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Introduction

José Figueira, Salvatore Greco, Matthias Ehrgott

1. Human Reflection about Decision

Decision has inspired reflection of many thinkers since the ancient times. The
great philosophers Aristotle, Plato, and Thomas Aquinas, to mention only a
few names, discussed the capacity of humans to decide and in some manners
claimed that this possibility is what distinguishes humans from animals. To
illustrate some important aspects of decision, let us briefly quote two important
thinkers: Ignatius of Loyola (1491-1556) and Benjamin Franklin (1706-1790).

To consider, reckoning up, how many advantages and utilities follow for me from
holding the proposed office or benefice [...] , and, to consider likewise, on the
contrary, the disadvantages and dangers which there are in having it. Doing the
same in the second part, that is, looking at the advantages and utilities there are
in not having it, and likewise, on the contrary, the disadvantages and dangers in
not having the same. [...] After I have thus discussed and reckoned up on all sides
about the thing proposed, to look where reason more inclines: and so, according
to the greater inclination of reason, [...], deliberation should be made on the thing
proposed.

This fragment from the “Spiritual Exercises” of St. Ignatius of Loyola [14]
has been taken from a paper by Fortemps and Stowiriski [12].

London, Sept 19, 1772
Dear Sir,

In the affair of so much importance to you, wherein you ask my advice, I cannot,
for want of sufficient premises, advise you what to determine, but if you please I
will tell you how. [...], my way is to divide half a sheet of paper by a line into two
columns; writing over the one Pro, and over the other Con. [...] When I have thus
got them all together in one view, I endeavor to estimate their respective weights;
and where I find two, one on each side, that seem equal, I strike them both out. If
I find a reason pro equal to some two reasons con, I strike out the three. If I judge
some two reasons con, equal to three reasons pro, I strike out the five; and thus
proceeding I find at length where the balance lies; and if, after a day or two of
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further consideration, nothing new that is of importance occurs on either side, I
come to a determination accordingly. [...] I have found great advantage from this
kind of equation, and what might be called moral or prudential algebra. Wishing
sincerely that you may determine for the best, I am ever, my dear friend, yours
most affectionately.

B. Franklin

This letter from Benjamin Franklin to Joseph Prestly has been taken from a
paper by MacCrimmon [17].

What is interesting in the above two quotations is the fact that decision is
strongly related to the comparison of different points of view, some in favour
and some against a certain decision. This means that decision is intrinsically
related to a plurality of points of view, which can roughly be defined as criteria.
Contrary to this very natural observation, for many years the only way to state a
decision problem was considered to be the definition of a single criterion, which
amalgamates the multidimensional aspects ofthe decision situation into a single
scale of measure. For example, even today the textbooks of Operations Research
suggest to deal with a decision problem as follows: to first define an objective
function, i.e., a single point of view like a comprehensive profit index (or a
comprehensive cost index) representing the preferability (or dis-preferability)
of the considered actions and then to maximize (minimize) this objective. This
is a very reductive, and in some sense also unnatural, way to look at a decision
problem. Thus, for at least thirty years, a new way to look at decision problems
has more and more gained the attention of researchers and practitioners. This is
the approach considered by Loyola and Franklin, i.e., the approach of explicitly
taking into account the pros and the cons of a plurality of points of view, in other
words the domain of Multiple Criteria Decision Analysis (MCDA). Therefore,
MCDA intuition is closely related to the way humans have always been making
decisions. Consequently, despite the diversity of MCDA approaches, methods
and techniques, the basic ingredients of MCDA are very simple: a finite or
infinite set of actions (alternatives, solutions, courses of action, ...), at least two
criteria, and, obviously, at least one decision-maker (DM). Given these basic
elements, MCDA is an activity which helps making decisions mainly in terms
of choosing, ranking or sorting the actions.

2. Technical Reflection about Decision: MCDA
Researchers before MCDA

Of course, not only philosophers reasoned about decision-making. Many im-
portant technical aspects of MCDA are linked to classic works in economics, in
particular, welfare economics, utility theory and voting oriented social choice
theory (see [28]). Aggregating the opinion or the preferences of voters or indi-
viduals of a community into collective or social preferences is quite similar a
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problem to devising comprehensive preferences of a decision-maker from a set
of conflicting criteria in MCDA [7].

Despite the importance of Ramon Llull’s (1232-1316) and Nicolaus Cu-
sanus’s (1401-1464) concerns about and interests in this very topic, the origins
of voting systems are often attributed to Le Chevalier Jean-Charles de Borda
(1733-1799) and Marie Jean Antoine Nicolas de Caritat (1743-1794), Le Mar-
quis de Condorcet. However, Ramon Llull introduced the pairwise comparison
concept before Condorcet [13], while Nicolaus Cusanus introduced the scor-
ing method about three and a half centuries before Borda [27]. Furthermore, it
should be noted that a letter from Pliny the Younger (= AD 105) to Titus Aristo
shows that he introduced the ternary approval voting strategy and was interested
in voting systems a long time before Ramon Llull and Nicolaus Cusanus [18,
Chapter 2]. Anyway, Borda’s scoring method [4] has some similarities with
current utility and value theories as has Condorcet’s method [10] with the out-
ranking approach of MCDA. In the same line of concerns, i.e., the aggregation
of individual preferences into collective ones, Jeremy Bentham (1748-1832)
introduced the utilitarian calculus to derive the total utility for the society from
the aggregation of the personal interests of the individuals of a community
[3]. Inspired by Bentham’s works, Francis Ysidro Edgeworth (1845-1926), a
utilitarian economist, was mainly concerned with the maximization of the util-
ity of the different competing agents in economy. Edgeworth tried to find the
competitive equilibrium points for the different agents. He proposed to draw
indifference curves (lines of equal utility) for each agent and then derive the
contract curve, a curve that corresponds to the notion of the Pareto or efficient
set [21]. Not long afterwards, Vilfredo Federico Damaso Pareto (1848-1923)
gave the following definition of ophelimity [utility] for the whole community
[22]:

We will say that the members of a collectivity enjoy maximum ophelimity in a
certain position when it is impossible to find a way of moving from that posi-
tion very slightly in such a manner that the ophelimity enjoyed by each of the
individuals of that collectivity increases or decreases. That is to say, any small
displacement in departing from that position necessarily has the effect of increas-
ing the ophelimity which certain individuals enjoy, of being agreeable to some,
and disagreeable to others.

From this definition it is easy to derive the concept of dominance, which
today is one of the fundamental concepts in MCDA.

MCDA also benefits from the birth and development of game theory. Félix
Edouard Justin Emile Borel (1871-1956) and John von Neumann (1903-1957)
are considered the founders of game theory [5, 6, 20, 19]. Many concepts from
this discipline had a strong impact on the development of MCDA.

The concept of efficient point was first introduced in 1951 by Tjalling Koop-
mans (1910-1985) in his paper “Analysis of production as an efficient combi-
nation of activities” [15]:
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A possible point in the commodity space is called efficient whenever an increase
in one of its coordinates (the net output of one good) can be achieved only at the
cost of a decrease in some other coordinate (the net output of a good).

In the same year (1951) Harold William Kuhn (born 1925) and Albert William
Tucker (1905-1995) introduced the concept of vector maximum problem [16].
In the sixties, basic MCDA concepts were explicitly considered for the first
time. As two examples we mention Charnes’ and Cooper’s works on goal pro-
gramming [8] and the proposition of ELECTRE methods by Roy [23]. The
seventies saw what is conventionally considered the “official” starting point of
MCDA, the conference on “Multiple Criteria Decision Making” organised in
1972 by Cochrane and Zeleny at Columbia University in South Carolina [9].
Since then MCDA has seen a tremendous growth which continues today.

3. The Reasons for this Collection of State-of-the-Art
Surveys

The idea of MCDA is so natural and attractive that thousands of articles and
dozens ofbooks have been devoted to the subject, with many scientific journals
regularly publishing articles about MCDA. To propose a new collection of state-
of-the-art surveys of MCDA in so rich a context may seem a rash enterprise.
Indeed, some objections come to mind. There are many and good handbooks
and reviews on the subject (to give an idea consider [1,11, 25, 26, 29]). The main
ideas are well established for some years and one may question the contributions
this volume can provide. Moreover, the field is so large and comprises devel-
opments so heterogeneous that it is almost hopeless to think that an exhaustive
vision of the research and practice of MCDA can be given.

We must confess that at the end of the work of editing this volume we agree
with the above remarks. However, we believe that a new and comprehensive
collection of state-of-the-art surveys on MCDA can be very useful. The main
reasons which, despite our original resistance, brought us to propose this book
are the following:

1 Many of the existing handbooks and reviews are not too recent. Since
MCDA is a field which is developing very quickly this is an important
reason.

2 Even though the field of research and application of MCDA is so large,
there are some main central themes around which MCDA research and
applications have been developed. Therefore our approach was to try to
present the — at least in our opinion — most important of these ideas.

With reference to the first point, we can say that we observed many theoretical
developments which changed MCDA over the last ten years. We tried to consider
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these changes as much as possible and in this perspective strong points of the
book are the following:

1 It presents the most up-to-date discussions on well established method-
ologies and theories such as outranking based methods and MAUT.

2 The book also contains surveys of new, recently emerged fields such as

conjoint measurement, fuzzy preferences, fuzzy integrals, rough sets and
others.

Following these points we drafted a list of topics and asked well known
researchers to present them. We encouraged the authors to cooperate with the
aim to present different perspectives if topics had some overlap. We asked the
authors to present a comprehensive presentation of the most important aspects
of the field covered by their chapters, a simple yet concise style of exposition,
and considerable space devoted to bibliography and survey of relevant literature.
We alsorequested a sufficiently didactic presentation and a text that is useful for
researchers in MCDA as well as for people interested in real life applications.

The importance of these requirements is related also to the specific way
the MCDA community looks at its research field. It can be summarized in the
observation that there is a very strong and vital link between theoretical and
methodological developments on the one hand and real applications on the
other hand. Thus, the validity of theoretical and methodological developments
can only be measured in terms of the progress given to real world practice.
Moreover, interest of MCDA to deal with concrete problems is related to the
consideration of a sound theoretical basis which ensures the correct application
of the methodologies taken into account.

In fact, not only the chapters of our book but rather all MCDA contributions
should satisfy the requirements stated out above, because they should be not too
“esoteric” and therefore understandable for students, theoretically well founded,
and applicable to some advantage in reality.

4. A Guided Tour of the Book

Of course, this book can be read from the first to the last page. However, we think
that this is not the only possibility and it may not even be the most interesting
possibility. In the following we propose a guided tour of the book suggesting
some reference points that are hopefully useful for the reader.

4.1 Part I: An Overview of MCDA Techniques Today

This part is important because MCDA 1is not just a collection of theories, method-
ologies, and techniques, but a specific perspective to deal with decision prob-
lems. Losing this perspective, even the most rigorous theoretical developments
and applications of the most refined methodologies are at risk of being meaning-
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less, because they miss an adequate consideration of the aims and of the role of
MCDA. We share this conviction with most MCDA researchers. Bernard Roy
discusses these “pre-theoretical” assumptions of MCDA and gives an overview
of the field. Bernard Roy, besides giving many important theoretical contribu-
tions, engaged himself in thorough reflections on the meaning and the value of
MCDA, proposing some basic key concepts that are accepted throughout the
MCDA community.

4.2 Part II: Foundations of MCDA

This part of the book is related to a fundamental problem of MCDA, the repre-
sentation of preferences. Classically, for example in economics, it is supposed
that preference can be represented by a utility function assigning a numeri-
cal value to each action such that the more preferable an action, the larger its
numerical value. Moreover, it is very often assumed that the comprehensive
evaluation of an action can be seen as the sum of its numerical values for the
considered criteria. Let us call this the classical model. It is very simple but not
too realistic. Indeed, there is a lot of research studying under which conditions
the classical model holds. These conditions are very often quite strict and it is
not reasonable to assume that they are satisfied in all real world situations. Thus,
other models relaxing the conditions underlying the classical model have been
proposed. This is a very rich field of research, which is first of all important
for those interested in the theoretical aspects of MCDA. However, it is also of
interest to readers engaged in applications of MCDA. In fact, when we adopt a
formal model it is necessary to know what conditions are supposed to be sat-
isfied by the preferences of the DM. In the two chapters of this part problems
related to the representations of preferences are discussed.

Meltem Oztiirk, Alexis Tsoukias, and Philippe Vincke present a very exhaus-
tive review of preference modelling, starting from classical results but arriving
at the frontier of some challenging issues of scientific activity related to fuzzy
logic and non-classical logic.

Denis Bouyssou and Marc Pirlot discuss the axiomatic basis of the different
models to aggregate multiple criteria preferences. We believe that this chapter
is very important for the future of MCDA. Initially, the emphasis of MCDA
research was on proposal of new methods. But gradually the necessity to un-
derstand the basic conditions underlying each method and its specific axioma-
tization became more and more apparent. This is the first book on MCDA with
so much space dedicated to the subject of foundations of MCDA.

4.3 Part III: Outranking Methods

In this part of the book the class of outranking based multiple criteria decision
methods is presented. Given what is known about the decision-maker’s prefer-
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ences and given the quality of the performances of the actions and the nature
of the problem, an outranking relation is a binary relation S defined on the set
of potential actions A such that aSb if there are enough arguments to decide
that a is at least as good as b, whereas there is no essential argument to refute
that statement [24]. Methods which strictly apply this definition of outranking
relation are the ELECTRE methods. They are very important in many respects,
not least historically, since ELECTRE I was the first outranking method [2].

However, within the class of outranking methods we generally consider all
methods which are based on pairwise comparison of actions. Thus, another
class of very well known multiple criteria methods, PROMETHEE methods,
are considered in this part of the book. Besides ELECTRE and PROMETHEE
methods, many other interesting MCDA methods are based on the pairwise com-
parison of actions. José Figueira, Vincent Mousseau and Bernard Roy present
the ELECTRE methods; Jean-Pierre Brans and Bertrand Mareschal present
the PROMETHEE methods and Jean-Marc Martel and Benedetto Matarazzo
review the rich literature of other outranking methods.

44 Part I'V: Multiattribute Utility and Value Theories

In this part of the book we consider multiple attribute utility theory (MAUT).
This MCDA approach tries to assign a utility value to each action. This utility is
areal number representing the preferability of the considered action. Very often
the utility is the sum of the marginal utilities that each criterion assigns to the
considered action. Thus, this approach very often coincides with what we called
the classical approach before. As we noted in commenting Part I, this approach
is very simple at first glance. It is often applied in real life, e.g., every time
we aggregate some indices by means of a weighted sum we are applying this
approach. Despite its simplicity the approach presents some technical problems.
The first are related to the axiomatic basis and to the construction of marginal
utility functions (i.e., the utility functions relative to each single criterion),
both in case of decision under certainty and uncertainty. These problems are
considered by James Dyer in a comprehensive chapter about the fundamentals
of this approach.

Yannis Siskos, Vangelis Grigoroudis and Nikolaos Matsatsinis present the
very well known UTA methods, which on the basis of the philosophy of the
aggregation-disaggregation approach and using linear programming, build a
MAUT model that is as consistent as possible with the DM’s preferences ex-
pressed in actual previous decisions or on a “training sample”. The philosophy
of aggregation-disaggregation can be summarized as follows: How is it possi-
ble to assess the decision-maker’s preference model leading to exactly the same
decision as the actual one or at least the most “similar” decision?
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Thomas Saaty presents a very well known methodology to build utility func-
tions, the AHP (Analytic Hierarchy Process) and its more recent extension,
the ANP (Analytic Network Process). AHP is a theory of measurement that
uses pairwise comparisons along with expert judgments to deal with the mea-
surement of qualitative or intangible criteria. The ANP is a general theory of
relative measurement used to derive composite priority ratio scales from in-
dividual ratio scales that represent relative measurements of the influence of
elements that interact with respect to control criteria. The ANP captures the
outcome of dependence and feedback within and between clusters of elements.
Therefore AHP with its dependence assumptions on clusters and elements is a
special case of the ANP.

Carlos Bana e Costa, Jean-Claude Vansnick, and Jean-Marie De Corte present
another MCDA methodology based on the additive utility model. This method-
ology is MACBETH (Measuring Attractiveness by a Categorical Based Evalu-
ation Technique). It is an MCDA approach that requires only qualitative judge-
ments about differences of values of attractiveness of one action over another
action to help an individual or a group to quantify the relative preferability of
different actions. In simple words, the MACBETH approach tries to answer the
following questions: How can we build an interval scale of preferences on a set
of actions without forcing evaluators to produce direct numerical representa-
tions of their preferences? How can we coherently aggregate these qualitative
evaluations using an additive utility model?

4.5 Part V: Non-Classical MCDA Approaches

Many approaches have been proposed in MCDA besides outranking methods
and multiattribute utility theory. In this part of the book we try to collect in-
formation about some of the most interesting proposals. First, the question of
uncertainty in MCDA is considered. Theo Stewart discusses risk and uncertainty
in MCDA. It is necessary to distinguish between internal uncertainties (related
to decision-maker values and judgements) and external uncertainties (related
to imperfect knowledge concerning consequences of actions). The latter, cor-
responding to the most accepted interpretation of uncertainty in the specialized
literature, has been considered in the chapter. Four broad approaches for deal-
ing with external uncertainties are discussed. These are multiattribute utility
theory and some extensions; stochastic dominance concepts, primarily in the
context of pairwise comparisons of alternatives; the use of surrogate risk mea-
sures such as additional decision criteria; and the integration of MCDA and
scenario planning.

The second consideration is the fuzzy set approach to MCDA. Most real
world decision problems take place in a complex environment where conflict-
ing systems of logic, uncertain and imprecise knowledge, and possibly vague
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preferences have to be considered. To face such complexity, preference model-
ing requires the use of specific tools, techniques, and concepts which allow the
available information to be represented with the appropriate granularity. In this
perspective, fuzzy set theory has received a lot of attention in MCDA for a long
time. Patrick Meyer and Marc Roubens present the fuzzy set approach to MCDA
for choice, ranking, and sorting problems. In this chapter, several MCDA ap-
proaches based on fuzzy evaluations are reviewed. The authors give details on
a sorting procedure for the assignment of alternatives to graded classes when
the available information is given by interacting points of view and a subset
of prototypic alternatives whose assignment is given beforehand. A software
dedicated to that approach (TOMASO) is briefly presented. Finally they recall
the concepts of good and bad choices based on dominant and absorbent kernels
in the valued digraph that corresponds to an ordinal valued outranking relation.

Salvatore Greco, Benedetto Matarazzo and Roman Stowinski present the
decision rule approach to MCDA. This approach represents the preferences in
terms of “if ..., then ...” decision rules such as, for example, “if the maximum
speed of car z is at least 175 km/h and its price is at most $12000, then car
x is comprehensively at least medium”. This approach is related to rough set
theory and to artificial intelligence. Its main advantages are the following. The
DM gives information in the form of examples of decisions, which requires
relatively low cognitive effort and which is quite natural. The decision model is
also expressed in a very natural way by decision rules. This permits an absolute
transparency of the methodology for the DM. Another interesting feature of
the decision rule approach is its flexibility, since any decision model can be
expressed in terms of decision rules and, even better, the decision rule model
can be much more general than all other existing decision models used in
MCDA.

Michel Grabisch and Christophe Labreuche present the fuzzy integral ap-
proach that is known in MCDA for the last two decades. In very simple words
this methodology permits a flexible modeling of the importance of criteria. In-
deed, fuzzy integrals are based on a capacity which assigns an importance to
each subset of criteria and not only to each single criterion. Thus, the importance
of a given set of criteria is not necessarily equal to the sum of the importance
of the criteria from the considered subset. Consequently, if the importance of
the whole subset of criteria is smaller than the sum of the importances of its
individual criteria, then we observe a redundancy between criteria, which in
some way represents overlapping points of view. On the other hand, if the im-
portance of the whole subset of criteria is larger than the sum of the importances
ofits members, then we observe a synergy between criteria, the evaluations of
which reinforce one another. On the basis of the importance of criteria measured
by means of a capacity, the criteria are aggregated by means of specific fuzzy
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integrals, the most important of which are the Choquet integral (for cardinal
evaluations) and the Sugeno integral (for ordinal evaluations).

Finally, Helen Moshkovich, Alexander Mechitov and David Olson present
the verbal decision methods MCDA. This is a class of methods originated from
the work of one of the MCDA pioneers, the late Oleg Larichev. The idea of
verbal decision analysis is to build a decision model using mostly qualitative
information expressed in terms of a language that is natural for the DM. More-
over, measurement of criteria and preference elicitation should be psycholog-
ically valid. The methods, besides being mathematically sound, should check
the DM’s consistency and provide transparent recommendations.

4.6 Part VI: Multiobjective Mathematical Programming

The classical formulation of an Operations Research model is based on the max-
imization or minimization of an objective function subject to some constraints.
A very rich and powerful arsenal of methodologies and techniques has been
developed and continues to be developed within Operations Research. How-
ever, it is very difficult to summarize all the points of view related to the desired
results of the decision at hand in only one objective function. Thus, it seems
natural to consider a very general formulation of decision problems where a set
of objective functions representing different criteria have to be “optimized”. To
deal with these types of problems requires not only to generalize the method-
ologies developed for classical single objective optimization problems, but also
to introduce new methodologies and techniques permitting to compare different
objectives according to the preferences of the DM. In this part of the book we
tried to give adequate space to these two sides of multiobjective programming
problems.

Emphasis on the side of gathering information from the decision-maker and
consequent preference representation is given in the first chapter of this part, in
which Pekka Korhonen introduces the main concepts and basic ideas of inter-
active methods dealing with multiobjective programming problems. The basic
observation is that, since the DM tries to “maximize” a set of criteria in con-
flict with each other and an increment of one criterion can only be reached by
accepting a decrement of at one or more other criteria, we need to compare the
advantages coming from increments with respect to some criteria with the dis-
advantages coming from corresponding decrements of other criteria. A utility
or value function representing DM preferences would seem the most appro-
priate for this aim, but the key assumption in multiple objective programming
is that this utility function is unknown. Therefore many methodologies have
been proposed with the aim of developing a fruitful dialogue with the DM per-
mitting, on the one hand, to provide the DM with relevant information about
non-dominated solutions and, on the other hand, to obtain useful information
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about the preferences of the DM. This dialogue is generally assisted by spe-
cific software, very often employing graphical representations of the results. It
permits to define a solution which the DM can accept as a good compromise.

In the next chapter, Matthias Ehrgott and Margaret Wiecek introduce math-
ematical methods to solve multiobjective programming (MOP) problems. In
their survey, they present solution concepts of MOP, properties of efficient and
nondominated sets, optimality conditions, solution techniques, approximation
of efficient and nondominated sets, and specially-structured problems including
linear and discrete MOPs as well as selected nonlinear MOPs. The contents of
the chapter have been selected on the idea that the primary (although not nec-
essarily the ultimate) goal of multiobjective programming is to seek solutions
of MOPs and therefore a special attention was paid to methods suitable for
finding these solutions. Since the ultimate goal of MOP problem is selection of
a preferred solution, for which an adequate representation of DM preferences
is necessary, this chapter is well complemented by the previous one.

Masahiro Inuiguchi deals with multiple objective programming problems
with fuzzy coefficients. The introduction of fuzziness in multiple objective
programming is due to the observation that in real world problems imprecise
specifications of parameters fluctuating in certain ranges are very usual. For
example, let us consider an activity for which the acceptable expense is 100
million dollars. However, the DM may accept the expense of 100.1 million dol-
lars if the objective functions take much better values by this small violation of
the constraint. Due to their specific nature, fuzzy multiobjective programming
problems need an interpretation which leads to specific approaches to the prob-
lem. Since fuzzy programming has a relatively long history, many approaches
related to different interpretations of the fuzzy MOP have been proposed. In this
chapter the approach based on necessity and possibility is considered, as many
of the approaches proposed in the specialized literature are of this type. The
difference to other approaches often lies solely in the measures employed for
the evaluation of a fuzzy event. Thus, describing the approaches based on pos-
sibility and necessity measures would be sufficient to acknowledge the essence
of multiple objective programming problems with fuzzy coefficients.

Finally, this part is concluded by a chapter that deals with an area of Op-
erations Research in which multiobjective programming has been used quite
frequently. Stefan Nickel, Justo Puerto and Antonio Rodriguez-Chia present
the multiple criteria approach to locational analysis. An important characteris-
tic of location models is their intrinsic multiple criteria nature. In this context
different criteria are related to one or several new facilities and depend on the
distances of these facilities to the set of fixed or demand facilities. There are at
least two natural ways of deriving the different criteria. First, a decision about a
new facility to be located is typically a group decision and each decision maker
will have his own preferences, which may be expressed by a corresponding
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criterion. Secondly, the functions may represent different evaluation criteria
for the new facility to be located, like cost, reachability, risk, etc. The chapter
provides a broad overview of the most representative multiple criteria location
problems which have been divided into the three classes of continuous, network,
and discrete problems.

4.7 Part VII: Applications

It is apparent that the validity and success of all the developments of MCDA
research are measured by the number and quality of the decisions supported by
MCDA methodologies. Applications in this case discriminate between results
that are really interesting for MCDA and results that, even though beautiful
and interesting for economics, mathematics, psychology, or other scientific
fields, are not interesting for MCDA. The applications of MCDA in real world
problems are very numerous and in very different fields. Therefore, it was clear
from the outset that it would be impossible to cover all the fields of application
of MCDA. We decided to select some of the most significant areas.

Jaap Spronk, Ralph Steuer and Constantin Zopounidis discuss the contribu-
tions of MCDA in finance. A very valuable feature of their chapter is the focus
on justification of the multidimensional character of financial decisions and the
use of different MCDA methodologies to support them. The presentation of
the contributions of MCDA in finance permits to structure complex evaluation
problems in a scientific context and in a transparent and flexible way, with the
introduction of both quantitative (i.e., financial ratios) and qualitative criteria
in the evaluation process.

Danae Diakoulaki, Carlos Henggeler Antunes and Anténio Gomes Martins
present applications of MCDA in energy planning problems. In modern tech-
nologically developed societies, decisions concerning energy planning must be
made in complex and sometimes ill-structured contexts, characterized by tech-
nological evolution, changes in market structures, and new societal concerns.
Decisions to be made by different agents (at utility companies, regulatory bod-
ies, and governments) must take into account several aspects of evaluation such
as technical, socio-economic, and environmental ones, at various levels of de-
cision making (ranging from the operational to the strategic level) and with
different time frames. Thus, energy planning problems inherently involve mul-
tiple, conflicting and incommensurate axes of evaluation. The chapter aims at
examining to which extent the use of MCDA in energy planning applications
has been influenced by those changes currently underway in the energy sector,
in the overall socio-economic context, and in particular to which extent it is
adapted to the new needs and structuring and modelling requirements.

Jodo Climaco and José Craveirinha present multiple criteria decision analysis
in telecommunication network planning and design. Decision making processes
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in this field take place in an increasingly complex and turbulent environment
involving multiple and potentially conflicting options. Telecommunication net-
works is an area where different socio-economic decisions involving commu-
nication issues have to be made, but it is also an area where technological
issues are of paramount importance. This interaction between a complex socio-
economic environment and the extremely fast development of new telecommu-
nication technologies and services justifies the interest in using multiple criteria
evaluation in decision making processes. The chapter presents a review of con-
tributions in these areas, with particular emphasis on network modernisation
planning and routing problems and outlines an agenda of current and future
research trends and issues for MCDA in this area.

Finally, Giuseppe Munda addresses applications of MCDA in problems con-
cerning sustainable development. Sustainable development is strongly related
to environmental questions, i.e., sustainable development generalizes environ-
mental management taking into account not only an ecological but also socio-
economic, technical and ethical perspectives. Ecological problems were among
the first to be dealt with by MCDA. Therefore, there is a strong tradition in this
field and many interesting stimuli for MCDA research came from there. The
extensive perspective of sustainable development is very significant because it
improves the quality of decisions concerning the environment taking into ac-
count other criteria, which are not strictly environmental but which strongly
interact with it. In making sustainability policies operational, basic questions
to be answered are sustainability of what and whom? As a consequence, sus-
tainability issues are characterised by a high degree of conflict. Therefore, in
this context MCDA appears as an adequate approach.

4.8 Part VIII: MCDM Software

Application of an MCDA method requires such a considerable amount of com-
putation that even the development of many MCDA methodologies without
the use of a specialized software is hardly imaginable. While software is an
even more important element in the application of MCDA methodologies, this
does not mean that to have a good software is sufficient to apply an MCDA
methodology correctly. Clearly, software is a tool and it should be used as a
tool. Before using a software, it is necessary to have a sound knowledge of the
adopted methodology and of the decision problem at hand.

After these remarks about cautious use of software, the problem is: What
software is available for MCDA? Heinz Roland Weistroffer, Subhash Narula
and Charles H. Smith present well known MCDA software packages. While
there is certainly some MCDA software available that is not present in the
chapter, it can help the reader. She may get suggestions of well known software,
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but also information about aspects to be taken into account when evaluating a
software for adoption in an application.
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The purpose of this introductory part is to present an overall view of what MCDA
is today. In Section 1, I will attempt to bring answers to questions such as: what
is it reasonable to expect from MCDA? Why decision aiding is more often multi-
criteria than monocriterion? What are the main limitations to objectivity? Section
2 will be devoted to a presentation of the conceptual architecture that constitutes
the main keys for analyzing and structuring problem situations. Decision aiding
cannot and must not be envisaged jointly with a hypothesis of perfect knowledge.
Different ways for apprehending the various sources of imperfect knowledge will
be introduced in Section 3. A robustness analysis is necessary in most cases. The
crucial question of how can we take into account all criteria comprehensively in
order to compare potential actions to one another will be tackled in Section 4. In
this introductory part, I will only present a general framework for positioning the
main operational approaches that exist today. In Section 5, I will discuss some
more philosophical aspects of MCDA. For providing some aid in a decision con-
text, we have to choose among different paths which one seems to be the most
appropriate, or how to combine some of them: the path of realism which leads
to the quest for a discussion for discovering, the axiomatic path which is often
associated with the quest of norms for prescribing, or the path of constructivism
which goes hand in hand with the quest of working hypothesis for recommending.

Multiple criteria decision aiding, imperfect knowledge, aggregation procedures.
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1. What Are the Expectations that Multicriteria Decision
Aiding (MCDA) Responds to?

The purpose of this introductory chapter is to present an overview of what
MCDA is today. Since the 60s, this discipline has produced, and it still produces,
a great number of theoretical as well as applied papers and books. The major
part of them will be presented in the following chapters of this book. It is
important at the outset to understand their specific contributions are in terms of
enlarging the operations research field and, more generally, to bringing light to
decision making contexts. That is why I shall begin this chapter by considering
the three following questions: what is reasonable to expect from MCDA? Why
is decision aiding is more often multicriteria than monocriterion? What are the
main limitations to objectivity which must be taken into account? The next
section will be devoted to a brief presentation of three basic concepts which can
be viewed as initial and fundamental keys for analyzing and structuring problem
situations. In practice, it is very important to draw attention to questions such
as: what is the quality of the information which can be obtained? What is the
meaning of the data which are available or can be elaborated? In Section 3, I
shall examine how the existing models and procedures take into account various
types of answers to such questions which refer to a given problem’s real world
context.

Another difficulty in an MCDA context comes from the fact that compar-
isons between potential actions must be made comprehensively, with respect
to all criteria. Various aggregation techniques which will be described in de-
tail throughout the successive chapters of this book have been proposed and
used in order to overcome this kind of difficulty. In Section 4, I shall present
a general framework for positioning the main operational approaches in which
these aggregation techniques come into play. Some more general philosophical
considerations will complete this introductory chapter.

1.1 What Is Reasonable to Expect from Decision Aiding
(DA)?

Decision aiding can be defined (see [61]) as follows: Decision aiding is the
activity of the person who, through the use of explicit but not necessarily com-
pletely formalized models, helps obtain elements of responses to the questions
posed by a stakeholder in a decision process. These elements work towards
clarifying the decision and usually towards recommending, or simply favoring,
a behavior that will increase the consistency between the evolution of the pro-
cess and this stakeholder’s objectives and value system. In this definition, the
word “recommending” is used to draw attention to the fact that both analyst and
decision maker are aware that the decision maker is completely free to behave
as he or she sees fit after the recommendation is made. This term is increasingly
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used in DA to replace “prescription”. The latter is, in many cases, inappropriate
(see [34, 58]) for designating what a team of analysts accompanying a decision
making process might achieve.

Thus defined, DA aims at establishing, on recognized scientific bases, with
reference to working hypotheses, formulations of propositions (elements of
responses to questions, a presentation of satisfying solutions or possible com-
promises, ...) which are then submitted to the judgment of a decision maker
and/or the various actors involved in the decision making process. According
to the case, DA can thus reasonably contribute to:

w analyzing the decision making context by identifying the actors, the var-
ious possibilities of action, their consequences, the stakes, ...;

® organizing and/or structuring how the decision making process unfolds in
order to increase coherence among, on the one hand, the values underlying
the objectives and goals, and, on the other hand, the final decision arrived
at;

m getting the actors to cooperate by proposing keys to a better mutual un-
derstanding and a framework favorable to debate;

m eclaborating recommendations using results taken from models and com-
putational procedures conceived of within the framework of a working
hypothesis;

m participating in the final decision legitimization.

For a deeper understanding of the bases reviewed above, the reader can refer
to [12, 13, 19, 20, 40, 48, 59, 68].

1.2 Why Is DA More Often Multicriteria than
Monocriterion?

Even when DA is provided for a single decision maker, it is rare for her or
him to have in mind a single clear criterion. Thus, when DA takes place in a
multi-actor decision making process, it is even rarer for there to be a priori
a single, well-defined criterion deemed acceptable by all actors to guide the
process. This process is often not very rational. Each actor plays a more or less
well defined role which gives priority to her or his own objectives and value
system.

In both cases, it is necessary to take into consideration various points of view
dealing with, for example, finance, human resources, environmental aspects,
delays, security, quality, ethics,... By considering each pertinent point of view
separately, independently from the others, it is generally possible to arrive at
a clear and common elicitation of preferences regarding the single point of
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view considered. This naturally leads to associating a specific criterion to each
pertinent point of view. Each of these criteria is used to evaluate any potential
action on an appropriate qualitative or quantitative scale. In most cases, there
is no obvious and acceptable arithmetic rule which can keep account of these
heterogeneous scales by substituting a single scale based on a common unit for
each of them (see Section 4 below).

Such a scale, bringing a common unit into play, must be introduced a priori
when we want to avoid a multicriteria approach, i.e., when we prefer to choose
what is called a monocriterion approach. This choice, in many decision making
contexts, might:

® lead to wrongly neglecting certain aspects of realism;

m facilitate the setting up of equivalencies, the fictitious nature of which
remains invisible;

» tend to present features of one particular value system as objective.

On the contrary, a multicriteria approach contributes to avoiding such dangers
by:

m  delimiting a broad spectrum of points of view likely to structure the
decision process with regard to the actors involved;

®  constructing a family of criteria which preserves, for each of them, with-
out any fictitious conversion, the original concrete meaning of the corre-
sponding evaluations;

m facilitating debate on the respective role (weight, veto, aspiration level,
rejection level,...) that each criterion might be called upon to play during
the decision aiding process.

Additional considerations about relative advantages on monocriterion and
multicriteria approaches can be found in [10, 14, 21, 56, 61].

1.3 Can MCDA Be Always Totally Objective?

In many cases, those who claim to shed light objectively on a decision in fact
take a stand — consciously or unconsciously — for an a priori position or for a
prevailing hypothesis which they then seek to justify. Arguments for making a
decision are thus put forward more in the spirit of advocacy than in that of an
objective search (see [3, 32]).

In what follows, we will only consider situations in which DA is motivated
by a strong desire for objectivity. Even in such situations, it is important to be
sensitive to the existence of some fundamental limitations on objectivity. Their
origins lie in the following facts:
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a) The borderline between what is and what is not feasible is often fuzzy
in real decision making contexts. Moreover, this borderline is frequently
modified in the light of what is found through the study itself.

b) Evenin cases for which DA is provided for a well-defined decision maker,
his or her preferences very seldom seem well-shaped. In and among ar-
eas of firm convictions lie hazy zones of uncertainty, half held belief, or
indeed conflicts and contradictions. Such sources of ambiguity or arbi-
trariness concerning preferences which are to be elicited and modeled
are even more present when the decision maker (entity for whom or in
the name of whom decision aiding is provided for) is a mythical person,
or when decision aiding is provided in a multicriteria context. We have
to admit, therefore, that the study itself contributes to eliminating ques-
tioning, solving conflicts, transforming contradictions and destabilizing
certain convictions. Any interaction and questioning between the analyst
and the decision maker, or any actors involved into the decision making
process, may have some an unpredictable or imperceptible effect.

¢) Many data (see Section 3 below) are imprecise, uncertain, or ill-defined.
There is a real risk of making them say much more than they mean.
Moreover, some of them only reflect features of a particular individual
value system.

d) In general, it is impossible to say that a decision is a good one or a bad
one by referring only to a mathematical model. Organizational, pedagog-
ical, and/or cultural aspects of the whole decision process which lead to
making a given decision also contribute to its quality and success.

Rather than dismissing or canceling the subjectivity which results from the
limitations of objectivity described above, decision aiding must make an ob-

jective place for it. (For a pedagogical overview of MCDA approaches, see
[58, 59, 64].)

2. Three Basic Concepts

From the beginning to the end of work in MCDA, three concepts usually play
a fundamental role for analyzing and structuring the decision aiding process in
close connection with the decision process itself. The presentation of these con-
cepts in the three following sub-sections is obviously succinct. It nevertheless
aims to draw attention to some important features.

2.1 Alternative, and More Generally, Potential Action

By potential action, we usually designate that which constitutes the object of
the decision, or that which decision aiding is directed towards. The concept
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of action does not a priori incorporate any notion of feasibility, or possible
implementation. An action is qualified as potential when it is deemed possible
to implement it, or simply when it deserves some interest within the decision
aiding process.

The concept of alternative corresponds to the particular case in which mod-
eling is such that two distinct potential actions can in no way be conjointly put
into operation. This mutual exclusion comes from a way of modeling which in
a comprehensive way tackles that which is the object of the decision, or that
towards which DA is directed. Many authors implicitly suppose that potential
actions are, by definition, mutually exclusive. Nevertheless, such an hypothesis
is in no way compulsory. In many real world decision aiding contexts, it can be
more appropriate to adopt another way of modeling such that several potential
actions can be implemented conjointly (see examples in [55, 61]).

In all cases, A will denote the set of potential actions considered at a given
stage of the DA process. This set is not necessarily stable, i.e., it can evolve
throughout the decision aiding process. Such an evolution may come from the
study’s environment, but also from the study itself. The study may shed light
on some aspects of the problem, which could lead to revising some of the data
and then, possibly, to modifying the borderline between what is and what is not
feasible.

By a, we will denote any potential action or alternative. When the number
of actions is finite (JA| = m) we shall let:

A={a1,az,...,an}.

When modeling of actions can be done by referring to some variables zj, 2,
... it is possible to write:

a = (:El,:ltz,...).

In such cases, A is generally defined by a set of analytic constraints which
characterize the borderline between what is feasible and is not feasible. Multi-
objective mathematical programming constitutes an important particular case
of this type of modeling (see [25] and Part VI).

In another type of modeling, the value of each variable z; (2 = 1,2,...,
n) designates a possible score on an appropriate scale X; built for evaluating
actions according to a specified point of view or criterion. In such cases, A can
be viewed as a subset of the Cartesian product X = [T’ ; X;. This type of
modeling is commonly used in multiattribute utility theory (MAUT) (see Part
IV). Let us observe that this type of modeling necessitates some precautions:
since each potential action is identified with the n components ofits evaluation, it
loses all concrete identity; in particular, two actions having the same evaluations
Z1,...,Ty are no longer distinguishable.
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More details and illustrations of the concepts and ways of modeling presented
above could be found in [61, Chapter 5], [84, Chapter 1], and [36].

2.2 Criterion and Family of Criteria

The reader, who is not yet familiar with some ofthe terms used in this subsection,
will find more precise definitions in [64, Chapter 1, Appendix 1, Glossary].

Let us remember that a criterion ¢ is a tool constructed for evaluating and
comparing potential actions according to a point of view which must be (as
far as it is possible) well-defined. This evaluation must take into account, for
each action a, all the pertinent effects or attributes linked to the point of view
considered. It is denoted by g(a) and called the performance of a according to
this criterion.

Frequently, g(a) is a real number, but in all cases, it is necessary to define
explicitly the set Xg of all the possible evaluations to which this criterion can
lead. For allowing comparisons, it should be possible to define a complete
order <4 on Xg: (<g, Xy) is called the scale of criterion g. To be accepted
by all stakeholders, a criterion should not bring into play, in a way which
might be determinant, any aspects reflecting a value system that some of these
stakeholders would find necessary to reject. This implies in particular that the
direction to which the preferences increase along the scale (and more generally
the complete order <g) is not open to contest.

Elements z € X, are called degrees or scores of the scale. Each degree can
be characterized by a number, a verbal statement or a pictogram. When in order
to compare two actions according to criterion g we compare the two degrees
used for evaluating their respective performances, it is important to analyze the
concrete meaning in terms of preferences covered by such degrees. This leads
to distinguishing various types of scales:

a) Purely ordinal scale: Scale such that the gap between two degrees does
not have a clear meaning in terms of difference preferences; this is the
case with:

— a verbal scale when nothing allows us to state that the pairs of
consecutive degrees reflect equal preference differences all along
the scale;

-~ a numerical scale when nothing allows us to state that a given
difference y between two degrees reflects an invariant preference
difference when we move the pair of degrees considered along the
scale.

This type of scale is often called a qualitative scale.

b) Quantitative scale: Numerical scale whose degrees are defined by refer-
ring to a clear, concrete defined quantity in a way that it gives meaning,
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on the one hand, to the absence of quantity (degree 0), and on the other
hand, to the existence of a unit allowing us to interpret each degree as the
addition of a given number (integer or fractional) of such units. In such
conditions, the ratio between two degrees can receive a meaning which
does not depend on the two particular degrees considered; this is another
way of defining quantitative scales which are also called cardinal or ratio
scales.

¢) Other types: In MCDA, we do not always work with scales belonging to
one of the above two extreme types (especially interval scales). The most
interesting intermediate types are presented in [41, Section 2] and [64].

In MCDA, it is essential to know which type of scale we are working with
to be sure of using its degrees in a meaningful way. According to the type of
scales considered, certain kinds of reasoning and arithmetical operations are
significant in terms of preference (see Chapter 2).

Moreover, the use of the degrees in a significant way must take the following
factinto account: the difference between two degrees that are sufficiently close
together may be non significant for justifying an indisputable preference in favor
of one of the two actions. This stems from the procedure used to position the
two actions on the scale considered. This procedure can appear insufficiently
precise (withregard to the complexity of the reality in question), or insufficiently
reliable (with regard to uncertainty concerning the future) for founding such an
indisputable preference on such a small difference. I will come back to this
subject in the next section.

In most cases, the first step of DA consists of building n criteriawith n > 1
(see 1.2 above). They constitute what we call the family F of criteria. In order
to be sure that F is able to play its role in the DA process correctly, i.e., in
laying the foundations for convictions, communicating concerning the latter,
debating and orienting the process towards the decision, and in contributing in
some cases to legitimating this decision, it is necessary to verify that:

= what is apprehended by each criterion is sufficiently intelligible for each
of the stakeholders;

m each criterion is perceived to be a relevant instrument for comparing
potential actions along the scale which is associated with it without pre-
judging their relative importance, which could vary considerably from
one stakeholder to another;

m the n criteria considered all together satisfy some logical requirements
(exhaustiveness, cohesiveness, and non redundancy) which insure coher-
ence of the family (for more details, see [64, Chapter 1, Appendix 1,
Glossary], [67]).
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It is important to observe that none of the above requirements implies that
the n criteria of F' must be independent. The concept of independence is very
complex, and if dependence is desirable, it is necessary to specify what type
of independence is needed. Multicriteria analysis has led to important distinc-
tions between structural independence, preferential independence, and utility
independence (see [37, 54], [61, Chapter 10], and [67, Chapter 2]).

Additional developments concerning this basic concept of criterion can be
foundin [1, 2, 4, 5, 7].

2.3 Problematic as a Way in which DA May Be Envisaged

The word “problematic” is used here in the sense indicated by the heading.
Other expressions such as ‘“‘statement”, “problem formulation” or “problem
type” have been used as substitutes, but in my view, they are inappropriate and
may lead to misunderstanding.

Let us underline first that DA must not be envisaged solely in the perspective
of solving a problem of choice. In some cases, DA consists only of elaborat-
ing an appropriate set A of potential actions, building a suitable family F of
criteria, and determining, for all or some @ € A, their performances some-
times completed by additional information (possible values for discrimination
thresholds, aspiration and/or rejection levels, weights,...). For designating this
manner of conceiving of DA’s aim without seeking to elaborate any prescrip-
tion, or recommendation, we use the term description problematic often coded
P.é.

In MCDA, the word problematic refers to the way in which DA is envisaged.
This means that the problematic deals with answers to questions such as the
following: in what terms should we pose the problem?, what type of results
should we try to obtain?, how does the analyst see himself fitting into the
decision process to aid in arriving at these results?, what kind of procedure
seems the most appropriate for guiding his investigation? In addition to P.J,
three other reference problematics are currently used in practice. They can be
briefly described as follows (for more details, see [52], [61, Chapter 6]):

s The choice problematic (P.c:): The aid is oriented towards and lies on a
selection of a small number (as small as possible) of “good” actions in
such a way that a single alternative may finally be chosen; this does not
mean that the selection is necessarily oriented towards the determination
of one or all the actions of A which can be regarded as optimum; the
selection procedure can also, more modestly, be based on comparisons
between actions so as to justify the elimination of the greatest number
of them, the subset N of those actions which are selected (which can be
viewed as afirst choice) containing all the most satisfying actions, which
remain non comparable between one another.



12 MULTIPLE CRITERIA DECISION ANALYSIS

® The sorting problematic (P.3): The aid is oriented towards and lies on an
assignment of each action to one category (judged the most appropriate)
among those of a family of predefined categories; this family must be
conceived on the basis of the diverse types of treatments, or judgments
conceivable for the actions which motivate the sorting. For instance, a
family of four categories can be based on a comprehensive appreciation
leading to distinguishing between: actions for which implementation (i)
is fully justified, (ii) could be advised after only minor modifications,
(iii) can only be advised after major modifications, (iv) is unadvisable.
Let us observe that categories are not necessarily ordered as it is the case
in the above examples.

m The ranking problematic (P.7): The aid is oriented towards and lies
on a complete or partial preorder on A which can be regarded as an
appropriate instrument for comparing actions between one another; this
preorder is the result of a classifying procedure allowing us to put together
in classes actions which can be judged as indifferent, and to rank these
classes (some of them may remain non-comparable).

The four problematics described above are not the only possible ones (see
[10, 11]). Whatever the problematic adopted, the result arrived at by treating a
given set of data through a single procedure is (except under unusual conditions)
not sufficient for founding a prescription or a recommendation (see Section 4
below).

3. How to Take Into Account Imperfect Knowledge?

DA cannot be correctly provided without trying to analyze and to take into
account reasons and factors which can be responsible for contingency, arbi-
trariness, and ignorance in the way the problem is envisaged and procedures
implemented. In addition to their subjective characteristics, these reasons and
factors may take on various forms whose presence and/or importance greatly
depends on the decision making context considered. Their presence comes es-
sentially from three sources (for more details, see [16, 57]):

m Source a (S.): The imprecise, uncertain and, more generally, poorly
understood or ill-defined nature of certain specific features or factual
quantities or qualities present in the problem.

w  Source (3 (S.5): the conditions for implementing the decision taken; these
will be influenced by:

— The state of the context at the time the decision is implemented if
it is a once-and-for-all decision;
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— The successive states of the context if the decision is sequential.

s Source vy (S.7y): the fuzzy or incomplete, sometimes unstable and easily
influenced character of the system or systems of values to be taken into
account; these values involve, in particular, the system and most often
the systems of preferences which should prevail in order to evaluate the
feasibility and relative interest of diverse potential actions, by considering
the conditions envisaged for implementing these actions.

Considering the problem formulation, a study of these three sources must
shed light on that which appears imprecise, uncertain, unstable or ill-defined.
This can leads, for instance:

m starting from S.o, to delimiting a domain of reasonable instantiation
values for various data and parameters;

m from S.83, to building a set of scenarios describing different possible
future contexts;

m from S., to eliciting a set of weight vectors; for this purpose, it is im-
portant to remember that it makes no sense and is theoretically incorrect
to specify measures of relative importance for the criteria without con-
sidering the nature of the overall evaluation model which will be used,
i.e., without having defined the type of mathematical aggregation rules
(see next section) which allow us to derive comprehensive preferences.

The DA process must clearly take into account all the results ofthis study. To
do so, many approaches (formalisms, models, methods, ...) have been proposed.
A panorama of such approaches can be found in Chapter 11, and in [39, 76].

These approaches rest upon various concepts, tools and theories; the main ones
are:

® probability theory mainly used in MAUT (see Chapter 7), but also used in
many other approaches, particularly for building criteria when uncertainty
can be characterized by a probabilistic distribution;

= possibility theory [22, 24];
m  multi-valued logic (see Chapter 3, [80]);

w concept of discrimination thresholds and quasi or pseudo-criterion (see
Chapter 2, and for more details, [35, 70, 71, 72, 87]) mainly used in
outranking methods (see Chapter 4).

a  concept of fuzzy binary relations [18, 23, 27, 28, 44, 53];
s rough sets theory (see Chapter 13).
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Whatever the formalism, the models, the methods used, it is generally indis-
pensable to undertake a robustness analysis. According to which author uses
it (cf. [66]), this term can cover different ways of proceeding. Nevertheless,
the aim is always to distinguish the part of the results which can be firmly
established in order to choose an appropriate method (cf. [85, 86]), to derive
robust solutions (cf.[26, 33, 38, 50, 51]), or to formulate robust conclusions (cf.
[62, 63, 78]). In [62, 63], the reader could find some comments on links and
differences between robustness analysis and sensitivity analysis.

4. An Operational Point of View

As soon as more than one criterion comes into play, a crucial question arises:
how can we take into account all criteria comprehensively in order to compare
potential actions to one another? Let us consider two potential actions a and b
together with their respective performances on the n criteria considered. More
often, a will be better than b for some of the criteria, and b better than a for
others. In such cases, in comparing a and b, on what basis can we found a
comprehensive judgment, i.e., taking into account, in a comprehensive way,
the n performances of a and the n performances of b. This problem is usually
called the aggregation problem. In many of the chapters in this book, the reader
will find a wide variety of solutions to this fundamental problem. In the present
introductory chapter, I shall present only a general framework for positioning
the main operational approaches provided for DA today (for more details on
what the operational approach concept covers, see, [61, Chapter 11].

4.1 About Multicriteria Aggregation Procedures

The most frequently used decision aiding methods are based on mathematically
explicit multicriteria aggregation procedures (MCAP). By definition, an MCAP
is a procedure which, for any pair of potential actions, gives a clear answer to
the aggregation problem. It brings into play:

i) various inter-criteria parameters such as weights, scaling constants, veto,
aspiration levels, rejection levels,... which allow us to define the specific
role that each criterion can play with respect to the others; some more
technical parameters can also be present;

if) A logic of aggregation: this logic should take into account:

— The possible types of dependence which we might want to bring
into play concerning criteria,

— The conditions under which we accept or refuse compensation be-
tween “good” and “bad” performances.
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In order to give a numerical value to inter-criteria parameters and more tech-
nical parameters, it is absolutely necessary to refer to the logic of aggregation of
the MCAP considered. Outside of this logic, those parameters have no meaning.

For more details on the above considerations, see [15, 42, 60, 67, 69, 79].

Methods which are based on a mathematically explicit MCAP come un-
der one of two types of operational approaches usually designated by the ex-
pressions approach based on a synthesizing criterion and approach based on a
synthesizing preference relational system.

4.2 Approach Based on a Synthesizing Criterion

This approach is the most traditional. It can be characterized as follows: formal
rules taking into account the n performances of any potential action a € A are
defined so as to assign to a a well defined position (generally by means of a
numerical value) on an appropriate scale.

The way the aggregation is addressed in this approach leads to defining a
complete preorder on A. Most often, the formal rules consist of a mathematical
formula which leads to an explicit definition of a unique criterion synthesizing
the n criteria. This is the case with MAUT, SMART, TOPSIS, MACBETH, AHP,
... (see Chapters 7 — 10). The complete preorder on A can also be obtained by
the use of a set of formal rules without any mathematically explicit expression
of the synthesizing criterion, which remains implicit (see [6, 7]). In any case,
this approach does not allow any incomparability.

Building a synthesizing criterion using such a multicriteria approach is not
equivalent to a monocriterion approach. The dangers of the monocriterion ap-
proach have been presented above (see Section 1.2). Nevertheless, even if a
multicriteria approach based on a synthesizing criterion contributes to reducing
these dangers, it forces us to introduce a common scale (monetary scale, utility
scale,...) on which performances of each of the n criteria have to be evaluated.
Moreover, with this approach, imperfect knowledge (cf. Section 3 above) can
be taken into account solely through probabilistic or fuzzy models.

4.3 The Operational Approach Based on a Synthesizing
Preference Relational System

As is the first, this second operational approach is based on a mathematically
explicit MCAP. A major difference with the preceding approach comes from
the fact that here the MCAP does not work on each potential action a separately
from the others, but it successively compares a to each of the other b € A.

In other words, the aggregation problem is no longer addressed in terms
of defining a complete preorder on A, it is now addressed in terms of pairwise
comparisons so as to design a synthesizing preference relational system. Taking
into account the n performances of a and the n performances of b, the role of
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the MCAP is to give an answer to the question: what is the preference relation
which can be validated between a and b? Mathematical rules, which lead to
answering this question, are based on:

®  various inter-criteria parameters, as in the first approach; but also, unlike
the first approach, on discrimination thresholds (see Section 3 above) and
veto thresholds;

m a logic of aggregation which easily allows us to take into account (and
this is much more difficult with the approach based on a synthesizing
criterion), on one hand, some limitations to compensation, and on the
other, no quantitative performances.

The synthesizing preference relational system can be reduced to a single
binary relation, which can be crisp or fuzzy. But it can also bring into play more
than one binary relation. In all instances, the advantages of this second type of
MCAP relative to the first cause certain difficulties to arise when we consider
the operational approach based on such an MCAP. These difficulties stem from
the fact that:

m pairwise comparisons can cause some intransitivities to appear;

® incomparability can be the most appropriate conclusion for comparing
certain pairs (a, b);

s consequently, a synthesizing relational preference system is not a tool
which is immediately usable for elaborating a recommendation.

For these reasons, this second operational approach necessitates completing
the MCAP by a second procedure called exploitation procedure. This procedure
is conditioned by the problematic considered (see above 2.3).

This second operational approach has led to various methods, most of which
are covered by the label of outranking methods . The second part of this book
is devoted to them. Other works related to this approach are presented in Part
V.

4.4 About Other Operational Approaches

All the operational approaches which are based on a mathematically explicit
MCAP are not exactly in accordance with one of the two preceding approaches.
Regarding this subject, the reader can refer to [8, 17, 31, 43, 75].

Finally, let us mention the existence of operational approaches which are
not based on a mathematically explicit MCAP, when this procedure remains
implicit. Such approaches often make use of interactivity. A formal procedure is
then conceived for asking questions of the decision maker or some other actor.
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This procedure leads to an ad hoc sequence of judgments and a progression
by trial and error. These judgments have only a local meaning because they
refer to the neighborhood of one or a very small number of actions. For more
details on this kind of approach, see Chapter 16, [29, 45, 46], [67, Chapter 7],
[77,81, 82, 83, 84, 89, 90].

In any case, whatever the operational approach considered, there is a pos-
sible confusion which should be avoided. Except under very unusual condi-
tions, the results arrived at by treating a set of data through any appropriate
procedure should not be confused with a well founded scientific recommen-
dation. Repeated calculations using different but equally realistic versions of
the DA problem (sets of data, scenarios,...) are generally necessary to elab-
orate a recommendation on the basis of robust conclusions stemming from
the multiple results thus obtained. The statement of the proposals which make
up the recommendation should be submitted to the assessment and discern-
ment of the decision maker and/or the actors involved in the DA process (see
[34, 47, 63, 64, 65, 66, 78]).

5. Conclusion

The final objective of MCDA is, of course, to help managers to make “better”
decisions. But what is the meaning of better? This meaning depends, in part, on
the process by which the decision is made and implemented. This, combined
with limitations on objectivity described above (see Section 1.3), shows that
we cannot hope to prove scientifically, in a decision making context, that a
given decision is the best. In other words, it is impossible to consider that in
every situation there exists, somewhere, the right selection, the right assignment,
the right ranking which could be considered and discovered or approximated
independently of any procedure. This implies that the concepts, models and
procedures presented in this book must not be viewed as being conceived from
the perspective of discovering, with a better or a worst good approximation, a
pre-existing truth which could be universally imposed. They have to be seen as
keys capable of opening doors giving access to answers and/or expectations as
described in Section 1.1.

Thus conceived, methodological decision aiding based upon appropriate con-
cepts, models and procedures can play a significant and beneficial role helping
us to make our way in the presence of ambiguity, uncertainty and an abundance
of bifurcations in order to guide the decision making process.

To achieve this goal, three non exclusive paths can be envisaged:

& the path of realism which leads to the quest for a description for discov-
ering;

m the axiomatic path which is often associated with the quest for norms for
prescribing;
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m the path of constructivism which goes hand in hand with the quest for a
working hypothesis for recommending.

(for more details on each of these paths, see [58]). In a DA process, it is impor-
tant, when following one or a combination of such paths, to shed light on:

m those aspects of reality which give meaning, value and order to facts;

m the influence exerted upon this reality by observing it, organizing it, pro-
voking within it certain forms of debate, or even having certain tools
placed there.

Personally, I consider that the path of realism can only play a role in pro-
ducing certain descriptions of physical, institutional, socio-economic, financial
or psychological systems which form the decision making context. Insofar as
such descriptions are produced by other disciplines than DA strictly speaking,
the contribution of DA comes essentially, in my opinion, from the construc-
tivism path taken in conjunction with (observing certain precautions) the ax-
iomatic path. Interesting developments and other points of view can be found
in [9, 12, 30, 36, 40, 49, 73, 74, 88, 91, 92, 93].
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This chapter provides the reader with a presentation of preference modelling
fundamental notions as well as some recent results in this field. Preference mod-
elling is an inevitable step in a variety of fields: economy, sociology, psychology,
mathematical programming, even medicine, archaeology, and obviously decision
analysis. Our notation and some basic definitions, such as those of binary rela-
tion, properties and ordered sets, are presented at the beginning of the chapter. We
start by discussing different reasons for constructing a model or preference. We
then go through a number of issues that influence the construction of preference
models. Different formalisations besides classical logic such as fuzzy sets and
non-classical logics become necessary. We then present different types of pref-
erence structures reflecting the behavior of a decision-maker: classical, extended
and valued ones. It is relevant to have a numerical representation of preferences:
functional representations, value functions. The concepts of thresholds and min-
imal representation are also introduced in this section. In Section 8, we briefly
explore the concept of deontic logic (logic of preference) and other formalisms
associated with “compact representation of preferences” introduced for special
purposes. We end the chapter with some concluding remarks.

Preference modelling, decision aiding, uncertainty, fuzzy sets, non classical logic,
ordered relations, binary relations.
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1. Introduction

The purpose of this chapter is to present fundamental notions of preference
modelling as well as some recent results in this field. Basic references on this
issue can be considered: [4, 75, 78, 82, 110, 118, 161, 165, 167, 184, 189].

The chapter is organized as follows: The purpose for which formal models of
preference and more generally of objects comparison are studied, is introduced
in Section 2. In Section 3, we analyse the information used when such models
are established and introduce different sources and types of uncertainty. Our
notation and some basic definitions, such as those of binary relation, properties
and ordered sets, are presented in Section 4. Besides classical logic, different
formalisms can be used in order to establish a preference model, such as fuzzy
sets and non-classical logics. These are discussed in Section 5. In Section 6,
we then present different types of preference structures reflecting the behavior
of a decision-maker: classical, extended and valued ones. It appears relevant
to have a numerical representation of preferences: functional representations,
value functions and intervals. These are discussed in Section 7. The concepts
of thresholds and minimal representation are also introduced in this section.
Finally, after briefly exploring the concept of deontic logic (logic of preference)
and other related issued in Section 8, we end the chapter with some concluding
remarks.

2. Purpose

Preference modelling is an inevitable step in a variety of fields. Scientists build
models in order to better understand and to better represent a given situation;
such models may also be used for more or less operational purposes (see [30]).
It is often the case that it is necessary to compare objects in such models, ba-
sically in order to either establish if there is an order between the objects or
to establish whether such objects are “near”. Objects can be everything, from
candidates to time intervals, from computer codes to medical patterns, from
prospects (lotteries) to production systems. This is the reason why preference
modelling is used in a great variety of fields such as economy [9, 10, 11, 50],
sociology, psychology [37, 42, 45, 112, 111], political science [13, 179], artifi-
cial intelligence [65], computer science [82, 177, 189], temporal logic (see [S])
and the interval satisfiability problem [92, 150], mathematical programming
[157, 158], electronic business, medicine and biology [22, 38, 108, 114, 138],
archaeology [102], and obviously decision analysis.

In this chapter, we are going to focus on preference modelling for decision
aiding purposes, although the results have a much wider validity.

Throughout this chapter, we consider the case of somebody (possibly a
decision-maker) who tries to compare objects taking into account different
points of view. We denote the set ofalternatives A?, to be labelled a, b, ¢, ... and
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the set of points of view J, labelled j = 1,2,...,m. In this framework, a data
g;(a) corresponds to the evaluation of the alternative a from the point of view
jeJ.

As already mentioned, comparing two objects can be seen as looking for one
of the two following possible situations:

m  Object a is “before” object b, where “before” implies some kind of order
between @ and b, such an order referring either to a direct preference (a
is preferred to b) or being induced from a measurement and its associated
scale (a occurs before b, a is longer, bigger, more reliable, than b);

» Object a is “near” object b, where “near” can be considered either as
indifference (object a or object b will do equally well for some purpose),
or as a similarity, or again could be induced by a measurement (a occurs
simultaneously with b, they have the same length, weight, reliability).

The two above-mentioned “attitudes” (see [142]) are not exclusive. They just
stand to show what type of problems we focus on. From a decision aiding point
of view we traditionally focus on the first situation. Ordering relations is the
natural basis for solving ranking or choice problems. The second situation is
traditionally associated with problems where the aim is to be able to put together
objects sharing a common feature in order to form “homogeneous” classes or
categories (a classification problem).

The first case we focus on is the ordering relation: given the setA, establishing
how each element of A compares to each other element of A from a “preference”
point of view enables to obtain an order which might be used to make either
a choice on the set A (identify the best) or to rank the set A. Of course, we
have to consider whether it is possible to establish such an ordering relation
and of what type (certain, uncertain, strong, weak etc.) for all pairs of elements
of A. We also have to establish what “not preference” represents (indifference,
incomparability etc.). In the following sections (namely in Section 6), we are
going to see that different options are available, leading to different so called
preference structures.

In the second case we focus on the “nearness” relation since the issue here
is to put together objects which ultimately are expected to be “near” (whatever
the concept of “near”” might represent). In such a case, there is also the problem
how to consider objects which are “not near”. Typical situations in this case
include the problems of grouping, discriminating and assigning [98]. A further
distinction in such problems concerns the fact that the categories with which
the objects might be associated could already exist or not and the fact that such
categories might be ordered or not. Putting objects into non pre-existing non
ordered categories is the typical classification problem, conversely, assigning

objects to pre-existing ordered categories is known as the “sorting” problem
[149, 154, 220].
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It should be noted that although preference relations have been naturally
associated to ranking and choice problem statements, such a separation can
be argued. For instance, there are sorting procedures (which can be seen as
classification problems) that use preference relations instead of “nearness” ones
[126,136, 215]. The reason is the following: in order to establish that two objects
belong to the same category we usually either try to check whether the two
objects are “near” or whether they are near a “typical” object of the category
(see for instance [154]). If, however, a category is described, not through its
typical objects, but through its boundaries, then, in order to establish if an
object belongs to such a category it might make sense to check whether such
an object performs “better” than the “minimum”, or “least” boundary of the
category and that will introduce the use of a preference relation.

Recently Ngo The [142] claimed that decision aiding should not exclusively
focus on preference relations, but also on “nearness relations”, since quite often
the problem statement to work with in a problem formulation is that of classifi-
cation (on the existence of different problem statements and their meaning the
reader is referred to [172, 173, 52, 204]).

3. Nature of Information

As already mentioned, the purpose of our analysis is to present the literature as-
sociated with objects comparison for either a preference or a nearness relation.
Nevertheless, such an operation is not always as intuitive as it might appear.
Building up a model from reality is always an abstraction (see [28]). This can
always be affected by the presence of uncertainty due to our imperfect knowl-
edge of the world, our limited capability of observation and/or discrimination,
the inevitable errors occurring in any human activity etc. [170]. We call such
an uncertainty exogenous. Besides, such an activity might generate uncertainty
since it creates an approximation of reality, thus concealing some features of
reality. We call this an endogenous uncertainty (see [191]).

As pointed out by Vincke [205] preference modelling can be seen as either
the result of direct comparison (asking a decision-maker to compare two objects
and to establish the relation between them) from which it might be possible to
infer a numerical representation, or as the result of the induction of a preference
relation from the knowledge of some “measures” associated to the compared
objects.

In the first case, uncertainty can arise from the fact that the decision-maker
might not be able to clearly state a preference relation for any pair of actions.
We do not care why this may happen, we just consider the fact that the the
decision-maker may reply when asked if “z is preferred to y”: yes, no, I do
not know, yes and no, I am not sure, it might be, it is more preference than
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indifference, but... etc.. The problem in such cases is how to take such replies
into account when defining a model of preferences.

In the second case, we may have different situations such as: incomplete in-
formation (missing values for some objects), uncertain information (the value
of an object lies within an interval to which an uncertainty distribution might
be associated, but the precise value is unknown), ambiguous information (con-
tradictory statements about the present state of an object). The problem here
is how to establish a preference model on the basis of such information and
to what extent the uncertainty associated with the original information will be
propagated to the model and how.

Such uncertainties can be handled through the use of various formalisms (see
Section 5 of this chapter). Two basic approaches can be distinguished (see also

[71D.

1 Handling uncertain information and statements. In such a case, we con-
sider that the concepts used in order to model preferences are well-known
and that we could possibly be able to establish a preference relation with-
out any uncertainty, but we consider this difficult to do in the present
situation with the available information. A typical example is the follow-
ing: we know that z is preferred to ¥ if the price of z is lower than the price
of ¢, but we know very little about the prices of z and y. In such cases
we might use an uncertainty distribution (classical probability, ill-known
probabilities, possibility distributions, see [43, 70, 75, 107]) in order to
associate a numerical uncertainty with each statement.

2 Handling ambiguous concepts and linguistic variables. With such a per-
spective we consider that sentences such as “x is preferred to y” are
ill-defined, since the concept of preference itself is ill-defined, indepen-
dently from the available information. A typical example is a sentence
of the type: “the largest the difference of price between x and y is, the
strongest the preference is”. Here we might know the prices of z and y
perfectly, but the concept of preference is defined through a continuous
valuation. In such cases, we might use a multi-valued logic such that any
preferential sentence obtains a truth value representing the “intensity of
truth” of such a sentence. This should not be confused with the concept of
“preference intensity”, since such a concept is based on the idea of “mea-
suring” preferences (as we do with temperature or with weight) and there
is no “truth” dimension (see [117, 118, 164, 165]). On the other hand
such a subtle theoretical distinction can be transparent in most practical
cases since often happens that similar techniques are used under different
approaches.
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4. Notation and Basic Definitions

The notion of binary relation appears for the first time in De Morgan’s study
[51] and is defined as a set of ordered pairs in Peirce’s works [151, 152, 153].
Some of the first work dedicated to the study of preference relations can be
found in [72] and in [178] (more in general the concept of models of arbitrary
relations will be introduced in [185, 186]). Throughout this chapter, we adopt
Roubens’ and Vincke’s notation [167].

DErFINITION 1 (BINARY RELATION) Let A be a finite set of elements (a,
b,c,...,n), a binary relation R on the set A is a subset ofthe cartesian product
A XA, thatis, aset of orderedpairs (a, b) such that aand barein A: R C Ax A.

For an ordered pair (a, b) which belongs to R, we indifferently use the nota-
tions:

(a,b) € RoraRbor R(a,b).

Let R and T be two binary relations on the same set A. Some set operations
are:

The Inclusion: RCT iff aRb— aTb

The Union: a(RUT)b iff aRbor(inclusive) aT'd

The Intersection: a(RNT)b iff aRband aTh

The Relative Product: a(R.T)b  iff dc€ A: aRcand cTh
(aR?b iff aR.Rb).

When such concepts apply we respectively denote (R*), (R?), (R) the asym-
metric, the symmetric and the complementary part of binary relation R:

aR% iff aRband not(bRa)
aR°b iff aRband bRa
aRb iff not(aRb) and not(bRa).

The complement (RS), the converse (the dual)(R) and the co-dual (R°4) of
R are respectively defined as follows:

aR° iff not(aRb)
aRb iff bRa
aR%b iff not(bRa).
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The relation R is called

reflexive, if aRa, Vac A

irreflexive, if aRa, Va€ A

symmetric, if, aRb — bRa, Ya,b€ A
antisymmetric, if (aRb,bRa) — a=b, Va,be A
asymmetric, if aRb — bR, Va,b € A
complete, if (aRborbRa), Va#be A
strongly complete, if ~ aRbor bRa, Va,b€ A

transitive, if, aRb,bRc) — aRc, Va,b,c€ A

negatively transitive,  (aR°b,bR°c) — aR’c, Va,b,c € A
negatively transitive, if aRb — (aRcor cRb), Va,b,c€ A
semitransitive, if (aRb,bRc) — (aRd or dRc), Ya,b,c,d € A
Ferrers relation, if (aRb,cRd) — (aRd or cRb), Ya,b,c,d € A

The equivalence relation E associated with the relation R is a reflexive,
symmetric and transitive relation, defined by:

aRc — bRc

aEb iff VaeA{CRa s CcRb.

A binary relation R may be represented by a direct graph (A, R) where the
nodes represent the elements of A, and the arcs, the relation R. Another way
to represent a binary relation is to use a matrix M*; the element M, (ﬁ, of the

matrix (the intersection of the line associated to a and the column associated to
b) is 1 if aRb and 0 if not(aRb).

ExampLE | Let R be a binary relation defined on a set A, such that the
set A and the relation R are defined as follows: A = {a,b,c,d} and R =
{(a,0),(b,d), (b, ¢), (¢, ), (c,d), (d, b)}.

The graphical and matrix representation of R are given in Figures 2.1 and
2.2.

S. Languages

Preference models are formal representations of comparisons of objects. As
such they have to be established through the use of a formal and abstract lan-
guage capturing both the structure of the world being described and the ma-
nipulations of it. It seems natural to consider formal logic as such a language.
However, as already mentioned in the previous sections, the real world might
be such that classical formal logic might appear too rigid to allow the definition
of useful and expressive models. For this purpose, in this section, we introduce
some further formalisms which extend the expressiveness of classical logic,
while keeping most of its calculus properties.
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|

O —

|

Figure 2.1.  Graphical representation of R.

a b d
a 0 1 0 0
b 0 0 1 1
c 1 0 0 1
d 01 0 O

Figure 2.2. Matrix representation of R.

51 Classical Logic

The interested reader can use two references: [128, 200] as introductory books
to the use and the semantics of classical logic. All classic books mentioned in
this chapter, implicitly or explicitly use classical logic, since binary relations
are just sets and the calculus of sets is algebraically equivalent to truth calculus.
Indeed the semantics of logical formulas as established by Tarski [185, 186],
show the equivalence between membership of an element to a set and truth of
the associate sentence.

Building a binary preference relation, a valuation of any proposition takes
the values {0, 1}:

1 iff aRb is true
0 iff aRb is false.

I

p(aRb)
p(aRb)

The reader will note that all notations introduced in the previous section are
based on the above concept. He/she should also note that when we write “a
preference relation P is a subset of A X A”, we introduce a formal structure
where the universe of discourse is A x A and P is the model of the sentence
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“z in relation P with ", that is, P is the set of all elements of A x A (ordered
pairs of z and y) for which the sentence is true.

The above semantic can be in sharp contrast with decision analysis experi-
ence. For this purpose we will briefly introduce two more semantics: fuzzy sets
and four-valued logic.

5.2 Fuzzy Sets

In this section, we provide a survey of basic notions of fuzzy set theory. We
present definitions of connectives and several valued binary relation properties
in order to be able to use this theory in the field of decision analysis. Basic
references for this section include, [70, 85, 182, 219].

Fuzzy sets were first introduced by Zadeh [217, 218]. The concept and the
associated logics were further developed by other researchers: [67, 93, 115,
116, 130, 131, 139, 144],

Fuzzy measures can be introduced for two different uses: either they can
represent a concept imprecisely known (although well defined) or a concept
which is vaguely perceived such as in the case of a linguistic variable. In the
first case they represent possible values, while in the second they are better
understood as a continuous truth valuation (in the interval [0, 1]). To be more
precise:

m in the first case we associate a possibility distribution (an ordinal distri-
bution of uncertainty) to classical logic formulas;

= in the second case we have a multi-valued logic where the semantics
allow values in the entire interval [0, 1].

A fuzzy set can be associated either with the set of alternatives considered
in a decision aiding model (consider the case where objects are represented by
fuzzy numbers) or with the preference relations. In decision analysis we may
consider four possibilities™:

m  Alternatives with crisp values and crisp preference relations
= Alternatives with crisp values and fuzzy preference relations

s Alternatives with fuzzy values and crisp preference relations (defuzzifi-
cation , [124] with gravity center, [214] with means interval)

= Alternatives with fuzzy values and fuzzy preference relations (possibility
graphs, [69] four fuzzy dominance index, [168]); but in this chapter we
are going to focus on fuzzy preference relations.

In the following we introduce the definitions required for the rest of the
chapter.
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DerINITION 2 (Fuzzy SET) A fuzzy set (or a fuzzy subset) F on a set §lis
defined by the result of an application:

HF Q— [0, 1]
where Yz € Q, u(x) is the membership degree of x to F.

DEFINITION 3 (NEGATION) A function n : [0,1] — [0,1] is a negation if
and only if it is non-increasing and:

n(0) = land n(1) = 0.

If the negation n is strictly decreasing and continuous then it is called strict.

In the following we investigate the two basic classes of operators, the op-
erators for the intersection (triangular norms called t-norms) and the union
(triangular conorms called t-conorms or s-norms) of fuzzy sets:

DEFINITION 4 (T-NORM) A function T : [0,1)*> — [0,1] is a triangular
norm (t-norm), if and only if it satisfies the four conditions:

Equivalence Condition: T(1,z) = z Vx € [0,1]
T is commutative: T(x,y) = T'(y,z) Vz,y € [0,1]

T is nondecreasing in both elements: T'(x,y) < T(u,v) forall 0 <z <u <1
and 0 <y<v <1

T is associative: T(z,T(y, z)) = T(T(z,y), z) Vz,y,z € [0,1].

The function T defines a general class of intersection operators for fuzzy
sets.

DEFINITION 5 (T-CONORM) A function S : [0,1]2 — [0,1] is a t-conorm,
ifand only ifit satisfies the four conditions:

Equivalence Condition: S(0,z) = z Vz € [0,1]
S is commutative: S(z,y) = S(y, x) Vz,y € [0,1]

S is nondecreasing in both elements: S(z,y) < S(u,v) forall 0 <z <u <1
and 0 <y<wv<l

S is associative: S{x,S(y, z)) = S(S(z,v),2) Vz,y,2 € [0,1].

T-norms and t-conorms are related by duality. For suitable negation opera-
tors’ pairs of t-norms and t-conorms satisfy the generalisation of the De Morgan
law:
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DEerFINITION 6 (DE MORGAN TRIPLETS) Suppose that T is a t-norm, S is

a t-conorm and n is a strictnegation. (T, S,n} is a De Morgan triple ifand
only if:

n(S(z,y)) = T(n(z),n(y)).

Such a definition extends De Morgan’s law to the case of fuzzy sets. There
exist different proposed De Morgan triplets: [60, 68, 90, 176, 210, 213, 216].
The more frequent t-norms and t-conorms are presented in Table 2.1.

Table 2.1.  Principal t-norms and t-conorms.

Names t-norms t-conorms
Zadeh min(z,y) max(z,y)
probabilistic T*y T+y—2xy
Lukasiewicz max(z +y —1,0) min(z +y,1)
Hamacher(y >0)  sx=s)tr=em e
Yager(p > 0) max(l — ((1 —z)? + (1 — y)»)/?,0)  min((z” + y)*/?,1)
Weber(A > —1) max((z +y — 1+ Azy)/(1+ A),0)) min(z + y + Azy, 1)
z if y=1 z if y=0
drastic y if .z=1 y if z=0
0 if not 1 if not

We make use of De Morgan’s triplet (T', S, ) in order to extend the definitions
of the operators and properties introduced above in crisp cases. First, we give
the definitions of operators of implication I and equivalence E7p:

Il

IT(IIJ,y)
ET(.’E,y)

sup{z € [0,1] : T(z,2) <y}
T(IT(z’y)a IT(y,.’E)-

Since preference modelling makes use of binary relations, we extend the
definitions of binary relation properties to the valued case. For the sake of

simplicity u(R(x,y)) will be denoted R(zx,y):a valued binary relation R(z,y)
is (Va,b,c,d € A)
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reflexive, if R{a,a) =1

irreflexive, if R(a,a)=0

symmetric, if R(a,b) = R(b,a)
T-antisymmetric, if a#b— T(R(a,b),R(ba)) =0
T-asymmetric, if T(R(a,b), R(b,a)) =0
S-complete, if a#b— S(R{a,b),R(b,a)) =1
S-strongly complete,  if S(R(a,b), R(b,a))1

T-transitive, if T(R(a,c), R(c,b)) < R(a,b)

negatively S-transitive, if R(a,b) < S(R(a,c), R(c,b))
T-S-semitransitive, if T(R(a,d), R(d,b)) < S(R(a,c), R(c,b))
T-S-Ferrers relation,  if T(R(a,b), R(c,d)) < S(R(a,d), R(c,b)).

Different instances of De Morgan triplets will provide different definitions
for each property.

The equivalence relation is one of the most-used relations in decision analysis
and is defined in fuzzy set theory as follows:

DerINITION 7 (EQUIVALENCE RELATION) A Junction E : [0, 1]2 —10,1]
is an equivalence if and only if it satisfies:

s E(z,y) = E(y,z)Vz,y € [0, 1]

s E(0,1) =E(1,0)=0

» E(x,z) =1vz € [0,1]]

» <o’ <y <y-— E(z,y) < E@,Y).

In Section 6.3 and Chapter 12, some results obtained by the use of fuzzy set
theory are represented.

53 Four-valued Logics

When we compare objects, it might be the case that it is not possible to es-
tablish precisely whether a certain relation holds or not. The problem is that
such a hesitation can be due either to incomplete information (missing values,
unknown replies, unwillingness to reply etc.) or to contradictory information
(conflicting evaluation dimensions, conflicting reasons for and against the rela-
tion, inconsistent replies etc.). For instance, consider the query “is Anaxagoras
intelligent?” If you know who Anaxagoras is you may reply “yes” (you came to
know that he is a Greek philosopher) or “no” (you discover he is a dog). But if
you know nothing you will reply “I do not know” due to your ignorance (on this
particular issue). If on the other hand you came to know both that Anaxagoras
is a philosopher and a dog you might again reply “I do not know”, not due to
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ignorance, but to inconsistent information. Such different reasons for hesitation
can be captured through four-valued logics allowing for different truth values
for four above-mentioned cases. Such logics were first studied in [66] and in-
troduced in the literature in [17] and [18]. Further literature on such logics can
be found in [8, 23, 73, 84, 88, 113, 188, 192].

In the case of preference modelling, the use of such logics was first suggested
in [190] and [54]. Such logics extend the semantics of classical logic through
two hypotheses:

® the complement of a first order formula does not necessarily coincide
with its negation;

a truth values are only partially ordered (in a bilattice), thus allowing the
definition of a boolean algebra on the set of truth values.

The result is that using such logics, it is possible to formally characterise
different states of hesitation when preferences are modelled (see [195, 196].
Furthermore, using sucha formalism, it becomes possible to generalise the con-
cordance/discordance principle (used in several decision aiding methods) as
shown in [193] and several characterisation problems can be solved (see for in-
stance [197]). Recently (see [89, 159]) it has been suggested to use the extension
of such logics for continuous valuations.

6. Preference Structures

DEFINITION 8 (PREFERENCE STRUCTURE) A preference structure is a col-
lection of binary relations defined on the set A and such that:

s foreach couple a, b in A; at least one relation is satisfied

w for each couple a, b in A; if one relation is satisfied, another one cannot
be satisfied.

In other terms a preference structure defines a partition® of the set A x A.
In general it is recommended to have two other hypotheses with this definition
(also denoted as fundamental relational system of preferences):

m  Each preference relation in a preference structure is uniquely character-
ized by its properties (symmetry, transitivity, etc.).

s For each preference structure, there exists a unique relation from which
the different relations composing the preference structure can be deduced.
Any preference structure on the set A can thus be characterised by a
unique binary relation R in the sense that the collection of the binary
relations are be defined through the combinations of the epistemic states
of this characteristic relation’.
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6.1 (P, I') Structures

The most traditional preference model considers that the decision-maker con-
fronted with a pair of distinct elements of a set A, either:

m clearly prefers one element to the other, or
s feels indifferent about them.

The subset of ordered pairs (a, b) belonging to A x A such that the statement
“a is preferred to b” is true, is called preference relation and is denoted by P.

The subset of pairs (a, b) belonging to A x A such that the statement “a and
b are indifferent” is true, is called indifference relation and is denoted by I (I
being considered the complement of P U P! with respect to A x A).

In the literature, there are two different ways of defining a specific preference
structure:

m the first defines it by the properties of the binary relations of the relation
set;

m the second uses the properties of the characteristic relation. In the rest of
the section, we give definitions in both ways.

DerINITION 9 ({ P, I) STRUCTURE) A {P,I) structure on the set A is a
pair{P, I} ofrelations on A such that:

m P is asymmetric,
w [ is reflexive, symmetric.

The characteristic relation R of a (P, I} structure can be defined as a combina-
tion of the relations P and [ as:

aRbiff a( P U Db. 2.1

In this case P and I can be defined from R as follows:
aPb iff aRband bR 2.2)
alb iff aRbandbRa. 2.3)

The construction of orders is of a particular interest, especially in decision
analysis since they allow an easy operational use of such preference structures.
We begin by representing the most elementary orders (weak order, complete
order). To define such structures we add properties to the relations P and /
(namely different forms of transitivity).

DEFINITION 10 (ToTAL ORDER) Let R be a binary relation on the set A, R
being a characteristic relation of ( B 1), the following definitions are equivalent:
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i. Risatotal order.

ii. Ris reflexive, antisymmetric, complete and transitive.

I ={(a,a),Va € A}
. P is transitive
PULis reflexive and complete.

P is transitive
. PI C P (or equivalently IP C P)
P U Iis reflexive and complete.

With this relation, we have an indifference between any two objects only if
they are identical. The total order structure consists of an arrangement of objects
from the best one to the worst one without any ex aequo.

In the literature, one can find different terms associated with this structure:
total order, complete order, simple order or linear order.

DEeFINITION 11 (WEAK ORDER) Let R be a binary relation on the set A, R
being a characteristic relation of (P, I), the following definitions are equivalent:

i. Ris a weak order.

ii. R is reflexive, strongly complete and transitive.

1 is transitive
. P is transitive
P U Iis reflexive and complete.

This structure is also called complete preorder or total preorder. In this struc-
ture, indifference is an equivalence relation. The associated order is indeed a
total order of the equivalence (indifference) classes of A.

The first two structures consider indifference as a transitive relation. This
is empirically falsifiable. Literature studies on the intransitivity of indifference
show this; undoubtedly the most famous is that of Luce [125], who gives the
example of a cup of sweetened tea®. Before him, [9, 74, 91, 97] and [162]
already suggested this phenomenon. For historical commentary on the subject,
see [83]. Relaxing the property of transitivity of indifference results in two
well-known structures: semi-orders and interval orders.

DEFINITION 12 (SEMI-ORDER) Let R be a binary relation on the set A, R
being a characteristic relation of {P, I, the following definitions are equivalent:

i. R is a semi-order.
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ii. Ris reflexive, complete, Ferrers relation and semitransitive.

PIPCP
ii. { PPnI?=0
P UIis reflexive and complete.

PI.PCP
v. P2] C P (or equivalently IP? C P)
P U is reflexive and complete.

DEerNtTION 13 (INTERVAL ORDER (IO)) Let R be a binary relation on
the set A, R being a characteristic relation of (P, I), the following definitions
are equivalent:

i. R is an interval order.

ii. R is reflexive, complete and Ferrers relation.
i PI.PCP
H PuIis reflexive and complete.

A detailed study of this structure can be found in [78, 132, 161]. It is easy to
see that this structure generalizes all the structures previously introduced.

Can we relax transitivity of preference? Although it might appear counter-
intuitive there is empirical evidence that such a situation can occur: [127, 199].
Similar work can be found in: [29, 31, 32, 33, 77, 79, 80, 206].

6.2 Extended Structures

The (P, I) structures presented in the previous section neither take into account
all the decision-maker’s attitudes, nor all possible situations. In the literature,
there are two non exclusive ways to extend such structures:

m Introduction of several distinct preference relations representing (one or
more) hesitation(s) between preference and indifference;

m Introduction of one or more situations of incomparability.

6.2.1 Several Preference Relations.  One can wish to give more freedom
to the decision-maker and allow more detailed preference models, introducing
one or more intermediate relations between indifference and preference. Such
relations might represent one or more zones of ambiguity and/or uncertainty
where it is difficult to make a distinction between preference and indifference.
Another way to interpret such “intermediate” relations is to consider them as
different “degrees of preference intensity”. From a technical point of view these
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structures are similar and we are not going to further discuss such semantics.
We distinguish two cases: one where only one such intermediate relation is
introduced (usually called weak preference and denoted by (), and another
where several such intermediate relations are introduced.

1 {P,Q, I) preference structures. In such structures we introduce one more
preference relation, denoted by Q which is an asymmetric and irreflex-
ive binary relation. The usual properties of preference structures hold.
Usually such structures arise from the use of thresholds when objects
with numerical values are compared or, equivalently, when objects whose
values are intervals are compared. The reader who wants to have more
information on thresholds can goto Section 7.1 where all definitions and
representation theorems are given.

(P,Q,I) preference structures have been generally discussed in [203].
Two cases are studied in the literature:

m  PQI interval orders and semi-orders (for their characterisation see
[198]). The detection of such structures has been shown to be a
polynomial problem (see [143]).

m Double threshold orders (for their characterisation see [197, 203])
and more precisely pseudo-orders (see [174, 175]).

One of the difficulties of such structures is that it is impossible to define
P, O and I from a single characteristic relation R as is the case for other
conventional preference structures.

2 (P, -- P,) preference structures. Practically, such structures generalise
the previous situation where just one intermediate relation was consid-
ered. Again, such structures arise when multiple thresholds are used in
order to compare numerical values of objects. The problem was first in-
troduced in [47] and then extensively studied in [57, 59, 166], see also
[2, 58, 135, 187]. Typically such structures concern the coherent rep-
resentation of multiple interval orders. The particular case of multiple
semi-orders was studied in [55].

6.2.2 Incomparability. In the classical preference structures presented
in the previous section, the decision-maker is supposed to be able to compare
the alternatives (we can have aPb, bPa or alb). But certain situations, such as
lack of information, uncertainty, ambiguity, multi-dimensional and conflicting
preferences, can create incomparability between alternatives. Within this frame-
work, the partial structures use a third symmetric and irreflexive relation J (aJb
«—— not(aPb), not(bPa), not(alb), not(a@b), not(bQa)), called incompara-
bility, to deal with this kind of situation. To have a partial structure (P, I, J) or
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(P,Q,1,J), we add to the definitions of the preceding structures (total order,
weak order, semi-order, interval order and pseudo-order), the relation of incoim-
parability (J # @); and we obtain respectively partial order, partial preorder
(quasi-order), partial semi-order, partial interval order and partial pseudo-order
[167].

DEeFINITION 14 (PARTIAL ORDER) Let R be a binary relation (R = P U
I) on the set A, R being a characteristic relation of (P,I,J), the following
definitions are equivalent:

i. R is apartial order.
ii. Ris reflexive, antisymmetric, transitive.

P is asymmetric, transitive
I is reflexive, symmetric
J is irreflexive and symmetric

I = {(a,a),Va € A}.

DErFINITION 15 (QUASI-ORDER) Let R be a binary relation (R = PUI)on
the set A, R being a characteristic relation of (P, I, ), the following definitions
are equivalent:

iil.

i. Ris a quasi-order.
ii. R is reflexive, transitive.

P is asymmetric, transitive
1 is reflexive, symmetric and transitive
J is irreflexive and symmetric

(PIUI.P)C P.

A fundamental result [72, 78] shows that every partial order (resp. partial
preorder) on a finite set can be obtained as an intersection of a finite number of
total orders (resp. total preorders, see [25]).

A further analysis of the concept of incomparability can be found in [195]
and [196]. In these papers it is shown that the number of preference relations
that can be introduced in a preference structure, so that it can be represented
through a characteristic binary relation, depends on the semantics of the lan-
guage used for modelling. In other terms, when classical logic is used in order
to model preferences, no more than three different relations can be established
(if one characteristic relation is used). The introduction of a four-valued logic
allows to extend the number of independently defined relations to 10, thus in-
troducing different types of incomparability (and hesitation) due to the different
combination of positive and negative reasons (see [193]). It is therefore possible
with such a language to consider an incomparability due to ignorance separately
from one due to conflicting information.

iil.
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6.3 Valued Structures

In this section, we present situations where preferences between objets are
defined by a valued preference relation such that p(R(a, b)) represents either
the intensity or the credibility of the preference ofa over b7 or the proportion of
people who prefer a to b or the number of times that a is preferred to b. In this
section, we make use of results cited in [85] and [155]. To simplify the notation,
the valued relation u(R(a, b)) is denoted R(a, b) in the rest of this section. We
begin by giving a definition of a valued relation:

DEFINITION 16 (VALUED RELATION) A valued relation R on the set A is
a mapping from the cartesian product Ax A onto a bounded subset of R, often
the interval [0,1].

REMARK 1 A valued relation can be interpreted as a family of crisp nested
relations. With such an interpretation, each a-cut level of a fuzzy relation cor-
responds to a different crisp nested relation.

In this section, we show some results obtained by the use of fuzzy set theory
as a language which is capable to deal with uncertainty. The seminal paper by
Orlovsky [147] can be considered as the first attempt to use fuzzy set theory
in preference modelling. Roy in [169] will also make use of the concept of
fuzzy relations in trying to establish the nature of a pseudo-order. In his paper
Orlovsky defines the strict preference relation and the indifference relation with
the use of Lukasiewicz and min t-norms. After him, a number of researchers
were interested in the use of fuzzy sets in decision aiding, most of these works
are published in the journal Fuzzy Sets and Systems.

In the following we give some definitions of fuzzy ordered sets. We derive
the following definitions from the properties listed in Section 5.2:

DEerFNITION 17 (Fuzzy TotaL ORDER) A binary relation R on the set A,
is a fuzzy total order iff R is antisymmetric, strongly complete and T-transitive.

DermniTioN 18 (Fuzzy WEAK ORDER) A binary relation Ron the set A
is a fuzzy weak order iff R is strongly complete and transitive.

DEeFINITION 19 (Fuzzy SEMI-ORDER) A binary relation R on the set A is a
fuzzy semi-order iff R is strongly complete, a Ferrers relation and semitransitive.

DEerNTION 20 (Fuzzy INTERVAL ORDER (IO)) A binary relation R on
the set A is a fuzzy interval order iff R is a strongly complete Ferrers relation.

DEerINITION 21 (Fuzzy ParTiAL ORDER) A binary relation R on the set
A is a fuzzy partial order iff: R is antisymmetric reflexive and T-transitive.
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DEerINITION 22 (Fuzzy PARTIAL PREORDER) A binary relation R on the
set A is a fuzzy partial preorder iff R is reflexive and T-transitive.

All the definitions above are given in terms of the characteristic relation R.
The second step is to define valued preference relations (valued strict preference,
valued indifference and valued incomparability) in terms of the characteristic
relation [85, 86, 87, 148, 156]. For this, equations (2.1) — (2.3) are interpreted
in terms of fuzzy logical operations:

P(a,b) = T[R(a,b),nR(b,a) 2.4
I(a,b) = T[R(a,b),R(b,a) 2.5)
R(a,b) = S[P(a,b),1(a,b)]. (2.6)

However, it is impossible to obtain a result satisfying these three equations
using a De Morgan triplet. [6, 85] present this result as an impossibility theorem
that proves the non-existence of a single, consistent many-valued logic as a
logic of preference. A way to deal with this contradiction is to consider some
axioms to define (P, I, J). In different papers [85, 86, 148], Fodor, Ovchinnikov,
Roubens propose to define three general axioms that they call Independence of
Irrelevant Alternatives (IA), Positive Association (PA), Symmetry (SY). With
their axioms, the following propositions hold:

ProposiTION 1 (Fuzzy WEAK ORDER) If (P,I) is a fuzzy weak order
then

® P s a fuzzy strict partial order
® [ is a fuzzy similarity relation (reflexive, symmetric, transitive).

PropoSITION 2 (Fuzzy SEMI-ORDER) If (P,I) is a fuzzy semi-order
then

® P s afuzzy strict partial order

m | is not transitive.

ProposiTioN 3 (Fuzzy INTERVAL ORDER (IO)) If (P, I) is a fuzzy in-
terval order then

® P s afuzzy strict partial order

w | is not transitive.

De Baets, Van de Walle and Kerre [48, 201, 202] define the valued preference
relations without considering a characteristic relation:
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P is T — asymmetric (P Ny P~1) = §)

Lis reflexive and J is irreflexive (I(a,a) = 1, (a,a) = 0Va € A)
I and J are symmetric (I = I™},J = J71)
PnpI=0,PnrJ=0InpJ=10

PUr P 'urlUur=AxA.

With a continuous t-norm and without zero divisors, these properties are
satisfied only in crisp case. To deal with this problem, we have to consider a
continuous t-norm with zero divisor.

In multiple criteria decision aiding, we can make use of fuzzy sets in different
ways. One of these helps to construct a valued preference relation from the crisp
values of alternatives on each criteria. We cite the proposition of Perny and Roy
[156] as an example here. They define a fuzzy outranking relation R from areal
valued function # definedonR x R, such that R(a, b)8(g(a), g(b)) verifies the
following conditions for all @, b in A:

Vye X,  6(z,y) is a nondecreasing function of x 27
V€ X, 6(z,y) is a nonincreasing function of y (2.8)
VzeX, 6(zz2)=1 2.9)

The resulting relation R is a fuzzy semi-order (i.e. reflexive, complete, semi-
transitive and Ferrers fuzzy relation). Roy (1978) proposed in Electre III to
define the outranking relation R characterized by a function @ for each criterion
as follows: .

p(z) — min{y — z, q(z)}
where p(z) and g(z) are thresholds of the selected criteria.

We may work with alternatives representing some imprecision or ambiguity
for a criterion. In this case, we make use of fuzzy sets to define the evaluation of
the alternative related to the criterion. In the ordered pair {z, u;}, ,u;? represents
the grade of membership of & for alternative a related to the criterion j. The
fuzzy set y is supposed to be normal (supy (u;‘) = 1) and convex (Vz,y, z € R,
Y € [z, 2], p$(y) < min{u$(x), u}(2)})- Thecredibility of the preference of
a over b is obtained from the comparison of the fuzzy intervals (normal, convex
fuzzy sets) of @ and b with some conditions:

®  The method used should be sensitive to the specific range and shape of
the grades of membership.

® The method should be independent of the irrelevant alternatives.

®  The method should satisfy transitivity.
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Fodor and Roubens [85] propose to use two procedures.
In the first one, the credibility of the preference of a over b for j isdefined
as the possibility that @ > b:

a2 8) = \/ [u8(2) A i (w)] = sup [min(ul(2), ki(w))] . 210)
T2y

T2y

The credibility as defined by (2.10) is a fuzzy interval order (Il; is reflexive,
complete and a Ferrers relation) and

min (IT;(a, b), I1;(b,a)) = sgp min (u;‘(x),u';(z)) .

In the case of a symmetrical fuzzy interval (u®), the parameters of the fuzzy
interval can be defined in terms of the valuation g;(a) and thresholds p(g;(a)

and g(g;(a). Some examples using trapezoidal fuzzy numbers can be found in
the work of Fodor and Roubens.

The second procedure proposed by Fodor and Roubens makes use of the
shapes of membership functions, satisfies the three axioms cited at the beginning
of the section and gives the credibility of preference and indifference as follows:

Pi(a,b) = R¥a,b)=1-T(b>a)=Nj(a>b)  (2.11)
Ii{a,b) = min(ll;(a > b),II;(b > a)]. (2.12)

Where II (the possibility degree) and N (the necessity degree) are two dual
distributions of the possibility theory that are related to each other with the
equality: TI(A) = 1 — N(A) (see [71] for an axiomatic definition of the theory
of possibility).

7. Domains and Numerical Representations

In this section we present a number of results concerning the numerical repre-
sentation of the preference structures introduced in the previous section. This
is an important operational problem. Given a set A and a set of preference
relations holding between the elements of A, it is important to know whether
such preferences fit a precise preference structure admitting a numerical rep-
resentation. If this is the case, it is possible to replace the elements of A with
their numerical values and then work with these. Otherwise, when to the set
A is already associated a numerical representation (for instance a measure), it
is important to test which preference structure should be applied in order to
faithfully interpret the decision-maker’s preferences [205].

7.1 Representation Theorems

THEOREM 1 (ToTAL ORDER) Let R = (P,I) be a reflexive relation on a
finite set A, the following definitions are equivalent:
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i. R is a total order structure (see 10).
i + o . | aPbiff g(a) > g(b)
ii. g: A RY satisfying for all a,b € A { o # b — g(a) # g(b).

iii. 3g: A~ RY satisfying for all a,b € A: { Z}zgﬁﬁazé)g;éb)g(b).

In the infinite not enumerable case, it can be impossible to find a numerical
representation of a total order. For a detailed discussion on the subject, see [16].
The necessary and sufficient conditions to have a numerical representation for

a total order are present in many works: [36, 49, 75, 118].

THEOREM 2 (WEAK ORDER) Let R = (P,I) be a reflexive relation on a
finite set A, thefollowing definitions are equivalent:

i. Ris aweak order structure (see 11).

ii. 3g: A RY satisfying for all a,b € A: { Zfbb ;J;‘ zgzg zggg

iii. 3g: A - R satisfying for all a,b € A: aRb iffg(a) > g(b).

REMARK 2 Numerical representations of preference structures are not unique.
All monotonic strictly increasing transformations of the function g can be in-

. . .8
terpreted as equivalent numerical representations’.

Intransitivity of indifference or the appearance of intermediate hesitation
relations is due to the use of thresholds that can be constant or dependent on
the value of the objects under comparison (in this case values of the threshold

might obey further coherence conditions).

THEOREM 3 (SEMI-ORDER) Let R = (P, IYbe a binary relation on a finite
set A, thefollowing definitions are equivalent:

1 R is a semi-order structure (see 12).

2 dg: A R* and a constant ¢ > 0 satisfying for all a,b € A:

{an iff 9(a) > g(b) +4q
alb iff |g(a) —g(b| < q.

3 3g: A RY and a constant g > 0 satisfying for all a,b € A:
aRb iff g(a) = g(b) —q.
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4 3g: A Rtand 3q : R — R satisfying for all a,b € A:

{ aRb iff g(a) > g(b) — q(g(b))
(g(a) > g(b)) — (g(a) + q(g(a)) > g(b) + q(g(b)))-

For the proofs of these theorems see [78, 119, 161, 178].

The threshold represents a quantity for which any difference smaller than this
one is not significant for the preference relation. As we can see, the threshold
is not necessarily constant, but if it is not, it must satisfy the inequality which
defines a coherence condition.

Here too, the representation of a semi-order is not unique and all monotonic
increasing transformations of g appear as admissible representations provided
the condition that the function ¢ also obeys the same transformation’.

THEOREM 4 (PI INTERVAL ORDER) Let R = (P,I)be a binary relation
on a finite set A, thefollowing definitions are equivalent:

i. Risan interval order structure (see 13).
i. 3g: A RY satisfying Va,b € A:

aPb iff g(a)(>)g(b) g)q(b) o
) gla) < g(b)+q
b W 4) < gla) + ala).

It should be noted that the main difference between an interval order and
a semi-order is the existence of a coherence condition on the value of the
threshold. One can further generalise the structure of interval order, by defining a
threshold depending on both of the two alternatives. As aresult, the asymmetric
part appears without circuit: [1, 2, 3, 4, 53, 183]. For extensions on the use of
thresholds see [81, 99, 134]. For the extension of the numerical representation

of interval orders in the case A is infinite not denumerable see [36, 40, 76, 140,
146].

We can now see the representation theorems concerning preference structures
allowing an intermediate preference relation (Q). Before that, let us mention
that numerical representations with thresholds are equivalent to numerical rep-
resentations of intervals. It is sufficient to note that associating avalue g(x) and
a strictly positive value g(g(z)) to each element x of A is equivalent to associ-
ating two values: I(z) = g(z) (representing the left extreme of an interval) and
r(z) = g(x) + q(9(x)) (representing the right extreme of the interval to each
x;obviously: 7(z) > I(z) always holds).

THEOREM 5 (PQI INTERVAL ORDERS) Let R = (P,Q,I) be a relation
on a finite set A, the following definitions are equivalent:
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i. Risa PQI interval order.
ii. There exists a partial order L such that:

1) I =LURUI;where Iy = {(z,z),z € A} and R = L7;
2) (PUQUL).PCP;

3) P(PUQUR)C P;

4) (PUQUL).QCPUQUL;

5) Q(PUQUR)C PUQUR.

iii. 3,7 : A RY satisfying:

r(a) > l(a)

aPbiff l(a) > r(b)

aQbiffr(a) > r(b) >l a) > 1(b)

albiff r(a) > r(b) > l(a) or r(b) > r(a) > l(a) > I(b).

For proofs, further theory on the numerical representation and algorithmic
issues associated with such a structure see [141, 143, 198].

THEOREM 6 (DOUBLE THRESHOLD ORDER) Let R = (P,Q,I) be a re-
lation on a finite set A, the following definitions are equivalent:

i. R is a double Threshold Order (see [203]).

QIQCcQuUP
. PI.PCP
“\ QIPcP
PQLPCP

iti. 3g,9,p : A — RY satisfying:
aPbiff g(a) > g(b) + p(b))

aQb iff g(b) + p(b) > g(a) > g(b) + q(b)
albiff g(b) + q(b) > g(a) > g(b) - g(a).

THEOREM 7 (PSEUDO-ORDER) Let R = (P, Q,I) be a relation on a finite
set A, thefollowing definitions are equivalent:

i. R is a pseudo-order.

R is a double threshold order
i (PUQ),I)is a semi-order
' (P,(QUIUQY)is a semi-order
PIQCP.
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R is a double threshold order
iii. { g(a)> g(b) — g9(a) + g(a) > g(b) + q(b)
g(a) + p(a) > g(b) + p(b).

A pseudo-order is a particular case of double threshold order, such that the
thresholds fulfil a coherence condition. It should be noted however, that such
a coherence is not sufficient in order to obtain two constant thresholds. This is
due to different ways in which the two functions can be defined (see [59]). For
the existence of multiple constant thresholds see [55].

For partial structures of preference, the functional representations admit the
same formulas, but equivalences are replaced by implications. In the follow-
ing, we present a numerical representation of a partial order and a quasi-order
examples:

THEOREM 8 (PARTIAL ORDER) If (P, I, J) presents a partial order struc-
ture,then 3 g: A — RY such that:

aPb -— g(a) > g(b).

THEOREM 9 (PARTIAL WEAK ORDER) If (P, I, J) presents a partial weak
order structure, then 3 g: A RY such that:

{ aPb — g(a) > g(b)
alb — g(a) = g(b).

The detection of the dimension of a partial order'® is an NP-hard problem
[57,78].

REMARK 3 In the preference modelling used in decision aiding, there exist
two different approaches: In the first one, the evaluations of alternatives are
known (they can be crisp or fuzzy) and we try to reach conclusions about
the preferences between the alternatives. For the second one, the preferences
between alternatives (pairwise comparison) are given by an expert (or by a
group of experts), and we try to define an evaluation of the alternatives that can
be useful. The first approach uses the inverse implication ofthe equivalences
presented above (for example for a total order we have g(a) > g(b) — aPb

), and the second one the other implication of it (for the same example, we have
aPb — g(a) > ¢(b)).

REMARK 4 There is a body of research on the approximation of a preference
structure by another one; here we cite some studies on the research ofa total
order with a minimum distance to a tournament (complete and antisymmetric
relation): [14, 15, 24, 39, 106, 133, 181].
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7.2 Minimal Representation

In some decision aiding situations, the only available preferential information
can be the kind of preference relation holding between each pair of alternatives.
In such a case we can try to build a numerical representation of each alternative
by choosing a particular functional representation of the ordered set in question
and associating this with the known qualitative relations.

This section aims at studying some minimal or parsimonious representations
of ordered sets, which can be helpful for this kind of situation. Particularly, given
a countable set A and a preferegce relation R € A x A, we are interested to
find a numerical representation f € F = {f : A— R, f homomorph to R},
such that for all z € A, f is minimal.

7.21 Total Order, Weak Order. @ The way to build a minimal repre-
sentation for a total order or a weak order is obvious since the preference and
the indifference relations are transitive: The idea is to minimize the value of
the difference g{a) — g(b) for all a,b in A. To do this we can define a unit k
= ming pe 4(g{a) — g(b)) and the minimal evaluation m = minge 4(g(a)). The
algorithm will be:

» Choose any value for kand m,eg. k=1, m=0;

m Find the alternative ¢ which is dominated by all the other alternatives j
in A and evaluate it by g(¢) = m;

m For all the alternatives ! for which we have 1J3, note g(1) = g(i);

» Find the alternative ' which is dominated by all the alternatives j in
A — {3} and evaluate itby g(i') = m + k;

» For all the alternatives ' for which we have I'I#, note g(I') = g(¢');

m  Stop when all the alternatives are evaluated.

722 Semi-order.  The first study on the minimal representation of semi-
orders was done in [160] who proved its existence and proposed an algorithm
to build it. One can find more information about this in [56, 129, 161] and
[142]. Pirlot uses an equivalent definition of the semi-order which uses a second
positive constant: tofal semi-order. A reflexive relation R = (P, I) on a finite
set A is a semi-order iff there exists a real function g, defined on A, a non
negative constant ¢ and a positive constant € such that Va,b € A:

aPb iff g(a) > g(b)+q+¢ (2.13)
alb iff |g(a) —g(b)] <gq. (2.14)
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Such a triple (g, ¢, €) is called an € — representation of (P, I). Any repre-
sentation (g, q), as in the definition of semi-order given in Section 6.1, yields
an e-representation where

e = min (o(a) ~ 9(6) ~q)

Let (A, R) be an associated to the semi-order R = (P, I), we denote G{g, €)
the valued graph obtained by giving the value (¢ + €) to the arcs P and (—¢) to
the arcs 1.

THEOREM 10 If R = (P, I) is a semi-order on the finite set A, there exists an
e-representation with threshold q iff:

|CnP
ICNnIl-|CnP)

(W]

2a=max{

12 C circuit of (A, R)}

where |C 0V P| (resp. |C N 1|), represents the number ofarcs P (resp. 1) in the
circuit C ofthe graph (A, R).
An algorithm to find a numerical representation of a semi-order is as follows:
m Choose any value for ¢, e.g. e= 1;
» Choose a large enough value of 4, e.g. 2 = |P|;

= Solve the maximal value path problem in the graph G(q, ) (e.g. by using
the Bellman algorithm, see [122]).

Denote by gq.e, the solution of the maximal path problem in G(g,€); we
have:

9g,e < g(a)Va € A.

EXAMPLE 2 We consider the example given by Pirlot and Vincke [161]: Let
S = (P, I) be a semiorder on A = {a,b,c} defined by P = {(a,c)}. The
inequality (2.13) gives the following equations:

gla) > g(c)+q+e¢
gla) > g(b) —q
g(d) > gla) —q
gb) = g(c)—q
glc) > g(b) — ¢

Figure 2.3 shows the graphical representation of this semiorder.

As the non-trivial circuit C = {(a,c),{(c,b),(b,a)} is —q+e(—q+¢e =
(q+¢)+ (—q) + (—q)), necessary and sufficient condition for the existence of
an e-representation is q > €.
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Figure 2.3. Graphical representation of the semiorder.

Table 2.2. Various e-representations with e=1.

a b [
q=1 g1=1 2 1 0
q=1 g2=1 9.5 8.5 1.5
q=2.5 g3=1 3.5 1 0
q=2.5 ga=1 10.5 8.5 7
q=2.5 gs=1 35 25 0

Table 2.2 provides an example of possible numerical representation of this
semiorder.

DEFINITION 23 A representation (¢, ¢*, €) is minimal in the set of all non-
negative e-representations (g, q, €) of a semiorder iff Va € A g*(a) < g(a).

THEOREM 11 The representation (gq+¢,q*,€) is minimal in the set ofall -
representations of a semiorder R.

7.23 Interval Order. An interval can be represented by two real func-
tions { and 7 on the finite set A which satisfy:
(Va € A,l(a) < r(a))*.

DEFINITION 24 A reflexive relation R = (PUI) on a finite set A is an interval

order iff there exists a pair of functions I, r: A — RY and a positive constant
€ such that Va,b € A

{ aPb iff Wa)>r(b)+q+¢
alb iff Ua) >r(b) and [l(b) > r(a).
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Such a triplet (1, 1, €) is called an e-representation of the interval order P U I.

DEFINITION 25 The &-representation (I*,1*, €) of the interval order P U I is
minimal iff for any other e-representation (l,r,c) we have, Ya € A,

(@) < la)
r*(a) < 7r(a).

THEOREM 12 For any interval order PUI, there exists a minimal €-represen-
tation (I*,v*,€); the values of I* and v* are integral multiples of .

8. Logic of Preferences

The increasing importance of preference modelling immediately interested peo-
ple from other disciplines, particularly logicians and philosophers. The strict
relation with deontic logic (see [7]) raised some questions such as:

= Does a general logic exist where any preferences can be represented and
used?

a Ifyes, what is the language and what are the axioms?

® [s it possible, via this formalisation, to give a definition of bad or good
as absolute values?

It is clear that this attempt had a clear positivist and normative objective: to
define the one well-formed logic that people should follow when expressing
preferences. The first work on the subject is the one by Halldén [95], but it is
Von Wright’s book [208] that tries to give the first axiomatisation of a logic
of preferences. Inspired by this work some important contributions have been
made [41, 42, 100, 101, 103, 163]. Influence of this idea can also be found in
[109] and [164], but in related fields (statistics and value theory, respectively).
The discussion apparently was concluded by Von Wright [209], but Huber
[104, 105] continued on. Later on Halldin [96] and Widmeyer [211, 212] also
worked on this.

The general idea can be presented as follows. At least two questions should
be clarified: preferences among what? How should preferences be understood?
Von Wright [208] argues that preferences can be distinguished as extrinsic and
intrinsic. The first ones are derived as a reason from a specific purpose, while the
second ones are self-referential to an actor expressing the preferences. In this
sense intrinsic preferences are the expression of the actor’s system of values of
the actor. Moreover, preferences can be expressed for different things, the most
general being (following Von Wright) “states of affairs”. That is, the expression
“a is preferred to b” should be understood as the preference of a state (a world)
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where aoccurs (whatever arepresents: sentences, objects, relations etc.) over
a state where b occurs. On the basis of Von Wright expressed a theory based on
five axioms:

AV 1.Vz,y p(z,y) — -py,z)

AY2.Vz,y,z p(z,y) A p(y,z) — p(a,2)
AY3.p(a,b) = p(a A-b,—~a Ab)

A%4.p(aVb,c) = plaNbA-c,maA-bAc) A p(aA-bA-c,~aN-bA
c) A p(maAbA-c,—aA-bAc)

AY5.p(a,b) = plaAc,bAc) A plaA-e,bA-c).

The first two axioms are asymmetry and transitivity of the preference re-
lation, while the following three axioms face the problem of combinations of
states of affairs. The use of specific elements instead of the variables and quanti-
fiers reflects the fact that von Wright considered the axioms not as logical ones,
but as “reasoning principles”. This distinction has important consequences on
the calculus level. In the first two axioms, preference is considered as a binary
relation (therefore the use of a predicate), in the three “principles”, preference
is a proposition. Von Wright does not make this distinction directly, considering
the expression aPb (p{a,b) in our notation) as a well-formed formulation of
his logic. However, this does not change the problem since the first two axioms
are referred to the binary relation and the others are not. The difference appears
if one tries to introduce quantifications; in this case the three principles appear
to be weak. The problem with this axiomatisation is that empirical observation
of human behavior provides counterexamples of these axioms. Moreover, from
a philosophical point of view (following the normative objective that this ap-
proach assumed), a logic of intrinsic preferences about general states of affairs
should allow to define what is good (the always preferred?) and what is bad (the
always not preferred?). But this axiomatization fails to enable such a definition.

Chisholm and Sosa [42] rejected axioms A% 3 to AW5 and built an alterna-
tive axiomatization based on the concepts of “good” and “intrinsically better”.
Their idea is to postulate the concept of good and to axiomatize preferences
consequently. So a good state of affairs is one that is always preferred to its
negation (p(a, ~a)); Chisholm and Sosa, use this definition only for its oper-
ational potential as they argue that it does not capture the whole concept of
“good”). In this case we have:

AS1.Vz,y p(z,y) — ~p(y,z)
A%2. vz, y,2 —p(z,y) AN —ply,2) — -p(x,2)



58 MULTIPLE CRITERIA DECISION ANALYSIS

AS3.Va,y ~plz,~z) A -p(-z,z) A -ply,~y) A -p(-y,y) —
—-p(y,z) N -p(z,y)

AS4.vz,y plz,y) A ~p(y,~y) A —p(-y,y) — p(z,~z)
AS5.9z,y p(y,—x) A -p(y, y) A -p(-y,y) — plz, ).

Again in this axiomatisation there are counterexamples of the axioms. The
assumption of the concept of good can be argued as it allows circularities in
the definitions of preferences between combinations of states of affairs. This
criticism lead Hansson [101] to consider only two fundamental, universally
recognised axioms:

A1 Yz, y,z s(z,y) A s(y,2) — s(z,2)

AH2, Vx,y S(xyy) \% S(y,SE),

where s is a “large preference relation” and two specific preference relations
are defined, p (strict preference) and < (indifference):

DH1.Vz,y p(x,y) = s(z,y) A ~s(y, )
DH2.Vz,y i(z,y) = s(z,y) A s(y,x).

He also introduces two more axioms, although he recognises their contro-
versial nature:

AH3 Yz, y, 2 s(z,y) A s(z,2) — s(z,yV 2)
AHA Nz y, 2 s(z,2) A s(y,2) — s(xVy,2)

Von Wright in his reply [209], trying to argue for his theory, introduced a
more general frame to define intrinsic “holistic” preferences or as he called them
“ceteris paribus” preferences. In this approach he considers a set S of states
where the elements are the ones of A (n elements) and all the 2"® combinations
of these elements. Given two states s and t (elementary or combinations of m
states of S) you have ¢ (¢ = 2"™™) combinations C; of the other states. You
call an s-world any state that holds when s holds. A combination C; of states is
also a state so you can define it in the same way a Cj-world. Von Wright gives
two definitions (strong and weak) of preference:

1 (strong): s is preferred tot under the circumstances C; iff every C;-world
that is also an s-world and not a ¢-world is preferred to every C;-world
that is also t-world and not s-world.
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2 (weak): s is preferred to ¢ under the circumstances C; iff some C;-world
that is an s-world is preferred to a C;-world that is a t-world, buta C;-
world that is a t-world that is preferred to a C;-world that is an s-world
does not exist.

Now s is “ceteris paribus” preferred to ¢ iff it is preferred under all C;.
We leave the discussion to the interested reader, but we point out that, with
these definitions, it is difficult to axiomatize both transitivity and complete
comparability unless they are assumed as necessary truths for “coherence” and
“rationality” (see [209]).

It can be concluded that the philosophical discussion about preferences failed
the objective to give a unifying frame of generalized preference relations that
could hold for any kind of states, based on a well-defined axiomatization (for
an interesting discussion see [137]). It is still difficult (if not impossible) to
give a definition of good or bad in absolute terms based on reasoning about
preferences and the properties of these relations are not unanimously accepted
as axioms of preference modelling. For more recent advances in deontic logic
see [145].

More recently, Von Wright’s ideas and the discussion about “logical rep-
resentation of preferences” attracted attention again. This is due to problems
found in the field of Artificial Intelligence field due to essentially two reasons:

m the necessity to introduce some “preferential reasoning” (see [26, 27, 34,
62, 63, 64, 120, 123, 180]);

m the large dimension of the sets to which such a reasoning might apply,
thus demanding a compact representation of preferences (see [19, 20, 21,
61, 121]).

9, Conclusion

We hope that this chapter on preference modelling, gave the non-specialist
reader a general idea of the field by providing a list of the most important ref-
erences of a very vast and technical literature. In this chapter, we have tried to
present the necessary technical support for the reader to understand the follow-
ing chapters. One can note that our survey does not interpret all the questions
related to preference modelling. Let us mention some of them:

s How to get and validate preference information [12, 207];

m Relation between preference modelling and the problem of signifiance
in measurement theory [165];

s Statistical analysis of preferential data [44, 94];
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w Interrogations on the relations between preferences and the value system,
and the nature of these values [37, 46, 194, 208].

Notes

1. We can use the word action instead of alternative.

2. Lets take an example: Imagine that we have to choose one car between two. We have to know the

performance of each car in order to establish the relation of preference:

B In the first case, the performance of each car is known and noted between 1 and 10 (p(carl) = 8
and p(car2) = 5); the relation of preference is known too (carl is preferred to car2: carlPcar2
(u(car1Pcar2) = 1)).

B In the second case, the performance of each car is known and noted between 1 and 10 (p(carl) = 8
and p{car?2) = T); we are not sur about the preference relation that is why the relation of preference
is fuzzy (u(carlPcar2) = 0.75).

B In the third case, the performance of each car is fuzzy (in this case the performances of each car
will be defined by fuzzy numbers ; in this case we can use triangular or trapezoidal fuzzy number to
represent the performance); the relation of preference is crisp (carl is preferred to car2: carlPcar2
(p{carlPcar2) = 1)).

B In the fourth case, the performance of each car is fuzzy (in this case the performances of each car will
be defined by fuzzy numbers ); the relation of preference is fuzzy too ((s(car1Pcar2) = 0.75)).

3. A suitable one can be the complement operator defined: n{u(z)) = 1 — u(x).

4. To have a partition of the set A x A, the inverse of the asymmetric relation must be considered too.

5. While several authors prefer using both of them, there are others for which one is sufficient. For
example Fishburn does not require the use of preference structures with a characteristic relation.

6. One can be indifferent between a cup of teawith 7 milligrams of sugar and onewith 7 + 1milligrams
of sugar, if one admits the transitivity of the indifference, after a certain step of transitivity, one will have the
indifference between a cup of tea with n milligram of sugar and that with n + N milligram of sugar with N
large enough, even if there is a very great difference of taste between the two; which is contradictory with
the concept of indifference.

7. This value can be given directly by the decision-maker or calculated by using different concepts, such
values (indices) are widely used in many MCDA methods such as ELECTRE, PROMETHEE [171, 35].

8. The function g defines an ordinal scale for both structures.

9. But in this case the scale defined by g is more complex than an ordinal scale.

10. When it is a partial order of dimension 2, the detection can be made in polynomial time.

11. One can imagine that {(a) represents the evaluation of the alternative a (g(a)) which is the left limit
of the interval and (@) represents the value of (g{@) + q(a)) which is the right limit of the interval. One
can remark that a semi-order is an interval order with a constant length.
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1. Introduction and Motivation

Conjoint measurement is a set of tools and results first developed in Economics
[44] and Psychology [141] in the beginning of the ‘60s. Its, ambitious, aim is
to provide measurement techniques that would be adapted to the needs of the
Social Sciences in which, most often, multiple dimensions have to be taken into
account.

Soon after its development, people working in decision analysis realized that
the techniques of conjoint measurement could also be used as tools to structure
preferences [51, 165]. This is the subject of this paper which offers a brief
and nontechnical introduction to conjoint measurement models and their use
in multiple criteria decision making. More detailed treatments may be found in
[63, 79, 121, 135, 209]. Advanced references include [58, 129, 211].

1.1 Conjoint Measurement Models in Decision Theory

The starting point of most works in decision theory is a binary relation - on
a set A of objects. This binary relation is usually interpreted as an “at least as
good as” relation between alternative courses of action gathered in A.

Manipulating a binary relation can be quite cumbersome as soon as the set of
objects is large. Therefore, it is not surprising that many works have looked for a
numerical representation of the binary relation 7. The most obvious numerical
representation amounts to associate a real number V' (a) to each object a € A
in such a way that the comparison between these numbers faithfully reflects the
original relation 77 This leads to defining a real-valued function V on A, such
that:

arbe Via) > V(b), 3.1

for all a,b € A. When such a numerical representation is possible, one can
use V instead of 27 and, e.g. apply classical optimization techniques to find the
most preferred elements in A given 2. We shall call such a function V a value
function.

It should be clear that not all binary relations ?Z may be represented by a
value function. Condition (3.1) imposes that 27 is complete (i.e. @ 7= borb - a,
for all a,b € A) and transitive (i.e. a 27 b and b 2 ¢ imply a - ¢, for all
a,b,c € A). When A is finite or countably infinite, it is well-known [58, 129]
that these two conditions are, in fact, not only necessary but also sufficient to
build a value function satisfying (3.1).

REMARK 5 The general case is more complex since (3.1) implies, for Instance,
that there must be “enough” real numbers to distinguish objects that have to
be distinguished. The necessary and sufficient conditionsfor (3.1) can befound
in [58, 129]. An advanced treatment is [13]. Sufficient conditions that are well-
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adapted to cases frequently encountered in Economics can be found in [42, 45];
see [34] for a synthesis.

It is vital to note that, when a value function satisfying (3.1) exists, it is by no
means unique. Taking any increasing function ¢ on R, it is clear that ¢ o V
gives another acceptable value function. A moment of reflection will convince
the reader that only such transformations are acceptable and that if V and U
are two real-valued functions on A satisfying (3.1), they must be related by an
increasing transformation. In other words, a value function in the sense of (3.1)
defines an ordinal scale.

Ordinal scales, although useful, do not allow the use of sophisticated assess-
ment procedures, i.e. of procedures that allow an analyst to assess the relation
Z through a structured dialogue with the decision-maker. This is because the
knowledge that V(a) > V/(b) is strictly equivalent to the knowledge of a 7 b
and no inference can be drawn from this assertion besides the use of transitivity.

It is therefore not surprising that much attention has been devoted to numer-
ical representations leading to more constrained scales. Many possible avenues
have been explored to do so. Among the most well-known, let us mention:

m the possibility to compare probability distributions on the set A [58,
207]. If it is required that, not only (3.1) holds but that the numbers
attached to the objects should be such that their expected values reflect
the comparison of probability distributions on the set of objects, a much
more constrained numerical representation clearly obtains,

® the introduction of “preference difference” comparisons of the type: the
difference between a and b is larger than the difference between ¢ and
d, see [44, 81, 123, 129, 159, 180, 199]. If it is required that, not only
(3.1) holds, but that the differences between numbers also reflect the
comparisons of preference differences, a more constrained numerical
representation obtains.

When objects are evaluated according to several dimensions, ie. when 2 is
defined on a product set, new possibilities emerge to obtain numerical repre-
sentations that would specialize (3.1). The purpose of conjoint measurement is
to study such kinds of models.

There are many situations in decision theory which call for the study of
binary relations defined on product sets.Among them let us mention:

®  Multiple criteria decision making using a preference relation comparing
alternatives evaluated on several attributes [16, 121, 162, 173, 209],

®  Decision under uncertainty using a preference relation comparing alter-
natives evaluated on several states of nature [68, 107, 177, 184, 210, 211],



76 MULTIPLE CRITERIA DECISION ANALYSIS

m  Consumer theory manipulating preference relations for bundles of several
goods [43],

»  [ntertemporal decision making using a preference relation between alter-
natives evaluated at several moments in time [121, 125, 126],

u  [nequality measurement comparing distributions of wealth across several
individuals [5, 17, 18, 217].

The purpose of this paper is to give an introduction to the main models of
conjoint measurement useful in multiple criteria decision making. The results
and concepts that are presented may however be of interest in all of the afore-
mentioned areas of research.

REMARK 6 Restricting ourselves to applications in multiple criteria decision
making will not allow us to cover every aspect of conjoint measurement. Among
the most important topics left aside, let us mention: the introduction ofstatistical
elements in conjoint measurement models [54, 108] and the test of conjoint
measurement models in experiments [135].

Given a binary relation 77 on a product set X = X1 X Xy X «-+ x X,,, the
theory of conjoint measurement consists in finding conditions under which it
is possible to build a convenient numerical representation of 2~ and to study
the uniqueness of this representation. The central model is the additive value
function model in which:

n n
zrye Y uilz) =) vilw) 3.2)
i=1 i=1
where v; are real-valued functions, called partial value functions, on the sets
X; and it is understood that x = (x1,%2,... ,zn) and ¥ = (Y1,%2, - -, Yn)-
Clearly if - has a representation in model (3.2), taking any common increasing
transformation of the v; will not lead to another representation in model (3.2).
Specializations of this model in the above-mentioned areas give several cen-
tral models in decision theory:

m The Subjective Expected Utility model, in the case of decision-making
under uncertainty,

®  The discounted utility model for dynamic decision making,
m  Inequality measures a la Atkinson/Sen in the area of social welfare.

The axiomatic analysis of this model is now quite firmly established [44,
129, 211]; this model forms the basis of many decision analysis techniques
[79, 121, 209, 211]. This is studied in sections 3 and 4 after we introduce our
main notation and definitions in section 2.
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REMARK 7 One possible objection to the study of model (3.2) is that the choice
of an additive model seems arbitrary and restrictive. It should be observed
here that the functions v; will precisely be assessed so that additivity holds.
Furthermore, the use ofa simple model may be seen as an advantage in view
ofthe limitations ofthe cognitive abilities ofmost human beings.

It is also useful to notice that this model can be reformulated so as to make
addition disappear. Indeed ifthere are partial value functions v; such that (3.2)
holds, it is clear that V = Z?:l v; is a value function satisfying (3.1). Since
V defines an ordinal scale, taking the exponential of V leads to another valid
value function W. Clearly W has now a multiplicative form:

znye W)= Hwi(xi) >W(y) = Hwi(yi)'

i=1 i=1

where wy(x;) = e%(®i),

The reader is referred to chapter 7 for the study of situations in which V
defines a scale that is more constrained than an ordinal scale, e.g. because it
is supposed to reflect preference differences or because it allows to compute
expected utilities. In such cases, the additive form (3.2) is no more equivalent
to the multiplicative form considered above.

In section 5 we present a number of extensions of this model going from non-
additive representations of transitive relations to model tolerating intransitive
indifference and, finally, nonadditive representations of nontransitive relations.

REMARK 8 In this paper, we shall restrict our attention to the case in which
alternatives may be evaluated on the various attributes without risk or uncer-
tainty. Excellent overviews of these cases may befound in [121, 209]; recent
references include [142, 150].

Before starting our study of conjoint measurement oriented towards MCDM,
it is worth recalling that conjoint measurement aims at establishing measure-
ment models in the Social Sciences. To many, the very notion of “measurement
in the Social Sciences” may appear contradictory. It may therefore be useful to
briefly consider how the notion of measurement can be modelled in Physics,
an area in which the notion of “measurement” seems to arise quite naturally,
and to explain how a “measurement model” may indeed be useful in order to
structure preferences.

1.2 An Aside: Measuring Length

Physicists usually take measurement for granted and are not particularly con-
cerned with the technical and philosophical issues it raises (at least when they
work within the realm of Newtonian Physics). However, for a Social Scientist,
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these question are of utmost importance. It may thus help to have an idea of
how things appear to work in Physics before tackling more delicate cases.

Suppose that you are on a desert island and that you want to “measure” the
length of a collection of rigid straight rods. Note that we do not discuss here
the “pre-theoretical” intuition that “length” is a property of these rods that can
be measured, as opposed, say, to their softness or their beauty.

T 7’ s s

r>r s~

Figure 3.1. Comparing the length of two rods.

A first simple step in the construction of a measure of length is to place the
two rods side by side in such a way that one of their extremities is at the same
level (see Figure 3.1). Two things may happen: either the upper extremities of
the two rods coincide or not. This seems to be the simplest way to devise an
experimental procedure leading to the discovery of which rod “has more length”
than the other. Technically, this leads to defining two binary relations > and ~
on the set of rods in the following way:

r = ' when the extremity of 7 is higher than the extremity of 7/,
r ~ r' when the extremities of r and ' are at the same level,

Clearly, if length is a quality of the rods that can be measured, it is expected
that these pairwise comparisons are somehow consistent, e.g.,

m ifr =7 and ' > 7", it should follow that r > r”,
s ifr ~ 7" and 7’ ~ 7", it should follow that 7 ~ 7,
s ifr ~ ¢ and v’ > r”, it should follow that r > 7.

Although quite obvious, these consistency requirements are stringent. For in-
stance, the second and the third conditions are likely to be violated if the ex-
perimental procedure involves some imprecision, e.g if two rods that slightly
differ in length are nevertheless judged “equally long”. They represent a form
of idealization of what could be a perfect experimental procedure.

With the binary relations > and ~ at hand, we are still rather far from a full-
blown measure of length. It is nevertheless possible to assign numbers to each
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of the rods in such a way that the comparison of these numbers reflects what has
been obtained experimentally. When the consistency requirements mentioned
above are satisfied, itis indeed generally possible to build areal-valued function
® on the set of rods that would satisfy:

r =1 & &(r) > &(r') and
r~71 & &(r) = o).

If the experiment is costly or difficult to perform, such a numerical assignment
may indeed be useful because it summarizes, once for all, what has been ob-
tained in experiments. Clearly there are many possible ways to assign numbers
to rods in this way. Up to this point, they are equally good for our purposes. The
reader will easily check that defining 27 as > or ~, the function @ is noting else
than a “value function” for length: any increasing transformation may therefore
be applied to P.

i I

rand s 7 and s’

Figure 3.2. Comparing the length of composite rods.

The next major step towards the construction of a measure of length is the
realization that it is possible to form new rods by simply placing two or more
rods “in arow”, i.e. you may concatenate rods. From the point of view of length,
it seems obvious to expect this concatenation operation o to be “commutative”
(r o s has the same length as s o ) and associative ((r o §) o ¢ has the same
length as 7 o (s o t)).

You clearly want to be able to measure the length of these composite objects
and you can always include them in our experimental procedure outlined above
(see Figure 3.2). Ideally, you would like your numerical assignment ® to be
somehow compatible with the concatenation operation: knowing the numbers
assigned to two rods, you want to be able to deduce the number assigned to
their concatenation. The most obvious way to achieve that is to require that the
numerical assignment of a composite object can be deduced by addition from
the numerical assignments of the objects composing it, i.e. that

O(ror’) = d(r) + ().
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This clearly places many additional constraints on the results of your experi-
ment. An obvious one is that > and ~ should be compatible with the concate-
nation operation o, e.g.

r>r'andt ~ ¢ shouldleadtorot > r' ot'.

These new constraints may or may notbe satisfied. When they are, the usefulness
of the numerical assignment ® is even more apparent: a simple arithmetic
operation will allow to infer the result of an experiment involving composite
objects.

Let us take a simple example. Suppose that you have five rods 71,72, ...,7s
and that, because space is limited, you can only concatenate at most two rods and
that not all concatenations are possible. Let us suppose, for the moment, that you
do not have much technology available so that you may only experiment using
different rods. You may well collect the following information, using obvious
notation exploiting the transitivity of > which holds in this experiment,

TLOTE > T307T4 >=T10Tg =75 T4 > T3> Tg > T1.

Your problem is then to find a numerical assignment @ to rods such that using
an addition operation, you can infer the numerical assignment of composite
objects consistently with your observations. Let us consider the following three
assignments:

¢ QI @U

1 14 10 14
r2 15 91 16
rg 20 92 17
ra 21 93 18
rs 28 100 29

These three assignments are equally valid to reflect the comparisons of single
rods. Only the first and the third allow to capture the comparisons of composite
objects that were performed. Note that, going from ® to ®” does not involve
just changing the “unit of measurement”: since ®(r1) = ®”(r1) this would
imply that ® = ®”, which is clearly false.

Such numerical assignments have limited usefulness. Indeed, it is tempting
to use them to predict the result of comparisons that we have not been able
to perform. But this turns out to be quite disappointing: using ® you would
conclude that 72 o r3 ~ 1y o 14 since ®(ry) + ®(rz) = 15+ 20 = 35 =
®(r1) + ®(r4), but, using ®”, you would conclude that 5 0 73 > 71 0 T4 since
Q" (rq) + ®"(r3) = 16 + 17 = 33 while ®"(r1) + ©"(r4) = 14 + 18 = 32.

Intuitively, “measuring” calls for some kind of a standard (e.g. the “Metre-
étalon” that can be found in the Bureau International des Poids et Mesures
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in Sevres, near Paris). This implies choosing an appropriate “standard” rod
and being able to prepare perfect copies of this standard rod (we say here
“appropriate” because the choice of a standard should be made in accordance
with the lengths of the objects to be measured: a tiny or a huge standard will
not facilitate experiments). Let us call 8¢ the standard rod. Let us suppose that
you have been able to prepare a large number of perfect copies s3, Sg, . . . of Sp.
We therefore have:

S0 ~ 81,80 ~ 82,80 ~ 83,...

Let us also agree that the length of sg is 1. This is your, arbitrary, unit of length.
How can you use sg¢ and its perfect copies so as to determine unambiguously
the length of any other (simple or composite) object? Quite simply, you may
prepare a “standard sequence of length n”, S(n) = sy 0 830...08,_1 0 Sy,
i.e. a composite object that is made by concatenating n perfect copies of our
standard rod s¢. The length of a standard sequence oflength 7 is exactly n since
we have concatenated n objects that are perfect copies of the standard rod of
length 1. Take any rod 7 and let us compare r with several standard sequences
of increasing length: S(1), S(2),...

Two cases may arise. There may be a standard sequence S(k) such that
r ~ S(k). In that case, we know that the number ®(r) assigned to r must
be exactly k. This is unlikely however. The most common situation is that we
will find two consecutive standard sequences S(k — 1) and S(k) such that
r > S(k — 1) and S(k) > 7 (see Figure 3.3). This means that ®(r) must be
such that k — 1 < ®(r) < k. We seem to be in trouble here since, as before,
®(r) is not exactly determined. How can you proceed? This depends on your
technology for preparing perfect copies.

- = S(7),S(8) =

T<d(r)<8

Figure 3.3.  Using standard sequences.

Imagine that you are able to prepare perfect copies not only of the standard
rod but also of any object. You may then prepare several copies (ry, 72, ...) of
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the rod r. You can now compare a composite object made out of two perfect
copies of r with your standard sequences S(1), S(2),... As before, you shall
eventually arrive at locating ®(ry o 72) = 2®(r) within an interval of width 1.
This means that the interval of imprecision surrounding ®(r) has been divided
by two. Continuing this process, considering longer and longer sequences of
perfect copies of 7, you will keep on reducing the width of the interval con-
taining ®(r). This means that you can approximate ®(r) with any given level
of precision. Mathematically, a unique value for () will be obtained using a
simple argument.

Supposing that you are in position to prepare perfect copies of any object is
a strong technological requirement. When this is not possible, there still exists
a way out. Instead of preparing a perfect copy of 7 you may also try to increase
the granularity of your standard sequence. This means building an object ¢ that
you would be able to replicate perfectly and such that concatenating ¢t with one
of its perfect replicas gives an object that has exactly the length of the standard
object sg,i.e. ®(t) = 1/2. Considering standard sequences based on t, youwill
be able to increase by a factor 2 the precision with which we measure the length
of 7. Repeating the process, i.e. subdividing t, will lead, as before, to a unique
limiting value for ®(r).

The mathematical machinery underlying the measurement process infor-
mally described above (called “extensive measurement”) rests on the theory
of ordered groups. It is beautifully described and illustrated in [129]. Although
the underlying principles are simple, we may expect complications to occur
e.g. when not all concatenations are feasible, when there is some level (say
the velocity of light if we were to measure speed) that cannot be exceeded or
when it comes to relate different measures. See [129, 140, 168] for a detailed
treatment.

Clearly, this was an overly detailed and unnecessary complicated description
of how length could be measured. Since our aim is to eventually deal with
“measurement” in the Social Sciences, it may however be useful to keep the
above process in mind. Its basic ingredients are the following:

w  well-behaved relations > and ~ allowing to compare objects,
® a concatenation operation ¢ allowing to consider composite objects,
®  consistency requirements linking >, ~ and o,

® the ability to prepare perfect copies of some objects in order to build
standard sequences.

Basically, conjoint measurement is a quite ingenious way to perform related
measurement operations when no concatenation operation is available. This
will however require that objects can be evaluated along several dimensions.
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Before explaining how this might work, it is worth explaining the context in
which such measurement might prove useful.

REMARK 9 It is often asserted that “measurement is impossible in the Social
Sciences” precisely because the Social Scientist has no way to define a con-
catenation operation. Indeed, it would seem hazardous to try to concatenate
the intelligence of two subjects or the pain of two patients (see [56, 106]).
Under certain conditions, the power of conjoint measurement will precisely be
to provide a means to bypass this absence of readily available concatenation
operation when the objects are evaluated on several dimensions.

Let us remark that, even when there seems to be a concatenation operation
readily available, it does not always fit the purposes of extensive measurement.
Consider for instance an individual expressing preferences for the quantity of
the two goods he consumes. The objects therefore take the well structured form of
points in the positive orthant of R2, There seems to be an obvious concatenation
operation here: (z,y) o (z,w) might simply be taken to be (z + y,z + w).
However a fairly rational person, consuming pants and jackets, may indeed
prefer (3,0) (3 pants and no jacket) to (0,3) (no pants and 3 jackets) but
at the same time prefer (3,3) to (6,0). This implies that these preferences
cannot be explained by a measure that would be additive with respect to the
concatenation operation consisting in adding the quantities of the two goods
consumed. Indeed (3,0) > (0,3) implies ®(3,0) > &(0,3), which implies
®(3,0)+ ®(3,0) > ®(0,3) +P(3,0). Additivity with respect to concatenation
should then imply that (3,0) o (3,0) > (0,3) o (3,0), that is (6,0) > (3, 3).

1.3 An Example: Even Swaps

The even swaps technique described and advocated in [120, 121, 165] is a
simple way to deal with decision problems involving several attributes that
does not have recourse to a formal representation of preferences, which will be
the subject of conjoint measurement. Because this technique is simple and may
be quite useful, we describe it below using the same example as in [120]. This
will also allow to illustrate the type of problems that are dealt with in decision
analysis applications of conjoint measurement.

EXAMPLE 3 (EVEN SWAPS TECHNIQUE) A consultant considers renting a
new office. Five different locations have been identified after a careful consid-
eration of many possibilities, rejecting all those that do not meet a number of
requirements.

His feeling is that five distinct characteristics, we shall say five attributes,
of the possible locations should enter into his decision: his daily commute
time (expressed in minutes), the ease ofaccessfor his clients (expressed as the
percentage of his present clients living close to the office), the level of services
offered by the new office (expressed on an ad hoc scale with three levels: A (all
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facilities available), B (telephone and fax), C (no facilities)), the size of the
office expressed in square feet, and the monthly cost expressed in dollars.
The evaluation of the five offices is given in Table 3.1. The consultant has

Table 3.1. Evaluation of the 5 offices on the 5 attributes.

a b c d e
Commute 45 25 20 25 30
Clients 50 80 70 85 75
Services A B C A C
Size 800 700 500 950 700
Cost 1850 1700 1500 1900 1750

well-defined preferences on each of these attributes, independently of what is
happening on the other attributes. His preference increases with the level of
access for his clients, the level of services of the office and its size. It decreases
with commute time and cost. This gives a first easy way to compare alternatives
through the use of dominance.

An alternative Yy is dominated by an alternative x if T is at least as good as
y on all attributes while being strictly better for at least one attribute. Clearly
dominated alternatives are not candidate for the final choice and may, thus, be
dropped from consideration. The reader will easily check that, on this example,
alternative b dominates alternative e: € and b have similar size but b is less
expensive, involves a shorter commute time, an easier access to clients and a
better level of services. We may therefore forget about alternative e. This is the
only case of “pure dominance” in our table. It is however easy to see that d
is “close” to dominating a, the only difference in favor of a being on the cost
attribute (50 $ per month). This is felt more than compensated by the differences
in favor of d on all other attributes: commute time (20 minutes), client access
(35 %) and size (150 sq. feet).

Dropping all alternatives that are not candidate for choice, this initial inves-
tigation allows to reduce the problem to:

b c d
Commute 25 20 25
Clients 80 70 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

A natural way to proceed is then to assess trade offs. Observe that all alternatives
but ¢ have a common evaluation on commute time. We may therefore ask the
consultant, starting with office ¢, what gain on client access would compensate
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a loss of 5 minutes on commute time. We are looking for an alternative ¢ that
would be evaluated asfollows:

!

c ¢
Commute 20 25
Clients 70 TO+46
Services C C
Size 500 500
Cost 1500 1500

and judged indifferent to c. Although this is not an easy question, it is clearly
crucial in order to structure preferences.

REMARK 10 In this paper, we do not consider the possibility of lexicographic
preferences, in which such tradeoffs do not occur, see [59, 60, 160]. Lexi-
cographic preferences may also be combined with the possibility of “local”
tradeoffs, see [22, 64, 136].

REMARK 11 Since tradeoffs questions may be difficult, it is wise to start with
an attribute requiring few assessments (in the example, all alternatives but one
have a common evaluation on commute time). Clearly this attribute should
be traded against one with an underlying “continuous” structure (cost, in the
example).

Suppose that the answer is that for 6 = 8, it is reasonable to assume that cand
¢ would be indifferent. This means that the decision table can be reformulated
as follows:

b 4 d
Commute 25 25 25
Clients 80 78 85
Services B C A
Size 700 500 950
Cost 1700 1500 1900

It is then apparent that all alternatives have a similar evaluation on the first
attribute which, therefore, is not useful to discriminate between alternatives and
may be forgotten. The reduced decision table is as follows:

b c d
Clients 80 78 85
Services B C A
Size 700 500 950

Cost 1700 1500 1900
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There is no case of dominance in this reduced table. Therefore further simpli-
fication calls for the assessment of new tradeoffs. Using cost as the reference
attribute, we then proceed to “neutralize” the service attribute. Starting with
office ¢, this means asking for the increase in monthly cost that the consultant
would just be prepared to pay to go from level “C” of service to level “B”.
Suppose that this increase is roughly 250 $. This defines alternative ¢”. Simi-
larly, starting with office d we askfor the reduction of cost that would exactly
compensate a reduction of services from “A” to “B”. Suppose that the answer
is 100 $ a month, which defines alternative d'. The decision table is reshaped
as:

b C/I dl
Clients 80 78 85
Services B B B
Size 700 500 950
Cost 1700 1750 1800

We may forget about the second attribute which does not discriminate any more
between alternatives. When this is done, it is apparent that ¢’ is dominated by
b and can be suppressed. Therefore, the decision table at this stage looks like
the following:

b d
Clients 80 85
Size 700 950

Cost 1700 1800

Unfortunately, this table reveals no case of dominance. New tradeoffs have
to be assessed. We may now ask, starting with office b, what additional cost
the consultant would be ready to incur to increase its size by 250 square feet.
Suppose that the rough answer is 250 $ a month, which defines b'. We are now
facing the following table:

bl dl
Clients 80 85
Size 950 950

Cost 1950 1800

Attribute size may now be dropped from consideration. But, when this is done,
it is clear that d' dominates b'. Hence it seems obvious to recommend office d
as the final choice.

The above process is simple and looks quite obvious. If this works, why be
interested at all in “measurement” if the idea is to help someone to come up
with a decision?
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First observe that in the above example, the set of alternatives was relatively
small. In many practical situations, the set of objects to compare is much larger
than the set of alternatives in our example. Using the even swaps technique
could then require a considerable number of difficult tradeoff questions. Fur-
thermore, as the output of the technique is not a preference model but just the
recommendation of an alternative in a given set, the appearance of new alterna-
tives (e.g. because a new office is for rent) would require starting a new round
of questions. This is likely to be highly frustrating. Finally, the informal even
swaps technique may not be well adapted to the, many, situations, in which
the decision under study takes place in a complex organizational environment.
In such situations, having a formal model to be able to communicate and to
convince is an invaluable asset. Such a model will furthermore allow to conduct
extensive sensitivity analysis and, hence, to deal with imprecision both in the
evaluations of the objects to compare and in the answers to difficult questions
concerning tradeoffs.

This clearly leaves room for a more formal approach to structure preferences.
But where can “measurement” be involved in the process? It should be observed
that, beyond surface, there are many analogies between the even swaps process
and the measurement of length considered above.

First, note that, in both cases, objects are compared using binary relations.
In the measurement of length, the binary relation > reads “is longer than”.
Here it reads “is preferred to”. Similarly, the relation ~ reading before “has
equal length” now reads “is indifferent to”. We supposed in the measurement
of length process that > and ~ would nicely combine in experiments: if 7 > 7’
andr’ ~ r” then we should observe that r > 7. Implicitly, asimilar hypothesis
was made in the even swaps technique. To realize that this is the case, it is worth
summarizing the main steps of the argument.

We started with Table 3.1. Our overall recommendation was to rent office
d. This means that we have reasons to believe that d is preferred to all other
potential locations, i.e. d = a,d >~ b, d > ¢, and d > e. How did we arrive
logically at such a conclusion?

Based on the initial table, using dominance and quasi-dominance, we con-
cluded that b was preferable to e and that d was preferable to a. Using symbols,
wehave b > e and d > a. After assessing some tradeoffs, we concluded, using
dominance, that b > ¢”. But remember, ¢” was built so as to be indifferent to
¢ and, inturn, ¢’ was built so as to be indifferent to ¢. That is, we have ¢” ~ ¢’
and ¢ ~ c. Later, we built an alternative d' that is indifferent to d (d ~ d)
and an alternative b that is indifferent to b (b ~ b’). We then concluded, using
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dominance, that d’ was preferable to b’ (d' > b'). Hence, we know that:

d>a,b>e,
d'~d,d~e b,
d~d,b~b,d - Y.

Using the consistency rules linking > and ~ that we considered for the mea-
surement of length, it is easy to see that the last line implies d > b. Since b > e,
this implies d > e. It remains to show that d > ¢. But the second line leads to,
combining > and ~, b > ¢. Therefore d > b leads tod > ¢ and we are home.
Hence, we have used the same properties for preference and indifference as the
properties of “is longer than” and “has equal length” that we hypothesized in
the measurement of length.

Second it should be observed that expressing tradeoffs leads, indirectly, to
equating the “length” of “preference intervals” on different attributes. Indeed,
remember how ¢’ was constructed above: saying that ¢ and ¢’ are indifferent
more or less amounts to saying that the interval [25, 20] on commute time has
exactly the same “length” as the interval [70, 78] on client access. Consider an
alternative f that would be identical to ¢ except that it has a client access at
78%. We may again ask which increase in client access would compensate a
loss of 5 minutes on commute time. In a tabular form we are now comparing
the following two alternatives:

f f!
Commute 20 25
Clients 78 T8+46
Services C C
Size 500 500
Cost 1500 1500

Suppose that the answer is that for § = 10, f and f’ would be indifferent. This
means that the interval [25, 20] on commute time has exactly the same length as
the interval [78, 88] on client access. Now, we know that the preference intervals
[70, 78] and [78, 88] have the same “length”. Hence, tradeoffs provide a means
to equate two preference intervals on the same attribute. This brings us quite
close to the construction of standard sequences. This, we shall shortly do.

How does this information about the “length” of preference intervals relate
tojudgements of preference or indifference? Exactly as in the even swaps tech-
nique. You can use this measure of “length” modifying alternatives in such a
way that they only differ on a single attribute and then use a simple dominance
argument.

Conjoint measurement techniques may roughly be seen as a formalization
of the even swaps technique that leads to building a numerical model of pref-
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erences much in the same way that we built a numerical model for length.
This will require assessment procedures that will rest on the same principles as
the standard sequence technique used for length. This process of “measuring
preferences” is not an easy one. It will however lead to a numerical model of
preference that will not only allow us to make a choice within a limited num-
ber of alternatives but that can serve as an input of computerized optimization
algorithms that will be able to deal with much more complex cases.

2. Definitions and Notation

Before entering into the details of how conjoint measurement may work, a few
definitions and notation will be needed.

2.1 Binary Relations

A binary relation 27 on a set A is a subset of A x A. We write a ZZ b instead of
(a,b) € . A binary relation = on A is said to be:

n reflexive if [a 25 a),

w complete if [a 75 bor b 2 al,

u symmetric if [a 77 b] = [b 2 al,

» asymmetric if [a 7, b] = [Not[b 2 al],

» transitiveif [a 22 band b 25 ¢] = [a 2 ¢,

» negatively transitive if [ Not[a 22 b] and Not[bZ c]] = Notla ],

for all a,b,c € A.

The asymmetric (resp. symmetric) part of 2 is the binary relation > (resp.
~) on A defined letting, for all a,b € A, a > b & [a Z band Not(b Z a)
(resp. a ~ b & [a Z band b 7 a]). A similar convention will hold when 2 is
subscripted and/or superscripted.

A weak order (resp. an equivalence relation) is a complete and transitive
(resp. reflexive, symmetric and transitive) binary relation. Fora detailed analysis
of the use of binary relation as tools for preference modelling we refer to [4,
58, 66, 161, 167, 169]. The weak order model underlies the examples that were
presented in the introduction. Indeed, the reader will easily prove the following.

PROPOSITION 4 Let 7=, be a weak order on A. Then:
m > s transitive,
w > s negatively transitive,

®  ~ [s transitive,
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m [a-bandb~c=>a>¢
w [a~bandb>c|=a> ¢

for all a,b,c € A.

2.2 Binary Relations on Product Sets

In the sequel, we consider a set X =[], X;withn > 2. Elements z,y, z, . ..
of X will be interpreted as alternatives evaluated on a set N = {1,2,...,n} of
attributes. A typical binary relation on X is still denoted as -, interpreted as an
“at least as good as” preference relation between multi-attributed alternatives
with ~ interpreted as indifference and > as strict preference.

For any nonempty subset J of the set of attributes N, we denote by X (resp.
X_j) the set Hz‘e g X (resp. Hi¢ 7 Xi ). With customary abuse of notation,
(zg,y~g) will denote the element w € X such that w; = =z; if ¢ € J and
w; = y; otherwise. When J = {3} we shall simply write X _; and (z;,y—;)-

REMARK 12 Throughout this paper, we shall work with a binary relation
defined on a product set. This setup conceals the important work that has to be
done in practice to make it useful:

& the structuring ofobjectives [3, 15, 16, 117, 118, 119, 157, 163],

W the definition of adequate attributes to measure the attainment of objec-
tives [80, 96, 116, 122, 173, 208, 216],

® the definition ofan adequate family ofattributes [24,121,173,174, 209],

m  the modelling of uncertainty, imprecision and inaccurate determination
[23, 27, 121, 171].

The importance of this “preliminary” work should not be forgotten in what
follows.

23 Independence and Marginal Preferences

In conjoint measurement, one starts with a preference relation >~ on X. It is
then of vital importance to investigate how this information makes it possible
to define preference relations on attributes or subsets of attributes.

LetJ € N be a nonempty set of attributes. We define the marginal relation
2~ induced on Xy by - letting, for all z7,yy € X:

xy Ty ys e (@g,2-0) % (ys,z2—g), forall z_; € X_,

with asymmetric (resp. symmetric) part > (resp. ~ ). When J = {7}, we often
abuse notation and write 7; instead of 25 }. Note that if 2 is reflexive (resp.
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transitive), the same will be true for 2Z7. This is clearly not true for completeness
however.

DEFINITION 26 (INDEPENDENCE) Consider a binary relation 7, on a set
X =1, Xi and let J C N be a nonempty subset of attributes. We say that
7= is independent for J if, for all zj,y5 € X,

(g, 2-7) = (yg,2-7), for some z_5 € X_j] = x5 757 yJ-

If 7 is independent for all nonempty subsets of N, we say that 7, is independent
If 7 is independent for all subsets containing a single attribute, we say that 7,
is weakly independent

In view of (3.2), it is clear that the additive value model will require that
is independent. This crucial condition says that common evaluations on some
attributes do not influence preference. Whereas independence implies weak
independence, it is well-know that the converse is not true [211].

REMARK 13 Under certain conditions, e.g. when X is adequately “rich“, it
is not necessary to test that a weak order -, is independent for J, for all J C N
in order to know that 77, is independent, see [21, 89, 121]. This is often useful
in practice.

REMARK 14 Weak independence is referred to as “weak separability” in
[211]; in section 5, we use “weak separability” (and “separability”) with a
different meaning.

REMARK 15 Independence, or at least weak independence, is an almost uni-
versally accepted hypothesis in multiple criteria decision making. It cannot be
overemphasized that it is easy to find examples in which it is inadequate.

If a meal is described by the two attributes, main course and wine, it is
highly likely that most gourmets will violate independence, preferring red wine
with beef and white wine with fish. Similarly, in a dynamic decision problem,
a preference for variety will often lead to violating independence: you may
prefer Pizza to Steak, but your preference for meals today (first attribute) and
tomorrow (second attribute) may well be such that (Pizza, Steak) preferred to
(Pizza, Pizza), while (Steak, Pizza) is preferred to (Steak, Steak).

Many authors [119, 173, 209] have argued that such failures of independence
were almost always due to a poor structuring of attributes (e.g. in our choice
ofmeal example above, preference for variety should be explicitly modelled).

When 7 is a weakly independent weak order, marginal preferences are well-
behaved and combine so as to give meaning to the idea of dominance that we
already encountered. The proof of the following is left to the reader as an easy
exercise.
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PROPOSITION 5 Let 77 be a weakly independent weak orderon X = [[7_; X;.
Then:

w =, is a weak order on X;,

® [z Ziyiforalli€e Nz 2y,
» (x; Ziyifor alli € N and x5 > y; for somej € N} =z »~y,
for allz,y € X.

3. The Additive Value Model in the ‘“Rich’ Case

The purpose of this section and the following is to present the conditions under
which a preference relation on a product set may be represented by the additive
value function model (3.2) and how such a model can be assessed. We begin here
with the case that most closely resembles the measurement of length described
in section 1.2.

3.1 Outline of Theory

When the structure of X is supposed to be “adequately rich”, conjoint mea-
surement is a quite clever adaptation of the process that we described in section
1.2 for the measurement of length. What will be measured here are the “length”
of preference intervals on an attribute using a preference interval on another
attribute as a standard.

311 The Case of Two Attributes.  Consider first the two attribute case.
Hence the relation 27 is defined on a set X = X; x Xj. Clearly, in view of
(3.2), we need to suppose that 7 is an independent weak order. Consider two
levels 23, ! € X on the first attribute such that 2} 1 x9,ie. z} is preferable
to a:?. This makes sense because, we supposed that 27, is independent. Note also
that we shall have to exclude the case in which all levels on the first attribute
would be indifferent in order to be able to find such levels.

Choose any 9 € Xj. The, arbitrarily chosen, element (x(l’,zg) € X will
be our “reference point”. The basic idea is to use this reference point and the
“unit” on the first attribute given by the reference preference interval [x‘l’, x%] to
build a standard sequence on the preference intervals on the second attribute.
Hence, we are looking for an element m% € X, that would be such that:

(23, 23) ~ (z1,29). (3.3)

Clearly this will require the structure of X5 to be adequately “rich” so as to find
the level 3 € X5 such that the reference preference interval on the first attribute
[w(l), mﬂ is exactly matched by a preference interval of the same “length” on the
second attribute [xg, ac%] Technically, this calls for a solvability assumption or,
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more restrictively, for the supposition that X2 has a (topological) structure that
is close to that of an interval of R and that {7 is “somehow” continuous.
If such a level :L‘% can be found, model (3.2) implies:

vi(2}) + va(3) = vi(e1) + v2(23) so that

va(w3) — va(xh) = vi(z}) — v (). G4

Let us fix the origin of measurement letting:
vi(x]) = va(a) = 0
and our unit of measurement letting:
vi(z}) = 1 so that vy (1) — v1(29) = 1.

Using (3.4), we therefore obtain va(zi) = 1. We have therefore found an
interval between levels on the second attribute ([x3, z1]) that exactly matches
our reference interval on the first attribute (3, z1]). We may proceed to build
our standard sequence on the second attribute (see Figure 3.4) asking for levels
x3,x3, ... such that:

(x(l)ax%) ~ (:L‘}, (Eé),

(o1, 23) ~ (a1, 23),

(2}, 25) ~ (a1, 25 7).

As above, using (3.2) leads to:

va(x3) — va(z}) = vi(a]) — v1(a}),
va(23) — va(23) = vi(ai) — v (),

va(@h) — va(@5™1) = vy (a]) — w1 (=),

so that:
va(x3) = 2,v9(x3) = 3,...,vo(zk) = k

This process of building a standard sequence of the second attribute therefore
leads todefining w2 on a number of, carefully, selected elements of Xs.
Remember the standard sequence that we built for length in section 1.2. An
implicit hypothesis was that the length of any rod could be exceeded by the
length of a composite object obtained by concatenating a sufficient number of
perfect copies of a standard rod. Such an hypothesis is called “Archimedean”
since it mimics the property of the real numbers saying that for any positive



94 MULTIPLE CRITERIA DECISION ANALYSIS

X1

Figure 3.4. Building a standard sequence on X».

real numbers z,¥ it is true that nz > y for some integer n, i.e. ¥, no matter
how large, may always be exceeded by taking any z, no matter how small, and
adding it with itself and repeating the operation a sufficient number of times.
Clearly, we will need a similar hypothesis here. Failing it, there might exist
a level yo € Xy that will never be “reached” by our standard sequence, i.e.
such that y2 >2 :L‘Izc, for k = 1,2,.... For measurement models in which this
Archimedean condition is omitted, see [155, 193].

REMARK 16 At this point a good exercise for the reader is to figure out how
we may extend the standard sequence to cover levels of Xa that are “below”
the reference level :z:g This should not be difficult.

Now that a standard sequence is built on the second attribute, we may use any
part of it to build a standard sequence on the first attribute. This will require
finding levels a:l, :L'l, . € X such that (see Figure 3.5):

(311, 1'32) ~ (371,932),

(af,23) ~ (1, 23),

(331,352) (-”3 ’552)
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Xa

Figure 3.5. Building a standard sequence on X7.

Using (3.2) leads to:

v1(x}) — vi(a]) = va(ap) — va(a)),

vi(2}) ~ vi(a]) = va(a}) —va(a)),

vi(@f) — vi(@f 1) = va(ag) — va(a)),

so that:
'Ul((L'%) =2, ’Ul(x:i)’) = 3, o vvl(zllc) = k.

As was the case for the second attribute, the construction of such a sequence will
require the structure of X; to be adequately rich, which calls for a solvability
assumption. An Archimedean condition will also be needed in order to be sure
that all levels of X; can be reached by the sequence.

We have defined a “grid” in X (see Figure 3.6) and we have v; (:l:’f) = kand
vy (wg) = k for all elements of this grid. Intuitively such numerical assignments
seem to define an adequate additive value function on the grid. We have to prove
that this intuition is correct. Let us first verify that, for all integers «, 8, v, 8:

a+ﬂ=7+5=g:}(x‘{',x€)N(z’l,xg). (3.5

When € = 1, (3.5) holds by construction because we have: (2, z3) ~ (z},29).
When € = 2, we know that (z9,z2) ~ (z},2}) and (22,23) ~ (z},2l) and
the claim is proved using the transitivity of ~.

Conzsider the € = 3 case. We have (x9,z3) ~ (x},22) and (29,23) ~
(z1,23). It remains to be shown that (z%, 23) ~ (z},23) (see the dotted arc in
Figure 3.6). This does not seem to follow from the previous conditions that we
more or less explicitly used: transitivity, independence, “richness”, Archime-
dean. Indeed, it does not. Hence, we have to suppose that: (z2, 23) ~ (29, 22)
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Xo

Figure 3.6.  The grid.

and (29, x}) ~ (x},23)imply (22,2}) ~ (x1,23). This condition, called the
Thomsen condition, is clearly necessary for (3.2). The above reasoning easily
extends to all points on the grid, using weak ordering, independence and the
Thomsen condition. Hence, (3.5) holds on the grid.

It remains to show that:

e=a+ﬂ>e’=’7+5=¢(az‘f,x§)>—(:v'ly,:cg). (3.6)

Using transitivity, it is sufficient to show that (3.6) holds when € = €' + 1.
By construction, we know that (z1,29) = (29, z3). Using independence this
implies that (z1,2%) = (29, 2%). Using (3.5) we have (a1, 2§) ~ (z¥+!,293)
and (29, 25) ~ (¥, £3). Therefore we have (z51?,29) = (2%, 29), the desired
conclusion.

Hence, we have built an additive value function of a suitably chosen grid
(see Figure 3.7). The logic of the assessment procedure is then to assess more
and more points somehow considering more finely grained standard sequences.
The two techniques evoked for length may be used here depending on the
underlying structure of X. Going to the limit then unambiguously defines the
functions vy and wg. Clearly such vy and w2 are intimately related. Once we
have chosen an arbitrary reference point (:l;(l),xg) and a level :L‘% defining the
unit of measurement, the process just described entirely defines v1 and v2. It
follows that the only possible transformations that can be applied to v1 and v2
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X2

Figure 3.7. The entire grid.

is to multiply both by the same positive number « and to add to both a, possibly
different, constant. This is usually summarized saying that v; and vy define
interval scales with a common unit.

The above reasoning is a rough sketch of the proof of the existence of an
additive value function when n = 2, as well as a sketch of how it could be
assessed. Careful readers will want to refer to [58, 129, 211].

REMARK 17 The measurement of length through standard sequences describ-
ed above leads to a scale that is unique once the unit of measurement is chosen.
At this point, a good exercisefor the reader is to find an intuitive explanation to
the fact that, when measuring the “length” of preference intervals, the origin
of measurement becomes arbitrary. The analogy with the the measurement of
duration on the one hand and dates, as given in a calendar, on the other hand
should help.

REMARK 18 Aswas already the case with the even swaps technique, it is worth
emphasizing that this assessment technique makes no use of the vague notion
ofthe “importance” ofthe various attributes. The “importance” is captured
here in the lengths of the preference intervals on the various attributes.
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A common but critical mistake is to confuse the additive value function model
(3.2) with a weighted average and to try to assess weights asking whether an
attribute is “more important” than another. This makes no sense.

3.1.2 The Case of More than Two Attributes. = The good news is that
the process is exactly the same when there are more than two attributes. With one
surprise: the Thomsen condition is no more needed to prove that the standard
sequences defined on each attribute lead to an adequate value function on the
grid. A heuristic explanation ofthis strange resultis that, when n = 2, there is no
difference between independence and weak independence. This is no more true
when n > 3 and assuming independence is much stronger than just assuming
weak independence.

3.2 Statement of Results

We use below the “algebraic approach” [127, 129, 141]. A more restrictive
approach using a topological structure on X is given in [44, 58, 211]. We
formalize below the conditions informally introduced in the preceding section.
The reader not interested in the precise statement of the results or, better, having
already written down his own statement, may skip this section.

DEFINITION 27 (THOMSEN CONDITION) Let 2~ be a binary relation on a
set X = X1 X Xq. It is said to satisfy the Thomsen condition if

(z1,z2) ~ (y1,y2) and (y1, 22) ~ (21,22) = (21, 22) ~ (21,%2),
for all x1,y1,21 € X1 and all x3,1y2, 22 € Xa.

Figure 3.8 shows how the Thomsen condition uses two “indifference curves”
(i.e. curves linking points that are indifferent) to place a constraint on a third
one. This was needed above to prove that an additive value function existed on
our grid. Remember that the Thomsen condition is only needed when n = 2;
hence, we only stated it in this case.

DEFINITION 28 (STANDARD SEQUENCES) A standard sequence on attribu-
tetr € N isaset {aéc : af € Xi, k € K} where K is a set ofconsecutive integers
(positive or negative, finite or infinite) such that there are x_;,y—; € X_;
satisfying Not(x_; ~—; y—i] and (a¥,z_;) ~ (af“,y_i), forallk € K.

A standard sequence on attribute 7 € N is said to be strictly bounded if there
are b;,c; € X; such that b; >; af =i ¢, for all k € K. It is then clear that,
when model (3.2) holds, any strictly bounded standard sequence must be finite.

DEFINITION 29 (ARCHIMEDEAN) Foralli € N, any strictly bounded stan-
dard sequence on 1 € N is finite.
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Figure 3.8. The Thomsen condition.

The following condition rules out the case in which a standard sequence
cannot be built because all levels are indifferent.

DEFINITION 30 (ESSENTIALITY) Let 2 be a binary relation on a set X =
X1 x Xg % -+ X Xp. Attribute t € N is said to be essential if (z;,a—;) >
(ys, a—i), for some x;,y; € X; and some a—_; € X_;.

DEFINITION 31 (RESTRICTED SOLVABILITY) Letf 2 be a binary relation
onaset X = X1 X Xo X -+ X Xy. Restricted solvability is said to hold with
respect to attribute t € N if, for all x € X, all z2_; € X_; and all a;,b; € X;,
(@i, 2-0) 25 & 2 (bi, 2=i)] = [v ~ (i, 2-4), for some ¢; € X;].

REMARK 19 Restricted solvability is illustrated in Figure 3.9 in the case where
n = 2. It says that, given any © € X, ifit is possible find two levels a;,b; € X;
such that when combined with a certain level 2—; € X _; on the other attributes,
(a4, 2—;) is preferred to T and x is preferred to (b;, z—3), it should be possible to
find a level c¢;, “in between” a; and b;, such that (ci, 2—;) is exactly indifferent
tozx.

A much stronger hypothesis is unrestricted solvability asserting that for all
xz € X and all 2—; € X, x ~ (¢, 2—i), for somec; € X Its use leads
however to much simpler proofs [58, 86].

It is easy to imagine situations in which restricted solvability might hold
while unrestricted solvability would fail. Suppose, e.g. that a firm has to choose
between several investment projects, two attributes being the Net Present Value
(NPV) of the projects and their impact on the image of the firm in the public.
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Consider a project consisting in investing in the software market. It has a rea-
sonable NPVand no adverse consequences on the image of the firm. Consider
another project that could have dramatic consequences on the image of the
firm, because it leads to investing the market of cocaine. Unrestricted solvabil-
ity would require that by sufficiently increasing the NPV ofthe second project
it would become indifferent to the more standard project of investing in the
software market. This is not required by restricted solvability.

Xo

22

X1

b a1 ai
Z -

} = there is a w such that x ~ w
x>—y

Figure 3.9. Restricted solvability on X7.

We are now in position to state the central results concerning model (3.2). Proofs
may be found in [129, 213].

THEOREM 1 (ADDITIVE VALUE FUNCTION WHEN n = 2) Let ZZ be a bi-
nary relation on a set X = X1 X Xq. If restricted solvability holds on all
attributes and each attribute is essential then - has a representation in model
(3.2) if and only if 77 is an independent weak order satisfying the Thomsen and
the Archimedean conditions.

Furthermore in this representation, v1 and ve are interval scales with a
common unit, i.e. ifvy,vy and wy,wg are two pairs of functions satisfying
(3.2), there are real numbers e, 31, B with a > 0 such that, for all z; € X3
and all 9 € X3

vi(z1) = awr(z1) + B1 and va(z2) = owq(x2) + Pa.

When n > 3 and at least three attributes are essential, the above result
simplifies in that the Thomsen condition can now be omitted.
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THEOREM 2 (ADDITIVE VALUE FUNCTION WHEN n > 3) Let X be a bi-
nary relation on a set X = X3 x Xg X ... x X, with n > 3. If restricted
solvability holds on all attributes and at least 3 attributes are essential then
>, has a representation in model (3.2) ifand only if ¥ is an independent weak
order satisfying the Archimedean condition.

Furthermore in this this representation vi, Vs, . . . , Up are interval scales with
a common unit.

REMARK 20 As mentioned in introduction, the additive value model is central
to severalfields in decision theory. It is therefore not surprising that much energy
has been devoted to analyze variants and refinements of the above results.
Among the most significant ones, let us mention:

® the study ofcases in which solvability holds only on some or none ofthe
attributes [75, 85, 86, 87, 88, 112, 113, 154],

® the study ofthe relation between the “algebraic approach” introduced
above and the topological one usedin [44], see e.g. [115, 124, 211, 213].

The above results are only valid when X is the entire Cartesian product of
the sets X;. Results in which X is a subset of the whole Cartesian product
X1 X Xo X ... % Xy, are not easy to obtain, see [37, 181] (the situation is
“easier” in the special case of homogeneous product sets, see [214, 215]).

33 Implementation: Standard Sequences and Beyond

We have already shown above how additive value functions can be assessed
using the standard sequence technique. It is worth recalling here some of the
characteristics of this assessment procedure:

m It requires the set X; to be rich so that it is possible to find a preference
interval on X; that will exactly match a preference interval on another
attribute. This excludes using such an assessment procedure when some
of the sets X; are discrete.

® [t relies on indifference judgements which, a priori, are less firmly estab-
lished than preference judgements.

® [t relies on judgements concerning fictitious alternatives which, a priori,
are harder to conceive than judgements concerning real alternatives.

m The various assessments are thoroughly intertwined and, e.g., an impre-
cision on the assessment of .7:%, i.e. the endpoint of the first interval in
the standard sequence on X2 (see Figure 3.4) will propagate to many
assessed values,
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m  The assessment of tradeoffs may be plagued with cognitive biases, see
[46, 197].

The assessment procedure based on standard sequences is therefore rather
demanding; this should be no surprise given the proximity between this form
of measurement and extensive measurement illustrated above on the case of
length. Hence, the assessment procedure based on standard sequences seems to
be seldom used in the practice of decision analysis [121, 209]. The literature on
the experimental assessment of additive value functions, see e.g. [197, 208, 216],
suggests that this assessment is a difficult task that may be affected by several
cognitive biases.

Many other simplified assessment procedures have been proposed that are
less firmly grounded in theory. In many of them, the assessment of the partial
value functions v; relies on direct comparison of preference differences without
recourse to an interval on another attribute used as a “meter stick”. We refer
to [50] for a theoretical analysis of these techniques. They are also studied in
detail in 7 of this volume.

These procedures include:

m direct rating techniques in which values of v; are directly assessed with
reference to two arbitrarily chosen points [52, 53],

m procedures based on bisection, the decision-maker being asked to assess

a point that is “half way” in terms of preference two reference points
(2091,

m procedures trying to build standard sequences on each attribute in terms
of “preference differences” [129, ch. 4].

An excellent overview of these techniques may be found in [209].

4. The Additive Value Model in the ‘“Finite’’ Case
4.1 Outline of Theory

In this section, we suppose that 27 is a binary relation on a finite set X C X} x
Xox---xXp (contrary to the preceding section, dealing with subsets of product
sets will raise no difficulty here). The finiteness hypothesis clearly invalidates
the standard sequence mechanism used till now. On each attribute there will only
be finitely many “preference intervals” and exact matches between preference
intervals will only happen exceptionally, see [212].

Clearly, independence remains a necessary condition for model (3.2) as be-
fore. Given the absence of structure of the set X, it is unlikely that this condition
is sufficient to ensure (3.2). The following example shows that this intuition is
indeed correct.
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EXAMPLE 4 Let X = X3 x Xo with X1 = {a,b,c} and Xo = {d,e, f}.
Consider the weak order on X such that, abusing notation in an obvious way,

ad > bd > ae > af > be > cd > ce > bf > cf.

It is easy to check that 7 is independent. Indeed, we may for instance check
that:

ad > bd and ae > be and af > bf,
ad >~ ae and bd = be and cd - ce.

This relation cannot however be represented in model (3.2) since:

af > be = vi(a) + va(f) > v1(b) + va(e),
be > cd = v1(b) + va(e) > v1(c) + v2(d),
ce = bf = v1(c) + va(e) > v (b) + v2(f),
bd > ae = v1(b) + v2(d) > vi1(a) + va(e).

Summing the first two inequalities leads to:

vi(a) + va(f) > vi(c) + va(d).

Summing the last two inequalities leads to:

v1(c) + v2(d) > vi(a) + va( f),

a contradiction.

Note that, since no indifference is involved, the Thomsen condition is triv-
ially satisfied. Although it is clearly necessary for model (3.2), adding it to
independence will therefore not solve the problem.

The conditions allowing to build an additive value model in the finite case
were investigated in [1, 2, 179]. Although the resulting conditions turn out to be
complex, the underlying idea is quite simple. It amounts to finding conditions
under which a system of linear inequalities has a solution.

Suppose that z > y. If model (3.2) holds, this implies that:

D vilw) > > vilw)- 3.7)
i=1 i=1

Similarly if x ~ y, we obtain:

> vil) = Z vi(vi)- (3.8)
i=1 i=1
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The problem is then to find conditions on 7 such that the system of finitely many
equalities and inequalities (3.7-3.8) has a solution. This is a classical problem
in Linear Algebra [83].

DEFINITION 32 (RELATION E™) Letm be an integer > 2. Let z!, 22
mm7y1’y27 AR ,ym e X- We Say that

(@',2? .. 2™ E™MY Y ™)
if, foralli € N, (z},22,...,2M) is a permutation of (y}, 92, ..., y).

Suppose that (z!, 2%, ...,2™)E™(y*,4?%,...,4™) then model (3.2) implies
that

m n ) m n .
PIPICIEDIPILACHE
j=1 i=1 j=11i=1

Therefore if 27 - 47 for j = 1,2,...,m — 1, it cannot be true that z™ > y™.

This condition must hold for all m = 2,3, .. ..

DEFINITION 33 (CONDITION C™) Let m be an integer > 2. We say that
condition C™ holds if

[/ 5 forj =1,2,...,m—1] = Not[z™ > y™]

2™yt ALy € X such that

(ah2%, .., a™EM Yy ™).

for all i,z

REMARK 21 It is not difficult to check that:

n Cm+1 = Cm',

s C? = ¥ is independent,

» O3 = 1 is transitive.

We already observed that C™ was implied by the existence of an additive
representation. The main result for the finite case states that requiring that *- is

complete and that C™ holds for m = 2,3, ... is also sufficient. Proofs can be
found in [58, 129].

THEOREM 3 Let 77 be a binary relation on afinite set X C X1 X Xax - -x Xp.
There are real-valued functions v; on X; such that (3.2) holds if and only if 77
is complete and satisfies C™ form = 2,3,....

REMARK 22 Contrary to the “ rich” case considered in the preceding section,
we have here necessary and sufficient conditions for the additive value model
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(3.2). However, it is important to notice that the above result uses a denumerable
scheme of conditions. It is shown in [180] that this denumerable scheme cannot
be truncated: for all m > 2, there is a relation -, on a finite set X such that
C™ holds but violating C™¥L. This is studied in more detail in [139, 201, 218].
Therefore, no finite scheme of axioms is sufficient to characterize model (3.2)
for all finite sets X.

Given a finite set X of given cardinality, it is well-known that the denumer-
able scheme of condition can be truncated. The precise relation between the
cardinality of X and the number of conditions needed raises difficult combina-
torial questions that are studied in [77, 78].

REMARK 23 [t is clear that, if a relation 7 has a representation in model (3.2)
with functions w;, it also has a representation using functions v = av; + (3
with @ > 0. Contrary to the rich case, the uniqueness of the functions vj is more
complex as shown by the following example.

EXAMPLE 5 Let X = X1 x X, with X1 = {a,b,c} and X2 = {d,e}.
Consider the weak order on X such that, abusing notation in an obvious way,

ad = bd > ae > cd > be > ce.

This relation has a representation in model (3.2) with
vi(a) = 3,v1(b) = 1,v1(c) = 0,v2(d) = 3,v2(e) = 0.5.

An equally valid representation would be given taking v1(b) = 2. Clearly this
new representation cannot be deduced from the original one applying a positive
affine transformation.

REMARK 24 Theorem 3 has been extended to the case of an arbitrary set X
in [113, 112], see also [75, 81]. The resulting conditions are however quite
complex. This explains why we spent time on this “rich” case in the preceding
section.

REMARK 25 The use of a denumerable scheme of conditions in theorem 3 does
not facilitate the interpretation and the test of conditions. However it should be
noticed that, on a given set X, the test of the C™ conditions amounts to finding
ifa system of finitely many linear inequalities has a solution. It is well-known
that Linear Programming techniques are quite efficient for such a task.

4.2 Implementation: LP-based Assessment

We show how to use LP techniques in order to assess an additive value model
(3.2), without supposing that the sets X are rich. For practical purposes, it is
not restrictive to assume that we are only interested in assessing a model for a
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limited range on each X;. We therefore assume that the sets X; are bounded so
that, using independence, there is a worst value z;, and a most preferable value
x;. Using the uniqueness properties of model (3.2), we may always suppose,
after an appropriate normalization, that:

v1(z1x) = vo(z24) = ... = Up(zp«) = 0 and (3.9)
> wila}) = 1. (3.10)
i=1

Two main cases arise (see Figures 3.10 and 3.11):

B attribute ¢ € N is discrete so that the evaluation of any conceivable
alternative on this attribute belongs to a finite set. We suppose that X; =
{zix, 22, ..., 2}, 2} }. We therefore have to assess 7; + 1 values of
(S

w the attribute ¢ € N has an underlying continuous structure. It is hardly
restrictive in practice to suppose that X; C R, so that the evaluation of an
alternative on this attribute may take any value between z;, and x}. Inthis
case, we may opt for the assessment of a piecewise linear approximation
of v; partitioning the set X in 7; 4 1 intervals and supposing that v; is
linear on each of these intervals. Note that the approximation of v; can be
made more precise simply by increasing the number of these intervals.

(i)
1)5(.’1::) ............................ .
'Ui (:1:12) ..................... . .
'Ul'(x}) ............. .
Vi (T & i i iy
Tix z% :I:? .76:

Figure 3.10. Value function when X; is discrete.

With these conventions, the assessment of the model (3.2) amounts to giving a
value to % i, (r; + 1) unknowns. Clearly any judgment of preference linking
x and y translate into a linear inequality between these unknowns. Similarly
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vi(x?)

vi(;)

Ui(mi*

I

Figure 3.11. Value function when X; is continuous.

any judgment of indifference linking  and ¥ translate into a linear equality.
Linear Programming (LP) offers a powerful tool for testing whether such a
system has solutions. Therefore, an assessment procedure can be conceived on
the following basis:

m  obtain judgments in terms of preference or indifference linking several
alternatives in X,

= convert these judgments into linear (in)equalities,
® test, using LP, whether this system has a solution.

Ifthe system has no solution then one may either propose a solution that will be
“as close as possible” from the information obtained, e.g. violating the minimum
number of (in)equalities or suggest the reconsideration of certain judgements.
If the system has a solution, one may explore the set of all solutions to this
system since they are all candidates for the establishment of model (3.2). These
various techniques depend on:

m the choice of the alternatives in X that are compared: they may be real
or fictitious, they may differ on a different number of attributes,

m the way to deal with the inconsistency of the system and to eventually
propose some judgments to be reconsidered,

= the way to explore the set of solutions of the system and to use this set as
the basis for deriving a prescription.

Linear programming offers of simple and versatile technique to assess addi-
tive value functions. All restrictions generating linear constraints of the coef-
ficient of the value function can easily be accommodated. This idea has been
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often exploited, see [16]. We present below two techniques using it. It should
be noticed that rather different techniques have been proposed in the literature
on Marketing [35, 103, 104, 114, 132].

4.2.1 UTA[111]. UTA (“UTilité Additive”, i.e. additive utility in French)
is one of the oldest techniques belonging to this family. It is supposed in UTA
that there is a subset Ref C X of reference alternatives that the decision-
maker knows well either because he/she has experienced them or because they
have received particular attention. The technique amounts to asking the DM to
provide a weak order on Ref. Each preference or indifference relation contained
in this weak order is then translated into a linear constraint:

® T ~ y gives an equality v(z) — v(y) = 0 and
® 1 > y givesaninequality v(z) — v(y) > 0,

where v(z) and v(y) can be expressed as a linear combination of the unknowns
as remarked earlier. Strict inequalities are then translated into large inequalities
as is usual in Linear Programming, i.e. v(z) —v(y) > 0 becomes v(z) —v(y) >
€ where € > 0 is a very small positive number that should be chosen according
to the precision of the arithmetics used by the LP package.

The test of the existence of a solution to the system of linear constraints
is done via standard Goal Programming techniques [36] adding appropriate
deviation variables. In UTA, each equation v(z) — v(y) = 0 is translated into
an equation v(z) ~v(y) + 0 —o +o} —07 =0, where o, 07,07 and o,
are nonnegative deviation variables. Similarly each inequality v(z) —v(y) > €
is written as v(2) — v(y) + 0F — o5 + 0 — 0oy > e Itis clear that there will
exist a solution to the original system of linear constraints if there is a solution
of the LP in which all deviation variables are zero. This can easily be tested
using the objective function

Minimize Z = Y  of + 0} (3.11)
2€ Ref

Two cases arise. If the optimal value of Z is 0, there is an additive value function
that represents the preference information. It should be observed that, except
in exceptional cases (e.g. if the preference information collected is identical
to the preference information collected with the standard sequence technique),
there are infinitely many such additive value functions (that are not related
via a simple change of origin and of unit, since we already fixed them through
normalization (3.9-3.10)). The one given as the “optimal”” one by the LP does not
have a special status since it is highly dependent upon the arbitrary choice of the
objective function; instead of minimizing the sum of the deviation variables,
we could have as well, and still preserving linearity, minimized the largest
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of these variables. The whole polyhedron of feasible solutions of the original
(in)equalities corresponds to adequate additive value functions: we have a whole
set V of additive value functions representing the information collected on the
set of reference alternatives Ref.

The size of Vis clearly dependent upon the choice of the alternatives in Ref.
Using standard techniques in LP, several functions in ¥ may be obtained, e.g.
the ones maximizing or minimizing, within V, v;(z}) for each attribute [111].
It is often interesting to present them to the decision-maker in the pictorial form
of Figures 3.10 and 3.11.

If the optimal value of Z is strictly greater than 0, there is no additive value
function representing the preference information available. The solution given
as optimal (note that it is not guaranteed that this solution leads to the mini-
mum possible number of violations w.r.t. the information provided—this would
require solving an integer linear programme) is, in general, highly dependent
upon the choice of the objective function.

This absence of solution to the system might be due to several factors:

m the piecewise linear approximation of the v; for the “continuous” at-
tributes may be too rough. It is easy to test whether an increase in the num-
ber of linear pieces on some of these attributes may lead to a nonempty
set of additive value functions.

s the information provided by the decision-maker may be of poor quality.
It might then be interesting to present to the decision-maker one addi-
tive value function (e.g. one may present an average function after some
post-optimality analysis) in the pictorial form of Figures 3.10 and 3.11
and to let him react to this information either by modifying his/her ini-
tial judgments or even by letting him/her react directly on the shape of
the value functions. This is the solution implemented in the well-known
PREFCALC system [109].

= the preference provided by the decision-maker might be inconsistent with
the conditions implied by an additive value function. The system should
then help locate these inconsistencies and allow the DM to think about
them. Alternatively, since many alternative attribute descriptions are pos-
sible, it may be worth investigating whether a different definition of the
various attributes may lead to a preference model consistent with model
(3.2). Several examples of such analysis may be found in [119, 121, 209]

When the above techniques fail, the optimal solution of the LP, even if not
compatible with the information provided, may still be considered as an ade-
quate model. Again, since the objective function introduced above is somewhat
arbitrary and it is recommended in [111] to perform a post-optimality analysis,
e.g. considering additive value functions that are “close” to the optimal solution
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through the introduction of a linear constraint:
Z<Z"+ 4,

where Z* is the optimal value of the objective function of the original LP and
4 is a “small” positive number. As above, the result of the analysis is a set V of
additive value functions defined by a set of linear constraints. A representative
sample of additive value functions within ¥ may be obtained as above.

It should be noted that many possible variants of UTA can be conceived
building on the following comments. They include:

m the addition of monotonicity properties of the v; with respect to the un-
derlying continuous attributes,

m the addition of constraints on the shape of the marginal value functions
v;, €.g. requiring them to be concave, convex or S-shaped,

® the addition of constraints linked to a possible indication of preference
intensity for the elements of Ref given by the DM, e.g. the difference
between z and y is larger than the difference between z and w.

For applications of UTA-like techniques, we refer to [38, 47, 48, 105, 110,
148, 185, 186, 187, 188, 189, 190, 192, 195, 196, 219, 221, 220, 223, 222].
Variants of the method are considered in [19, 20, 191]. This method is also
studied in detail in Chapter 8§ of this volume.

422 MACBETH [12].  Itis easy to see that (3.9) and (3.10) may equiv-
alently be written as:

n n
ey Y k(@) >y kauiw), (3.12)
i=1 i=1
where
U1 (T1x) = u2(o) = ... Up(Tpi) = 0, (3.13)
uy(z}) = us(xy) = ... un(z}) =l and (3.14)
n
> k=1 (3.15)
i=1

With such an expression of an additive value function, it is tempting to break
down the assessment into two distinct parts: a value function u; is assessed on
each attribute and, then, scaling constants k; are assessed taking the shape of
the value functions u; as given. This is the path followed in MACBETH.
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REMARK 26 Again, note that we are speaking here of k; as scaling constants
and not as weights. As already mentioned weights that would reflect the “impor-
tance” of attributes are irrelevant to assess the additive value function model.
Notice that, under (3.12-3.15) the ordering ofthe scaling constant k; is depen-
dent upon the choice of Tix and x. Increasing the width of the interval [T, T} |
will lead to increasing the value ofthe scaling constant k;. The value k; has,
therefore, nothing to do with the “importance ” of attribute i. This point is unfor-
tunately too often forgotten when using a weighted average of some numerical
attributes. In the latter model, changing the units in which the attributes are
measured should imply changing the “weights” accordingly.

The assessment procedure of the u; is conceived in such a way as to avoid
comparing alternatives differing on more than one attribute. In view of what
was said before concerning the standard sequence technique, this is clearly an
advantage of the technique. But can it be done? The trick here is that MAC-
BETH asks for judgments related to the difference between the desirability
of alternatives and not only judgments in terms of preference or indifference.
Partial value functions u; are approximated in a similar way than in UTA: for
discrete attributes, each point on the function is assessed, for continuous ones,
a piecewise linear approximation is used.

MACBETH asks the DM to compare pairs of levels on each attribute. If no
difference is felt between these levels, they receive an identical partial value
level. If a difference is felt between z¥ and z], MACBETH asks for a judg-
ment qualifying the strength of this difference. The method and the associated
software propose three different semantical categories:

Categories ~ Description

Cl1 weak
c2 strong
C3 extreme

with the possibility of using intermediate categories, i.e. between null and weak,
weak and strong, strong and extreme (giving a total of six distinct categories).
This information is then converted into linear inequations using the natural
interpretation that if the “difference” between the levels xf and z has been
judged larger than the “difference” between :L‘f' and :cfl then it should follow
that u; (%) —w; (27) > wi(zF) —wi(x]’). Technically the six distinct categories
are delimited by thresholds that are used in the establishment of the constraints of
the LP. The software associated to MACBETH offers the possibility to compare
all pairs of levels on each attribute for a total of (r;+ 1)r; /2 comparisons. Using
standard Goal Programming techniques, as in UTA, the test of the compatibility
of a partial value function with this information is performed via the solution
of a LP. If there is a partial value function compatible with the information, a
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“central” function is proposed to the DM who has the possibility to modify it. If
not, the results of the LP are exploited in such a way to propose modifications
of the information that would make it consistent.

The assessment of the scaling constant k; is done using similar principles.
The DM is asked to compare the following (n + 2) alternatives by pairs:

(wl*aZZ*, s ,mn*),
(@, T2us - -+ s Trn),s
(.’L']_*,JI;, e ,(L‘n*),

(%14, T2y - - -, Ty,) and

(=}, 25, ...,23),

placing each pair in a category of difference. This information immediately
translates into a set of linear constraints on the k;. These constraints are pro-
cessed as before. It should be noticed that, once the partial valuefunctions u;
are assessed, it is not necessary to use the levels Z;x and a::' to assess the k;
since they may well lead to alternatives that are too unrealistic. The authors of
MACBETH suggest to replace x4« by a “neutral” level which appears neither
desirable nor undesirable and z} by a “desirable” level that is judged satisfac-
tory. Although this clearly impacts the quality of the dialogue with the DM, this
has no consequence on the underlying technique used to process information.

We refer to [6, 7, 8, 9, 10, 11] for applications of the MACBETH technique.
This method is also studied in detail in Chapter 10 of this volume.

5. Extensions

The additive value model (3.2) is the central model for the application of con-
joint measurement techniques to decision analysis. In this section, we consider
various extensions to this model.

51 Transitive Decomposable Models

The transitive decomposable model has been introduced in [129] as a natural
generalization of model (3.2). It amounts to replacing the addition operation by
a general function that is increasing in each of its arguments.

DEFINITION 34 (TRANSITIVE DECOMPOSABLE MODEL) Let 2 be a bina-
ry relation on a set X = H?:l Xi. The transitive decomposable model holds
if, for all © € N, there is a real-valued function wv; on X; and a real-valued
function g on H?:l vi(Xi) that is increasing in all its arguments such that:

zmy e gvi(xr), ... vn(zn)) > g(vi(v1), ..., vn(yn)), (3.16)
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forall z,y € X.

An interesting point with this model is that it admits an intuitively appealing
simple characterization. The basic axiom for characterizing the above transitive
decomposable model is weak independence, which is clearly implied by (3.16).
The following theorem is proved in [129, ch. 7].

THEOREM 4 A preference relation = on afinite or countably infinite set X
has a representation in the transitive decomposable model iff 2= is a weakly
independent weak order.

REMARK 27 This result can be extended to sets of arbitrary cardinality adding
a, necessary, condition implying that the weak order - has a numerical repre-
sentation, see [42, 45].

The weak point of such a model is that the function g is left unspecified so that
the model will be difficult to assess. Furthermore, the uniqueness results for v;
and g are clearly much less powerful than what we obtained with model (3.2),
see [129, ch. 7]. Therefore, practical applications of this model generally imply
specifying the type of function g, possibly by verifying further conditions on
the preference relation that impose that g belongs to some parameterized family
of functions, e.g. some polynomial function of the »;. This is studied in detail
in [129, ch. 7] and [14, 82, 139, 138, 156, 166, 202]. Since such models have,
to the best of our knowledge, never been used in decision analysis, we do not
analyze them further.

The structure of the decomposable model however suggests that assessment
techniques for this model could well come from Artificial Intelligence with its
“rule induction” machinery. Indeed the function g in model (3.16) may also be
seen as a set of “rules”. We refer to [97, 98, 100, 101] for a thorough study of
the potentiality of such an approach.

REMARK 28 A simple extension of the decomposable model consists in simply
asking for a function g that would be nondecreasing in each ofits arguments.
The following result is proved in [30] (see also [100]) (it can easily be extended
to cover the case of an arbitrary set X, adding a, necessary, condition implying
that ¥ has a numerical representation).

We say that >, is weakly separable if, for all t € N and all z;,y; € X, it
is never true that (Z;,2—;) > (Y, 2—i) and (ys,w—;) > (x5, w—;), for some
Zoiyw—y € X_;. Clearly this is a weakening of weak independence since it tol-
erates to have at the same time (%, 2—;) > (Yi, 2—i) and (T, w—;) ~ (Yi, w—i).

THEOREM 5 A preference relation 7, on a finite or countably infinite set X
has a representation in the weak decomposable model:

zZy e gu(z),. .., ua(za)) = glur{nr),. .. unlyn))
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with g nondecreasing in all its arguments iff 7 is a weakly separable weak
order.

A recent trend of research has tried to characterize special functional forms
for g in the weakly decomposable model, such as max, min or some more
complex forms. The main references include [26, 100, 102, 182, 194].

REMARK 29 The use of “fuzzy integrals ” as tools for aggregating criteria has
recently attracted much attention [49, 90, 91, 93, 94, 95, 143, 145, 144, 146],
the Choquet Integral and the Sugeno integral being among the most popular. It
should be strongly emphasized that the very definition of these integrals requires
to have at hand a weak order on U}_, X;, supposing w.l.o.g. that the sets X;
are disjoint. This is usually called a “commensurability hypothesis”. Whereas
this hypothesis is quite natural when dealing with an homogeneous Cartesian
product, as in decision under uncertainty (see e.g. [211]), it is far less so in the
area of multiple criteria decision making. A neat conjoint measurement analysis
of such models and their associated assessment procedures is an open research
question, see [92].

5.2 Intransitive Indifference

Decomposable models form a large family of preferences though not large
enough to encompass all cases that may be encountered when asking subjects
to express preferences. A major restriction is that not all preferences may be
assumed to be weak orders. The example of the sequence of cups of coffee, each
differing from the previous one by an imperceptible quantity of sugar added
[133], is famous; it leads to the notions of semiorder and interval order [4, 57,
66, 133, 161], in which indifference is not transitive, while strict preference is.

Ideally, taking intransitive indifference into account, we would want to arrive
at a generalization of (3.2) in which:

z~ye |Viz)— V)| <e
z-yeViz)>V(y) +e,

where € > 0 and V(z) = >0, vi(zs).

In the finite case, it is not difficult to extend the conditions presented in
section 4 to cover such a case. Indeed, we are still looking here for the solution
to a system of linear constraints. Although this seems to have never been done,
it would not be difficult to adapt the LP-based assessment techniques to this
case.

On the contrary, extending the standard sequence technique of section 3 is
a formidable challenge. Indeed, remember that these techniques crucially rest
on indifference judgments which lead to the determination of “perfect copies”
of a given preference interval. As soon as indifference is not supposed to be
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transitive, “perfect copies” are not so perfect and much trouble is expected. We
refer to [84, 128, 134, 161, 198] for a study of these models.

REMARK 30 Even if the analysis of such models proves difficult, it should
be noted that the semi-ordered version of the additive value model may be
interpreted as having a “built-in” sensitivity analysis via the introduction of
the thresholde. Therefore, inpractice, we may usefully view € not as a parameter
to be assessed but as a simple trick to avoid undue discrimination, because of
the imprecision inevitably involved in our assessment procedures, between close
alternatives

REMARK 31 Clearly the above model can be generalized to cope with a pos-
sibly non-constant threshold. The literature on the subject remains minimal
however, see [161].

5.3 Nontransitive Preferences

Many authors [147, 203] have argued that the reasonableness of supposing
that strict preference is transitive is not so strong when it comes to comparing
objects evaluated on several attributes. As soon as it is supposed that subjects
may use an “ordinal” strategy for comparing objects, examples inspired from
the well-known Condorcet paradox [176, 183] show that intransitivities will be
difficult to avoid. Indeed it is possible to observe predictable intransitivities of
strict preference in carefully controlled experiments [203]. There may therefore
be a descriptive interest to studying such models. When it comes to decision
analysis, intransitive preferences are often dismissed on two grounds:

® on a practical level, it is not easy to build a recommendation on the basis
of a binary relation in which > would not be transitive. Indeed, social
choice theorists, facing a similar problem, have devoted much effort to
devising what could be called reasonable procedures to deal with such
preferences [41, 62, 130, 131, 149, 158, 178]. This literature does not
lead, as was expected, to the emergence of a single suitable procedure in
all situations.

= on a more conceptual level, many others have questioned the very ra-
tionality of such preferences using some version of the famous “money
pump” argument [137, 164].

P. C. Fishburn has forcefully argued [73] that these arguments might not be
as decisive as they appear at first sight. Furthermore some MCDM techniques
make use of such intransitive models, most notably the so-called outranking
methods [25, 172, 204, 205] and Part III in this volume. Besides the intellectual
challenge, there might therefore be a real interest in studying such models.
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A. Tversky [203] was one of the first to propose such a model generalizing
(3.2), known as the additive difference model, in which:

Ty Y Diu(mi) —uilw) 20 (3.17)

i=1

where @; are increasing and odd functions.

It is clear that (3.17) allows for intransitive 2= but implies its completeness.
Clearly, (3.17) implies that 2~ is independent. This allows to unambiguously
define marginal preferences 7=;. Although model (3.17) can accommodate in-
transitive 2, a consequence of the increasingness of the ®; is that the marginal
preference relations 27; are weak orders. This, in particular, excludes the pos-
sibility of any perception threshold on each attribute which would lead to an
intransitive indifference relation on each attribute. Imposing that ®; are non-
decreasing instead of being increasing allows for such a possibility. This gives
rise to what is called the “weak additive difference model” in [22].

As suggested in [22, 70, 69, 72, 206], the subtractivity requirement in (3.17)
can be relaxed. This leads to nontransitive additive conjoint measurement mod-
els in which:

n
2y ey pilz,y) 20 (3.18)

=1

where the p; are real-valued functions on Xl? and may have several additional
properties (e.g. pi(zi, z;) =0, forall ¢ € {1,2,...,n} and all z; € X;).

This model is an obvious generalization of the (weak) additive difference
model. It allows for intransitive and incomplete preference relations 27 as well
as for intransitive and incomplete marginal preferences 27;. An interesting spe-
cialization of (3.18) obtains when p; are required to be skew symmetric i.e.
such that p;(z;, ¥;) = —pi(yi, x;). This skew symmetric nontransitive additive
conjoint measurement model implies that 2~ is complete and independent.

An excellent overview of these nontransitive models is [73]. Several axiom
systems have been proposed to characterize them. P. C. Fishburn gave [70, 69,
72] axioms for the skew symmetric version of (3.18) both in the finite and the
infinite case. Necessary and sufficient conditions for a nonstandard version of
(3.18) are presented in [76]. [206] gives axioms for (3.18) with p;(z;,z;) = 0
when n > 4. [22] gives necessary and sufficient conditions for (3.18) with and
without skew symmetry in the denumerable case when n = 2.

The additive difference model (3.17) was axiomatized in [74] in the infinite
case when n > 3 and [22] gives necessary and sufficient conditions for the
weak additive difference model in the finite case when n = 2. Related studies
of nontransitive models include [39, 64, 136, 153]. The implications of these
models for decision-making under uncertainty were explored in [71] (for a
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different path to nontransitive models for decision making under risk and/or
uncertainty, see [65, 67]).

It should be noticed that even the weakest form of these models, i.e. (3.18)
without skew symmetry, involves an addition operation. Therefore it is unsur-
prising that the axiomatic analysis ofthese models share some common features
with the additive value function model (3.2). Indeed, except in the special case
inwhich n = 2, this case relating more to ordinal than to conjoint measurement
(see [72]), the various axiom systems that have been proposed involve either:

® a3 denumerable set of cancellation conditions in the finite case or,

® a finite number of cancellation conditions together with unnecessary
structural assumptions in the general case (these structural assumptions
generally allow us to obtain nice uniqueness results for (3.18): the func-
tions p; are unique up to the multiplication by a common positive con-
stant).

A different path to the analysis of nontransitive conjoint measurement models
has recently been proposed in [30, 29, 31]. In order to get a feeling for these
various models, it is useful to consider the various strategies that are likely
to be implemented when comparing objects differing on several dimensions
[40, 151, 152, 175, 200, 203].

Consider two alternatives £ and y evaluated on a family of n attributes so
that ¢ = (21,%2,...,Zn)and ¥ = (Y1,Y2,---+Yn)-

A first strategy that can be used in order to decide whether or not it can be said
that“z is at least as good as ¢” consists in trying to measure the “worth” of each
alternative on each attribute and then to combine these evaluations adequately.

Giving up all idea of transitivity and completeness, this suggests a model in
which:

zZye Flur(), ..., un(@n),u1(®1), - - -, un(yn)) =0 (3.19)

where u; are real-valued functions on the X; and F is a real-valued function
on [T, u;(X;)2. Additional properties on F, e.g. its nondecreasingness (resp.
nonincreasingness) in its first (resp. last) 7 arguments, will give rise to a variety
of models implementing this first strategy.

A second strategy relies on the idea of measuring “preference differences”
separately on each attribute and then combining these (positive or negative)
differences in order to know whether the aggregation of these differences leads
to an advantage for z over y¥. More formally, this suggests a model in which:

z r>\: Yy <= G(Pl(ib‘l,yl),p2($2,y2), fe 1pn(mmyn)) _>_ 0 (320)

where p; are real-valued functions on X? and G is a real-valued function on
o pi(Xiz). Additional properties on G (e.g. its oddness or its nondecreas-
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ingness in each of its arguments) or on p; (e.g. pi(z;, i) = 0 or pi(@i, y;) =
—pi(ys, z;)) will give rise to a variety of models in line with the above strategy.

Of course these two strategies are not incompatible and one may well consider
using the “worth” of each alternative on each attribute to measure “preference
differences”. This suggests a model in which:

z Zy e H@(u(z),va(w)), - dn(un(zn), un(yn))) 20 (3.21)

where u; are real-valued functions on Xj, ¢; are real-valued functions on
u;(X;)? and H is a real-valued function on [T}, ¢s(ui(X;)?).

The use of general functional forms, instead of additive ones, greatly facilitate
the axiomatic analysis of these models. It mainly relies on the study of various
kinds of traces induced by the preference relation on coordinates and does not
require a detailed analysis of tradeoffs between attributes.

The price to pay for such an extension of the scope of conjoint measurement
is that the number of parameters that would be needed to assess such models
is quite high. Furthermore, none of them is likely to possess any remarkable
uniqueness properties. Therefore, although proofs are constructive, these results
will not give direct hints on how to devise assessment procedures. The general
idea here is to use numerical representations as guidelines to understand the
consequences of a limited number of cancellation conditions, without imposing
any transitivity or completeness requirement on the preference relation and any

structural assumptions on the set of objects. Such models have proved useful
to:

® understand the ordinal character of some aggregation models proposed
in the literature [170, 172], known as the “outranking methods” (see Part
IIT of this volume) as shown in [28],

m understand the links between aggregation models aiming at enriching
a dominance relation and more traditional conjoint measurement ap-
proaches [30],

® to include in a classical conjoint measurement framework, noncompen-
satory preferences in the sense of [22, 33, 55, 60, 61] as shown in
[28, 32, 99].
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Abstract

Keywords:

Over the last three decades a large body of research in the field of ELECTRE fam-
ily methods appeared. This research has been conducted by several researchers
mainly in Europe. The purpose of this chapter is to present a survey of the ELEC-
TRE methods since their first appearance in mid-sixties, when ELECTRE I was
proposed by Bernard Roy and his colleagues at SEMA consultancy company.
The chapter is organized in five sections. The first section presents a brief history
of ELECTRE methods. The second section is devoted to the main features of
ELECTRE methods. The third section describes the different ELECTRE meth-
ods existing in the literature according to the three main problematics: choosing,
ranking and sorting. The fourth section presents the recent developments and
future issues on ELECTRE methods. Finally, the fifth section is devoted to the
software and applications. An extensive and up-to-date bibliography is also pro-
vided in the end of this chapter.

Multiple criteria decision aiding, Outranking approaches, ELECTRE methods.
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1. Introduction: A Brief History

How far back in history should we go to discover the origins of ELECTRE
methods? Some years ago B. Roy and D. Vanderpooten [119] published an
article (“The European School of MCDA: Emergence, Basic Features and Cur-
rent Works”, Journal of Multi-Criteria Decision Analysis) on this very topic.
This introduction is largely based on their paper, but additional material has
been included to define the origins more precisely and to look more deeply into
the history of ELECTRE methods. We have also benefited from an old, but
nonetheless excellent, bibliography containing a lot of references collated by
Y. Siskos, G. Wascher and H. Winkels [127]. The latter only covers the period
1966-1982, but contains many valuable references.

The origins of ELECTRE methods go back to 1965 at the European con-
sultancy company SEMA, which is still active today. At that time, a research
team from SEMA worked on a concrete, multiple criteria, real-world problem
regarding decisions dealing with the development of new activities in firms. For
“solving” this problem a general multiple criteria method, MARSAN (Méthode
d’Analyse, de Recherche, et de Sélection d’Activités Nouvelles) was built. The
analysts used a weighted-sum based technique included in the MARS AN meth-
od for the selection of the new activities [57]. When using the method the en-
gineers from SEMA noticed serious drawbacks in the application of such a
technique. B. Roy was thus consulted and soon tried to find a new method to
overcome the limitations of MARSAN. The ELECTRE method for choosing
the best action(s) from a given set of actions was thus devised in 1965, and was
later referred to as ELECTRE I (electre one). In that same year (July, 1965) the
new multiple criteria outranking method was presented for the first time at a
conference (les journées d’études sur les méthodes de calcul dans les sciences
de I’homme), in Rome (Italy). Nevertheless, the original ideas of ELECTRE
methods were first merely published as a research report in 1966, the notorious
Note de Travail 49 de la SEMA [10]. Shortly after its appearance, ELECTRE
I was found to be successful when applied to a vast range of fields [18], but
the method did not become widely known until 1968 when it was published
in RIRO, la Revue d’Informatique et de Recherche Opérationnelle [89]. This
article presents a comprehensive description of ELECTRE and the foundations
of the outranking approach; the reader may also consult the graph theory book
by B. Roy [90]. The method has since evolved and given rise to an “unofficial”
version, ELECTRE Iv (electre one vee). This version took into account the
notion of a veto threshold. A further version known as ELECTRE IS (electre
one esse) appeared subsequently (see [117]) and was used for modelling situ-
ations in which the data was imperfect (see below). This is the current version
of ELECTRE methods for choice problematic.
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The acronym ELECTRE stands for [10, 95]: ELimination Et Choix Tradui-
sant la REalité (ELimination and Choice Expressing the REality), and was
cited for commercial reasons. At the time it seemed adequate and served well
to promote the new tool. Nevertheless, the developments in ELECTRE methods
over the last three decades, the way in which we consider the tool today and the
methodological foundations of multiple criteria decision aiding have made the
meaning of the acronym unsatisfactory.

An atypical ELECTRE method was also created to deal with the problem
of highway layout in the Ile de France region; it was called the meaningful
compensation method [11, 12, 25, 91, 109]. This approach was based on sub-
stitution rates. These rates were ill-defined (stakeholders views about their val-
ues strongly differed), it was only possible to fix a minimum and maximum
value for each one. On such a basis a set of embedded fuzzy relations has been
defined.

In the late sixties, a different real-world decision making situation arose in
media planning, concerning the definition of an advertising plan. For such a
purpose the question was: how to establish an adequate system of ranking for
periodicals (magazines, newspapers,...)? This led to the birth of ELECTRE II
(electre two): a method for dealing with the problem of ranking actions from the
best option to the worst [1, 43, 106, 107]. However, in a world where perfect
knowledge is rare, imperfect knowledge only could be taken into account in
ELECTRE methods through the use of probabilistic distributions and expected
utility criterion. Clearly more work needed to be done. Research in this area was
still in its initial stages. Another way to cope with uncertain, imprecision and ill-
determination has been introduced, the threshold approach [19, 49, 50, 114]. For
more details and a comprehensive treatment of this issue see [14, 96, 97]. Just
a few years later a new method for ranking actions was devised: ELECTRE III
(electre three), [93, 116]. The main new ideas introduced by this method were
the use of pseudo-criteria (see [92]) and fuzzy binary outranking relations.
Another ELECTRE method, known as ELECTRE IV (electre four), arose from
a new real-world problem related to the Paris subway network [38, 45, 110,
111, 113]. It now became possible to rank actions without using the relative
criteria importance coefficients; this is the only ELECTRE method which does
not make use of such coefficients. In addition, the new method was equipped
with an embedded outranking relations framework.

Methods created up to this point were particularly designed to help deci-
sion making in choosing and ranking actions. However, in the late seventies
a new technique of sorting actions into predefined and ordered categories was
proposed i.e. the trichotomy procedure [67, 68, 94]. This is a decision tree
based approach. Several years later, in order to help decision making in a large
banking company which faced to the problem of accepting or refusing credits
requested by firms, a specific method, ELECTRE A, was devised and applied in
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10 sectors of activity. This should have remained confidential. The most recent
sorting method, ELECTRE TRI (electre tree), was greatly inspired by these
earlier works. It removed everything they had of specific given their context
of application. Indeed, this new method is, at the same time, both simpler and
more general [141, 142].

ELECTRE methods are still evolving. Section 4 presents recent develop-
ments on the topic and avenues for future research.

2. Main Features of ELECTRE Methods

This section presents a set of key issues concerning ELECTRE methods: the
context in which they are relevant, modelling with an outranking relation, their
structure, the role of criteria, and how to account for imperfect knowledge.

21 In What Context Are ELECTRE Methods Relevant?

ELECTRE methods are relevant when facing decision situations with the fol-
lowing characteristics (see, [99, 109, 122]).

1. The decision-maker (DM) wants to include in the model at least three
criteria. However, aggregation procedures are more adapted in situations
when decision models include more than five criteria (up to twelve or
thirteen).

And, at least one of the following situations must be verified.

2. Actions are evaluated (for at least one criterion) on an ordinal scale (see
[84]) or on a weakly interval scale (see [63]). These scales are not suitable
for the comparison of differences. Hence, it is difficult and/or artificial to
define a coding that makes sense in terms of preference differences of the
. gi{a)—g;(b) . . . . ..

ratios m, where g;(z) is the evaluation of action « on criterion

gj-

3. A strong heterogeneity related with the nature ofevaluations exists among
criteria (e.g., duration, noise, distance, security, cultural sites, monu-
ments, ...). This makes it difficult to aggregate all the criteria in a unique
and common scale.

4. Compensation of the loss on a given criterion by a gain on another one
may not be acceptable for the DM. Therefore, such situations require the
use of noncompensatory aggregation procedures (see Chapter 1).

5. For at least one criterion the following holds true: small differences of
evaluations are not significant in terms of preferences, while the accumu-
lation of several small differences may become significant. This requires
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the introduction of discrimination thresholds (indifference and prefer-
ence) which leads to a preference structure with a comprehensive intran-
sitive indifference binary relation (see Chapter 3).

2.2 Modelling Preferences Using an Outranking Relation

Preferences in ELECTRE methods are modelled by using binary outranking
relations, S, whose meaning is “at least as good as”. Considering two actions
a and b, four situations may occur:

s aSband not bSa, ie., aPb (ais strictly preferred tob).
m bSa and not aSbh, ie., bPa (bis strictly preferred to a).
® aSband bSa,i.e., alb (ais indifferent to b).

w  Not aSb and not bSa, i.c., aRb (a is incomparable to b).

ELECTRE methods build one or several (crisp, fuzzy or embedded) outrank-
ing relations.

Note that using outranking relations to model preferences introduces a new
preference relation, R (incomparability). This relation is useful to account for
situations in which the DM and/or the analyst are not able to compare two
actions.

The construction of an outranking relation is based on two major concepts:

1 Concordance. For an outranking aSbto be validated, a sufficient majority
of criteria should be in favor of this assertion.

2 Non-discordance. When the concordance condition holds, none of the
criteria in the minority should oppose too strongly to the assertion a.Sb.

These two conditions must be fulfilled for validating the assertion aSb.

Given a binary relation on set A it is extremely helpful to build a graph
G = (V,U), where V is the set of vertices and U the set of arcs. For each action
a € A we associate a vertex i € V' and for each pair of actions (a,b) € A the
arc (4,1) exists either if aPb or alb. An action a outranks b if and only if the
arc (2,1) exists. If there is no arc between vertices ¢ and [, it means that @ and
b are incomparable; if two reversal arcs exist, there is an indifference between
both a and b.

An outranking relation is not necessarily transitive. Preference intransitivi-
ties come from two different situations: Condorcet effect (see Chapter 2), and
incomparabilities between actions. This requires an exploitation procedure to
derive from such a relation results that fit the problematic (see Chapter 1).
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2.3 Structure of ELECTRE Methods

ELECTRE methods comprise two main procedures: construction of one or
several outranking relation(s) followed by an exploitation procedure.

The construction of one or several outranking relation(s) aims at comparing
in a comprehensive way each pair of actions. The exploitation procedure is used
to elaborate recommendations from the results obtained in the first phase. The
nature of the recommendations depends on the problematic (choosing, ranking
or sorting). Hence, each method is characterized by its construction and its
exploitation procedures.

For more details the reader may consult the following references: [70, 98,
99, 109, 135, 138].

24 About the Relative Importance of Criteria

The relative role attached to criteria in ELECTRE methods is defined by two
distinct sets of parameters: the importance coefficients and the veto thresholds.
The importance coefficients in ELECTRE methods refer to intrinsic “weights”.
For a given criterion the weight, wj, reflects its voting power whenitcontributes
to the majority which is in favor of an outranking. The weights do not depend
neither on the ranges nor the encoding of the scales. Let us point out that
these parameters can not be interpreted as substitution rates as in compensatory
aggregation procedures AHP [120], MACBETH [7] and MAUT [55].

Veto thresholds express the power attributed to a given criterion to be against
the assertion “a outranks b”, when the difference of the evaluation between g(b)
and g(a) is greater than this threshold. These thresholds can be constant along
a scale or it can also vary.

A large quantity of works have been published on the topic of relative im-
portance of criteria. The following list is not exhaustive: [35, 64, 69, 86, 87,
115, 116, 125, 136].

2.5 Discrimination Thresholds

To take into account the imperfect character of the evaluation of actions (see
Chapter 1), ELECTRE methods make use of discrimination (indifference and
preference) thresholds. This leads to a pseudo-criterion model on each criterion
(see Chapter 2).

Discrimination thresholds account for the imperfect nature of the evalua-
tions, and are used for modelling situations in which the difference between
evaluations associated with two different actions on a given criterion may ei-
ther:

m justify the preference in favor of one of the two actions (preference thresh-
old, p;);
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® be compatible with indifference between the two actions (indifference
thresholds, ;).

® be interpreted as an hesitation between opting for a preference or an
indifference between the two actions.

These thresholds can be constant or vary along the scale. When they are
variable we must distinguish between direct (the evaluation of the best action
is taken into account) and inverse (when they are computed by using the worst
evaluation).

How to assign values to such thresholds? There are several techniques which
can be used, some of them come directly from the definition of threshold and
other ask for the concept of dispersion threshold (see Section 4.2).

A dispersion threshold allow us to take into account the concept of probable
value and the notion of optimistic and pessimistic values. It translates the plau-
sible difference, due to over or under-estimations, which affect the evaluation
of a consequence or of a performance level.

It should be noticed that there are no true values for thresholds. Therefore,
the values chosen to assign to the thresholds are the most convenient (the best
adapted) for expressing the imperfect character of the knowledge.

For more details about thresholds see, [2, 17, 95, 100, 102, 103, 104, 109]

3. A Short Description of ELECTRE Methods

A comprehensive treatment of ELECTRE methods may be found in the books
by B. Roy and D. Bouyssou [109] and Ph. Vincke [139]. Much of the the-
ory developed on this field is presented in these books. This theory, however,
was foreshadowed in earlier papers namely by B. Roy and his colleagues at
SEMA and later at LAMSADE (some of these papers were cited in the intro-
duction). The books [64, 95, 100, 122, 123] are also good references in the
area. ELECTRE software manuals also contain much material both on theo-
retical and pedagogical issues [2, 43, 75, 117, 134, 142]. Finally, several other
works deserve to be mentioned because they include information concerning
ELECTRE methods: [5, 15, 16, 20, 37, 52, 79, 87, 125].

In what follows we will only summarize the elementary concepts underlying
ELECTRE methods; details will be omitted. More sophisticated presentations
can, however, be found in the references cited above.

Description of methods is presented in problematic and chronological order.

31 Choice Problematic

Let us remind the purpose of choice problematic before presenting methods.
The objective of this problematic consists of aiding DMs in selecting a subset
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of actions, as small as possible, in such a way that a single action may finally
be chosen.

The order in which methods will be presented permit us to understand the
historical introduction of the two fundamental concepts in multiple criteria
decision aiding, veto thresholds and pseudo-criteria.

311 ELECTRE 1. The purpose underlying the description of this
method is rather theoretical and pedagogical. The method does not have a
significant practical interest, given the very nature of real-world applications,
having usually a vast spectrum of quantitative and qualitative elementary conse-
quences, leading to the construction of a contradictory and very heterogeneous
set of criteria with both numerical and ordinal scales associated with them.
In addition, a certain degree of imprecision, uncertainty or ill-determination is
always attached to the knowledge collected from real-world problems.

The method is very simple and it should be applied only when all the criteria
have been coded in numerical scales with identical ranges. In such a situation
we can assert that an action “a outranks b” (that is, “a is at least as good as b”)
denoted by aSh, only when two conditions hold.

On the one hand, the strength of the concordant coalition must be powerful
enough to support the above assertion. By strength of the concordant coalition,
we mean the sum of the weights associated to the criteria forming that coalition.
It can be defined by the following concordance index (assuming, for the sake
of formulae simplicity, that E jeg Wi = 1, where J is the set of the indices of
the criteria):

c(aSb) = E wj

{5 : gi(a)2g; ()}

(where {j : gj(a) > g;(b)} is the set of indices for all the criteria belonging
to the concordant coalition with the outranking relation a.Sb.)

In other words, the value of the concordance index must be greater than or
equal to a given concordance level, s, whose value generally falls within the
range [0.5,1 ~— minje 7 w;), ie., c(aSb) > s.

On the other hand, no discordance against the assertion “a is at least as good
as b” may occur. The discordance is measured by a discordance level defined
as follows:

d(a.Sb) {gj (6) — g (a)}

= max

{7+ 95(a)<g; (1)}
This level measures in some way the power of the discordant coalition, meaning
that if its value surpasses a given level, v, the assertion is no longer valid.
Discordant coalition exerts no power whenever d(aSbh) < v.

Both concordance and discordance indices have to be computed for every
pair of actions (a, b) in the set A, where a # b.
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It is easy to see that such a computing procedure leads to a binary relation in
comprehensive terms (taking into account the whole set of criteria) on the set
A. Hence for each pair of actions (a, b), only one of the following situations
may occur:

® aSb and not bSa, i.e., aPb (a is strictly preferred to b).
® bSa and not aSbh, ie., bPa (b is strictly preferred to a).
®m aSb and bSa, ie., alb (a is indifferent to b).

® Not aSb and not bSa,i.e., aRb (a is incomparable to b).

This preference-indifference framework with the possibility to resort to in-
comparability, says nothing about how to select the best compromise action,
or a subset of actions the DM will focus his attention on. In the construction
procedure of ELECTRE I method only one outranking relation S is matter of
fact.

The second procedure consists of exploiting this outranking relation in order
toidentify a small as possible subset of actions, from which the best compromise
action could be selected. Such a subset, A, may be determined with the help
of the graph kernel concept, K¢q. The justification of the use of this concept
can be found in [109]. When the graph contains no direct cycles, there exists
always a unique kernel; otherwise, the graph contains no kernels or several. But,
let us point out that a graph G may contain direct cycles. If that is the case, a
preprocessing step must take place where maximal direct cycles are reduced to
singleton elements, forming thus a partition on A. Let A denote that partition.
Each class on A = {AI,AZ, ...} is now composed of a set of (considered)
equivalent actions. It should be noticed that a new preference relation, >, is
defined on A:

A, = A, & 3a€ Apand b€ Ay such that aSb for A, # A,

In ELECTRE all the actions which form a cycle are considered indifferent,
which may be, criticized. ELECTRE IS was designed to mitigate this inconve-
nient (see Section 3.1.3).

3.1.2 ELECTRE Iv. The name ELECTRE Iv was an unofficial name
created for designating ELECTRE I with veto threshold [64]. This method is
equipped with a different but extremely useful tool. The new tool made possible
for analysts and DMs to overcome the difficulties related to the heterogeneity
of scales. Whichever the scales type, this method is always able to select the
best compromise action or a subset of actions to be analyzed by DMs.

The new tool introduced was the veto threshold, v;, that can be attributed
to certain criteria g; belonging to the family of criteria F. The concept of veto
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threshold is related in some way, to the definition of an upper bound beyond
which the discordance about the assertion *“a outranks b” can not surpass and
allow an outranking. In practice, the idea of threshold is, however, quite different
from the idea of the disconcordance level like in ELECTRE 1. Indeed, while
discordance level is related to the scale of criterion g; in absolute terms for an
action a from A, threshold veto is related to the preference differences between
gj(a) and g;(b).

In terms of structure and formulae, little changes occur when moving from
ELECTRE I to ELECTRE Iv. The only difference being the discordance con-
dition, now called no veto condition, which may be stated as follows:

gi(a) +vj(gj(a)) 2 g;(b), V j€T
To validate the assertion “a outranks ” it is necessary that, among the minority
of criteria that are opposed to this assertion, none of them puts its veto.
ELECTRE Iv uses the same exploitation procedure as ELECTRE I.

But, this method is by no means complete; the problem of imperfect knowl-
edge remains.

313 ELECTREIS. How general an ELECTRE method can be when
applied to choice decision-making problems? Is it possible to take into ac-
count simultaneously the heterogeneity of criteria scales, and imperfect knowl-
edge about real-world decision-making situations? Previous theoretical research
done on thresholds and semi-orders may, however, illuminate the issue of inac-
curate data and permit to build a more general procedure, the so-called ELEC-
TRE IS method.

The main novelty of ELECTRE IS is the use of pseudo-criteria instead of
true-criteria. This method is an extension of the previous one aiming at taking
into account a double objective: primarily the use of possible no nil indifference
and preference thresholds for certain criteria belonging to F and, correlatively,
abacking up (reinforcement) of the veto effect when the importance of the con-
cordant coalition decreases. Both concordance and no veto conditions change.
Let us present separately the formulae for each one of theses conditions.

a  Concordance condition
Let us start by building the following two indices sets:

1 concerning the coalition of criteria in which a.Sb
7% ={ieT: (@) +4(0(@) = 0;0)}

2 concerning the coalition of criteria in which bQa

J9 = {j € J : gj(a)+g;(g;(a)) < gj(a) < g;(b)+p; (gj(b))}
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The concordance condition will be:
c(aSh) = Z wj + Z pjw; > 8
jeTgs jege

where,

_ (@) +p;(gi(@) — 9;(b)

T pil9i(@) ~ 4{g5(a))
the coefficient ; decreases linearly from 1 to 0, when g; describes the
range [g;(a) + ;(g5(a)), g;(a) +p;(g;(a))]-

®» 10 veto condition
The no veto condition can be stated as follows:

95(a) + vj(g;(a)) = g;(b) + ¢ (9;(b))

where,
1 — c(aSb) — w;
n= T s —w.
5 — Wy
In the exploitation procedure, actions belonging to a cycle are no longer
considered as indifferent as in the previous versions of ELECTRE for choice
problems. Now, we take into account the concept of degree of robustness of
“a outranks b”. It is a reinforcement of veto effect and allow us to build true
classes of ex equo (ties) and thus define an acycle graph over these classes. In
such conditions there is always a single kernel.

3.2 Ranking Problematic

In ranking problematic we are concerned with the ranking of all the actions
belonging to a given set of actions from the best to the worst, possibly with ex
cequo. There are three different ELECTRE methods to deal with this problem-
atic.

3.21 ELECTRE II.  From an historical and pedagogical point of view
it is interesting to present ELECTRE II. This method was the first of ELECTRE
methods especially designed to deal with ranking problems.

Without going into further detail, it is important to point out that ELECTRE
IT was also the first method, to use a technique based on the construction of an
embedded outranking relations sequence.

The construction procedure is very closed to ELECTRE Iv, in the sense that
it is also a true-criteria based procedure. Hence, it is not surprising that the no
veto condition remains the same. However, concordance condition is modified
in order to take into account the notion of embedded outranking relations. There
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are two embedded relations: a strong outranking relation followed by a weak
outranking relation. Both the strong and weak relations are built thanks to the
definition of two concordance levels, s! > $2, where 31,32 € [0.5, 1 -
mz'nje gwj]. Now, the concordance condition with the assertion “a outranks b”
can be defined as follows:

c(aSb) > s" and ¢(aSb) > c(bSa), forr =1,2
The exploiting procedure is a four-step algorithm:

1 Partioning the set A. First, let us consider the relation St over A. In a
similar way like in ELECTRE 1, this relation may define on A one or
several cycles. If all the actions belonging to each maximal cycle are
grouped together into a single class, a partition on A will be obtained.
Let A denote this partition. When each class of A is not a singleton, the
actions belonging to that class will be considered as ex @quo. For the
purpose of comparison between elements of A a preference relation -1
will be used. This relation has the same meaning as the relation > for
ELECTRE L

2 Building a complete pre-order Zy on A. After obtaining A, the procedure
identifies a subset B! of classes of A following the rule “no other is
preferred to them” according to the relation >. After removing B! from
A and applying the same rule to A\B!, a subset B2 will be found. The

procedure iterates in the same way till define the final partition on A,

{B,B2,...}.

Now, on the basis of $!, we may define a rough version of the complete
pre-order Z1, while placing in the head of this pre-order and in an ex &quo
position all classes of B 1 then those of B2 and so forth. In order to define
Z1 in a more accurate way, we examine if it is possible to refine this pre-
order on the basis of the relation 2. This refinement consists of using the
information that brings this less believable outranking to decide between
the various classes of a subset BP when it contains several classes. This
refinement of the rough version is obtained while using $2 to define over
B? a complete pre-order that takes place between BP~! and BP*1.

3 Determining a complete pre-order Zz on A. The procedure to obtain this
pre-order is quite similar to the above one; only two modifications are
needed:

w apply the rule “they are not preferred to any other” instead of “no
. ! / .o .
other is preferred to them”; let {B1 ,B?,.. .} denote the partition
thus obtained;
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® define the rough version of the complete pre-order Z3 by putting it
in thelqueue of this pre—olrder, and in an ex eequo position all classes
of BY', then those of B? and so forth.

4 Defining thepartialpre-order Z. The partial pre-order Z is an intersection
of Z1 and Z3, Z = Zy N Zy, and it is defined in the following way:

aZb & aZiband aZsb.

322 ELECTREIII. ELECTRE III was designed to improve ELEC-
TRE II and thus deal with inaccurate, imprecise, uncertain or ill-determination
ofdata. This purpose was actually achieved, and ELECTRE III was applied with
success during the last two decades on a broad range of real-life applications.

In the current description of ELECTRE III we will omit several formulae
details. The novelty of this method is the introduction of pseudo-criteria instead
of true-criteria.

In ELECTRE III the outranking relation can be interpreted as a fuzzy relation.
The construction of this relation requires the definition of a credibility index,
which characterizes the credibility of the assertion “a outranks b”, aSb; let
p(aSb) denote this index. It is defined by using both the concordance index
(as determined in ELECTRE IS), ¢(aSb), and a discordance index for each
criterion g; in F, that is, d;(aSb).

The discordance of a criterion g; aims at taking into account the fact that
this criterion is more or less discordant with the assertion aSb. The discordance
index reaches its maximal value when criterion g; puts its veto to the outranking
relation; it is minimal when the criterion g; is not discordant with that relation.
To define the value of the discordance index on the intermediate zone, we simply
admitted that this value grows in proportion to thedifference g;(b)—g;(a). This
index can now be presented as follows:

1 if g;(b) > gj(a) +v;(g5(a))

dj(aSb) ={ 0 if g;(b) < g;(a) +pj(g;(a))

g ;}(Jf!)g;g‘l' )(ﬂl;:’ ;]-f’ 'a()“)) , otherwise

The credibility index is defined as follows,

p(aSbh) = c(aSb) H 1~ d;(aSt)
. 1 — ¢(aSbh)
{jeT : dj(aSb)>c(aSb)}
Notice that, when d;(aSb) = 1, it implies that p(aSb) = 0, since c(aSbh) <
1.
The definition of p(aSb) is thus based on the following main ideas:
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a) When there is no discordant criterion, the credibility of the outranking
relation is equal to the comprehensive concordance index.

b) When a discordant criterion activates its veto power, the assertion is not
credible at all, thus the index is null.

¢) For the remaining situations in which the comprehensive concordance in-
dex is strictly lower than the discordance index on the discordant criterion,
the credibility index becomes lower than the comprehensive concordance
index, because of the opposition effect on this criterion

The index p(aSb) corresponds to the index c{aSb) weakened by possible
veto effects.

In [71] a modification of the valued outranking relation used in the ELECTRE
II and ELECTRE TRI was proposed. The modification requires the implemen-
tation of the discordance concept. Such a modification is shown to preserve the
original discordance concept; the new outranking relation makes it easier to
solve inference programs.

The exploitation procedure starts by deriving from the fuzzy relation two com-
plete pre-orders as in ELECTRE II. A final partial pre-order Z is then built as
the intersection of the two complete pre-orders, Zy and Z3, which are obtained
according to two variants of the same principle, both acting in an antagonistic
way on the floating actions. The partial pre-order Z; is defined as a partition on
the set A into q ordered classes, Bl, N ,Bh, ... ,Bq, where By is the head-class
in Z;. Each class By, is composed of ex wquo elements according to Z;. The
complete pre-order Zy is determined in a similar way, where A is partitioned
into u ordered classes, By, ..., Bp,..., By, By being the head-class. Each one
of these classes is obtained as a final distilled of a distillation procedure.

The procedure designed to compute Z starts (first distillation) by defining
an initial set Dy = A; it leads to the first final distilled B;. After getting By, in
the distillation h+ 1, the procedure sets Dg = A\(B1U...UBy). According to
Z1, the actions in class By, are, preferable to those of class Bh+1, for this reason,
distillations that lead to these classes will be called as descending (top-down).

The procedure leading to Zs is quite identic, but now the actions in Bpy
are preferred to those in class By; these distillations will be called ascending
(bottom-up).

The partial pre-order Z will be computed as the intersection of Z; and Zj.

A complete pre-order is finally suggested taking into account the partial
pre-orders and some additional considerations. The way the incomparabilities
which remain in the pre-order are treated is nevertheless subject to criticism.

323 ELECTRE IV. In Section 2.4 we pointed out the difficulty to
define the relative importance coefficients of criteria. However, in several cir-
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cumstances we are not able, we do not want, or we do not know how to assign
a value to those coefficients. It does not mean that we would be satisfied with
the pre-order obtained, when applying ELECTRE III with the same value for
all the coefficients w;. Another approach we could take would be determining
a pre-order, which takes into account all the pre-orders obtained from the ap-
plication of several combinations of the weights. Obviously, this situation will
be unmanageable.

ELECTRE 1V is also a procedure based on the construction of a set of
embedded outranking relations. There are five different relations, S, ..., S5.
The $7*! relation (r = 1,2,3,4) accepts an outranking in a less credible
circumstances than the relation $7. It means (while remaining on a merely
ordinal basis) the assignment of a value py for the credibility index p(aSbh) to
the assertion a.Sh. The chosen values must be such that p, > pp41. Furthermore,
the movement from one credibility value p, to another p,1 must be perceived
as a considerable loss.

The ELECTRE IV exploiting procedure is the same as in ELECTRE III.

33 Sorting Problematic

A set of categories must be a priori defined. The definition of a category is based
on the fact that all potential actions which are assigned to it will be considered
further in the same way. In sorting problematic, each action is considered inde-
pendently from the others in order to determine the categories to which it seems
justified to assign it, by means of comparisons to profiles (bounds, limits), norms
or references. Results are expressed using the absolute notion of “assigned” or
“not assigned” to a category, “similar” or “not similar” to a reference profile,
“adequate” or “not adequate” to some norms. The sorting problematic refers
thus to absolute judgements. It consists of assigning each action to one of the
pre-defined categories which are defined by norms or typical elements of the
categories. The assignment of an action a to a specific category does not influ-
ence the category, to which another action b should be assigned.

331 ELECTRE TRI. ELECTRE TRI is designed to assign a set of
actions, objects or items to categories. In ELECTRE TRI categories are ordered;
let us assume from the worst (C}) to the best (Cg). Each category must be
characterized by a lower and an upper profile. Let C = {Ch,...,Ch,...,Ci}
denote the set of categories. The assignment of a given action a to a certain
category C}, results from the comparison of @ to the profiles defining the lower
and upper limits of the categories; by, being the upper limit of category Cp, and
the lower limit of category Ch4q, forall b = 1,...,k. For a given category
limit, by, this comparison rely on the credibility of the assertions aSbp, and
bpSa. This credibility (index) is defined as in ELECTRE III. In what follows,
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we will assume, without any loss of generality, that preferences increase with
the value on each criterion.

After determining the credibility index, we should introduce a A-cutting level
of the fuzzy relation in order to obtain a crisp outranking relation. This level can
be defined as the credibility index smallest value compatible with the assertion
aSby,.

Let > denote the preference, I denote the indifference relation and R denote
the incomparability binary relations.

The action a and the profile by may be related to each other as follows:

a) alby iff aSby, and bp,Sa
b) a > by iff aSby and not bpSa
¢) bp > aiff not aSby, and by Sa

d) aRby, iff not aSby, and not by, Sa

The objective of the exploitation procedure is to exploit the above binary rela-
tions. The role of this exploitation is to propose an assignment. This assignment
can be grounded on two well-known logics.

1 The conjunctive logic in which an action can be assigned to a category
when its evaluation on each criterion is at least as good as the lower limit
which has been defined on the criterion to be in this category. The action
is hence assigned to the highest category fulfilling this condition.

2 The disjunctive logic in which an action can be assigned to a category, if
it has, on at least one criterion, an evaluation at least as good as the lower
limit which has been defined on the criterion to be in this category. The
action is hence assigned to the highest category fulfilling this condition.

With this disjunctive rule, the assignment of an action is generally higher
than with the conjunctive rule. This is why the conjunctive rule is usually in-
terpreted as pessimistic while the disjunctive rule is interpreted as optimistic.
This interpretation (optimistic-pessimistic) can be permuted according to the
semantic attached to the outranking relation.

When no incomparability occurs in the comparison of an action a to the
limits of categories, a is assigned to the same category by both the optimistic
and the pessimistic procedures. When a is assigned to different categories by
the optimistic and pessimistic rules, a is incomparable to all “intermediate”
limits within the highest and lowest assignment categories.

ELECTRE TRI is a generalization of the two above mentioned rules. The
generalization is the following,



ELECTRE Methods 149

® in the conjunctive rule: replace, in the condition “on each criterion” by
“on a sufficient majority of criteria and in the absence of veto”

® in the disjunctive rule: replace, the condition “on at least one criterion”
by “on a sufficient minority of criteria and in the absence of veto”

The two procedures can be stated as follows,

1 Pessimistic rule. An action a will be assigned to the highest category Cp,
such that a.Sby,_1.

a) Compare a successively withb,,r =k — 1,k —2,...,0.

b) The limit by, is the first encountered profile such that aSby,. Assign
a to category Cpq.

2 Optimistic rule. An action a will be assigned to the lowest category Cp,
such that by, > a.

a) Comparea successively withb,, r=1,2,...,k — 1.

b) The limit by, is the first encountered profile such that by > a. Assign
a to category Ch,.

4. Recent Developments and Future Issues

Although, several decades past since the birth of the first ELECTRE method,
research on ELECTRE family method stills active today. Some of the recent
developments are shortly described in this Section.

4.1 Robustness Concerns

When dealing with real-world decision problems, DMs and analysts are often
facing with several sources of imperfect knowledge regarding the available data.
This leads to the assignment of arbitrary values to certain “variables”. In addi-
tion, modelling activity frequently requires to choose between some technical
options, introducing thus an additional source of arbitrariness to the problem.
For these reasons, analysts hesitate when assigning values to the preference
parameters (weights, thresholds, categories lower and upper limits, ...), and the
technical parameters (discordance and concordance indices, A—cutting level,
...) of ELECTRE methods.

In practice, it is frequent to define a reference system built from the assign-
ment of central values to these two types of parameters. Then, an exploita-
tion procedure should be applied in order to obtain outputs which are used to
elaborate recommendations. But, what about the meaningfulness of such rec-
ommendations? They strongly depend on the set of central values attributed to
the parameters. Should the analyst analyze the influence of a variation of each
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parameter, considered separately, on the results? And, then enumerate those
parameters which provoke a strong impact on the results when their values vary
from the central positions. This is a frequent way to proceed in classical op-
erations research methods and it is called sensitivity analysis [32, 53, 79, 82].
But, this kind of analyzes has rather a theoretical interest than a practical one.
Analysts are most often interested in building recommendations which remain
acceptable for a large range of the parameters values. Such recommendations

should be elaborated from what we call the robust conclusions (Chapter 1,
[101, 105, 109]).

DEFINITION 35 A conclusion, CT, is said to be robust with respect to a do-
main, §}, of possible values for the preference and technical parameters, if

there is no a particular set of parameters, w € Q, which clearly invalidates the
conclusion C".

A robustness concern consists of all the possible ways that contribute to build
synthetic recommendations based on the robust conclusions.

Possible ways to deal with robustness concerns in ELECTRE methods are
illustrated, for example, in [26, 27, 29, 109, 116], Chapters 8, 9 and 10.

4.2 Elicitation of Parameter Values

Implementing ELECTRE methods requires to determine values (or intervals of
variation) for the preference parameters.

DEFINITION 36 A preference elicitation process proceeds through an interac-
tion between DMs and analysts in which DMs express information about their
preferences within a specific aggregation procedure.

It is possible to distinguish among direct and indirect elicitation techniques.

4.2.1 Direct Elicitation Techniques.  In direct elicitation procedures
DMs should provide information directly on the values of the preference pa-
rameters. A major drawback of such techniques is that it is difficult to under-
stand the precise meaning of the assertions of the DMs. This is why ELECTRE
methods are usually implemented by using indirect elicitation procedures.

4.2.2 Indirect Elicitation Techniques.  Indirect elicitation techniques
do not require from DMs to provide answers to questions related to the values of
the preference parameters. On the contrary, these techniques proceeds indirectly
by posing questions whose answers can be interpreted through the aggregation
procedure. Such techniques make use of the disaggregation paradigm [51, 60].
For instance, DIVAPIME [70] and SRF [35] elicitation techniques make it
possible to determine the vector of the relative importance coefficients from
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pairwise comparisons of fictitious actions or a relative importance ranking of
criteria.

Recent developments concerning elicitation techniques have been proposed
for the ELECTRE TRI method. Inference procedures have been developed to
elicit the parameters values from assignment examples, i.e., an assignment that
is imposed by DMs on specific actions. It is possible to infer all the preference
parameters simultaneously [74]; we will refer to such a case by complete infer-
ence. The induced mathematical programming model to be solved is, however,
non-linear. Thus, its resolution is computationally difficult for real-world prob-
lems. In such cases, it is possible to infer a subset of parameters only (see Figure
L.1):

Concordant coalition parameters: weights and A—cutting level [72];

m  Discordance related parameters: veto thresholds [28];

m  Category limits [76].
lInferring from examples l Direct elicitation
I Partial inference I | Complete inference |
Inferring weights | I Inferring veto | l Inferring category limits I

Figure 4.1. Inferring parameter values for ELECTRE TRI.

S. Software and Applications

The implementation of ELECTRE methods in real-world decision problems
involving DMs requires software packages. Some of them are widely used
in large firms and universities, in particular ELECTRE IS, ELECTRE III-IV,
ELECTRE TRI and IRIS. Among the software available at LAMSADE are
(http://www.lamsade.dauphine.fr/english/software.html) :

1 ELECTREIS is a generalization of ELECTREL It is an implementation
of ELECTRE IS described in Section 3.1. This software runs on a IBM-
compatible computer on Windows 98 and higher.
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2 ELECTRE III-1V is a software which implements ELECTRE III and
ELECTRE IV methods described in Section 3.2. It runs on Windows
3.1, 95, 98, 2000, Millennium and XP.

3 ELECTRE TRIis a multiple criteria decision aiding tool designed to deal
with sorting problems. This software implements ELECTRE TRI method
described in Section 3.3. The ELECTRE TRI software versions 2.x were
developed with the C++ programming language and runs on Microsoft
Windows 3.1, 95, 98, Me, 2000, XP and NT. This software integrates,
ELECTRE TRI Assistant which enables the user to define the weights
indirectly, i.e., fixing the model parameters by giving some assignment
examples (corresponding to desired assignments or past decisions). The
weights are thus inferred through a certain form of regression. Hence,
ELECTRE TRI Assistant reduces the cognitive effort required from the
DM to elicit the preference parameters.

4 [RIS. Interactive Robustness analysis and parameters’ Inference for mul-
tiple criteria Sorting problems. This DSS has been built to support the
assignment of actions described by their evaluation on multiple criteria to
a set of predefined ordered categories, using a variant of ELECTRE TRI.
Rather than demanding precise values for the model’s parameters, IRIS
allows to enter constraints on these values, namely assignment examples
that it tries to restore. When the constraints are compatible with multiple
assignments for the actions, IRIS infers parameter values and allows to
draw robust conclusions by indicating the range of assignments (for each
action) that do not contradict any constraint. If it is not possible to fulfill
all of the constraints, IRIS tells the user where is the source of inconsis-
tency. It was developed with Delphi Borland and runs on Windows 98,
Me, 2000, NT and XP.

5 SFR was designed to determine the relative importance coefficients for
ELECTRE family methods. It is based on a very simple procedure (the
pack of cards technique created by J. Simos) and try to assess these
coefficients by questioning the DM in an indirect way. It was developed
with the Delphi Borland 3.0 and runs on Windows 98, Me, 2000 and XP.

The software ELECTRE IS, III-IV, TRI and TRI Assistant were developed
under a collaborative project between researchers from the Institute of Comput-
ing Science of the Technical University of Poznan (Poland) and LAMSADE,
Université Paris-Dauphine (France), while IRIS and SRF result from a col-
laborative project between researchers from LAMSADE and the Faculty of
Economics of the University of Coimbra / INESC-Coimbra (Portugal).

ELECTRE methods were successful applied in many areas.
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1 Agriculture and Forest Management: [4, 31, 62, 118, 128, 130, 131]
2 Energy: [8,9, 19, 39, 40, 54, 108, 126]

3 Environment and Water Management: [12, 40, 41, 44, 59, 78, 80, 85, 86,
118, 121, 124, 125, 131, 132, 77, 88, 58]

4 Finance: [3, 30, 46, 47, 48, 56, 61, 143, 144, 145, 146]

5 Military: [6, 36, 140]

6 Project selection (call for tenders): [13, 21, 24, 65, 107, 137].

7 Transportation: [11, 12,23, 38, 45,73, 111, 112, 110, 114, 116]
8 Varia: [33, 34, 81, 83, 129, 107].

6. Conclusion

Since their first appearance, in 1965 (see [10]), ELECTRE methods, on one
side, had a strong impact on the Operational Research community, mainly
in Europe, and provoked the development of other outranking methods (see,
for example, Chapters 5 and 6), as well as other complementary multiple cri-
teria methodologies (see, for example, Chapters 8 and 9). Most importantly,
the development of ELECTRE methods is strongly connected with the birth
of the European Working Group of Multiple Criteria Decision Aiding (see
www . inescc.pt/"ewgmcda/) . On the other side, ELECTRE methods experi-
enced a widespread and large use in real-world situations.

Despite their almost four decades of existence, research stills active in this
field. We can also mention some of recent developments and avenues for fu-
ture research: generalization of the concordance and non-discordance methods
[133]; robustness analysis [26, 27, 29]; parameters elicitation techniques [74];
interaction between criteria [66, 42], multiple DMs and social interaction [22].
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Abstract

Keywords:

This paper gives an overview of the PROMETHEE-GAIA methodology for
MCDA. It starts with general comments on multicriteria problems, stressing that
a multicriteria problem cannot be treated without additional information related
to the preferences and the priorities of the decision-makers. The information re-
quested by PROMETHEE and GAIA is particularly clear and easy to define for
both decision-makers and analysts. It consists in a preference function associ-
ated to each criterion as well as weights describing their relative importance. The
PROMETHEE I, the PROMETHEE II complete ranking, as well as the GAIA
visual interactive module are then described and commented. The two next sec-
tions are devoted to the PROMETHEE VI sensitivity analysis procedure (human
brain) and to the PROMETHEE V procedure for multiple selection of alternatives
under constraints. An overview of the PROMETHEE GDSS procedure for group
decision making is then given. Finally the DECISION LAB software implemen-
tation of the PROMETHEE-GAIA methodology is described using a numerical
example.

MCDA, outranking methods, PROMETHEE-GAIA, DECISION LAB.
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1. History

The PROMETHEE I (partial ranking) and PROMETHEE 1II (complete ranking)
were developed by J.P. Brans and presented for the first time in 1982 at a
conference organised by R. Nadeau and M. Landry at the Université Laval,
Québec, Canada (L’ Ingéniérie de la Décision. Elaboration d’instruments d’ Aide
a la Décision). The same year several applications using this methodology were
already treated by G. Davignon in the field of Heath care.

A few years later J.P. Brans and B. Mareschal developed PROMETHEE
III (ranking based on intervals) and PROMETHEE IV (continuous case). The
same authors proposed in 1988 the visual interactive module GAIA which is
providing a marvellous graphical representation supporting the PROMETHEE
methodology.

In 1992 and 1994, J.P. Brans and B. Mareschal further suggested two nice
extensions: PROMETHEE V (MCDA including segmentation constraints) and
PROMETHEE VI (representation of the human brain).

A considerable number of successful applications has been treated by the
PROMETHEE methodology in various fields such as Banking, Industrial Loca-
tion, Manpower planning, Water resources, Investments, Medicine, Chemistry,
Health care, Tourism, Ethics in OR, Dynamic management, ... The success
of the methodology is basically due to its mathematical properties and to its
particular friendliness of use.

2. Multicriteria Problems

Let us consider the following multicriteria problem:

max{g(a),g2(a),...,g;(a),...,gx(a)la € A}, (5.1

where A is a finite set of possible alternatives {ay,a2,...a;,...,a,} and
{g1(-),92(:)s .-+, 95(*), ... gk(-)} a set of evaluation criteria. There is no objec-
tion to consider some criteria to be maximised and the others to be minimised.
The expectation of the decision-maker is to identify an alternative optimising
all the criteria.

Usually this is a ill-posed mathematical problem as there exists no alternative
optimising all the criteria at the same time. However most (nearly all) human
problems have a multicriteria nature. According to our various human aspira-
tions, it makes no sense, and it is often not fair, to select a decision based on one
evaluation criterion only. In most of cases at least technological, economical,
environmental and social criteria should always be taken into account. Multi-
criteria problems are therefore extremely important and request an appropriate
treatment.

The basic data of a multicriteria problem (5.1) consist of an evaluation table
(Table 5.1).
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Table 5.1. Evaluation table.

a g1(-) g2(°) gi(-) gx(")

ax g1(a1) g2(a1) L gi(a1) a5 gx(a1)
a2 gi(az) g2(az) . gi(a2) it gx(az2)
C;sf aQ (.ai) 92(-665) = 9 (.Ge') . gk (‘Gt)
an oan)  @@m) e gam) o ge(an)

Let us consider as an example the problem of an individual purchasing a car.
Of course the price is important and it should be minimised. However it is clear
that in general individuals are not considering only the price. Not everybody
is driving the cheapest car! Most people would like to drive a luxury or sports
car at the price of an economy car. Indeed they consider many criteria such as
price, reputation, comfort, speed, reliability, consumption, ... As there is no
car optimising all the criteria at the same time, a compromise solution should
be selected. Most decision problems have such a multicriteria nature.

The solution of a multicriteria problem depends not only on the basic data
included in the evaluation table but also on the decision-maker himself. All
individuals do not purchase the same car. There is no absolute best solution!
The best compromise solution also depends on the individual preferences of
each decision-maker, on the “brain” of each decision-maker.

Consequently, additional information representing these preferences is re-
quired to provide the decision maker with useful decision aid.

The natural dominance relation associated to a multicriteria problem of type
(5.1) is defined as follows:

For each (a,b) € A:

{ Vj : gj(a) = g;(b)
3k : gk(a) > gi(b)
Vi:gi(a) =g(b) <> alb, 5.2)
{ s : gs(a) > gs(b)
3r : gr(a) < gr(b)

where P, I, and R respectively stand for preference, indifference and incompa-
rability. This definition is quite obvious. An alternative is better than another if
it is at least as good as the other on all criteria. If an alternative is better on a cri-
terion 8 and the other one better on criterion 7, it is impossible to decide which

aPb,

<= aRb,
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is the best one without additional information. Both alternatives are therefore
incomparable!

Alternatives which are not dominated by any other are called efficient solu-
tions. Given an evaluation table for a particular multicriteria problem, most of
the alternatives (often all of them) are usually efficient. The dominance relation
is very poor on P and /. When an alternative is better on one criterion, the other
is often better on another criterion. Consequently incomparability holds for
most pairwise comparisons, so that it is impossible to decide without additional
information. This information can for example include:

m  Trade-offs between the criteria;

m A value function aggregating all the criteria in a single function in order
to obtain a mono-criterion problem for which an optimal solution exists;

= Weights giving the relative importance of the criteria;
m  Preferences associated to each pairwise comparison within each criterion;

s Thresholds fixing preference limits;

Many multicriteria decision aid methods have been proposed. All these meth-
ods start from the same evaluation table, but they vary according to the addi-
tional information they request. The PROMETHEE methods require very clear
additional information, that is easily obtained and understood by both decision-
makers and analysts.

The purpose of all multicriteria methods is to enrich the dominance graph, i.e.
to reduce the number of incomparabilities (R). When a utility function is built,
the multicriteria problem is reduced to a single criterion problem for which an
optimal solution exists. This seems exaggerated because it relies on quite strong
assumptions (do we really make all our decisions based on a utility function
defined somewhere in our brains?) and it completely transforms the structure
of the decision problem. For this reason B. Roy proposed to build outranking
relations including only realistic enrichments of the dominance relation (see
[86] and [87]). In that case, not all the incomparabilities are withdrawn but
the information is reliable. The PROMETHEE methods belong to the class of
outranking methods.

In order to build an appropriate multicriteria method some requisites could
be considered:

Requisite 1: The amplitude of the deviations between the evaluations of the
alternatives within each criterion should be taken into account:

dj(a,b) = gj(a) — g;(b). (5.3)
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This information can easily be calculated, but is not used in the efficiency theory.
When these deviations are negligible the dominance relation can possibly be
enriched.

Requisite 2: As the evaluations g;(@) of each criterion are expressed in their
own units, the scaling effects should be completely eliminated. It is not accept-
able to obtain conclusions depending on the scales in which the evaluations
are expressed. Unfortunately not all multicriteria procedures are respecting this
requisite!

Requisite 3: In the case of pairwise comparisons, an appropriate multicriteria
method should provide the following information:

a is preferred to b;
a and b are indifferent;
a and b are incomparable.

The purpose is of course to reduce as much as possible the number of incompa-
rabilities, but not when it is not realistic. Then the procedure may be considered
as fair. When, for a particular procedure, all the incomparabilities are system-
atically withdrawn the provided information can be more disputable.

Requisite 4: Different multicriteria methods request different additional in-
formation and operate different calculation procedures so that the solutions
they propose can be different. It is therefore important to develop methods be-
ing understandable by the decision-makers. “Black box” procedures should be
avoided.

Requisite 5: An appropriate procedure should not include technical param-
eters having no significance for the decision-maker. Such parameters would
again induce “Black box” effects.

Requisite 6: An appropriate method should provide information on the con-
flicting nature of the criteria.

Requisite 7: Most of the multicriteria methods are allocating weights of
relative importance to the criteria. These weights reflects a major part of the
“brain” of the decision-maker. It is not easy to fix them. Usually the decision-
makers strongly hesitate. An appropriate method should offer sensitivity tools
to test easily different sets of weights.

The PROMETHEE methods and the associated GAIA visual interactive
module are taking all these requisites into account. On the other hand some
mathematical properties that multicriteria problems possibly enjoy can also be
considered. See for instance [95]. Such properties related to the PROMETHEE
methods have been analysed by [7] in a particularly interesting paper.
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The next sections describe the PROMETHEE I and II rankings, the GAIA
methods, as well as the PROMETHEE V and VI extensions of the methodology.
The PROMETHEE III and IV extensions are not discussed here. Additional in-
formation can be found in [17]. Several actual applications of the PROMETHEE
methodology are also mentioned in the list of references.

3. The PROMETHEE Preference Modelling Information

The PROMETHEE methods were designed to treat multicriteria problems of
type (5.1) and their associated evaluation table.

The additional information requested to run PROMETHEE is particularly
clear and understandable by both the analysts and the decision-makers. It con-
sists of:

s Information between the criteria;

m Information within each criterion.

31 Information between the Criteria

Table 5.2 should be completed, with the understanding that the set {w;,j =
1,2,...,k} represents weights of relative importance of the different criteria.
These weights are non-negative numbers, independent from the measurement

Table 5.2.  Weights of relative importance.

91(-) g2(") . 9;() k()

wh Wa PR 'wj . W

units of the criteria. The higher the weight, the more important the criterion.
There is no objection to consider normed weights, so that:

> wi=1. (5.4)

In the PROMETHEE software PROMCALC and DECISION LAB, the user
is allowed to introduce arbitrary numbers for the weights, making it easier to
express the relative importance of the criteria. These numbers are then divided
by their sum so that the weights are normed automatically.

Assessing weights to the criteria is not straightforward. It involves the prior-
ities and perceptions of the decision-maker. The selection of the weights is his
space of freedom. PROMCALC and DECISION LAB include several sensitiv-
ity tools to experience different set of weights in order to help to fix them.



PROMETHEE Methods 169

3.2 Information within the Criteria

PROMETHEE is not allocating an intrinsic absolute utility to each alternative,
neither globally, nor on each criterion. We strongly believe that the decision-
makers are not proceeding that way. The preference structure of PROMETHEE
is based on pairwise comparisons. In this case the deviation between the eval-
uations of two alternatives on a particular criterion is considered. For small
deviations, the decision-maker will allocate a small preference to the best al-
ternative and even possibly no preference if he considers that this deviation
is negligible. The larger the deviation, the larger the preference. There is no
objection to consider that these preferences are real numbers varying between
0 and 1. This means that for each criterion the decision-maker has in mind a
function

Pj(a, b) = F} [d] (a, b)] Va,be A, 5.5
where:
d;(a,b) = gj(a) ~ g;(b) (5.6)
and for which:
0 < Pi(a,b) < 1. 6.7

In case of a criterion to be maximised, this function is giving the preference
of @ over b for observed deviations between their evaluations on criterion g;(-).
It should have the following shape (see Figure 5.1). The preferences equals O
when the deviations are negative.

The following property holds:

Pj(a,b) >0 => Pj(b,a) =0. (5.8)

Y

(@.b)

Figure 5.1.  Preference function.

For criteria to be minimised, the preference function should be reversed or
alternatively given by:

Pj(a,b) = Fj[—d;(a,b)]. (5.9
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We have called the pair {g;(-), P;(a, b)} the generalised criterion associated
to criterion g; (+). Such a generalised criterion has to be defined for each criterion.
In order to facilitate the identification six types of particular preference functions
have been proposed (see table 5.3).

Table 5.3. Types of generalised criteria (P(d): Preference function).

Generalised criterion
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In each case 0, 1 or 2 parameters have to be defined, their significance is
clear:
q is a threshold or indifference;

p is a threshold of strict preference;
s is an intermediate value between ¢ and p.

The q indifference threshold is the largest deviation which is considered as
negligible by the decision maker, while the p preference threshold is the smallest
deviation which is considered as sufficient to generate a full preference.

The identification of a generalised criterion is then limited to the selection
of the appropriate parameters. It is an easy task.

The PROMCALC and DECISION LAB software are proposing these six
shapes only. As far as we know they have been satisfactory in most real-world
applications. However there is no objection to consider additional generalised
criteria.

In case of type 5 a threshold of indifference ¢ and a threshold of strict pref-
erence p have to be selected.

In case of a Gaussian criterion (type 6) the preference function remains
increasing for all deviations and has no discontinuities, neither in its shape, nor
in its derivatives. A parameter s has to be selected, it defines the inflection point
of the preference function. We then recommend to determine first a ¢ and a p
and to fix s in between. If 5 is close to g the preferences will be reinforced for
small deviations, while close to p they will be softened.

As soon as the evaluation table {g;(-)} is given, and the weights w; and
the generalised criteria {g;(-), Pj(a,b)} are defined for i = 1,2,...,n; j =
1,2,...,k, the PROMETHEE procedure can be applied.

4. The PROMETHEE 1 and II Rankings

The PROMETHEE procedure is based on pairwise comparisons (cfr. [8]-[16],
[59], [60]). Let us first define aggregated preference indices and outranking
flows.

4.1 Aggregated Preference Indices

Leta,b € A, and let:

k
m(a,b) =) Py(a, bwj,
e (5.10)
n(b,a) = ZPj(b, a)w;.
j=1

m(a, b) is expressing with which degree a is preferred to b over all the criteria
and (b, a) how b is preferred to a. In most of the cases there are criteria for
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which a is better than b, and criteria for which b is better than a, consequently
m(a,b) and 7(b,a) are usually positive. The following properties hold for all

(a,b) € A.
n(a,a) =0,

0 <7(a,b) <1,
5.11)
0<m(ba) <1,
0 < 7(a,b) + w(b,a) < 1.
It is clear that:
{ m(a, b) ~ 0 implies a weak global preference of a over b, 5.12)

7(a,b) ~ 1 implies a strong global preference of a over b.

As soon as 7(a, b) and (b, a) are computed for each pair of alternatives of
A, a complete valued outranking graph, including two arcs between each pair

of nodes, is obtained (see Figure 5.2).

Figure 5.2.  Valued outranking graph.

4.2 Outranking Flows

Each alternative a is facing (n — 1) other alternatives in A. Let us define the
two following outranking flows:

m the positive outranking flow:

#*(@) = —= Y (a,2)

TEA

(5.13)

m  the negative outranking flow:

¢~ (a) = n—i—l Z w(z, a). (5.14)
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(a) The ¢ (a) outranking flow. (b) The ¢~ (a) outranking flow.
Figure 5.3. The PROMETHEE outranking flows.

The positive outranking flow expresses how an alternative a is outranking
all the others. It is its power, its outranking character. The higher ¢ (a), the
better the alternative (see Figure 5.3(a)).

The negative outranking flow expresses how an alternative a is outranked by
all the others. It is its weakness, its outranked character. The lower ¢~ (a) the
better the alternative (see Figure 5.3(b)).

4.3 The PROMETHEE 1 Partial Ranking

The PROMETHEE I partial ranking (P!, I, RT) is obtained from the positive
and the negative outranking flows. Both flows do not usually induce the same
rankings. PROMETHEE 1 is their intersection.

¢*(a) > ¢™(b) and $7(a) < ¢7(b), or

)
aPTy  iff ¢t (a) = ¢ (b) and ¢~ (a) < ¢~ (b), or
¢*(a) > ¢*(b) and ¢~ (a) = ¢7(b);
al'v  iff ¢t (a) = ¢ (b) and ¢~ (a) = ¢~ (b); (5.15)
¢*(a) > ¢™(b) and ¢™(a) > ¢7(b), or
¢*(a) < ¢7(b) and ¢~ (a) < ¢~ (b);

where P, I, R! respectively stand for preference, indifference and incompa-
rability.

When aP!b, a higher power ofa is associated to a lower weakness of a with
regard to b. The information of both outranking flows is consistent and may
therefore be considered as sure.

When aI”b, both positive and negative flows are equal.

When aR’b, a higher power of one alternative is associated to a lower weak-
ness of the other. This often happens when a is good on a set of criteria on which
b is weak and reversely b is good on some other criteria on which a is weak. In

aR'b  iff {
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such a case the information provided by both flows is not consistent. It seems
then reasonable to be careful and to consider both alternatives as incomparable.
The PROMETHEE I ranking is prudent: it will not decide which action is best
in such cases. It is up to the decision-maker to take his responsibility.

4.4 The PROMETHEE II Complete Ranking

PROMETHEE 1I consists of the (PI Lo ) complete ranking. It is often the
case that the decision-maker requests a complete ranking. The net outranking
flow can then be considered.

$(a) = ¢ (a) ~ ¢ (a). (5.16)
It is the balance between the positive and the negative outranking flows. The
higher the net flow, the better the alternative, so that:

aP!y iff $(a) > ¢(b),

al'fp it ¢(a) = $(b).

When PROMETHEE 11 is considered, all the alternatives are comparable. No
incomparabilities remain, but the resulting information can be more disputable

because more information gets lost by considering the difference (5.16).
The following properties hold:

617

T€EA

When ¢(a) > 0, a is more outranking all the alternatives on all the criteria,
when ¢(a) < 0 it is more outranked.

In real-world applications, we recommend to both the analysts and the
decision-makers to consider both PROMETHEE I and PROMETHEE II. The
complete ranking is easy to use, but the analysis of the incomparabilities often
helps to finalise a proper decision.

As the net flow ¢(+) provides a complete ranking, it may be compared with
a utility function. One advantage of ¢(+) is that it is built on clear and simple
preference information (weights and preferences functions) and that it does rely
on comparative statements rather than absolute statements.

4.5 The Profiles of the Alternatives

According to the definition of the positive and the negative outranking flows
(5.13) and (5.14) and of the aggregated indices (5.10), we have:

k
(a) = ¢+ (a) — & (a) = ﬁ 3 Y [Pi(e,2) - Pi(s,a)] wy. (5.19)

j=lz€A
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Consequently,
k
#(a) =Y ¢j(a)w; (5.20)
j=1
if )
9j(e) = — D [Pj(a,2) ~ Pi(z,a)]. (5.21)
T€EA

#;(a) is the single criterion net flow obtained when only criterion g;(:) is
considered (100% of the total weight is allocated to that criterion). It expresses
how an alternative a is outranking (¢;(a) > 0) or outranked (¢;(a) < 0) by
all the other alternatives on criterion g;(-).

The profile of an alternative consists of the set of all the single criterion net
flows: ¢;(a), 5 =1,2,... k.

A

ol 0 =
1 R N L

2}(} ng-) B .E.;_U B gkﬁ)

Figure 5.4.  Profile of an alternative.

The profiles of the alternatives are particularly useful to appreciate their
“quality” on the different criteria. It is extensively used by decision-makers to
finalise their appreciation.

According to (5.20), we observe that the global net flow of an alternative is
the scalar product between the vector of the weights and the profile vector of
this alternative. This property will be extensively used when building up the
GAIA plane.

s. The GAIA Visual Interactive Module

Let us first consider the matrix M (n X k) of the single criterion net flows of all
the alternatives as defined in (5.21).

5.1 The GAIA Plane

The information included in matrix M is more extensive than the one in the
evaluation table 5.1, because the degrees of preference given by the generalised
criteria are taken into account in M. Moreover the g;(a;) are expressed on their
own scale, while the ¢j(a1~) are dimensionless. In addition, let us observe, that
M is not depending on the weights of the criteria.
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Table 5.4. Single criterion net flows.

() ¢2(-) &;() @i(-)
a1 ¢1(a1) ¢2(a1) @j(a1) ¢x(a1)
az ¢1(az) b2(az) ¢i(az2) or(az)
a.a ¢1£asJ @2 (ai} @; (as) Pk (.a‘-)
o dulen)  dalas) $5(an) $r(an)

Consequently the set of the n alternatives can be represented as a cloud of n
points in a k-dimensional space. According to (5.18) this cloud is centered at
the origin. As the number of criteria is usually larger than two, it is impossible
to obtain a clear view of the relative position of the points with regard to the
criteria. We therefore project the information included in the k-dimensional
space on a plane. Let us project not only the points representing the alternatives
but also the unit vectors of the coordinate-axes representing the criteria. We
then obtain:

a
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Figure 5.5.  Projection on the GAIA plane.

The GAIA plane is the plane for which as much information as possible
is preserved after projection. According to the principal components analysis
technique it is defined by the two eigenvectors corresponding to the two largest
eigenvalues of the covariance matrix M’ M of the single criterion net flows.

Of course some information get lost after projection. The GAIA plane is a
meta model (a model of a model). Let § be the quantity of information preserved.
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In most applications we have treated so far § was larger than 60% and in many
cases larger than 80%. This means that the information provided by the GAIA
plane is rather reliable. This information is quite rich, it helps to understand the
structure of a multicriteria problem.

5.2 Graphical Display of the Alternatives and of the
Criteria

Let (A1, Ag,..., As, ..., Ap) be the projections of the n points representing
the alternatives and let (C1, Cy, ..., Cj, ..., Ck) be the projections of the k unit
vectors of the coordinates axes of IR¥ representing the criteria. We then obtain
a GAIA plane of the following type:

GAIA Plane

Figure 5.6.  Alternatives and criteria in the GAIA plane.

Then the following properties hold (see [59] and [16]) provided that § is
sufficiently high:
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P1: The longer a criterion axis in the GAIA plane, the more discrim-
inating this criterion.

P2

Criteria expressing similar preferences are represented by axes
oriented in approximatively the same direction.

P3: Criteria expressing conflicting preferences are oriented in oppo-
site directions.

P4: Criteria that are not related to each others in terms of preferences
are represented by orthogonal axes.

P5: Similar alternatives are represented by points located close to
each other.

P6: Alternatives being good on a particular criterion are represented
by points located in the direction of the corresponding criterion
axis.

On the example of Figure 5.6, we observe:

That the criteria g;(-) and g3(-) are expressing similar preferences and
that the alternatives a; and ay are rather good on these criteria.

That the criteria gg(-) and g4(-) are also expressing similar preferences
and that the alternatives ag, a7, and ag are rather good on them.

That the criteria go(-) and g5(-) are rather independent

That the criteria g1(-) and g3(-) are strongly conflicting with the criteria
94(-) and g2()

That the alternatives a1, as and ag are rather good on the criteria g1 (-),
g3(-) and g5(")

That the alternatives ag, a7 and ag are rather good on the criteria gg(-),
94(-) and ga()

That the alternatives as and a4 are never good, never bad on all the criteria,

Although the GAIA plane includes only a percentage § of the total infor-
mation, it provides a powerful graphical visualisation tool for the analysis of a
multicriteria problem. The discriminating power of the criteria, the conflicting
aspects, as well as the “quality” of each alternative on the different criteria are
becoming particularly clear.
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5.3 The PROMETHEE Decision Stick. The
PROMETHEE Decision Axis

Let us now introduce the impact of the weights in the GAIA plane. The vector
of the weights is obviously also a vector of IRF, According to (5.20), the PRO-
METHEE net flow of an alternative a; is the scalar product between the vector
of its single criterion net flows and the vector of the weights:

ai: (#1(a:), p2(as), ..., d5(ai), .., d(ai)),

(5.22)
w: (W, W2, Wy ey W)

This also means that the PROMETHEE net flow of a; is the projection of the
vector of its single criterion net flows on w. Consequently, the relative positions
of the projections of all the alternatives on w provides the PROMETHEE 1I
ranking.

GAl4d Plane

Figure 5.7. PROMETHEE II ranking. PROMETHEE decision axis and stick.

Clearly the vector w plays a crucial role. It can be represented in the GAIA
plane by the projection of the unit vector of the weights. Let 7 be this projection,
and let us call 7 the PROMETHEE decision axis.

On the example of Figure 5.7, the PROMETHEE ranking is: a4 = as >
az > ap. A realistic view of this ranking is given in the GAIA plane although
some inconsistencies due to the projection can possibly occur.

If all the weights are concentrated on one criterion, it is clear that the PRO-
METHEE decision axis will coincide with the axis of this criterion in the
GAIA plane. Both axes are then the projection of a coordinate unit vector
of IR*. When the weights are distributed over all the criteria, the PROME-
THEE decision axis appears as a weighted resultant of all the criterion axes

(C1,Cz,...,0j,...,0k).
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If r is long, the PROMETHEE decision axis has a strong decision power
and the decision-maker is invited to select alternatives as far as possible in its
direction.

If o is short, the PROMETHEE decision axis has no strong decision power.
It means, according to the weights, that the criteria are strongly conflicting and
that the selection of a good compromise is a hard problem.

When the weights are modified, the positions of the alternatives and of the
criteria remain unchanged in the GAIA plane. The weight vector appears as a
decision stick that the decision-maker can move according to his preferences in
favour of particular criteria. When a sensitivity analysis is applied by modify-
ing the weights, the PROMETHEE decision stick (w) and the PROMETHEE
decision axis (sr) are moving in such a way that the consequences for decision-
making are easily observed in the GAIA plane (see Figure 5.8).

Decision-making for multicriteria problems appears, thanks to this method-
ology, as a piloting problem. Piloting the decision stick over the GAIA plane.

GAFA Planes

Figure 5.8.  Piloting the PROMETHEE decision stick.

The PROMETHEE decision stick and the PROMETHEE decision axis pro-
vide a strong sensitivity analysis tool. Before finalising a decision we recom-
mend to the decision-maker to simulate different weight distributions. In each
case the situation can easily be appreciated in the GAIA plane, the recom-
mended alternatives are located in the direction of the decision axis. As the
alternatives and the criteria remain unchanged when the PROMETHEE deci-
sion stick is moving, the sensitivity analysis is particularly easy to manage.
Piloting the decision stick is instantaneously operated by the PROMCALC and
the DECISION LAB softwares. The process is displayed graphically so that
the results are easy to appreciate.
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6. The PROMETHEE VI Sensitivity Tool (The “Human
Brain”)

The PROMETHEE VI module provides the decision-maker with additional
information on his own personal view of his multicriteria problem. It allows
to appreciate whether the problem is hard or soft according to his personal
opinion.

It is obvious that the distribution of the weights plays an important role in
all multicriteria problems. As soon as the weights are fixed, a final ranking
is proposed by PROMETHEE II. In most of the cases the decision-maker is
hesitating to allocate immediately precise values of the weights. His hesitation
is due to several factors such as indetermination, imprecision, uncertainty, lack
of control, ... on the real-world situation.

However the decision-maker has usually in mind some order of magnitude
on the weights, so that, despite his hesitations, he is able to give some intervals
including their correct values. Let these intervals be:

wy Swj<wf,j=1,...,k (5.23)

Let us then consider the set of all the extreme points of the unit vectors
associated to all allowable weights. This set is limiting an area on the unit
hypersphere in JR¥. Let us project this area on the GAIA plane and let us call
(HB) (“Human Brain”) the obtained projection. Obviously (HB) is the area
including all the extreme points of the PROMETHEE decision axis () for all
allowable weights.

S GAIA Plane

Figure 5.9. “Human Brain”.

Two particular situations can occur:

S1: (HB) does not include the origin of the GAIA plane. In this case, when
the weights are modified, the PROMETHEE decision axis (m) remains
globally oriented in the same direction and all alternatives located in this
direction are good. The multicriteria problem is rather easy to solve, it is
a soft problem.
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O O O
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& GAIA Plane | | & GAIA Plane
(a) Soft problem. (b) Hard problem.

Figure 5.10. Two types of decision problems.

S2: Reversely if (HB) is including the origin, the PROMETHEE decision
axis () can take any orientation. In this case compromise solutions can
be possibly obtained in all directions. It is then actually difficult to make
a final decision. According to his preferences and his hesitations, the
decision-maker is facing a hard problem.

In most of the practical applications treated so far, the problems appeared
to be rather soft and not too hard. This means that most multicriteria problems
offer at the same time good compromises and bad solutions. PROMETHEE
allows to select the good ones.

7. PROMETHEE V: MCDA under Constraints

PROMETHEE I and II are appropriate to select one alternative. However in
some applications a subset of alternatives must be identified, given a set of
constraints. PROMETHEE V is extending the PROMETHEE methods to that
particular case. (see [13]).

Let{a;,t = 1,2,...,n} be the set of possible alternatives and let us associate
the following boolean variables to them:

1 if a; is selected,
T, = 5.24)

0 ifnot.

The PROMETHEE V procedure consists of the two following steps:

STEP 1: The multicriteria problem is first considered without constraints.
The PROMETHEE II ranking is obtained for which the net flows {¢(a;),? =
1,2,...,n} have been computed.
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STEP 2: The following {0,1} linear program is then considered in order to
take into account the additional constraints.

k
max {Z qﬁ(ai)xi} (5.25)
i=1

n
Y Mpazi~ B p=12,...,P (5.26)

=1
z; €{0,1} i=12...,n, (5.27)

where ~ holds for =, > or <. The coefficients of the objective function (5.25)
are the net outranking flows. The higher the net flow, the better the alternative.
The purpose of the {0,1} linear program is to select alternatives collecting as
much net flow as possible and taking the constraints into account.

The constraints (5.26) can include cardinality, budget, return, investment,
marketing,... constraints. They can be related to all the alternatives or possibly
to some clusters.

After having solved the {0,1} linear program, a subset of alternatives sat-
isfying the constraints and providing as much net flow as possible is obtained.
Classical 0-1 linear programming procedures may be used.

The PROMCALC software includes this PROMETHEE V procedure.

8. The PROMETHEE GDSS Procedure

The PROMETHEE Group Decision Support System has been developed to pro-
vide decision aid to a group of decision-makers (DM ), (DM2), ..., (DM,),
... (DMBR) (see [54]). It has been designed to be used in a GDSS room in-
cluding a PC, a printer and a video projector for the facilitator, and R working
stations for the DM’s. Each working station includes room for a DM (and pos-
sibly a collaborator), a PC and Tel/Fax so that the DM’s can possibly consult
their business base. All the PC’s are connected to the facilitator through a local
network.

There is no objection to use the procedure in the framework of teleconference
or video conference systems. It this case the DM’s are not gathering in a GDSS
room, they directly talk together through the computer network.

One iteration of the PROMETHEE GDSS procedure consists in 11 steps
grouped in three phases:

s PHASE I: Generation of alternatives and criteria
m PHASE II: Individual evaluation by each DM
s PHASE III: Global evaluation by the group
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Feedback is possible after each iteration for conflict resolution until a final
consensus is reached.

8.1 PHASE 1I: Generation of Alternatives and Criteria

STEP 1: First contact Facilitator — DM’s

The facilitator meets the DM’s together or individually in order to enrich his
knowledge of the problem. Usually this step takes place in the business base of
each DM prior to the GDSS room session.

STEP 2: Problem description in the GDSS room

The facilitator describes the computer infrastructure, the PROMETHEE meth-
odology, and introduces the problem.

STEP 3: Generation of alternatives

Itis a computer step. Each DM implements possible alternatives including their
extended description. For instance strategies, investments, locations, production
schemes, marketing actions, ... depending on the problem.

STEP 4: Stable set of alternatives

All the proposed alternatives are collected and displayed by the facilitator one
by one on the video-screen, anonymously or not. An open discussion takes
place, alternatives are canceled, new ones are proposed, combined ones are
merged, until a stable set of n alternatives (a1,a2,..., a;,...,ay) is reached.
This brainstorming procedure is extremely useful, it often generates alternatives
that were unforeseen at the beginning.

STEP 5: Comments on the alternatives

It is again a computer step. Each DM implements his comments on all the
alternatives. All these comments are collected and displayed by the facilitator.
Nothing gets lost. Complete minutes can be printed at any time.

STEP 6: Stable set of evaluation criteria

The same procedure as for the alternatives is applied to define a stable set of
evaluation criteria (g1(-), g2(*),--.,95(*) ... gk(*)). Computer and open dis-
cussion activities are alternating. At the end the frame of an evaluation table
(Type Table 5.1) is obtained. This frame consists in a (n X k) matrix. This
ends the first phase. Feedbacks are already possible to be sure a stable set of
alternatives and criteria is reached.

8.2 PHASE II: Individual Evaluation by each DM

Let us suppose that each DM has a decision power given by a non-negative
weight (wp,7 = 1,2,..., R) sothat:

R
Y w=1. (5.28)
r=1
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STEP 7: Individual evaluation tables
The evaluation table (n x k) has to be completed by each DM. Some evalua-
tion values are introduced in advance by the facilitator if there is an objective
agreement on them (prices, volumes, budgets, ...). If not each DM is allowed
to introduce his own values.

All the DM’s implement the same (n X k) matrix, if some of them are not

interested in particular criteria, they can simply allocate a zero weight to these
criteria.

STEP 8: Additional PROMETHEE information

Each DM develops his own PROMETHEE-GAIA analysis. Assistance is given
by the facilitator to provide the PROMETHEE additional information on the
weights and the generalised criteria.

STEP 9: Individual PROMETHEE-GAIA analysis

The PROMETHEE 1 and II rankings, the profiles of the alternatives and the
GAIA plane as well as the net flow vector ¢,(-) are instantaneously obtained,
so that each DM gets his own clear view of the problem.

83 PHASE I1I: Global Evaluation by the Group

STEP 10: Display of the individual investigations
The rankings and the GAIA plane of each DM are collected and displayed by
the facilitator so that the group of all DM’S is informed of the potential conflicts.

STEP 11: Global evaluation

The net flow vectors {¢p(-),7 = 1,2,..., R} of all the DM’s are collected by
the facilitator and put in a (n X R) matrix. It is a rather small matrix which is
easy to analyse. Each criterion of this matrix expresses the point of view of a
particular DM.

Each of these criteria has a weight w,. and an associated generalised criterion
of Type 3 (p = 2) so that the preferences allocated to the deviations between
the ¢7(+) values will be proportional to these deviations.

A global PROMETHEE II ranking and the associated GAIA plane are then
computed. As each criterion is representing a DM, the conflicts between them
are clearly visualised in the GAIA plane. See for example Figure 5.11 where
D M3 is strongly in conflict with DMy, DMs and DMjy.

The associated PROMETHEE decision axis (1) gives the direction in which
to decide according to the weights allocated to the DM’s.

Ifthe conflicts are too sensitive the following feedbacks could be considered:
Back to the weighting of the DM’s. Back to the individual evaluations. Back
to the set of criteria. Back to the set of alternatives. Back to the starting phase
and to include an additional stakeholder (“DM”) such as a social negotiator or
a government mediator.

The whole procedure is summarised in the following scheme (Figure 5.12):
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DM,

DM, DM,

DM,

Figure 5.11.  Conflict between DM’s.
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Figure 5.12. Overview PROMETHEE GDSS procedure.

9, The DECISION LAB Software

DECISION LAB is the current software implementation of the PROMETHEE
and GAIA methods. It has been developed by the Canadian company Visual
Decision, in cooperation with the authors. It replaces the PROMCALC software
that the authors had previously developed.

DECISION LAB is a Windows application that uses a typical spreadsheet
interface to manage the data of a multicriteria problem (Figure 5.13).
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Figure 5.13.  Main window.

All the data related to the PROMETHEE methods (evaluations, preference
functions, weights, ...) can be easily defined and input by the user. Besides,
DECISION LAB provides the user with additional features like the definition
of qualitative criteria, the treatment of missing values in the multicriteria table
or the definition of percentage (variable) thresholds in the preference functions.
Categories of alternatives or criteria can also be defined to better identify sub-
groups of related items and to facilitate the analysis of the decision problem.

All the PROMETHEE and GAIA computations take place in real-time and
any data modification is immediately reflected in the output windows. The PRO-
METHEE rankings, action profiles and GAIA plane are displayed in separate
windows and can easily be compared (Figure 5.14).

Several interactive tools and displays are available for facilitating extensive
sensitivity and robustness analyses. It is possible to compute weight stability
intervals for individual criteria or categories of criteria. The walking weights
display (Figure 5.15) can be used to interactively modify the weights of the cri-
teria and immediately see the impact of the modification on the PROMETHEE
II complete ranking and on the position of the decision axis in the GAIA plane.
This can particularly useful when the decision-maker has no clear idea of the
appropriate weighting of the criteria and wants to explore his space of freedom.

The PROMETHEE GDSS procedure is also integrated in DECISION LAB
through the definition of several scenarios for a same decision problem. Sce-
narios share the same lists of alternatives and criteria but can include different
preference functions, different sets of weights and even different evaluations for
some criteria. Each scenario can be analysed separately using PROMETHEE
and GAIA. But it is also possible to aggregate all the scenarios and to generate
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Figure 5.14.  PROMETHEE rankings, action profiles, GAIA plane.

Figure 5.15.  Walking weights.

the PROMETHEE group rankings as well as the group GAIA plane. Conflicts
between decision-makers can easily be detected and analysed.

At the end of an analysis, the DECISION LAB report generator can produce
tailor-made reports including the tables and graphics required by the user. The
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reports are in the html format so that they can easily be edited in a word processor
or published on paper or on the web.

DECISION LAB can easily be interfaced with other programs like for in-
stance databases. Its own interface can also be adapted to specific needs (special
menus or displays, additional analysis modules, ...).

The next step in PROMETHEE software is a web-based implementation
which is being developed under the Q-E-D name (Quantify-Evaluate-Decide).
The Q-E-D demo web site will be launched during the spring 2003 at http: //
www.qg-e-d.be.

Additional information on DECISION LAB can also be obtained on the
following web sites: http: //www. idm-belgium. comand http: //www.
visualdecision.com.
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Abstract

Keywords:

In this chapter, we shortly describe some outranking methods other than ELEC-
TRE and PROMETHEE. All these methods (QUALIFLEX, REGIME, ORESTE,
ARGUS, EVAMIX, TACTIC and MELCHIOR) propose definitions and compu-
tations of particular binary relations, more or less linked to the basic idea of the
original ELECTRE methods. Beside them, we will also describe other outrank-
ing methods (MAPPAC, PRAGMA, IDRA and PACMAN) that have been devel-
oped in the framework of the Pairwise Criterion Comparison Approach (PCCA)
methodology, whose peculiar feature is to split the binary relations construction
phase in two steps: in the first one, each pair of actions is compared with respect
to two criteria a time; in the second step, all these partial preference indices are
aggregated in order to obtain the final binary relations. Finally, one outranking
method for stochastic data (the Martel and Zaras’ method) is presented, based on
the use of stochastic dominance relations between each pair of alternatives.

Multiple criteria decision analysis, outranking methods, pairwise criteria com-
parison approach.
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1. Introduction

The outranking methods constitute one of the most fruitful approach in MCDA.
They main feature is to compare all feasible alternatives or actions by pair
building up some binary relations, crisp or fuzzy, and then to exploit in an ap-
propriate way these relations in order to obtain final recommendations. In this
approach, the ELECTRE family and PROMETHEE methods (see Chapters 4
and 5 in this book) are very well known and have been applied in a lot of
real life problems. But beside them, there are also other outranking methods,
interesting both from theoretical and operational points of view. All these meth-
ods propose definitions and computations of particular binary relations, more
or less linked to the basic idea of the original ELECTRE methods, i.e. taking
explicitly into account the reasons in favor and against an outranking relation
(concordance-discordance analysis using appropriate veto thresholds). Some
of these methods, moreover, present also a peculiar way to build up final rec-
ommendations, by exploiting the relations obtained in the previous step. In this
chapter, we shortly describe some outranking methods other than ELECTRE
and PROMETHEE. In Section 2 we present some outranking methods deal-
ing with different kind of data (QUALIFLEX, REGIME, ORESTE, ARGUS,
EVAMIX, TACTIC and MELCHIOR). Some of these methods are based on
concordance-discordance analysis between the rankings of alternatives accord-
ing to the considered criteria and the comprehensive ranking of them; others
on direct comparison of each pair of alternatives, more or less strictly linked to
the concordance-discordance analysis of ELECTRE type methods. In Section
3 some outranking methods (MAPPAC, PRAGMA, IDRA and PACMAN) are
described. They have been developed in the framework of the Pairwise Criterion
Comparison Approach (PCCA) methodology. Its peculiar feature is to split the
binary relations construction phase in two steps: in the first one, each pair of
actions is compared with respect to two criteria a time, among those considered
in the problem, and partial preference indices are built up. In the second step,
all these partial preference indices are aggregated in order to obtain the global
indices and binary relations. An appropriated exploitation of these indices gives
us the final recommendations. Finally, in Section 4 one outranking method for
stochastic data (the Martel and Zaras’ method) is presented. The main feature
of this method is that the concordance-discordance analysis is based on the use
of stochastic dominance relations on the set of feasible alternatives, compar-
ing their cumulative distribution functions associated with each criterion. Some
short conclusions are sketched in final Section.

2. Other Outranking Methods

The available information is not always of cardinal level; some times the evalua-
tions of alternatives are ordinal scales, especially in social sciences. These eval-
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uations may take the form of preorders. Several methods were been developed
to aggregate this type of local evaluation in order to obtain a comprehensive
comparison of alternatives. For example, we can mention Borda, Condorcet,
Copeland, Blin, Bowmam and Colantoni, Kemeny and Snell, etc. (see [31]).
Some methods that we will present in this Section drawn inspiration by some
of them.

We present some outranking methods consistent with ordinal data, since they
do not need to convert ordinal information to cardinal values, as it is the case,
for example, in [15]. We will present some methods frequently mentioned in
the literature on MCDA, where the general idea of outranking is globally im-
plemented: QUALIFLEX, REGIME, ORESTE, ARGUS, EVAMIX, TACTIC
and MELCHIOR, these methods are not too complex and do not introduce the
mathematical programming within their algorithm as it is the case, for example,
in [3]. We present also EVAMIX even if it was been developed for ordinal and
cardinal evaluations.

21 QUALIFLEX

The starting point of QUALIFLEX [28, 27] was a generalization of Jacquet-
Lagreze’s permutation method [8].

It is a metric procedure and it is based on the evaluation of all possible
rankings (permutations) of alternatives under consideration. Its mechanism of
aggregation is based on Kemeny and Snell’s rule.

This method is based on the comparison among the comprehensive ranking
of the alternatives and the evaluations of alternatives according to each criterion
from family F (impact matrix). These evaluations are ordinal and take the form
of preorders. For each permutation, one computes a concordance/discordance
index for each couple of alternatives, that reflects the concordance and the dis-
cordance of their ranks and their evaluation preorders from the impact matrix.
This index is firstly computed at the level of single criterion, after at a com-
prehensive level with respect to all possible rankings. One tries to identify the
permutation that maximizes the value of this index, i.e. the permutation whose
ranking best reflects (the best compromise between) the preorders according to
each criterion from F and the multi-criteria evaluation table.

The information concerning the coefficients of relative importance (weights)
of criteria may be explicitly known or expressed as a ranking (for example a
preorder). In this case, [27] has show that one can circumscribe the exploration
to extreme points (the vertex) of polyhedron formed by the feasible weights.

Given the set of alternatives A, the concordance/discordance index for each
couple of alternatives (a,b),a,b € A, at the level of preorder according to the
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criterion g; € F' and the ranking corresponding to the kth permutation is:

1 if there is concordance
Lix(a,b) = 0 if there is ex aequo
—1 if there is discordance.

There is concordance (discordance) if a and b are ranked (not ranked) in
the same order within the two preorders, and ex aequo if they have the same
rank. The concordance/discordance index between the pre-order according to
the criterion g; and the ranking corresponding to the kth permutation is:

Lik =Y I(a,b).

a,beA

The comprehensive concordance/discordance index for the k" permutation
is:

I =Y miLik(a,b),
J

where ; is the weight of criterion g;, j = 1,2,...,n. The number of permu-
tations k (Per) is m! where m = |A|. The best compromise corresponds to
the permutation that maximize Iy. If 7; are not explicitly known, but expressed
by a ranking, then the best compromise is the permutation that:

max Iy,
P(r;)

where P(7;) is the set of feasible weights

EXAMPLE 6 Given 3 alternatives ai,a2,a3 € A; 3 criteria ¢1,92,93 and
the evaluation table (see Table 6.1 where a rank number 1 indicates the best
outcome, while a rank 3 is assigned to the worst outcome with respect to each
criterion), there are 3! possible permutations:

Pery: ay > a3 > a3
Pery: az > a1 > a3
Pers: ay>a3>a
Pery: a3z >ay>a
Pers: a3 > a1 > ay
Perg: ay > a3 > as.

One index is computed for each pair (gj, Pery), that, for our example,
give a total of 18 concordance/discordance indices. For example for the pair
(91, Pe'f'1), we have for the criterion g1: a1 > @2, G2 = ag, ay > as, and for
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Table 6.1. Rank evaluation of alternatives (impact matrix).

Criterion

9n g2 g3

Alternative a1 1 2 1
az 2 1 3

as 2 3 2

Table 6.2. The concordance/discordance indices.
Criterion

[ g2 g3

Permutation Pery 2 1 1
Perg 0 3 -1
Pera =2 1 -3
Pery -2 -1 -3

Pers 0 -3 1

P Erg 2 -1 3

the Pery: a1 > ag, a1 > a3, ag > ag, that gives +1 for the couple (a1, az),
+1 for the couple (a1, a3) and O for the couple (az,as). Thus, the value of the
index I1 is equal to 2.
The concordance/discordance indices are given in the Table 6.2.
Concerning the weights, for example:

1 If the three criteria have the same importance, i.e. Tj = %, 3 =1,2,3,then

we obtain that the maximum value ofthe index is % for the permutations
Pery and Perg.

2 If we know that my > o, mg 2 73 and w; 2> Ofor allj, then w3 = 1-7y -
o (see Figure 6.1).

Then, to obtain the permutation that maximizes the index Iy, we must check
for the three vertices (1,0), (%, %) and(%, %). The maximum value ofthe index
is equal to 2 for the permutations Pery and Perg, for the weights (1,0,0).

The result of this method is a ranking of alternatives under consideration.
QUALIFLEX is based on pairwise criterion comparison of alternatives, but no
outranking relation is constructed. An important limitation of this method con-
cerns the fact that the number of permutations increases tremendously with the
number of alternatives. This problem may be solved. Ancot [1] formulated this
problem as a particular case of Quadratic Assignment Problem; this algorithm
is implemented in the software MICROQUALIFLEX.
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Wo — W3

(1/3,1/3)

(1,0) W1

Figure 6.1.  Set of feasible weights.

2.2 REGIME

The REGIME method [9, 10] can be viewed as an ordinal generalization of
pairwise comparison methods such as concordance analysis. The starting point
of this method is the concordance Cj; defined in the following way:

Ciy= Z 5,

j€Cu

where CA’“ is the concordance set, i.e. the set of criteria for which a; is at least
as good as ay, a; and a; € A and 7; is the weight of criterion g; € F'. The focus
of this method is on the sign of Cy — Cj; for each pair of alternatives. If this
sign is positive, alternative a; is preferred to a;; and the reverse if the sign is
negative.

The first step of the REGIME method is the construction of the so-called
regime matrix. The regime matrix is formed by pairwise comparison of alterna-
tives in the multi-criteria evaluation table. Given a and b € A, for every criterion
we check whether a has a better rank than b, then on the corresponding place
in the regime matrix the number +1 is noted, while if b is a better position than
a, the number — 1 is the result.
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More explicitly, for each criterion g;,5 = 1,2,--- ,n, we can defined an
indicator ¢ ; for each pair of alternatives (a;, a;).

+1  ifry <y
Cilj = 0 if’r‘ij =71y
-1 lfn'j > Tljs

where 745 (15 is the rank of the alternative a; (a;) according to criterion g;.
When two alternatives are compared on all criteria, it is possible to form a vector

cit = (Cit1s > Citgr e+ »Cilin)

that is called a regime and the regime matrix is formed of these regimes. These
regimes will be used to determine rank order of alternatives.
The concordance index, in favor of the alternative a;, is given by:

Cu=)_ micu,
J

If the 7; are explicitly known, we can obtain aconcordance matrix C = [Cy],
with zero on the main diagonal (Table 6.3).

Table 6.3. Concordance matrix.

al Y DI e . e at Y s a'm
aj 0
ai Cu
am 0
One half of this matrix can be ignored, since Cy = —C;.

In general the available information concerning the weights is not explicit
(not quantitative) and then it is not possible to compute the matrix C. If the
available information concerning the weights is ordinal, the sign of Cy may
be determined with certainty only for some regimes [30]. For others regimes
a such unambiguous result can not be obtained; such regime is called critical
regime.

EXAMPLE 7 We can illustrated this method on the basis of multi-criteria eval-
uation table with 3 alternatives and 4 criteria (Table 6.4, [10]).
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Table 6.4. Rank evaluation of alternatives (impact matrix).

Criterion
g1 g2 gs 94
Alternatives ai 3 1 1 2
a2 2 3 1
as 1 3 2 3
Table 6.5. Regime matrix.
Criterion
£} 92 g3 94
Comparison (a1,a2) -1 +1 +1 -1
(a1,a3) -1 +1 +1 iy |
(az,a1) +1 -1 -1 +1
(az2.a3) = +1 -1 +1
(as.a1) +1 -1 -1 -1
(as.az) +1 =1 +1 -1

For this example, the regime matrix is presented in the Table 6.5.

If we make the hypothesis that wy = my = m3 = w4 = %, wefind Cia = 0,
Ci3 > 0,02 =0,Co3 =0, C31 < 0and C3z = 0. Thus a; is preferred to ag,
but we can not conclude between a; and ag, az and a3. If we know for example
that:
Ty > T4 2> W3geqmy, Zvrj =land; >0,
J

then we find that C1p = - 71 + T2 + 73 - 4 = 0 in all cases, which means that,
on the basis of a pairwise comparison, a; is preferred to ay. In a similar way it
can be shown that, given the same information on the weights, a; is preferred

to ag, and that ag is preferred to a3. Thus we arrive at a transitive rank order of
alternatives.

It is not possible to arrive at such definite conclusions for all rankings of the
weights. If we assume that:

™ 2%22#32%4,219 =land7; >0,
7

it is easy to see that from the first regime may result both positive and negative
values of Cy’s. For example if m = (.40, .30, .25, .05), C12 > 0, whereas
for 7w = (.45, .30, .15, .10), Cj2 < 0. Therefore, the corresponding regime is
called a critical regime. The main idea of regime analysis is to circumvent these
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difficulties by partitioning the set of feasible weights so that for each region a
final conclusion can be drawn about the sign of Cy;.
Let the ordinal information available about the weights be:

M > Ty 2> M3 > 7r4,Z7l'j = land'/rj >0.
J
The set of weights satisfying this information will be denoted as 7. We have to
check, for all regimes ¢;, if ¢;; may assume both positive and negative values,
giventhat 7r is an element of 7. The total number of regimes to be examined is
2" = 24 = 16. For our example, the number of critical regimes is equal to four:

-1 +1 +1 -1
+1 -1 -1 +1
-1 41 +1 +1

+1 -1 -1 -1
The number of critical regimes is even, since we known that if ¢; is a critical
regime then ¢y = —cy is critical. The subsets of T can be characterized by
means of the structure of the critical regimes. The four critical regimes of our
example give two critical equations:
filmy=m —me—m3+mg = 0O
f2(1r)=7r1—7r2—1r3—7r4 = 0.
The following subsets of 7 can be distinguished by means of these equations:

7 = Tn{w:fl(fr)>0andfg(7r)>0},

T, = Tn{r: fi(r)>0and fo(r) < 0},

T3 = Tn{r: fi(x) <0and fo(r) < 0},

Ty = TN{r: fi(x) <0and fz2(r) > 0}.
An examination of 17, ...,Ty reveals that Ty is empty, so that ultimately
three relevant subsets remain. The subsets T, T3 and T3 are convex polyhedra,
as it is the case for the set 7. The extreme points of these polyhedra can be

determined graphically in the case of four criteria. The extreme points for T
are:

(1,0,0,0)

11,
22"
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In addition to these four points, the extreme points
111
: - -, -0
E (2, L ) and
1111
F : Sl
<2 6°6 6)
are needed to characterize T4, T» and T3. The characterization of 71, T3 and T3
by means of the extreme points are for T1: A, B, E, F; for T3: B, D, E, F and
for T3: B, C, D, E.
Once the partitioning of the weight set has been achieved, for each subset

of T it is possible to indicate unambiguously the sign of Cj; for each pair of
alternatives. Let vy be defined as follows:

vy = +1ifCy >0,
vy = —1ifCy <O.

Then a pairwise comparison matrix V can be constructed consisting of el-
ements equal to +1 or -1, and zeros on the main diagonal. A final ranking of
alternatives can be achieved on the basis of V.

For example, take an interior point of subsetT} (e.g. the centroid computed as
the mean of the extreme points). Determine the sign of Cj; for all regimes occur-
ring in the regime matrix (Table 6.5). Thus we find for the pairwise comparison
matrix Vy:

0 -1 -1
Vi=1| +1 0 -1
+1 41 0

On the basis of V1 we may conclude that a3 is preferred to a9 whichinturn
is preferred to a;. For the two other subsets of weights we find:

0 -1 +1 0 +1 +1
Veg=1|+1 0 -1 Vg=) -1 0 -1
-1 +1 0 -1 +1 0

The second pairwise comparison matrix does not give a definitive ranking of
alternatives, but on the basis of Vg we may conclude that a; is preferred to a3
which is again preferred to as.

The relative size of subsets 11,7 and T3 are not equal. If we assume that
the weights are uniformly distributed in 7, the relative size of the subsets of
T can be interpreted as the probability that alternative a; is preferred to ay.
Probabilities are aggregated to produce an overall ranking of alternatives. The
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relative sizes of the subsets can also be estimated using a random generator.
This is recommended if there are seven criteria or more, since the number of
subsets increases exponentially with the number of criteria [30].

The relevant subsets given an arbitrary number of criteria can be found in
[10]. The REGIME method can be applied to mixed evaluations (ordinal and
cardinal criteria) without losing the information contained in the quantitative
evaluation. This requires a standardization of the quantitative evaluation. Israels
and Keller [12] has been proposed a variant of REGIME method where the
incomparability is accepted. The REGIME method is implemented in a system
to support Decision on a finite set of alternatives: DEFINITE [13].

23 ORESTE

ORESTE (see [32, 33]) has been developed to deal with the situation where the
alternatives are ranked according to each criterion and the criteria themselves
are ranked according to their importance. In fact the ORESTE method can deal
with the following multi-criteria problem. Let A be a finite set of alternatives a;,
i =1,2,-+- ,m. The consequences of the alternatives are analysed by a family
F of n criteria. The relative importance of the criteria is given by a preference
structure on the set of criteria F, which can be defined by a complete preorder
S (the relation S = I U P is strongly complete and transitive, the indifference
I is symmetric and the preference P is asymmetric). For each criterion gj,
j=12,---,n, we consider a preference structure on the set A, defined by a
complete preorder. The objective of the method is to find a global preference
structure on A which reflects the evaluation of alternatives on each criterion
and the preference structure among the criteria.
The ORESTE method operates in three distinct phases:

First phase. Projection of the position-matrix.
Second phase. Ranking the projections.
Third phase. Aggregation of the global ranks.

We start from n complete preorders of the alternatives from A related to the
n criteria, (for each alternative is given a rank with respect to each criterion).
Also for each criterion is given a rank related to its position in the complete
preorder among the criteria. The mean rank discussed by Besson [2] is used.
For example, if the following preorder is given for the criteria gy Pg2193 P94,
thenry = 1,73 =g = 2.5 andryq = 4, wherer; is the Besson-rank of criterion
gy idem for the alternatives, r; (a) is the average (Besson) rank of alternative
a with respect to the criterion g;. Given {r;(a), 7;}, ORESTE tries to build a
preference structure O = {I, P, R} on A such as:

» g,Pq ifa; is comprehensively preferred to a;(Oy = 1,0y = 0),
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» g;lq;ifa; is indifferent to a;(Oy = Oy = 1),
» q;Ra;ifa; and a; are comprehensively incomparable (Oy = Oy; = 0).

Projection. Considering an arbitrary origin 0, a distance d(0, aj) is defined
with the use of {rj(a),7;} such that d(0,a;) < d(0,b;) if aP;b, where a; =
gj(a) is the evaluation of alternative a with respect to criterion g;. When ties
occur, an additional property is: if g;Igx and r;j(a) = rx(b) then d(0,a;) =
d(0, by,). For the author, the “city-block” distance is adequate:

d(0,a;) = arj(a) + (1 — a)rj,

where & stands for a substitution rate (0 < @ < 1). The projection may be
performed in different ways [29, 33].

EXAMPLE 8 Given the following example with 3 alternatives and 3 criteria
(without ties). The complete preorders of alternatives are: aPybPyc, bPycPya

and cPya P3b, and for the criteria: gy PgaPgs. This example may be visualized
by a position matrix (Table 6.6).

Table 6.6. Position-matrix.

1 2 3

all 3 2

il e bl 2 1 3
c|d3 2 1

Being 1 = 1, rg = 2, r3 = 3, the city-block distance for this example is
given in Table 6.7.

Table 6.7. City-block.

1 2 3
a 1 24a 3—a
d(0,a;) : b| 1+a 2-a 3
c| 1+ 2« 2 3 — 2«
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Ranking.  Since it is the relative position of projections that is important
and not the exact value of d(0, a;), the projections will be ranked. To rank the
projections a mean rank R(a;) is assigned to a pair (a, g;) such that R(a;) <
R(by) if d(0,a;) < d(0, by). These ranks are called comprehensive ranks and
are in the closed interval (1,mn). For our example R(a;) < R(by) since
1<2-a(0<ax<l).

Aggregation. For each alternative one computes the summation of their
comprehensive ranks over the set of criteria. For an alternative a this yields the

final aggregation
= Z R(aj).
j

1
For our example, if 5 < % < % we obtain:

1 < l4+4a < 2—-a < 14+2a < 2 < 3-20 < 24«
R(al) < R() < R(bz) < R(a1) < Rc2) < Recs) < R(az)
1 2 3 4 5 6 7

< 3-a < 3
< R(as) < Ribs)
8 9

R(a) = 16, R(b) = 14, R(c) = 15.
In the ORESTE method, the following index is also computed:

C(a,b) = Y [R(b;) — R(ay)).

j:aPjb

Itis easily shown that C(a, b) — C(b,a) = R(b) — R(a). Moreover, the maxi-
mum value of R(b) — R(a) equals n?(m — 1).

For our example with § < a < , we obtain: C(c,b) = 3, C(a,b) = 2 and
C(a,c) = 3. Thus, we may obtain the preference structure O = {I, P, R} in
such way that if R(a) < R(b) then alIb or aPb or aRb, where § stands for an
indifference level and for an incomparability level (see Figure 6.2).

For our example w1th <a< 2, we have F(%(c—}t%ﬁi =3, ﬁ% =1

degaIcz_:c = 3. Thus, lfﬂ _8=_2.(__and1<'y<3weobta1nbpa,
aRc and cRb.

These thresholds are interpreted in [29]. When v = 00, the outranking rela-
tion is a semi-order which becomes a weak order if 3 = 0.

The global preference relation P built by ORESTE is transitive [29]. The
axiom known as the Pareto principle or citizen’s sovereignty holds if 8 <
;(":—_5 , but the axiom of independence of irrelevant alternatives is generally
violated [33].
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No

aPb

Figure 6.2. ORESTE flow chart.

24 ARGUS

The ARGUS method [14] uses qualitative values for representing the intensity
of preference on an ordinal scale. They express this intensity of preference
between two alternatives a, b € A by selecting one of the following qualitative
relations: indifference, small, moderate, strong or very strong preference. All
evaluation on the criteria are treated as evaluations on an ordinal scale, but the
evaluations of each alternative with respect to each criterion can be quantitative
(interval or ratio scale) or qualitative (ordinal scale).

The way of obtaining the required information from the decision maker (DM)
to model his/her preference structure, depends on the scale of measurement of
each criterion. If the scale is ordinal, we may use the following possible values:
very poor, poor, average, good, very good. To model the preference structure
of the DM on this criterion, the DM must indicate his/her preference for each
pair of values. He must construct a preference matrix (Table 6.8).

In fact the DM must fill only the lower triangle of this matrix. The number
of rows and columns of this matrix depends on the number of different values
the ordinal criterion can have. The preference of the DM on an interval scale
criterion will depend on d = gj(a) ~ g;(b), while his/her preference on a
ratio scale criterion will depend either on d only or on d, gj{a) and g;(b).
For example, if his/her preference depends on d only, this means that only
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Table 6.8. Preference matrix for a criterion with ordinal evaluation.

gi(b) very poor poor average good very good

gi(a) very poor indiff.
poor indiff.
average indiff.
good indiff.
very good indiff.

the absolute difference determines his/her preference. The preference structure
of the DM for an interval scale criterion can be modeled by determining for
which absolute difference d the DM is indifferent, for which d he/she has a
moderate preference, for which d he/she has a strong and for which d he has a
very strong preference. For a ratio scale criterion, he/she can also consider the
relative difference § (see Table 6.9). We must indicate if the criterion must be
MIN or MAX.

Table 6.9. Preference matrix for a criterion (Max) with evaluation on a ratio scale.

g:(a@) > gi(b) > 0 d = gi(a) — 9:(b) = aldoal)
indifferent 0<d<d 0% < 6 < 6:1%
small preference di<d<d: 8% <6< 6:%
moderate preference dy <d<d; 5% <6 <8:%
strong preference ds <d<ds 6% < 8 < 8.%
very strong preference ds <d 83% <6

The following ordinal scale may be used to reflect the importance of a crite-
rion: not important, small, moderately, very and extremely important. The DM
must indicate for each criterion, by selecting a value from this ordinal scale,
how important one criterion is for him/her.

When the preference structure of the DM for each criterion is known as well
as the importance of each criterion, the comparison of two alternatives a and b
with respect to the criterion gj leads to a two-dimensional table (Table 6.10).

In a cell, fg stands for the number of criteria of a certain importance for which
a certain preference between the alternatives a and b occurs, 3, Y, fot = n.

In order to get one overall appreciation of the comparison between the alter-
natives a and b, the DM must rank all cells of Table 6.10 where g;(a) > g;(b).
A ranking in eight classes is proposed to DM. Through this ranking a one di-
mensional ordinal variable is created. In fact there is a combined preference
with respect to difference on evaluations and importance of weights where
gj(a) > g;(b) and where gj(a) < g;(b) (see Table 6.11).
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Table 6.10. Preference importance table for g;, a, b.
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criteria not little moderate very extremly wj
preference imp. imp. imp. imp. imp.
gj(a) > g;(b)  verystrong  fu fiz fia fia fis a
strong le f22 f23 fa4 fas b
moderate fn fa2 fas faa f3s
small fa1 faz faz faa fas
gi(a) = g;(b) 10 fs1 fo2 fs3 fsa s
gj(a) < g;(b) small Je1 fe2 fea fea fes
moderate n fr2 f3 fra frs 1
strong fa1 fe2 fas fa4 fos b
very strong  fo1 fo2 fas foa fes a

Table 6.11. Combined preferences with weights variable.

gi(a) > g;(b)

gi(a) < g;(b)

1 u1 = fis

2 uz = fia + fos

3 uz = fiza + foa + fas

4 uq = fiz+ faz + fas + fas
5 us = fu1 + faz + faz + faa
6 ug = fo1 + faz + fas

7 ur = fa1 + faz

8 ug = fa1

v1 = fos

vz = fas + foa

v3 = frs + faa + foz

vy = fes5 + fra + foz + fo2
vs = fea + fra + faz + fou

vg = fea + fra + far

vr = fez + fr1

vg = fe1

The decision maker can alter this ranking (by moving a cell from one class to
another, by considering more or less classes) until it matches his/her personal
conception. Based on those two variables an outranking (S), indifference (/) or
incomparability (R) relation between two alternatives is constructed:

k=1
h

k=1
h

e
£
A

k=1 k=1

h
iquk = Y wforall h=1,
k=1
h
if Y w > > g forall b =1,
k:l
>

quk forallh =1,

..., 8 then alb;

..., 8, then aSbh;

..., 8, then bSa.
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in all other cases aRb.

According to the basic idea of outranking, if alternative a is much better
than alternative b on one (or more) criteria and b is much better than a on other
criteria, there can be discordance between alternative b and alternative a, and b
will not outranking a. The DM must explicitely indicate for each criterion when
there is discordance between two evaluations on that particular criterion. For
an ordinal criterion he/she can indicate in the upper triangle of the preference
matrix (Table 6.8) when discordance occurs. For an interval or ratio criterion,
the DM must indicate from which difference (absolute or relative), between the
evaluations of two alternatives on that criterion, there is discordance.

EXAMPLE 9 We have 4 alternatives, 4 criteria and the evaluation table (Table
6.12). In this example, the criteria g1, g2, gs are ordinal scales, and criterion
G4 is a ratio scale to be minimized.

Table 6.12. Evaluation of alternatives™.

n g2 93 94
al D @ bt 13
as T — O 10
as [ - - 17
a4 + I a 17
* @ : very good; +: good; [J: acceptable; — : moderate.

The following dominance relation can be observed from the data: ayD ag, so
that after deleting ag, the set of alternatives is A = {a1, ag, a4}. It is necessary
to make this pre-processing step.

The preference modeling ofalternatives with respect to the criteria are given
in Tables 6.13, 6.14, and 6.15.

Table 6.13. Criteria g1 and g3 (ordinal scales).

g2(b) e = O + @
g2(a) © indifferent discordance discordance
- moderate indifferent discordance
O strong moderate indifferent
+ Very strong strong moderate indifferent
@& very strong very strong strong small indifferent

The preference structure of weights of the criteria is given in Table 6.16.

Suppose that the ranking in eight classes of the combined preference with
weight oftwo alternatives presented in Table 6.11 is approved. Table 6.17 gives
an example ofa pairwise comparison between @) and ay.
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Table 6.14.  Criterion g2 (ordinal scale).

g6(b) e - O + @
gs(a) © indifferent discordance
- small indifferent
O moderate small indifferent
+ strong moderate small indifferent
(2] very strong strong moderate small indifferent

Table 6.15. Criterion g4 (ratio scale MIN).

Preference (a above b) d = gj(a) > g;(b)
Indifferent 0<d<1

small 1<d<35
moderate 35<d<®6
Sipag 6<d<9

very strong 9<d<oo
discordance d < —co

Table 6.16.  Preference structure of weights.

Weight

not important

little important g1, 93
moderately important g4
very important g2
extremely important

Table 6.17. Pairwise comparison between a; and aq.

gi(a1) > gi(as) gi(a1) < gj(as)
1 0 0
2 0 0
3 0 0
4 1 0
5 1 0
6 0 2
7 0 0
8 0 0

The pairwise comparison of all pair of alternatives from A permits to con-
struct the following binary relations: aySa4, a1Ray and a3Say4 (see Figure
6.3).
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Figure 6.3.  Outranking graph.

The ARGUS method demands arelatively great effort from the DM to model
his/her preferences.

2.5 EVAMIX

The EVAMIX method [30, 39, 40] is a generalization of concordance analysis
in the case of mixed information on the evaluation of alternatives on the judg-
ment criteria. Thus a pairwise comparison is made for all pairs of alternatives
to determine the so called concordance and discordance indices. The difference
with standard concordance analysis is that separate indices are constructed for
the qualitative and quantitative criteria. The comprehensive ranking of alterna-
tives is the result of a combination of the concordance and discordance indices
for the qualitative and quantitative criteria.

The set of criteria in the multi-criteria evaluation table is divided into a set of
qualitative (ordinal) criteria O and a set of quantitative (cardinal) criteria C. It
is assumed that the differences between alternatives can be expressed by means
of two dominance measures: a dominance score a;ir for the ordinal criteria,
and a dominance score a;;» for the cardinal criteria. These scores represent the
degree to which alternative a; dominates alternative a; . They havethefollowing
structure:

Qi = f(eij,eilj,wj), for allj €0,
a;; = g(eij,ei:j,wj), forall j € C,
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where epj represents the evaluation of alternative ay, on the criterion g5 and 7
the importance weight associated to this criterion. These scores can be defined

as follows: .

Qigr = Z{stgn(eij —er)}°|

jeo
where

+1 if €ij > €y
sgn(eij - ei/j) = 0 if €ij = €i'j
=1 ifey; <eyj.

The symbol ¢ denotes an arbitrary scaling parameter, for which any positive
odd value may be chosen, ¢ = 1, 3,5, .. .. Inasimilar manner, the quantitative
dominance measure can be made explicit:

@i = | Y {mjleij — ew;)}°

jeC

In order to be consistent, the same value for the scaling parameter ¢ should
be used as in formula for ayy. It is assumed that the quantitative employed
evaluation e;; have been standardized (0 < e;; < 1). Evidently, all standardized
scores should have the same direction, i.e., a ‘higher’ score should (for instance)
imply a ‘larger’ preference. It should be noted that the rankings e;; (j € O) of
the qualitative criteria also have to represent ‘the higher, the better’. Since
and a;y will have different measurement units, a standardization into the same
unit is necessary. The standardized dominance measures can be written as:

i = h(auir) and diy = h{as),

where h represents a standardization function.
Let us assume that weights m; have quantitative properties. The overall dom-
inance measure Djy for each pair of alternatives (a;, ay) is:

Dy = modiyr + mediyr,

where =), €0 T and me =) jec T . This overall dominance score reflects
the degree to which alternative a; dominates alternative ay for the given set of
criteria and the weights. The last step is to determine an appraisal score s; for
each alternative. In general the measure Dy may be considered as function k
of the constituent appraisal scores, or:

Dy = k(si, 8¢).
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This expression represents a well-known pairwise comparison problem. De-
pending on the way function k is made explicit, the appraisal scores can be
calculated. The most important assumptions behind the EVAMIX method con-
cern the definition of the various functions. It is shown in [40], that at least
three different techniques can be distinguished which are based on different
definitions of &; , dj» and D;y. The most straightforward standardization is
probably the additive interval technique. The overall dominance measure D
is defined as: N
Dy = ——,
8; + 8y
which implies that D;y + Dyr; = 1. To arrive at such overall dominance measures
with this additivity characteristic, the following standardization is used:

(aw —a™)

. (o —a7)
% - (a* —a7)

YT et —a)

where o~ (at)is the lowest (highest) qualitative dominance score of any pair of
alternatives (a4, a;7)and a™ (a™)is the lowest (highest) quantitative dominance
score of any pair of alternatives (a;, ai). The resulting appraisal score is:

and dii’ =

-1
Dy;

Dy

8; =

1:’

This expression means that the appraisal scores add up tounity, ), s; = 1.

In the previous elaboration, quantitative weights 7;, § = 1,2,...,n, were
assumed. In some circumstances, only qualitative priority expressions can be
given. Ifonly ordinal information is given, at least two different approaches may
be followed: an expected value approach (see [30, Appendix 4.I]) or a random
weight approach. The random weight approach implies thatquantitative weights
are created by a random selection out an area defined by the extreme weight
sets. These random weights «;, 7 = 1,---,n, have to fulfill the following
conditions:

1 for each 7;, vy, wj < wjr = v5 = V40,

2 Ej v =1
where w; denotes aranking number expressing a qualitative weight with “lower”
means “better”. For each set of metric weights v;, j = 1,--- ,n, generated

during one run of the random number generator, a set of appraisal scores can
be determined. By repeating this procedure many times a frequency matrix can
be constructed. Its element f,; represents the number of times, alternative a;
was placed in the r — th position in the final ranking. A probability matrix with
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element p,; can be constructed, where:

- fri
Dri = _——Ei fri'

So, py; represents the probability thata; will receive an r — th position. We
can make a comprehensive ranking of the alternatives in the following way:

a; = 1, if py; is maximal,
. . . J »
ay = 2, ifpy; +p,y is maximal and i # 1,
. . . o ’ s
ay = 3,if pry + pyy + py is maximaland i # 4 # 4,

and so forth.

The EVAMIX method is based on important assumptions: 1) the definition
of the various functions f, g, h and k; 2) the definition of the weights of the sets
O and C and 3) the additive relationship of the overall dominance measure.

2.6 TACTIC

In the TACTIC method, proposed by Vansnick (see [37]), the family of criteria
F is composed of true-criteria or quasi-criteria (criteria with an indifference
threshold g > 0) g;,5 = 1,...,n, and the preference structures correspondent
are (P, 1) or (P, I, R), where R is the incomparability relation, if no veto-
threshold v;(+), j € J is considered or at least one v; is introduced respectively.

To each criterion g; € F' an importance weight A; > 0 is associated, as in
the ELECTRE methods (see chapter 4 in this book). To model the preferences,
the following subset of J is defined, Ya,b € A,a # b:

Jr(a,b) = {j €: gj(a) > g;(b) + g;[g;(b)]},

where ¢;(g;(b)] is the marginal indifference threshold as a function of the worst
evaluation between g;(a) and g;(b), and therefore in this case we have aP;b.

If in the set F only true criteria are considered, the statement aPb is true if
and only if the following concordance condition is satisfied:

by
o nse Y aie ZJEJT(“”) L > p it Tp(ba) £0, 6.1)

Jj€Ir{ab) j€Ir(b,a) jeTr(b,a) Aj

where the coefficient p is called required concordance level (usually, 1 < p <

e 1 Aj . .
;HZT:I{E—’—;— — 1) and the two summations represent the absolute importance of
ALY

the coalition of criteria in favor of a or b respectively.

If also some quasi-criterion is in the set F, in the preference structure
(P, I, R) aPb is true if and only if both concordance condition 6.1 and the
following non-veto condition are satisfied:
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Vi € J,95(a) +vjlgj(a)] = g;(b), (6.2)

where v;(g;(a)] is the marginal veto threshold.

If the condition (6.2) is not satisfied by at least one criterion from F, we have
aRb. On the other hand, we have aIb if and only if both pairs (a,b) and (b, a)
do not satisfy condition (6.1) and no veto situation arises.

We remark that if p = p* = m—%{% — 1, the condition (6.1) is equivalent
to the complete absence of criteria against the statement aPb, i.e. Jp(b,a) =
(and therefore in this case, (6.2) automatically holds). Ifg; = 0 foreach criterion
gj, the relation P is transitive for p > p*. When p is decreasing from level p*,

we can have two types of intransitivity:
s aPb,bPc,alc (or aRc),
s aPb,bPc,cPa.

If in equation (6.1) p = 1, we obtain the basic concordance-discordance
procedure of Rochat type:

m for structures (P, I) (see [35]),

aPb iff Y N> D N

jedr(ab)  je€Tr(va)
alb iff Y A= DA
j€Ir(a,b) J€Tr(b,a)

s for structures (P, I, R),

aPb iff > x> > Aand

JEJIT(a)b) je€IT(ba)

95 (b) — gj(a) < vslg;(a)],Vj € J;
alb iff > A= > Xand

j€Jr(a,b) j€Ir(ba)

9i(b) — g;(a) < v;lg;(a)],Vj € J, and

gi(a) ~ g;(b) < v;lg;(a)],Vj € J.
aRb iff non(aPb), non(bPa) and non(alb).

The main difference between the ELECTRE I and TACTIC preference mod-
eling is that the latter method is based on the binary relation aPb, while the
former aims to build up the outranking relation aSb, a,b € A. Moreover, the
validation of the preference relation is now based on a sufficiently large ratio
between the importance of criteria in favor and against the statement aPb. Roy
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and Bouyssou [35] show that this second difference is actually just a formal
one. They also remark that, as a consequence of the peculiar characterization
of the statement aPb, in TACTIC method is difficult to split indifference and
incomparability situations. No particular exploitation procedure is suggested in
TACTIC method.

2.7 MELCHIOR

In the MELCHIOR method [16] the basic information is a family F of pseudo-
criteria, i.e. criteria g; with anindifference threshold g; and a preference thresh-
old p; (pj > qj > 0) suchthat, Vj € J and Va, b € A:

» qis strictly preferred to b (aP;b) with respect to g; iff g;(a) > g;(b) +
p;l(g;(®)),

» ais weakly preferred to b (aQ; b) with respect to g; iff g;(b)+p;{(g;(b)] >
g5(a) > g;(b) + al(g;(b)];

® ¢ and b are indifferent (al;b) iff there is no strict or weak preference
between them.

No importance weights are attached to criteria, but a binary relation M is
defined on F such that g;Mg; means “criterion g; is as least as important
as criterion g;”. In order to state the comprehensive outranking relation aSb,
the Author proposes to “match” in a particular way the criteria in favor and
the criteria against the latter relation (concordance analysis) and to verify that
no discordance situation exists, i.e. no criterion g; from F exists such that
9;(b) > g;(a)+v;, where v; is a suitable veto-threshold for criterion g; (absence
of discordance). In this method, a criterion gj € F is said to be in favor of the
outranking relation aSb if one of the following situations is verified:

® aP;b (marginal strict preference of a over b) (Ist condition)

® aP;boraQ;b (marginal strict or weak preference of a over b) (2nd con-
dition)

= g;(a) > g;(b) 3rd condition).

A criterion g; € F'is said to be against the outrankingrelation aSb if one of
the following situations is verified:

® bP;a (marginal strict preference of b over @) (1st condition)

® bPja or bQja (marginal strict or weak preference of b over a) (2nd con-
dition)

u g;(b) > gj(a) (3rd condition).
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The concordance analysis with respect to the outranking relation aSb, a, b €
A, is made by checking ifthe family ofcriteria G in favor of this relation “hides”
the family of criteria H that are against relation aSb. These subsets of criteria
are compared just using the binary relation M on F. A subset G of criteria
is said to “hide” a subset H of criteria (G, H C F, F NG = §) if, for each
criterion g; from H, there exists a criterion g; from G such that

» g;Mg; (st condition) or

m g;Mg; or not(g; M g;) (2nd condition),

where the same criterion g; from G is allowed to hide at most one criterion
from H.

By choosing two suitable combinations (see [16]) of the above conditions,
the first stricter than the other, and verifying the concordance and the absence
of discordance, a strong and a weak comprehensive outranking relation can be
respectively built up. Then these relations are in turn exploited as in ELECTRE
IV method (see chapter 4 in this book). We remark that the latter in fact coincides
with MELCHIOR if the same importance is assigned to each criterion.

We finally observe that in both TACTIC and MELCHIOR methods no pos-
sibility of interaction among criteria (see Chapter 14 in this book) is taken into
consideration, since the first one considers additive weights for the importance
of each coalitions of criteria and the last one just “matches” one to one criteria
in favor and against the comprehensive outranking relation aSb.

3. Pairwise Criterion Comparison Approach

In this approach, after the evaluations of potential alternatives with respect to
different criteria, the phase of building up the outranking relations is split in
two different steps, making comparisons at first level (partial aggregation) with
respect to each subset of criteria Gy C F (|F| = m,Gr # 0, |G| =k, k =
2,3,--+ ,m — 1) and then aggregating at the second level these partial results
(global aggregation).

With respect to weighting, this way of aggregating preferences allows to
take into consideration the marginal substitution rate (trade-off) of each crite-
rion from subset Gy, at the first step and the imporrance of each coalition of
criteria G, at the second step, with the possibility to explicitly modeling the
different meaning of these “weights” and the eventual inferaction among crite-
ria from each Gy, (see chapter 14 in this book). Moreover, peculiar preference
attitudes with respect to compensation, indifference and veto relations may be
usefully introduced at each step of preference aggregation process; therefore,
these particular options may be modelled at “local” and global level, when the
partial and aggregated preferences indices respectively are built up.
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Fork = 2, (i.e. when two criteria a time are considered in the first phase of
aggregation), we speak of Pairwise Criterion Comparison Approach (PCCA),
that is therefore a methodology in which first all the feasible actions are com-
pared with respect to pairs of criteria from F, and then all the partial information
so obtained are suitably aggregated.

Given a,b € A, in the Multiple Attribute Utility Theory ( see chapter 7
in this book) the partial utility functions u;[gi(a)], ¢ € J, are aggregated in
different ways to obtain the global utility u(a) of each alternative and then the
final recommendation.

In the outranking ELECTRE and PROMETHEE (see Chapter 4 in this book)
families methods, from the evaluations of each action with respect to each
criterion g; € F, some (crisp or fuzzy) marginal outranking or preference
relations ¢;(a, b) are built up as elementary indices, or relations, with respect
each criterion 4 € J and each (ordered) pair of actions (a,b); then, using
these marginal relations and other inter-criteria information, a comprehensive
outranking relation or index ¢(a, b) is obtained. In PCCA, in the first stage for
each pair of actions (a, b) a fuzzy binary preference index d;j(a,b), 1,5 € J,
is built up as elementary index taking into consideration two different criteria
a time; then, by suitable aggregation of these partial indices, a global index
d(a, b) is obtained, expressing the comprehensive fuzzy preference of a over b.

As in all the other outranking methods, the exploitation of the indices ex-
pressing the comprehensive relation allows to obtain the recommendation for
the decision problem at hand.

The main reasons that suggest this two levels aggregation procedure are the
following:

m limited capacity of the human mind to compare a large number of ele-
ments at the same time, taking into consideration numerous and often
conflicting evaluations simultaneously;

s limited ability of the DM for assessing a lot of parameters concerning
subjective evaluations of general validity and considering all available
information together.

Of course, this approach requires a larger number of computations and pref-
erence information, but:

® itactually helps in understanding and it supports the entire decision mak-
ing process itself;

= itallows DM to use in an appropriate way all own preference information,
requiring weaker coherence conditions, and to obtain further information
about partial comparisons;
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® it compares actions with respect to two criteria a time and, then it is easier
to set appropriate parameters reflecting the partial comparison at hand;

= it offers greater flexibility in the preference modeling, allowing explicitly
the representation of specific preference framework and information DM
wants to use each time in the considered comparison;

m it allows useful extensions of some well-known basic concepts, like
weighting, compensation, dominance, indifference, incomparability, etc.

® it actually allows to model interaction between each couple of criteria,
possibly the most important and really workable in an effective way.

Therefore, in our opinion the PCCA satisfies the following principles, rel-
evant in any decision process, to build up realistic preference models and to
obtain actual recommendations:

® transparency, making some light in any phase of the “black box™ process
(about the aggregation procedure in itself, the meaning of each parameter
and index, their exploitation, etc.);

n faithfulness, respecting accurately the DM’s preferences, without impos-
ing too axiomatic constraints;

» flexibility, accepting and using any kind of information the DM wants
and is able to give, neither more, nor less.

This means that DM will not be forced to “consistency” or “rationality”. In
other words, not too “external conditions” will be imposed to DM in expressing
his/her preferences, but all actual information will be used. So, for example, not
transitive trade-offs, w; k, (differentfrom wj,j - Wy, Where W4 is the trade-off
between criteria g, and gs), and or not complete importance weights (to some
criterion no weight is associated) and also aggregated information (i.e., pooled
importance weights, reflecting the interaction among criteria of each coalition)
will be accepted as input.

Roughly speaking, the PCCA aggregation procedure can be applied to a lot
of well-known compensatory or noncompensatory aggregation procedures re-
sulting in binary preference indices. For each j € J, let g; € F be an interval
scale of measurement (i.e., unique up to a positive linear transformation) and
wy, wj € R*, be a suitable scale constant, called trade-off weight or constant
substitution rate, reflecting (in a compensatory aggregation procedure) the in-
crease on criterion value g; necessary to compensate a unitary decrease on other
criterion from F in terms of global preference. In other words, wj is used to
transform the scale g; for normalizing and weighting the criteria values in order
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to compare units on different criterion scales, for each g; € F. Often this nor-
malization is made introducing two parameters g; and guj» J € T, (gsj < g;),
usually fixed apriori by DM according to the specific decision problem at hand
and related with the discrimination power of the criterion scales. These param-
eters represent, in the DM’s view, respectively two suitable “levels” on criterion
gjto normalize its evaluations of feasible actions. For example, g«; and g’; can
be respectively the “neutral” and the “excellent” level or the minimum and max-
imum value that can be assumed on criterion gj; currently, gs; < min{g;(z)}
and g¥ > max{g;(z)}. Therefore we can write w; = #1@, where ¢; repre-
sent the marginal weight (“importance”) of criterion g; after normalization of
its scale.
Let consider the following subsets of J:

Taso = {3 €T :g5(a) > g;(b)},

Jo=p = {3 €T :g;(a) =g;(b)},

Joch = {j €T :g5(a)