “worst” of the assignment decisions is the best possible. This “worst” assignment
decision (the least cost edge) is referred to as the bottleneck. In the optimal assign-
ment in the example for instance, the bottleneck is edge D – P2, with a value of 4.
By inspection, it is easy to see that this assignment is also optimal for the bottleneck
matching problem.

4.2 Applications

Matching problems have varied applications in addition to the ones stated in the
introductory session. Some of the other applications are sketched in this section.

4.2.1 Constructing university timetables

Consider a term at an university, in which classes have to be scheduled for students.
Each student opts for multiple courses and the problem is to assign course class slots
to classrooms. For this, from the student options, classes are constructed. Each class
has a set of students and an instructor. Classroom slots have a physical classroom and
a time-interval. A bipartite network is constructed from this data in which classes
make up one partition and classroom slots make up the other partition. Classes and
classroom slots are connected to ensure that if a class is connected to a slot, then the
classroom in the slot is large enough to accommodate the class, and no other class
connected to the slot has the same instructor or has students who are also in this
class. The classroom slot allotment problem then reduces to a maximum cardinality
matching problem in this network, to ensure that the maximum number of classes
can be accommodated to form a timetable.

4.2.2 Constructing 3-dimensional models from 2-dimensional data

In image processing, an interesting problem is to construct 3-dimensional models
from information provided in two dimensions. For example, given two images of the
same solid object in two dimensions taken from slightly different viewpoints, one
needs to compute its model in three dimensions. The way in which this is done is to
find out the position of the same feature of the object (for example a corner of the
object) in the two images, and given the positions of the viewpoints from which the
two images were taken, find the position of the feature in 3-dimensional space using
triangulation. However, to follow this method, first one has to find out which feature
in one image corresponds to which feature in the second image. This problem is a

4.3 Linear Programming Formulations 91

weighted bipartite matching problem. The exact method of constructing a bipartite
network from such images is beyond the scope of the book1.

4.2.3 Crew pairing

Consider the problem of the management in an airline which has to form pilot co-
pilot pairings among candidates who speak different languages. The airline wants
to construct teams where the two members speak the same language. In addition to
ensuring that the pilot and the co-pilot speak the same language, the airline wants to
create pairings in which the pilot and the co-pilot get along well with each other. This
problem can be solved using a weighted non-bipartite matching problem. A network
is constructed in which the nodes correspond to candidates, and two candidates are
connected to each other if they speak the same language. The weight of an edge is
a measure of the interpersonal relations between the pair of candidates that it joins,
a high value indicating a high level of compatibility. The solution to the problem is
then to construct a maximum weight matching in this network and to form pairings
of candidates who share the same edge in the optimal solution.

4.3 Linear Programming Formulations

All the problems described in the previous section can be solved through the linear
programming technique. For each edge i – j in the network, in each of the formu-
lations, define a decision variable xi j that assumes a value of 1 if the edge is part
of an optimal matching, and 0 otherwise. A common set of constraints that define
matchings in all the formulations ensure that each node in the network has at most
one edge in the matching incident on it. So we define the constraint set

∑
j:i− j∈E

xi j ≤ 1 for each i ∈V . (4.1)

The special structure of this set of constraints ensures that a relaxation to the con-
straint set, in which the binary decision variables are relaxed to include all real values
between 0 and 1, has integer corner points. Therefore, for matching problems that
have only constraints of the form (4.1) in their can be solved as linear programs with
the xi j variables restricted to values between 0 and 1, instead of binary linear pro-
grams2. Additionally, one does not need to add the constraints restricting the decision
variables not to exceed 1, since the constraints of type (4.1) along with non-negativity
constraints are sufficient to ensure this condition.

In the remaining part of this section linear programming formulations will be
developed for the four types of matching problems introduced in the previous section.

1 For more details on this problem, see D.B. Goldgof, H. Lee, and T.S. Huang, Matching and
motion estimation of three-dimensional point and line sets using eigenstructure without
correspondences, Pattern Recognition, 25, (1992), 271–286.

2 See G. Sierksma, Linear and Integer Programming: Theory and Practice, Chapter 7.

92 4 Matchings

4.3.1 The maximum cardinality matching problem

In the maximum cardinality matching problem, one is interested in finding a match-
ing with the largest possible number of edges in the matching. So the objective func-
tion is simply the sum of the number of edges in the matching, and the objective is
mathematically represented as

Maximize ∑
i− j∈E

xi j.

The only set of constraints required are of type (4.1).
A complete formulation of a linear program to construct a maximum cardinality

matching in a network N = (V,E) is thus the one shown in Figure 4.5.

Maximize

z = ∑
i− j∈E

xi j

Subject to

∑
j:i− j∈E

xi j ≤ 1 for each i ∈V

xi j ≥ 0 for each i− j ∈ E

Fig. 4.5. Linear programming formulation of the maximum cardinality matching problem

Figure 4.6 shows the formulation of the maximum cardinality matching problem
for the network in Figure 4.1. For notational convenience, the nodes for projects P1
through P5 are labeled 1 through 5.

4.3.2 The maximum weight matching problem

In the maximum weight matching problem, one is interested in finding a matching
for which the sum of weights of edges in the matching is the maximum possible. The
objective function in a linear programming formulation for this problem is therefore
a weighted sum of edges in the solution, and the objective is mathematically repre-
sented as

Maximize ∑
i− j∈E

wi jxi j,

where wi j is the weight assigned to the edge i – j in the network. As in the maximum
cardinality matching problem, the only set of constraints required are of type (4.1).

A complete formulation of a linear program to construct a maximum weight
matching in a network N = (V,E) is thus the one shown in Figure 4.7.

4.3 Linear Programming Formulations 93

Maximize

z = xA1 + xA3 + xA4 + xB2 + xC3 + xC5 + xD2 + xD5 + xE3

Subject to

xA1 + xA3 + xA4 ≤ 1 (Constraint (4.1) at A)

xB2 ≤ 1 (Constraint (4.1) at B)

There are three more constraints for nodes C, D, and E.

xA1 ≤ 1 (Constraint (4.1) at P1)

xB2 + xD2 ≤ 1 (Constraint (4.1) at P2)

There are three more constraints for nodes P3, P4, and P5.

xA1,xA3,xA4,xB2,xC3,xC5,xD2,xD5,xE3 ≥ 0 (Nonnegative flows)

Fig. 4.6. Formulation of the maximum cardinality matching problem for the network in Fig-
ure 4.1

Maximize

z = ∑
i− j∈E

wi jxi j

Subject to

∑
j:i− j∈E

xi j ≤ 1 for each i ∈V

xi j ≥ 0 for each i− j ∈ E

Fig. 4.7. Linear programming formulation of the maximum weight matching problem

Figure 4.8 shows the formulation of the maximum weight matching problem for
the network in Figure 4.3. Here too, for notational convenience, the nodes for projects
P1 through P5 are labeled 1 through 5.

4.3.3 The non-bipartite matching problem

The linear programming formulations described in the previous two cases do not
assume that the network being analyzed is bipartite. Therefore the formulation de-

94 4 Matchings

Maximize

z = 5xA1 +4xA3 +7xA4 +3xB2 +6xC3 +8xC5 +4xD2 +4xD5 +7xE3

Subject to

xA1 + xA3 + xA4 ≤ 1 (Constraint (4.1) at A)

xB2 ≤ 1 (Constraint (4.1) at B)

There are three more constraints for nodes C, D, and E.

xA1 ≤ 1 (Constraint (4.1) at P1)

xB2 + xD2 ≤ 1 (Constraint (4.1) at P2)

There are three more constraints for nodes P3, P4, and P5.

xA1,xA3,xA4,xB2,xC3,xC5,xD2,xD5,xE3 ≥ 0 (Nonnegative flows)

Fig. 4.8. Formulation of the maximum weight matching problem for the network in Figure 4.3

veloped to solve the maximum cardinality matching problem can immediately be
applied to solve the roommate problem. As an example, a linear programming for-
mulation for the roommate problem (depicted in Figure 4.4) is shown in Figure 4.9.

Maximize

z = xAB + xAD + xAF + xAG + xBC + xCE + xCG + xDE + xEF

Subject to

xAB + xAD + xAF + xAG ≤ 1 (Constraint (4.1) at A)

xAB + xBC ≤ 1 (Constraint (4.1) at B)

There are five more constraints for nodes C, D, E, F, and G.

xAB,xAD,xAF ,xAG,xBC,

xCE ,xCG,xDE ,xEF ≥ 0 (Nonnegative flows)

Fig. 4.9. Formulation of the roommate problem for the network in Figure 4.4

It should be immediately obvious that a weighted version of the roommate prob-
lem can be formulated exactly in the same way as the weighted matching problem.

4.3 Linear Programming Formulations 95

4.3.4 The bottleneck matching problem

Bottleneck matching problems are more difficult to formulate than the other match-
ing problems. The solution to such a problem is a maximal matching. So one needs
to first find the cardinality of a maximal matching for the problem. Once the car-
dinality of the maximal matching is obtained, one then has to evaluate all maximal
matchings and find the one for which the weight of the bottleneck edge is as high as
possible.

An easy way of computing the size of the maximal matching in a network
N = (V,E,w) is to solve a maximum cardinality problem on the network using, for
example, the linear programming formulation for maximum cardinality matchings as
described earlier in this section, and measuring the cardinality of the solution output.
Let us assume that in the network, the maximum cardinality matching has cardinality
m.

Next, the problem of finding the best matching among the matchings with cardi-
nality m (m≥ 1) has to be formulated. In order to achieve this, constraints are added
to ensure that the solution output by the formulation is a matching. This is easily
done by including constraints of the form (4.1) for all nodes in the network. Next, a
constraint is added to restrict the solution space to the set of maximum cardinality
matchings. This is achieved with the constraint

∑
i− j∈E

xi j = m. (4.2)

Finally, in order to minimize the weight of the bottleneck edge one defines a
variable v to store the weight of the bottleneck edge. Constraints are added to ensure
that v does not take a value that is larger than the weights of any of the edges in the
solution output. This is done by modeling the statement

if xi j = 1, then wi j ≥ v for each i – j ∈ E.

This condition is implemented using the constraint

wi j− v+M(1− xi j)≥ 0 for each i – j ∈ E, (4.3)

where M is a number larger than maxi− j∈E wi j + 1. If xi j = 1 for any edge i – j
in the network, then for that edge this constraint evaluates to wi j ≥ v. On the other
hand, if xi j = 0, then this constraint evaluates to wi j ≥ v−M, a redundant constraint.
Unfortunately, the addition of the constraints (4.2) and (4.3) in the constraint set
destroys the property that enabled the replacement of the binary valued xi j’s with
continuous variables. Hence, in the formulation of bottleneck matching problems
the xi j’s must be considered to be binary variables rather than continuous ones.

The objective of the bottleneck matching problem is simply

Maximize v.

A complete formulation of a bottleneck matching problem on a network N = (V,E)
is given in Figure 4.10. In the formulation it is assumed that the cardinality m of the
maximum cardinality matching in N is known.

96 4 Matchings

Maximize

z = v

Subject to

∑
i− j∈E

xi j = m

wi j− v+M(1− xi j) ≥ 0 for each i− j ∈ E

v ≥ 0

xi j ∈ {0,1} for each i− j ∈ E

Fig. 4.10. Formulation of the bottleneck matching problem

Figure 4.11 shows the formulation of the bottleneck matching problem on the
network shown in Figure 4.3. The value of m is taken to be 4 since the maximum
cardinality matching on this network has four edges. We may choose M = 9, since
the maximum weight of an edge in the network is 8.

4.4 Algorithms for Matchings

There are several algorithms that solve large scale matching problems more effi-
ciently than linear programming. However, most of these algorithms are complex to
describe, and their description is beyond the scope of this book. In this section we
describe one algorithm which is easy to understand, namely an algorithm for finding
the maximum cardinality matching problem on bipartite graphs.

The maximum cardinality matching problem on a bipartite graph can be shown
to be identical to the maximum flow problem in an auxiliary network. So we can
solve it efficiently in three steps. For this illustration, let us consider a bipartite graph
(V,E) in which the node set V is partitioned into disjoint sets V1 and V2.

In the first step an auxiliary network is defined. The node set of this network has
all nodes of the original network, in addition to a dummy source node and a dummy
destination node. The set of arcs in the auxiliary network has three sets of arcs. In
the first set are unit capacity arcs that go from the source node to all nodes in the
first subset of the partition. The second set of arcs contains unit capacity arcs from
all nodes in the second subset to the destination node. The third set of arcs contains
arcs corresponding to edges in the original graph. For every edge i – j in the original
network in which i ∈ V1 and j ∈ V2, we include a unit capacity arc i→ j in the
auxiliary network.

In the second step, the maximum flow from the source node to the destination
node in the auxiliary network is obtained. This is done using one of the more efficient
algorithms like the Ford-Fulkerson algorithm described in Chapter 3. This results in

4.4 Algorithms for Matchings 97

Maximize

z = v

Subject to

xA1 + xA3 + xA4 + xB2 + xC3 + xC5 + xD2 + xD5 + xE3 = 4 (Condition (4.2))

5− v+9(1− xA1) ≥ 0 (Constraint (4.3) for A – 1)

4− v+9(1− xA3) ≥ 0 (Constraint (4.3) for A – 3)

There are seven more constraints for the other edges in the network.

xA1 + xA3 + xA4 ≤ 1 (Constraint (4.1) at A)

xB2 ≤ 1 (Constraint (4.1) at B)

There are three more constraints for nodes C, D, and E.

xA1 ≤ 1 (Constraint (4.1) at 1)

xB2 + xD2 ≤ 1 (Constraint (4.1) at 2)

There are three more constraints for nodes 3, 4, and 5.

v ≥ 0 (Continuous variable)

xA1,xA3,xA4,xB2,xC3,xC5,xD2,xD5,xE3 ∈ {0,1} (Binary decision variables)

Fig. 4.11. Formulation of the bottleneck matching problem on the network in Figure 4.3

an optimal solution to the maximum flow problem in which all arcs that carry flows
carry one unit of flow.

In the third and final step, the optimal solution obtained in the second step is used
to obtain an optimal solution to the maximum cardinality matching problem. This
involves concentrating on the arcs in the third set defined in the first step. If and only
if the arc i→ j in the auxiliary network carries flow in the optimal solution obtained
in the second step, then the corresponding edge i – j in the original network is part
of the optimal matching. Since each arc from the source node to a node in the first
set has unit capacity, at most one of the arcs from each node in the first set can carry
unit flow in the solution obtained in the second step. Similarly, since the capacity of
each arc from the nodes in the second set to the destination node has unit capacity,
only one of the arcs to each node in the second set can carry unit flow. Thus, the flow
pattern represented in the optimal solution to the maximum flow problem described
in the second step corresponds to a matching. Since the objective is to maximize the
flow from the source node to the destination node, an optimal flow would have the
maximum possible number of arcs between the two sets that carry unit flows.

98 4 Matchings

As an example, consider the matching problem described by the network in Fig-
ure 4.1. The aim is to obtain a maximum cardinality matching in this network. The
auxiliary network for the network in Figure 4.1 is constructed by adding a dummy
source node S and a dummy destination node T to the set of nodes and creating
the three sets of arcs as described earlier in this section. The auxiliary network thus
formed is shown in Figure 4.12. Arc capacities and costs have not been printed along
the arcs, but each of the arcs have unit capacity, and arc costs are not relevant to the
solution process.

Fig. 4.12. Converting a matching problem to a flow problem

In the second step the maximum flow problem from the source node S to the
destination node T through the network of Figure 4.12 is solved. An optimal solution
to this problem is shown in Figure 4.13, in which the thicker lines correspond to the
arcs that carry unit flow.

In the third step, an optimal solution to the network shown in Figure 4.1 is ob-
tained. In the solution to the problem in the second step, arcs A → P1, B → P2,
C→ P3, and D→ P5 carry unit flows. Therefore a maximum cardinality matching in
the network shown in Figure 4.1 is the set {A→ P1, B→ P2, C→ P3, D→ P5}.

4.5 Other Matching Problems

4.5.1 The stable marriage problem

A medical school has ten interns and wants to allocate them to ten hospitals. Each
intern has a priority ordering of the hospitals, and would prefer to join a hospital
higher in her ordering if she is allowed to. The hospitals also have a ranking of
interns, and a particular hospital would be willing to trade an intern with another if

4.5 Other Matching Problems 99

Fig. 4.13. Solution to the maximum flow problem of Figure 4.12

the former intern is ranked higher in its ranking. Consider a situation where an intern
A is assigned to a hospital P, and another intern is assigned to a hospital Q. If A
prefers Q to P, B prefers P to Q, P prefers B to A, and Q prefers A to B, then the
assignment is said to be unstable, since it would be better all round if A was assigned
to Q, and B to P. A matching of interns to hospitals is called stable if there are no
unstable assignments of the type described above. The problem of finding a stable
assignment of interns to hospitals is called the stable marriage problem.3

There are other problems related to the stable marriage problem. One of them is
called the college admissions problem. This problem differs from the stable marriage
problem in that each college can accept more than one applicant, while the stable
marriage problem allows each hospital to accept exactly one intern.

4.5.2 The 3-dimensional stable matching problem

Consider a school that has a policy of admitting equal numbers of domestic students
and foreign students. In order to ensure that these students understand the nuances
of multiple cultures, the school also requires each domestic student pairs up with a
foreign student in rented apartments. Each domestic student has a ranking of each
of the foreign students that she wants to pair up with, and so does each of the for-
eign students. Hence the preferences are mentioned in the form “Domestic student x
would like to pair up with foreign student y in apartment z.”. The problem is to find
a stable matching of domestic and foreign students, and apartments. This problem is
called a 3-dimensional stable matching problem4.

3 For more details on this problem, see D. Gusfield and R.W. Irving, The Stable Marriage
Problem: Structure and Algorithms, MIT Press, 1989.

4 There is literature to show that not all 3-dimensional stable matching problems have so-
lutions (see for example, A. Alkan, Non-existence of stable threesome matchings, Math-

100 4 Matchings

4.6 Exercises on Matching Problems

Problem 4.1. Scheduling Technicians
GTC employs fifteen maintenance technicians who are used to solve problems that
customers have with their communication devices. The technicians are paid by hours
of work. All technicians have the same wage per hour, but are not equally qualified
on all problems. The problems are divided into ten different categories. This morn-
ing, twenty customers have problems in the categories shown in Table 4.1. However
only fifteen customers can be served, because each technician is assigned to only
one job. The twenty customers have called in the order 1 through 20, meaning that
Customer 1 has called first, and Customer 20 called last. The time required by a tech-

Table 4.1. Customers and their categories

Customer Category Customer Category Customer Category
1 1 8 2 15 7
2 6 9 7 16 9
3 3 10 4 17 4
4 7 11 5 18 7
5 5 12 3 19 2
6 8 13 9 20 1
7 9 14 10

nician to solve a problem is called the repairing time. Assume that GTC knows the
repairing times per category and per technician. These times are shown in Table 4.2.
For example, Technician 2 needs 17 minutes to solve a problem in Category 1. GTC
wants to serve fifteen customers at minimum technician wage cost.

(a) Assume that the customers are served on a first-call-first-served basis.
1. By inspection, how would you assign the fifteen technicians to the customers?

What is the rationale behind your solution procedure?
2. Explain why your solution need not be optimal.
3. What is an optimal assignment of technicians to customers, and what is the

total repairing time?
(b) GTC now wants to analyze the consequences of serving fifteen customers out of

twenty for which the total wage is as low as possible.
1. By inspection, how would you assign the fifteen technicians to the customers?

What is the rationale behind your solution procedure?
2. Explain why your solution need not be optimal.
3. Set up an optimization model to solve this problem.

ematical Social Sciences 16, (1988), pp.207–209), but under certain preference orderings,
they always do have solutions (see E. Boros, V. Gurvich, S. Jaslar, and D. Krasner, Sta-
ble matchings in three-sided systems with cyclic preferences. Discrete Mathematics 286,
(2004), pp.1–10).

4.6 Exercises on Matching Problems 101

Table 4.2. Repairing times per technician per category

Category
Technicians 1 2 3 4 5 6 7 8 9 10

1 26 76 159 187 41 45 193 49 174 201
2 17 91 128 162 50 42 167 38 146 122
3 28 111 152 145 51 52 212 44 156 221
4 24 84 155 209 58 44 146 41 122 177
5 26 85 139 201 66 51 144 44 164 190
6 21 95 176 197 65 58 196 52 157 209
7 19 96 173 183 54 50 192 50 97 192
8 19 84 135 177 52 45 175 42 99 212
9 17 98 119 178 58 46 194 38 178 158

10 24 80 109 199 60 50 218 61 142 150
11 18 88 146 178 57 48 159 48 156 190
12 28 105 124 158 55 43 150 36 132 183
13 22 102 129 157 48 57 233 50 158 155
14 28 110 168 217 48 58 159 47 136 179
15 24 98 123 181 54 49 112 44 196 135

4. What is an optimal assignment of technicians to customers now, and what is
the total repairing time?

(c) Why is the optimal solution to part (b) not worse than the optimal solution to part
(a) in terms of repair times?

(d) Draw and analyze the perturbation function corresponding to the model used in
part (b), of the coefficient representing the time that Technician 2 needs to serve
Customer 145.

(e) Based on the first-call-first-serve principle, what happens to the optimal solu-
tion to part (a) when Technician 2 is not available and Technician 8 visits two
customers?

(f) What happens to the optimal assignment of part (b) if Customer 4 solves the
problem himself, so that no technician is needed for this customer?

Problem 4.2. Executing Two-Stage Projects
GTC has ten specialized departments all over the world. There are 35 projects to be
executed during the next six months. Each project consists of two consecutive stages.
The first stage of each project takes three months. After these three months, the next
stage of the projects starts, taking again three months. Departments are assigned to
project stages. The assignments are listed in Table 4.3. For example, in the first stage,
department 1 (D1) is assigned to the projects with labels 1, 3, 6, 10, 19, 26, and 34.
In the second stage, D1 is assigned to the projects with labels 6, 9, 12, 16, 19, and
23.

5 The perturbation function of a model parameter is a function of which the values are the
objective values of the model for all feasible values of that parameter.

102 4 Matchings

Table 4.3. Assignment of departments to project stages

Department Stage Projects
D1 S1 1 3 6 10 19 26 34

S2 6 9 12 16 19 23
D2 S1 12 16 18 19 20 21 27

S2 3 5 11
D3 S1 14 15 22 24 29

S2 1 7 8 16 19 23 24 29 34
D4 S1 3 5 6 7 11 13 17

S2 2 4 8 13 17 21 22
D5 S1 2 4 8 9 23 25 30 33 35

S2 10 14 18 20 25 27 28
D6 S1 1 9 13 16 21 26 31 34

S2 12 15 18 26 30
D7 S1 1 6 9 26 31

S2 19 26 31 35
D8 S1 3 15 16 21 22 23 29 33 34 35

S2 5 9 10 16 17 27 33
D9 S1 5 6 9 13 14 19 23 26

S2 1 6 8 15 23 29 30 32
D10 S1 9 11 18 21 25 29 34

S2 6 10 16

After the first stage, a department can stay with the same project. For example,
D1 participates in Project 6 during all six months.

Starting a new second stage project needs preparation time. In order to limit the
preparation time, each department opens a help desk at the beginning of the second
stage. In the help desk of, say D1, D1 may help departments that are involved in
second stage projects that D1 was involved with during the first stage. However, due
to the complexity of the projects, a help desk can only help one department, while a
department is allowed to use only one help desk. Note that a second stage department
can be helped on more than one project. For example, the help desk of D1 (denoted
by H1) can inform D3 on the three projects, 1, 19, and 34. It is assumed that all
preparation times are equal, and all help desks require equal times per project. GTC
wants to minimize the total preparation time.

For your convenience, Table 4.4 partly lists the number of new projects on which
a help desk can help a department.

(a) Calculate the missing figures in Table 4.4.
(b) By inspection, how would you assign the help desks to the departments? What is

the rationale behind your solution procedure? What is the total number of projects
on which help desks help departments in your solution? List all projects that are
served by the help desk.

4.6 Exercises on Matching Problems 103

Table 4.4. Number of new projects for departments

Department
Helpdesk 1 2 3 4 5 6 7 8 9 10

1 0 1 3 0 1 0 1 1 ? 2
2 2 0 2 1 3 2 1 2 0 1
3 0 0 0 1 1 1 0 0 2 0
4 0 ? 1 0 0 0 0 2 0 1
5 2 0 2 1 0 1 1 1 2 0
6 2 0 ? 2 0 0 0 1 1 1
7 1 0 0 0 0 0 0 1 1 1
8 2 1 3 2 0 ? 1 0 2 1
9 2 1 2 1 1 1 1 ? 0 1

10 1 1 1 1 1 1 0 1 1 0

(c) Find an assignment that results in the minimum preparation time, and list all
projects that are served by the help desks. Compare this answer to the answer of
part (b).

During the second stage, the four projects labeled 11, 12, 19, and 21 need new
software. The company that implements the software needs information about each
of these projects, because each project needs a different kind of software. GTC has
decided that the software company can use only one help desk, and that a help desk
may serve either a department or the software company.

(d) If the software company chooses the help desk of which the number of projects
served was maximal, what would then be the optimal solution? List all projects
that are served by the help desks in your solution.

(e) What is an optimal assignment of help desks to departments and the software
company? List all projects that are served by the help desks. Compare this answer
to the answer of part (d).

(f) Projects 1 and 16 turn out to be very costly. GTC decides to stop these projects
after the first stage. Give an optimal assignment of the help desks to the depart-
ments after this decision. Again, list all projects that are served by the help desks.
Compare this answer to the answer to part (e).

Problem 4.3. Team Building Excursion
Once a year the department located in Brussels organizes an excursion for its 40
employees. This excursion is organized in a holiday resort in the forest. The employ-
ees leave on Friday and come back on the next Sunday. The goal of the excursion
is team building. Therefore, not everything in the holiday resort is included in the
service provided by the resort. All the tasks to be done by the employees are listed in
Table 4.5. For example, during the excursion there are two days with breakfast. Each
of these days the breakfast is divided into two subtasks. So, a total of four tasks is
needed to prepare breakfast.

104 4 Matchings

Table 4.5. Tasks to be done by employees

Task Description # Subtasks # Days
1. Preparing breakfast 2 2
2. Setting the tables (breakfast) 3 2
3. Doing the dishes (breakfast) 3 2
4. Preparing lunch 2 3
5. Preparing supper 5 3
6. Setting the tables (supper) 4 3
7. Doing the dishes (supper) 6 3
8. Cleaning the rooms on the last day 13 1

An overall total of 80 subtasks is needed to fully cover all tasks. The excursion
committee has decided that all 40 employees should do exactly two subtasks.

To ease the pain of doing “forced labor”, employees may label the tasks as
“doable” or “non-doable”. That is, if an employee labels a task as doable, then he/she
is willing to do all subtasks of the task. The doable tasks of each employee are shown
in Table 4.6. For example, Employee 1 is willing to do tasks 3 and 5. The excursion

Table 4.6. Doable tasks for each employee

Employee Doable Tasks Employee Doable Tasks
1 3, 5 21 5, 6
2 1 ,2 22 none
3 6 23 6
4 2 24 1, 3
5 7 25 3, 5
6 3 26 4
7 3, 4 27 5, 6
8 2, 3 28 6
9 7 29 6, 7
10 none 30 6, 7
11 6, 7, 8 31 6, 7
12 2 32 none
13 8 33 4, 8
14 2 34 none
15 6, 7 35 3
16 4 36 5
17 4 37 5
18 6, 7 38 7
19 4, 8 39 none
20 3 40 4

committee wants to assign employees to tasks such that the number of non-doable
tasks is minimized. It is assumed that the workload of all subtasks is equal.

4.6 Exercises on Matching Problems 105

(a) By inspection, how would you assign the employees to the tasks? How many
non-doable tasks have to be done in your solution?

(b) Try to find a method that finds a better solution. (The “better” solution need not
be an optimal solution.) Make a list of the employees with their non-doable tasks.
What is the rationale behind your solution?

(c) Determine an optimal solution to this problem? Make a list of the employees with
their non-doable tasks.

The preferences given above are not quite realistic. Employees are likely to have
more detailed preferences. Assume that each employee makes a preference list of 1
through 10, where the task with label 1 is a very bad choice and the task with label
10 a very good choice. All preferences are listed in Table 4.7.

(d) Use the preferences from Table 4.7 to determine an assignment of employees to
tasks with the highest sum of the levels of preference. Analyze the difference
between the solution to this problem and the solution to part (c)?

It turns out that the excursion can be extended with one more day. It is decided that
no more than three tasks and no less than two tasks are done by one person.

(e) If the organizing committee would have decided to extend the excursion for one
more day before the excursion started, then what is an optimal assignment of
employees to tasks?

(f) What would be an optimal solution if the decision was made on the Sunday dur-
ing the excursion? Analyze the difference with part (e).

(g) Due to illness, employees 15, 29, and 35 are unable to join the excursion. This
means that six tasks have to be done by the other colleagues. Again, no more than
three tasks and no less than two tasks are done by one person. What is an optimal
assignment of employees to tasks in case of part (d).

(h) Determine the tolerance interval of the coefficient representing the level of pref-
erence of employee 2 on task 6.

Problem 4.4. The Weakest Link
Within five years GTC will be using a new communication network with new phone
devices. Making a mobile phone call seems easy these days, but six consecutive
stages are needed to make the call possible. These stages are:

S1 calling the network;
S2 placing call into slot;
S3 recognizing the dialed number;
S4 finding nearest station to mobile phone of receiver;
S5 connecting to receiver; and
S6 connecting caller and receiver.

106 4 Matchings

Table 4.7. Employees’ preference ranking of the tasks

Task
Employee 1 2 3 4 5 6 7 8

1 7 8 10 2 10 9 9 4
2 10 10 2 8 3 8 1 5
3 8 1 9 7 7 10 1 5
4 1 10 3 5 8 9 4 7
5 5 2 9 9 8 9 10 6
6 9 7 10 3 7 6 1 8
7 8 2 10 10 5 8 2 9
8 8 10 10 3 6 8 3 6
9 4 3 5 6 9 4 10 1
10 1 6 3 7 7 1 5 8
11 4 7 9 3 2 10 10 10
12 5 10 9 6 4 2 2 7
13 7 5 8 8 4 7 4 10
14 3 10 1 8 4 5 4 2
15 9 2 8 2 1 10 10 4
16 7 1 5 10 6 3 3 7
17 5 4 7 10 3 4 5 2
18 9 7 2 6 4 10 10 1
19 3 3 9 10 5 7 7 10
20 2 9 10 5 3 1 2 9
21 7 3 1 2 10 10 6 9
22 9 1 6 3 3 4 3 5
23 6 5 3 2 6 10 1 2
24 10 3 10 1 1 7 6 7
25 5 2 10 5 10 3 1 6
26 1 9 2 10 4 4 1 8
27 9 4 2 1 10 10 4 5
28 2 6 8 5 4 10 2 9
29 9 2 1 6 3 10 10 9
30 8 3 8 9 8 10 10 5
31 9 2 7 3 2 10 10 5
32 8 2 1 5 8 6 7 6
33 4 1 9 10 3 2 1 10
34 5 6 2 7 3 4 2 6
35 4 7 10 7 6 2 6 6
36 1 8 4 5 10 4 1 3
37 4 2 6 9 10 1 5 5
38 8 7 4 6 6 8 10 1
39 4 7 5 1 6 7 6 9
40 3 6 7 10 9 6 2 3

4.6 Exercises on Matching Problems 107

In the market there are nine companies (labeled A through I), each producing six
different devices, (labeled D1 through D6). For example, device 1 (D1) satisfies the
requirements of stage 1 (S1). The devices all have different call transmitting times.
The transmitting times are listed in Table 4.8. For example, D1 of company A needs
0.95100 seconds to transmit a call in S1. GTC does not want to more than one device

Table 4.8. Transmitting times for devices

Device
Company D1 D2 D3 D4 D5 D6

A 0.95100 0.66100 0.92000 0.99890 0.66690 0.68490
B 0.69770 0.88410 0.85230 1.01810 0.79240 1.08400
C 1.31090 1.11730 1.00390 0.76340 0.35600 0.96130
D 1.13530 0.97130 1.32930 1.28780 0.29470 0.62630
E 0.28420 0.85810 1.00090 1.28850 1.05550 1.04390
F 0.32220 1.27000 1.23750 0.89210 0.50890 1.19070
G 1.28750 0.30920 0.83870 0.55110 1.17370 0.59930
H 0.77810 0.70780 0.84870 0.90820 0.35460 1.21800
I 0.96700 0.45090 0.53030 0.91880 0.82050 0.29540

from any single company. The goal of GTC is to assign devices to stages in such a
way that the communication network is reliable and the total transmitting time of a
call is as short as possible.

(a) By inspection, from which companies do you think GTC should purchase de-
vices? How should GTC assign them to the stages? Determine the total transmit-
ting time of your solution.

(b) From which companies should GTC purchase the devices to minimize transmis-
sion times? How should GTC assign them to the stages? Determine the total
transmitting time.

(c) Determine the tolerance interval of the coefficient representing the transmitting
time of D4 of company C in S4.

In part (b) we assumed the transmitting times to be deterministic. In fact, the
transmitting times per device are normally distributed with means as given in Ta-
ble 4.8, and standard deviation as given in Table 4.9. GTC guarantees its customers
a 99% probability that a call is transmitted in less than three seconds.

(d) Does your solution in part (b) satisfy this guarantee? If not, find a solution that
minimizes the total transmitting time but also satisfies this guarantee.

In an interview with its customers, GTC made an interesting observation. Un-
til now, it was assumed that the customers are interested in the transmitting times
of their calls. Instead, the customers complained more about the fact of being shut
off due to overloaded lines. GTC has decided to use the capacity of the system as
effective as possible. Therefore, it needs to know the limitations on the number of

108 4 Matchings

Table 4.9. Standard deviations of transmitting times

Device
Company D1 D2 D3 D4 D5 D6

A 0.03013 0.02427 0.04881 0.00370 0.04842 0.04261
B 0.01453 0.06145 0.02961 0.03979 0.01851 0.03469
C 0.02706 0.05837 0.03447 0.04122 0.02147 0.06122
D 0.05353 0.04073 0.07583 0.03955 0.03618 0.03329
E 0.01809 0.04413 0.06863 0.04681 0.06395 0.04285
F 0.02875 0.04750 0.04090 0.05767 0.02632 0.07661
G 0.03546 0.03084 0.04578 0.05175 0.04958 0.02862
H 0.02820 0.05516 0.05975 0.04661 0.03967 0.04175
I 0.03008 0.01325 0.03676 0.02310 0.05957 0.03281

simultaneous calls of each device. These limitations are shown in Table 4.10. For
example, D1 of company A can process 106000 simultaneous calls in S1.

Table 4.10. Maximum number of simultaneous calls for each device

Device
Company D1 D2 D3 D4 D5 D6

A 106 134 143 116 150 76
B 105 139 28 110 150 82
C 170 165 168 138 150 94
D 164 160 81 131 123 153
E 157 114 40 145 111 114
F 26 165 66 145 189 122
G 164 22 168 48 108 28
H 123 32 88 86 72 132
I 91 165 156 87 127 153

A call is transmitted when all devices have enough space to process the call.
When there is one device fully occupied, the call is not transmitted. GTC wants
to maximize the number of simultaneous calls that can be transmitted through the
stages, but they still want to do this at minimum total transmitting time.

(e) Set up a model to solve this problem. What kind of matching problem is this?
(f) Give an optimal solution to the problem in part (e), and analyze the result.

Problem 4.5. Tie-in Sale Marketing Action
Once a year GTC offers a special sale. This year, one is thinking of a “tie-in” sale
action. A tie-in sale is a sale where the customer can obtain the desired good (tying
good) only if he/she agrees to purchase a different good (tied good). It is decided that

4.6 Exercises on Matching Problems 109

the tie-in sale should include two products from two separate groups of purchasable
articles. The customer has to choose one of ten different cell phones, and gets one
other product for free. The cell phones and the other products are listed in Table 4.11.

Table 4.11. Equipment types

Cell phone type Other product
GT I Call bundle (100 min.)
GT II Call bundle (200 min.)
GT III Call bundle (300 min.)
GT IV Call bundle (400 min.)
GT V Extra Li-Ion Battery
GT VI LED Flashing Keypad
GT VII In-Car Charger
GT VIII Belt-Clip Holster
GT IX Handsfree Headset
GT X USB Data Cable

So, GTC sells a cell phone together with one of the ten other products. The ten
cell phones are the tying goods, and the other products are the tied goods. Since the
other products stay, of course, available for normal sale, it is assumed that the sales
of the other products are not influenced by this action.

Based on previous actions, GTC has made an estimation of the short-term sales
increase of the phones, when combined with an other product. These estimates are
given in Table 4.12. For example, GT I combined with Belt-Clip Holster, would yield
an estimated short-term sales increase of GT I of 31%.

Table 4.12. Estimates of short-term sales increase of equipment (in %)

GT
I II III IV V VI VII VIII IX X

Call bundle (100 min.) 15 9 11 9 5 10 7 7 8 13
Call bundle (200 min.) 18 10 13 7 16 11 15 10 7 5
Call bundle (300 min.) 18 11 14 18 9 11 10 11 7 15
Call bundle (400 min.) 18 15 15 19 13 15 13 9 10 10
Extra Li-Ion Battery 20 20 18 22 18 20 17 19 13 15
LED Flashing Keypad 28 20 18 25 21 13 16 21 13 19
In-Car Charger 28 24 30 19 19 21 24 13 16 18
Belt-Clip Holster 31 34 31 29 23 24 21 21 23 16
Handsfree Headset 35 34 34 30 30 22 27 21 17 16
USB Data Cable 43 38 38 32 33 24 24 27 23 17

110 4 Matchings

(a) Determine the minimum required short-term sales increase that makes the com-
bination GT I with Extra Li-Ion Battery profitable, in terms of percentage. The
purchase prices and selling prices are listed in Table 4.13.

The problem for GTC is to combine cell phones with other products, one cell
phone to one other product, and vice versa, such as to maximize total profit.

Table 4.13. Purchase and selling price of equipment (in e)

Product Purchase price Selling price
Cell phone type
GT I 100 300
GT II 110 330
GT III 120 360
GT IV 125 400
GT V 150 425
GT VI 160 480
GT VII 175 500
GT VIII 200 550
GT IX 250 600
GT X 300 700

Other product
Call bundle (100 min.) 10 25
Call bundle (200 min.) 15 40
Call bundle (300 min.) 20 50
Call bundle (400 min.) 25 60
Extra Li-Ion Battery 30 75
LED Flashing Keypad 35 90
In-Car Charger 40 100
Belt-Clip Holster 45 125
Handsfree Headset 50 150
USB DataCable 55 160

(b) By inspection, how would you combine the products? What is the rationale be-
hind your solution procedure?

(c) Set up a model to solve the problem. Determine and analyze your optimal solu-
tion.

(d) For the model used in part (c), draw and analyze the perturbation function of the
coefficient representing the additional net sales of the combination GT IV with
Call Bundle of 400 minutes.

(e) GTC discovered a mistake in the estimated short-term sales increase of phones
combined with an Extra Li-Ion Battery. The estimated short-term sales increase
of these combinations should be as shown in Table 4.14. Analyze the differences
and determine the cost of the mistake.

4.6 Exercises on Matching Problems 111

Table 4.14. Revised short-term sales increase estimates (in %)

GT
I II III IV V VI VII VIII IX X

Increase 25 21 18 37 31 12 19 11 31 22

Problem 4.6. Soccer Tournament
Good relationships between colleagues in combination with feeling the pressure of
competition is an important factor of success for a company. GTC yearly organizes a
soccer competition between the various departments. Joyce has been assigned to be
the coach of the team from Human Resources. The problem for coach Joyce is how
to select 11 people out of the 21 that are available to play the next match.

Each soccer team consists of 11 positions. Based on previous matches, Joyce has
a good idea of the strengths and weaknesses of the next opponent, and has decided
to play the 4-3-3 system. In this system, the team has a goalkeeper, four defenders,
three midfield players, and three attackers. Joyce has decided to look at the skills and
competencies that she thinks are most relevant.

For each of the positions in the field, Joyce has given a relative importance score
of 1 through 9 for each skill, where 1 means “not important” and 9 meaning “very
important”. The scores are given in Table 4.15. For example, the striker gets a 9 for
“scoring” and a 1 for “goalkeeping”.

Although she has some doubts about the accuracy of the grading, Joyce also has
made a point estimation for the actual score of the potential players on all skills
and competencies. The grades for the player-quality conditions are presented in Ta-
ble 4.16.

(a) By inspection, how would you assign the players to positions? Explain the ratio-
nale behind your choice procedure.

(b) Let wi j be the “fit” of player i on position j, i = 1,. . . , 21 and j = 1, . . . , 11.
Calculate the values of wi j for each i = 1, . . . , 21 and j = 1, . . . , 11, by taking for
each player/position combination the sum all player/quality combination scores
multiplied by the position/quality scores.

(c) Construct a weighted bipartite graph representing the problem.
(d) By inspection, determine a solution based on the graph of part (c). What is the

strategy you used? Compare this solution with the solution found in part (a).
(e) Determine an optimal line-up, by solving the problem as an assignment problem.

Another way of calculating the values of wi j is by taking into account the follow-
ing phenomenon. If, for instance, the position score is 6, while player A scores 4 and
player B scores 8, then the penalty for player A is higher than the penalty for player
B.

112 4 Matchings

Table 4.15. Importance of skills and competencies for each position

Qualities G
oa

lk
ee

pe
r

C
en

tr
al

D
ef

en
de

r,
L

ef
t

C
en

tr
al

D
ef

en
de

r,
R

ig
ht

R
ig

ht
D

ef
en

de
r

L
ef

tD
ef

en
de

r
C

en
tr

al
M

id
fie

ld
er

L
ef

tM
id

fie
ld

er
R

ig
ht

M
id

fie
ld

er
R

ig
ht

A
tta

ck
er

L
ef

tA
tta

ck
er

C
en

tr
al

A
tta

ck
er

1 Goalkeeping 9 1 1 1 1 1 1 1 1 1 1
2 Marking 4 7 8 7 8 6 6 6 6 3 3
3 Duel one-on-one 6 8 8 8 8 7 7 7 7 7 7
4 Passing over 6 2 1 6 5 6 2 8 1 5 8
5 Dribbling 1 3 3 3 3 7 7 7 7 8 8
6 Assist 7 8 6 3 6 7 3 8 7 6 9
7 Playing on the ball 7 7 7 7 7 8 8 8 8 5 5
8 Scoring 1 3 3 3 3 5 5 5 5 9 9
9 Heading 3 7 7 8 8 7 7 7 7 8 9
10 Short pass 6 7 7 7 7 8 8 8 8 5 5
11 Long pass 9 8 8 8 8 7 7 7 7 4 4
12 Shooting 7 4 4 4 4 7 7 7 7 9 9
13 Speed with ball 2 5 5 5 5 8 8 8 8 8 8
14 Right-foot play 8 8 5 8 5 8 5 5 8 8 5
15 Left-foot play 5 5 8 5 8 5 8 8 5 5 8
16 Speed off the ball 2 8 8 8 8 8 8 9 9 8 8
17 Strength 8 7 7 7 7 6 6 6 6 6 7
18 Coping with pressure 6 8 8 8 8 7 7 7 7 6 6
19 Coaching 6 8 8 8 8 7 8 7 8 5 5
20 Bringing order in play 7 8 8 8 8 6 6 6 6 7 7
21 Reading of the game 8 4 4 4 4 8 8 8 8 9 9
22 Positioning 7 6 6 6 6 7 7 7 7 8 9
23 Purposiveness 1 3 3 3 3 6 6 6 6 9 9
24 Creativity 1 3 3 3 3 5 5 5 5 8 9
25 Perseverance 6 5 5 5 5 8 8 8 8 8 8
26 Devotion 8 6 7 5 6 8 5 7 6 8 8
27 Consistency 7 7 7 7 7 8 8 8 8 6 6
28 Self confidence 6 7 7 7 7 8 8 8 8 6 6
29 Team discipline 4 7 7 7 7 8 8 8 8 9 9
30 Value for the public 9 6 5 7 6 8 7 8 7 5 5

(f) Again, determine an optimal line-up by solving the problem as an assignment
problem? Explain the possible difference with the solution of part (e)?

(g) What happens to the optimal line-up if Michael is injured and cannot play in the
situations of parts (e) and (f)?

4.6 Exercises on Matching Problems 113

Table 4.16. Skill and competency levels for each player

Qualities B
ry

an
Jo

e
Jo

hn
Ja

ck
M

ic
ha

el
G

eo
rg

e
B

ill
W

ill
ia

m
Ph

il
Si

m
on

M
at

th
ew

Ja
so

n
Si

m
on

A
rn

ol
d

Pe
te

Sa
m

Je
rr

i
To

m
B

ra
d

Se
an

R
og

er

1 Goalkeeping 3 2 5 9 7 9 8 6 5 5 5 4 4 8 4 7 4 7 8 5 3
2 Marking 7 5 4 9 5 6 7 6 7 7 7 3 2 2 1 1 2 2 9 3 3
3 Duel one-on-one 4 7 7 6 1 8 9 6 7 2 2 4 5 3 8 7 5 6 6 6 6
4 Passing over 7 7 5 3 9 6 5 9 6 7 7 7 2 7 5 8 4 6 7 2 5
5 Dribbling 7 2 2 7 9 3 2 2 5 3 3 6 5 3 4 7 5 5 5 8 7
6 Assist 5 8 8 5 2 3 3 8 7 7 7 1 4 6 8 1 6 1 9 5 6
7 Playing on the ball 3 6 7 2 3 4 4 1 7 8 8 8 6 5 5 6 2 4 6 2 5
8 Scoring 5 3 4 3 4 1 1 5 2 8 8 2 7 3 5 5 7 4 4 9 9
9 Heading 1 1 2 3 2 3 7 6 4 3 3 8 4 2 3 3 5 6 1 4 2
10 Short pass 4 4 2 8 4 7 5 8 4 1 1 8 2 7 6 3 7 3 4 7 8
11 Long pass 3 5 6 7 8 3 8 9 7 2 2 2 4 1 6 3 7 5 5 7 1
12 Shooting 7 2 1 9 1 6 6 6 1 4 4 2 7 2 2 1 5 3 1 1 1
13 Speed with ball 1 1 8 6 9 3 1 7 5 1 1 3 7 8 9 3 8 7 2 5 4
14 Right-foot play 5 3 5 4 8 2 6 3 6 1 1 5 1 3 9 3 3 9 1 6 7
15 Left-foot play 7 7 9 2 8 3 2 8 6 5 5 7 9 3 7 6 9 4 3 4 5
16 Speed off the ball 2 7 2 2 6 5 5 9 2 2 2 7 3 8 6 7 8 9 8 6 1
17 Strength 6 7 2 7 2 2 6 7 2 5 5 2 7 1 2 8 8 8 1 7 5
18 Coping with pressure 9 6 4 7 5 2 8 3 7 7 7 4 5 1 3 2 7 6 8 3 6
19 Coaching 5 8 8 6 3 5 4 3 7 6 6 8 4 3 3 5 4 4 1 5 6
20 Bringing order in play 4 7 9 4 6 7 8 7 5 2 2 1 2 2 6 2 8 2 9 2 7
21 Reading of the game 7 8 8 4 7 4 6 4 6 9 9 3 9 7 3 4 8 6 6 4 7
22 Positioning 5 7 4 7 4 5 4 6 6 6 6 7 8 4 4 2 2 9 3 6 4
23 Purposiveness 5 7 8 7 3 7 8 8 4 7 7 7 6 8 6 9 3 8 3 7 3
24 Creativity 4 8 5 1 3 3 6 3 8 4 4 3 7 9 4 3 1 9 2 7 7
25 Perseverance 1 2 8 4 3 8 3 8 2 9 9 4 2 6 9 1 8 7 4 9 3
26 Devotion 3 2 6 7 2 9 7 4 8 6 6 2 8 6 1 3 7 8 4 7 2
27 Consistency 4 4 8 6 3 5 2 2 8 4 4 3 1 8 5 7 5 6 4 6 4
28 Self-confidence 5 4 7 7 7 1 7 8 7 4 4 3 5 5 7 5 4 7 6 2 2
29 Team discipline 2 7 4 9 2 6 4 6 1 2 2 8 7 7 7 5 7 2 7 3 2
30 Value for the public 7 6 9 7 5 5 5 4 7 4 4 3 6 8 2 7 4 8 2 5 7

(h) Matthew wants to play on the position of Left Midfielder. How much has
Matthew to improve his “skill on the ball” to become Left Midfielder in the start-
ing line-up?

Problem 4.7. Company Expansion
In the early days, GTC was only active in the market of conventional telephone ser-
vices. Nowadays, GTC is also active in the market of mobile telephony and Internet.
Because of the increasing number of active businesses, the board of directors has
decided to expand the number of jobs at five departments. To that end, GTC has ad-
vertised in various news media to acquire applicants to the new jobs. The number of

114 4 Matchings

new jobs for each department is given in Table 4.17. For instance, department 4 (D4)
will have six new jobs. The contents of all jobs at a department are assumed to be
equal. It turned out that GTC has received 35 job applications. The applicants are not

Table 4.17. New jobs in various departments

Department 1 2 3 4 5 Total
Number of new jobs 2 2 4 6 6 20

equally interested in each department and of course each department is not equally
interested in each applicant. Each applicant ranks the departments from 1 through 5,
where 1 is the best choice and 5 the worst. After several assessment sessions, each
department ranks the applicants from 1 through 35, where 1 is the best choice and
35 is the worst. The preference levels of the applicants and the departments are listed
in Table 4.18. In this table, the first number is the applicant’s ranking of a depart-
ment and the second number is the department’s ranking of the applicant. So, the
first choice of applicant 1 (A1) is D3. But this applicant is only twenty second on the
ranking list of D3; the pair (1,22) is called the preference rating between A1 and D3.

(a) By inspection, how do you think GTC should assign the applicants to the depart-
ments? Explain the procedure used.

(b) GTC wants to assign applicants to departments in such a way that the total pref-
erence is optimum. What is an optimal solution to this problem?

(c) Give an assignment of applicants to departments that is optimal for the applicants.

In one of the possible solutions of part (b), A29 is assigned to a new job at D3.
For this applicant it is suboptimal, since he ranked this department second among
all departments. Another feature in this solution is the assignment of A18 to a new
job at D5, although he was the ninth choice of D5. It could happen, that after the
assignment is made, A29 tries to get the job at D5, because he prefers D5 to his
current department. A29 is the eighth choice of D5. So, D5 prefers A29 to A18. D5
will fire A18 and hire A29.

(d) Find an assignment of applicants to departments that overcomes this problem.
(e) For several reasons A17 and A20 have decided to quit the selection procedure.

Give an assignment of the remaining applicants to departments. Analyze the pos-
sible differences with the solution to part (d)?

(f) GTC has decided to create two more jobs in D3 and four more jobs in D5, in
addition to the provisions in Table 4.17. Provide an assignment of applicants to
departments in this situation.

4.6 Exercises on Matching Problems 115

Table 4.18. Preference ratings of applicants and departments

D1 D2 D3 D4 D5
A1 (4,24) (5,7) (1,22) (2,19) (3,15)
A2 (1,31) (5,20) (2,29) (3,15) (4,22)
A3 (3,8) (1,15) (4,21) (2,13) (5,23)
A4 (3,21) (4,16) (1,15) (2,6) (5,13)
A5 (4,25) (3,4) (1,24) (2,26) (5,19)
A6 (3,15) (2,33) (4,18) (5,1) (1,12)
A7 (3,27) (2,18) (4,17) (1,33) (5,26)
A8 (3,30) (5,14) (2,27) (4,17) (1,31)
A9 (5,26) (1,34) (3,25) (4,28) (2,18)
A10 (1,2) (3,32) (5,2) (2,7) (4,5)
A11 (4,29) (3,22) (5,34) (2,31) (1,35)
A12 (1,22) (5,9) (3,5) (4,16) (2,24)
A13 (5,16) (3,1) (2,32) (1,24) (4,6)
A14 (2,19) (1,13) (4,35) (3,34) (5,2)
A15 (3,10) (2,26) (1,8) (4,10) (5,14)
A16 (2,33) (1,11) (3,28) (4,25) (5,34)
A17 (3,7) (4,3) (5,33) (2,4) (1,27)
A18 (1,35) (5,35) (3,13) (4,11) (2,9)
A19 (3,4) (5,19) (1,7) (4,2) (2,16)
A20 (3,28) (4,25) (1,4) (5,14) (2,33)
A21 (2,3) (3,29) (5,31) (4,5) (1,11)
A22 (5,11) (4,31) (2,10) (1,27) (3,32)
A23 (5,14) (1,5) (4,26) (3,9) (2,10)
A24 (1,32) (4,8) (3,9) (5,30) (2,25)
A25 (5,6) (2,17) (1,6) (4,32) (3,7)
A26 (5,12) (3,21) (1,1) (2,3) (4,21)
A27 (1,23) (2,12) (5,20) (4,20) (3,20)
A28 (4,9) (1,30) (2,11) (3,8) (5,4)
A29 (3,5) (5,28) (2,3) (4,23) (1,8)
A30 (4,20) (2,10) (5,19) (1,12) (3,28)
A31 (5,18) (1,6) (3,14) (4,18) (2,17)
A32 (1,13) (3,2) (2,23) (4,35) (5,1)
A33 (1,34) (3,24) (4,12) (5,29) (2,30)
A34 (2,17) (3,23) (5,16) (4,21) (1,29)
A35 (1,1) (2,27) (3,30) (4,22) (5,3)

5

Facility Location

5.1 Introduction

GTC has undertaken a major project to lay cables in a large region. The cables are
supplied in spools. These spools are stored in adequate numbers in warehouses and
transported to six cable laying sites. There are five sites for warehouses, labeled A,
B, C, D, and E, at which GTC can rent warehouse space. Each of these sites have
capacity sufficient to store all the spools required for the full duration of the project.
The rents at different warehouse sites however, depend on the location of the site, and
are given in Table 5.1. The rents quoted in Table 5.1 are the rents for a sufficiently
large warehouse at that site for the full duration of the project. The cable laying sites

Table 5.1. Rents for warehouses at the different sites

A B C D E
Rent (in e) 1,250,000 1,500,000 1,000,000 500,000 750,000

are labeled I, II, III, IV, V, and VI. The distances in kilometers to the cable laying sites
from the potential warehouse sites along the existing road network are also known
and are shown in Table 5.2. The transportation costs can be assumed to be e100 per
kilometer for the full duration of the project. The demands for cables at the six sites
I through VI are 700, 2300, 500, 3000, 2000, and 1500 spools, respectively.

GTC is faced with the problem of deciding where to rent warehouses, and which
of the cable laying locations to supply from which warehouse, in an effort to mini-
mize the total logistical costs. In this case, the logistical costs have two components,
the costs for renting warehouses, and the costs of transporting cable spools from
the warehouses to the cable laying locations. For example, if GTC decides to rent
warehouses at locations B and C, then the warehouse at B would satisfy the cable
requirements of cable laying sites I and VI, while the warehouse at C would sat-
isfy the cable requirements of cable laying sites II, III, IV, and V. For this solution,

©
Optimization, International Series in Operations Research & Management Science 140,

 Springer Science + Business Media, LLC 2010

G. Sierksma and D. Ghosh (eds.), Networks in Action: Text and Computer Exercises in Network

DOI 10.1007/978-1-4419-5513-5_8,

117

118 5 Facility Location

Table 5.2. Distances (in kms) from warehouse sites to cable laying sites

I II III IV V VI
A 2.9 2.6 4.8 4.6 3.7 2.5
B 2.3 4.8 4.4 4.4 3.4 3.3
C 2.3 2.4 3.8 2.9 3.3 4.7
D 3.1 2.6 4.3 3.5 4.6 2.8
E 3.6 2.1 4.1 4.8 2.8 2.8

GTC incurs e2,500,000 in rent and e(230×700+240×2300+380×500+290×
3000 + 330× 2000 + 330× 1500) = e2,928,000 in transportation costs, i.e., a total
logistical cost of e5,428,000. GTC’s problem of reducing logistical cost under these
conditions is commonly referred to as the uncapacitated facility location problem,
also called the simple facility location problem.

A slightly different problem arises when the warehouses at each of the locations
are not sufficiently large. GTC then knows the capacity of the warehouses avail-
able at each potential site. Consider for example that the capacities of warehouses
at different sites are as given in Table 5.3. The problem of deciding where to set up

Table 5.3. Capacities of warehouses at the various sites

A B C D E
Capacity (in spools) 3000 5500 1500 2500 2700

warehouses, and how to supply cable location sites from the warehouses set up in
presence of warehouse capacity constraints is called the capacitated facility location
problem.

This problem is more complicated than the uncapacitated facility location prob-
lem because of the following reasons. Notice that all combinations of warehouses
are not feasible solutions to the capacitated problem. For example, the solution con-
sidered in the uncapacitated case of renting warehouses only at B and C is no longer
feasible, since the total capacity of these warehouses is only 8500 spools, while the
total requirement for all the cable laying sites is 10,000 spools. Further, in an unca-
pacitated facility location problem, once a warehouse is rented, it is surely going to
satisfy all the requirements of the cable laying sites for which it is the closest ware-
house. Under capacity restrictions, a nearest warehouse may not be able to supply all
the requirements of cable laying sites due to capacity limits. In other words, splitting
of supply can occur in case of capacitated facility location problems, but not in unca-
pacitated facility location problems. Consider for example GTC’s option of renting
warehouses at sites A, B, and C. Their total capacity is 11,000 spools, and therefore
they could supply the requirements of all the six cable laying sites. The total price
that GTC would pay for renting these warehouses is e3,750,000. The requirements
of the six cable laying stations would be met in the manner shown in Table 5.4 at

5.1 Introduction 119

a total transportation cost of e3,435,000. The total logistical cost for GTC in this

Table 5.4. Transportation plan when GTC rents warehouses at A, B, and C

I II III IV V VI
A 1000 500 1500
B 700 1300 1500 2000
C 1500

situation would therefore be e8,185,000. As we will see later, this is not the optimal
solution for GTC.

We next describe two more location problems that complete the set of four prob-
lems that are most commonly studied as facility location problems.

Suppose that the research department of GTC is located in seven different build-
ings, labeled A, B, C, D, E, F, and G, in different parts of the city. These buildings
house 12, 17, 15, 40, 30, 25, and 18 researchers, respectively. They all need access to
certain library facilities. GTC is planning to build library facilities in two of the seven
buildings and would like all researchers to access one of these facilities. Of course
to make this decision it needs to know the distance between each pair of buildings
along the road network in the city. Let us suppose that these distances are given in
Table 5.5.

Table 5.5. Distances between different buildings

A B C D E F G
A — 5.9 5.7 4.7 3.8 8.5 4.6
B — 4.0 2.9 2.9 3.4 1.4
C — 1.1 6.9 5.7 5.4
D — 5.8 6.3 4.3
E — 6.3 4.3
F — 4.4

There are two main ways in which GTC can take the decision about where to
locate the two library facilities.

One way to distribute library facilities equitably would be to minimize the sum of
the distances that researchers need to travel to reach library facilities. If the number
of researchers in the buildings are not taken into consideration, then the problem is
referred to as the 2-median problem. If the distances however are weighted, then we
have the weighted 2-median problem. A logical set of weights in this case would
be proportional to the number of researchers working in the building. Suppose that
GTC decides to set up library facilities in buildings B and C. Then the library in
building B would cater to researchers in building B, E, F, and G, while the library in
building C would cater to researchers in A, C, and D. For the unweighted case, this

120 5 Facility Location

solution would have the sum of distances as 5.7 + 0.0 + 0.0 + 1.1 + 2.9 + 3.4 + 1.4
= 14.5 kilometers, while if the distances are weighted by the number of researchers
in each building, the sum would be 12×5.7+17×0.0+15×0.0+40×1.1+30×
2.9+25×3.4+18×1.4 = 309.6 kilometers. GTC’s objective in 2-median problems
is to locate libraries in buildings that minimize these values.

Another way is to ensure that the maximum distance that researchers need to
travel to reach the nearest library facility is as small as possible. If the numbers of
researchers in the buildings are not taken into consideration, then the problem is re-
ferred to as the 2-center problem. If however, we want to weigh the distance that
researchers from any building need to travel, possibly with weights corresponding
to the number of researchers in a particular building, then the problem is known as
the weighted 2-center problem. If GTC decides to set up library facilities in build-
ings B and C, then the maximum distance that any researcher would have to travel to
use library facilities is max{5.7,0.0,0.0,1.1,2.9,3.4,1.4} = 5.7 kilometers in the un-
weighted case, and max{12×5.7,17×0.0,15×0.0,40×1.1,30×2.9,25×3.4,18×
1.4} = 87 kilometers if the distances are weighted by the number of researchers in
each building. GTC’s objective in 2-center problems is to locate libraries in buildings
that minimize these values.

Of course, the problems described above can be generalized into (weighted) p-
median and (weighted) p-center problems, if we deal with situations where p facil-
ities (with p≥ 1) need to be located. The solution to the p-median and the p-center
problems are called the p-median and p-center of the network respectively.

We have introduced four classes of location problems in this section. Table 5.6
provides the characteristics of each of the problems.

Table 5.6. The four location problems

Inter-client Facility Facility Objective
distances setup costs capacities

Uncapacitated present present absent minimize sum
location of costs

Capacitated present present present minimize sum
location of costs

p-Median present absent absent minimize sum
of distances

p-Center present absent absent minimize the
maximum distance

An important extension of p-median and p-center problems is one in which the
medians or centers need not be located at nodes of the network, but can also be lo-
cated at points along the arcs of the network. These extensions are called the absolute
p-median and absolute p-center problems respectively.

5.2 Applications 121

Consider for example, the network shown in Figure 5.1. The numbers next to
the edges of the network represent the distance between the two nodes on which
the edge is incident. Suppose that we want to locate two facilities on this network

Fig. 5.1. Network to illustrate the absolutep-center problem

such that the maximum distance between a node and its nearest facility is as small as
possible. If we solve the problem as a p-center problem, then an optimal location of
the centers will be at nodes 1 and 2, for which the maximum distance between a node
and its nearest facility will be 3 units. If however, we solve it as an absolute p-center
problem, then the optimal location of the two facilities will be the midpoints of edge
1–4 and 2–3, in which case the maximum distance between a node and its nearest
facility reduces to 2.5 units.

Obviously, the objective function value of an optimal solution to the absolute p-
median (or absolute p-center) problem does not exceed the optimal objective func-
tion value for the p-median (respectively, p-center) problem defined on the same
network. However, it can be shown that when p = 1, an optimal solution to the p-
median (or p-center) problem is also an optimal solution to the absolute p-median
(respectively, absolute p-center) problem defined on the same network.

5.2 Applications

Facility location problems form the basis of many practical optimization problems.
Most uncapacitated and capacitated facility location problems are actually ware-
house location problems, exactly like the ones described in Section 5.1. However,
applications of p-median and p-center problems are often more subtle. Two of these
applications are sketched below.

122 5 Facility Location

5.2.1 Cluster analysis

Data clustering is a common technique in many statistical data analysis methods used
in many fields such as bioinformatics, psychology, medicine, economics, and mar-
keting. The objective of cluster analysis is to group data or variables into collections
which have a high degree of natural association, such that such association among
elements of different clusters is low. In these applications, one uses a pre-determined
number of clusters, say p, and defines “distances” between data points as a function
of their natural association levels. Then using all the data points as candidate medi-
ans, one solves a p-median problem maximizing the sum of distances to obtain the
clusters.

5.2.2 Locating undesirable facilities

The location of garbage depots in a location has social costs, since it can lower
the quality of life for the people living nearby. Such social costs reduce with dis-
tance of a location from the depot. However, the garbage depots need to be located
such that residents can access them without traveling long distances. The location
of such garbage depots are often modeled as restricted p-center problems. The num-
ber and possible locations of garbage depots are first obtained. Then using social
costs to measure distances between population locations and possible garbage sites,
a p-center problem is solved with additional restrictions on the maximum physical
distances between population locations and garbage depots.

5.3 Linear Programming Formulations

Facility location problems can be solved to optimality using linear programming. In
this section we provide linear programming formulations to the four location prob-
lems described in the last section.

5.3.1 The uncapacitated facility location problem

For an uncapacitated facility location problem, we require two types of variables.
The first type consists of binary variables yi, one for each warehouse site. yi attains
a value of 1 if we decide to rent a warehouse at site i, and 0 otherwise. In addition to
these variables, we have continuous non-negative variables xi j modeling the number
of spools that are transported from the warehouse at site i to the cable laying site at
site j in a solution to the problem.

The objective is to minimize the total logistical cost, i.e.,

Minimize ∑
i

riyi +∑
i

∑
j

ti jxi j, (5.1)

where ri is the rent of the warehouse at site i, and ti j is the unit transportation cost
from a warehouse at site i to a cable laying site at location j. The first term in the

5.3 Linear Programming Formulations 123

objective function is called the setup cost, and the second term in the function is
called the transportation cost.

Two sets of constraints are sufficient to describe feasible solutions to the unca-
pacitated location problem. The constraints in the first set are called demand con-
straints, and they ensure that the demands of all the cable laying sites are satisfied.
This constraint for cable laying site j takes the following form.

∑
i

xi j = d j, (5.2)

where d j is the demand of the cable laying site j.
The constraints in the other set are called supply constraints. They ensure that a

warehouse site can supply spools to cable laying sites only if a warehouse has been
rented at that site. The supply constraint for warehouse site i is of the following form.

∑
j

xi j ≤Myi, (5.3)

where M is a number larger than the sum of all demands. When yi = 1 for any ware-
house site i, the right-hand side of the corresponding supply constraint is sufficiently
large, which makes the constraint redundant. However when yi = 0, the right hand
side reduces to 0, so that no xi j can assume non-zero values.

A complete formulation for the uncapacitated facility location problem in which
the set of warehouse locations is denoted by I, the set of cable laying sites is denoted
by J, the rent vector is denoted by R = (ri), the demand vector by D = (d j), and the
cost matrix is denoted by T = [ti j] is shown in Figure 5.2.

Minimize

z = ∑
i∈I

riyi +∑
i∈I

∑
j∈J

ti jxi j

Subject to

∑
i∈I

xi j = d j for all j ∈ J

∑
j∈J

xi j ≤ Myi for all i ∈ I

xi j ≥ 0 for each i ∈ I, j ∈ J

yi ∈ {0,1} for each i ∈ I

Fig. 5.2. Linear programming formulation of the uncapacitated facility location problem

As an illustration, we provide the linear programming formulation described in
Section 5.1 using data in Tables 5.1 through 5.3 in Figure 5.3.

124 5 Facility Location

Minimize

z = 1250000yA +1500000yB + · · ·+750000yE +290xA,1 +260xA,II + · · ·+280xE,V +280xE,V I

Subject to

xA,I + xB,I + xC,I + xD,I + xE,I = 700 (Constraint 5.2 for I)

xA,II + xB,II + xC,II + xD,II + xE,II = 2300 (Constraint 5.2 for II)

There are four more similar constraints for III, IV, V, and VI.

xA,I + xA,II + xA,III + xA,IV + xA,V + xA,V I ≤MyA (Constraint 5.3 for A)

xB,I + xB,II + xB,III + xB,IV + xB,V + xB,V I ≤MyA (Constraint 5.3 for B)

There are three more similar constraints for C, D, and E.

yA,yB,yC,yD,yE ∈ {0,1} (Binary location variables)

xA,I ,xA,II , . . . ,xE,V ,xE,V I ≥ 0 (Non-negative flows)

Fig. 5.3. Formulation of the uncapacitated facility location problem in Section 5.1

The optimal solution here is to set yD = 1, yA = yB = yC = yE = 0, and to set all
xi j’s to 0 except xD,I , xD,II , xD,III , xD,IV , xD,V , and xD,V I , which are set to 700, 2300,
500, 3000, 2000, and 1500, respectively. This means that the optimal course of action
for GTC would be to rent a warehouse only at location D, and to supply all the cable
laying sites from this warehouse. The rent for this solution would be e500,000 and
the total transportation cost would be e3,420,000, bringing the total logistical cost
to e3,920,000.

5.3.2 The capacitated facility location problem

The capacitated location problem can be formulated as a simple extension of the un-
capacitated location problem. The decision variables are identical to those used in
the uncapacitated location problem described above; we have binary decision vari-
ables yi which indicate whether or not a warehouse is to be rented at warehouse site i,
and continuous non-negative variables xi j denoting the number of spools transported
from a warehouse at location i to a cable laying site at location j.

The objective function and the demand constraints are both identical to those
in the formulation for the uncapacitated location problem (i.e., of the form (5.1)
and (5.2), respectively). The supply constraints however are different, since they need
to take care of the capacities of the warehouses.

One way of implementing the supply constraints is to have two sets of con-
straints. The first set, identical to the supply constraints in (5.3), ensure that no spool
is supplied from a warehouse that has not been rented. The second set of constraints

5.3 Linear Programming Formulations 125

ensure that a warehouse does not supply more than its capacity. A typical constraint
from this set, for site i is shown in (5.4), in which ci refers to the capacity of a ware-
house at site i.

∑
j

xi j ≤ ci, (5.4)

The two sets of constraints are normally combined into one set in linear program-
ming formulations for the capacitated location problem, namely,

∑
j

xi j ≤ ciyi. (5.5)

When yi = 1 for any warehouse site i, the constraint reduces to the form ∑ j xi j ≤ ci
which is identical to the constraint (5.4). However, if yi = 0 constraint (5.5) reduces
to the form ∑ j xi j ≤ 0, which ensures that no cable laying site is supplied by a ware-
house at site i.

A complete formulation for the capacitated facility location problem in which the
set of warehouse locations is denoted by I, the set of cable laying sites is denoted by
J, the rent vector is denoted by R = (ri), the capacity vector by C = (ci), the demand
vector by D = (d j), and the cost matrix is denoted by T = [ti j] is shown in Figure 5.4.

Minimize

z = ∑
i∈I

riyi +∑
i∈I

∑
j∈J

ti jxi j

Subject to

∑
i∈I

xi j = d j for all j ∈ J

∑
j∈J

xi j ≤ ciyi for all i ∈ I

xi j ≥ 0 for each i ∈ I, j ∈ J

yi ∈ {0,1} for each i ∈ I

Fig. 5.4. Linear programming formulation of the capacitated facility location problem

As an illustration, we provide the linear programming formulation described in
Section 5.1 in Figure 5.5.

The optimal solution to this problem is to set yB = yD = yE = 1 and yA = yC = 0.
The optimal values of the xi j variables are given in Table 5.7, in which the number
in the ith row and jth column denotes the value of xi j in the optimal solution.

This means that the optimal course of action for GTC, given the capacities of
the warehouses, and the rents, is to rent warehouses at B, D, and E. They should

126 5 Facility Location

Minimize

z = 1250000yA +1500000yB + · · ·+750000yE +290xA,1 +260xA,II + · · ·+280xE,V +280xE,V I

Subject to

xA,I + xB,I + xC,I + xD,I + xE,I = 700 (Constraint 5.2 for I)

xA,II + xB,II + xC,II + xD,II + xE,II = 2300 (Constraint 5.2 for II)

There are four more similar constraints for III, IV, V, and VI.

xA,I + xA,II + xA,III + xA,IV + xA,V + xA,V I ≤ 3000yA (Constraint 5.5 for A)

xB,I + xB,II + xB,III + xB,IV + xB,V + xB,V I ≤ 5500yA (Constraint 5.5 for B)

There are three more similar constraints for C, D, and E.

yA,yB,yC,yD,yE ∈ {0,1} (Binary location variables)

xA,I ,xA,II , . . . ,xE,V ,xE,V I ≥ 0 (Non-negative flows)

Fig. 5.5. Formulation of the capacitated facility location problem in Section 5.1

Table 5.7. The optimal solution to the capacitated location problem in Section 5.1

xi j I II III IV V VI
A 0 0 0 0 0 0
B 700 0 500 500 1600 1500
C 0 0 0 0 0 0
D 0 0 0 2500 0 0
E 0 2300 0 0 400 0

then supply 2500 spools for the cable laying site at IV from the warehouse at D, the
full requirement of cable laying site II and 400 spools for the cable laying site at V
from the warehouse at E, and the remainder of the requirements from the warehouse
at B. The rent component of this solution is e2,750,000 and the transportation cost
component is e3,110,000. Therefore the least logistical cost that GTC would have
to incur in this setup is e5,860,000.

5.3.3 The p-median problem

The linear programming formulation for the p-median problem requires binary deci-
sion variables only. Recall the p-median problem introduced in Section 5.1. Let B be
the set of buildings and L be the set of libraries that need to be located in the build-
ings. We define decision variables of the form yi j, each of which assumes a value of
1 if researchers at building i use the library facilities at building j. In this representa-

5.3 Linear Programming Formulations 127

tion, any building i for which yii = 1 represents a building in which a facility should
be located. We will assume that the distance between buildings i and j are denoted
by di j. So dii is zero for all values of i. The number of people working in building i
(which will be taken as a weight for the weighted version of the problem) is denoted
by wi.

In the unweighted version of the problem, the objective is to minimize the sum
of the distances between the buildings and their nearest facility. So it is represented
as follows.

Minimize ∑
i∈B

∑
j∈L

di jyi j (5.6)

In the weighted version, each term of the objective function would be appropriately
weighted, so that the objective is represented as follows.

Minimize ∑
i∈B

∑
j∈L

(widi j)yi j (5.7)

Constraints in the p-median problem need to ensure several things. First, they
need to ensure that a total of exactly p ‘medians’ (p≥ 1) are located. In terms of the
problem described in Section 5.1, this will ensure that exactly two library facilities
are set up, i.e., p = 2. The constraint that ensures this is

∑
i∈B

yii = p. (5.8)

Next there need to be constraints that ensure that each point is assigned to exactly one
facility. In terms of GTC’s problem, these constraints would ensure that researchers
from each building visit library facilities in one building only. For any building i, this
constraint can be modeled as

∑
j∈L

yi j = 1. (5.9)

Finally, there need to be constraints that ensure that building i is assigned to a library
at j only if there is a library at point j. An indicator of whether a facility is located
at point j is the decision variable y j j. In terms of GTC’s problem, these constraints
would ensure that researchers from a building visit library facilities in any building
only if library facilities are set up in the latter. The constraint that ensures this is

y j j− yi j ≥ 0. (5.10)

The complete linear programming model for a weighted p-median problem is
given in Figure 5.6.

As an illustration, we provide the linear programming formulation of the p-
median problem described in Section 5.1 in Figure 5.7.

The optimal solution has yAD, yBB, yCD, yDD, yEB, yFB, and yGB set to 1. The
remaining variables are set to zero. This means that optimally, GTC should set up
library facilities in buildings B and D. Researchers from buildings B, E, F, and G
would use the library facilities at building B, while those from buildings A, C, and D
would use the library facilities in building D. The total weighted distance traveled in
this solution is 270.1 kilometers.

128 5 Facility Location

Minimize

z = ∑
i∈B

∑
j∈L

(widi j)yi j

Subject to

∑
i∈B

yii = p

∑
j∈L

yi j = 1 for all i ∈ B

y j j− yi j ≥ 0 for all i ∈ B, j ∈ L

yi j ∈ {0,1} for each i ∈ B, j ∈ L

Fig. 5.6. Linear programming formulation of the p-median problem

5.3.4 The p-center problem

The formulation of the p-center problem is related to the formulation of the p-median
problem in almost the same way as the formulation of the capacitated location prob-
lem is related to the formulation of the uncapacitated location problem. We use the
same decision variables, i.e., binary decision variables yi j which assume a value of
1 if researchers from the building at i use the library facilities in the building at j.
Also, as in the p-median problem, we conclude that library facilities are located in
a building at i if and only if yii = 1. As before, di j represents the distance between
buildings i and j, and wi represents the number of people working in building i.

The constraints that ensure that exactly p facilities are located, that researchers
in each building visit library facilities in one building only, and that library facilities
can be used in one building only if they are set up there, are implemented exactly
in the same manner as they are implemented in the p-median problem, namely by
constraints (5.8), (5.9), and (5.10), respectively. The difference for this formulation
is that here we have to minimize the maximum distance traveled by researchers.

In the unweighted problem, we formulate this in the following manner. We de-
fine a decision variable v, which stores the maximum distance that researchers from
any building have to travel. Researchers from building i have to travel a distance of
∑ j di jyi j to the nearest building. So for each building i, we add a constraint of the
form

v−∑
j

di jyi j ≥ 0, (5.11)

and set the objective to
Minimize v. (5.12)

In the weighted p-center problem we must minimize the maximum weighted
distance that researchers need to travel. Here too, we define a decision variable v,

5.3 Linear Programming Formulations 129

Minimize

z = 17×5.9yBA +15×5.7yCA + · · ·+18×4.6yGA +

12×5.9yAB +15×4.0yCB + · · ·+18×1.4yGB +

.

18×4.6yAG +17×1.4yBG + · · ·+25×4.4yFG

Subject to

yAA + yBB + yCC + yDD + yEE + yFF + yGG = 2 (Constraint (5.8))

yAA + yAB + yAC + yAD + yAE + yAF + yAG = 1 (Constraint (5.9) for A)

yBA + yBB + yBC + yBD + yBE + yBF + yBG = 1 (Constraint (5.9) for B)

There are five more similar constraints for C, D, E, F, and G.

yAA− yBA ≥ 0 (Constraint (5.10) from B to A)

yAA− yCA ≥ 0 (Constraint (5.10) from C to A)

yAA− yDA ≥ 0 (Constraint (5.10) from D to A)

yAA− yEA ≥ 0 (Constraint (5.10) from E to A)

yAA− yFA ≥ 0 (Constraint (5.10) from F to A)

yAA− yGA ≥ 0 (Constraint (5.10) from G to A)

There are six more similar sets of constraints for B, C, D, E, F, and G.

yAA,yAB,yAC, . . .yGF ,yGG ∈ {0,1} (Binary variables)

Fig. 5.7. Formulation of the p-median problem in Section 5.1

which stores the maximum weighted distance that researchers from any building
have to travel. The constraint for building i in this case that is equivalent to (5.11) is

∑
j
(wi jdi j)yi j ≤ v, (5.13)

and the objective here too is to minimize the value of v.
The complete formulation of the p-center problem therefore is the one given in

Figure 5.8.
As an illustration, we show the formulation of GTC’s library facility location

problem using the number of researchers in a building as the weights for the building
in Figure 5.9.

The optimal solution has yAC, yBB, yCC, yDC, yEB, yFB, and yGB set to 1. The
remaining variables are set to 0. The value of v is 87. This means that optimally,
GTC should set up library facilities in buildings B and C. Researchers from build-
ings B, E, F, and G would use the library facilities at building B, while those from

130 5 Facility Location

Minimize

z = v

Subject to

∑
i∈B

yii = p

∑
j∈L

yi j = 1 for all i ∈ B

y j j− yi j ≥ 0 for all i ∈ B, j ∈ L

v−∑
j
(wi jdi j)yi j ≥ 0 for all i ∈ B

yi j ∈ {0,1} for each i ∈ B, j ∈ L

Fig. 5.8. Linear programming formulation of the p-center problem

buildings A, C, and D would use the library facilities in building D. The maximum
weighted distance that researchers from any building have to travel is 87 kilometers
corresponding to researchers from building E.

5.4 Algorithms for Location Problems

The location problems described in this chapter are of a different level of difficulty
than most of the other problems that we have dealt with so far. They belong to a class
commonly referred to as NP-hard. This means that, although some particular location
problems may be easy to solve, nobody has come up with any algorithm that will
solve all location problems to optimality in reasonable time. The term reasonable,
when it is used in this context, has a precise definition; however the definition is not
pertinent to our discussion.

Even though there are no algorithms that solve all location problems in reason-
able time, there are algorithms (called exact algorithms) that solve such location
problems to optimality, but may take very long execution times. There are also other
algorithms, called heuristics that generate high quality solutions in very reasonable
times. In this section, we will describe one exact algorithm and one heuristic for lo-
cation problems. We will use the uncapacitated location problem to show how these
work.

5.4.1 An exact algorithm: Branch and bound

The exact algorithm that we describe here is a general purpose algorithm called a
branch and bound algorithm. As the name suggests, there are two main interwoven
components of the algorithm, namely, branching and bounding.

5.4 Algorithms for Location Problems 131

Minimize

z = v

Subject to

yAA + yBB + yCC + yDD + yEE + yFF + yGG = 2 (Constraint (5.8))

yAA + yAB + yAC + yAD + yAE + yAF + yAG = 1 (Constraint (5.9) for A)

yBA + yBB + yBC + yBD + yBE + yBF + yBG = 1 (Constraint (5.9) for B)

There are five more similar constraints for C, D, E, F, and G.

yAA− yBA ≥ 0 (Constraint (5.10) from B to A)

yAA− yCA ≥ 0 (Constraint (5.10) from C to A)

yAA− yDA ≥ 0 (Constraint (5.10) from D to A)

yAA− yEA ≥ 0 (Constraint (5.10) from E to A)

yAA− yFA ≥ 0 (Constraint (5.10) from F to A)

yAA− yGA ≥ 0 (Constraint (5.10) from G to A)

There are six more similar sets of constraints for B, C, D, E, F, and G.

v− (17×5.9yBA +15×5.7yCA + · · ·+18×4.6yGA) ≥ 0 (Constraint (5.13) at A)

v− (12×5.9yAB +15×4.0yCB + · · ·+18×1.4yGB) ≥ 0 (Constraint (5.13) at B)

There are five more similar constraints for C, D, E, F, and G.

yAA,yAB,yAC, . . .yGF ,yGG ∈ {0,1} (Binary variables)

Fig. 5.9. Formulation of the p-center problem in Section 5.1

The branching component of the algorithm is a systematic way in which one
can generate all feasible solutions to the problem. Given an uncapacitated location
problem with k warehouse sites (k ≥ 1), the branching process would systematically
generate all 2k − 1 combinations of sites at which warehouses can be rented. For
each combination, since we know the warehouses that are located, it is easy to com-
pute which is the nearest warehouse to each cable laying site, and hence the total
logistical cost for that combination. In theory, once we are able to evaluate all 2k−1
combinations, we could choose the one among them with least cost, and that would
be an optimal solution. Obviously, since 2k− 1 becomes uncontrollably large when
k is even moderately large, the branching component by itself would make a very
inefficient algorithm, which would be useless even for moderately sized problems.

We therefore use a bounding component in the algorithm. Bounds operate on
subproblems. A subproblem is a problem obtained by adding constraints to the orig-
inal problem. These constraints force us to look at only a subset of the feasible region

132 5 Facility Location

of the original problem. Let us suppose, for example, that we create a subproblem
by adding the constraint yB = 1 to the uncapacitated location problem formulated in
Figure 5.1. This subproblem restricts us to look at only those solutions to the unca-
pacitated location problem in which we decide to rent a warehouse at location B. If
we look at a subproblem with the additional constraint yC = 0, then we are looking
only at those solutions for which we decide to rent a warehouse at location B, and to
not rent a warehouse at location C. Given a subproblem, the bounding scheme gives
us a bound, i.e., an optimistic estimate of the logistical cost that would be incurred
in a best solution to that subproblem.

How do we use this bounding scheme? Suppose that we have a feasible solution
at hand, and the logistical cost for this solution is e4,000,000. Now suppose that at
a subproblem, we find a bound of e4,500,000. Since this is an optimistic estimate to
the best solution for that subproblem, it is impossible that solving this subproblem
will yield a solution that is better than the one we already have. So there is no point
evaluating the subset of solutions to the original problem that are also solutions to
this subproblem. If on the other hand, the bound turned out to be e3,800,000, then
there is a possibility of getting a solution out of this subproblem that is better than
the one we have at hand. In such a case, it makes sense to explore this subproblem
further. This bounding method allows us to ignore a large subset of the 2k−1 feasi-
ble solutions to the original problem, and arrive at an optimal solution more quickly.
It should be obvious that a better bound, i.e., an estimate that is closer to the logis-
tical cost of the best solution to the subproblem would help us to solve the problem
quicker, if we do not spend too much additional effort computing the better bound.

How do we arrive at such bounds? There are many ways of computing bounds,
but an easy way of getting a bound is to generate relaxations of the formulation of
the uncapacitated location problem that are fast to solve, and then use the optimal ob-
jective function values of these relaxations. For example, if we replace the yi binary
variables in the formulation in Figure 5.2 with continuous variables which can take
values between 0 and 1, we create a linear programming relaxation of the uncapaci-
tated location problem. This problem is solved very quickly by linear programming
solvers. The optimal objective function value from this relaxation can be used as a
bound for the uncapacitated location problem.

We are now in a position to describe the branch and bound algorithm. It works by
maintaining a list of subproblems generated, which we call LIST. At each iteration,
the algorithm chooses a subproblem from LIST, removes it from there, and works
on it. The algorithm first generates a bound for this subproblem. If the bound is
worse than the cost of the best solution that the algorithm has found so far, then the
iteration is over. If it is not, then the algorithm looks at the solution to the relaxation
that provided the bound. This solution may be feasible for the original problem, or it
may not be. If the solution was a feasible solution to the original problem, then the
solution is better than the best solution the algorithm had found so far. In that case, the
best solution found by the algorithm is updated with this solution, and the iteration is
over. If the solution that provided the bound was not a feasible solution to the original
problem, then the branching procedure is started. Typically, the algorithm chooses a
component of the solution to the relaxation that caused the solution not to be feasible

5.4 Algorithms for Location Problems 133

to the original problem, and creates more subproblems by adding constraints about
this component. The subproblems that are formed should cover all possible solutions
feasible to the original problem that were feasible to the subproblem from LIST taken
out at the beginning of the iteration. These new subproblems are added to LIST, and
the iteration is over. In case of the uncapacitated location problem, for example, if
the bound is obtained using a linear programming relaxation, then a decision variable
in the solution to the relaxation which has fractional values would be a component
that causes the solution to the relaxation to be infeasible to the original problem. In
that case, two subproblems may be formed by forcing the decision variable to attain
values of 0 and 1. The algorithm starts by putting the original problem in LIST, and
terminates when LIST is empty at the start of an iteration. The best solution found
by the algorithm at that point is output as an optimal solution.

We now illustrate the branch and bound algorithm using the uncapacitated loca-
tion problem described in Section 5.1. We set the value of M used in the formulation
in Figure 5.2 to 10,001, since the sum of all requirements for cable laying stations
was 10,000 spools, and use a linear programming relaxation to obtain the bounds.
An optimal solution to the linear programming relaxation for a subproblem is indi-
cated using the vector {yA,yB,yC,yD,yE} in which each of the entries in the vector
lies within the interval [0,1]. The variable BEST stores the best solution found so far,
and is output on termination of the algorithm. The variable BESTCOST stores the
logistical cost associated with BEST. Subproblems are recursively defined using the
notation Pk = {Pm,y j = r}, where Pk is a subproblem of Pm in which the additional
constraint y j = r has been added.

At the beginning of the first iteration, LIST contains the original problem. No
solution had been found to the problem so far, so BEST = /0, and BESTCOST = ∞.
During the first iteration the original problem P0 is taken out of LIST and the bound
for this problem is computed. The bound turns out to be e3,501,418.22 correspond-
ing to {0,0,0.42,0.15,0.43}. Since this is not a feasible solution to the original prob-
lem, we need to perform a branching operation. We choose yC as the component to
branch on. So two subproblems are formed: P1 = {P0,yC = 1}, and P2 = {P0,yC = 0}.
These two subproblems are added to LIST and the first iteration is over. The second
iteration begins with LIST = {P1,P2}, BEST = /0, and BESTCOST = ∞. The bound
for P1 is e3,927,992.49, and that for P2 is e3,552,439.26. Since the bound for P2
is lower, we choose to use it in the second iteration. The solution corresponding to
the bound is {0,0,0,0.57,0.43}. Since this solution is not feasible for the original
subproblem, we invoke the branching operation again. We branch on yD and create
two subproblems, namely P3 = {P2,yD = 1}, and P4 = {P2,yD = 0}, which we add
to LIST before terminating the iteration. The branch and bound algorithm terminates
at the eighth iteration. The details of all the iterations are given in Table 5.8.

5.4.2 A non-exact algorithm: Greedy heuristic

Many heuristic algorithms have been formulated to solve location problems. In this
part, we describe a greedy heuristic. A greedy heuristic is one that is myopic, or short-
sighted, in the sense that at any decision point, it takes that decision which looks most

134 5 Facility Location

Ta
bl

e
5.

8.
B

ra
nc

h
an

d
bo

un
d

in
ac

tio
n

It
er

at
io

n
L

IS
T

B
E

ST
B

E
ST

C
O

ST
Su

b-
B

ou
nd

D
ec

is
io

n
(i

n
e

)
pr

ob
le

m
(i

n
e

)
ch

os
en

1
{P

0}
/0

∞
P 0

3,
50

1,
41

8.
22

B
ra

nc
h

on
y C

2
{P

1,
P 2
}

/0
∞

P 2
3,

55
2,

43
9.

26
B

ra
nc

h
on

y D
3

{P
1,

P 3
,P

4}
/0

∞
P 3

3,
70

9,
98

5.
00

B
ra

nc
h

on
y E

4
{P

1,
P 4

,P
5,

P 6
}

/0
∞

P 6
3,

92
0,

00
0.

00
U

pd
at

e
B

E
ST

&
B

E
ST

C
O

ST
5

{P
1,

P 4
,P

5}
{0

,0
,0

,1
,0
}

3,
92

0,
00

0.
00

P 1
3,

92
7,

99
2.

49
C

on
tin

ue
6

{P
4,

P 5
}

{0
,0

,0
,1

,0
}

3,
92

0,
00

0.
00

P 4
4,

07
1,

42
0.

00
C

on
tin

ue
7

{P
5}

{0
,0

,0
,1

,0
}

3,
92

0,
00

0.
00

P 5
4,

18
5,

00
0

C
on

tin
ue

8
/0

{0
,0

,0
,1

,0
}

3,
92

0,
00

0.
00

Te
rm

in
at

e

P 0
=

O
ri

gi
na

lp
ro

bl
em

So
lu

tio
n

to
lin

ea
rp

ro
gr

am
m

in
g

re
la

xa
tio

n:
{0

.0
0,

0.
00

,0
.4

2,
0.

15
,0

.4
3}

P 1
=
{P

0,
y C

=
1}

So
lu

tio
n

to
lin

ea
rp

ro
gr

am
m

in
g

re
la

xa
tio

n:
{0

.0
0,

0.
00

,1
,0

.1
5,

0}
P 2

=
{P

0,
y C

=
0}

So
lu

tio
n

to
lin

ea
rp

ro
gr

am
m

in
g

re
la

xa
tio

n:
{0

.0
0,

0.
00

,0
.0

0,
0.

57
,0

.4
3}

P 3
=
{P

2,
y D

=
1}

So
lu

tio
n

to
lin

ea
rp

ro
gr

am
m

in
g

re
la

xa
tio

n:
{0

.0
0,

0.
00

,0
.0

0,
1.

00
,0

.2
0}

P 4
=
{P

2,
y D

=
0}

So
lu

tio
n

to
lin

ea
rp

ro
gr

am
m

in
g

re
la

xa
tio

n:
{0

.0
0,

0.
7,

0.
00

,0
.0

0,
0.

93
}

P 5
=
{P

3,
y E

=
1}

So
lu

tio
n

to
lin

ea
rp

ro
gr

am
m

in
g

re
la

xa
tio

n:
{0

.0
0,

0.
00

,0
.0

0,
1.

00
,1

.0
0}

P 6
=
{P

3,
y E

=
0}

So
lu

tio
n

to
lin

ea
rp

ro
gr

am
m

in
g

re
la

xa
tio

n:
{0

.0
0,

0.
00

,0
.0

0,
1.

00
,0

.0
0}

5.4 Algorithms for Location Problems 135

promising at that stage. As a result, a greedy heuristic may take suboptimal decisions
and end up with a suboptimal solution.

Consider the uncapacitated facility location problem from Section 5.1. For this
problem, the aim of any solution heuristic is to terminate with a set of warehouse sites
at which to rent warehouses. Once that set of locations is determined, the heuristic
only has to ensure that each cable laying site’s requirement is met from the warehouse
located closest to it. To do this, at each iteration the greedy heuristic makes a decision
which looks most promising at that point in its execution.

For uncapacitated facility location problems, let the set of sites at which the
greedy heuristic would suggest that we rent warehouses be S. Initially, the greedy
heuristic starts with S = /0. The transportation cost of this solution is taken to be a
very high value, say M. At the beginning of the ith iteration of the greedy algorithm,
we assume that S = Si. During the iteration, the greedy algorithm finds out the effect
of adding one more location to Si from the locations that were not already in Si. Let
us consider a location k such that k /∈ Si. If k is to be included in Si, the setup cost of
the solution thus formed would increase by the rent of a warehouse at k. However,
if there are some cable laying sites that are closer to k than to any other location in
Si, the total transportation cost would decrease. Therefore, the net effect of including
location k in the set Si would be beneficial if the reduction in transportation cost is
greater than the increase in the setup costs. At this iteration, the greedy algorithm
evaluates all locations for which the effect of adding the location is beneficial, and
chooses to add the location for which the benefit is the largest. If there are no loca-
tions for which the effect of adding the location is beneficial, the greedy algorithm
outputs the current set S, and terminates.

Let us illustrate the working of the greedy algorithm on the uncapacitated loca-
tion problem described in Section 5.1. Let us assume that M = 10,000,000. At the
start of the first iteration, the set S is empty. Let us now look at the effect of adding
a warehouse location to this set. Table 5.9 presents the benefits of adding each of the
warehouse locations to the current set S. Clearly, the benefit of adding location D is

Table 5.9. Benefits from the first iteration of the greedy heuristic

Location A B C D E
Increase in setup cost (in e) 1,250,000 1,500,000 1,000,000 500,000 750,000
Decrease in transportation cost (in e) 6,464,000 6,020,000 6,862,000 6,580,000 6,640,000
Benefit (in e) 5,214,000 4,520,000 5,862,000 6,080,000 5,890,000

the maximum. So the greedy heuristic adds this location to S, and moves on to the
second iteration.

The second iteration starts with S = {D}. The setup cost for this solution is
e500,000 and the transportation cost is e3,420,000. The greedy algorithm now ex-
amines the benefit of adding one of the locations A, B, C, and E to the set S. Ta-
ble 5.10 presents the benefits of adding each of the warehouse locations to the cur-
rent set S. Since none of the additions is beneficial, the greedy heuristic outputs the

136 5 Facility Location

Table 5.10. Benefits from the second iteration of the greedy heuristic

Location A B C E
Increase in setup cost (in e) 1,250,000 1,500,000 1,000,000 750,000
Decrease in transportation cost (in e) 239,000 296,000 567,000 485,000
Benefit (in e) -1011000 -1,204,000 -433,000 -265,000

current set S = {D}, and terminates.
In this example, the greedy heuristic outputs the optimal solution to the uncapac-

itated facility location problem, i.e., the best alternative is to open a warehouse at
location D, and to supply all demands from it. However, the greedy heuristic is not
guaranteed to always output optimal solutions.

5.5 Other Facility Location Problems

5.5.1 The competitive facility location problem

Consider two decision makers, each of whom have to locate stores in a locality.
Both the decision makers want to maximize the number of people coming to their
stores. Assume that people go to the store which is closest to them. In this case, a
decision maker who opens the first store is at a disadvantage; she does not know
where the second decision maker would open his store, while the second decision
maker would be able to open his store with the knowledge of where the first decision
maker has opened her store. In such cases, the first decision maker would consider
various options of locations for her store. For each of these locations, she will find
out the maximum share of the market that the second decision maker would have
given the location of the first store. She would then choose that location for which
the second decision maker’s maximum market share would be the smallest possible.
This problem and its extensions are known as competitive location problems.1

5.5.2 The multi-objective facility location problem

Consider a situation in which we need to locate a facility, like a bus terminus, inside a
city. Due to the noise generated by such a terminus, residents would like the terminus
to be located far away from their homes. However, since they have to use the bus
services, they would not like the terminus to be located too far away. Hence, the
city planners have to consider a location problem with two conflicting objectives
instead of the problems considered earlier in this chapter, all of which have a single

1 For more details on this problem, see H.A. Eiselt, G. Laporte, and J.-F. Thisse, Competitive
location models: A framework and bibliography. Transportation Science 27, (1993), pp.44–
54.

5.6 Exercises on Facility Location Problems 137

objective. Such facility location problems with multiple conflicting objectives are
called multi-objective facility location problems.2

5.6 Exercises on Facility Location Problems

Companies like GTC require to solve network location problems in a lot of situations.
In addition to locating service stations for their technicians to maintain a certain ser-
vice level, and to decide on pick-up points for their employee bus service, companies
now use such problems to model situations for optimizing their global supply chains.

Problem 5.1. Locating Service Stations
The Services Department of GTC manages the relationships between the company
and its customers. The Gold Service, a 24-hour service for private customers, is de-
scribed in Chapter 1. However, in addition to private customers, companies also use
the services of GTC for reliable telecommunication systems. To cater to its corporate
demand, GTC is planning to launch the Titanium Service project, whereby, when-
ever a company with a Titanium Service contract reports a problem, a technician will
make a site call within 60 minutes.

Titanium Service will be implemented in the region schematically depicted in
Figure 5.10. The nodes in this figure represent the cities. There are 20 cities, and in
each city there are one or more companies located. An edge between two cities de-
notes a highway connection between the two, and the number next to the connection
is the estimated travel time.

The companies in the region that are highly interested in the Titanium Service
project are located in the cities 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 15, and 18. In order to
be able to make the site calls to these twelve cities within one hour, GTC is planning
to open a number of technician facilities in the region. These facilities should be
located in the cities. GTC wants to know the number of technician facilities needed,
and the location(s) of these facilities.

(a) Determine the minimum number of technician facilities needed for servicing the
cities 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 15, and 18, and the location(s) of these
facilities for the region of Figure 5.10. What is the maximum response time, and
which of the twelve cities concerns this?

(b) The response time of one hour is only a suggestion. How does the answer to part
(a) change if the response time is set to 30, 45, 75, or 90 minutes, respectively?

(c) The highway connection between the cities 5 and 10 is one of the main routes
in the region. As a result, the travel time on this segment is most of the time
two times the estimate given in Figure 5.10. What is the consequence for the
maximum response time of the solution to part (a) when the travel time between
the cities 5 and 10 is twice as much as shown in Figure 5.10? What are now the
best locations for the facilities?

2 For more details on this problem, see D.M. McAllister, Equity and efficiency in public
facility location. Geographical Analysis 8, (1976), pp.47–63.

138 5 Facility Location

Fig. 5.10. Schematic map with 20 locations (travel times in minutes)

5.6 Exercises on Facility Location Problems 139

(d) After a second round of information gathering, it turns out that a company in city
20 wants to make use of the service as well. Does the solution to part (c) still
satisfy the response time of one hour? What are now the best locations for the
facilities?

(e) Some time after the implementation (the facilities are located as found in part
(d)) of the project, roads 16 – 19 and 16 – 20 are temporarily closed for mainte-
nance. GTC wants to know whether it is necessary to open one or more temporary
facilities to maintain service levels.

Problem 5.2. Warehouse Location
In a certain country GTC experiences very high transportation costs. This problem
is especially acute for the spool factory, where GTC produces cable spools, because
it supplies all 62 demand locations in the country. A way to lower the transportation
costs is by making use of warehouses. GTC wants to know where these warehouses
should be located.

Figure 5.11 gives a schematic representation of the country. The nodes denote
the demand locations. The number next to a node is the yearly demand for spools in
units of 100 spools at the corresponding location. The edges represent the highway
road system in the country. The numbers next to the edges refer to the lengths in
kilometers of the corresponding road segments.

The warehouses are to be built at demand locations. The amortized cost of build-
ing a warehouse at a demand location is e2,500,000 per year. Transportation of 100
spools is e50 per kilometer. In the computations, GTC does not take the cost of
demolishing a warehouse into account.

(a) GTC wants to know the minimum transportation plus warehousing costs during
the next five years. Through inspection only, what is the best solution to this
warehouse problem that you can find?

(b) Several years ago the government of the country implemented a large road net-
work improvement project. As a result, within one year the following road seg-
ments will be finished (between brackets the lengths in kilometers): 5 – 49 (9.2),
19 – 39 (17.4), 19 – 40 (16.4), and 10 – 53 (5.2). The segments 46 – 47 (21.1),
18 – 30 (8.2), 11 – 14 (15.2), 14 – 22 (18.4), 22 – 58 (10.2), and 41 – 58 (10.0)
will be finished within two years. Given this information, answer part (a) again.

(c) GTC wants to have a warehouse within 75 kilometers of each demand location.
Does the solution to part (b) satisfy this requirement? If not, find a satisfactory
solution that satisfies this requirement.

Problem 5.3. Locating Bus Stops
Each year GTC organizes a bus tour of all important GTC facilities in the region for
all employees hired that year. Figure 5.12 shows a schematic representation of the
region. The nodes represent the cities in the region, while the number next to a node

140 5 Facility Location

Fig. 5.11. Demands (in units of 100) and distances (in kilometers) on a road map with 62
locations

refers to the number of employees in that city that will participate in the bus tour.
The lines denote the roads. The number next to a line refers to the length of that road
segment (in kilometers). The facilities to be visited are located in 12, 15, 16, and 31.
The tour will be a round trip, i.e., it will finish at the facility from where it started.
The bus company is located at city 29.

On the morning of the day of the tour, the new employees travel to the nearest
gathering point. A GTC bus will go to this point as well. When everyone is seated in

5.6 Exercises on Facility Location Problems 141

the bus, the bus goes to the nearest facility to be visited and starts the tour. After the
tour is finished, the bus goes back to the gathering point. From there the employees
go home and the bus goes back to city 29.

The employees are compensated for traveling between their home towns and
gathering point at the rate of e0.65 per kilometer. GTC has to pay the bus company
e1.00 per kilometer. The total cost for the tour for GTC is the sum of the compen-
sations paid to the employees and the cost of the bus. The question for the company
therefore is, in which city to locate the gathering point such that total costs are mini-
mized?

Fig. 5.12. New employees and distances (in kilometers) on a road map with 32 locations

142 5 Facility Location

(a) Formulate the choice of the gathering point as a 1-median problem.
(b) What is the best location for the gathering point? What are the total costs in-

volved?
(c) Due to maintenance activities, the road segments 18 – 26 and 25 – 32 will be

closed for a certain period. Does this alter the choice of the gathering point?
What are the total costs now?

(d) GTC is wondering whether it would be more cost effective to use two buses. Can
the choice of two gathering points be formulated as a 2-median problem? Explain
the answer.

An alternative plan is that the bus will pick up people at multiple locations. The
bus goes via a specified route from city 29 to one of the four facilities to be visited.
The bus will halt at all cities in between. The employees are free to choose where
they want to board the bus.

(e) Suppose that the bus follows the route 29 – 30 – 1 – 2 – 12. This means that the
employees can go to either city 29, 30, 1, 2, or 12. What are the total costs for
this route?

(f) Find by inspection, a route for the bus, such that the total costs are within e1100.

Problem 5.4. Switching Point Location
In Problem 5.1, the question was to design a cable network. The network needs a
number of switching points for assuring a certain degree of reliability. In this problem
we examine the location of switching points for the network found in Problem 5.1(a).

(a) Assuming that a switching point can only be located at one of the 50 locations,
what is the best location if GTC considers locating only one switching point?
What is the distance from the switching point to the location farthest from it? Call
this distance D1. If GTC considers locating two switching points where would
they be located? What would be the maximum distance between any location
and any switching point? Call this distance D2.

(b) Assume now that the switching points can be located anywhere on the cable
network. Answer the same questions as in part (a). Call the distances D∗1 and D∗2,
respectively.

(c) Check from your answers of parts (a) and (b) that D1 ≥ D∗1 ≥ D2. Prove that this
relation holds for all networks with at least two nodes.

(d) Is it true for the network found in Problem 5.1(a) that D2 ≥ D∗2 ≥ D3? Consider
a general network with n nodes. Prove or disprove that Di ≥ D∗i ≥ Di+1 for all i
with i = 1, . . . , n−1.

6

Cyclic Routing on Networks

6.1 Introduction

Every year, a team of executives in the corporate office of GTC visits each of the
five regional offices to inspect the work at those offices. This trip is a round trip in
which the officers visit each of the region offices exactly once before returning to the
corporate office. The regional offices are located in cities connected to each other by
air. The cost of flying between each pair of cities is given in Table 6.1. C denotes the
city in which the corporate office is located, and R1 through R5 denote the cities in
which the regional offices are located.

Table 6.1. Air fares between cities (in e)

C R1 R2 R3 R4 R5
C — 500 650 475 525 925
R1 — 625 750 550 825
R2 — 750 575 425
R3 — 450 725
R4 — 950
R5 —

The total cost of air travel would obviously depend on the route that the team of
executives takes. For instance, if they travel from C to R1 to R2 to R3 to R4 to R5
and back to C, then the cost per executive would be e4200. On the other hand, if
they travel from C to R3 to R5 to R2 to R4 to R1 and back to C, then the cost per
executive reduces to e3250. The financial department at GTC wants to find out how
to route the travel of executives so that the total travel costs are minimized.

The problem of routing a round trip through all cities in a network visiting each
city exactly once before returning to the city of origin is called the traveling salesman
problem. This is one of the most well-known network problems. A solution to the
problem, i.e., a round trip through all cities is called a tour. The cost of a tour is the

©
Optimization, International Series in Operations Research & Management Science 140,

 Springer Science + Business Media, LLC 2010

G. Sierksma and D. Ghosh (eds.), Networks in Action: Text and Computer Exercises in Network

DOI 10.1007/978-1-4419-5513-5_9,

143

144 6 Cyclic Routing on Networks

sum of the costs of all links on the tour. So the traveling salesman problem is one
of finding the least cost tour on a network. If the intercity distances are such that
the cost of going from city i to city j is the same as the cost of going from city j to
city i for all pairs of cities i and j, then the problem is called a symmetric traveling
salesman problem. If this is not the case, then the problem is called an asymmetric
traveling salesman problem. A closely associated problem is called the Hamiltonian
cycle problem. In this problem, we are given a network and asked whether or not a
Hamiltonian cycle i.e., a tour in the network visiting each city exactly once, exists in
that network.

Now consider a different problem. The research group of GTC in city C has
developed a new prototype which it wants to distribute to the research groups in the
regional offices. They want to load five prototypes and send them to the offices in
a truck. The truck must therefore visit each regional office exactly once. It does not
have to return to the corporate office at the end of its journey. GTC knows the distance
between the cities on the road network. These distances are given in Table 6.2.

Table 6.2. Distances between cities along the road network (in kilometers)

C R1 R2 R3 R4 R5
C — 437 516 356 439 718
R1 420 — 519 599 473 640
R2 538 535 — 622 430 364
R3 353 613 633 — 326 571
R4 429 442 469 366 — 734
R5 754 699 341 563 723 —

If, for example, GTC decides that the truck should go from city C to R1 to R2
to R3 to R4 to R5, then the total distance is 2638 kilometers, while if they decide
that the truck should go from C to R3 to R5 to R2 to R4 to R1, then the distance
covered, namely 2498 kilometers, is less. The financial department at GTC would be
interested in computing a shortest route through all the cities.

This problem of finding a shortest route through all the cities in a network, cover-
ing each city exactly once is known as a weighted Hamiltonian path problem. It is a
weighted version of the Hamiltonian path problem in which we are given a network
and are required to find out whether or not there exists a Hamiltonian path in the
network, i.e., a path in the network visiting each city exactly once. The difference
between the Hamiltonian path problem and the traveling salesman problem is only
that in the weighted Hamiltonian path problem, we are not required to return to the
city of origin to end the route. It is also different from the shortest path problem, since
in the Hamiltonian path problem, we are required to visit every city in the network,
and that too, exactly once.

Notice that a weighted Hamiltonian path problem can easily be converted into a
traveling salesman problem. To do this we need to add a dummy node to the network
on which the weighted Hamiltonian path problem is defined, and connect it to all

6.1 Introduction 145

the nodes in the network through edges that have zero lengths. It is easy to see that
all Hamiltonian paths correspond to Hamiltonian cycles in the augmented network.
Also, since the edges joining the dummy node to the other nodes in the Hamiltonian
cycle have zero length, the cost of the Hamiltonian cycle in the augmented network
is the same as the Hamiltonian path that is formed by removing the dummy node
and the two edges incident on it from the cycle. Therefore, if we find an optimal
solution to the traveling salesman problem in the augmented network, and remove
the dummy node and the two edges incident on it from the solution, then we have an
optimal solution to the weighted Hamiltonian path problem.

We next consider a third routing problem. The distribution system of GTC is a
two-tier system. GTC delivers supplies from the regional office to a central depot in
an area, and then the staff at the central depot delivers them to stores in the area. The
location of the depot and nine stores in a particular area are shown schematically
in Figure 6.1. The depot is labeled D, and the nine stores are labeled 1 through 9.

Fig. 6.1. The regional distribution problem

The depot has three trucks at its disposal to distribute the supplies to the stores. The
depot staff would like to route the trucks in such a way as to minimize the total
distance traveled by these trucks. Since the cost of traveling is directly proportional
to the distance traveled, their objective would also be achieved by minimizing the
distribution cost. We would like each of the stores to be visited exactly once during
the distribution process.

This problem is known as the vehicle routing problem. A solution to the vehicle
routing problem is a routing schedule for each truck. Figure 6.2 illustrates a possible
solution to the problem. According to this solution, one truck starts at the depot,
supplies stores 1, 4, and 5, in that order and returns to the depot. A second truck
supplies stores 8, 2, and 7, in that order and returns to the depot, while the third
truck supplies stores 9, 3, and 6 in that order and returns to the depot. Notice that if

146 6 Cyclic Routing on Networks

Fig. 6.2. A solution to the regional distribution problem

the depot had only one truck, then the solution to the routing problem would be the
solution to a traveling salesman problem defined on D and the nine store locations.

Even in case there are more than one trucks at the depot’s disposal, the problem
can be transformed into a traveling salesman problem. Since there are three trucks,
we make five copies of the node in the network corresponding to the depot. (If there
are n vehicle at the depot, then we make 2n−1 copies of the depot in the network.)
The depot and its five copies can be thought of as six nodes of the network, connected
to each other by edges of zero length. These six nodes are represented in Figure 6.3
as the six nodes within the circle with broken lines. Each of the six copies are con-
nected to the rest of the stores exactly in the same way as the depot originally was. A
traveling salesman problem defined on this new network would yield a solution to the
vehicle routing problem. Figure 6.3 for example illustrates the solution in Figure 6.2
on this new network. The way to obtain the individual routings from the solution to
the traveling salesman problem is to recombine the six nodes corresponding to the
depot into a single node, and to mark off the route between two consecutive visits to
the depot as the route for a truck.

The problems described above all belong to the class of node routing problems.
Any solution to these problems requires a routing through each node of the network
on which the problem is defined. There are also routing problems that need to in-
volve every edge in an undirected network, and every arc in a directed one. These
problems are called arc routing problem. Consider, for example, the network given
in Figure 6.4. In such networks, the problem of finding a routing that traverses every
edge of the network at least once, comes back to the node at which the route started,
and has the minimum number of edges possible is called the Chinese postman prob-
lem. It is a classical example of an arc routing problem. An example of a solution to
the Chinese postman problem on the network in Figure 6.4 is to go from A to B to D
to C to B to D and then return to A. Notice that we have traversed edge B – D twice

6.1 Introduction 147

Fig. 6.3. Transforming a VRP instance into a TSP instance

Fig. 6.4. A network to illustrate the Chinese postman problem

in our route. Therefore, this route would be inferior to a route that traverses each
edge exactly once. Unfortunately, not all networks admit solutions to Chinese post-
man problems in which we traverse each edge exactly once. Networks that do admit
such solutions must possess the Eulerian property, which means that each node in
the network has an even degree. Since the network in Figure 6.4 does not possess
this property, since nodes B and D have odd degree, we can safely say that there
cannot be a Chinese postman tour that traverses each edge in this network exactly
once. It can be shown that in any network the maximum number of edges traversed

148 6 Cyclic Routing on Networks

in an optimal solution to the Chinese postman problem is twice the number of edges
in the network. The network in Figure 6.5 is an example of a network for which the

Fig. 6.5. A network that is bad for the Chinese postman problem

optimal solution to the Chinese postman problem needs to traverse each edge exactly
twice.

If the Chinese postman problem is defined on a weighted graph, with the weight
on each edge signifying the length of the edge, then it is called a weighted Chinese
postman problem. The objective in a weighted Chinese postman problem is to find a
tour of minimum length that traverses each edge exactly once.

6.2 Applications

The traveling salesman problem forms the basis of many real world applications,
some of which are described in this section. The vehicle routing problem described
in the previous section is an application in itself, although real world implementa-
tions of vehicle routing problems have to deal with many more practical constraints.
Similarly, arc routing problems have direct application in public systems. The fol-
lowing are some applications of routing problems.

6.2.1 Manufacturing of printed circuit boards

Printed circuit boards (PCBs) have become an electronic part seen very commonly
in most electronic equipment. It consists of conductors that are “printed” on a board.
The board also has holes for attaching the pins of integrated circuit chips. The holes
could have different diameters. While manufacturing PCBs, holes of the same diam-
eter are drilled consecutively in batches. In order to produce PCBs at a fast rate, one

6.2 Applications 149

needs to optimize the sequence in which the holes of a batch have to be drilled on a
PCB. To do this, the drill bit needs to be attached to the drilling machine at the tool
box, then the holes need to be drilled, and the drill bit needs to be released at the tool
box. The sequence in which the holes have to be drilled can be computed by mod-
eling the problem as a traveling salesman problem. A complete graph is constructed
with the tool box and the holes that have to be drilled as the nodes of the graph. Each
pair of nodes is then connected with an arc whose cost is proportional to the time
required to move between the locations corresponding to the end nodes. A minimum
cost tour in this graph is the most economical way of drilling a batch of holes on the
PCB.

6.2.2 Order picking in warehouses

Large warehouses stock large numbers of items divided into sections. Each section
houses similar items. Most orders from warehouses include items from different sec-
tions. For a warehouse to fill orders efficiently, a manager needs to compute the
sequence in which to pick items from the different sections so that an order can
be filled in minimum time. This problem can be modeled as a traveling salesman
problem. The problem is defined on a complete graph, in which one of the nodes
corresponds to the entry/exit point of the warehouse, and the other nodes correspond
to the sections which contain items required to fill the order. The cost of each arc
in the graph corresponds to the time required to move from the location denoted by
the tail of the arc to the location denoted by the head of the arc. Starting from the
node correesponding to the entry/exit of the warehouse, the sequence of nodes in an
optimal tour through this graph is the sequence of sections from which items need to
be picked to fill the order.

6.2.3 Postal delivery routing

Any postal delivery mechanism consists of three main tasks, sorting mails based on
postcodes at a central facility, packing mail for a single postcode to a facility at that
postcode, and physically delivering the mail in the postcode. Among the three ac-
tivities, the last is the most time consuming. Therefore, an efficient postal delivery
system tries to make the physical delivery of mail as efficient as possible. For pur-
poses of delivery, the area corresponding to a postcode is divided into smaller areas,
and each area is assigned to a single postal delivery person. The route that the person
should take to deliver the mail can be modeled as a weighted Chinese postman prob-
lem. The road network in the area forms the graph for the problem, and the weights
on each of the roads correspond to the time taken to traverse the road segment. The
minimum weight solution to the weighted Chinese postman problem on this graph
denotes the route that a postal delivery worker should take to deliver mail in the area.

150 6 Cyclic Routing on Networks

6.3 (Integer) Linear Programming Formulations

All the network routing problems described in the previous section can be formulated
as linear programming problems. Since all the node routing problems described can
be easily reformulated as a traveling salesman problem, we will describe formula-
tions of the traveling salesman problem only for node routing problems. We will
of course describe a formulation of the Chinese postman problem as an example of
formulations for arc routing problems.

6.3.1 The traveling salesman problem

There are several formulations for the traveling salesman problem. In what follows
we provide two formulations for the problem. These two formulations serve to illus-
trate the diverse ways in which the same problem can be formulated.

In both formulations, we first convert any edges present in the network into arcs.
As with other network problems, if there is an edge between cities i and j in a net-
work with length di j, it is converted to two arcs, one from i to j and another from j to
i. Both the arcs thus formed have length di j, and we have constraints that restrict us
to include at most one of the two arcs in our optimal solution. This step is of course
unnecessary if the network that we start out with is directed.

In the first formulation, we use decision variables yi j for each arc i→ j which
assumes a value of 1 if this arc is included in the optimal solution, and 0 otherwise.
Let is denote the network as N = (V,A,d), where V denotes the set of cities, A denotes
the set of interconnecting arcs between the cities, and di j denotes the length of arc i→
j ∈ A. The length of a tour is the sum ∑i→ j∈A di j, and the objective of the formulation
is to

Minimize ∑
i→ j∈A

di jyi j. (6.1)

In a solution to the traveling salesman problem, each city in the network is visited
exactly once. Therefore, for each city i in the network, there should be exactly one
arc of the network to i and one arc of the network from i. For each i ∈ V , this leads
us to the following two constraints.

∑
j: j→i∈A

y ji = 1, and (6.2)

∑
j:i→ j∈A

yi j = 1. (6.3)

At first glance it may seem that these two sets of constraints are both necessary
and sufficient to describe tours in the traveling salesman problem. But even though
these constraints are necessary, they are not sufficient to ensure that solutions to the
formulation are restricted only to tours. For example, the solution illustrated in Fig-
ure 6.6 for a traveling salesman problem instance described on six cities A through
F is not a tour, although it does obey the constraint sets (6.2) and (6.3). The loops
in the solution illustrated in the figure are called subtours and our formulation needs

6.3 (Integer) Linear Programming Formulations 151

Fig. 6.6. Subtours in a traveling salesman problem

to add subtour elimination constraints to eliminate all solutions that are not tours.
There are several ways of including subtour elimination constraints, most of which
are reminiscent of similar constraints in the linear programming formulation of min-
imum spanning trees. We here illustrate two ways of including subtour elimination
constraints. In the first method, we specify that for all subsets S of V , except for the
empty set and the set V itself, there should be at least one arc exiting the set. In case
subtours exist, a set of nodes forming one of the subtours would fail to satisfy this
condition. Hence, we have the following set of subtour elimination constraints.

∑
i, j:i→ j∈A, i∈S, j/∈S

yi j ≥ 1 for all /0⊂ S⊂V. (6.4)

Notice however, that for all subsets S with |S|= 1, these constraints are subsumed by
the constraint set (6.3), and for all subsets S with |S|= |V |−1 they are subsumed by
the constraint set (6.2). So we only need to implement these constraint for all subsets
S for which 2≤ |S| ≤ |V |−2. The complete formulation described above is given in
Figure 6.7.

Alternatively, we can stipulate that for all subsets S of V , except for the empty
set and the set V itself, the number of arcs in an optimal solution between two nodes
within S should be at most |S|−1. In case subtours exist, a set of nodes forming one
of the subtours would fail to satisfy this condition, since the subtour will ensure that
there are |S| arcs within the set. Hence, we have the following alternate set of subtour

152 6 Cyclic Routing on Networks

Minimize

z = ∑
i→ j∈A

di jyi j

Subject to

∑
j: j→i∈A

y ji = 1 for all i ∈V

∑
j:i→ j∈A

yi j = 1 for all i ∈V

∑
i, j:i→ j∈A, i∈S, j/∈S

yi j ≥ 1 for all /0⊂ S⊂V

yi j ∈ {0,1} for each i, j ∈V

Fig. 6.7. First linear programming formulation of the traveling salesman problem

elimination constraints.

∑
i, j:i→ j∈A, i, j∈S

yi j ≤ |S|−1 for all /0⊂ S⊂V. (6.5)

It is easy to see that for these subtour elimination constraints also, it is sufficient to
formulate the constraints for all subsets S for which 2≤ |S| ≤ |V |−2. The complete
formulation with the alternative method of modeling subtour elimination is given in
Figure 6.8.

In order to illustrate this formulation, we will use the air travel problem from
Section 6.1. The network in this problem consists of six nodes, C, R1, . . . , R5. Each
inter-city connection can be represented as an arc, so that the network is a directed
network. The cost of an arc is the cost of the connection between the two cities that
the arc connects. Notice that this is an instance of the symmetric traveling salesman
problem. We use the constraint set (6.4) to eliminate subtours. The formulation is
given in Figure 6.9.

An optimal solution to this problem is obtained by setting yC,R3, yR1,C, yR2,R5,
yR3,R4, yR4,R2, and yR5,R1 to 1 and all the other variables to 0. This solution corre-
sponds to the tour from C to R3 to R4 to R2 to R5 to R1 and then back to C. The
total cost of the tour is e3,250.

We next describe a second formulation of the traveling salesman problem. In this
formulation we assume that we start from a city v0 and then visit each of the other
cities in sequence until we come back to v0 at the end of the tour. Thus a tour is
composed of several “legs”. In each leg we start from a city (say i) in the sequence
and end at the next city (say j) in the sequence. The cost of a leg is the cost of the
arc from i to j. The decision variables in this formulation therefore are of the form
yi jk which assumes a value of 1 if the arc from i to j makes up the kth leg of the tour,

6.3 (Integer) Linear Programming Formulations 153

Minimize

z = ∑
i→ j∈A

di jyi j

Subject to

∑
j: j→i∈A

y ji = 1 for all i ∈V

∑
j:i→ j∈A

yi j = 1 for all i ∈V

∑
i, j:i→ j∈A, i, j∈S

yi j ≤ |S|−1 for all /0⊂ S⊂V

yi j ∈ {0,1} for each i, j ∈V

Fig. 6.8. Second linear programming formulation of the traveling salesman problem

and a value of 0 otherwise. The objective in the formulation is thus

Minimize
|V |

∑
k=1

∑
i, j:i→ j∈A

di jyi jk. (6.6)

In this formulation too, we have the standard constraints that ensure that we enter
and leave a city exactly once. For each city i ∈V these constraints are of the form

|V |

∑
k=1

∑
j: j→i∈A

y jik = 1, and (6.7)

|V |

∑
k=1

∑
j:i→ j∈A

yi jk = 1. (6.8)

We also specify that there are exactly |V | legs in the tour, using the constraint

|V |

∑
k=1

∑
i, j:i→ j∈A

yi jk = |V |, (6.9)

and that at each leg of the tour only one arc can be traversed, with the set of con-
straints

∑
i, j:i→ j∈A

yi jk = 1 for each k = 1, . . . , |V |, (6.10)

and also that each arc can be traversed in at most one leg of the tour, with the follow-
ing set of constraints:

154 6 Cyclic Routing on Networks

Minimize

z = 500yC,R1 +650yC,R2 + · · ·+525yC,R4 +925yC,R5 +

500yR1,C +625yR1,R2 + · · ·+550yR1,R4 +825yR1,R5 + · · ·+
925yR5,C +825yR5,R1 + · · ·+725yR5,R3 +950yR5,R4

Subject to

yR1,C + yR2,C + · · ·+ yR4,C + yR5,C = 1 (Constraint (6.2) for C)

yC,R1 + yR2,R1 + · · ·+ yR4,R1 + yR5,R1 = 1 (Constraint (6.2) for R1)

There are four more similar constraints for R2, R3, R4, and R5.

yC,R1 + yC,R2 + · · ·+ yC,R4 + yC,R5 = 1 (Constraint (6.3) for C)

yR1,C + yR1,R2 + · · ·+ yR1,R4 + yR1,R5 = 1 (Constraint (6.3) for R1)

There are four more similar constraints for R2, R3, R4, and R5.

yC,R2 + yC,R3 + yC,R4 + yC,R5 + yR1,R2 + (Constraint (6.4)

yR1,R3 + yR1,R4 + yR1,R5 ≥ 1 for S = {C, R1})

yC,R1 + yC,R3 + yC,R4 + yC,R5 + yR2,R1 + (Constraint (6.4)

yR2,R3 + yR2,R4 + yR2,R5 ≥ 1 for S = {C, R2})

There are thirteen more similar constraints for different S, |S|= 2.

yC,R3 + yC,R4 + yC,R5 + yR1,R3 + yR1,R4 + (Constraint (6.4)

yR1,R5 + yR2,R3 + yR2,R4 + yR2,R5 ≥ 1 for S = {C, R1, R2})

yC,R1 + yC,R4 + yC,R5 + yR2,R1 + yR2,R4 + (Constraint (6.4)

yR2,R5 + yR3,R1 + yR3,R4 + yR3,R5 ≥ 1 for S = {C, R1, R3})

There are eighteen more similar constraints for different S, |S|= 3.

yC,R4 + yC,R5 + yR1,R4 + yR1,R5 + (Constraint (6.4)

yR2,R4 + yR2,R5 + yR3,R4 + yR3,R5 ≥ 1 for S = {C,R1,R2,R3})

yC,R2 + yC,R5 + yR1,R2 + yR1,R5 + (Constraint (6.4)

yR3,R2 + yR3,R5 + yR4,R2 + yR4,R5 ≥ 1 for S = {C,R1,R3,R4})

There are thirteen more similar constraints for different S, |S|= 4.

yC,R1,yC,R2, . . . ,yR5,R3,yR5,R4 ∈ {0,1} (Binary variables)

Fig. 6.9. Formulation of the traveling salesman problem from Section 5.1

|V |

∑
k=1

yi jk ≤ 1 for each i and j such that i→ j ∈ A. (6.11)

6.3 (Integer) Linear Programming Formulations 155

Subtour elimination constraints are included by stipulating that the first leg of the
tour starts at a node labeled v0, using the constraint

∑
j:v0→ j∈A

yv0 j1 = 1, (6.12)

and that the last leg of the tour ends at the same node, using the constraint

∑
i:i→v0∈A

yiv0|V | = 1, (6.13)

and that the (k+1)th leg of the tour starts at the same node where the kth leg ended.
This last condition is implemented using the following sets of constraints.

∑
i:i→ j∈A

yi jk − ∑
l: j→l∈A

y jlk+1 = 0 for each j ∈V,and each k = 2, . . . , |V |−1. (6.14)

The complete formulation described above is given in Figure 6.10. It is left to
the reader to implement this formulation for the problem from Section 6.1, and to
compare it with the earlier formulation.

6.3.2 The Chinese postman problem

As we had mentioned in Section 6.1, an optimal solution to the Chinese postman
problem traverses each edge in a network exactly once, if and only if the network
is Eulerian, i.e., if and only if each node in the network has an even degree. Un-
fortunately, since not all networks are Eulerian, an optimal solution to the Chinese
postman problem on a network may need to traverse an edge in the network more
than once.

Linear programming formulations for Chinese postman problems on networks
attempt to determine the minimum number of times that an optimal solution to the
Chinese postman problem needs to traverse each edge in the network. To do so, it
simulates multiple traversals of an edge by adding multiple copies of the edge in the
network. The formulation then tries to minimize the number of copies of edges that
needs to be added to the network to make it Eulerian.

In our description of the formulation, we consider a network N = (V,E). The
vertices in V are partitioned into two sets, Vo consisting of vertices that have odd
degree in the network, and Ve consisting of vertices that have even degree. We also
use a node-edge incidence matrix A of dimension |V |× |E|, in which aie = 1 if edge
e is incident on node i, and 0 otherwise. Our decision variables are integer variables
ye that denote the number of copies of the edge e we need to add to the network in
order to make it Eulerian.

The objective is to minimize the number of edges added, i.e., to

Minimize ∑
e∈E

ye. (6.15)

Each time a copy of an edge is added to the network, the degrees of the nodes it is
incident on are increased by 1. So for the final network to be Eulerian, we need to

156 6 Cyclic Routing on Networks

Minimize

z =
|V |

∑
k=1

∑
i, j:i→ j∈A

di jyi jk

Subject to

|V |

∑
k=1

∑
j: j→i∈A

y jik = 1 for each i ∈V

|V |

∑
k=1

∑
j:i→ j∈A

yi jk = 1 for each i ∈V

|V |

∑
k=1

∑
i, j:i→ j∈A

yi jk = |V |

∑
i, j:i→ j∈A

yi jk = 1 for each k = 1, . . . , |V |

|V |

∑
k=1

yi jk ≤ 1 for each i, j such that i→ j ∈ A

∑
j:v0→ j∈A

yv0 j1 = 1

∑
i:i→v0∈A

yiv0|V | = 1

∑
i:i→ j∈A

yi jk − ∑
l: j→l∈A

y jlk+1 = 0 for each j ∈V ;k = 2, . . . , |V |−1

yi jk ∈ {0,1} for each i, j such that i→ j ∈ A;k = 1, . . . , |V |

Fig. 6.10. Second linear programming formulation of the traveling salesman problem

ensure that the total number of edges (including copies) that are incident to a node
i ∈Ve is even, i.e., can be represented in the form 2wi, where wi is an integer. This is
done using the following constraint for each i ∈Ve.

∑
e∈E

aieye = 2wi. (6.16)

Similarly, we need to ensure that for each node j ∈Vo, the number of copies of edges
that are added and are incident on j must be odd, i.e., can be represented in the form
2w j +1, where w j is an integer. This is done using the following constraint for each
i ∈Vo.

∑
e∈E

a jeye = 2w j +1. (6.17)

These two sets of constraints are enough to decide how many copies of each edge
need to be added to the network to make it Eulerian.

6.4 Algorithms for Routing Problems 157

If we need to solve a weighted Chinese postman problem, the constraint sets
remain the same as that in the unweighted problem. The only change that occurs in
the formulation is that our objective changes to

Minimize ∑
e∈E

leye (6.18)

where le is the length of the edge e.
The complete formulation of the Chinese postman problem is given in Fig-

ure 6.11.

Minimize

z = ∑
e∈E

ye

Subject to

∑
e∈E

aieye = 2wi for all i ∈Ve

∑
e∈E

a jeye = 2w j +1 for all j ∈Vo

ye ∈ {0,1,2, . . .} for each e ∈ E

Fig. 6.11. Linear programming formulation of the Chinese postman problem

We now illustrate this formulation on the network shown in Figure 6.4. The bi-
nary decision variables that we define are yAB, yBC, yCD, yAD, and yBD, which deter-
mine how many copies of edges A – B, B – C, C – D, A – D, and B – D, respectively,
we need to add to the network to make it Eulerian. We also introduce integer variables
wA, wB, wC, and wD for the four nodes A, B, C, and D respectively. Set Vo = {B,D}
and Ve = {A,C}. The formulation is described in Figure 6.12.

6.4 Algorithms for Routing Problems

Here too, we separate the discussion into two parts, the first part dealing with node
routing problems, and the second part dealing with arc routing problems. In node
routing, we will describe algorithms for the traveling salesman problem, and in arc
routing we will describe an algorithm for the Chinese postman problem.

6.4.1 Traveling salesman problem

The traveling salesman problem is a NP-hard problem. This means that we do not
have an algorithm for finding an optimal solution to all instances of traveling sales-
man problems within reasonable time. In this regard, the traveling salesman problem

158 6 Cyclic Routing on Networks

Minimize

z = yAB + yBC + yCD + yAD + yBD

Subject to

yAB + yAD−2wA = 0 (Constraint (6.16 at A)

yAB + yBC + yBD−2wA = 1 (Constraint (6.17 at B)

yBC + yCD−2wC = 0 (Constraint (6.16 at C)

yAD + yBD + yCD−2wD = 1 (Constraint (6.17 at D)

yAB,yBC,yCD,yAD,yBD ∈ {0,1,2, . . .} (Integer variables)

Fig. 6.12. Formulation of the Chinese postman problem example

is of a more similar level of difficulty as location problems rather than of the net-
work flow problems or the minimum spanning tree problems. However, it would be
incorrect to assume that all instances of the traveling salesman problem are difficult
to solve. For example, Problem A in Figure 6.6 is much easier to solve than Problem
B, although both the problems have the same number of cities. (Try to find a shortest
round trip for both instances.)

Fig. 6.13. Same sized TSP instances may vary in difficulty

Algorithms to generate an optimal tour for the traveling salesman problem typ-
ically depend on branch and bound. The basic concepts of branch and bound have
been explained in detail in Chapter 4.

For the traveling salesman problem, a bound can be obtained by ignoring the sub-
tour elimination constraints in the first formulation of the traveling salesman problem

6.4 Algorithms for Routing Problems 159

described in Section 6.3. This is simply an assignment problem as defined in Chap-
ter 4, and can be solved efficiently using either the linear programming technique, or
using more specialized algorithms.

The solution to the assignment problem that yields the bound normally contains
subtours. When we choose a subproblem for the branching procedure, we look at
the solution to the assignment problem defined on that subproblem. If the solution
to the assignment problem contains a single tour, then that subproblem need not be
considered for branching. If the subproblem contains two or more subtours, then we
choose the subtour containing the smallest number of arcs. Assume that this subtour
consists of m arcs. The branching procedure then creates m subproblems from this
subproblem. In subproblem i, the branching procedure stipulates that the ith arc of
the subtour should not be included.

As an example, let us describe the branch and bound procedure for the traveling
salesman problem described in Section 6.1. We use the structures described for the
branch and bound algorithm in Chapter 4. Initially LIST contains the original prob-
lem (denoted as P0), BEST = /0, and BESTCOST = ∞. In the first iteration, we re-
move P0 from LIST, and solve an assignment problem on this network. The solution
to the assignment problem on this network contains the three subtours C→R1→C,
R2→R5→R2, and R3→R4→R3; its cost is e2750. We choose the first subtour for
branching. Since it contains two arcs, C→R1 and R1→C, we generate two subprob-
lems, P1 in which we stipulate that arc C→R1 should be absent, and P2 in which we
stipulate that arc R1→C should not be present. At the end of this iteration, LIST =
{P1,P2}, BEST = /0, and BESTCOST = ∞. For this problem, the branch and bound
method described here requires eight iterations. The details of these iterations are
given in Table 6.3.

Since the traveling salesman problem is hard to solve in general, several heuris-
tics have been developed for it. In the following, we describe a few of the heuristics
which are commonly used to obtain good quality solutions to the traveling salesman
problem within reasonable time. Since the network for the problem described in Sec-
tion 6.1 is dense, we shall use the network in Figure 6.14 to illustrate the descriptions
of the heuristics. Note that all the heuristics described here can get stuck on certain
type of networks unless we consider edges that are absent in the network to be edges
that are present but have infinite costs.

Nearest Neighbor

The nearest neighbor heuristic starts from any node in the graph, and chooses the
node nearest to it. These two nodes are joined to form a partial tour. A third node
that is closest to one of the two nodes is then chosen and joined to the node in the
partial tour that is closest to it. This forms a partial tour with three nodes. Next a
node that is closest to one of the endpoints of the partial tour is chosen, and joined to
the partial tour. In this way the partial tour expands till there are no nodes left that are
not in the partial tour. At this point, the end points of the partial tour are connected to
each other to form a TSP tour. In some cases, this last connection is very expensive
and gives rise to poor quality solutions.

160 6 Cyclic Routing on Networks
Ta

bl
e

6.
3.

B
ra

nc
h

an
d

bo
un

d
in

ac
tio

n

It
er

at
io

n
L

IS
T

B
E

ST
B

E
ST

C
O

ST
Su

b-
B

ou
nd

D
ec

is
io

n
(i

n
e

)
pr

ob
le

m
(i

n
e

)
ch

os
en

1
{P

0}
/0

∞
P 0

27
50

B
ra

nc
h

on
C
→

R
1→

C
2

{P
1,

P 2
}

/0
∞

P 2
28

25
B

ra
nc

h
on

R
2→

R
5→

R
2

3
{P

2,
P 3

,P
4}

/0
∞

P 2
28

25
B

ra
nc

h
on

R
2→

R
5→

R
2

4
{P

3,
P 4

,P
5,

P 6
}

/0
∞

P 3
32

50
U

pd
at

e
B

E
ST

5
{P

4,
P 5

,P
6}

T
?

32
50

P 4
3,

92
7,

99
2.

49
C

on
tin

ue
6

{P
5,

P 6
}

T
?

32
50

P 5
4,

07
1,

42
0.

00
C

on
tin

ue
7

{P
6}

T
?

32
50

P 6
4,

18
5,

00
0

C
on

tin
ue

8
/0

T
?

32
50

Te
rm

in
at

e

T
?

=
C
→

R
4→

R
3→

R
5→

R
2→

R
1→

C

P 0
:O

ri
gi

na
lp

ro
bl

em
A

ss
ig

nm
en

tp
ro

bl
em

so
lu

tio
n:

{C
→

R
1→

C
,R

2→
R

5→
R

2,
R

3→
R

4→
R

3}
P 1

:{
P 0

,y
C

,R
1

=
0}

A
ss

ig
nm

en
tp

ro
bl

em
so

lu
tio

n:
{R

2→
R

5→
R

2,
C
→

R
3→

R
4→

R
1→

C
}

P 2
:{

P 0
,y

R
1,

C
=

0}
A

ss
ig

nm
en

tp
ro

bl
em

so
lu

tio
n:

{R
2→

R
5→

R
2,

C
→

R
1→

R
4→

R
3→

C
}

P 3
:{

P 1
,y

R
2,

R
5

=
0}

A
ss

ig
nm

en
tp

ro
bl

em
so

lu
tio

n:
{C
→

R
4→

R
3→

R
5→

R
2→

R
1→

C
}

P 4
:{

P 1
,y

R
5,

R
2

=
0}

A
ss

ig
nm

en
tp

ro
bl

em
so

lu
tio

n:
{C
→

R
3→

R
4→

R
2→

R
5→

R
1→

C
}

P 5
:{

P 2
,y

R
2,

R
2

=
0}

A
ss

ig
nm

en
tp

ro
bl

em
so

lu
tio

n:
{C
→

R
1→

R
5→

R
2→

R
4→

R
3→

C
}

P 6
:{

P 2
,y

R
5,

R
2

=
0}

A
ss

ig
nm

en
tp

ro
bl

em
so

lu
tio

n:
{C
→

R
1→

R
4→

R
2→

R
5→

R
3→

C
}

6.4 Algorithms for Routing Problems 161

Fig. 6.14. Network used as example to explain heuristics

A description of the heuristic is given below, and the way it works for the graph
in Figure 6.14 is shown in Figure 6.15. The thick lines refer to the current solution.
The tour output by the nearest neighbor heuristic for the graph in Figure 6.14 is A –
B – D – E – C – A with a length of 18 units.

Nearest Neighbor Heuristic
Input: A weighted graph G = (V,E,d).
Output: A TSP tour T in G.
Step 1: Choose any node u in G, and find its closest neighbor v in the graph. Set

T ← (u,v), end1← u, end2← v, and spanned←{u,v}. Go to Step 2.
Step 2: If there are no nodes in V that are not in spanned, then set T ← T ∪

(end1,end2), output T and terminate. Else go to Step 3.
Step 3: Choose a node w ∈V \ spanned such that it is a node in V \ spanned that is

closest to either end1 or end2. If w is closer to end1 than end2, then set T ← T ∪
(end1,w), spanned← spanned∪{w}, and end1←w. Else set T← T ∪(w,end2),
spanned← spanned∪{w}, and end2← w. Go to Step 2.

Nearest Insertion

The nearest insertion heuristic is another popular heuristic for the TSP. At any itera-
tion, a round trip involving a subset of all the nodes in the graph is maintained, and
a new node added to the round trip. If any new node is to be added to the current
trip, then one edge of the current trip needs to be deleted, and the two end points
of the path thus formed need to be connected to the new node to re-create a round
trip. The nearest insertion heuristic does this in the cheapest way possible at each

162 6 Cyclic Routing on Networks

Fig. 6.15. Nearest neighbor heuristic in action

6.4 Algorithms for Routing Problems 163

iteration. A description of the heuristic is given below, and the way it works for the
graph in Figure 6.14 is shown in Figure 6.16. Here too, the thick lines refer to the
current solution. The tour output by the nearest insertion heuristic for the graph in
Figure 6.14 is A – B – E – C – D – A with a length of 13 units. Notice that this
heuristic avoids the link D – E that contributed significantly to the cost of the tour
output by the nearest neighbor heuristic.

Nearest Insertion Heuristic
Input: A weighted graph G = (V,E,d).
Output: A TSP tour T in G.
Step 1: Choose any node u in G, and find its closest neighbor v in the graph. Set

T ←{(u,v),(v,u)}, and spanned←{u,v}. Go to Step 2.
Step 2: If there are no nodes in V that are not in spanned, then output T and termi-

nate. Else go to Step 3.
Step 3: For each node w ∈V \ spanned compute the cost of insertion of w, costw =

min{c(u,w)+c(w,v)−c(u,v)|(u,v) ∈ T}. Choose a node w∗ with the minimum
cost of insertion, and insert it in the tour as cheaply as possible. Set spanned←
spanned∪{w}. Go to Step 2.

Farthest Insertion

The farthest insertion heuristic is a variant of the nearest insertion heuristic. At each
iteration, it also starts with a round trip involving a subset of all the nodes in the
graph, and a new node is added, but the new node is added in the most expensive
way possible. A description of the heuristic is given below, and the way it works for
the graph in Figure 6.14 is shown in Figure 6.17. Here too, the thick lines refer to
the current solution. The tour output by the nearest insertion heuristic for the graph
in Figure 6.14 is A – C – B – E – D – A with a length of 22 units. This is the worst of
the three for this graph, but the farthest insertion heuristic returns solutions that are
better, on average, than those returned by the nearest insertion heuristic!

Farthest Insertion Heuristic
Input: A weighted graph G = (V,E,d).
Output: A TSP tour T in G.
Step 1: Choose any node u in G, and find its farthest neighbor v in the graph. Set

T ←{(u,v),(v,u)}, and spanned←{u,v}. Go to Step 2.
Step 2: If there are no nodes in V that are not in spanned, then output T and termi-

nate. Else go to Step 3.
Step 3: For each node w ∈V \ spanned compute the cost of insertion of w, costw =

min{c(u,w)+c(w,v)−c(u,v)|(u,v)∈ T}. Choose a node w∗ with the maximum
cost of insertion, and insert it in the tour as cheaply as possible. Set spanned←
spanned∪{w}. Go to Step 2.

The heuristics mentioned above are all construction heuristics, meaning that they
have a TSP tour only at the end of their execution. There also are heuristics called im-
provement heuristics, that start out with a TSP tour, and try to improve the tour using

164 6 Cyclic Routing on Networks

Fig. 6.16. Nearest insertion heuristic in action

certain fairly general methods. Here we describe one such improvement heuristic,
namely the 2-opt heuristic.

2-Opt

The 2-opt heuristic starts with a tour input by the user as the tour at hand, and
searches its neighborhood for a better tour. If it finds a “better” tour (i.e., a tour
with lower cost) in the neighborhood, then it calls this better tour the tour at hand,
and again searches the neighborhood. The search stops when no tour in the neigh-
borhood of the tour at hand is better than it. The neighborhood is defined by a set
of moves which change the tour at hand. In the 2-opt heuristic, a move is defined
as follows. Break the tour into two partial tours by removing two non-consecutive

6.4 Algorithms for Routing Problems 165

Fig. 6.17. Farthest insertion heuristic in action

edges, and then recombine the two partial tours using two different edges to form a
neighboring tour. A 2-opt move is illustrated in Figure 6.18. The tour at hand is A –
B – C – D – E – A. The partial tours E – A – B and C – D are formed by eliminating
two edges (shown with dotted lines in the second diagram) and are reconnected to
form the neighboring tour A – B – D – C – E – A. In this case, the original tour A
– B – C – D – E – A had a cost of 25, while the neighboring tour A – B – D – C
– E – A has a cost 16, which is better. This move therefore is called an improving
2-opt move. A description of the heuristic is given below, and the way it works for
the graph in Figure 6.14 starting with the output of the farthest insertion heuristic
as the input tour is shown in Figure 6.17. As in the previous cases, the thick lines
represent the solution at hand. The 2-opt heuristic returns the tour A – B – E – C – D
– A with a cost of 13 units.

166 6 Cyclic Routing on Networks

Fig. 6.18. A 2-opt move

2-Opt Heuristic
Input: A weighted graph G = (V,E,d), and a TSP tour Tin.
Output: A 2-opt tour T in G.
Step 1: Set T ← Tin. Go to Step 2. (T is the tour at hand.)
Step 2: If no improving move is found from T , output T and terminate. Else go to

Step 3.
Step 3: List all tours in the neighborhood of T that are obtained from T by improving

2-opt moves. Let Tbest be the tour in the list with the lowest cost. Set T ← Tbest .
Go to Step 2.

6.4 Algorithms for Routing Problems 167

Fig. 6.19. 2-opt heuristic in action

6.4.2 Chinese postman problem

Contrary to the traveling salesman problem, the Chinese postman problem is not a
hard problem except for mixed graphs, i.e., graphs containing both edges and arcs.
This means that there are algorithms that solve all instances of the Chinese postman
problem in time reasonable for the size of the problem.

Algorithms to solve the Chinese postman problem generally work in two phases.
In the first phase, the network is augmented into an Eulerian network using the min-
imum number of copies of the edges in the network. In the second phase, the algo-
rithm outputs a Chinese postman tour on the augmented network. Of course, if the
original network is already Eulerian, the first phase is unnecessary.

168 6 Cyclic Routing on Networks

The first phase

We start this phase with a network, say N = (V,E), and augment it into an Eulerian
network NE = (V,EE) by adding the minimum number of copies of the edges in E.
To do so, we first partition V into sets Vo consisting of nodes of odd degree in N, and
Ve consisting of nodes of even degree in N. We next form a new complete weighted
network N′ on the nodes in Vo. To do this, for each pair of nodes i and j in Vo, we
create an edge in N′. This edge corresponds to the path between i and j in N with the
minimum number of edges in it, and the number of edges in this path is taken as the
weight of the edge i – j in N′. Once N′ is constructed, we use a matching algorithm
(see Chapter 4) to find a minimum weight matching in N′. This matching is a perfect
matching, since the number of nodes in Vo is even, and the network N′ is complete.
We then create NE as follows. First we copy each edge in E to EE . Next, for each
edge in N′ that was part of the minimum weight matching, we add one copy of all
the edges in N that were present in the path from i to j with the minimum number of
edges. It can be seen that the network NE is Eulerian. We next use NE as an input for
the second phase of the algorithm.

The second phase

In the second phase, we start with a network that is Eulerian, and find a tour on the
network that traverses each of the edges in the network exactly once. We do this
by constructing tours that progressively include all edges in the network. In the first
iteration, we construct a tour on the network, not necessarily covering each of the
edges in the network. Let us call this tour T1. Now let the tour constructed at the
end of iteration i be Ti. In the (i + 1)th iteration, we choose a vertex v that is visited
by the tour Ti, and also has an edge incident on it that is not a part of the tour. We
construct an auxiliary tour Ta that starts from v and returns to it after traversing edges
that are not part of Ti. Such a path exists because the network we are dealing with is
Eulerian. We end the iteration by creating the tour Ti+1 which combines Ti and Ta. To
do this, we start Ti+1 at vertex v, traverse the edges that made Ti to reach v, start out
from v, this time traversing the edges that made Ta, and return to v again. We carry
out these iterations until there is an iteration f such that Tf contains all the edges in
the Eulerian network. The path thus formed is an optimal solution to the network we
started the first phase with.

As an illustration, let us describe how this algorithm works on the network in
Figure 6.4. In this network, Vo corresponds to {B,D}. The shortest path between
B and D in the network is the direct arc B – D, and hence the Eulerian network
formed at the end of the first stage is as shown in Figure 6.20. The second stage of
the algorithm starts with the network in Figure 6.20. We see this network in the top
left hand side of Figure 6.21. In the first iteration, we create the tour T1 = A – B –
C – D in the network. This tour is shown in bold lines in the top right hand side of
the figure. Next we start the second iteration. B – D is an edge in the network that is
not part of T1, but is incident on node B, which is visited by T1. Thus we form the
auxiliary tour B – D – B in the network which does not have any edge in common
with T1. This auxiliary tour is shown with broken lines in the diagram at the bottom

6.5 Other Routing Problems 169

Fig. 6.20. Augmenting the network in Figure 6.4 to an Eulerian network

left side of Figure 6.21. Adding this to T1, we obtain T2, B – C – D – A – B – D – B.
This tour is shown in the diagram at the bottom right side of Figure 6.21. Since this
tour traverses all edges in the network, the algorithm stops. The optimal tour to the
Chinese postman problem described by the network in Figure 6.4 is thus B – C – D –
A – B – D – B.

6.5 Other Routing Problems

6.5.1 The bottleneck traveling salesman problem

Consider a sales representative in a company, who needs to meet clients at a num-
ber of locations connected to each other through a road network. Assume that the
locations are in a sparsely populated region, so that, if the sales representative’s car
breaks down en route from one location to another, the sales representative would
have a hard time getting the car repaired. In this situation, the sales representative
would like to compute a round trip from his base location connecting all other loca-
tions and coming back to his original location in such a way that no leg of the trip
is too large. The problem of finding such a round trip is known as the bottleneck
traveling salesman problem.

Formally stated, in a bottleneck traveling salesman problem one is given a di-
rected weighted graph G = (V,A,W). The objective of the problem is to construct a
simple cycle in G, passing through each node in V , such that the maximum of the
weights of the arcs in the cycle is as small as possible.

170 6 Cyclic Routing on Networks

Fig. 6.21. Algorithm for the Chinese postman problem in action

6.5.2 The prize-collecting traveling salesman problem

Consider a factory that needs a certain quantity of raw material for its functioning.
This raw material is available at multiple supply locations. Under contract, if the
factory decides to collect material from a particular source, it has to collect the full
stock of that source. The factory manager wants to find out the sequence in which raw
material needs to be collected from the various suppliers to satisfy the requirements
of the factory at minimum cost. This problem is called the prize-collecting traveling
salesman problem. Note that in this problem all sources need not be visited by the
factory.

Formally stated, in the prize collecting traveling salesman problem one is given
a weighted directed graph G = (V,A,W), in which each node v ∈ V is assigned a
non-negative weight pv. The objective is to obtain a simple cycle C in N such that
the sum of the weights at the nodes included in C exceeds a pre-specified number,
and the sum of the weights on the arcs included in C is the minimum possible.

6.6 Exercises on Network Routing Problems 171

6.5.3 The generalized traveling salesman problem

Consider a multinational organization that has offices in several countries. Each
country has at least one office, and some countries have multiple offices in differ-
ent large cities. The organization’s top management decides to hold meetings in each
country for the executives in offices in that country. The cost of transporting the top
management from one country to another is much more than the cost of assembling
all the office managers of a country to a single city in the country. So the organiza-
tion’s problem is to choose a city in each country, and decide on a traveling salesman
tour defined on all the chosen cities. This problem is called the generalized traveling
salesman problem.

Formally stated, in the generalized traveling salesman problem one is given a
weighted directed graph G = (V,A,W), in which V is partitioned into k non-empty
clusters. The objective is to output a simple cycle in G which visits each cluster at
least once. In this context, a cycle visiting a cluster means that the cycle has one arc
whose head is a particular node in the cluster and whose tail is a node outside the
cluster, and another arc whose tail is that node in the cluster and whose head is out-
side the cluster. A common variant of the generalized traveling salesman problem is
the equality constrained generalized traveling salesman problem in which a solution
must visit each cluster exactly once.

6.5.4 The rural postman problem

In a garbage disposal system, the streets in a city are partitioned into seven sets.
Garbage is collected from the houses along the streets in a particular set on one pre-
specified day of the week. The manager of the garbage disposal system needs to find
an efficient way to route garbage trucks on each day of the week so that the collection
of garbage requires minimum time. This problem can be modeled as a rural postman
problem.

In a rural postman problem, one is given a weighted graph G = (V,E,W), and
a set R ⊂ E of edges of the graph. A solution to the problem is a route through G
covering each of the edges in R. The route can pass through the same edge more than
once, if required. The cost of a solution is the product of the weight of an edge and
the number of times the route passes through it, summed over all the edges in the
graph. The objective is to find a minimum cost solution.

6.6 Exercises on Network Routing Problems

Problem 6.1. Production Scheduling
Global Handset Company (GHC) is a subsidiary of GTC that manufactures handsets
for GTC customers. These handsets come in various colors, and GHC works as a job
shop, accepting orders from GTC and delivering them within a desired date. GHC
works 8 hours a day, 5 days a week, and uses injection molding technology to manu-
facture the plastic components in the handsets and are capable of manufacturing 500

172 6 Cyclic Routing on Networks

handsets each hour. The assembly of the handsets requires very little time, so that
the time required to produce a handset depends critically on the number of handset
components that are molded. GHC requires time to change the colors of handsets,
and these changeover times (in minutes) are given in Table 6.4. On Friday evening,

Table 6.4. Changeover times

C
le

ar
W

hi
te

Y
el

lo
w

O
ra

ng
e

R
ed

Pu
rp

le
B

lu
e

G
re

en
B

la
ck

Clear — 15 15 15 15 15 15 15 15
White 49 — 32 50 49 49 50 50 49
Yellow 50 47 — 18 35 47 63 62 65
Orange 65 50 48 — 48 53 64 80 64

Red 63 78 48 34 — 18 79 79 65
Purple 79 80 65 65 47 — 80 79 50
Blue 63 64 77 78 65 65 — 19 49

Green 62 63 77 77 65 64 32 — 47
Black 93 92 92 94 77 63 93 92 —

GHC received an order for 18000 handsets to be delivered next Friday (5 working
days later). The details of the order are given in Table 6.5. GHC knows that it needs

Table 6.5. Work order for GHC

Clear White Yellow Orange Red Purple Blue Green Black
6000 4000 1000 3000 1000 500 500 500 1500

to pay overtime to be able to meet the order. However, by sequencing the produc-
tion activity properly, it can reduce the amount of overtime it must pay. (GHC pays
overtime at the rate of e500 per hour)

(a) Formulate this problem as a weighted Hamiltonian path problem.
(b) Obtain a feasible solution to the problem using the nearest neighbor heuristic

starting with the production of handsets colored “clear”.
(c) Compute a production plan for GHC that requires the lowest production and

changeover time.

At the beginning of day 3 of production, GTC informs GHC that there has been a
mistake, and that the demand for “clear” handsets should be 7000 instead of 6000.
Correspondingly, the demand for “black” handsets should be 500 instead of 1500.

(d) Will this change the production plan? If so, what are the cost implications of this
mistake?

6.6 Exercises on Network Routing Problems 173

Problem 6.2. Audit Team Movement
A large scale audit has been proposed for the 10 units of GTC (named A, B, . . . , J).
These are located in geographically diverse regions of the country, and the cost of
transporting (in es) the audit team from one unit to the other is given in Table 6.6.
The audit team starts from the base unit at G.

Table 6.6. Transportation costs between units

A B C D E F G H I J
A — 200 600 447 632 283 283 447 566 400
B — 632 632 447 200 447 283 447 447
C — 894 721 447 447 894 447 1000
D — 1077 721 447 800 1000 447
E — 400 800 447 283 849
F — 400 447 283 632
G — 721 632 632
H — 600 447
I — 894
J —

(a) What would be the cheapest way of organizing the audit process if the team has
to return to the base unit at G?

(b) The team would like to visit units A,B, G, and J before they visit any of the other
units. Under this consideration, what would be the cheapest way of organizing
the audit process?

(c) The audit team is told that the unit of A is a subsidiary of the unit at G, and
the unit at F is a subsidiary of the unit at B. The audit team therefore would
like to visit A immediately after visiting G, and F immediately after visiting B.
Under this consideration, and without the consideration in (b) above, what is the
cheapest way of organizing the audit?

Problem 6.3. Scheduling Discussion Meetings
The maintenance department of GTC is executing 14 projects at the moment. These
projects are labeled P1, . . . , P14. The supervisor of the department, Ms. Thomas, has
chosen to meet the seven employees that work on the projects. The employees are la-
beled A1, . . . , A7. An employee may be involved in more than one project. Table 6.7
lists the employee project relations. From this table, we can see that, for example,
employee A5 is involved in projects P7, P10, P12, and P14. In order to schedule the
meetings most efficiently, Ms. Thomas has to ensure that the total number of times
that employees have to go and come back for discussing another project has to be

174 6 Cyclic Routing on Networks

minimized. For instance, for employee A2, it is most efficient if projects P1, P2, P3,
P7, and P9 are discussed consecutively. In other words, Ms. Thomas wants to reduce
traffic in and out of her office.

Table 6.7. Employee involvement in projects

Employee
Projects A1 A2 A3 A4 A5 A6 A7

P1 1 1
P2 1 1 1
P3 1 1
P4 1 1 1
P5 1 1
P6 1
P7 1 1
P8 1 1
P9 1 1 1

P10 1 1
P11 1
P12 1 1 1
P13 1 1
P14 1 1

(a) Formulate Ms. Thomas’ scheduling problem as a TSP. What is the “distance
matrix” in this case.

(b) Use the nearest neighbor heuristic to find a feasible meeting schedule, starting
with project P1.

(c) Try to improve the solution in part (b) by means of the 2-opt heuristic.
(d) Apply the farthest and nearest insertion heuristic for finding feasible schedules.

Try to improve these solutions by means of the 2-opt heuristic. What is your best
solution found so far?

(e) Employee A4 has been recently released from project P5. What happens to the
distance matrix you constructed in part (a)?

(f) Construct a schedule of meetings to reduce traffic in and out of Ms. Thomas’
office using the nearest insertion heuristic for the case when employee A4 has
been released from project P5. Apply the 2-opt heuristic to the output of the
nearest neighbor heuristic.

(g) Try to find optimal solutions to the scheduling problem with distance matrices
developed in parts (a) and (e).

(h) Try to construct a meeting scheduling problem in which the distance matrix has
all non-zero entries, and all entries have the same value. How many optimal
schedules does such a problem have?

6.6 Exercises on Network Routing Problems 175

Problem 6.4. Traveling in Music Land
GTC is planning to sponsor the development of a theme park, named Music Land.

Fig. 6.22. Map of Music Land

The idea is to build theme areas based on specific music styles, called Jazz Section
(JS), Disco Corner (DC), Reggae Lake (RL), The Street (TS), Avant Garden (AG),
Rocky Mountains (RM), Dance Valley (DV), and Pop Park (PP). Each of these areas
will have a theme restaurant, amusement attractions, and souvenir shops. In addition,
the park will include a Main Plaza (MP) with a multimusical atmosphere, and a
Parking Lot (PL). A map of the theme park is shown in Figure 6.22. The solid lines
between the areas denote pathways that can be used both by pedestrians and by
motorized transport. The dashed lines denote pathways that can be used only by
motorized transport. At points where paths cross in Figure 6.22 (for example, the path
between TS and DV ‘crosses’ the path between MP and AG) there are tunnels which
ensure that the traffic flows do not interfere. The lengths of the various pathways (in
meters) are given in Table 6.8. Since many of the visitors at Music Land prefer to
walk through the park, GTC would like to offer each visitor a brochure with specific
walking tours. The start and finish of all tours should be the Parking Lot, and they
should include all theme areas and the Main Plaza.

176 6 Cyclic Routing on Networks

Table 6.8. Length of pathways (in meters)

PL JS MP DC RL TS AG RM DV PP
PL — 1050 1200 1635 — 1650 — — 1725 840
JS — 555 840 — 645 — — — 1320
MP — 1365 — 585 1230 1875 975 1035
DC — 750 1095 — — — —
RL — 855 1695 — — —
TS — 1095 2070 1440 —
AG — 1425 1260 —
RM — 795 1740
DV — 1005
PP —

(a) What is a shortest walking tour covering all theme parks, the Main Plaza, and the
Parking Lot?

GTC is also thinking of suggesting a scenic walking tour for visitors to Music
Land. It has already collected data from 100 volunteers, who were asked to rate each
pedestrian pathway with a score from 1 through 10, in which 10 denotes the highest
rating (most scenic). Table 6.9 shows the average of these ratings rounded to the
nearest integer.

Table 6.9. Volunteer valuation of pedestrian pathways

PL JS MP DC RL TS AG RM DV PP
PL — 6 7 6 — — — — — 6
JS 6 — — 5 — — — — — 8
MP 7 — — 6 — 7 8 7 — 8
DC 6 5 6 — — 9 — — — —
RL — — — — — 9 8 — — —
TS — — 7 9 9 — — 8 7 —
AG — — 8 — 8 — — 7 — —
RM — — 7 — — 8 7 — 7 —
DV — — — — — 7 — 7 — 8
PP 6 8 8 — — — — — 8 —

(b) What is a most scenic walking tour covering all theme parks, the Main Plaza, and
the Parking Lot?

(c) GTC feels that some visitors would want a walking tour covering all pathways
meant for pedestrians. What would be the length of a shortest tour covering all
pathways that allow pedestrians? Which pathways would be traversed more than
once?

6.6 Exercises on Network Routing Problems 177

GTC also is thinking about having two motorized modes of transportation in Music
Land: streetcar and monorail. These systems can be built only in regions suitable for
motorized transport. However, the cost of building these modes depend on the nature
and gradient of the region. In case the area is rocky, then the cost of laying tracks
is a certain percentage more than if the region was normal. This extra percentage is
called “rocky area bonus”. If the region has a gradient, then there is no extra cost
involved for laying the tracks, but there is a stipulated maximum gradient, that each
of the motorized modes can handle.

Most of the area in Music Land can be called normal. However, the pathways
between Jazz Section and Main Plaza, and between Avant Garden and The Street are
built on rocky areas. The gradient of the pathway from Rocky Mountains to Dance
Valley is 7.1% up. In addition, a bridge needs to be built between Reggae Lake and
Disco Corner at a cost of e1,000,000, if that pathway has to be used by any of the
motorized modes planned.

GTC has been negotiating with PSC Streetcars for the streetcar system. PSC
Streetcars can handle gradients of 8% both up and down. PSC has suggested the cost
structure in Table 6.10 for its streetcar system.

Table 6.10. PSC Streetcar cost structure

Normal capital cost? e950,000/km
Rocky area bonus 10%
Cost of one streetcar e50,000
?: This includes the cost of building stations.

For the monorail system, GTC has been negotiating with two firms, MNRA and
EMCL. Table 6.11 summarizes the relevant information provided by the two firms
in the course of their negotiations with GTC.

Table 6.11. Information provided by MNRA and EMCL

MNRA EMCL
Normal capital cost? e13,000,000/km e15,000,000/km
Rocky area bonus 15% 10%
Station building costs e7,200,000/station e4,300,000/station
Stipulated max. grad. 12% 4.6% up, 6.6% down
Number of trains 2 (one in each direction) 1
Average speed 33 km/hr 28 km/hr
?: This includes the cost of buying the train(s) but excludes cost of building stations.

(d) Suggest a design for the motorized transport modes. Which monorail company
is more profitable for Music Land?

178 6 Cyclic Routing on Networks

(e) There is a possibility of laying a new road from Rocky Mountains to Dance
Valley at a cost of e1,500,000. This road will have a gradient of 5% up, and will
pass through rocky areas. The length of the road will be 900 meters. Does it make
sense to construct this road before the motorized transport modes are built?

Problem 6.5. Designing Bus Routes
GTC has a research wing set up in the city marked A in Figure 6.23. The personnel
for this wing come from the neighboring villages, marked from B through P in the
same figure. The figure also schematically provides the road network between these
villages, with the length of the road segment between a pair of villages (in kilome-
ters) marked on the line joining the two. For example, villages B and C are connected
by a road 1.0 kilometer long.

GTC wants to make use of a bus service to pick up all the personnel from their
villages at the start of the day, and drop them back after work. It is negotiating a
contract with a local bus service company BSC. The bus service company has given
GTC two options.

In the first option, BSC provides GTC with a long distance bus, which starts at A
and with which GTC can pick up all its personnel in one round trip and deposit them
to its research wing at A. The cost of hiring the bus is e2000 per month, and BSC
will charge e7.50 per kilometer traveled by the bus in each month.

In the second option, BSC will provide GTC with two minibuses. These minibuses
can travel up to 10 kilometers in one trip. Using these buses, GTC has to plan two
round trips to transport all its personnel to and from the research wing. The cost of
hiring each minibus is e1050 per month and BSC will charge as usual e7.00 per
kilometer traveled by the bus in each month.

On an average, GTC works 20 days in a month.

(a) GTC wants to figure out the approximate cost per month of operating under the
first option. Starting at city A, use the nearest insertion heuristic to come up with
a feasible route and the cost of operating this route. What do you observe?

(b) Find the lowest cost that GTC would have to pay to operate under the first option.
(c) Find by inspection, two routes that the GTC could operate under if they chose

the second option. What is the rationale behind your choice? What is the cost of
operating these two routes?

(d) Using these two routes as a starting solution, and transforming the problem into
a TSP, see if you can apply the 2-opt heuristic to improve the routes obtained in
part (c).

(e) What is the lowest cost that GTC would have to pay to operate under the second
option. How different is it from your answer in part (d)? Based on your result
should GTC use the first option or the second one?

(f) GTC argues that the requirement of round trips is constraining the routes cho-
sen under the second option Can you provide an example in support of GTC’s
argument?

6.6 Exercises on Network Routing Problems 179

Fig. 6.23. Distance map for the region

180 6 Cyclic Routing on Networks

Problem 6.6. Washing Roads
GTC has set up operations in a developing country. As an advertising measure, they
have decided to take up the responsibility of washing the road network in the down-
town area of the capital of the country, and charge the municipality only for the fuel
costs they incur for the operation. This area consists of nine points (A, B, . . . , I) and a
road network connecting them. GTC has estimated the fuel costs for traversing each
of these roads, and the costs are given (in e cents per day) in Figure 6.24.

Fig. 6.24. Road network and fuel costs

(a) Since this cost is to be incurred every day for a long time, GTC wants to compute
the most efficient route to employ in cleaning the area. What is the minimum per
day that GTC should be prepared to incur in fuel costs?

(b) There is some repair work being done on segments between A and D and between
G and H. During the time this repair work is on, GTC does not need to wash
these segments. The municipality wants to know if GTC would reduce their daily
charge, and if so, by how much?

(c) Consider the situation in part (a). The municipality informs GTC that they are
planning a new road between points B and H, and wants GTC to take the re-
sponsibility of cleaning this segment at no extra cost. GTC estimates that the fuel
cost for traversing this road segment is e0.50 per day. Should GTC agree on this
extension of contract?

(d) If the municipality finished constructing the road between B and H while the
repair work was being done on segments between A and D and between G and
H. If GTC is to take up the road washing activity on the road network including
the new road but excluding the segments on which repair work was being done,
how much fuel costs would GTC incur per day?

References 181

References

1. E. Aarts, J.K. Lenstra (Eds.) (1997), Local Search in Combinatorial Optimization,
John Wiley & Sons, New York.

2. R.K. Ahuja, T.L. Magnanti, J.B. Orlin (1993), Network Flows; Theory, Algorithms
and Applications, Prentice Hall.

3. J.M. Aldous, R.J. Wilson (2001), Graphs and Applications; an Introductory Ap-
proach, Springer.

4. M.S. Bazaraa, J.J. Jarvis, H.D. Sherali (1990), Linear Programming and Network
Flows, 2nd Edition, John Wiley & Sons, New York.

5. L.D. Bodin, B.L. Golden, A.A. Assad, M.O. Ball (1983), Routing and Scheduling of
Vehicles and Crews; the State of the Art, Computers and Operations Research 10,
pp. 69-211.

6. J.A. Bondy, U.S.R. Murty (1977), Graph Theory with Applications, American Else-
vier Publishing Co., Inc.

7. B.H. Boon, G. Sierksma (2003), Team Formation: Matching Quality Supply and
Quality Demand, European Journal of Operational Research 148, pp. 277-292.

8. D.J. Bowersox, D.J. Closs (1996), Logistical Management: the Integrated Supply
Chain Process, The McGraw-Hill Companies, Inc.

9. J. Bramel, D. Simchi-Levi (1997), The Logic of Logistics; Theory, Algorithms, and
Applications for Logistics Management, Springer-Verlag, New York.

10. W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver (1998), Combinato-
rial Optimization, John Wiley & Sons, Inc.

11. V. Chvátal (1983), Linear Programming, W.H. Freeman and Company, New York.
12. M.S. Daskin (1995), Network and Discrete Location; Models, Algorithms, and Ap-

plications, John Wiley & Sons, Inc.
13. D.-Z. Du, P.M. Pardalos (1998) Handbook of Combinatorial Optimization, Volumes

1, 2, and 3, Springer.
14. J.R. Evans, E. Minieka (1992), Optimization Algorithms for Networks and Graphs,

2nd Ed., Marcel Dekker, Inc., New York.
15. G. Gutin, A.P. Punnen (Eds.) (2002), The Traveling Salesman Problem and its Vari-

ations, Kluwer Academic Publishers.
16. F.S. Hillier, G.J. Lieberman (1995), Introduction to Operations Research, 6th Ed.,

McGraw-Hill, Inc.
17. P.A. Jensen, J.F. Bard (2003), Operations Research; Models and Methods, John Wi-

ley & Sons, Inc.
18. D. Jungnickel (1999), Graphs, Networks, and Algorithms, Springer-Verlag, Berlin.
19. B. Korte, J. Vygen (2002), Combinatorial Optimization; Theory and Algorithms,

2nd Ed., Springer-Verlag.
20. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (Eds.) (1990), The

Traveling Salesman Problem; a Guided Tour of Combinatorial Optimization, John
Wiley & Sons, Chichester.

21. J. Lee (2004), A First Course in Combinatorial Optimization, Cambridge University
Press.

22. P.B. Mirchandani, R.L. Francis (1990), Discrete Location Theory, John Wiley &
Sons, Inc.

23. J.M. Padberg (1995), Linear Optimization and Extensions, Springer-Verlag.
24. C.H. Papadimitriou, K. Steig1itz (1982), Combinatorial Optimization: Algorithms

and Complexity, Prentice-Hall, Inc., Engelwood Cliffs, N.J.

182 6 Cyclic Routing on Networks

25. A. Schrijver (1986), Theory of Linear and Integer Programming, John Wiley & Sons,
Chichester.

26. A. Schrijver (2003), Combinatorial Optimization: Polyhedra and Efficiency, Vol-
umes A, B, and C, Springer.

27. G. Sierksma (2002), Linear and Integer Programming; Theory and Practice, 2nd
Ed., Marcel Dekker, Inc., New York.

28. G. Sierksma, G.A. Tijssen (1998), Routing Helicopters for Crew Exchanges on Off-
shore Locations, Mathematics of Industrial Sciences, Vol. 3, Annals of Operations
Research, Baltzer’s Publishers.

29. D. Simchi-Levi, P. Kaminski, E. Simchy-Levi (2003), Designing and Manging the
Supply Chain; Concepts, Strategies, and Case Studies, McGraw-Hill.

30. H.A. Taha (2003), Operations Research: an Introduction, 7th Ed., Pearson Educa-
tion, Inc., Upper Saddle River, N.J.

31. H.P. Williams (1990), Model Building in Mathematical Programming, John Wiley
& Sons, Chichester.

32. H.P. Williams (1993), Model Solving in Mathematical Programming, John Wiley &
Sons, Chichester.

33. R.J. Wilson, J.J. Watkins (1990), Graphs: an Introductory Approach, John Wiley &
Sons, Inc.

34. W.L. Winston (2003), Operations Research: Applications and Algorithms, 4th Ed.,
Thomson Brooks/Cole, Thomson Learning, Inc.

35. L.A. Wolsey (1998), Integer Programming, John Wiley & Sons, Inc.

Index

Access point, 60
Algorithm, 7

approximate, 7, 8
complete enumeration, 8
elementary step, 8
exact, 7, 9
exhaustive enumeration, see complete

enumeration algorithm
Ford-Fulkerson’s, 72
Kruskal’s, 47–49
Prim’s, 44, 47
shortest path problem, 22

Bellman and Ford’s, 26
Dijkstra’s, 22, 24, 26, 75

Bandwidth, 50, 61
Bottleneck, 80, 81, 90
Bus routing, 178

Cell formation, 55
Checkpoint, 84
Commodity flow, 84
Connectivity, 37

Demand locations, 79
Digraph, see directed graph
Distance matrix, 174

Employee
firing, 34
hiring, 34
training, 34

Graph, 4

acyclic, 6
adjacency matrix, 9
bipartite, 5, 88

complete, 5
complete, 5
connectivity, 3
cycle, 6
directed, 4

arc, 4
edge, 4
incidence matrix, 9

node arc, 10
link, see edge
mixed, 5
multigraph, 4
network, 4
node, 4

destination node, 81
source node, 81

path, 6
length, 6
shortest, 7, 17, 22–24, 30, 34, 35, 38

representation, 9
simple, 4
tour, 6
tree, 38

minimum spanning, 38, 39, 43, 44, 46,
55

minimum spanning problem, 38
spanning, 38

vertex, see node
walk, 6
weighted, 4

184 Index

Help desk, 102, 103
Heuristic, see approximate algorithm

Incidence matrix
machine-product, 55, 57, 58

Job
due date, 81, 83
preemption, 81
release date, 81, 83

Manpower planning, 34
Matching

maximal, 88
maximum weight, 88
perfect, 88
stable, 114

Mean, 107

Normal distribution, 107
NP-hard, see hard problem

Perturbation function, 101, 110
Phone device, 105, 107
Planning period, 81
Preference

level, 114
rating, 114, 115

Problem
assignment, 88
easy, 8
hard, 8
location, 137
matching

bottleneck, 90
non-bipartite, 88
roommate, 89

maximum flow, 63
minimum cost flow, 62
minimum spanning tree, 38

Processing time, 81, 83
Production planning, 81
Project

stage, 101
task, 103–106

Radio telescope, 59
Reliability, 52, 55, 80, 85, 107, 137
Route

quickest, 31
shortest, 31

Scenario, 54, 55
Schedule, 81, 173, 174

hiring-firing, 34
Scheduling

job shop, 171
Service level, 139
Soccer, 111
Solution

optimal, 7
Standard deviation, 107, 108
Subsidy, 35, 52, 54

margin, 52
Supply chain, 137
Switching point, 142

Task, 104
Team building, 103
Tie-in sale, 108
Tolerance

interval, 31, 54, 105, 107
upper, 31, 77, 81

Transmission time, 107, 108
Transportation

cost, 77
plan, 77, 80

TSP, 147, 174, 178
heuristic

2-opt, 164, 166, 167, 174, 178
2-opt move, 165, 166
2-opt neighborhood, 165
construction, 163
farthest insertion, 163, 165, 174
improvement, 163
nearest insertion, 161, 163, 164, 174,

178
nearest neighbor, 159, 161–163, 172,

174
move, 164
neighborhood, 164
tour, 159, 163

partial, 159

Utilization, 80

VRP, 147
Vulnerable connection, see reliability

Warehouse, 77, 139
WHPP, 172

	cover-large.BMP
	C.pdf
	Networks in Action
	Preface
	Contents

	C_001.pdf
	The Modeling and Implementing Process

	C_002.pdf
	Network Theory
	Graphs and Networks
	Solution Techniques
	Graph Representations

	C_003.pdf
	References with Comments

	C_004.pdf
	Shortest Paths
	1.1 Introduction
	1.2 Applications
	1.2.1 Scheduling truck movement through cities
	1.2.2 Making investment plans

	1.3 A Linear Programming Formulation
	1.4 Algorithms for Shortest Path Problems
	1.4.1 Dijkstra’s algorithm
	1.4.2 Bellman-Ford’s algorithm

	1.5 Other Path Problems
	1.5.1 The longest path problem
	1.5.2 The bottleneck shortest path problem
	1.5.3 The hop-constrained shortest path problem
	1.5.4 The Hamiltonian path problem
	1.5.5 The stochastic shortest path problem

	1.6 Exercises on Shortest Path Problems

	C_005.pdf
	Minimum Spanning Trees
	2.1 Introduction
	2.2 Applications
	2.2.1 Designing networks for disasters
	2.2.2 Group technology
	2.2.3 Storing large but similar data

	2.3 Linear Programming Formulations
	2.4 Algorithms for Minimum Spanning Trees
	2.4.1 Prim’s algorithm
	2.4.2 Kruskal’s algorithm

	2.5 Other Tree Problems
	2.5.1 The Steiner tree problem
	2.5.2 The capacitated minimum spanning tree problem
	2.5.3 The degree constrained minimum spanning tree problem
	2.5.4 The most reliable minimum spanning tree problem

	2.6 Exercises on Minimum Spanning Tree Problems

	C_006.pdf
	Matchings
	4.1 Introduction
	4.2 Applications
	4.2.1 Constructing university timetables
	4.2.2 Constructing 3-dimensional models from 2-dimensional data
	4.2.3 Crew pairing

	4.3 Linear Programming Formulations
	4.3.1 The maximum cardinality matching problem
	4.3.2 The maximum weight matching problem
	4.3.3 The non-bipartite matching problem
	4.3.4 The bottleneck matching problem

	4.4 Algorithms for Matchings
	4.5 Other Matching Problems
	4.5.1 The stable marriage problem
	4.5.2 The 3-dimensional stable matching problem

	4.6 Exercises on Matching Problems

	C_007.pdf
	Matchings
	4.1 Introduction
	4.2 Applications
	4.2.1 Constructing university timetables
	4.2.2 Constructing 3-dimensional models from 2-dimensional data
	4.2.3 Crew pairing

	4.3 Linear Programming Formulations
	4.3.1 The maximum cardinality matching problem
	4.3.2 The maximum weight matching problem
	4.3.3 The non-bipartite matching problem
	4.3.4 The bottleneck matching problem

	4.4 Algorithms for Matchings
	4.5 Other Matching Problems
	4.5.1 The stable marriage problem
	4.5.2 The 3-dimensional stable matching problem

	4.6 Exercises on Matching Problems

	C_008.pdf
	Facility Location
	5.1 Introduction
	5.2 Applications
	5.2.1 Cluster analysis
	5.2.2 Locating undesirable facilities

	5.3 Linear Programming Formulations
	5.3.1 The uncapacitated facility location problem
	5.3.2 The capacitated facility location problem
	5.3.3 The p-median problem
	5.3.4 The p-center problem

	5.4 Algorithms for Location Problems
	5.4.1 An exact algorithm: Branch and bound
	5.4.2 A non-exact algorithm: Greedy heuristic

	5.5 Other Facility Location Problems
	5.5.1 The competitive facility location problem
	5.5.2 The multi-objective facility location problem

	5.6 Exercises on Facility Location Problems

	C_009.pdf
	Cyclic Routing on Networks
	6.1 Introduction
	6.2 Applications
	6.2.1 Manufacturing of printed circuit boards
	6.2.2 Order picking in warehouses
	6.2.3 Postal delivery routing

	6.3 (Integer) Linear Programming Formulations
	6.3.1 The traveling salesman problem
	6.3.2 The Chinese postman problem

	6.4 Algorithms for Routing Problems
	6.4.1 Traveling salesman problem
	6.4.2 Chinese postman problem

	6.5 Other Routing Problems
	6.5.1 The bottleneck traveling salesman problem
	6.5.2 The prize-collecting traveling salesman problem
	6.5.3 The generalized traveling salesman problem
	6.5.4 The rural postman problem

	6.6 Exercises on Network Routing Problems

	C_010.pdf
	References
	Index

