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The Second Edition of the Handbook of Transportation Science is a compendium of
the fundamental concepts, methods and principles underlying transportation. It has
been expanded from the first edition through the addition of four chapters. Chapter
15 extends the networks section of the book by addressing supply chains, distribution
networks and logistics. While the emphasis is on freight transportation, the
principles for network design extend to other applications, such as public
transportation. Chapters 16 through 18 fall in a new section on transportation
economics. Chapter 16 addresses revenue management, a relatively recent topic in
transportation, that has had substantial impact on the airline industry in particular.
Chapter 17 presents spatial interaction models, which provides a mechanism for
analyzing patterns of development. Lastly, Chapter 18 provides the principles of
transportation economics, with emphasis on pricing and public policy. In addition to
the new chapters, several of the original chapters have been updated and revised. We
hope that the Second Edition continues to inspire research into the science of
transportation.

PREFACE TO THE SECOND EDITION



This page intentionally left blank 



David Boyce, Carlos Daganzo, Michael Florian, and Nigel Wilson provided valuable
guidance in suggesting chapter topics and authors. Cenk Caliskan and Georgia Lum
provided a tremendous help in formatting chapters. The work was supported, in
part, by a grant from the National Science Foundation (DMI-9732878), and support
from the United States Department of Transportation for the METRANS University
Transportation Center.

ACKNOWLEDGMENTS



This page intentionally left blank 



1TRANSPORTATION SCIENCE
Randolph W. Hall

“The whole value of science consists in the power which it confers upon us of applying to one
object the knowledge acquired from like objects”

Stanley Jevons wrote these words more than a century ago in The Principles of
Science (Jevons, 1958, p. 1). Yet even today, The Principles of Science is a
guidepost for defining what science is and how it is conducted.

Though “Transportation Science” did not exist as a discipline in the time of
Jevons, his insights provide a motivation for The Handbook of Transportation
Science. The premise for our book is that transportation can be defined as a
scientific discipline that transcends transportation technology and methods. Whether
by car, truck, airplane -- or by a mode of transportation that has not yet been
conceived -- transportation obeys fundamental properties. The science of
transportation defines these properties, and demonstrates how our knowledge of one
mode of transportation can be used to explain the behavior of another.

Like any of the natural sciences, transportation science as a discipline arose out
of human curiosity, and the desire for explanations for how the world around us
behaves. In the words of famed physicist Max Planck,

“The beginning of every act of knowing, and therefore the starting point of every science,
must be in our own personal experience … They form the first and most real hook on which
we fasten the thought-chain of science.” (Planck, 1932, p. 66)

And so is the case for transportation science. When one looks back to the earliest
publications on the subject from the 1950s and early 1960s, we first see a desire to
understand the dynamics of roadway traffic. Then and now, there is hardly a person
in the profession who does not view a trip on the highway as a scientific experiment,
seeking to understand why traffic flows as it does, how bottlenecks appear and
disappear, and what causes the myriad of driving behaviors. Many of the early
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pioneers were, in fact, trained in natural sciences, such as physics, and cleverly
combined knowledge of natural phenomena, such as thermodynamics and fluid
mechanics, with their observations on traffic flow.

Transportation scientists are motivated by the desire to explain spatial
interactions that result in movement of people or objects from place to place. Its
heritage includes research in the fields of geography, economics and location theory,
dating over several centuries. Its methodologies draw from physics, operations
research, probability and control theory. It is fundamentally a quantitative discipline,
relying on mathematical models and optimization algorithms to explain the
phenomena of transportation.

Publications in transportation science appear in many places, but they are most
concentrated in the journals Transportation Research B and Transportation Science,
and also in the proceedings of the International Symposium on Transportation and
Traffic Flow Theory. Transportation scientists perform both empirical and
theoretical work (many do both), and use real transportation systems as their
laboratories. They interact frequently with practitioners, with scientific findings
resulting from examination of real problems.

Fundamentally, transportation science recognizes that all modes of transportation
have the same essential elements: vehicles, guideways, and terminals, operating
under some control policy. Vehicles comprise mobile resources that accompany
persons or shipments (P/S) as they travel from place to place. They provide the
motive power to propel P/Ss on their trip, and provide the carrying space to ensure a
safe and/or comfortable journey. Guideways are stationary resources that define
feasible paths of travel and provide the physical infrastructure to support vehicles and
P/Ss. They add to safety by restricting movements to defined paths, and provide an
efficient surface for movement. Terminals are stationary resources that reside at
discrete location. They offer the capability to sort vehicles, persons and objects
among incoming and outgoing transportation routes. Lastly, control represents the
rules, regulations and algorithms that determine movements and trajectories within
transportation systems.

Many years ago, transportation occurred by human, animal and natural (e.g.,
wind, currents, gravity) power, in simple vehicles (or none at all), on guideways that
required little in the way of construction. Terminals, if they could be called that,
were the market towns, caravansaries or trading posts, and control was executed
through the minds of individual travelers. By contrast, today most movement
depends on propulsion by motors or engines, built guideways and terminals, and, to
some degree, computer control. So in many respects, one might say that
transportation modes of the late century have little in common with their
ancestors.



Transportation Science 3

Nevertheless, similarities abound. For any given mode of transportation,
vehicles, guideways, terminals and control are configured to perform several basic
functions. All modes of transportation provide the capability to propel, brake and
steer. Most (even animal and human) provide mechanisms to store energy for
propulsion, to sort persons and objects at terminals, to couple shipments together into
efficient loads, and to contain these shipments as they travel from place to place. The
way that a mode of transportation accomplishes these functions may be unique, but
the basic tasks are the same (Hall, 1995).

As mentioned, this book is concerned with the properties and characteristics that
transcend individual modes of transportation, and collectively define a science of
transportation. The chapters and structure of this book are intended to elucidate
these properties on a subject-by-subject basis, and not by mode. We begin with the
human element of transportation. On a day-to-day basis, individuals are presented
with a plethora of transportation choices, some of which are determined by ingrained
habits and circumstances; others of which result from deliberation. The route
followed, the time of travel and, to some degree, the choice of destination and mode,
are all daily decisions, and constitute short-term traveler behavior (Chapter 2). These
decisions are imbedded within the broader context of how we plan and organize our
activities, the subject of Chapter 3. And the way we operate our vehicles is the main
determinant of Transportation Safety, as covered in Chapter 4.

Another important property of most transportation networks is that travel time
depends on traffic flows, as well as system design and system control. Chapters 5
(queueing) and Chapter 6 (traffic flow theory) show how congestion originates on
transportation networks, and how vehicles, travelers and shipments interact as they
travel across the network. Chapter 5 addresses congestion and delay in a broad
context, spanning all types of transportation, whereas Chapter 6 focuses on
movement along links of a network where vehicles interact with each other.

At a more microscopic level, vehicle flows and trajectories depend on how their
speed and direction are controlled. Until fairly recently, this was a human task, but
increasingly vehicle control is automated, though electronic sensing and computer
processors. Chapter 7 covers automated techniques for controlling trajectories,
whereas Chapter 8 covers control at the more macroscopic scale of regulating flows.
Macroscopic control is typically executed by conveying messages to vehicle
operators (e.g., visible signals at intersections, network entrances and along lanes of
travel.). In the future, it is not hard to imagine a coalescence of vehicle and traffic
control within a single automated system.

The next two topics are at the historical core of transportation science:
continuous-space models (Chapter 9) and transportation location (Chapter 10). The
continuous-space approach has been used extensively as an explanatory tool for
optimal network design, both with respect to physically constructed networks
(roadways, railroads, etc.) and operational networks (vehicle routes). It draws from
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spatial economic theory and continuum models in physics. Transportation location
also addresses system design, largely from the perspective of placing discrete
facilities, such as terminals and points of production. It is the first of five chapters
that include transportation optimization.

One of the ways that traveler behavior is revealed is in the flow of traffic along
links in the transportation network. And one of the most studied, and most
challenging, areas of research in transportation science is network assignment, or the
estimation and prediction of these flows (Chapter 11). Network assignment uses
optimization methods to predict the consequences of traveler behavior.

The next four chapters -- 12, 13, 14 and 15 -- describe different aspects of
routing and networks, represented by the assignment of persons/shipments to vehicles
and terminals, and the sequencing of stops along routes. The emphasis of Chapter 12
is local routing, represented by vehicle tours that can be accomplished within the
span of a single day. The emphasis of Chapter 13 is routing freight over longhaul
networks, represented by tours that travel from city to city, and last more than one
day. Chapter 14 is concerned with routing the crews that operate vehicles on
longhaul networks, with focus on the personnel constraints that dictate feasible tours.
Chapter 15 addresses the design of transportation networks and supply chains,
including the use of vehicles and terminals for shipment consolidation.

The final section of the book – Chapters 16, 17 and 18 – address transportation
economics. Chapter 16 focuses on the recent topic of revenue management, or how
transportation companies can use pricing to maximize their returns on investment. In
Chapter 17, research is presented on spatial interaction, which provides a framework
for predicting patterns of development, in light of transportation services and
infrastructure. The final chapter covers transportation economics in general, with
emphasis on pricing, markets, and public policy.

We wrote this book with the intention of documenting the core knowledge of
transportation science. As would be the case for any other science, this book cannot
provide ultimate conclusions. But it can record the methods and issues that define
the discipline of transportation science as it exists at the end of the century. In
the words of the noted philosopher Karl Popper (1959, p. 281):

“Science never pursues the illusory aim of making its answers final, or even probable. Its
advance is, rather, towards the infinite yet attainable aim of ever discovering new, deeper and
more general problems, and of subjecting its ever tentative answers to ever renewed and ever
more rigorous tests.”

We hope that the Handbook of Transportation Science provides this inspiration
for the transportation scientists of the future.
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2 DISCRETE CHOICE MODELS
WITH APPLICATIONS TO

DEPARTURE TIME AND ROUTE
CHOICE

Moshe Ben-Akiva and Michel Bierlaire

2.1 Introduction

The analysis of travel behavior is typically disaggregate, meaning that the models
represent the choice behavior of individual travelers. Discrete choice analysis is the
methodology used to analyze and predict travel decisions. Therefore, we begin this
chapter with a review of the theoretical and practical aspects of discrete choice
models. After a brief discussion of general assumptions, we introduce the random
utility model, which is the most common theoretical basis of discrete choice models.
We then present the alternative discrete choice model forms such as Logit, Nested
Logit, Generalized Extreme Value and Probit, as well as more recent developments
such as Hybrid Logit and the Latent Class choice model. Finally, we elaborate on the
applications of these models to two specific short-term travel decisions: route choice
and departure time choice.

2.2 Discrete Choice Models

We provide here a brief overview of the general framework of discrete choice
models. We refer the reader to Ben-Akiva and Lerman (1985) for detailed discussion.

General Modeling Assumptions

The framework for a discrete choice model can be presented by a set of general
assumptions. We distinguish among assumptions regarding the:

decision-maker -- defining the decision-making entity and its characteristics;

alternatives -- determining the options available to the decision-maker;

1.

2.
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attributes -- measuring the benefits and costs of an alternative to the decision-
maker; and

decision rule -- describing the process used by the decision-maker to choose an
alternative.

3.

4.

Decision-maker Discrete choice models are also referred to as disaggregate models,
meaning that the decision-maker is assumed to be an individual. The “individual”
decision-making entity depends on the particular application. For instance, we may
consider that a group of persons (a household or an organization, for example) is the
decision-maker. In doing so, we may ignore all internal interactions within the
group, and consider only the decisions of the group as a whole. We refer to
“decision-maker” and “individual” interchangeably throughout this chapter. To
explain the heterogeneity of preferences among decision-makers, a disaggregate
model must include their characteristics such as the socio-economic variables of age,
gender, education and income.

Alternatives Analyzing individual decision making requires not only knowledge of
what has been chosen, but also of what has not been chosen. Therefore, assumptions
must be made about available options, or alternatives, that an individual considers
during a choice process. The set of considered alternatives is called the choice set.

A discrete choice set contains a finite number of alternatives that can be explicitly
listed. The choice of a travel mode is a typical example of a choice from a discrete
choice set. The identification of the list of alternatives is a complex process usually
referred to as choice set generation. The most widely used method for choice set
generation uses deterministic criteria of alternative availability. For example, the
possession of a driver’s license determines the availability of the auto drive option.

The universal choice set contains all potential alternatives in the application’s
context. The choice set is the subset of the universal choice set considered by, or
available to, a particular individual. Alternatives in the universal choice set that are
not available to the individual are therefore excluded from the choice set.

In addition to availability, the decision-maker’s awareness of the alternative could
also affect the choice set. The behavioral aspects of awareness introduce uncertainty
in modeling the choice set generation process and motivate the use of probabilistic
choice set generation models that predict the probability of each feasible choice set
within the universal set. A discrete choice model with a probabilistic choice set
generation model is described later in this chapter as a special case of the latent class
choice model.

Attributes Each alternative in the choice set is characterized by a set of attributes.
Note that some attributes may be generic to all alternatives, and some may be
alternative-specific.

An attribute is not necessarily a directly measurable quantity. It can be any
function of available data. For example, instead of considering travel time as an
attribute of a transportation mode, the logarithm of the travel time may be used, or
the effect of out-of-pocket cost may be represented by the ratio between the out-of-
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pocket cost and the income of the individual. Alternative definitions of attributes as
functions of available data must usually be tested to identify the most appropriate.

Decision Rule The decision rule is the process used by the decision-maker to
evaluate the alternatives in the choice set and determine a choice. Most models used
for travel behavior applications are based on utility theory, which assumes that the
decision-maker’s preference for an alternative is captured by a value, called utility,
and the decision-maker selects the alternative in the choice set with the highest
utility.

This concept, employed by consumer theory of micro-economics, presents strong
limitations for practical applications. The underlying assumptions of this approach
are often violated in decision-making experiments. The complexity of human
behavior suggests that the decision rule should include a probabilistic dimension.

Some models assume that the decision rule is intrinsically probabilistic, and even
complete knowledge of the problem would not overcome the uncertainty. Others
consider the individuals’ decision rules as deterministic, and motivate the uncertainty
from the limited capability of the analyst to observe and capture all the dimensions of
the choice process, due to its complexity.

Specific families of models can be derived depending on the assumptions about
the source of uncertainty. Models with probabilistic decision rules, like the model
proposed by Luce (1959), or the “elimination by aspects” approach proposed by
Tversky (1972), assume a deterministic utility and a probabilistic decision process.
Random utility models, used intensively in econometrics and in travel behavior
analysis, are based on deterministic decision rules, where utilities are represented by
random variables.

Random Utility Theory

Random utility models assume, as does the economic consumer theory, that the
decision-maker has a perfect discrimination capability. However, the analyst is
assumed to have incomplete information and, therefore, uncertainty must be taken
into account. Manski (1977) identifies four different sources of uncertainty:
unobserved alternative attributes; unobserved individual characteristics (also called
“unobserved taste variations”); measurement errors; and proxy, or instrumental,
variables.

The utility is modeled as a random variable in order to reflect this uncertainty.
More specifically, the utility that individual n associates with alternative i in the

where is the deterministic (or systematic) part of the utility, and is the random
term, capturing the uncertainty. The alternative with the highest utility is chosen.
Therefore, the probability that alternative i is chosen by decision-maker n from
choice set is

choice set is given by
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In the following we introduce the assumptions necessary to make a random utility
model operational.

where we have that

The above illustrates the fact that only the signs of the differences between utilities
are relevant here, and not utilities themselves. The concept of ordinal utility is
relative and not absolute. In order to estimate and use a specific model arbitrary
values have to be selected for and The selection of the scale parameter is
usually based on a convenient normalization of one of the variances of the random
terms. The location parameter    is usually set to zero. See also the discussion below
of Alternative Specific Constants.

Alternative specific constants The means of the random terms can be assumed to
be equal to any convenient value c (usually zero, or the Euler constant for Logit
models). This is not a restrictive assumption. If we denote the mean of the error term
of alternative i by  we can define a new random variable
such that We have

a model in which the deterministic part of the utilities are and the random
terms are (with mean c). The terms are then included as Alternative Specific
Constants (ASC) that capture the means of the random terms. Therefore, we may
assume without loss of generality that the error terms of random utility models have a
constant mean c by including alternative specific constants in the deterministic part of
the utility functions.

As only differences between utilities are relevant, only differences between ASCs
are relevant as well. It is common practice to define the location parameter  as the
negative of one of the ASCs. This is equivalent to constraining that ASC equal zero.
From a modeling viewpoint, the choice of the particular alternative whose ASC is
constrained is arbitrary. However, Bierlaire, Lotan and Toint (1997) have shown that
the speed of convergence of the estimation process may be improved by imposing
different constraints.

Location and scale parameters Considering two arbitrary real numbers  and



Discrete Choice Models with Applications to Departure Time and Route choice 11

The deterministic term of the utility The deterministic term of each alternative
is a function of the attributes of the alternative itself and the characteristics of the
decision-maker. That is

where is the vector of attributes as perceived by individual n for alternative i, and
is the vector of characteristics of individual n.
This formulation is simplified using any appropriate vector valued function h that

defines a new vector of attributes from both and that is

Then we have

The choice of h is very general, and several forms may be tested to identify the best
representation in a specific application. It is usually assumed to be continuous and
monotonic in For a linear in the parameters utility specification, h must be a fully
determined function (meaning that is does not contain unknown parameters). A linear
in the parameters function is denoted as follows

or in vector form

The deterministic term of the utility is therefore fully specified by the vector of
parameters

The random part of the utility Among the many potential models that can be
derived for the random parts of the utility functions, we describe below the most
popular. The models within the Logit family are based on a probability distribution
function of the maximum of a series of random variables, introduced by Gumbel
(1958). Probit and Probit-like models are based on the Normal distribution motivated
by the Central Limit Theorem.

The main advantage of the Probit model is its ability to capture all correlations
among alternatives. However, due to the high complexity of its formulation,
relatively few applications have been developed. The Logit model has been much
more popular, because of its tractability. However, Logit imposes restrictions on the
covariance structure that may be unrealistic in some contexts. Other models in the
“Logit family” are aimed at relaxing restrictions, while maintaining tractability.

We present first the Generalized Extreme Value Models, a class of random utility
model that includes Logit and Nested Logit. Next we present the Probit model and
other advanced models including the Generalized Factor Analytical Representation
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and the Hybrid Logit models (designed to bridge the gap between Logit and Probit
models) and the Latent Class Choice model (designed to explicitly include discrete
unobserved factors in the model).

The Generalized Extreme Value Models Family

The Generalized Extreme Value (GEV) model has been derived from the random
utility model by McFadden (1978). This general model consists of a large family of
models. The probability of choosing alternative i within is

is the number of alternatives in and G is a non-negative differentiable function

defined on with the following properties:

G is homogeneous of degree

the partial derivative with respect to k distinct is non-negative if k is odd,
and non-positive if k is even, that is, for any distinct we have

1.

2.

3.

As G is homogeneous, Euler’s theorem can be invoked to write

where

The Multinomial Logit Model is an instance of the GEV family, with

McFadden’s original formulation with was generalized to by Ben-Akiva
and François (1983).

1,

1
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yielding to the following probability model :

An important property of the Multinomial Logit Model is Independence from
Irrelevant Alternatives (IIA). This property can be stated as follows: The ratio of the
probabilities of any two alternatives is independent of the choice set. That is, for any
choice sets and such that and and for any alternatives i and j
in both and we have

An equivalent definition of the IIA property is: The ratio of the choice probabilities
of any two alternatives is unaffected by the systematic utilities of any other
alternatives.

The IIA property of Multinomial Logit Models is a limitation for some practical
applications. This limitation is often illustrated by the red bus/blue bus paradox in the
modal choice context. We use here instead the following path choice example.

Consider a commuter traveling from origin O to destination D. He/she is
confronted with the path choice problem described in Figure 2-1, where the choice
set is {1,2a,2b} and the only attribute considered for the choice is travel time. We
assume furthermore that the travel time for any alternative is the same, that is

and that the travel time on the small sections a and b is

The probability of each alternative provided by the Multinomial Logit Model for
this example is
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Clearly, this result is independent of the value of However, when is
significantly smaller than the total travel time T, we expect the probabilities to be
close to 50%/25%/25%. The Multinomial Logit Model is not consistent with this
intuitive result. This situation appears in choice problems with significantly
correlated random utilities, as it is clearly the case in the path choice example.
Indeed, alternatives 2a and 2b are so similar that their utilities share many
unobserved attributes of the path and, therefore, the assumption of independence of
the random parts is not valid in this context.

The  Nested Logit Model, first proposed by Ben-Akiva (1973 and 1974) and
derived as a random utility model and a special case of GEV by McFadden (1978), is
an extension of the Multinomial Logit Model designed to capture some correlations
among alternatives. It is based on the partitioning of the choice set into M nests

such that

and It is also an instance of the GEV family, with

where and Each nest within the choice set is associated with a
composite utility

where denotes the partial utility common to all alternatives in the nest. The second
term is called expected maximum utility, LOGSUM, inclusive value or accessibility
in the literature. The probability for individual n to choose alternative i within nest

is given by

where

and
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Parameters     and      reflect the correlation among alternatives within the nest
The correlation between the utility of two alternatives i and j in nest can be
derived (see Ben-Akiva and Lerman, 1985) as

Therefore,

The parameters and are closely related in the model. Actually, only their ratio is
meaningful. It is not possible to identify them separately. A common practice is to
arbitrarily constrain one of them to a specific value (usually 1). If the Nested
Logit Model collapses to a Multinomial Logit Model.

This is illustrated by the following example (Bierlaire, 1998). We apply the
Nested Logit Model to the route choice problem described in Figure 1. We partition
the choice set into and The probability of
choosing path 1 is given by

where is the scale parameter of the random term associated with and is the
scale parameter of the choice between and Note that we require
The probability of the two other paths is

In this example, we need to normalize either or to 1. In the latter case we
have

and
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and we require that Note that for we obtain the MNL result. For
approaching zero, we obtain the expected result when paths 2a and 2b fully overlap.
A model where the scale parameter is normalized to 1 is said to be “normalized
from the top.” A model where one of the parameters is normalized to 1 is said to
be “normalized from the bottom.” The latter may produce a simpler formulation of
the model. We illustrate it using the following example.

In the context of a mode choice with we consider a
model with two nests: contains the public transportation modes and

contains the private transportation modes. For the example’s sake, we
consider the following deterministic terms of the utility functions:

where is the travel time using mode i and and are parameters to be estimated.
Note that we have one parameter for private and one for public transportation, and
we have not included the alternative specific constants in order to keep the example
simple.

Applying the Nested Logit Model, we obtain

The normalization from the bottom is obtained by defining
Consequently,

with
This formulation simplifies the computation of the derivatives, needed by

parameter estimation procedure (see Daly, 1987). For this reason, it has been adopted
by the Ben-Akiva and Lerman (1985) textbook and in estimation packages like
ALOGIT (Daly, 1987) and HieLoW (Bierlaire, 1995, Bierlaire and Vandevyvere,
1995). We emphasize here that these packages should be used with caution when the
same parameters are present in more than one nest. Specific techniques inspired from
artificial trees proposed by Bradley and Daly (1991) must be used to obtain a correct
specification of the model. In the above example, if then imposing the
restriction is straightforward. However, for the case of and we
define   and create artificial nodes below each alternative, with a scale  for
the first nest and scale for the second. We refer the reader to Koppelman and Wen
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(1998) and Hensher and Greene (2002) for further discussion. Note that the new
package BIOGEME (Bierlaire, 2001b) for GEV model estimation does not impose a
specific normalization for the Nested Logit model and therefore does not require
such techniques.

A direct extension of the Nested Logit Model consists in partitioning some or all
nests into sub-nests, which can in turn, be divided into sub-nests. The model
described above is valid at every layer of the nesting, and the whole model is
generated recursively. Therefore, a tree structure is a convenient representation of
Nested Logit models. Clearly, the number of potential structures reflecting the
correlation among alternatives can be very large. No technique has been proposed
thus far to identify the most appropriate correlation structure directly from the data.

The Nested Logit Model is designed to capture choice problems where
alternatives within each nest are correlated. No correlation across nests can be
captured by the Nested Logit Model. When alternatives cannot be partitioned into
well separated nests to reflect their correlation, the Nested Logit Model is not
appropriate.

The Cross-Nested Logit Model is a direct extension of the Nested Logit Model,
where each alternative may belong to more than one nest. It is also an instance of the
GEV family, with

This model was first presented by McFadden (1978) as a special case of the GEV
model. It was applied by Small (1987) for departure time choice, by Vovsha (1997)
for mode choice, and by Vovsha and Bekhor (1998) for route choice. Swait (2001)
proposes a Cross-Nested formulation for a model including choice set generation.
The general formulation proposed above has been introduced by Ben-Akiva and
Bierlaire (1999). The proof that it is indeed a GEV model is detailed by Bierlaire
(200la). Wen and Koppelman (2001) provide an analysis of the model elasticities.
They use the name “Generalized Nested Logit” model for Cross-Nested. Papola
(2000) describes a technique to design a specific Cross-Nested logit model for any
given homoscedastic variance-covariance structure.

The parameter is usually interpreted as the degree at which alternative j
belongs to nest m. Therefore, a common normalization of the model imposes that

We emphasize that this condition is a convenient normalization

condition, but is not necessary for the model to comply with random utility theory.
The Recursive Nested Extreme Value Model (RNEV), proposed by Daly (2001),
generalizes the Cross-Nested model by allowing several levels of nests in the
formulation.

where and
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The Network GEV model is a class of models within the GEV family proposed
by Bierlaire (2002) and based on the same idea as Daly’s RNEV. Each instance is
defined by a network where each edge (m,k) is associated with a non-negative
parameter The network must have the following properties.

1. It does not contain any circuit.
2. It has one special node with no predecessor, called the root.
3. It has J special nodes with no successor, called the alternatives.
4. For each alternative i, there exists a path between the root and i such that

all parameters on the path are non-zero.
Each node m of the network is associated with an homogeneous function with
homogeneity parameter such that

If each alternative i is associated with the trivial function

then the G function associated with each node of the network generates a GEV
model. In general, only the GEV model associated with the root is considered. This
result, formally proven by Bierlaire (2001c), provides an intuitive and general way of
generating new GEV models. Namely, all GEV models mentioned above fit in that
framework.

Multinomial Probit Model

The Probability Unit (or Probit) model is derived from the assumption that the error
terms of the utility functions are normally distributed. The Probit model captures
explicitly the correlation among all alternatives. Therefore, we adopt a vector
notation for the utility functions:

where and vectors. The vector of error terms is
multivariate normal distributed with a vector of means 0 and a variance-
covariance matrix

The probability that a given individual n chooses alternative i from the choice set
is given by

Denoting  the matrix such that

are
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The matrix is such that the column contains -1 everywhere. If the column is
removed, the remaining matrix is the identity matrix. For example, in the
case of a trinomial choice model, we have

Given this transformation, we have that

The density function is given by

where

and

We note that the multifold integral becomes intractable even for a relatively low
number of alternatives. Moreover, the number of unknown parameters in the
variance-covariance matrix grows with the square of the number of alternatives. We
refer the reader to McFadden (1989) for a detailed discussion of multinomial Probit
models. The complexity of Probit models can be reduced using a Factor Analytic
form of the model, as described in the next section.

Generalized Factor Analytic Specification of the Random Utility

The general formulation of the factor analytic formulation is

where is a vector of utilities, is a vector of deterministic utilities,
is a vector of random terms,      is an (M×1) vector of factors which are IID

standard normal distributed, is a matrix of loadings that map the factors to
the random utility vector and T is a MxM lower triangular matrix, capturing the
Cholesky factor of the variance-covariance matrix. This specification is very general,
and allows explicitly specifying some structure in the model and, consequently,
decreasing the complexity. We describe here special cases of factor analytic
representations. They are discussed in more detail by Ben-Akiva, Bolduc, and
Walker (2001) and Walker (2001).
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Heteroscedasticity  A heteroscedastic2 model is obtained when is the identity
matrix, and T is a diagonal matrix containing the alternative specific standard
deviations

Error components The error component formulation is based on fixed factor
loadings equal to 0 or 1. Entry in row i and column j of is 1 if error term
applies to alternative i, and 0 otherwise. A typical specification of is based on a
nested structure, where each alternative belongs to exactly one next. In that case, a
factor is associated with each nest, and the entry (i,j) of is 1 if alternative i belongs
to nest j. A cross-nested specification is also possible, by allowing an alternative to
belong to more than one nest. Finally, we note that the matrix T is usually diagonal
and must be estimated.

Factor analytic The term “factor analytic” usually refers to the formulation where
the loading factor is not imposed a priori and must be estimated. In general, the
matrix T is usually diagonal in that case.

General autoregressive process Assuming that the disturbances follow an
autoregressive process allows decreasing the model complexity while keeping a
reasonable level of generality. Interestingly, such an assumption fits in the
Generalized Factor Analytic Specification. We consider the case where the error term

is generated from a first-order autoregressive process:

where is a matrix of weights describing the influence of each component
of the error terms on the others, and is an (M×1) vector of error terms which are
IID standard normal distributed. We can write the process as

which is a special case of the Generalized Factor Analytic Specification with

Random parameters  We consider a utility function            and we assume that the

parameters are normally distributed with mean and variance-covariance matrix

TT’. Therefore, where are IID normal distribution. The utility function

can be written as

2 Heteroscedasticity here refers to different variances among the alternatives. We use
it in this context to refer to a diagonal variance-covariance matrix with potentially
different terms on the diagonal.
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which is a Generalized Factor Analytic formulation, with Using such a utility
function in a probit model does not cause any difficulty, as all random terms are
normally distributed. If a Multinomial Logit model is preferred, the formulation
contains both Gumbel and normal error terms, and the model becomes a Hybrid
Logit model, or Mixed Logit model, which is described in the next section.

Hybrid Logit Model

The Multinomial Probit with a Logit kernel model, called Hybrid Logit or Mixed
Logit, has been introduced by Bolduc and Ben-Akiva (1991). It is intended to bridge
the gap between Logit and Probit models by combining the advantages of both. It is
based on the following utility functions:

where are normally distributed and capture correlation between alternatives, and
are independent and identically distributed Gumbel variables. If the are given,

the model corresponds to a Multinomial Logit formulation:

where is the vector of unobserved random terms. Therefore, the
probability to choose alternative i is given by

where is the probability density function of This model is a generalization of
the Multinomial Probit Model when the distribution is a multivariate normal.
Other distributions may also be used. The earliest application of this model to capture
random coefficients in the Logit Model (see below) was by Cardell and Dunbar
(1980). More recent results highlighted the robustness of Hybrid Logit (see
McFadden and Train, 2000). We note that the Hybrid Logit model can be combined
with any Generalized Factor Analytic formulation. The random parameters model
presented above is an example of such a combination. We refer the reader to Ben-
Akiva et al. (2002) for a review of Hybrid Logit models.

Latent Class Choice Model

Latent class choice models are also designed to capture unobserved heterogeneity
(see Everitt, 1984, for an introduction to latent variable models). The underlying
assumption is that the heterogeneity is generated by discrete constructs. These
constructs are not directly observable and therefore are represented by latent classes.
For example, heterogeneity may be produced by taste variations across segments of
the population, or when choice sets considered by individuals vary (latent choice set).
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The latent class choice model is given by:

where S is the number of latent classes, is the vector of attributes of alternatives
and characteristics of decision-maker n, are the choice model parameters specific
to class s, is the choice set specific to class s, and is an unknown parameter
vector.

The model

is the class membership model, and

is the class-specific choice model (Kamakura and Russell, 1989, Gopinath, 1995).
Special case: latent choice sets A special case is the choice model with latent choice
sets:

where G is the set of all non-empty subsets of the universal choice set M, and
is a choice model. We note here that the size of G grows exponentially

with the size of the universal choice set.
The latent choice set can be modeled using the concept of alternative availability.

For such a model, a list of constraints or criteria is used to characterize the
availability of alternatives. For each alternative i, a binary random variable is
defined such that if alternative i is available to individual n, and 0 otherwise. A
list of constraints is defined as follows:

For example, in a path choice context, one may consider that a path is not available if
the ratio between its length and the shortest path length is above some threshold,
represented by a random variable. For example, the associated constraint for path i
could be:

where is the length of the shortest path, is the length of path i and a random
variable with zero mean. It means that, on average, paths longer than twice the length
of the shortest path are rejected.

The probability for an alternative to be available is given by

The latent choice set probability is then:
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If the availability criteria are assumed to be independent, we have

Swait and Ben-Akiva (1987) estimate a latent choice set model of mode choice in a
Brazilian city. See also Ben-Akiva and Boccara (1995) for a more detail analysis of
discrete choice models with latent choice sets.

2.3 Model estimation

The estimation of discrete choice models from sample data is a difficult and
important task. Most statistical packages provide estimation capabilities for simple
models, like the Multinomial Logit models. Dedicated commercial software packages
are available for the estimation of Nested-Logit models. Free software for estimation
of Hybrid, or Mixed, Logit models (emlab.berkeley.edu/users/train/software.html)
and GEV models (rosowww.epfl.ch/mbi/biogeme) is also available. However, these
packages do not cover the entire range of models, and a specific implementation of
an estimation procedure is sometimes necessary. We discuss here some issues related
to such implementation.

Maximum likelihood estimation is the most widely used technique for discrete
choice model estimation (see statistical textbooks, such as Sprott, 2000, and Severini,
2000). It aims at identifying the set of parameters maximizing the probability that a
given model perfectly reproduces the observations. It is a nonlinear programming
problem. The nature of the objective function and of the constraints determines the
type of solution algorithm that must be used.

The objective function of the maximum likelihood estimation problem for GEV
models is a nonlinear analytical function, as the probability density function has a
closed form. In general, the function is not concave (except for the Multinomial Logit
Model) and, therefore, significantly complicates the identification of a (global)
maximum. Most nonlinear programming algorithms (see Dennis and Schabel, 1983,
or Bertsekas, 1995) are designed to identify local optima of the objective function.
There exists some meta-heuristics designed to identify global optima (like genetic
algorithms, and simulated annealing) but none of them can guarantee that the
provided solution is a global optimum. Therefore, whatever algorithm is preferred,
starting it from different initial solutions is a good practice.

For the Probit or Hybrid-logit models, the objective function does not have an
analytical form and must be evaluated based on Monte Carlo (Metropolis and Ulam,
1949) or Quasi-Monte Carlo methods (Morokoff and Caflish, 1995). Contrarily to
MonteCarlo, Quasi-Monte Carlo techniques are deterministic. They require fewer
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“draws” than Monte-Carlo simulation to reach the same level of accuracy (see
Spanier and Maize, 1994).

Not all parameters of a model can be identified from the data. Parameter
identification and model normalization issues are important to analyze before
performing an actual estimation. We refer the reader to Ben-Akiva and Lerman
(1985) for a general discussion on such issues. Bunch (1991) and Bolduc (1992)
address the case of the Probit model. Walker (2001) provides a detailed analysis of
identification issues for the Hybrid Logit model.

The parameters to be estimated must verify some constraints. First, most of them
must lie within bounds in order for the model to be consistent with the theory (e.g.
the homogeneous parameters of GEV functions must be non-negative) or with their
intuitive interpretation (e.g. the coefficient for cost or travel time in a utility function
is usually non-positive). Moreover, some constraints have to be verified in order for
the model to be estimable (e.g. the sum of parameters must sum up to one in a
Cross-Nested Logit model). In the past, it was usually advised to ignore the bound
constraints, to eliminate other constraints by incorporating them in the objective
function, and to use unconstrained optimization algorithms. The increasing
complexity of the models, combined with the availability of efficient software
packages for constrained optimization motivate now the explicit management of
constraints in the estimation process.

2.4 Route Choice Applications

The route choice problem plays an important role in many transportation related
applications. In this section, we analyze its specific assumptions, and present some
models designed to capture this complex behavioral problem.

Given a transportation network composed of nodes, links, origins and
destinations; and given an origin o, a destination d and a transportation mode m, what
is the chosen route between o and d on mode m. This discrete choice problem has
specific characteristics. First, the universal choice set is usually very large. Second,
the decision-maker considers not all physically feasible alternatives. Third, the
alternatives are usually correlated, due to overlapping paths.

We now describe typical assumptions associated with route choice models.

Decision-Maker

The traveler’s characteristics most often used for route choice applications are:

Value-of-time. Obviously, travel time is a key attribute of alternative routes.
Its influence on behavior, however, may vary across individuals. The
sensitivity of an individual to travel time is usually referred to as the value-of-
time. It can be represented by a continuous variable (e.g., the dollar-value
equivalent of a minute spent traveling) or by a discrete variable identifying
the decision-maker’s value-of-time as low, medium or high.
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Access to information. Information about network conditions may
significantly influence route choice behavior. Therefore, it may be important
that a route choice model explicitly differentiates travelers with access to such
information from those without access. It is also an important policy variable.
It may be modeled by a single binary attribute (access/no access) or by
several binary variables identifying the type of information available to the
traveler (pre-trip information, on-board computer, etc.)

Trip purpose. The purpose of the trip may significantly influence the route
choice behavior. For example, a trip to work may be associated with a penalty
for late arrival, while a shopping trip would usually have no such penalty.

Alternatives

Identifying the choice set in a route choice context is a difficult task. Two main
approaches can be considered.

First, it may be assumed that each individual can potentially choose any path
between her/his origin and destination. The choice set is easy to identify, but the
number of alternatives can be very large, causing operational problems in estimating
and applying the model. Moreover, this assumption is behaviorally unrealistic.

Second, a restricted number of paths may be considered in the choice set. The
choice set generation can be deterministic or stochastic, depending on the analyst’s
knowledge of the problem.

Dial (1971) proposes to include in the choice set “reasonable” paths composed of
links that would not move the traveler farther away from her/his destination. The
labeling approach (proposed by Ben-Akiva et al., 1984) includes paths meeting
specific criteria, such as shortest paths, fastest paths, most scenic paths, paths with
fewest stop lights, paths with least congestion, paths with greatest portion of
freeways, paths with no left turns, etc.

Azevedo et al. (1993) propose the link elimination approach, where the shortest
path (according to a given impedance) is first calculated and introduced in the choice
set. Then, some links belonging to the shortest path are removed, and a the shortest
path in the modified network is computed and introduced in the choice set.

Cascetta and Papola (1998) propose an implicit probabilistic choice set generation
model, where the utility function associated with path i by individual n is defined as

where is a random variable with mean

are the attributes for availability and perception of the path and are

parameters to be estimated.
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Swait (2001) combines the probabilistic choice set generation with the route
choice model within a Cross-Nested structure.

Some recent models (Nguyen and Pallottino, 1987, Nguyen, Pallottino and
Gendreau, 1988) consider hyperpaths instead of paths as alternatives. A hyperpath is
a collection of paths with associated strategies at decision nodes. This technique is
particularly appropriate for a public transportation network.

Attributes

In describing the attributes of the alternatives to be included in the utility function,
we need to distinguish between link-additive and non-link-additive attributes.

If i is a path composed of links   is a link-additive attribute of i if

where is the corresponding attribute of link a. For example, the travel time on a
path is the sum of the travel times on links composing the path. Qualitative attributes
are in general non-link-additive. For example, a binary variable equal to one if the
path is a habitual path and 0 otherwise, is non link-additive. In the context of public
transportation, variables like transfers and fares are usually not link-additive. The
distinction is important because some models, designed to avoid path enumeration,
use link attributes and not path attributes.

Among the many attributes that can potentially be included in a utility function,
travel time is probably the most important. But what does travel time mean for the
decision-maker? How does she/he perceive travel time? Many models are based on
the assumption that most travelers are sufficiently experienced and knowledgeable
about usual network conditions and, therefore, are able to estimate travel times
accurately. This assumption may be satisfactory for planning applications using static
models. With the emergence of Intelligent Transportation Systems, models that are
able to predict the impact of real-time information have been developed. In this
context, the “perfect knowledge” assumption is contradictory with the ITS services
that provide information. Several approaches can be used to capture perceptions of
travel times. One approach represents travel time as a random variable in the utility
function. This idea was introduced by Burrell (1968) and is captured by a random
utility model. Also, the uncertainty or the variability of travel time along a given path
can be explicitly included as an attribute of the path.

In addition to travel time, the following attributes are usually included.

Path length. The length of the path is likely to influence the decision maker’s
choice. Also, this attribute is easy to measure. Note that it may be highly
correlated with travel time, especially in uncongested networks.

Travel cost. In addition to the obvious behavioral motivation, including travel
cost in the utility function is necessary to forecast the impact of tolls and
congestion pricing, for example. It is common practice to distinguish the so-
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called out-of-pocket costs (like tolls), which are directly associated with a
specific trip, from other general costs (like car operating costs).

Transit specific. Attributes specific to route choice in transit networks include
number of transfers, waiting and walking time and service frequency.

Others. Traffic conditions (e.g. level of congestion, volume of conflicting
traffic streams or pedestrian movements), obstacles (e.g. number of stop
signs, number of traffic lights, number of left turns against traffic), road types
(e.g. dummy variable capturing preference for freeways) and road condition
(e.g. surface quality, number of lanes, safety, scenery) are some of the other
attributes that may be considered. Whether to include them in the utility
function depends on their behavioral pertinence in a specific context, and on
data availability.

Finally, the level of path overlapping can also be included in the utility function of
a path. It is not one of its attributes per se. It is more a measure of how the
alternative is perceived within a choice set. Several formulations have been proposed
in the literature.
Commonality Factor. Cascetta et al. (1996) propose the following specification for
the commonality factor

where is the length3 of links common to paths i and j, and and are the overall
length of paths i and j, respectively. is a coefficient to be estimated. The
parameter may be estimated or constrained to a convenient value, often 1 or 2.

Considering the path choice example in Figure 1, the commonality factor for path
1 is zero because it does not overlap with any other path. The commonality factor for
paths 2a and 2b is

Path Size. The Path Size model, first proposed by Ben-Akiva and Bierlaire (1999),
is an application of the notion of elemental alternatives and size variables. In the
route choice context, we assume that an overlapping path may not be perceived as a
distinct alternative. Indeed, a path contains links that may be shared by several paths.
Hence, the size of a path with one or more shared links may be less than one. We
include in the utility function of path i for individual n a size variable defined by

3 or any other link-additive attribute
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and is the set of links in path i; and are the length of link a and path i,
respectively; is the link-path incidence variable that is one if link a is on path j and

0 otherwise; and is the length of the shortest path in Considering again the

path choice problem from Figure 1, the size of path 1 is 1, and the size of paths 2a
and 2b is

Generalized Path Size Ramming (2001) proposed a generalized formulation of the
Path Size where

and G is a function with paratemer g. The Exponential Path-Size formulation is

obtained with Note that corresponds to a normalized version of

the original Path Size model. Based on experiments on a case study in Boston,
Ramming (2001) observes a better behavior of the Path Size correction in terms of its
capability of reproducing observed data, compared to the Commonality Factor. Also,
it is observed that low values of may lead to counter-intuitive results, motivating the
generalized version.

Decision Rules

Shortest path. The simplest possible decision rule in the route choice context
assumes that each individual chooses the path with the highest utility. Models based
on deterministic utility maximization are supported by efficient algorithms to
compute shortest paths in a graph (e.g. Dijkstra, 1959, and Dial, 1969). However, the
behavioral limitations of this approach have motivated the development of stochastic
models based on the random utility model.

Logit route choice. A Multinomial Logit Model with an efficient algorithm for
route choice has been proposed by Dial (1971). Using the concept of “reasonable
paths” to define the choice set and assuming the paths attributes to be link-additive,
this algorithm avoids explicit path enumeration.

As described earlier, the IIA property of the Multinomial Logit Model is the major
weakness of Dial’s algorithm in the context of highly overlapping routes. Therefore,
its use is limited to networks with specific topologies. A Logit model may also be
used with a choice set generation model, such as the Labeling approach, that results
in a small size choice set with limited overlap.
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Probit route choice. Given the shortcomings of the Logit route choice model,
Probit models have been proposed in the context of stochastic network loading by
Burrell (1968), Daganzo and Sheffi (1977) and Yai et al. (1997). The two problems
in this case are the complexity of the variance-covariance matrix and the lack of an
analytical formulation for the probabilities. The covariance structure can be
simplified when path utilities are link-additive, the variance of link utility is
proportional to the utility itself, and the covariance of utilities of two different links is
zero. The use of a factor analytic formulation, where the matrix is the link-path
incidence matrix, enables to reduce the complexity of the model from the number of
paths in the network down to the number of links. A Monte Carlo or Quasi-Monte
Carlo simulation is often used to circumvent the absence of a closed analytical form.

Cross-Nested Logit route choice. Vovsha and Bekhor (1998) have proposed an
interesting Cross-Nested formulation, where each link of the network corresponds to
a nest, and each path to an alternative. The parameters of the Cross-Nested logit
are not estimated. They capture the network topology and, consequently, the path
overlapping. Note that this approach can be combined with attribute-based path
overlapping measures, like the commonality factor and the path-size.

Hybrid Logit route choice. Ramming (2001) has estimated a route choice model
based on Hybrid Logit. Although there are some issues regarding the number of
draws for the Simulated Maximum Likelihood Estimation, experiments on a case
study in Boston report a good behavior of the Hybrid Logit approach, especially
when it is combined with the Path Size overlapping attribute.

2.5 Departure Choice Applications

Modeling the choice of departure time appears in the context of dynamic traffic
assignment as an extension of the route choice problem. It is important to distinguish
the departure time choice itself and the choice of changing departure time. The latter
appears usually in the context of Traveler Information Systems, where individuals
may revisit a previous choice using additional information. We now describe typical
modeling assumptions associated with the departure time choice model.

Decision-Maker

The central traveler’s characteristic of departure time choice models is the
preferred arrival time at the destination. It is often presented as a time interval or
window with variable length reflecting schedule flexibility. Other relevant traveler’s
characteristics are the (monetary and psychological) penalties for early and late
arrivals. In the context of a departure time change, the individual’s “habitual”
departure time must also be known.
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Travelers generally use their expectations of travel time and “subtract” this from
their intended arrival time to determine what the departure time should be, with a
safety margin factored in. The magnitude of the safety margin depends on the travel
time variability and the penalties for late or early arrival. In this context, an intended
arrival time is the outcome of a choice and is not necessarily the same as the
preferred arrival time. Within some constraints, travelers may change their intended
arrival time in the process of making a departure time choice.

From travel diaries one can obtain data on actual departure and arrival times.
Preferred arrival times can be obtained only by a direct question. Such questions are
usually not included in travel diary surveys. Moreover, even when these questions
are included, the answers may be biased towards the actual or the intended arrival
time, since respondents may try to justify (to themselves and/or the interviewer) their
actual behavior when questioned about their preferences. Therefore, the preferred
arrival time characteristic may be measured with significant errors. The modeling
implications are considered below.

Alternatives

The choice set specification for departure time models is an intricate problem. First,
the continuous time must be discretized. A reasonable compromise must be found
between a fine temporal resolution and the model complexity. Indeed, there is a
potentially large number of alternatives, particularly for realistic dynamic traffic
applications. Second, the correlation among alternatives cannot be ignored,
especially when time intervals are short. Choosing between the 7:45-7:50 and 7:50-
7:55 time intervals differs from choosing between 7:45-7:50 and 8:45-8:50. In the
first case, the two alternatives are likely to share unobserved attributes. Third, the
perception of the alternatives depends on trip travel time. Most individuals round
time and the rounding may depend on the travel time and travel time variability. For
short trips, 7:52 may be rounded to 7:50, whereas for long trips it may be
approximated by 8:00.

The choice set generation consists of defining an acceptable range of departure
time intervals considered by an individual n. A common procedure is based on the
preferred arrival time Let be the feasible arrival time
interval, and let be the range of travel times. Then the interval of
acceptable departure times is

Overestimating the length of the acceptable or feasible departure time
interval should not cause errors if the model is otherwise well specified. The
tendency may be to attempt to reduce the number of alternatives in the model by
understating this interval. This, unfortunately, may cause significant errors. Small
(1987) analyzed the impact of truncating the departure time choice set. He concluded
that there is no problem if the true model is a Multinomial Logit Model. Some
adjustments are needed if a Cross-Nested Logit with ordered alternatives is assumed.

In the context of departure time change, the alternatives may be described in a
relative way. Antoniou et al. (1997) propose a choice set with five alternatives: do
not change, switch to an earlier or a later departure, by one or two time intervals.
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Attributes

Travel time is a key attribute of departure time alternatives. Travel time variability
also affects departure time choice through the above mentioned safety margin.
However, data on this attribute are rarely available and it is conveniently assumed to
be constant across the peak period. Other important attributes are the early and late
schedule delays. These are interactions of travel time and preferred arrival time, as
follows. Given a preferred arrival time a penalty-free interval is defined:

It is assumed that the individual suffers no penalty if the arrival
times lies within the interval. The actual arrival time is equal to

where  is the travel time if the trip starts at time  The
early schedule delay is defined as

and the late schedule delay is defined as

In the context of a change in departure time, individuals may also assign a penalty
to departure times that are significantly different from their habitual departure times,
due to the inertia associated with habits.

The key data requirement concerns the travel times for the alternative departure
times, denoted by TT(DT). A calibrated dynamic traffic assignment or a traffic
simulation model with sufficiently high temporal resolution could be used to predict
these travel times.

Decision Rules

Deterministic models assume that there are no unobserved effects. The chosen
departure time is determined by maximizing a utility (or minimizing a generalized
cost) function that is a linear combination of the above-mentioned attributes. A
deterministic departure time choice model, when applied as part of an equilibrium
model with congested networks, may result in a spread of demand across a time
interval with a constant utility (or generalized cost). Across this constant utility
interval the change in travel time disutility is equal to the negative of the change in
schedule delay disutility. If schedule delay disutility changes linearly, then the
equilibrium travel time also changes linearly.

It is clearly unreasonable that such a constant utility condition and a linear trend of
travel time will hold over long time intervals. Thus, to achieve a reasonable spread
of departure times, an application of a deterministic model must account for a high
degree of heterogeneity. To a limited extent, heterogeneity may be captured by
market segmentation (as in multiple classes of travelers). However, for the same
considerations that apply to mode choice models, there are significant unobserved
effects that can only be captured by continuous distributions using probabilistic
departure time choice models.
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Probabilistic Choice Models. Departure time choice models have been estimated
using both revealed preferences (RP) and stated preferences (SP) data. Availability
of suitable RP data sets for departure time choice is limited because data on travel
times for the different departure time alternatives are usually unavailable at sufficient
detail. SP data have been used to estimate models of the choice of changing
departure time.

The cumulative experience in estimating RP departure time choice models is very
limited. Small (1982), Hendrickson and Plank (1984) and Cascetta et al. (1992) used
RP data to estimate Logit models of departure time choice. Small (1987) extended
his earlier work with a Cross-Nested Logit model, where m adjacent departure time
intervals are nested together, capturing their intrinsic correlation. A single departure
time interval belongs to m different nests, source of the cross-nested structure.

de Palma, Fontan and Mekkaoui (2000) estimate the distribution of desired
departure times for public transportation users, based on traffic counts, using a non
parametric regression approach.

de Palma and Fontan (2001) calibrate a Hybrid Logit model with SP data,
collected from a computer-assisted survey, with personalized scenarios. In the
context of departure time change, Antoniou et al. (1997) proposed a Nested Logit
Model based on SP data for joint choice of departure time and route. Liu and
Mahmassani (1998) used SP data to estimate a Probit model where day-to-day
correlation is assumed.

Choice Models with Latent Variables. The departure time choice model considered
so far is the conditional probability of departure time given a known preferred arrival
time, or preferred arrival time window. It was argued above that preferred arrival
times cannot be observed from travel diaries and are measured with significant errors.
Thus, the proper modeling framework requires that the preferred arrival time be
treated as a latent variable. A marginal departure choice probability is then
calculated by integrating the model over a distribution of preferred arrival time. The
parameters of this preferred arrival time distribution are unknown and need to be
estimated jointly with the unknown parameters of the conditional departure time
probability. Responses to survey questions about preferred arrival times can be used
by adding the corresponding measurement equations or by estimating a model of the
joint probability of the departure time choice and the reported preferred arrival time.
See Ben-Akiva et al. (1997) for more detail concerning this modeling framework.

2.5 Conclusion

Discrete choice methods are constantly evolving to accommodate the requirements of
specific applications. This is an exciting field of research, where a deep
understanding of the underlying theoretical assumptions is necessary both to apply
the models and develop new ones. In this Chapter, we have summarized the
fundamental aspects of discrete choice theory, and we have introduced recent model
developments, illustrating their richness. A discussion on route choice and departure
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time choice applications have shown how specific aspects of real applications must
be addressed.
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3 ACTIVITY-BASED MODELING OF
TRAVEL DEMAND

Chandra R. Bhat and Frank S. Koppelman

3.1 Introduction and Scope

Since the beginning of civilization, the viability and economic success of communities
have been, to a major extent, determined by the efficiency of the transportation
infrastructure. To make informed transportation infrastructure planning decisions,
planners and engineers have to be able to forecast the response of transportation
demand to changes in the attributes of the transportation system and changes in the
attributes of the people using the transportation system. Travel demand models are
used for this purpose; specifically, travel demand models are used to predict travel
characteristics and usage of transport services under alternative socio-economic
scenarios, and for alternative transport service and land-use configurations.

The need for realistic representations of behavior in travel demand modeling is
well acknowledged in the literature. This need is particularly acute today as emphasis
shifts from evaluating long-term investment-based capital improvement strategies to
understanding travel behavior responses to shorter-term congestion management
policies such as alternate work schedules, telecommuting, and congestion-pricing. The
result has been an increasing realization in the field that the traditional statistically-
oriented trip-based modeling approach to travel demand analysis needs to be replaced
by a more behaviorally-oriented activity-based modeling approach. The next two
sections discuss the basic concepts of the trip-based and the activity-based approaches
to travel demand analysis.

The Trip-Based Approach

The trip based approach uses individual trips as the unit of analysis and usually
includes four sequential steps. The first, trip generation, step involves the estimation
of the number of home-based and non-home based person-trips produced from, and
attracted to, each zone in the study area. The second, trip distribution, step determines
the trip-interchanges (i.e., number of trips from each zone to each other zone). The
third, mode choice, step splits the person-trips between each pair of zones by travel
mode obtaining both the number of vehicle trips and number of transit trips between
zones. The fourth, assignment, step assigns the vehicle trips to the roadway network
to obtain link volumes and travel times and the person trips to the transit network.
Time-of-day of trips is either not modeled or is modeled in only a limited way, in the
trip-based approach. Most commonly, time is introduced by applying time-of-day
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factors to 24-hour travel volumes at the end of the traffic assignment step or at the end
of the trip generation step.

A fundamental conceptual problem with the trip-based approach is the use of trips
as the unit of analysis. Separate models are developed for home-based trips and non-
home based trips, without consideration of dependence among such trips. Further, the
organization (scheduling) of trips is not considered; that is, there is no distinction
between home-based trips made as part of a single-stop sojourn from home and those
made as part of a multiple-stop sojourn from home. Similarly, there is no distinction
between non-home based trips made during the morning commute, evening commute,
from work, and as part of pursuing multiple stops in a single sojourn from home. Thus,
the organization of trips and the resulting inter-relationship in the attributes of multiple
trips is ignored in all steps of the trip-based method. This is difficult to justify from a
behavioral standpoint. It is unlikely that households will determine the number of
home-based trips and the number of non-home based trips separately. Rather, the needs
of the households are likely to be translated into a certain number of total activity stops
by purpose followed by (or jointly with) decisions regarding how the stops are best
organized. Similarly, the location of a stop in a multistop sojourn (or tour) is likely to
be affected by the location of other stops on the tour. Such multistop tours are
becoming increasingly prevalent (see Gordon et al., 1988; Lockwood and Demetsky,
1994) and ignoring them in travel analysis means "discarding an element that is
doubtless important in the individual's organization of time and space" (Hanson,
1980). Also, in a multistop tour from home consisting of, say, a grocery shopping stop
and a social visit, the trip-based approach fails to recognize that the travel mode for all
three trips (home to shop, shop to visit, and visit to home) will be the same. The travel
mode chosen will depend on various characteristics of all three trips (and not any one
single trip) and, consequently, these trips cannot be studied independently.

The behavioral inadequacy of the trip-based approach, and the consequent
limitations of the approach in evaluating demand management policies, has led to the
emergence of the activity-based approach to demand analysis.

The Activity-Based Approach

The activity-based approach to travel demand analysis views travel as a derived
demand; derived from the need to pursue activities distributed in space (see Jones et
al., 1990 or Axhausen and Gärling, 1992). The approach adopts a holistic framework
that recognizes the complex interactions in activity and travel behavior. The conceptual
appeal of this approach originates from the realization that the need and desire to
participate in activities is more basic than the travel that some of these participations
may entail. By placing primary emphasis on activity participation and focusing on
sequences or patterns of activity behavior (using the whole day or longer periods of
time as the unit of analysis), such an approach can address congestion-management
issues through an examination of how people modify their activity participations (for
example, will individuals substitute more out-of-home activities for in-home activities
in the evening if they arrived early from work due to a work-schedule change?).
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The shift to an activity-based paradigm has also received an impetus because of
the increased information demands placed on travel models by the 1990 Clean Air Act
Amendments (CAAAs). These amendments require the inclusion of transportation
control measures (TCMs) in transportation improvement programs for MPOs in
heavily polluted non-attainment areas and, by state law, for all non-attainment areas
in California. Some TCMs, such as HOV lanes and transit extensions, can be
represented in the existing modeling framework; however, non-capital improvement
measures such as ridesharing incentives, congestion pricing and employer-based
demand management schemes can not be so readily represented (Deakin, Harvey and
Skabardonis, Inc. 1993, Chapter 2). The ability to model both individual activity
behavior and interpersonal linkages between individuals, a core element of activity
modeling, is required for the analysis of such TCM proposals. The CAAAs also require
travel demand models to provide (for the purpose of forecasting mobile emission levels)
link flows at a high level of resolution along the time dimension (for example, every
30 minutes or an hour as opposed to peak-period and off-peak period link flows) and
also to provide the number of new vehicle trips (i.e., cold starts) which begin during
each time period. Because of the simplistic, "individual-trip" focus of the trip-based
models, they are not well-equipped to respond to these new requirements (see
Cambridge Systematics, Inc., 1994; Chapter 5). Since the activity-based approach
adopts a richer, more holistic approach with detailed representation of the temporal
dimension, it is better suited to respond to the new requirements.

The activity-based approach requires time-use survey data for analysis and
estimation. A time-use survey entails the collection of data regarding all activities (in-
home and out-of-home) pursued by individuals over the course of a day (or multiple
days). Travel constitutes the medium for transporting oneself between spatially dis-
located activity participations. The examination of both in-home and out-of-home
activities facilitates an understanding of how individuals substitute out-of-home
activities for in-home activities (or vice-versa) in response to changing travel
conditions. This, in turn, translates to an understanding of when trips are generated or
suppressed.

It is important to note that administrating time-use surveys is similar to
administrating household travel surveys, except for collection of in-home as well as
out-of-home activities. The information elicited from respondents is a little more
extensive in time-use surveys compared to travel surveys, but experience suggests that
the respondent burden or response rates are not significantly different between time-use
and travel surveys (see Lawton and Pas, 1996 for an extensive discussion).

The activity-based approach does require more careful and extensive preparation
of data to construct entire "sequences" of activities and travel. On the other hand, such
intensive scrutiny of data helps identify data inconsistencies which might go unchecked
in the trip-based approach (for example, there might be "gaps" in an individual's travel
diary because of non-reporting of several trips; these will be identified during data
preparation for activity analysis, but may not be identified in the trip-based approach
since it highlights individual trips and not the sequence between trips and activities).
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The rest of this chapter focuses on the activity-based approach to travel demand
forecasting. The next section traces the history of research on activity analysis. Section
3.3 presents an overview of the modeling methods being used in activity-travel
analysis. Section 3.4 discusses how activity-based travel research has been influencing
travel demand analysis. Section 3.5 concludes the chapter by identifying important
future research topics in the activity analysis area.

3.2  History of Research on Activity Analysis

The seminal works by Chapin (1971), Hagerstrand (1970) and Cullen and Godson
(1975) form the basis for much of the research on activity analysis. Chapin (1971)
proposed a motivational framework in which societal constraints and inherent
individual motivations interact to shape revealed activity participation patterns.
Hagerstrand (1970), on the other hand, emphasized the constraints imposed by the
spatial distribution of opportunities for activity participation and temporal
considerations on individual activity participation decisions, thus laying the foundation
for what is now commonly referred to as the space-time "prism". Cullen and Godson
(1975) argued that the spatial and temporal constraints identified by Hagerstrand are
fundamentally characterized by varying degrees of rigidity (or flexibility). They
undertook extensive empirical analysis to indicate that temporal constraints are more
rigid than spatial constraints and that the rigidity of temporal constraints is closely
related to activity type of participation (with more temporal rigidity associated with
work-related activities compared to leisure activities).

Activity-based travel research has received much attention and seen considerable
progress since these early studies. In the following review, we will use the term
"activity episode" to refer to a discrete activity participation. The term "activity" refers
to a collection of episodes of the same type or purpose over some time unit (say a day
or a week). The review is undertaken in two categories. The first category focuses on
participation decisions associated with a single activity episode. The second category
examines individual decisions regarding activity episode patterns (that is, multiple
activity episodes and their sequencing).

Single Activity Episode Participation

The studies in this section focus on the participation of individuals in single activity
episodes, along with one or more accompanying characteristics of the episode such as
duration, location, or time window of participation. The effect of household
interdependencies on individual activity choice is represented in these models in the
form of simple measures such as presence of working spouse, number of adults, and
household structure.

Damm (1980) developed a multivariate daily model of participation and duration
in out-of-home non-work activities (no distinction between activity types is made). He
partitions the day into five periods based on the work schedule and introduces
interdependence in activity participation and duration among time periods using
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variables which measure the "time spent in other periods". Temporal constraints are
represented in the model in the form of variables like duration of work, flexibility of
work hours and time spent in other periods. Spatial fixity of work place (an indicator
of whether the individual has a fixed work location or not), accessibility, years lived
at residence and presence of driver's license are defined to represent spatial constraints.
Other socio-economic variables are included to represent the influence of lifecycle (eg.,
number of children), potential allocation process (eg., work status of spouse), and other
familial responsibilities on individual activity participation.

Van der Hoorn (1983) developed an activity episode model for the choice of
activity type and location of the episode. The three available locations in his analysis
are "at home", "in town" and "outside town" (the term "town" representing the area of
residence). Separate logit models are proposed for each previous location, each of five
person groups, and for the workweek and weekend. Activity episode choice is regarded
as being conditional on the location of the previous activity episode, but not on the
activity type performed at the previous location. Location choice is dependent on the
previous location and on the next activity episode. The restrictions imposed by external
constraints and mandatory activities are taken into account while defining the choice
set of available activities and locations.

Hirsh et al. (1986) developed a dynamic theory of weekly activity behavior and
modified it suitably to model shopping activity in Israel. They recognized the benefit
of studying activities on the basis of a weekly cycle rather than on a daily period. The
attributes used in the model are similar to the ones used by Damm and van der Hoorn.

Mannering and his colleagues (Mannering et al., 1994, Kim et al., 1993) analyzed
home-stay duration between successive participations in out-of-home activity episodes.
Bhat (1996a) and Neimeier and Morita (1996), on the other hand, formulated and
estimated models for the duration of out-of-home activity episodes. The results from
these studies suggest that the socio-demographics of the individual's household and the
individual (such as household size, income earnings, age, sex, etc.), and the work
schedule characteristics of the individual, have a substantial effect on the duration of
home-stay and out-of-home activity episodes. All the duration studies listed above use
a hazard-based duration structure in their analyses.

Activity Episode Pattern Analysis

In this section, we review studies which examine activity episode patterns (i.e.,
multiple activity episodes and their sequence). Some of these studies focus only on
activity episode scheduling and consider the generation of activity episodes and their
attributes as exogenous inputs. Such studies are reviewed in the next section. Other
studies analyze both activity episode generation and scheduling, and these are reviewed
in the subsequent section.

Activity Episode Scheduling A fundamental tenet of the activity episode scheduling
approach to the analysis of activity/travel patterns is that travel decisions are driven by



the collection of activities that form an agenda for individual participation. Travel
patterns are viewed as arising from a more fundamental activity scheduling process.
Activity scheduling is affected by spatial/temporal constraints of travel, specifications
of precedence among activities, requirements to be with other family members at
particular times and places (coupling constraints), and available individual
transportation supply environment (the allocation of activities between household
members that shapes the activity agenda of each individual and the allocation of
household transportation supply between members is presumed to be exogenous in
these studies).

Activity episode scheduling models generally take the structure of a computerized
production system which comprises a set of rules in the form of condition-action pairs
(see Newell and Simon, 1972). Studies in the psychology field suggest that a
production system is consistent with the way in which humans perceive, appraise, and
respond to spatial and aspatial information within the context of limited-information
processing ability (Gärling et al., 1994).
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One of the earliest scheduling models was CARLA, developed by the Oxford
University Transport Studies Unit (Clarke 1986). This model uses the list of activities
to be scheduled and their durations to produce all feasible activity patterns in response
to a change in the travel environment (for example, transit service improvements or
cuts). It does so through the use of a branch-and-bound based combinatorial algorithm
which reorganizes a given activity program and selects only those patterns which are
feasible in terms of spatio-temporal and inter-personal constraints.

Recker et al. (1986a, 1986b) developed another scheduling model called
STARCHILD. Their model partitions the daily scheduling process into two stages. In
the first stage (also referred to as the pre-travel stage), the individual decides on a
planned activity episode schedule based on a pre-determined directory of activities and
their duration, location and time window for participation. STARCHILD models the
selection of a planned activity program by generating distinct non-inferior patterns
using combinatorics and then applying a logit choice model to establish the pattern
choice with highest utility. The assignment of a utility value to each pattern is a
function of the amount of time in the pattern associated with activity participation, wait
time and travel time. The planned activity episode schedule is continuously revised and
updated in the second dynamic scheduling stage circumstances or new activity
demands. More recently, Recker (1995a) has extended the STARCHILD approach to
include a mathematical programming formulation for the choice of an activity-travel
pattern from several possible patterns.

Gärling et al. (1989) proposed yet another activity scheduling model labeled
SCHEDULER. This computational model assumes the presence of a long term
calendar (an agenda of activity episodes with duration, appointment details and
preference) at the start of any time period. A small set of episodes with high priority
are selected from this long term "calendar" and stored in a short term calendar as the
subset of episodes to be executed in the short-run. This activity subset is sequenced, and
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activity locations determined based on a "distance-minimizing" heuristic procedure
(see Axhausen and Gärling for a detailed review). SMASH (Ettema et al., 1993) is a
development of the SCHEDULER framework in which heuristic scheduling rules are
specified and tested.

A more recent scheduling model is the adaptation simulation system labeled
AMOS (for Activity-MObility Simulator) developed by Kitamura et al. (1996) to
examine the short-term responses to Transportation Control Measures (TCMs). The
model takes an observed daily activity-travel pattern of an individual (baseline pattern)
and determines an adaption choice (for example, do nothing, change mode, change
departure time, etc.) to a TCM using a response option generator.

Activity Episode Generation and Scheduling The studies reviewed in this section
attempt to capture individual activity/travel patterns by focusing on the mechanism by
which individual activities are generated and sequenced.

Kitamura (1983) studied episode sequencing and the tendencies or preferences in
the formation of the set of activities to be pursued. A sequential history dependent
approach is taken (sequential in that the probability of a given set of activities being
chosen and pursued in a particular order is represented by a set of sequential and
conditional probabilities). He found a consistent hierarchical order in sequencing
episodes (with the less-flexible activities being pursued earlier). Kitamura and
Kermanshah (1983) adopted the same sequential view in their extension of the above
study to include the time dimension of activity choice. Adler and Ben Akiva (1979)
examined inter-trip linkages from a simultaneous decision perspective, i.e, on the
premise that the individual plans and pre-determines her/his daily travel schedule. The
choice alternatives in this approach are entire daily patterns. However, the daily
patterns are described by rather simple aggregate measures such as the mode used in
travel and number of tours in the pattern. Golob (1986) also used a simultaneous
decision approach, though his focus was on trip-chains or tours rather than daily
patterns. The spatial and temporal dimensions are suppressed in this analysis. A set of
different types of trip-chains are identified and modeled as dependent variables. A
multivariate statistical technique (non-linear canonical correlation analysis) is
employed for the analysis. Other studies of inter-trip linkage are Kitamura (1984),
Nishii et al (1988) and O'Kelly & Miller (1984).

More recently, Ben-Akiva and Bowman (1994) have estimated a utility-based
choice model of daily activity schedule of individuals that comprises a nested logit
model of activity pattern choices (i.e., purposes, priorities and structure of the day's
activities and travel) and tour choices (mode choice, destination choice of stops in
tours, and departure time from home and from the "primary" activity in tour). Similar
efforts by Wen and Koppelman (1997, 1999) include generation and allocation of
maintenance stops and automobiles to household members but excludes mode and
destination choice. In contrast to the utility-maximizing discrete choice formulations
of Ben-Akiva and Bowman and Wen and Koppelman, Vause (1997) proposes the use
of a rule-based mechanism to restrict the number of activity-related choices available



46 Handbook of Transportation Science

to an individual as well as for choice selection from the restricted choice set. Vause
emphasizes the need to avoid the use of a single choice strategy in modeling and
advances the use of the rule-based mechanism as a method to simulate differentchoice
strategies (such as satisfaction, dominance, lexicographic and utility) within the same
operational framework.

Vaughn, Speckman and Pas (Vaughn et al, 1997, and Speckman et al, 1997)
developed a statistical approach to generate a set of baseline household activity patterns
including the number and type of each activity episode and its duration, the number of
home-based and work/school-based tours and start and end times for tours for a
synthetic population represented by a continuous path through space and time. The
statistical (as opposed to behavioral) basis of this approach raises questions about its
use in prediction. However, it could provide initial travel-activity patterns for input to
adaptive modeling systems such as SMASH and AMOS.

The studies of episode patterns discussed thus far either do not model the temporal
dimension of episodes or assume broad time periods in the analysis. More recently, two
approaches have been proposed to model activity episode generation and scheduling
within the context of a continuous time domain. The first is the Prism-Constrained
Activity-Travel Simulator proposed by Kitamura and Fujii, 1998 and the other is the
Comprehensive Activity-Travel Generation for Workers (CATGW) model system
proposed by Bhat and Singh (1999). These two studies are discussed in section 4.2
under the heading of "Emergence of Comprehensive Activity-based Travel Demand
Models".

3.3  Modeling Methods in Activity-Travel Analysis

The methods used in activity-based travel analysis include discrete choice models as
well as other methods that accommodate non-discrete variables in activity modeling.
The latter methods have emerged more recently because of the need to model travel as
part of a larger (and holistic) activity-travel pattern and involve relatively non-
traditional (in the travel analysis field) methodologies such as duration analysis and
limited-dependent variable models. In this section, we discuss these various methods.
The material here is drawn liberally from Bhat (1997a), though in a substantially
condensed form.

Discrete Choice Models

The multinomial logit (MNL) model has been the most widely used structure for
modeling discrete choices in travel behavior analysis. The random components of the
utilities of the different alternatives in the MNL model are assumed to be independent
and identically distributed (IID) with a type I extreme-value (or Gumbel) distribution
(McFadden, 1973). The MNL model also maintains an assumption of homogeneity in
responsiveness to attributes of alternatives across individuals (i.e., an assumption of
response homogeneity). Finally, the MNL model also maintains an assumption that the
error variance-covariance structure of the alternatives is identical across individuals
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(i.e., an assumption of error variance-covariance homogeneity). The three assumptions
together lead to the simple and elegant closed-form mathematical structure of the
MNL. However, these assumptions also leave the MNL model saddled with the
"independence of irrelevant alternatives" (IIA) property at the individual level (Ben-
Akiva and Lerman, 1985). In the next three sections, we will discuss generalizations
of the MNL structure along each of the three dimensions mentioned above: a)
Relaxation of the IID (across alternatives) error structure, b) Relaxation of response
homogeneity, and c) Relaxation of the error variance-covariance structure
homogeneity. While we discuss each of the dimensions separately, one can combine
extensions across different dimensions to formulate several more generalized and
richer structures.

Relaxation of the IID (Across Alternatives) Error Structure The rigid inter-
alternative substitution pattern of the multinomial logit model can be relaxed by
removing, fully or partially, the IID assumption on the random components of the
utilities of the different alternatives. The IID assumption can be relaxed in one of three
ways: a) allowing the random components to be correlated while maintaining the
assumption that they are identically distributed (identical, but non-independent random
components), b) allowing the random components to be non-identically distributed
(differentvariances), but maintaining the independence assumption (non-identical, but
independent random components), and c) allowing the random components to be non-
identical and non-independent (non-identical, non-independent random components).
Each of these alternatives is discussed below.

Identical, Non-Independent Random Components The distribution of the random
components in models which use identical, non-independent random components can
be specified to be either normal or type I extreme value. Discrete choice literature has
mostly used the type I extreme value distribution since it nests the multinomial logit
and results in closed-form expressions for the choice probabilities.

The models with the type I extreme value error distribution belong to the
Generalized Extreme Value (GEV) class of random utility-maximizing models. Five
model structures have been formulated and applied within the GEV class. These are:
the Nested Logit (NL) model, the Paired Combinatorial Logit (PCL) model, the cross-
nested logit (CNL) model, the Ordered GEV (OGEV) model, and the Multinomial
Logit-Ordered GEV (MNL-OGEV) model.

The nested logit (NL) model permits covariance in random components among
subsets (or nests) of alternatives (each alternative can be assigned to one and only one
nest). Alternatives in a nest exhibit an identical degree of increased sensitivity relative
to alternatives not in the nest (Williams, 1977, Daly and Zachary, 1978, Daganzo and
Kusnic, 1993).

The paired combinatorial logit (PCL) model initially proposed by Chu (1989) and
recently examined in detail by Koppelman and Wen (1996) generalizes, in concept, the
nested logit model by allowing differential correlation between each pair of
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alternatives. While the nested logit model is not nested within the PCL structure, an
appropriate constrained PCL closely approximates the nested logit model.

Another generalization of the nested logit model is the cross-nested logit (CNL)
model of Vovsha (1996). In this model, an alternative need not be exclusively assigned
to one nest as in the nested logit structure. Instead, each alternative can be
probabilistically assigned to multiple nests. Vovsha proposes a heuristic procedure for
estimation of the CNL model.

The ordered GEV model was developed by Small (1987) to accommodate
correlation among the unobserved random utility components of alternatives close
together along a natural ordering implied by the choice variable (examples of such
ordered choice variables might include car ownership, departure time of trips, etc.).

The MNL-OGEV model formulated by Bhat (1998b) generalizes the nested logit
model by allowing adjacent alternatives within a nest to be correlated in their
unobserved components.

The advantage of all the GEV models discussed above is that they allow partial
relaxations of the independence assumption among alternative error terms while
maintaining closed-form expressions for the choice probabilities. The problem with
these models is that they are consistent with utility maximization only under rather
strict (and often empirically violated) restrictions on the dissimilarity parameters. The
origin of these restrictions can be traced back to the requirement that the variance of
the joint alternatives be identical.

Non-Identical, Independently Distributed Random Components The concept that
heteroscedasticity in alternative error terms (i.e., independent, but not identically
distributed error terms) relaxes the IIA assumption is not new (see Daganzo, 1979), but
has received little (if any) attention in travel demand modeling and other fields. Four
models have been proposed which allow non-identical random components. The first
is the negative exponential model of Daganzo (1979), the second is the heteroscedastic
multinomial logit (HMNL) model of Swait and Stacey (1996), the third is the oddball
alternative model of Recker (1995b) and the fourth is the heteroscedastic extreme-value
(HEV) model of Bhat (1995).

Daganzo (1979) used independent negative exponential distributions with different
variances for the random error components to develop a closed-form discrete choice
model which does not have the IIA property. His model has not seen much application
since it requires that the perceived utility of any alternative not exceed an upper bound.

Swait and Stacey (1996) allowed heteroscedasticity by specifying the variance of
the alternative error terms to be functions of observed alternative characteristics. The
error terms themselves are assumed to be type I extreme-value. The scale parameter
characterizing the variance of each alternative i is written as where
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is a vector of attributes associated with alternative i and is a corresponding vector
of parameters to be estimated. The resulting model has a closed-form structure.

Recker (1995b) proposed the oddball alternative model which permits the random
utility variance of one "oddball" alternative to be larger than the random utility
variances of other alternatives. This situation might occur because of attributes which
define the utility of the oddball alternative, but are undefined for other alternatives.
Then, random variation in the attributes that are defined only for the oddball
alternative will generate increased variance in the overall random component of the
oddball alternative relative to others.

Bhat (1995) formulated the heteroscedastic extreme-value (HEV) model which
assumes that the alternative error terms are distributed with a type I extreme value
distribution. The variance of the alternative error terms are allowed to be different
across all alternatives (with the normalization that the error terms of one of the
alternatives has a scale parameter of one for identification). Bhat develops an efficient
Gauss-Laguerre quadrature technique to approximate the one-dimensional integral in
the choice probabilities of the HEV model. The reader is referred to Hensher (1998a;
1998b) and Hensher et al. (1999) for applications of the HEV model to estimation from
revealed and stated preference data.

The advantage of the heteroscedastic class of models discussed above is that they
allow a flexible cross-elasticity structure among alternatives than many of the GEV
models discussed earlier. Specifically, the models (except the oddball model) permit
differential cross-elasticities among all pairs of alternatives. The limitation (relative to
the GEV models) is that the choice probabilities do not have a closed-form analytical
expression in the HEV model.

Non-Identical, Non-Independent Random Components Models with non-identical, non-
independent random components use one of two general structures: the first is an error-
components structure and the second is the general multinomial probit (MNP)
structure.

The error-components structure partitions the overall error into two components:
one component which allows the random components to be non-identical and non-
independent, and the other component which is specified to be independent and
identically distributed across alternatives. In particular, consider the following utility
function for alternative i:

where and are the systematic and random components ofutility, and  is further
partitioned into two components, and is a vector of observed data associated
with alternative i, is a random vector with zero mean and density is the
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variance-covariance matrix of the vector and is independently and identically
standard distributed across alternatives with density function f(.). The component
induces heteroscedasticity and correlation across unobserved utility components of the
alternatives (see Train, 1995). While different distributional assumptions might be
made regarding f(.) and g(.), it is typical to assume a standard type I extreme value for
f(.), and a normal distribution for g(.). This results in a error-components model with
a logit kernel. On the other hand, if a standard normal distribution is used for f(.), the
result is a error-components probit model. Both these structures will involve integrals
in the choice probability expressions which do not have a closed-form solution. The
estimation of these models is achieved using logit simulators (in the first case) or probit
simulators (in the second case). Different and very general patterns
of heteroscedasticity and correlation in unobserved components among alternatives can
be generated by appropriate specification of the and vectors (see Bhat, 1998c,
Ben-Akiva and Bolduc, 1996 and Brownstone and Train, 1999).

The general multinomial probit (MNP) structure does not partition the error terms,
and estimates (subject to certain identification considerations) the variance-covariance
matrix of the overall random components among the different alternatives (see Bunch
and Kitamura, 1990; Lam, 1991; and Lam and Mahmassani, 1991). However,
McFadden and Train (1996) have shown that the error-components formulation can
approximate a multinomial probit formulation as closely as one needs it to. Further, the
error-components models can be estimated using simulators which are conceptually
simple, easy to program and inherently faster than simulators for the MNP model (see
Brownstone and Train, 1999).

Relaxation of Response Homogeneity The standard multinomial logit, and other
models which relax the IID assumption across alternatives, typically assume that the
response parameters determining the sensitivity to attributes of the alternatives are the
same across individuals in the population. However, if such an assumption is imposed
when there is response heterogeneity, the result is biased and inconsistent parameter
and choice probability estimates (see Chamberlain, 1980).

Response heterogeneity may be accommodated in one of two ways. In the first
approach, the varying coefficients approach, the coefficients on alternative attributes
are allowed to vary across individuals while maintaining a single utility function. In
the second approach, the segmentation approach, individuals are assigned to segments
based on their personal/trip characteristics, and a separate utility function is estimated
for each segment. Each of these approaches is discussed next.

Varying Coefficients Approach Consider the utility  that an individual q associates
with alternative i and write it as:

where is an individual-invariant bias constant, is a vector of observed individual
characteristics, is a vector of parameters to be estimated, is a random term
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representing idiosyncracies in preferences, and is a vector representing the
responsiveness of individual q to a corresponding vector of alternative-associated
variables The terms may be specified to have any of the structures discussed in
Section 3.2. Conditional on and the assumption regarding the terms, the form
of the conditional choice probabilities can be developed. The unconditional choice
probabilities corresponding to the conditional choice probabilities will depend on the
response heterogeneity specification adopted for the vector. A general heterogeneity
specification involves allowing each element of the vector to vary across
individuals based on observed as well as unobserved individual characteristics:

where is a vector of relevant observed individual
characteristics and is a term representing random tastevariation across individuals
with the same observed characteristics The exponential form is used to ensure the
appropriate sign on the response coefficients: a '+' sign is applied for a non-negative
response coefficient and the '-' sign is applied for a non-positive response coefficient.
is typically assumed to be normally distributed. The random response specification does
not exhibit the restrictive independence from irrelevant alternatives (IIA) property even
if the IID error assumption across alternatives of the MNL is maintained (see Bhat,
1998d).

Segmentation Approaches Two segmentation approaches may be identified depending
on whether the assignment of individuals to segments is exogenous (deterministic) or
endogenous (probabilistic).

The exogenous segmentation approach to capturing heterogeneity assumes the
existence of a fixed, finite number of mutually-exclusive market segments (each
individual can belong to one and only one segment). The segmentation is based on one
or two key socio-demographic variables (sex, income, etc.). Within each segment, all
individuals are assumed to have identical preferences and identical sensitivities to
level-of-service variables (i.e., the same utility function). Typically, very few (one or
two) demographic variables are used for segmentation. The advantage of the exogenous
segmentation approach is that it is easy to implement. The disadvantage is that its
practicality comes at the expense of suppressing potentially higher-order interaction
effects of the segmentation variables on response to alternative attributes.

The endogenous market segmentation approach attempts to accommodate
heterogeneity in a practical manner not by suppressing higher-order interaction effects
of segmentation variables (on response to alternative attributes), but by reducing the
dimensionality of the segment-space. Each segment, however, is allowed to be
characterized by a large number of segmentation variables. Individuals are assigned
to segments in a probabilistic fashion based on the segmentation variables. Since this
approach identifies segments without requiring a multi-way partition of data as in the
exogenous market segmentation method, it allows the use of many segmentation
variables in practice and, therefore, facilitates incorporation of the full order of
interaction effects of the segmentation variables on preference and sensitivity to
alternative attributes (see Bhat, 1997b and Gopinath and Ben-Akiva, 1995).
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Relaxation of Error Variance-Covariance Structure Homogeneity The assumption
of error variance-covariance structure homogeneity across individuals can be relaxed
either by a) allowing the variance components to vary across individuals (variance
relaxation), b) allowing the covariance components to vary across individuals
(covariance relaxation), or c) allowing both variance and covariance components to
vary across individuals (variance-covariance relaxation).

Variance Relaxation Swait and Adamowicz (1996) formulate a heteroscedastic
multinomial logit (HMNL) model that allows the variance ofalternatives to vary across
individuals based on attributes characterizing the individual and her/his environment
(the variance, however, does not vary across alternatives). The motivation for such a
model is that individuals with the same deterministic utility for an alternative may have
different abilities to accurately perceive the overall utility offered by the alternative.
The HMNL model has exactly the same structure as the heteroscedastic model
described earlier in this section, though the motivations for their development are
different. McMillen (1995) also proposes a heteroscedastic model in the context of
spatial choice and Gliebe et al (1998) incorporated heteroscedastic scaling into the
PCL model for stochastic route choice.

Covariance Relaxation Bhat (1997c) develops a nested logit model that allows
heterogeneity across individuals in the magnitude of covariance among alternatives in
a nest. The heterogeneity is incorporated by specifying the logsum (dissimilarity)
parameter(s) in the nested logit model to be a deterministic function of individual-
related characteristics. The model is applied to intercity mode choice analysis, where
such heterogeneity may be likely to occur.

The author is not aware of any study that allows both variance and covariance
components to vary across individuals (variance-covariance relaxation), though in
concept the extension involves combining the variance and covariance relaxations
discussed earlier.

Hazard Duration Models

Hazard-based duration models are ideally suited to modeling duration data. Such
models focus on an end-of-duration occurrence (such as end of shopping activity
participation) given that the duration has lasted to some specified time (Hensher and
Mannering, 1994). This concept of conditional probability of "failure" or termination
of activity duration recognizes the dynamics of duration; that is, it recognizes that the
likelihood of ending a shopping activity participation depends on the length of elapsed
time since start of the activity.

Hazard-based duration models are being increasingly used to model duration time
in activity analysis. To include an examination of covariates which affect duration
time, most studies use a proportional hazard model which operates on the assumption
that covariates act multiplicatively on some underlying or baseline hazard.
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Two important methodological issues in the proportional hazard model are a) the
distributional assumptions regarding duration (equivalently, the distributional
assumptions regarding the baseline hazard) and b) the assumptions about unobserved
heterogeneity (i. e., unobserved differences in duration across people). We discuss each
of these issues in next two sections. A comprehensive review of the extension of the
simple univariate duration model to include multiple duration processes, multiple
spells from the same individual, and related issues may be found in Bhat (1997a).

Baseline Hazard Distribution The distribution of the hazard may be assumed to be
one of many parametric forms or may be assumed to be nonparametric. Common
parametric forms include the exponential, Weibull, log-logistic, gamma, and log-
normal distributions. Different parametric forms imply different assumptions regarding
duration dependence. For example, the exponential distribution implies no duration
dependence; that is, the time to "failure" is not related to the time elapsed. The Weibull
distribution generalizes the exponential distribution and allows for monotonically
increasing or decreasing duration dependence. The form of the duration dependence
is based on a parameter that indicates whether there is positive duration dependence
(implying that the longer the time has elapsed since start of the duration, the more
likely it is to exit the duration soon), negative duration dependence (implying that the
longer the time has elapsed since start of the duration, the less likely it is to exit the
duration soon), or no duration dependence (which is the exponential case). The log-
logistic distribution allows a non-monotonic hazard function.

The choice of the distributional form for the hazard function may be made on
theoretical grounds. However, a serious problem with the parametric approach is that
it inconsistently estimates the baseline hazard and the covariate effects when the
assumed parametric form is incorrect (Meyer, 1990). The advantage of using a
nonparametric form is that even when a particular parametric form is appropriate, the
resulting estimates are consistent and the loss of efficiency (resulting from disregarding
information about the hazard's distribution) may not be substantial.

Most studies of duration to date have made an a priori assumption of a parametric
hazard. The most relevant duration studies for activity-travel modeling include a) the
homestay duration models for commuters (i.e., the time between coming home from
work and leaving home for another out-of-home activity participation) of Mannering
et al. (1992) and Hamed and Mannering (1993), b) the sex-differentiated shopping
duration models of Niemeier and Morita (1996), c) the shopping activity duration
during the evening work-to-home commute of Bhat (1996a), and d) the delay duration
model for border crossings by Paselk and Mannering (1993). These studies have been
reviewed in greater detail by Pas (1997).

Unobserved Heterogeneity Unobserved heterogeneity arises when unobserved factors
(i.e., those not captured by the covariate effects) influence durations. It is well-
established now that failure to control for unobserved heterogeneity can produce severe
bias in the nature of duration dependence and the estimates of the covariate effects
(Heckman and Singer, 1984).
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The standard procedure used to control for unobserved heterogeneity is the random
effects estimator. This involves specification of a distribution for the unobserved
heterogeneity (across individuals) in the population. Two general approaches may be
used to specify the distribution of unobserved heterogeneity. One approach is to use a
parametric distribution such as a gamma distribution or a normal distribution (most
earlier research has used a gamma distribution). The problem with the parametric
approach is that there is seldom any justification for choosing a particular distribution;
further, the consequence of a choice of an incorrect distribution on the consistency of
the model estimates can be severe (see Heckman and Singer, 1984). A second approach
to specifying the distribution of unobserved heterogeneity is to use a nonparametric
representation for the distribution and to estimate the distribution empirically from the
data. This is achieved by approximating the underlying unknown heterogeneity
distribution by a finite number of support points and estimating the location and
associated probability masses of these support points. The nonparametric approach
enables consistent estimation since it does not impose a prior probability distribution.

Application of duration models in the transportation field have, for the most part,
ignored unobserved heterogeneity (but see Bhat, 1996a and Hensher, 1994).

Limited-Dependent Variable Models

Limited-dependent variable models encompass a wide variety of structures. In this
section, we will focus on inter-related discrete and non-discrete variable systems. The
non-discrete variable can take several forms. However, the three most interesting cases
in the context of travel and activity modeling are the continuous, ordinal, and grouped
forms. Further, the structure for the discrete/ordinal and discrete/grouped variable
systems are very similar; so we will examine limited-dependent variable systems under
two headings: discrete/continuous and discrete/ordinal models.

Discrete/Continuous Models Hamed and Mannering (1993) use the
discrete/continuous model framework to model activity type choice, travel time
duration to the activity, and activity duration. Barnard and Hensher (1992) estimate a
discrete/continuous model of shopping destination choice and retail expenditure. They
use Lee's (1983) transformation method for polychotomous choice situations with non-
normal error distributions in the choice model. Bhat (1998e) has also used Lee's
method for discrete/continuous models, but extends the method to jointly estimate a
polychotomous discrete choice and two continuous choices.

Discrete/Ordinal Models Bhat and Koppelman (1993) estimate a discrete/grouped
system of employment status (represented by a binary flag indicating whether or not
an individual is employed) and annual income earnings. Observed income earnings in
their data is in grouped form (i.e., observed only in grouped categories such as <
20,000, 20,000-39,999, 40,000-59,999, etc.). Since it is likely that people who are
employed are also likely to be the people who can earn higher incomes, the two
variables are modeled jointly.
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Bhat (1997d) has recently developed a joint model of polychotomous work mode
choice and number of non-work activity stops during the work commute (i.e., the total
number of non-work stops made during the morning home-to-work commute and
evening work-to-home commute). The joint model provides an improved basis to
evaluate the effect on peak-period traffic congestion of conventional policy measures
such as ridesharing improvements and solo-auto use dis-incentives.

3.4 Results of Activity-Travel Analysis

The substantial literature on activity-travel studies precludes a discussion of the results
of individual studies. Instead, in this section, we discuss how activity-based travel
research has and is influencing travel demand modeling.

Better Specification of Travel Demand Models

The insights obtained from activity-based research has enabled the incorporation of
measures of complex behavior in a simple, albeit valuable way in travel choice models.
Beggan (1988) used simple descriptors of travel-activity behavior such as the number
of stops made during the work tour and the number of tours made during the work day
as independent variables and found that even these simplified descriptors had a
significant influence on mode-choice to work. Damm (1980) used various descriptors
of lifecycle, temporal constraints, spatial constraints, interaction between time periods
and interaction between household members in a nested logit model to estimate the
participation and duration in discretionary activities. Goulias et al. (1989), Bhat et al.
(1999) and Felendorf et al. (1997) recognize the inter-relationships among home-based
and non-home based trips in a sojourn from home or from work and develop methods
that can be used not only to generate trips but also to determine their placement within
the larger daily activity-travel pattern of individuals. Purvis and his colleagues (Purvis
et al., 1996) at the Metropolitan Transportation Commission (MTC) of the San
Francisco Bay area introduced the notion of time constraints by using work travel time
as an explanatory variable in their traditional non-work trip generation model.

Clearly, one way that activity-based research is influencing (and has influenced)
travel demand modeling is through incremental improvements to trip-based planning
methods.

Emergence of comprehensive Activity-Based Travel Forecasting Models

As indicated earlier in the section on activity episode generation and scheduling, two
approaches have been recently proposed to model the entire diary activity-travel pattern
of individuals within the context of a continuous time domain. The first is the Prism-
Constrained Activity-Travel Simulator proposed by Kitamura and Fujii, 1998 and the
other is the Comprehensive Activity-Travel Generation for Workers (CATGW) model
system proposed by Bhat and Singh (1999).
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PCATS divides the day (or any other unit of time) into two types of periods:
"open" periods and "blocked" periods. "Open" periods represent times of day when an
individual has the option of traveling and engaging in "flexible" activities. "Blocked"
periods represent times when an individual is committed to performing "fixed"
activities. PCATS then attempts to "fill" the open periods based on a space-time prism
of activities contained within the open period. PCATS uses a sequential structure for
generation of the activity episodes and associated attributes (activity type, activity
duration, activity location, and mode choice) within the "open" period (thus, the unit
of analysis in PCATS is the individual activity).

The CATGW framework is based on the fixity of two temporal points in a worker's
continuous daily time domain. The two fixed points correspond to the arrival time of
an individual at work and the departure time of an individual from work. The day is
divided into four different patterns: before morning commute pattern, work commute
pattern, midday pattern, and post home-arrival pattern. Within each of the before work,
midday and post home-arrival patterns, several tours may be present. A tour is a circuit
that begins at home and ends at home for the before work and post home-arrival
patterns and is a circuit that begins at work and ends at work for the midday pattern.
Further, each tour within the before work, midday and post home-arrival patterns may
comprise several activity episodes. Similarly, the morning commute and evening
commute components of the work commute pattern may also comprise several activity
episodes. The modeling representation for the entire daily activity-travel pattern is
based on a descriptive analysis of actual survey data from two metropolitan areas in the
U.S. The suite of models in the modeling representation can be used for generation of
synthetic baseline patterns as well as to evaluate the effect of Transportation Control
Measures (TCMs). The models have been applied to evaluate the potential effect of
TCMs on stop-making and cold starts in the Boston Metropolitan area.

Study of Important Policy Issues

The study of policy issues is improved and/or made possible by the activity-based
approach. Demand management strategies that attempt to suppress or spread traffic
peaks need to be designed based on the effect of these measures on re-scheduling of
activities and household interactions. For example, a change in work schedule to an
early departure from work may lead to increased trip-making at the evening because
of the additional time available to participate in out-of-home activities. If some of this
travel is undertaken during the same time as the PM peak-period travel, the extent of
congestion alleviation projected by traditional models will not be realized (see Jones
et al., 1990). In fact, from an air quality standpoint, Bhat (1998a) illustrates that an
early departure from work would lead to more cold starts because of the increased
activity durations of evening commute stops resulting from more time availability.
Similarly, improvements in high-occupancy vehicle modes or peak period pricing
measures are likely to have a rather small impact on the mode choice of individuals
who make stops during the commute. The activity-based approach would recognize this
association, while traditional mode choice models will overestimate the shift to high-
occupancy modes, as clearly demonstrated by Bhat (1997d) using actual empirical data.
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Another example of the advantage of activity-based analysis relative to traditional
methods is in the evaluation of the travel impacts of telecommuting. Specifically,
displacements of travel (and its associated consequences) to other times of day due to
a change in activity patterns caused by adoption of work telecommuting strategies
cannot be examined by the narrow trip-based models, but can be examined using
activity-based models (see Mokhtarian, 1993).

Improvements in Data Collection Procedures

Activity research has and continues to provide insights into cost-effective methods of
collecting data and improving the accuracy of data collection procedures. It also
facilitates the development of new data collection techniques that are responsive to
current needs. Improvements in the accuracy of conventional data collection procedures
due to activity-based research include the employment of a verbal activity recall
framework, stated preference techniques, multi-day surveys, longitudinal data
collection, pattern reconstruction techniques, and interactive measurement and gaming
simulation techniques (see Lawton and Pas, 1996, for a comprehensive resource paper
on survey methods associated with activity analysis).

Contributions to Regional and Community Planning

Models with a sound behavioral casual linkage between individual activity patterns and
the travel environment will be critical to good regional and community planning. The
activity perspective of travel provides a clear picture of the functioning of urban areas
(for example, the spatial characteristics of intra-urban labor markets) and has the
potential to identify the differential quality of life associated with different segments
of the population. For example, some researchers (see Johnston-Anumonwo, 1995;
Hanson and Pratt, 1988,1992; Preston et al., 1993; and MacDonald and Peter, 1994)
have used the activity analysis framework to study the social and spatial context of
information exchange with regard to employment-related decisions. Ferguson and
Jones (1990), on the other hand, used the activity-based perspective to identify the
special needs of the elderly and disabled in Adelaide and were able to make specific
recommendations to improve the mobility of these population groups by identifying the
rhythms and timing under which such individuals live.

3.5 Future directions in Activity-Based Travel Research

The review of activity-based studies in section 3.2 indicates the substantial progress
that has been made in recent years. There is no question that there is an increasing
realization and awareness of the need to model travel as part of a holistic (and
temporally continuous) activity-travel pattern. However, there is still a long way to go
in understanding how households and individuals make choices that drive their activity
and travel patterns. The objective of this section is to highlight some of the directions
that we consider important in activity-based travel analysis.
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Inter-Individual Interactions in Activity Behavior

An area that has received limited attention thus far in the activity analysis literature is
the interactions among individuals in a household and the effect of such interactions
on individual activity episode patterns. Interactions among individuals might take the
form of joint participation in certain activities (such as shopping together or engaging
in recreational/social activities together), “serve-passenger” and “escort” activities
where one individual facilitates and oversees the participation of another in activities
(for example, the "soccer mom" phenomenon), and allocation of autos and activities
among individuals (especially in multi-adult, one-car households). Such interactions
can lead to constraints that may be very important in individual activity/travel
responses to changes in the transportation or land-use environment. However, the
comprehensive activity analysis frameworks today that model individual activity
patterns within a continuous time domain (such as those discussed in section 3.2) do
not consider inter-individual interactions. On the other hand, some recent efforts (for
example, see Wen and Koppelman, 1999) have focused on inter-individual interactions
in activity decisions but have not examined individual activity-travel patterns at a fine
level of temporal resolution. Integration of effortswhichaccommodate inter-individual
interactions in activity patterns with efforts that use a continuous time domain is,
therefore, likely to be a very fruitful area for further research.

Time-Space Interactions in Activity Behavior

Another area that needs substantial attention in the future is the explicit
accommodation of time and space interactions. Most early research in the activity
analysis area emphasized the dependence in spatial choices among activities using
either semi-Markov processes or discrete-choice models (Horowitz, 1980; Kitamura,
1984; O'Kelly and Miller, 1984; Lerman, 1979). These studies ignored the temporal
aspects of activity participation. More recently, some studies have focused on the
timing and duration of activities (Ettema et al., 1995; Hamed and Mannering, 1993;
Bhat, 1996a). But these studies have not examined spatial issues. Thus, though one of
the key concepts of the activity-based approach is the time-space interaction, little work
has been done toward developing such an integrated modeling approach. Thill and
Thomas, 1987, indicated the following in their review of travel behavior research: "In
spite of various devices to account for links between decisions, no study has thus far
appropriately restored the simultaneity of intended choices....It is necessary to
conceive a framework that combines both temporal and spatial aspects of travel choice
and that considers multipurpose multistop behavior as a multidimensional whole".
This statement remains valid even today. Recent work by Thill and Horowitz
(1997a,b), Dijst and Vidakovic (1997), and Bhat (1998a) starts to address this concern,
but there is still much work to be done in this area.

In-Home and Out-of-Home Activity Substitution

In-home and out-of-home activities have quite diiferent implications for travel; an in-
home episode does not involve travel (for a person already at home), while an out-of-
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home episode requires travel. Thus, the in-home/out-of-home participation decision has
an impact on the generation of trips (see Jones et al., 1993). Understanding this
substitution is important, particularly at a time when opportunities for entertainment
at home are increasing because of the increasing accessibility of households to
computers, theater quality audio and video systems, and an almost unlimited choices
of movies to view from home. Despite the importance of understanding in-home and
out-of-home substitution effects, very few studies have examined this issue (see
Kitamura et al, 1996, Kraan, 1996 and Bhat, 1998e). And even these studies have
examined substitution only in the context of broad activity types (such as discretionary
activities, maintenance activities, etc.) rather than the more relevant substitution in
specific activity types.

One of the impediments to a detailed analysis of in-home and out-of-home
substitution has been (until recently) the unavailability of data on in-home activities.
From a data collection standpoint, a related complication is the participation of
individuals in multiple activities at the same time at home (for example, eating and
watching television at the same time). Thus, research is required into how we might
collect detailed data on activity type of participation at home and how we might be able
to elicit information on multi-activity participation.

Unit of Analysis

The unit of analysis typically used in the activity-based travel models is the weekday.
The implicit assumption is that there is little variation in activity-travel patterns across
different days of the week. Research focusing even on simple aggregate measures of
activity-travel behavior (such as trip frequency, and number and type of stops made
during the morning/evening commutes) has indicated quite substantial intrapersonal
variability across weekdays (see Pas and Koppelman, 1986; Jou and Mahmassani,
1997). One can therefore expect substantial day-to-day variations when considering
entire activity-travel patterns. In addition, the focus on a single weekday does not allow
the examination of the interaction in activity participation between weekends and
weekdays. Of course, the use of an entire week as the unit of analysis will require the
collection of time-use diary data over at least one week. This offers research
opportunities for the development of data techniques that can collect time-use data
over a week without being prohibitively expensive or appearing excessively intrusive.

The Decision Mechanism

As described earlier in the paper, there have been several previous modeling efforts to
generate activity episode patterns. However, we still lack a good understanding of the
decision mechanism underlying revealed activity episode patterns. For example, how
do households and individuals acquire and assimilate information about their
activity/travel environment, is activity-travel behavior pre-planned or is it subject to
dynamic adjustment or is there a mixture of these processes, are attributes of activity
episodes determined jointly or sequentially, and what objective do individuals follow
while determining their scheduling decisions? The main challenge to studying these
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issues is that the generation and scheduling process that determines the revealed
episode patterns can only be understood if additional data on the internal mechanism
leading up to revealed episode patterns is collected. Such data are not currently
available and again this offers another research opportunity in the area of data
collection.

Clearly, there are important theoretical and methodological advances still to be
made in the activity-based travel research field. As progress is made on these fronts,
we are bound to see more applications of the activity paradigm in travel demand
modeling. Some metropolitan planning organizations (MPOs) are already embracing
this new paradigm and pursuing efforts to develop comprehensive activity model
systems to replace the traditional four-step trip-based methods. Many other MPOs
realize the need to switch to an activity-based modeling system in the near future. To
conclude, the activity-based approach to travel demand modeling is slowly, but
steadily, finding its way into actual practice.
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4 TRANSPORTATION SAFETY
Leonard Evans

4.1 Introduction

Specialists and the public widely use the term safety. Such use rarely generates
serious misunderstanding even though there is no precise, let alone quantitative,
definition of safety. The general concept is the absence of unintended harm to living
creatures or inanimate objects. Quantitative safety measures nearly always focus on
the magnitudes of departures from perfect safety, rather than directly on safety as
such. Depending on the specific subject and on available data, many measures have
been used.

A feature that measures of safety have in common is that they are, in essentially all
cases, rates. That is, some measure of harm (deaths, injuries, or property damage) divided
by some indicator of exposure to the risk of this harm. For example, rates related to
driver deaths include the number of driver deaths per kilometer of travel, per vehicle,
per licensed driver, and per year. Note that the number of driver deaths per year is
just as much a rate as any of the other examples.

Even within a narrow portion of transportation (say, scheduled airlines or
motorcycles), there is no one rate that is superior to others in any general sense.
Which rate is appropriate depends on what question is asked (and also on what data
are available).

While safety is an important consideration in many human activities, it has a
particularly prominent role in transportation. Every type of transportation system
involves some risk of harm, as has been the case since antiquity, and seems likely to
remain the case in the future. The primary goal of transportation, the effective
movement of people and goods, is better served by ever increasing speeds. A
substantial proportion of technological innovation for the last few thousand years has
focused on increasing transportation speeds, from animal-powered to supersonic
flight. In general, as speed increases so does risk.
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The Sinking of the Titanic

Some safety concepts can be illustrated by the best known of all unintended events in
transportation safety -- the sinking of the Titanic. (We have no way to know whether
in 90 years the intrinsically more important intentional events of 11 September 2001
will have left as indelible an impression on the world’s consciousness). On Sunday
14 April 1912 the 47,000-ton liner Titanic maintained its top speed of 22.5 knots
(42 km/h) despite receiving nine ice warnings. At 11:40 p.m. the crew reported an
iceberg directly ahead. Despite vigorous evasive action, a glancing impact ripped a
90 m gash in the starboard side. The Titanic sank at 2:20 a.m. on Monday 15 April,
2 hours and 40 minutes after the impact, with the loss of over 1500 lives, including
that of the 62-year-old captain, Edward J. Smith, on his scheduled last voyage
(Company captain, 1998).

What if? Any unintended incident leading to harm begs a series of “what if”
questions. What if, by chance, the Titanic had been a few dozen meters north or
south of its actual position? What if the lookout had spotted the iceberg a few
seconds earlier? What if there had been more effective procedures for deploying the
available lifeboats? What if there had been more lifeboats? US law prohibits 62-
year-olds from piloting passenger-carrying aircraft. So, was it an older driver
problem? It is generally concluded that if the ship had maintained its initial high
speed, the resulting increase in rudder effectiveness would have prevented contact
with the iceberg. It is also claimed that cutting the speed to half rather than stopping
completely after impact forced additional water into the vessel. Another hour afloat
could have substantially reduced casualties as the liner Carpathia arrived less than
two hours after the Titanic sank.

What if impact had been head-on? One “what if” given less attention than
others is: What if no one had detected the iceberg and the Titanic had crashed head-
on into it at 42 km/h? When a car traveling at 42 km/h strikes an immovable barrier,
about 8% of its total length (or about 0.4 m) is crushed (Wood, 1997). The
uncrushed portion of the car experiences an average deceleration of
equivalent to 17 times the acceleration due to gravity, or 17 g. The associated forces
of the occupants against their safety belts are likely to produce some injuries
(unbelted occupants would sustain greater levels of injury as they continued to travel
at 42 km until abruptly stopped by striking the near stationery interior of the vehicle).
Assume, as a very rough approximation, that 8% of the Titanic’s 269 m length would
have been crushed by the head-on impact. This 21.5 m of crush would generate an
average deceleration of or about 0.3 g. The energy dissipated, equivalent to
30,000 cars crashing (in the 4 seconds during which crush occurred) would have
made an enormous noise. Those in the 92% of the liner that was not crushed by the
impact would have experienced a mild deceleration, not too unlike that of a car or
train coming to a gentle stop at a traffic light or station. Anyone in the portion that
was crushed would likely have been killed or seriously injured. As few crew
members, and even fewer passengers, would be close to the front of the ship at near
midnight, casualties would have been light. The ship would have been in no danger
of sinking because of its watertight compartment structure. It would likely have
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returned to its maker in Belfast for repairs, and today almost nobody would have
heard of it.

Number of fatalities – reliability of data. Immediately after the sinking, official
inquiries were conducted by a special committee of the U.S. Senate (because
American lives were lost) and the British Board of Trade (under whose regulations
the Titanic operated). The total numbers of deaths established by these hearings
were:

U.S. Senate committee: 1,517 lives lost

British Board of Trade: 1,503 lives lost

Confusion over the number of fatalities was exacerbated by the official reports to the
U.S. Senate and the British Parliament, which revised the numbers to 1,500 and
1,490, respectively. Press reports included numbers as high as 1,522. Additional
revisions cement the conclusion that we will never how many people died on the
Titanic. (We do know that there were 705 survivors). Likewise, we will never know
how many people were killed in the 11 September 2001 terrorist attacks.

The uncertainty regarding the number of deaths in exhaustively investigated
prominent events alerts us to the likelihood of uncertainties in even the most
seemingly reliable data. At some intuitive level, one might expect the number of
deaths to be generally determinable without mistake. For various reasons, this is
rarely the case. Arbitrary criteria are often necessary even to classify whether a death
should be counted as a transportation death. Drivers may have fatal heart attacks at
the wheel prior to crashing; vehicle occupants may be transported to hospital after a
crash and die later for reasons, such as pneumonia, that may not be strongly linked to
the crash. While there is uncertainty associated with fatality data, such data
constitute, by far, the most reliable safety data available. Hence, much of the
scientific study in safety focuses on fatalities.

Crashworthiness and crash avoidance. Neither builder nor owner ever used the
term “unsinkable.” However, the claim of a high level of design safety was well
justified, notwithstanding many later questions about the quality of the steel sheeting,
the absence of tops on the watertight compartments, and the number of lifeboats.
The Titanic contained the best crashworthiness that had ever been engineered into a
ship. However, engineering safety must be viewed in the context of the way it is used.
Interactions between crashworthiness and crash avoidance are examples of more
general behavior feedback effects (or technology/human interface effects) that are
important in safety (Evans, 1991; 1996). If the Titanic had not processed such
superior crashworthiness, it would have sunk in minutes rather than hours, with the
near-certain loss of all on board. Indeed, its fate may have remained a mystery to this
day. Less confidence in Titanic’s crashworthiness would likely have led to more
caution on the bridge. Shakespeare writes, "Best safety lies in fear" (Hamlet, Act I,
Scene 3). Because of the ice conditions less safe vessels were waiting for dawn
before proceeding. The sinking of the Titanic raises a fundamental safety question
with parallels in other areas, such as the effect of airbags on fatalities: “Did the
Titanic’s superior crashworthiness save 705 lives or cause over 1,500 deaths?”
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Terminology

The above discussion has already introduced a number of terms, which we now
discuss more fully.

A vehicle striking anything is referred to as a crash. The widely used term
accident is unsuitable for technical use (Pless and Davis 2001, Evans, 1994; Langley,
1988; Doege, 1978). Accident conveys a sense that the losses incurred are due
exclusively to fate. Perhaps this is what gives accident its most potent appeal -- the
sense that it exonerates participants from responsibility. Accident also conveys a
sense that losses are devoid of predictability. Yet the purpose of studying safety is to
examine factors that influence the likelihood of occurrence and resulting harm from
crashes. Some crashes are purposeful acts for which the term accident would be
inappropriate even in popular use. There can be little doubt that at least a few
percent (perhaps as much as 5%) of driver fatalities are suicides (Hernetkoski and
Keskinen, 1998; Ohberg et al., 1997; Bollen and Philipps, 1981; Philipps, 1979).
Although the use of vehicles for homicide may be less common than in the movies,
such use is certainly not zero. Popular usage refers to the crash of Pan Am flight
103, now known to be no accident, in any sense of the word. Even more so, the
events of 11 September 2001, known to be intentional acts immediately after the
second plane crashed into the World Trade Center.

Generally the term cause is avoided, in large measure because it all too often
invokes the inappropriate notion of a single cause. Crashes result from many factors
operating together. To say that the loss of life on Titanic was caused by the absence
of a mandatory retirement age for captains, the owner being on board, the look-out
being too alert or not alert enough, by climate conditions, or by poor quality steel
may generate more confusion than clarity. Instead of focusing on a single cause, we
generally think in terms of a list of factors, which, if different, would have led to a
different outcome. The goal in safety analysis is to examine factors associated with
crashes with the aim of identifying those which can be changed by countermeasures,
or interventions, to enhance future safety.

Collections of observed numbers are referred to as data and not statistics. Since
statistics is the name of a branch of mathematics dealing with hypothesis testing and
confidence limits, using it to also mean data invites needless ambiguity.

We follow common usage in referring to ages; age 20 means people with ages
equal to or greater than 20 years, but less than 21 years. This is plotted at 20.5 years,
very close to the average age of 20-year-olds; 40-year-olds are not quite twice as old
as 20-year-olds, which might come as good news to some!

The consequences of crashes include fatalities, injuries and property damage.
Useful terms encompassing all of these are harm and losses. Measures that reduce
harm can be placed into two distinct categories.

Crashworthiness refers to engineering features aimed at reducing losses, given
that a specific crash occurs. Examples are improved occupant protection by making
the structure close to the occupant less likely to crush, and devices such as collapsible
steering columns; other examples of crashworthiness include reducing risks of post-
crash fires, or of ships sinking from crash impact.
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Crash prevention refers to measures aimed at preventing the crash from occurring.
Such measures may be either of an engineering nature (making vehicles easier to see,
better braking, radar, etc.) or of a behavioral nature (driver selection, training,
motivating and licensing, traffic law enforcement, etc.).

A fundamental difference between crashworthiness and crash prevention is that
when a crash is prevented all harm is reduced to zero. Improved crashworthiness
rarely eliminates harm in a severe crash, but does reduce the level of harm (say,
converting a fatality into a severe injury, or a severe injury into a less severe injury,
or an expensive vehicle-repair into a less expensive repair). The finding that safety
belts reduce car-driver fatality risk by 42% means that out of 100 drivers who would
have been killed without belts, 42 would have survived if all had worn belts.
However, the 42 survivors would sustain injuries, in many cases very severe injuries.
Crashworthiness is measured by the percent reduction in risk for some specific level
of injury, such as fatality or minor injury. A crash prevention measure that reduces
crash risk by some percent is necessarily a far more effective intervention than a
crashworthiness measure with the same percent effectiveness.

4.2. Overview of Transportation Fatalities

The US Department of Transportation (1998) estimates that 44,505 people lost their
lives in connection with transportation in the United States in 1996. The distribution
of these by transportation mode is presented in Table 4-1. The numbers in Table 4-1
in a few cases differ slightly from those in the original source because of minor
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corrections to achieve consistent totals.
These 44,505 deaths occurred in a system in which vehicles traveled over 4 billion

km in 1996, as detailed in Table 4-2. As there is, on average, more than one person
per vehicle, the distance traveled by all people will exceed the distance traveled by
all vehicles (details in Table 4-3.) The unfortunate term passenger miles (or
passenger km) appears often in the literature, even though most travel is in vehicles
containing no passengers. People traveling in (or on) road transportation vehicles are
more appropriately referred to as occupants. Occupants are either drivers or
passengers. Vehicles referred to in the literature as “passenger cars” will here be
called simply “cars.” Because different situations arise for different modes,
additional categories (such as crew) are also used.

Table 4-4 shows the number of deaths per billion vehicle miles derived by dividing the
estimates in Table 4-1 by those in Table 4-2. No estimates are given in Table 4-4 if
the definitions for the categories of distance of vehicle travel and the fatalities were
substantially different, or the estimates of travel are too uncertain. Even without problems
of data availability and reliability, it is surprisingly difficult to define categories that apply
across all modes. For US road traffic, a fatality is counted if the crash occurs on a
US public road, without regard to the origin of the vehicle or its occupants, whereas
for air traffic factors such as the home base of the airline are relevant while the
location of the crash may not be. Rail rates are not given as most fatalities occur to
people outside the train (at grade crossings), and passenger and freight-train data are
collected in different ways. A car driver killed in a car-train crash is likely to be
added to both the road traffic and the train totals. A worker killed in a fire unrelated
to transportation in a railroad facility is counted as a railroad fatality. Tables 4-4
(and 4-5) should be interpreted in the context of these uncertainties.

The overall national rate for all modes of transportation is 11.1 fatalities per
billion km of vehicle travel. The road transportation rate of 10.5 fatalities per billion
km is equivalent to 1.7 fatalities per hundred million miles (conversion factor is
1.609334/10 exactly). As vehicles with high occupancy travel with more people at
risk, it is appropriate to examine the deaths for the same distance of occupant travel.

Table 4-5 shows the number of deaths per billion km of travel, derived by
dividing the estimates in Table 4-1 by those in Table 4-3. The cross-modal
comparisons in Tables 4-4 and 4-5 are sufficiently unreliable that they should be
interpreted as little more than suggestive. Scheduled airline rates are much lower
than the average for all airline travel. As one or two major airline crashes have a
large influence on this rate, it is highly unstable from year to year. The rate averaged
over 1990-1996 is 0.2 deaths per billion aircraft km. The overwhelming majority of
those killed in airline crashes have minimal control over events. All are at similar
risk, regardless of behavior or personal characteristics. While the average rate for
road-vehicle occupants is much higher, this rate varies greatly according to such
characteristics as driver age, use of alcohol, safety-belt use, conformance with traffic
law, etc. A car driver with many characteristics associated with lower crash risk can
drive a 1,000 km trip with no more risk of death than taking a plane for the
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same trip. The longer the trip the greater is the safety advantage of air travel,
because nearly all the risk is concentrated in the take-off and landing phases, whereas
the ground vehicle risk is approximately proportional to the distance traveled.

Within the road transportation mode, the comparisons are more reliable. The risk
of occupant death depends systematically, and very strongly, on the mass and size of
the vehicle (Evans, 2001a). For a same distance journey, a motorcycle rider is about
20 times as likely to be killed as a car occupant, and about a thousand times as likely
to be killed as a bus occupant.

Tables 4-1 through 4-5 underline the dominance of road transportation over all
other modes combined in the US. Road transportation accounts for over 99% of all
the distance traveled by vehicles, and almost 90% of all the distance traveled by
people. It accounts for 94% of all transportation deaths, and for an even higher
percent of injuries and property damage. Because of its dominant role, most of the
rest of this chapter is devoted to road transportation. Unless otherwise apparent, the
term vehicle denotes an engine-powered vehicle designed to travel on a road, and the
term traffic crash denotes a crash involving at least one such a vehicle. Traffic
crashes also generally involve non-vehicles (pedestrians, bicycles, animal-powered
vehicles, and fixed objects –trees being the most common).

4.3 Introduction To Road Traffic Fatalities

Road traffic deaths and injuries constitute one of the largest public health problems in
industrialized countries. In the US, traffic crashes account for half of all injury
deaths (National Safety Council 1997), and 94% of all transportation deaths. In a
typical two-week period, more people are killed on US roads than the 1500 lost on
the Titanic. In a typical month, more Americans die on US roads than were killed in
the terrorist attacks.

In the US, traffic crashes account for half of 19-year-old female deaths and a third
of 19-year-old male deaths (Evans, 2000). The fraction is lower for males because of
so many male deaths from firearms. The total number of pre-retirement years of life
lost due to traffic crashes is similar to that due to the combined effects of the two
leading diseases, cancer and heart disease. Worldwide, about a million people are killed
annually in traffic crashes (WHO, 2001), with injuries about 70 times this number.
The victims are predominantly young, and about 65% are male. As motorization
increases, totals are expected to increase.

Analysis of road safety differs from that for the other modes in that enormous
quantities of relevant data are available, most commonly based on police reports.
The Fatality Analysis Reporting System (FARS – before 1998 called Fatal Accident
Reporting System) documents over a million people killed on US roads since 1975.
The availability of large quantities of data lead to safety for roads being better
understood than safety for any other transportation mode.

Variables coded in large data sets generally include gender and age of crash
participants, weather, make and model of vehicle, etc. Variables not known include
vehicle speed at onset of crash event, vehicle speed just prior to impact, amount of
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vehicle crush, and medical details of injuries. Such details can be estimated only
after expensive post-crash investigations, which are not routinely performed. For
other transportation modes, nearly all information comes from intensive in-depth
analysis of the few crashes that occur.

Historical Trends

In the early decades of the twentieth century few people were killed on US roads
because there were few motorized vehicles (Figure 4-1). As vehicle ownership
increased rapidly, so did traffic deaths, peaking in 1972 at 54,589, and declining later
to a present fairly stable rate of just over 40,000 per year. The rate in China and
other rapidly industrializing countries continues to increase rapidly.

The number of traffic deaths per year shows little in the way of a pattern.
However, if we instead examine the number of traffic deaths in the US for the same
distance of vehicle travel, a clear trend emerges (Figure 4-2). Ever since 1921 when
data on the total distance traveled by all vehicles were first collected, the number of
traffic deaths for the same distance of travel has trended downwards at an average
decrease of about 3.5% per year. The 2000 rate of 9.7 traffic deaths per billion km of
travel is 94% below the 1921 rate of 150. If the 1921 rate were to apply today, the
number of US traffic fatalities would exceed half a million. The downward trend in
the number of deaths for the same distance of travel is observed in all countries for
which data are available (Evans, 1997). As motorization continues, the fraction of all
deaths that are pedestrians trends downwards (Figure 4-3).

The number of traffic deaths for the same distance of travel can be measured only
after a nation instigates a procedure to estimate the distance all vehicles are driven.
Even when available, estimates of distance of travel differ greatly in reliability from
country to country. A useful universally available measure is the number of traffic
deaths per thousand registered vehicles. The registration, and thereby counting, of
vehicles is routinely performed by nearly all jurisdictions. The number of deaths per
thousand vehicles varies greatly between countries -- by more than a factor of one
hundred (Table 4-6 and Figure 4-4). In general, the higher the degree of
motorization (as indicated by the number of vehicles per 1000 people), the lower is
the number of traffic fatalities per thousand vehicles. Another key factor is mix
between rural and urban driving. Fatality risk tends to be lower in urban areas where
speeds are lower. Within the US, the fairly urban states of Rhode Island,
Massachusetts and Connecticut have 0.09, 0.11 and 0.12 deaths per thousand
vehicles, respectively, whereas the more rural states of Mississippi and Arkansas
have 0.39 deaths per thousand vehicles. While the rate for China, the world’s most
populous nation, is substantially higher than that for more motorized countries, it is
dropping at a much faster rate than in the US and other more motorized countries
(Figure 4-5). Although the rate is dropping, the dramatic growth of vehicle
ownership in China (Figure 4-6) and in other countries that are rapidly industrializing
will inexorably increase casualties.
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Approaches To Reducing Harm From Traffic Crashes

Why do fatality rates decline in time and vary so much from country to country?
This question is somewhat akin to asking why average longevity increases in time
and varies so much from country to country. Such effects are due to many factors –
public health policy and implementation, availability of and advancements in drugs,
surgery, preventative medicine, plumbing, nutrition, hygiene, etc. In the traffic crash
and longevity cases it is difficult to assign in any quantitative way the relative
contributions of the different factors. The structure in Table 4-7, which is one of a
number of possible categorizations, is aimed at clarifying some of the main factors
that contribute to traffic safety. Not reflected, because it is somewhat outside the
scope of this chapter, are the important contributions from improved medicine, which
reduce average harm from all sources. As medical science continues to advance,
those injured in any transportation crash are less likely to die. Indeed, it is often
claimed that if a victim can be transported alive to a modern well-equipped
emergency trauma center, the probability of survival is extremely high. This places
high value on rapid transportation from the crash site to the hospital. Here the
infrastructure of vehicular transportation contributes in a fairly direct way to reducing
the severity of the harm from the crashes that occur on it.

4.4 Engineering Factors

Roadway Engineering

On rural two-lane roads, vehicles traveling in opposite directions pass each other
only a meter or so apart. Even if speed limits are obeyed, the combined relative
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speed may still far exceed 150 km/h. A head-on crash at such relative speeds will
likely prove fatal, yet such crashes occur due to, for example, improper overtaking or
loss of control on curves. On freeways where there is physical separation between
traffic traveling in opposite directions, the only vehicles permitted to drive close to
each other are traveling in the same direction at similar speeds. Fixed objects, such
as trees, are far removed from the path of vehicles. Risk of side-impact at
intersections is eliminated through the replacement of intersections by under- or over-
passes.

The roadway engineering improvements typified by the differences between
freeways and rural two-lane roads constitute one of the most effective engineering
countermeasures available. In the US, fatality risk on interstate rural freeways is
55% lower than the average for all non-interstate rural roads (Table 4-8). The lowest
rate in Table 4-8 is 85% lower than the highest rate. Such dramatic safety effects
dependant on roads and road use bring one face to face with the types of tradeoffs
that often arise in traffic safety decisions. Freeways are expensive undertakings that
are justified mainly to produce improved mobility. They can are rarely installed
primarily to improve safety. Additional considerations may argue against building
freeways, including their effect on city neighborhoods, landscape aesthetics, and wild
life. Better roads generate more traffic and stimulate urban sprawl, increasing
pressure on resources and the environment. The additional travel that freeways
stimulate generates additional travel risk, but this effect is small compared to the risk
reduction resulting from replacing rural two-lane roadways by freeways.
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Vehicle Engineering

In the earliest days of the auto industry, crashes often resulted from the mechanical
failure of such key components as wheels, tires or brakes. As component reliability
increased, focus shifted towards fundamental understanding of injury mechanisms
and on technologies aimed at protecting occupants of vehicles when crashes occur.

Biomechanics – the science of relating injury to mechanical force.
Biomechanics is the bridge that links engineering and medicine. Trauma surgeons
distinguish between penetrating trauma and blunt trauma. Penetrating trauma occurs
when small objects exert sufficient localized force to penetrate the human body, an
obvious example being a bullet. Blunt trauma occurs when an object of larger area
applies sufficient force on the body to damage its structure, such as occurs when
someone falls from a building. Nearly all traffic injuries, whether to vehicle
occupants or to pedestrians, involve blunt trauma. Consider a vehicle traveling at,
say, 50 km/h and crashing into a perfectly rigid horizontal barrier. An unbelted
driver would, in accord with elementary physics, continue to travel at 50 km/h until
stopped by a force. Such a force occurs when the driver impacts, at a speed of 50
km/h, the interior of the now stationary vehicle. It is this so-called second collision
that causes injuries, not the first collision of the vehicle striking the barrier. A person
falling from a fourth floor window would strike the ground at a similar speed and be
subject to similar injury forces. While evolution has provided humans with a
protective fear of heights, no corresponding fear exists for the relatively new
experience of traveling at speeds faster than can be produced by muscle power.

Goal of occupant protection. The theoretical best protection would be for the
occupant to slow down from the initial speed of 50 km/h to zero at a constant
deceleration using the entire distance between his or her body and the barrier. The
engine and other rigid components make it impossible to achieve this ideal goal. The
practical goal is for the vehicle structure to crumble in such a way as to provide as
much ride-down distance as possible, and for the occupant to travel this distance at as
uniform a deceleration as possible. In addition, a strong “safety cage” that does not
crumple reduces the risk of occupants being crushed.

Engineering changes that have contributed to reductions in driver risk include
collapsible steering columns, lap/shoulder safety belts and design changes in the
structure surrounding the occupants to reduce intrusion. When a driver’s chest
strikes a steering wheel, the collapsible steering column allows the steering column to
compress and thereby reduce the maximum force on the chest. This simple device is
estimated to reduce overall driver fatality risk in a crash by about 6%.

Estimates of the effectiveness of occupant protection devices are summarized in
Table 4-9. The interpretation is that if 100 fatally injured drivers not wearing belts
had been wearing belts, 42 would have survived. This is equivalent to saying that
wearing a belt reduces a driver’s risk of being killed in a crash by 42%.
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By far the most effective occupant protection device is the familiar lap/shoulder
safety belt. This not only reduces the likelihood and severity of impact with the
interior of the vehicle, but is highly effective at preventing ejection from the vehicle.
Ejection quadruples the risk of death in a crash -- about one in four unbelted drivers
killed are ejected from their vehicles. The effectiveness of the lap/shoulder belt is,
on average, enhanced by airbags.

In this chapter airbag refers to frontal airbags, which are designed to inflate
rapidly in order to place a cushioning barrier between occupant and vehicle structure
when sensors detect a frontal crash with severity exceeding some pre-set limit,
typically equivalent to striking a barrier at a speed in the range 10 to 20 km/h. The
driver rides down the crash in contact with the airbag, which spreads the impact
forces over a larger area and reduces forces due to the belt. Side airbags are being
introduced without any estimate of their overall effectiveness, which is expected to
be, at most, far lower than for frontal airbags.

Increased size and weight of a vehicle increase protection. Doubling the weight
reduces occupant risk by about half. All vehicles being heavier does not eliminate
the safety benefits of increased vehicle weight (Evans, 1994; 1995), because, in the
US, 41% of car drivers and 58% of light-truck drivers who are killed are killed in
single-vehicle crashes (Table 4-10). The drivers of two large cars crashing into each
other are at lower risk than the drivers of two small cars crashing into each other
(Evans, 2001a, Wood and Simms, 2002).

The influence of weight on crash risk is so great that even adding the weight of a
passenger generates clearly measurable effects. If a car with a passenger crashes into
a car with a lone driver, the accompanied driver is 14.5% less likely to be killed than
the unaccompanied driver (Evans, 2001).
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Riders of two-wheeled vehicles are at dramatically higher risks than occupants of
even the smallest four-wheel vehicle. Helmets reduce motorcycle driver or passenger
fatality risk by 28%. An unhelmeted motorcyclist is about 22 times as likely to be
killed as is an average car driver. Wearing a helmet reduces this risk to 18 times that
of the car driver. Riders of two-wheeled vehicles (whether engine or human
powered) and pedestrians are particularly vulnerable road users. Such road users
account for a large fraction of all traffic deaths in the early stages of motorization.

While much attention has been devoted to possible modifications to vehicle
design to better protect pedestrians in crashes, the opportunities are intrinsically
much less than for vehicle occupants. The main opportunity to prevent such harm is
by changing how pedestrians and drivers behave.
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4.5 Human Factors Of Road-Users

Discussion of the influence of human factors of drivers (and of road users in general)
on road safety must make the clearest distinction between two deceptively similar but
fundamentally different concepts:

Driver performance -- what the driver can do, or is capable of doing

Driver behavior -- what the driver in fact does

Driver Performance

Studies have concluded that driver error is a contributory factor in over 95% of
traffic crashes. Such findings have generated suggestions that the first priority for
better safety is to teach higher levels of skill and knowledge about driving. That is,
to improve levels of driver performance. While driver training, especially of
motorcycle riders, has reduced crash rates in some cases, it has not generally been
found to do so. A number of considerations show why crash risk is not determined
mainly by driver performance.

Everywhere young male drivers have the highest crash rates (see also section 4-6,
Older and younger drivers). Yet this is the very age group with the best visual acuity,
swiftest reaction times, and fastest cognitive processing skills. Males tend to be more
knowledgeable about and interested in driving and automobiles. Racing-car drivers
have higher on-the-road crash rates than average drivers. Much more important than
what the driver can do is what the driver chooses to do.

Driver Behavior

The average driver has a crash about once per decade (usually a minor property
damage crash -- for fatal crashes it is about one per 4,000 years). Drivers tend to
dismiss their crashes as unpredictable and unpreventable bad luck, or the other
involved driver’s fault. A more appropriate interpretation is that average driving
produces one crash per ten years. Feedback once per decade is unlikely to affect
behavior. Every crash-free trip reinforces the driver’s incorrect conclusion that
average driving is safe driving. Individual experience is a false teacher. I wonder
how many of us would fly on commercial aircraft if a pilot’s method of learning how
to avoid crashes was by experiencing them?

A crucial factor that contributes to the high level of commercial airline safety
(Table 4-5) is that pilots follow procedures based on expert analyses of the
experience of many. For road vehicles, traffic law attempts to fulfill a parallel role.
However, ground vehicle drivers routinely violate such laws. Table 4-11 compares
various safety characteristics of road and air traffic.

Two of the factors most affecting road-traffic fatality risk are travel speed and
alcohol consumption. Research indicates that the risk of crashing increases
approximately in proportion to travel speed, injury risk in proportion to travel speed
squared, and fatality risk in proportion to travel speed to the fourth power. When
speed limits on the US rural intrastate system were reduced in 1974 from 70 mph to
55 mph following the October 1973 Arab oil embargo, average travel speed dropped
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from 63.4 mph to 57.6 mph. This change leads to a predicted fatality risk decrease of
32%, remarkably close to the 34% decline observed. Case-control studies found
casualty crash to double with each 5 km/h increase in speed (Kloeden et al., 1997).

Drunk driving is a major traffic safety problem in all countries in which alcohol is
used widely, often accounting for about half of all fatalities. Reducing the
availability of alcohol has in many cases led to reduced traffic deaths. When all US
states increased the minimum age to purchase or consume alcohol to 21 years, from
earlier ages of 18 to 20 years in various states, a 13% reduction in fatal-crash
involvements of affected drivers followed. Police use of random breath testing to
enforce drunk driving laws more effectively has reduced casualties. The Australian
state of New South Wales tests about a third of all drivers each year, many of them
more than once. This intervention decreased overall fatalities by about 19%.

Driver behavior is a crucial factor in occupant protection because the most
effective occupant protection device, the safety belt, works only when fastened.
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Mandatory wearing laws have been introduced in most countries, though wearing
rates and level and type of enforcement vary greatly. The best evaluated wearing law
was that for the United Kingdom, where fatality rates for drivers and left front
passengers declined by about 20%.

Vehicles are used for purposes that go beyond transportation, including
competitiveness, sense of power and control, or more generally, hedonistic objectives
-- the pursuit of sensual pleasure for its own sake. Speed and acceleration appear to
produce pleasurable excitement even when no specific destination lies ahead and
there is no point in haste. While most drivers are motivated by non-transportation
motives at some times, as they mature the mix of motives evolves in a more
utilitarian direction. This is likely one reason why crash risk is so much lower for 40-
year-olds than for 20-year-olds. It seems plausible that as a nation’s motorization
matures, a similar evolution occurs and contributes to a lowering of crash rates.
Drivers in newly motorized countries are likely to be the first generation to drive, and
to approach the activity with a sense of novelty, excitement and adventure. In
motorized countries, children grow up with the motor vehicle playing an essential
role in even the most routine and mundane aspects of daily life.

Crash risk relates to the deepest human characteristics. Factors at the very
core of human personality influence behavior in traffic. A comparison of the gender
and age dependence of involvement rates in severe single-vehicle crashes and in
crimes unrelated to traffic offenses (say, burglary, as a typical example) show
remarkable similarities (Figure 4-7). No one would suggest seriously that 40-year-
olds commit fewer burglaries than 20-year-olds solely because the 40-year-olds have
learned how not to commit burglaries! This should invite a parallel caution against
interpreting lower crash rates for 40-year-old drivers compared to those for 20-year-
old drivers to mean that the 40-year-olds have simply learned how to not crash. The
most compelling interpretation of the similarity between the two curves in Figure 4-7
is that there are fundamental human characteristics related both to involvement in
severe crashes and arrests for offenses unrelated to driving; neither conduct is likely
to be changed dramatically by increasing knowledge or skill.

Figure 4-8 compares male and female pedestrian deaths. If male and female rates
were similar, the data would lie randomly above and below the dotted line indicating
equality. An entirely different, and remarkably consistent, picture emerges. At all
ages, plotted in one-year intervals, the male rate exceeds the female rate, including
the first year of life. For this first year, with average age close to six months, there
were 93 male deaths compared to 59 female deaths, or 93/59. The corresponding
numbers of fatalities for ages 1.5, 2.5, and 3.5 years are 590/418, 1131/730, and
1353/741, respectively.  Such large robust differences suggest an intrinsic gender
difference at the most basic level, likely linked to testosterone.

In driving behavior, as in most human activities, social norms play a central role.
People drive in a way that they think will win the approval of those whose approval
they desire. A change in social norms regarding drunk driving has taken place in the
US. The drunk driver is no longer the amiable comic character of the past, a change
that has contributed to reductions in drunk driving. While the fictional portrayal of
drunk driving as a harmless activity has become uncommon, the same cannot be said



Transportation Safety 89

for the portrayal of illegal and life-threatening driving in general, which is often
presented as humorous or heroic in television programs and movies specifically
aimed at young people. The possibility that such behavior may lead to tragic
consequences is rarely addressed. Claims that fictional portrayals do not influence
behavior ring hollow in the light of the billions of dollars spent for television
advertising. These expenditures are predicated on the firm belief that they do
influence behavior. Surely the programs must have a dramatically greater influence
than the advertisements. Shaming the entertainment industry into desisting from
some current practices would, in my view, save the lives of many young people.

The dominant role of driver behavior. As discussed above, reducing the speed
limit from 70 to 55 miles per hour reduced fatality rates on US rural interstate roads
by 34%, mandatory safety-belt wearing in the United Kingdom reduced front-seat
occupant fatalities by 20%, and random breath testing for alcohol in the Australian
state of New South Wales reduced driver fatalities by 19%. Hingson et al. (1996)
report similarly large changes in risk in response to programs aimed at changing
behavior.

In the 1970s, major independent studies in the US and in Britain identified factors
associated with large samples of crashes. The US study found the road user to be the
sole factor in 57% of crashes, the roadway in 3%, and the vehicle in 2%; the
corresponding values from the British study were 65%, 2% and 2% respectively. In
nearly all cases the vehicular factor was in fact a vehicle maintenance problem, such
as bald tires or worn brake linings. The road user was identified as a sole or
contributing factor in 94% of crashes in the US study and in 95% of crashes in the
British study.

4.6 Older And Younger Drivers

Much information is available on how various rates depend on age and gender
because these variables are nearly always coded in large data sets. Little additional
information on the personal characteristics of people involved in road crashes is
available, in large part because of privacy concerns.

Demographic projections of increasingly large numbers of increasingly older
drivers have generated concerns captured in the phrase “the older-driver problem”.
Examining how rates depend on age and gender addresses the older driver problem
and the younger-driver problem. Behavior is already identified above as the
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as the dominant factor in the elevated rates of younger drivers, but performance
becomes more critical with increasing age. Because age effects include performance
and behavior factors, the topic is treated in this separate section. The material
presented is based on Evans (1991) and Evans (2000).

Changes in driving risk with increasing age are best separated into two distinct
components:

Changing risks to the drivers themselves, and

Changing risks they impose on other road users.

These risks are of a different nature. There is near universal agreement that
society should take stronger measures to prevent its members from doing things that
endanger others than to prevent them from doing things that endanger only
themselves. Public safety makes a stronger claim on public resources than does
personal safety, which can be supported often using personal resources. Differences
between the risks we assume ourselves and those we impose on others impact
legislation, licensing policy, police enforcement, and so on.
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Changing Risks Drivers Face As They Age

Figures 4-9 to 4-12 show fatality data normalized for the same length of time, the
same number of people, the same number of licensed drivers, and for the same
distance of travel. Three of the relationships exhibit a characteristic “U-shape,”
exhibiting particularly strong increases at the oldest ages.

Involvement rates in severe crashes. Increases with age like those in the above
figures have often been interpreted in terms solely of the older drivers’ risk of
involvement in a crash. Such an interpretation misses the crucial point that the
number of drivers of given age and gender killed is the product of two factors:

1 The number of involvements in very serious crashes, and

2. The probability that involvement proves fatal.

The first factor reflects influences due to all use and behavioral factors, such as
amount and type of driving, driver capabilities, type of vehicle driven, time of day,
degree of intoxication, and driving risks. The second factor can be influenced also
by such behavioral factors as safety belt wearing and alcohol consumption. Apart
from such considerations, the probability that a given crash results in death is
essentially physiological rather than behavioral in nature. The graphs that follow are
based on the relationships given on page 26 of Evans, 1991. These are not materially
different from more recent and more precise estimates (Evans 2001b, 2001c):

and

where R(A) is the fatality risk to an individual of age A compared to the risk to an
individual of age 20 when both are subject to the same physical insult, or impact.
When driver age is 16 to 20, we assume R = 1 for males and R = 1.311 for females;
that is, the fatality risk from the same severity crash is the same as for a 20-year-old
driver of the same gender. These relationships are applicable from age 20 to age 80.
Fatality rates focus on the outcome, not the severity of the crash that led to the death.
Figures 4-13 and 4-14 show involvement rates in crashes of similar severity by
considering crashes in a severity range greater than or equal to that sufficient to likely
kill 80-year-old male drivers, for which case R has a value of 4.0. Comparing
Figures 4-13 and 4-11 shows that most of the increase in the fatality rate per licensed
driver results from the same severity crash being more likely to lead to death. When
this is factored out, an increase at older age remains, but of smaller magnitude. The
rate of involvement for the same distance of travel increases with
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increasing driver age for ages above about 60. However, the increase is smaller than
in Figure 4-12; even at the oldest age plotted, the rates for males and females are still
less than those for male drivers under 30.

Threat To Other Road Users

All the above focused on how the age and gender of a driver influence the threat
to the driver's own life. Here we investigate the threat to other road users by
examining, in Figures 4-15 and 4-16, the number of crashes in which pedestrians are
killed as a function of the age and gender of drivers (of any type of motorized
vehicle) involved in the crashes. No assumption is made regarding responsibility in
pedestrian fatality crashes; the FARS data show about one third of fatally-injured
pedestrians have blood alcohol concentrations in excess of 0.1 percent by volume,
the legal limit for intoxicated driving in most US states (in Sweden the legal limit is
0.02 percent).

Figures 4-15 and 4-16 may be compared to Figures 4-13 and 4-14. Figure 4-16
indicates that very old drivers may pose an increased risk to other road users for the
same distance of driving. However, the risk posed per licensed driver shows no such
trend. The difference arises because as drivers age, they drive much less. The
similarity of Figures 4-13 and 4-15 supports the interpretation that each is measuring,
approximately, the risk of involvement in crashes in general (likewise Figures 4-14
and 4-16).

Table 4-12 addresses the risks that drivers impose on other road users by
comparing the rates of 80-year-olds to drivers of age 40 and 20. For male drivers,
licensing an 80-year-old poses 26% less risk than licensing a 40-year-old. Licensing
a 20-year-old poses 140% more risk than licensing an 80-year-old. In
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terms of the threat posed for the same distance of travel, the 80-year-old is 271%
more likely to harm someone else than is a 40-year-old. The 80-year-old male
driver’s risk is, nominally, larger than the 20-year-old male driver’s risk (by 9%).
For females drivers, the 80-year-old risk is approximately double that of the 40-year-
old, but about twice that for the 20-year-olds per unit distance.

Traffic Deaths Relative To All Deaths

A noticeable feature of the ratio of traffic deaths to all deaths (Fig. 4-17) is the lack
of a clear difference between the genders. Indeed, from the 20s through the 70s the
fraction of all deaths that are traffic deaths declines at an approximately constant rate
of 8% per additional year of life for both genders.

Conclusions Regarding Age Effects

The relationships presented here suggest:

1. Licensing an older driver (data goes up to age 80) does not pose a greater threat to
other road users than licensing younger drivers -- indeed it poses substantially less
risk than licensing a 20-year-old.

2. As drivers age, most measures indicate that they face an increased risk of
becoming a traffic fatality, with the increase accelerating at very old ages.

3. Given that a death occurs, the probability that it is a traffic fatality declines steeply
with age, from well over 20% for late teens through mid twenties, to under one
percent at age 65, and under half a percent at age 80.
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4.7 US Safety Compared To Safety In Other Countries

In the 1960s the US had, by far, the lowest fatality rates in the world, whether
measured by deaths per same distance of travel or per registered vehicle. A series of
tabulated rates for the US and 11 other major industrialized countries for the years up
to 1978 justified the headline “U.S. the Safest Place for Driving” (Motor Vehicle
Manufacturers Association, 1981, p. 52). For every year, the US rate was
substantially lower than for any of the other countries listed. The remainder of this
section focuses mainly on one rate, the number of deaths per thousand registered
vehicles, which will be called the fatality rate. The US began to fall from its
leadership position in the late 1970s. Now the International Road Traffic and
Accident Database (2001) lists 12 countries (Australia, Canada, Finland, Germany,
Iceland, Japan, Luxembourg, Netherlands, Norway, Sweden, Switzerland and the
United Kingdom) with rates lower than the US.

Table 4-13 compares US safety in 2000 to safety in 1979, and contrasts the US
changes to those occurring in Canada, Great Britain, and Australia. These three
comparison countries were chosen because they have much in common with the US.
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The 45.6% decline in the US rate in this 21-year period might seem substantial. It
corresponds to an average reduction of 2.9% per year. However, this is less than the
average reduction of 3.2% over the entire prior period, 1900 to 1978.

Canada, Great Britain and Australia all had fatality rate reductions of more than
64%. If the US rate had declined by the same 64.7% experienced by Canada, then
2000 fatalities would have been 27,176, rather than the 41,821 that occurred. That
is, 14,645 fewer Americans would have been killed in 2000. Matching the British
and Australian performance would have reduced 2000 US road deaths by 15,247 and
18,310 respectively.

The calculation is reasonably robust with regard to choosing other approaches and
reference years different by a few years from 1979. A calculation based on the changes
in total fatalities from 1979 to 2000 (data in Table 4-13), rather than on the rates,
gives similar estimates. For the US, the 2000 fatality count is 23.4% below the peak
value of 54,589 attained in 1972. For Canada, Britain and Australia, the
corresponding reductions are 56.5%, 57.3% and 52.1% below their respective peaks.
All three comparison countries more than halved their peak fatalities. If US fatalities
had declined by half of the peak value, the 2000 total would be 27,300. The
observed number exceeds this by more than 14,000. The overall conclusion is that if
US safety performance had matched that in any one of the three comparison
countries, substantially more than ten thousand Americans who were killed in 2000
road traffic would now be alive.

The calculation in Table 4-13 was repeated to compare every year from 1979
through 2000, with the results shown in Table 4-14. Summing over the period gives
estimates of the total numbers of American lives that would have been saved over the
period 1979-2000 if US safety performance had matched that in the comparison,
countries as follows:

If US matched Canada, 196,604 fewer US fatalities

If US matched Great Britain 146,733 fewer US fatalities

If US matched Australia 226,796 fewer US fatalities.

In Britain, the rate for the same distance of travel (Road traffic statistics, 2000)
declined by 70.5% from 1979 to 2000, compared to a 54.54% drop in the US (Fig. 4-
18). If each year from 1979 through 2000 the number of traffic deaths for the same
distance of travel had declined in the US by the same percent as occurred for Britain,
then 185,913 fewer Americans would have been killed in the 21-year interval. This
is larger than the estimates based on fatalities per vehicle because the average
distance traveled per vehicle per year increased more in Britain than in the US from
1979 to 1997. While estimates of distance traveled per vehicle per year are
unavailable for Canada and Australia, it is expected that estimates based on fatalities
for the same distance of travel would likely also generate corresponding larger
estimates of additional US fatalities.
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While there is uncertainty in all the above estimates, they do justify the conclusion
that, if US safety performance had been similar to that in any of the three comparison
countries, well over one hundred thousand Americans who are now dead would be
alive. An additional 100,000+ Americans being killed so overshadows any other
transportation safety matter that it is treated in some detail below in an attempt to
reach for explanations.

Airbag Mandate And Vehicle Factors At Core Of US Policy

No safety issue has consumed so much time and effort as the requirement that all new
cars (plus some other vehicles) sold in the US must come equipped with frontal
airbags (hereafter called airbags). This mandate makes the US the only nation in the
world whose inhabitants are prohibited from purchasing a new vehicle without an
airbag.

Claims

The mandate was enacted because advocates claimed that airbags:-

1. Are passive (require no user knowledge or action)
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2. Replace belts (permit vehicles to not have belts)

3. Reduce driver fatality and injury risk by 40%

4. Reduce risk regardless of gender, age, etc.

5. Hurt nobody

Reality

All 5 claims are false.

1. Are passive. Drivers, passengers, and parents must know an ever-increasing
list of rules on how to avoid death and injury from deploying airbags. Arguably,
airbags are the least passive safety device ever installed on vehicles; they might better
be called belligerent restraints. The manual belt is far more passive, requiring only
one simple rule, “buckle up.”

2. Replace belts. The government’s estimate of airbag cost included $ 18 saved
by not installing belts (FR Doc.77-19137, 1977). Yet today no manufacturer in the
world offers airbags as complete occupant protection devices. In all cases they are
offered as supplemental devices to increase the effectiveness of the primary occupant
protection device, the lap-shoulder belt.

3. Reduce driver fatality risk by 40%. This claim is not merely incorrect – it is
absurd, and was know to be absurd when the claims were made. Airbags deploy only
in frontal-impact crashes, which are responsible for just over half of fatalities. For an
airbag to be 40% effective, its effectiveness in frontal crashes would have to be
nearly 80%, a performance level that 1970’s knowledge readily dismissed as
impossible. The government disparaged a well-executed study (Wilson and Savage,
1973) reporting an overall effectiveness of 18% (the latest government estimate
(Kahane, 1996) is 13%). Using data from a fleet of 10,000 airbag-equipped cars sold
in the mid 1970s, Pursel et al. (1978) estimated that the airbag alone reduces severe
injury risk by 9%.

Table 4-15 summarizes estimates of the effectiveness of airbags in reducing risk
to belted drivers (driving unbelted is illegal in all US states except New Hampshire).
Barry et al. (1999) claim that these estimates are too high.

The 9% fatality reduction for belted drivers is consistent with the finding (Table
4-9) that adding an airbag increases the effectiveness of safety belts from 42% to
47%, a difference of 5 percentage points. Figure 4-19 clarifies the difference, and
shows that as belt use rates increase from 0% to 100%, deaths prevented by airbags
decline from 13 to 5 per original 100 fatalities.



104 Handbook of Transportation Science

4. Airbags reduce risk regardless of gender, age, etc. All the above estimates
are averages for all drivers. There is now considerable evidence that airbags increase
risk to many large portions of the population, including possibly older drivers
(Kahane, 1996). Dalmotas et al. (1996) find that while airbags reduce net harm to
males by 12%, they increase net harm to females by 9%. The evidence that airbags
increase risks to children is clear (Kahane, 1996, Graham et al. 1998.) Graham et al
(2000) find that airbags increase fatality risk to unbelted children by 84% and to
belted children by 31%.

5. Airbags hurt nobody. More than 200 people in the US have been killed by
the forces of deploying airbags in crashes they otherwise would have survived, in
many cases uninjured. The victims have been mainly children and babies in the front
passenger seat, and short female drivers. Vastly larger numbers have sustained many
other types of injuries, including eye injuries, hearing loss and respiratory disease.

Well prior to the airbag mandate technical information raised questions regarding
risks airbags posed to children. Papers were published with titles including Possible
effects of air bag inflation on a standing child (Aldman, 1974) and Airbag effects on
the out-of-position child. (Patrick and Nyquist 1972). Yet the agency responsible for
mandating airbags writes “air bags will provide substantial crash protection to
otherwise unrestrained small children in crashes” (National Highway Traffic
Administration, 1980, p. 71). On page 70 of the same document the agency cites,
and dismisses, statements by General Motors, based on their own animal testing and
other technical considerations, that a “child might be injured by an inflating bag”.
Ralph Nader, while engaged in promoting airbags, is photographed in July 1977
demonstrating an airbag “safely” deploying into the face of an unbelted three-year
old girl (Photograph reproduced in Evans, 2002; see also
http://www.scienceservingsociety.com/nader.htm). Airbags in fact increase fatality
risk to unbelted children by 84% (Glass et al., 2000). Even for belted children,
airbags increase fatality risk by 31% (Glass et al., 2000).
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Airbags cause additional harm, including eye injuries (Duma et al., 1996), hearing
loss (Yaremchuk and Dobie, 1999; Buckley, 1999) and asthmatic attacks (Gross et
al., 1994; 1995)

All the above relates to frontal airbags. Many manufacturers now offer side
airbags. It is difficult to see how they could be more than about 10% as effective as
frontal airbags, given how much less deployment space is available. This means that
the theoretical maximum reduction in overall occupant fatality risk can be no more
than a percent or so. It seems almost inevitable that a child asleep against the
deploying unit will be killed.

Airbag Mandate and the Technology/Human Interface

The conclusion that airbags reduce belted driver risk by 9% refers strictly to the
change in risk, given identical numbers of identical crashes. From this, one cannot
infer the change in fatalities due to a policy requiring universal airbag installation.
Such an inference requires a crucial, and false, assumption (one which is implicitly
included, without comment, in all estimates of lives saved by airbags). The false
assumption is that beliefs about airbag effectiveness have zero effect on driver
behavior.
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Table 4-16 compares two models of how technological changes affect safety. An
analysis of 24 studies (Evans, 1996) shows that the naive model can be grossly in
error, even to the point of estimating increases in safety when reductions actually
occur, and vice versa.

Driver behavior changes have been reliably observed in response to technologies
that provide clear feedback. Anti-lock brakes provide a clear example (Evans, 1999,
Farmer et al., 1997). For technologies that affect only injury risk, behavior effects
are expected to be smaller and therefore difficult to measure. While behavior
responses to injury risk are generally difficult to determine empirically, the following
construct establishes that they occur.

Consider two hypothetical cars, identical in all respects except that one has the
magical property that its occupants cannot be hurt in any crash, while the other is
wired with dynamite to explode on the slightest impact. No one would claim that the
two cars would be driven in identical ways. The same conclusion applies even if the
cars were in fact identical, but falsely believed to possess the hypothesized
properties. Changes in perceived protection can be viewed as lying along a
continuum bounded by hypothetical extremes.

While there are no empirical estimates of changes in driver behavior in response
to US airbag policy, the considerations below suggest that the airbag mandate not
only increased driver risk-taking, but by more than the meager actual benefit of the
device in a crash. For over 30 years the public was inundated with messages grossly
overestimating the benefits and ignoring the negatives of airbags. It was widely
believed that airbags were so effective that belt wearing was unnecessary. Slow-
motion movies convinced many that in a crash they would glide forward into the
gentle caress of a soft cushion. Such massive inputs must lead to outputs, most likely
including less belt wearing and faster speeds.

When it became clear that airbags were killing short ladies, a number of short
ladies told me “When I discovered the airbag could kill me, I started to drive more
cautiously.” If one accepts this statement, it is hard to dispute the corresponding
conclusion that a belief that the airbag dramatically reduces risk must lead to less
cautious driving.

If beliefs about airbags led to an undetectable 3% increase in average speed, a
13% increase in fatality risk would result. Instead of reducing fatalities by 9%, the
intervention would increase fatalities by 4%. Government calculations, based on
assuming the naïve model, that airbags have saved over 2,000 lives (mainly of
unbelted male drivers) in the more than ten years since 1986, should not be accepted
even as gross approximations. They are, however, closer to the truth than the claims
made to support the airbag mandate (Federal Register 1977) that driver and
passenger airbags would prevent 12,100 deaths per year (or 120,000 per decade, the
unit apparently adopted today in order to associate larger numbers of lives saved with
airbags). Even assuming the naïve model, the calculated benefits are relatively small,
and, as discussed above (Figure 4-19), will decline sharply as belt-wearing rates
increase.
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The question “Did the US airbag mandate increase or decrease traffic fatalities?”
cannot be answered without knowing the magnitude of its effect on driver behavior.
However, the airbag mandate offers insight into why 100,000 more Americans died
in traffic than would have been killed if US safety performance had matched that of
Canada, Britain, or Australia.

Priorities In US Safety Policy

The relative contributions of different factors to traffic safety discussed earlier are
synthesized in the non-quantitative sketch in Figure 4-20. Not reflected in this sketch
is another large and fundamental distinction between engineering and human-factors
interventions. Even if a regulated vehicle design change actually reduces risk, it
takes a number of years to incorporate it into a vehicle, and another decade before
essentially all vehicles on the road have it. Belt wearing and drunk-driving
legislation start reducing harm from the time the laws take effect (perhaps even from
the time it is discussed).

While other countries formulated effective policies consistent with Figure
4-20, US priorities were ordered almost perfectly opposite to where benefits are
greatest. An obsessive focus on the airbag mandate and on minimally important
vehicular factors misled the public into making more dangerous choices than would
otherwise have occurred, and largely precluded the adoption of effective
countermeasures.
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The decision makers, and those whose council they welcomed, neither understood
nor respected technical information. By the early 1970s there was already more than
sufficient information in the technical literature to dismiss the claims of airbag
performance offered to justify the mandate.

Why does technical knowledge influence safety policy in the US so much less
than in other motorized countries? It seems to me that the explanation is, in part,
because no other nation bears a burden resembling the US legal system. In other
democracies, elected legislators with varied backgrounds are influenced by inputs
from diverse sources, including the technical community. In the US, lawyer
legislators get nearly all their inputs from other lawyers. It is therefore not too
surprising that measures that open deep pockets for legal assault are more appealing
than measures, which reduce harm. Only the most gullible can imagine that any net
good emerges from the resulting system which lavishly supports an enormous
community of the richest people in America, “expert” witnesses, consultants skilled
at identifying jurors lowest in knowledge and reasoning skills, and a vast court
superstructure, all of which are, in their scope, unknown anywhere else on earth.
Even advocates of the US system rarely conclude that US cars must be much safer
than Swedish cars because the US spends astronomically more per capita on
litigation than does Sweden.

It is only in the US that traffic crashes serve as catalysts to transfer vast wealth
from the public to the legal system. Even if all alleged defects in the engineering or
manufacture of the vehicle, road, or traffic control system could be miraculously
fixed, it is hard to see how this could reduce fatalities by as much as a percent or so.
However, I am convinced that indirect effects of US litigation are enormously
greater. The broad message from so much litigation is that crashes flow from the
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failings of asset-rich institutions, a factor over which drivers have no direct control.
Even believing a little in this may tend to make drivers less responsible and careful,
factors that have an enormous influence on crash risks.

It is only in the US that citizens asked to identify anyone important in traffic safety
would produce a list comprised almost exclusively of lawyers. It was a lawyer, Joan
Claybrook, who, when head of the National Highway Traffic Safety Administration
(NHTSA) from 1977 to 1980, spearheaded the airbag mandate with the five false
claims discussed above. A NHTSA official is quoted as saying “Joan came to
NHTSA with a mission and that mission was air bags” (Graham, 1989, p. 109).

In a November 1983 television interview Joan Claybrook says of airbags:

“They’re much better than seat belts, according to the government’s most
recent data”

and continues to dismiss safety belts as
“the most rejected technology we have. So I believe that airbags would add
a great dimension to cars and car safety, would protect all front seat
occupants in those types of crashes where 55% of the public is now killed”

Claybrook continues
“Airbags are really the best solution -- they fit all different sizes and types of
people, from little children up to 95th percentile males, very large males. ...
So they really work beautifully and they work automatically and I think that
that gives you more freedom and liberty than being either forced to wear a
seat belt or having a car that’s not designed with the safety engineering we
know today.”

The main pressure to retain the airbag mandate and keep it the focus of national
safety attention, rather than let consumers choose whether or not they wish to
purchase the device, still comes from the non-technical lawyers responsible for the
mandate. They now have allies in the massive airbag industry, which has been
likened to the military/industrial complex of an earlier era. What industry would not
enthuse over a government requirement that everyone must purchase their expensive
product, regardless of whether they want it or are even prepared to pay to have it
disconnected? The purchasers of the vehicles that comprise the current US fleet paid
about 25 billion dollars for airbags. A microscopic fraction of such a sum properly
applied could generate far larger safety benefits than those claimed (falsely) for
airbags.

The uniquely US fixation on vehicle factors can be traced to the mid-1960s efforts
of lawyer Ralph Nader and his proteges, including Joan Claybrook. Legislation
focussing overwhelmingly on the vehicle followed, starting with the 1996 National
Traffic and Motor Vehicle Safety Act and the Highway Safety Act. As discussed
above, it takes about a decade or so before any reductions claimed for vehicle safety
improvements could begin to show. Let us refer to the period before about the mid
1970s as the Pre-Naderite period, and the period after about the mid 1970s as the
Post-Naderite period. During the Pre-Naderite period, US traffic was, by a large
margin, the safest in the world. In the Post-Naderite period the US has dropped from
the number one ranking to number 13, and is still sinking. As a result of the US
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following the lead of lawyers rather than adopting policies illuminated by technical
understanding, well over ten thousand additional Americans are being killed in traffic
each year. The number, equivalent to an additional 30 deaths per day, will increase if
current trends continue.

One of the great ironies is that the very same lawyers responsible for this disaster
continue to exercise decisive influence to keep US safety policy on the same wrong
track. What is even more ironic is that the media continue to respectfully refer to
these same non-technical architects of policies that have killed over a hundred
thousand Americans as safety advocates.

4.8 Bibliography

Many of the topics in this chapter are treated in greater detail in Traffic Safety and
the Driver by Leonard Evans (Van Nostrand Reinhold, NY, 1991). In order to
reduce repetition, the absence of a citation in the text implies that additional
information and references are available in this book. Traffic Safety and the Driver
is available from amazon.com, bn.com and directly from the author at
scienceservingsociety.com. Many of the themes treated here will be expanded in the
author’s forthcoming book Traffic Safety, expected in 2003.
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5 TRANSPORTATION QUEUEING
Randolph W. Hall

5.1 Introduction

Since the time that humans first gathered into societies, there have been queues.
They have existed whenever people have demanded more of a service than that
service could provide. Though queueing is by no means new, the study of queues is
relatively recent, dating only to the beginning of the twentieth century and the work
of A.K. Erlang (Brockmeyer et al, 1948). Erlang’s investigations centered on
determining capacity requirements for telephone systems, a then very new
technology. Even to this day, much of the research in queueing has been directed at
applications in communication. The first textbook on the subject, Queues,
Inventories and Maintenance, was written in 1958 by Morse. The first textbook
focusing on queueing applications in transportation (Applications of Queueing
Theory) was written by Newell in 1971.

Research on queueing in transportation has evolved in its own distinct direction,
in part due to the influence of Newell’s work, and in part due to the unique aspects of
transportation systems. Unlike applications of queueing in communication or
production, queues in transportation tend to be much more predictable and, as a
consequence, much of the research on queues in transportation has been directed at
non-stationary (time varying) systems. Non-stationarities arise in transportation
because:

People prefer to travel at set times of the day and week, largely corresponding to
their work schedules. These demand surges create much of the queueing in
transportation, and

In many transportation systems (e.g., mass transit, trucking, railroads and
intersections), customers are served in bulk.
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From the standpoint of capacity provision, transportation often relies on major
investments in infrastructure, such as roadways, runways or railroad lines.
Infrastructure intensive systems have only limited latitude for adjusting capacity to
responsd to fluctuating demand. Thus, queues recur at known times when customers
arrive at a faster rate than the infrastructure can accommodate.

Another unique aspect of transportation is that the customer service mechanism
is often defined by the spacing between vehicles along a guideway, and not by how
quickly a person or piece of equipment can process customers. Thus, the time to
serve a customer is determined by the customer’s behavior. A queueing system also
behaves as a continuum of serial servers, with extremely short service times,
interacting with each other. Therefore, the system model depends not only on the
number of customers that queue at a particular location, but the physical length of
that queue, and whether that queue spills back into other servers. These phenomena
are the core subject matter of traffic flow theory, covered in Chapter 6.

Finally, transportation is different from most other queueing applications
because the service mechanism is frequently government owned. As a consequence,
pricing normally is not used to level out demand patterns, and there tends to be much
less flexibility in varying capacity to match fluctuating demand.

Most textbooks in queueing theory emphasize modeling stochastic
characteristics of queues that occur in steady-state (i.e., the probability distribution
for the state of the system is not time dependent). Unfortunately, for the reasons
mentioned above, this theory is not always relevant to transportation. Instead,
queueing models in transportation are more likely to concentrate on the non-
stationary characteristics of queueing, as well as on the optimization of system design
and system control. Examples include:

Determining the best cycle length and phase lengths for traffic signals.

Evaluating the consequences of adding lanes or changing the geometric
configuration of a highway on “recurrent” (peak period) and “non-recurrent”
(incident produced) delay.

Optimizing the frequency at which buses or trucks should be dispatched along a
route, taking cost of operation and service quality into consideration.

Determining how many service vehicles are needed to respond to randomly
occuring demand that is spread over a service region.
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5.2 Elements of a Queueing System

Queueing systems are defined by three elements: customers, servers and queues.
Customers are the persons or things that await service. They can be travelers, or the
vehicles that they travel in. Customers can also be the good, piece of freight or
container that is being shipped. The server is the resource that provides the service to
the customer. It could be a piece of roadway, a bus, or gate in an airport, to name a
few examples. The queue is the group of customers waiting to be served, along with
the place they are waiting. Queues can occur as orderly lines, but they also can be
groups of customers spread out in a terminal waiting area or perhaps a warehouse.
All queueing systems have customers and servers, though occasionally they don’t
have queues. This occurs when the system refuses to accept customers when they
cannot be served immediately.

The performance of the queueing system is defined by the arrival process,
service process and queue discipline. The arrival process represents the time pattern
by which customers enter the queueing system. Arrival processes in transportation
are usually non-stationary, meaning the average arrival rate varies in some
predictable way. Arrival processes also exhibit some level of stochastic variation,
which is usually represented by the probability distribution for the inter-arrival time
(the time separation between two successive arrivals). The service process represents
the time and resources required to serve a customer. Service process, like arrival
processes, exhibit stochastic variations and often non-stationary patterns (when
capacity varies by time). The service time can also depend on the type of customer.
The queue discipline is the rule for sequencing customers. Typically, this is a first-
come-first-serve pattern. However, other disciplines are used to account for
priorities, or to group customers for efficiency (such as a traffic signal, which groups
by turn pattern).

Queueing systems are important in transportation because of their effects on
customers, and because of the cost of providing the service. The dominant effect is
delay, which might be measured in such ways as “time in system”, “average speed,”
or “waiting time.” Fundamentally, queueing analysis is used to determine the
difference between how long it takes to complete a trip, and how long it would have
taken if there were no queueing or congestion. The following are examples of the
performance measures that can be predicted with queueing models or measured in the
field:

Throughput: Rate at which customers are processed by the system

Crowding or Congestion: Separation between customers, or density of customers
(e.g., vehicles per lane-mile of roadway).

Lost Customers: Number of customers that do not travel because of queueing.
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Queue Percentage: Percentage of customers that encounter a queue prior to
receiving service (instead of being served immediately).

Service Cost: The annual or per customer expense of providing the service.

Productivity: In some cases, the productivity of the server depends on the amount
of queueing and whether the system is saturated.

In some instances, queues are stochastic, reflecting a momentary surge in
demand or drop in capacity. In others, queues are predictable, following a regular
daily pattern. And in some cases queues are perpetual, being present whenever a
facility is open for business. One of the objectives in designing a queueing system is
remove perpetual and predictable queues, and then to minimize the occurrence of
stochastic queues.

5.3 History of Research on Transportation Queueing

Nearly all of the published research on queueing in transportation is motivated by a
modal application, such as vehicles on roadways or mass transit. Nevertheless, there
is considerable cross-over in concepts and methods between modes. This section
provides a few examples.

Traffic: Vehicular Flow on Highways

Controlled access highways were first constructed in the 1930s and 1940s, and
only became widely available in the United States in the 1950s and 1960s. Even in
the 1990s, they are uncommon in many parts of the world. Research on queueing on
highways paralleled this pattern, with the 1950s and 60s seeing a surge of activity,
with more or less steady activity ever since. To this day, problems in highway traffic
flow have influenced our understanding of queueing phenomena more than any other
mode of transportation (for instance, see Hankin and Wright, 1958; Lovas, 1994; and
Older, 1968; as examples of how vehicular traffic research has influenced modeling
of pedestrian traffic). Its three greatest contributions have been: (1) modeling speed
and capacity as functions of vehicle concentrations, (2) modeling the formation and
size of queues with shock waves, and (3) application of cumulative diagrams to
represent non-stationary phenomena. Secondarily, it has stimulated thinking on
congestion pricing, though this research has yet to be applied in a significant way.

Queues on highways are typically manifest in slowed, rather than completely
stopped, traffic, making queues difficult both to count and model. It was observed as
early as 1935 (Greenshields), that traffic has a natural tendency to slow as the vehicle
concentration (vehicles per unit length of roadway) increases, because vehicles
naturally reduce speed to provide safe spacing. Extremely large concentrations only
occur under jammed conditions, when both vehicle speeds and vehicle flows (product
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of concentration and speed) are small. Vehicle flows are maximized at moderate
concentrations, when vehicle speeds are only slightly impeded by congestion. The
maximum flow value is referred to as the highway capacity.

Lighthill and Whitham (1955) and Richards (1956) used speed/concentration
curves in their kinematic wave theory to model the formation of queues behind
roadway bottlenecks – that is, places where capacity is lower than upstream or
downstream sections. The end of a queue is modeled as a shock-wave, representing
an abrupt change in traffic density and speed. So long as traffic arrives at the
bottleneck at a faster rate than its capacity, the shock-wave grows upstream.

The 1950s is notable for introducing concepts from physics into the study of
traffic queues, as in the kinematic wave theory of Lighthill and Whitman, and and
also the thermodynamic theories of Newell (1955). It also was a period that
established traffic science, and more generally transportation science, as a field of
research that blends empirical and theoretical investigation. This is especially
evident in the work of Wardrop (1952), Edie (1956), Edie and Foote (1958) and Edie
(1961), and Herman et al (1959). Edie and Foote’s investigations are especially
famous, and are based on extensive data collection on traffic flows and speeds in the
Holland and Lincoln tunnels in New York.

Non-stationary phenomena are critical to analysis of queueing on highways, due
to peaking of traffic during commute periods. This type of queueing is sometimes
called “recurrent congestion”, as it occurs on a daily basis. Recurrent congestion is
distinguished from “non-recurrent congestion”, representing delay caused by random
occurrences, such as accidents. Considerable research has been devoted to analyzing
the effects of random incidents on highway, often by the same basic methods as non-
stationary phenomena. However, research on vehicular queueing usually does not
account for random variations in inter-arrival or service times, as is common in
mainstream queueing literature. Queueing caused by this type of randomness is
viewed as secondary relative to queues caused by accidents or queues caused by non-
stationary traffic patterns.

Cumulative diagrams have been a part of the traffic science literature for some
time as a representation of non-stationary phenomena. They are used to show the
cumulative count of vehicles passing a point along a roadway, but they are applied
more generally in queueing to represent cumulative counts of arriving and departing
customers. They can be used to measure vehicle concentrations, queue sizes, travel
times and delays. They are used to model empirically observed processed (i.e., based
on actual counts) and also to deterministically model average system performance.
Finally, they are used to represent non-recurrent incidents by randomizing event
times, durations and magnitudes. The methodology is documented in the texts by
Newell (1971, 1982) and Hall (1991), and later in this chapter.
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According to Newell (1993), empirically based cumulative curves first appeared
in published literature in 1960 (Edie and Foote), and were first used as a predictive
tool in 1965 (Gazis and Potts), though they had already been used for some time
within state transportation departments. May and Keller (1967) represented traffic
as a continuously flowing fluid within a cumulative diagram to model the formation
and dissipation of a queue caused by peaking in traffic flows. More recently, in
1993, Newell merged the concepts of cumulative diagrams with wave theory, relying
on a three-dimensional version of the cumulative diagram (traffic is a function of
both time and space; Makigami et al, 1971).

Roads in most countries have been financed through the imposition of taxes,
most commonly paid when purchasing fuel. As a consequence, road users do not
ordinarily pay additional charges on costly roads. And it is very rare for roadway
charges to be related to how heavily the roadway is utilized or the amount of
congestion on the roadway. As a consequence, economists have argued that
roadways are overutilized during peak periods. (This is because drivers impose more
delay on other vehicles during congested periods than they personally incur.)

Vickrey (1963, 1969) proposed that queues can be eliminated through the
application of a continuously variable toll, and that all road users would benefit
(despite that added toll). Beckmann et al (1956), Beckmann (1965) and Dafermos
and Sparrow (1971) proposed route based tolls to influence traveler routes, and to
optimize use of roadway capacity on primary and parallel routes. Numerous papers
have been written since, but the basic approach has remained constant. Prices are set
such that travelers optimally equilibrate across travel times and travel routes, greatly
reducing or eliminating queueing. The equilibration is based on a combination of
direct cost and indirect cost (representing the inconvenience of traveling on a
secondary time or at a non-preferred time). In general, however, the models are
highly speculative, as realistic data are not available to verify their underlying
behavioral assumptions, and because pricing policies are dictated by politics,
technology and practicality more than idealized toll structures.

Traffic: Signalized Intersections

Signalized intersections operate as bulk service systems, in which the server
alternates between different customer types. A customer type represents a vehicular
path through the intersection, defined by a “from direction”, a “to direction” and
possibly by a lane. Unlike bulk service systems in production, intersections allow
different customer types to be served simultaneously, provided that their trajectories
do not intersect, allowing for many ways to combine trajectories into flow patterns.

The queueing delay for any trajectory through an intersection depends on the
signal’s cycle length, green phase length (portion of cycle that signal is green for the
trajectory), and the synchronization of the green phase with the pattern of vehicle
arrivals. It also depends on intersection parameters, such as vehicle service rates
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during the green phase and the average arrival rate. The usual pattern is that queues
accumulate during a red phase, dissipate at a rate matching signal capacity at the start
of the green phase and, after the queue vanishes and until the signal turns red again,
vehicles are served as they arrive.

Research on intersections has centered on optimizing cycle length, phase lengths,
phase patterns and signal offsets (representing time lags between adjacent
intersections). Cycle lengths are typically extended when it is necessary to increase
an intersection’s capacity. This is because capacity losses occur at each phase
change; hence, enlarging the cycle length reduces the capacity lost per unit time. If
arrival rates are small, cycle lengths are set shorter, so as to minimize cycle delays.
[If rates are very small, traffic may be better served by a stop sign or uncontrolled
intersection, further reducing cycle delays at the expense of lower capacity (Tanner,
1962; Cheng and Allam, 1992).] Phase lengths are apportioned according to arrival
rates and service rates.

As general practice, phase lengths must be at least large enough to serve all
vehicles that arrive in a cycle, and should sometimes be even longer if the arrival rate
is much larger for a traffic stream than others. Offsets are set to provide
synchronization between intersections. Ideally, a signal should enter its green phase
as the vehicles begin arriving from an upstream signal. These vehicles arrive in
“platoons” (i.e., clusters of vehicles), which have a tendency to disperse as they travel
away from an intersection (Pacey, 1956; Grace and Potts, 1964). When intersections
are spaced far apart, platoon dispersion (as well as turning traffic) makes it
impossible and perhaps unnecessary to synchronize traffic signals. Closely spaced
intersections, on the other hand, can be synchronized to minimize cyclic delays and
provide for a smoother progression of traffic (e.g., Allsop, 1970; Robertson, 1969;
Little et al, 1981).

Synchronization is easily accommodated on isolated one-way streets. However,
perfect synchronization is usually impossible on two-way streets (in which case
opposing directions may arrive at different times) or in signal grids (in which case
crossing streets may require different synchronizations). In any case, synchronization
demands identical, or integer-multiple, cycle lengths, to ensure that settings do not
drift apart. This in itself forces a compromise, as traffic levels at some intersections
may demand longer cycle lengths than others.

Grids of signals can also experience blocking effects. This can occur when
signals are closely spaced and poorly synchronized, and is exacerbated by poor
driver behavior. When a signal operates close to saturation, vehicles may queue back
to the preceding intersection. When the preceding intersection turns green, they are
blocked from passing through the intersection because the downstream segment is
already occupied. The situation worsens when the signals are out of phase with each
other, and can be especially problematic in a tight grid of intersections. Intersection
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blocking in Manhattan is the source of the term “gridlock”, which has lately become
synonymous with any form of queueing.

Essential trade-offs between cycles length, phase length and queue time were
captured as early as 1941 in the work of Clayton, but has since been enhanced
through consideration of stochastic effects and different signal configurations and
control policies. Most of the literature treats arriving and departing vehicles as
fluids, flowing at constant rates within time intervals. In some cases, these rates are
stochastic, and in others arrival rates may vary within a cycle (accounting for effects
of upstream signals). In Webster’s classic work (1958), arrival patterns were
simulated, and empirical relationships were statistically estimated for waiting time as
a function of signal parameters. Newell (1965) examines signal through analytical
expressions in which queue parameters are random variables, but once these
parameters are determined the intersection behaves as a deterministic/fluid system.
He, along with Miller (1963), examined the effects of spillover from one traffic cycle
to the next, which can significantly exacerbate queueing when operating close to
capacity.

Transit and Trucking

Mass transit and truck systems have similar characteristics in that they serve
“customers” (people in the case of transit, and shipments in the case of trucking) in
groups (called bulk service). Bulk service also occurs in production systems, such as
batch chemical processes, printing, and metal stamping, and therefore research on
queueing systems is somewhat intertwined among these applications. In all cases, the
basic issues are to determine when bulk services should occur, how many customers
should be served in each bulk service, and which customers should be served. The
decisions are optimized against cost objectives (e.g., cost of providing the service),
customer service objectives (e.g., average time waiting or average time in inventory),
and throughput objectives (e.g., ensuring that customers can be served as fast as they
arrive). Unlike traffic signals, bulk service in trucking and transit occurs virtually
instantaneously, as the vehicle departs. Furthermore, bulk service models for transit
and trucking usually do not consider what happens to the resource (vehicle) when it
completes its service.

Perhaps the most famous and widely used model is the Wilson economic-order-
quantity model, which was developed in the early          century. The basic premise is
that a total cost function (sum of inventory and set-up cost) is minimized by
optimizing the number of customers served in each bulk service. The resulting
equation provides a square-root relationship between order quantity and the arrival
rate of customers. Similar ideas can be found in the transportation literature, most
notably in the work of Newell (1971), Blumenfeld et al (1985), Burns et al (1985)
and Hall (1996). Newell demonstrated how to optimize the interval between
dispatches for non-stationary/deterministic systems. The other three papers
determined how the Wilson model can be applied in transportation contexts,
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accounting for inventory at both the source and destination of a trip, synchronization
with arrival and departure processes at the trip ends, and multiple-stop vehicle routes.
(These topics are covered in depth in Section 5.5)

One of the most interesting application papers in queueing is Oliver and
Samuel’s (1967) study of mail processing. This is one of a few papers that examines
sortation in terminals and transportation to and from the terminal as a linked process.
But the paper is most significant for determining how capacity should be determined
within a serial queueing system under non-stationary demand. Their fundamental
conclusion was that staffing should be allocated in a way that evens out capacities,
thus providing minimal queueing once the customer has passed through the initial
server.

A second area of interest is real-time control of routes, governing the release of
vehicles from stops in response to random arrival rates. Again, the earliest work in
this area falls outside of the transportation literature (Bailey, 1954; Neuts, 1967).
More recent work includes Powell (1985), Powell and Humblet (1984), and Powell
(1986), who investigated a variety of policies for dispatching or canceling services
based on the elapsed time from the previous service and the number of customers
waiting. Similar policies have been investigated for transfer terminals by Hall et al
(2001) and cyclic truck routes (Hall, 2002). These contributions fall in the tradition
of dispatching policies form the production literature.

A final area concerns schedule control of vehicles traveling on routes with
multiple stops. Here, the application is almost exclusively transit. In this context, it
is usually impossible to hold vehicles at stops if there are insufficient customers.
First, it would be unwise to base a dispatch policy on just one stop when the bus will
later serve many downstream locations. Second, most transit systems advertise a
schedule that is relied on by customers. Finally, the majority of the service cost is
incurred whether the vehicle is in motion or stopped, so there is little cost advantage
in holding a vehicle or canceling a trip.

In routes providing frequent service (headways of 10 minutes or less), the
objective in schedule control is largely to ensure consistency in headways (time
separation between vehicle arrivals or departures). Customers on short-headway
lines typically do not consult schedules before arriving at their stops, and therefore
arrival patterns are reasonably stationary relative to the schedule. Second, as
demonstrated in Osuna and Newell (1971), average waiting time increases with the
square of the coefficient of variation in the headway (ratio of standard deviation to
the mean). Completely random Poisson vehicle arrivals generate twice the average
wait of deterministic arrivals. In fact, waiting time can be worse then the Poisson
case, as vehicles on frequent lines have a tendency to bunch. Headways on very
frequent lines are inherently unstable: when a bus falls slightly behind schedule, it
tends to pick up more passengers, causing it to slow further, until it eventually
bunches with the trailing bus (Newell, 1975, Barnett, 1974). This can be controlled,
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to some degree, by slowing down a trailing bus when it is catching up with the
preceding bus. However, the added delay for passengers already on the trailing bus
limits the applicability of this (and other) control strategies, except at the very start of
lines.

The behavior of infrequent lines differs substantially from frequent lines.
Customers generally do consult schedules, making arrival patterns non-stationary.
Therefore, waiting time is not defined by the headway, but instead by the random
deviations in the bus arrivals at the stop, along with the customer’s selected arrival
time relative to the schedule. Finally, because late bus generally do not pick up
additional passengers, schedules tend to be much more stable.

Aircraft and Airports

As in road transportation, a fundamental issue in air transportation is accommodating
peak traffic loads. And though techniques such as fluid models have been applied in
air transportation (e.g., Newell, 1979), a separate branch of research has evolved in
which stochastic phenomena are explicitly modeled. Unlike highway traffic, the
number of customers (represented by aircraft) that may reside in a queue is relatively
small, making it relatively easy to measure the system state as a discrete entity, and
also making round-off errors introduced in fluid models somewhat more significant.
Consequently, this line of research is linked more directly to mainstream queueing
research.

Air transport research is dominated by the phenomena of runway queues.
Runways are traditionally a weak link in the air transport system, likely due to the
high cost and environmental constraints in their construction, and safety requirements
in operation. A complication in modeling runway queues is that the service time for
an aircraft depends on the type of preceding aircraft, which is defined by speed and
size (creating wake effects that can impose safety risks to trailing aircraft), and
whether it is taking off or landing. Therefore, as in many production systems, it can
be advantageous to sequence customers in a way that optimizes throughput (Newell,
1979).

Stochastic modeling of runway queues is represented in the work of Gallagher
and Wheeler (1958), Koopman (1972), Peterson et al (1995a,b) and Odoni and Roth
(1983). Odoni and Roth, for instance, developed an approximation for the time
constant within an exponential decay function, representing the difference between
the expected state of the system at a time t and the limiting state as t goes toward
Newell (1982) is also notable for development of relaxation times, representing the
approximate time for a system to reach steady derive. Newell demonstrated that the
relaxation time goes toward infinity as the arrival rate approaches capacity, and that
steady-state equations are inherently inaccurate for systems that operate close to
capacity, even if arrival rates fluctuate only slightly. These were derived from
diffusion models, and were not intended for a specific modal application.
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Runway queues have also been evaluated within the context of “ground
holding”, which is a form of network flow control in which the release of aircraft
from a departure airport is based on congestion and weather at the destination airport.
Ground holding is advantageous because queues are shifted from the airspace to the
airports, saving operating costs and enhancing safety. Stochastic programming
methods have been used to study the problem (Odoni, 1987; Andreatta and Romanin-
Jacur, 1987; Richetta and Odoni, 1993).

A second queueing application is the baggage claim process (Horonjeff, 1967;
Ghobrial et al., 1982; Robuste and Daganzo, 1992). Here, a service is not completed
until two events occur: the arrival of the passenger (or passenger group) and the
arrival of the bag (or bag group). Hence, the service is defined by the maximum of a
set of random variables. Horonjeff’s analysis is based of actual bag and passenger
arrival patterns, which are expressed relative to the time that an aircraft begins
disembarking passengers. Ghobrial et al offer an extension, in which the time
required to retrieve a bag is a function of the passenger density surrounding the
baggage carousel, and Robuste and Daganzo examine baggage sortation and
containerization strategies (similar issues arise in rail and ocean terminals).

Railways

Railways are somewhat unique as transportation modes in two ways: shipments are
grouped into long serial units during transportation, and vehicles have no steering
capability. Each situation has led to research on queueing.

Train transportation exhibits strong scale economies, meaning that the cost per
unit declines substantially when trains operate in longer lengths. However, it is
unusual for a single origin/destination pair to generate sufficient traffic to create a
long train. Therefore, different origins and destinations must somehow be grouped
together. This is accomplished in classification terminals. Each arriving train brings
cars from a common set of origins. The train is then broken apart and sorted
according to groups of destinations. The sorted cars are finally formed into
outbound trains. The process is sometimes repeated multiple times, and sometimes
pre-sorting at one terminal to reduce work at a downstream terminal.

The classic work on train sortation can be found in the book by Beckmann et al
(1956), who modeled the expected number of train breaks (and associated service
time) as a function of the number of sortation categories and their probabilities.
More detailed models were not developed until the 1970s, and is represented in the
work of Petersen (1977a,b), Turnquist and Daskin (1982), and Daganzo et al (1983).
These authors developed models representing the time required to process a train
based on how cars are grouped into sortation blocks on outbound trains.

Because trains cannot be steered, and because the guideway is restricted to
narrow track, vehicles can only pass each other at prescribed locations (sidings), and
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with the assistance of switching. This contrasts with most other forms of
transportation, where vehicles can pass by steering into another lane or otherwise
outside the trajectory of the other vehicle. Most railroads are designed to have either
one track (shared by opposing directions) or two tracks (one for each direction). In
the first case, trains must be switched into sidings to allow faster trains to overtake
slower trains (e.g., a passenger train passing a slower freight train), or whenever
trains meet from opposing directions, no matter how fast they are traveling. With
two tracks, sidings are only needed to allow faster trains to pass slower trains.

Queueing research has centered on design, including: (1) provision of one or two
tracks, (2) separation between sidings, (3) operating policies, with respect to speed,
passing priority and train scheduling. Railroads must consider whether the benefits
of operational flexibility and reduced delay justify the added expense of constructing
additional track or sidings. This investment is typically only justified when traffic
levels are sufficient. Research on the subject is represented by Frank (1966),
Petersen (1974) and Welch and Gussow (1986). A common technique is to utilize
time-space diagrams (the vehicle trajectory, showing position as a function of time)
to identify train “interference” (i.e., the intersection of vehicle trajectories). Petersen
determines the interference frequency as a function of the train separations and
speeds, and associates these with interference delays siding locations. This research
is closely related to the traffic flow literature, both in its use of time-space diagrams
and in its modeling of interference.

Spatial Queueing

A final application area spans transportation and location science, and concerns
queueing for spatially separated resources, such as police or fire service. The general
question is to allocate resources in a way that minimizes a measure of response time,
while staying within an available budget. In some cases, the resources reside at fixed
bases (e.g., fire), and in other cases the resources are mobile (e.g., police). Versions
also exist where the customer travels to the server, rather than the server traveling to
the customer.

The response time typically includes a combination of travel time (from where the
resource is located to where it is needed), call processing time, and queueing time.
One of the interesting phenomena is that when the system gets busy, it is the travel
time that suffers rather than queueing time. This is because when nearby resources
are busy, a more distant resource is dispatched instead – creating a longer response
time. Simultaneously, the throughput degrades, as it takes longer to serve calls when
travel distance increases.

Much of the work on the topic can be attributed to a series of projects conducted
by the RAND Corporation in New York City in the early 1970s. Examples of
research in the area include Chaiken and Larson (1972), Green and Kolesar (1989),
Ignall et al (1978), Kolesar (1975), Kolesar and Blum (1973), Kolesar et al (1975),
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Larson (1972) Rider, (1976). The work is most notable for how it has blended
empiricism, theory, and application. This includes modeling response distance as a
square-root function of the average territory served by each resource, explicitly
representing resource allocation and call rates as non-stationary functions, precisely
modeling service time distributions and verifying results against actual performance.

5.4 Representation of Queueing Processes

Cumulative diagrams and fluid models are the most important contributions of
transportation to the queueing literature, and this is our emphasis here. They have
been applied to all modes of transportation, and are useful in displaying and
modeling queueing phenomena, and in system optimization.

Basic Concepts

A cumulative diagram indicates how many customers (often vehicles) have
passed a point in the transportation system as a function of time (measured from an
initialization time). A cumulative arrival diagram indicates how many customers
have entered the system, and a cumulative departure diagram indicates how many
customers have left the system. Figure 5.1 provides an example empirical cumulative
diagram. In an empirical diagram, individual customers are represented by steps in
the curve, corresponding to the time instants when events occurred (either an arrival
or a departure). Additional curves can be created, is desired, for intermediate points,
as when customers pass through serial servers.

Cumulative diagrams are important because they provide many performance
measures in one simple picture. Let:

A(t) = cumulative arrivals from time 0 to time t
cumulative departures from the system from time 0 to time t

The number of customers in the system at any time t is simply:

And the total time spent by customers in the system up to time t is:

W(t) = total time spent by customers up to time t

number of customers in the system at time t
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Two critical performance measures are the average number of customers in the
system and the average time in system per customer. The average number of
customers is easily derived from W(t):

L(t) = average customers in system, time 0 to time t

In cases where the system begins and ends in an empty state (i.e.,
the average waiting time is also easily defined:

Combining these expressions, it can be seen that

Equation 5.5b is a special case of Little’s formula (1961), which states that the
average number of customers in the system asymptotically approaches the average
time in system multiplied by the customer arrival rate for a wide class of systems.

All of these results are clearly seen in a cumulative diagram, as Figure 5.1
illustrates. The number of customers in system (queue size) is the vertical separation
between the cumulative curves, and the total waiting time is the area between the
curves. The average time in system is the average horizontal separation and the
average customers in system is the average vertical separation. If customers are
processed in a FCFS order, the diagram also shows the time in system for individual
customers, also measured by the horizontal separation. If the sequence is not FCFS,
then another graphical device, such as a GANTT chart, is needed to show the time in
system for individual customers.

Fluid Models

In a fluid model, individual customers are represented as a continuously flowing fluid
rather than discrete entities. This has the effect of smoothing out the steps in the
arrival and departure curves. Fluid models are often used to predict the future
performance of queueing systems, or just to simplify the representation of observed
phenomena.

W(t) = average time in system from time 0 to time t
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In a fluid model, arrival rate, and departure rate,           are defined by the
derivatives of their corresponding cumulative curves:

In bulk service systems, the service rate can be undefined; otherwise it reflects
three factors: (1) the speed at which customers can be processed by the server, (2) the
size of the queue, and (3) the rate at which customers arrive. Servers ordinarily
operate at their fastest rate when queues are present, and operate at the same rate at
which customers arrive when queues are not present. Exceptions exist, as service
capacity can be variable, depending on demand, and service times can sometimes
change as queue lengths change.

To illustrate fluid models, we consider a simple system in which the service rate
is limited to a capacity c, but service times are very short. This might represent
queueing at a highway toll plaza, for instance. The arrival process and departure
process are both non-stationary, but are assumed to be deterministic, for purposes of
illustration. Under these conditions, Figure 5.2 illustrates how the queues would
evolve over a period of peak arrivals. The system is shown to evolve through a series
of four phases:
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Phase 1 represents the initial period when customers can be processed as fast as they
arrive (time 0 to time 20 in the figure).

Phase 1: Stagnant

Phase 2: Growth

Phase 2 represents the period in which the queue grows because customers cannot be
served as fast as they arrive (time 20 to time 80 in the figure).

Phase 3: Decline
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Phase 3 begins when the queue reaches its maximum length, which occurs when the
arrival rate drops down to capacity. It ends when the queue vanishes. (Time 80 to
time 140 in the figure.)

Phase 4: Stagnant

Phase 4 is when the queue is again stagnant at 0, with customers arriving slower than
they can be served. An interesting phenomenon is that exhibits a discontinuity at
the time the queue vanishes (5.3), dropping suddenly from c to the current arrival
rate. Thus, the departure rate pattern is highly asymmetrical in queueing systems.

Analysis Through Cumulative Diagrams

Through perturbation analysis, it is possible to optimize the design of the queueing
system. It is relatively straight forward, for instance, to model the effects of changing
system capacity. Increasing capacity has a non-linear effect on time in system, as it
causes both the duration of the queue (length of Phase 2 and 3), and the magnitude of
the queue to decline. And when capacity exceeds the maximum arrival rate, the
queue vanishes. Comparison of departure curves can be used to select a capacity
from a set of discrete options.

Cost trade-offs can be evaluated through use of marginal analysis, in which
capacity is continuously varied. We define a total cost function as:

where:

capacity cost per unit capacity
waiting cost per unit customer time

W(c) = total waiting time when capacity equals c

A necessary condition for optimality is that cost must not decrease if the capcity is
changed by a small amount The change in cost, if c is increased by can
be written as the sum of the change in capacity cost and the change in waiting cost:

C = capacity cost + waiting cost
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The change in waiting time (the term within the brackets) can be calculated from the
cumulative diagrams. Assume, as in Figure 5.3, that one predictable queue
occurs per time period. Then, for small values of the change in waiting time can
be approximated from the area of the triangle shown in the figure. That is:

represents the marginal change in cost, which must equal zero at the optimum
(provided that W(c) is continuously differentiable). Substitution of Eq. 5.13 in Eq.
5.12 provides the following optimality criterion:

Eq. 5.14 states that the optimal capacity is represented by the duration of the
queueing period – time from when the queue first forms until it vanishes – and not by
the arrival rates during the queueing period. The optimal duration increases with the
square root of the capacity cost (when capacity is expensive, longer duration queues
can be tolerated) and decreases with the square-root of the waiting cost (when
waiting is expensive, queues should be shorter in duration).
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Extensions

The cumulative modeling approach has been extended in a variety of ways.

Investigation of the combined effects of stochastic variability and non-
stationarity, principally through application of diffusion models.

Optimization of other system attributes, such as staffing plans and time-off
scheduling.

Measuring the effects of incidents that cause capacity to decline over short
intervals

Estimating effects of behavioral responses, causing arrival rates to be a function
of queue lengths, waiting times or tolls.

Evaluating queueing in bulk-service systems, such as signalized intersections,
transit and trucking.

Bulk service will be examined in some depth in the following section. But first, we
note that incidents often have a pronounced effect on system performance. This is
especially true when incidents occur around the time that a queue begins to form, as it
affects everyone who arrives over the queue’s entire duration. The effect is not
nearly so great when an incident occurs later, as it only affects those customers that
arrive later. As a consequence, queue management demands special care during
Phase 2, both to prevent harmful incidents, and to persuade customers, if possible, to
arrive at other times.

5.5 Bulk Service Models

Economic Order Quantity (EOQ) and Economic Production Quantity (EPQ) models
have been used for many years in transportation and manufacturing to optimize cycle
lengths, load sizes and batch quantities for bulk service. While research in this area
today is focused on complex scheduling systems, many of the underlying assumptions
of the EOQ/EPQ models have been retained, especially in transportation
applications.

This section describes how the EOQ/EPQ methodology is applied, taking both
input processes and output process into account. To this end, a set of "characteristic
cumulative diagrams" is developed to represent a range of scenarios. The principal
assumptions are: (1) input and output processes occur at constant and deterministic
rates (in some scenarios, rates are allowed to alternate between "on" and "off" phases
through batch processing). (2) Set-up and order costs are independent of batch size.
(3) Batches can be initiated instantaneously when the queue size drops to zero. (4)
Queueing costs are linear functions of the average queue size.
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The systems considered will have three components: an input process, a bulk
transportation system, and customers. The models explicitly represent bulk
transportation of goods, but they are easily adapted to represent other transportation
systems, such as traffic signals and buses. Hence, the input represents a production
process. The section is organized to demonstrate the effects of: (1) Synchronization
of input batch sizes with output batch sizes; and (2) Coordination of input and output
when there are multiple customer or product types.

Basic Methodology

The general approach is to represent total cost per unit time as the sum of a queue
cost and a "set-up" cost. The queue cost equals the average queue level multiplied by
a queue cost parameter. The set-up cost equals the number of set-ups or orders per
unit time (the demand rate divided by the batch size) multiplied by the cost per set-
up.

The following parameters are used to represent the system. In some cases, these
parameters are subscripted to denote an individual customer or product.

d = output rate (items/time)
p = input rate (items/time)

S = input set-up cost (money/set-up)
A = transportation "set-up" cost (money/order)
h = queue cost (money/customer per unit time).

To simplify expressions, transportation lead time (i.e., the transportation time from
origin to destination) is assumed to be zero. With respect to optimizing batch sizes,
this assumption results in no loss in generality, provided that lead times are
independent of the other parameters. While it is not difficult to incorporate a
"pipeline" cost to represent lead-time, the cumulative diagrams lose clarity.
Queueing cost is also assumed to be identical at source and destination, again with
the intention of highlighting principles. For similar reasons, the time to perform the
set-up is assumed to be negligible relative to the run time. Finally, batch sizes are
assumed to be unconstrained.

The decision variables are the order and production batch sizes, which in turn
define the order and production cycles:

production batch size
transportation order quantity
production cycle time

transportation cycle time
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While in most cases the production and order quantities are held constant, it will, in
some instances, be less costly to allow for varying quantities.

Queue holding costs are defined by the cumulative production at the source and
cumulative demand at the customer (or customers).

P(t) = cumulative production from time 0 to time t
D(t) = cumulative demand from time 0 to time t.

I(t) = customers in the system at time t = P(t)-D(t).

The order and set-up costs depend on P(t) and D(t), as achieving a small queue
requires more frequent set-ups and orders.

Dispatching Rule We now define a general characteristic of batch transportation
systems under optimal control. The characteristic is a necessary condition for
optimality when the following four conditions apply, but as a matter of practice
applies more broadly:

(1) transportation set-up cost is fixed with respect to shipment size,
(2) queue cost is a linear function of the total queue in the system (i.e., P(t)-D(t)),
(3) vehicle size is unlimited,
(4)  P(t) and D(t) are non-decreasing and represent a single product.

Let:

T(t) = cumulative items dispatched from the manufacturer, from time 0 to time t.

Then at the time of any dispatch:

T(t) = D(t) immediately before dispatch
T(t) = P(t) immediately after dispatch.

In words, the dispatching rule states that a shipment should be sent as soon as the
queue is exhausted at the customer, and that the order quantity (i.e., shipment size)
should be identical to the queue on-hand at the manufacturer: P(t)-D(t). Visually, this
rule is manifest in the cumulative graphs presented later through the staircase pattern
for T(t), which alternately "bounces" between D(t) and P(t).

The optimality of the dispatching rule can be proved by contradiction. From
any solution that violates the rule, it is possible to construct a solution which obeys
the rule, with equal or lower cost. Specifically, if T(t) does not equal D(t)
immediately before dispatch, then the shipment can be delayed until T(t) = D(t), with
no increase in queue cost, and a possible decrease in transportation cost (if two
shipments can be consolidated). If T(t) does not equal P(t) immediately after
dispatch, then the shipment size could be increased, with no change in queue cost,
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and a possible decrease in transportation cost (if a subsequent shipment can be
eliminated).

Queue Models

This section creates a set of seven characteristic cumulative diagrams, each
representing a different cyclic queueing pattern. In a subsequent section, these
curves are used as building blocks for developing EOQ/EPQ models. While the
diagrams represent production/distribution, they are easily adapted to represent other
situations in transportation.

The average queue level equals the average separation between the cumulative
production and cumulative demand curves, which is determined by calculating the
area of separation and dividing by the elapsed time. The separation depends on the
batch sizing policies, both in production and transportation. In its simplest form,
production and demand are characterized by Figure 5.4 or 5.5. Figure 5.4 is the
textbook version of the EOQ model, as it assumes instantaneous production and
transportation. Figure 5.5 is the textbook version of the EPQ model, as it assumes
production occurs at some set rate, and transportation occurs continuously, and not in
batch.

In a more general sense, average queue level may be defined by any of the
following types of cumulative production and demand diagrams, which will be called
the "characteristic curves." (Recall that, in all cases, constant demand is assumed.)
The set of cases is not completely exhaustive, but does encompass most reasonable
patterns that apply to direct transportation routes in production/distribution.

1. Instantaneous Production/Batch Distribution (Synchronized) This is the
textbook EOQ model (Figure 5.4).

2. Instantaneous (or Constant) Distribution/Batch Production As in Figure 5.5,
production is immediately available for consumption, eliminating batch size
inventories in distribution. Figure 5.5 is equivalent to the textbook EPQ model.

3. Constant Production/Batch Distribution As in Figure 5.6, production and
demand occur at a constant rate. Inventories exist at both point of production and
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point of demand as a result of distribution batch sizes with constant sizes and
constant separation.

4. Batch Production/Batch Distribution In all of these cases, the product is both
manufactured in batches and transported in batches.

4a. Synchronized/lot-for-lot As in Figure 5.7, transportation is synchronized with
production, so that a dispatch occurs as soon as a batch is manufactured. The
average queue level at the customer is the transportation batch size divided by two.
The average queue level at the manufacturer is one-half the production batch size,
multiplied by the proportion of time that the machine is running (d/p).

where (due to lot-for-lot production). If d=p, the machine runs
continuously and the average queue level is the same as for case 3. If p>>d,
production is effectively instantaneous, and the average queue level is the same as
case 1. Finally the ratio of average queue level relative to case 2 (instantaneous
distribution) is (p+d)/(p-d). Hence, if d<<p, average queue levels are approximately
the same. As d approaches p, the ratio approaches infinity, indicating that the EPQ
model greatly underestimates queue level in batch distribution when production and
demand rates are similar.

4b. Synchronized/multiple transportation lots Due to this case's complexity, the
queue model will be presented later within the context of a specific system scenario
(Scenario F).

4c. Non-synchronized/lot-for-lot As in Figure 5.8, the transportation and production
cycle lengths are identical. However, transportation is not scheduled to coincide with
the end of a production run. (This may occur if multiple products, each with a
different start/end time, are transported in each cycle.)

where is the time lag between the end of the production run and the time of dispatch

4d. Non-synchronized As in Figure 5.9, production and transportation both occur in
batches, but are not synchronized. As a result, the average queue is the sum of case 2
and case 3 (Blumenfeld et al, 1985).
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Set-Up Cost Models

The set-up cost per unit time is the cost per set-up (or order), multiplied by the
number of set-ups (or orders) per unit time. For consistency with the queue models,
it is necessary to derive the number of set-ups per unit time as a function of the batch
size (or sizes). In the classic EOQ and EPQ models, this function is simply the
following:

These models are adequate when a single product is manufactured/distributed, but
more precision is needed for multiple products. In the transportation process, in
particular, it is customary to serve multiple products within the same batch. Hence,
for any origin/destination pair, there is a single transportation cycle length, which is
identical for all products:

where the first subscript on d and Q denotes product number, and where Q is
interpreted as the shipment size per dispatch. Equivalently, a "composite product"
can be defined, where demand is the sum across all products, expressed in a common
unit (such as weight or dollar value). Then Eq. 5.1 would apply, provided that Q and
d are interpreted in this common unit. In Case 4b, where batch sizes vary within a
production cycle, a further modification is needed. The transportation set-up
frequency will be the number of orders per production cycle (n) multiplied by the
production set-up frequency

Problem Dimensions

The number of potential variations to the EOQ and EPQ model is quite enormous.
Our purpose is to present a range of scenarios, and later discuss the implications of
the more significant variations on cost. This will be accomplished by identifying the
"characteristic cumulative diagram" that applies to the scenario, computing total cost,
and optimizing the production batch size and transportation order quantity.

The scenarios are defined at two levels. At the top level, the defining attributes
are the number of customers and the number of plants. At the lower level, scenarios
are defined by the number of machines within each plant and the number of products:
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Top-level Attributes
1) Single Customer/Single Plant
2)           Multiple Customer/Single Plant
3) Single Customer/Multiple Plants
4) Multiple Customer/Multiple Plants

Lower-level Attributes
a) Single Machine/Single Product
b) Multiple Machines/One Product per Machine
c) Single Machine/Multiples Products per Machine
d) Multiple Machines/Multiple Products per Machine .

Attributes (a) and (b) do not require production changeovers; hence, production is
continuous, and the transportation order quantity is the only decision variable.
Attributes (c) and (d) demand changeovers between products; hence, both production
batch size and order quantity must be optimized. Table 1 summarizes the scenarios
covered in the section, which are constructed by combining attributes. The first three
are fairly straight-forward, and do not entail schedule interactions among products.
The second three are more complex.

Cost Analysis: Simple Scenarios

This section develops cost models for three simple scenarios, which illustrate the
effects of accounting for: (1) queue costs at both the manufacturer and customer; (2)
consolidation of multiple products from multiple machines; and (3) costs for
unsynchronized systems. These are classified as simple cases because all treat one
product at a time.

A. Single Customer/ Single Plant (Queue at Manufacturer and Customer) In
this scenario, one machine operates at a constant rate (equaling the demand rate),
producing a single product, without interruption, for a single customer. Set-ups do
not occur because product change-overs are not needed. Hence, the only decision
variable is the transportation order quantity.

The cumulative diagram in Figure 5.6 (constant production/batch distribution)
characterizes the situation. The objective function, and its optimal solution, are then:

B. Single Plant/Multiple Machines/Single Customer (Consolidation Effect) In
this scenario, each machine produces a single product at a constant rate, for which
demand also occurs at a constant rate. The products are manufactured at a single
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plant, and distributed to a single customer. Unlike the prior scenario, different
products are consolidated in the transportation process. This situation illustrates a
major difference between EPQ and EOQ models. Whereas batch production does
not allow different products to be processed simultaneously (rather, alternating
phases are needed), batch transportation virtually mandates simultaneous service.
That is, from the standpoint of cost minimization, it is cheaper to consolidate
products in the same vehicle than to transport each product separately.

Blumenfeld et al (1985) examined this situation, and introduced the concept of a
composite product to represent the portfolio of product characteristics contained in
the load. Hence, Figure 5.6 is interpreted as the demand among all products sent
between the manufacturer and customer. The cost model, and optimized results, are
shown below. Cycle length is used as the decision variable, rather than batch size,
because batch size varies among products:

where:

C. Multiple Plants and Customers (Unsynchronized) In a system with multiple
plants and customers, it may be impossible to synchronize transportation and
production cycles due to scheduling conflicts. As a result, larger queues must be held
at the manufacturer to buffer against cyclic fluctuations. In this scenario, batch
production and batch distribution are assumed. The system is decomposed to
individual plant/customer/product combinations, assuming the absence of
synchronization, as in Figure 5.9. The cost model, and optimized results, are shown
below.

In this case, the production and distribution results are decoupled. Further, the
production batch size is identical to the textbook EPQ model. The transportation
order quantity, on the other hand, is identical to Eq. 5.17b. Hence, the base
comparisons for the transportation order quantity are the same as those presented in
the single customer/single plant scenario.
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More Complicated Scenarios

Within this section, cost analysis is shown for three more complicated scenarios, to
illustrate issues involving multiple products and multiple customers. In the first
example, a single machine produces a single product to serve multiple customers. In
the second, a single machine produces multiple products for a single customer. In the
last, a single machine produces multiple products for multiple customers, with one
product per customer.

Within the framework of EOQ/EPQ modeling, it is impossible to fully account
for complex scheduling systems. In the examples, schedule conflicts are avoided by
assuming either (or both) of the following: (1) products are manufactured
sequentially in a common rotation cycle, or (2) production rate greatly exceeds
demand. Within a rotation cycle, the production rate for a machine is assumed to be
the same as the total demand for the machine. The large production rate case will
only be used for multiple customer scenarios.

D. Single Machine/Multiple Customers In this scenario, a single machine produces
a single product at a constant rate for multiple customers, without interruption.
Though set-ups do not occur, production must still be divided into time segments,
corresponding to customers. Consequently, the average queue depends both on the
time to produce and the time to consume a quantity. These values are different
because the production rate, by the necessity to serve multiple customers, must
exceed the demand rate of any one customer. This effectively results in production
batches without the need for production set-ups. Hence, the characteristic queue
curve for any one customer is a batch production/batch distribution case (Figure 5.7),
but the production set-up has a cost of zero.

For an individual customer, the cost can be expressed as:

Assume that customers are served in a common rotation cycle (length     ), and that 
the production rate matches the sum of the demand rates. Because there is a common
product, further assume that the queue holding cost is the same for all customers.
Using as the decision variable, the total cost for the rotation can be expressed as:
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where:

d' = average demand rate
A' = average value of among customers i=1,...,n

C = coefficient of variation of the demand rate

average of enclosed quantity.
The optimized values of and are then:

Note that if n=1, C must equal zero, and the model reduces to the same form as Eq.
5.17, or the simple single plant/single customer case. As n approaches infinity, the
model converges toward something like the classic EOQ model, with
and However, they are based on averages among all customers,
not individual customer values. The scenario demonstrates that when the demand for
an individual customer falls well below the production capacity, the queue model is
much like the classic EOQ

If the production capacity greatly exceeds the demand rate, it might be
reasonable to optimize order quantities on an individual customer basis. Eq. 5.21
could then serve as the objective function, resulting in the following solution:

If p>>d, these results reduce to the exact same form as the classic EOQ.

E. Single Machine/Multiple Products: Single Customer In this scenario, demand
occurs at a constant rate for each product, but production is cycled among products
on a single machine, with set-ups and changeovers. First, products are assumed to
be produced at the same rate, with the same queue holding cost. Later, this
assumption is relaxed. As stated at the beginning of the chapter, set-up times are
assumed to be negligible.

Figure 5.9 is the characteristic cumulative diagram for individual products.
Given that each product must be produced at a different time (recall, a single
machine is used), it is impossible to synchronize all products with distribution. The
aggregate queue diagram for the rotation cycle (Figure 5.10) is more revealing. The
similarity to Figure 5.6 is a striking feature of Figure 5.10, for it suggests that a
rotation cycle can bear the same queue cost as simple single product cycles. That is,
queues are built up at a rate p-d during a production phase, and depleted to zero at a
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rate d when production is cycled off. The batch transfer process acts to consolidate
products into the same load independently of their position within the rotation.
Hence, the first product in the rotation, which must wait nearly a full cycle before
dispatch, is transported at the same time as the last product in the rotation.

The cost formulation can now be represented as follows:

Where

The optimized result is then:

These results are the same as Scenario A (single plant/single customer), with the
exceptions that the "set-up cost" includes both the order cost and the combined set-up
cost across all products, and that the demand is the total demand across all products.

In some instances, it is preferable to decouple production and transportation
cycles, with the latter occurring more frequently than the former. These decisions
can be totally decoupled when one ignores the round-off errors that result when a
dispatch occurs in the middle of a product's production run. The average queue at
the manufacturer is then one-half the distribution batch size. The average aggregate
queue at the customer is one-half the production batch size (Figure 5.11). Again
assuming a rotation cycle, the total cost is the following:

The optimized results are then:

To be implemented, the cycle lengths must be adjusted so that the manufacturing
cycle is an integer multiple of the transportation cycle.

F. Single Machine/Multiple Products: One Product per Customer  In this final
scenario, each production batch serves a single customer, and is fully synchronized
with distribution. As soon as a production run is completed, all queue for the given
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product is dispatched to the customer. Production can either occur on a lot-for-lot
basis, or with multiple distribution lots per production cycle.

Simple Rotation Cycle In a simple rotation cycle, production and transportation are
synchronized with the same cycle length for all products/customers. The queue
pattern for this scenario is batch production/batch distribution, synchronized lot-for-
lot (Figure 5.7). The total cost for a cycle is then:

The optimized cycle length and cost are:

As a point of contrast, Scenario D (single machine/single product/multiple
customers) did not include set-up costs, and the production rate was simply the sum
of the demand rates. This leads to a relatively higher set-up cost in Eq. 5.29, and a
slightly modified queue holding cost. Hence, the optimal cycle length is longer for
the multiple product scenario (F) than the single product scenario (D).

As a second point of contrast, Scenario E (single machine/multiple
products/single customer) uses only one transportation set-up per cycle, and queue
cost is larger. Hence, the optimal cycle length is longer for the multiple customer
scenario (F) case than the single customer scenarios (E).

Large Production Capacity If the production capacity greatly exceeds the demand
rate, it might be reasonable to optimize order and production quantities on an
individual customer basis. The following could then serve as the objective function
for an individual product:

The optimized results are then:

Allowing for Multiple Dispatches If queue holding costs are sufficiently high, it
might be reasonable to provide multiple dispatches per production cycle. Let:

queue in the system at the start of the production run
size of transportation batch i (i = 1,2,...), within a production run
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The initial queue, is exhausted at the moment that batch 1 is transported. Hence,
equals the production during the time required to consume units of queue:

Similarly, all subsequent batch sizes are dictated by the prior batch sizes, in the
following fashion:

can now be derived, by recognizing that the sum of the transportation batch sizes
within a cycle must equal the production batch size:

or

Referring to Figure 5.12, the average queue level can now be characterized as the
sum of a base level, and an EPQ type quantity:

With as given in Eq. 5-35b, the average queue size becomes:

where m is the number of transportation cycles per production cycle. Through a
combination of search techniques and calculus, it is not difficult to optimize m and
within the above expression.

Summary of More Complicated Scenarios Introduction of scheduling
considerations complicates EOQ and EPQ calculations in several ways. First, to
avoid schedule conflicts, either a rotation cycle must be optimized, or simplifying
assumptions must be made with respect to production capacity. Second, the
combination of batch production and batch distribution results in somewhat non-
standard forms for the queue equations. Third, both production and transportation
set-up costs must be considered when optimizing cycle length.
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Extensions

The scenarios presented in this section served to illustrate a methodology, and to
illustrate the complexity of accurately accounting for queue sizes when input and
output processes are discontinuous. Many extensions have been covered in the
literature, including the following:

Random Cycle Length Batch processes seldom occur precisely on schedule.
Consequently, the headways between batches vary randomly, causing average and
maximum queues sizes to increase. This occurs because customers are more likely to
arrive during longer headways, and because the average wait for a long headway is
greater than the average wait for a short headway. In the special case where
customers arrive at random relative to batch times, the average wait is given by:

Where E(h) is the mean headway and C(H) is the headway coefficient of variation. If
batches occur with the randomness of a Poisson process, E(W) = E(h), which reflects
the memoryless property of the exponential distribution (the headway distribution for
a Poisson process).

Non-Stationary Demand Headways between batch services should vary in
relationship to the demand rate. Larger demand invites shorter headways, according
to an inverse square-root relationship. In some systems, however, the total waiting
time per dispatch should stay constant for all demand rates. For example, if demand
increases by a factor or 2, then headway should decrease by a factor of batch size
should increase by a factor of and the product stays constant. Another common
characteristic of optimal batching is that the arrival time at the time of service equals
the ratio of the number of customers served to the time until the subsequent dispatch.

Multiple Stop Transportation Routes Scenarios can be further delineated by
transportation characteristics, principally, whether or not transportation equipment is
shared among customers and plants. Sharing, in the form of multiple-stop pick-up
and delivery routes, can provide substantial savings in transportation and queue cost
in low demand systems (Burns et al, 1985; Daganzo, 1985; Hall, 1985). This
naturally adds complexity, as it may be desirable to serve some customers less
frequently than others, yet also ensure that their service intervals are synchronized so
that all shipments within a territory occur on a common schedule.

Capacity Considerations Capacity is important in two ways. First, batch sizes may
be limited by the size of available vehicles and, second, the batch service system may
be limited in the total rate at which customers are processed. Either factor leads to
solutions that violate the “Dispatching Rule” presented in this section. In the former
case, the optimal feasible batch size is generally the minimum of two values: the
vehicle size or the cost minimizing batch size, as determined in this section. In the
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latter case, the batch size may need to be enlarged, to reduce the batch frequency, and
reduce loss times when initiating batches. This is especially relevant to traffic
signals, where cycle lengths are typically defined by capacity considerations rather
than set-up costs.

Real-time Control Random variations in demand can make it desirable to alter
headways and batch sizes in real-time. When the number of customers is insufficient,
a headway can be extended or a batch can be cancelled. Dispatch times might also
be altered to provide greater consistency in headways, thus minimizing its coefficient
of variation and reducing waiting time.

5.6 Future Directions

As it has in the past, future research on queueing in transportation is likely to respond
to innovations in the methods of transportation. Technologies for automating and
controlling vehicle movements on highways has already stimulated queueing
research, addressing delays and capacities associated with lane-following strategies,
lane-assignment and entrance/exit processes. Changes in aircraft routing and
control, possibly allowing aircraft to travel in free-space rather than on prescribed
paths, is also likely to stimulate original research.

Future research will also be directed at gaps in the literature. A notable example
is the paucity of research on queueing within terminals, and on the interactions
between sorting processes and transportation processes. Relatively little is known on
how terminal queues interact with vehicular queues. Yet the problem grows in
importance, as more shipments are transported through parcel transportation
companies, in which sortation is a critical cost driver.

Finally, despite the considerable accomplishments in understanding the behavior
of queues on roadways, researchers have been largely unsuccessful in actually
eliminating vehicular queues. It appears inevitable, as observed long ago, that in the
absence of road pricing queues will exist. Developing and testing pricing methods
for roadways, and then creating a mechanism by which they can be implemented, is
perhaps the most important challenge to the field. But success in this area demands
far more than an understanding of the mathematics of queues; it demands accurate
representations of human behavior, along with knowledge of the institutional and
technical aspects of toll collection.

One clear aspect of research on queueing in transportation is that the most
significant papers have offered a blend of empiricism and theory, and have been
innovative in exploring new applications. It is simply insufficient to develop the
mathematical theorems. The papers that best explain important “real-world”
phenomena, or provide generalizable methods for system design and operation, have
been the most significant, and will likely continue to be in the future.
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6 TRAFFIC FLOW AND CAPACITY
Michael J. Cassidy

6.1 Introduction

The design of highways, runways, ports or any transportation facility is guided by
knowledge and theory of the traffic streams they serve. A facility’s scale, its
geometry and its control measures are selected to affect certain properties of its
traffic, such as the travel delay, the separation between vehicles, etc. In the case of
highway traffic, the emphasis of this chapter, these are usually properties that are
collected from, or averaged over, some number of vehicles. This is because the
behavior of one driver differs from that of another, sometimes in complicated or even
unexpected ways, and the traffic engineer typically seeks properties that are
reproducible or predictable; i.e., properties that are not sensitive to driver variations.

Chapter 6 is devoted to methods of measuring traffic stream properties and of
predicting how these properties evolve over time and space. Certain emphasis is
given to flow restrictions, or bottlenecks, and to the estimation of their capacities
since traffic streams are often impacted by these restrictions.

Section 6.1 provides some important definitions along with descriptions of some
graphical tools for analyzing the motion of objects on transport systems. Most of
what is presented here is applicable to any mode of transportation. Moreover, this
information is necessary background for the treatment of highway traffic offered in
the remaining sections of the chapter. Section 6.2 describes methods of processing
traffic data measured, for example, by loop detectors to identify bottleneck locations
along highway facilities without traffic signals or other exogenous controls. The use
of these methods to estimate bottleneck capacities is likewise shown here. Section
6.3 presents methods of estimating capacities and vehicle delays at highway
intersections controlled by traffic signals or stop signs. Theories for predicting the
evolution of highway traffic are the subject of section 6.4. A simple theory is
described here in some detail and other theories are briefly noted.

The chapter provides references for all of the topics covered. Notes on the
historical developments and future research directions are likewise included for many
of the subjects.
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Basic Concepts

This first section includes definitions for some of the properties commonly used to
characterize traffic streams. So-called generalized definitions, which preserve useful
relations between the properties, are part of this discussion. Also described in section
6.1 is a three-dimensional representation of traffic streams. This representation
makes clear the conservation concepts that are fundamental to theories of traffic
evolution. In particular, it illustrates the relation between two important graphical
tools for presenting and interpreting traffic data: 1) curves of cumulative vehicle
count and 2) trajectories plotted on time-space diagrams. A description of the latter
tool is the starting point for this section.

Before embarking on this discussion, however, there are two points that deserve
mention. First, the subjects covered in section 6.1 do not involve theory or
conjecture. Rather the concepts are true by definition. Secondly, the discussion in
this section owes much to notes composed by Newell (unpublished) for a graduate
course in transportation engineering and to a book written by Daganzo (1997).

The Time-Space Diagram. Objects are commonly constrained to move along a one-
dimensional guideway, be it, for example, a highway lane, walkway, conveyor belt,
charted course or flight path. Thus, the relevant aspects of their motion can often be
described in cartesian coordinates of time, t, and space, x. Figure 6-1 illustrates the
trajectories of some objects traversing a facility of length L during time interval T;
these objects may be vehicles, pedestrians or cargo. Each trajectory is assigned an
integer label in the ascending order that the object would be seen by a stationary
observer. If one object overtakes another, their trajectories may exchange labels, as
shown for the fourth and fifth trajectories in the figure. Thus, the trajectory
describes the location of a reference point (e.g. the front end) of object as a function
of time t, (t).

The characteristic geometries of trajectories on a time-space diagram describe the
motion of objects in detail. These diagrams thus offer the most complete way of
displaying the observations that may have actually been measured along a facility. As
a practical matter, however, one is not likely to collect all the data needed to
construct trajectories. Rather, time-space diagrams derive their (considerable) value
by providing a means to highlight the key features of a traffic stream using only
coarsely approximated data or hypothetical data from “thought experiments.”

The literature includes numerous illustrations of how these diagrams, even when
drawn approximately, can be used in solving problems that frequently arise in transport.
As examples, Daganzo (1997) shows how trajectory plots can help to select desirable
scheduling policies in rail and in sea transportation; Newell (1979) used them in
deriving expressions of airport runway capacity; and they are a widely used tool for
synchronizing traffic signals along an arterial (Newell, 1989).
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This chapter will frequently rely upon time-space diagrams to illustrate fundamental
concepts. They are used immediately below to convey the precise meanings of some
important properties of the traffic stream.

Definitions of Some Traffic Stream Properties.    It is evident from Figure 6-1 that
the slope of the trajectory is object instantaneous velocity, i.e.,

Flow at is m, the number of objects passing divided by the observation interval
T,

and that the curvature is its acceleration. Further, there exist observable properties of
a traffic stream that relate to the times that objects pass a fixed location, such as
location for example. These properties are described with trajectories that cross a
horizontal line drawn through the time-space diagram at

Referring to Figure 6-1, the headway of some ith object at is the
difference between the arrival times of i and i-1 at i.e.,
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For observation intervals containing large

and thus,

i.e., flow is the reciprocal of the average headway.
Analogously, some properties relate to the locations of objects at a fixed time, as

observed, for example, from an aerial photograph. These properties may be
described with trajectories that cross a vertical line in the t-x plane. For example, the
spacing of object j at some time is the distance separating j from the next
downstream object; i.e.,

Density at instant is n, the number of objects on a facility at that time, divided by L,
the facility’s physical length; i.e.,

If the L contains large n,

and

giving a relation between density and the average spacing parallel to that of flow and
the average headway.

Time-Mean and Space-Mean Properties. For an object’s attribute where
might be its velocity, physical length, number of occupants, etc., one can define an
average of the m objects passing some fixed location over observation interval T,
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i.e., a time-mean of attribute If is headway, for example, is the average
headway or the reciprocal of the flow.

Conversely, the space-mean of attribute at some time is obtained
from the observations taken at that time over a segment of length L, i.e.,

If, for example, is spacing, is the average spacing or the reciprocal of the
density.

For any attribute there is no obvious relation between its time and space means.
The reader may confirm this (using the example of as velocity) by envisioning a
rectangular time-space region L × T traversed by vehicles of two classes, fast and
slow, which do not interact. For each class, the trajectories are parallel, equidistant
and of constant slope; such conditions are said to be stationary. The fraction of fast
vehicles distributed over L as seen on an aerial photograph taken at some instant
within T will be smaller than the fraction of fast vehicles crossing some fixed point
along L during the interval T. This is because the fast vehicles spend less time in the
region than do the slow ones. Analogously, one might envision a closed loop track
and note that a fast vehicle passes a stationary observer more often than does a slow
one.

Three-Dimensional Representation of Vehicle Streams. It is useful to display
flows and densities using a three-dimensional representation described by Makagami
et al. (1971). For this representation, an axis for the cumulative number of objects,
N, is added to the t-x coordinate system so that the resulting surface N(t, x) is like a
staircase with each trajectory being the edge of a step. As shown in Figure 6-2,
curves of cumulative count versus time are obtained by taking cross-sections of this
surface at some fixed locations and viewing the exposed regions in the t-N plane.
Analogously, cross-sections at fixed times viewed in the N-x plane reveal curves of
cumulative count versus space.

Figure 6-2 shows cumulative curves at two locations and for two instants in time.
The former display the trip times of objects and the time-varying accumulations
between the two locations, as labeled on the figure. These cumulative curves can be
transformed into a queueing diagram (as described in Chapter 5) by translating the
curve at upstream forward by the free-flow (i.e., the undelayed) trip time from to

Also displayed in Figure 6-2, the curves of cumulative count versus space show
the number of objects crossing a fixed location during the interval and the
distances traveled by individual objects during this same interval.
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If one is dealing with many objects so that measuring the exact integer numbers is
not important, it is advantageous to construct the cumulative curves with piece-wise
linear approximations; e.g. the curves may be smoothed using linear interpolations
that pass through the crests of the steps. The time-dependent flows past some
location are the slopes of the smoothed curve of t versus N constructed at that
location (Moskowitz, 1954; Edie and Foote, 1960; Newell, 1971). Analogously, the
location-dependent densities at some instant are the negative slopes of a smoothed
curve of N versus x; densities are the negative slopes because objects are numbered
in the reverse direction to their motion.

By examining trends on the cumulative curves, one can observe how flows and
densities change with time and space, respectively. This can be a powerful diagnostic
and examples are provided in later sections. Suffice to say that by defining flows and
densities as they are displayed on the cumulative curves, their values may be taken
over intervals that exhibit fixed trends (i.e., near-constant slopes). In this way, the
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values assigned to these properties are not affected by some arbitrarily selected
measurement interval(s). Choosing intervals arbitrarily is undesirable because data
extracted over short measurement intervals are highly susceptible to the effects of
statistical fluctuations while the use of longer intervals may average-out the features
of interest. Further discussion and demonstration of this in the context of freeway
traffic is offered in (Cassidy, 1998).

The Conservation Law. The existence of the surface N(t, x) implies that objects did
not enter or exit within the region of interest. If the N can be replaced by a smooth
surface N' so that at all points within the region the instantaneous flows and densities
can be defined as and respectively, and if N' has second
derivatives (i.e., flow and density are smooth), then must be equal to

and thus

The more common form of this conservation equation is

It is by direct consequence of the conservation equation that the speed of an interface
separating two (different) stationary traffic conditions, u, is the change in flow across
the interface over the change in density across the interface; i.e.,

The reader may refer to Daganzo (1997, pp. 97-103) for the simple derivation of
(6.13) and for further discussion of this. The conservation equation also gives rise to
the well-known expression for computing the relative flow measured by a moving
observer in (stationary) traffic; see again Daganzo (1997).

Generalized Definitions of Traffic Stream Properties. To describe a traffic
stream, one usually seeks to measure properties that are not sensitive to the variations
in the individual objects (e.g. the vehicles or their operators) without averaging-out
features of interest. This is the trade-off inherent in choosing between short and long
measurement intervals, as previously noted. It was partly to address this trade-off
that Edie (1965, 1974) proposed some generalized definitions of flow and density
that averaged these properties in the manner described below.

To begin this discussion, the thin, horizontal rectangle in Figure 6-3 corresponds
to a fixed observation point. As per its conventional definition provided earlier, the
flow at this point is m / T, where m = 4 in the figure. Since this point in space is a
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region of temporal duration T and elemental spatial dimension the flow can be

expressed equivalently as The denominator is the euclidean area of the thin

horizontal rectangle, expressed in units of distance × time. The numerator is the total
distance traveled by all objects in this thin region, since objects cannot enter or exit
the region via its elementally small left and right sides.

That flow, then, is the ratio of the distance traveled in a region to the region’s area
is valid for any time-space region, since all regions are composed of elementary
rectangles. Taking, for example, region A in Figure 6-3, Edie’s generalized

definition of the flow in A, q(A), is d(A) / |A | , where d(A) is the total distance traveled
in A and |A |  is used to denote the region’s area.

As the analogue to this, the thin, vertical rectangle in Figure 6-3 corresponds to an
instant in time. As per its conventional definition, density is n / L (where n = 2 in this

figure) and this can be expressed equivalently as It follows that Edie’s

generalized definition of density in a region A, k(A), is t(A) / |A|, where t(A) is the
total time spent in A.

It should be clear that these generalized definitions merely average the flows
collected over all points, and the densities collected at each instant, within the region
of interest. Dividing this flow by this density gives d(A) / t(A), which can be taken as
the average velocity of objects in A, v(A). The reader will note that, with Edie’s
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definitions, the average velocity is the ratio of flow to density. Traffic measurement
devices, such as loop detectors installed beneath the road surface, can be used to
measure flows, densities and average vehicle velocities in ways that are consistent
with these generalized definitions. Discussion of this is offered in Cassidy and
Coifman (1997).

As a final note regarding v(A), when A is taken as a thin horizontal rectangle of
spatial dimension dx, the time spent in the region by object i is / where is i’s

velocity. Thus, for this thin, horizontal region A, Given that for the

same region, d(A) = m·dx, the generalized mean velocity becomes 

i.e., the reciprocal of the mean of the reciprocal velocities, or the harmonic mean
velocity. The is often referred to as the pace of i, and thus

Eq. 6.15 applies for regions with L > dx provided that all i span the L and that each
(or is i’s average over the L.

It follows that when conditions in a region A are stationary, the harmonic mean of
the velocities measured at a fixed point in A is the v(A). By the same token, the v(A)
is the space-mean velocity measured at any instant in A (provided, again, that
conditions are stationary).

The Relation Between Density and Occupancy. Occupancy is conventionally
defined as the percentage of time that vehicles spend atop a loop detector. It is a
commonly-used property for describing highway traffic streams; it is used later in this
chapter, for example, for diagnosing freeway traffic conditions. In particular,
occupancy is a proxy for density. The following discussion demonstrates that the
former is merely a dimensionless version of the latter.

One can readily demonstrate this relation by adopting a generalized definition of
occupancy analogous to the definitions proposed by Edie. Such a definition is made
evident by illustrating each trajectory with two parallel lines tracing the vehicle’s
front and rear (as seen by a detector) and this is exemplified in Figure 6-4. The
(generalized) occupancy in the region A, can be taken as the fraction of the
region’s area covered by the shaded strips in the figure. From this, it follows that the

and the k(A) are related by an average of the vehicle lengths. This average
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vehicle length is, by definition, the area of the shaded strips within A divided by the
t(A); i.e., it is the ratio of the to the k(A),

Notably, an average of the vehicle lengths also relates the k(A) to where the latter
is the occupancy as conventionally defined (i.e., the percentage of time vehicles
spend atop the detector). Toward illustrating this relation, the L in Figure 6-4 is
assumed to be the length of road “visible” to the loop detector, the so-called detection
zone. The T is some interval of time; e.g. the interval over which the detector
collects measurements. The time each ith vehicle spends atop the detector is denoted

as Thus, if  m vehicles pass the detector during time T, the

As shown in Figure 6-4, is the summed length of the detection zone and the
length of vehicle i. Therefore,
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if the front end of each i has a constant over the distance Since

it follows that
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where the term in brackets is the average vehicle length relating to the k(A); it is
the so-called average effective vehicle length weighted by the paces. If pace and
vehicle length are uncorrelated, the term in brackets in (6.19) can be approximated
by the unweighted average of the vehicle lengths in the interval T.

When measurements are taken by two closely spaced detectors, a so-called speed
trap, the are computed from each vehicle’s arrival times at the two detectors. The

are thus computed by assuming that the are constant over the length of the
speed trap. When only a single loop detector is available, vehicle velocities are often
estimated by using an assumed average value of the (effective) vehicle lengths.

6.2 Freeway Bottlenecks and their Capacities

This section provides description ofsome simple diagnostics for locating bottlenecks
on freeways and on highways without control devices, such as traffic signals. Also
described here are techniques for estimating the capacities of these bottlenecks.
Cumulative curves constructed from counts and occupancies measured at
neighboring locations along the roadway serve as the diagnostics. By transforming
and visually inspecting these curves as described below, one can verify the
occurrence of an active bottleneck, where the word active is used to denote 1) a
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queue’s presence immediately upstream, which ensures that vehicles are discharging
through the bottleneck at a maximum rate, and 2) the absence of any downstream
effects that would impede this discharge. Once having identified these two essential
conditions, the bottleneck’s capacity may be estimated. Plotting the cumulative
counts that have been measured immediately downstream of the bottleneck can aid in
this endeavor.

To illustrate these diagnostics, they are applied to a bottleneck that formed
downstream of a merge; some details of this site are described below. Of note, the
diagnostics may be used for examining bottlenecks caused by other types of
geometric inhomogeneities, including curves, lane reductions, and diverges.1 They
can also be applied to bottlenecks formed by incidents, such as vehicle stalls or
collisions.

An Example Application

The diagnostics will be described with data taken from the freeway section shown in
Figure 6-5, a segment of the Queen Elizabeth Way in Ontario, Canada. All the data
presented here came from a single morning rush and were measured with loop
detectors installed at four locations along this freeway segment. These four detectors
are labeled in the figure as per the numbering strategy that had been adopted by the
region’s transportation authority. The vehicle counts and occupancies were measured
in 30-second intervals and the resulting step-wise cumulative curves were smoothed
using piece-wise linear interpolations.

1 At a diverge bottleneck, the queue(s) formed by vehicles wishing to exit the freeway
may entrap some through-moving vehicles and thereby affect the bottleneck’s capacity.
The reader may note for now these special circumstances that surround diverge
operation. More is said about this in section 6.4.
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As a useful aside, cumulative count curves may be obtained from vehicle arrival
times measured by human observers stationed roadside when loop detectors are not
deployed near a bottleneck of interest. A detailed description of one such experiment
can be found in Smilowitz, et al. (1998).

Locating the Active Bottleneck

Figure 6-6 shows cumulative count, or N-curves. These were constructed from
counts measured across all lanes at the four detector stations during the onset of
queueing. The counts at each detector were started (N = 0) with the passage of an
imaginary reference vehicle. These passage times were based upon estimated free-
flow trip times between each detector because vehicle N . 0 did not encounter
queueing at the site. The curves in Figure 6-6 have been transformed in the following
two ways.

First, each curve, along with its respective time axis, was shifted to the right by
the average free flow trip time between the respective detector and downstream
detector 25. Having done this, the vertical displacements between curves are the
excess vehicular accumulations due to traffic delays. Such a shift is advantageous
because two superimposed curves indicate that traffic in the intervening segment is
flowing freely; every feature of an upstream N-curve is passed to its downstream
neighbor a free-flow trip time later. Secondly, Figure 6-6 shows only the differences
between each curve of cumulative count to time t and the line
where t' is the elapsed time from the curve’s starting point (N=0) and is the rate
used for re-scaling the cumulative curve. This is important because reducing the N
(displayed by the curves) by a background flow magnifies details without changing
the excess accumulations (Cassidy and Windover, 1995).

The superimposed curve portions in this figure indicate that traffic was initially in
free flow and remained in free flow between detectors 24 and 25. The marked
separation of curves 24/25 from curve 23 from about 6:27 onward (as shown by the
darkened arrow) indicates that a bottleneck was activated a little earlier between
detectors 24 and 23. The subsequent separation of curve 23 from curve 22 indicates
when the queue arrived to detector 23.

This illustrates how transformed cumulative count curves expose active
bottlenecks by revealing the excess accumulations upstream and the free-flow
conditions downstream. Further verification of a bottleneck’s activation can be
obtained by using re-scaled curves of cumulative occupancy, as described below.

Additional evidence of the bottleneck.    A bottleneck’s location may be confirmed
using curves of cumulative occupancy versus time (T-curves) where cumulative
occupancy is the total vehicular trip time over the loop detector by time t (Lin and
Daganzo, 1997). To illustrate this, Figure 6-7 presents T-curves for the four detector
stations. As before, these curves were constructed for times near the onset of
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queueing and the occupancies were those measured in all travel lanes. Again for the
purpose of magnifying details, the figure presents the differences between each curve
of cumulative occupancy to time t and the line where is the
background occupancy rate used at detector x and tN is the elapsed time from the
curve’s starting point (T = 0).

The T-curves in the lower half of Figure 6-7 display concave shapes, indicating
sudden reductions in the occupancy rates at detectors 24 and 25. These lower
occupancies prevailed during times that coincided (approximately) with the flow
reductions previously revealed by the N-curves; the times marking the onset of these
flow reductions are labeled on the lower portion of Figure 6-7. Conversely, the upper
half of Figure 6-7 indicates that upstream detectors 23 and 22 each measured a rather
abrupt increase in the occupancy rates. These occupancy changes coincided closely
with the flow reductions previously identified at these detectors. The times marking
the onsets of these upstream flow reductions are labeled in the top half of the figure.

The interpretation. The traffic patterns described above reveal that a forward-
moving interface signaling lower flow and occupancy,2 along with a backward-
moving queue, emanated from between detectors 23 and 24. This confirms that a
bottleneck was activated somewhere in the intervening segment.

Repeated observations. As part of a study on freeway capacity (Cassidy and
Bertini, 1999), traffic conditions on the freeway segment in Figure 6-5 were
examined using data collected on several weekday mornings. During each of these
mornings, the bottleneck formed between detectors 23 and 24. The reason(s) that the
bottleneck occurred about a kilometer or more downstream of the merge is a subject
of ongoing research. For now, it suffices to note that a bottleneck’s location is not
always obvious. This, in turn, underscores the value of the diagnostics illustrated
above.

The bottleneck’s persistence.  Knowing the duration that a bottleneck remains
active is important for certain tasks such as estimating the bottleneck’s capacity or
predicting the evolution of its queue. (These topics are covered later in this section
and in section 6.4). Toward determining a bottleneck’s persistence, one can
construct transformed N-curves that are similar to those in Figure 6-6, but that have

2 One would expect to view this type of forward-moving interface following a sudden
restriction in the flow upstream. This characteristic has been consistently observed to
accompany the onset of upstream queueing, despite the notable absences of any traffic
accidents or other exogenous causes of flow reduction (Cassidy and Bertini, 1999).
Why queue formations give rise to this traffic characteristic is currently under
investigation.
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been constructed using counts taken over an extended time period; i.e., one that spans
the entire rush. By constructing them over a prolonged period, the displacements in
the curves reveal the persistence of upstream queuing. Some examples of this are
provided in Cassidy and Bertini (1999).3

It is likewise advantageous to construct re-scaled curves of N and of T, again for
extended durations spanning the rush, using measurements taken downstream of the
bottleneck. (In the context of the present example, curves could be constructed from
measurements at detectors 24 and/or 25). One can examine these N and T collectively
to check for the arrival of any queue that may have spilled-over from further
downstream and restricted flow through the bottleneck of interest. Such an arrival is
marked by a reduction in the N accompanied by an increase in the T, as shown
previously. Long-run N- and T-curves constructed at detector 25 are shown as part of
the discussion presented next.

Estimating Bottleneck Capacity

A bottleneck’s capacity, is the maximum flow it can sustain for a very long time
(in the absence of any influences from restrictions further downstream). It can be
expressed mathematically as

where denotes that the vehicles counted during very long time T discharged
through the bottleneck at a maximum rate. The engineer assigns a capacity to a
bottleneck by obtaining a value for the estimator (since one cannot actually

observe a maximum flow for a time period approaching infinity). It is desirable that
the expected value of this estimator equal the capacity, For this reason,

one would collect samples (counts) immediately downstream of an active bottleneck
so as to measure vehicles discharging at a maximum rate. The amount that can

deviate from is controlled by the sample size, N. A formula for determining N to
estimate a bottleneck’s capacity to a specified precision is derived below.

To begin this derivation, the estimator may be taken as

where is the count collected in the mth interval and each of these M intervals has a
duration of If the can be taken as independent, identically distributed random

3 Comparing cumulative curves that have been constructed over long time periods
requires accurate measurements since errors can accumulate over time.
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large), then the variance of can be expressed as

since is a linear function of the independent and the (finite) observation
period T is the denominator in (6.21).

The bracketed term is a constant. Thus, by multiplying the top and
bottom of this quotient by E(n), the expected value of the counts, and by noting that

one obtains

where is the index of dispersion; i.e., the ratio variance(n)/E(n).
The is the square of the standard error. Thus, by isolating T in

(6.23) and then multiplying both sides of the resulting expression by one arrives
at

where N, the number of observations (i.e., the count) needed to estimate
capacity to a specified percent error Note, for example, that to obtain an
estimate within 5 percent of The value of may be estimated by collecting a
presample and, notably, N increases rapidly as   diminishes.

The expression may be used to determine an adequate sample size when
vehicles, or any objects, discharging through an active bottleneck exhibit a nearly
stationary flow; i.e., when the cumulative count curve exhibits a nearly constant
slope. If necessary, the N samples may be obtained by concatenating observations
from multiple days. Naturally, one would take samples during time periods thought
to be representative of the conditions of interest. For example, one should probably
not use vehicle counts taken in inclement weather to estimate the capacity for fair
weather conditions.

A different definition of capacity. The Highway Capacity Manual (TRB, 1994), a
widely circulated guidebook, offers a definition of capacity different from the one
above. The Manual recommends taking as an estimate of the highest flow
measured over some interval, usually 15 minutes, during periods when “sufficient
demand exists.” The Manual is not specific about what constitutes the existence of
“sufficient demand.” This omission may be intentional since there appears to be a

variables (e.g. the counts were collected from consecutive intervals with   sufficiently
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lack of consensus as to whether capacity is a bottleneck’s long-run queue discharge
rate or the higher flow sometimes reported to occur prior to upstream queueing
(Agyemang-Duah and Hall, 1991; Banks, 1990, 1991; Cassidy and Bertini, 1999). A
rationale for treating capacity as the former, and an illustration of a deficiency in the
Highway Capacity Manual’s recommendation, are both offered later in this section.
For now, it suffices to note that (6.24) yields the sample size for estimating capacity
to within a specified error given the traffic features (i.e., the at the bottleneck of
interest. This has obvious appeal as compared with taking samples over some
interval of arbitrary duration, such as 15 minutes.

Also of note, the Highway Capacity Manual provides default values for
estimating a bottleneck’s capacity without collecting samples in the field. These
default values may be useful for certain long-range planning applications when
coarse estimates suffice. They should only be used, however, when suitable sample
counts cannot be collected.

An illustration of freeway capacity. Figure 6-8 presents re-scaled N- and T-curves
that were constructed for a period spanning the morning rush. These measurements
were taken downstream of the bottleneck (at detector 25) which was found on this
day to be active from 6:30:30 a.m. to 7:54:00 a.m., as labeled on the figure. During
this period of nearly 90 minutes, the N and the T display similar features, indicating
that the measurements were not influenced by traffic conditions (i.e., queues) from
further downstream.

The N-curve reveals that the observed pattern of flow can be described as
sequences of sustained surges followed by reductions. This pattern is highlighted in
Figure 6-8 by means of linear approximations superimposed on the N and by labels
designating the flows (in units of vehicles per hour) for each period marked by quasi-
linear arrivals. Despite these variations, the queue discharge flows exhibit a constant
long-run trend, shown by the dashed line in the figure. While the bottleneck was
active, the N never deviated from this trend by more than about 50 vehicles. By
constructing the N-curve with a smaller background flow reduction and/or by plotting
it over a longer time, curve portions measured during the period of queue discharge
would appear to have a constant slope. Thus, the bottleneck’s queue discharge rate
may be described as being nearly constant over the rush.

One could determine with (6.24) a suitable sample size for estimating the average
discharge rate. In this case, it would be advantageous to estimate the with a
presample that captures both the surges and the reductions in the discharge flow; e.g.
the could be periodically sampled over the entire period marked by the
discharging queue. In general, such a sampling scheme would be feasible. If, for
example, measurements were taken (automatically) using loop detectors, counts
would usually be available for the entire day, including the rush. If instead, one
incurred the expense of collecting counts by deploying human observers roadside, it
would make sense to extend the data collection period so as to include the entire
rush.



174 Handbook of Transportation Science

In light of the above, it would make even more sense to treat the queue discharge
flow observed over an entire rush as an estimate of the long-run average. Eq. 6.24
could be rearranged to obtain the precision of this estimate.

Treating the long-run discharge rate as capacity. Findings indicate that a
bottleneck’s average discharge rate, when measured over the rush, is reproducible
from day to day (Cassidy and Bertini, 1999). Given this reproducibility, and in light
of its near-constancy over the rush, it seems reasonable to take the estimated long-run
average discharge rate as the bottleneck capacity. In the present example, the

estimated capacity is therefore 6,420 vehicles per hour (vph), as annotated on Figure
6-8.

Revisiting the Highway Capacity Manual’s recommendation. If one takes as
capacity the maximum flow observed over an interval of about 15 minutes (TRB,
1994), then, for the present example, the estimate is higher than 6,420 vph. This is
because a flow of 7,000 vph prevailed for 12 minutes before the bottleneck’s
activation; this very high flow is labeled in Figure 6-8. Although some studies have
reported that bottlenecks can support very high flows prior to their activation, these
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high flows have typically been observed only for time periods that are short relative
to the rush. Figure 6-8 also shows that queue discharge rates comparable to 7,000
vph occasionally arose, but again, only for brief durations. Notably, these periods of
very high flow are not only short-lived, their (short) durations vary from one day to
the next (Cassidy and Bertini, 1999). Thus, these very high flows appear to be
unstable and whether they can be prolonged through control measures such as on-
ramp metering remains a question of active research. In light of this, the higher
estimate of capacity (i.e., the one that follows from the Highway Capacity Manual’s
recommendation) may be unduly optimistic, even misleading.

6.3 Intersection Capacity and Vehicle Delay

This section describes techniques for estimating the capacity of highway intersections
controlled by either traffic signals or stop signs, as these are often bottlenecks.
Methods of estimating the vehicle delays at these facilities are likewise discussed,
since delay minimization is a commonly used objective when developing intersection
control schemes. This section does not specifically address such control schemes,
however, as these are covered in Chapter 7 of the handbook.

Signalized Intersections

At a busy intersection, a traffic signal periodically interrupts vehicle movements to
serve traffic in conflicting directions. Green times are extended so that consecutive
vehicles in a queue may discharge through the intersection at a high rate, termed the
saturation flow. It is by serving vehicle movements in this batched manner that a
signal can increase the rates by which (conflicting) traffic streams traverse the
intersection.

Much like the queue discharge rates through freeway bottlenecks, an intersection’s
saturation flows are affected by its geometric features and by certain attributes of its
traffic streams such as the percentage of trucks. Moreover, saturation flows often
vary with the type of traffic movement (i.e., turning or through-moving) served.
Intuitively, a traffic movement’s capacity is the product of its saturation flow and the
proportion of “green time” available for this discharge. Methods of capacity
estimation are described below.

Saturation flow and capacity.  If by the end of the signal’s red time, a traffic
movement exhibits a sufficiently long queue (perhaps 6 or more vehicles in each
lane), one can estimate its saturation flow by sampling the times consecutive vehicles
pass a fixed point near the intersection, such as the stop bar, and plotting these
departures cumulatively. Figure 6-9 shows a hypothetical cumulative count curve for
the vehicles observed (e.g. in a single lane) during a time period greater than one
signal cycle length, C. The step-wise curve has a strictly horizontal portion
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beginning some time near the end of the green indication. This period of “zero flow”
extends until some time after the initiation of the green because the queued vehicles
do not begin discharging at the instant of the green’s initiation (Webster, 1958).

By collecting the departure times over K cycles and setting time t equal to zero at
the initiation of each green, the arithmetic average of the cumulative number of

vehicles to enter the intersection by t,            is                          where    is   the

cumulative number entering the intersection by t during the kth cycle. For a
sufficiently large K, the cumulative curve is smooth, as exemplified in Figure 6-10.
The slope of this smooth curve rises gradually from zero at t = 0 to a maximum of s,
the saturation flow. This maximum slope eventually transitions to a smaller value
(equal to the average arrival rate, ) because the queue vanished during the green.

The “effective” start of the green time can be identified by extrapolating the curve
portion with slope s backwards in time until it intersects with the line In
similar fashion, the end of this green is found (approximately) by extrapolating the
linear curve portion with slope forward in time until it intersects with an

extrapolation of the horizontal curve portion, as shown in Figure 6-10. The effective
green period, G, is the time available in each cycle for serving vehicles at rate s.
Thus, the intersection’s capacity to serve the traffic movement is sA(G/C).
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One can usually assume that an -curve like the one described above is
reproducible from day to day. Moreover, the precision of an estimate of s may be
obtained using Eq. 6.24.

If drawn on “standard sized” paper, the -curve would not require any re-

scaling, such as a background flow reduction. This is because the and the t used
to diagnose the intersection flows are small as compared with those used in
diagnosing a freeway bottleneck.

Vehicle delay. If the traffic movement of interest is under-saturated (i.e., if the

does not exceed its capacity), an average departure curve like the one in Figure 6-10
can be used for measuring the vehicle delays. To this end, the vehicle arrival times
may be measured upstream of any queueing caused by the traffic signal and a
cumulative curve of the average arrivals per cycle can be constructed in the manner
just described. One obtains a queueing diagram, and with it delay information, by
horizontally translating this average arrival curve so that it is superimposed on the
average departure curve for the period when the queue was not present.

Notably, the average arrival curve is merely a straight line (with slope equal to )

if the vehicle arrivals are not influenced by any other traffic control device located
further upstream. In these instances, the data needed to construct a queueing diagram



178 Handbook of Transportation Science

can be collected by a single observer. A complete set of instructions for conducting
such an experiment is provided by Pitstick (1990).

In many cases, one can predict intersection delays at some future time merely by
altering the average arrival curve and/or the average departure curve as appropriate
for the conditions (e.g. arrival rates, signal timing, etc.) that have been projected.
The reader may again refer to Pitstick for discussion of this.

Stop-controlled Intersections

At an approach controlled by a stop-sign, the capacity to serve a certain traffic
movement may be estimated by sampling the times that its queued vehicles enter the
intersection. The issues here are much like those described in section 6.2, with the
notable difference that, for a traffic movement controlled by a stop sign, capacity is
influenced by the conflicts created by vehicles on other approaches.

The effects of vehicular conflicts are especially complex when stop signs are used
to control only the traffic approaching from the minor street. The capacities for these
minor street movements depend upon the propensity of its drivers to utilize headways
exhibited by vehicles entering from the major street; more precisely, these drivers are
forced to use “gaps” in the major street’s traffic streams(s). Complexities arise
because this gap-acceptance behavior is influenced by a host of factors, including the
geometry of the major street and the velocity of the vehicles traveling on it, the sight
distance(s) available to drivers on the minor street, their intended maneuvers and
their personalities (e.g. aggressive or timid).

Gap acceptance models and delay prediction. Models for predicting gap-
acceptance behavior have been developed to serve as tools for planning purposes.
Some of these assume that drivers are both homogeneous and consistent; i.e.,
presumably a gap larger than some critical value is invariably utilized by the motorist
waiting at the stop bar and motorists always decline to use a gap that is smaller than
this critical value (TRB, 1994). Other models assume that the critical value used for
accepting or rejecting a gap varies across drivers (Cohen, et al., 1955; Solberg and
Oppenlander, 1966; Miller, 1972; Daganzo, 1981). Some gap acceptance functions
assume that a driver’s critical value may change, for example, as she grows impatient
while waiting at the stop bar (Mahmassani and Sheffi, 1981; Madanat, et al., 1994;
Cassidy, et al., 1995).

To predict vehicle delays at stop-controlled intersections, gap acceptance
functions have been incorporated into analytical queueing models or they have been
used in computer simulations. As a practical matter, it is worth noting that
intersection delays become substantial only when the traffic intensity (i.e., the ratio of
arrival rate to capacity) reaches a value of about 0.8 (Webster, 1958). Such high
ratios are seldom observed at stop-controlled intersections because of often-used
warrants (MUTCD, 1988) that provide for the installation of a traffic signal even
when traffic intensities are rather small. Moreover, all gap acceptance models are
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estimated through statistical means and the applicability of any one model is limited
by the intersection characteristics used for its estimation.

6.4 Traffic Flow Theory

It was noted in the previous two sections that bottlenecks exhibit predictable features.
In section 6.2, for example, the discharge flow from an active freeway bottleneck was
shown to be nearly constant over the rush. It was further noted that freeway
bottlenecks consistently arise at the same locations and that a bottleneck’s average
discharge rate is reproducible from day to day. The queue discharge rates at signal-
controlled and stop-controlled intersections can also be characterized as
reproducible, as noted in section 6.3.

In light of their predictable features, it seems reasonable to theorize about how
traffic evolves upstream and downstream of bottlenecks. Such theories have been
developed and they may be used to predict important attributes of the traffic stream,
such as a queue’s growth due to accidents or geometric restrictions, the flow patterns
generated by traffic control measures, etc. These theories rely upon given sets of
boundary conditions and these might entail, for example, the rate of trip generation at
all origins along the highway, the routes of all trips and the vehicle trip times, where
the latter are functions of the time-dependent flows along the highway.

This section begins with a description of a remarkably simple theory of highway
traffic flow. Proposed by Newell (1993), this theory is a version of one originally
developed by Lighthill and Whitham (1955) and by Richards (1956) whereby traffic
is treated as a continuum; i.e., the models describe the collective or average motion
of vehicles in a traffic stream. Newell’s version is described as being a
“simplification,” partly because of the relation it assumes, in effect, between flow and
vehicle trip time and an explanation of this is provided later in the section. The
simple theory predicts the shapes of standard (i.e., untransformed) cumulative count
curves at locations of interest along the roadway. With this as its framework, the
theory exploits the advantages of cumulative curves already described in the previous
three sections. Accordingly, the theory is presented here in a purely graphical way.
To highlight the theory’s intuitive attributes, it is described in the context of a simple
scenario involving a single highway segment with a bottleneck of fixed capacity
located somewhere further downstream. References are made to some of the
empirical findings that support the theory. Extensions needed to apply the theory to
more complex scenarios are likewise noted. Prior to concluding this section, some of
the limitations of the simple theory (and of its predecessors) are mentioned and
attention is briefly given to some other traffic theories that have been proposed in
light of these limitations.
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A Simple Theory of Traffic Evolution

The upper portion of Figure 6-11 presents some hypothetical trajectories passing
measurement (e.g. detector) location and proceeding past downstream
measurement location It is assumed here that the intermediate location has no
device(s) for traffic measurement. Thus, the theory will be used to describe the time-
dependent traffic conditions, or more specifically, to construct the cumulative count
curve at this location. The reader will note that the theory could be used for
constructing the cumulative curves at any intermediate locations of interest. To
satisfy an essential boundary condition, the cumulative curve at used for
the present example was not affected by any queueing from downstream.

The trajectories drawn in Figure 6-11 describe one freely flowing traffic state,
labeled a, and three different states in queued traffic, labeled b through d. All
vehicles are assumed to exhibit identical headways, spacings and velocities within a
given state. Thus, no vehicle overtaking occurs. Furthermore, all vehicles are
assumed to travel at a free-flow velocity whenever traffic is freely flowing. Thus,
for the interval the cumulative count curve at is obtained by constructing the
N-curve at and shifting it horizontally to the right by a vehicle’s free-flow trip time
from to The curve labeled I was constructed by translating N(t,

in this manner. (Step-wise curves are shown in Figure 6-11 to make more obvious
the relation between the trajectories and the cumulative curves).
In queued state b, the lead vehicle, labeled 0, decelerated from its previous (free-
flow) velocity. It was stopped in state c and it accelerated upon entering
state d. Of note, the theory assumes that vehicle accelerations (and decelerations)
occur instantaneously and thus the theory can only hold over dimensions of time and
space that are large relative to the separations between vehicles.

All vehicles of higher arrival number behave precisely as vehicle 0. In queued
traffic, an ith vehicle’s trajectory is assumed to adopt the features of the i-1th
trajectory following some fixed time lag; the time lag is the same for all queued
states. This, along with the assumption that vehicles exhibit uniform spacings within
a given state, means that the interface between any two queued states propagates at a
fixed speed u, as shown by the dashed lines in the upper portion of Figure 6-11.
Moreover, in queued traffic, the ith trajectory can be constructed by shifting the i-1th
trajectory forward by the fixed time lag and downward by a fixed spacing. Study of
the time-space diagram in Figure 6-11 reveals that this spacing is the one adopted by
vehicles that have come to a complete stop, the so-called jam-density spacing. This is
true even in the absence of a “jammed” traffic state like state c. In fact, state c was
included in Figure 6-11 merely to aid the reader in verifying that the appropriate
downward translation is always the jam density spacing.

It follows that in queued traffic, the curve at is obtained by shifting the N-curve
at to the right by a distance equal to the trip time of an interface between
these two locations, and upward by the number of vehicles that pass
through the interface during this time. It should be clear that the latter is the jam-
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density storage, where the jam density, is the maximum density the
road segment can accommodate.

These horizontal and vertical curve translations produced the curve labeled II in
Figure 6-11. By referring to the time-space diagram in this figure, the reader may
verify that shifting as described above produces the N-curve that would have
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been measured for queued traffic conditions at had measurement devices existed
there.

The curve translated forward from labeled I, intersects the curve translated
from downstream labeled II. Notably, this intersection occurs at time the time
when the back of the queue (i.e., state b) arrived to location Time is thus said to
mark the arrival of a shock at location where, in this simple theory, a shock is an
interface between queued and freely flowing traffic.4 The lower envelope of curve I
and curve II in Figure 6-11 is the resulting N-curve at It is intuitive that flow is
constrained at following the shock’s arrival and the two translated curves intersect
at this arrival time because vehicles are conserved across the shock’s path.

A shock may exhibit a multitude of possible speeds, positive or negative, as
dictated by the traffic conditions on its upstream and downstream sides. Moreover, a
shock’s speed changes when it intersects interfaces or other shocks. Notably, the use
of N-curves as described above does not require one to trace the paths of shocks and
interfaces over time and space. Such (tedious) analyses are required in the Lighthill
and Whitham and Richards (LWR) versions.

An assumed bivariate relation. Implicit in the simple theory and LWR is a key
postulate that there exists some relation between traffic properties, such as flow and
vehicle trip time, that may vary with location along the highway, but not with time.
These relations are purely empirical; i.e., they are obtained through measurement.
Not only would they depend upon the highway geometry, these relations would also
be affected by environmental factors, such as weather conditions, as well as by
attributes of the traffic stream, such as its proportion of large trucks, the tendencies of
its drivers, etc. Although the bivariate relation between any number of traffic
properties may be used as a boundary condition for continuum models, it is
customary to use a relation between flow, q, and density, k. The assumptions of the
simple theory just described imply a q-k relation that is triangular in form, like the
one shown in Figure 6-12, and the reasons for this are explained below.

To begin, the right branch of the relation describes conditions in queued traffic,
whereby k increases with decreasing q. From Eq. 6.13, the speed of an interface
between stationary traffic states, u, is That the relation’s right branch is linear
means that interfaces between queued states presumably propagate at a single speed,
a previously noted assumption of the simple theory.

The left branch of the triangular relation describes freely flowing traffic. As noted
in section 1, the average vehicle velocity is the ratio of flow to density. Thus, the
simple theory assigns to the left branch a slope of the presumed velocity of all

4 In the theory developed by Lighthill and Whitham and by Richards, shocks arise
when backward-moving interfaces collide. These collisions do not occur in the
simplified theory since all backward interfaces are presumed to travel at the same
speed u.
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freely flowing vehicles. That this slope is constant also implies that changing (q, k)
states move forward with the vehicles in freely flowing traffic.

It was previously noted that, in the simple theory, a shock separates freely flowing
and queued traffic. The shock’s speed is therefore the slope of the chord connecting
the (q, k) states as they lie on each side of the triangular relation.

The existence of well-defined bivariate relations is an assumption widely adopted
in traffic and transportation engineering. In addition to their role in continuum
theories of traffic flow, these relations are commonly used in highway design and in
transportation planning. In fact, additional discussion on these presumed relations
may be found in virtually any traffic engineering text or handbook, including (TRB,
1994). In particular, chapter 4 of Daganzo (1997) contains a thorough introduction
to the subject.

Some empirical evidence. Despite their role in continuum theories like the
simple one described above, the assumption that bivariate relations are independent
of time is known to be incorrect. Interfaces in the traffic stream exhibit characteristic
widths where traffic is not stationary because vehicles are adjusting from one state to
another. When collected in the presence of these nonstationary regions, bivariate
data do not give rise to well-defined relations. To the contrary, plots of these data are
widely scattered (Hall, et al., 1992).
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On the other hand, one might “reasonably expect drivers to do the same on
average under the same average conditions” (Daganzo, 1997, p 80). It therefore
seems reasonable to postulate that well-defined bivariate relations exist for stationary
traffic. Indeed, there is the empirical evidence supporting this postulate. One study
found that the average values of flows and occupancies taken only from nearly
stationary traffic produced well-defined relations that appeared to be reproducible
from day to day (Cassidy, 1998). The research showed that (freeway) traffic is
stationary in the absence of any interfaces and that one may describe these conditions
on a highway segment using some bivariate relation. It follows that an interface must
propagate as specified by the highway segment’s bivariate relation, even though the
relation does not describe traffic behavior in the immediate vicinity of the interface.

In another study, re-scaled cumulative count curves were used to examine
numerous backward-moving interfaces in individual travel lanes (Windover, 1998).
These curves were constructed in series using counts taken (by loop detectors) on a
2-km freeway segment upstream of an active bottleneck. They were plotted for time
periods long enough so as to display numerous interfaces and these interfaces
separated a variety of queued (q, k) traffic states. The curves were observed to have
similar forms; i.e., slope changes on the downstream curve later appeared on the
upstream curves, indicating that drivers responded in similar ways to changes in
traffic conditions as per LWR and Newell’s simple theory. Furthermore, each (entire)
curve could be nearly superimposed upon its neighbor following a vertical and a
horizontal translation. This latter observation indicates that between any two of the
measurement locations, all interfaces passed through nearly the same number of
vehicles and had nearly the same trip times. The finding indicates that the adoption
of triangular q-k relations like the one in Figure 6-12 may be a reasonable
approximation for describing traffic.

Applying the simple theory to complex scenarios. The simple theory was
described above using a highway segment of fixed geometry and a single bottleneck
downstream. Newell describes how the theory can be applied to more complicated
roadways by using suitable boundary conditions. In addition to those required for the
previous analysis, these boundry conditions include the differences between the
cumulative number of vehicles that enter and exit the roadway by time t at each
junction; i.e., the net cumulative count.5 One would also specify (possibly different)
triangular q-k relations for each section of highway.

As regards the net cumulative counts, a complication arises in estimating the exit
counts at each junction. Even if one knows the routes taken by vehicles and the times
they enter the roadway, the times they actually exit will be dictated by the prevailing
traffic conditions whenever queueing occurs upstream. This complication was
originally recognized by Vaughn, Hurdle and Hauer (1984) and also by Vaughn and

5 If entrance and exit ramps are closely spaced, their separations may be ignored.
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Hurdle (1992). Newell (1993, part III) provided a solution by specifying that a
vehicle’s trip time between successive junctions is independent of its origin and
destination and that at all junctions, one must evaluate the component cumulative
curves for each destination. The reader may refer to the source for a complete
description of this.

On a related note, a diverge formed by an off-ramp can cause queueing in at least
two ways: 1) a queue from the off-ramp spills over and blocks traffic; and 2) the off-
ramp is not queued but an increase in the flow of vehicles wishing to exit creates a
queue (on the freeway or highway) when the off-ramp reaches capacity (Daganzo et
al., 1997). A mathematical theory of the diverge can be found in sections 3.3 and 4
of Daganzo (1995) and a preliminary theory for wide freeways where traffic may sort
itself by lane depending upon destination can be found in Daganzo (1997a).

An additional complication arises in determining the net cumulative count at some
on-ramp after a queue has propagated beyond it. This is because the rate by which
vehicles merge onto a congested roadway requires some observation or some
intuition. Studies by the California Department of Transportation (Newman, 1986),
for example, found that when queues are present both on an entrance ramp and on the
freeway, merging vehicles share available roadway space with vehicles in the
adjacent freeway lane on a one-to-one basis, creating the so-called “zipper effect.”
Daganzo (1997a) offers a simple theory to predict both the ramp and the freeway
(output) flows when two merging traffic streams compete for the capacity available
downstream.

Finally, a computer program has been developed to aid in applying Newell’s
simple theory to complex highway sections. As of the date of this publication, the
program is available on the World Wide Web through the civil engineering
department at the Georgia Institute of Technology.

Some deficiencies and some alternatives.    The simple theory, as well as the LWR
theory, are known to have deficiencies. The most noteworthy of these, along with
some of the other theories developed to address these deficiencies, are described
below. The coverage here is admittedly light. The intent is merely to bring toward
closure the discussion of traffic flow theory and to provide the reader with references
to some of the other models common in the literature.

Traffic instabilities. As apparent from the previous discussion, the simple theory
does not predict the “stop and go” instabilities often observed in queues. Nor are
instabilities described by the LWR theory. Models that qualitatively match many
(although not all) of the features observed in unstable traffic do exist. One of the
earliest of these (Newell, 1962) belongs to a class of models that are, in effect,
extensions to the LWR theory and its simplified version. This class of models share
a number of similarities with the latter continuum models. In all of these models, for
example, a platoon is described by state (q, k) on the flow-density plane. Likewise,
each of these models assume that all vehicles in a platoon always respond in the same
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way to a sustained change in the lead car’s velocity. However, the class of models
which we describe as being extensions are specified by defining two families of q-k
curves; one family describes all possible evolutions of decelerating platoons and the
other corresponds to accelerating traffic (Daganzo, et al., 1997). Models of this type
are thus compatible with a well-known finding of Edie (1965) that decelerating
platoons adopt a set of states on the q-k plane that are consistently different from
accelerating ones.

Efforts to explain traffic instabilities also led to the development of models to
describe a driver’s response to the changing trajectory of a lead vehicle. These so-
called car-following or microscopic traffic models predict how a driver adjusts her
vehicle’s velocity because of a stimulus, such as the (time-dependent) spacing
between the subject vehicle and its leader (Chandler, et al., 1958; Herman, et al.,
1959; Gazis, et al. ,1959; Herman and Potts, 1961). To calibrate and test these
models, considerable data collection took place using instrumented cars on test
tracks. This line of research is notable in that the objective was to describe the
behavior of individual drivers and the interested reader can refer to May (1990) for
discussion on some of the early developments in this area.

To their credit, the car-following models do predict the occurrences of
instabilities. However, there has been little success in matching the oscillatory
behavior observed in real traffic with the predictions from these car-following
models. Perhaps this is because the theories assume that drivers apply control
continuously and that a driver responds only to the motion of the car immediately
downstream and not, for example, to cues collectively displayed by the (possibly
many) downstream vehicles visible to the driver. Driver behavior is probably more
complex than this.

Indeed, the complexities of driver behavior likely explain why instabilities exhibit
periods of oscillation and growth that are site specific. For example, a bottleneck
studied in New York’s Holland Tunnel displayed regular oscillation periods of about
2 minutes (Edie and Foote, 1961), while observations upstream of other bottlenecks
have revealed more sporadic characteristics (Kerner and Rehborn, 1997, 1996,
1996a, Smilowitz et al., 1998). This is not surprising given that the vehicular
interactions are different for different types of bottlenecks (e.g. merges, diverges,
lane reductions, etc.) and a thorough understanding of each type of bottleneck will
likely come only by studying them individually.

What may be most important here, however, are the details of traffic instabilities
that are understood at the present time. Namely, that instabilities occur well upstream
of bottlenecks and that they do not appear to affect a bottleneck’s discharge flow.6

6 Contrary to claims made in some of the literature (Kerner, et al., 1995; Kerner and
Rehborn, 1997), this author has seen to date no conclusive evidence suggesting that
instability phenomena may cause freely flowing traffic to break-down and form queues
spontaneously. The interested reader may refer to Daganzo et al. (1999) for more
discussion on these issues.
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The detailed behavior of queued traffic therefore has little effect on the delay caused
by a bottleneck. Furthermore, to predict time-dependent queue lengths, (e.g. due to
control actions) it might suffice to predict the general, coarse shapes of cumulative
count curves without attempting to predict the occurrences of wiggles that
characterize instabilities. This is precisely the objective behind Newell’s simple
theory.

Theories from other scientific  fields. In efforts to improve the LWR models,
researchers have borrowed theories from other fields of scientific inquiry.
Discussion of methods adopted from other fields are not the emphasis of this
handbook. Nonetheless, a few of these adaptations deserve mention, albeit brief,
because they are prominent in the literature, they are used in practice and they are not
without shortcomings of their own.

For example, Navier-Stokes-like equations commonly used in fluid mechanics
have been proposed for describing traffic instabilities (Kerner, et al., 1995).
Researchers have likewise advocated other second-order partial differential equations
similar to those used for fluid approximations to explain the motion of vehicles
passing through shocks (Payne, 1971; Kühne and Beckschulite, 1993); the reader will
recall that the simple theory and its predecessors assume that vehicles change
velocities instantaneously and this is a very coarse approximation. These second-
order models can generate unrealistic predictions of traffic evolution because these
models borrow features of materials flow that are unreasonable for describing
highway traffic. For example, del Castillo et al. (1993) have noted that these models
predict that interfaces may overtake particles (e.g. fluid molecules) and that when
applied to highway traffic, this implies that drivers collectively respond to stimuli
from behind. This would not seem to be a reasonable depiction of the driving
process. Daganzo (1995a) offers extended discussion on the pitfalls in applying
second-order fluid approximations to highway traffic.

Lastly, models based upon the kinetic theory of gases have been proposed for
describing vehicular interactions in light traffic (Phillips, 1977; Prigogine, 1961;
Prigogine and Herman, 1971). Continuum theories are deficient for these conditions
because they do not describe the variations in velocities across vehicles and thus,
they do not predict the overtaking and the natural spreading of platoons that occur in
low densities. The kinetic models of traffic flow were intended to improve the LWR
theory by considering the distribution of vehicle velocities at each point in time and
space. However, these models were derived from the integration of molecular
properties, such as positions, collisions and velocities, that do not accurately describe
highway traffic. Daganzo (1995a), for example, has noted that these models assume
that a distribution of desired vehicle velocities “can be defined exogenously at every
point in time and space independent of the drivers who happen to be there.” In so
doing, these models fail to recognize that individual drivers have personalities (e.g.
aggressive and timid) which they retain with their motion (Cassidy and Windover,
1998). The reader may refer to Newell (1995) for further discussion on these issues.
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As an aside, a theory of very light traffic with weak overtaking interactions is fairly
complete and its description is likewise found in Newell (1995).

Some Final Comments

Although section 6.4 has made reference to a number of theories for describing
highway traffic, it has emphasized a simple continuum model proposed by Newell.
In the interest of completeness, we note that Newell described his recipe using a
coordinate system whereby the time at each location along the roadway is measured
from the passage of a freely-flowing reference vehicle (e.g. labeled N = 0). In effect,
this so-called “moving time coordinate system” horizontally shifts the cumulative
count curves so that neighboring curves display vehicle delays and excess
accumulations. This is analogous to the horizontal shifts that were applied to count
curves in section 6.2 and the reader may refer to the original source (Newell, 1993)
for more details on the use of moving time.

Far more important than these details, however, is the question of reliability; i.e.,
the adequacy of Newell’s simple theory for predicting traffic evolution remains an
active research question. The need for changing or refining the model may become
apparent, for example, as ongoing empirical studies reveal more about roadway
bottlenecks and the features of the queues they create. What is noteworthy about
Newell’s recipe, however, is its exploitation of cumulative count curves. Such a
framework can be used to predict virtually any traffic feature likely to be of interest,
including vehicle delays, the spatial extent of queueing, etc. Thus, it would seem that
any models of highway traffic flow developed in the future, or any future refinements
to existing models, should make use of these cumulative curves.
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7AUTOMATED VEHICLE CONTROL*
Petros loannou and Arnab Bose

7.1 Introduction

Mankind’s love for automobiles dates back more than one hundred years to when
they were first introduced. The major functions performed while driving an
automobile are lateral and longitudinal control of the vehicle. While the former is
necessary to ensure that the vehicle does not lose track of the desired path, the latter
is used to keep the vehicle at a safe speed dependent on the surrounding conditions
and at a safe distance from the preceding vehicle (if any). This function is carried out
by humans whose senses detect changes in the environment and act as stimuli. The
human driver then reacts to these stimuli by applying either the brakes or the gas
pedal. This reaction defines the driving behavior of an individual driver.

It is a well-known fact that the driving habits differ from person to person. The
behavior of the human driver also has randomness associated with it that adversely
affects safety and traffic flow characteristics. In the last decade considerable research
has been done to automate the vehicle-highway system in an effort to improve
safety, capacity and traffic flow characteristics. It has been envisioned that removing
the human from the vehicle-driver control loop will eliminate the randomness
associated with today’s manual traffic and satisfy the above requirements (Stevens,
1997). This motivates the concept of automated vehicle control.

The degree of automation in a vehicle determines the involvement of the human
driver in the driving loop. While the use of partial automation as driver aids
guarantees improved traffic flow characteristics, the same cannot be said of safety
and throughput (Bose and Ioannou, 1998). However, full automation in the
longitudinal direction is expected to benefit safety, capacity and traffic flow

* This work is supported by the California Department of Transportation through PATH of the University
of California. The contents of this chapter reflect the views of the authors who are responsible for the facts
and accuracy of the data presented herein. The contents do not necessarily reflect the official views or
policies of the State of California or the Federal Highway Administration. This chapter does not constitute
a standard, specification or regulation.
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characteristics. Likewise, completely replacing the human driver in the driving loop
with longitudinal and lateral automation, as in a fully automated vehicle, is expected
to further improve safety. The use of actuators and sensors is deemed to improve
safety, capacity and traffic flow characteristics for the following reasons: firstly,
electronic sensors do not get fatigued, tired or distracted and are therefore more
reliable (Ward, 1997). Secondly, the actuators react much faster than the average
alert human driver, who has a time delay of about 1.0s to 1.5s (Milestone 2 Report,
Appendix J, 1996). This implies that vehicles can travel closer, which translates into
higher capacity/throughput (Bose and Ioannou, 1998). Thirdly, the deterministic
response of the controllers in comparison to the random behavior of human drivers
smoothes traffic flow (Bose and Ioannou, 1999). Different system configurations for
automated vehicle deployment have been outlined in Hall (1997).

The lateral and longitudinal functions of an automated vehicle are performed with
the use of lateral and longitudinal controllers that work in conjunction with on-board
sensors (Walker and Harris, 1993). The longitudinal controller comprises two
subsystems, namely throttle and brake controllers that do not work simultaneously
(Ioannou and Xu, 1994). A switching logic dictates the switching from one controller
to the other. The lateral controller uses a lateral control system (Peng and Tomizuka,
1990) that uses a road referencing/sensing system that measures the position and
orientation of the vehicle relative to the road (Hessburg et al., 1991).

Chapter 7 deals with vehicle automation, how it is achieved and the subsequent
benefits. We begin with vehicle longitudinal and lateral dynamics models in section
7.2 that are used to design automated controllers. Different manual vehicle models
that provide a better understanding of the human-driver interface are overviewed in
section 7.3. This is useful when designing an automated controller to mimic the
behavior of the human driver and partially/completely replacing him/her in the
driving loop. A design of an automated longitudinal controller is briefly outlined in
section 7.4. This is followed by discussions on longitudinal controllers for heavy-
duty vehicles, vehicle-to-vehicle communication designs and sensor requirements
that are needed to ensure safe and proper operation of automated vehicles. Next the
intervehicle spacing of an automated vehicle that is dictated by the longitudinal
controller and the expected safety level due to its use are highlighted.

The lateral control of light and heavy-duty vehicles using automated controllers
are briefly outlined in the next section, 7.5, followed by necessary lateral/side sensor
requirements. Different sensor technologies available today are evaluated for their
applicability as both longitudinal and lateral sensors. Increased level of safety due to
the use of an automated lateral controller in addition to an automated longitudinal
controller is discussed next.

A beneficial effect of automation, namely automated lane changing, is
investigated in section 7.6 using different acceleration profiles of the lane changing
vehicle. String stability in vehicle following is evaluated for manual and automated
traffic in section 7.7 using the models presented in the previous sections. Lastly,
mixed manual/automated driving is discussed and benefits are evaluated as a



Longitudinal

The longitudinal vehicle speed is a nonlinear function of the throttle angle and
can be expressed as

Fig. 7-1 shows a block diagram of the longitudinal vehicle model (Ioannou and
Xu, 1994). Each block can be considered as a subsystem with various inputs and
outputs. The output of the engine subsystem is the engine torque that is a nonlinear
function of the air/fuel ratio, the exhaust gas recirculation (EGR), the cylinder total
mass charge, the spark advance, the engine speed and the drivetrain as well as the
throttle angle. The spark advance, EGR and air-to-fuel ratio are the outputs of an
internal controller (inside the engine block of Fig. 7-1) whose inputs are the throttle
position, engine speed and drivetrain load. The transmission subsystem considered is
an automatic transmission with hydraulic coupling and four transmission gears. This
subsystem transfers transmission torque (Tr. Tor. in Fig. 7-1) to the drivetrain as a
function of vehicle speed and engine condition. The latter then outputs the vehicle
speed and acceleration/deceleration that are affected by the road condition,
aerodynamic drag and vehicle mass.

The brake subsystem has a brake actuator that receives braking commands and
outputs braking torque. It acts like a low pass first order filter with some delays
which have been verified to be noticeable only at the beginning and negligible later
on. The dynamics of the brake subsystem are faster than those of the drivetrain.

7.2 Vehicle Dynamics
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function of the market penetration of automated vehicles in section 7.8. The chapter
ends with a summary in section 7.9.
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where indicates the presence of dynamics.
Swaroop et al. (1994) developed a three state variable lumped parameter

longitudinal model of a vehicle which is outlined as follows. Assuming that ideal gas
law holds in the intake manifold and that its temperature is constant, the intake
manifold dynamics are given by

where is the mass of air in the intake manifold, are the mass flow rates

through the throttle and into the cylinders (entering the combustion chamber),
respectively; are the intake manifold pressure, volume and temperatures,
respectively while R is the universal gas constant for air. The empirical relationship
for is defined as

where MAX is a constant dependent on the size of the throttle body, is the

throttle characteristic which is the projected area the flow sees as a function of
PRI is the “pressure ratio influence” which describes the choked flow relationship
which often occurs through the throttle valve and is the atmospheric pressure.

The empirical relationship for is defined as (Hedrick at al., 1991)

where is the volumetric efficiency which is a measure of the effectiveness of an

engine’s induction process and defined as the volume flow rate of air into an engine
divided by the rate at which the volume is displaced by the piston (Cho and Hedrick,
1989), is the engine speed and is a physical constant defined by (Cho and

Hedrick, 1989)
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where is the engine displacement equal to and is the intake

manifold volume equal to
Assuming that the drive axle is rigid and the torque converter is locked, the

rotational dynamics of the engine is described by

where is the net combustion torque (indicated torque-friction torque) and is a

nonlinear function of and r is the gear ratio, h is the tire radius, is the
effective rotational inertia of the engine when the inertia wheel is also referred to the
engine side, is the brake torque at the wheels and is the tractive force defined

as

where is the longitudinal tire stiffness and i is the slip between the tires and the
ground, defined as

where v is the longitudinal velocity of the vehicle.
Assuming that the brakes obey first order linear dynamics, we have

where is the commanded brake torque and is the brake actuator time

constant. The final equation for longitudinal vehicle velocity is given by

where is the drag coefficient, is the force due to rolling resistance and M is

the effective mass of the vehicle.
The above vehicle model consists of nonlinearities that have been dealt with, when

designing automated controllers, by using techniques such as input/output
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linearization (Swaroop et al., 1994) and modified sliding control (Hedrick et al.,
1991). Another approach is to linearize the nonlinear vehicle model (7.1) by
considering different operating points for vehicle speed and throttle angle (Ioannou
and Xu, 1994). The linearization procedure is described as follows.

Let be the steady state speed for throttle input Define and

as the deviations from vehicle speed and throttle angle

respectively. Using the validated nonlinear longitudinal vehicle model, the linearized
model relating over a wide range of speed for any

fixed gear state, is of the form

where the coefficients are functions of the operating point

For all operating points considered, and and (which may be

real or complex conjugates) have positive real parts. Furthermore, Re Re

where “Re” denotes the real part, and A variable gives a

measure of how far and are from and is defined as

where is the full domain of Simulations show that which indicates

that - is the dominant pole and the fast dynamics associated with and can

be neglected, leading to the simpler model

where a and b vary with The effects of the neglected fast modes and

uncertainties are modeled as a disturbance d, giving the final model

or equivalently



199Automated Vehicle Control

In vehicle following the vehicle position is also taken into account with the vehicle
speed. So the complete dynamic equation of the throttle angle to vehicle speed and
position subsystem is

Sheikholeslam and Desoer (1991) developed another model for the dynamics of the
i-th vehicle assuming a horizontal road surface with no wind gust. Following
Newton's second law of motion, the vehicle dynamics are described as

where is the air resistance, is the specific mass of air, is

the cross-sectional area of the i-th vehicle and is the drag coefficient of the i-th
vehicle; is the engine force applied to the i-th vehicle, the constant is the
mechanical drag of the i-th vehicle and is the i-th vehicle throttle input. The
input-output behavior of each vehicle (in a platoon) is linearized by substituting in
(7.18) from (7.17) to get

and differentiating (7.17) and substituting from (7.19) to obtain

Eqn. (7.20) can be written as

where
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An exogeneous input that is related to the vehicle throttle input is created to
linearize the i-th vehicle’s nonlinear dynamics, by

Substituting (7.22) into (7.21) gives a system of linear equations representing the
dynamics of the i-th vehicle after linearization by state feedback, namely for i=1 ,2...

Lateral

Lateral vehicle dynamics modeling is used for designing automated lateral
controllers. Nathoo and Healey (1978) showed that a coupled vertical and lateral
vehicle model consists of sprung mass, two independent front suspension and wheel
unsprung masses and a solid rear axle comprising the rear wheel unsprung mass.
Peng and Tomizuka (1990) proposed a complex and a simple model that describe the
lateral vehicle dynamics. The complex model has six degrees of freedom: three
translational and three rotational. The simple model includes only the lateral and yaw
motions of the vehicle and are expressed in state space as follows



where and are the mass and moment of inertia of the vehicle, V is the

longitudinal velocity of the vehicle, is the radius of curvature of the road, and

are the distance from the mass center to the front and rear axle respectively, is

the traction force from the tire, and are the disturbance force and

torque acting on the vehicle respectively, and is the cornering stiffness. As is

evident from (7.24), the cornering stiffness and the longitudinal velocity V of the

vehicle are important parameters in lateral vehicle dynamics. While V is measured
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where is the lateral deviation of the mass center from the reference, is the yaw

angle of the vehicle, is the desired yaw angle from the road curve and is the

front wheel steering angle (Fig. 7-2). The and are defined as
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directly, the same cannot be done for which is affected by factors such as tire
pressure, load, velocity, among others, and is estimated using a parameter
identification scheme.

7.3 Manual Control

In order to study the interaction of human control actions with vehicle dynamics,
investigators studied mathematical models such as Fig. 7-3 that mimic the behavior
of human drivers (Ioannou and Chien, 1993). Using the structure of Fig. 7-3,
investigators came up with models based on vehicle following in a single lane with
no passing.

We present an overview of the following different human driver models: (1) Pipes
model, (2) Optimal Control Model and (3) Look-Ahead model. The reader is
directed to the references for a more detailed discussion of these models.

Pipes Model

This model was first proposed by Pipes (1953) and pertains to a single lane dense
traffic. The vehicle following theory assumes that each driver reacts to a stimulus
that is the velocity difference and responds with an acceleration command, i.e.

where is the reaction time of the driver-vehicle system.
The vehicle dynamics is modeled by an integrator and the driver’s central

processing and neuromuscular dynamics are modeled by a constant. The block
diagram of the model is shown in Fig. 7-4. Chandler et al. (1958) used vehicle-
following data to validate this model at the General Motors Technical Center and
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showed experimentally that the reaction time is while the constant gain is

It is mathematically represented as

where is the velocity of the leading vehicle, is the velocity of the following

vehicle, is the acceleration of the following vehicle, M is the mass of the

following vehicle and is a sensitivity factor.

Optimal Control Model

The optimal controller is based on a quadratic cost function that penalizes the
weighted sum of the square of the intervehicle spacing and the square of the relative
velocity (Tyler, 1964). The quadratic performance criterion function is chosen such
that the following cost function is minimized

where is the chosen headway of the vehicle and are the associated

weights.
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With the supplementary assumption that the leading and following vehicle
dynamics are identical, the solution of this optimization problem is the control u(t)
given by

where subscripts and represent the leading and following vehicles respectively
and stand for the distance and velocity of the vehicles respectively, while

and are constant gains. The values of these parameters were obtained
from actual traffic data.

As the weights differ from driver to driver, the best the optimal controller can
perform is as a controller that simulates the behavior of a particular human driver.
Another drawback of this model is that it neglects the driver’s reaction time, the
neuromuscular dynamics and the nonlinearities of vehicle dynamics. These reasons
prompted Burnham et al. (1974) and Bekey et al. (1977) to first modify the optimal
controller structure by introducing the effects of driver reaction time and vehicle
nonlinearities and then estimate the unknown parameters by fitting real traffic data.
The model is shown in Fig. 7-5 and the vehicle dynamics are modeled as

where is the mechanical drag coefficient (about to ) and is the

aerodynamic drag coefficient (about to ).
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Look Ahead Model

This model (Burnham et al., 1974; Bekey et al., 1977) is based on the hypotheses
that the human driver observes the behavior of three vehicles directly ahead. It
incorporates a switching logic that determines whether to follow the velocity of the
first or the second lead vehicle. The switching logic determines the majority
direction of acceleration and then actuates the mode switch accordingly. Parameter

values obtained by fitting actual traffic data are and (Fig. 7-
6).

7.4 Automated Longitudinal Control

The control phase of automobile driving is concerned with actuation of steering
wheel, accelerator and brakes in such a way that the vehicle follows its preceding
vehicle or the desired path with a desired velocity and with acceptable precision. In



where is the velocity of the following and the leading vehicles, respectively,

is the throttle angle deviation from the desired position, a,b are

coefficients determined by is the spacing error relative to desired spacing

measured from the rear of the leading vehicle to the front of the

following vehicle, h is the desired time headway of the automated vehicle, defined as
the time taken to cover the distance is a nonnegative constant and d is
the disturbance term to represent the fast dynamics of the vehicle model.

For a Proportional-Integral-Differential (PID) with fixed gain the following
controller is used

Throttle angle to vehicle speed and position model. Using the complete dynamic
equation of the throttle angle to vehicle speed and position subsystem (from (7.16))

the closed loop dynamic equations of the throttle subsystem are

Longitudinal Controller Design

this section we investigate a design for automatic longitudinal vehicle control taken
from Ioannou and Xu (1994) followed by discussions on longitudinal controller
design for heavy-duty vehicles, vehicle-to-vehicle communication systems, sensor
requirements, spacing and safety improvements. The longitudinal vehicle model used
for the controller design is given by (7.16). The time delay and the dynamics of the
brake system are ignored in the modeling. For longitudinal control, the system may
be considered as having two input variables: throttle angle command and brake
command, and one output variable: vehicle speed. The other inputs such as
aerodynamic drag, road conditions and vehicle mass changes are treated as
disturbances. We deal with each subsystem separately as the throttle and the brake
subsystems are not allowed to act simultaneously.
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where are gains chosen to meet the control objective  as

The term is obtained from a look-up table that describes the relation of and

The final closed loop control is given by combining (7.29) and (7.30):

Due to passenger ride comfort, the control objective is to be achieved under the
following human factors design constraints:

Taking into consideration constraints C1 and C2, it is seen that rapid changes in
create a large error, which violates the constraints. This might happen when the

following vehicle switches following from one vehicle to another due to lane
changes. Such a change might introduce large initial position error and speed

error leading to high accelerations/decelerations that might violate

constraints C1, C2. In order to prevent that, is passed through an acceleration

limiter shown in Fig. 7-7, where p is a positive constant. Instead of following

is followed. The acceleration limiter eliminates any erratic or sudden changes in
during transients and presents a smoother trajectory to the follower. It also serves as
a low pass filter for and the trajectory is defined as

where and are specified

the      absolute value of the jerk       should be as small as possible
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The effect of the large initial error is taken care of by introducing a

saturation element that is defined as

and limits the measurements seen by the controller to be within and Note

that, since negative position error means short intervehicle spacing,  is much

larger than

The low pass character of the throttle actuator together with the acceleration
limiter and the saturation function give a smooth throttle angle response and help
reduce the amount of jerk. To further reduce jerk and attenuate the effect of sensor
noise in measurements, the following low pass filter

is used to filter and where is some constant chosen based on the

sampling rate and noise level. For simplicity, these filters were not introduced in the
equations. The throttle controller was validated using the actual nonlinear model
(7.1).

Brake torque to vehicle speed and position model. It is assumed that when the
automated vehicle is braking, the throttle is at a minimum value that corresponds to
idle engine speed. In this case the transmission torque is very small compared to the
braking torque and is therefore neglected. The dynamic equations of the braking
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torque to vehicle speed and position subsystem based on Newton’s second laws of
motion and on the assumption that the wheels are not locked, are given as:

where is the braking torque, M is the mass of the vehicle, is the braking

force, is the static friction force, is the rolling friction, is the air

resistant force and are known constants obtained from experiments.
The brake controller is designed to control the brake line pressure, which is

approximately proportional to the brake torque. The dynamics of the brake torque are
given by (from (7.35))

where is the control input and is a known constant obtained from experiments.
Using feedback linearization, (7.36) is converted into the linear system

where

Using the feedback control

gives the following equation

where are gains chosen to meet the control objective

Thus the desired line pressure is obtained as

To take into account constraint C1, a saturation is put on leading to

the modified expression for the line pressure:



The control algorithm discussed above is applicable to light duty passenger vehicles.
For heavy-duty vehicles such as commercial trucks and buses, however, different
vehicle dynamics modeling is necessary along with different control algorithms that
have been developed by Kanellakopoulos and Tomizuka (1997). The reasons put
forth for using different controllers include: (1) because of increased weight, heavy-
duty vehicles have low actuation-to-weight ratio; (2) heavy-duty vehicles have roll
and yaw instability modes that are insignificant in light duty vehicles; (3) strong
interaction between the longitudinal and lateral dynamics in heavy-duty vehicles; (4)
pronounced actuator delays and nonlinearities and (5) increased sensitivity to
disturbances such as wind gusts. The authors developed a model for truck-semitrailer
vehicles and linearized the longitudinal model around different operating points
determined by different fuel command/vehicle mass combinations. The resultant
sixth order model is finally reduced to a first order by neglecting the fast mode
dynamics associated with angular velocity of the wheel, fuel systems, intake
manifold pressure, engine speed and the turbocharged diesel engine rotor speed.

Different control algorithms using a proportional and an integral controller are
implemented and simulated with the full nonlinear longitudinal model for a group

Heavy-duty Vehicles

The desired might have discontinuities at the time the brake controller is turned
on. Since the brake actuator acts as a low pass filter, the output of the actuator is
smooth, leading to a smooth braking force and therefore any discontinuities in
will not lead to rough braking.

The throttle and brake controller follows a logic design to switch from one mode
to another whose details can be found in Ioannou and Xu (1994). The throttle
controller is turned off with the throttle angle set to a minimum when the brake
controller is on and the brake controller is turned off when the throttle controller is
on.

Other longitudinal controller designs include the one by Hedrick et al. (1991)
where a combined throttle/brake controller is outlined using a modified sliding
control method. In Ioannou et al. (1992) an autonomous controller is designed for a
constant time headway policy. In Raza et al. (1997) a model and a computer
controller is developed for the brake subsystem for implementation in automatic
vehicle following.
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The vehicle-to-vehicle communication system design may be based on two-way
communication, with each vehicle simultaneously transmitting and receiving
information. The transmitted signal is acknowledged by each receiving vehicle, thus
allowing the automated vehicles to detect the surrounding vehicles.

Vehicle-to-Vehicle Communication

Automated vehicles may be equipped with communication systems. Such vehicles
can communicate with each other and exchange information about vehicle status and
traffic flow conditions that help in the longitudinal control of the vehicles. For
example, when an automated vehicle detects a stopped vehicle on the freeway it
communicates to other similarly equipped automated vehicles about the obstacle.
After receiving this information, the automated vehicles start slowing down, change
lanes and propagate the message to other automated vehicles behind. As a
consequence, the automated vehicles perform soft braking (i.e. braking at a
comfortable rate), which slows down the whole traffic stream including any
manually driven vehicles between the automated vehicles. Thus the disturbance
caused by stopped vehicles is attenuated and the traffic flow is smoother.

where is the relative speed, i.e. the difference between the leading and following

vehicle speeds, is the spacing error and k is a positive design constant. Variations
of the Proportional-Integral (PI) controller are simulated such as adding a nonlinear
signed quadratic (Q) term to the PI controller, which thus becomes a Proportional-
Integral-Quadratic (PIQ) controller, using adaptive gains in the PIQ controller, using
intervehicle communication, variable time headway and variable separation error
weighting k. Results show that the different procedures offer different advantages
and disadvantages. For example, using intervehicle communication improves the
throughput significantly but at the expense of increasing complexity required to
establish and maintain the intervehicle communication.

(platoon) of ten tractor-semitrailer combination vehicles. The error term for the
control algorithm is defined as
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Longitudinal Sensors

Automated vehicles are equipped with sensors that measure the relative distance and
relative speed to all vehicles in the immediate neighborhood. Naturally, vehicles
ahead must be detected with the highest accuracy and precision. Relative speed
readings need to be accurate and sensitive to small speed changes of less than 2mph.

The forward looking longitudinal sensors must have a sufficient range to allow the
vehicle to come to a stop even under the assumption of a “brick wall scenario”. For
example, a simple calculation shows that a vehicle traveling at 80mph which has a
maximum deceleration ability of 0.65g needs 100 meters to come to a complete stop.
However, while deciding on the range of the frontal longitudinal sensors, the
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The frequency of operation is an open issue. Frequencies as high as 64GHz have
been proposed (Kaltwasser and Kassubek, 1994). Each automated vehicle has a
‘zone of relevance’ around it (Kaltwasser and Kassubek, 1994) to which
communication and data exchange are restricted (Fig. 7-8). It is obvious that this
zone may include automated vehicles with communication capability as well as
manually driven vehicles. An appropriate strategy for dealing with this is the
following: when a vehicle in the ‘zone of relevance’ does not acknowledge the
transmission, it is automatically classified as a manually driven vehicle. This
improves traffic coordination, as the automated vehicles know where other
automated vehicles are in the immediate surrounding. Furthermore, it circumvents
the potential danger due to failures of the communication system on an automated
vehicle. An automated vehicle with a non-functional communication system is
treated as a manually driven vehicle.

For each pair of automated vehicles, both the leader and the follower exchange
information like the ‘Double Boomerang Transmission System’ (Mitzui et al., 1994).
Exchange of vehicle information like braking capability and tire pressure in addition
to traffic conditions reduces the minimum safe intervehicle spacing. The required
information data transfer rate is over 1Mbps, and the processing rate is between
1000MIPS and 9000MIPS (Milestone 2 Report, Appendix B, 1996). Contingencies
exist for emergency measures (like hard braking) which will override any ongoing
message and are given top priority.



The automated longitudinal controller of an automated vehicle chooses the
intervehicle spacing. Different policies such as constant intervehicle spacing
(Shladover, 1977) or constant time headway spacing (Ioannou et al., 1992; Ioannou
and Xu, 1994) can be used. The intervehicle spacing or time headway used
(depending on the controller) is chosen such that it guarantees stopping of the
following vehicle in any braking scenario. The controller uses algorithms such as the
one outlined in Kanaris, Ioannou and Ho (1997) to determine the Minimum Safe
Spacing (MSS), which is defined as the minimum intervehicle spacing that gives no-
collision for all possible braking scenarios. The algorithm uses a “worst case”
analysis assuming conservative braking capabilities of the following and leading
vehicles.

Bose and Ioannou (1998, 1999) contend that the initial stages of vehicle
automation include partially or semi-automated vehicles that have automation only
in the longitudinal direction using ICC systems. Some semi-automated vehicles have

Intervehicle Spacing
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degradation in braking capabilities due to wet/icy road conditions must also be taken
into consideration. Furthermore the front sensors must be able to distinguish and
resolve the position of all the target vehicles in two dimensions, i.e. relative distance
and relative angle. The sensors must be able to track the target vehicle regardless of
the presence of other vehicles in the adjacent lanes, in straight roadway segments and
also along curves. It is quite a task and may require the combined powers of
sophisticated radar systems and real-time image processing.

The longitudinal ranging sensor may be chosen to be a single beam sensor as
depicted in Fig. 7-9 (Ioannou et al., 1994). The primary reason is that a single beam
sensor has lower interference and hence less chance of false alarms. However, the
shaded region shows the ideal sensor coverage needed to detect obstacles in the lane
other than vehicles such as motorcycles, animals, etc. and vehicles in cut-in
situations, while the crossed region in Fig. 7-9 shows actual sensor coverage. The
single beam sensor may not be able to detect sudden cut-in vehicles from adjacent
lanes. Moreover, with increase in the market penetration of automated vehicles, most
vehicles may have radar-type ranging sensors at similar frequencies, which means
greater probability of interference and shorter radar ranges. In this case a
combination of a narrow beam radar with a video camera may provide the desired
properties of a ranging and obstacle detection sensor. Other possibilities include
multiple beam sensors like the one used by Bastian et al. (1998) during field tests on
the German autobahn.

The backward looking sensors have to measure the relative position and relative
speed of the following vehicle and must be able to detect potential rear-end collision
threats. It is also needed to evaluate the available spacing during lane changing and
merging. They are similar to the front sensors and are subject to same difficulties
discussed above. However, they are not as essential as the frontal longitudinal
sensors and automated vehicles may or may not be equipped with them.



The degree of automation in an automated vehicle determines the level of safety it
provides. In semi-automated vehicles the human driver is not completely out of the
driving loop. Depending on the degree of automation in the longitudinal direction in
a semi-automated vehicle, the functionality of a human driver varies. In semi-
automated vehicles with partial longitudinal automation, the human driver has almost
the same functions as in today’s manual driving except that he/she is aided by
devices such as ICC and FCWS. It is a different story, however, for semi-automated
vehicles with full longitudinal automation (equipped with FCAS) where the driver is
given an opportunity to take control of the vehicle and perform necessary collision
avoidance. On detection of a potentially hazardous situation, the semi-automated
vehicle performs automatic soft braking and informs the driver. This allows greater
reaction time for the driver who otherwise was only responsible for lane keeping
(and lane changing). This is done to include cases where lateral collision avoidance
like lane changing may be necessary. However, if he/she does not respond, then the
semi-automated vehicle initiates hard braking (i.e. braking at maximum possible
rate). Thus, the level of safety in a semi-automated vehicle is affected by the

Safety

a frontal collision warning system (FCWS) and depend on the human driver during
emergencies. Such a semi-automated vehicle is equipped with ICC that enables it to
automatically follow a vehicle in a lane, but requires the human driver to take over
the control of the vehicle in case of an emergency. These semi-automated vehicles
are exposed to the problem that the driver may be incapable of taking over the
control of the vehicle. Different systems for monitoring driver vigilance such as
tracking eye movement of the driver (Kogure et al., 1993) and others (Cointot et al.,
1993; Dingus et al., 1987; Scolfield et al., 1993; Skipper and Wierwille, 1986) have
been proposed to tackle this problem. The other type of semi-automated vehicles has
frontal collision avoidance system (FCAS) and can handle emergencies without any
driver intervention.

Bose and Ioannou (1998) showed that the MSS for semi-automated vehicles with
FCWS is greater than the average used in today’s manual traffic, the reason being
that due to the automatic longitudinal control of the semi-automated vehicle, the
human driver has only lateral control and may tend to relax. Thus he/she may have a
larger reaction time than usual, which demands greater intervehicle spacing. On the
other hand, semi-automated vehicles with full longitudinal automation are equipped
with ICC and frontal collision avoidance system (FCAS) and rely on their own
sensors, throttle and brake controllers and intelligence to operate in the highway
environment. In these vehicles the human driver has no functionality in the
longitudinal direction and is replaced by sensors and controllers operated by an on-
board computer. This makes the time difference between the onset of braking of the
leading and the following vehicle smaller than the average reaction time of a human
driver. Therefore, the following automated vehicle requires shorter MSS than a
manually driven vehicle.
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7.5 Automated Lateral Control

Lateral control of vehicles has been achieved using different types of systems.
Vision-based control system with on-board camera is discussed in Jurie et al. (1993)
where the position (state) of the vehicle is estimated using extended Kalman
filtering. Other systems include navigation along a known road network using a
priori information and low-level road detection (Zhang and Thomas, 1993). Peng and
Tomizuka (1990) use a magnetic road marker-based system for lateral control of
vehicles, which integrates a feedback controller with a feedfoward loop as shown in
Fig. 7-11. The roadway reference/sensing system is based on a series of magnetic
markers placed in the center of the roadway to be followed by the automated vehicle
(Hessburg et al., 1991). Hall effect magnetometers mounted on the front center of the
vehicle sense the magnetic field from the markers. A complex nonlinear and a simple
linear model have been used to represent the lateral dynamics of a front-wheel-
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possibility of human intervention during collision avoidance maneuvers (as shown in
the flowchart in Fig. 7-10).
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steering rubber-tire vehicle. The controller is designed using the simple model and
evaluated on the complex model.

Lateral Controller Design

The overall lateral controller consists of a feedback and a feedforward controller that
are elaborated in the following subsections.

Feedback controller. The frequency-shaped linear quadratic (FSLQ) control theory
is used for the design of the feedback controller. The feedback controller is designed
to minimize a performance index. The ride quality is included in the performance
index and the high-frequency robustness of the controller is improved by properly
choosing the weighting factors.

The performance index is given by:

where a is the difference between the lateral acceleration and its desired value,
expressed as

and is the radius of curvature of the road, is the lateral deviation of the mass
center from the reference, is the yaw angle of the vehicle, is the desired yaw
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angle from the road curve and is the front wheel steering angle. The weighting
factors on the tracking error terms in the performance index (7.43) is shaped in the
frequency domain to enhance the controller robustness when the plant experiences
high frequency measurement noises or unmodeled dynamics. At the same time, the
tracking performance is not deteriorated in the low frequency region. The weighting
factor on the lateral acceleration in (7.43) is chosen to ensure good ride quality in the
frequency range where passengers are sensitive.

The coefficient which is crucial for ride quality, determines the weighting on

the lateral acceleration and is set to . The coefficients and are tuned to

enhance the high-frequency robustness of the controller while maintaining good
tracking capability. From the analysis presented in Peng and Tomizuka (1990), the
coefficients are chosen to be

where is spacing between two adjacent markers in the discrete marker scheme

and is the maximum allowable lateral acceleration. Thereafter choosing,

and  parameters and are tuned to compromise ride quality and

tracking error.

Feedforward controller. If the radius of curvature of the road, is known, then

the corresponding steady state steering angle is computed from

where m is the mass of the vehicle, V is the longitudinal velocity of the vehicle,

and are the distance from the mass center to the front and rear axle respectively,

is the traction force from the tire and is the cornering stiffness. A parameter
identification scheme using a least squares algorithm with a forgetting factor is
proposed in Peng and Tomizuka (1990) to calculate the cornering stiffness from the
measurements of lateral acceleration and yaw rate signals.

Heavy-duty Vehicles

Kanellakopoulos and Tomizuka (1997) state that automated lateral control of single-
unit heavy-duty vehicles with constant longitudinal velocity can be achieved using
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techniques such as frequency-shaped linear quadratic (FSLQ) and gain scheduling
that have been used for light duty passenger vehicles. However, in cases of varying
longitudinal velocity, a different controller such as sliding mode control (SMC) has
to be used. The equilibrium point in the SMC is zero lateral error and lateral velocity,
and the control laws move the state to the sliding surface from where it slides to the
equilibrium point. The method introduces chattering due to high gain, which is
rectified using a saturation function in place of sign function in SMC. Simulations
demonstrate low tracking error is obtained by using this method.

For articulated vehicles, two linear control algorithms are outlined: linear
quadratic optimal control and FSLQ optimal control. The latter has a better
performance at low speeds. In comparison, an input/output feedback linearization
scheme combined with backstepping is shown to give better lateral tracking.

Lateral Sensors

The lateral/side sensors are needed mostly to assist an automated vehicle during lane
changing (Fig. 7-12). They detect if there is any vehicle in the target/destination lane,
if any vehicle is merging from the other side or if any vehicle is approaching at a
threatening speed in the target lane. They should be able to reliably detect all kinds
of vehicles, even motorcycles.

The demands on the lateral sensor systems for a fully automated vehicle are quite
complex. Candidate technologies include ultrasound, radar and video systems
(Hovanessian, 1988). Ultrasound sensors detect target position and range by
bouncing acoustic energy pulses off a target and estimating time-of-flight. Radar
sensors measure range and relative speed using the echo from radio frequency pulses
and measuring time-of-flight as well as the Doppler effect. Video based sensors rely
on efficient real-time image processing for target recognition (Graefe and Kuhnert,
1988; Smith and Brady, 1993; Trassoudaine et al., 1993). They all have individual
advantages and disadvantages and combinations of sensor types may offer the only
reliable way of meeting all the complex requirements on them. Different sensor
technologies available today are presented and evaluated for their applicability in
Table 7-1.
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Safety

A fully automated vehicle with automatic longitudinal and lateral control systems is
expected to provide a high level of safety due to automated lane changing and
automated longitudinal/lateral collision avoidance. Before beginning a lane change,
an automated vehicle uses its lateral sensors to verify if the necessary spacing in the
target/destination lane is available. The lateral sensors check for the presence and
position of other vehicles in the target lane. They detect if there are vehicles
changing lanes simultaneously from other lanes and if any vehicle in the target lane
is approaching at a threatening speed. The backward looking sensors (if present) also
assist in this matter. If any of the above conditions exist, the lane-change is aborted.



7.6 Lane Changing

In 1994, 50.4% of accidents on interstate highways were caused by driver actions,
out of which 27.6% occurred during lane changing (Interstate Hazard Analysis,
1994). Rear end, angle and sideswipe are the possible collisions that may occur
during lane changing/merging (Wang and Knipling, 1993). Fully automated vehicles

Handbook of Transportation Science220

If not, then the automated vehicle executes the lane change. The flowchart in Fig. 7-
13 describes the automated lane-changing procedure.

The automated vehicle guarantees a safer collision avoidance maneuver by
completely removing the human driver from the diving loop. The flowchart in Fig. 7-
14 shows the collision avoidance maneuver in an automated vehicle. The driver can,
however, override the automatic control system and take over the control of the
automated vehicle after a smooth transition procedure that guarantees the driver is
not put in a situation that he/she cannot handle.



have automated lane changing that is deemed to improve safety and reduce lane
change accidents. Jula et al. (1998) conducted an in-depth analysis into the
kinematics of lane changing and collisions that may occur during the maneuvers.

The study considered a general configuration of a merging/lane changing vehicle
between a leading and a following vehicle in an originating lane, wanting to enter
between another pair of leading/following vehicles in a destination lane. Analyses
show calculations of the MSS between the merging and the four different vehicles.
Simulations demonstrate lane changing scenarios considering different longitudinal
acceleration profiles for the merging vehicle.

Assuming constant longitudinal velocity for all vehicles, Fig, 7-15 shows the
“safe” and “unsafe” regions during lane changing. The relative spacing and relative
speed of the vehicle pair are obtained using on-board sensors. This analysis can be
used by the on-board controller before a lane change/merge maneuver to determine
whether the vehicle is in the safe region. However, it has been argued that in real life
scenarios, the merging vehicle has a changing/switching longitudinal acceleration
profile that can be assumed to be as shown in Fig. 7-16. Under such circumstances,
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two cases are considered: first, implying that the merging vehicle only

accelerates during the maneuver. The safety region expands for this scenario as
shown in Fig. 7-17. Second, for , simulation results in Fig. 7-18 indicate that

if the merging vehicle is initially in the unsafe region, it can move into the safe
region by applying adequate deceleration.

The demerit of the previous scheme is that the merging vehicle may not always be
in a position to perform such decelerations because of the following vehicle in the
originating lane. In such cases, the authors considered another acceleration profile as
shown in Fig. 7-19, which shows that a similar transition from the unsafe into the
safe region is possible with a lower deceleration (Fig. 7-20). These analyses enable
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the merging automated vehicle to perform safe lane change/merge with minimum
risk of collision.
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7.7 String Stability

In vehicle following the dynamics of each vehicle are coupled with other vehicles
leading to a larger dynamical system. Even though each vehicle may have stable
behavior and good performance, the behavior of the overall coupled system may not
be desirable. For example, transients caused by a single vehicle changing its speed
may be amplified upstream leading to what is known as “slinky-type effect”



where denotes the abscissa of the rear bumper of the i-th vehicle; is the length

of i-th vehicle, is the constant intervehicle spacing followed by the i-th vehicle,

measured from the rear of the (i-1)-th vehicle to the front of the i-th vehicle;

denotes the velocity of the i-th vehicle and denotes the acceleration of the i-th

vehicle.
It can be shown that for vehicles with constant intervehicle spacing policy, the

error propagation is given by

The following errors are defined for the i-th vehicle:

where the total number of vehicles considered,  i s the velocity of the i-th

vehicle and is a proper stable transfer function that represents the input-output

behavior of the i-th vehicle. The system represents traffic in a single lane without
passing in which every vehicle tries to match the speed of the preceding vehicle with
some precision and intervehicle spacing.

Automated Vehicle Control 225

(Sheikholeslam and Desoer, 1991) or string instability. String stability (Swaroop and
Hendrick, 1996) in vehicle following implies that any nonzero position, velocity and
acceleration error of an individual vehicle in a string of vehicles does not get
amplified as it propagates upstream. Bose and Ioannou (1999) carried out an analysis
on string stability of manual and automated traffic using the models presented in
sections 7.3 & 7.4.

A system of vehicles in a single lane under moderately dense traffic conditions can
be considered as a countable infinite interconnected system. Such a system shown in
Fig. 7-21 is modeled as



The impulse response is such that which shows that the Pipes model

does not belong to the class of systems that guarantee string stability. The frequency
response shown in Fig. 7-22 has magnitude greater than unity for very small
frequencies. In Fig. 7-23 it is demonstrated that a string of vehicles represented by
Pipes model lacks string stability.

Pipes Model

The transfer function of the Pipes model is

Assuming identical input/output characteristics in a fleet of vehicles, the string
stability of the manual vehicle and the automated longitudinal models presented in
the earlier sections is investigated.
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and for vehicles with constant time headway policy, it is given by

To have string stability for a class of interconnected system of vehicles, Bose and
Ioannou (1999) showed that the impulse response of the error propagation

transfer function or as the case may be, for each individual
vehicle in this class must satisfy
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Automated Longitudinal Controller

The automated vehicle longitudinal controller presented in section 7.4 is designed
using constant time headway policy. For automated vehicle longitudinal controllers
using a constant spacing policy, it has been shown that vehicle-to-vehicle
communication is necessary to guarantee string stability (Shladover, 1977;
Sheikholeslam and Desoer, 1991; Swaroop et al., 1994).

Throttle controller. The transfer function of the throttle subsystem (Ioannou and
Xu, 1994) is given by
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Optimal Control Model

The optimal control model (7.28) is linearized around three different operating
speeds. After linearization, a parameter A is obtained that depends on the speed at
which linearization is performed and is defined as

The transfer function of the linearized model is given by

It is seen that for all values of A which shows that the optimal control
model belongs to the class of systems that guarantee string stability.

Look Ahead Model

The transfer functions for the two positions of the model are

It is clearly seen that (7.55) and (7.56) satisfy (7.51) and the model belongs to the
class of systems that guarantee string stability.
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where are designed controller parameters; h is the time headway desired
and a, b are coefficients determined by the operating point which is the speed of the
vehicle ahead. Using parameter values in (7.57) that have been used on a validated
nonlinear vehicle model and tested using simulations to satisfy the performance
criteria given in Ioannou and Xu (1994), the following transfer function is obtained

that has the property which shows that the throttle controller belongs to
the class of systems that guarantee string stability.

Brake controller. For the closed loop brake subsystem we have the following
transfer function (Ioannou and Xu, 1994)

where are the brake controller gains and h is the desired time headway. Using
parameter values in (7.59) that satisfy the performance criteria given in Ioannou and
Xu (1994), we get which shows that the brake controller belongs to the
class of systems that guarantee string stability.

Therefore the longitudinal control design satisfies string stability. The automated
longitudinal controller developed by Kanellakopoulos and Tomizuka (1997) for
heavy-duty vehicles was designed to satisfy string stability such that the errors
decrease in magnitude as they propagate upstream.

7.8 Mixed Traffic

The introduction of automated vehicles into the current manual traffic system where
they will coexist with manually driven vehicles will usher the stage of mixed
manual/automated traffic. In this section we investigate the possible effects of the
introduction of automated vehicles on throughput, transients in vehicle following,
fuel consumption and the environment.
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Throughput

The use of automation guarantees that an automated vehicle with full longitudinal
automation always follows a time headway that is lower than the average time
headway followed by manual traffic. As a consequence, mixed automated/manual
traffic promise improvement in traffic throughput. Concepts such as platooning
(Ioannou, 1997; Kanaris, Ioannou and Ho, 1997) in fully automated traffic promise
greater improvement in traffic throughput as shown in Shladover (1997) and
Carbaugh et al. (1998). These studies show that larger number of vehicle platoons
under certain assumptions about the braking capabilities of vehicles is expected to
significantly improve throughput.

Throughput model (without communication). Random sequencing of automated
and manual vehicles in mixed traffic operations produce different combinations of
pair of vehicles. We assume that the automated vehicles do not have communication
capability. In other words, an automated vehicle following a vehicle is not able to
determine the type of vehicle ahead, i.e. whether it is following a manual or an
automated vehicle. Therefore, it always maintains the same time headway in traffic
at a given speed. Likewise, we assume that a manual vehicle follows the same time
headway at a given speed regardless of the type of the vehicle ahead.

We adopt the model used in Milestone 2 Report (Appendix I, 1996). We assume
an identical speed for the automated and the manual vehicles and that all manual
vehicles follow an identical average time headway at a given speed. Let the market
penetration of the automated vehicles be a. The probability that a vehicle is
automated or manual is given by

P(automated vehicle) = a
P(manual vehicle) = 1-a

This means that when a =0.1, 10% of the vehicles in mixed traffic are automated.
Let the following represent the time headways for manual and automated vehicles:

time headway of automated vehicles
time headway of manual vehicles

The average time headway of mixed traffic, assuming the total number of vehicles
on the highway is very large compared to the number under analysis, is given by

and the throughput is calculated as
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Throughput model (with communication). An automated vehicle with
communication capability determines if the leader is automated or manual by
attempting to communicate to the vehicle ahead. If the leader does not acknowledge,
then it is assumed to be a manually driven vehicle. Accordingly, the following
vehicle selects and maintains an appropriate time headway.

We define the following probabilities

P(A,M) = probability that an automated vehicle is followed by a manual vehicle
P(A,A) = probability that an automated vehicle is followed by an automated

vehicle
P(M,A) = probability that a manual vehicle is followed by an automated vehicle
P(M,M) = probability that a manual vehicle is followed by a manual vehicle

So we have from previous notation

The throughput in Milestone 2 Report (Appendix I, 1996) is formulated based on
intervehicle data for the four possible outcomes. We carry out the analysis based on
time headway data and follow the notation given below

H(A,M): time headway of a manual vehicle following an automated vehicle
H(A,A): time headway of an automated vehicle following an automated vehicle
H(M,A): time headway of an automated vehicle following a manual vehicle
H(M,M): time headway of a manual vehicle following a manual vehicle

The average time headway of mixed traffic is given by

Time headway of a manual vehicle The time headway of manual vehicles
follows a shifted lognormal distribution (Fig. 7-24 (Cohen, 1991)). It can be
considered to have a mean value of 1.8s, which is about 2000veh/hr/lane that has
been termed as ‘national average’ in the Highway Capacity Manual (TRB, 1985).
There is considerable influence of age, gender and experience on the manual traffic
time headway (Fancher et al., 1995). A part of the highway might have time
headway other than 1.8s due to any of the above factors. However, for simplicity we
use the average value of 1.8s for our analysis. The same value is used for H(A,M)
and H(M,M) in (7.62).

and the throughput is calculated using (7.61).
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Time headway of an automated vehicle The MSS is calculated based on a worst
case stopping scenario with vehicle characteristics obtained from actual vehicles.

We use the SPACING software tool (Kanaris, Grammagnat and Ioannou, 1997) to
calculate the time headway of an automated vehicle. Assuming the worst case
scenario that the vehicle ahead is a manual one, we consider that it performs hard
braking with a deceleration of 0.90g. On the other hand, automated vehicles are
assumed to meet a minimum performance criterion and have a lower bound for
maximum deceleration of 0.75g. The sensor detection delay of an automated vehicle
time headway system and the brake actuation delay are taken from a study by
Ioannou et al. (1994). The parameter values are listed in Table 7-2.
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The intervehicle spacing that measures the distance from the rear of the leading
vehicle to the front of the following vehicle obtained using the SPACING software is
13.44m for speed of 55mph. The manual traffic time headway (Fig. 7-24) measures
the time it takes a manual vehicle to cover the distance between the same points of
successive vehicles, i.e. it includes the vehicle length. Assuming an average vehicle
length of 5m, we get an intervehicle spacing of 18.44m that translates into an
automated vehicle time headway of 0.75s at 55mph for the automated vehicles. This
value is also used for H(M,A) in (7.60). However, when an automated vehicle is
following another automated vehicle and both are exchanging information, then the
time headway H(A,A) is smaller than H(M,A). When the lead vehicle performs hard
braking, it immediately notifies the following vehicle about its rate. After a
propagation and actuation delay, the following vehicle performs the exact maneuver
at the same rate. Considering this braking scenario, we obtain an intervehicle spacing
of 9.84m using SPACING. Adding the average vehicle length of 5m this translates
into a time headway of 0.61s. Using (7.60), (7.61) and (7.62), Fig. 7-25 shows how
increased penetration of automated vehicles improves traffic throughput. We also
observe that increased level of automation in an automated vehicle such as vehicle-
to-vehicle communication further improves throughput.
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Traffic Flow Characteristics

The presence of automated vehicles improves traffic flow characteristics in manual
traffic. Bose and Ioannou (1999) show that automated vehicles do not contribute to
the “slinky-type effect” (Sheikholeslam and Desoer, 1991) observed in today’s
manual traffic. Simulations demonstrate that automated vehicles smooth traffic flow
by filtering the transients caused by rapidly accelerating manual vehicles. Consider a
string of 10 vehicles in mixed manual/automated traffic. We use the Pipes model for
manual vehicles as it models the slinky-type effects we observe in today’s manual
traffic. The ICC model in Ioannou and Xu (1994) is used to simulate automated
vehicles. Assume the vehicle to be automated that corresponds to 10% mixing of
automated with manual vehicles. The lead vehicle accelerates at 0.35g from 0m/s to
24.5m/s, maintains a constant speed at 24.5m/s, thereafter decelerates to 14.5m/s at
0.3g and finally accelerates to 24.5m/s at 0.25g. The acceleration and deceleration
values used are typical for many passenger cars (Consumer Reports, 1998). The
velocity responses in Fig. 7-26(a) show that the automated vehicle v4 filters the
response of the rapidly accelerating vehicle v3 in an effort to maintain smooth
driving. As a result the responses of vehicles v5, v9 and v10 are less oscillatory than
that of v1 and v3. However, this is done at the expense of large position error in v4
(Fig. 7-26(b)).

Travel time? If the presence of an automated vehicle in mixed traffic improves
traffic flow stability, the question remains if it changes the total travel time. The
automated vehicle has limited acceleration and is not able to keep up with fast
accelerating manual vehicles. We perform the same rapid acceleration maneuver by
the lead vehicle and compare the difference in the distance as a percentage of the
total distance covered by the vehicle in manual traffic and mixed traffic. If there
is no difference in the distance covered by the vehicle in manual and mixed
traffic, then there is no difference in the distances covered by the other vehicles
ahead and therefore in the total travel time. This is because each vehicle follows the
vehicle ahead using a constant time headway policy. As shown in Fig. 7-27, though
there is a transient percentage difference in the distance covered by the vehicle
when the automated vehicle cannot keep up with the accelerating leader, it finally
goes to zero. This happens when the lead vehicle attains a constant speed after rapid
acceleration and theautomated vehicle catches up with it. Therefore, the presence of
an automated vehicle is not expected to change the total travel time for the following
vehicles.

Fuel Consumption and Pollution

Barth (1997) lists vehicle parameters such as second-by-second velocity,
acceleration and grade that determine the emission levels and fuel consumption.
Bose and Ioannou (2001) used the above stated parameters in simulations and
experiments using actual vehicles to examine the environmental effect of automated
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vehicles among manual ones. The quantities measured are the tailpipe emissions of

unburnt hydrocarbons (HC), carbon monoxide oxides of nitrogen

denoted by in this Chapter) and fuel consumption. The Comprehensive

Modal Emissions Model (CMEM) version 1.00 developed at UC Riverside is used to
analyze the vehicle data and calculate the air pollution and fuel consumption [3]. It is
a high fidelity, recently developed model that is more sensitive to transients than
previous TRAF models (Barth, 1998). The model calculates vehicle emissions and
fuel consumption as a function of the vehicle operating mode, i.e. idle, steady state
cruise, various levels of acceleration/deceleration, among others.

In simulations, smooth and rapid acceleration scenarios were evaluated for a string
of 10 vehicles following a lead vehicle in a single lane without passing in manual
and mixed traffic. It is seen that the accurate speed and position tracking and the
smoothing of traffic flow by the automated vehicle translates into lower air pollution
and fuel savings that are significant during rapid acceleration transients, as shown in
Table 7-3.
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Furthermore, three actual vehicles were used in experiments since it was not
possible to use 10 vehicles. Therefore to see how the simulation results compare with
the experimental results, we reran the simulations using only 2 vehicles following a
lead vehicle in manual traffic and mixed traffic. The lead vehicle speed profiles
obtained during the experiments were used. The speed responses of the models were
collected and analyzed using CMEM. The environmental benefits measured due to
the presence of the automated vehicle during experiments and simulations are
presented in Table 7-4. The simulation results are conservative compared to
environmental benefits in actual driving, a consequence of the fact that the Pipes
model gives a smooth approximation of actual manual driving.

7.9 Conclusion

In this chapter we outlined a design for a longitudinal and a lateral controller and
discussed communication technologies and sensor requirements for automated
vehicles. We highlighted benefits in safety that may be expected due to use of
automation. We presented how the presence of lateral sensors and automated lane
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changing in fully automated vehicles has the potential to improve safety on freeways.
We observed that automated vehicles among manual ones in mixed traffic behave
like a filter and smooth the traffic flow characteristics when following fast
accelerating manual vehicles, without changing the total travel time. This smoothing
out of the traffic flow is expected to have a beneficial environmental impact and
decrease fuel consumption.
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8 TRAFFIC CONTROL
Markos Papageorgiou

8.1 Introduction

Traffic Congestion

Transportation has always been a crucial aspect of human civilization, but it is only
in the second half of this century that the phenomenon of traffic congestion has
become predominant due to the rapid increase in the number of vehicles and in the
transportation demand in virtually all transportation modes. Traffic congestion
appears when too many vehicles attempt to use a common transportation
infrastructure with limited capacity. In the best case, traffic congestion leads to
queueing phenomena (and corresponding delays) while the infrastructure capacity
(“the server”) is fully utilized. In the worst (and far more typical) case, traffic
congestion leads to a degraded use of the available infrastructure (reduced
throughput that may even lead to a fatal gridlock) with excess delays, reduced safety,
and, recently, increased environmental pollution.

The Need for Traffic Control

The emergence of traffic (i.e. many interacting vehicles using a common
infrastructure) and subsequently traffic congestion (whereby demand exceeds the
infrastructure capacity) have opened new innovation needs in the transportation area.
The energy crisis in the 1970’s, the increased importance of environmental concerns,
and the limited economic and physical resources are among the most important
reasons why a brute-force approach (i.e., the continuous expansion of the available
transportation infrastructure) cannot continue to be the only answer to the ever
increasing transportation and mobility needs of modern societies. The efficient, safe,
and less polluting transportation of persons and goods calls for an optimal utilization
of the available infrastructure via suitable application of a variety of traffic control
measures. This trend is enabled by the rapid developments in the areas of
communications and computing, but it is quite evident that the efficiency of traffic
control directly depends on the efficiency and relevance of the employed control
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methodologies. This chapter will provide an overview of advanced traffic control
strategies for three particular areas: Urban road networks, freeway networks, and
route guidance and information systems.

The Control Loop

Figure 8.1 illustrates the basic elements of a control loop. The traffic flow behaviour
in the (road or freeway or mixed) network depends on some external quantities that
are classified into two groups:

Control inputs that are directly related to corresponding control devices such as
traffic lights, variable message signs, etc; the control inputs may be selected
from an admissible control region subject to technical, physical, and operational
constraints.

Disturbances, whose values cannot be manipulated, but may possibly be
measurable (e.g. demand) or detectable (e.g, incident) or predictable over a
future time horizon.

The network’s output or performance is measured via suitable indices, such as
the total time spent by all vehicles in the network over a time horizon. The task of
the surveillance is to enhance and to extend the information provided by
measurement devices (e.g. loop detectors) as required by the subsequent control
strategy and the human operators. The kernel of the control loop is the control
strategy, whose task is to specify in real time the control inputs, based on available
measurements/estimations/predictions, so as to achieve the pre-specified goals (e.g.
minimization of total time spent) despite the influence of various disturbances. If
this task is undertaken by a human operator, we have a manual control system. In
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an automatic control system, this task is undertaken by an algorithm (the control
strategy). The relevance and efficiency of the control strategy largely determines the
efficiency of the overall control system. Therefore, whenever possible, control
strategies should be designed with care, via application of powerful and systematic
methods of optimization and automatic control, rather than via questionable
heuristics (Papageorgiou, 1998). Traffic control strategies for urban road and
freeway networks is the main focus of this chapter.

Discrete-Time Representation

For the needs of this chapter we will use a discrete-time representation of traffic
variables with discrete time index k = 0, 1, 2, ... and time interval T. A traffic
volume or flow q(k) (in veh/h) is defined as the number of vehicles crossing a
corresponding location during the time period [kT, (k+1)T], divided by T. Traffic
density (in veh/km) is the number of vehicles included in a road segment of

length at time kT, divided by . Mean speed v(k) (in km/h) is the average speed
at time kT of all vehicles included in a road segment.

A Basic Property

We consider a traffic network (Figure 8-2) that receives demands (in veh/h) at
its origins i = 1, 2, ... and we define the total demand We
assume that d(k), k = 0, ..., K, is independent of any control measures taken in the
network. We define exit flows at the network destinations i = 1, 2, ..., and the
total exit flow We wish to apply control measures so as to
minimize the total time spent in the network over a time horizon K, i.e.

where N(k) is the total number of vehicles in the network at time k. Due to
conservation of vehicles

hence
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Substituting (8.3) in (8.1) we obtain

The first two terms in the outer sum of (8.4) are independent of the control measures
taken in the network, hence minimization of is equivalent to maximization of the
following quantity

Thus, minimization of the total time spent in a traffic network is equivalent to
maximization of the time-weighted exit flows. In other words, the earlier the vehicles
are able to exit the network (by appropriate use of the available control measures) the
less time they will have spent in the network.

8.2 Road Traffic Control

Basic Notions

Traffic lights at intersections is the major control measure in road networks. Traffic
lights were originally installed in order to guarantee the safe crossing of antagonistic
streams of vehicles and pedestrians. With steadily increasing traffic demands, it was
soon realized that once traffic lights exist, they may lead (under equally safe traffic
conditions) to more or less efficient network operations, hence there must exist an
optimal control strategy leading to minimization of the total time spent by all
vehicles in the network.

Although the corresponding optimal control problem may be readily formulated
for any road network, its real-time solution and realization in a control loop like the
one of Figure 8-1 faces a number of apparently insurmountable difficulties:

The red-green switchings of traffic lights call for the introduction of binary
variables, which renders the optimization problem combinatorial.

The size of the problem for a whole network is very large.

Many unpredictable and hardly measurable disturbances (incidents, illegal
parking, pedestrian crossings, intersection blocking, etc.) may perturb the traffic
flow.

Measurements of traffic conditions are mostly local (via loop detectors) and
highly noisy due to various physical effects.

There are tight real-time constraints, e.g. decision making within 2s for
advanced control systems.
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The combination of these difficulties renders the solution of a detailed optimal
control problem infeasible for more than one intersection. Therefore, proposed
control strategies for road traffic control introduce a number of simplifications of
different kinds or address only a part of the related traffic control problems.

An intersection consists of a number of approaches and the crossing area. An
approach may have one or more lanes but has a unique, independent queue.
Approaches are used by corresponding traffic streams (veh/h). A saturation flow s is
the average flow crossing the stop line of an approach when the corresponding
stream has right of way (r.o.w.) and the upstream demand (or the waiting queue) is
sufficiently large. Two compatible streams can safely cross the intersection
simultaneously, else they are called antagonistic. A signal cycle is one repetition of
the basic series of signal combinations at an intersection; its duration is called cycle
time c. A stage (or phase) is a part of the signal cycle, during which one set of
streams has r.o.w. (Figure 8-3). Constant lost times of a few seconds are necessary
between stages to avoid interference between antagonistic streams of consecutive
stages (Figure 8-4).

There are four possibilities for influencing traffic conditions via traffic lights
operation:
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Stage specification: For complex intersections involving a large number of
streams, the specification of the optimal number and constitution of stages is a
non-trivial task that can have a major impact on intersection capacity and
efficiency.

Split: This is the relative green duration of each stage (as a portion of the cycle
time) that should be optimized according to the demand of the involved streams.

Cycle time: Longer cycle times typically increase the intersection capacity
because the proportion of the constant lost times becomes accordingly smaller;
on the other hand, longer cycle times may increase vehicle delays in
undersaturated intersections due to longer waiting times during the red phase.

Offset: This is the time difference between cycles for successive intersections
that may give rise to a “green wave” along an arterial; clearly, the specification
of offset should ideally take into account the possible existence of vehicle
queues.

Control strategies employed for road traffic control may be classified according to
the following characteristics:

Fixed-time strategies are derived off-line by use of appropriate optimization
codes based on historical constant demands for each stream for a given time-of-
day; traffic-responsive strategies make use of real-time measurements (typically
one or two loops per link) to calculate in real time the suitable signal settings.

Isolated strategies are applicable to single intersections while coordinated
strategies consider an urban zone or even a whole network comprising many
intersections.

Some strategies are only applicable to undersaturated traffic conditions,
whereby vehicle queues are only created during the red phases and are dissolved
during the green phases; other strategies are adapted also for oversaturated
conditions with partially increasing queues that in some cases may even reach
the upstream intersection.

Isolated Intersection Control

Fixed-time strategies. Isolated fixed-time strategies are only applicable to
undersaturated traffic conditions. Stage-based strategies under this class determine
the optimal splits and cycle time so as to minimize the total delay or maximize the
intersection capacity. Phase-based strategies determine not only optimal splits and
cycle time but also the optimal staging, which may be an important feature for
complex intersections.

Well-known examples of stage-based strategies are SIGSET and SIGCAP
proposed by Allsop (1971; 1976). Assuming m prespecified stages, SIGSET and
SIGCAP specify the splits and the cycle time c. Note that
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holds by definition, where and L is the total lost time. In order to avoid
queue building, the following capacity constraint must hold for each stream j

where and are the saturation flow and the demand, respectively, of stream j;

is 1 if stream j has r.o.w. at stage i, and 0 else. Inequality (8.7) requires that the
demand of stream j should not be higher than the maximum possible flow assigned
to this stream. Finally, a maximum-cycle and m minimum-green constraints are also
taken into account.

A nonlinear total delay function derived by Webster (1958) for undersaturated
conditions is used in SIGSET as an optimization objective. Thus SIGSET solves a
linearly constrained nonlinear programming problem to minimize the total
intersection delay for given stream demands On the other hand, SIGCAP may be
used to maximize the intersection’s capacity as follows. Assume that the real demand
is not as in (8.7) but with SIGCAP replaces in (8.7) by and

maximizes under the same constraints as SIGSET, which leads to a linear
programming problem.

Note that, for reasons mentioned earlier, capacity maximization always leads to
the maximum allowable cycle time. Clearly, SIGCAP should be used for
intersections with high demand variability in order to prevent oversaturation, while
SIGSET may be used under sufficient capacity margins by replacing in (8.7) by

where are pre-specified margin parameters.

Phase-based approaches (Improta and Cantarella, 1984) solve a similar problem,
suitably extended to consider different staging combinations. Phase-based
approaches consider the compatibility relations of involved streams as pre-specified
and deliver the optimal staging, splits, and cycle time, so as to minimize total delay
or maximize the intersection capacity. The resulting optimization problem is of the
binary-mixed-integer-linear-programming type which calls for branch-and-bound
methods for an exact solution. The related computation time is naturally much higher
than for stage-based approaches, but this is of minor importance as calculations are
performed off-line.

Traffic-responsive strategies.  Isolated, traffic-responsive strategies make use of
real-time measurements provided by loop detectors that are located at the upstream
end of each approach, to specify splits and cycle time for given staging. One of the
simplest strategies under this class is the vehicle-interval method that is applicable to
two-stage intersections. Minimum-green durations are assigned to both stages. If no
vehicle passes the related detectors during the minimum green of a stage, the strategy
proceeds to the next stage. If a vehicle is detected, a critical interval (CI) is created,
during which any detected vehicle leads to a green prolongation that allows the
vehicle to cross the intersection. If no vehicle is detected during CI, the strategy
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proceeds to the next stage, else a new CI is created, and so forth, until a pre-specified
maximum-green value is reached. An extension of the method also considers the
traffic demand on the antagonistic approaches to decide whether to proceed to the
next stage or not.

A more sophisticated version of this kind of strategies was proposed by Miller
(1963) and is included in the control tool MOVA (Vincent and Young, 1986).
Miller’s strategy answers every T seconds (e.g. T=2) the question: Should the
switching to the next stage take place now, or should this decision be postponed by
T? To answer this question, the strategy calculates (under certain simplified
conditions) the time wins and losses caused in all approaches if the decision is
postponed by seconds. The corresponding total time wins are

combined in a single criterion and if J < 0, the switching
takes place immediately, else the decision is postponed until the next time step.

A comparative field evaluation of these simple algorithms is presented by De la
Bretegue and Jezeguel (1979).

Fixed-Time Coordinated Control

The most popular representatives of this class of strategies are outlined below. By
their nature, fixed-time strategies are only applicable to undersaturated traffic
conditions.

MAXBAND. The first version of MAXBAND was developed by Little, 1966, see
also Little, et al., 1981. MAXBAND considers a two-way arterial with n signals

(intersections) and attempts to specify the corresponding offsets so as to
maximize the number of vehicles that can travel within a given speed range without
stopping at any signal (green wave), see Figure 8-5. Splits are considered in
MAXBAND as given (in accordance with the secondary street demands), hence the
problem consists in placing the known red durations (see the horizontal lines of each
signal of the arterial’s signals so as to maximize the inbound and outbound

bandwidths and b, respectively. For an appropriate problem formulation, it is
necessary to introduce some binary decision variables, which leads to a binary-
mixed-integer-linear-programming problem. The employed branch-and-bound
solution method benefits from a number of nice properties of this particular problem
to reduce the required computational effort. Little (1966) extended the basic
MAXBAND method via incorporation of some cycle constraints to make it
applicable also to networks of arterials.

MAXBAND has been applied to several road networks in North America and
beyond. A number of significant extensions have been introduced in the original
method in order to consider a variety of new aspects (see Gartner, 1991) such as:
time of clearance of existing queue, left-turn movements, and different bandwidths
for each link of the arterial (MULTIBAND) (Gartner, et al., 1991).
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TRANSYT. TRANSYT was first developed by Robertson (1969) but was
substantially extended and enhanced later. It is perhaps the most known and most
frequently applied road control strategy, and it is often used as a reference method to
test improvements enabled by real-time strategies. First field implementations of
TRANSYT indicated savings of some 16% of the average travel time through the
network.

Figure 8-6 depicts the method’s basic structure: The initial signal settings include
the pre-specified staging, the minimum green durations for each stage of each
intersection, and the initial choice of splits, offsets, and cycle time. A unique cycle
time c or c/2 is considered for all network intersections. The network and traffic flow
data comprise the network’s geometry, the saturation flows, the link travel times, the
constant and known turning rates for each intersection, and the constant and known
demands. The traffic model consists of nodes (intersections) and links (connecting
streets). The concept of “platoon dispersion” (first-order, time-delay system) is
used to model flow progression along a link. Oversaturated conditions cannot be
described. The method proceeds as follows: For given values of the decision
variables (control inputs), i.e. of splits, offsets, and cycle time, the dynamic network
model calculates the corresponding performance index, e.g. the total number of
vehicle stops. A heuristic “hill-climb” optimization algorithm introduces small
changes to the decision variables and orders a new model run, and so forth, until a
(local) minimum is found.

Drawbacks of fixed-time strategies. The main drawback of fixed-time strategies is
that their settings are based on historical rather than real-time data. This may be a
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rude simplification because:

Demands are not constant, even within a time-of-day.

Demands may vary at different days, e.g. due to special events.

Demands change in the long term leading to “aging” of the optimized settings.

Turning movements are also changing in the same ways as demands; in
addition, turning movements may change due to the drivers’ response to the
new optimized signal settings, whereby they try to minimize their individual
travel times (Van Vuren, 1991).

Incidents and farther disturbances may perturb traffic conditions in a non-
predictable way.

For all these reasons, traffic-responsive coordinated strategies, if suitably
designed, are potentially more efficient, but also more costly, as they require the
installation, operation, and maintenance of a real-time control system
(measurements, communications, central control room, local controllers).

Coordinated Traffic-Responsive Strategies

SCOOT. SCOOT was first developed by Hunt, et al. (1982) and has been extended
later in several respects. It is the traffic-responsive version of TRANSYT and has
been applied to over 40 cities in the United Kingdom and elsewhere. SCOOT utilizes
traffic volume and occupancy (similar to traffic density) measurements from the
upstream end of the network links. It runs in a central control computer and employs
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Advanced methods. More recently, a number of advanced traffic-responsive
strategies have been developed: OPAC (Gartner, 1983), PRODYN (Farges, et al.,
1983), CRONOS (Boillot, et al., 1991), COP (Sen and Head, 1997). These strategies
do not consider explicitly splits, offsets, or cycles. Based on pre-specified staging,
they consider in real time the optimal specification of the next few switching times

i = 1, 2, ..., over a future time horizon H, starting from the current time t and the
currently applied stage. To obtain the optimal switching times, these methods solve
in real time a dynamic optimization problem employing realistic, dynamic traffic
models that include binary variables to reflect the impact of red/green phases on
traffic flow. Several constraints, e.g. for maximum and minimum splits, are included.
The performance index to be minimized is the total time spent by all vehicles.

The rolling horizon procedure is employed for real-time application of the results.
Hereby, the optimization problem is solved over a time horizon H (e.g. 60 s), but
results are applied only for a much shorter roll period h (e.g. 4 s), after which new
measurements are collected and a new optimization problem is solved over an
equally long time horizon H, and so forth. The rolling horizon procedure avoids
myopic control actions while embedding a dynamic optimization problem in a
traffic-responsive environment.

The basic problem faced by these strategies is due to the presence of binary
variables that require employment of exponential-complexity algorithms for a global
minimization. In fact, OPAC employs complete enumeration (assuming integer
switching times) while PRODYN and COP employ dynamic programming. Due to
the exponential complexity of these solution algorithms, the control strategies
(though conceptually applicable to a whole network) are not real-time feasible for
more than one intersection. Hence we end up with a number of decentralized (by
intersection) optimal strategies, whose actions may be coordinated heuristically by a
superior control layer (see e.g. Kessaci, et al., 1990). On the other hand, CRONOS
employs a heuristic global optimization method with polynomial complexity which
allows for simultaneous consideration of several intersections, albeit for the price of
specifying a local (rather than the global) minimum.

a philosophy similar to TRANSYT. More precisely, SCOOT includes a network
model that is fed with real measurements (instead of historical values) and is run
repeatedly in real time to investigate the effect of incremental changes of splits,
offsets, and cycle time. If the changes turn out to be beneficial (in terms of a
performance index) they are submitted to the signal controllers, see Luk, 1984, for a
comparative field evaluation.

Store-and-forward based approaches. Store-and-forward modelling of traffic
networks was first suggested by Gazis and Potts (1963) and has since been used in
various works notably for road traffic control (Gazis, 1964; D’Ans and Gazis, 1974;
Singh and Tamura, 1974; Michalopoulos and Stephanopoulos. 1977a; 1977b; Lim, et
al., 1981; Davison and Özgüner, 1983; Park, et al., 1984; Rathi, 1988; Kim and Bell,
1992). The main idea when using store-and-forward models for road traffic control is
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to introduce a model simplification that enables the mathematical description of the
traffic flow process without use of binary variables. This is of paramount importance
because it opens the way to the application of a number of highly efficient
optimization and control methods (such as linear programming, quadratic
programming, nonlinear programming, and multivariable regulators) with
polynomial complexity, which, on its turn, allows for coordinated control of large-
scale networks in real time.

The critical simplification is introduced when modelling the outflow of a
stream i. Assuming sufficient demand on the link, the outflow at discrete time k is
set

where is the green time duration for this stream and is the corresponding
saturation flow. If the time step T is equal to the cycle time c, Figure 8-7 illustrates
that in (8.8) is equal to the average flow during the corresponding cycle, rather
than equal to during the green phase and equal to zero during the red phase. In
other words, (8.8) suggests that there is a continuous (uninterrupted) outflow from
each network link (as long as there is sufficient demand). The consequences of this
simplification are:

The time step T of the discrete-time representation cannot be shorter than the
cycle time c, hence real-time decisions cannot be taken more frequently than at
every cycle.

The oscillations of vehicle queues in the links due to green/red-commutations
are not described by the model.

The effect of offset for consecutive intersections cannot be described by the
model.

Despite these consequences, the appropriate use of store-and-forward models may
lead to efficient coordinated control strategies for large-scale networks as
demonstrated in simulation studies in some of the aforementioned references. A
recent control strategy of this class (TUC) derives a multivariable regulator based on
store-and-forward modelling (Diakaki, et al., 1999). TUC has been implemented and
is currently operational in a part of Glasgow’s (Scottland) urban network with very
successful results.
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Integrated Urban-Freeway Traffic Control

Modern metropolitan traffic networks include both urban roads and freeways and
employ a variety of control measures such as signal control, ramp metering (see
section 8.3), variable message signs, and route guidance (see section 8.4).
Traditionally, control strategies for each type of control measure are designed and
implemented separately, which may result in antagonistic actions and lack of
synergy among different control strategies. However, modern traffic networks that
include various infrastructure types, are perceived by the users as an entity, and all
included control measures, regardless of their type or location, ultimately serve the
same goal of higher network efficiency. Integrated control strategies should consider
all control measures simultaneously towards a common control objective. Despite
some preliminary works on this subject (see Capelle, 1979, for an early status
report), the problem of control integration is quite difficult due to its high dimensions
that reflect the geographical extension of the traffic network (Van Aerde and Yagar,
1988; Mahmassani and Jayakrishnan, 1991; Reiss, et al., 1991; Kim and Bell, 1992;
Chang, et al., 1993; Papageorgiou, 1994; Elloumi, et al., 1996). For this reason, it
appears that store-and-forward modelling (at least for the urban road part) might be
the only feasible way to design and operate in real time a unique integrated control
strategy, The aforementioned Glasgow implementation covers in fact control
measures of various types (signal control, ramp metering, variable message signs)
via partial interconnection of three feedback strategies (Diakaki, et al., 1999).

8.3 Freeway Traffic Control

Motivation

Freeways had been originally conceived so as to provide virtually unlimited mobility
to road users, without the annoyance of flow interruptions by traffic lights. The rapid
increase of traffic demand, however, lead soon to increasingly severe congestions,
both recurrent (occurring daily during rush hours) and non-recurrent (due to
incidents). The increasingly congested freeways within and around metropolitan
areas resemble the urban traffic networks before introduction of traffic lights:
Chaotic conditions at intersections, long queues, degraded infrastructure utilization,
reduced safety. At the present stage, responsible authorities have not fully realized
that freeways and freeway networks are limited-capacity facilities whose capacity is
strongly underutilized on a daily basis due to the lack of systematic and
comprehensive traffic control systems.

The control measures that are typically employed in freeway networks are:

Ramp metering, activated via installation of traffic lights at on-ramps or
freeway interchanges.

Lane control, that comprises a number of possibilities including variable
speed limits, congestion warning, tidal flow, keep-lane instructions, etc.
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Driver information and guidance systems, either by use of roadside variable
message signs or via two-way communication with equipped vehicles (see
section 8.4).

Ramp metering is the most direct and efficient way to control and upgrade
freeway traffic. Various positive effects are achievable if ramp metering is
appropriately applied:

Increase in mainline throughput due to avoidance or reduction of congestion.

Increase in the served volume due to avoidance of blocked off-ramps or
freeway interchanges.

Utilization of possible reserve capacity on parallel arterials.

Efficient incident response

Improved traffic safety due to reduced congestion and safer merging.

Some recent studies have demonstrated that efficient ramp metering strategies
(employing optimal control algorithms) may provide spectacular improvements
(50% reduction of total time spent) in large-scale freeway networks (Kotsialos, et al.,
2000; Mangeas, et al., 2000).

Fixed-Time Ramp Metering Strategies

Fixed-time ramp metering strategies are derived off-line for particular times-of-day,
based on constant historical demands, without use of real-time measurements. They
are based on simple static models. A freeway with several on-ramps and off-ramps is
subdivided into sections, each containing one on-ramp. We then have

where is the mainline flow of section j, is the on-ramp volume of section i, and
expresses the (known) portion of vehicles that enter the freeway in

section i and do not exit the freeway upstream of section j. To avoid congestion

must hold, where is the capacity of section j. Further constraints are

where is the demand at on-ramp j. This approach was first suggested by
Wattleworth (1965). Other similar formulations may be found in Yuan and Kreer,
1971; Tabac, 1972; Wang, 1972; Wang and May, 1973; Cheng, et al., 1974; Schwarz
and Tan, 1977.

As an objective criterion, one may wish to maximize the number of served
vehicles (which is equivalent to minimising the total time spent)
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or to maximize the total travel distance

(where is the length of section j), or to balance the ramp queues

These formulations lead to linear programming or quadratic programming
problems that may be readily solved by use of broadly available computer codes. An
extension of these methods that renders the static model (8.9) dynamic by
introduction of constant travel times for each section was suggested by Papageorgiou
(1980).

The drawbacks of fixed-time ramp metering strategies are identical to the ones
discussed under road traffic control. In addition, fixed-time ramp metering strategies
may lead (due to the absence of real-time measurements) either to overload of the
mainstream flow (congestion) or to underutilization of the freeway. In fact, ramp
metering is an efficient but also delicate control measure. If ramp metering strategies
are not accurate enough, then congestion may not be prevented from forming, or the
mainstream capacity may be underutilized (e.g. due to groundlessly strong metering).

Reactive Ramp Metering Strategies

Reactive ramp metering strategies are employed at a tactical level, i.e. in the aim of
keeping the freeway traffic conditions close to pre-specified set values, based on
real-time measurements.

Local ramp metering. Local ramp metering strategies make use of traffic
measurements in the vicinity of a ramp to calculate suitable ramp metering values.
The demand-capacity strategy, quite popular in North America, reads

where (Figure 8-8) is the freeway capacity downstream of the ramp, is the
freeway flow measurement upstream of the ramp, is the freeway occupancy
measurement downstream of the ramp, is the critical occupancy (at which the
freeway flow becomes maximum), and is a pre-specified minimum ramp flow
value. The strategy (8.13) attempts to add to the measured upstream flow as
much ramp flow r(k) as necessary to reach the downstream freeway capacity If,
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however, for some reason, the downstream measured occupancy becomes
overcritical (i.e. a congestion may form), the ramp flow r(k) is reduced to the
minimum flow to avoid or to dissolve the congestion.

Comparing the control problem in hand with Figure 8-1, it becomes clear that the
ramp flow r is a control input, the downstream occupancy is an output, while the
upstream freeway flow is a disturbance. Hence, (8.13) does not really represent a
closed-loop strategy but an open-loop disturbance-rejection policy (Figure 8-8a)
which is generally known to be quite sensitive to various further non-measurable
disturbances.

The occupancy strategy (Masher, et al., 1975) is based on the same philosophy as
the demand-capacity strategy, but it relies on occupancy-based estimation of
which may, under certain conditions, reduce the corresponding implementation cost.

An alternative, closed-loop ramp metering strategy (ALINEA), suggested by
Papageorgiou, et al. (1991), reads

where is a regulator parameter and is a set (desired) value for the
downstream occupancy (typically, but not necessarily, may be set, in which
case the downstream freeway flow becomes close to see Figure 8-8c). In field
experiments, ALINEA has not been very sensitive to the choice of the regulator
parameter

Note that the demand-capacity strategy reacts to excessive occupancies only
after a threshold value is exceeded, and in a rather crude way, while ALINEA
reacts smoothly even to slight differences and thus it may prevent
congestion by stabilizing the traffic flow at a high throughput level. It is easily seen
that at a stationary state (i.e. if is constant), results from (8.14),
although no measurements of the inflow are explicitly used in the strategy.

The set value may be changed any time, and thus ALINEA may be embedded
into a hierarchical control system with set values of the individual ramps being
specified in real time by a superior coordination level or by an operator.

All control strategies calculate suitable ramp volumes r. In the case of traffic-
cycle realization of ramp metering, r is converted to a green-phase duration g by use
of

where c is the fixed cycle time and is the ramp’s saturation flow. The green-phase
duration g is constrained by where to avoid ramp closure, and

In the case of an one-car-per-green realization, a constant-duration green
phase permits exactly one vehicle to pass. Thus, the ramp volume r is controlled by
varying the red-phase duration between a minimum (zero) and a maximum value.
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Note that ALINEA is also applicable directly to the green or red-phase duration, by
combining (8.14) and (8.15)

where Note also that the values r(k–1) or g(k–1) used on the right-
hand side of (8.14) or (8.16), respectively, should be the bounded values of the
previous time step (i.e. after application of the and constraints) in order to
avoid the wind-up phenomenon in the regulator.

If the queue of vehicles on the ramp becomes excessive, interference with surface
street traffic may occur. This may be detected with suitably placed detectors (on the
upstream part of the on-ramp), leading to an override of the regulators decisions to
allow more vehicles to enter the freeway and the ramp queue to diminish.

Note that the above specifications and constraints apply in the same way to any
ramp metering strategy.

Comparative field trials have been conducted in various countries to assess and
compare the efficiency of local ramp metering strategies, see e.g. Papageorgiou, et
al., 1998. One of these trials took place at the on-ramp Brançion of the clockwise
direction of the Boulevard Périphérique (ringway) in Paris. Several ramp metering
strategies were applied over a period of one month each, and 13 typical days
(without incidents) per strategy were selected for comparison. The evaluation criteria
included total travel time (TTT) on the mainstream; total waiting time (TWT) at the
ramp; total time spent (TTS = TTT + TWT); total travel distance (TTD); mean speed
(MS = TTD/TTS); and mean congestion duration (MCD), which is the accumulated
period of time during the morning peak in which the measured occupancy is higher
than Table 8-1 displays an extract of the comparative results for the period
7:00 a.m. to 10:00 a.m. It can be seen that ALINEA leads to the best improvement of
all evaluation criteria.

Multivariable regulator strategies. Multivariable regulators for ramp metering
pursue the same goals as local ramp metering strategies: They attempt to operate the
freeway traffic conditions near some pre-specified set (desired) values. While local
ramp metering is performed independently for each ramp, based on local
measurements, multivariable regulators make use of all available mainstream
measurements i= 1, ..., n, on a freeway stretch, to calculate simultaneously the
ramp volume values i = 1, ..., m, for all controllable ramps included in the
same stretch (Papageorgiou, et al., 1990). This provides potential improvements over
local ramp metering because of more comprehensive information provision and
because of coordinated control actions. Multivariable regulator approaches to ramp
metering have been reported by Yuan and Kreer, 1968; Kaya, 1972; Knapp, 1972;
Isaksen and Payne, 1973; Payne, et al., 1973; Athans, et al., 1975; Looze, et al.,
1978; Cremer, 1978; Goldstein and Kumar, 1982; Papageorgiou, 1984;
Benmohamed and Meerkov, 1994. The multivariable regulator strategy METAL1NE
may be viewed as a generalisation and extension of ALINEA, whereby the metered
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on-ramp volumes are calculated from (bold variables indicate vectors and matrices)

where is the vector of m controllable on-ramp volumes,
is the vector of n measured occupancies on the freeway stretch, is
a subset of o that includes m occupancy locations for which pre-specified set values

may be given. Note that for control-theoretic reasons the number

of set-valued occupancies cannot be higher than the number of controlled on-ramps.
Typically one bottleneck location downstream of each controlled on-ramp is selected
for inclusion in the vector O. Finally, and are the regulator’s constant gain
matrices that must be suitably designed, see Papageorgiou, et al., 1990; Diakaki and
Papageorgiou, 1994, for details.

Field trials and simulation results comparing the efficiency of METALINE versus
ALINEA lead to the following conclusions:

While ALINEA requires hardly any design effort, METALINE application calls
for a rather sophisticated design procedure that is based on advanced control-
theoretic methods (LQ optimal control).

For urban freeways with a high density of on-ramps, METALINE was found to
provide no advantages over ALINEA (the later implemented independently at
each controllable on-ramp) under recurrent congestion.

In the case of non-recurrent congestion (e.g. due to an incident), METALINE
performs better than ALINEA due to more comprehensive measurement
information.
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Some system operators hesitate to apply ramp metering because of the concern
that congestion may be conveyed from the freeway to the adjacent street network. In
fact, a ramp metering application designed to avoid or reduce congestion on
freeways may have both positive and negative effects on the adjacent road network
traffic. It is easy to see, based on notions and statements made earlier, that, if an
efficient control strategy is applied for ramp metering, the freeway throughput will
be generally increased. More precisely, ramp metering at the beginning of the rush
hour may lead to on-ramp queues in order to prevent congestion to form on the
freeway, which may temporarily lead to diversion towards the urban network. But
due to congestion avoidance or reduction, the freeway will be eventually enabled to
accommodate a higher throughput, thus attracting drivers from urban paths and
leading to an improved overall network performance. This positive impact of ramp
metering on both the freeway and the adjacent road network traffic conditions was
confirmed in a specially designed field evaluation in the Corridor Périphérique in
Paris, see Haj-Salem and Papageorgiou, 1992.

Nonlinear Optimal Ramp Metering Strategies

Prevention or reduction of traffic congestion on freeway networks may dramatically
improve the infrastructure efficiency in terms of throughput and total time spent.
Congestion on limited-capacity freeways forms because too many vehicles attempt
to use them in a non-coordinated (uncontrolled) way. Once congestion is built up, the
outflow from the congestion area is reduced and the off-ramps and interchanges
covered by the congestion are blocked, which may in some extreme cases even lead
to fatal gridlocks. Reactive ramp metering strategies may be helpful to a certain
extent, but, first they need appropriate set values, and, second, their character is more
or less local. What is needed for freeway networks or long stretches is a superior
coordination level that calculates in real time optimal set values from a proactive,
strategic point of view. Such an optimal control strategy should explicitly take into
account:

Demand predictions over a sufficiently long time horizon.

The current traffic state both on the freeway and on the on-ramps.

The limited storage capacity of the on-ramps.

The ramp metering constraints discussed earlier.

The nonlinear traffic flow dynamics, including the infrastructure’s limited
capacity.

Any incidents currently present in the freeway network.

Based on this comprehensive information, the control strategy should deliver set
values for the overall freeway network over a future time horizon so as

to respect all present constraints

to minimize an objective criterion such as the total time spent in the whole
network including the on-ramps.

Such a comprehensive dynamic optimal control problem may be formulated and
solved with moderate computation time by use of suitable solution algorithms.
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The nonlinear traffic dynamics may be expressed by use of suitable dynamic
models in the form

where the state vector x comprises all traffic densities and mean speeds of 500-m
long freeway sections, as well as all ramp queues; the control vector r comprises all
controllable ramp volumes; the disturbance vector d comprises all on-ramp demands.
The ramp metering constraints are given by (8.11) while the queue constraints read

where are queue lengths. The total time spent in the whole system over a time
horizon K may be expressed

Thus, for given current (initial) state x(0) from corresponding measurements, and
given demand predictions d(k), k = 0, ..., K–1, the problem consists in specifying
the ramp flows r(k), k = 0, ..., K–1, so as to minimize the total time spent (8.20)
subject to the nonlinear traffic flow dynamics (8.18) and the constraints (8.11) and
(8.19).

This problem or variations thereof was considered and solved in various works
(Blinkin, 1976; Papageorgiou and Mayr, 1982; Papageorgiou, 1983; Bhouri, et al.,
1990; Bhouri, 1991; Stephanedes and Chang, 1993; Zhang, et al., 1996; Chen, et al.,
1997; Kotsialos, et al., 2000; Mangeas, et al., 2000). Although simulation studies
indicate substantial savings of travel time and substantial increase of throughput,
advanced control strategies of this kind have not been implemented in the field as of
yet.

Integrated Freeway Network Traffic Control

As mentioned earlier, modern freeway networks may include different types of
control measures. The corresponding control strategies are usually designed and
implemented independently, thus failing to exploit the synergistic effects that might
result from coordination of the respective control actions. An advanced concept for
integrated freeway network control results from suitable extension of the optimal
control approach outlined above. More precisely, the dynamic model (8.18) of
freeway traffic flow may be extended to enable the inclusion of further control
measures, beyond the ramp metering rates r(k). Formally r(k) is then replaced in
(8.18) by a general control input vector u(k) that comprises all implemented control
measures of any type. Such an approach was implemented in the integrated freeway
network control tool AMOC (Kotsialos, et al., 1999) where ramp metering and route
guidance (see section 8.4) are considered simultaneously with promising results, see
also Moreno-Banos, et al., 1993; Ataslar and Iftar, 1998.
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Lane Control

Lane control may include one or a combination of the following actions:

Variable speed limitation

Changeable message signs with indications for “keep lane”, or congestion
warning, or environmental warning (e.g. information about the pavement state)

Incident warning

Reversable flow lanes (tidal flow).

There are many freeway stretches, particularly in Germany and in The
Netherlands, employing a selection of these measures. It is generally thought that
control measures of this kind lead to a homogenization of traffic flow (i.e. more
homogeneous speeds of cars within a lane and of average speeds of different lanes)
which is believed to reduce the risk of falling into congestion at high traffic densities
and to increase the freeway’s capacity. Very few systematic studies have been
conducted to quantify the impact of these control measures (see e.g. Zackor, 1972;
Smulders, 1990) and corresponding validated mathematical models are currently
lacking. This is one the reasons why the corresponding control strategies of operating
systems are of a heuristic character (e.g. Bode and Haller, 1983; Forner and Schmoll,
1984; Zackor and Balz, 1984.)

8.4 Route Guidance and Driver Information

Introduction

Freeway, urban, or mixed traffic networks include a large number of origins and
destinations with multiple paths connecting each origin-destination pair. Fixed
direction signs at bifurcation nodes of the network typically indicate the direction
that is shortest in absence of congestion. However, during rush hours, the travel time
on many routes changes substantially due to traffic congestion and alternative routes
may become competitive. Drivers who are familiar with the traffic conditions in a
network (e.g. commuters) optimize their individual routes based on their past
experience, thus leading to the celebrated user-equilibrium conditions (Wardrop,
1952). But daily varying demands, changing environmental conditions, exceptional
events (sport events, fairs, concerts, etc.) and, most importantly, incidents may
change the traffic conditions in a non-predictable way. This may lead to an
underutilization of the overall network’s capacity, whereby some links are heavily
congested while capacity reserves are available on alternative routes. Route guidance
and driver information systems (RGDIS) may be employed to improve the network
efficiency via direct or indirect recommendation of alternative routes (see Hall, 1993,
for a critical view).

A first classification of RGDIS distinguishes pre-trip from en-route advice. Pre-
trip communication possibilities include the internet, phone services, mobile devices,
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and radio. These communication devices may be consulted by a potential road user
to make a rational decision regarding:

The effectuation or postponement of the intended trip

The choice of transport mode (car, bus, underground, etc.)

The choice of the departure time

The (initial) path choice.

If the road user has decided to complete the trip by car, she may continue to
receive information or advice via appropriate en-route devices such as radio services
(RDS-TMC), road-side variable message sings (VMS), or special in-car equipment,
in order to make sensible routing decisions at bifurcation nodes of the network.
While radio broadcasting services and VMS have been in use for more than 25 years
(and their number is steadily increasing) (see Stathopoulos, 1991; see also Saxton
and Schenck, 1977, for an early overview), individual route guidance systems
employing in-car devices and two-way communication with control centers are in
their infancy (some experimental or early operational systems exist in some
countries) (Henry, et al., 1991).

At this point, it is appropriate to distinguish among two alternative policies
(which in some cases may be combined) of providing en-route information versus
explicit route recommendation. Many operators (particularly of VMS-based systems)
prefer the provision of real-time information. Also the majority of drivers (according
to some questionnaire results) seem to prefer this option that enables them to make
their own decisions, rather than having to follow recommendations by an anonymous
system. It should be emphasized, however, that pure information provision has a
number of partially significant drawbacks:

The translation of provided information into routing decisions requires the
knowledge of the network which may not be present for all drivers.

Although the control center disposes over complete information about the traffic
conditions in the whole network, only a tiny part of this information can be
conveyed to the users due to space limitations on the VMS. In some cases, only
information about the traffic conditions on the downstream links of a bifurcation
node are provided. Clearly, this information is not sufficient for a rational route
decision for drivers with longer trips through the network, who may be
eventually trapped into a severe congestion due to myopic decision making.

Even if it would be possible to provide more comprehensive information, the
drivers would have to make a route decision within a couple of seconds, i.e. after
looking at the VMS and before reaching the bifurcation.

There is no possibility for the operator or a control strategy to actively influence
traffic conditions, as decisions are left with the drivers.

On the other hand, route guidance systems are constrained by the requirement not
to suggest routes that would disbenefit complying drivers, else the credibility and
eventually the impact of the whole system may be jeopardized. Moreover, route
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guidance systems call for a genuine control strategy that can optimize the network
traffic conditions, e.g. by avoiding traffic congestion on alternative recommended
routes due to drivers’ overreaction.

Travel Time Display

A particular type of driver information system that is gaining increasing momentum
due to its relative simplicity and its popularity with drivers is the display (on VMS)
of travel times for well-defined stretches downstream of the VMS. This information
is readily comprehensible by the drivers, and it may either provide a basis for route
choice decisions or simply reduce the drivers’ stress, particularly in congested traffic
conditions.

For example, some 350 VMS are installed on the Boulevard Périphérique of Paris
and on all approaches that lead to this ringway (Lamboley and Baudez, 1994; Haj-
Salem, et al., 1995). The displayed message is the current travel time on the ringway
from the particular VMS location to two significant downstream freeway
intersections, at distances of approximately 3 km and 6 km, respectively. A similar
system, providing travel times on the two downstream freeway links of each
bifurcation node, is operational in the dense freeway network around Paris.

The calculation of instantaneous travel times for a freeway stretch including
several loop detectors is quite simple. The stretch is subdivided into a number of
segments with lengths in Paris), whereby each segment includes one
detector station. A detector station may either directly provide mean speed
measurements or it may provide flow and occupancy measurements, from which the
mean speed can be deduced with sufficient accuracy. The travel time of
segment i is then given by

The instantaneous travel time on a freeway stretch is defined to be the travel time
of a virtual vehicle that travels the stretch under the assumption that the currently
prevailing traffic conditions will not change during the trip. Based on this definition
and (8.21), the instantaneous travel time of the whole freeway stretch, consisting
of N segments, may be calculated from

This formula works quite well in practice but it has some drawbacks, notably, if
the mean speed in a segment becomes temporarily very low, then (8.22) delivers
an unrealistically high travel time for the whole freeway stretch. Alternative
formulas have been suggested and evaluated based on real traffic data, see Grol, et
al., 1997; Papageorgiou, 1999.
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Clearly, any instantaneous travel time formula based only on current traffic
measurements will induce a systematic estimation error if the traffic conditions in the
stretch are rapidly changing, e.g. during congestion growth or dissipation. This error
grows with the length of the stretch under question and may, under certain
conditions, reach unacceptable levels for freeway stretches longer than, say, 10 km.
What is needed in this case is a predictive scheme that delivers predicted travel times
that come closer to the travel times that will be experienced by the drivers during
their trip. Predictive travel times may be calculated:

Based on historical information

Via suitable extrapolation methods

By employment of dynamic traffic flow models in real time
or via a combination of the above.

Route Guidance Strategies

Introduction. A route guidance system may be viewed as a traffic control system in
the sense of Figure 8-1. Based on real-time measurements, sufficiently interpreted
and extended within the surveillance block, a control strategy decides about the
routes to be recommended (or the information to be provided) to the road users. This,
on its turn, has an impact on the traffic flow conditions in the network, and this
impact is reflected in the performance indices. Because of the real-time nature of the
operation, requirements of short computation times are relatively strict.

Route guidance strategies may be classified according to various aspects:

Reactive strategies are based only on and react to current measurements without
the real-time use of mathematical models or other predictive tools; predictive
strategies attempt to predict traffic conditions sufficiently far in the future
(typically by use of mathematical models) in order to improve the quality of the
provided recommendations.

Iterative strategies run several model simulations in real time, each time with
suitably modified route guidance, to ensure (at convergence) that the control
goal (see below) will be achieved as accurately as possible; iterative strategies
are by nature predictive. One-shot strategies may either be reactive, in which
case they typically perform simple calculations based on real-time data, or they
may be predictive, whereby they run one single time a simulation model to
increase the relevance of their recommendations.

Route guidance strategies may aim at either system optimal or user optimal
traffic conditions. In the first case, the control goal is the minimisation of a
global objective criterion (e.g. the total time spent) even for the price of
recommending routes that are sometimes more costly than the regular routes. In
the second case, every recommended route should not be more costly than the
regular route, even for the price of sub-optimality with respect to the global
objective criterion. Under a more strict definition, user optimal conditions
imply equal cost on all utilized alternative routes connecting any two nodes in
the network.
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One-shot strategies. Most one-shot strategies are of the reactive type. Particularly
for dense networks, with relatively short links, many bifurcations, and a high number
of alternative routes connecting any two nodes, reactive strategies may be highly
efficient in establishing user-optimal conditions on the basis of current traffic
measurements. This is because reactive routing recommendations in this kind of
network may be modified at downstream bifurcation nodes if traffic conditions
change substantially.

Most reactive strategies are decentralized, i.e. they conduct their calculations at
each bifurcation node independently of other nodes. Simple feedback regulators of
the P (proportional) or PI (proportional-integral) types have been proposed by
Messmer and Papageorgiou (1994). A P-regulator calculates splitting rates as

follows

where is the portion of the flow arriving at bifurcation node n and

destined to node j that is routed through the main direction at time k; is the
nominal splitting of drivers (in absence of route guidance); K > 0 is a regulator
parameter; is the instantaneous travel time difference between the main and

the alternative route from node n to node j. Note that resulting from (8.23) is

eventually truncated if it exceeds the range [0, 1]. The regulator (8.23) assigns more
or less traffic to the alternative direction according to the sign and value of the
current travel time difference among both directions thus aiming at

equalizing both corresponding travel times, in accordance with the user-optimum
requirements. For K sufficiently high, an all-or-nothing (or bang-bang) strategy
results from (8.23) whereby all vehicles are sent to the currently shortest direction. It
should be noted that these simple regulators are not very sensitive to varying
compliance rates of drivers (Pavlis and Papageorgiou, 1999). A first operational
system employing decentralized P-regulators in the traffic network of Aalborg,
Denmark, was reported by Mammar, et al. (1996). Multivariable regulators for
central route guidance systems have also been suggested (Papageorgiou, 1990;
Papageorgiou and Messmer, 1991), as well as heuristic feedback schemes (Berger
and Shaw, 1975; Sarachik and Özgüner, 1982; Bolelli, et al., 1991; Hawas and
Mahmassani, 1995), and more recent automatic control concepts (Kachroo and
Özbay, 1999).

One-shot strategies may employ in real time a more or less sophisticated
mathematical model of the network traffic flow. Based on the current traffic state,
the current control inputs, and predicted future demands, the model is run once, in
order to provide information about the future traffic conditions under the current
route guidance settings. A regulator is then used to control the predicted future,
rather than the current, traffic conditions. Such control schemes are known as IMC
(Internal Model Control) strategies in automatic control theory. They are preferable
to reactive regulators when the traffic network has long links with a limited number
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of bifurcation nodes. A control scheme of this kind was applied to the Scottish
highway network employing P-regulators (Messmer, et al., 1998) or a heuristic
expert system (Papageorgiou, et al., 1994; Morin 1995).

Iterative strategies. Iterative strategies may aim at establishing either system
optimal or user optimal conditions. For a system optimum, the pursued procedure
has already been outlined in section 8.3. A macroscopic network traffic model may
be written in the general form (8.18), where the control inputs are the splitting rates

The corresponding optimal control problem, aiming at minimizing the total

time spent (8.20) under the constraints may be solved by use of the same

numerical algorithms as the optimal ramp metering or the integrated control problem
(Papageorgiou, 1990; Messmer and Papageorgiou, 1994; 1995), see also
Charbonnier, et al., 1991; Lafortune, et al., 1993; Wie, et al., 1995.

There are several iterative procedures suggested towards establishing user
optimal conditions (Mahmassani and Peeta, 1994; Ben-Akiva, et al., 1997; Wisten
and Smith, 1997). The typical structure of iterative strategies is as follows:

(a)
(b)
(c)

(d)

Set the initial path assignments or splitting rates (control inputs)
Run a simulation model over a time horizon H.
Evaluate the travel times on alternative paths; if all travel time differences are
sufficiently small, stop with the final solution.
Modify the path assignments or splitting rates appropriately to reduce travel
time differences; go to (b).

The simulation models employed by different algorithms in step (b) may be
microscopic, macroscopic, or mesoscopic. Microscopic models address and describe
the movement of each individual vehicle in the traffic flow in dependence of the
movement of the adjacent vehicles, both in the longitudinal (car-following
behaviour) and in the lateral (lane-changing behaviour) sense. Each vehicle has a
pre-specified destination and its path is decided pre-trip or en-route according to the
routing decisions of the algorithm. Macroscopic models may be expressed in the
form (8.20). They describe the traffic flow as a fluid with particular characteristics
via the aggregate traffic variables traffic density, flow, and mean speed (see section
8.1). Generally, the evolution of traffic density is described via the conservation-
of-vehicles equation, while the mean speed v is deduced from an empirical (static or
dynamic) equation in dependence of the traffic density. Finally the traffic flow is by
definition To describe the routing behaviour, macroscopic models include

partial densities and partial flows by destination. Partial flows are assigned at
bifurcation nodes to downstream links according to the splitting rates provided from
step (d). Mesoscopic models describe the evolution of mean speed macroscopically,
but they also consider individual vehicles (or “vehicle packets”) which, however, are
moved in the network according to the macroscopic mean speed (without
employment of microscopic rules). The traffic flows at section boundaries are
deduced from individual vehicle crossings, while traffic densities may be calculated
directly from vehicle counts within a section. The reason why individual vehicles are
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introduced in mesoscopic models is in order to describe the routing behaviour. Thus,
as in microscopic models, each vehicle has a pre-specified destination, and its path is
decided pre-trip and en-route according to the routing decisions of step (d), without
the need to introduce partial densities and flows as in macroscopic models
(Mahmassani and Peeta, 1994; Ben-Akiva, et al., 1997; Wisten and Smith, 1997).

The modification of path assignments or splitting rates in step (d) of the algorithm
is typically effectuated in a functionally decentralized way, i.e. each splitting rate or
path assignment portion is changed independently of any other. The sign and
magnitude of the individual changes depend on the sign and magnitude of the
corresponding travel time differences, in a similar way as in (8.23), with the
significant difference that the travel time differences are here predictive (calculated
in step (c)) rather than instantaneous.

The real-time implementation of iterative algorithms for route guidance purposes
employs the same rolling horizon procedure outlined in section 8.2 in order to reduce
the sensitivity with respect to predicted demands and modeling inaccuracies. No
field implementation of an iterative route guidance procedure has been reported as
yet. Main reasons for this are the relatively recent interest in RGDIS, but certainly
also the code complexity of the corresponding algorithms.

8.5 Future Directions

The Theory-Practice Gap

As in many other engineering disciplines, only a small portion of the significant
methodological advancements have really been exploited in the field. It is beyond
our scope to investigate and discuss the reasons behind this theory-practice gap, but
administrative inertia, little competitive pressure in the public sector, the complexity
of traffic control systems, limited realization of the improvement potential behind
advanced methods by the responsible authorities, and limited understanding of
practical problems by some researchers may have a role in this. Whatever the
reasons, the major challenge in the coming decade is the deployment of advanced
and efficient traffic control strategies in the field.

More precisely, the majority of small and big cities even in industrialized
countries, are still operating old-fashioned fixed-time signal control strategies, often
even poorly optimized or maintained. Even when modern traffic-responsive control
systems are installed in terms of hardware devices, the employed control strategies
are often naïve, poorly tested and optimized, thus failing to exploit the possibilities
provided by the relatively expensive hardware infrastructure.

Regarding freeway networks, the situation is even worse. Operational control
systems of any kind are the exception rather than the rule. With regard to ramp
metering, the main focus is not on improving efficiency but on secondary objectives
of different kinds. The responsible traffic authorities and the decision makers are far
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from realizing the fact that advanced real-time ramp metering systems (employing
optimal control algorithms) have the potential of changing dramatically the traffic
conditions on today’s heavily congested (hence underutilized) freeways with
spectacular improvements that may reach 50% reduction of the total time spent.

With regard to driver information and route guidance systems, there is an
increasing interest and an increasing number of operational systems employing
variable message signs, but once more, the relatively expensive hardware
infrastructure is not exploited to the degree possible, as implemented control
strategies are typically naïve.

On the side of the research community, any effort should be made to inform the
road authorities, the political decision makers, and the general public about the
substantial improvements achievable via implementation of modern traffic control
methods and tools. At the same time, it should be emphasized that many
methodological works presented at conferences and technical journals address
practical problems and concerns only in a limited way. In some cases, proposed
traffic control strategies are not even thoroughly and properly tested via simulation,
despite the meanwhile high number of available traffic simulators of various kinds.
This poses a burden to real implementation of the methods, and perhaps the best way
for researchers to familiarize themselves with the practical requirements and
constraints is to get occasionally involved in real implementations.

Road Traffic Control Strategies

Advanced signal control strategies, such as OPAC, PRODYN, CRONOS, and
COP, have clear limitations regarding the network extent, to which they can be
directly applied. The price to be paid if these systems run in a completely
decentralized way (e.g. independently at each intersection) is currently not fully
analyzed nor understood. This kind of thorough analysis is necessary in order to
develop efficient (though probably heuristic) coordinating layers that reduce the
negative impact of decentralization.

Store-and-forward based concepts seem, more than 3 decades after their original
conception, to offer a promising background for the development of signal
control strategies that are traffic-responsive, coordinated (for large-scale
networks), and can cope, under certain conditions, with oversaturation and, most
importantly, with the imminent inaccuracies of traffic measurements in an urban
road environment. In addition, this approach seems ideal for the design of (even
more challenging) integrated traffic control strategies involving further traffic
systems (freeways) and control measures.

(a)

(b)

The number of developed signal control strategies is much higher than what could be
included or mentioned in section 8.3. The need and trend is clearly towards traffic-
responsive coordinated strategies. Two avenues may be identified as promising in
this respect:
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Freeway Traffic Control Strategies

With regard to ramp metering, the most important methodological developments are
well advanced. The most promising area for control strategies is the design and
testing of hierarchical control structures for very large-scale freeway networks.
Control hierarchies should include short-term demand predictions, optimal control
algorithms for the coordinated calculation of set values network-wide, and reactive
feedback strategies for implementation of the optimal control decisions.

The integrated control of freeway networks involving both ramp metering and
route guidance measures is currently in a very preliminary phase with some very
promising results, but a lot more developments are required to produce integrated
control strategies that are efficient, but also applicable in real time to large-scale
networks.

Finally lane control systems may prove much more useful than at present if their
impact is studied more carefully and thoroughly so as to open the way to the design
of efficient control strategies. This is perhaps one of the least studied areas within
traffic control.

Driver Information and Route Guidance Systems

Although the subject of DIRGS is relatively new, a substantial amount of work has
been devoted to it and a number of methods and tools have already emerged, but
further developments, either completely new or combinations of already suggested
methods, are possible and desirable. One-shot methods appear particularly attractive
for real-time applications because they are simple, with negligible computational
effort. More experience is required regarding their efficiency level and the
topological and traffic conditions that are most suitable for their application. The
surplus efficiency provided by iterative approaches should be further investigated,
and possible combinations (e.g. in order to reduce the computational effort of
iterative strategies) should be attempted.
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CONTINUOUS SPACE MODELLING

Tönu Puu and Martin Beckmann

9.1 Introduction

Since the advent of linear programming and nonlinear programming modelling of trans-
portation and location has meant that space is treated in terms of subscripted variables
where the subscripts represent points in space enumerated in an arbitrary manner. The
geometric image of what is being modelled is lost in this process.

The older tradition of visualizing space as a 2-dimensional continuum persists,

9

however, not only in theoretical geography, but also in some operations research mod-
els (Kantorowich 1942, Beckmann 1952). By its appeal to geometric intuition this ap-
proach permits results to be more readily checked against reality.

Moreover optimization in a continuous medium is a more highly developed tech-
nique compared to discrete optimization. But, as this chapter will show, the difficulties
can still be formidable. A distinction between personal and goods transportation al-
though basically of an economic nature, is forced upon us also by purely mathematical
considerations (see section 9.4).

While continuous space modelling turns out to produce explicit answers only in
rather special cases, the approach is valuable nevertheless in strengthening our intui-
tion and enabling a deeper understanding of the general nature of transportation and
location problems and their solution.

The reader may still ask, why continuous analysis of spatial phenomena, if more
"realistic" models with finite sets of locations, linked by a graph or network, will do?
Several answers can be given. In a general perspective, the case is quite similar to that
of the nature of matter. The consideration of matter as an infinitely divisible fluid and as
atomistic are outlooks that both go back to Greek antiquity. Over the history of the
natural science both have been pursued in parallel. In hindsight it would be impossible
to say, and meaningless to ask, whether modelling hydrodynamics in terms of the Navier-
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Stokes equations has been more or less fruitful than for instance quantum mechanics.
The outlooks have been complements rather than substitutes, and now and then there
has even been unexpected cross-fertilization between them.

The recent history of dynamical systems provides a good example. From the 17th
Century on, differential equations have been "the" tools for modelling causal processes
of change over time. During the last two centuries, the partial differential equations,
involving both space and time, were the glory of analysis, and provided closed form
solutions to such phenomena as the progress of electromagnetic waves, the diffusion of
heat, or the formation of charged potentials.

When economists started to study dynamic phenomena by models such as the “cob-
web" market dynamics, the Cournot duopoly, or the multiplier-accelerator model of the
business cycle, discrete iterated processes were chosen, which could make a "simplis-
tic" or "home made" impression when compared to the accumulated knowledge of both
ordinary and partial differential equations. Mathematicians had only been interested in
such models at an abstract level, as iterated maps in for instance complex analysis,
without any connotation of dynamic processes at all. However, while economists, knowl-
edgable in mathematical physics, more and more shifted over to modelling continuous
time processes, modern mathematics took a leap in the reverse over to discrete models.
The tendency today is to pass from partial to ordinary differential equations, and fur-
ther from the latter to iterated maps on so called Poincaré sections. Knowledge is accu-
mulating about models of maps, whereas partial differential equation theory hardly
makes any progress at all. No doubt this has much to do with the emergence of the
digital computer. So, it is even more difficult to say what is the most fruitful in the long
run in foresight than it is in hindsight.

As for the issue of realism, it all is a matter of resolution. On the level of a detailed
city map no doubt every piece of land is occupied for a particular purpose, a residence,
an industry or a piece of infrastructure, whereas atomistic vehicles only move on given
kinked tracks on some grid of roads or streets. However, in a coarser resolution it
makes sense to speak of fractional densities in land use for residences, industry, and
infrastructure. We can also conceive of the flow of vehicles, where some enter and
some leave all along the route, as being continuously changing in volume, and we can
even bundle the kinked tracks together in continuous curves.

Flows and metrics (for actual distance, travel time, or generalized cost) are con-
cepts which themselves do not discriminate between the discrete and the continuous. It
is when we assume flows as continuous and smooth, and the metric as isotropic (direc-
tion-independent), that modelling becomes constrained. As we said, this is a matter of
resolution and focus. It is actually surprising how rare very regular networks, such as a
Manhattan or a ring-radial, are, and how good, due to random irregularities, an iso-
tropic approximation is, once we consider any substantial geographical area. The equi-
distant points almost lie on a circle with the origin at the centre. The metric however is
not Euclidean, as there always remains a detour factor, which is larger the more sparse
the network is. The process of investing in the network reduces detours, subject to
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decreasing returns. At first a new short-cut, strategically placed, makes a big differ-
ence, but in an already dense network any new short-cut matters little. Considering
generalized cost in terms oftravel time, rather than distance alone, we should also take
into account that road investments can be for increasing the capacity of already existent
stretches of the network, so reducing delays due to congestion. But this does not change
the conclusion that the isotropic approximation for local transportation cost is fairly
reasonable.

If we want to say something in particular in favor of continuous modelling, it is
related to the visual and intuitive pertaining to geometrical shape, as said earlier. Matri-
ces for incidence, distance, cost, or flow, for a discrete set of locations, are abstract and
have nothing visual to them. Classical spatial economic theory associated with the names
of von Thünen, Launhardt, Weber, Christaller and Lösch, on the contrary, had a very
strong visual content which was favorable to intuitive understanding. The shortcoming
was that the theory was tied to a linear format due to the assumption of an Euclidean
metric. To free the theory from the limitations of this linearity and yet keep the visual
and geometric content may be said to be the very purpose of any programme for a
modern continuous analysis of the space economy.

Shortest Paths

In modelling travellers' choices the basic assumption is that of rational behavior, in line
with general economic theory. Concretely this means that a trip is demanded when and
only when its utility exceeds its cost and that routes are chosen that minimize transpor-
tation cost from origin to destination. In general transportation cost is composed of
various elements, including time and money cost. Often it is simply time that consti-
tutes the relevant cost. Both time and money cost will depend on, in fact increase, with
the physical length of the route from origin to destination. To measure this length we
must specify the elements of distance, i.e. the metric of the space in which routes are
embedded. (See section 9.5).

When nothing further is said, in "continuous space modelling of transportation", the
metric assumed is that of 2-dimensional Euclidean space. A shortest path is then a
straight line segment joining origin and destination.

This is no longer the case when two features are considered that are important in
certain scenarios:

1) Topographic conditions that influence local and/or directional transportation
cost.

2) Traffic congestion that raises transportation cost.
Consider first the "isotropic" case where local transportation cost depends only on

location (x,y) and not on the direction. Let a route between origin

and destination be paremeterized as (x (s ) , y (s ) ) . Transportation

cost for this route is then:
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where and  are the derivatives of the coordinate functions.

When local transportation cost depends also on direction we have
instead

To find a shortest path between a and b is a classical problem in the calculus of

variations. To minimize (9.1) with respect to the functions x(s) and y(s), the func-

tions x(s) and y(s)must satisfy the Euler equations:

Whenever we can parameterize the route by one of the coordinates, as y(x) or

x ( y ) , we have just one single equation:

In the following application we assume circular symmetry and therefore use polar
coordinates so that and Suppose we can parameterize
the route by the angular coordinate which is always possible whenever there are no
radial segments in the route.

Then we must minimize
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where the path is and The appropriate Euler equation reads:

As the integrationvariable does not appear explicitly we obtain the first integral

where c is an arbitrary integration constant. The expression simplifies to

determining the angularderivative for each distance r. This procedure is appropri-

ate whenever k(r) is a function ofthe radius vector alone, such as the cases dealt with

below: k = 1 / r, when the routes become logarithmic spirals, and k = r, when the
routes become equilateral hyperbolas.

Iso-vectures

From a given origin a, consider the shortest paths to destinations in various direc-
tions.

The set of points that can be reached at distance r - or more precisely by an ex-
penditure of transportation cost I - is a closed curve called an iso-vecture (Launhardt,
1885). When transportation costs are constant or a function of only the radial distance
from the origin a, then the shortest paths are straight lines and the iso-vectures are
circles.

A similar construction yields shortest paths to a destination b and iso-vectures de-
scribing sets oforigins at a given distance or a given expenditure in transportation cost
to the point ofdestination. When transportation costs are isotropic, i.e. independent or
direction, the shortest paths intersect the iso-vectures at right angles.

In an efficient continuous flow field (see below), for any two points on the same
flow line, the segment of the flow line joining them is a shortest path.
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Market Areas

In the case of goods transportation the object considered is not trips but trade between
points of supply and points of demand.

Transportation of a good from a single origin to destinations continuously distrib-
uted in the two-dimensional plane was first studied by W Launhardt (1885). At the
single point as origin, a producer is located supplying a good to customers located
throughout a two-dimensional market area. Quantities demanded depend on the local
price which rises by the amount of transportation costs from the origin. In a homogene-
ous environment, this means that prices are a linear function of distance from the sup-
plier

where p(r) is local price, is price at the supplier, the "mill price", k is the rate of
transportation cost, the freight rate, and r is distance from the supplier.

With demand a linear function of price (customarily assumed in location theory)
and constant customer density, quantity sold decreases linearly with distance. At a criti-
cal distance R, the market radius, it falls to zero. With a linear demand function for
quantity q

This market radius is

using (9.11).

Transportation Demand. Regardless of the shape of the demand function q(p) there
exists a simple relationship between volume and ton-miles of transportation demanded
and the freight rate k. Total sales of a producer, and accordingly total volume of trans-
portation, V, originating from the supplier are

where is the density of customers, assumed to be the same everywhere. Let a be the
maximal price at which quantity demanded is zero. Transforming variables
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In economic parlance, the elasticity of demand for transportation is 2.
When ton-miles are considered

Their elasticity is therefore 3.
As Launhardt has observed (1885): Railways reduced the freight rate for overland

transportation to one tenth. This made possible a hundredfold increase in transporta-
tion volume and a thousandfold increase in ton-mileage.

Transportation demand is not independent of the system of spatial pricing used by
firms. Two different systems are widely practised: f.o.b. or mill pricing, with transpor-
tation charges added to a mill price and c.i.f. or uniform delivered prices
where prices charged to buyers are the same at all buyer locations.

With linear demand functions q(p) = a - p under mill pricing ton miles of transpor-
tation demanded are

for a given market radius R
Under uniform pricing ton-miles of transportation demanded are

With

total quantity sold is easily shown to be the same. Here is average distance, averaged
over customers, not sales.

Comparing transportation demands
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where we have written

But

by the Cauchy-Schwartz inequality. Thus uniform pricing generates the greater ton-
mileage of transportation. The reason is that uniform pricing does not cause quantity
demanded per capita to decrease with distance.

This inequality holds for all demand functions provided total quantities sold are
equalized (Beckmann 1985).

9.2 Continuous Origins, Point Destination

The case of point destinations with continuous origins is mathematically similar to that
of point origins and continuous destinations. The differences are in the economic appli-
cations.

Supply Areas

When demand is located in a single point and suppliers are distributed continuously
they occupy a supply area.

The best studied example is that of the agricultural hinterland supplying food to a
city (von Thünen 1826). Farmers receive the market price in the city minus transporta-
tion cost. The limit of the supply area is reached at the distance R where transportation
costs exhaust the product price

When yields per area are constant, the quantity supplied is proportional to the
square of the market radius.
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and the price at which this is supplied is determined by (9.21). Thus

When quantity Q is defined by a linear demand function is given

the price is determined by an equilibrium condition

or

which shows market price to increase with transportation cost.

Monocentric City

A single destination for travellers from a continuously extended two-dimensional area
is the format of mono-centric city models. The central business district (CBD) as a
point destination is assumed to contain all shops and all work places. Density of popu-
lation or households is either assumed or shown to be decreasing with distance.
Each household generates a constant number b of trips to the CBD per period. The
volume of traffic entering a circle of radius r is then

where R is the radius of the city, determined by the maximal length of work and shop-
ping trips chosen by households. At the center one has a traffic volume
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It has been empirically observed (Colin Clark) and theoretically determined by

Alan Wilson that density falls exponentially with distance.

Total traffic into the CBD is then

or simply b times city population P

regardless of the density distribution of trip origins.
Now let the frequency of trips per household itself depend on distance from the

CBD, say exponentially

because, say, shopping trips are made less frequently at longer distances.
The traffic volume to the CBD is then

For very extended cities with R >> 1 this is approximately
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decreasing as the rates of decline     of population density and     of trip frequency
increase. Notice that for R >> 1 the ratio of traffic volume to city population

is approximately

which is larger, the smaller is  relative to

9.3 Continuous Origins and Destinations: One Good

Although travellers and goods will both seek shortest paths, the motivation for their
movement differs fundamentally. Traders send goods to locations yielding the
highest return of price over transportation cost and procure goods from sources at
the lowest sum of price and transportation cost. Travellers' choice of destination is
guided by the utility of achieving trip purposes after deduction of transportation cost.
The mathematical models to be used in this and the following section will differ
sharply.

Spatial Market Equilibrium

When a particular good is both produced and consumed over a continuously ex-
tended region, but local supply does not everywhere match local demand, a continu-
ously extended spatial market is needed to organize the distribution of this good.
Exports from and imports into the region can be ignored, provided aggregate supply
equals aggregate demand in the region. In fact, rather than using supply and demand
as separate entities it is sufficient to consider their difference, say,

local excess demand = local demand - local supply

Excess demand should be defined as a density = excess demand per area. The

commodity movements are best described by a field of flow vectors               at loca-
tions (x, y) say, whose direction are those of the commodity movements and whose
lengths (absolute value) equal the density of flow. (Beckmann 1952).
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Now local excess demand q must be covered by local net imports, expressed as the
negative flow divergence

where the divergence is defined in component terms as

This is an equation stating conservation, or the matching of supply and demand.
Another condition of spatial equilibrium is that profits have been competed away. This
shows up in the determination of the direction of flow. To recover transportation cost,
flow must flow in the direction of increasing prices, and the absolute value of the price
gradient must equal the rate oftransportation cost. This rate is assumed to be isotropic
(the same for all directions). Thus

where p = p(x,y) is the local price; and in the absence of flows

An efficient continuous flow field has then the direction of a gradient field. The
potential lines for the gradients are then curves of equal price - so-called iso-price
lines or iso-tims - for the commodity in question. The efficiency conditions that guide
the flows can thus be interpreted in economic terms as conditions for economic arbitrage:
transportation costs must be covered exactly by the gain in price between points of
purchase and sales.

A gradient field can have no spiral singularities. The only admissible singularities
are sources and sinks of possibly infinite densities and saddle points.

It is remarkable that the equilibrium conditions for a spatial market with given
excess demands results also from minimizing total transportation cost

subject to a transportation program
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This is an example of welfare maximization under perfect competition, a well known
proposition in economic theory.

When excess demand is allowed to depend on local price

transportation cost minimization is modified to a utility maximization problem in terms
of a consumers’ surplus function as utility

where p(q,x,y) is the inverse of the excess demand function q(p,x,y). The functional to
be maximized now without constraint is

yielding once more equation (9.39)

as well as

under sthe constraint (9.42)

Here as always in transportation planning and traffic routing, the objective is the
maximization of net benefits. Cost minimization is a simplification that arises when
traffic demand, here q(x,y) is assumed independent of individual travel costs, or prices
p.

The integral of minimal transportation cost may be transformed, using Gauss’ inte-
gral theorem
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Thus, since the boundary integral vanishes, minimum transportation cost is seen to
equal the aggregate value difference of the good between import and export locations.
(cf. Beckmann Puu 1985)

The equilibrium model for the exchange of a good by local exports and imports is
appropriate for commodities only. In transporting persons it is not meaningful to allow,
say, arrivals from any origin to satisfy demand at a destination, as is legitimate in the
goods case.

Extension to Several Goods

When continuous spatial markets are considered for several goods m = 1, ... M, then
total goods traffic through a point (x,y) is the aggregate of flows in absolute terms

The vector sum of commodity flows is relevant for the movement of empty vehicles
since for total vehicle movement to balance

so that

represents the vehicle net outflow. An efficient movement of empty vehicles is
achieved by

subject to
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The efficient movement of empty tank ships was the first empirical transportation
problem treated by linear programming (Koopmans 1947).

9.4  Transportation of Persons: Continuous Origins and Destinations

The Problem

The transportation of people as compared to the transportation of commodities be-
comes considerably more complex, because it necessarily involves not one, and not a
finite number, but an infinity (even a continuum) of flow fields. Recall that a commod-
ity flow for one spatially extended market is represented by a single flow and collects
the local excess supplies on its way and again discharges them at locations of excess
demand. The flow lines themselves obey the appropriate Euler equations for minimal
cost routing in the continuous field. On the other hand in the continuous plane where
each location needs to interact with each other location there is a unique flow field only
if we specify a single point of origin, or alternatively a single point of destination. Once
both origins and destinations are continuously spread out there is one flow field for
each point of origin, or again alternatively each point of destination.

Several complications arise by this. First, given an origin, the discharge of trips at
various destinations can still be related to the divergence of that given flow, but the
origin itself becomes a singularity, a source of infinite strength, and we need particular
measures to deal with the singularity. Second, at any point of the space there is an
infinite crisscross of flow lines passing through it in various directions and having dif-
ferent volumes of flow. Each of those flow lines obeys the appropriate Euler equation.
For each point of space we might want to evaluate the total traffic passing. This is an
issue faced by Angel and Hyman (1976), Puu (1979) and Vaughan (1987). Those traf-
fic measures are interesting for several purposes.

Obviously the load of traffic itself determines the cost of transportation through a
point in an urban area by means of congestion effects and resulting delays which are
important components in transportation cost. Therefore the traffic pattern resulting from
the choice of optimal routes feeds back as a determinant for the choice of routing of the
individual trips. We can imagine that if transportation cost is invariant over space, then
people would communicate along straight line segments. If people are equally distrib-
uted in a closed urban area, then, by the mere geometry of the bounded area, many more
trips would pass the center than the periphery, and so traffic would be concentrated to
the central parts. Accordingly, if we assume network capacity to be more or less con-
stant over the urban area this would create an immense congestion in the center, and the
commuters once they realize this high cost of transfer in the central parts would in the
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next round avoid the center. This would then mean less concentration of traffic in the
center and decrease the tendency of avoiding it. Finally, we could imagine a traffic
equilibrium, where the congestion created by the individual route choices is exactly
that which agrees with the perception of congestion which leads to this choice of rout-
ing.

It must be admitted that the derivation of an exact traffic distribution is analytically
tough, and that it has been solved only for very special simplified cases. What the
equilibrium traffic distribution exactly looks like in general, and even more whether it
is always stable so that we do not just deal with an endless chain of repercussions, are
still open questions.

On the other hand the derivation of traffic distributions is an important issue be-
cause it is implicit in the solution to problems such as the optimal distribution of lim-
ited funds for road capacity in space, and ultimately the design of the optimal city (see
section 9.5).

Some Simple Cases

As mentioned we need a lot of simplifications to be able to analyze the traffic distribu-
tion problem. The first assumption is that our region is a unit disk with a constant
population density which we normalize to unity. Each point in the region needs to
interact with each other point and the number of trips generated is supposed to be the
product of population densities in the origin and the destination locations. This is ac-
cording to the gravity or the entropy hypothesis dealt with elsewhere in this book. In
both hypotheses there is also an adverse dependence on distance or on transportation
cost. We will choose the gravity hypothesis as it is easier to analyse.

We also need a principle for the choice of routes. As already indicated, we
follow the general spirit of this chapter and assume that there is a given local isotropic
transportation cost in each location, and then we choose the routes by minimizing the
path integral of the cost along the route.

Suppose we fix a location of origin denoted by coordinates Then we have a
unique flow field of minimum cost paths from that particular origin to all the other
locations of the region. Denote the optimal flow field originating from the point by

If we take the gravity hypothesis and denote local population density by p(x,y),
then we have the sink density:
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The factors in the numerator are the population densities in the origin and

destination (x,y) locations, and the denominator is some power of transportation
cost along the minimum cost routes as defined by the appropriate Euler equations.

Equation (9.53) then renders a new differential equation for flow volume which as

we will see is a component in traffic.
Let us now take the radially symmetric case and moreover suppose that we have

where n is a positive or negative power. As Wardrop (1969) has shown, the
optimal routes can then be found as geodesics on a cone or a cylinder obtained by a
conformal map from the plane region. If the power is positive the routes obtained in
this way only apply to a 1/(1 + n):th sector of the disk, the rest are broken radials.
Even most of these cases become so messy that we only retain two illustrative cases:
Linear routes over the disk, given n = 0, and logarithmic spirals, given n =  –1.

Case I: Linear Routes. If the routes are linear, then the flow lines radiate from the

points of origin and we can introduce a new polar coordinate system for any
given origin

From these expressions we easily obtain

by Pythagoras's Theorem. The flow angle of the linear routes is already defined in
equations (9.54)-(9.55) so the direction field accordingly becomes:

where the equality to the gradient is easily obtained differenting (9.56) with respect to
x and y. As it is implicit in the choice of linear routes that the local transportation cost
is constant the cost for a trip is just proportionate to the distance function and so we
can put Moreover assuming unit population density as indicated we have

So, from (9.53) we get
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However, with the linear routes we have from (9.57)

We can directly apply the definition of the divergence operator to (9.59), so that

Now, by the formula for the total derivative

and we easily from (9.56) evaluate the Laplacian as

Therefore the condition on the divergence (9.60) just results in an ordinary differ-
ential equation

which is readily solved and yields

where T is an arbitrary constant of integration. As this constant is raised to the same
power as the distance measure it too has the dimension of a distance. In particular if we
assume that we deal with the case of an insulated area with no traffic going across its

boundary then T becomes the distance from the point of origin to the boundary
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curve in the direction because this makes the traffic intensity go to zero at the

boundary points.
The above expression (9.64) obviously does not work for the special case In

that case we have:

We have just solved part of the traffic derivation problem. What we got is the traffic

through a given point that started in the point only. In order to arrive at a measure
of all the traffic we have to consider all the different points of origin. We hence have to

integrate over all the points to obtain

as the measure of traffic in the point x,y, where S denotes the region studied. To
evaluate the integral we note that it is wise to revert to the coordinates defined
above. As the Jacobian is so that we have the substitution we can get
rid of the denominator in the above expression for the integrand. Hence from (9.64):

for If we likewise have from (9.65)

It is now time to reap the full profits from the assumption of circular symmetry, i.e.
that we deal with a region that is the unit disk. In that case it is relatively easy to
evaluate the inner integral in (9.67). We get

where
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are the line segments of the chord of the unit boundary circle through the point x, y,

Again (9.69) holds if For the case we get from (9.68)

We realize that the resulting traffic intensity after integration with respect to the

remaining variable will only depend on the radius vector r. This verifies that the
traffic distribution indeed has circular symmetry as expected.

The remaining integral (9.69) can be evaluated numerically. It can also be obtained
as a closed form solution for two cases: with and with The first case is the
easier one. From (9.70)-(9.71) we have the integrand

and so from (9.69)

which is a paraboloid turned upside down, with a maximum of traffic in the center,
successively reduced to zero at the unit circle boundary. This is natural as in any convex
area most straight line routes pass through the center.

The case with is slightly tougher. We then from (9.70)-(9.71) have the integrand

Accordingly we get

located at the distance  from theorigin.
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This integral is four times the so called complete elliptic integral of the second kind,
usually denoted E(r), so finally

A numerical expression for the elliptic integral is most easily stated in terms of the
power series

Compared to the previous unit exponent the concentration to the center is actually
the same, equal to as we see from (9.77)-(9.78) as compared to (9.74). However,
traffic decreases somewhat more steeply with distance from the center before it goes
down to zero at the unit circle boundary.

Total traffic created, i.e. the integral of (9.77) over the unit disk, can be calculated
to as compared to for the case with a distance dependence
(see Puu 1979). It might seem odd that more traffic is created when there is no adverse
effect from distance. The result is, however, not self evident, because distance depend-
ence of the gravity type, though being an obstacle to long distance trips, creates many
more local trips. In fact communication "within a point itself" goes to infinity, which
has been taken as an absurdity in the gravity model, but it is harmless in this context.

Case II: Spiral Routes. The other case where it is relatively easy to evaluate traffic
in closed form is when the optimal routes are logarithmic spirals, or rather half spirals
extending over an angle ofhalfthe disk. They arise when we have local transportation
cost that is reciprocal to the distance from the center. As the cost goes to infinity at the
center this represents avoiding a congested center of the region. The case is also of
interest in principle as it illustrates a different mode of problem solution.

With k = 1 / r the Euler equation (9.9) becomes

which implies and therefore has the obvious solution

where and a is a new integration constant. With polar coordinates
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and using as the path parameter we get the direction field

where the primes denote differentiation with respect to The last result is obvious

because from (9.80) we have From equations (9.83)-(9.84) we get the
following expression for the derivative of arc length with respect to the angular param-
eter

The unit flow field is therefore obtained through dividing the derivatives (9.83)-
(9.84) by (9.85). Thus:

where as before denotes the angle of the route. Note that, unlike the case of linear
routes, is not an invariant along the route. There however exists a spatial invariant,
the scalar product

as can easily be calculated from the expression (9.86) by scalar multiplication with the

vector Observe that as  is the angular coordinate for any position

vector, whereas is the angle for the route, the statement in (9.87) that the expression

be equal to i.e. a constant, says that any given route crosses all

circles of various radii under the same angle to the radius vector.
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In principle we could now, as we know the route directions, go on as before, solve

for    from its appropriate differential equation, and then integrate with respect to all

the points oforigin. In the present case it however is not so easy to solve that equation,
so therefore we illustrate a different strategy of actually circumventing having to solve
any differential equation at all.

Consider the condition on the divergence of flow (9.53) given an interaction which

we again take as dependent on distance traversed and given

Unlike the case of linear routes distance is no longer identical with cost, but we
keep the distance dependence for computational reasons.

Given the spiral routes we can easily integrate the distance along any optimal route:

since To make things simple we take so that from (9.88) and
(9.89) we have

From our previous result (9.87) we can also write

Now let us divide the unit disk S in an inner disk and an outer ring by a circle

C with radius 0 < r < 1. Suppose we integrate the divergence of the flow field over
he outer ring. From Gauss's Integral Theorem we get:
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where the right hand line integral is taken along the boundary circle that separates the

inner disk  from the outer ring We integrate the outward normal component of

the flow on the boundary circle. There is also the outer boundary circle of the whole

region S , but we already assumed that there would be no traffic with the exterior of the
insulated disk, so this other line integral vanishes. As to the right hand integrand we

note that                                  so

Now parameterizing the circle C by the angle we can express arc length as
Hence:

The minus sign comes from the fact that by integrating over the angle we traverse
the boundary in the negative direction. Using the result in the preceding double integral
we get

Suppose now that we had started from integrating an expression

which will be given an intuitive interpretation below, instead of just Then the
(9.95) would become

Finally, integrating (9.96) over all points of origin in the inner disk we get
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We hence arrived at a direct estimate oftraffic without ever solving the differential

equation for At least this expression is correct when all routes are outward, starting

in the inner disk and ending in the outer ring.
The method is more general and works in a large number of cases than might be

apparent. What we do in the left hand side is to "count" trips in terms ofthe divergence

In the right hand side we then get traffic intensity at the distance multipliedby
the perimeter of the circle at that distance.

Angel and Hyman(1976) introduced this procedure as "cordon crossing". The idea
is that we imagine a circle or "cordon" at a given distance from the center and count the
number of trips crossing that cordon. In order to arrive at the average density of cross-
ing (i.e. traffic) we obviously have to divide by the perimeter of the circle (the length of
the cordon).

As shown in Puu (1979), however, we cannot just count the number of trips in
terms of From the above formula we see that we also have to use weights and

the ring collapses to a circle, is exactly the weight we need. The corrected
procedure leads to a measure in terms of weighted cordon crossing.

therefore the appropriate integrand is as handy as
Before putting this to use in (9.97) our previous formula we have to consider the

following facts. First, we should not integrate for the destination points over an angle
larger than because no optimal spiral routes extend over a larger angle, a clockwise
route then being better than a counter-clockwise or vice versa. The integration over
only half the complete circle also means that we have to double the traffic measure
obtained, because otherwise we take care of counter clockwise trips only. There are
equally many clockwise. Second, we only discuss trips originating in the inner disk and
ending in the outer ring. There are also equally many trips in the reverse direction.
Therefore we have to double the measure once more.

In summary we have

Reverting to polar coordinates we have the substitutions and

Accordingly

integrate instead of  just  This makes intuitive sense. If the cordon
is a thin ring instead of just a circle, then the length of any trip through it and hence the
load oftraffic on the ring caused by it depends on the angle ofincidence. A radial route
implies minimal load, whereas a tangential route implies maximal load. In the limit as

In terms of our spiral routes we had  from (9.91),   and
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The integrand is however independent of the angular coordinates so we can evalu-

ate those two integrals to equal Hence

This can finally be evaluated in closed form. We now see the reason why we used
distance and not transportation cost to determine the adverse effect in the gravitation
law. Had we taken the more logical alternative then the difference in the denominator
of the integrand would have become a difference in the logarithms of the radii, and then
no closed form solution would be at hand. Anyhow, the final result is:

Unlike the two previous distributions derived in (9.74) and (9.77) there is no peak
load in the center of the region. The center is avoided by the spiral routes and therefore
peak load is at an intermediate distance between center and periphery. Peak load also is
much lower than in the previous cases, but as it is spread out over a whole ring rather

than concentrated in a point total traffic generated is again just as in the case
of linear routes and unit distance elasticity of interaction.

The direct method illustrated in this section is applicable to a wide range of cases
and is therefore of much more interest than might be imagined from the case illustrated.
Logarithmic spirals are particularly simple as they are monotonously inward or out-
ward and so cross each cordon circle only once. It is, however, possible to deal with
cases where routes originating in the outer ring just pass through the inner disk and
again end in the outer ring (as in the case of linear routes), or routes which originate in
the inner disk, pass through the outer ring and re-enter. We only have to count the
crossings by such trips twice. The method is useful for simulations, since very few
cases are possible to treat in terms of closed form solutions.

As expected, and unlike the previous distributions which result in a central concen-
tration of traffic, the present distribution represents a distribution of traffic which has a
maximum intensity at an intermediate distance from center to periphery. There is very
small load in the center, which is in contradiction with the assumed distribution of
transportation costs for the choice of the logarithmic routes (according to which the
center was infinitely congested). The reverse was the case with linear routes which
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arose under an assumption of constant transportation costs, but led to considerable
congestion in the center.

Therefore the case leading to traffic equilibrium is intermediate, but unlike these
extreme cases it is so complex as to defy closed form solution. Anyhow, we get a
feeling for the type of analysis by studying these extreme and ultimately simplified
cases.

9.5 Transportation Cost Metrics

General Considerations: Real Metric Spaces

It is now important that we realize the following fact: Any system of transportation
possibilities as embodied in a network can be fully represented by a suitable transpor-
tation cost metric.

The most natural metric is the Euclidean, which is implicit in all classical location
and land use analysis. The connections are then always straight lines, and the constant
distance (cost) loci become concentric circles. We should note that it is impossible to
literally build a physical network in this manner, because the roads would have to go
everywhere in all directions. So the entire region would have to be paved with roads,
and there would have to be an infinite number of junctions, where an infinity of roads
meet. The Euclidean distance function is, as we know:

where are the locations of the points to be connected.
A general distance metric is any nonnegative function, such that: (i)

The distance is zero if and only if (ii) The distance from to

does not exceed the sum ofthe distances from      to and from       to
for any (The triangle inequality.)

Another example, which in contrast to the Euclidean Metric is possible to construct
in reality, at least in finite mesh, is the rectangular grid or Manhattan Metric. The
distance along such an idealized regular network is the sum of the horizontal and ver-
tical distances taken separately.

A purely mathematical consequence of adding the horizontal and vertical distances
separately is that we can move farther - in an Euclidean sense - if we move a certain
network distance East-West or South-North, than if we move in a diagonal direction.
As a matter of fact all points of equal network distance are found to lie on a square
tilted 45 degrees. A family of such concentric tilted squares is the equivalent to the
circles of the Euclidean metric.

equals the distance from       to (iii) The distance from      to
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Note that, with a finite grid width, we do not reach all the points, just equally spaced
points on it. Moreover, it should be noted that, with a finite mesh density the density of
reachable dots on the tilted squares can only be increased in finite steps. The smaller
the mesh, the more points can be reached - and in the limit of vanishing mesh size all
points are reachable.

The form of the distance function for the Manhattan Metric is:

It is worth noting that the Manhattan Metric belongs to the same general family as
the Euclidean. The family name is Minkowski Metrics, and the general form is:

For the Euclidean case we have for the Manhattan When
the isodistance loci become pointed in the horizontal and vertical directions. They
could mimic a case with efficient trunk line routes in the East-West and North-South
directions, and a system of minor subsidiary roads that make points outside the net-
work accessible, though considerably less efficiently, and therefore at higher cost.

Common to all those metrics is a strong directional dependence confined to two
directions at right angles. Instead of a square grid we could, of course, also think of a
triangular grid, based on three directions intersecting at angles of 60 degrees. The con-
stant network distance loci have a hexagonal shape.

The metric for a triangular network can formally be written as:

where

The distance loci (or iso-vectures) in this case become hexagonal. If we wish we
can also make a Minkowski like metric out of this hexagonal structure, by putting:
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In particular, with we get the Euclidean circles back.
Regular networks are of interest as idealized cases when regions with uniformly

distributed population and economic activity have to be provided with means of trans-
portation. There is a theorem, known already to Launhardt (1889), that at junctions in
an optimally designed network the roads of equal capacity and equal traffic load must
meet at equal angles. Consequently, the regular networks come out as natural candi-
dates.

In the literature much has been written about network design when we consider
transport in terms of collection or discharge between a center and its surroundings. The
appropriate design for such a network is the ring-radial type. Mosler (1987) dealt ex-
tensively with those.

Historically this has been the typical layout for city regions with a central market
place and a round city wall (by the way a solution to the isoperimetric problem because
a minimum perimeter also provided for maximum defence efficiency). The natural
communication system for such a city was in terms of radials and orthogonals to those,
i.e. more or less concentric rings, as in a cobweb. In modern times it was the successive
walls, moats, and fortresses of growing cities that provided the space for the spacious
ring-roads which more or less solved the traffic problem of the modern city.

Like any other network, the ring-radial one has a finite mesh density, but there is no
harm in finding out its geometric properties, i.e. its metric, by assuming the mesh infi-
nitely dense.

Unlike the Euclidean, the Manhattan, and the other uniform networks discussed,
the ring-radial system has a given spatial layout, so we cannot just put the point of
departure at the origin of the coordinate system, because this would result in a simpli-
fied special case.

Hence, we have to specify both endpoints of a path, say and in polar
coordinates. It is now obvious that the optimal path may follow two different princi-
ples. It can follow one radial from the point of origin right into the centre, and another
radial right out to the destination. In that case the distance is:

The route can also traverse only the radial difference

but then it must be combined with a path on a ringroad corresponding to the angular
difference The distance traversed in the latter transit will be
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because the angular transit will be shortest at the smallest radius. Moreover, we have to
check that the angular difference is less than otherwise we have to take the comple-
mentary angle. This means going clockwise or counter-clockwise, whichever is short-
est. The distance by the combined radial and angular transit is:

Equating the distance expressions we get:

For an angular difference smaller than 2, the shortest route is a combined ring-
radial transit, for larger difference the transit is purely radial.

It should be emphasised that the different metrics can be combined or nested: For
instance a square network of main roads of finite mesh with capillary Euclidean dis-
tance feeding lines as already mentioned, or a droplike metric of airports with an Eucli-
dean or a Manhattan metric. See Puu (1997) for details. The different modes easily
combine to a new metric.

Refraction of Traffic. A combination of metrics is also present when traffic moves
to a major highway from the surrounding area on which a Euclidean metric is assumed.

Transportation cost per mile in this area will exceed transportation cost per mile

on the highway.

The question is in what direction, that is at what angle, should traffic approach the
highway.

This seemingly marginal problem has generated a literature in economic theory,
starting with Wilhelm Launhardt (1887, p. 20-21) and continued by Tord Palander
(1935), Heinrich von Stackelberg (1938), August Lösch (1940, 1954) and Karl Mosler
(1987).
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When traffic enters at an angle the saving in transportation cost is (Fig. 9.1)

Maximizing with respect to requires

As the ratio increases, approaches a right angle.
According to Lösch the feeder lines to the Great Northern Railroad in North Da-

kota have this angular orientation (Lösch 1954).

Further Remarks. The three types of metrics discussed, the square, triangular, and
ring-radial, share the property of having a strong directional dependence. In a continuous
setting it is not impossible to deal with such ansisotropy, though the approach is much
more powerful without a dependence on direction. It therefore is a good thing that most
road networks in reality if extended over larger areas than a city centre tend to have
such a strong stochastic element that any systematic directional influence from a strict
regularity vanishes. The isotropic approximation, i.e. an "Euclidean" metric therefore
becomes pretty good.
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Computational Aspects: Virtual Metric Space

The metrics inherent in a transportation network is one thing. Another is the transfor-
mation ofthe real geographical space to a virtual space for analytical or computational
purposes. Wardrop (1969) considered the transformation ofthe region to another (flat)
and Tobler (1963) to another (curved) space, Wardrop using complex analytical func-
tions, and Tobler using differential geometry. The purpose was to "straighten out" the
optimal routes to geodesics, or even lines in Wardop's case.

Conformal Mapping. We will first illustrate the case by the Wardrop issue which
links neatly to the direct traffic computations discussed above.

Wardrop considered cases where i.e. local transportation cost is a power
function of the distance from the origin. We already considered two cases,
n=0 and n=–1, where the routes became straight lines and logarithmic spirals respec-
tively.

We can now consider the class of functions in full generality. With a power func-
tion, and written in polar coordinates we get the transportation cost integral (9.6) to be
minimized as:

Suppose we introduce the new coordinate transformation

Then we can easily compute the derivative by differentiating the
above expressions (9.119) and (9.120). Substituting into the integral (9.118) and mul-

tiplying squared into the square root expression we easily obtain:

which in the new coordinates is an expression for finding minimum cost routes with
just a unitary (constant) local transportation cost. The solutions for the optimal routes
in the space
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are accordingly straight lines. Observe that we, unlike Wardrop, do not introduce any
complex functions; we just consider the result of the operation in the real plane. The
coordinate transformation projects radii vectors by a power function at the same time
as it multiplies angles. Optimal routes which are straight lines in the virtual space ac-
cordingly have mapped images that are curved in the original space.

It is, however, easier to deal with the straight lines in the virtual space. There is one
particular reason for this: The mapping is conformal, and therefore it does not change
angles between intersecting curves. In particular this applies to the angles under which
the optimal routes intersect various circles of constant radius. So, if we want to com-

pute the angle to be used in counting the weighted cordon crossings it

does not matter if we use instead, where is the angle of the straight

line route in the virtual space, and is the angle of the radius vector in that space as
already defined. As we have we can make things easy for us and
compute the angle in the virtual space where optimal routes become straight lines and
circles remain circles (see Puu 1979).

There are however two things to be noted. First, the Jacobian of the map
becomes

Therefore, even if population is uniformly distributed on the original space, the
distributions are no longer equal in the virtual space of analysis. They simply have to
be modified by the Jacobians of the mapping. If n > 0, then population in the virtual
space is moved closer to the center because the mapping packs the area that way. The
overall density is also decreased because the map also enlarges a sector of the disk to
the whole disk. The question is what becomes of the whole disk if each sector of a
given angle is enlarged to the whole disk. The solution is in terms of multilayer cover-
ing of the disk in terms of a Riemann surface. See Puu (1979).

In this context Angel and Hyman (1976) make an important observation: For an
isotropic local transportation cost function we can always apply a map such that the
optimal routes become geodesics in a virtual space, or we can apply a map so as to
make a nonuniform density of origins or destinations uniform, but we cannot do both at
once. Any map to attain one of the goals automatically brings a given distortion to the
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other. So, defining a virtual space by the coordinate transformation
automatically results in a distortion of the population densities at origin and destination
to be used at the simulations.

The second observation is the following. If the power n is positive, then the map
by multiplying angles enlarges only a sector of the disk to the entire

disk. If for instance n = 1 then half the disk is enlarged to the whole disk. Looking at
the situation in the original space we find that all the straight line routes in the virtual

(X,Y)-space are squeezed into a half disk in (x,y)-space. There is a deeper reason

behind this: There are no continuous routes that extend over an angle larger than half
the disk. The higher n is, the smaller the sector into which the continuous optimal
routes are squeezed.

But we must have connections also between points in the disk separated by larger
angles, so how is this solved? The answer is that there are alternative routes consisting
of broken radials which replace the smooth curves for angles that are too large. Actu-
ally, we would have found out this from the outset if we had considered more advanced
results from the calculus of variations, kinetic foci and the Jacobi conditions. See Puu
(1979) for details. Then we would have found that sufficiency conditions fail for smooth
routes covering too large angles.

As a consequence the traffic distributions are found by piecing two things together:
Linear routes in for small angle connections in the virtual space, and radial ones for
large angle connections.

Stereographic Projection. To illustrate Tobler's case consider a transportation cost
function

where

This is a bit like the case of logarithmic spirals, with maximum local transportation
cost in the supposedly congested center, though the cost does not go to infinity there.

The transportation cost along a parameterized route x(s), y(s) is
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and is not obviously dealt with. Neither does it help to revert to polar coordinates.
Instead we can introduce the following coordinate transformation into threespace:

It is easy to find that

for any values of x,y. Hence all points to which the plane is mapped lay on a sphere

with unit radius and center in the point u = v = 0, w = 1.
The plane is hence mapped onto the surface of a unit sphere through a so called

stereographic projection. Geometrically we can imagine the sphere as placed laying
tangentially on the origin in x,y-space. Then the points are mapped by a ray from the
north pole through the sphere to the plane. This mapping is one to one, except the north
pole itself on the sphere which corresponds to any point at infinity.

The most interesting thing to remember about the stereographic projection is that it
maps great circles on the sphere to circles on the plane. This is interesting because the
shortest paths on the sphere are the geodesic great circles, and should they turn up as
optimal routes, which they will, then the optimal routes in the original space obviously
become circular arcs.

The parameterized curve x(s), y(s) through the coordinate transformation

as defined maps to a parameterized curve u(s), v(s), w(s) embed-

ded in the unit sphere. We easily obtain the derivatives from (9.128)-(9.130):
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We can now calculate the arc length element on the unit sphere from (9.132)-(9.134)

This calculation is messy but elementary. All the products of vanish and
only the squares remain. We note that the infinitesimal arc in our original parameter on
the sphere equals the product of local transportation cost and the infinitesimal arc in
our original space.

Hence the transportation cost integral we have to minimize becomes

so that transportation cost in our original space indeed equals arc length on the virtual
space which now is the unit sphere. Shortest paths on the unit sphere are geodesics,
more specifically great circles.

If we consider a field of radiating paths in various directions from a certain point of
origin they hence become a set of great circles on the unit sphere. The characteristic of
such a bundle of great circles is that they all meet again in the point of the sphere
opposite to the point of origin.

As we noted, the images of great circles on the unit sphere by the stereographic
projection become circular arcs. Accordingly, in the original plane space the optimal
routes from a given point are a set of circular arcs which again meet in another point.
Such a field in physics is known from electrostatics as the dipole.

Hence, by using a curved virtual space in the spirit of Tobler we managed to solve
the routing problem in a very simple manner without carrying out any calculations at
all, just by the knowledge of the character of shortest routes on a sphere.
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9.6 Concluding Remarks: Road Investment

Perhaps Continuous Space Modelling (CSM) is best at providing an overall picture of
the direction and volume of traffic flows generated by a given distribution of traffic
sources and sinks. To translate this into concrete proposals for road investments, say,
would require supplementary studies in a narrower and presumably discrete context.

Put another way, CSM can lead us to an understanding of the economics of a situa-
tion, while falling short of supplying engineering answers. Advances in computer im-
age technology may however lead us to this goal in the future.

Still it is possible to formulate a few issues concerning road investments in the
continuous space format.

We consider two stylized scenarios. The first deals with increasing the capacity of
an existent road network, the second with increasing the density of the network.

If capacity is the issue, which is particularly appropriate in a congested urban area,
then local transportation cost k will depend on the ratio of traffic f, as defined above, to
road capacity, for which the areal density of road capital c can be taken as a proxy:

A possible functional form will be

which implies that when traffic goes to capacity then as speed goes to a
total stand still.

Minimizing total transportation cost:

subject to a total road investment budget:

leads to a Lagrange problem
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which is solved by

implying

Capacity should then be made proportional to traffic flow throughout. Notice, how-
ever, the hidden assumptions in (9.139) that capacity costs the same per unit in all
locations and that transportation cost is the same function of flow/capacity everywhere.

In the second scenario, increasing the density of the network rather than the capac-
ity of an existent network, we can specify the local transportation cost function in the
following way: Disregarding congestion, and hence taking cost as proportionate to the
distance traversed, we note that whatever the density ofthe network it is always at least
necessary to traverse the Euclidean distance, normalized to unity. If the network is
sparse, adding a new short-cut saves the average necessity ofdetour-taking to a consid-
erable degree.

However, the denser the network already is, the less will be saved in terms of de-
tours. Accordingly there are decreasing returns from road investments, and we can
specify local transportation cost in terms of this type of investment b as

where k(b) is a decreasing concave function with a positive infimum as for
instance

The equivalent to (9.139) now reads
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Maximizing (9.146) with respect to b subject to the budget constraint

now leads to the Lagrange problem

which is solved by

or

Thus with k = 1+ 1/b as in (9.145):

or

Road capital should be distributed in proportion to the square root of the measure of
traffic rather than to traffic. In Puu (1979) this rule was tested for the sparsely popu-
lated parts of Sweden where congestion was of little importance and the necessity of
detour taking was considerable. The fit to the square root rule was astonishingly good,

with
This illustrates that one might get some general information by CSM about such

issues as the distribution of road capital. Still, this is when the traffic distribution is a
given datum. The tough part of analysis still remains as we noted in section 9.4.

Changing the distribution of road capital in terms of road density and/or road ca-
pacity or density automatically changes the distribution of local transportation cost. As
a consequence the choice of routes and the traffic distribution itself changes. The diffi-
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culty, however, remains even in discrete modelling where most evaluations of road
investment programs by that approach take traffic as a given datum.

These are highly stylized scenarios. The modelling of how transportation cost actu-
ally depends on local conditions in order to arrive at realistic functions k(f / c) and

k(b) is an engineering job. CSM can point research in this direction - but will not do
this job as well.
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10 LOCATION MODELS IN
TRANSPORTATION

Mark S. Daskin and Susan H. Owen

10.1 Introduction

Transportation as a derived demand and the relation to location
choices

The demand for transportation services is a derived demand (Manheim, 1979). In
other words, the demand for such services arises from the need to move goods and/or
people from one location to another and not from some inherent desirability of
transportation in and of itself. Transportation is necessary only because people
and/or goods are not located where they need to be when they need to be there.

For example, the need for either public or private commuter transportation in the
morning and evening rush hours arises from the fact that an individual’s residence
and his/her work location are rarely the same. Therefore, people need to travel from
their homes to their workplaces in the early morning and vice versa in the late
afternoon or evening. Similarly, the need to ship automobiles arises from the fact
that they are produced in a limited number of assembly plants – typically only one or
two plants produce a particular vehicle – and are sold throughout the country. Thus,
cars need to be shipped from assembly plants to dealers for sale to customers. As a
final example, only a few locations throughout the country are amenable to growing
grapefruits. Thus, there is a need to transport the fruit from farms in Florida and
California to locations throughout the remainder of the country.

Since the demand for transportation services arises from the spatial mismatch
between where people are and where they want to be or where products are
manufactured (or grown) and where they are sold (or used in subsequent
manufacturing processes), it is important to study the factors that influence location
decisions. Clearly, location decisions determine, in part, what transport facilities will
be used. Note, however, that the existence or lack of good transport services may
also influence location decisions. For example, the presence of a railroad line with
at-grade crossings may dictate the need for additional emergency medical service
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(EMS) bases in a community to ensure that residences on both sides of the tracks are
adequately served even if trains are blocking the roadway.

While transportation systems and facility location decisions clearly interact, a
complete analysis of the factors influencing location choices is beyond the scope of
this chapter. Thus, we have elected not to examine residential location choices. The
reader interested in this topic is referred to the seminal work of Lerman (1976) and
subsequent research on the topic. Instead, the focus of this chapter will be on models
that can be used to assist in locating public and private sector facilities. We use the
word “assist” deliberately. Location decisions are strategic in nature. As such, there
are typically many factors that affect these decisions, some of which are difficult or
impossible to quantify. Mathematical models of the sort outlined below are therefore
valuable tools that assist decision-makers; they cannot be considered a replacement
for decision-making expertise and strong management.

The remainder of this chapter is organized as follows: We conclude this section
with a discussion of four typical facility location contexts in which the models we
will be discussing might be of use. In section 10.2 we present a taxonomy of facility
location problems. This classification scheme helps us to further limit the scope of
the chapter and to identify areas of emerging research. In section 10.3, we outline a
number of classical facility location problems and formulate them using integer
linear programs. Section 10.4 discusses several solution algorithms for these
models. In section 10.5 we discuss limitations of the basic models and extensions to
these models. Finally conclusions and directions for future work are outlined in
section 10.6.

Examples of facility location decision contexts

The location of ambulance bases has been one topic of considerable attention in the
location literature (Eaton and Daskin, 1980; Eaton et al., 1985). The problem is
typically to determine the number and location of ambulance bases needed to ensure
adequate service to the population at hand. Adequate service is often defined in
terms of whether or not an ambulance can travel from its base to the location of an
emergency within some specified time limit (e.g., five minutes). Sometimes more
complex models are employed which consider travel from the base to the emergency
site as well as travel from the emergency location to the hospital. Emergency
services have also led to the incorporation of stochastic demand and service time
elements into location models (Fitzsimmons, 1973).

The location of non-emergency public facilities has also been the subject of
considerable attention within the location literature. Maze et al. (1981, 1982) study
the location of bus garages. In such problems the objective is often to minimize the
total deadhead time of buses, or the time a bus spends driving between its garage and
the beginning and ending points of its route. The problem is often complicated by
the presence of multiple bus types. A number of constraints typically limit the
possible assignments. These constraints include the following: limits on the overall
garage capacity in different locations and at different times of the day, restrictions on
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the types of vehicles that can be assigned to each garage (since maintenance is
performed on the buses at the garages and not all garages will be equipped to
maintain all vehicle types), and minimum and maximum numbers of vehicles of each
type that can be assigned to each garage.

In the private sector, facility location models have been used to locate production
plants, warehouses and trans-shipment facilities. For example, in locating rail ramps
(locations at which finished automobiles are transferred from rail cars to truck for
final delivery to dealers) one needs to determine how many rail ramps to have
throughout the network and where they should be. The objectives typically consider
both cost and customer service. This problem is further complicated by the presence
of multiple products and by the need to utilize the rail and truck fleets efficiently.

Finally, there are many cases in which facility location and network design
interact. For example, the number and location of airline hubs determines the
configuration of the network to a large degree (Flynn and Ratick, 1988; Kuby and
Gray, 1993). Indeed, the location of hub facilities has become a subfield in its own
right and is discussed in section 10.5 below.

10.2 A taxonomy of facility location problems

In this section we present a taxonomy of facility location models. We note that
location problems and the models that represent them can be classified in a variety of
ways. The scheme we present is similar to that outlined by Daskin (1995) and by
Brandeau and Chiu (1989) and Krarup and Pruzan (1990). In the context of this
taxonomy, we highlight those topics that will be the focus of the remainder of this
chapter and identify areas of location research that are beyond its scope.

Continuous vs. network location models

In some situations, it is appropriate to allow facilities to be located anywhere within
a particular space. Sometimes demands are also modeled as being continuously
distributed through the space in question. Such models are continuous models.
These models are most appropriate when one simply wants to get a feel for how
many facilities might be needed and roughly where they should be located. The
Weber problem (Weber, 1929), that of finding the center of gravity of a set of
discrete points, is the prototype continuous location problem. A significant portion
of continuous location research, particularly that which attempts to incorporate
vehicle routing costs into location models, is based on geometric probability theory
(Kendall and Moran, 1963)

Continuous location models present both computational and practical difficulties.
From a computational perspective, continuous models often result in non-linear
formulations that are difficult to solve, particularly when more than one facility is
being located. From a practical perspective, such models often suggest locations that
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are infeasible (e.g., locating a distribution center in the middle of a large lake).
While a number of authors (e.g., Aneja and Parlar, 1994; Batta, Ghose and Palekar,
1989; Larson and Sadiq, 1983; Hansen, Peeters and Thisse, 1982; and Hurter,
Schaefer and Wendell, 1975) have developed continuous models with forbidden
regions or barriers to travel, such models pose even greater computational burdens.

In contrast to continuous location models, network location models assume that
facilities and demands are located on the nodes or links of a network. In most cases,
demands are assumed to be located on the nodes of the network. A key question that
often arises is whether or not the objective function is degraded if one limits the
search for facility locations to the network nodes. Hakimi (1964) was the first to
show that for one common network location problem – the P-median problem
discussed below – locating facilities only on the nodes does not degrade the solution.
Limiting the search for facility sites to the network nodes is so computationally
advantageous that we often do so even when this will degrade the solution. Often
this limitation is further justified by the presence of a finite set of sites at which the
decision-maker is willing to consider locating facilities.

Discrete location problems assume that demands are located at discrete points in
a space and that facilities are also to be located at discrete points. A distance metric
(e.g., the Euclidean metric) is used to compute the distances between these facility
sites and demand nodes. Many of the models and algorithms developed for network
location problems can be applied to discrete location problems as well.

This chapter will concentrate on discrete and network location problems.

Network vs. tree location problems

Within the class of network problems, problems on trees are often considered as a
special case. There are several reasons for this. First, and perhaps most importantly,
many location problems that are NP-hard on a general network can be solved in
polynomial time when posed on a tree. Second, the polynomial tree algorithms can
sometimes be used as the building blocks for (heuristic) algorithms for problems on
more general graphs. Third, some transportation networks, particularly those in
developing countries, and a significant number of telecommunication networks have
a tree structure. Finally, a number of problems that are seemingly unrelated to
facility location can be modeled as location problems on trees or other specially
structured graphs. For example, Watson (1996) modeled the benefits of rationalizing
the number of different steel coils an auto manufacturer purchases as a location
problem on a line.

To retain generality, the focus of this chapter is on location problems on general
networks and not on the specialized algorithms that arise in locating on trees.
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Static vs. dynamic problems

All of the classical location models discussed in section 10.3 below are static models,
assuming that decisions are made at one time and that the cost, distance and demand
data are independent of time. In reality, model inputs change over time and
decisions are made over an extended horizon. Decisions made in one period often
preclude future options. Thus, opening a facility in year X may mean that the facility
must remain open throughout the remainder of the planning period.

While our focus will be on static models, we will briefly discuss issues related to
dynamic location problems in section 10.5

Deterministic vs. stochastic

Not only are classical location models static, but they are also deterministic in that
they assume that (1) all model inputs are known with certainty and (2) there is no
randomness underlying the process by which demands arise and customers are
served. A significant branch of the literature has focused on ways of relaxing these
two assumptions. Section 10.3 summarizes the traditional deterministic models;
section 10.5 outlines a number of extensions of these models that account for both
uncertainty in problem inputs as well as randomness associated with the underlying
demand or service processes.

Single vs. multi-objective

Finally, most models use a single objective. However, since facility location
problems are strategic in nature, there are likely to be a number of different
constituents interested in the location decisions. These constituents often have
different and sometimes conflicting objectives. Sometimes conflicting objectives
simply seem to be inherent to the problem at hand. Erkut and Neuman (1989) argue
that the location of undesirable facilities is an inherently multi-objective problem.
For example, in locating solid waste repositories, we would like to minimize the
impact of these facilities on residential areas. We would also like to minimize the
cost of hauling waste to the sites. These two objectives conflict since much of the
solid waste in an urban area is generated at residential units.

In section 10.3 we summarize traditional single objective models while section
10.5 outlines a number of the issues associated with multi-objective problems.

10.3 Classical location models

In this section we outline three classes of objectives that are typically used in facility
location modeling. Within each class a number of different objective functions and
models are identified. Key properties of these models are also discussed.
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Covering models

The simplest class of facility location problems arises from the notion of coverage.
Covering models are appropriate when there is some critical service distance (or time
or cost). Demands that can be served within this distance are said to be covered,
while those that are not are uncovered. Typical covering problems include: finding
the minimum number of facilities needed to cover all demand nodes (the set covering
problem); finding the location of a fixed number of facilities to maximize the number
of covered demands (the maximal covering problem); and finding the locations of a
fixed number of facilities to minimize the maximum distance between a demand
node and the facility assigned to cover its demands (the P-center problem).

Perhaps the earliest references to location problems are Biblical and relate to this
class of models. In Numbers 35:9-15 as well as Exodus 21:13, Deuteronomy 4:41-
43 and Deuteronomy 19:1-13, the Bible commands the Israelites to create cities of
refuge to which an individual who inadvertently kills another person can flee from
retribution from the family of the deceased. They are commanded (Numbers 35:9-
15) to identify 6 such cities, three on the west side of the Jordan river and three on
the east side. Later (Deuteronomy 4:41-43), the Bible identifies the three cities on
the east side of the Jordan, but since “Their precise location is not known,” (Plaut,
1981, p. 1344) we cannot infer much about the access that they provided to different
populated areas. The commandments regarding the cities to the west of the Jordan
are more explicit (Deuteronomy 19:1-13). The Israelites were to “survey the
distances, and divide into three parts the territory of the country ... so that any
manslayer may have a place to flee to ... Otherwise, when the distance is great, the
blood-avenger, pursuing the manslayer in hot anger, may overtake him and kill
him....” (Plaut, 1981, p. 1467). Clearly the cities were to be dispersed evenly
throughout the countryside and were to be made accessible to the populace.

The placement of the cities of refuge is actually a dynamic location problem since
Deuteronomy goes on to say “And when the Lord your God enlarges your territory
... then you shall add three more towns to those three.” (Plaut, 1981, p. 1467). We
note that there is some controversy about whether this suggests an additional three
cities (for a total of nine) or whether it refers to the three cities east of the Jordan
River. In either case, the cities of refuge were to be located so that the maximum
distance someone would have to travel to reach one would be less than the distance a
pursuer was likely to travel “in hot pursuit” after learning of the death of his/her
relative. As indicated above, problems in which there is a distance (or time or cost)
beyond which service is unacceptable and below which it is acceptable are covering
problems. In the modern era, such problems typically arise in the location of
emergency service facilities including ambulances, fire stations, and police units.

The simplest location covering problem is the set covering problem (Toregas et
al., 1971). Here the objective is to find the locations of the minimum number of
facilities so that all demands are covered within the acceptable distance. To
formulate this problem we define the following inputs and sets:
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I = the set of demand Points, indexed by i

J = the set of candidate facility locations, indexed by j

= distance between demand node i and candidate site j

= coverage distance

= the set of all candidate locations that can cover demand node i

and the following decision variable

With this notation, the set covering problem can be formulated as follows:

Minimize

Subject to

The objective function (10.1) minimizes the number of selected facilities. Constraint
(10.2) ensures that each demand node is covered by at least one selected site.
Constraint (10.3) is an integrality constraint. We note that the objective function can
be generalized by including a site-specific cost as a coefficient of the decision
variable. The problem would then be that of finding the minimum cost set of facility
sites that cover all demand nodes at least once.

The set covering problem is NP-hard even when all facility costs are identical.
Fortunately, the linear programming relaxation of the set covering problem as posed
above often results in an all-integer solution. When the LP relaxation is fractional,
typically only a few branches in a branch and bound algorithm are needed to obtain
an optimal all-integer solution. Often a variety of row and column reduction rules
(see Daskin (1995) for a discussion of such rules) can be used to reduce the size of
the problem considerably. Two such rules warrant particular discussion. First, let

In other words, is the set of demand nodes covered by a

facility at candidate site j. If then candidate site j dominates candidate

site k and we can set Second, if then any facility that covers

node i also covers node h. In this case, we can eliminate row h from the constraint
matrix.



328 Handbook of Transportation Science

Finally, we note that the optimal solution to the set covering problem when
facilities can be located on the links as well as the nodes will often be better (i.e., it
will require fewer facilities) than the solution to the problem when facilities are
restricted to the nodes. This is illustrated by the simple network shown in Figure 10-
1. If the coverage distance is 10 and facilities can only be located on the nodes, then
two facilities are needed: one at A and one at either B or C. If we can locate on the
links as well as the nodes, a facility located ten units from node A and two units to
the left of node B would cover all three demand nodes. In this simple example, we
can halve the number of facilities by locating on a network link. Church and
Meadows (1979) show how the node set can be augmented by a finite set of network
intersection points so that locating on the set of nodes or network intersection points
will always be as good as locating anywhere on the links.

One problem with the set covering model is that it often dictates locating more
facilities than can be afforded. Typically many of the facilities that are identified
cover a small fraction of the total demand. For example, if we try to cover the 150
largest cities in the United States (with a combined population of over 58 million
people) within 250 miles, 18 facilities are needed. If we relax the requirement that
all demands be covered and require only 98% of the demands to be covered, we can
reduce the number of required facilities by 16.7% to 15 facilities. We can halve the
number of required facilities and use only 9 sites if we could get by with covering
only 86% of the total demand. Another problem with the set covering model is that
it fails to discriminate between large and small demand nodes. Thus, covering New
York City (with a population of 7.32 million people) is just as important in the set
covering problem as is covering Pasadena, Texas (with a population under 120,000).

These two problems have led researchers to consider relaxing the requirements of
the set covering model. As indicated above, one way to reduce the number of
required facilities is to relax the constraint that all demands be covered. The
maximal covering problem (Church and ReVelle, 1974) finds the locations of a
specified number of facilities that maximize the number of covered demands. There
is a subtle but important distinction between the problem statements for the set
covering and maximal covering problems. The set covering problem requires that all
demand nodes be covered while the maximal covering problem maximizes the
number of covered demands. As such, the maximal covering problem distinguishes
between large and small demand nodes.

To formulate the maximal covering problem we define the following two
additional inputs and one decision variable:
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= demand at node i

P = the number of facilities to locate

With this additional notation, the maximal covering problem may be formulated as
follows:

Maximize

Subject to

The objective function (10.4) maximizes the number of covered demands.
Constraint (10.5) states that demands at node i cannot be counted as covered unless
we locate at one of the candidate sites which covers node i. Constraint (10.6) states
that we are to locate P facilities. Constraints (10.7) and (10.8) are standard
integrality constraints. We note that constraints (10.8) can be relaxed to simple
upper bounding constraints. Also, by solving the maximal covering problem for
values of P from 1 up to the number needed for full coverage, we can trace out the
tradeoff curve between coverage and the number of facilities used – a proxy for the
cost of the system.

The maximal covering problem is also NP-hard (Megiddo, Zemel and Hakimi,
1983), but it can generally be solved effectively using heuristics of the sort outlined
in section 10.4 or using Lagrangian relaxation embedded within a branch and bound
algorithm (Daskin, 1995; Daskin and Owen, 1998; Galvão and ReVelle, 1996). As
in the case of the set covering problem, the objective function can be improved if we
allow location on network links. For example, if the coverage distance is 6 in figure
10-1, the objective function for the maximal covering problem with P=1 and
facilities restricted to the nodes would be 100 (with the facility located at node A).
However, if we can locate on the links as well as the nodes, the facility could be
located between nodes A and B and the objective function would increase to 160.
As before, if we restrict candidate sites to the node set augmented by the set of
network intersection points defined by Church and Meadows (1979), the solution
will be as good as that obtained by allowing sites to be anywhere on the links.

A second way to relax the requirements of the set covering problem is to increase
the coverage distance. The P-center problem (Hakimi, 1964, 1965) locates a
specified number of facilities (P) so that the maximum distance between a demand
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node and the nearest facility is minimized. As in the case of the set covering model,
this model considers demand nodes and not the demand levels at the nodes.

The P-center problem comes in a variety of flavors. If candidate sites are
restricted to the set of nodes, we have the vertex P-center problem, while the
problem in which facilities can be anywhere on the network is termed the absolute
P-center problem. Both versions can be either weighted (if the demand nodes have
different weights and the objective function is defined in terms of the maximum
demand-weighted distance) or unweighted (if all demand nodes have identical
weights).

To formulate the weighted vertex P-center problem we need to introduce two
additional decision variables.

W = the maximum distance between a demand node
and the facility to which it is assigned

With these additional variables, the P-center problem can be formulated as follows:

Minimize
Subject to

The objective function (10.9) minimizes the maximum demand-weighted distance
between a demand node and the facility to which it is assigned. Constraint (10.10)
stipulates that P facilities are to be located. Constraint (10.11) requires that each
demand node be assigned to exactly one facility. Constraint (10.12) is a linkage
constraint stating that demands can only be assigned to open facilities. Constraint
(10.13) defines the maximum demand-weighted distance in terms of the assignment
variables. Finally, (10.14) and (10.15) are integrality constraints. Constraints
(10.15) can be relaxed to simple upper bounding constraints.

For fixed values of P, the vertex P-center problem can be solved in time

since we can enumerate each possible set of candidate locations in this time.
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Clearly, even for moderate values of N and P, such enumeration is not realistic and
more sophisticated approaches are required. For variable values of P, the problem is
NP-hard.

Assuming integer distances, the unweighted vertex or absolute P-center problem
is most often solved using a binary search over a range of coverage distances
(Handler and Mirchandani, 1979; Handler, 1990). For each coverage distance, a set
covering problem is solved.

Comments on covering models

The binary nature of coverage – either a candidate site covers a node within the
coverage distance or it does not – is both an advantage and a liability for models
within this class. On the positive side, this characteristic results in constraints that
often have zeros or ones as coefficients, contributing to the relative ease with which
such models can often be solved. On the other hand, the binary nature of coverage
often means that there are multiple alternate optima for a problem. In the case of the
P-center problem a single demand node/facility site pair defines the maximum
distance and many sets of facility locations and demand assignments may result in
the optimal objective function value. This can lead to excessive branching if branch
and bound algorithms are not designed appropriately. Similar problems exist for the
set covering problem. Plane and Hendrick (1979), Daskin and Stern (1981),
Benedict (1983), and Daskin, Hogan and ReVelle (1988) discuss a number of
hierarchical extensions of covering models that select from among the alternate
optima a solution that optimizes a secondary objective (e.g., maximizing the number
of demand nodes that are covered more than once).

Most models within the class of covering models are very sensitive to network
coding. For example, adding a demand node to a set covering problem (perhaps with
a very small demand) may alter the locations selected and may dictate the need for
an additional facility. In an effort to circumvent this sort of problem, Daskin and
Owen (1998) recently introduced two new covering models. The partial set
covering problem finds the locations of the minimum number of facilities needed to
cover a specified fraction of the demand nodes or the total demand. The partial
covering P-center problem finds the locations of a specified number of facilities so
that the maximum distance between a demand node within the “service set” and the
nearest facility is minimized. The total number of nodes or demands within the
service set must equal or exceed some user-specified value.

Average distance models

Covering models are appropriate for cases in which adequate service is defined by
the maximum time or distance between a demand and the facility serving it. In many
cases, however, the total (or average) distance for all nodes is more important. For
example, in shipping goods from plants to distribution centers, an activity that often
uses truckload shipments, the total distance traveled between plants and distribution
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centers is likely to be of greater concern than is the maximum distance. In this
section, we discuss two classic problems within the class of average distance models.

The P-median model (Hakimi, 1964, 1965) finds the locations of P facilities to
minimize the demand-weighted total distance between demand nodes and the
facilities to which they are assigned. This model may be formulated as follows:

Minimize

Subject to

The objective function (10.16) minimizes the demand-weighted total distance. Note
that for a fixed total demand, this is equivalent to minimizing the demand-weighted
average distance. Constraints (10.17) through (10.19) are identical to (10.10)
through (10.12) of the P-center problem. Constraints (10.20) and (10.21) are
integrality constraints. Again, constraints (10.21) can be relaxed to simple non-
negativity constraints.

Like the P-center problem, the P-median problem can be solved in polynomial
time for fixed values of P, but is NP-hard for variable values of P (Garey and
Johnson, 1979). Unlike the covering problems outlined above, however, at least one
optimal solution to the problem consists of locating only on the nodes of the network
(Hakimi, 1964). This can readily be shown by assuming that a facility is located
optimally between nodes A and B. Let be the demand served by the facility

that enters the link via node A and define        similarly in terms of node B. Assume

without loss of generality that                 Then, moving the facility closer to A will

not increase the objective function. Thus, we can convert any solution in which a
facility is located on a link to a nodal solution without degrading the objective value.

The P-median problem fails to account for the fixed costs associated with locating
facilities. This is rectified by the fixed charge location problem. To formulate this
problem we define the following three additional inputs:

=   fixed cost of locating a facility at candidate site j

= capacity of a facility at candidate site j

= cost per unit demand per unit distance
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With this notation, the capacitated fixed charge location problem can be formulated
as follows:

Minimize

Subject to

The objective function (10.22) minimizes the sum of the fixed facility location costs
and the total demand-weighted distance multiplied by the cost per demand per unit
distance. Constraints (10.23) and (10.24) are assignment and linkage constraints.
Constraint (10.25) states that the total demand assigned to a facility must not exceed
the capacity of the facility. Constraints (10.26) and (10.27) are standard integrality
constraints. If (10.27) is enforced as a binary constraint, the model assumes facilities
are singly sourced. Relaxing this constraint allows demands to be assigned to
multiple facilities. We also note that constraint (10.24) is not needed in this integer
programming formulation as constraint (10.25) will force demands to be assigned
only to open facilities. However, including constraint (10.24) in the formulation
significantly strengthens the linear programming relaxation of the model. If
constraint (10.25) is removed, we are left with the uncapacitated fixed charge
location problem. In this case, demands can always be singly sourced, even if
(10.27) is relaxed.

Undesirable facility location models

The covering and average distance models discussed above assume that locating
facilities as close as possible to demands is desirable. For many facilities this is the
case. However, for undesirable facilities (e.g., prisons, power plants, and solid waste
repositories) at least one objective involves locating facilities far from demand
nodes. In this section we summarize two such models.

The maxisum location problem seeks the locations of P facilities such that the
total demand-weighted distance between demand nodes and the facilities to which
they are assigned is maximized. This model may be formulated as follows:

Maximize
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Subject to

This formulation is identical to that of the P-median problem with two notable
exceptions. First, the objective is to maximize the demand-weighted total distance
and not to minimize it. Second, constraint (10.32) has been included. In the absence
of constraint (10.32) demands will be assigned to the most remote facility to
maximize the demand-weighted total distance. Constraint (10.32) ensures that
demands are assigned to the nearest selected facility. In this constraint, is the

index of the farthest candidate location from demand node i. Constraint (10.32)
then states that if the closest facility to demand node i is opened then demand
node i must be assigned to that facility or to a closer facility.

Finally, we outline the P-dispersion model. Whereas all of the models previously
presented deal with the distance between demand nodes and candidate sites, the P-
dispersion model is concerned only with the distance between sites. The objective is
to maximize the minimum distance between any pair of sites. Such a model is useful
in locating military bases (e.g., nuclear weapon silos) as well as franchise outlets. In
the latter case, the objective is a proxy for minimizing the competition between
outlets.

To formulate this model we require the following additional input ( M ) and
decision variable ( D ):

D = the minimum separation distance between any pair of facilities

With this notation, the P-dispersion model may be formulated as follows:

Maximize

Subject to

M = a large constant
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The objective function (10.35) maximizes the distance between the two closest
facilities. Constraint (10.36) requires that P facilities are located. Constraint (10.37)
defines the minimum separation between any pair of facilities in terms of the
location choices. If either      or is zero, the constraint will not be binding. If

both are equal to 1, the constraint is equivalent to Constraint (10.38) is a

standard integrality constraint.

10.4 Solution algorithms for traditional models

In this section, we briefly outline three broad classes of algorithms that have been
applied to location problems such as those formulated in section 10.3 above. Note
that these approaches are not limited to location problems. The general ideas have
been applied to a large number of combinatorial optimization problems. We
illustrate the development of these algorithms using the P-median model.

Greedy heuristics

The simplest algorithm for solving many location problems is a greedy adding
algorithm. In this approach, we find the best site at which to locate the first facility
using total enumeration. This can clearly be done in an amount of time that is
proportional to the number of candidate facility sites. The location of the second
facility is then identified by enumerating all possible locations for that facility,
holding the location of the first facility fixed. Each subsequent facility is located in
an identical manner. Figure 10-2 is a flowchart of this approach.

Just as one can add facilities in a greedy manner (always doing what is best given
the locations of the facilities that have already been included in the emerging
solution), we can also drop facilities in a greedy manner. In other words, we can
begin the algorithm with facilities tentatively located at all candidate sites. We then
remove facilities one at a time. In each case, we remove the facility whose
elimination from the current set will result in the smallest possible increase in the
demand-weighted average distance, the P-median objective. We continue in this
manner until exactly P facilities remain in the solution.

Improvement heuristics

While greedy algorithms can generate a feasible solution quite quickly, they often do
not perform particularly well. A number of algorithms have been devised to improve
upon a feasible solution generated from a greedy algorithm, randomly or by some
other means.
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Teitz and Bart (1968) proposed the use of an exchange or substitution algorithm
for the P-median problem. Their algorithm is similar in concept to the two-opt
algorithm for the traveling salesman problem (Lin and Kernighan, 1973). The basic
idea of an exchange algorithm is to replace a node in the current set of selected sites
with a node not in that set. If the replacement results in an improved objective value,
the change is accepted as the new incumbent solution; otherwise, the change is not
made and the solution reverts to the original incumbent solution. Generally, the
procedure continues until it is impossible to find an exchange that will improve the
objective function.

In implementing an exchange algorithm, there are a number of options. For
example, (1) one can accept the first exchange that improves the objective function,
or (2) once we identify a node in the solution set whose removal will improve the
solution, we can search for the best possible replacement for that node, or (3) we can
search for the best possible exchange at each iteration of the algorithm. If option (1)
or (2) is adopted, there are additional implementation choices related to initializing
the indices over which we search for the next exchange. For example, should we
search for the next removal and replacement nodes by returning to index 1 or should
we continue from the current index values. In short, there are many ways to
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implement an exchange algorithm and the details will affect the solution that is
attained. In addition, the exchange algorithm can be executed after the greedy
algorithm has terminated or after each new node is added during the execution of the
greedy algorithm.

While the exchange (or substitution) algorithm is similar to many other
improvement algorithms used as heuristics for combinatorial optimization problems,
the neighborhood search algorithm (Maranzana, 1964) exploits the spatial-nature of
location problems. In the neighborhood search algorithm, we again begin with an
incumbent solution. Demand nodes are then assigned to the nearest facility. The set
of nodes assigned to a facility constitutes a “neighborhood” around that facility.
Within each neighborhood, we then solve a 1-median problem optimally. (This can
readily be done by total enumeration, if necessary.) Facilities are then relocated to
the optimal 1-median locations within each neighborhood. If any facility sites
change as a result of this procedure, new neighborhoods can be defined and the
algorithm is repeated. The procedure continues until no change in the facility sites or
neighborhoods is possible. Figure 10-3 is a flowchart of this algorithm.

Note that the demand-weighted total distance can decrease as a result of either the
reassignment of demands to facilities (the formation of neighborhoods) or the
relocation of facility sites. Also note that while the exchange algorithm relocates one
facility at a time, the neighborhood search algorithm may result in multiple facility
relocations in each iteration. Finally, it is worth noting that the neighborhood search
algorithm considers exchanges of facilities only within a neighborhood. As such, it
is a more restricted search than the exchange algorithm outlined above.

Hansen and Mladenovic (1997) present a variable neighborhood search algorithm
for solving the P-median problem. In their context, a neighborhood is not the set of
nodes assigned to a facility; rather, the neighborhood at a distance of k from a current
solution is the set of solutions that can be obtained from the current solution by
substituting k nodes not in the solution for k nodes that are in the solution. The
algorithm performs an intensive local search (similar to the exchange algorithm
outlined above) on the current solution and then diversifies the search by randomly
selecting a solution from a neighborhood at a distance of k from the current best
solution. The process continues, incrementing k, until some exogenously specified
maximum value of k is attained. The algorithm compares very well with
conventional heuristics as well as tabu search. Finally, we note that Densham and
Rushton (1981) propose a number of data structures designed to expedite the search
for good exchanges for P-median problems.

Lagrangian relaxation

While greedy adding or dropping algorithms coupled with improvement heuristics
can find feasible solutions to many location problems relatively quickly, these
procedures do not provide bounds on the quality of the solutions found. Theoretical,
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worst-case bounds exist for some algorithms, but in practice such bounds are often of
only theoretical interest as the solutions obtained by the algorithms are often much
better than the worst-case bounds would suggest. Thus, there is a need for a means
of evaluating the quality of heuristic solutions. Lagrangian relaxation provides both
upper and lower bounds on the objective function value. When embedded in a
branch and bound procedure, Lagrangian relaxation can be used in place of linear
programming to obtain optimal solutions to integer linear programming formulations
of location problems.

The basic idea behind Lagrangian relaxation is to relax one or more of the
constraints that make the problem difficult to solve by multiplying the constraint by a
Lagrange multiplier and bringing the constraint into the objective function. We then
alternate between solving the relaxed problem for the original decision variables with
fixed values of the Lagrange multipliers and updating the Lagrange multipliers. In
each iteration, the Lagrangian objective function provides a lower bound on the
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optimal objective value for a minimization problem (an upper bound for a
maximization problem). The solution to the Lagrangian problem is likely to be
infeasible for the original problem since we have relaxed one or more constraints.
However, if we can convert the infeasible Lagrangian solution into a feasible
solution for the original problem, the objective function value corresponding to that
solution will provide an upper bound on the problem’s objective function for a
minimization problem (or a lower bound for a maximization problem).

We would like the relaxed problem to have two properties. First, for any fixed
values of the Lagrange multipliers, we would like to be able to solve the relaxed
problem very quickly. This property is essential since we will need to solve the
relaxed problem hundreds (or thousands) of times for different multiplier values.
Ideally, we should not have to resort to advanced optimization techniques to solve
the relaxed problem. In the best of all worlds, the relaxed problem can be solved by
inspection or by sorting the coefficients of different terms in the objective function.
This will be illustrated in the Lagrangian relaxation for the P-median problem
discussed below.

The second desirable property relates to integer linear programming problems. If
the solution to the relaxed problem is guaranteed to be all-integer (even when the
integrality constraints on the relaxed problem are themselves relaxed), then we can
show that the bounds obtained from the Lagrangian procedure will be no tighter than
those obtained from the linear programming (LP) relaxation of the original problem.
However, if the solution to the relaxed problem is not guaranteed to be all-integer,
but an all-integer solution can readily be found, then the bounds from the Lagrangian
algorithm can be tighter than those found by solving the LP relaxation of the original
problem. Thus, we would like it to be easy to find an integer solution to the
Lagrangian relaxation, but we would like the relaxation to be such that its LP
relaxation does not result in an all-integer solution. For the relaxation discussed
below, this second property does not hold. Nevertheless, the relaxation proves to be
very powerful and effective at solving the P-median problem.

The reader interested in additional background on Lagrangian relaxation is
referred to the seminal paper on the topic by Fisher (1981) as well as the tutorial
paper on the topic (Fisher, 1985).

To illustrate Lagrangian relaxation, we consider relaxing constraints (10.18) to
obtain the following relaxation of the P-median problem:

Subject to
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Note that the Lagrangian function L in (10.39) is minimized with respect to the
location and assignment variables (      and     ) and is maximized with respect to

the Lagrange multipliers           The largest value of this function over all iterations

is a lower bound on the objective function for the P-median problem.

To solve this problem for fixed values of the Lagrange multipliers, we note that if

is less than 0, we would like to set otherwise we would like to

set Setting is not a problem, as this will not violate any of the

constraints in the problem. However, setting will violate constraint (10.19)

unless we have . If , we must set no matter what the sign of

the coefficient of is. Thus, we need to determine which locations to pick to

minimize (10.39). We do this by computing the value (in the Lagrangian problem)

associated with locating at node j. This is given by for

each candidate site j. We then sort the values from smallest (most negative) to

largest. Then we set for the locations with the P smallest values and

for all other candidate sites. Finally, we set        if and if

and is less than 0.

The solution to the Lagrangian problem is likely to violate one or more of the
relaxed assignment constraints (10.18). However, the Lagrangian solution can be
converted into a feasible solution to the P-median problem by locating at those P
sites for which and then assigning demands to the nearest selected facility.

The objective function value for this solution is an upper bound on the P-median
problem. Clearly, the smallest such value over all iterations is the best upper bound.
We also note that the bound may be improved by applying one or both of the
improvement heuristics described above to the solution. This can be done at each
iteration or at selected points in the algorithm. For example, we might elect to use an
improvement algorithm only when the objective function corresponding to the
feasible solution (constructed as outlined above) represents an improvement over the
best upper bound known so far.

At each iteration, the Lagrange multipliers are updated using subgradient
optimization. Readers interested in the details of this approach are referred to the
general papers by Fisher (1981, 1985) and the text by Daskin (1995).
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Comparison of approaches

In this section, we summarize the results of applying the different algorithms
outlined above to a problem with 150 demand nodes representing the 150 most
populous cities in the United States. The demand at each city is assigned to be the
city’s population. Great circle distances are used in this example.

Table 10.1 summarizes the objective function values for this problem for 8 values
of P, the number of facilities to locate, and six different algorithms. In addition, the
table shows the number of Lagrangian iterations used, the number of branch and
bound nodes explored and the solution time in seconds using a Pentium computer
running at 133 MHz. The problems were solved using the SITATION software
(Daskin, 1995) modified to run under Windows 95 (© Microsoft Corporation). All
default Lagrangian parameters were used except that we required a provably optimal
solution in all cases. Table 10.2 gives the percent error for each of the different
algorithms and the different number of facilities sited. The greedy algorithm
averaged 7 percent above the optimal values for these test runs. The exchange
algorithm solutions averaged within 1 percent of the optimal values. Solutions from
the neighborhood search algorithm averaged 1.6 percent and 3.9 percent above the
optimal values, depending on whether the neighborhood search procedure was
performed after each facility was added to the solution or only after all facilities had
been added to the solution.

Note that the Lagrangian algorithm required an average of 10 seconds, 4.5 branch
and bound nodes and 556 iterations to find the optimal solutions. The longest
execution time was just over half a minute, requiring 15 branch and bound nodes and
1,934 Lagrangian iterations. Thus, while the relaxation outlined above will result in
bounds that are no better than those that can be obtained by solving the LP relaxation
of the P-median problem, the instances discussed here can be solved quite quickly on
a relatively slow personal computer. This has generally been our experience for
small to moderate problem sizes for the P-median problem as well as for the other
classical problems outlined in section 10.3.
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10.5 New directions and models
Limitations of traditional models

The classical models outlined in section 10.3 represent the building blocks of many
location models used in practice. However, they are simply that: building blocks.
Real-world problems are significantly more complex than are the simple models
formulated above. In this section we outline a number of the deficiencies associated
with traditional models and then summarize recent attempts to address these
limitations.

Multiple objectives. Facility location decisions have long-term strategic impacts.
As such, they are likely to affect many facets of an organization’s operations and will
impact many players and interest groups. Thus, in determining “optimal” facility
siting plans, it is essential that the multitude of operational impacts and interest
groups be represented. In doing so, we will invariably have to consider multiple
objectives and not simply a single decision criterion.

The need to consider multiple objectives is most apparent in locating obnoxious
or undesirable facilities such as waste disposal sites, prisons, and power plants
(Ratick and White, 1988; Erkut and Neuman, 1989, 1992; Erkut and Verter, 1995;
Verter and Erkut, 1995). In these cases, as indicated above, efficiency related
objectives will tend to push the facility sites toward population centers, while the
undesirable nature of the facilities will tend to result in a more remote and dispersed
set of sites. In addition, economies of scale may dictate using relatively few
facilities, while equity issues and the need to ensure that a few communities do not
bear an undue burden will drive the solution toward using many smaller facilities
(Ratick and White, 1988).

Stochastic inputs. The future is never known with certainty. This is particularly
true of the long-term future. Thus, while traditional models assume that input
parameters are known with certainty, most of these inputs should be treated as being
subject to uncertainty. Future demands can only be predicted using forecasting
methods and should therefore be considered uncertain. Similarly, the costs of
constructing and operating facilities will change in unpredictable ways over time.
Transport costs may not be known with certainty. Travel times will change with the
unknown levels of future congestion and even distances may change as the network
is improved or modified with time.

Dynamic decisions. Just as the inputs to location problems should be treated as
stochastic or uncertain, so too should location decisions be treated as dynamic. In
the real world, decisions made one day are re-evaluated and altered as the operating
environment evolves. Facilities that are initially opened with limited capacity may
be expanded over time. Alternatively, facilities that are opened near the beginning of
a planning period may be closed as the location of demand changes or as transport
and operating costs change. New facilities may be opened. Demands that are
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initially assigned to one facility may, in future time periods, be reassigned to another
facility as demands increase and facilities reach their capacity or as transport costs
change.

Location models need to account for these dynamic changes in the siting plan.
Also, recognizing the uncertain nature of future demands and costs, location models
should be designed to help planners identify good initial solutions that preclude as
few future options as possible. In that way, good solutions for the present will be
identified and, as new information is obtained, the models can be exercised again to
indicate desirable changes in the configuration of facilities.

Vehicle routing considerations. All of the classical facility location problems
outlined above assume either that service is delivered from a facility by a vehicle
traveling to a single customer and then returning to the facility location or that
customers travel individually to the facility for service. For example, the demand-
weighted distance in the P-median and fixed charge location models is calculated as
the distance from a facility to a demand node multiplied by the demand at the node.
No consideration is given to routes that visit multiple customers. In fact, however,
such routes are common in less-than-truckload (LTL) shipping. The presence of
multi-customer service routes can significantly alter the transport cost component of
location models. Therefore, they can also impact the number and location of
facilities to be sited.

Interaction of the network with facility locations. Finally, all of the facility
location models outlined above attempt to find optimal facility locations given the
configuration of the network. In many cases, it is important to determine the
network configuration and facility locations simultaneously. For example, in
studying airline hub and spoke networks, we must simultaneously determine the
location of the hubs, the assignment of non-hub airports to the hubs (i.e., the links to
be used in the spoke part of the network), and the connectivity of the hubs. Similar
problems arise in telecommunication, power transmission, and computer networks.

In developing countries, funds spent on facilities are often fungible with funds for
other development purposes. For example, we may have a choice between using
funds to build a school, expand a hospital, or add a new road. The ability to move
funds from one activity to another suggests that facility location models must
account for alternative uses of these limited resources. It is particularly important
that such models account for the possibility of improving the network since network
modifications may do more to reduce the average demand-weighted distance than
will additional facilities.

In the sections below, we outline a number of models that have been used to
address some of the complications discussed above.
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Multi-objective models

As indicated above, most real-world facility location problems entail multiple
conflicting objectives. Thus, the goal of a facility location analysis should not be to
determine a single “optimal” siting plan. Rather, the goal should be to determine a
set of non-inferior or non-dominated location plans. A plan k will consist of a set of
facility locations and demand-to-facility assignments. Plan k is non-inferior or non-
dominated if there is no other plan that does at least as well as plan k for all
objectives and better than plan k for at least one objective.

An analyst examining a real-world location problem often develops an
approximation to the non-inferior set. There are three reasons for doing so. First,
the complete non-inferior set may be very large. Second, it may be time consuming
or difficult to identify all solutions in the non-inferior set. Third, an approximation
of the non-inferior set may be all that is required for the decision-maker to
distinguish those areas of the objective space – the space indicating the possible
levels of attainment of different objectives – in which she wants to concentrate future
analyses from those areas which she is willing to exclude from future consideration.

Once the set of non-inferior plans has been identified either completely or
approximately, the analyst must determine an appropriate means of conveying the
information to the decision-maker. The information to be related includes both the
tradeoffs between possible levels of attainment for the different objectives (the
objective space) and the actual siting plans themselves (the decision space). Once
this information is conveyed, the decision-maker may ask for additional analyses to
be done or he/she may be in a position to choose between the siting plans.
Additional analyses may include: (1) further exploration of the available alternatives
in some portion of the objective space if only an approximation to the non-inferior
set has been provided, (2) evaluation of non-modeled objectives for some or all of
the solutions in the non-inferior set, and (3) inclusion of additional constraints.
Additional constraints may restrict the facility sites to locations at which the agency
or firm already owns property, or may exclude or include specific sites from/in the
solution.

Flynn and Ratick (1988) use a multi-objective approach in designing essential air
services for rural areas after airline deregulation. Belardo et al. (1984) use a multi-
objective approach to locate multiple types of emergency equipment to be used in the
event of an offshore oil spill. Finally, Current, ReVelle, and Cohon (1988) suggest a
multi-objective approach to identifying the tradeoff between the distance of a path
and the number of people impacted by travel on the path. The objectives are to
minimize the path length and to minimize the number of people located within a
covering distance of nodes on the path. This can be used in finding paths for
hazardous material transport. In a related paper (Current, ReVelle and Cohon, 1985)
they examine the problem in which the covered demand is to be maximized.
Current, Min, and Schilling (1990) review multi-objective facility location models.
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To illustrate the issues involved in multi-objective analysis, consider the problem
of trading off coverage and demand-weighted distance. Such a problem may arise if
it is important to both minimize the total cost of providing service (as measured by
the demand-weighted distance) and maximize the number of customers that receive
service within a specified standard (as measured by the number of covered
demands). Increasing the number of covered demands may be possible only at the
expense of increasing the average cost or average distance.

For problems in which the total demand is fixed and is independent of the level of
service, maximizing the number of covered demands is equivalent to minimizing the
number of uncovered demands. Thus, using the notation defined above, the multi-
objective problem can be defined as follows:

Minimize

Subject to

Note that the objective function (10.44) is no longer a scalar quantity, but has been
replaced by a vector quantity. The first objective, is to minimize the demand-
weighted total distance, or the objective from the P-median problem. The second
objective, is to minimize the total uncovered demand. The constraints, as written
above, are identical to those of the P-median problem. (For the complete derivation
of the second objective in this form, the reader is referred to section 8.2 of Daskin
(1995).)

The second term of the objective function can be rewritten as

where is 1 if a facility located at candidate site j cannot cover demands at node i

and is 0 otherwise. In this form, the two objectives are mathematically equivalent
with the only difference being that replaces in the objective function. This

observation suggests that the problem can be solved (approximately) by weighting
the two objectives (Cohon, 1978). The resulting single objective is

where    is the relative weight placed on the P-

median objective and . By varying , we can trace out the approximate

tradeoff curve between the demand-weighted average distance and the number of
uncovered demands.
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Using this approach for the 150 node data set described in section 10.4 above and
locating 8 facilities with a coverage distance of 300 miles, we obtain the tradeoff
curve shown in Figure 10-4. Note that the solution to the P-median problem (point
A) results in an average distance of 152.9 miles, but 17 percent of the demands are
not covered within 300 miles. At the other extreme, the maximal covering model
(solution F) leaves only 8.7 percent of the demand uncovered, but does so at the
expense of increasing the average distance by over 18 percent to 181.1 miles.
Solutions B, C, D, and E represent compromise solutions that result in a greater
average distance than that attainable through the P-median solution but with better
coverage.

Note that the weighting method outlined above will not find all non-inferior
solutions. In fact, it will be unable to find many of the non-inferior solutions. For
example, solutions within a triangle defined by solutions D, E and the hypothetical
solution G in Figure 10-4 will not be found since the weighting method essentially
minimizes a linear objective function that is parallel to the line segment DE. Similar
triangles in which the weighting method cannot find solutions can be defined for
each pair of adjacent solutions in Figure 10-4. Solutions within these triangles are
known as duality gap solutions.

To find some of these other solutions, we can exclude one or more of the sites
found in the solutions represented by the tradeoff curve shown in Figure 10-4 and
resolve the problem. (This will not guarantee that new solutions will be found, but
tends to work well in practice.) Houston, Texas is found in all of the solutions
shown in Figure 10-4 except solution F. Excluding Houston from the set of
candidate solutions and resolving the problem results in four additional non-inferior
solutions (as well as one inferior solution). The new tradeoff curve is shown in
Figure 10-5. The four new non-inferior solutions are shown with an (*) symbol.

Finally, we may be interested in the number of solutions in which a particular city
is found. Figure 10-6 shows that only 22 cities are used in the 10 solutions shown in
Figure 10-5. Note that with 8 cities per solution, there could have been as many as
80 different cities represented by the 10 solutions. New York is in 9 of the 10
solutions, while Los Angeles, Fort Wayne and Topeka are in 7 of the 10 solutions.
This sort of information can be quite useful to decision-makers.
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Hierarchical objective models are closely related to multi-objective models. The
key difference is that instead of trying to find a tradeoff between the objectives, one
tries to optimize a primary objective and then, from among the alternate optima for
the primary objective, seeks to optimize a secondary (or tertiary) objective. Daskin
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and Stern (1981) propose a hierarchical objective approach to locating emergency
medical services or ambulances. Their primary objective is that of the set covering
model, to which they append a secondary objective of maximizing a measure of
backup coverage. In essence, this approach involves maximizing the sum of the
slack variables in constraint (10.2). Plane and Hendrick (1977) propose a
hierarchical objective location problem for locating fire stations in Denver. Their
primary objective is also to minimize the number of required facilities, while their
secondary objective is to maximize the number of existing facilities in the solution.
Benedict (1983) outlines a number of other hierarchical objective covering models.

Stochastic inputs

While the traditional models outlined in section 10.3 treat problem inputs as known
deterministic constants, in reality the inputs to almost all practical facility location
models are uncertain. Thus it is important to consider the inherent stochasticity
associated with these input parameters.

Manne (1961) was among the first to incorporate stochastic inputs into a
previously deterministic model. He examined the problem of capacity expansion
with uncertain demand, and found that the problem was mathematically equivalent to
one with certainty but with a lower interest rate. As the uncertainty in demand
increased, the optimal level of capacity expansion also increased. Recently, Bean,
Higle and Smith (1992) extended this model to the case of non-stationary demands.

Since Manne’s early work, the literature on stochastic modeling has grown
tremendously. Research focusing specifically on stochastic location models can be
divided into three branches. One branch treats selected inputs as uncertain and then
builds stochastic programming models or chance constrained models based on those
uncertain inputs. A second branch of the literature embeds queuing models into
location models to account for the uncertainty in customer arrival times and facility
service times. These models are most appropriate when locating emergency service
stations such as ambulance bases and fire stations. Finally, scenario planning
approaches are taking hold within the location literature as a third way of accounting
for uncertain future events. While a full review of the stochastic location literature is
beyond the scope of this chapter, we will briefly describe some of the major
developments that have occurred along each of the three branches.

Probabilistic location models

Within the location literature, the incorporation of uncertainty dates back to a
stochastic set covering model proposed by Chapman and White (1974). At about the
same time, Carbone (1974) extended the P-median model to consider instances with
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random demand values. He seeks to find the minimum value of K such that

In an approach similar to that suggested by Chapman and White, Daskin (1982,
1983) formulates a probabilistic extension of the maximal covering problem in
which facilities are treated as being either busy or available. Facilities are assumed
to be busy with probability This results in the maximum expected covering model
whose objective is to maximize the number of demands that are covered by an
available facility. ReVelle and Hogan (1989a) formulate a similar model in which
they maximize the number of demands that are covered at least b times, where b is
the number of coverages needed to ensure that a demand is covered by an available
facility with probability ReVelle and Hogan (1989b) propose a similar extension
of the set covering model in which they minimize the number of facilities required to
ensure that all demands are covered with probability when facility availability is
accounted for. Daskin, Hogan and ReVelle (1988) summarize these and other
related models.

Marianov and ReVelle (1992) extend the expected covering model to incorporate
multiple vehicle types housed within each facility. The authors define demands to be
covered only if there is a sufficient number of available fire engines and fire trucks
within the coverage distance of the demand node.

Marianov and ReVelle (1996) use an M/G/s-loss queuing model to compute the
minimum number of facilities needed to ensure coverage of a node with at least
probability This number is then used as the required number of facilities that
must be located within a given distance of a node for the node to be covered. The
model also incorporates stochastic travel times.

In a somewhat different vein, Louveaux (1986) adopts a stochastic programming
with recourse approach to the P-median problem. Demands and travel times are
treated as random variables and the assignment variables are part of the recourse
function.

Queuing-based location models

The approaches described above typically use probabilistic analyses to (a) determine
the number of facilities needed to cover demands with a specified probability or (b)
determine the incremental expected coverage that can be provided by having one
additional available facility cover a demand node. In the first case, the objective is
typically to minimize the number of facilities needed to cover all demands or to
maximize the number of covered demands. In the second case, the objective is to



352 Handbook of Transportation Science

maximize the total expected coverage. Neither of these approaches explicitly
accounts for the queuing interactions that occur in a spatially distributed queuing
system.

Larson (1974) proposes a hypercube queuing model to account for different
server availabilities. For a system with N servers he defines states with each state
representing a unique combination of busy and idle servers. Thus, for example, state
(0,1,0,0) represents the state in which servers 1, 3, and 4 are idle, but server 2 is
busy. These states are used to develop a system with simultaneous linear
equations for analyzing the performance of spatially distributed emergency response
systems. Alternatively, N simultaneous non-linear equations can be used in an
approximate approach (Larson, 1975). Batta, Dolan and Krishnamurthy (1989) use
Larson’s hypercube model to examine the validity of the assumptions in Daskin’s
expected covering model and find that some assumptions (e.g., the implicit
assumption of server independence) are violated in the multi-server case. Using
Larson’s queuing model in a location context is difficult due to the large number of
equations that need to be solved in evaluating a potential configuration of facility
sites.

Berman, Larson, and Chiu (1985) model a single facility location problem as an
M/G/1 queue. They show that if demands are lost when the server is busy, then at
least one node of the graph is an optimal solution to the problem and that node
corresponds to the Hakimi median. In this case, the objective is to minimize the sum
of the expected travel time to demands that are served plus a penalty term for
unserved demands. When demands can queue for service, the objective is to
minimize the sum of the time in the queue and the travel time to the demands. The
authors show that in this case the optimal location begins at the Hakimi median for
sufficiently small overall demand values, moves away from that location as the
demands increase, and then returns there for high demand values.

Mirchandani and Odoni (1979) extend the P-median problem to include stochastic
travel times. The travel times are assumed to come from discrete distributions. The
state of the system can then be described by a vector of link travel times
corresponding to a realization of the random variables associated with each of the
link travel times. The state of the system is assumed to change according to a
Markov process. The authors show that the Hakimi (node optimality) property
extends to this case as long as the utility function for travel time is convex and non-
increasing. Mirchandani (1980) discusses further extensions along these lines.
Weaver and Church (1983) develop computational methods for solving such
problems.

Berman and Odoni (1982) and Berman and LeBlanc (1984) also consider the case
in which travel times change according to a Markov process. Each state of the
Markov process corresponds to a unique combination of link travel times. The key
difference between this and the earlier work of Mirchandani and Odoni is that
facilities can be relocated (at a cost) in response to changes in the state of the system.
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Berman and Odoni show that the Hakimi (node optimality) property holds for this
problem when relocation costs are concave functions of the travel times. They also
propose a node exchange heuristic for solving the problem when only one facility is
to be located. Berman and Leblanc extend the heuristic to the case of multiple
facilities. Berman (1985) considers a similar problem for a single facility in the
presence of state-dependent travel times and Poisson demands.

Scenario-based location models

The third major approach to handling uncertain problem inputs is to use scenarios
(van der Heijden, 1994; Vanston et al., 1977). While probabilistic and queuing-
based approaches tend to focus on short-term stochasticity, scenario-based
approaches are able to deal with longer-term uncertainty in the problem inputs. That
is, in the probabilistic and queuing-based approaches the system is likely to be in any
of a number of different states at different times during the operation of the located
facilities. Thus, ambulances will be alternately busy and idle during the course of
any single day during the operation of an emergency medical system. Similarly,
each of the possible states in a hypercube queuing model is likely to be visited at
some point in time during the operation of the system being modeled. On the other
hand, in some scenario planning models only one of the possible future scenarios
will be realized, and we are uncertain as to which one it will be.

A scenario represents a possible set of future conditions. In a location context,
these conditions will include demand values, fixed costs, operating costs, travel
times and capacities. Vanston et al. (1977) propose a 12-point approach to
generating alternate scenarios. They recommend the use of 3 to 6 scenarios, one of
which should be “the one believed to be the most probable.” Other scenarios
“should be chosen according to the degree to which they provide maximum value to
the planning process” (p. 161). They apply the approach to the generation of
alternate scenarios for assessing national policies concerning portable fuels.

The notion of regret plays a critical role in analyzing scenarios. The regret
associated with a scenario k is the difference between the objective function value
associated with a compromise solution and the value of the optimal solution for
scenario k. Two common objectives that are used in scenario planning are
minimizing the expected regret and minimizing the maximum regret over all
scenarios. In addition, we sometimes optimize the expected behavior of the system
or minimize the worst-case performance of the system.

To illustrate the notion of regret, let be the optimal value of the P-median

problem under scenario k. Index the assignment variables the demands

and the distances by k as well to indicate that they are scenario-dependent. Let

K be the set of all scenarios. To minimize the maximum regret, we need to solve the
following optimization problem.
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The objective function (10.50) minimizes the maximum regret over all scenarios.
Constraints (10.51) and (10.55) are identical to (10.17) and (10.20) respectively.
Constraints (10.52), (10.53) and (10.56) are direct analogs of (10.18), (10.19) and
(10.21) with the scenario subscript k appended to the assignment variables.
Constraint (10.54) defines the maximum regret (U) as the largest difference over all
scenarios between the objective function for scenario k using the compromise
locations and the best that can be done under scenario

Sheppard (1974) was one of the first to propose the use of scenarios in facility
location planning. He suggests finding a solution that minimizes the expected cost
over all scenarios. Schilling (1982) extends the maximal covering location problem
to incorporate scenarios. He maximizes the number of covered demands over all
possible scenarios. In the model he proposes, some facilities must be common to all
scenarios, while others can be located in a scenario-specific manner. Schilling
examines the tradeoff between the number of common facilities and the maximum
percentage decrease over all scenarios from the optimal coverage. He then suggests
that building sites common to all scenarios in this tradeoff analysis first will allow
decision-makers to gather additional information regarding the evolving future
scenario before specifying the remaining location sites. Daskin, Hopp and Medina
(1992) show that this approach can lead to the selection of the worst possible sites
under certain conditions.

Serra and Marianov (1997) use scenarios to model different travel time and
demand conditions over the course of a day. They attempt to find locations that
minimize the maximum average travel time over seven defined scenarios as well as
locations that minimize the maximum regret over these scenarios. Carson and Batta
(1990) also use scenarios to describe demand conditions at different times of the day
in locating an ambulance on the State University of New York’s Amherst campus.
Jornsten and Bjorndal (1994) formulate an uncapacitated dynamic fixed charge
facility location model using a scenario planning approach. Their objective is to
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minimize the expected cost across all scenarios and time periods. Scenario and
policy aggregation is used to solve the model.

Serra, Ratick and ReVelle (1996) use scenarios to describe uncertain future
demands. They too adopt a minimax regret approach. Ghosh and McLafferty (1982)
use a similar approach to locate retail stores. Kouvelis and Yu (1996), in a recent
text, adopt a robustness approach to a variety of discrete optimization problems
including the 1-median problem on a tree. More recently, Averbakh (1997) and
Averbakh and Berman (1997a, 1997b, 1997c) have employed the notion of scenarios
and regret in locating facilities. The focus of their work is on the development of
polynomial time algorithms for specially structured instances of these problems.

The expected regret objective is unsatisfactory for two reasons. First, it requires
planners to identify probabilities associated with the scenarios. There is considerable
debate within the literature about whether doing so is appropriate or warranted.
Second, and perhaps more importantly, this objective tends not to place sufficient
weight on extreme scenarios. On the other hand, the minimax regret approach tends
to place too much weight on extreme scenarios as it allows a single scenario to
define the siting plan.

To remedy this problem of extreme scenarios, Daskin, Hesse and ReVelle (1997)
formulate the P-minimax regret model. The model minimizes the
maximum regret over an endogenously determined subset of the scenarios, referred
to as the reliability set. The total probability associated with the reliability set must
be at least Owen (1998) formulates additional demand- and scenario-based
models that address the problem of having to specify scenario probabilities. The
demand-based models maximize the number of demands that are adequately served
in at least m of the scenarios, where m is an input. Adequate service can be defined
in a number of ways, but is here defined as a function of the best service that a node
can receive under the optimal locations for the scenario in question. In the author’s
scenario-based models, the objective is to maximize the number of scenarios in
which a target objective is attained. The target objective is scenario-dependent.
These models are solved using either branch and bound in a commercial
optimization package or using a specially designed evolutionary algorithm (Owen
and Daskin, 1998).

Dynamic decisions

In an early paper on dynamic location problems, Ballou (1968) states, “... the effect
of the future time dimension cannot be neglected in location analysis.” (p. 271). He
develops an algorithm for solving a single facility location problem in which
demands change deterministically over time. Sweeney and Tatham (1976) extend
these results and show that Ballou’s approach is suboptimal. They develop an
optimal approach that involves considering not only the best solution at period t, but
the best solutions. The solutions are found using a variant of Benders’
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decomposition. Wesolowsky (1973) considers a problem similar to that modeled by
Ballou but in a plane. Tapiero (1971) also examines planar location problems and
formulates a transportation, location and inventory model using control theory.
Necessary conditions are presented but computational results are not provided.
Ratick et al. (1987) adopt a different approach to a joint location/inventory problem.
Motivated by a problem involving the storage, loading and unloading of coal at
ports, they propose a linked set of network models. Osleeb and Ratick (1990) use a
similar model to explore just-in-time inventory policies.

Drezner and Wesolowsky (1991) consider the problem of when to move a single
facility located on a plane in response to linearly growing demands. Campbell
(1990) also models the case of increasing demand and considers location, relocation,
and transport costs. He develops lower and upper bounds on the optimal objective
function values. The heuristic solution algorithm he proposes allows one relocation
per unit time.

Wesolowsky and Truscott (1973) use dynamic programming to model multi-
facility location and relocation decisions over time. Their approach breaks down
when either the number of new facilities or the number of facilities to be relocated is
large in any period. Scott (1971) also uses dynamic programming to solve a multi-
period problem. He simplifies the problem by assuming that the optimal static siting
plan for the last period will be optimal for the dynamic case as well. The problem
then becomes one of sequencing the construction of these facilities, with one new
facility being added in each period. Drezner (1995a) considers a similar problem in
which one new facility is added at each point in time. In period j, he needs to solve a
problem similar to the j-median problem. The problem is modeled in AMPL
(Fourer, Gay, and Kernighan, 1993).

Most dynamic models simply extend a static model by adding a temporal
subscript to the location and assignment variables and linking the location decisions
in one period with those of the subsequent or preceding period. The classical work
of Van Roy and Erlenkotter (1982) is typical of this approach. A temporal subscript
is added to an uncapacitated facility location problem. New facilities may be opened
(and then remain open for the duration of the planning period) and existing facilities
may be closed (and remain closed for the remainder of the planning period). The
problem is solved using a dual ascent algorithm (similar to that developed by
Erlenkotter, 1978) embedded in a branch and bound procedure. Roodman and
Schwarz (1975) use integer linear programming with a temporal subscript appended
to the location and allocation variables to consider the optimal sequence of facility
closings in the face of declining demand. The problem is solved using branch and
bound.

Schilling (1980) develops a multi-objective approach to dynamic facility location.
He extends the maximal covering problem to a multi-period context by allowing the
coverage sets and locations to be time dependent. Facilities must remain open once
they are initially opened. His vector optimization problem is to maximize the
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coverage in each of T periods. Each period represents a different objective.
Gunawardane (1982) also considers dynamic extensions of the set covering and
maximal covering problems and allows facilities to be opened and closed over time.
Min (1988) also considers a dynamic location problem in a multi-objective context.
His work deals with expanding and relocating libraries in Columbus. Objectives for
this application include population coverage and accessibility to transport routes and
parking lots.

Ratick, Du and Moser (1992) consider a rather different dynamic location
problem. Rather than planning for future conditions that evolve over time, they need
to plan for cyclic conditions that change monthly and repeat on an annual basis.
Their model is concerned with the location and use of different forms of dredging
equipment to ensure that a channel depth remains available with a given probability.
The problem is formulated as a mixed integer chance constrained problem.

Finally, we refer the reader to Owen and Daskin (1998) for a more complete
review of both stochastic and dynamic facility location models.

Integrated vehicle routing and facility location models

The models outlined above all assume that demands are served directly from the
facilities being located. Such an assumption is valid for either truckload shipping or
for many emergency services. However, we need to modify the models above to
account for more complex and sometimes more realistic shipment patterns. For
example, in the case of less-than-truckload (LTL) shipping, vehicles will depart from
one of the facilities being located, visit a number of different customers and return to
the facility. In hub location problems, commodities flow from origins to destinations
through the facilities (hubs) whose location we are trying to find. Often
commodities move between hubs at a discounted transport cost.

In this section, we outline models that extend the basic formulations of section
10.3 to include more complex vehicle routing.

Location-routing models

There is a vast literature on vehicle routing models. Most such models are based on
the traveling salesman problem. The reader is referred to Lawler et al. (1985) for an
excellent introduction to this problem. For reviews of related models the reader is
referred to Golden and Assad (1988) and Fisher (1995). Early work on solving
vehicle routing problems focused on a variety of construction and improvement
heuristics (e.g., Clarke and Wright, 1964; Gillet and Miller, 1974). This was
followed by the development of optimization-based algorithms (e.g., Fisher and
Jaikumar, 1981). The focus of much of the work today is on (a) integrating vehicle
routing with other components of logistics, including inventory management (Chien,
Balakrishnan and Wong, 1989) and facility location and (b) the application of
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modern heuristics to vehicle routing problems, including tabu search (Gendreau,
Hertz and Laporte, 1994; Xu and Kelly, 1996; Duhamel, Potvin and Rousseau, 1997;
and Taillard et al., 1997), genetic algorithms, and simulated annealing.

A complete review of such models is clearly beyond the scope of this chapter.
Bodin et al. (1983) reviewed the state of the art in vehicle routing at that time and
cited over 600 references and the literature has continued to explode in this field in
the 15 intervening years. Instead, the focus of this chapter will be on (a) integrated
models of facility location and vehicle routing, (b) an innovative use of facility
location models to solve a vehicle routing problem, and (c) hub location problems.

Integrated location-routing models

Webb (1968) and Eilon, Watson-Gandy and Christofides (1971) were among the
first to point out that modeling distribution cost as the cost of a round trip from a
facility to a customer may significantly misrepresent the actual costs and may, as a
consequence, result in the selection of sub-optimal facility sites when multi-stop
tours are used. Perl and Daskin (1985) formulated an integrated integer linear
programming problem for the warehouse location routing problem. They recognized
that the problem involves three inter-related and fundamental decisions: where to
locate facilities, how to allocate customers to facilities, and how to route vehicles
through the customers allocated to a facility. They solved the problem by iteratively
applying a set of three heuristics. Each heuristic attacked a pair of the three
fundamental decisions. Using another approach, Srivastava (1993) develops savings
(Clarke and Wright, 1964) and clustering heuristics to solve the problem. He found
that these heuristics generally opened the same number of facilities as did an optimal
algorithm and that the total costs from the heuristics were generally within 5% of the
optimal total cost.

Laporte (1988) reviews location-routing models and discusses applications,
formulations and solution approaches. He classifies formulations into two
categories, those that use a three-index notation and those that use a two-index
notation. The three-index notation involves assignment variables that represent
whether vehicle k goes directly from customer i to customer j on a route. The two-
index formulations handle problems with a symmetric cost or distance matrix.
Variables now represent whether or not edge (i, j) is in the solution, or in capacitated
cases, the number of times the edge appears in the optimal solution. He then
identifies a graph extension and transformation of the cost matrix that allows the
two-index approach to be applied to asymmetric problems. The graph extension
involves generating multiple copies of each candidate facility location, where the
number of copies is equal to the number of possible routes emanating from the
facility.

Laporte, Nobert, and Taillefer (1988) consider three variants of location-routing
problems, including (1) capacity constrained vehicle routing problems, (2) cost
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constrained vehicle routing problems, and (3) cost constrained location-routing
problems. The authors examine multi-depot, asymmetrical problems and develop an
optimal solution procedure that enables them to solve problems with up to 80 nodes.
The solution procedure involves transforming the associated graph and formulating
the problem as a variant of the traveling salesman problem. A specialized branch
and bound algorithm is then used to solve the problem optimally.

In dynamic versions of location-routing problems, one must determine the
optimal sequence of depot, vehicle, and route configurations over a given time
horizon. Laporte and Dejax (1989) present an exact and an approximate solution
method for this problem extension. The optimal solution method requires
representing the dynamic location-routing problem as a network and then solving the
integer linear program associated with the network. This method is appropriate only
for small-scale problem instances. The heuristic method utilizes approximations of
system costs and a directed graph formulation in determining a global solution. This
method can be used for large-scale problems if certain conditions are met.

Berger (1997) formulates a location routing problem for perishable commodities
as a variant of a fixed charge facility location problem. Her model is applicable in
cases in which the routes are constrained to be short (since the commodity is
perishable) and the vehicle does not have to return to the original depot within the
time window. As such, she does not model the cost or time associated with the
return of the vehicle to the depot from the final customer served on the route. To
formulate this problem, she defines the following notation:

With these definitions, she formulates the problem as follows:

Minimize

subject to

= cost of serving path k from a facility at candidate site j

= the relative cost of routing compared to facility location

= fixed cost of locating a facility at candidate site j

= set of all paths k such that the assignment of path k to a

facility at candidate site j is feasible in terms of the time constraints
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The similarity between this formulation and the uncapacitated fixed charge problem
(10.22)-(10.24), (10.26) and (10.27) should be clear. The objective function (10.57)
minimizes the combined facility location and routing costs. Constraint (10.58)
stipulates that each customer i must be assigned to exactly one path. Constraint
(10.59) states that paths can only be assigned to open facilities. Finally, constraints
(10.60) and (10.61) are standard integrality constraints.

There are two problems with this formulation. First, the number of possible paths
is astronomical. For example, for a problem with 100 nodes, even if we knew that
paths could not include more than 5 customers, there would be nearly 80 million
possible paths (only a fraction of which would be feasible in terms of a time or
distance constraint on the paths). If we had 20 candidate locations, this would result
in nearly 1.6 billion assignment variables This problem was handled using

column generation. Second, the linear programming relaxation of this formulation is
very weak. Customers are typically assigned to multiple paths. Constraint (10.59)
then requires only a fraction of a facility to be opened. To improve the formulation,
Berger introduced the following constraint as a replacement for (10.59):

This constraint requires the location variable to be greater than or equal to the sum of
the path assignment variables for any customer assigned to that facility. Since, for
each opened facility, it is likely that at least one customer will be assigned only to
routes emanating from that facility, this constraint significantly tightens the
formulation. Branching only on the location variables, Berger solved the problem
for 323 of 324 test problems in which the number of customers, number of candidate
locations, maximum route length, and relative routing/location weight were varied.
Only 29 of the 323 problems had a gap exceeding 1% of the lower bound. The
average gap was under 0.5% and the maximum gap was under 4%.

Applications of location-routing problems have also been studied in the literature.
List et al. (1991) survey recent research related to hazardous materials transportation,
including work in the areas of risk analysis, routing/scheduling, and facility location.
They illustrate the evolution of models from simple, single objective formulations to
complex, multi-objective or probabilistic models. ReVelle, Cohon, and Shobrys
(1991) examine the problem of storing spent fuel rods from commercial nuclear
reactors. To solve this problem, a model is needed which sights storage facilities,
assigns reactors to the facilities, and selects routes for shipping the fuel rods. The
nature of the problem requires consideration of multiple objectives, considering
transportation costs as well as perceived risk. Several methods are combined to
derive optimal solutions for this complex location-routing problem.
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A location-based heuristic for the vehicle routing problem

The intersection between the location and routing literatures has generally been
limited to integrated location-routing models of the form outlined above. In a
notable exception, Bramel and Simchi-Levi (1995) present a framework for
modeling capacitated vehicle routing problems as capacitated concentrator location
models with the single sourcing constraint imposed to identify good customer groups
for the vehicle routing problem. The fixed cost associated with any candidate
location is the stem cost of going from a depot whose location is known to the center
of a group of customers to be served on a route. The cost of going to and from each
customer from the center of the route is the connection cost in the fixed charge
location problem. A nearest insertion algorithm is used to build vehicle routes
through the points associated with each facility (or concentrator or group of
customers). They show that this model is asymptotically optimal in the sense that as
the number of customers increases the relative error between the solution produced
by their algorithm and the optimal solution goes to zero. Finally, they indicate how
their approach can be used to attack a variant of the inventory routing problem.

Hub location models

Finally, we consider hub location problems first introduced by O’Kelly (1986a,
1986b), in which one locates a number of hubs through which origin-destination
flows are to be routed. The objective is generally to minimize the demand-weighted
total transport cost, though other objectives, including covering and center
objectives, have been formulated (Campbell, 1994; Daskin, 1995). The advantage of
using a hub network as opposed to a fully connected network is twofold. First, fewer
links need to be constructed (O’Kelly, 1986b). Second, there may be significant
economies of scale associated with flows between hubs (O’Kelly, 1986a).

Figure 10.7 illustrates a simple hub and spoke network. Nodes A through I are
spoke nodes, while nodes X, Y, and Z are hub nodes. Each spoke is connected to a
single hub while the network of hub nodes is a fully connected graph. This is the
typical configuration assumed in most of the literature, though some models relax
this set of assumptions.

O’Kelly (1987) formulates the hub location problem with these assumptions as a
quadratic assignment problem. He notes that even in the absence of hub or link
capacities, it may not be optimal to assign each spoke to the nearest hub as is the
case in most uncapacitated facility location problems. To see why this is so,
consider Figure 10.7 and assume that the flows between node A and nodes Z, G, H,
and I are high while the flow between node A and nodes B through F and nodes X
and Y are relatively small. In this case, even though node A is closer to hub X, it
may be better to assign node A to hub Z, particularly if the inter-hub transport cost is
not significantly discounted. If the inter-hub transport cost is sufficiently discounted
(e.g., if the inter-hub transport cost is effectively zero), then assignment of spoke
nodes to the nearest hub will always be optimal. O’Kelly (1987) proposes two
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heuristics for solving the hub location problem. In the first, each spoke node is
assumed to be assigned to the nearest hub, while in the second, every possible
combination of assigning a spoke node to its nearest and second nearest hub is
considered for each possible configuration of hubs.

Skorin-Kapov and Skorin-Kapov (1994) compare the performance of the O’Kelly
heuristics with that of a new tabu search method for the hub location problem. In the
tabu search heuristic, equal importance is given to the problems of locating the P
hubs and allocating each non-hub node to a single hub. The tabu search method
dominates both of the O’Kelly heuristics on a test set of problems from the literature.

Ernst and Krishnamoorthy (1997) also examine the use of modern heuristic
techniques for solving hub location problems. They reformulate the uncapacitated,
single allocation P-hub median problem as a mixed integer LP with fewer variables
and constraints than previously reported. Using a simulated annealing algorithm, the
authors find bounds comparable to those obtained with the tabu search method of
Skorin-Kapov and Skorin-Kapov, both in terms of solution quality and time.

O’Kelly and Miller (1994) and Campbell (1994) review hub location models. In
addition, a recent issue of Location Science (volume 4, number 3, October, 1996)
was devoted largely to such models.
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Integrated network design and facility location models

Hub location models can be viewed as integrating facility location and network
design decisions. This is particularly true when (1) spoke nodes are not necessarily
assigned to the nearest hub and (2) the graph associated with the hub nodes is not a
complete graph. In these cases, important network design problems arise in the
context of hub location problems.

There have been relatively few papers, however, which directly examine the
impact of network design on facility location and vice versa. One of the first such
papers is that of Berman, Ingco and Odoni (1992) which considers the impact of arc
reductions and arc additions on the P-median objective when the locations of the
facilities are known. Reductions are actions that a planner can take to reduce the
travel time or cost associated with an existing link, while link additions actually
change the topography of the network. For network reductions, the authors consider
two cases. In the first, the total number of units by which the network arcs can be
reduced is specified and the problem is to allocate the reduction over the arcs in the
most beneficial manner. In the second case, there is a unit cost per reduction
associated with each link and a total budget for reducing the network. The problem
is thus to allocate the available budget over the links. Both trees and general graphs
are considered.

Peeters and Thomas (1995) perform a large number of computational experiments
to determine the impact of different network topologies on the location of facilities
and the objective function value for the P-median problem. They conclude, not
surprisingly, that there is a “relationship between the shape of the network and the
optimal location.”

Finally, Melkote (1996) generalizes three classic location problems -- the
uncapacitated fixed charge location problem, the maximal covering problem, and the
capacitated fixed charge location problem -- to incorporate link selection. For the
three problem classes he identifies, integrated design/location models are formulated.
Using approaches similar to those of Balakrishnan, Magnanti and Wong (1989), he
identifies ways of formulating the uncapacitated network design/facility location
problem that lead to relatively tight linear programming relaxations. The fixed
charge problems are solved using a conventional branch and bound package, while
he develops a specially structured heuristic to obtain solutions for large-scale
maximal covering problems.

10.6 Conclusions

The area of facility location modeling has attracted transportation researchers, as
well as others, for at least three reasons. First, the problems are of significant
strategic importance in both the public and private sectors. Second, the problems are
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methodologically challenging. Almost all problems of interest are NP-hard on a
general network. When the basic models are extended to incorporate such issues as
multiple objectives, dynamic decision making, uncertain inputs, vehicle routing, or
network design, the models become increasingly relevant to real-world applications
and increasingly difficult to solve. Finally, though we have not discussed this work
in detail, facility location models have been applied in a variety of non-location
contexts. To list only a few examples, Chung (1986) reviews a number of such
applications of the maximal covering location problem. Watson (1996) applied P-
median modeling approaches to the problem of rationalizing steel coil purchases at
an auto manufacturer. Daskin, Jones and Lowe (1990) and Hsu et al. (1995) apply
covering models to the problem of selecting a set of standard tools in a flexible
manufacturing context.

Research in this area is likely to continue at a vigorous pace for some time to
come because of its practical importance and methodological value. In particular,
we envision increased attention being devoted to multi-objective problems,
particularly for public sector decisions. Improved methods for identifying non-
inferior (or nearly non-inferior) solutions are likely to be developed using modern
heuristics. Such techniques will undoubtedly be embedded in software that can run
quickly on personal computers and enables decision-makers to rapidly modify the
problem as they explore alternative courses of action.

Increased attention will certainly be focused on better ways of incorporating
stochastic and dynamic problem characteristics into location models. The long-term
strategic nature of the underlying decisions coupled with the inherent uncertainty
associated with the data inputs will demand this sort of attention. In this regard, we
expect that scenario planning will become an increasingly important tool in the
armada of approaches that location planners bring to bear on real-world problems.

Most attempts at integrating facility location and vehicle routing have treated the
problems as if they occur on the same time scale. In fact, location decisions are
long-term, while routing decisions can be changed, and often are changed, on a daily
basis. Thus, there is a need for models that identify facility locations that are robust
with respect to a range of vehicle routing decisions.

Finally, the interaction between network design and facility location is relatively
unexplored. This area will become increasingly important as a variety of
transportation networks (e.g., intelligent highway and transport systems) and
communication and data transmission networks are developed.
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11 NETWORK
EQUILIBRIUM AND PRICING

Michael Florian and Donald Hearn

11.1 Introduction

Traffic equilibrium models are commonly in use for the prediction of traffic patterns
on transportation networks that are subject to congestion phenomena. Even though
their application in various transportation planning contexts has increased dramati-
cally over the past twenty five years, due to the development of efficient solution
algorithms and the increasing power of various computing platforms, they are based
on concepts that have been stated more than seventy years ago. The idea of traffic
equilibrium originated as early as 1924, when Knight gave a simple and an intuitive
description of a postulate of traffic behavior under congested conditions, as follows:

“Suppose that between two points there are two highways, one of which is broad
enough to accommodate without crowding all the traffic which may care to use
it, but is poorly graded and surfaced, while the other is a much better road,
but narrow and quite limited in capacity. If a large number of trucks operate
between the two termini and are free to choose either of the two routes, they will
tend to distribute themselves between the roads in such proportions that the cost
per unit of transportation, or effective returns per unit of investment, will be the
same for every truck on both routes. As more trucks use the narrower and better
road, congestion develops, until a certain point it becomes equally profitable to
use the broader but poorer highway.”

Some 28 years later, Wardrop (1952) stated two principles which formalize
this notion of equilibrium and introduced the alternative behavior postulate of the
minimization of the total travel costs. His first principle states that “the journey
times on all routes actually used are equal and less than those which would be
experienced by a simple vehicle of any unused route”. Under certain assumptions,
another interpretation of this principle is that the routes actually used are the shortest
in time under prevailing traffic conditions and their perception by the travellers.
Wardrop’s first principle of equilibrium of route choice, which is identical to the
notion postulated by Knight, become accepted over the past forty years as a sound
behavioral principle to describe the spreading of trips over alternative routes. The
traffic flows that satisfy this principle are usually referred to as “user optimal” flows,
since each user chooses the route that is perceived to be the best. On the other hand,
the “system optimal” flows are characterized by Wardrop’s second principle which
states that “the average journey time is minimum”.
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The first mathematical model of network equilibrium was formulated by Beck-
mann, McGuire and Winsten (1956). This seminal contribution was the starting point
for other research and then application of such route choice models. The purpose
of this chapter is to present the elements of the network equilibrium models used in
transportation planning, review their mathematical properties, most commonly used
solution methods and outline past and current applications.

11.2 Model Formulation - Deterministic Models

The network models that are most commonly used are steady state models, in spite of
the fact that all traffic phenomena are temporal. One considers a given period of time
for which the demand for travel is quantified and then one seeks to determine the
flow pattern which results from the interaction of the demand and the performance
of the transport infrastructure available.

A deterministic network equilibrium model of route choice may be formulated
by using the following notation. The transportation network consists of nodes

which represent origins and destinations of traffic and intersections and
arcs which represent the road network. The number of vehicles on link

is and the cost of travelling on a link is given by a user cost function
where is the vector of link flows over the entire network. These

cost functions may model the time delay for travel on that arc, in which case it
is referred to as a volume-delay function, however it may model other costs such
as tolls or fuel consumption. The vector user cost function is assumed to be
monotone (strictly monotone)

continuous and differentiable. The origin to destination demands where
I is the set of origin-destination (O-D) pairs, are distributed over directed paths

where is the set of paths for O-D pair and it is assumed that

where if link belongs to path
otherwise

Also The flows on paths satisfy conservation of
flow and nonnegativity constraints

The corresponding link flows are given by
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The link costs are additive in the sense that the cost of a path, is the
sum of the user costs on the links of the path

If are the costs of shortest paths for O-D pairs

the demands for travel are given by functions where is the vector
of least cost travel times for all the O-D pairs of the network

The vector of demand functions is assumed to be strictly monotone
decreasing

continuous and bounded from above.

A network equilibrium model that satisfies Wardrop’s user optimal principle is
formulated by stating that

over the feasible set (11.2), (11.3). It is relatively straightforward to show that (11.8)
may be restated in the “complementarity” form

and that (11.8) and (11.5) are equivalent to

Another very useful restatement of Wardrop’s first principle serves to convert
the model to a variational inequality as done by Smith (1979) and Dafermos (1980).
This is accomplished by noting that (11.8) is equivalent to

above in any feasible path flow. If then since
may be smaller than If then (11.11) is satisfied when
By summing (11.11) over one obtains
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By using (11.3) and (11.4) a change of summation on the left-hand side yields

Since the vector demand function is strictly monotone decreasing, it is
invertible. Let denote the inverse of the demand function. By substituting
for one obtains

over the feasible set (11.2), (11.3), which may be rewritten in matrix notation as

It can be verified that (11.14) implies (11.8) by constructing a flow pattern
which differs from the equilibrium flow on only one path for which

The existence of a solution of the network equilibrium model is ensured by
the continuity of the cost and demand functions and the fact that the feasible set is
compact, if cycle flows do not occur and the demand functions are bounded from
above (see Aashtiani and Magnanti (1981) and Dafermos (1980)).

The following example illustrates that a solution may not exist when the link
cost functions are not continuous. The network consists of one O-D pair and two
links as shown in Figure 11-1.

The demand from 1 to 2 is 40. When the cost of link 2 is higher
than the cost of link 1, but for and the cost of link 1 is
higher than the cost of link 2. In practical applications, the continuity requirement
is usually satisfied.

It is important that a network model, which is used to predict traffic flows
for different network and demand scenarios, yields unique link flows and origin to
destination costs. If this were not so, the comparison of the different future situations
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would be difficult to carry out since differences between scenarios would depend on
the nonuniqueness of the flows. Fortunately, for many applications, the network
equilibrium models have unique flows and origin to destination demands. This is
ensured when the link cost functions are strictly monotone and the demand functions
(and their inverses) are strictly monotone decreasing, as assumed above.

To demonstrate this (see Smith (1979), Dafermos (1980), Aashtiani and Mag-
nanti (1981)), suppose that there are two distinct solutions and By
writing (11.15) once with and and once with

and and adding the two inequalities one obtains

By imposing (11.1) and (11.7) it follows that (11.16) is satisfied if and only if each
term is equal to zero. Hence

and

with the conclusion that if the link cost functions are strictly monotone and
if the inverse demand functions are strictly monotone. Since are

the lengths of shortest paths for each O-D pair based on the link costs it
follows that they are unique as well.

Since in most applications the number of variables far exceeds
the number of constraints and the decomposition of link flows into path flows is
not unique. The consequence of this property is that the analysis of the path flows

requires some care since they are not unique, but they contain nevertheless
valuable information.

Another important property of the network equilibrium model is that it is
stable. Roughly speaking, the equilibrium flows depend continuously upon the travel
demands and link cost functions. Small changes in the travel demands result in small
changes of the traffic flows. This was demonstrated by Dafermos and Nagurney
(1984) for the model of this section and by Hall (1978) for the fixed demand variant
of the network equilibrium model. This property is very desirable in applications,
provided that the model is a suitable representation of the observed link flows.

general. Given the link flows the corresponding path flows are given as
the solution of the simultaneous linear equations

It is worthwhile to note that the path flows are not unique, in
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Most of the applications of network equilibrium in practice have been achieved
for simpler versions of the model (11.15) subject to (11.2), (11.3). They were
facilitated by the fact that if the Jacobians of the cost functions
and inverse demand functions are symmetric, that is

and

Then, (11.15) is equivalent to a convex cost optimization problem since, by Green’s
Lemma, the vectors and can be viewed as gradients of the line integrals

and                     respectively. The assumptions made on and

imply that

is a convex function in and the minimization of is equivalent to
solving (11.15). If, furthermore, the link cost functions are separable, that is

and so are the inverse demand functions,
the strict monotonicity assumptions on and imply that are strictly
increasing and are strictly decreasing and their Jacobians are diagonal matrices.
The equivalent convex optimization problem becomes simply

subject to (11.2), (11.3).

In the case of fixed demand, the problem takes the classical form:

subject to (11.2), (11.3) with that is, constant demand.
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11.3 Model Formulation - Stochastic Models

Stochastic network equilibrium models are based on the hypothesis that travelers
make systematic errors in their perception of the travel costs. In the deterministic
model it is taken for granted that the travelers have perfect knowledge of the link
travel costs and, hence, of path costs. The probability density functions which are
postulated to represent the systematic perception errors result in different models.
Stochastic network equilibrium models are preferred for applications when the
network is not subject to a high level of congestion and the choice of paths is
not determined solely by the travel times or costs, but also by preference variations.

In order to formulate stochastic network equilibrium models it is necessary to
introduce the probability that an individual chosen from the population will
choose path This is defined as

where is the vector of perceived travel times of all paths for
an O-D pair The perceived travel times on link are assumed to be given by a
probability density function

where is the actual travel cost and is its variance, and is a constant. Thus
the probability of choosing path is given by

the probability that the path is perceived to be the shortest.

If is assumed to be the normal distribution, then the vector of
perceived travel times is a multivariate normally distributed. The weak law
of large numbers implies that, on the average, the path flows        satisfy

It is possible to show (see Sheffi and Powell (1982)) that the stochastic network
equilibrium model is equivalent to solving the unconstrained optimization problem

subject only to nonnegativity constraints and that the minima of (11.26) coincide
with solutions of the stochastic network equilibrium models. The objective (11.26)
is not convex in general, but it can be shown that there is only one stationary point
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and, in the neighborhood of this point, the objective function is strictly convex in
the flow variables. Hence the resulting link flows are unique.

An interesting special case of stochastic network equilibrium models occurs
when the path probabilities are given by a logit function:

In this particular case, it is easy to show that the equivalent optimization problem
is

subject to the usual constraints (11.2), (11.3).

When the link travel costs are constant, that is then the solutions
of this model are dependent on the way that the network is represented since all
paths are perceived to be independent, even if they share links (see the Chapter of
Ben-Akiva and Bierlaire in this volume).

11.4 Solution Algorithms for Network Equilibrium Models

Deterministic symmetric models

As shown in Section 11.2, if the link cost functions and the demand functions
are separable, a network equilibrium model which has a unique solution may be
reformulated as an equivalent convex cost differentiable optimization problem. Since
the feasible flows satisfy (11.2), (11.3), the conservation of flow and nonnegativity
constraints and the only interaction between the arc flows for an origin or an origin-
destination pair occurs in the objective function. This makes it possible to construct
a wide range of algorithms for solving the problem, each based on a particular
decomposition of the flows.

It is possible to classify the algorithms for the symmetric network equilibrium
problem according to the way that the problem is decomposed, which may be by
O-D pair by origin or by using simplicial decomposition of the problem based
on the extreme points of the feasible region (11.2), (11.3). The most commonly used
algorithms are based on the linear approximation algorithm (Frank and Wolfe (1956))
and operate in the space of arc flows. The adaptation of this algorithm and some of
its variants are described first. Then algorithmic approaches that were devised for
the solutions in the space of path flows, which are referred to as path equilibration
algorithms, are briefly discussed. The convergence properties of the algorithms are
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noted, but not proved in detail since they may be referenced in standard nonlinear
programming texts indicated in the references.

One of the simplest convergent algorithms for minimizing a convex function
subject to linear constraints is the linear approximation method. Bruynooghe, Gibert
and Sakarovitch (1968) were the first to propose the method, however the later work
of LeBlanc, Morlok and Pierskalla (1975) and Nguyen (1976) made this method
popular in practice. Computer codes are widely available for solving both the fixed
demand and the variable demand version of the network equilibrium models. We
present next the details of the adaptation of this method to solve the fixed demand
problem which is recalled to be

subject to

Given an initial feasible solution, a feasible direction of descent is generated by
solving a subproblem which is obtained by a first order approximation of the objective
function. The linearized approximation at an intermediate iteration at a solution

By eliminating the constant terms and the linearized subprob-
lem simplifies to

subject to

By changing the order of summation in (11.30) and by using (11.4) the objective
becomes

subject to (11.31), (11.32).

The solution of this problem is obtained by computing shortest paths for each
O-D pair and allocating the demand to that path (“all-or-nothing” assignment).



382 Handbook of Transportation Science

This yields the arc flow vector

and the direction of descent is ,

An iteration of the linear approximation algorithm is completed by finding the
solution of

or, equivalently, by finding               for which

unless the minimum of (11.36) is attained for or

The following algorithm results:

Linear approximation method

Step 0.

Step 1.

Step 2.

Step 3.

Step 4.

Find

Perform an "all-or-nothing" assignment based on the current arc
costs and obtain

Verify if a predetermined stopping criterion is satisfied. If it is,
stop; otherwise continue to

Find optimal step size by solving (11.37).

Update arc flows                 and arc costs
set and return to Step 1.

The algorithm generates paths at each iteration, but these are not kept. Hence the
storage requirements are modest and do not increase with the number of iterations.
Also, it is easy to obtain a lower bound on the value of the optimal objective function.
Since is a convex function and due to convexity
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The right hand side of (11.38) provides a lower bound on at each iteration.
The best lower bound (BLB) at a current iteration is

As a consequence, a natural stopping criterion, denoted the relative gap (RGAP) is

Since is an estimate of the difference between an optimal solution and
the current solution, the computations are terminated when where

is a predetermined parameter.

Other stopping criteria that are used are a maximum number of iterations,
or the quantity which tends to zero as the optimum solution is
approached. Hence, this stopping criterion is

where is another predetermined parameter. The left-hand side of (11.41) has
the physical interpretation of the difference between average trip costs on currently
used paths and the average trip costs on current shortest paths. This quantity does
not decrease monotonically with the number of iterations.

An intuitive interpretation of this algorithm is that the travelers adjust their
route choice from congested routes to less congested routes until all routes are of
about equal length. This explains its resemblance to many heuristic algorithms that
had been suggested and used to solve this problem. On the other hand, the linear
approximation algorithm exhibits slow convergence in the vicinity of the optimal
solution due to the fact that its asymptotic rate of convergence is sublinear. This has
motivated the development of variants of this algorithm which attempt to improve
its rate of convergence. One of these variants is presented later in this section.

The variable demand network equilibrium model (11.21) may be solved by a
partial linear approximation method, first suggested by Evans (1976), which employs
the linearization of only some of the variables of the objective function. In (11.21),
only the arc cost functions are linearized. The resulting subproblem at iteration is

subject to
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This subproblem is solved by determining to be the costs of the
shortest paths based on the current link costs and then simplifying (11.42) by
using (11.43) and (11.44) to solve

subject to

By applying the Karush-Kuhn-Tucker (see Luenberger (1965)) conditions to (11.45),
(11.46), are determined analytically as follows:

The demands are then assigned to the shortest paths in order to obtain
and the direction of descent is

Even though the solutions obtained with the linear approximation method are
usually acceptable for the solution of the fixed or variable network equilibrium mod-
els for large scale problems, the slow convergence of the method in the neighborhood
of the solution has motivated the development of several variants that improve its
asymptotic rate of convergence. These include the adaptation of the PARTAN method
(see LeBlanc, Helgason and Boyce (1985), Florian, Guélat and Spiess (1987) and
Arezki and Van Vliet (1990)) and the restricted simplicial decomposition method
which we describe in more detail below.

The motivation for exploring the PARTAN variant of the linear approximation
method is that, for unconstrained minimization problems, the PARTAN algorithm is
equivalent to the conjugate gradient algorithm. This algorithm alternates a regular
iteration of the linear approximation algorithm with a direction generated by using
every other solution, and The solution at this alternate iteration is
obtained by finding which minimizes the objective function for
the solution where is the largest step size that maintains
the nonnegativity of the path flow. It can be shown that, at a current iteration the
largest step size that may be taken is given by the formula

where and The algorithm may be stated as follows:

Linear approximation with PARTAN

Step 0.

Step 1.

Find a feasible solution

Find the linear approximation direction,
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Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

If a predetermined stopping criterion is satisfied, stop; otherwise
continue to

Find optimal step size

Update arc flows

If then and return to
step 1; otherwise, the PARTAN direction is

Find the optimal PARTAN step size as the solution of
min subject to

and return to Step 1.

The restricted simplicial decomposition algorithm (see Hearn, Lawphongpanich
and Ventura (1985, 1987)) is an extension of the simplicial decomposition methods
proposed by von Hohenbalken (1977) for solving nonlinear programs with pseudo-
convex continuously differentiable objective functions and linear constraints. Its
application to solving the fixed demand network equilibrium problem (11.22) subject
to (11.2), (11.3) is as follows. Since the feasible region is bounded there are a
finite number of extreme points and every flow in can be written as a convex

of and a set which is empty or contains the flows at a current iteration and
denotes an integer parameter which controls the number of extreme points

at an iteration, the algorithm is as follows:

Restricted simplicial decomposition

Step 0.

Step 1.

is a feasible solution; set and

Solve the subproblem

subject to

which is the same as Step 1 if the linear approximation method, which
is solved by an "all-or-nothing" allocation of the demands to shortest

Update arc flows and arc costs

combination of these extreme points. If denotes a set of retained extreme points

min
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paths for each O-D pair
Let the solution be

Step 2.

Step 3.

If stop; is the optimal solution; otherwise, if
then and If replace

the element of that has the minimal weight in the expression of
in the convex combination of elements of with to obtain
and let Set
Go to Step 3.

(Master Problem). Let belongs to the convex

hull of where and

Remove all elements with from and Set
and return to Step 1.

The efficiency of the algorithm depends to a large extent on the solution of the
master problem in Step 3. In order to achieve convergence, the master problem need
not be solved exactly. It is only necessary to ensure that a sufficient decrease of the
objective is achieved in successive iterations. This may achieved by approximating
the objective of the master problem with a quadratic objective function. Under
appropriate assumptions there exists an almost closed form solution of the quadratic
approximation of S.

We turn our attention next to path equilibration algorithms for the symmetric
fixed demand network equilibrium. In this approach the problem is decomposed
by O-D pair and a sequence of problems, for each O-D pair is solved in the
space of path flows. This general approach, which is equivalent to a Gauss-Seidel
decomposition (or relaxation), is also known as “cyclic decomposition”, since in a
step of the algorithm a single O-D problem is solved, by keeping the flows of all
other O-D pairs fixed. The algorithm terminates when there is no improvement in
the solution for all O-D pairs which constitute a “cycle”.

The subproblem solved for each O-D pair is the fixed demand network
equilibrium problem

subject to
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where

and

The Gauss-Seidel solution strategy may be stated as follows:

Cyclic decomposition by O-D pair

Step 0.

Step 1.

Step 2.

Given an initial solution, set

If stop; otherwise set mod and continue.

If the current solution is optimal for the subproblem (11.48)-
(11.52), set and return to Step 1; otherwise solve the
subproblem, update flows, set and return to Step 1.

The convergence of the Gauss-Seidel strategy is ensured since the objective
function is convex and any local minimum is a global minimum as well.

Path equilibration algorithms used to solve (11.48)-(11.52) operate in the space
of path flow and obtain a solution where all used paths are of equal cost. Since the
number of paths grows exponentially with the network size path equi-
libration algorithms are usually implemented by using a restriction strategy, where
the paths that carry flow are generated as required. Let be
the set of paths with positive flows. The simplest such algorithm, due to Dafermos
(1971), finds the shortest path and longest path and transfers flow between these
paths in order to equalize their cost. The algorithm may be stated as follows:

Path equilibration algorithm

Step 0. Find an initial solution determine an initial
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Step 1.

Step 2.

Find such that and

such that

If go to Step 4; otherwise define the direction of

for path flow

Find the Step size    which

where

Step 3.

Step 4. Compute the shortest path with cost

descent for path flow   and

If then update                                  and return to Step

1; otherwise stop.

This algorithm is just one of many path equilibration schemes possible. In order
to generate a direction of descent for the subproblem (11.48)-(11.52) one may use
the adaptation of the reduced gradient or the projected gradient algorithms. The
algorithms used for the subproblem are well known nonlinear programming methods
and hence are convergent.

Deterministic Asymmetric Models

For the simplicity of the exposition, only algorithms for the fixed demand network
equilibrium problem are presented. That is, for finding feasible which satisfies

A large class of algorithms for this problem, which are referenced to as relaxation
methods, result when the cost function is modified at each iteration by fixing the
interaction between blocks of variables and thus removing, at each iteration, the

for
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asymmetry of the cost functions. These algorithms include the nonlinear Jacobi
method and the nonlinear Gauss-Seidel method. They are sometimes referred to as
diagonalization methods, since the resulting Jacobians of the relaxed vector of cost
functions are diagonal.

In order to describe a relaxation algorithm it is convenient to introduce a smooth
function with the property that and
is positive definite and symmetric. Hence, if then is a solution of the
asymmetric network equilibrium model and is the unique solution of the variational
inequality problem

which is obtained by solving the strictly convex differentiable optimization problem

Different algorithms result from the choices made for the function The
nonlinear Jacobi method obtained for

and the nonlinear Gauss-Seidel method results for

An algorithm defined by (11.58) is globally convergent (see Dafermos (1983)) if

for feasible,

This sufficient condition for the convergence of the relaxation methods is difficult
to verify and rather restrictive. The intuitive interpretation of this condition is that
the Jacobian of the vector of cost functions is weakly asymmetric. In summary, one
way to state this class of relaxation algorithms is the following:

Relaxation algorithm

Step 0.

Step 1.

Step 2

Step 3.

Find a feasible solution

Determine as the solution of (11.58).

If stop. Otherwise, continue to

and go to Step 1.
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Among the algorithms that have been proposed for solving the asymmetric
network equilibrium models one finds the simplicial decomposition method, gap
descent methods, projection algorithms and a dual cutting plane method. These
methods are not presented here but may be consulted by the interested reader at the
indicated references.

Stochastic Symmetric Models

The solution algorithms for this problem employ a simulation in order to obtain
a direction of descent for the objective function (11.26). In order to evaluate the
objective function exactly, on exhaustive path enumeration for all O-D pairs of
the network would be necessary. This is clearly prohibitive from a computational
perspective. An algorithm that implements the basic step

where the step sizes at iteration satisfy

and the direction of descent, is determined by a Monte Carlo simulation (see
Powell and Sheffi (1982)). This simulation is performed by sampling all links for a
travel time realization, computing shortest paths and performing an “all-or-nothing”
assignment on these paths; this procedure is repeated several times and then a flow
vector is obtained by averaging the link flows. The number of times that the
procedure is repeated determines the variance of The direction of descent
is

It can be proved that when the step sizes satisfy (11.63), this algorithm converges
to the unique solution of the stochastic network equilibrium model. Since
satisfies (11.63), this choice is often made, and the method if referred to as the
“method of successive averages”. This method lacks a natural stopping criterion and
the descent in the values of the objective function is not monotone.

We turn our attention to the logit based stochastic network equilibrium model

subject to (11.2), (11.3).

This problem may be also solved by the method of successive averages, without
requiring simulation in order to obtain a direction of descent. At each iteration the
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direction of descent is obtained by computing shortest paths based on current link
costs and by performing an “all-or-nothing” assignment on these paths.

It can be shown theoretically and empirically, that the flow pattern that results
from stochastic network equilibrium models tends towards the flow pattern obtained
with the deterministic model as the network becomes congested. This may be rec-
ognized intuitively by inspecting the terms of the corresponding objective functions
(11.63) and (11.64).

11.5 Combined Mode Models

The network equilibrium models presented so far in this Chapter do not distinguish
different classes or different modes of traffic. In many applications the network
equilibrium models are more complex and lead to more elaborate models that identify
explicitly different modes, such as private car on public transit, or different classes of
traffic which may correspond to different vehicle types or different socio-economic
classes. Some examples of such models are presented next.

Suppose that the vehicles travelling on the network are subdivided into
different types, (see Dafermos (1972)). The link cost function on each link
is different for each vehicle type and depends on the different types of vehicles that
use the link, where is the vector of flows
The demand for each vehicle type is known. The corresponding deterministic
network equilibrium model is given by the variational inequality

subject to

Unless some simplifying assumptions are made regarding the link cost functions,
the solution of this model requires an efficient algorithm for a very large scale
variational inequality model.

One way to simplify this multi-class model is to induce symmetry and sepa-
rability in the link cost functions. For instance, if one postulates that the user cost
functions simplify to
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which implies that the travel time depends on the total number of vehicles on the link
and that only a constant term for each link and class, differentiates the various
classes of traffic. Then, with the appropriate manipulation, one obtains an equivalent
convex cost minimization problem

subject to

This model may be solved efficiently by an adaptation of the linear approximation
method, and has been used extensively in applications. Other variants of (11.71) -
(11.74) are possible as well.

Another example of a combined model is a two mode model of traffic (see
Florian and Spiess (1983)) where one mode is the private car and the other mode is
public transit. A mode choice function

gives the probability (or proportion) of trips that will use mode 1, which has a travel
cost of and the competing mode 2 has a travel cost of A two mode network
equilibrium model may be formulated by assuming that a “user optimal” route choice
is made on both mode 1 and mode 2 (which may correspond to a transit mode).

subject to conservation of flow and nonnegativity constraints

and
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The link cost functions are asymmetric and not separable,
in general.

This model may be cast in the form of a variational inequality by carrying out
the usual derivation by using (11.11). The resulting variational inequality is

where is the inverse of (11.75).

The Jacobi method may be used to obtain a solution to this model.

The two multi-class multi-mode models presented above are just two examples
of the multitude of combined models which are formulated for particular transporta-
tion planning applications. Some of these models are so complex, that their solution
is obtained by ad hoc equilibration procedures which are inspired by the method of
successive averages.

11.6 Application and Validation of Network Equilibrium Models

The validation of network equilibrium models is reported in relatively few published
empirical studies in spite of the fact that literally thousand of applications have been
successfully carried out. The early studies of Florian and Nguyen (1976) on the
urban network of the City of Winnipeg, Canada and Dow and Van Vliet (1979)
on the urban network of the City of Leeds, England are examples of successful
validation exercises. A practical problem which arises when applying the fixed
demand network equilibrium models is the determination of the origin-destination
matrix. Synthetic demand models or origin-destination surveys are used to determine
the demand for travel with varying degrees of success. Even when survey data is
available, it does not include information for all the trips taken during the peak hour
and various adjustment methods are used to reconcile the differences between the
flow predictions and the observed link counts. The process of calibrating a network
equilibrium model involves the network representation, the calibration and allocation
of user cost functions (known also as volume delay functions) to the links of the
network as well as eventual adjustments of the origin-destination matrix. Often
significant approximations are made in order to build the necessary data base for
the application of the model. Yet, it may still be the best predictive tool available
for evaluating the impact of network changes in the short and medium term. The
link flows obtained in the validation studies mentioned above simulate the average
hourly flows during the peak period quite well and the origin to destination travel
times are satisfactorily reproduced as well.

The static nature of the network equilibrium model, which renders its solution
to be efficient, is also one of its main drawbacks in the simulation of traffic flows.
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The application of network equilibrium models is based implicitly on the assumption
that the traffic is not subject to severe bottlenecks which may cause the traffic to
back up and “spill back” to upstream links. When this assumption is not satisfied,
monotone increasing user cost functions do not model properly the phenomenon of
increased travel time and reduced flow on links which contain traffic bottlenecks as
indicated in the graph below

The use of the network equilibrium model is not particularly demanding in
computer expenditures. For networks of medium size (200 origins/destinations, 1
500 nodes and 4 000 links) the computation of the network equilibrium flows may
require 10–30 sec. on a personal computer built with the Intel Pentium II, 450 Mhz
processor. Large networks (3 000 origins/destinations, 15 000 nodes, 45 000 links)
may require up to 30 minutes of computing on a similar personal computer. The
ever increasing power of processors which are used to build personal computers
and workstations will render the computation of equilibrium flows on even larger
networks possible in elapsed times of the order of minutes.

11.7 Dynamic (or Time Dependent) Network Equilibrium Models

The time dependent (temporal or dynamic) formulations of network equilibrium
models received little attention until the past years with the exception of the early
contributions of Merchant and Nemhauser (1978a, 1978b). There are probably
several reasons for the renewed interest in time dependent route choice models. The
practical application of static network equilibrium models revealed their limitation
in representing the temporal traffic flow behavior, as pointed out in the previous
section, the renewed interest in Europe, Japan and North America in the design
and implementation of Intelligent Transportation Systems (ITS) measures require
network models which may evaluate such actions and hence must be dynamic; the
increased power of widely available computing power raised the expectations of the
complexity of network models which may be practicable.

Several conceptual frameworks and models were proposed for the modeling
of time varying traffic and the time dependent version of network equilibrium
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models (see Cascetta and Cantarella (1991), Smith (1991), Friesz et al (1993). The
formulation of temporal network equilibrium models require the introduction of the
time dimension. In a continuous dynamic model this time dimension is infinite which
makes the mathematical analysis more complex. A deterministic version of such a
model is presented below.

The notation required expands all the variables used in the static version with
the time index One considers a time period [0,T] for the consideration of trip
departures and all the traffic is presumed to exit the network by time The time
period under consideration is

The departure rates are given by demand functions which give rise
to path flows             for The actual experienced travel time for
a path which carries flow generated at           is It is assumed that
the departure rates are continuous over time, which requires the use of the theory
of Lebesgue integrals (measurable functions). and must be Lebesgue
integrable (see Royden (1963)).

The feasible region of dynamic network equilibrium model is defined by the
conservation of flow and nonnegativity constraints

The term for almost all means for all up to a set of measure zero. It follows
that two feasible path flow rates and are equal to each other if they are equal
up to a set of measure zero.

The generalization of Wardrop’s user optimal principle to temporal flows may
be stated as follows: A feasible flow with path flow rates and well defined actual
path travel times is a user optimal dynamic network equilibrium if, at any time
the actual path travel time is the shortest up to a set of measure zero for any positive
path flow. Therefore, the dynamic network equilibrium model is defined, up to a
set of measure zero as:

where

It is possible to show that the equilibrium conditions lead to a variational
inequality which is
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for almost all

While equation (11.84) is remarkably similar to the variational inequality formu-
lation of the static network equilibrium model, there are many significant differences.
Since the traffic flows are temporal it is reasonable to impose the First In-First Out
(FIFO) condition on the flows. That is, a flow which starts later cannot arrive earlier
by overtaking a flow which starts earlier. In order to satisfy this condition when
the path costs are additive, that is they are the sum of the corresponding link costs,
some rather stringent conditions must be satisfied by the link cost functions. The
FIFO condition may be stated as

It is equivalent to stating that, for a small time increment

which, after dividing by and taking the limit as leads to

The question then is which link cost functions satisfy the FIFO condition (11.86).
Friesz et al (1993) showed that the condition is satisfied for linear function and a
more recent study by Xu et al (1999) concludes that the FIFO condition will be
satisfied for nonlinear arc cost functions which are not “too steep”.

Other than the difficulty posed by the FIFO condition, a solution algorithm
for the dynamic network equilibrium model requires a time discretization and the
adaptation of a general method for solving variational inequalities in order to compute
a solution of (11.84). Conceptually, the solution algorithm may be viewed as
consisting of two parts: the first is to determine given the second,
referred to as the network loading problem, is to determine given the path
flow rates A diagram which illustrates this view is given in Figure 11.2. The
solution of the network loading problem is a rather complex undertaking since it
requires the computation of the time varying link flows, travel costs and path travel
costs by using the time varying path flow rates A numerical approach is
given in Wu et al (1997).

This formulation of the dynamic network equilibrium model does not impose
capacity constraints on the link flows and occupancies. Hence, the queuing phenom-
ena which lead to “spill back” when traffic bottleneck occur may not be properly
represented.

In conclusion, the time dependent generalization of the network equilibrium
model is complex mathematically and perhaps somewhat limited, due to the FIFO
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condition and the lack of capacity constraints. Current research efforts deviate from
the pure analytical approach and resort to various simulation approaches to solve the
equivalent of the network loading problem. As an alternative to analytical approaches
to solve the network loading problem one can turn to simulation methods.

Traffic simulation methods may be characterized by the flow representation,
the treatment of space and time and the model used for traffic dynamics. Time-
based models advance the clock at fixed intervals while event-based models maintain
an ordered list of events to process in continuous time. Microscopic simulation
models consider individual vehicles in continuous space and by using very small
clock intervals (which results in practically continuous time). Such models are
based on the behaviour of individual drivers in the following of the downstream
(leader) vehicle in its lane and lane changing behavior. Mesoscopic traffic simulation
models may consider individual vehicles or packets (groups of vehicles which move
together) which are moved in continuous space and either discrete or continuous
time. Macroscopic traffic simulation models employ a fluid representation of the
flow in discretized time and space and are based on approximate solutions of
the partial differential equation which describes the propagation of traffic which
respects the fundamental diagram of traffic flow (see Leutzbach (1988)). Examples
of microscopic simulation models are AIMSUN2 (Barcelo et al (1996)), MITSIM
(Yang and Koutsopoulos (1996)). DYNASMART (Jayakrishnan et al (1994)) and
DYNAMIT (Ben-Akiva et al (1994)) are examples of mesoscopic simulation models,
while METANET (Messmer et al (1995)) and FREEFLO (Payne (1979) are examples
of macroscopic simulation models.

A mesoscopic approach to the simulation of traffic is probably the best choice
for the solution of the network loading problem. It is less detailed than a microscopic
simulation, which requires significant resources for a proper calibration, and more
detailed than a macroscopic simulation, which does not offer a simple way to
represent traffic by lane and node signal controls. The theoretical foundations
of mesoscopic models may draw on traffic flow theory (such as DYNASMART,
DYNAMIT) or on queuing theory, where the traffic flow is represented as a network
of queues (such as DTASQ (Florian, Mahut and Tremblay (2001))). A dynamic
traffic assignment model is constructed by combining a flow allocation algorithm to
the used paths with a traffic simulation model for network loading. The theoretical
properties of such hybrid models are not well understand but the empirical results
are encouraging.

At the present time hybrid optimization simulation models may be the most
promising avenue for the solution of medium size dynamic traffic assignment models.
It is reasonable to expect the solution of networks of up to 2 000 nodes and 5 000
links in elapsed times of the order of one hour on a personal computer based on
Intel Pentium IV processors running at 1 Ghz.
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11.8 Congestion Toll Pricing in Network Equilibrium Models

The Fixed Demand Case. Wardrop’s second principle is usually referred to as the
“system optimal” principle, since these are the flows that minimize the total cost of
travel. The fixed demand version of this problem is

subject to (11.2), (11.3).

By applying the Karush-Kuhn-Tucker conditions to the system optimal problem
one obtains that all the used paths have equal marginal costs, that is

and let
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then

In general, the user optimal flows are different from the system optimal flows for a
given network. For large, uncongested networks, the differences may be small, since
for near constant travel times there is no difference between the user and system
optimal flows.

Braess (1968) provided a classical example of such differences, by using the
network shown below, where the user cost functions are indicated on the links

The user optimal flows are three units on the path 1 – 2 – 4 and three units on the path
1–3–4. The total cost is 6 x 83 = 498. If the link (2,3) is now added with the user
cost function

the user optimal equilibrium flows are two units on each of the paths of the network
with total cost of 6 x 92 = 552. Hence, the addition of an arc increases the total travel
cost and the cost to each user. This apparent paradox is understood by computing
the system optimal solution which is three units of flow each along the paths 1–2–4
and 1–3–4, even when the arc (2,3) is present. There is no reason to anticipate that
the total travel costs will be reduced when a link is added, since these costs are not
minimized by the flows which are “user optimal”.

The occurrence of Braess’ paradox is significant in network design and im-
provement decisions. If the user optimal principle is suitable as the behavioral
representation of the route choice, then, given a particular network, it may be advan-
tageous to restrict the use of some of its links and care must be exercised to properly
evaluate link additions in order to detect possible occurrences of increase in total
costs and increase of service levels for some of the users. Fisk and Pallottino (1981)
report the occurrence of the Braess’ paradox in networks used in practice.
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Since the system optimal flows lead to a more efficient use of a transportation
network, in the sense that the total cost of the trips taken is minimized, the issue
of charging tolls that would render user optimal flows to coincide with the system
optimal flows has been debated for years (see Arnott and Small, 1994). From a
modeling viewpoint, if link tolls equal to would be charged on
each link, then a user optimal route choice results in system optimal flows. The
tolls are referred to as marginal social cost pricing (MSCP) tolls.
The notion of marginal cost pricing may be found as early as 1844 with the work
of Dupuit.

A difficulty with marginal social cost pricing (MSCP) tolls is that they can be
expensive, both to implement and to the users of the network. By the formula, a
toll would be imposed for every link with traffic flow. In the Braess example, for
instance, the MSCP tolls form the vector

Thus there are tolls on four of the five arcs in the network and a collection
mechanism (toll booth) would be required for each. Further, the total tolls collected
would be 198, which is 40% of the total system travel cost of 498. Note however,
that a sufficiently high toll on link (2,3) would prevent its presence in a user optimal
flow distribution and no one would “pay” that toll.

The MSCP toll policy and the Braess example raise the question of what other
toll vectors would ensure that the tolled user optimal solution is a solution of
the untolled system optimal problem. Recently this question has been addressed by
Bergendorff, Hearn and Ramana (1997) and Hearn and Ramana (1998) who have
shown that the set of all such tolls is the part of the following linear system in
variables

where is the node-arc incidence matrix of the network, is a column incidence
vector for (O-D) pair with +1 in position O and -1 in position D, and is the
vector of system optimal flows. This result requires uniqueness of solutions in both
the system and the user problems. Note that would be appended to these
equations to ensure nonnegative tolls. Otherwise, negative tolls, or subsidies, are
possible.

Given this result, a procedure can be devised to obtain tolls which meet some
secondary criteria as well as ensuring system optimal flows. The first step is to solve
the system problem and obtain Since the problem has the same mathematical
structure as the user problem, i.e., it is a convex multicommodity flow problem, it
can be solved with the optimization algorithms described earlier in this chapter.
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The second step is to define another optimization problem which has constraints
defined by (11.91) and (11.92) plus any additional conditions desired. Examples
would be requiring that tolls be nonnegative or requiring certain to prevent
tolls where they are impractical, such as on arcs that represent neighborhood streets.
The objective function is a matter of choice for the traffic engineer. Hearn and
Ramana (1998) have suggested several:

MINSYS Minimize the total system tolling charges when the tolls are nonnegative,
so that users pay as little as possible.

MINMAX Minimize the maximum toll on any individual arc. This can be extended
to minimizing the maximum toll relative to the uncongested arc travel time.

MINREV Allow negative as well as positive tolls, thus charging users on some
arcs and subsidizing the travel on others, and constrain the total tolls collected
to be where When the net collected is these are
known as ROBINHOOD (RH) tolls.

MINTB Minimize the number of toll booths required, with tolls nonnegative.

MINTB/RH Combine MINTB with RH tolls: minimize the number of toll booths
while requiring the total tolls and subsidies collected to be zero.

To provide a comparison of the formulations listed above as well as comparison
with MSCP tolls, Hearn and Ramana (1998) have employed a nine node example
which has data similar to large-scale traffic assignment problems. The network is
shown in the Figure 11–3. It has 18 links and all of the links have cost functions
with the same structure:
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that provides a negative toll for every link, implying that the users are
totally reimbursed for their time on the network. It is difficult to imagine that such
a policy would ever be put in place. However, the selective use of negative tolls
luring users to certain links might have some appeal.

The Elastic Demand Case. In the elastic demand system problem, the objective is
to maximize net user benefit, the difference between total user benefit and the system
cost. From basic economic principles, the total network user benefit from travel is

and, as before, the system cost is defined by Denoting the

solution of this optimization problem as and assuming that both it and the
solution of the variational problem (11.14) are unique, Hearn and Yildirim (2002)
have shown that the toll set for the elastic demand problem is the part of the
following linear inequality system in and variables:

where and are constants. In the figure, the tuple near link is There
are four OD–pairs: (1–3), (1–4), (2–3) and (2–4), and the demands are 10, 20, 30,
40, respectively.

The various tolls for this example are given in Table 11-1, and the observations
below are adapted from the reference.

A comparison between MINSYS and MSCP shows that the tolling pattern and
toll amounts are quite different. Further, the total toll system cost (total system cost +
total toll cost) in the MSCP case is equal to 3747 (2254 + 1493) and in the MINSYS
case equal to 3142 (2254 + 888). So with the MSCP principle the users of the
nine-node network pay 68% more in tolls than with the MINSYS pricing principle.
The MINSYS solution also happened to coincide with the MINTB solution, so it
also gives the minimum number of toll booths, 5 versus the 14 of MSCP.

The maximum toll on any link is 16.88 for MSCP and 11.2 for MINSYS (link
(5,7) in both cases). When this maximum is minimized (MINMAX) the largest toll
reduces to 8.00. MINMAX also provides another set of nonnegative tolls which
significantly reduce the total tolls when compared with MSCP; the total toll is 28%
higher in the latter case.

ROBINHOOD and MINTB/RH introduce the idea of negative tolls, but it is
clear that this concept requires further examination. For example, it can be shown
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where and are defined as before.

One important difference with the fixed demand case is that all tolls in the elastic
demand toll set have the same total toll revenue, since, as the last equation shows:

In Hearn and Yildirim (2002) the framework for determining alternative tolls
has been defined similar to the fixed demand case: first, solve the system problem
for the flows and demands, Then using these values, define and optimize a
secondary objective with respect to the toll set (11.93)-(11.95). Even though total
toll revenue is constant, it could be appropriate to solve for the minimum number
of toll booths (MINTB) or to minimize the maximum toll (MINMAX), and even to
look for alternative schemes that include subsidies as well as tolls (MINREV).

As an illustration, demand functions for the nine node network (Figure 11–3)
are defined as follows:
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Table 11–2 demonstrates the differences in demands and costs for the system
(SOPT–ED) and user solutions (UOPT-ED) of the elastic demand nine node problem.
For example, the total demand in the system problem is 57.411, but it is 60.753 in
the user problem, a 5.5% difference.

Table 11–3 provides optimal flows for the system and user problems. Although
the UOPT-ED solution has higher user benefit than the SOPT-ED solution, it also
has a higher system cost due to more traffic on the network. Thus the net user benefit
in the system problem is greater. Examining the individual link flow values, notice
that they are within 10% of each other on almost all links of the network but not on
links (5,7), (5,9) and (9,7). The total flow between nodes 5 and 7 for both user and
system problems is within 10%, but the link flows differ substantially. Relative to
the system solution, in the user problem (5,7) is over utilized while (5,9) and (9,7)
are under utilized. Therefore, systems efficiency is increased by diverting traffic
on (5,7) to the route 5–9–7. This can be done by making (5,7) less attractive, i.e.,
increasing the cost by tolling (5,7).

Table 11–4 contains alternative toll vectors for the nine node elastic demand
problem and, for comparison, the MSCP tolls are also listed. As expected, tolls on
the link (5,7) are high for the tolling schemes with positive tolls, namely, MSCP,
MINMAX and MINTB. However, MINREV, which allows negative tolls, rewards
travel on the 5–9–7 route with subsidies in order to achieve the SOPT-ED solution.
For this example the toll revenue is 268.519 for all tolling schemes and this is 17.44%
of net user benefit. MSCP and MINREV tolls require 10 toll booths. MINMAX has
an objective value of 8.00 with eight toll booths. It happens that MINTB obtains
the same result (i.e., the maximum toll is 8.00) with only five toll booths. Thus it
could be argued that the MINTB solution is best in that it achieves the SOPT-ED
solution and is cheapest to implement.

To illustrate how tolling affects route costs consider the routes 2–6–8–4 and
2–5–7–4. The delay functions on the first route give a total cost of 21.505, while on
the second this total is only 13.504. However, the tolls on the first route are 2.018
and they are 10.018 on the second. Thus the total route cost is 23.523, in agreement
with the total cost in Table 11–2. There is no incentive for additional (2–4) trip
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demand. Any increase would result in lower user benefit and higher costs since the
demand and cost functions are strictly monotone.
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Second Best Toll Pricing. The examples above illustrate recent results in congestion
pricing theory showing that traffic planners seeking optimal use of an urban traffic
network can also meet secondary objectives such as minimizing the cost of installing
tolling stations. It offers an alternative to the traditional theory that congestion tolls
should be based on marginal social cost pricing. Any such tolls that obtain a system
optimal solution are known as first best tolls. By contrast, there is the notion of
second best toll pricing, where achieving the system optimal flows is not possible
because tolling is disallowed on certain links of the network. Current research
includes the analysis of small traffic assignment such as the work of McDonald
(1995) and the derivation of toll formulas for larger problems as in Verhoef (1999).

Stated mathematically, the second best toll model is a mathematical program
with equilibrium constraints, or an (MPEC). Letting V denote the set of all flows
and demands that satisfy (11.2)-(11.3) and Y be the set of links that cannot be tolled,
the elastic demand second best tolling problem MPEC is

max

s.t.

where, as before, the objective is to maximize the net user benefit (NUB) function,
which here depends not only on and but also on the tolls

It is recognized that MPECs can be very difficult to solve numerically. However,
a heuristic variation of the toll pricing procedures described above for obtaining first
best tolls, has been developed by Yildirim (2001). It can be summarized as follows:
First determine whether adding constraints to (11.93)-(11.95) renders
the toll set empty. If not, then first best tolls can be found. If there are no first best
tolls, then the problem above can be solved for a local stationary point by replacing
the equilibrium constraints with the equivalent Karush-Kuhn-Tucker conditions and
then employing a standard nonlinear programming code to obtain a local stationary

point, The quality of this solution can be determined by recognizing that

where and are, respectively, the solutions of the untolled UOPT-ED
and SOPT-ED problems, respectively. In some cases, restricting the tolls to only a
part of the network may still provide a close to optimal To illustrate,
consider again the elastic demand nine node example above, with user and system
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solutions given in Table 11–3, and assume that tolls are only allowed on the following
arcs: (2,5), (5,7) and (8,7). Note that none of the first best tolls given in Table 11–4
are feasible for this problem, since for example, all have a toll on link (1,6).

A second best solution for this problem is given in Tables 11–5 and 11–6. For

this special example, the objective value is within 0.3% of

the SOPT-ED value given in Table 11–3. Further, the total toll revenue,
which is approximately one-half the first best toll revenue of 268.519, which is given
in Table 11–3. Thus, the second best tolling solution has the interesting property that
it provides not only tolls on the allowed links, but also provides a nearly optimal
net user benefit at a significantly reduced toll cost to the users. As theoretical and
empirical research in toll pricing continues, a goal will be determining whether this
situation occurs often in practice.
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11.9 Conclusion

The study of network equilibrium models, and related solution algorithms may
be considered to have reached a mature stage. A variety of models may be formu-
lated and solved efficiently on contemporary computing platforms. Applications of
network equilibrium models are abundant and relatively common in the practice of
transportation planning. However, some of the basic premises of the formulation of
these models such as the additivity of link costs to form the cost of a path and the
static analysis of “average flows” during a selected time period, open the way to the
study of more complex models. The recent interest in temporal on dynamic network
equilibrium models is already attracting the attention of many researchers and will
probably result in interesting new developments.

11.10 References

We refer the interested reader to two references which contain more complete
presentations of the topic of this Chapter. These are

Florian, M. and Hearn, D. (1995) Network Equilibrium Models and Algorithms. Chapter 6 in
Handbooks in OR & MS, Vol.8, M.O. Ball et al., Eds., 485–550.

Patriksson, P. (1983) The Traffic Assignment Problem: Models and Methods, VNU Science Press,
223 pp.

The cited references in the text are the following:

Aashtiani, H,Z. and Magnanti, T.L. (1981) Equilibria on a congested transportation network. SIAM
Journal on Algebraic and Discrete Methods, 2, 213–226 .

Arezki, Y. and Van Vliet, D. (1990) A full analytical implementation of the PARTAN/Frank-Wolfe
algorithm for equilibrium assignment. Transportation Science, 24, 58–62.

Arnott, R. and Small, K. (1994) The economics of traffic congestion. American Scientist, 82,
446–455.

Barcelo, J., Ferrer, J.L. and Grau, R. (1996) AIMSUN2 and the GETRAM simulation environ-
ment. Technical Report, Departamento di Estadistica i Investigaciou Operativa, Universitat
Politecnica de Catalunya.

Beckmann, M.J., McGuire, C.B. and Winsten, C.B. (1956) Studies in the economics of transporta-
tion, Yale University Press, New Haven, CT.

Ben-Akiva, M. and Bierlaire, M. (1999) Discrete choice methods and their applications to short
term travel decisions. Handbook of Transportation Science, Chapter 2. Kluwer Academic
Publishers, Norwell, Massachusetts.

Ben-Akiva, M., Koutsopoulos, H.N. and Mukundan, A. (1994) A dynamic traffic model system
for ATMS-ATIS operations. IVHS Journal, 2, 9–24.

Bergendorff, P., Hearn, D.W. and Ramana, M.V. (1997) Congestion toll pricing of traffic networks.
Nework Optimization, (Edited by W.W. Hager, D.W. Hearn, and P.M. Pardalos) Springer–
Verlag series Lecture Notes in Economics and Mathematical Systems, 52–71.



Network Equilibrium and Pricing 409

Braess, D. (1968) Über ein Paradox der Verkehrsplannung. Unternehmenstorchung, 12, 258–268.

Bruynooghe, M., Gibert, A. and Sakarovitch, M. (1969) Une médthode d’affectation du trafic in
Proceedings of the 4th International Symposium on the Theory of Road Traffic Flow, Karl-
sruhe,(1968), W. Leutzbach and P. Baron, eds., Beiträge zur Theorie des Verkehrsflusses
Strassenbau und Strassenverkehrstechnik, Heft 86, Herausgegeben von Bundesminister für
Verkehr, Abteilung Strassenbau, Bonn, 198–204.

Cascetta, E. and Cantarella, G.E. (1991) A day-to-day and within-day dynamic stochastic assign-
ment model. Transportation Research, 25A, 277–291.

Dafermos, S. (1980) Traffic equilibrium and variational inequalities. Transportation Science, 14,
42–54.

Dafermos, S. (1972) The traffic assignment problem for multiclass-user transportation networks.
Transportation Science, 6, 73–87.

Dafermos, S. and Nagurney, A. (1984) Sensitivity analysis for the asymmetric network equilibrium
problem. Mathematical Programming, 28, 174–184.

Dow, P. and Van Vliet, D. (1979) Capacity restrained road assignment. Traffic Engineering and
Control, 261–273.

Dupuit, Y. (1844) De la mesure de l’utilité des travaux publics. Annales des travaux publics,
Annales des ponts et chaussées, 8, 332–375 .

Evans, S.P. (1976) Derivation and analysis of some models for combining trip distribution and
assignment. Transportation Research, 10, 37–57.

Fisk, C. and Pallottino, S. (1981) Empirical evidence for equilibrium paradoxes with implications
for optimal planning strategies. Transportation Research A, 15A, 3, 245–248.

Florian, M., Guélat, Y. and Spiess, H. (1987) An efficient implementation of the PARTAN variant
of the linear approximation for the network equilibrium problem. Networks, 17, 319–339.

Florian, M., Mahut, M. and Tremblay, N. (2001) A hybrid optimization mesoscopic simulation
dynamic traffic assignment model. 2007 IEES Intelligent Transportation Systems Proceedings,
118–121.

Florian, M. and Nguyen, S. (1976) An application and validation of equilibrium trip assignment
methods. Transportation Science, 10, 379–389.

Florian, M. and Spiess, H. (1983) On binary mode choice/assignment models. Transportation
Science, 17, 32–47.

Frank, M. and Wolfe, P. (1956) An algorithm for quadratic programming. Naval Res. Log.
Quart., 3, 95–110.

Friesz, T.L., Bernstein, D., Smith, T.E., Tobin, M.L. and Wie, B.W. (1993) A variational inequality
formulation of the dynamic network user equilibrium problem. Operations Research, 4,
179–191.

Hall, M. (1978) Properties of the equilibrium state in transportation networks. Transportation
Science, 12, 208–216.

Hearn, D.W., Lawphongpanich, S. and Ventura, Y.A. (1985) Finiteness in restricted simplicial
decomposition. Operations Research Letters, 4, 125–130.



410 Handbook of Transportation Science

Hearn, D.W., Lawphongpanich, S. and Ventura, Y.A. (1987) Restricted simplicial decomposition:
computation and extensions. Mathematical Programming Study, 31, 99–118.

Hearn, D.W. and Ramana, M.V. (1998) Solving congestion toll pricing models. Equilibrium and
Advanced Transportation Modeling, (Edited by P. Marcotte and S. Nguyen), Kluwer Academic
Publishers, 109–124.

Hearn, D.W. and Yildirim, M.B. (2002) A toll pricing framework for traffic assignment problems
with elastic demand. To appear in the edited volume Current Trends in Transportation and
Network Analysis – papers in honour of Michael Florian, Kluwer Academic Publishers, 10pp.

Jayakrishnan, R., Mahmassany, H.S. and Hu, T.Y. (1994) An evaluation tool for advanced traffic
information and management systems in urban networks. Transportation Research C, 3,
129–147.

Knight, F.H. (1981) Some fallacies in the interpretation of social costs. Quarterly Journal of
Economics, 38, 306–312.

LeBlanc, L.J., Helgason, R.V. and Boyce, D.E. (1985) Improved efficiency of the Frank-Wolfe
algorithm for convex network programs. Transportation Science, 19, 445-462.

LeBlanc, L.J., Morlok E.K. and Pierskalla, W.P. (1975) An efficient approach to solving the road
network equilibrium traffic assignment problem. Transportation Research, 5, 309–318.

Leutzbach, W. (1988) Introduction to the theory of traffic flow. Springer-Verlag, Berlin Heidelberg.

Luenberger, D.G. (1965) Introduction to linear and nonlinear programming. Addison-Wesley.

McDonald, J.F. (1995) Urban highway congestion: an analysis of second-best tolls. Transporta-
tion, 22, 353–369.

Merchant, D.K. and Nemhauser, G.L. (1978a) A model and algorithm for the dynamic traffic
assignment problem. Transportation Science, 12, 183–199.

Merchant, D.K. and Nemhauser, G.L. (1978b) Optimality conditions for a dynamic traffic assign-
ment model. Transportation Science, 12, 200–207.

Messmer, A. and Papageorgiou, M. (1995) METANET: A macroscopic simulation program for
motorway networks. Traffic Engineering and Control, 31, 466–470.

Nguyen, S. (1976) A unified approach to equilibrium methods for traffic assignment. In Traffic
Equilibrium Methods, Proceedings 1974, M. Florian, Ed., vol. 118. Lecture Notes in
Economics and Mathematical Systems, Springer-Verlag, 148–182 .

Payne, H.J. (1979) FREEFLO: A macroscopic simulation models of freeway traffic. Transportation
Research Record, 772, 68–75.

Powell, W.B. and Sheffi, Y. (1982) The convergence of equilibrium algorithms with predetermined
step sizes. Transportation Science, 16, 45–55.

Royden, H.L. (1963) Real analysis. Collier MacMillan Ltd.

Sheffi, Y. and Powell, W.B. (1982) An algorithm for the equilibrium assignment problem with
random link times. Networks, 12, 191–207.

Smith, M.J. (1993) A new dynamic traffic model and the existence and calculation of dynamic
user equilibria on congested capacity constrained road network. Transportation Research B,
27B, 49–63.



Network Equilibrium and Pricing 411

Smith, M.J. (1979) Existence, uniqueness and stability of traffic equilibria. Transportation
Research B, 13B, 295–304.

Verhoef, E.T. (1999) Second-best congestion pricing in general static transportation networks with
elastic demands. Research Report, Free University Amsterdam.

von Hohenbalken, B. (1977) Simplicial decomposition in nonlinear programming algorithms.
Mathematical Programming, 13, 49–68.

Wardrop, J.G. (1952) Some theoretical aspects of road traffic research. Proc. Inst. Civil Engineers,
Part II, 325–378.

Wu, J.H., Chen, Y., and Florian, M. (1997) The continuous dynamic network loading problem: a
mathematical formulation and solution method. Transportation Research, 32B, 173–187.

Xu, Y., Wu, J.H., Florian, M., Marcotte, P. and Zhu, D.L. (1999) Advances in the continuous
dynamic network loading problem. To appear in Transportation Science.

Yang, Q. and Koutsopoulos, H.N. (1996) A microscopic traffic simulator for evaluation of dynamic
traffic management systems. Transportation Research C, 4, 113–129.

Yildirim, M.B. (2001) Congestion toll pricing models for variable demand traffic assignment
problems. Ph.D. dissertation, University of Florida.



This page intentionally left blank 



12 STREET ROUTING

AND SCHEDULING PROBLEMS
Lawrence Bodin, Vittorio Maniezzo and Aristide Mingozzi

12.1 Introduction

The chapter by Teodor Crainic in this book discusses the long haul truck routing
problem. Some of the key differences between the long haul truck routing problem and
the vehicle routing problems considered in this chapter are as follows:

1.

2.

In the long haul truck routing problem, the routes can extend over several days
whereas, in the vehicle routing problem described herein, the routes are of one-day
duration.

In the long haul truck routing problem, the locations can be scattered over a wide
region, even the entire United States, whereas in the vehicle routing problems
considered herein, the locations requiring service are packed in a small region.

Because of these differences (along with other considerations), the algorithms and
data requirements for the vehicle routing problem considered in this paper can be
considerably different from the algorithms and requirements of the long haul trucking
problem.

Some of the major assumptions of most vehicle routing problems (VRP) discussed in
the literature are the following:

a.

b.

c.

d.

e.

Routes can be no longer than a specified duration T (such as T= 8 hours).

Each route represents a single day of work.

Overtime may be permitted at a predefined cost.

There is a single depot where all vehicles begin and end their route.

The fleet of vehicles is homogeneous; that is to say, all vehicles are identical.
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f.

g.

Vehicle capacity such as weight or volume is always satisfied.

Time windows exist. A time window at a location to be serviced is defined as [L, U]
where L is the earliest possible time to begin the service at the location and U is the
latest possible time to begin the service at the location. It is normally assumed that
the time window is hard; that is to say, the service of the location must begin
between L and U. In a route, if the vehicle arrives at the location before L, the hard
time window forces the vehicle to wait until L to begin service at the location. The
time that the vehicle must wait before beginning the service at L is called the wait
time of the vehicle at the location. Vehicle wait time represents nonproductive time
and can be considered a cost to the organization. With hard time windows, it is
assumed that it is infeasible to begin to service a location after U.

Although the above assumptions occur in most VRP, these assumptions can be
modified or extended when solving actual vehicle routing problems as follows:

a.

b.

c.

Start and End Times. Each vehicle has its own earliest start time and latest end
time. In this case, each vehicle can have a different duration. As above, each
route represents a single day of work.

Multiple Depots. In cases where there are multiple depots and each depot is
autonomous with its own fleet of vehicles and geographical area to serve, then
the overall VRP can be decomposed in a number of single-depot VRP. In cases
where the geographic area that each depot services is not well defined, there may
be an interaction between the depots so that it is impossible to consider any depot
in isolation. In some problems, moreover, it may be possible that a vehicle route
visits more than one depot in a day. For example, the vehicle can originate at one
depot and service some locations. The vehicle then goes to a second depot to
reload (perhaps with a product not available at the first depot) and visit another
set of locations. The vehicle then goes to another depot, etc. The route concludes
with the vehicle returning to the original depot at the end of the day.

Heterogeneous Fleet. In a heterogeneous fleet, each vehicle can have different
characteristics such as capacity, length of workday, etc. Generally, the vehicle
fleet is broken down into vehicle classes where each vehicle in a class is
homogeneous. With a heterogeneous fleet, moreover, there may be some
restrictions on the vehicle types that can service the stops. These restrictions are
called vehicle/stop dependencies. Vehicle/stop dependencies occur in such
applications as the scheduling of sanitation vehicles for either residential or
containerized pickup. A vehicle/stop dependency can occur at a stop because of
access restrictions, height of a bridge covering the road, width of a street segment
or the location of the containers needing service. For example, a side-loading
sanitation vehicle cannot service a container positioned at the end of a narrow
alley even if the side-loading vehicle can traverse the alley. Variants of this type
of dependency include vehicle-commodity incompatibilities (some vehicle types
may not be able to carry certain types of products) and commodity-commodity
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incompatibilities (certain pairs of commodities cannot coexist on any vehicle
because of possible contamination).

d.

e.

f.

g.

h.

Multiple Trips. A trip corresponds to a set of stops which when serviced exhaust the
capacity of the vehicle. This situation occurs frequently in sanitation routing and the
routing of vehicles that service the collection boxes by a postal service. A sanitation
vehicle doing either residential pickup or container pickup may make 2-3 trips to a
disposal facility during its route while a postal truck collecting mail at the collection
boxes may make 2-3 trips to the sort facility during its route.

Break Times and Lunch Times.

Soft Time Windows. If the time window [L, U] at a location is soft, the time to begin
the service of the location can begin before L or after U. The algorithms designed to
form routes in the presence of soft time windows generally associate a penalty with a
location that is being assigned to a route if the service of this location causes a
violation of the time window of any location on the route. In this way, the
assignment of a location to a vehicle that violates a time window becomes less
desirable.

Mixed Deliveries and Collections. In many situations the same vehicles that deliver
goods are also used to collect goods. A typical example is when trucks that deliver
goods from a warehouse to a set of stops must then collect raw materials from one or
more warehouses and deliver the raw materials to one or more plants. A special case
of mixed deliveries and collections is called backhauling. One very popular version
of backhauling is when the vehicles perform all the deliveries in the route first and
then perform all of the collections.

Combined Pickup and Deliveries. In a combined pickup and delivery problem, the
service of a stop requires the transportation of goods from a specified pickup
location to a specified destination location. Thus, every entity to be serviced has both
a pickup location and a destination location specified. An example of a combined
pickup and delivery problem is a courier service. Combined pickup and delivery
problems can be broken down into full truckload pickup and delivery problems and
partial truckload pickup and delivery problems. In the full truckload pickup and
delivery problem, a vehicle moves a single dedicated load from the pickup location
to the delivery location. In the partial truckload pickup and delivery problem, the
vehicle can make several pickups before a delivery and several deliveries preceding
the pickup at another location.

Multiple Commodities. If more than one commodity is to be delivered by the same
vehicle, then the vehicle might have to be broken down into separate vehicle
compartments. Examples of these problems include the delivery of gasoline to
service stations, delivery of refrigerated and non-refrigerated items to supermarkets,
etc.

i.
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Two general classes of vehicle routing problems (VRP) are point-to-point routing
problems (PTPRP) and neighborhood routing problems (NRP). In PTPRP (also called
node routing problems), distinct locations with known demand are to be serviced by a
fleet of vehicles with known capacity. Examples of PTPRP include the routing of
vehicles that deliver goods from a warehouse to a specified set of locations, the routing
of sanitation vehicles for containerized pickup (the large bins at shopping centers,
industrial parks, hospitals and schools), the routing and scheduling of a utility's field
service operations, and the routing of vehicles for the delivery of newspapers. Most
papers in the literature are concerned with variants of PTPRP.

In a NRP, the requirements for service are the street segments in an area of interest
(AOI). In a NRP, not all street segments in the AOI require service, A street segment is
said to require service if there exists at least one location on the street segment that
requires service. Applications of NRP include the scheduling of household refuse
collection vehicles, meter readers, initial telephone book delivery and local postal
delivery operations.

Street routing and scheduling problems (SRP) can be defined as 1) all PTPRP where
the locations to be serviced are assigned to the street segments or intersections of a
digital street network database and 2) all NRP. SRP occur primarily in local delivery
operations. Examples of SRP include the routing of residential and containerized
sanitation vehicles, the scheduling of vehicles for telephone book and newspaper
deliveries, the scheduling of meter readers, the routing of field service operations for
public utilities and the routing of vehicles for other traditional local pickup and delivery
operations. The features and characteristics of SRP and how these problems differ from
more traditional VRP are the focus of this paper.

In Section 12.2, special considerations that make SRP different from traditional VRP
and the impact of these considerations on the algorithms for solving SRP are presented.
In Section 12.3, the goals in developing good solutions to SRP are discussed. In Section
12.4, exact algorithms for solving different types of vehicle routing problems and an
outline of a heuristic algorithm for solving SRP and achieving the goals presented in
Section 12.3 are presented. In Section 12.5, a discussion of the challenges that exist in
solving SRP and some new technologies that may play a role in solving SRP in the
future are presented.

12.2 WHY STREET ROUTING AND SCHEDULING PROBLEMS DIFFER
FROM TRADITIONAL ROUTING AND SCHEDULING PROBLEMS

In this section, considerations that help to differentiate SRP from more traditional
VRP are described. In the remainder of this paper, a stop will refer to either an
individual location or a street segment that requires service.
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Service Times

In many SRP, the service time at a stop can be extremely small. Examples of
service times in actual applications are as follows:

In delivering newspapers, the service time at a stop can be a few seconds if the
paper is thrown from the automobile to the curb or 1-2 minutes if the paper is
delivered to the door.

In residential sanitation collection, the service time at a stop is the time it takes to
service all of the locations on the street segment and traverse the street segment.
Generally, in residential sanitation collection problems, it only takes a few
seconds to collect the refuse at each location requiring service so that it only
takes a couple of minutes to service a street segment

In containerized sanitation pickup problems, the service time at a stop is the time
it takes the truck to lift the container and dump the contents of the container into
the truck. Generally, this operation generally takes 1-3 minutes.

1.

2.

3.

In many SRP, the number of stops (individual locations or street segments) on a
route can be large (over 100) and the addition or deletion of a stop marginally affects
the duration of the route. For example, we have found that in residential sanitation
collection problems each route services 600 to 1500 individual locations. In these
problems, if there are about 10 locations on each street segment, then there are 60
to 150 street segments (or stops) on a route. Because of the density of the stops
requiring service, residential sanitation collection is generally considered to be a
NRP and the routing and scheduling procedures are carried out over the street
segments rather than the individual locations requiring service.

Euclidean Distance Computations and Shortest Paths

In a traditional PTPRP, the time between two stops is usually assumed to be based on
the Euclidean distance (or some function of the Euclidean distance) between these stops.
These times are used in the algorithm to break the stops down into routes and to
sequence the stops on each route.
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Figures 12.1-12.3 illustrate the problem that can arise in using Euclidean distances in
a SRP. In Figure 12.1, the solution, A-B-C-D-E-A, to a 5-stop traveling salesman
problem is displayed. This solution used the Euclidean distance between each pair of
stops in order to determine the order to service the stops. To solve the problem in this
way, a digital street network data base is not needed. In some SRP, routes that are
developed using Euclidean distances is adequate. For example, if the stop are spatially
spread out over the underlying street network (for example, each stop located in a
different 5 digit zip code), then the solution found using Euclidean distances may be
accurate enough. In other cases, using Euclidean distances can lead to inferior routes.

In Figure 12.2, the stops in Figure 12.1 are superimposed on top of a street network,
as would be the case if this problem were solved as an SRP. The solution displayed in
Figure 12.2 is found as follows. The sequencing of the stops is found by computing the
Euclidean distance between the stops. The travel path is found by determining the actual
travel path between the stops knowing the sequence for servicing the stops. In Figure
12.2 (and in Figure 12.3), the travel path is generated under the assumptions that all
stops have to be serviced on the side of the street on which the stops are located and no
U-turns are allowed.
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In Figure 12.3, a route (and travel path) is generated under the same assumptions as
the route displayed in Figure 12.2 except that, in determining the sequence, the shortest
path between the stops is used as the travel time between the stops rather than the
Euclidean distance. In this case, the order for servicing the stops in this solution is A-C-
D-E-B-A. In terms of route duration, the solution shown in Figure 12.3 is clearly
superior to the solution displayed in Figure 12.2.

Thus, in many SRP, using the underlying street network to compute the travel times
between stops can lead to the generation of routes and travel paths which are more
realistic and more acceptable to the user than the routes generated by using the
Euclidean distance between the stops. Furthermore, options can be integrated into the
algorithms for travel path generation to take into account issues such as street crossing
difficulties and difficult turns (such as U-turns), natural barriers such as lakes and
bridges, one-way streets and two-way streets, and ensuring that the stops are serviced on
the correct side of the street. It is virtually impossible to take these considerations into
account if Euclidean distances are used. In practice, these issues can play an important
role in ensuring that the solution is implemented. However, to take these issues into
account, the user is faced with an increase in 1) the computer time needed to get a
solution, 2) the time and cost required to develop the system and 3) the accuracy of the
underlying digital street network data base.



420 Handbook of Transportation Science

Locating the Stops to be Serviced in SRPs

Closely aligned with the discussion in 12.2.2 is whether the stops should be located
at their nearest intersection or on the correct street segment and side of street. Geocoding
is the process of determining the correct street segment in a digital street network data
base to associate with a location that requires service. In some cases, geocoding stops at
their nearest intersection can lead to travel paths that give misleading results. This
situation is illustrated in Figures 12.4 and 12.5.

In Figure 12.4, stops A, B, C, and D have been geocoded to the same intersection.
Assume that these stops are on the same route. The portion of the travel path for the
route servicing these four stops is displayed in Figure 12.4. This travel path does not
traverse the street segments where stops B and C are located. This inaccuracy can lead
to obvious errors such as incorrect estimates in the duration of the routes, travel paths
which need severe revision when actually being traversed and errors in deciding upon
the stops that can be feasibly placed on a route. On the other hand, in Figure 12.5, stops
A, B, C, and D are coded to their correct street segment and side of the street. The travel
path for the route displayed in Figure 12.5 is different and longer than the travel path in
Figure 12.4 but more realistically represents the actual vehicle travel path and gives a
better estimate of the duration of the route.
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In applications where the stops are not dense or the driver is allowed to determine
the travel path, locating stops at their nearest intersection is adequate. In other
applications, the stops must be located on the appropriate street segment and side of
street in order to get reasonable and realistic results. If these issues are important to the
user, then the algorithms for solving the SRP must be implemented to account for these
factors. These considerations lead to increases in system development time, execution
time of the algorithms and costs of preparing the data.

Integration of Driving and Walking Components

In some neighborhood routing applications, it is important to generate a travel path
where some of the streets are walked and other streets are driven. This situation occurs
in the scheduling the postal carriers who deliver mail for the United States Postal
Service and the scheduling of meter readers. In these situations, the travel path for a
route can be an integration of walking loops and a driving path. Each walking loop
begins and ends at the same location (the location where the vehicle is parked) and
can contain streets that are traversed but not serviced (deadhead walking streets). The
driving path contains streets that require service and streets that are deadheaded
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(traversed but not serviced). Solving mixed driving and walking problems require
details that are difficult to obtain when using standard approaches for solving these
problem..

Geographic Data Bases and Geographic Information Systems (GIS)

As noted above, a critical component in solving SRPs is to have an accurate digital
street network data base or geographic data base. Existing digital street network data
bases for the same area can substantially differ in quality. Navigational quality digital
data bases contain virtually all streets in the area, are accurate with respect to address
ranges, overpasses and underpasses, streets divided by a median, and one way streets. In
these data bases, stops can be accurately geocoded to the correct street segment and
reliable shortest paths over the network can be found.

Data bases that do not have this precision can be used for solving some SRPs but
generally require considerable manual updating. To correct most of the errors in a digital
street network data base that is not accurate can be expensive. If a less accurate digital
street network data base, then the computation of shortest paths can be inaccurate and
some of the desired reports cannot be generated accurately. An easy way for a system to
lose credibility with the crews executing the routes is to give each crew a travel path that
is not accurate.

Generally, computer systems for solving SRPs include a Geographic Information
Systems (GIS). The routing algorithms are embedded in the GIS and the street and stop
data are stored in the GIS. With a GIS, an accurate digital street data base and the
correct set of algorithms, the user can 1) geocode most stops automatically, 2) compute
the travel time between stops as the shortest time travel path over the street network, 3)
edit the digital street data base, 4) execute the algorithms, 5) display the results and 6)
manually alter the solution. In the past few years, accurate digital street data bases and
highly functional commercial GIS have become more available so that realistic solutions
to a wide class of SRP can be found. The discussion of the requirements for accurate
geographic data bases and the appropriate functionality of a GIS for use in a SRP can
become quite complex and we have just given a brief overview of these topics.

User Intervention

In many street routing systems, the user can change the solution found by the
algorithms. Such a solution is called a user generated solution and has a better chance of
being implemented than a solution that is formed without manual intervention. The user
generated solution is able to consider secondary constraints that the user is aware of but
the algorithms are not able to capture. For example, in forming partitions for a SRP,
there may be a major street that is difficult to cross. The user wants to form partitions
where there are few crossings of this street from secondary streets. Partitioning
procedures have great difficulty in capturing this constraint if the area over which the
partitions are being formed lies on both sides of this street. The user can intervene in the
solution process by splitting the service area into areas of interest where the borders of
these areas of interest contain the troublesome streets. Then, the partitioning is carried
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out over each of these areas of interest, one area at a time. Then, the user can manually
swap stops between partitions that lie in adjacent areas of interest without significantly
compromising the quality of the partitioning.

12.3 GOALS IN SOLVING STREET ROUTING AND SCHEDULING
PROBLEMS

The three most important goals (or criteria) in solving most SRP are the following:

1.

2.

3.

Minimize the number of vehicles,

Minimize total travel time,

Ensure that every route in balanced in terms of time to carry out the routes (this
time is called the workload of the route).

The first two goals are the traditional objectives of VRP. The goal of balancing
workload is more specific to SRP.

We have observed numerous applications where the workload of the routes range
between 4 to 10 hours, the crew that works the 4 hour route was paid for a full 8 hour
day and the crew that works the 10 hour day earns 2 hours of overtime. The benefits in
eliminating imbalances in the workload are 1) savings can be achieved, 2) overtime can
be reduced and 3) the crews believe that they are receiving an equitable and fair deal.

An example on the use of workload balance in a residential sanitation routing
problem that we solved is now presented. The Within Route Mileage and Number of
Stops for the existing routes are given in Table 12.1. The Within Route Mileage is the
total mileage covered by the crew in servicing the route and does not consider the
distance between the route and the disposal facility, the route and the depot and the
depot and the disposal facility. The number of stops are the number of residences on the
route.

Route imbalance is illustrated in Routes 14, 16 and 17 of the existing routes. The
statistics for these routes are denoted in bold in Table 12.1. Route 14's Within Route
Mileage is 23.38 miles and contains 1590 stops, route 17's Within Route Mileage is
26.13 miles and contains 1088 stops whereas route 16's Within Route Mileage is 8.39
miles and contains 837 stops. In practice, the crews servicing routes 14 and 17 required
over twice the time to complete the route as the crew servicing route 16. Moreover, on
heavy volume days, two crews had to be sent out to service routes 14 and 17 - costing
additional revenues. These imbalances were so severe that they caused discontent
among the crews. The crews requested a route readjustment be carried out in order to
achieve better balance. This request and the implementation of a recycling program in
the area were the bases of the study that we carried out.
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In Table 12.2, the Within Route Mileage, Number of Stops and Within Route Travel
Time for the computer generated routes in this region are presented. Forming 20 routes
was specified in advance and route balance was the primary goal. The Within Route
Travel Time or workload was computed as the sum of 1) the total service time on all the
streets on the route and 2) the total within route deadhead time for the route. The total
service time on a street was determined by linear regression using historic data on the
actual time to service a route. The independent variables in the regression were number
of stops on an existing route, length of the streets requiring service on an existing route
and housing density on an existing route. The total service time on each street was
computed from the regression coefficients for the independent variables when each
existing route was considered an entity by itself. Times between the route and the depot
and disposal facility were not considered in the workload. As can be seen, reasonable
workload balance was achieved. The maximum deviation in estimated workload on the
20 routes is 26 minutes and the workload on most of the routes is 300 minutes ± 6
minutes.



In conclusion, route balance is a powerful goal in solving many SRPs . Route
balance is most effective when the network is reasonably dense (urban and suburban
areas) and the service times at the stops are small. In this way, the number of stops on
each route is large and the deadhead travel time between stops is small.

12.4 ALGORITHMS FOR SOLVING VEHICLE ROUTING PROBLEMS

How to best solve vehicle routing problems has been an area of intense research for
many years. There have been hundreds (if not thousands) of papers written on solving
variants of vehicle routing problems. Euler in the early 1700s was one of the first to
examine a vehicle routing problem. In honor of his analysis, this problem is called the
Koenigsberg bridge problem (or one vehicle Chinese Postman problem or the
fundamental problem in graph theory). Analysis of these problems has lead to the
development of significant new theories in vehicle routing and other areas of
combinatorial optimization. Practitioners have used these results to solve many
applications, including the applications described in this paper and in other papers and
books. The April, 1999 special issue of the Journal, Computers and Operations Research
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(Volume 26, Number 4) and the book by Lawler, Lenstra, Rinnooy Kan and Shmoys
eds. (1985) are devoted to the Traveling Salesman problem. Ball (1995), Bodin, Golden,
Assad, and Ball (1983), Christofides (1985), Christofides and Mingozzi (1990) and
Golden and Assad (1986, 1988) are survey articles or special issues of journals or books
on vehicle routing. Laporte and Osman (1995) have a bibliography containing over 500
articles on vehicle routing.

In spite of all of this research into vehicle routing, there is no algorithm that
optimally solves every VRP. Algorithms and procedures have been developed for
optimally solving certain classes of vehicle routing problems but these procedures do
not operate very well or do not generate feasible solutions if conditions on the problem
change. The procedures for optimally solving the traveling salesman problem may not
generate a feasible solution to the multi-vehicle VRP without modification. An
algorithm for optimally solving the multi-vehicle VRP can be used to solve a traveling
salesman problem (TSP) but this algorithm most likely will be slow computationally.

In this chapter, it is impossible to survey all of the approaches (heuristic, exact and
meta-heuristic) for solving vehicle routing problems. Instead, we have decided to
highlight some of the new procedures that have been designed for solving certain classes
of vehicle routing problems. In particular, we have chosen to describe exact procedures
for solving certain classes of vehicle routing problems and a generic heuristic procedure
for solving street routing and scheduling problems. Some of these procedures are new
and have not been published in the open literature.

Some street routing and scheduling problems can be solved by using the exact
procedures described in 12.4.1-12.4.4 if route balance is not a major criterion. In the
statement of the problems, it is assumed that a non-negative cost is associated with

every edge {i,j if the problem is symmetric or arc {i,j} if the problem is asymmetric. In
most papers, the symmetric distances are assumed to be Euclidean. However, in any of
these cases, these distances (or travel times or costs) can be computed as shortest path
distances. Moreover, if one is willing to solve an asymmetric problem, then turn
restrictions, one way streets, and other factors mentioned in Section 12.2 can be
considered in the computation of these distances. Thus, the exact procedures can be used
to solve SRPs if the data used in the problem is appropriately defined.

Exact Algorithms for the Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) is a special case of PTPRP.
The CVRP is the problem of designing feasible routes for a set of homogeneous
vehicles that make up a vehicle fleet. The objective in forming these routes is to
minimize the total travel time of all of the routes. Each route begins and ends at the
depot and contains a subset of the stops requiring service. A solution to this problem
is feasible if the vehicle capacity on each route is not exceeded and all stops are
assigned to a route. In the simplest statement of the CVRP, there are no lower and
upper bounds on the duration of each route. As such, there are no route balance
considerations.
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The CVRP has been shown to be NP-hard. The fact that few algorithms have been
produced to date which can solve the CVRP optimally reflects the difficulty of this
problem. In view of the large number of practical constraints that appear in real-
world CVRPs, all exact methods investigate a basic problem which is at the core of
all vehicle routing problems. We call this core problem, the basic CVRP.

The basic CVRP ignores a large number and variety of constraints and
complications that are often found in real-world problems. Some of these constraints
that were discussed in the earlier sections of this chapter and can easily be
incorporated in heuristic methods for solving the basic CVRP. However, these
constraint and complications represent a small fraction of those found in practice.
Also, some of these constraints can be inserted into exact branch and bound
algorithms designed for the basic CVRP by rejecting, during the branching process,
infeasible solutions. However, if it is not possible to change the lower bound
computationally in order to take into account the new constraints, the performance of
the resulting exact algorithm becomes very poor and only small CVRPs can be
solved to optimality.

The Basic CVRP and its Extensions

The basic CVRP considered in this chapter is as follows. A complete undirected
network (or graph) G=(V,E) is given where V=(0, 1, ..., n) is the set of vertices and E
is the set of undirected arcs (edges). A non-negative cost is associated with every

edge V'=V\{0} is a set of n vertices, each vertex corresponds to a stop and
vertex 0 corresponds to the depot. Henceforth, will be used interchangeably to
refer both to a stop and to its vertex location. Each stop i requires a supply of units

from depot 0. A set of M identical vehicles of capacity Q is located at the depot and
used to service the stops; these M vehicles comprise the homogeneous vehicle fleet.
It is required that every vehicle route start and end at the depot and that the load
carried by each vehicle is no greater than Q. The route cost corresponds to the
distance traveled on a route and is computed as the sum of the costs of the edges
forming the route. The exact algorithms described in this paper find an optimal
solution to the CVRP. An optimal solution to the CVRP is a set of M feasible routes,
one for each vehicle, in which all stops are visited, the capacity of each vehicle is not
exceeded and the sum of the route costs is minimized.

CVRP can be divided into symmetric CVRP and asymmetric CVRP. In the
symmetric CVRP, the underlying network G=(V,E) is assumed to be undirected. The
network for the symmetric CVRP is the network for the basic CVRP. In the
asymmetric CVRP, the underlying network G’=(V,A) is assumed to be directed; i.e.,
every arc in A is assumed to be directed.

In the case of street routing and scheduling problems, the stops are located on a
street network and the travel time between stops is computed as the shortest travel
time path between stops. If the travel time matrix is symmetric, then we have the
symmetric or basic CVRP. In the symmetric CVRP, it can be assumed that there are
no one-way streets and turn and street crossing difficulties are not considered in
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setting up the travel time matrix. The asymmetric CVRP consider one-way streets
and turn and street crossing difficulties since the travel time matrix is not symmetric.
In this paper, we consider procedures for solving the symmetrical CVRP since the
symmetric CVRP appears to be more difficult to solve to optimality than the
asymmetric CVRP..

Exact algorithms for the asymmetric CVRP have been proposed by Laporte,
Mercure and Norbert (1986) and by Fischetti, Toth and Vigo (1994). The latter
method can solve exactly problems with 300 stops and average vehicle utilization

where represents the total volume of all of the stops, M

represents the number of vehicles in the fleet and Q represents the capacity of any
vehicle. However, the size of problems solved to optimality decreases to 70 stops if
the average vehicle utilization is increased to about 0.90. Neither Laporte, Mercure
and Norbert (1986) nor Fischetti, Toth and Vigo (1994) report any attempt to solve
symmetric CVRP.

Average vehicle utilization is a very important concept. As the average vehicle
utilization approaches 1, the vehicles become more tightly packed and finding a
feasible solution becomes more difficult. In many CVRP encountered in practice, the
average vehicle utilization is at least 0.95. From the results stated in the previous
paragraph, it is quite apparent that the current best methods for the asymmetric
CVRP cannot be used for solving the symmetric CVRP (or possibly asymmetric
CVRP that are almost symmetric). In particular, these approaches cannot be used to
solve the set of symmetric test problems proposed in the literature where the vehicle
utilization is about 0.95. Thus, in order to solve the symmetric CVRP to optimality, a
separate set of formulations and algorithms have to be considered. These
formulations and algorithms are the thrust of this section.

We now review some of the more significant exact methods for solving the basic
CVRP. These exact methods can be classified into the following categories:

(1)

(2)

(3)

(4)

(5)

Branch and cut

Branch and Bound

Dynamic programming

Set partitioning based methods

Commodity flow based methods

We then present the exact algorithms for the CVRP with Time Windows
constraints (VRPTW) and the CVRP with Backhauls (VRPB) in order to show how
exact CVRP methods can be extended to deal with the complexities of real-world
routing problems.

This chapter is by no means exhaustive in describing all exact methods and results
obtained on the CVRP. Additional results can be found in Christofides et al. (1979),
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Christofides (1985), Fisher (1995), Desrosiers et al. (1995), Laporte (1992, 1997)
and Laporte and Osman (1995).

Branch and Cut Algorithms

Branch and cut methods try to extend to the symmetric CVRP (the graph G is
assumed to be undirected) the successful results of polyhedral combinatorics
developed for the traveling salesman problem by Chvatal (1973), Grötschel and
Padberg (1979), Grötschel and Padberg (1985). These methods are based on the
following formulation of the CVRP. Let be an integer variable representing the

number of vehicles traversing the undirected arc (edge) {i,j}, and let r(S) be the
number of vehicles needed to satisfy the demand of stops in S.

The basic CVRP can be formulated as the following integer program.

s.t.

Constraints (12.2) are the degree constraints for each stop. Constraints (12.3) are
the capacity constraints which, for any subset S of stops, that does not include the
depot, impose that r(S) vehicles enter and leave S, where r(S) is the minimum

number of vehicles of capacity Q required for servicing the stops in S (i.e.,

Constraints (12.3) are also called generalized subtour elimination

constraints. It is NP-hard to compute r(S), since it corresponds to solve a bin-packing
problem where r(S) is the minimum number of bins of capacity Q that are needed for
packing the quantities However, inequalities (12.3) remain valid if r(S) is

replaced by a lower bound to its value, such as where denotes the
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smallest integer not less than y. Constraint (12.4) states that M vehicles must leave
and return to the depot while constraints (12.5) and (12.6) are the integrality
constraints. Finally, corresponds to a route containing only stop j.

This formulation cannot be solved directly by a general purpose integer
programming algorithm because constraints (12.3) are too numerous to be
enumerated a priori. The exact algorithms based on this formulation share the
following structure. Constraints (12.3) are relaxed. Then, at each iteration, the LP
relaxation of the resulting problem that includes only a subset of constraints (12.3) is
solved. If the optimal LP solution to this problem is integer and all constraints (12.3)
are satisfied, then it is an optimal CVRP solution. Otherwise, constraints of type
(12.3) that are violated by the optimal LP solution are added into the LP relaxation
and a new iteration is performed.

This cutting plane procedure can be integrated into a branch and cut scheme to
solve the CVRP to optimality. Laporte, Norbert and Desrochers (1985), using a
procedure similar to the one described above, were able to solve to optimality
randomly generated problems with 50 to 60 stops and average vehicle utilization

The LP relaxation of this formulation can be strengthened by adding other valid
inequalities that hold for every feasible CVRP solution but might be violated once
the integrality constraints (12.5) and (12.6) are relaxed. Laporte and Norbert (1984)
describe valid inequalities for the CVRP based on the comb inequalities developed
by Chvatal (1973) and Grötschel and Padberg (1979) for the traveling salesman
problem. Cornuejols and Harche (1993) used comb inequalities to improve the LP
relaxation of formulation (12.1) – (12.6). With the resulting branch and cut method,
they were able to solve the 50 stop test problem described in Christofides and Eilon
(1969).

A more sophisticated branch and cut algorithm based on formulation (12.1) –
(12.6) has been proposed by Augerat et al. (1995). In addition to capacity constraints,
they used new classes of valid inequalities, such as comb and extended comb
inequalities, generalized capacity constraints and hypotour inequalities. These new
inequalities lead to significant improvements in the quality of the bound. The
resulting branch and cut algorithm has been able to solve some large CVRP test
problems. One of these problems involved 135 stops and represents the largest
CVRP problem ever solved to date and reported on in the literature. However, this
branch and cut has failed in solving to optimality a well known 75 stop problem
described in Christofides and Eilon (1969).

Branch and Bound Algorithms

The effectiveness of branch and bound algorithms is entirely dependent on the
quality of the bounds used to l imi t the tree search. We will, therefore, discuss the
derivation of such bounds.
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Christofides, Mingozzi and Toth (198la) and Fisher (1994) use different
modifications of spanning trees to obtain valid lower bounds for the symmetric basic
CVRP. Christofides, Mingozzi and Toth (1981a) observe that the removal from a
CVRP solution with M routes of any set containing edges adjacent to the

depot and of any set containing M – y edges not adjacent to the depot – one edge

from each route – produces a tree with degree K = 2M – y at the depot. This tree is
called the Degree Center Tree (K-DCT). If it is known that the maximum number of
single stop routes (i.e., the routes made up by the depot and only one stop) is

then y can be fixed a priori to be an integer in the range

Let v(y), for any given y, be the sum of following three cost terms – 1) the cost of
the least-cost K-DCT, 2) the cost of the y edges of minimum cost incident to the
depot and 3) the cost of the M – y minimum cost edges not incident to the depot. v(y)
is a valid lower bound to the CVRP for any y, Hence, a valid lower

bound to the CVRP is given by Details of a polynomial

algorithm for computing this lower bound are provided in Christofides, Mingozzi
and Toth (198la). The lower bound can be strengthened by introducing Lagrangean
penalties on the violated degree constraints (12.2) in the formulation of the basic
CVRP given by (12.1) - (12.6). Christofides, Mingozzi and Toth have embedded this
lower bound into a branch and bound algorithm and have solved to optimality CVRP
problems containing 10 to 25 stops.

Fisher (1994a) describes an exact branch and bound algorithm for the CVRP
where the lower bound is computed using a generalization of spanning trees, called
M-trees. A M-tree is defined to be a set of n + M edges that span the graph G where
n is the number of stops in the problem and M is the number of routes. If routes with
a single stop are not allowed, then any CVRP solution is a M-tree with the depot
having degree equal to 2M. Fisher shows that the CVRP can be modeled as the
problem of finding a minimum cost M-tree with the degree of the depot constrained
to be 2M and some side constraints that impose 1) vehicle capacity constraints and 2)
the requirement that each stop is visited exactly once. As single stop routes are not
allowed, the CVRP can be formulated using (0-1) binary variables as follows.

s.t. (12.2), (12.3) and (12.5).

where X = {x : x defines a M-tree satisfying

The lower bound is computed by solving the Lagrangean problem obtained after
dualizing the side constraints (12.2) and (12.3). The optimal solution of the
Lagrangean problem is provided by the minimum cost M-tree with depot degree
equal to 2M. A polynomial algorithm for computing the degree-constrained
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maximum M-tree is given in Fisher (1994b). Since the number of constraints (12.3)
can be enormous, Fisher (1994a) developed an heuristic procedure for choosing an
initial subset of these constraints and for dynamically adding and deleting constraints
during the subgradient iterations performed to find the best lower bound. This lower
bound has been embedded into an exact branch and bound algorithm that has
produced the optimal solution for a well-known problem with 100 stops and several
real-world problems with 25-71 stops.

Dynamic Programming Algorithms

Dynamic programming (DP) has been applied to solve several types of CVRP or
to obtain tight lower bounds. Christofides, Mingozzi and Toth (1981b) present three
formulations of the CVRP and introduce the state space relaxation method for
relaxing the DP recursions in order to obtain valid lower bounds on the value of the
optimal solutions. The computational results show that the ratio “lower
bound/optimum” varies between 93.1% and 99.6% when these state space
relaxations are used. Christofides (1985) reported that a CVRP involving 50 stops
has been solved exactly by this approach. Problems involving up to 125 stops were
solved within 2% of the optimum in less than 15 minutes on a CYBER 855.

A generalization of state space relaxation for dynamic programming is described
in Mingozzi, Bianco and Ricciardelli (1997). This procedure is used to derive an
exact algorithm for solving TSP with time windows and precedence constraints. The
derived algorithm outperforms other methods presented in the literature for the same
problem, and can be used also on asymmetric TSP. The authors report that TSP
problems involving 120 cities and wide time windows can be solved exactly by the
proposed method in less that 5 minutes on a Intel 486 (33Mhz) personal computer.
Moreover, problems involving tight time windows are directly solved by the
bounding procedure at the root node of the tree search.

Algorithms Based on the Set Partitioning Formulation

The set partitioning formulation of the basic CVRP that was init ial ly introduced
by Balinski and Quandt (1964) is now described. Let be the
family of all feasible routes. Also, let the index set of the stops in route r be the

optimal cost of route r be and the load of route r be Let be the

index set of routes visiting stop i and be a (0-1) binary variable whose value is

equal to 1 if and only if route r is used in the optimal solution. The basic CVRP can
be formulated as follows:
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s.t.

In practice, this formulation cannot be solved directly since the number of
variables can run into the millions, even for small size problems, and the
computation of the optimal cost for each route r requires solving a TSP on the

subgraph defined by vertices In this section, we describe three exact

algorithms for the basic CVRP that are based on formulation (SP).

In Christofides, Mingozzi and Toth (198la), a lower bound to the SP is
developed. This lower bound is obtained by finding a feasible solution of the dual of
the linear programming relaxation of the SP. This dual problem to the linear
programming relaxation of the SP is denoted by DSP.

s.t.

(DSP)

unrestricted

where are the dual variables of constraints (12.9) and is the dual variable

of constraint (12.10). In Mingozzi, Christofides, Hadjiconstantinou (1994), it is

shown that a feasible solution to problem DSP is given by

where is a lower bound to the cost of the least cost route of load q passing

thorough stop i; that is to say,

such that

Therefore, a valid lower bound for the CVRP is given by:



434 Handbook of Transportation Science

A dynamic procedure for computing and is described in

Christofides, Mingozzi and Toth (1981a). The value of the lower bound is improved
by placing penalties on the vertices having degree different from 2 in the

solution of the bound. Subgradient optimization is used to maximize the lower
bound. This bound is then embedded in a branch and bound algorithm. The resulting
algorithm optimally solved CVRP ranging from 10 to 25 stops.

Hadjiconstantinou, Christofides and Mingozzi (1995) describe a new method for

computing the values that is based on the computation of k-

shortest paths and q-paths. The resulting CVRP lower bound is superior to
described above and the branch and bound algorithm is able to optimally solve
problems involving up to 50 stops.

Mingozzi, Christofides and Hadjiconstantinou (1994) describe a new method for
solving the SP formulation of the CVRP. They propose to solve problem SP using a
subset (F is a set containing a limited number of routes) so that the resulting
problem can be solved by a branch and bound algorithm. The optimal solution
obtained for the resulting problem is not guaranteed to be an optimal CVRP solution.
However, the method used to generate F permits an estimate of how far the cost of
the solution obtained using their method is from the optimal solution (this estimate is
called the distance of their solution from the optimal solution).

Let z(UB) be a valid upper bound for the CVRP and let be a “good” feasible
solution of DSP of cost z'(DSP). The heuristic procedure used by Mingozzi,
Christofides and Hadjiconstantinou (1994) for computing will be described later.

Let be the reduced cost of route corresponding to the

dual solution and let where is a subset of F is

a subset of R that satisfies the following three conditions:
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where is defined a priori. An efficient dynamic programming procedure, called
GENF, for computing the subsets is described in Mingozzi, Christofides

and Hadjiconstantinou (1994).

Let be the set partitioning problem that is obtained from SP by replacing the
route set R with the subset F defined above. Let be an optimal integer solution of
SP' of cost where we assume that if the set F does not contain
any feasible CVRP solution. If then the corresponding solution is a
feasible and, possibly, an optimal CVRP solution. It is quite clear that the cost of any
feasible CVRP solution containing a route (say ) having reduced cost is greater

than or equal to Therefore, if the reduced cost of every route

is greater than z(UB) - z'(DSP), then is an optimal CVRP solution. In fact,
any CVRP solution containing a route has a cost greater than z'(DSP) + ;

but and, therefore,

In order to verify the optimality of x*, the following two cases have to be
considered.

C1.

C2.

In this case, represents an optimal CVRP solution since

either or

for some In this case, might not be an optimal CVRP

solution.

Let We have the following two subcases under C2:

C2.1:

C2.2:

In this subcase, is an optimal CVRP solution
since any CVRP solution involving some route of the set R\F will have a
cost greater than or equal to

In this subcase, may not be an optimal CVRP
solution and is a valid lower bound for the CVRP.

The optimal SP' solution can be obtained by means of an integer programming
solver such as CPLEX.

The core of the method of Mingozzi, Christofides and Hadjiconstantinou is the
heuristic procedure, called HDS, used to find a feasible solution u' of DSP without
generating the entire set of routes R. HDS computes a solution u' of cost z'(DSP) to
DSP as the sum of the dual solutions obtained by a sequence of three different
relaxations of the CVRP where each relaxation exploits a different substructure of
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the problem. The value of the lower bound z'(DSP) obtained is greater than the
maximum of the values computed by each individual relaxation. The first two
relaxations are based on graph theory considerations while the third relaxation
requires the generation, by means of procedure GENF, of a limited subset of routes.
Mingozzi, Christofides and Hadjiconstantinou report optimal solutions of problems
up to 50 stops.

Algorithm GENF can be easily adapted to deal with real-world CVRPs (e.g.,
involving time windows, delivery and collections, preferences, and so forth) simply
by rejecting any infeasible route generated. Computational results concerning CVRP
with time windows are reported in a following section. Moreover, this procedure can
be easily adapted to deal with the asymmetric CVRP.

A New Algorithm based on a Two-Commodity Network Flow Formulation

Most integer programming formulations of the CVRP use binary variables as
vehicle flow variables to indicate if a vehicle travels between two stops in the
optimal solution. Fisher and Jaikumar (1981) formulate the CVRP using three index
binary variables as vehicle flow variables to indicate whether vehicle k travels

directly from stop i to stop j ( if vehicle k travels directly from stop i to stop j

and 0 if not). This formulation is used to derive an algorithm based on Benders
decomposition. The master problem in the Bender’s decomposition is a generalized
assignment problem and the Benders inequalities are derived by solving M
independent TSPs, where a TSP is solved over the stops assigned to a vehicle.
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The main complication in using this method concerns the derivation of the
Benders inequalities. In fact, Benders constraints are derived from the optimal dual
variables of the M subproblems. Since the TSP subproblems are integer programs,
dual variables cannot be obtained directly. Thus, Fisher and Jaikumar (1981) used
this Benders decomposition approach to derive an heuristic algorithm for the CVRP.

In this section, we discuss a new integer programming formulation for the
symmetric CVRP, proposed by Baldacci, Mingozzi, Hadjiconstantinou (1998). This
formulation, called 2CVRP, is interesting in many different ways. It can be shown
that its LP-relaxation satisfies a weak form of the subtour elimination constraints.
The formulation can also be modified to accommodate different constraints and,
therefore, is capable of being extended to different routing problems. The two-
commodity formulation has been used by Lucena (1986) to derive new lower bounds
for the VRP and by Langevin et al. (1993) for solving the TSP and the Makespan
Problem with time windows. Baldacci, Mingozzi, Hadjiconstantinou (1998) use the
two-commodity approach to derive new integer programming formulations for the
CVRP, the TSP with mixed deliveries and collections (TSPDC) and the TSP with
Backhauls (TSPB).

The idea behind this formulation is to use two flow variables, and to

represent an edge {i,j} of a feasible CVRP solution. If a vehicle travels from i to j,
then represents the load of the vehicle and represents the empty space on the

vehicle whereas, if the vehicle travels from j to i then and

represent the empty space on the vehicle and the load respectively. Thus, the flow
variables define two flow circuits for any feasible solution that represents a route.

One circuit is defined by the flow variables representing the vehicle load while the
second circuit is defined by the flow variables representing the empty space on the
vehicle.

In Figure 12.6, a three stop route for a vehicle of capacity Q=15 is shown. Also,

in Figure 12.6, the two circuits and represented by the flow variables

defining the route are displayed. Circuit is formed by the variables representing
the vehicle load. Thus, the flow indicates the total demand of the three

stops, represents the load of the vehicle in traveling from 8 to 2 after having

unloaded 3 load units at stop 8, represents the load of the vehicle in traveling

from 2 to 9 after having unloaded 7 load units at stop 2, finally represents the
load of the vehicle in returning to the depot after having unloaded the remaining 4
load units at stop 9.

Circuit is formed by the variables representing the empty space on the vehicle.
Thus, indicates that the vehicle arrives empty at the depot,

represents the empty space of the vehicle in traveling from 2 to 9, represents
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the empty space in traveling from 8 to 2, finally represents the empty space

of the vehicle leaving the depot. Every edge {i,j} of the route has

The new CVRP formulation is as follows. Let be a 0-1 binary variable equal to

1 if edge {i,j} is in solution and 0 if edge (i,j) is not in the solution. Let be the

flow value of arc

s.t.

Constraints (12.15), (12.16) and (12.20) define a feasible flow for variables

Constraints (12.17)-( 12.19) force the degree of each stop to be 2 and the degree of
the depot to be 2M, respectively. Constraints (12.21) are the integrality constraints.
The supply-demand pattern involved ensures that there are paths from vertex 0 to
any vertex in V' and back from any of the vertices in V’ to vertex 0. Since, from
(12.17) and (12.20), the capacity of the vehicle will never

be exceeded in the route allocated to it.

Baldacci, Mingozzi and Hadjiconatatinou (1998) describe a valid lower bound for
the CVRP that is obtained from the LP-relaxation of formulation 2CVRP by adding
valid inequalities that are satisfied by any feasible integer solution but not necessarily
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verified by the LP-relaxation. They consider inequalities such as flow inequalities
and generalized subtour elimination constraints as described by Augerat et al. (1995).
The flow inequalities are derived from the observation that in any feasible integer
solution, if for some edge not incident to the depot, then and

Therefore, and are valid inequalities and are called

flow inequalities. The value of the lower bound is obtained by iteratively adding the
violated inequalities to the LP relaxation in the same way as adding cutting planes to
the LP relaxation. A branch and cut algorithm based on this bound has been used by
Baldacci, Mingozzi and Hadjiconatatinou (1998) to solve well known CVRP test
problems with up to 100 stops.

Formulation 2CVRP becomes a valid formulation for the symmetric TSP by
setting and Q = n – 1. Moreover, Baldacci, Mingozzi and

Hadjiconatatinou (1998) use the two commodity approach to derive new integer
programming formulations for the TSP with mixed deliveries and collections
(TSPDC) and for the TSP with backhauls (TSPB). These formulations are used to
derive new lower bounds and new branch and cut algorithms. The computational
results show that for both TSPDC and TPB the lower bounds are very tight and the
exact algorithms can solve problems with up to 150 stops.

Exact Algorithms for the Vehicle Routing Problem with Time Windows

The basic CVRP does not consider several commonly encountered real-world
constraints. One very common constraint in real-world problems is to have time
windows at the stops. The resulting problem, denoted by VRPTW, inherits the
structural definition of the basic CVRP described in Section 12.4.1 and requires the
following additional characteristics.

A travel time is associated with each edge At each stop is

associated a service time required by a vehicle to visit the stop and to unload the

quantity (we assume ). The start time of the service at stop i must be within a

given time window A vehicle is permitted to arrive at stop i before the

beginning of the time window and wait at no cost until time Also vehicles are

time-constrained at the depot in that each vehicle must leave the depot and return
back within the time window

We now present a mixed-integer programming formulation of the VRPTW,
adapted from the one proposed by Kohl and Madsen (1997). This formulation
involves two types of decision variables. The 0-1 binary variable is 1 if and only

if vehicle k visits stop j immediately after visiting stop i and 0 if not. The continuous
variable denotes the time vehicle k begins service at stop i . It is assumed that

denotes the departure time of vehicle k from the depot.

The VRPTW can be formulated as follows:
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Constraints (12.23) state that each stop must be visited exactly once. Constraints
(12.24) are the capacity limitation on the vehicles. Constraints (12.25) force each
vehicle to be used at most once and constraints (12.26) state that if a vehicle visits a
stop, it must also depart from it. Constraints (12.27) impose that vehicle k cannot
arrive at stop j before if it travels from i to j. Constraints (12.28) force

each vehicle k to return to the depot before time The scalar L can be any large

number. Constraints (12.29) ensure that all time windows are respected and these
time windows are assumed hard and constraints (12.30) are the integrality
constraints.

Being a generalization of the CVRP, the VRPTW is NP-hard. Since the VRPTW
occurs in many applications, several research efforts have been devoted to finding
solutions to this problem by means of exact and heuristic methods. In this section, we
concentrate on the exact approaches. A review of heuristic procedures can be found
in Desrosiers et al. (1995).

The most successful exact algorithms to date follow one of three main approaches:
column generation (set partitioning formulation), Lagrangean decomposition (variable
splitting) or M-tree relaxation (M-trees are discussed in section 12.4.1). The M-tree

s.t.
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relaxation approach proposed by Fisher et al. (1997) extends the approach presented by
Fisher (1994) for the basic VRP to the VRPTW. The idea for the basic CVRP is to
identify subsets S of stops which must be serviced by at least r(S) vehicles. Analogous
considerations on the time windows lead to constraints specifying that not all arcs in a
route which violates time window constraints can be simultaneously in the solution.
These constraints are then relaxed in a Lagrangean fashion, obtaining a problem that is a
degree constrained M-tree problem. Subgradient optimization can then be used to
tighten the resulting bound. This method has solve to optimality clustered problems up
to 100 stops under the assumption that each route contains at least two stops. This
approach loses effectiveness when the stops are not clustered or when the time windows
are tight. In these cases, the number of violated time-windows constraints increases and
the interplay of subgradient optimization and violated constraint identification becomes
more computationally demanding.

The other two approaches (column generation and Lagrangean decomposition)
are both based on the observation that only assignment constraints, specifying that
each stop must be assigned to exactly one vehicle, are formulated with summation
over all vehicles. When these constraints are relaxed, or confined in a subproblem
following a decomposition, the resulting problem is an Elementary Shortest Path
problem with capacity and time window restrictions for each vehicle and is a NP-
hard problem (Dror, 1995). However, effective dynamic programming strategies
have been proposed for its relaxation. In these procedures, non-elementary paths are
accepted. These non-elementary paths permit negative costs that induce cycles. The
cycles cause stops to be serviced more than once in a single path.

Desrocher et al. (1992) make use of this possibility of decomposition of the
VRPTW in a column generation framework. The problem is decomposed into a
master problem and a subproblem. The master problem ensures that all stops are
serviced by suitably choosing a subset of paths, where the paths are generated as
solutions of the subproblem. The master problem is formulated as a set partitioning
problem where each column represents a path. The solution of this problem specifies
both how many vehicles are used to service all the stops and the path to be followed
by each of the vehicles (all of the vehicles are assumed identical). For
implementation reasons, since the paths represented by the columns are not
elementary paths but can contain cycles, the master problem is actually formulated as
a set covering problem. The set covering solution can be converted to a set
partitioning solution by means of a branch and bound algorithm. The set covering
matrix is initialized with paths starting from the depot, reaching one stop and
returning to the depot.

The optimal solution of the LP relaxation of the set covering problem produces a
set of associated dual optimal values. These dual optimal values are used in the
subproblem to generate columns with negative reduced costs. Each subproblem is a
shortest path problem with capacity and time window constraints. The arc costs in
the subproblems are derived from the master dual optimal values. Several negative
reduced cost paths can be found when solving each of the subproblems. These paths
are included as new columns in the next iteration of the master problem. The master
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and the subproblems are solved iteratively until either a predefined maximum
number of columns has been generated or the reduced cost of the generated columns
are strictly positive.

At this point, the value of the objective function of the optimal LP solution of the
master problem is a lower bound to the VRPTW. A branch and bound strategy is
then employed to find a feasible and possibly optimal solution to the VRPTW. The
optimality of a solution is proved when either 1) the initial LP solution is integer, or
2) at each node of the search tree, a sufficient number of additional columns is
generated to rule out the possibility that a non-generated column may enter the
optimal integer solution. This method has successful problems with up to 100 stops.
This procedure performed best on problems where the stops are clustered, worse on
problems where the stops are uniformly randomly located over the area, and
experienced the most difficulty on random-clustered problems (i.e. problems where
some stops are randomly located and the other stops are clustered).

A column generation method was also used by Kohl, Desrosiers, Madsen,
Solomon and Soumis (1997), where the master problem is strengthened by means of
valid inequalities that are added as extra rows of the set partitioning formulation. The
inequalities added are k-path cuts with k = 2 (introduced by Laporte Nobert and
Desrochers (1985)). Subsets of stops that require at least 2 vehicles to service but are
serviced by less than two vehicles in the optimal (fractional) LP solution of the
master are identified. The identification of these subsets cannot be done in
polynomial time. However, efficient algorithms for identifying these subsets are
proposed by Kohl, Desrosiers, Madsen, Solomon and Soumis (1997).

The cutting plane generation was inserted in the column generation as a means to
strengthen the LP at the root node. In fact, columns are generated by means of the
capacity and time window constrained shortest path subproblem until no more
negative reduced costs paths exist or an a priori specified number of columns is
generated (we use 20000 columns). Then, cutting planes (2-paths and subtour
elimination constraints) are identified. If the solution proposed by the LP after the
addition of these cuts is still fractional, a branching strategy is initiated. At each node
of the search tree, new columns are generated (provided their total number is below
the specified number (20000) but no new cuts are added. As shown in Table 12.3,
this approach has proved very effective. It has solved all clustered problems and
most random and random-clustered problems up to 100 stops.

A solution strategy based on Lagrangean decomposition has been proposed by
Kohl and Madsen (1997). As with the previous algorithms, the problem is
decomposed into a master problem requiring each stop to be assigned to a route and
a subproblem for each vehicle consisting of an elementary shortest path problem
with capacity and time window restrictions. This problem is NP-hard and cannot be
solved exactly for reasonable size problems. For this reason, Kohl and Madsen
consider a relaxed problem that allows a path servicing the same stop more than
once. This relaxed problem is then solved by means of a dynamic programming
algorithm based on the one proposed by Desrochers (1988).



Street Routing and Scheduling Problems 443

When the assignment constraints are relaxed in a Lagrangean fashion, the purpose
of the master problem is to find the optimal Lagrangean multipliers. Thus, the
VRPTW decomposes into a number of shortest path subproblems where the costs of
the shortest paths are affected by the values of the Lagrangean multipliers. The
optimal Lagrangean multipliers are found using a method exploiting the benefits of
subgradient methods as well as bundle methods proposed by Lemaréchal, Strodiot
and Bihain(1981).

If the penalty optimization does not yield a feasible VRPTW solution, a branch
and bound strategy is initiated. Mingozzi, Baldacci and Palumbo (1998) describe a
new exact algorithm for the VRPTW that is an extension of the exact algorithm
proposed by Mingozzi, Christofides and Hadjiconstantinou (1994) for the basic
CVRP (see section 12.4.1). However, the computational performance of this
algorithm for the VRPTW is greatly improved if the procedures used to compute the
lower bound are customized to deal directly with time windows. Mingozzi, Baldacci
and Palumbo (1998) propose a new heuristic procedure that takes into account the
time window constraints for solving the dual of the LP-relaxation of the set
partitioning formulation of the VRPTW. This method is based on the state space
relaxation of the dynamic programming formulation of the TSP with time window
introduced by Christofides, Mingozzi and Toth (1981b) described in section 12.4.1.
This procedure is combined with other two heuristics to obtain a valid lower bound.
Moreover, Mingozzi, Baldacci and Palumbo (1998) describe a new route generation
method that use a lower bound to fathom the enumeration of states that cannot lead
to feasible routes. The computational results show that the lower bound is tight and
the resulting method can solve to optimality difficult VRPTW problems with 100
stops that cannot be solved by other exact algorithms.

Table 12.3 shows the number of problems solved and the number of optimal solution
found by different methods on three classes of test problems proposed by Solomon
(1987). The approach described in Mingozzi, Baldacci and Palumbo (1998) appears to
be the most successful approach for solving these VRPTW exactly. In Table 12.3, R
means random problems, C means clustered problems and RC means random-clustered
problems.

Vehicle Routing Problem with Backhauls

The Vehicle Routing Problem with Backhauls (VRPB) is an extension of the basic
CVRP. In the VRPB, M identical vehicles stationed at a central depot are to be used
to supply a set of stops. The stops are broken down into two sets called Linehaul
customers and Backhaul customers. The Linehaul customers are stops that require
deliveries by the vehicles from the depot. The Backhaul customers have products that
the vehicles collect and these products are unloaded at the depot. In the VRPB, each
of the M vehicles must be used (i.e. all M routes are used in the solution), each route
is to begin and end at the depot and all Linehaul customers and Backhaul customers
are to be serviced. In this version of the VRPB, the routes are constrained so that
each Backhaul customer on a route is serviced after every Linehaul customer on the
route is serviced. Moreover, it is required that both the total load supplied to the
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to the Linehaul customers on a route and the total load collected from the Backhaul
customers on the route must not exceed the vehicle capacity Q. The objective is to
minimize the total distance travelled by the M vehicles.

In order to ensure feasibility, it is assumed that where is the
minimum number of vehicles need to visit all the Linehaul customers and is the
minimum number of vehicles need to visit all the Backhaul customers. In the literature,
it is assumed that routes containing only Backhaul customers are not allowed. However,
the exact methods for solving the VRPB described below can be easily extended to
consider the more general case where this assumption is not present.

Two exact methods have been proposed for the VRPB. Toth and Vigo (1997)
describe an exact branch and bound method based on the integer programming
formulation. They describe a Lagrangean lower bound based on a relaxation that leads
to the determination of Shortest Spanning Arborescences and min-cost flow problems.
The lower bound is strengthened in a cutting plane fashion by adding violated capacity-
cut constraints.

Mingozzi, Baldacci and Giorgi (1997) propose an exact algorithm for the VRPB.
This algorithm is based on an integer formulation requiring the following two set of
paths – 1) all feasible paths starting from the depot and visiting delivery stops only, 2)
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all feasible paths starting from a backhaul stop, visiting backhaul stops only and ending
at the depot. The integer programming formulation combines M delivery paths with M
backhaul paths in order to form M routes that visits all stops. The lower bound is
computed by heuristically solving the dual of the LP-relaxation of the integer
formulation. This heuristic method involves two different procedures that exploit two
different relaxations and do not require the generation of the sets of all feasible paths.
The dual solution obtained and a valid upper bound are used to drastically reduce the
number of variables in the integer program so that the resulting problem can be solved
to optimality by means of an integer programming code such as CPLEX 3.0.

Extensive computational tests on two classes of problems proposed in the literature
show that the lower bound introduced by Mingozzi, Baldacci and Giorgi is greater than
the lower bound of Toth and Vigo. Moreover, the Mingozzi, Baldacci and Giorgi
approach can optimally solve larger problems than the Toth and Vigo procedure.
However, the computational tests on these two procedures give ambiguous results since
each approach solves test problems that the other approach fails to solve. Thus, at this
point in time, we regard both approaches are competitive for solving the VRPB exactly.

Algorithm For Street Routing And Scheduling Problems

In the previous parts of section 12.4, exact algorithms for solving various vehicle
routing problems have been presented. In all of these problems, there is no length of
path restriction so that the route balancing does not play a role. In this section, we
present an outline of a generic algorithm for solving street routing and scheduling. This
algorithm assumes that the service time on each of the stops is small (for example, no
more than 3-5 minutes), the number of stops on each of the routes is large (say, greater
than 50), there are no time windows and route balancing is an important criterion. This
algorithm may not be as effective if the stops have time windows, the number of stops
on some of the routes is small, the service time at some of the stops is large and route
interlacing or overlap is acceptable.

This algorithm is a ‘cluster first, route second’ procedure (Bodin, Golden, Assad and
Ball (1983)). The algorithm first partitions a region into routes. It then generates the
travel paths and determines the amount of deadheading on a route. If the solution is not
good enough, then the next iteration through the procedure is carried out with revised
estimates of the number of vehicles needed to service the stops. If the routes look
reasonable (balance has be attained a prespecified number of iterations has been carried
out), then the solution is examined to ensure that there is not a significant amount of
overlap or (interlacing) on the routes. If necessary, the systems that we have built that
use this procedure then allow the user to manually exchange stops between routes in
order to improve balance or remove interlacing. More details of this procedure are given
below.

Each of the steps outlined below generally has to be specialized to account for
specific applications. In other words, general procedures to solve all street routing and
scheduling procedures have not been developed. However, we believe that the approach
outlined presented below can serve as a general approach for solving SRP.



446 Handbook of Transportation Science

Step a: Estimating the Number of Routes to Form

The number of routes to service a region is estimated and this estimate need not be an
integer. Suppose that the estimate of the number of routes to form in a region is 9.5.
Then the user must decide whether to form i) 9 regular (or full) routes and pay overtime,
ii) 9 regular routes and a remnant (or partial) route or iii) 10 regular routes. This initial
estimate is derived without an accurate knowledge of the time to drive between the
routes and the depot.

Knowing the number of routes to form over the area of interest, a target workload for
a route is established. The user then declares the target lower and upper bounds on the
workload in any route. In the above example, if 10 regular routes are to be formed, then
the target workload can be 440 minutes and the acceptable workload interval is [440 –
15 minutes, 440+15 minutes]. This goal on workload balance can be assumed to be soft
so that the acceptable workload interval can be violated. If all routes when formed fall
within the acceptable workload interval, then the solution is considered balanced.

Step b: Form an Initial Set of Partitions

The region over which the routes are to be formed is broken down into the number of
partitions established in Step a. This partitioning is carried out in two parts - an initial
partitioning step and an automatic swapping of stops between partitions. The purpose of
this step is to assign every stop to a partition and that the workload in each partition falls
within the accepted workload interval.

Step c: Form Travel Paths

Travel paths are then generated over each partition. With these travel paths, accurate
estimates of the amount of nonproductive time (deadhead time) on each route and,
therefore, accurate estimates of the workload in each partition can be determined. These
estimates include the time between the depot and each partition. Moreover, in the case
of the routing of vehicles for residential and containerized sanitation problems, further
estimates include the time between the disposal facility and each partition and the
number of trips to the disposal facility to make.

Step d: Are the Partitions Balanced?

If this solution is better than the “best solution found so far,” then this solution
becomes the new “best solution found so far.” If the workload on all of the partitions
(including the deadhead travel times) fall within the accepted workload interval or if a
specified number of iterations of the algorithm has been carried out, then the algorithm
stops. Otherwise, the workload estimate is revised and the algorithm returns to Step c
with a new estimate on the number of routes. The workload estimate on this step can
differs from the workload estimate in Step a since estimates of deadhead time on each of
the routes are now known.

Generally, this algorithm takes between 3-6 iterations to converge and can be used
regardless of whether the stops are street segments or actual locations. We have found
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that this procedure generates partitions that are balanced and contain little overlap (or
interlacing). This procedure works best if the stops do not have time windows. If the
stops have time windows, then the routes may turn out balanced but have interlacing or
be formed with little interlacing but may not be balanced. Also, if the route allows the
possibility of making more than one trip to the depot during the route, then volume and
weight do not play a role in the partitioning.

Manual intervention between steps b and c and between steps c and d can be very
useful in this process by allowing the user to 1) remove interlacing or 2) perform a more
complex set of stop exchanges than were considered with the automatic procedures in
Step c. If stops are manually exchanged between steps c and d, then step c must be
repeated to get travel paths as well as more accurate estimates of deadheading.

The above procedure works regardless of whether a remnant route is formed. In
neighborhood routing problems, remnant routes are useful for the following reasons:

i. They allow the above procedure to form partitions that are balanced and the
workload in all partitions except for the partition that represents the remnant route
are approximately the specified length of the workday.

ii. The remnant route can be strategically located so that the remnant routes from two
or more adjacent areas of interest can be pieced together to form a complete route.

12.5 Challenges in Solving SRPs

Street Routing and Scheduling Problems are becoming an important application area.
There are some documented successes and sophisticated commercial software systems
have been developed. Powerful desktop computers and effective and user-friendly
interfaces and GIS software offer the prospect of continued development in this area.
Situations are occurring where street routing and scheduling problems are becoming an
integral part of the logistics and distribution systems of many organizations.

SRP have been hindered by the lack of accurate geographic data bases. SRP
place a demand on the accuracy on the digital street data bases not required by other
mapping based applications nor by other classes of vehicle routing problems. The
developers of geographic data bases have not played enough attention to form
navigational quality digital street data bases (because they are expensive to create).
Moreover, some of the GIS do not have enough functionality to allow for the editing
of these digital street data bases.

However, the situation is improving. More accurate (and, in some cases,
navigational quality) geographic data bases that can support street routing
applications being developed commercially in the United States, Canada, Europe and
elsewhere. The Windows based GIS contain increased functionality, making them
more amenable to building street routing and scheduling systems.
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New technologies in allied areas are also becoming commercially available. In
particular, organizations are beginning to use Global Positioning Systems (GPS) and for
real time vehicle location and tracking and enhanced paging systems for two way
communication between the dispatcher and the crew. As such, we believe street routing
and dispatch systems using on-board computing and GPS linked to a central processing
unit for dispatching service stops to the vehicles will be implemented.
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13 LONG-HAUL FREIGHT
TRANSPORTATION

Teodor Gabriel Crainic

Freight transportation is a vital component of the economy. It supports production,
trade, and consumption activities by ensuring the efficient movement and timely
availability of raw materials and finished goods. Transportation accounts for a
significant part of the final cost of products and represents an important component
of the national expenditures of any country (Crainic and Laporte 1997).

The freight transportation industry must achieve high performance levels
in terms of economic efficiency and quality of service. The former, because a
transportation firm must make a profit while evolving in an increasingly open,
competitive, and still mainly cost-driven market. The latter, because transportation
services must conform to the high standards imposed by the current paradigms of
production and management such as small or no inventory associated with just-in-
time procurement, production and distribution, on-time personalized services, and
customer-driven quality control of the entire logistics chain. For the transportation
firm, these standards concern particularly total delivery time and service reliabil-
ity, which are often translated into objectives such as “be there fast but within the
specified limits” or “offer high quality service and consistent performance”.

The political evolution of the world impacts the transportation sector as well.
The emergence of free trade zones together with the opening of new markets due to
political changes and the resulting globalization of the economy have tremendous
consequences for the evolution of transportation systems, not all of which are
yet apparent or well understood. For example, open borders generally mean that
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firms are no longer under obligation to maintain a major distribution center in each
country. In consequence, distribution systems are reorganized around fewer but
bigger warehouses and transportation services are operated over longer distances.
A significant increase in road traffic is a normal consequence of this process, as
may be observed in Europe.

Changes to the regulatory environment have an equally powerful impact on the
operation and competitive environment of transportation firms. The deregulation
drive of the 1980s has seen governments remove numerous rules and restrictions,
especially with regard to the entry of new firms in the market and the fixing of tar-
iffs and routes. This resulted in a more competitive industry and in changes to the
number and characteristics of transportation firms. At the same time, a number of
new policies and regulations resulting from quality-of-life concerns start to signif-
icantly impact the operations of the freight transportation-related firms. Two major
examples: (i) more stringent safety regulations; (ii) policies aimed towards increas-
ing the volume of inter (and multi) modal freight movements while decreasing the
utilization of trucks. The latter result from environmental and energy efficiency
concerns and are particularly important in Europe. The evolution of technology
is another major factor that modifies how freight transportation is organized and
operated. This is not a new trend. Indeed, transportation has followed the indus-
trial innovations and adapted, for example, to advances in traction technologies
and fuels. What is new is that, arguably the major technological factor inflecting
the evolution of transportation has to do with information and software rather than
the traditional hardware. The tremendous expansion of Internet and the electronic-
society, eloquently illustrated by the growing importance of electronic market
places and business-to-business exchanges, dramatically alters the interactions of
carriers and shippers. Intelligent Transportation Systems, on the other hand, both
offer means to efficiently operate and raise new challenges, as illustrated by the
evolution towards real-time modification to planned routes to account for changes
in traffic conditions or new demands. More complex planning and operating pro-
cedures are a direct result of these new policies, requirements, technologies, and
challenges.

Freight transportation must adapt to and perform within these rapidly chang-
ing political, social, and economic conditions and trends. In addition, freight
transportation is in itself a complex domain: many different firms, organizations,
and institutions, each with their own set of objectives and means, make up the
industry; infrastructure and even service modifications are capital-intensive and
usually require long implementation delays; important decision processes are often
strongly interrelated. It is thus a domain where accurate and efficient methods and
tools are required to assist and enhance the analysis, planning, operation, and
control processes.
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The focus of the chapter is on long-haul (intercity) transportation, that is,
on transportation operations that are mainly concerned with the movement of
goods over relatively long distances, between terminals or cities. Goods may be
moved by rail, truck, ship, etc., or any combination of modes. The objective of
the chapter is to present the main freight transportation planning and management
issues, to briefly review the associated literature, to describe a number of major
developments, and to identify trends and challenges. In order to keep the length
of the chapter within reasonable limits, optimization-based operations research
methodologies are privileged.

The chapter is organized as follows. Section 13.2 presents an overview of
freight transportation systems and planning issues. Section 13.3 is dedicated to
models which attempt to analyze multi-modal, multicommodity transportation
systems at the regional, national or global level. Section 13.4 reviews network
design formulations which are often associated with the long-term evolution of
transportation infrastructures and services. These formulations also appear promi-
nently when service design issues are considered as described in Section 13.5.
Of the many operational issues related to the movement of freight, we focus
on one of the most important in Section 13.6: the allocation and repositioning
of resources, particularly empty vehicles. To conclude, Section 13.7 attempts to
identify a number of interesting problems and methodological challenges.

13.2 Freight Transportation Systems

Demand for freight transportation derives from the interplay between producers
and consumers and the significant distances that usually separate them. Producers
of goods require transportation services to move raw materials and intermediate
products, and to distribute final goods in order to meet demands. Carriers sup-
ply transportation services. Railways, shipping lines, trucking companies, and
intermodal container and postal services are examples of carriers. Considering the
type of service they provide, ports, intermodal platforms, and other such facilities
may be described as carriers as well. Shippers, which may be producers of goods
or some intermediary firm (brokers), attribute demand to supply. Governments
contribute the infrastructure: roads and highways, as well as a significant portion
of ports, internal navigation, and rail facilities. Governments also regulate (e.g.,
dangerous and toxic goods transportation) and tax the industry.

When examining freight transportation, one often distinguishes between pro-
ducers that own or operate their own transportation fleet (which then become
carriers for their own freight), and “for hire” carriers, which perform transporta-
tion services for various shippers. From a planning and operations point of view,
a more interesting and practical classification differentiates between: (1) Long-haul
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transportation (this chapter) and vehicle routing and distribution, VRP, problems
(Golden and Assad 1988, Ball et al. 1995, Dror 2000, Toth and Vigo 2002,
Chapter 12, etc.); (2) The multi-modal transportation system of a region, irre-
spective of its dimensions (Section 13.3), and the transportation services of a
particular carrier (Sections 13.5 and 13.6); (3) Consolidation transportation where
one vehicle or convoy may serve to move freight for different customers with possi-
bly different initial origins and final destinations, and door-to-door transportation
operations customized for a particular customer.

Most freight transportation planning issues exhibit a multicommodity nature.
In most cases, several distinct commodities must be moved. Even when the trans-
portation system or study is dedicated to one commodity only, the traffic between
different origin and destination points must be individually accounted for. Most of
the time, both conditions must be satisfied simultaneously.

Customized Transportation

Truckload trucking offers a typical example of door-to-door long distance trans-
portation. In this mode, a vehicle – truck – is usually dedicated to each customer.
When the customer calls, a truck with a driver or driving team is assigned to it.
The truck is moved to the customer-designated location, and it is loaded. It then
moves to the specified destination; this is the long-haul transportation operation.
At destination, the truck is unloaded, and the driver calls the dispatcher to give its
position and request a new assignment. The dispatcher may indicate a new load,
ask the driver to move empty to a new location where demand should appear in
the near future, or have the driver wait and call later.

The truckload carrier thus evolves in a highly dynamic environment, where
little is known with certainty regarding future demands, travel times, waiting delays
at customer locations, precise positions of loaded and empty vehicles at later
moments in time, and so on. Service is tailored for each customer and the timely
assignment of vehicles to profitable demands is of the outmost importance.

The development of efficient resource management and allocation strategies
are therefore at the heart of the management process. These strategies attempt
to maximize the volume of demand satisfied (loads moved) and the associated
profits, while making the best use of the available resources: drivers, tractor and
trailer fleets, etc. Navigation services ensured by for-hire ships share some of these
dynamic and stochastic characteristics.

Consolidation Transportation

When demands of several customers are served simultaneously by using the same
vehicle or convoy, one cannot tailor services individually for each customer.
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Carriers must establish regular services (e.g., a container ship from Seattle to
Singapore) and adjust their characteristics (route, intermediary stops, frequency,
vehicle and convoy type, capacity, speed, etc.) to satisfy the expectations of
the largest number of customers possible. Externally, the carrier then proposes
a series of routes, or services, each with its operational characteristics. Ser-
vices are often grouped in a schedule that indicates departure and arrival times
at the stops of the route. Internally, the carrier builds a series of rules and poli-
cies that affect the whole system and are often collected in an operational plan
(also referred to as load or transportation plan). The aim is to ensure that the
proposed services are performed as stated (or as closely as possible), while
operating in a rational, efficient, and profitable way. The presence of terminals
where cargo and vehicles are consolidated, grouped, or simply moved from one
service to another characterizes this type of transportation performed by Less-
Than-Truckload (LTL) motor carriers, railways, shipping lines, postal and express
shipment services, etc. Freight transportation in some countries where a central
authority more or less controls a large part of the transportation system also belongs
to this category. We include all these systems under service or consolidation
transportation.

The underlying structure of a large consolidation transportation system con-
sists of a rather complex network of terminals connected by physical or conceptual
links. Air and sea lines correspond to the latter, while road, highways, and rail
tracks are typical examples of the former. The network may belong entirely or par-
tially to the carrier. Rail transportation belongs traditionally to the first category,
while LTL motor carriers exemplify the second: LTL carriers generally own the
terminals but operate on public roads. It is noteworthy that the current policy of the
European Union to separate the infrastructure ownership and the service provider
(the carrier) operations is moving rail transportation in Europe towards a more
LTL-like mode of operations. Some carriers prefer not to own any infrastructure,
however, and only rent space as needed. Intermodal container carriers generally
belong to this category, their terminal operations being often organized in ports
and railway yards.

Freight demand is defined between given points of this network. Other than
its specific origin, destination, and commodity-related physical characteristics,
such as weight and volume, each individual shipment may present any number of
particular service requirements in terms of delivery conditions, type of vehicle,
and so on. A profit or cost also usually accompanies a specific demand. The
consolidation carrier moves the freight by services performed by a large number
of vehicles: rail cars, trailers, containers, ships, etc. Vehicles move, usually on
specified routes and sometimes following a given schedule, either individually or
grouped in convoys such as rail or barge trains, or multi-trailer assemblies. Convoys
are formed and dismantled in terminals. Other major terminal operations include
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freight sorting and consolidation, its loading into or unloading from vehicles, as
well as vehicle sorting, grouping, and transferring from one convoy to another.
Terminals come in several designs and sizes and may be specialized in certain
operations or the handling of particular products, or offer a complete set of services.
In all cases, terminal operations are vital to the performance of a consolidation
transportation system.

Figure 13.1 illustrates the network of a consolidation transportation system.
Nodes A, B, and C represent major consolidation centers, also referred to as hubs,
linked by high frequency and capacity services. Nodes 1–9 stand for the origin and
destination terminals where freight and vehicles are consolidated at the beginning
and end of the journey, and which are linked to hubs by feeder services. The figure
also emphasizes the possibility for a terminal to be linked to more than one hub and
illustrates the local pickup and delivery operations usually associated to terminals.
Such an organization allows a much higher frequency and quality of service among
hubs and a more efficient utilization of resources. The drawback is the increased
delays – longer routes and more time spent in terminals – experienced by passengers
or goods. This explains partly why there is hardly any “pure” hub-and-spoke



systems in operation, direct transportation being organized for high demand or
high priority origin-destination pairs. The links between terminals 4 and 5, and
from hub A to terminal 9 in Figure 13.1 illustrate this option. Note that smaller
firms may take advantage of consolidation systems and identify profitable niches
by offering direct services to markets that large firms serve through hubs.

To further clarify these notions, consider the case of railway transportation
that operates networks made up of single or double track lines that link many
large and small classification yards, in which rail cars are grouped and trains are
formed, pickup and delivery stations, junction points, etc. (Assad 1980, Cordeau,
Toth, and Vigo 1998). Here, everything begins when a customer issues an order for
a number of empty cars or, alternatively, when freight is brought into the loading
facility following a pickup operation. At the appropriate yard, rail cars are selected,
inspected, and then delivered to the loading point. Once loaded, cars are moved
to the origin yard (possibly the same) where they are sorted, or classified, and
assembled into blocks. A block is a group of cars, with possibly different final
destinations, arbitrarily considered as a single unit for handling purposes from
the yard where it is made up to its destination yard where its component cars are
separated. Rail companies use blocks to take advantage of some of the economies
of scale related to full train loads and the handling of longer car strings in yards.
The block is eventually put on a train and this signals the beginning of the journey.
During the long-haul part of this journey, the train may overtake other trains or be
overtaken by trains with different speeds and priorities. When the train travels on
single-track lines, it may also meet trains traveling in the opposite direction. Then,
the train with the lowest priority has to give way and wait on a side track for the
train with the higher priority to pass by. At yards where the train stops, cars and
engines are regularly inspected. Also, blocks of cars may be transferred, i.e., taken
off one train and put on another. When a block finally arrives at destination, it is
separated from the train, its cars are sorted, and those having reached their final
destination are directed to the unloading station. Once empty, the cars are prepared
for a new assignment, which may be either a loaded trip or an empty repositioning
movement.

One source of complication in rail freight transportation is the complex nature
of the main yard activities: the classification of cars and the composition of trains.
The modeling of yard operations as well as that of their interactions with the
rest of the system are critical components of any comprehensive rail model. It
is interesting to note that, traditionally, in most rail systems cars spend most of
their lifetime in yards: being loaded and unloaded, being classified, waiting for
an operation to be performed or for a train to come, or simply sitting idle on a
side track. Also of interest is the fact that most rail companies have separated the
operations and yards dedicated to intermodal services from those used for their
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regular services in an attempt to cut delays, especially those associated with yard
operations, and improve the quality of this time-sensitive and highly competitive
service.

Similarly to rail transportation, LTL networks may encompass different types
of terminals. Local traffic is picked up by “small” trucks and is delivered to end-
of-line terminals where it is consolidated into larger shipments before long-haul
movements. Symmetrically, loads from other parts of the network arrive at end-of-
lines to be unloaded and moved into delivery trucks for final delivery. Breakbulks
are terminals where traffic from many end-of-line terminals is unloaded, sorted,
and consolidated for the next portion of the journey. Breakbulks are the hubs of
LTL networks, as major yards are the hubs of rail transportation systems In Figure
13.1, nodes 1–9 represent end-of-lines, while nodes A, B, and C stand for breakbulk
terminals.

LTL motor carrier transportation follows the same basic operational structure
described for rail but on a simpler scale and with significantly more flexibility
due to the fundamental difference in infrastructure: While rail transportation is
“captive”, trucks may use any of the existing links of the road and highway network
as long as they comply with the weight regulations. Furthermore, a truck is only
formed of a tractor and one or several trailers (when more than one trailer is
used, these are smaller and are called “pups”). Consequently, terminal operations
are generally simpler; freight is handled to consolidate outbound movements but
there are no significant convoy-related operations. LTL transportation may become
rather complex, however, as soon as one considers the option to use rail (the
trailer-on-flat-car – TOFC – option) for long distances.

It is interesting to note that intermodal container transportation may be viewed
as either door-to-door or consolidation transportation. For the customer, it is
door-to-door transportation. On request, containers are delivered, loaded, moved
through a series of terminals and vehicles (of which the customer has little knowl-
edge even when the exact position of the shipment is available), and are delivered
to the final destination where the goods are unloaded. For the shipping company, it
is a consolidation transportation system. Containers from many customers must be
moved to a port by truck, barge, or rail, or a combination thereof. There, containers
are grouped and loaded on a ship that navigates a well-established route, according
to a tight schedule, and delivers the containers at the destination port. From there, a
land transportation system delivers the containers to the final destination by using
a variety of modes and terminals. Container transportation systems that operate
exclusively on land may also be encountered. In this case, rail trains and inland
terminals usually play the role of ships and ports. The continuous increase in the
size of container ships operated on international lines exacerbates the consolidation
characteristics of intermodal container transportation systems. Indeed, the huge
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size of the newest generation of container ships forbids them from entering many
ports and makes routes with many stops uneconomical. Consequently, long-course
ships stop only at a selected number of important ports – the hubs –, while smaller
vessels and land transportation modes ensure delivery of containers to the other
ports and final destinations.

A similar argument may be made for express letter and small package services.
For customers, it is obviously a door-to-door, high quality and reliable service. For
the company, it is a consolidation transportation system that usually makes use
of various air, truck, and rail services. The company implements a VRP-type of
service to interact with its customers and collect and distribute letters and packages.
The collection and distribution centers where mail is sorted and consolidated play
a role similar to that of end-of-line terminals in LTL transportation. To reach its
destination, a letter or package usually passes through at least one major hub.
These terminals do for express mail services what breakbulks do for LTL motor
carriers. To link its national hubs and major collection and distribution centers, the
company may operate its own planes, as well as use scheduled passenger flights
or train services. When distances are moderate, trucks may be used as well.

Empty Flows

A constant characteristic of any freight transportation system is the need to move
empty vehicles. This follows from the imbalances that exist in trade flows and that
result in discrepancies between vehicle supply and demand in various zones or
terminals of the system.

To correct these differences, vehicles must be moved, repositioned, in order to
have them available to satisfy the demand of the next period. Some repositioning
decisions are straightforward. When, for example, unit trains are used to move coal
or iron ore from mining fields to the port on the only rail line linking the two, cars,
once unloaded, are simply formed into a return train. In most cases, however, the
decision of how many and where to send vehicles appears much more complicated.
The alternatives are many, due to the numerous possibilities for movement and the
uncertainty of future supply and demand. The search for the most economic empty
repositioning or empty balancing strategy is thus a significant problem in itself,
and we will find the preoccupation with these issues in many of the problems and
models addressed in the following sections.

Service Schedules

Another notion often encountered in transportation planning has to do with
schedules and scheduled services.
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In the general sense, a schedule specifies timing information for each possible
occurrence of a service during a given time period: departure time at the origin,
arrival/departure time information at intermediary stops, and arrival time at the
final destination. The schedule may also include indications on the cut-off time:
the latest moment freight may be given to the carrier and still meet the scheduled
departure of the service. Schedules are omnipresent in passenger transportation
by air, rail, bus or ship and are strictly enforced (most of the time). The case is
less clear for freight transportation. On the one hand, there are no schedules in
door-to-door transportation, except for cut-off times. At the other end of the spec-
trum, regular navigation lines usually operate according to strict schedules (high
port utilization fees constitute an important incentive to follow the schedules).
Much air cargo is moved on passenger planes and therefore follows strict sched-
ules. All-cargo air services are also usually operated according to well-established
schedules.

LTL trucking follows much less stringent rules. Many carriers operate on a
“go when full” policy. Alternatively, earliest and latest departures may be planned,
as well as the distribution of departures during the evening, which usually is the
busiest period. The goal of this process is to offer customers late cut-off times
and to ensure that trucks arrive at destination terminals within certain limits –
at the opening of business in the morning, for example. The focus on increased
customer service and tighter operations (including crew schedules) is increasing
the utilization of scheduled services, however. Actually, schedules are build for
part of the traffic only, representing the regular part of operations. Departures may
then be added or cancelled to adjust for each day’s particular conditions. In all
cases, the dispatcher is responsible for orchestrating the operations, as well as for
avoiding empty movements.

The tradition in most rail systems around the world was to follow some variant
of the “go when full” rule. Even when schedules were prepared, they were mostly
indicative of the ideal departure times and served as a basis for various dispatching
rules for yard masters (e.g., “a train may leave one hour before planned departure
if full and conditions down the line are appropriate”). The high volume of pas-
senger trains already in the system, as well as the desire to decrease total transit
time and improve connections, has pushed European rail companies toward more
stringent schedules for their freight trains. Some companies operate according to
fixed schedules and bookings similar to the ones used for passenger transportation.
In recent years, North American companies have also migrated toward scheduled
service operations (at least for part of their traffic) with various degrees of rapidity
and success. The issues are different for overloaded systems, such as the Indian and
Chinese railways, where the demand for passenger and freight transportation sig-
nificantly exceeds the capacity of the system. In such environments, the emphasis
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is less on “scheduling” and more on managing the train and line operations to
operate freight trains in between the passenger traffic.

Planning Levels

Transportation systems thus appear as rather complex organizations that involve a
great deal of human and material resources and that exhibit intricate relationships
and tradeoffs among the various decisions and management policies affecting their
different components. It is convenient to classify these policies according to the
following three planning levels:

1. Strategic (long-term) planning at the firm level typically involves the highest
level of management and requires large capital investments over long-term
horizons. Strategic decisions determine general development policies and
broadly shape the operating strategies of the system. These include the design
of the physical network and its evolution, the location of major facilities (e.g.,
terminals), the acquisition of major resources such as motive power units, and
the definition of broad service and tariff policies.

Strategic planning also takes place at the international, national and
regional levels, where the transportation networks or services of several
carriers are simultaneously considered. National or regional transportation
departments, consultants, international shippers and forwarders, for example,
engage in this type of activity. Sections 13.3 and 13.4 present models aimed
at strategic issues at the system and firm levels, respectively.

2. Tactical (medium-term) planning aims to determine, over a medium-term
horizon, an efficient allocation and utilization of resources to achieve the
best possible performance of the whole system. Typical tactical decisions
concern the design of the service network and may include issues related
to the determination of the routes and types of service to operate, ser-
vice schedules, vehicle and traffic routing, repositioning of the fleet for
use in the next planning period. Tactical planning models are the object of
Section 13.5.

3. Operational (short-term) planning is performed by local management, yard
masters and dispatchers, for example, in a highly dynamic environment where
the time factor plays an important role and detailed representations of vehi-
cles, facilities and activities are essential. Important operational decisions
concern: the implementation and adjustment of schedules for services, crews,
and maintenance activities; the routing and dispatching of vehicles and crews;
the dynamic allocation of scarce resources. Section 13.6 addresses operational
planning issues.

Long-Haul Freight Transportation 461



This classification highlights how data flows among decision-making levels
and how policy guidelines are set. The strategic level sets the general policies
and guidelines for decisions taken at the tactical level, which determines goals,
rules and limits for operational and real-time decisions. The data flow follows the
reverse route, each level of planning supplying information essential for the deci-
sion making process at a higher level. This hierarchical relationship emphasizes the
differences in scope, data, and complexity among the various planning issues, pre-
vents the formulation of a unique model for the planning of freight transportation
systems, and calls for different model formulations that address specific problems
at particular levels of decision making.

13.3 Strategic System Analysis and Planning

The focus of the models and methods presented in this section is broad: strategic
planning issues at the international, national and regional level, where the move-
ments of several commodities through the transportation networks and services
of several carriers are considered simultaneously. The main questions address the
evolution of a given transportation system and its response to various modifica-
tions in its environment: changes to existing infrastructure, construction of new
facilities, evolution of the “local” or international socio-economic environment
resulting in modifications to the patterns and volumes of production, consump-
tion, and trade, variations in energy prices, changes to labor conditions, new
environment-motivated policies and legislation, carrier mergers, introduction of
new technologies, and so on and so forth. These questions are often part of cost-
benefit analyses and comparative studies of investment alternatives – especially
when the available monetary resources are limited – and are asked by regional
or national planning agencies and regulatory authorities, as well as international
financial institutions such as the World Bank. Private firms are also interested in
these questions, particularly companies involved in the financing of transporta-
tion infrastructures, or firms that plan and operate the distribution of goods using
several transportation modes.

The prediction of multicommodity freight flows over a multi-modal network
is an important component of transportation science and has attracted significant
interest in recent years. One notes, however, that, perhaps due to the inherent
difficulties and complexities of such problems, the study of freight flows at the
national or regional level has not yet achieved full maturity, in contrast to passen-
ger transportation where the prediction of car and transit flows over multi-modal
networks has been studied extensively and several of the research results have
been transferred to practice (Florian and Hearn 1995, Cascetta 2001; see also
Chapter 11).
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A “complete” strategic planning tool identifies and represents the fundamental
components of a transportation system – demand, supply, performance measures
and decision criteria – and their interactions. It yields product flow volumes and
associated performance measures defined on a network representation of the trans-
portation system. It aims to achieve a sufficiently good simulation of the global
behaviour of the system to both offer a correct representation of the current situ-
ation and serve as an adequate analysis tool for planned or forecast scenarios and
policies. It has to be tractable and produce results that are easily accessible. This
constitutes an extremely broad scope and it is thus unrealistic to believe that a single
formulation, mathematical or otherwise, or a single procedure may encompass all
relevant elements, address all important issues, and fulfill all goals. Consequently,
a strategic planning tool appears as a set of models and procedures. Other than
data manipulation (e.g., collection, fusion, updating, validation, etc.) and result
analysis (e.g., cost-benefit, environmental impacts, energy consumption policies,
etc.) tools, the main components are: (i) Supply modeling representing the trans-
portation modes, infrastructure, carriers, services, and lines; vehicles and convoys;
terminals and inter-modal facilities; capacities and congestion; economic, service,
and performance measures and criteria, (ii) Demand modeling that captures the
product definitions, identifies producers, shippers, and intermediaries and repre-
sents production, consumption, and zone-to-zone (region-to-region) distribution
volumes, as well as mode choices; Relations of demand and mode choice to the
performance of economic policies and transportation system performance are also
addressed here, (iii) Assignment of multi-product flows (from the demand model)
to the multi-mode network (the supply representation). This procedure simulates
the behaviour of the transportation system and its output forms the basis for the
analyses that conduct to the specification of the strategic plan. Therefore, it has
to be both precise in reproducing current situation and general to produce robust
analyses of future scenarios based on forecast data.

A complete survey of demand and mode choice estimation methodologies is
beyond the scope of this chapter. In the following, we only cite some of the most
frequently used methodologies and associated references.

The modeling of demand corresponds to an image of the economic activities
of a country, production, consumption, import and export of goods. For planning
purposes, its output is a series of product (or commodity group) specific demand
matrices indicating the volumes to be moved from one region or zone to another.
It is often completed by the modeling of mode choice, which specifies for each
product and origin-destination combination on what transportation infrastructure
or services the demand may be moved.

A number of countries have developed input/output models of their economy
that serve to determine the basic production and attraction of goods (Isard 1951;
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Casceta 2001 and references within). In order to use an input/output model, it
is necessary to disaggregate the model inputs and outputs by region and then
further disaggregate them by the zonal subdivision of the national planning
model. This process is complex and is usually done in an analysis and comput-
ing environment which is not necessarily integrated with that used for the supply
representation and the computation of flows by product. When an input/output
model is not available, the initial determination of origin-destination matrices
is carried out by using national statistics on production, consumption, imports
and exports combined with sectorial surveys designed to complete missing or
unreliable information. This process may be tedious since one has to reconcile
data from several sources that may be collected by using different geographical
subdivisions or inconsistent product definitions. The results of the disaggregated
input/output model or the ad-hoc estimation procedures serve for the initial com-
putation of origin-destination matrices for each product but without a subdivision
by mode.

A second class of models that is well studied for the prediction of interregional
commodity flows is the spatial price equilibrium model and its variants (Friesz,
Tobin, and Harker 1983, Harker and Friesz 1986a,b, and Harker 1987; see also
Florian and Hearn 1995, or Nagurney 1993). This class of models determines
simultaneously the flows between producing and consuming regions, as well as
the selling and buying prices that satisfy the spatial equilibrium conditions. Simply
stated, a spatial equilibrium is reached provided that for all pairs of supply and
demand regions with a positive commodity flow, the unit supply price plus the unit
transportation cost is equal to the unit demand price; the sum is larger than this
price for all pairs of regions with no exchanges. The transportation network used in
these models is usually represented in a simplistic way (bipartite networks). These
models rely to a large extent on the supply and demand functions of producers and
consumers, respectively, which are rarely available and quite difficult to calibrate.
There are relatively few applications of this class of models for the determination
of demand by product. The few applications reported in the literature deal with
specific products which have a particular importance, such as crude oil, coal or
milk products.

The mode choice definition may be rather general, e.g., petroleum moves
by ship and pipeline or, alternatively, extremely specific indicating the particu-
lar multi-modal path for a given product, shipper, and origin-destination pair, or
anywhere in between. The level of detail of modal specification needs not to be
the same for all products or inter-zonal trade flows. The specification of the mode
choice for a given product may be inferred from historical data and shipper surveys
or it may result from a formal description and modeling effort (Winston 1983).
Random utility models, developed and largely used for the analysis and planning
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of person transportation systems, have been proposed for freight transportation
as well (Cascetta 2001) but their use in actual applications is scarce. The huge
number of paths that have to be explicitly generated and stored, coupled to the
challenge to perform this task for forecast data, may explain this phenomenon.
At aggregated levels, mode choices have been specified for particularly important
product flows by explicitly surveying the major logistic chains used between pairs
of macro regions.

Once modal origin-destination matrices have been developed by some means,
the next step is to assign them to the network (supply) model by using some
route choice mechanism. The results of such an assignment model – product
flows and performance measures – form part of the input to demand and cost-
benefice modeling and analysis. The actual assignment mechanism may be based
on further application of random utility models to the choice of pre-defined paths
over a multi-modal network or on network optimization models. It is notewor-
thy that the attributes of pre-defined paths are determined by the state of the
network at generation time and are not responsive to assignment results. Thus,
for example, congestion conditions are very difficult to represent. Moreover, the
utility and choice models have to be calibrated, and all paths have to be gener-
ated, for each scenario, which is quite difficult to perform when forecast data
is used.

Another class, network optimization models, is generally considered to be
more appropriate for the type of planning issues considered here. These for-
mulations enable the prediction of multicommodity flows over a multi-modal
network that represents the transportation facilities at a level of detail appropri-
ate for a nation or region but with relatively little abstraction. The demand for
transportation services is exogenous and may originate from an input-output or
spatial equilibrium model, if one is available, or from other sources, such as
observed demand or scaling of past observed demand. The choice of mode or
subsets of modes used are exogenous and intermodal shipments are permitted.
Within the specified mode choice, the optimization (assignment) engine deter-
mines the best (with respect to the specified network performance measures)
multi-modal paths for each product and origin-destination pair. In this sense,
these models may be integrated with econometric demand models as well. The
emphasis is on the proper representation of the network and its several transporta-
tion modes, the corresponding intermodal transfer operations, the various criteria
used to determine the movement of freight, the interactions and competition for
limited resources captured through the representation of congestion effects, and
the associated estimation of the traffic distribution over the transportation system
considered to be used for comparative studies or for discrete time multi-period
analyses.
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Studies in the 1970’s used rather simple network representations. Guélat,
Florian, and Crainic (1990) and Crainic et al. (1990) review and discuss these
efforts. Several studies also attempted to extend spatial equilibrium models to
include more refined network representations and to consider congestion effects
and shipper-carrier interactions, Friesz, Gottfried, and Morlok (1986) present a
sequential model which uses two network representations: detailed separate net-
works for each carrier, and an aggregate, shipper-perceived network. On each
carrier network commodities are transported at the least total cost. On the shipper-
perceived network, traffic equilibrium principles are used to determine the carriers
that shippers choose to move their traffic. This approach has proven quite success-
ful in the study of logistics of products where a very limited number of shippers
and carriers interact and strongly determine the behavior of the system. A typical
example is the coal market between the electric utilities in the United States and
their suppliers in exporting countries. Friesz and Harker (1985), Harker and Friesz
(1986), Harker (1987, 1988), and Hurley and Petersen (1994) present more elab-
orate formulations. This line of research has not, however, yet yielded practical
planning models and tools, mainly because the formulations become too large and
complex when applied to realistic situations.

The modeling framework we present is based on the work of Guélat, Florian,
and Crainic (1990). The formulation does not consider shippers and carriers as
distinct actors in the decisions made in shipping freight. The level of aggre-
gation appropriate for strategic planning of freight flows results in origins and
destinations that correspond to relatively large geographical areas and leads to
the specification of supply and demand representing, for each of the products
considered, the total volumes generated by all the individual shippers. Further-
more, demand for strategic freight studies are often determined from data sources
(national freight flow statistics, economic input/output models) which enable the
identification of the mode used, but do not contain information on individual ship-
pers. It is thus assumed that the shipper’s behavior is reflected in the origin to
destination product matrices and in the specification of the corresponding mode
choice.

The modeling framework is that of a multi-modal network, made up of modes,
nodes, links, and intermodal transfers, on which multiple products are to be moved
by specific vehicles and convoys between given origin and destination points. Here,
a mode is a means of transportation having its own characteristics, such as vehicle
type and capacity, as well as specific cost measures. Depending on the scope
and level of detail of the strategic study, a mode may represent a carrier or part
of its network representing a particular transportation service, an aggregation of
several carrier networks, or specific transportation infrastructures such as highway
networks or ports.
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The network consists of nodes links modes and transfers that
represent all possible physical movements on the available infrastructure. To cap-
ture the modal characteristics of transportation, a link is defined as a triplet
(i,m,j), where is the origin node, is the destination node, and

is the mode allowed on the arc. Parallel links are used to represent situa-
tions where more than one mode is available for transporting goods between two
adjacent nodes. This network representation is compact and enables easy iden-
tification of the flow of goods by mode, as well as various cost functions (e.g.,
operating cost, time delay, energy consumption, emissions, noise, risk, etc.) by
product and mode. Furthermore, the network model resembles the physical net-
work, since, for example, the rail and road infrastructures are physically different.
Also, when there are two different types of services on a physical link, such as
diesel and electric train services on rail lines, a separate link may be assigned to
each service to capture the fact that they have different cost and delay functions. To
model intermodal shipments, one must allow for mode transfers at certain nodes
of the network and compute the associated costs and delays. Intermodal transfers t
at a node of the network are modeled as link to link, hence mode to mode, allowed
movements. A path in this network then consists of a sequence of directed links
of a mode, a possible transfer to another mode, a sequence of directed links of
the second mode, and so on. A transfer thus belongs to path if the two arcs that
define it belong to the path. This representation allows for the restriction of flows
of certain commodities to subsets of modes (e.g., iron ore may be shipped only
by rail and ship) to capture the restrictions that occur in the operation of freight
networks and transshipment facilities.

A product is any commodity (or collection of similar products) – goods or
passengers – that generates a link flow. Each product transported over the
multi-modal network is shipped from certain origins to certain destinations

within the network. The demand for each product for all origin-destination
pairs is exogenous and is specified by a set of O-D matrices. The mode choice
for each product is also exogenous and is indicated by defining for each O-D
matrix a subset of modes allowed for transporting the corresponding demand. For
example, one may indicate that the traffic out of certain regions must use rail,
while in other regions there is a choice between rail and barges. This allows to
capture the mode restrictions that occur in the operation of freight networks and
transshipment facilities. Let be a demand matrix associated with product

where is the subset of modes that may be used to move this
particular part of product p.

The flows of product on the multi-modal network are the decision
variables of the model. Rows on links are denoted by and flows on
transfers are denoted by v stands for the vector of all product flows. Cost
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functions are associated with the links and transfers of the network. For product
p, the respective average cost functions and depend on the transported
volume of goods. Then, the total cost of product p on arc a is and it is

on transfer t. The total cost over the multi-modal network is the function
F, which is to be minimized over the set of flow volumes that satisfy the flow
conservation and nonnegativity constraints:

The relation between arc flows and path flows is
where is the set of all paths that may be used by product p,and if

(and 0, otherwise) is the indicator function which identifies the arcs of a par-
ticular path. Similarly, the flows on transfers are
where if (and 0, otherwise). Then, the system optimal multi-
product, multi-modal assignment model consists of minimizing (13.1), subject to
constraints (13.2) and (13.3). The optimality principle ensures that in the final
flow distribution, for each product, demand matrix, and origin-destination pair, all
paths with positive flows will have the same marginal cost (lower than on the other
paths). The algorithm developed for this problem exploits the natural decompo-
sition by product and results in a Gauss-Seidel-like procedure which allows the
solution of large size problems in reasonable computational times (Guélat, Florian,
and Crainic 1990).

This network model allows for a detailed representation of the transportation
infrastructure, facilities and services, as well as the simultaneous assignment of
multiple products on multiple modes. Vehicle and convoy traffic on the links (and
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Let denote the set of paths that for product p lead from origin o to destination d
using only modes in m(p). The path formulation of the flow conservation equations
are then:

where is the flow on path These constraints specify that the total flow
moved over all the paths that may be used to transport product p must be equal to
the demand for that product. The nonnegativity constraints are:



transfers) of the network is deduced from the assigned product flows and is used
to evaluate congestion conditions and to compute costs. Capacities are considered
through congestion or penalty functions. Thus, the model captures the competition
of products for the service capacity available, a feature of particular relevance when
alternative scenarios of network capacity expansion are considered. It allows for
the specification and combination of a wide variety of performance measures and
assignment criteria, including user-optimum type of functions when the nature of
a particular product requires it. Furthermore, the model is sufficiently flexible to
represent the transport infrastructure of one carrier only.

This model and algorithm are embedded in the STAN interactive-graphic
system where they are complemented by a large number of tools to input, display,
analyze, modify, and output data; specify the network and assignment models;
analyze flows, costs, and commodity routings and paths. Matrix-based computing
tools may be used to implement a whole gamut of mode choice and demand
models. A network calculator can be used to combine network data to implement
various performance and analysis models. A path analysis capability allows the
visualisation and handling of paths used in assignment and the construction of
demand and network performance models based on paths. The data required by the
STAN system is organized into a strictly structured data bank. A macro language
can be used to program complex operations and procedures. See Larin et al. (2000)
for a detailed description of the STAN system, components, interfaces, and tools.
The STAN system has been applied successfully in practice for scenario analysis
and planning, and several agencies and organizations in a number of countries
around the world use it. Crainic, Florian, and Léal (1990) present the application
of this methodology to the study of freight rail transportation, while several other
applications are discussed in Guélat, Florian, and Crainic (1990), Crainic et al.
(1990), Crainic, Florian, and Larin (1994), Crainic et al. (1998, 2002).

13.4 Logistics Network Design

For freight carriers, strategic decisions determine general development policies
and broadly shape the operating strategies of the system over relatively long-term
horizons. Several such decisions affect the design of the physical infrastructure
network: where to locate facilities such as loading and unloading terminals, con-
solidation centers, rail yards, or intermodal platforms; what type of equipment
to install in each facility; on which lines to add capacity; what type of lines or
capacity to add; what lines or facilities to abandon; and so on. These issues, which
may be collectively identified as logistics system design, are the subject of this
section.
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Logistics system design issues are often addressed by evaluating alternatives
using network models for the tactical (Section 13.5) or operational (Section 13.6)
planning of transportation activities. When formal models are proposed, these
generally appear either as location or network design formulations. An extensive
literature exists on both subjects, addressing the analysis of formulations, the
development of algorithms, and the performance of applications for a broad range
of problems and issues. Location models are the object of Chapter 10, as well as
of Mirchandani and Francis (1990), Daskin (1995), Drezner (1995), and Labbé,
Peeters, and Thisse (1995). Labbé and Louveaux (1997) present an annotated
bibliography concerning discrete location problems.

In the following, we focus on network design. We give a number of main ref-
erences and present a general formulation together with a few extensions that may
be used in freight transportation planning. For more details, the interested reader
should consult the surveys by Magnanti and Wong (1984) and Minoux (1986), the
discussions in Ahuja et al. (1995), Nemhauser and Wolsey (1988), and Salkin and
Mathur (1989), and the annotated bibliography of Balakrishnan, Magnanti, and
Mirchandani (1997). Survivability and connectivity issues are particularly impor-
tant for telecommunication systems and the electronics industry, but may also
appear prominently in the transportation industry when service must be ensured to
certain regions or between particular zones. Grötschel, Monma, and Stoer (1995)
survey the models and solution methods developed for this class of problems. An
annotated bibliography may be found in Raghavan and Magnanti (1997).
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Network Design

Network design models are extensively used to represent a wide range of planning
and operation management issues in transportation, telecommunications, logistics,
and production-distribution. These formulations play a particularly important role
in decisions concerning the logistics structure, the service network (Section 13.5),
and the operations (Section 13.6) of long distance freight transportation systems.

Network design models are defined in terms of a network where
represents the set of nodes or vertices. Demand for transportation exists at some

of these nodes. The set of arcs or links includes all
the possible ways to move directly (no intermediate nodes) between two nodes in

The set includes the products or commodities that may move on the network.
Let i and j be node indices and p the product index.

Other than the usual characteristics – length, capacity, and cost – fixed costs
may be associated with some or all links of the network. This indicates that as soon
as one chooses to use that particular arc, one incurs the fixed cost in excess of the
utilization cost, which is in most cases related to the volume of traffic on the link.



where,

integer variables modeling discrete choice design decisions. When

for inclusion in the final network or for capacity expansion; other-
wise, indicating that the link is closed. When the variables are
not restricted to {0, 1} values and usually represent the number of facilities or
units of capacity installed, or the level of service offered (see Section 13.5 for
examples in service network design);
continuous flow decision variables indicating the amount of flow of commodity
p using link (i, j);
fixed cost of opening link (i,j); when                       the hypothesis is that a
cost is incurred for each unit of facility installed or service offered;
transportation cost per unit of flow of product p on link (i,j);
capacity of link (i, j);
demand of product p at node i.

This is the linear cost, multicommodity, capacitated version of the network
designformulation; we identify itas MCND. Most applications and methodological
developments target the formulations where the design variables are restricted to
0 or 1 values. A number of important applications require nonlinear formulations,
however, such as the frequency service network design problems presented in
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The objective of network design formulation thus is to choose links in a network,
along with capacities, to enable the demand for transportation to be satisfied at
the lowest possible system cost computed as the total fixed cost of the selected
links plus the total variable cost of using the network. A fixed cost network design
formulation may then take the following form:

Minimize

subject to

in relation (13.8), only if link  is open, selected



Section 13.5. Some applications also require that flow variables be restricted to
integer values, thus increasing the difficulty of these problems. However, since
very few methodological developments have been dedicated to such variants of
the network design model, the rest of this section focuses on formulations with
{0, 1} design variables, continuous flow variables, and linear costs.

The objective function (13.4) of the network design formulation (13.4)–(13.9)
measures the total cost of the system. An interesting point of view is to consider
this objective as also capturing the tradeoffs between the costs of offering the trans-
portation infrastructure or services and those of operating the system to channel the
flow of traffic. Equation (13.5) expresses the usual flow conservation and demand
satisfaction restrictions. Several demand patterns may be defined, resulting in dif-
ferent models. In some cases, a product may be shipped from (one or) several
origins to satisfy the demand of (one or) several destinations. These are models
where the supply from several origins may be substituted to satisfy a given demand
and are often used in the study of the distribution of raw materials. Variants with
single product origin (or destination) may also be encountered.

Demand is defined between pairs of origin-destination points in most applica-
tions. In this case, and irrespective of the number of true commodities, a product
may be associated with each origin-destination pair, by an appropriate modification
of the graph that makes multiple copies of the nodes where several commodities
originate or terminate their journeys. Let be the total demand of product p.
Then,

Constraint (13.6), often identified as a bundle or forcing constraint, states that
the total flow on link (i,j) cannot exceed its capacity if the link is chosen in the
design of the network and must be 0 if (i,j) is not part of the selected
network When the capacity is so large that it is never binding (i.e., is
at least the largest possible flow on the link), the demand may be normalized to 1
and may be set to This simplifies the formulation and corresponds to the
uncapacitated model. Relations (13.8) and (13.9) specify the range of admissible
values for each set of decision variables.

Relation (13.7) captures additional constraints related to the design of the
network or relationships among the flow variables. Together, they may be used
to model a wide variety of practical situations, and this is what makes network
design problems so interesting. For example, the set may represent topological
restrictions imposed on the design of the network, such as precedence constraints
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(e.g., choose link (i,j) only if link (p,q) is chosen) or multiple choice constraints
(e.g., select at most or exactly a given number of arcs from a specified subset).
An important type of additional constraint reflects the usually limited nature of
available resources:

These budget constraints illustrate a relatively general class of restrictions imposed
upon resources shared by several links. Note that, quite often, budget constraints
replace the fixed cost term in the objective function (13.4). Partial capacity
constraints also belong to this group:

They reflect restrictions imposed on the use of some facilities by individual com-
modities. Such conditions may be used to model, for example, the maximum
quantity of some hazardous goods moved by one train or ship.

An equivalent model is the path-based multicommodity capacitated network
design formulation PMCND:

Minimize

subject to

where,

set of paths for commodity p;
flow of commodity p on path l;

1, if arc (i,j) belongs to path for product p (0, otherwise);

transportation cost of commodity p on path l,

with Constraint (13.7) is usually addressed when paths are built.
The same mechanisms may also handle some nonlinear route costs. Furthermore,



the explicit consideration of path flows may open interesting algorithmic perspec-
tives as illustrated by the tabu search method proposed by Crainic, Gendreau, and
Farvolden (2000).

Note that for any setting of the design variables, these models yield capacitated
multicommodity minimum cost network flow (CMCNF) problems in arc and path
formulations, respectively. For uncapacitated design formulations, the subproblem
obtained by fixing the design variables becomes an uncapacitated multicommodity
flow problem that decomposes into |P|  shortest path problems (Pallottino and
Scutellà 1998). Ahuja (1997) presents an annotated bibliography of these and
other network flow problems.

Several problem classes may be derived from these general formulations by
an appropriate definition of the network and, eventually, of constraints in
(Magnanti and Wong 1984). Thus, when fixed costs are attributed to nodes, one
obtains location formulations. Constraints that require the final design to be a
Hamiltonian circuit yield the Traveling Salesman Problem (TSP). Different sets
of constraints on the form of the optimal network design yield the Steiner and the
Spanning Tree problems. The capacitated Vehicle Routing Problems may be viewed
as a special case of the capacitated spanning tree formulation. This illustrates
the richness of the network design models and explains the wide range of their
applications.

General Solution Methods

Although relatively simple to state, network design formulations are generally very
difficult to solve. From a theoretical point of view, most design formulations are

It has also been observed that for capacitated models, linear relaxations
yield poor approximations of the mixed-integer polytope resulting in important
optimality gaps. In particular, the interplay between link capacities and fixed costs
is not adequately represented by these approaches. Moreover, the network flow
subproblems are often highly degenerate, increasingly so when the number of
commodities becomes larger. Additional algorithmic challenges follow from the
very large scale of most applications. Important results have been obtained for
some problem classes; for example, uncapacitated and tree-based formulations.
However, much work is still needed for more general problem settings. In the
following, we point to some of these results and research challenges. The articles
mentioned at the beginning of the section and the references they contain offer a
more in-depth treatment of the subject.

The previous models are mixed-integer formulations that may be approached
by any of the methodologies available for this class of problems (e.g., Nemhauser
and Wolsey 1988 or Salkin and Mathur 1989). A widely used methodology is to
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relax one or several groups of constraints in a Lagrangian fashion to obtain a simpler
problem (Geoffrion 1974). A sequence of multiplier adjustments and resolutions of
the relaxation subproblem yields a lower bound on the optimal value of the original
formulation. As for multipliers, they may be adjusted by using a nondifferentiable
optimization technique, subgradient or bundle, for example (Lemaréchal 1989).
Dual ascent is another often-used approach to obtain this lower bound. In this case,
the dual formulation of the linear relaxation of the problem is the starting point.
Dual variables are then iteratively and systematically increased, while conforming
to the complementary slackness conditions. An upper bound on the optimal value
of the design problem is obtained as the objective value of a feasible solution
heuristically derived from the solution to the relaxed problem. The lower and
upper bounds are then usually integrated into an implicit enumeration scheme
such as the branch-and-bound algorithm.

The polyhedral structure of the mixed-integer network design formulation
may be studied to derive valid inequalities (or cuts) to be added to the formu-
lation. Briefly, the objective is to construct, or approximate, the convex hull of
the mixed-integer programming formulation by adding valid inequalities. If one
succeeds and the convex hull is found, the original problem may be solved by
linear programming methods. The cutting plane method is based on this idea and
proceeds via a succession of resolutions of the linear relaxation of the problem and
cut generations. If the convex hull can only be approximated, the bounds may be
strengthened, yielding more efficient branch-and-bound algorithms.

In many cases, the additional complexity introduced to account for the partic-
ularities of the application at hand and the large size of the problem instance make
the exact resolution of the problem impractical. Heuristics are then used to obtain
solutions of, hopefully, good quality. A number of heuristics, e.g., greedly adding
or dropping arcs, aim to avoid mathematical programming techniques altogether
but are not very successful for capacitated models. The relaxations and dual-ascent
methods presented above are also often used as heuristics with interesting results.
Modern heuristics, principally Tabu Search (Glover and Laguna 1997), Simulated
Annealing (Laarhoven and Aarts 1987), and Genetic Algorithms (Goldberg 1989),
are also increasingly being applied.

Much effort has been dedicated to uncapacitated versions of the problem and
significant results have been obtained. In particular, Balakrishnan, Magnanti, and
Wong (1989) present a dual-ascent procedure that very quickly achieves lower
bounds within 1–4 percent of optimality. Used in conjunction with an add-drop
heuristic, the method is able to efficiently address realistically sized instances
of LTL service network design problems. The attractive performance of the
dual-ascent procedure has led to the development of extensions to other design
formulations and applications, as illustrated by the work of Barnhart, Jin, and
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Vance (2000) on railroad blocking. An exact solution method for the uncapaci-
tated multicommodity fixed charge network design formulation has been recently
proposed by Holmberg and Hellstrand (1998). The authors used a Lagrangian
relaxation of the demand constraint (13.5) with subgradient optimization to derive
lower bounds. Shortest path algorithms on networks derived from the Lagrangian
relaxation solutions are used to yield feasible points. The bounds are then used in a
branch-and-bound enumeration scheme and the authors discuss various branching
and tree search strategies. Experiments were conducted on randomly generated
problems and on a number of instances present in the literature (the largest prob-
lems solved had 1000 design arcs and 600 commodities) and showed that the
branch-and-bound outperformed a state-of-the-art mixed-integer code with respect
to problem size and computation time.

Significant results have also been obtained for the Network Loading prob-
lem. In this particular version of capacitated formulations, the objective is to
install, or load, on each design arc a number of capacitated facilities, such as
different transportation services. The total cost is made up of fixed link costs to
install each facility and commodity-specific transportation costs. Total cost must
be minimized and the point-to-point transportation demand must be satisfied. Two
restrictions characterize this class of models and make their analysis somewhat
simpler. First, one may load an integral number of l different capacitated facilities
on each arc. Second, the facility capacities are modular, that is, if the capacities
are then is a multiple of Originating with the
work of Magnanti, Mirchandani, and Vachani (1993, 1995), many efforts have
been directed toward the polyhedral study of the problem in order to determine
valid inequalities and facets to strengthen the formulation (e.g., Epstein 1998).
Berger et al. (1998) present an efficient tabu search procedure for problems with
multiple facilities where the modular restriction is relaxed and flows for each
origin-destination pair must follow a single path.

Very few results have been obtained on capacitated problems defined on gen-
eral networks that are more difficult to solve and pose considerable algorithmic
challenges. The capability to compute efficiently good bounds on the optimal value
of the design problem is a prerequisite to the development of solution methods
that perform on large-scale problem instances with large numbers of commodi-
ties. Lagrangian relaxation approaches have been shown appropriate to address
this issue (Gendron and Crainic 1994, 1996, Holmberg and Yuan 1996, Gendron,
Crainic, and Frangioni 1998). Several Lagrangian relaxations are possible, how-
ever, and many offer the same theoretical bound, which is also the bound one
obtains from the strong linear relaxation of the formulation (Gendron and Crainic
1994). From an experimental point of view, the computing efficiency and conver-
gence properties of the bounding procedures, as well as the quality of the solution
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one may actually obtain, are strongly dependent upon the choice of the nondiffer-
entiable optimization technique used to solve the Lagrangian duals, and require
careful calibration. Crainic, Frangioni, and Gendron (2001) calibrate and compare
subgradient (Camerini, Fratta, and Maffioli 1978, Crowder 1976) and bundle-
based methods (Lemaréchal 1989, Hiriart-Urruty and Lemaréchal 1993) for the
shortest path and knapsack relaxations obtained by the dualization of constraints
(13.6) and (13.5), respectively. Experiments on a large set of problem instances
(largest problem had 700 design arcs and 400 commodities) were used to identify
strategies for the efficient design and implementation of each method. The study
showed, in particular, that bundle methods converge faster toward the optimal value
of the Lagrangian dual, and that they are more robust with respect to parameter
calibration.

The lower bounds reported in these studies are within 9 percent of the optimum
on average. Feasible solutions were obtained by using resource-based decom-
position methods but these yielded poor bounds. Tabu search meta-heuristics
offer currently the best procedures for determining high quality feasible solutions.
Crainic, Gendreau, and Farvolden (2000) propose a tabu search metaheuristic that
identifies good solutions for the path formulation (13.13)–(13.17). The method
combines simplex pivot moves and column generation in a tabu search framework
where the design objective (13.13) is used to select the next solution from among
the possible candidates. Long-term memories record for each design arc the fre-
quency of inclusion in good solutions and guide the diversification of the search.
Extensive experiments, on the same set of problems also used by Crainic, Fran-
gioni, and Gendron (2001), have shown that the method dramatically improves
the solutions found by the resource decomposition method. The utilization of
the cycle-based neighbourhoods proposed by Ghamlouche, Crainic, and Gen-
dreau (2002a) promises to improve further the performances of meta-heuristics
for network design. According to this strategy, the search proceeds in the space
of the design variables by moving flow of several commodities simultaneously
around suitably defined residual networks. Integrating these neighbourhoods in
a tabu search-based path relinking method (Glover and Laguna 1992) consti-
tutes the current best methodology for obtaining high quality, feasible solutions
to capacitated multicommodity network design problems (Ghamlouche, Crainic,
and Gendreau 2002b). The average optimality gap obtained for the same set of
test problems was of the order of 2–3 percent, according to the problem type,
with a maximum gap of the order of 10 percent. These results correspond to
problems for which the optimal solutions are known. Notice that all mentioned
meta-heuristics also allowed the resolution of problems too hard for the standard
branch-and-bound of a state-of-the-art software in terms of CPU time or memory
limitations.
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Very few, if any, polyhedral results exist for the general network design for-
mulation (13.4)–(13.9). When actually used, inequalities derived for “simpler”
formulations (e.g., location models, uncapacitated network design or network load-
ing problems) are adapted to the more general formulations. See, for example, the
work of Kim et al. (1999), who use the cutset inequalities initially derived for
the capacitated loading problem for the design of service networks for express
package delivery firms.

These inequalities state that the total capacity of any cut must support the
total demand with endpoints on the two sides of the cut and they are certainly
valid for the general formulation. We do not know, however, if they define facets
or how efficient they are. We certainly do not know how to generate these cuts
efficiently. Since their number is extremely high, we have little guaranty regarding
the efficiency of this procedure. The same questions are also pertinent regarding
the other families of cuts proposed in the literature for formulations “similar” to
network design. More work is thus required to identify valid inequalities and facets
for the MCND and to develop methods to automatically and efficiently generate
these new constraints (the separation problem). The work of Chouman, Crainic,
and Gendron (2001, 2002) contributes towards feeling this gap. The authors adapt
and specialize to multicommodity network design a number of important fami-
lies of valid inequalities. They also introduce a new familly of valid inequalities.
Extensive experimentation shows that (1) not all combinations of valid inequalities
are equally effective in terms of solution quality, and (2) specialized cuts and pro-
cedures yield significant gains in solution quality and, especially, computational
efficiency over state-of-the-art general purpose methods.

The situation and needs are similar concerning methods to identify the opti-
mal solution of general MCND formulations. Holmberg and Yuan (1996, 1998)
propose a branch-and-bound algorithm based on the Lagrangian relaxation of the
flow constraints and subgradient optimization. The results appear promising, but
not conclusive, especially when the dimensions of the network and the number of
commodities increase. For larger problems, Kim, Barnhart, and Ware (1999) apply
a combination of heuristics to reduce the size of the problem and branch-and-bound
with column and constraint generation (the so-called branch-and-price-and-cut;
cuts are added to the root problem only). This constitutes a very interesting overture
to a promising algorithmic avenue. See Hoffman and Padberg (1993), Desrosiers
et al. (1995), Barnhart et al. (1998), and Barnhart, Hane, and Vance (2000) for
examples of similar algorithmic structures aimed at various complex problems that
arise in transportation science and which emphasize the challenges associated with
the development of such methods for the MCND.

Parallel computation may help address realistically dimensioned problem
instances in reasonable times. In the case of heuristics, parallelism may also

478 Handbook of Transportation Science



enhance the robustness of the method and improve the quality of the solutions
(Crainic 2002, Crainic and Gendreau 2002a, Crainic and Toulouse 2002). Applied
to branch-and-bound, parallelism may be used to solve the subproblem at each
node of the tree (Gendron and Crainic 1994b) or to explore the tree in paral-
lel (Gendron and Crainic 1994a). Many issues still remain to be addressed in
this area however. For example, the addition of cuts often destroys the “nice”
structure (network, knapsack, etc.) obtained by relaxing some constraints. The
relaxation of the cut constraints could them be contemplated. The issue might
become even more challenging when constraints are to be generated at nodes
other than the root. It is generally believed, however, that the combination of relax-
ations, polyhedral results, and heuristics within a parallel computation framework
constitutes a promising avenue towards a comprehensive solver for capacitated,
multicommodity network design.

13.5 Service Network Design

Service network design is particularly relevant to firms and organizations that oper-
ate consolidation transportation systems and is typically related to the planning
of operations. It is usually part of tactical planning activities, although often it is
referred to as strategic/tactical or tactical/operational according to the planning tra-
ditions and horizons of the firm. The goal is to operate efficiently to answer demand
and ensure the profitability of the firm. The “supply” side of this equation implies
a system-wide, network view of operations, integrating consolidation activities in
terminals, and the selection, routing, and scheduling of services. On the “demand”
side, the routing of freight through the network must be planned to ensure timely
and reliable delivery according to the customer specifications and the carrier’s own
targets.

The objectives of the process are complex as well. The customer’s expectations
have traditionally been expressed in terms of “getting there” at the lowest cost
possible. This, combined with the usual cost consciousness of any firm, has implied
that the primary objective of a freight carrier was, and still is for many carriers,
to operate at the lowest possible cost. Increasingly, however, customers not only
expect low tariffs, but also require a high quality service, mostly in terms of speed,
flexibility, and reliability. The significant increase in the market share achieved
by motor carriers, mainly at the expense of railway transportation, is due to a
large extent to this phenomenon. Consequently, one of the major objectives of
tactical planning is to achieve the best tradeoff between operating costs and firm
profitability, and service performance measured, in most cases, by delays incurred
by freight and rolling-stock or by the respect of predefined performance targets.
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To illustrate the complexity of decisions and tradeoffs characteristic of tac-
tical planning, consider the routing of a shipment between two terminals of a
consolidation transportation system operated, for example, by a railway or LTL
motor carrier. Figure 13.2 displays a representation of such a system made up of
five terminals and seven services (for simplicity, the actual service routes are not
shown). A shipment that originates at terminal A with destination terminal D is
sorted (classified) at A and may be routed according to a number of strategies,
including:

1. Consolidate it with other shipments going directly to its destination terminal
and put it on one of the available direct services, S1 or S2, ofpossibly different
types. If the freight volume is sufficiently high and the customer contract
allows it, S1 or S2 might be operated as a dedicated service, such as a full
truck moving direct between two end-of-lines or an unit train.

2. Same consolidation, but move the shipment by using a service, such as S3,
that stops at one or several other terminals to drop and pickup traffic.

3. Use the same consolidation policy but move the shipment by a direct service
S4 to the intermediate terminal C, where it is transferred to another direct
service, S5, that moves it to destination. This strategy may outperform the
previous one if the service level offerred on the direct routes outweights the
transfer costs; in Figure 13.2, it is also the only strategy available to move
from terminal B to terminal D.



4. Consolidate the shipment into a load for an intermediate terminal where it
will be reclassified and consolidated together with traffic originating at various
other terminals into a load for its final destination. The shipment is thus moved
by service S3 or S4 from A to C, consolidated together with traffic from B to
D and C to D, and then moved by S3 or S5 from terminal C to destination.

Which alternative is “best”? Each has its own cost and delay measures that
follow from the service characteristics of each terminal and service. Thus, for
example, strategies based on reconsolidation and routing through intermediate
terminals may be more efficient when direct services between the origin and des-
tination terminals of the shipment are offered rarely due to generally low level
of traffic demand. Such strategies would probably result in higher equipment uti-
lization and lower waiting times at the original terminal; hence, in a more rapid
service for the customer. The same decision would also result, however, in addi-
tional unloading, consolidation, and loading operations, creating heavier delays
and higher congestion levels at intermediary terminals, as well as a decrease in the
total reliability of the shipment. On the other hand, to increase the frequency of
a direct service between the origin and destination terminals of a shipment would
imply a faster and more reliable service for the corresponding traffic, as well as a
decrease in the level of congestion at the intermediate terminals at the expense of
additional resources, thus increasing the direct costs of the system. Therefore, to
select the “best” solution for the customer and the company, one has to simultane-
ously consider the routing of all traffic, the level of service on each route, and the
costs and service characteristics of each terminal. These problems and decisions
have network-wide impacts and are strongly and complexly interconnected both in
their economic aspects and the space-time dimensions of the associated operations.
Therefore decisions should be made globally, network-wide, in an integrated man-
ner (Crainic and Roy 1988). More formally, main decisions made at the tactical
level concern the following issues:

1. Service selection. The routes – origin and destination terminals, physical route
and intermediate stops – on which services will be offered and the charac-
teristics of each service. Frequency or scheduling decisions are part of this
process.

2.  Traffic distribution. The itineraries (routes) used to move the flow of each
demand: services used, terminals passed through, operations performed in
these terminals, etc.

3.  Terminal policies. General rules that specify for each terminal the consolida-
tion activities to perform. For rail applications, these rules would specify, for
example, the blocks into which cars should be classified (the blocking poli-
cies), as well as the trains that are to be formed and the blocks that should be
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put on each train (the make up rules). An efficient allocation of work among
terminals is an important policy objective.

4. General empty balancing strategies, indicating how to reposition empty
vehicles to meet the forecast needs of the next planning period.

Several efforts have been directed toward the formulation of tactical models.
See the reviews of Assad (1980), Crainic (1988), Delorme, Roy, and Rousseau
(1988), and Cordeau, Toth, and Vigo (1998). Network models, which take advan-
tage of the structure of the system and integrate policies affecting several terminal
and line operations, are the most widely developed. Simulation models have been
proposed and used by transportation firms to evaluate scenarios and select policies.
Network optimization formulations, on the other hand, may efficiently generate,
evaluate, and select integrated network-wide operating strategies, transportation
plans, and schedules. These models are discussed in this section.

Most service network design and related issues yield fixed cost, capacitated,
multicommodity network design formulations (Section 13.4). These formulations
may be static or dynamic but, up to now, have been generally deterministic. For
a clearer view of tactical planning issues and service network design formula-
tions, we distinguish between frequency and dynamic service network design
models.

The former typically addresses strategic/tactical planning issues. The study
and representation of interactions and tradeoffs among subsystems and decisions
form a central part of this class of approaches. Typical issues addressed by such
models concern questions such as: What type of service to offer? How often over
the planning horizon to offer it? Which traffic itineraries to operate? What are the
appropriate terminal workloads and policies? Frequency service network design
models may be further classified according to the role service levels play in the
formulations: decision or output. In a nutshell, service frequencies are explicit
integer decision variables in the first class of models. Formulations that belong
to the second class include “operate or not” ({0,1}) decision variables and derive
frequencies from traffic flows subject to lower bound restrictions that represent
minimum service levels. The output of frequency service network design models,
the transportation or load plan, is used to determine the day-to-day policies that
guide the operations of the system and is also a privileged evaluation tool for
“what-if” questions raised during scenario analysis in strategic planning. Dynamic
formulations are closer to the operational side of things. They usually target the
planning of schedules and support decisions related to if and when services leave.
Subsections 13.5, 13.5, and 13.5 examine models and methods that belong to
each of these three classes. Section 13.5 briefly reviews the literature associated
to service network design and tactical planning.
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Frequency Service Network Design

The network optimization modeling framework proposed by Crainic and Rousseau
(1986) constitutes a prototypical frequency service network design formulation
where explicit decision variables are used to determine how often each selected
service will be run during the planning period. It is a multi-modal multicommodity
model that integrates the service selection and traffic distribution problems with
general terminal and blocking policies. Its goal is the generation of global strate-
gies to improve the cost and service performance of the system. It is a modeling
framework in the sense that while it may represent a large variety of real situa-
tions, it has to be adapted to each application. Rail applications are to be found
in Crainic (1982, 1984), Crainic, Ferland, and Rousseau (1984), and Crainic and
Nicolle (1986). Roy (1984) and Delorme and Roy (1989) present applications of
this framework to LTL trucking. In the following, we present a simplified model
in order to emphasize the main modeling issues and challenges.

Let represent the “physical network” over which the carrier oper-
ates. Vertices in correspond to nodes where the terminals selected for
the particular application are situated. For simplicity, assume that all terminals
can perform all operations. The service network specifies the transportation ser-
vices that could be offered to satisfy this demand. Each service is defined
by its route through the physical network; origin, destination, and intermedi-
ary terminals where the service stops and work may be performed on its vehicles
and cargo; capacity on each link of service class that indicates character-
istics such as the mode, preferred traffic or restrictions, speed and priority of the
service, etc.

Transportation demand is defined in terms of volume (e.g., number of vehi-
cles) of a certain commodity to be moved between two terminals in To simplify, 
we refer to product p = (commodity type, origin, destination) with a positive
demand In the literature, one also finds the terms market and traffic-class with
a similar meaning. Empty vehicles may be included as commodities to be moved
between given origin-destination pairs. Traffic moves according to itineraries. An
itinerary for product p specifies the service path used to move (part of) the
corresponding demand: the origin, destination, and intermediary terminals where
operations are to be performed; the sequence of services between each pair of con-
secutive terminals where work is performed; the commodity class that indicates
characteristics such as priority, minimum service level, preferred transportation
mode, etc.

Service frequencies define the level of service offered, i.e., how
often each service is run during the planning period. To design the service network
thus means to decide the frequency of each service contemplated in the planning
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where,

total cost of operating service s;
total cost of moving the freight of product p by using its itinerary l;
penalty terms capturing various relations and restrictions, such as the
limited service capacity.

This model is similar to the path formulation of the capacitated network
design model ((13.13)–(13.17)) introduced in Section 13.4, except that the lin-
ear cost functions of the latter have been replaced by a notation that indicates
more general functional forms. The objective function defines the total system
cost and includes the total cost of operating a service network at given frequen-
cies, the total cost of moving freight by using the selected itineraries for each
product, as well as a number of terms translating operational and service restric-
tions into monetary vales. and thus correspond to the fixed and
variable costs, respectively, of the network formulation given the general level of
service of the firm and the corresponding traffic pattern. The objective function
computes a generalized cost, in the sense that it may include various productivity
measures related to terminal and transportation operations. Other than the actual
costs of performing the operations, one may thus explicitly consider the costs,
delays, and other performance measures related to the quality and reliability of
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process such that the demand is satisfied. Many itineraries may be defined for
each product and more than one may be actually used, according to the level
of congestion in the system and the service and cost criteria of the particular
application. Flow distribution decisions are therefore represented by variables
indicating the volume of product moved by using its itinerary
Workloads and general consolidation strategies for each terminal in the system
may be derived from these decision variables.

Let and be the vectors containing the decision variables.
The model states that the total generalized system cost must be minimized, while
satisfying the demand for transportation and the service standards:

Minimize

subject to



Although nonlinear functions could be used, unit operation costs and
are usually computed as the sum of the unit costs of all terminal and trans-

portation activities described in the service routes and freight itineraries. For rail
applications, these may include hauling costs for trains and cars over the lines of
the network, as well as yard handling costs associated with car classification, the
transferring of cars and blocks among trains, and the making-up and breaking-
down of trains. Similar terms appear in LTL applications: loading, unloading,
transdock, and consolidation operations at terminals, energy costs, maintenance,
crews, etc.

The expected total delays and are also computed by sum-
ming up the expected delays associated with the terminal and line operations that
make up the service and freight routes. No correlation is usually considered.
Some durations are simply assumed proportional to the volume of vehicles or
traffic handled. It is typically the case for the yard transfer delays for rail appli-
cations and intercity transportation time for LTL tracking. In many operations,
however, vehicles of different services carrying freight for different products on
various itineraries must use the same facilities. It is the case, for example, of
most consolidation and classification operations. As a consequence, most time-
related functions are built to reflect the increasingly larger delays that result when
facilities of limited capacity must serve a growing volume of traffic. Such con-
gestion functions are typically derived from engineering procedures and queuing
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the service offered, to evaluate alternatives and determine the most advantageous
tradeoffs.

The delays incurred by vehicles, convoys, and freight due to congestion and
operational policies in terminals and on the road are generally used as a measure
of service quality. Define and as the total durations of service s
and itinerary l for product p, respectively. Equations (13.22)–(13.23) illustrate one
approach to use delays to integrate service considerations into the total general-
ized system cost. On the one hand, unit operating costs and are computed
for each service and product itinerary, respectively. On the other hand, the cor-
responding total expected service, and itinerary, times are
converted into measures compatible with the operating costs via unit time costs
for each traffic and service class. These costs are usually based on
equipment depreciation values, product inventory costs, and time-related charac-
teristics, such as priority or different degrees of time sensitivity for specific traffic
classes.



models (see Section 13.6) and are built to represent: average delays due to rail
yard operations, particularly car classification and blocking, and train make up;
waiting time of trucks at LTL terminals before loading and unloading opera-
tions (rail cars and trucks at port loading/unloading facilities experience similar
delays); delays incurred by trains when meeting, overtaking, or being overtaken
by other trains on the lines of the network; congestion on highways in urban areas;
expected departure or connection delays in rail yards, LTL terminals, and mar-
itime ports representing the waiting time for the designated service to be available,
and so on.

Average transportation delays do not tell the whole story, however. Often, the
goal is not only rapid delivery but also consistent, reliable service. The variance of
the total service or itinerary time may then be used to penalize unreliable operations.
Equation (13.24) illustrates this approach for the case when service quality targets
are announced. Here, each traffic-class has a delivery objective (e.g., 24 hours) and
reliability requirements (e.g., target must be achieved for 90 percent of deliveries),
noted and n, respectively. A penalty is then imposed when the expected

itinerary time, adjusted for its standard deviation does not comply
with the service objective. The total itinerary cost then becomes:
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Finally, equation (13.25) illustrates the use of penalty terms to capture various
restrictions and conditions. Here, stands for the total volume of freight hauled
by service s over its service leg k, with if service
leg k of service s is used by itinerary l of product p, and 0 otherwise. Thus, in
this example, the service capacity restrictions are considered as utilization targets
and the over-assignment of traffic is permitted at the expense of additional costs
and delays. Tradeoffs between the cost of increasing the level of service and the
extra costs of insufficient capacity may then be addressed while the associated
mathematical programming problem is solved.

The model has the structure of a nonlinear, mixed integer, multi-modal, multi-
commodity network flow problem. No exact solution method has yet been proposed
for this model. The original method described by Crainic and Rousseau (1986)
combines a heuristic (based on finite differences in the objective function) that
iteratively decreases frequencies from initial high values, with a convex network
optimization procedure to distribute the freight. The latter makes use of column



generation to create itineraries and descent procedures to optimize the flow distribu-
tion. The procedure appeared efficient for the rail and LTL applications considered.
Crainic and Roy (1988) and Roy and Crainic (1992) also report on the utilization of
this approach to perform scenario and postoptimal analyses, particularly concern-
ing the tradeoffs between the cost of operating the system and the value of time,
and the level of demand required to operate direct services over long distances.

Service Frequencies as Derived Output

The load planning model for LTL motor carriers introduced by Powell and Sheffi
(1983, 1986, 1989; see also Powell 1986a and Lamar, Sheffi, and Powell 1990)
constitutes a major example of frequency service network design formulations that
yield service levels as one of their outputs. What follows is a condensed version
of this model.

The model is defined on a service network where all nodes are
terminals and links represent potential direct services between two terminals. Two
types of terminals are considered: end-of-lines, where freight originates and ter-
minates; and breakbulk consolidation terminals. Although not forbidden, direct
movements between end-of-line terminals are extremely rare, especially for very
large LTL carriers. Consequently, the design decisions concern only services
between end-of-lines and breakbulks, and between breakbulk terminals. This has
the benefit of considerably reducing the size of the problem. The main parameters
and decision variables that define the model are:

unit linehaul cost per trailer, loaded or empty, from terminal i to terminal j;
unit trailer handling cost at terminal i, if terminal i is a breakbulk (0,
otherwise);
a function that computes the trailer handling cost at end-of-line i according
to the total number of direct services operated out of i(0, if i is a breakbulk);
number of LTL trailers originating at terminal o and destined for
terminal d;
set of permissible freight routings, i.e., that respect particular constraints
with respect to the association of end-of-line terminals to breakbulks (the
so-called clustering constraints);
service design decisions;    if the carrier is offering direct service
from terminal i to terminal j, and 0 otherwise;
volume of LTL traffic on link (i,j) with destination terminal d;

auxiliary flow routing variable (its use simplifies the representation of the
clustering constraints);
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flow of empty trailers moving from i to j;

volume of total LTL traffic handled at breakbulk i, that is, the traffic that
originates at i plus the traffic that is transferred at the terminal;

:    minimum frequency if a direct service is offered from terminal i to
terminal j;
service frequency – the number of trailers dispatched over the planning
period, from terminal i to terminal j, where,

The objective function (13.27) computes the total cost of dispatching trailers
according to the determined service level, moving the loaded and empty trailers,
and handling freight in terminals. Constraints (13.28) and (13.29) ensure that
freight itineraries obey routing restrictions and that demand is satisfied. Relation
(13.30) is the usual linking constraint that ensures that only operated services are
used. Equations (13.31) and (13.32) balance the empty flows.

The model may be written as:

Minimize

subject to



The modeling framework is strongly influenced by the LTL context and the
considerable challenges associated with the large size of the LTL carriers operat-
ing at the national level in the United States. It may be viewed as an extension
of the arc-based multicommodity network design formulation ((13.4)–(13.9)) in
Section 13.4, with no explicit capacities and a number of complicating constraints.
The authors implemented a heuristic procedure based on the hierarchical decom-
position of the problem into a master problem and several subproblems. The master
problem is a simple network design problem where the total system cost (13.27)
is computed for each given configuration of selected services. The design is modi-
fied by adding or dropping one arc at a time (Powell 1986a). Each time the design
is modified, the subproblems must be solved and the objective function must be
evaluated. The first subproblem concerns the routing of loaded LTL trailers and
it is solved by shortest-path-type procedures with tree constraints (Powell and
Koskosidis 1992). The empty balancing subproblem is solved as a minimum cost
transshipment formulation with adjusted supply and demand to account for timing
conditions not included in the original formulation (Roy and Delorme 1989, use
a similar approach).

The model and solution method are at the core of an interactive decision sup-
port system, dubbed APOLLO (Advanced Planner Of LtL Operations), and has
been implemented at a major U.S. LTL carrier. Impressive results are reported with
respect to the impact of the system both on load planning operations and strategic
studies of potential terminal location. Powell and Scheffi (1986, 1989) present in
more details the functionalities of APOLLO and discuss its performances on actual
problems. They also emphasize the importance of allowing planners to interact with
the software to explore alternatives and to select among various options. In this
way, planners are better positioned to understand how the system works and, ulti-
mately, to accept its suggestions. The same modeling framework was also used as
the basis for the development of a more comprehensive load planning system called
SYSNET (Braklow et al. 1992), implemented at one of the largest LTL carriers
in the United States. In this version, the issue of running direct services, bypass-
ing breakbulk terminals, was explicitly addressed by including such services into
the service network. The routing of the freight also acknowledged the geographic
and labor structure of the company and considered the relay points where trailers
are passed from one driver to the next. The resulting network representation is
huge. Heuristics based on company operating rules are used to prune it before the
optimization routines are called upon. Other than the optimization model and pro-
cedures, the planning system includes demand forecasting, database management,
user monitoring and control functionalities. The system has been used with great
success to build the load plan, to study the location and dimension of breakbulks,
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to determine the routing of loaded and empty trailers, and to study which directs
should be added or dropped.

Deterministic Dynamic Service Network Design

When schedules are contemplated, a time dimension must be introduced into the
formulation. This is usually achieved by representing the operations of the system
over a certain number of time periods by using a space-time network.

The representation of the physical network is replicated in each period. Start-
ing from its origin in a given period, a service arrives (and leaves, in the case of
intermediary stops) later at other terminals. Services thus generate temporal ser-
vice links, between different terminals at different time periods. Temporal links
that connect two representations of the same terminal at two different time periods
may represent the time required by terminal activities or the freight waiting for the
next departure. The costs associated with the arcs of this network are similar to
those used in the static formulations of the previous subsections. Additional arcs
may be used to capture penalties for arriving too early or too late.

There are again two types of decision variables. Integer design variables are
associated with each service. Restricted to {0, 1} values, these variables indicate
whether or not the service leaves at the specified time. When several departures
may take place in the same time period, general (nonnegative) integer variables
must be used. (Note that one can always use {0, 1} variables only by making the
time periods appropriately small.) Continuous variables are used to represent the
distribution of the freight flows through this service network.

The resulting formulations are network design models similar to those pre-
sented in Section 13.4, but on a significantly larger network due to the time
dimension. Actually, any of the two previous modeling frameworks, service net-
work design with frequency variables or derived output, may be used as the basis
for a dynamic scheduling model. The sheer size of the dynamic network, as well
as the additional constraints usually required by the time dimension, makes this
class of problems even harder to solve than the static ones. Thus, the pioneering
effort of Morlok and Peterson (1970), which integrated blocking, train formation,
and train scheduling into a very large mixed integer formulation, never did yield a
solution method or an application. Heuristic methods have been used so far.

Farvolden and Powell (1991, 1994) present a dynamic service network design
model for LTL transportation. The formulation allows for several departures in
the same period, but the simpler {0, 1} version is solved. An efficient primal-
partitioning with column generation algorithm is used to solve the freight routing
problem for any given service configuration (Farvolden, Powell, and Lustig 1992).
This was also used to determine the dual variables for service links used to develop
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an add-drop heuristic for the design problem. The methodology appeared inter-
esting, especially concerning the quality of the evaluation of the add and drop
moves. No comprehensive experimental analysis is available, however. Equi et al.
(1997) determine which shipments of a given good are to be performed and
the schedules of the vehicles that will undertake them. The model is a mixed-
integer formulation. The proposed heuristic decomposes the problem according to
a Lagrangian-type decomposition and proceeds in two steps: a metaheuristic imple-
ments tabu search ideas to approximate the design subproblem, and a transportation
problem addresses the scheduling part. The methodology has been successfully
applied to the problem of transporting wood from cutting areas to ports.

Haghani (1989) attempts to combine the empty car distribution with the train
make-up and routing problems. The dynamic network includes normal and express
modes for each service route for each time period, but traffic on each link is pre-
specified and access to express links is restricted to given markets. Travel times
are fixed. Linear functions are used for costs and delays, except for classifica-
tion, which makes use of a convex congestion function. The dynamic service
network design has continuous empty and loaded car flows and integer engine
flows. A heuristic decomposition approach is used to solve somewhat simpler
problems and appears efficient for small rail systems. The study also points to
better performances, in terms of operating costs, of an integrated formulation as
compared to the “traditional” hierarchical approach.

Gorman (1998a) also attempts to integrate the various service network design
aspects into a scheduled operating plan that minimizes operating costs, meets
the customer’s service requirements, and obeys the operation rules of a partic-
ular railroad. Model simplifications must be introduced in order to achieve a
comprehensive mathematical network design formulation. The solution method
is innovative. A hybrid metaheuristic, a tabu-enhanced genetic search, is used to
generate candidate train schedules, which are evaluated on their economic, ser-
vice, and operational performances. On relatively small but realistic problems, the
metaheuristic performed very well. A major U.S. railroad has successfully used
this model for strategic scenario analysis of their operations (Gorman 1998b).
This work emphasizes the interesting perspectives offered by modern heuristics in
addressing complex service network design problems.

More Service Network Design Models

Several other service network design modeling efforts make use of {0, 1} mixed
integer network flow formulations similar to the network design models in
Section 13.4. Keaton (1989, 1991, and 1992) proposes a model to develop oper-
ating plans for railroads. The model aims to determine which pairs of terminals
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to connect by direct service, and whether to offer more than one train a day, as
well as the routing of freight and the blocking of rail cars. The service network is
made up of one network for each origin-destination pair of terminals in the system
with positive demand. Links represent trains and connections in yards, as well as
a priori determined blocking alternatives. Continuous car flows and integer train
connections represent the decision variables. All cost functions are linear – there
is no congestion and fixed average yard delays are used. The model minimizes
the total cost computed as the sum of fixed train costs, car time-related costs, and
classification costs. The maximum number of blocks that may be built in a yard
yields the linking constraints. Feasibility constraints limit the maximum number
of connections and the minimum number of trains for a given pair of terminals.
Solutions were obtained by using a Lagrangian relaxation of the linking constraints
combined with various heuristics based on operation rules. Results were mixed.
While the model was used to perform a number of analyses on relatively small
systems, convergence difficulties were also reported.

Newton (1996), Newton, Barnhart, and Vance (1998), and Barnhart, Jin,
and Vance (2000) also address the rail blocking problem. They formulate it as
a network design problem, where nodes correspond to classification yards, and
candidate blocks correspond to arcs. No fixed costs are associated with blocks, but
several capacity restrictions are introduced to limit the number of blocks and the
total volume of freight processed at each yard. The first two references present a
path-formulation and a branch-and-price solution approach (Barnhart et al. 1998).
In the third paper, a dual-based Lagrangian relaxation is used to decompose the
problem into easier-to-address subproblems: a continuous multicommodity flow
problem and an integer block formulation that selects blocks that satisfy the yard
capacity constraints. Subgradient optimization is used to solve the Lagrangian
dual, while column generation is applied to the flow subproblem. To solve the
block subproblem, a branch-and-cut approach is used, where constraints that force
the connectivity of at least one path for each commodity are added to the nodes of
the enumeration tree. With these constraints, the Lagrangian relaxation identifies
a better bound than previously. By incorporating significant data preprocessing to
reduce the number of potential blocks and paths, the method could address the
problem of a major American railroad and propose blocking plans that represent
significant cost improvements.

Kuby and Gray (1993) developed an early model for the design of the network
of an express package delivery firm. It is a path-based {0, 1} network design model,
similar to formulation (13.13)–(13.17), where multistop aircraft routes must be
selected in and out of a given hub. Paths were generated a priori, and the model
was solved with a standard mixed-integer package. Analyses illustrated the cost
effectiveness of a design with multiple stops over a pure hub-and-spoke network.
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Kim, Barnhart, and Ware (1999) propose more comprehensive models for the
design of the multi-modal version of the problem (Barnhart and Schneur 1996,
address a simplified version of the problem). Here, several hubs and aircraft types
are considered, while trucks may perform pickup and delivery activities, as well as
transportation over limited distances. The problem is further complicated by time
window restrictions on pickup and delivery times at major collection centers, as
well as on the sorting periods at hubs. One product is considered in the application.
The authors examine arc, path, and tree-based formulations, and select the latter
since it significantly reduces the size of the problem. To solve the linear relaxation
of the resulting formulation, the authors combine heuristics to further reduce the
size of the problem, cut-set inequalities, and column generation. Branch-and-
bound is then used to obtain an integer solution. The paper by Kim and Barnhart
(1997) presents a good summary of the authors’ experience with these difficult
problems and the branch-and-price-and-cut methodology.

The design of postal networks and services forms a class of problems very
close to those just mentioned. The LTL frequency service network design by Roy
(1984) has already been applied to the design of express letter services for Canada
Post. The reorganization of the German postal services belongs to the same prob-
lem class, albeit on a more comprehensive scale. To bring the problem down to
manageable proportions, Grünert and Sebastian (2000; see also Grünert, Sebastian,
and Thärigen 1999 and Buedenbender, Grünert, and Sebastian 2000) decompose
it into several subproblems: the optimization of the night airmail network, the
design of the ground feeding and delivery transportation system, the scheduling
of operations. Vehicle routing models and techniques are used for the routing and
scheduling tasks. A discrete dynamic network design formulation, similar to those
discussed in Section 13.5, is also proposed. The air network design formulation is
further decomposed into a direct flight problem and a hub system problem; both
yield fixed cost, multicommodity, capacitated network design formulations with
side constraints. To optimize these formulations, the authors propose combina-
tions of classical heuristics, tabu search and evolutionary metaheurstics, and exact
mathematical programming methods (e.g., branch-and-bound). A decision support
system integrates the models and associated solution methods, as well as the tools
required to handle the data, models, and methods, and to assist the decision process.

Armacost, Barnhart, and Ware (2002) also address next-day express (air)
delivery service design but through a different methodological approach. The
authors transform the problem formulation by defining variables that represent
combinations of service routes. The new variables implicitly account for the flow
distribution and thus yield a pure design formulation for which stronger bounds
and thus more efficient solution methods may be derived. The results obtained on
data from a major U.S. express shipment firm is very encouraging and emphasizes
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the need to continue to explore the network design formulations for new insights
and more efficient solution methods.

13.6 Operational Planning and Management

The ultimate goal of any transportation firm is to make profits and improve, or at
least maintain, its competitive position. To this end, strategic and tactical plans can
be drawn up to guide operations, but the operational capabilities of the firm will
ultimately determine its performance.

There are many different issues that must be addressed at the operational level
in order to ensure that demand is satisfied within the required service criteria and
that the resources of the carrier are efficiently used. Most of these issues must
consider the time factor. For example, an empty truck must be assigned and moved
following a customer request; empty rail cars have to be repositioned, otherwise,
soon, idle equipment will be observed at some terminals while others will not
be able to satisfy demands; a container must arrive in time to be loaded on the
departing ship; a truck has to pick up a load within a specified time window;
and so on and so forth. For other types of operations, the very notion of a planned
solution does not make sense and the whole operation must continuously adapt and
react in real time. Consider, for example, truckload motor carrier services where
drivers learn their next assignment only after the current task is concluded. Thus,
the need to answer customer requests in real time, to conform to time restrictions
on operations, and to integrate in today’s decisions their possible impact on future
decisions and performances, emphasize the dynamic aspect of operational planning
and management issues for a freight carrier.

Many models traditionally used in transportation planning use known static
data as their input. Tactical planning formulations, for example, consider aggre-
gated forecast demand data as “known”. However, the real world in which these
models are used is in a constant state of change and solutions cannot always be
implemented as planned. If traffic is slower than predicted, vehicles may arrive late
at customers’ locations or at the terminal. Forecasted customer requests for empty
containers or trailers may not materialize while unexpected demands may have to
be satisfied. The planned supplies of empty vehicles at depots may thus be unsettled
and additional empty movements may have to be performed. Consequently, the
dynamic aspect of operations is further compounded by the stochasticity inherent
to the system, that is, by the set of uncertainties that are characteristic of real-life
management and operations. Increasingly, these characteristics are reflected in the
models and methods aimed at operational planning and management issues, as
illustrated in this section.
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Crew Scheduling

Crews are assigned to vehicles and convoys in order to support the planned oper-
ations. There are also numerous other issues related to manpower management
such as the scheduling of reserve crews, terminal employees (e.g., Nobert and Roy
1998), maintenance crews, etc. A significant body of methodological and techno-
logical knowledge has been developed to deal with these issues, especially in the
context of transit (bus and passenger rail) and airline transportation. Some form of
set covering model is generally used. The resulting mixed-integer formulation is
usually very large and it is addressed by column generation and branch-and-price
techniques. See, for example, Barnhart and Talluri (1997), Desrosiers et al. (1995),
Desaulniers et al. (1998a,b).

These methodologies were developed for applications where detailed sched-
ules are known and adhered to. Consequently, although a few similar developments
have targeted crew scheduling issues in the freight transportation industry (e.g.,
Crainic and Roy 1990, 1992), currently it appears thatbetter results can be achieved
by applying the class of methodologies used to dynamically allocate resources to
tasks described in Section 13.6. Crew scheduling issues and models form the
subject of Chapter 14 of this book.

Terminal and Linehaul Operations

Terminal and line managers, operators, and dispatchers face a host of control and
dispatch issues that form the subject of an extensive literature. The corresponding
models and methods aim either to analyze and plan operations or to assist the
real-time dispatch of resources and control of operations. A brief enumeration of
a number of important issues and references follows.

Terminal models mainly address issues related to the estimation of delays
associated with the various operations: load or unload freight, classify vehicles,
form blocks and trains, transfer freight between vehicles or convoys, etc. The
restricted number of available resources and the large volumes of freight and vehi-
cles that require service result in congestion conditions usually evaluated through
the average (and, sometimes, the variance) of the associated waiting time. Delays
may also result from the need to wait for the planned connection. Queuing for-
mulations are generally used to derive models for these phenomena (e.g., Crainic
1988 and Chapter 5). Petersen (1977b,c; see also Petersen 1971a,b and Petersen
and Fullerton 1975) presented what is probably the first comprehensive analysis
of yard delays. Bulk service queues, where service is performed for groups of cus-
tomers (cars) emerge as the main methodological approach. They are difficult to
solve, however, in all but the simplest limiting cases. Turnquist and Daskin (1982)
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use similar formulations for their rail yard model but relax a number of restrictions
in order to obtain a more tractable model. Daskin and Walton (1983) propose a
set of queuing models to represent the lightering operations (transfers from large
ocean tankers to smaller vessels) in crude transportation.

Powell (1981, 1986b; see also Powell and Humblet 1986) undertook a signifi-
cant study of bulk queues and their applications to modeling delays in transportation
terminals. He proposed efficient numerical methods (Powell 1986d) and closed-
form approximations (Powell 1986c) to compute the moments of the distributions.
Closed-form approximation formulas have also been proposed by Crainic and
Gendreau (1986). Such closed-form approximations of delays in freight terminals
(as well as on the lines of the systems) are equally important as generators of
functions and measures for the service network design and the strategic planning
models presented in Sections 13.5 and 13.3, respectively. A different perspective
on yard-blocking performance is offered by Daganzo (1987a,b). Based on direct
analyses of the departure schedules, policies, and operational rules, formulae are
determined for a number of performance measures – number of tracks in the yard
and number of switches per car, for example – for various blocking strategies.

Many rail line models aim to represent the delays that result when trains meet
(on single-track lines) or when one train overtakes another. When traffic volumes
are low, analytical formulae may be obtained directly from the corresponding oper-
ating rules (Petersen 1974, 1975a,b). Queuing models are again the methodology
of choice, the approach being similar to that used to analyze rail yard operations
when congestion conditions occur (Petersen 1977c). More recently, Chen and
Harker (1990) and Harker and Hong (1990) consider the case when services are
scheduled and evaluate the mean and variance of delays on double and single-track
lines, respectively. Hallowell and Harker (1996) evaluate and predict performance
on partial double-track rail line with scheduled traffic.

The preceding models may be combined and, eventually, approximated, to
yield formulations that may be used in more comprehensive planning systems.
Petersen and Taylor (1982), Petersen (1984), Crainic, Ferland, and Rousseau
(1984), and Crainic, Florian, and Léal (1990) integrate queuing submodels or
functions into the planning systems they propose.

A different line of research relative to rail line models addresses issues related
to the scheduling and pacing of trains on a line.                 and Harker (1991) pro-
pose a mixed integer formulation, solved by branch-and-bound, to assist the tactical
(weekly or monthly) scheduling of trains on a line. The model is embedded in the
SCAN1 software. The issue of optimally pacing trains over a line is addressed by
Kraay, Harker, and Chen (1991), Higgins, Ferreira, and Kozan (1995) and Higgins,
Kozan, and Ferreira (1996, 1997). Network-based mixed integer formulations also
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appear here. The application of genetic, tabu search, and hybrid metaheuristics to
the same problem is explored by Higgins, Ferreira, and Kozan (1997).

Empty Vehicle Distribution and Repositioning

A particularly important and challenging issue for freight carriers is the need to
move empty vehicles. Indeed, the geographic differences in demand and supply
for each commodity type often result in an accumulation of empty vehicles in
regions where they are not needed and in deficits of vehicles in other regions that
require them. Then, vehicles must be moved empty, or additional loads must be
found, in order to bring them where they will be needed to satisfy known and
forecasted demand in the following planning periods. This operation is known as
repositioning and is a major component of what is known as fleet management.
In its most general form, fleet management covers the whole range of planning
and management issues from procurement of power units and vehicles to vehicle
dispatch and scheduling of crews and maintenance operations. Often, however,
the term designates a somewhat restricted set of activities: allocation of vehicles
to customer requests and repositioning of empty vehicles.

Moving vehicles empty does not directly contribute to the profit of the firm but
it is essential to its continuing operations. Consequently, one attempts to minimize
empty movements within the limits imposed by the demand and service require-
ments. Empty balancing, the distribution of empty vehicles to balance the supply
and demand in future periods, is a major objective of dispatchers and a central
component of planning and operations of most transportation firms. This issue
must also be considered at the tactical level. In rail transportation, for example,
empty rail cars are put on the same trains as loaded ones and thus contribute to an
increase in the number of trains, in the volume of vehicles handled in terminals
and, ultimately, in system costs and delays. For planning purposes, the demand
for empty cars may be approximated and introduced in tactical model by view-
ing empties as another commodity to be transported (e.g., Crainic, Ferland, and
Rousseau 1984). A similar approach may also be used for the planning of multi-
modal regional or national systems (e.g., Crainic, Florian, and Léal 1990). The
issue is also relevant in LTL trucking where empty balancing is an integral part of
a transportation plan. In this case, a load plan is first obtained for the actual traffic
demands, and an empty balancing model is then solved to reposition the empties
(see Delorme and Roy 1989 and Braklow et al. 1992, for example).

Numerous studies reflect the significant research and development effort that
has been dedicated to empty vehicle distribution issues. Interested readers may
start exploring this field with the review of Dejax and Crainic (1987). It includes
contributions going back to the ’60s and spans the whole spectrum of modeling
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approaches from simple static transport models to formulations that integrate the
dynamic and stochastic characteristics of the problem. In the following, we recall
some of the main articles and models in this field.

The first empty vehicle allocation models used straightforward transportation
formulations (e.g., Leddon and Wrathall 1967, Misra 1972, Baker 1977). Given
estimations of future supply and demand of empty cars of a homogeneous fleet
at the yards of the network, and the cost in car-hours, for each pair of yards, the
distribution of empty cars is optimized to minimize the total cost.

A significant step forward in modeling capabilities was achieved with the
explicit consideration of the time perspective. A space-time diagram represents
the various paths that vehicles may travel to reach their proper destination at a
specified time (Figure 13.3 illustrates such a network). The resulting formulation
takes the form of a deterministic dynamic transshipment network model, where
flows are optimized such that either the total cost is minimized, or the profitability
of the system is maximized. Starting with the pioneering contributions of White
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(1968) and White and Bomberault (1969) for rail car distribution, and of White
(1972) for container allocation, many models that aimed for the distribution of
empty vehicles, took the form of a dynamic transshipment network optimization
problem (e.g., Herren 1973, 1977, McGaughey, Gohring, and McBrayer 1973).
Linear programming and network flow algorithms were usually applied. This line
of research is still very active today. The formulations are more complex, though.
Multiple commodities, substitutions, integer flows, are some of the characteris-
tics that add realism to these formulations (Shan 1985, Chih 1986, Turnquist and
Markowicz 1989, Markowicz and Turnquist 1990, Turnquist 1994; and others).
Alternatively, the strict schedules and booking policies enforced by many Euro-
pean railways impose additional conditions on empty vehicle distribution, such
as limited hauling capacity for empties, and pre-defined itineraries (Joborn 1995,
Holmberg, Joborn, and Lundgren 1998, Joborn et al. 2001).

The explicit consideration of uncertainties in empty vehicle distribution
models constitutes another significant methodological contribution. The first com-
prehensive effort in this direction was made by Jordan and Turnquist (1983) for rail.
The formulation aims to maximize the profits of the firm, and integrates revenues
from performing the service as well as various costs from moving cars between
yards, holding them at yards, or from not filling orders due to stockouts. The model
structure is again a multicommodity, dynamic network. Stochasticity of supply,
demand, and travel times is explicitly considered. The resulting model is a nonlin-
ear optimization formulation, solved by using the Frank-Wolfe algorithm (1956).
A similar approach is proposed by Beaujon and Turnquist (1991) for a model that
simultaneously considers vehicle inventories at terminals and their allocation in
order to answer fleet-sizing issues. The whole research area addressing the dynamic
allocation of limited resources in uncertain environments naturally continues these
important developments.

Dynamic Allocation of Resources

Many operational problems, fleet management in particular, dynamically allocate
limited resources to requests and tasks. For example, empty vehicles, trailers
and rail cars are allocated to the appropriate terminals; motive power tractors
and locomotives to services; crews to vehicles or services; loads to driver-truck
combinations; empty containers from depots to customers and returning containers
from customers to depots; and so on. All these problems have several common
characteristics:

1. Some future demands are known, but most can only be forecasted, and
unpredictable requests may happen.
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2. Many requests materialize in real or quasi-real time and must be acted upon
in relatively short time.

3. Once a resource is allocated to an activity, it is no longer available for a certain
duration (whose length may be subject to variations as well).

4. Once a resource becomes available again, it is often in a different location
than its initial one.

5. The value of an additional unit of a given resource at a location greatly depends
on the total quantity of resources available (which are determined from previ-
ous decisions at potentially all terminals in previous periods) and the current
demand.

This is an extremely rich field both for research and development and for
applications. In a sense, it extends and complements the empty vehicle distribution
problems described previously. The latest developments in the field also allow to
plan and control the activities of several resources simultaneously (Powell 1996b,
1998, Powell and Carvalho 1998b, Powell and Shapiro 2001). Dynamic and sto-
chastic network formulations have been, and continue to be, extensively studied for
these problems. This has resulted in important modeling and algorithmic results.
A number of these results have been transferred to industry (Powell et al. 1992, for
example). The interested reader should consult the excellent synthesis and review
by Powell, Jaillet, and Odoni (1995) and the numerous references quoted in this
work. In the following, we briefly illustrate two main modeling approaches.

One may represent dynamic allocation issues by an activity graph similar to
the one displayed in Figure 13.3. Here, the operations of a simple four-terminal
system are schematically drawn for a certain length of time, which is arbitrarily
divided into three periods. At each terminal, there are a number of vehicles that are
available to satisfy customer requests during the current period and in future ones.
Customer demands have precise characteristics, such as the origin and destina-
tion of movement, and pickup and delivery dates (with time window restrictions,
eventually). At any period, a vehicle may be assigned to a customer demand in
the current period and at the current location, moved to another location to satisfy
a known future request, held at the current location, or moved empty to another
location in preparation for future, forecasted demands.

Accepting requests and performing the corresponding movements implies
expenses and generates revenues. Crainic, Gendreau, and Dejax (1993) developed
a model for the assignment and management of a heterogenous fleet of contain-
ers where loaded movements are exogenously accepted. Here, the objective is
to minimize the total operating cost, including substitutions and stockouts. Sev-
eral other models also address the issue of whether a request is profitable with
respect to the operation of the system and should therefore be accepted. Indeed,
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repositioning empty vehicles does not generate any immediate revenues. One may
be ready to incur these expenses, however, in the hope that, as a consequence,
vehicles will be adequately posted to take advantage of future (known, forecasted
or estimated) opportunities. Refused requests represent lost business opportuni-
ties, while accepted but unsatisfied ones generally result in penalties. Powell et al.
(1992) and Powell (1996a) present such applications to truckload motor carrier
transportation.

A classical modeling approach for this class of problems is to consider the
entire planning horizon with the objective of maximizing the total system profit
computed as the sum of the profit resulting from decisions taken for the current
period, plus the expected profit over future periods. The usual constraints apply:
satisfy the demand; do not use more than the number of available vehicles; adhere
to specific operations rules; etc. When the state of the system and its environment
in future periods is known, or assumed to be known, the resulting formulation
is deterministic and is often written as a network flow optimization model with
additional constraints.

The major difficulty with this approach becomes apparent when the uncertain-
ties in future demands, as well as, eventually, uncertainties related to performing
the operations, are explicitly considered. In this case, decisions taken “now” for
future periods cannot be based on sure data, but only on estimations of how the
system will evolve, which demand will materialize, and so on. From a mathe-
matical programming point of view, random variables are used to represent the
stochastic elements and decisions in future periods. Consequently, the expectation
of future profits that appears in the objective function of the model becomes a very
complex, recursive stochastic equation where the statistical expectation of the total
profit must be computed over all possible realizations of all random variables.

To address this complex issue, the model generally takes the form of a recourse
formulation. Such formulations are based on the idea that today’s decisions are
taken within today’s deterministic context but using an estimation of the variability
of the random factors, and that their consequences are reflected in later decisions.
The recourse represents these later decisions which must be taken to adjust the ini-
tial policies once the actual realization of the random variables is observed. In the
simplest possible recourse formulation, called simple recourse, it is assumed that
one does not attempt to change the decisions but pays a penalty when the observed
value of a random variable is different from the estimation. More complex formu-
lations, such as nodal, tree, and network recourse attempt to evaluate the possible
modifications to the initial decisions, and the impact on the total expected profit.
Refer to Powell (1988), Frantziskakis (1990), Powell and Frantzeskakis (1994),
and Powell and Cheung (1994a,b) for details. Powell (1987), Frantziskakis and
Powell (1990), Cheung and Powell (1996a), Chen and Powell (1999), Powell and
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Cheung (2000) extend the recourse methodology and present increasingly more
complex and precise methods to approximate the recourse function of multistage,
dynamic, stochastic networks. An excellent analysis of the application of these
approaches to the dynamic fleet management problems for truckload motor carri-
ers, as well as a discussion of the merits and difficulties of stochastic formulations,
may be found in Powell (1996a). Cheung and Powell (1996b) further compare
these approaches in the context of dynamic distribution problems. Cheung and
Chen (1998) apply the same type of methodology to the problem of distributing
empty containers in an international maritime system.

These formulations, which are generally difficult to solve, also make use of
various criteria to discretize, aggregate, and end time. For example, in Figure 13.3,
the theoretically infinite future planning and operation horizon has been reduced
to three periods. When the recourse formulation is solved, the periods could be
further aggregated, all future periods being considered as one; this corresponds
to a two-period formulation, as opposed to n-period, otherwise. Then, in actual
applications, the models are used in a rolling horizon environment where, as time
advances, a new period is added at the end of the horizon. An important issue is
then how to approximate what happens in all the periods beyond the artificially
fixed end of the horizon, and how to integrate this approximation into the recourse
function. Powell, Jaillet, and Odoni (1995) present an excellent review of this class
of formulations.

A different approach recently championed by Powell (1995), Powell et al.
(1995), and Powell and Carvalho (1998a; see also Carvalho 1996, Carvalho and
Powell 2000) addresses resource allocation problems as Logistic Queueing Net-
works, LQN. In this case, at each node of the time-space diagram there are two
queues: one of resources and one of tasks requesting resources. Figure 13.4 illus-
trates a possible configuration for two terminals over two periods. Two “resources”
are managed, vehicles and loads, and their levels currently known or approximated
at each terminal are displayed. Available vehicles may be allocated to loads already
at terminals. Arrows illustrate other possible actions: move loaded vehicles from
one terminal to another, where they will increase the inventory of empty vehicles;
hold empty vehicles for use in subsequent periods; move empty vehicles to reposi-
tion them at a different terminal; determine where to send a vehicle that becomes
empty and what vehicles from which terminal to assign to new loads. The objective
is to maximize the total profit generated by operating the system to satisfy demand.

The basic idea of the LQN methodology is to cast the formulation as a recur-
sive dynamic model and to decompose the resulting optimization problem for each
period into “easy-to-solve” local subproblems. In the applications described, each
subproblem corresponds to the assignment of vehicles to tasks (loaded or empty
movements, for example) at a given terminal. But, in order to evaluate the worth
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of allocating a vehicle to a loaded or repositioning movement, one has to know,
or evaluate, not only the operating costs and the profit of the load, but also the
value of the empty vehicle at the destination terminal. Furthermore, the dynamics
of the system make this value depend on future decisions at all terminals. At each
period and for each vehicle type, these values are approximated by measuring how
desirable it is to have one more vehicle at each terminal. The resulting potentials
are then used to build a linear approximation of the part of the recursive objective
function that corresponds to future periods. Gradients of this approximated objec-
tive functions with respect to the supply of vehicles at terminals are used to adjust
the potentials, as well as the upper limits on empty movements.

The general solution approach proceeds iteratively in a series of forward and
backward passes along the time axis. At each iteration, the forward pass assigns
vehicles to tasks, the backward pass computes gradients, and a control adjustment
phase modifies the potentials and the bounds on empty movements. The process
continues until “convergence” is ensured. The latest developments (Godfrey and
Powell 2002a,b) use nonlinear approximations and present truly impressive results
for realistic fleet management applications.

The LQN approach appears to offer a very interesting framework for a wide
variety of real situations that may be efficiently represented and solved. It offers,
in particular, a rather straightforward way to explicitly take into account various
considerations, such as time windows, labor restrictions and substitutions, by



addressing them at the level of the local subproblem. The application of LQN
methodology to the real-time management of fleets of containers and flatcars for
intermodal operations presented by Powell and Charvalho (1998b) offers very
encouraging results both in terms of actual results (significant savings in operation
costs are forecasted) and of further applications to resource allocation problems
and service network design models.

13.7 Perspectives

We have presented a number of major issues, models, and methodologies in
long distance freight transportation planning and management. Many significant
methodological advances have been achieved and many have been success-
fully transferred to actual practice. However, many research opportunities and
challenges still exist.

The advent of Intelligent Transportation Systems (ITS) will have a tremendous
impact on the planning and operations of freight transportation. ITS technologies
increase the flow of available data, improve the timeliness and quality of infor-
mation, and offer the possibility to control and coordinate operations in real-time.
Significant research efforts are required to adequately model the various planning
and management problems under ITS and real-time information, and to develop
efficient solution methods. Some efforts have already been undertaken relative to
the real-time dispatching, assignment, routing, and re-routing of vehicles (Regan
1997, Regan, Mahmassani, and Jaillet 1995, 1996a,b 1998, Yang, Mahmassani,
and Jaillet 1998, Yang, Jaillet, and Mahmassani 2002, Gendreau et al. 1996, 1998,
1999, Gendreau and Potvin 1998) and the study of the impact of new technologies
on the planning and performance of intermodal classification yards (Bostel and
Dejax 1998).

The rapid and sustained development of the electronic business way of inter-
acting with customers and partners is already modifying how transportation firms
plan and operate. In many respects, e-business and ITS are related and the chal-
lenges associated to the real-time response mentioned above are also encountered
here. E-business also brings (or should bring) easier access to loads through various
e-marketplaces. Many of these offer increasingly sophisticated auction mecha-
nisms to determine the allocation of loads and the associated prices. The fleet
management models and tools have to integrate these possibilities. A major chal-
lenge is related to determining on what loads to bid and the bidding strategy, in
particular when loads that would combine in interesting routes must be negoti-
ated separately (e.g., Abrache, Crainic, and Gendreau 2001, Chang, Crainic, and
Gendreau 2002, Crainic and Gendreau 2002). It is difficult at this time to ade-
quately predict the whole extend of impact of ITS and e-business on transportation
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science theory, methods, and practice, but we are convinced that it will be major
and comprehensive.

The study of network design formulations and solution methods still offers
considerable challenges; from a theoretical point of view, of course, but also when
contemplating applications to huge problem instances with very large number
of commodities. The same may be said of dynamic and stochastic formulations.
In fact, one observes that more and more formulations explicitly consider the
dynamic and stochastic characteristics of the problems under study. The trend may
be observed not only for issues traditionally associated with actual operations, but
also for problems considered “tactical”, such as load planning and service network
design. Generally speaking, however, the literature does not offer trusted solution
methods capable of addressing scheduled (dynamic) service network design prob-
lems of realistic dimensions and complexity. The study of the formulations and
their properties (e.g., reformulations, bounds, cuts) should be continued. A number
of decomposition ideas (according to the time period or node, for example) have
also been advanced and are worth investigating. Such approaches will also present
“natural” parallelization characteristics that should facilitate the implementation
of efficient solution methods.

Metaheuristics play an increasingly important role in obtaining good solutions
to difficult problems within reasonable computing times. Work is still needed, how-
ever, to develop more efficient and more robustprocedures and to better understand
the conditions under which each approach performs best. Hybrids, combining
characteristics of two or more metaheuristics, offer interesting, but challenging
perspectives.

Parallel and distributed computation offers another challenging perspective
with potentially great rewards: to solve realistically modeled and dimensioned
problem instances within reasonable times. Each class of problems and algo-
rithms presents its own challenges. The parallel exploration of branch-and-bound
trees, and the collaborative search undertaken by several metaheuristics or by
metaheuristics and exact methods, are only two exciting research areas. Parallel
computing also offers the possibility of designing an architecture to efficiently
answer complex requests in real, or quasi-real time. These ideas that have just
begun to be considered (e.g., Séguin et al. 1997), have a great potential for the
development of intelligent and efficient decision support tools for ITS and other
real-time transportation systems.
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14 AIRLINE CREW SCHEDULING
Cynthia Barnhart, Amy M. Cohn,
Ellis L. Johnson, Diego Klabjan,

George L. Nemhauser, Pamela H. Vance

14.1 Introduction

Crew Scheduling

Crew scheduling can be defined as the problem of assigning a group of workers
(a crew) to a set of tasks. The crews are typically interchangeable, although in some
cases different crews possess different characteristics that affect which subsets of
tasks they can complete.

Crew scheduling problems appear in a number of transportation contexts.
Examples include bus and rail transit, truck and rail freight transport, and freight
and passenger air transportation. There are many common elements to all of these
problems, including the need to cover all tasks while seeking to minimize labor
costs, and a wide variety of constraints imposed by safety regulations and labor
negotiations. Nonetheless, each application also has its own unique characteristics
and its own research challenges. In fact, most crew scheduling research focuses
on a particular application, rather than the general case.

In this chapter, we focus on the airline crew scheduling problem. [For addi-
tional details on crew scheduling in the railway industry we refer the reader to
Caprara et al., 1998 and for crew scheduling in mass transit systems to Wilson,
1999.] There are a number of reasons for focusing on airlines. First, they provide
a context for examining many of the elements common to all crew scheduling
problems. Second, the airline problem is truly a planning problem in the sense that
airlines typically have a fixed schedule that changes at most monthly. Therefore,
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substantial time and resources can be (and are) allocated to solving it. Third, airline
crews receive substantially higher salaries than equivalent personnel in other modes
of transportation; the savings associated with an improved airline crew schedule
can be quite significant. Finally, a large number of restrictive rules, mandated both
by the FAA (or equivalent governing agencies for non-U.S. carriers) and strong
labor unions, greatly restrict the set of feasible solutions, making airline crew
scheduling one of the hardest crew scheduling problems. For all of these reasons,
the airline crew scheduling problem has received the greatest level of attention,
both from industry and from the academic community.

Airline Planning

Crew scheduling is just one of a number of challenging planning problems faced
by airlines, see Figure 14.1. Although these problems are closely interrelated, they
are typically solved sequentially, due to their size and complexity. Airlines usually
begin by solving a schedule design problem, in which they determine the flights to
be flown during a given time period. In the next step, the fleet assignment problem,
they decide what type of aircraft (such as Boeing 767, 727, etc.) to assign to each
flight, as a function of the forecasted demand for that flight. The maintenance
routing problem follows, in which individual aircraft are assigned to flights so
as to ensure that each aircraft spends adequate time at specific airports in order
to undergo routine maintenance checks. Having completed these three tasks, the
airlines then address the problem of scheduling crews.
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Within airline crew scheduling, there are significant differences between how
international and domestic operations are scheduled. In the U.S., for example,
international flight networks tend to be relatively sparse, with a limited number
of flights into and out of an airport. U.S. domestic operations, in contrast, are
characterized by hub-and-spoke networks with large numbers of arrivals followed
by departures (called banks or complexes) occurring at hub airports in relatively
short periods of time. International flight networks, however, are characterized by
point-to-point networks with operations spread throughout the network. Another
distinction is that international networks typically operate on a weekly schedule,
while daily schedules are usually assumed for domestic operations. Moreover,
unlike domestic operations, it is not uncommon for international operations to
deadhead crews, that is fly them as passengers on some of the flights within their
schedule in order to re-position them for future assignments. Barnhart et al., 1995
study the deadheading problem. All of these differences affect how crews are
scheduled.

There are also significant differences between how cockpit and cabin crews are
scheduled. For example, crews of pilots and other cockpit personnel usually remain
together for much of their schedule. Cabin crews tend to vary more frequently, with
flight attendants scheduled as individuals, rather than as part of a prescribed crew.
Another key difference is that cockpit crews are heavily restricted in the number
of fleet types that they are qualified to fly; cabin crews have greater latitude in the
range of aircraft types that they can staff.

We will focus our attention on the problem of scheduling cockpit crews. For
additional information on other forms of airline crew scheduling, we refer the
reader to Day and Ryan, 1997 and Kwok and Wu, 1996.

14.2 The Crew Scheduling Problem

Each cockpit crew is qualified to fly a specific fleet type or set of closely related
fleet types, known as a fleet family. Therefore, we solve a separate crew scheduling
problem for each crew type, which includes only those flights that have been
assigned to the corresponding fleet types.

The input to a crew scheduling problem is the set of flights to be covered.
Flights are grouped together to form duty periods, which are series of sequential
flight legs comprising a day’s work for a crew. Duties are then strung together to
form pairings, crew trips spanning one or more work days separated by periods
of rest. Finally, monthly schedules are made up of multiple pairings with time off
in between. These four components, i.e., flights, duties, pairings, and monthly
schedules, are the building blocks of crew scheduling.
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Associated with each of these building blocks is a distinct set of constraints.
These typically come from three sources. First, governing agencies such as the
FAA in the U.S. restrict crew scheduling, primarily for safety purposes. Second,
labor organizations often enter into collective bargaining agreements concerning
the crews’ work conditions. Third, the airlines themselves pose added con-
straints, for example, to make the schedule more robust. In addition to these
constraints, each building block is associated with a distinct cost structure. These
constraints and cost structures are described in greater detail in the sections that
follow.

Work Rules and Pay Structures

The most elemental decision in the crew scheduling problem is to decide which
crew to assign to a given flight. The cost of such an assignment is a complex
computation. Crews are not salaried, but rather are paid for the time that they spend
flying, plus some added compensation for excess time spent on the ground between
flights and during rest periods. Given this, we can think of the ‘cost’ associated
with an individual flight simply as the duration of that flight. Because individual
crews for a given fleet family cannot be distinguished in the crew pairing problem,
crew costs are usually expressed in terms of time rather than cost. The total flying
time in the system is clearly fixed and provides a lower bound on the optimal crew
cost. The objective in crew scheduling is therefore to minimize pay-and-credit, the
payments made above and beyond the cost of the actual flying time.

Duty Periods A number of rules restrict what combinations of flights can be
flown by the same crew. A sequence of flights that can be flown by a single crew
over the course of a work day is a duty period. Note that the same crew members
typically stay together throughout the duration of a duty period.

Duties are constrained by a number of restrictions. The most obvious of these is
that flights must be sequential in space and time. Furthermore, there is a restriction
on the minimum idle time between two sequential flights, sometimes referred to
as connect time or sit time. There is also a restriction on the maximum idle time
allowed between two sequential flights. Additionally, there is a maximum elapsed
time for a duty period. Finally, strict regulations govern the total number of flying
hours, known as block time, that a crew can incur during the course of a single
duty period.

The crew cost associated with a duty period is usually expressed as the maxi-
mum of three quantities. The first quantity is the flying time. The second quantity
is a fraction (for example, of the total elapsed time of the duty period. The third
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quantity is a minimum guaranteed number of hours. This pay structure primar-
ily compensates crews for flying time, but also provides additional pay for those
crews assigned to very short duties or to duties with extensive idle time between
the flights. Formally the cost of a duty period d can be expressed as

where is the cost inminutes, • elapse is a fraction of the elapsed time elapse,
fly is the number of minutes of flying in the duty period, and min_guar is the
minimum guarantee expressed in minutes.

Pairings Often a duty period starts and ends at different airports. Therefore, the
crew cannot always return home at the end of a duty period but instead must often
layover until the next day’s duty period begins. Typically, crews spend anywhere
from one to five days in a row away from home. A sequence of duties and layovers
is known as a pairing. In general, a crew will stay together for all of the duties
within a pairing.

There are a number of logical constraints on what constitutes a feasible pairing.
Clearly, a pairing’s first duty period must begin at the crew’s domicile, called also
the crewbase, and the last duty period must end there as well. In addition, each
duty period must begin at the same airport where the previous duty period ended.

Pairings are further constrained by a complex array of rest requirements, fly-
ing time restrictions, and other constraints. These include the maximum number
of duties in a pairing, the minimum and the maximum amount of rest between
duties, and the maximum elapsed time of a pairing, also known as time-away-
from-base (TAFB). One particularly complicated constraint is the 8-in-24 rule,
which is imposed by the FAA in the U.S. This rule requires extra rest if a pairing
contains more than 8 hours of flying in any 24 hour period. Generally, this occurs
when the 24 hour period in question spans two consecutive duty periods. It is
allowable to have more than 8 hours of flying in a 24 hour period only so long as
the included rest, i.e., the layover between the two duty periods involved, and the
rest following the second duty period, also known as the compensatory rest, are of
sufficient length.

In the U.S., the cost of a pairing has two components. The first component,
similar to the cost of a duty period, is the maximum of three quantities. The first
of these quantities is the sum of the costs of the duties contained in the pairing.
The second quantity is some fraction of the total elapsed time of the pairing. The
third quantity is a minimum guaranteed number of minutes per pairing, which
is typically the number of duty periods in the pairing times a fixed minimum
guaranteed number of minutes per duty period. In addition to this, we include
a second component, which represents the extra costs associated with the rest
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period between two duties, such as meals and lodging. Formally, the cost of a
pairing p is

where represent theduty periods inp. Here, indicates that duty period
immediately follows duty period in p. In addition, mgand are constants, ndp

is the number of duty periods in and is the extra cost associated with the
rest between duty periods and

European carriers tend to have a fixed salary for each crew. In this case the
cost of a pairing is either ndp or 1.

Schedules Just as a duty period is a sequence of flights with sit times in between,
and a pairing is a sequence ofduties with layovers in between, a schedule is simply a
sequence of pairings with periods of time off in between. However, a key difference
between schedules and the other building blocks is that schedules are associated
with individual crew members, rather than complete crews. The reason is that each
crew member has different needs for time-off throughout the schedule period,
which is typically a month. These include vacation time, training time, etc. Thus,
in assigning crew schedules, we must take into account the needs and preferences
of individual crew members.

In addition to individual crew member needs, we also have constraints similar
to those seen for duties and pairings, for example, limits on the maximum monthly
flying time, the maximum duty time in a month, the minimum number of consecutive
days off, the minimum total number of days off, the minimum rest between pairings,
and so forth.

Given this key difference, it is not surprising that the cost of a schedule is
quite different from the other components. Whereas the focus within duties and
pairings is on actual labor costs, the cost of a schedule is considered to be more
a function of crew satisfaction and of workload balance.

The Crew Pairing and Crew Assignment Problems

The crew scheduling problem is typically divided into two subproblems. First, the
crew pairing problem is solved. In this problem, we select a set of pairings such
that each flight is included in exactly one pairing and pay-and-credit is minimized.
Then, the crew assignment problem is solved. In this problem, the chosen pairings
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are combined with rest periods, vacations, training time, and other breaks to create
extended individual work schedules, typically spanning a period of about one
month.

The Crew Pairing Problem The domestic U.S. crew pairing problem is typically
solved in three stages: daily, weekly exceptions, and transition.

The first stage, the daily problem, considers the set of flights which are flown
at least four days per week. In this first stage, we treat these flights as though
they all operate daily. We therefore want to find a minimum cost set of feasible
pairings such that every flight in this set is covered exactly once. The pairings in
this solution are then assumed to be repeated daily. The daily problem forms a
good approximation since in the U.S. most of the flights operate every day, with a
few exceptions on weekends.

For pairings that span multiple days, we assume that one crew will be assigned
to each of the different duties within that pairing on any given day. For example,
suppose the solution includes a three-day pairing made up of duties A, B, and C. On
any given day, there will be one crew starting their trip with duty period A, another
crew that began the trip the day before and is now covering duty period B, and a third
crew on the final day of their trip, covering duty period C. This, in conjunction with
the constraint that pairings cannot cover the same flight more than once, ensures
that on any given day, every flight will be covered by exactly one crew.

Note that a solution to the daily problem will not be completely feasible in
practice, because it assumes that all flights are flown every day of the week. Pairings
that cannot be flown on certain days of the week because one or more of the flights
do not operate on that particular day are referred to as broken pairings. The second
crew pairing stage, the weekly exceptions problem, constructs new pairings to
correct these broken pairings and also to cover those flights that are flown three or
fewer days per week. Thus, in the weekly exceptions problem, we must associate
flights with a specific day of the week. Accordingly, pairings become specific to
days-of-week as well. Typically, deadhead flights are also needed in order to find
good solutions to the weekly exceptions problem. Combined, the daily and weekly
exceptions pairing solutions cover each flight in the weekly schedule exactly once.

Finally, note that airlines change their flight offerings on a regular basis, often
quarterly and, to some degree, even monthly. Therefore, multi-day pairings can be
problematic at the end of a monthly flight schedule. For example, on the last day of
the month, a new crew must begin each pairing to cover that day’s flights. However,
the remaining days of the pairing may not be valid given that different flights might
be offered in the next month’s schedule. We therefore must solve a third stage of the
crew pairing problem, the transition problem. This problem constructs pairings to
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cover flights for a small number of days spanning the changeover from one monthly
flight schedule to another.

In all three of these problems, we emphasize that the object is to minimize pay-
and-credit, the labor costs above and beyond the minimum required flying time.

The three stages described above are typical of U.S. domestic problems. More
generally, we can think of two types of crew pairing problems, weekly problems and
dated problems. Weekly problems yield sets of pairings that are repeated weekly;
pairings that start at the end of the week wrap back around to the beginning of
the week. Dated problems, on the other hand, correspond to specific days of the
month. In the U.S. case, the daily pairing problem and weekly exceptions problem
collectively solve the weekly problem, while the transition problem is a dated
problem.

The Crew Assignment Problem Given the solution to the crew pairing problem,
i.e., a minimum cost set of pairings that cover all flights throughout a monthly
period, we must then assign specific individuals to these pairings. This occurs in
the crew assignment problem.

Just as the crew pairing problem selects a minimum cost set of pairings (strings
of sequential flights that satisfy a variety of rules) such that every flight is cov-
ered, the crew assignment problem selects a set of schedules (strings of sequential
pairings that satisfy a variety of rules) such that every pairing is covered. In this
context, a pairing corresponds to specific days in the schedule.

In spite of their similarities, these two problems are addressed separately,
both in industry and in the academic literature. There are two primary reasons for
this. First, in the crew pairing problem we assign complete crews to flights, while
in the crew assignment problem crew members are scheduled individually, with
each pairing being covered by multiple crew members. Second, the crew pairing
problem focuses on minimizing labor costs, while in the crew assignment problem
greater emphasis is placed on satisfying crew requests and seeking a balanced
distribution of work.

In the U.S., the crew assignment problem is solved in two stages. In the first
stage, a set of schedules is constructed such that each pairing is included in exactly
as many schedules as are needed to fully staff the flight. Then, in the second stage,
these schedules are assigned to individual crew members using a bidline approach,
where schedules are allocated to crew members through a system in which crew
members bid on their preferred work schedules. The schedules are then awarded
by the airline based on crew priority, often related to seniority.

In Europe, on the other hand, individualized schedules, called rosters, are often
constructed directly, taking into consideration the particular needs or requests of
each crew member and, in some cases, crew seniority as well.
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14.3 Formulations

The Crew Pairing Problem

Crew pairing models are typically formulated as set partitioning problems, in
which we want to find a minimum cost subset of the feasible pairings such that
every flight segment is included in exactly one chosen pairing.

Let F be the set of flight segments to be covered and let P be the set of all
feasible pairings. Decision variable is equal to 1 if pairing p is included in the
solution, and 0 otherwise. Column p has a 1 in row i of the constraint matrix if
flight i is included in pairing p and a 0 otherwise.

The crew pairing problem is

Note that this formulation requires the explicit enumeration of all pairings. Enu-
merating pairings can be difficult both because of the numerous work rules that
must be checked to ensure legality and, more importantly, because of the huge
number of potential pairings. In fact, for most real instances, explicit enumera-
tion of the constraint matrix is not possible. For example, a domestic problem
on a hub-and-spoke network with several hundred flights typically has billions
of pairings. Thus, heuristic local optimization approaches or column generation
methods (described in Section 14.4) are used to solve all but the smallest of problem
instances.

This basic set partitioning model is used for all three phases of crew pairing
optimization. The models differ in the set of flights F that define the constraints of
the problem. For the daily problem, there is one constraint for each flight that is
repeated four or more times per week. The underlying assumption in solving this
problem is that each pairing in the solution will be flown starting each day of the
week. Recall that this presupposes that pairings are constrained to cover a flight
leg at most once.

In the weekly and dated problems, F contains all of the flights in the flight
schedule. In the weekly problem the flights are associated with a specific day of
the week whereas in the dated problem they are associated with a specific date.
Note that in the dated problems, we can relax the restriction that a pairing does
not cover the same flight more than once since flights are associated with specific
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dates in these problems. For weekly problems, the same relaxation is valid for all
of the pairings with time away from base shorter than a week.

Balancing Constraints Many airlines also add crewbase balancing constraints
to the basic crew pairing model. These constraints ensure that the distribution of
work over the set of crewbases is matched to the crew resources. They require that
the number of hours of work contained in the chosen pairings which originate at
a given crewbase must be between specified lower and upper bounds, which are
a function of the number of crews stationed at that crewbase. Constraints of this
form are known as two-sided knapsack constraints.

Example. We illustrate the crew pairing formulation using an example composed
of the following seven flights.

The last column indicates the flight schedule. For example, flight 1 is operated
every week day, while flight 5 is operated every day except Saturday. We assume,
for simplicity, that all of the airports are in the same time zone.

We first consider the daily problem. Suppose that the valid duty periods are

Assuming that airports A, C, and D are crewbases, we have six pairings, which
can be expressed in terms of the duty periods as
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Pairing covers flight 7 twice and therefore it is not considered in the daily
problem. Notice that an additional pairing could have been defined by the set
of duties However, this pairing covers the same flights as pairing

Given that both pairings originate at the same crewbase, only one of the two
pairings (the less costly) need to appear in the model. In this example, we assume
that has lower cost than

Assuming pairing costs and from (14.1) we
obtain the following formulation.

If we require that at least 3 hours and at most 6 hours of pay be assigned
to crewbases A and D, and at most 5 hours of pay to crewbase C, then the crew
balance constraints are

An optimal solution to this problem uses pairings 3 and 5, for a total cost of 9.
To obtain a solution to the weekly problem, we need, in addition to solving the

daily problem, to solve a weekly exceptions problem to repair the broken pairings.
The weekly exceptions problem consists of the following flights.
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Alternatively, we could have solved the problem as a single weekly problem.
Such a problem would have 43 flight segments and thus 43 cover constraints. Each
pairing would appear multiple times, associated with the appropriate days of the
week. For example, pairing would have five copies, one starting on each day
of the week except Friday and Saturday. The copy that starts on Sunday wraps
around in time since the next duty period is on Monday. In addition, this weekly
problem also includes the pairing

The Crew Assignment Problem

In this section, we explain the rostering problem, which has been the focus of
much of the crew assignment literature.

Separate rostering problems are solved for each crew type, where a crew type
is specified both by the crew member rank (such as Captain, First Officer, Flight
Engineer, etc.) and the fleet family (such as Boeing 767, Airbus 320, etc.) the crew
members are qualified to fly. For a given crew type, the model input includes the
set of pairings that must commence each day, and the number of crew members of
the specified type that must be assigned to each of these pairings. The constraints
of the rostering model require that:

1. Each pairing in the crew pairing solution is contained in the appropriate num-
ber of selected schedules. Note that the rostering model contains one constraint
for each pairing commencing on a given day, for each day in the rostering
period.

2. Each crew member is assigned to exactly one work schedule. If the airline is
not required to use all crew members, a crew member might be assigned to
an empty or null schedule – that is, a schedule containing no work.

Let K be the set of crew members of a given type, let be the set of work
schedules that are feasible for employee and let P be the set of dated
pairings to be covered. [A dated pairing is a pairing together with the starting
date of the pairing.] represents the minimum number of crew members that
must be assigned to pairing and is 1 if pairing is included in
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schedule s and 0 otherwise. Decision variable equals 1 if schedule is
assigned to employee and 0 otherwise. the cost of schedule for
employee represents the schedule cost, which might represent how close
the schedule is to the crew member’s stated preferences, or be set so as to minimize
the number of crew members used. The latter is done by assigning very low costs
to null assignments.

Given this notation, we write the crew rostering formulation, Gamache and
Soumis, 1998, for a given crew member type as

14.4 Solution Algorithms

At their core, the crew pairing and crew assignment models are set partitioning
and set covering models with one constraint for each task to be performed (i.e. a
flight or pairing to be covered) and one variable for each feasible combination of
the tasks.

These problems are difficult for three reasons. First, even determining whether
a combination of tasks is feasible can be difficult, given the wide array of rules
and regulations that must be enforced. Second, these problems often have an
enormous number of variables – often in the hundreds of millions or more. Third,
these variables are all integer, further complicating the solution process.

In this section, we discuss solution approaches to address these difficulties.
For the purpose of illustration, we focus our attention on the crew pairing problem.
However, these ideas are applicable to the crew assignment problem as well.

Historical Solution Approaches

One of the major challenges in solving the crew pairing problem arises from
the shear size of the problem. It is not uncommon for a problem containing
300 flights to have billions of pairings. Consequently, in early work on the
pairing problem, only a subset of the pairings were constructed, using heuris-
tic rules of thumb to guide and limit the construction process. In fact, until
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the 1990’s, local improvement heuristics represented the state-of-the-art in crew
pairing optimization.

A local improvement heuristic for the crew pairing problem starts with a fea-
sible solution to the set partitioning problem. Because most airlines only make
minor changes to their flight schedules from one planning period to the next, feasi-
ble solutions can usually be constructed manually by modifying the solution used
in the previous planning period. Then, to find improved schedules, the heuristic
randomly selects a small number of pairings in the current solution and searches
for a better solution for the flights covered by that subset of the pairings. The search
is usually performed by enumerating all possible pairings for the subset of flights
and solving the small set partitioning IP to optimality using branch-and-bound.
Often, these small set partitioning problems can be solved quickly since the LP
relaxations of set partitioning problems with a small number of rows frequently
have integral or near-integral solutions. This process is repeated until no further
improvements are found or until some preset time limit is reached. This approach
is taken in Anbil et al., 1991 and Gershkoff, 1989.

Pairing Generation

In each iteration of a local search heuristic the current incumbent solution is
improved by considering only a small subset of the flights and the pairings cov-
ering only these flights. Therefore these heuristics lack the ability to consider the
whole flight network in a single step and they need a large number of iterations
before finding a good solution. An additional drawback of the local search heuris-
tics is that they do not provide a lower bound on the best possible solution value.
Thus, it is hard to estimate how far the current solution is from the optimum. To
circumvent these two obstacles more global approaches are needed where at each
iteration pairings covering all of the flights are generated.

Network Structure for Pairing Generation There are two main types of net-
works that have been developed in the literature for generating pairings. The first,
called a flight network, has an arc for each flight in the schedule and arcs repre-
senting possible connections between flights. The second type of network, a duty
period network, has an arc for each possible duty period and arcs representing
possible overnight connections between the duties.

The network used to model international problems is typically duty period,
rather than flight, based. That is, nodes represent the start or end of a duty period
and an arc is included in the network for each possible duty period. Connection
arcs between duties are included if two duties can be flown consecutively by the
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same crew. Domestic operations, on the other hand, typically use flight networks,
because of the large number of feasible duties.

Each crew pairing is represented by a network path, but only the subset of
paths satisfying certain requirements represent pairings. For example, in a flight
network, a sequence of flights may give a path through the network, but that does
not guarantee that theresultingduty periods will containnomore thanthe allowable
hours of flying or that the resulting pairing will contain fewer than the maximum
number of duty periods allowed.

Flight Network A typical flight network, Minoux, 1984, Desrosiers et al., 1991,
has nodes representing the departure and arrival of each flight as well as a source
s and a sink t. There is an arc representing each flight in the schedule. If there is a
sparsity of flights arriving and departing an airport, it is often necessary to include
potential deadhead flights in order to achieve a good, or even feasible, solution. For
daily problems each flight arc is replicated as many times as the maximum number
of calendar days allowed in a pairing but pairings are generated only from flights
operating on the first day. For weekly problems, flight arcs are replicated as many
times as the maximum number of weeks allowed in a pairing. Because pairings are
often not allowed to exceed one week in duration, flight arcs need to be replicated
only once so that pairings that cross over from the end of the week to the beginning
of the next week, i.e. from Sunday to Monday, can be generated. Of course we
could allow pairings to cross over without replicating flights by introducing arcs
from the last day of the week back to the first. However, maintaining an acyclic
network by replicating flights simplifies the shortest path algorithm for finding
attractive pairings.

The source node is connected to the departure node ofeach flight that originates
at a specified crewbase. The arrival node ofevery flight that ends at that crewbase is
connected to the sink. There are also arcs representing legal connections between
flights. A pair of flights will have a connection arc between them if the arrival
airport of the first is the same as the departure airport of the second and the time
between the two flights is either a legal connection within a duty period or a legal
overnight rest. Note, however, that the required duration of an overnight rest might
be a function of the attributes of the duty period that precedes it and plus perhaps
other attributes of the pairing.

Figure 14.2 shows a partial flight network for the following flight schedule.

Flight 1: AIRPORT A – AIRPORT B 08:00 – 09:00
Flight 2: AIRPORT B – AIRPORT C 10:00 –11:00
Flight 3: AIRPORT C – AIRPORT D 13:00 –14:00
Flight 4: AIRPORT D – AIRPORT A 15:00 –16:00
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The network spans a two-day time horizon and contains two copies of each flight.
The solid arcs represent flights. With each flight we have a transition through both
time and space from the departure airport and departure time to the arrival airport
and arrival time. The dotted arcs represent possible connections between flights.
Of course, connections are only allowed between pairs of flights that arrive and
depart from the same airport. Because of minimum and maximum connection time
limits, the set of connection arcs in the network will generally be a proper subset
of the set of all possible connections. Note that in the figure each arrival node has
two connections emanating from it, one to the next departure and the other to the
same departing flight one day later. In order to generate pairings originating at a
crewbase, for example, Airport A, we would add a source node s and sink node t
to this network. We would then connect s to the departure node of every flight arc
originating at Airport A and connect the arrival node of every flight arriving at A
to node t.

It is easy to see that every legal pairing is represented by some s – t path
in this network. However, there are many s – t paths that do not represent legal
pairings. The network structure guarantees that we will not connect two flights
that do not have their respective arrival and departure at the same airport, but it
does not prevent us from violating other rules like the maximum number of hours
of flying allowed in a duty period or the maximum TAFB in a pairing.

Using a duty period network it is possible to build the duty period rules into
the network, resulting in a much larger arc set.

Duty Period Network This network, Lavoie et al., 1988, Anbil et al., 1994,
Vance et al., 1997b, has nodes representing the departure and arrival of each duty
period as well as a source and sink. There are arcs representing each possible
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duty period in the flight schedule as well as arcs representing legal connections
between duties. For daily problems, each duty period is replicated as many times as
the maximum number ofcalendar days allowed in a pairing. Similarly, for weekly
problems, each duty period is replicated as many times as the maximum number
of weeks allowed in a pairing.

A pair of duties will have a connection arc between them if the arrival airport
of the first is the same as the departure airport of the second and the time between
them is a legal overnight rest. Remember that the required duration ofan overnight
rest might be a function of the attributes of the duty period that precedes it and
possibly other attributes of the pairing. With the duty period network, unlike the
flight network, it is possible to build explicitly into the network the requirements
involving the preceding duty period.

For daily problems, the no repeated flight rule can be partially enforced by
allowing connection arcs only between duties that do not share a common flight.
That is, we can ensure that no two consecutive duties share a common flight, but
for nonconsecutive duties, e.g. the first and third duties, we cannot prevent flight
legs from being repeated in this manner.

Klabjan et al., 2001b propose an approach to store the network compactly.
They assume that the duty periods are sorted based on the departure airport and
the duty periods originating at the same airport are sorted in increasing order of
the departure times. For each node representing a duty period arrival they store
two pointers. The first pointer points to the earliest connecting duty period and the
second pointer to the last connecting duty period. Due to the imposed order on
duty periods, all possible connections are obtained by scanning all duty periods
between the two stored duty periods. While compact, this network representation
cannot embed into the network rules that involve two duty periods, for example,
sharing common flights between two duty periods.

Figure 14.3 shows a two-day duty period network for the schedule shown
in Figure 14.2. The solid arcs represent duty periods and the dotted ones repre-
sent connections between duties. The lighter solid arcs are the single-flight duty
periods corresponding to each of the four flights in the schedule while the darker
solid lines correspond to two additional duties, one composed of flights 1 and 2
and the other composed of flights 3 and 4. It is possible to build more duty periods
from this set of four flights, but we have chosen to add only two to maintain the
simplicity of the example. Note that the single flight duty period arcs arrive much
later than the corresponding flight arcs in the flight network. This is because we
include the time of the overnight rest in the duration of the duty arc.

To generate pairings in the flight network starting and ending at a crewbase,
we add a source and sink node. The source node is connected to the departure node
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of each duty period that originates at the specified crewbase. The arrival node of
every duty period that ends at that crewbase is connected to the sink.

Many more rules are satisfied by all paths from source to sink in the duty
period network than the flight network. However, there are still some rules, such
as the 8-in-24 rule and the no repeating flight rule for nonconsecutive duties, that
cannot be enforced through the network structure.

Pairing Enumeration Duty period enumeration can be accomplished by a
depth-first search approach on the flight network. For each flight arc we construct
all duty periods that start with this flight. We attempt to extend the duty period
with a flight if there is a corresponding sit connection arc in the flight network and
all of the other duty feasibility rules are satisfied. In order to enumerate all duty
periods we have to backtrack whenever we have exploited all sit connection arcs
originating at a node corresponding to a flight arrival.

Pairings can be enumerated in a similar way either from the flight network
or from the duty period network. In pairing enumeration the generation is started
from every flight or duty that originates at a crew base. Depth-first search is then
used to extend partial pairings or backtrack.

Partial Generation of Pairings Several methodologies for the crew pairing
problem require a generation of only a subset of pairings since all of them cannot
be handled explicitly. An easy way to achieve this is by generating pairings only
on a subset of flights. This approach is taken in Anbil et al., 1991 and Gershkoff,
1989. It is substantially more difficult to generate a subset of pairings that cover all
of the flights in the schedule. Andersson et al., 1998 give some details on how this
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operation is carried out at Carmen Crew Pairing. To generate a subset of pairings,
for each flight they limit the number of possible connections. A certain number of
short connections is selected and possibly some historically useful connections.
Their idea is to solve a flight matching problem for each airport before pairing enu-
meration. Knowledge of ‘good’ connections is essential. Moreover, an experienced
user might also prune the generation by recognizing useless connections.

Klabjan et al., 2001b propose the generation of random pairings. When extend-
ing a branch during enumeration, they choose connections at random. They use
the connection times as greedy estimates; that is, the probability of selecting a
connection depends on the connection time. Given that short connections are more
likely to yield pairings with low cost, the smaller the connection time, the larger the
probability of selecting the connection. Because in hub-and-spoke flight networks
there are many connections, the connection selection strategy has to be imple-
mented carefully. They propose a similar approach for generating random duties.
Based on this random pairing generation they develop an algorithm for the crew
pairing problem.

Solving the LP Relaxation

Early work on approximately solving the LP relaxation of (14.1) involves consid-
ering a large number of pairings and solving the LP relaxation over these pairings.
Anbil et al., 1992 found an optimal solution to the LP relaxation of (14.1) over
a large subset of the pairings for an 800 flight instance of a U.S. domestic daily
problem. Five and a half million feasible pairings were enumerated and the opti-
mal LP solution was found over this set using a specialized approach referred to
as SPRINT in which several thousand columns are loaded into the LP solver and
the LP is optimized over those columns. Then, most of the nonbasic columns are
discarded, and several thousand more columns are added. This process is contin-
ued until all columns have been considered. At the end, however, it is necessary
to price out all nonbasic columns to prove optimality. Bixby et al., 1992 used
a combination of an interior point method and the simplex method to find the
optimal LP solution to a very large crew pairing model. Hu and Johnson, 1999
propose a primal-dual algorithm for solving the LP relaxation over a given number
of pairings. Their algorithm maintains a dual feasible vector and in every iter-
ation increases the objective value by considering convex combinations of dual
solutions.

As optimization solvers and computers became more sophisticated, there was a
shift to dynamic column generation techniques that implicitly consider all possible
pairings in solving the LP relaxation, Anbil et al., 1994, Desaulniers et al., 1998. In
column generation the set partitioning problem with all possible pairings is referred
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to as the master problem. Thus (14.1) is the master problem. A restricted master
problem is one that contains only a subset of the possible pairing columns. The
column generation algorithm to solve the crew pairing LP involves the following
steps:

Step 1: Solve the Restricted Master Problem – Find the optimal solution to
the current restricted master problem containing only a subset of all columns.
Step 2: Solve the Pricing Subproblem – Generate one or more columns that
may improve the solution. If no columns are found, STOP: the LP relaxation
is solved.
Step 3: Construct a New Restricted Master Problem – Add to the restricted
master problem the columns generated in solving the subproblem and return
to Step 1.

The solution and construction of the restricted master problem (steps 1 and 3)
can be achieved using optimization software such as CPLEX or OSL. The solution
of the pricing subproblem (step 2), however, should be tailored to exploit the
network structure of the problem. The idea is to represent every pairing as a path
in a network so that the huge number of pairings can be represented efficiently.
This network is then used to identify variables that may improve the solution,
without examining all variables. This often can be achieved either by solving multi-
label shortest path problems on the specially structured network, Desrochers and
Soumis, 1989, or by enumeration, Marsten, 1994 and Makri and Klabjan, 2001.

Considerations in Solving the Restricted Master Subproblem Until recently
it was believed that the primal simplex algorithm is the most efficient procedure
for solving the restricted master subproblem. Given that a primal solution is avail-
able from the previous iteration, primal simplex can be warm started. However
primal simplex has two drawbacks. First, the LP relaxations of (14.1) tend to be
extremely degenerate and therefore primal simplex tend to perform many degen-
erate steps, and second, the extreme point optimal dual solutions give misleading
reduced costs and several iterations of column generation are needed. A standard
trick for removing degeneracy is to randomly perturb the right hand sides. After
the perturbed LP is solved, the perturbation is removed and the LP is solved to
optimality. A different approach is presented in du Merle et al., 1999 by adding
surplus and slack variables with penalties. This corresponds to requiring soft lower
and upper bounds on the dual variables and penalizing the dual variables if they lie
outside the bounds. For crew pairing problems this technique substantially reduces
the number of iterations in column generation. Interior point algorithms yield an
interior point dual solution, which is a much better indicator of the “usefulness”
of a column, but lack the benefit of warm starting.
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Barahona and Anbil, 1998 and Barahona and Anbil, 1999 propose a variant
of the subgradient algorithm, which they call the volume algorithm. At every
iteration the dual vector is improved in the direction of the subgradient and a primal
feasible solution is obtained by taking a convex combination of previously obtained
primal feasible vectors. The volume algorithm is fast, does not have large memory
requirements, and it produces excellent dual vectors for use in column generation.
Barahona and Anbil, 1999 claim significant performance improvements over both
interior point and simplex algorithms.

Pricing Pricing is the problem of selecting pairings that are then added to the
restricted master problem in step 2. There are two main questions in pricing: what
is the criteria to select the pairings and how to find pairings that meet the criteria.

Traditionally, pairings are selected by the reduced cost criterion. Recently
alternative strategies have been proposed. Bixby et al., 1992 use the pairing cost
divided by the sum of the dual values of the legs in the pairing as the selection
criteria. They report a significant decrease in the number of iterations. Hu and
Johnson, 1999 present a primal-dual algorithm to select the columns with the
lowest reduced cost based on a dual feasible vector, which is updated in every
iteration. They also report a significantly lower number of iterations. Another,
yet unexplored, strategy in the context of column generation would be to use the
steepest edge pricing rule, Forrest and Goldfarb, 1992.

There are two approaches for finding pairings that best meet the selection
criteria. One is combinatorial by using a shortest path algorithm, and the second
is the brute force approach of enumerating the pairings. In the following sections
we describe both approaches.

Pricing with Shortest Path Algorithms Until recently shortest path approaches
have been designed only for the reduced cost criterion. Many algorithms solve the
pricing problem to find attractive pairings using multilabel or constrained shortest
path methods on specially structured networks, Desrochers and Soumis, 1988. In
either the flight or the duty period network, only basic requirements can be built
into the network structure. Requirements that cannot be built into the network
structure are enforced through the use of labels. For example, we can maintain a
label to track the number ofhours of flying in the current duty period, the number
of duties in the pairing, and the 8-in-24 rule. In addition to the labels that control
the pairing feasibility rules, we need labels to capture the nonlinear components
of the pairing cost structure.

Multilabel shortest path approaches differ from single-label approaches in that
it might be necessary to keep many paths to each intermediate node in the network.
For example, in solving the crew pairing problem, often it is not known which of



538 Handbook of Transportation Science

the cost factors will dominate or which rules might prevent a path from resulting
in a pairing until the complete pairing is specified. Consequently, it is necessary
to keep track of all nondominated paths to each node between s and t. A path is
nondominated if there does not exist another single path which is ‘better’ with
respect to all the costs and rules. By better, we mean that either it is cheaper with
respect to one of the cost criteria, or it is less restricted with respect to one of the
rules. For example, if two paths to the same node have all labels identical except
one has more time-away-from-base than the other, by dominance the one with the
larger time-away-from-base can be eliminated.

Figure 14.4 illustrates a label update in a multilabel shortest path procedure.
Each path carries four labels: the first gives the flying time in the current duty
period, the second the elapsed time in the current duty period, the third the number
of segments in the current duty period, and the final one, the number of duties in
the pairing. At the arrival node of arc A the label values are (3.0, 6.0, 2, 1). For
the arrival node of arc B the labels are (4.0, 5.0, 4, 1). Now consider the departure
node of arc C. Two connection arcs both terminate at that node. The connection
arc from flight A has a duration of two hours and the connection from flight B has
a duration of one hour. Thus the two possible paths will have labels (3.0, 8.0, 2,
1) and (4.0, 7.0, 4, 1) respectively. Neither path can be eliminated by dominance
because one contains less flying time and the other less elapsed time. Thus, we
must now maintain two sets of labels at the departure node of flight C. Note that
in this simple example we have only a small number of labels. As the number of
labels grows, it is generally more difficult to eliminate paths by dominance so that
a large number of potential paths to each node must be stored.
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Lavoie et al., 1988 and others were successful in using the multi-label shortest
path procedure to solve the pricing subproblem over duty-based networks. This
approach works especially well when the number of duty periods is not excessive,
as demonstrated by Anbil et al., 1994, who used a duty-based network to solve
international crew problems containing about two to three times as many duties as
flights. Vance et al., 1997a were also successful in using a duty period network to
solve a relatively small domestic daily problem.

Pricing By Enumeration The approach of generating all the pairings is an
alternative solution to pricing. Note that the pairing feasibility rules and the cost
structure are very complex and therefore a shortest path approach typically requires
many labels, which makes dominated paths a rare occurrence. In addition, it might
not even be possible to capture some of the feasibility rules with labels. If a change
or an update of a feasibility rule is required, major changes in the shortest path
code might be necessary. Therefore crew scheduling software vendors prefer to
use pairing enumeration in pricing because they have many customers, each with
its own feasibility rules.

For medium and large crew pairing instances enumerating all the pairings can
be prohibitive and therefore strategies have to be designed to avoid this. Marsten,
1994 and Anbil et al., 1998 describe crew pairing optimizers that use partial
enumeration in pricing. Both of these approaches use the reduced cost criterion.

Makri and Klabjan, 2001 use the selection criterion, introduced by Bixby
et al., 1992,

where y* is the optimal dual vector to the restricted master subproblem. Pairings
are enumerated, however they prune the enumeration by providing upper bounds
on the score of a pairing p, which is defined as

Finding Good Solutions to the IP

Most state-of-the-art approaches combine column generation for solving the LP
relaxation of the set partitioning problem with a branch-and-bound algorithm to
find good integer solutions. Because of the large number of possible pairings, for
all but the smallest problems, these approaches are heuristic in nature. They fall
into one of three general classes. In the first class are algorithms where column
generation is performed ‘off-line’. That is, a subset of pairings is enumerated up
front and the integer program is solved to optimality over this subset. An example
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of this type of approach can be found in Hoffman and Padberg, 1993. Because
even moderate sized problems can have billions of variables, these approaches
must work on a very small subset.

The second class of approaches uses dynamic column generation to solve the
LP relaxation of the set partitioning problem to optimality or near optimality. Then,
branch-and-bound is applied to obtain the optimal IP solution over the subset of
columns generated to solve the LP relaxation. Among these approaches is work
by Anbil et al., 1994 on the international crew pairing problem and Ryan, 1992 on
the rostering problem. Recently Klabjan et al., 2001b proposed an algorithm that
solves the LP relaxation of (14.1) and then selects several million pairings with
low reduced cost to find an integer solution.

The drawback to these approaches is that there is no guarantee that a good
solution, or even a feasible solution, exists among a subset of columns that give
a good LP solution.

A third class of algorithms allow dynamic column generation throughout
the branch-and-bound tree. We refer to algorithms of this type as branch-and-
price approaches. Like branch-and-bound, a branch-and-price procedure is a smart
enumeration strategy in which an LP relaxation is solved at each node of a branch-
and-bound tree. The difference is that the huge constraint matrix requires the use of
column generation. Branch-and-price methodology has been applied to a number
of problems in transportation, scheduling, and combinatorial optimization. For
a survey, see Barnhart et al., 1998.

Recently, a number of groups have developed crew pairing and rostering algo-
rithms using a branch-and-bound framework with column generation, including
Desaulniers et al., 1998, Desrosiers et al., 1991, Gamache et al., 1999, Gamache
et al., 1998, Gamache and Soumis, 1998, Ryan, 1992, Vance et al., 1997a, and
Anbil et al., 1998.

Marsten, 1994 combines dynamic pairing generation with variable fixing to
obtain good integer solutions. To find integer solutions, the variables associated
with fractional pairings with value close to one are fixed to one sequentially. To
limit column generation, new pairings are generated only when the bound from
the LP relaxation increases above a pre-set target.

Andersson et al., 1998 decouple pairing generation from the optimization
engine. The algorithm generates pairings several times and solves (14.1) over the
generated columns. They use the Lagrangian algorithm presented in Wedelin, 1995
to solve the integer programs.

Branching Rules for the Crew Pairing Problem To be able to generate pairings
at any node in the branch-and-bound tree, a branching rule that is compatible with
the pairing generation procedure is needed. The standard rule of branching on
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variable dichotomy is difficult to implement. Using such a branching decision, we
would either fix a pairing into the solution or forbid the use of a pairing

with each decision. It is easy to fix a pairing j into the solution. There
is no need to generate any more pairings containing any of the flights covered by
pairing j, so these flight arcs may be deleted from the pairing generation network.
However, forbidding the use of a specific pairing is difficult since we must forbid
specific paths from being returned by the pairing generation procedure. This could
require finding the (k + l)st shortest path if k pairings have been forbidden by
branching.

The first branching rule presented here is motivated by a general rule for set
partitioning problems developed by Ryan and Foster, 1981. Their rule is based on
the simple observation that given a fractional solution to the LP relaxation of a set
partitioning problem there must exist two columns whose associated variables are
fractional such that they both contain coefficients of one in a common row r and
there exists another row s where one column has a coefficient of one and the other
has a coefficient of zero. This fact leads to a general branching rule where pairs of
rows r and s are required to be covered by the same column on one branch and by
different columns on the other.

Essentially the same logic can be used for crew pairing optimization, but the
rule is modified to maintain tractability. In general, it is difficult to force two specific
flights to either appear only in pairings that contain them both (the first branch)
or to never appear together in the same pairing (the second branch). However,
it is an easy matter to force two flights to appear consecutively in a pairing or
not. If flights r and s satisfy the conditions of the Ryan and Foster rule and they
appear consecutively in at least one of the fractional pairings that contains them
both, branching can be performed by requiring that they appear consecutively in
the pairing that covers them at one node and by requiring that they cannot appear
consecutively in any pairing in the solution at the other node. This strategy is
sometimes referred to as branching on follow-ons because it places restrictions on
which flights can follow flight r in the solution. The flight pair r, s is often termed
a follow-on.

Klabjan et al., 2001b present a different branching rule called timeline branch-
ing. In timeline branching the decision is based on a flight r and a time t. In one
branch we only allow pairings with time of the connection immediately follow-
ing r less than or equal to t. The other branch considers only pairings with time
greater than t of the connection immediately following r. They show that this is a
valid branching rule if the departure times are all different, which can be achieved
by slightly perturbing them. They also combine follow-on branching or timeline
branching with strong branching. Strong branching is a branching rule that chooses
the branching variable (follow-on in the context of crew pairing) by carrying out
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several dual simplex iterations for each branching candidate to estimate the change
in the lower bound, Bixby et al., 1995, Linderoth and Savelsbergh, 1999.

Master Problem Modification We discuss the modifications to the master prob-
lem for follow-on branching. For timeline branching the modifications are similar.
To implement follow-on branching, both the master problem with its existing set of
columns and the column generation subproblem must be modified. On the branch
where flight r must be followed by flight s in the same pairing, any pairing in
the restricted master problem that contains r and/or s but does not have the two
flights appearing consecutively is eliminated. On the branch where the flights can-
not appear consecutively, any pairing with r and s consecutive is eliminated from
the restricted master problem.

Flight Network Modification If a flight network is used, flight s can be required
to follow flight r by eliminating all the connection arcs out of r except the one to
s. Connections into s from any flight other than r are also deleted. Note that this
second modification is not absolutely necessary since requiring r to be followed
by s is sufficient to ensure that s will not be preceded by a flight other than r
in any pairing in the basis. However, for the subproblem, it is computationally
advantageous to eliminate as many arcs as possible when a branching decision is
fixed. Forbidding the connection is implemented by eliminating the arc connecting
r to s. These network modifications can be accomplished by removing the arcs
or by giving them a very high cost so that they will not be used in attractive
pairings. The second approach is generally preferable since it simplifies many of
the bookkeeping issues associated with storing the network structure and enables
the same network (with modified costs) to be used to generate pairings at any node
in the branch-and-bound tree.

Duty Period Network Modification If a duty period network is used, the imple-
mentation will depend on whether the connection between flights r and s is an
overnight rest. A connection within a duty period (not an overnight) can be required
by eliminating all duties that contain either flight but do not have them appearing
consecutively. The connection can be forbidden by eliminating all duty periods
containing r and s consecutively. A connection that is an overnight rest can be
required by eliminating all duties containing flight r that do not end in r and all
duties containing s that do not begin with s. Then arcs connecting any duty period
ending in r to a duty period that does not begin with s are deleted, as well as arcs
connecting a duty period ending in a flight other than r to a duty period beginning
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with s. To forbid the connection, we delete connection arcs from any duty period
ending in r to a duty period beginning in s.

From the above discussion, we see that the branch on follow-on rule can be
implemented with either type of pairing generation network simply by eliminating
arcs from the network.

Parallel Approaches to Crew Pairing

Crew pairing problems with as few as 300 legs for hub-and-spoke networks or
2000 legs for point-to-point networks can take as much as 10 to 20 hours of
CPU time to solve and do not necessarily produce an optimal solution. This is
particularly problematic when conducting ‘what-if’ analysis. One way to decrease
computation time is to employ parallel algorithms for crew pairing. However, the
crew pairing model (14.1) is an integer program and parallel algorithms for integer
programs typically do not scale well. Thus, designing parallel algorithms for the
crew pairing problem is a challenging problem that has only recently begun to be
studied.

One of the most time intensive parts of most crew pairing algorithms is pairing
generation. The basic idea of a parallel algorithm for pairing generation is to dis-
tribute the legs originating at crewbases (called starting legs) among the processors,
with each processor enumerating all the pairings starting with the assigned starting
legs. Since the computational times to generate all the pairings starting with a given
leg can vary substantially, load balancing algorithms are needed. Goumopoulos
et al., 1997 propose a pulling algorithm based on the master/workers paradigm.
The master distributes the legs one by one to the workers. Whenever a worker
becomes idle, it queries the master for a new starting leg. Klabjan and Schwan,
2000 eliminate the master with the processors exchanging the workload among
themselves.

In other research, Alefragis et al., 1998, Sanders et al., 1999, and Alefragis
et al., 2000 focus on parallelizing the pairing enumeration and the Lagrangian
decomposition algorithm of Andersson et al., 1998. Since the latter algorithm is
inherently sequential, they describe the steps for parallelizing an iteration of the
algorithm, i.e. updating the Lagrangian multipliers and computing the subgradient.
They compute the constraints in parallel and distribute the variables among the
processors. Note that due to the fine grain parallelism, this algorithm does not
perform well on architectures with high latency such as a cluster of workstations.

An entirely different approach is given in Klabjan et al., 2001b. The LP
relaxation is solved in parallel by generating the pairings in parallel and in each
iteration the LP is solved with the parallel primal-dual algorithm, Klabjan et al.,
2000. The IP over a small subset of pairings is solved with a branch-and-bound
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algorithm that executes the strong branching rule in parallel. The pairing enumer-
ation algorithm is scalable but the parallel primal-dual algorithm scales only to
20 processors.

The most promising algorithms for parallelization are branch-and-price since
coarse granularity is easily achievable by evaluating the branch-and-bound nodes
in parallel. Gedron and Crainic, 1994 give a survey on parallel branch-and-bound
algorithms. Klabjan, 2001 describes a parallel branch-and-price algorithm. The
algorithm evaluates the branch-and-bound nodes in parallel and in addition, each
node is evaluated in parallel. An LP relaxation is solved in parallel by embedding
parallel column generation in the parallel primal-dual algorithm.

Open Issues

There are still a number of open questions regarding the best method for crew
pairing optimization. Whether to use dynamic network-based pairing generation
or a fast pricing procedure like SPRINT is not clear. Ifpairings can be enumerated
quickly and accessed off-line in an efficient manner, the SPRINT approach may
be preferable to network-based generation. If network-based generation is used,
the type of network that will perform most efficiently might be highly schedule-
dependent. For point-to-point crew pairing problems, duty period based networks
have proven to be efficient because the number of possible duty periods grows
relatively slowly with the number of possible flights. However, for hub-and-spoke
networks, the results have been mixed. Another open issue is how to manage
effectively the number of pairings in the constraint matrix; that is, how many
pairings to add at each iteration and whether or not to delete pairings with high
reduced cost.

Crew Rostering Solution Approaches

The solution approaches described above apply to both the crew pairing and crew
assignment problems. We conclude by briefly highlighting some of the research
conducted specifically for the crew rostering version of the crew assignment prob-
lem. We also introduce an alternative approach to generating schedules that has
been used in the crew rostering literature but could also be applied to crew pairing
generation.

Computational Results Ryan, 1992 solves crew rostering problems with 55
crew members and 120 pairings. This results in problems containing as many as
300,000 variables, with solution times ranging from less than 10 minutes to 2–3
hours.
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Gamache et al., 1998 construct individualized monthly work schedules for
pilots and officers. Schedules are selected for assignment to crew members based
on considerations of individual preferences and seniority restrictions. They solve
24 instances of problems at Air Canada, containing up to 108 pilots and 568
pairings. Using cutting planes, solution times range from 1 to 8 hours.

A Constraint Programming Approach In some cases, there exist schedule
rules and regulations that cannot easily be captured in a constrained shortest path
approach. Moreover, pricing by enumeration may be intractable. Recently con-
straint programming (CP) approaches to rostering have been proposed. Thorough
discussions of CP can be found in Lustig and Puget, 2001 and Brailsford et al.,
1999.

An example of how constraint programming has been used in crew assignment
can be found in the work of Fahle et al., 1999 and Junker et al., 1999. They use CP to
solve the pricing problem for generating columns in the crew assignment problem
of a major European airline. For each crew, they define a variable that represents
the set of duties to be assigned to that crew. The domain contains all feasible subsets
of the set of duties to be covered. They are able to specify constraints that capture
all of the crew rules and regulations. In addition, they incorporate a shortest path
component that leverages dual information from the restricted master. This allows
them to reduce the search space significantly. They are able to solve real-world
problems successfully, incorporating constraints that could not be captured in a
constrained shortest path approach.

14.5 Integrating Crew Pairing with Maintenance Routing and Schedule
Design

In airline planning, the schedule design, fleet assignment and maintenance routing
problems are all solved before the crew scheduling problem. Their solutions then
impact the input to crew pairing. For example, by assigning aircraft types to flights
in the fleet assignment problem, we partition the flights into smaller sets and solve a
separate crew scheduling problem for each of these sets, since individual crews can
only fly certain aircraft types. Thus, solving these planning problems sequentially
can lead to sub-optimalities, because decisions are made in the earlier problems
without taking into account their impact on crew scheduling. A fully integrated
approach to the airline planning process is quite difficult, due to its enormous
size and complexity. Nonetheless, benefits can be gained by partially integrating
elements of the planning process. We provide examples of this in the sections that
follow.



546 Handbook of Transportation Science

Crew Pairing and Maintenance Routing

Although crew scheduling assigns crews and maintenance routing assigns aircraft,
there is a connection between these two problems. Specifically, this connection
deals with the amount of time required between two flights for a connection to
be crew-feasible. Recall that there is a minimum idle time required between two
consecutive flights in a duty period. This time is needed, in part, so that the crew can
move through the terminal from the arrival gate of the first flight to the departure
gate of the second flight. However, if both of these flights have been assigned to
the same aircraft in the maintenance routing problem, then the crew will remain
with the aircraft and therefore this time restriction can be relaxed. Such a crew
connection, which is feasible only if both flights share a common aircraft in the
maintenance routing solution, is known as a forced turn.

When constructing a network for the crew pairing problem, we begin with the
set of connections that have adequate sit time and then add to this set those forced
turns implied by the maintenance routing solution. These additional connections
permit new pairing opportunities and thus can improve the quality of the crew pair-
ing solution. However, because the forced turns are determined in the maintenance
routing problem without taking into account the crew pairing objective, solving
these two problems sequentially can lead to sub-optimal results.

This potential for sub-optimality is demonstrated in the following example,
taken from Cohn and Barnhart, 2002. Consider a network of eight flights, denoted
A through H. As shown in Figure 14.5, this network has three potential forced turns,
two different feasible solutions to the maintenance routing problem (denoted by
MR), and four potential pairings. For each of the maintenance solutions, only a
subset of the pairings are feasible, depending on the forced turns implied by the
maintenance solution. Thus, given maintenance solution 1, the cost of an optimal
crew pairing solution is $7, while maintenance solution 2 yields a crew pairing
problem whose optimal cost is $5.
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This small example highlights how a sequential approach to the maintenance
routing and crew pairing problems can lead to sub-optimal results. Three different
approaches have appeared in the literature to address this.

In the first approach, Klabjan et al., 2002 solve the crew pairing problem before
they solve the maintenance routing problem. They include all potential forced
turns in the crew pairing network. Those forced turns contained in the crew pairing
solution then become required aircraft turns when solving the maintenance routing
problem. Although this approach can potentially lead to maintenance infeasibility,
in practice they found feasible solutions for many hub-and-spoke flight networks.
Additionally, note that whenever a feasible crew pairing solution is found to be
maintenance feasible, this solution is in fact optimal for the integrated problems,
when the maintenance routing problem is a feasibility rather than an optimization
problem. Furthermore, their approach requires no more computational effort than
the original sequential approach.

In the second approach, Cordeau et al., 2001 present an integrated model
that guarantees maintenance feasibility. They maintain the original string-based
maintenance routing and crew pairing formulations. Like Klabjan et al., 2002, they
include all potential forced turns in the crew pairing network. They then link the
two models by adding one constraint for each potential forced turn. The constraint
for forced turn t states that the number of chosen crew pairings containing forced
turn t cannot exceed the number of chosen maintenance routes that contain it. This
results in a large-scale integer program which they solve by branch-and-bound,
where the LP relaxations are solved by using a Benders decomposition approach
and column generation.

A third approach is found in Cohn and Barnhart, 2002. Their approach is simi-
lar to that of Cordeau et al., 2001, but in place of maintenance string variables, they
use variables representing complete solutions to the maintenance routing problem.
This dramatically reduces the number of constraints, because all of the original
maintenance routing constraints are replaced by a single convexity constraint. This
reduction in constraints comes at the cost of a potential explosion in the number
of variables. However, they prove that only a small subset of the feasible mainte-
nance solutions need to be considered to ensure an optimal result, thereby greatly
reducing the size of the problem. Furthermore, they prove that the integrality of the
maintenance solution variables can be relaxed. Thus, their integrated maintenance
routing and crew pairing model has no more binary decision variables than the
basic crew pairing model alone.

Crew Pairing and Schedule Planning

Klabjan et al., 2002 study the impact of flight departure times on the crew pairing
problem. If we are allowed to change the flight departure times, then some paths
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in the duty period network that do not satisfy all of the pairing feasibility rules
might correspond to a pairing in a retimed flight schedule. Consider two flights
i and j depicted in Figure 14.6. In the original schedule, leg j cannot follow leg
i in a pairing because it violates the minimum sit connection time. However if
leg j departs 5 minutes later, then the connection becomes feasible. In a retimed
flight schedule, additional paths in the duty period network become pairings not
only due to the minimum sit and rest connection times, but also with respect to the
maximum duty elapsed time and the 8-in-24 rule.

The model in Klabjan et al., 2002 is identical to (14.1) except that more
columns are considered. They develop an algorithm that simultaneously generates
paths in the duty period network and new departure times such that the generated
paths correspond to pairings in the retimed flight schedule. Each path defines its
own flight departure times, but given that in (14.1) every flight segment is covered
by exactly one pairing, the solution implies a single departure time for each leg.

They report computational experiments on large fleets of a U.S. domestic
carrier. A time window w of either 5 or 10 minutes is imposed, i.e. every departure
time can be changed by at most ±w. New flight departure times should not diverge
by much from the original times since otherwise it would affect the fleeting cost and
would substantially disrupt passenger connections. On average, the improvement
of pay-and-credit for w = 5 minutes is 25% and for w = 10, pay-and-credit
decreases by 35%. These data clearly show that the crew cost can be substantially
reduced by slightly retiming departures.

Crew Pairing with Regularity

The crew pairing model (14.1) for the weekly problem minimizes the weekly crew
cost. However it is unlikely that the resulting pairings could be repeated many
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times in the weekly horizon unless such repetition constraints were specifically
imposed. Thus the solution would lack regularity. Regularity is important with
respect to crew (and aircraft) schedules, since regular solutions are much easier to
implement and manage, and, if possible, crews prefer to repeat itineraries.

In Section 14.2 we described the daily/weekly exceptions methodology for
solving the weekly problem. This methodology, first, does not necessarily find the
minimum cost crew schedule even if the daily and the weekly exception problems
are solved to optimality and second it does not directly take into account regularity.
Klabjan et al., 2001a present a new model, called the weekly crew pairing model
with regularity, that captures both the crew cost and regularity in a weekly schedule.
They solve the model in several stages, where in the first stage they obtain pairings
with the highest regularity, i.e. those that can repeat seven days a week, in the
second stage the algorithm yields pairings that can be repeated six times in a week,
and so forth.

By using approximations and integer programming as a heuristic, they obtain
solutions that improve on current practice with respect to both regularity and cost.
They report computational results on small and large fleets of a major U.S. domestic
carrier. The improvements on crew cost range from 10% to 40% and their solutions
have 40-60% higher regularity.

14.6 The Crew Recovery Problem

An airline schedule rarely operates as planned. Maintenance problems, weather
conditions, and other unplanned events cause frequent disruptions – on a typical
day, several flights will be delayed or canceled. Each disruption can propagate
through the system, because it impacts resources such as crews and aircraft that
are also needed for subsequent flights. The crew recovery problem considers how
to modify a crew schedule that has been affected by disruptions.

The recovery problem differs from the planning problem in several ways. One
of the most fundamental differences is in the time horizon for solving the problem.
Unlike the planning problem, which is solved as part of a multi-week process, the
recovery problem must be solved very quickly – often, in minutes. Thus, the goal
of the crew recovery problem is to find a good solution quickly.

The second difference between recovery and planning is that the crew recovery
problem must take into account the recent flying history of the active crews. Each
crew’s options are limited as a function of the work that has already been performed
during the current pairing.

Third, reserve crews can be considered when solving the crew recovery prob-
lem. These crews have a minimum guaranteed pay, measured in flying hours, and
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cannot fly more than a designated monthly maximum. This pay structure adds a
further level of complexity to the problem.

Another difference is in the constraints that determine what constitutes a feasi-
ble pairing. Most airlines use tighter restrictions in their scheduling problems than
are legally mandated by, for example, tightening the minimum rest connection
time and the maximum duty elapsed time. This is precisely so that they will have
some added flexibility in recovering from disruptions. In the recovery problem, on
the other hand, rules on flying hours are often pushed to their legal limits.

Perhaps the most significant difference between crew pairing and crew recov-
ery is in how the objective function is defined. When a schedule is modified to
address disruptions, active crews are usually paid at least the cost of their originally
scheduled pairings; if a crew is assigned to a modified pairing that has higher cost,
they receive the higher amount. It is also desirable to keep down the additional
costs incurred by reserve crews. Furthermore, there are other objectives that are
important as well, such as returning to the original plan quickly and minimizing
passenger disruptions. In addition, crew decisions are not made in isolation. They
must be made in conjunction with decisions about delaying or canceling future
flights, swapping aircraft, and further issues related to the other resources that
have been affected by the disruptions. The recovery problem also faces a host of
safety and labor constraints that restrict what changes can be made. Therefore,
even deciding what objective to use when recovering from disruption can be a
difficult question.

Thus, while crew recovery has much in common with crew pairing, it also
poses its own unique set of challenges. Although this problem has been addressed
in limited fashion in the literature, much work remains to be done. In the following
section, we present one approach to modeling the crew recovery problem, which
leverages its similarities with crew pairing. In the subsequent section, we highlight
some of the research on solving the crew recovery problem.

A Crew Recovery Model

We present a crew recovery model from Lettovský, 1997 and Lettovský et al., 2000
that is similar to the crew pairing model. However, in this recovery model, each
pairing is specific to a particular crew. For a given crew, all potential pairings begin
at the next time and location that the crew becomes available, i.e. at the end of their
current flight or rest period. Each potential pairing for a crew must not only take
into account work already completed in the current pairing when ensuring that all
rules and regulations are satisfied, but must also ensure the legality of the crew’s
remaining schedule. That is, there must be enough time at the completion of this
modified pairing for a sufficient rest period before the next scheduled pairing is to
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begin, and restrictions that span multiple pairings in a schedule (such as monthly
flying time limits) must not be violated.

The objective of this model is to minimize the cost of adjusted pairings, reserve
crews, and deadheaded crews, as well as the cost of canceling flights. The cance-
lation cost is the cost of re-assigning passengers to other flights as well as hotel
and meal costs for affected passengers and some estimate of the loss of good will.

We define the following parameters:

equipment type experiencing disruption (this may represent
several aircraft types if they are crew compatible),
set of flight segments to be covered by crews of equipment
type e,
set of crews available for equipment type e (including
reserve crews),
set of pairings that can be flown by crew
cost of assigning pairing p,
cost of using flight segment l for deadheading,
cost estimate of returning the crew to its domicile,
cost estimate of canceling flight segment l,
1 if flight segment l is included in pairing p, 0 otherwise.

The variables are:

The airline crew recovery problem for a given equipment type e is

e
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The first set of constraints guarantees that all flight segments are either can-
celed or covered at least once. The slack variable on these constraints, has an
upper bound defined as the maximum number of crews that can deadhead
on flight segment l. The second set of constraints ensures that crew k is either
assigned to a pairing or is deadheaded to its crewbase. The third set of constraints
forces to be zero if flight l is canceled. Note that the integrality of the variables

and are implied and hence need not be imposed.
When solving the crew recovery problem, it is important to find a good solu-

tion quickly. Furthermore, it makes sense to take advantage of the fact that the
original scheduled pairings were optimal in the undisrupted problem environment.
Therefore, when solving the crew recovery problem, we do not want to re-assign
all crews. Instead, we want to consider only those crews whose pairings were dis-
rupted, as well as a small number of additional crews deemed likely to introduce
good “swapping” opportunities. Limiting the scope of the problem in this way can
significantly reduce the size of the model and thus improve its tractability. Heuris-
tics for selecting the set of crews to be considered can be found in Lettovský et al.,
2000 and Lettovský, 1997.

Crew Recovery Solution Approaches

Very little has been published in the open literature on solving the crew recov-
ery problem. Teodorovic and Stojkovic, 1990 developed a sequential approach
based on a dynamic programming algorithm, using the first-in-first-out principle
to minimize the crews’ ground time. Wei and Yu, 1997 presented a heuristic-
based framework for real-time crew re-scheduling. Song et al., 1998 presented a
multicommodity integer network flow model and a heuristic search algorithm to
solve it. Stojkovic et al., 1998 presented a column generation approach similar to
that used for crew pairing problems. Solutions approaches to the crew recovery
model presented in the previous section can be found in Lettovský et al., 2000 and
Lettovský, 1997.
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Models such as (14.3) can be solved to obtain optimal solutions for small
disruptions and good feasible solutions for medium sized disruptions. However,
for major disruptions such as those caused by snowstorms, and particularly those
disruptions that affect multiple airports, further refinement and perhaps even a new
approach altogether is needed.

Crew Rostering Recovery

We conclude this section by noting that one potential for inefficiency in the crew
recovery approach discussed above is that it limits changes to the pairings currently
underway. By requiring the modified pairings to be feasible in conjunction with the
remainder of the crew’s monthly schedule, opportunities may be missed. On the
other hand, considering the entire schedule, rather than just the current pairings,
yields an enormous problem. Stojkovic et al., 1998 present an initial approach to
this challenging task.

14.7 Robustness in Crew Pairing

The crew pairing problem is solved well before the flight schedule becomes oper-
ational. In this planning stage, all flights are assumed to have departure times that
are both fixed and known. This assumption is often proven wrong when the crew
schedule is actually implemented. For example, the U.S. Department of Trans-
portation reported that the total number of delay minutes in the system (based on
flight delays of 15 minutes or more) had increased by 11% from 1995 to 1999,
Bond, 2000. In the summer of 2000, airline delays received national attention in
the U.S., when the airline with the best performance record had 25% of its flights
delayed by 15 minutes or more.

When crew members’ schedules are disrupted in operations, they are nonethe-
less guaranteed to be paid for their original scheduled workload. In addition, if
delays increase their flying or sit time, they may be entitled to added compensa-
tion. Furthermore, disruptions may require the use of reserve crews to get back
on schedule. Clearly, then, the cost associated with implementing a crew pair-
ing solution may vary significantly from the planned cost. Typically, the planned
ratio of pay-and-credit to flying time is below 1% for large fleets, but increases
on average to 4% when the schedule is implemented. For smaller fleets, the ratio
tends to increase from about 3% to 8%. Solutions of large fleets are much more
sensitive to disruptions since they have many tight connections. A disrupted short
connection can have a significant impact on the entire flight and crew schedule due
to the snowball effects. Such increases in planned cost can translate to millions
of dollars in unplanned crew costs. There are two ways that carriers can try to
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minimize these unplanned costs. The first, discussed in Section 6, is to improve
the quality of their recovery procedures. The second is to focus in the planning
stage on developing more robust schedules – that is, to minimize the expected
operational cost of a schedule rather than its planned cost.

Evaluating Crew Schedules

Robustness is not well-defined, in fact, comparing two different schedules to deter-
mine which one is more robust can be quite difficult. In general, comparisons are
done by using a simulation to approximate the operating cost of a given sched-
ule for a particular time period (typically, one month). Clearly, such a simulation
should reflect the airline operations as closely as possible.

Simulations of partial airline operations, for example, aircraft ground
movement and passenger flow, have been developed, see Yu, 1998. Only
recently have simulations of integrated airline operations been designed.
Kornecki and Vargas, 2000, for example, developed a simulation designed for
employee training. Rosenberger et al., 2000 created SimAir, a simulation that
takes into account most airline operations and has built-in recovery modules. It
keeps track of several types of resources, including aircraft, crews, and passengers,
and produces a number of statistics such as crew costs and block times. Finally,
Schaefer et al., 2000 use a simulation-based approach to design more robust crew
schedules.

Models for Robust Airline Crew Pairing

Here we present three approaches for finding robust crew pairings.

Expected Pairing Cost Approach Schaefer et al., 2000 solve a problem very
similar to the crew pairing problem (14.1). However, they replace the objective
coefficients in this model with which they define to be the expected cost of
pairing p. They then solve this model with the same methodologies as presented
in Section 14.4.

Of course, the difficult aspect of this problem is in computing the cost coef-
ficients given that the expected cost of a pairing depends in part on the other
pairings in the crew schedule. For every pairing they compute the expected cost
by running Simair under the assumption that the expected cost is independent of
the other pairings in a crew schedule. They show that this assumption holds under
the push-back recovery procedure. Push-back recovery delays the flights until all
of the resources are available.

Once they have computed cost coefficients they solve this modified version
of the crew pairing problem and then use SimAir to evaluate the quality of their
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solutions. They report some interesting findings. For example, they observe that
it may be preferable to have some pairings in which costs are determined by
TAFB or the minimum guarantee pay, rather than flying cost. In addition, they
find crew schedules to be more robust when the pay-and-credit of the pairings has
low variance and there are not many pairings with zero pay-and-credit. This is
intuitive because zero pay-and-credit pairings have minimal connection time and
are therefore vulnerable to disruptions.

Schaefer et al., 2000 compared this expected cost approach with a penalty
approach that includes penalties in the cost function for such factors as tight connec-
tions and elapsed times, and tight 8-in-24 constraints. Better results were obtained
by the expected cost model.

Maximizing the Connection Time Ehrgott and Ryan, 2001 and Yen and Birge,
2000 measure robustness as the excess sit connection time above the minimum
sit connection time. If k is a sit connection and t is the connection time, they
define a penalty by where is the penalty factor and minSit is
the minimum required sit connection time. They define the robustness cost of a
pairing as the sum of the penalties over all sit connections in the pairing, excluding
the sit connections corresponding to the aircraft turns. Their models find a crew
schedule that minimizes the robustness cost.

Yen and Birge, 2000 solve the resulting model as a stochastic integer program-
ming model by assuming that t is a random variable. Given a crew schedule, the
recourse problem is a large-scale LP. They develop a heuristic based on follow-on
branching for solving the model. They sample 100 disruption scenarios and they
show the computational results on a problem with 3000 pairings and 50 legs. Their
crew schedules tend to have more sit connections corresponding to the aircraft
turns and longer connection times. Ehrgott and Ryan, 2001 assume that the con-
nection time t is deterministic and it is taken with respect to the planned flight
schedule. They give computational result on fleets from Air New Zealand.

The Crew Pairing Model with Move-up Crews When a crew is delayed or has
reached a limit on its flying time for a duty or pairing, it would be highly desirable
to have an alternative crew available with which it could swap one or more flights.
The crew pairing model with move-up crews, presented in Klabjan et al., 2001c
and Chebalov and Klabjan, 2002, relies on a recovery procedure that uses crew
swaps. In addition to the traditional objective of minimizing pairing costs, they
introduce a new objective of maximizing the number of opportunities for crew
swapping. Thus, their model is a bicriteria optimization model.

A move-up crew for a given flight i is a crew that is on the ground for at
least the minimum required connection time, originates at the same crew base as
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the crew covering i, and the two involved crews finish their respective pairings
on the same day. If two crews can be swapped in operations, then one crew is a
move-up crew. The crew pairing model with move-up crews maximizes the overall
number of move-up crews and is solved by a Lagrangian decomposition approach.
Computational results show that there are crew schedules with only a slightly
higher crew cost but 5 to 10 times more move-up crews than the crew schedules
obtained by solving (14.1). Moreover this approach, which attempts to provide
protection against uncertainty rather than modeling uncertainty, can be combined
with stochastic models that minimize expected cost and/or incorporate penalties.

14.8 Future Directions

Airline crew scheduling has been one of the great successes of operations research,
with decision support software installed at all major airlines. Whereas a decade
ago solutions to daily problems were typically 10–15% above the lower bound of
flying cost, solutions are now typically within at most 1–2% of the lower bound.
This improvement in solution quality translates to savings on the order of $50
million annually for a large airline.

Nonetheless, airline crew scheduling is still an active research area with many
unsolved problems. We have discussed some recent work on recovery and robust
planning in Sections 14.6 and 14.7, but this is clearly just the ‘tip of the iceberg’.

Benefits can be gained by developing more efficient schedules for cabin
crews. This problem has received less attention than cockpit crew scheduling,
both because cabin crews are significantly less costly and also because it is a much
larger problem.

Finally, and perhaps most challenging, is the integration of the crew pairing,
fleet assignment, and schedule planning problems, especially since these problems
are difficult to solve individually.

References

Alefragis, P., Goumopoulos, C., Housos, E., Sanders, P., Takkula, T., and Wedelin, D. (1998). Parallel
crew scheduling in PAROS. In Proceedings of 1998 Europar/8, pages 1104–1113.

Alefragis, P., Sanders, P., Takkula, T., and Wedelin, D. (2000). Parallel integer optimization for crew
scheduling. Annals of Operations Research, 99:141–166.

Anbil, R., Barnhart, C., Johnson, E., and Hatay, L. (1994). A column generation technique for the
long-haul crew assignment problem. In Ciriani, T. and Leachman, R., editors, Optimization in
Industry II, pages 7–24. John Wiley & Sons.

Andersson, E., Housos, E., Kohl, N., and Wedelin, D. (1998). Crew pairing optimization. In Yu, G.,
editor, Operations Research in the Airline Industry, pages 228–258. Kluwer Academic Publishers.



Airline Crew Scheduling 557

Anbil, R., Forrest, J., and Pulleyblank, W. (1998). Column generation and the airline crew pairing

problem. In Extra Volume Proceedings ICM. Available from http://www.math.uiuc.edu/

documenta/xvol-icm/17/17.html.

Anbil, R., Gelman, E., Patty, B., and Tanga, R. (1991). Recent advances in crew pairing optimization

at American Airlines. Interfaces, 21:62–74.

Anbil, R., Johnson, E., and Tanga, R. (1992). A global approach to crew pairing optimization. IBM

Systems Journal, 31:71–78.

Barahona, F. and Anbil, R. (1998). The volume algorithm: Producing primal solutions with a

subgradient method. Technical Report RC�21103, T. J. Watson Research Center.

Barahona, F. and Anbil, R. (1999). On some difficult linear programs coming from set partitioning.

Technical Report RC�21410, T. J. Watson Research Center.

Barnhart, C., Hatay, L., and Johnson, E. (1995). Deadhead selection for the long�haul crew pairing

problem. Operations Research, 43:491–499.

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P. (1998). Branch�and�price:

Column generation for solving huge integer programs. Operations Research, 46:316–329.

Bixby, R., Cook, W., Cox, A., and Lee, E. (1995). Parallel mixed integer programming. Technical

Report CRPC�TR95554, Rice University. Available from ftp://softlib.rice.edu/pub/
CRPC-TRs/reports.

Bixby, R., Gregory, J., Lustig, I., Marsten, R., and Shanno, D. (1992). Very large�scale linear pro�

gramming: A case study in combining interior point and simplex methods. Operations Research,

40:885–897.

Bond, D. (2000). Commercial aviation on the ropes. Aviation Week & Space Technology. September

issue.

Brailsford, S., Potts, C., and Smith, B. (1999). Constraint satisfaction problems: Algorithms and

applications. European Journal of Operational Research, 119:557–581.

Caprara, A., Toth, P., Vigo, D., and Fischetti, M. (1998). Modeling and solving the crew rostering

problem. Operations Research, 46:820–830.

Chebalov, S. and Klabjan, D. (2002). Robust airline crew scheduling: Move�up crews. In Proceedings

of the 2002 NSF Design, Service, and Manufacturing Grantees Research Conference.

Conn, A. and Barnhart, C. (2002). Improving crew scheduling by incorporating key maintenance rout�

ing decisions. Technical report, Massachusetts Institute of Technology. To appear in Operations

Research.

Cordeau, J., Stojković, G., Soumis, F., and Desrosiers, J. (2001). Benders decomposition for

simultaneous aircraft routing and crew scheduling. Transportation Science, 35:375–388.

Day, P. and Ryan, D. (1997). Flight attendant rostering for short�haul airline operations. Operations

Research, 45:649–661.

Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M., and Soumis, F. (1998). A unified framework

for deterministic time constrained vehicle routing and crew scheduling problems. In Crainic,

T. and Laporte, G., editors, Fleet Management and Logistics, pages 57–93. Kluwer Publishing

Company.

Desrochers, M. and Soumis, F. (1988). A generalized permanent labeling algorithm for the shortest

path problem with time windows. INFOR, 26:191–212.

Desrochers, M. and Soumis, F. (1989). A column generation approach to the urban transit crew

scheduling problem. Transportation Science, 23:1–13.

Desrosiers, J., Dumas, Y., Desrochers, M., Soumis, F., Sanso, B., and Trudeau, P. (1991). A

breakthrough in airline crew scheduling. Technical Report G�91�11, Cahiers du GERAD.



558 Handbook of Transportation Science

du Merle, O., Villeneuve, D., Desrosiers, J., and Hanses, P. (1999). Stabilized column generation.
Discrete Mathematics, 194:229–237.

Ehrgott, M. and Ryan, D. (2001). Bicriteria robustness versus cost optimization in tour of duty planning
at Air New Zealand. Technical report, Univeristy of Auckland.

Fahle, T., Junker, V., Karish, S., Kohl, N., and Vaaben, B. (1999). Constraint programming based
column generation for crew assignment. Journal of Heuristics. To appear.

Forrest, J. and Goldfarb, D. (1992). Steepest-edge simplex algorithms for linear programming.
Mathematical Programming, 57:341–374.

Gamache, M. and Soumis, F. (1998). A method for optimally solving the rostering problem. In Yu, G.,
editor, Operations Research in the Airline Industry, pages 124–157. Kluwer Academic Publishers.

Gamache, M., Soumis, F., Marquis, G., and Desrosiers, J. (1999). A column generation approach for
large scale aircrew rostering problems. Operations Research, 47:247–262.

Gamache, M., Soumis, F., Villeneuve, D., Desrosiers, J., and Gelinas, E. (1998). The preferential
bidding system at Air Canada. Transportation Science, 32:246–255.

Gedron, B. and Crainic, T. (1994). Parallel branch-and-bound algorithms: Survey and synthesis.
Operations Research, 42:1042–1066.

Gershkoff, I. (1989). Optimizing flight crew schedules. Interfaces, 19:29–43.
Goumopoulos, C., Housos, E., and Liljenzin, O. (1997). Parallel crew scheduling on workstation

networks using PVM. In Proceedings of 1997 EuroPVM-MPI, volume 1332.
Hoffman, K. and Padberg, M. (1993). Solving airline crew scheduling problems by branch-and-cut.

Management Science, 39:657–682.
Hu, J. and Johnson, E. (1999). Computational results with a primal-dual subproblem simplex method.

Operations Research Letters, 25:149–158.
Junker, U., Karisch, S., Kohl, N., Vaaben, B., Fahle, T., and Sellmann, M. (1999). A framework for

constraint programming based column generation. In Proceedings of CP 1999, pages 261–274.
Klabjan, D. (2001). Next generation airline crew scheduling. Technical report, University of Illinois

at Urbana-Champaign. Available from http://www.staff.uiuc.edu/~klabjan/reports/
ngCS.pdf.

Klabjan, D., Johnson, E., and Nemhauser, G. (2000). A parallel primal-dual algorithm. Operations
Research Letters, 27:47–55.

Klabjan, D., Johnson, E., Nemhauser, G., Gelman, E., and Ramaswamy, S. (2002). Airline crew
scheduling with time windows and plane count constraints. Transportation Science, 36:337–348.

Klabjan, D., Johnson, E., Nemhauser, G., Gelman, E., and Ramaswamy, S. (2001a). Airline crew
scheduling with regularity. Transportation Science, 35:359–374.

Klabjan, D., Johnson, E., Nemhauser, G., Gelman, E., and Ramaswamy, S. (2001b). Solving large air-
line crew scheduling problems: Random pairing generation and strong branching. Computational
Optimization and Applications, 20:73–91.

Klabjan, D., Schaefer, A., Johnson, E., Kleywegt, A., and Nemhauser, G. (2001c). Robust airline crew
scheduling. In Proceedings of TRISTAN IV, pages 275–280.

Klabjan, D. and Schwan, K. (2000). Airline crew pairing generation in parallel. In Proceedings of the
Tenth SIAM Conference on Parallel Processing for Scientific Computing.

Kornecki, A. and Vargas, D. (2000). Simulation-based training for airline controller operations.
In Proceedings of Society of Computer Simulation 2000 Advanced Simulation Technologies
Conference, pages 162–171.

Kwok, L. and Wu, L. (1996). Development of an expert system in cabin crew pattern generation.
International Journal of Expert Systems, 9:445–464.



Airline Crew Scheduling 559

Lavoie, S., Minoux, M., and Odier, E. (1988). A new approach for crew pairing problems by column
generation with an application to air transportation. European Journal of Operational Research,
35:45–58.

Lettovský, L. (1997). Airline Operations Recovery: An Optimization Approach. PhD thesis, Georgia
Institute of Technology.

Lettovský, L., Johnson, E., and Nemhauser, G. (2000), Airline crew recovery. Transportation Science,
34:337–348.

Linderoth, J. and Savelsbergh, M. (1999). A computational study of search strategies for mixed integer
programming. INFORMS Journal on Computing, 11:173–187.

Lustig, I. and Puget, J. (2001). Program program: constraint programming and its relationship to
mathematical programming. Interfaces. To appear.

Makri, A. and Klabjan, D. (2001). Efficient column generation techniques for airline crew scheduling.
Technical report, University of Illinois at Urbana-Champaign. Available from http://www.
staff.uiuc.edu/~klabjan/professional.html.

Marsten, R. (1994). Crew planning at Delta Airlines. XV Mathematical Programming Symposium.
Presentation.

Minoux, M. (1984). Column generation techniques in combinatorial optimization: a new application
to crew pairing problems. In Proceedings XXIVth AGIFORS Symposium.

Rosenberger, J., Schaefer, A., Goldsman, D., Johnson, E., Kleywegt, A., and Nemhauser, G. (2000).
A stochastic model of airline operations. Transportation Science. To appear. Available from
http://tli.isye.gatech.edu.

Ryan, D. (1992). The solution of massive generalized set partitioning problems in air crew rostering.
Journal of the Operational Research Society, 43:459–467.

Ryan, D. and Foster, B. (1981). An integer programming approach to scheduling. In Wren, A., edi-
tor, Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling,
pages 269–280. Elsevier Science B.V.

Sanders, P., Takkula, T., and Wedelin, D. (1999). High performance integer optimization for crew
scheduling. In Proceedings of the HPCS '99. Available from http://www.cs.Chalmers.se/
~tuomo.

Schaefer, A., Johnson, E., Kleywegt, A., and Nemhauser, G. (2000). Airline crew scheduling under
uncertainty. Technical Report TLI-01-01, Georgia Institute of Technology.

Song, M., Wei, G., and Yu, G. (1998). A decision support framework for crew management dur-
ing airline irregular operations. In Yu, G., editor, Operations Research in the Airline Industry,
pages 260–286. Kluwer Academic Publishers.

Stojkovic, G., Soumis, M., and Desrosiers, J. (1998). The operational airline crew scheduling problem.
Transportation Science, 32:232–245.

Teodorovic, D. and Stojkovic, G. (1990). Model for operational daily airline scheduling. Transportation
Planning Technology, 14:273–285.

Vance, P., Atamtürk, A., Barnhart, C., Gelman, E., Johnson, E., Krishna, A., Mahidhara, D.,
Nemhauser, G., and Rebello, R. (1997a). A heuristic branch-and-price approach for the airline
crew pairing problem. Technical Report LEC-97-06, Georgia Institute of Technology.

Vance, P., Barnhart, C., Johnson, E., and Nemhauser, G. (1997b). Airline crew scheduling: A new
formulation and decomposition algorithm. Operations Research, 45:188–200.

Wedelin, D. (1995). An algorithm for large scale 0-1 integer programming with applications to airline
crew scheduling. Annals of Operations Research, 57:283–301.

Wei, G. and Yu, G. (1997). Optimization model and algorithm for crew management during airline
irregular operations. Journal of Combinatorial Optimization, 1:305–321.



560 Handbook of Transportation Science

Wilson, N., editor (1999). Computer-Aided Transit Scheduling. Springer Verlag.
Yen, J. and Birge, J. (2000). A stochastic programming approach to the airline crew scheduling problem.

Technical report, University of Washington.
Yu, G., editor (1998). Operations Research in the Airline Industry, Kluwer Academic Publishers.



15 SUPPLY CHAINS
Randolph W. Hall

15.1 Introduction

In modern economies, the production of goods entails the coordinated effort of
manufacturers, transporters and distributors spread across the globe. This symphony
of actions, which delivers products to consumers, is called the “supply chain”. For
complex products, such as automobiles, the supply chain comprises a deep and
intricate web, beginning with acquisition of raw materials, continuing with
fabrication of parts and components, then assembly of these parts and components
into finished vehicles, and finally distribution of vehicles through networks of
dealers.

By contrast, supply chains in primitive societies are simple and local.
Manufacturing is limited to production of simple tools and implements, relying on
materials that are locally acquired or traded, and largely depending on the effort of
individuals to fabricate an entire product from start to finish. In primitive societies,
items are not transported over great distances, and there is far less inter-dependency
among individuals or groups in the creation of goods.

The comparison of automobiles to primitive products (stone tools, baskets, clay
pots, etc.) illustrates that supply chains have been a fundamental ingredient in the
advancement of technology. It would be impossible to create modern automobiles,
for instance, if we were unable to:

Acquire and transport raw materials from their natural sources, which are
spread across the globe.
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Create industries capable of designing and building specialized components,
such as braking systems, air bags, audio systems, upholstery, tires, glass, sheet
metal, etc.

Assemble and fabricate vehicles and components in large facilities, which
permit the division of labor into specialized tasks and the use of automation
technologies.

Efficiently transport vehicles and their parts over long distances.

Because each of these steps also exhibits natural economies-of-scale, it has become
increasingly common for entities in the supply chain to serve larger, and more global,
markets. Hence, management and operation of supply chains has become more
important and more challenging.

Though the differences between primitive and modern products are obvious, one
need not look back more than 250 years to see huge contrasts in the formation of
supply chains. Prior to the industrial revolution of the 1800s, mass production and
mass distribution were virtually non-existent, due to the absence of four technological
ingredients: (1) efficient ground transportation, (2) reliable sources for power
generation, (3) ability to communicate instantaneously over long distances, and (4)
ability to manufacture products with sufficient accuracy to permit interchangeable
parts. Without these ingredients, production was more like the primitive clan than
modern society. Products were manufactured by craftsmen, largely from start to
finish, serving local markets. Though people did trade materials and some products,
it would have been impossible to manage a large and distributed organization, and it
would have been impossible to attain a high degree of specialization.

The industrial revolution brought the needed ingredients to construct true supply
chains. Locomotives and steam-powered boats permitted inland transportation. Coal
engines provided a more reliable source of power for manufacturing plants. The
telegraph gave the power to coordinate activities among distributed sites. And
machinery reached sufficient accuracy to permit the specialized fabrication of
components, for later assembly into finished products.

Over the last 200 years supply chains have continued to evolve and expand.
Transportation and communication have become much less expensive. The scale
economies of production have become even greater. And specialized knowledge has
grown more important in the design of products. Nevertheless, the fundamental
questions in supply chain design and management have changed little in this time:

When and where should value be added to a product, through fabrication,
processing, assembly, etc.?
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How should goods be transported among production and consumption
locations?

How should information be used to coordinate and enable supply chain
activities?

These questions are addressed in this chapter, with emphasis on the transportation
aspects of supply chains. The approach here is more conceptual, and less
mathematical, than in other chapters. For further background on the topics, refer to
Daganzo (1999) and Simchi-Levi et al (2000).

15.2 Production and Distribution Over Time and Space

The most fundamental question in supply chain management is: When and where to
“add value” to a product? Value can be added through any of several processes:

Extraction: separating substances from a composite material, as in mining or
refining.

Processing: exposing a material to a process that changes its composition, such as
heating in a furnace.

Fabrication: changing the shape or form of a material, such as stamping automobile
parts from coils of steel.

Assembly: combining materials or parts to create a new product, as in printed circuit
board assembly.

Transportation: movement of materials, parts or products from one place to
another.

Inventory: storage of materials, parts or products for future use.

The “supply chain” represents that entire sequence of steps that produce a
finished product. Prior to the industrial revolution, most products required a small
number of steps, with a large portion of these steps completed by individual skilled
craftsmen. After the industrial revolution, production steps were increasingly divided
among many individuals, each of whom specialized in a particular task. However, it
was still relatively common for a single vertically integrated firm to oversee a large
portion of these steps. Ford’s River Rouge plant, which was used to manufacture the
Model T, fits this model. Modern production has continued the trend toward
specialization, with greater specialization by firms and production plants. Thus, it
has become more important to develop systems for coordinating production among
different organizations, located far from each other, possibly on different continents.
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Supply Chain Elements

Depending on the complexity of the product, supply chains show substantial variation
in depth and breadth. However, most supply chains contain the following elements
(Figure 15.1):

Raw Material Extraction and Refinement: Materials are extracted from places
where there are known deposits. While some materials are widely available (e.g.,
gravel or water), others can only be found in a few locations (e.g., diamonds).
Refinement industries (e.g., oil refining in the Middle East) are frequently centered
around sources, as processed materials are often more easily transported than the raw
material. The availability of raw materials can also affect the positioning of
manufacturing industries – the steel industry in Pennsylvania, for example.

Parts Manufacture: Parts represent the most basic and decomposable unit of a
product. A part could be a screw, wire, piece of plastic, or possibly a processed
substance, such as paint. Parts manufacture is relatively generic, meaning that the
same processes and possibly the same parts can be used in the production of many
different finished products. Parts manufacturers also tend to serve many different
industrial customers, and benefit from the scale economies of serving large markets.
Parts manufacturers focus on the processing and fabrication steps of production.
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Component Manufacturer: A component represents a collection of parts that have
been built to perform a particular function. Components can contain sub-
components, which in turn contain their own sub-components. In automobile
assembly, a radio is a vehicle component, a circuit board is a radio component, and
an integrated circuit is a circuit board component. Thus, component manufacturing
alone can entail a long supply chain. Assembly is the dominant process in
component manufacture, though processing and fabrication steps may also occur.

Finished Product Manufacture: This is an extension of component manufacture –
representing the final step before a product is distributed and sold. Because a
finished product may in turn be a component for something else, the distinction is
somewhat arbitrary. Like component manufacture, the dominant process is assembly.

Distribution: To complete the supply chain, materials must be transported to part
manufacturers; parts must be transported to component manufacturers; components
must be transported to finished product manufacturers; and finished products must be
transported to consumers. Transportation also occurs – in the name of material
handling – within each production facility. Transportation is an inevitable result of
specialization in manufacture. So long as a single individual is not producing the
entire product, parts and components must be moved from individual to individual, or
firm to firm. Distribution also entails storage and warehousing of materials, parts,
components and finished products, along with the use of independent retailers and
distributors to reach the consumer. Distribution may also encompass some level of
assembly tasks. An automobile dealer may customize a vehicle by installing audio
systems or wheels, or a computer dealer may customize a PC by installing or
swapping storage devices, memory or communication boards.

Though Figure 15.1 indicates that manufacturing is compartmentalized from
distribution (the arrow in the figure), there are instances when they occur
simultaneously. For instance, fish processing sometimes occur on boats, and railroad
trains have been used at times as rolling production lines.

Distribution Systems

The discipline of supply chain management is highly centered on distribution, and
not as much on product manufacture, though they are naturally inter-related. The
economics of manufacturing strongly influence the scope and scale of distribution.
For instance, products that demand a high labor content (e.g., circuit board assembly)
may be assembled overseas because of lower wage rates; highly sophisticated
products (e.g., integrated circuits) may only be produced in regions that offer highly
skilled employees and highly skilled equipment providers. Moreover, schedules for
production naturally influence schedules for transportation, as discussed in Chapter 5.

Distribution typically occurs in steps, as products move from point of
manufacture to point of consumption. The number of steps depends on the degree to
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which the manufacturers serve local, national or international markets. The size of
the market depends on the technological sophistication of the product along with the
costs of transportation. Concrete production is almost always local, because the
product is both expensive to transport and relatively unsophisticated. Integrated
circuit manufacture is global, because the product is both technologically
sophisticated and inexpensive to transport. In between, there are products like
automobiles, which are relatively sophisticated but also expensive to transport (partly
due to tariffs). These may be manufactured on a national scale.

Global and national products are typically distributed through a multi-echelon
(or multi-tier) system (Figure 15.2). Manufacturing plants constitute the top-echelon,
which may feed into multiple warehouses, each of which serves a large region. These
warehouses could then serve multiple distributors (each covering a sub-region),
which in turn serve multiple dealers, serving end consumers. In some cases
distributors and dealers are independent entities (sometimes called party logistics
providers), who purchase the products from the manufacturer and sell them to their
own customers, or work under contract to fulfill orders on behalf of the manufacturer.
In other cases dealers and distributors are solely owned franchises of the
manufacturer, operating under defined terms. And in other cases all levels in the
supply chain fall under the same organization.

Key issues in the design of the distribution system include:
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Echelon structure: number of echelons, regions served by each center
specialization of warehouses in carrying particular products.

Inventory transfers: number of products stocked in each center, methods and
places for acquiring products in the event of an inventory shortage, stock replacement
rules.

Ownership: degree to which the manufacturing organization is involved in owning
or managing the distribution entities; management of retailer relationships; ability of
the manufacturer to bypass dealers and sell direct to consumers.

Integration: degree to which the distribution of replacement parts and components
(called the after-market) is integrated with the distribution of original equipment.

Consolidation: methods for combining different types of product, coming from
multiple sources and traveling to multiple destinations, into vehicle loads.

With respect to ownership, smaller manufacturers rely more on independent
dealers and distributors than large manufacturers. Manufacturers also depend more
on independent dealers and distributors when products are relatively inexpensive and
simple to maintain. Vehicle and equipment manufacturers, on the other hand, are
more involved in retailing, though often through franchises. This is because: the
dealer must be capable of both selling and maintaining the product; because the sale
frequently requires manufacturer financing; because dealers can more effectively
market a single line of products than a wide variety; and because sales volumes are
sufficient for a dealer to devote his or her entire effort to a single product line.

With respect to transportation in particular, sometimes the manufacturer, retailer
or distributor operates its own private network, and sometimes they rely on an
external for-hire network. Private networks are most common where large volumes
of freight are sent between origin/destination pairs, which it makes it economical to
bypass the terminals operated by for-hire networks. In some instances, private
networks provide services that integrate terminal/warehouse operations with
transportation. Whereas for-hire networks are designed to rapidly move products
through each network node, an integrated private network may allow for the strategic
management of inventories in the vicinity of consumer demand.

Private networks and for-hire networks differ in several important respects.
First, private networks tend to be asymmetrical, typically with many more supply
points than consumption points. Second, flows on private networks tend to be
unidirectional. And third, network nodes tend to be multi-functional, providing both
a transportation service and a production or inventory related service. For-hire
networks share none of these characteristics, yet they still share many properties with
respect to transportation operations, as will be discussed later.



568 Handbook of Transportation Science

Another important factor in ownership is the ability to share and utilize
information. Prior to the mid century, sales transactions typically accompanied
the transport of goods between locations. During this period, the merchant industry
thrived under a model of buying goods in one location, transporting them to another,
and selling at a profit upon arrival. New means of communication (telegraph and
telephone) enabled a new business model, in which different locations in the supply
chain could be managed and coordinated, making it possible for manufacturers to
manage the distribution system. More recently, the Internet is changing business
models again, by offering a decentralized tool for pulling information from multiple
sources, thus reducing the manufacturer advantage in controlling all steps in
distribution. Information policies can sometimes produce counter-intuitive results, as
in the bullwhip effect (Chen et al, 2000; Lee et al, 1997). Random perturbations in
consumer demand can lead to larger distortions in demand further up the supply
chain, as a consequence of ordering and production policies, conflicting objectives
and incomplete information. Research in this area has focused on methods for
stabilizing the supply chain in the presence of variability in consumer demand.

The issues mentioned so far are hardly new. In some sense, supply chain
management has been the dominant ingredient in business strategy since the birth of
civilization. Nevertheless, supply chain management is a new area for academic
study. Though the field borrows heavily from prior research in inventory
management, transportation and location theory, modeling supply chains as an
integrated whole is a recent idea.

Role of Technology in Supply Chain Research

The attention given to supply chains is in large part due to the economics of
manufacturing computers and related “high-tech” products (Arntzen et al, 1995; Lee
and Billington, 1995; Brown et al, 2000). Unlike traditional products, which have
historically encountered inflationary price increases, the cost trends in computers
have been predominantly deflationary. As a consequence, the cost of holding
inventories – largely due to obsolescence – have become enormous. It is
uneconomical for a high-tech company to produce large quantities of a product in
anticipation of future demand, because the inventories could become obsolete before
the demand is realized. The pressures of price deflation not only exist for the
finished product, but also for each step of the supply chain along the way. Thus,
manufacturers and distributors are motivated to postpone production as long as
feasible – ideally until the customer places his or her order (Garg and Tang, 1997;
Lee and Tang, 1997). Gateway and Dell have prospered in this environment by
establishing a centralized build-to-order production system, minimizing distribution
through retailers, and carefully managing the acquisition of each computer
component.



Supply Chains 569

Another factor motivating supply chain research has been the advent of
electronic commerce, the Internet and on-line retailing (Bollo and Stumm, 1998;
Brynjolfsson and Smith, 2000; Dewan et al, 2000; Huang, 2001; Morrison and Wise,
2000; Partyka and Hall, 2000). These technologies have changed the economics of
distribution, enabling consumers to bypass “middlemen” in some cases. In
traditional shopping, a purchase follows from physical inspection of available
products at stores. In electronic shopping, products are not physically inspected, but
are instead electronically inspected, through acquisition of on-line product
information. Furthermore, the product is transported to the consumer by commercial
vehicles (possibly over long distances), rather than by the consumer in a personal
vehicle. These steps eliminate the retailer tier from the supply chain, permitting
direct purchase from the distributor.

On-line purchases have encountered varying success. Whereas completely
transparent products – like airline tickets – are successfully sold on-line; and
moderately transparent products – like books and CDs – have achieved some on-line
success; other products have not. Various on-line grocers have failed, and highly
personalized products, such as clothing, have not moved far beyond the traditional
catalogue market.

A last motivator for supply-chain research has been product substitution.
Technology already exists for on-line acquisition of music, video and reading
material, though the medium has not fully matured. Though products like these are
customarily delivered as physical items, there is nothing inherently physical about
them. All are ultimately presented to the consumer through the senses of sight and
sound, which can be created in virtual environments. Going a step further, one can
imagine that future technology will enable localized production of a range of
products through the electronic transmission and storage of designs, along with rapid
prototyping equipment. Such technology is currently being researched.

Customization and Variety

The interplay between temporal and spatial decisions in supply chain management is
illustrated through customization and variety (Boynton et al, 1993; Feitzinger and
Lee, 1997; Van Hoek, 2000). Unlike the days of Ford’s Model T (available in any
color, so long as it is black), modern supply chains offer consumers a tremendous
range of options within any product line. As discovered by Ford’s competitor, Alfred
Sloan, variety enables manufactures to create new markets and expand their sales,
furthering their scale economies in production. The range of items (or “stock-
keeping-units”, SKUs) sold in any major grocery or department store illustrates how
variety is engrained in our markets.

Depending on cost structure and competitive pressures, different industries
follow different strategies toward customization. Here are two basic options.
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Customization in Manufacture:      A range of product types is created at manufacture
through any of these means: (1) establishing a unique production line for each type,
(2) using “time-share” for a single line, periodically alternating between different
product types, or (3) creating a flexible production line that allows different types to
be randomly interspersed. It is also possible for production to take place in a non-
linear fashion, as in cellular manufacturing, but we focus on lines here. Option one
provides efficiency through specialization, but may demand a greater investment in
equipment and labor. Option two provides more efficient utilization of resources, but
requires periodic product change-overs, which may be costly. Option three also
provides more efficient utilization of resources, but demands highly flexible
employees and equipment, as well as a capability for storing a wide range of part and
component types in the vicinity of the production line.

A challenge with manufacturer customization is that a great variety of products
must be distributed through the supply chain to consumers. With more variety, each
warehouse, distributor and retailer must stock more products, at greater cost. They
will also encounter relatively more variability in sales, increasing the likelihood of
shortages and unsold products. Because of this variability, some manufacturers
choose to “build-to-order”, meaning that the product is only manufactured after an
order is placed. While saving on inventory costs, build-to-order can add to
manufacturing and transportation costs, and create lead-time delays in fulfilling
demand.

Customization in Retailing   In some instances, most of the customization takes
place at the point of sale. Instead of stocking finished products, the retailer stocks
parts and components, which are assembled into consumer products. Fewer items
need to be stocked in such a system, because a small number of components can
provide a huge number of combinations for finished products. The disadvantage is
that scale economies are lost in the assembly process. As a consequence, retailer
customization is only truly viable in relatively simple assembly operations that pose
minimal requirements in terms of equipment or labor skills.

Customization in retailing and customization in manufacturing are two ends of a
spectrum. Automobile manufacture provides both, with things like body colors and
styles determined at the factory, and easy to install options, such as luggage racks,
determined at the dealer. Customization can also occur at distributors, either for
direct sale to the customer, or to fulfill orders placed through dealers. Lastly,
customization is an important factor in product design. When variety is added at
point of sale, the product must be designed in a manner that permits easy substitution
of parts (e.g., parts easily snap in to a basic chassis), whereas there are fewer
restrictions when the product is customized at point of manufacture.
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15.3 Transportation Component of Supply Chains

Supply chains could not exist without a capability for moving products over long
distances. Though one can imagine a day when products are moved more
electronically than physically, supply chains today depend on efficient transportation
-- in the conventional sense.

The goods movement portion of the transportation industry can be segmented by
mode of travel, commodity carried and scale of operation. Ocean shipping is the
predominant mode for transportation over very long distances; rail is most efficient
when water is not an option and distances are long; trucking is predominant for local
distribution, up to medium distances. Pipelines are common for products like fuel
and water. And aircraft are used for urgent shipments over long distances.

For raw materials, transportation is highly specialized by commodity. Special
vehicles are needed to carry products like lumber, milk, gasoline, and vegetables, for
instance. Finished products are more likely to be containerized or boxed, which
allows them to be transported in standardized vehicles.

The scale of operation can be defined by geographic coverage, number of
terminals, miles of infrastructure and number of vehicles. In trucking, the largest
carriers concentrate on transporting small items over long distances, in great
volumes. They require substantial investments in terminals and handling equipment,
which creates a barrier to entry for smaller firms. Due to the nature of their
equipment and their focus on long distances, ocean shipping and railroad companies
are inherently large in scale.

Virtually all forms of transportation exhibit strong scale economies. By
attracting larger volumes of freight, companies are better able to: fill their vehicles to
capacity, or increase frequency and density; operate larger and more efficient
vehicles, and more efficiently spread the costs of investments in terminals and
infrastructure. To achieve these scale-economies, freight carriers utilize the process
of consolidation: the act of combining shipments with different origins, destinations
and times of travel into vehicle loads (Hall, 1987c). There are just three basic
approaches to consolidation:

1.

2.

3.

Temporal: accumulation of shipments over time until a desired load size is
attained.
Terminal: transshipping from incoming to outgoing vehicles at a terminal
to attain desired loads. (Figure 15.3)
Vehicular: routing a vehicle among multiple stops, picking up and
dropping off shipments, to attain a desired load size. (Figure 15.3)
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Whereas consolidation adds to transportation efficiency, it also imposes costs on
the carrier and the customer. Temporal consolidation creates delays and inventory
costs. Terminal consolidation demands additional investment in facilities, and causes
shipments to travel by more circuitous routes. Vehicular consolidation causes both
vehicles and shipments to travel by more circuitous routes. Taking all factors into
consideration, the optimal design of a transportation/distribution system must balance
numerous competing trade-offs between cost and service, usually blending all three
consolidation approaches.

The value of consolidation can be illustrated with a simple example. Suppose
that a distribution network serves 15 million pounds of freight per day – a rather
large quantity -- along with 5000 origins and 5000 destinations. And suppose that
the freight is evenly distributed among origin-destination pairs. Then the network
serves a total of 25 million (5000 x 5000) origin-destination pairs, which results in
just .6 pounds/day per pair. It would certainly be uneconomical to provide a daily
direct route between each pair, when the freight is comparable to a large manila
envelope. And even if the consolidation cycle were extended to an annual period, the
total accumulation would be just 219 pounds per route, still likely not enough to
justify direct routes.

As an alternative, suppose that shipments are transported through a system like
the one shown in Figure 15.4. Suppose that one hub terminal is created, through
which all shipments are processed, along with 50 regional terminals, each of which
serves 50 origins and 50 destinations. And suppose that the origins and destinations
are served by multi-stop routes, with 10 stops each. Then 500 local pickup and
delivery routes would average 30,000 pounds per day in volume, and 50 terminal-to-
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terminal routes would average 300,000 pounds per day in volume. In this scenario, it
becomes economical to provide daily service between all origin destination pairs.

The example illustrates the concept underlying the original Federal Express
network (Hall, 1989a; Kuby and Gray, 1993). By focusing its traffic on a single
national terminal, Federal Express amassed sufficient freight flows to make daily
overnight service economical. Over time, the Federal Express network has grown
and become more complex. Nevertheless, it still relies on a terminal network to
consolidate its traffic and make transportation efficient.

Terminal Consolidation Strategies

Terminals present many consolidation options and decisions. Adding terminals to a
network is desirable from the standpoint of reducing travel distances for local pickup
and delivery routes (Hall, 1985b). However, with more terminals, more routes are
needed to connect terminals with each other, reducing the advantage of consolidation
because each route serves less volume. Adding terminals also increases the
investment in terminal infrastructure. Beyond determining how many terminals to
operate and where they are placed (Campbell, 1993; Klincewicz, 1998; O’Kelly,
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1986; and O’Kelly and Bryan, 1998), various strategies exist for routing freight.
Terminals can be classified as follows:

One-One: Though not truly a consolidation strategy, terminals sometimes exist for
the sole purpose of transferring vehicles, trailers or containers from one driver to
another. These terminals permit drivers to travel part way to a destination, swap
loads with another driver, then return to the origin, avoiding an overnight stay and
saving on driver costs.

One-Many/Many-One: Some terminals serve the rather simple function of
consolidating many incoming shipments into a single longhaul load, or the opposite
(de-consolidating from one longhaul to many outgoing; sometimes called a feeder
terminal). This is not the predominant use of terminals. A single long route is
shorter, and generally more cost efficient, than many local routes (Figure 15.5).
Nevertheless, one-many/many-one terminals are useful when it is impossible to
complete a long route within a reasonable time period (e.g., a one-day workshift), or
when it is impossible for the longhaul vehicle to navigate the local infrastructure
(e.g., an ocean ship, or even some large trucks, cannot travel along local streets;
Daganzo, 1987a).

Many/Many: A more common use of terminals is for transshipment from many
incoming vehicles to many outgoing vehicles. Many-many consolidation is
extremely difficult to achieve in vehicles alone, as it is difficult to organize and sort
shipments with simultaneous pickup and delivery. Because of the multiplying effect
of serving many origins and many destinations, many-many consolidation greatly
increases the potential to achieve large loads, even when the flow of freight between
origin/destination pairs is small.

The three basic terminal types are the building blocks for the construction of
terminal networks, which further define the consolidation strategy in the following
ways.

Hierarchies: Some transportation networks utilize a multi-echelon structure, similar
to those in inventory systems. An example is provided in Figure 15.6. A service
region is broken into terminal areas, and local districts. Shipments traveling from
one area to another are processed through the single national terminal. Shipments
traveling from one district to another, within an area, are processed through a
regional terminal. Shipments traveling within a single district are only processed at
the local terminal. Hierarchical strategies, like these, balance the need for achieving
large load sizes against the cost of long and circuitous routes.
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Wide Area and Local Networks In most supply chains, origins and destinations
tend to be clustered around major cities located in metropolitan areas. As a
consequence, distribution networks tend to fall into either of two classes: wide-area,
connecting metropolitan areas, and local area, connecting locations within a
metropolitan area (Figure 15.7). A local area network (LAN) may contain multiple
terminals, each serving a district on the order of 100 to 500 square miles, along with
one or more gateway terminals, which provide the interface to the wide area network
(WAN) (Hall, 1993). In some sense, an individual factory or building material
handling system may be viewed as a sub-local network. Thus, a supply chain can be
viewed as the composition of three network layers: the WAN, which connects
metropolitan areas, the LAN, which connects sites within a metropolitan area, and the
sub-LAN, which connects stations within a building or complex.

For example, companies like UPS and FedEx operate multiple stations (or local
terminals) within each metropolitan area. These are the places where pickup and
delivery trucks are based. The stations are connected to major terminals, frequently
in the vicinity of airports, which provide gateways to the WAN. At the national
scale, FedEx operates multiple regional hubs along with a single large national hub,
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for consolidating shipments sent between metropolitan areas. Large metropolitan
areas, such as Los Angeles, provide multiple gateways, though a single large gateway
provides a richer set of routing options. This leads to the set of routing choices
illustrated in Figure 15.8).

Shipment can be routed through either a minor gateway or a more distant, but
larger, gateway.
If the shipment travels via the minor gateway, it can either be routed through a
national hub or possibly a regional hub.
If the shipment travels via the major gateway, a direct route may be provided to
a major gateway in the vicinity of the destination, reducing longhaul travel
distance, eliminating a handling step, and compensating for longer local
distances.
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It should be evident that the best route for any given origin destination pair depends
on how other freight is routed, creating a highly interdependent optimization
problem.

Timing is an important factor in the design of both wide and local area networks.
Deliveries typically occur in the morning, pickups in the afternoon, and terminal-to-
terminal operations in the evening, when businesses are closed. Whereas local
stations are positioned to facilitate direct access to customers, gateways and hubs are
less restricted, and in some instances can be situated outside of metropolitan areas. If
next day deliveries are desired, aircraft may be used for some terminal routes, and the
entire system will be choreographed to enable quick transfer between vehicles and
tightly scheduled routes.

Peer Structure A terminal is considered a peer if it falls at the same level in a
hierarchy as another terminal. In Figure 15.9, regional terminals are peers. Local
terminals, within the same region, are also peers. In a pure hierarchy, direct routes
must strictly follow the diagram, having the structure of a tree. However, it is often
advantageous to permit routes between peer terminals, or permit routes that cross
regional boundaries. In addition, the top echelon of the hierarchy may have multiple
terminals, in which case some peer-to-peer routing may be needed to complete
deliveries.

Figure 15.10 provides an example of a “two-terminal” structure, meaning that
shipments visit two peer terminals at the top echelon (Hall, 1987b). Figure 15.11
provides an example of a “one-terminal” structure, meaning that shipments visit one
terminal at the top echelon, but cross regional boundaries. The two terminal structure
is advantageous for widely distributed origins and destinations with symmetrical flow
patterns (i.e., the number of origins is comparable to the number of destinations, as in
for-hire networks). The one terminal structure can be advantageous with
asymmetrical flow patterns, as can occur in manufacturer supply and distribution
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networks. The decision of one pattern or another often rests on the number of routes
required to connect the network, which depends on the number of origins and
destinations served, along with the importance of minimizing travel distances through
provision of extra terminals and more direct routes.
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Multi-hop Network: In a multi-hop network, shipments are transported between
terminals in steps (or hops), with some level of sorting occurring at each step along
the way. Because handling and processing occurs multiple times, multi-hop is most
viable when shipments are transported in large containers, which are not opened at
intermediate stops. An example would be a rail network, where trains travel from
classification yard to classification yard and only rail cars are sorted (not their
contents). Multi-hop networks have also been used in regional trucking networks,
where the majority of shipments are traveling short distances (hence, most shipments
are not handled many times). Multi-hop is advantageous from the perspective of
keeping driver route lengths shorts, so that they return home in a reasonable time, and
from the perspective of minimizing the number of routes emanating from each
terminal.

In a multi-hop network, each terminal is connected to its adjacent peers by a
direct route. Each of these peers can than act as a consolidator for shipments
traveling to more distant destinations, in the general direction of the adjacent peer
(Figure 15.12). Because only a small number of routes is needed from each terminal,
consolidation levels are high. The disadvantage is that shipments must be re-handled
at each terminal, which is impractical if shipments travel very long distances.
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Vehicular Consolidation Strategies

Like terminals, vehicles can consolidate shipments traveling between multiple
locations, but their capabilities are limited (Daganzo, 1987a, 1988). Whereas a
terminal can quite readily group shipments among widely dispersed origins and
destinations, vehicles are limited by the distance that they can travel in a reasonable
tour – often no more than a driver can cover in a day. Also, vehicles are not designed
to facilitate shipment sorting, which makes it difficult to mix pick-ups and deliveries
on the same tour. For these reasons, vehicular consolidation is typically limited to
tours that begin an end at a terminal, distributor, warehouse or factory (Hall, 1995a).

It should be kept in mind that a stop on a vehicle tour may either be a shipment
origin or destination, or it may be a terminal. Thus, it is possible to connect terminals
to each other with multi-stop tours. Nevertheless, the primary application of
vehicular consolidation is in pickups from shipment origins and delivery to shipment
destinations. This is because terminal networks are designed to provide sufficient
consolidation to make it economical for direct connections among terminals. If flows
are insufficient to permit direct connections, it is often advantageous to eliminate
some of the terminals, or change the terminal hierarchy or peer structure in a manner
that makes direct connections feasible.

Pickup or Delivery: A common form of tour – especially among private carriers --
is the pure pick-up or pure delivery route. The pure pick-up route (many-to-one),
also called a collection route, may be used to bring supplies into a major production
facility. Somewhat more common, the pure delivery route (one-to-many) may be
used to distribute products to retailers or consumers (e.g., food deliveries to grocers,
appliance deliveries to consumers). The latter is more prominent because supply
chains have a tendency to expand at lower levels. This is most obviously true at the
bottom level of the chain, as there are many more consumers than there are retailers,
distributors, manufacturers, or raw material sources. Thus, with more points for
delivery than pick-up, one-to many routes are more prominent than many-to-one.

In the absence of sequencing and timing restrictions (e.g., time windows), pure
pickup or delivery routes are structured like Figure 15.13. The service region is
partitioned into districts, each with sufficient work to fill a vehicle or workshift, and
each district is served by a loop. Vehicles travel from a single node (e.g., a terminal,
warehouse or factory) to multiple stops located in a district. The route consists of a
line-haul portion (to and from the district) and a local portion (within the district;
Daganzo 1984a, 1984b).
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Pickup and-Delivery/Common Node: Another common route type provides both
pickup and delivery out of a single node, or location (Daganzo and Hall, 1993). For-
hire carriers routinely operate in this manner out of their local terminals. Most
commonly, deliveries and pick-ups occur in different parts or the day, the former in
the morning and the latter in the afternoon. This approach coincides with natural
work patterns, as deliveries are desired as early in the day as possible, whereas pick-
ups are desired as late as possible, to provide as much work time as possible before
fulfilling orders. A partition of pickups and deliveries is also desirable from the
standpoint of shipment handling, as vehicles can be totally unloaded of deliveries
prior to filling the space with pick-ups. In reality, some amount of intermixing of
pick-ups and deliveries may occur, but only to a limited degree. Because supply
chains have a tendency to expand at lower levels, mixed pick-up/delivery routes tend
to make more deliveries than pick-ups, and also devote a greater portion of their day
to deliveries than to pick-ups.

In the absence of sequencing and timing restrictions, mixed pickup and delivery
routes are structured like Figure 15.14. The service region is partitioned into pickup
districts and delivery districts. A loop is formed by pairing a delivery district with a
pickup district, which are connected with a “deadhead” segment (empty travel). In
some instances (e.g., when pickups and deliveries naturally occur in the same area)
the pickup and delivery districts coincide, in which case the deadhead segment is
eliminated.

583
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Multiple Node Pickup or Delivery: In a multiple node route, a route may begin in
the vicinity of one node (or terminal) and end in the vicinity of another. To complete
a tour, the route may be paired with a “backhaul” route, which ends up in the vicinity
of the original node. Or, in more complicated networks, routes may be combined
into longer tours rooted from three or more nodes. The process reduces the empty
mileage returning to a facility. A fundamental characteristic of such a network is that
each node serves large regions, which encompass other nodes. This may occur, for
instance, in manufacturer networks, where each node represents a manufacturing
plant specializing in a particular product line. It is unlikely to occur in a for-hire
transportation network, as each node (a terminal), would be assigned a unique, and
non-intersecting, service territory.

Route structure depends on region, as illustrated in Figure 15.15 (Hall, 1991a).
Loads delivered in the vicinity of a home terminal have a two-way, out-and-back,
structure, like the pure pickup or pure delivery route in Figure 15.13. Loads
delivered in the vicinity of another node (falling outside the “backhaul boundary” of
a terminal) can either have a one-way orientation or a two-way orientation, according
to the illustrated boundaries (one-way in the center, two-way in the periphery). In
Euclidean space, a two-way territory is aligned along the boundary of an ellipse,
having the two terminals as foci. A one-way territory is aligned perpendicular to the
ellipse. The backhaul boundary is determined by solving the classic transportation
problem. In Euclidean space, the boundary has a hyperbolic shape, with foci
corresponding to the terminals (Hall, 1989b). In the case of multiple node networks
(3 or more), boundaries are created from hyperbolic segments, again defined by
solutions to transportation problems.
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General Pickup and Delivery: General intermixing of pickups and deliveries is rare
for several reasons. First, shipment travel distances are usually too long to make it
practical for a single route to provide the entire transportation service – both pickup
and delivery (Daganzo, 1987a, 1988). Second, it is difficult to fully utilize a
vehicle’s capacity, because new pick-ups can block access to upcoming deliveries.
Third, intermixing forces the driver to sort shipments while in route. Without access
to specialized sorting equipment, as can be constructed in terminals, the process is
highly labor intensive. Last, shipments often need to be brought to a facility for
processing and billing purposes.

Mixed pick-up and delivery is used by courier services, where shipments travel
relatively short distances (up to about 50 miles), and shipments must be delivered
within hours of a request. In such instances, the courier rarely carries more than a
few shipments at a time, and operates something like a taxi service. These systems
tend to be highly dynamic and unstructured. In some cases a small number of origins
in close proximity may be paired with a small number of destinations -- in close
proximity to each other, yet far from the origins -- to create a general pickup and
delivery tour. This has the natural advantage of circumventing terminal handling, but
practical applications are rare, as location patterns tend not to follow this structure.
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scheduled tour, and is fed by multiple pickup and delivery routes (Kahmoun and
Hall, 1996b). The backbone then operates as a sort of virtual terminal, connecting
many locations. However, its practical application is limited to metropolitan regions;
otherwise travel time delays become excessive. Mass transit systems frequently
adopt this structure, with rail lines serving as the backbone and bus lines serving as
the feeder system.

This discussion has assumed that vehicle routes can be characterized by
geographic partitions of service regions into route territories. In reality, routes may
be overlapping, for several reasons:

Deliveries or pick-ups must occur within designated time windows, which
may be better served by a vehicle from outside a normal territory, or by
establishing time-dependent territories (Chapter 12; Daganzo, 1987b).
Requests for service occur by a dynamic or random process, forcing areas to
be repeatedly served throughout the day (Hall, 1996).
Vehicles must cross into other territories to obtain shipments that fit within
available vehicle space, thus maximizing capacity utilization (Hall and
Daganzo, 1985; Hall, 1989d; Hall, 1994).
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To maximize utilization of driver time, vehicles cross into other territories
to complete a stop with a desired duration, fitting within available workshift
time.
Inventory management at stops necessitates serving stops at particular times.
(Ukovich et al, 1998).
Driver learning makes it desirable to permanently assign some locations to a
fixed route, while other locations are reassigned daily to balance loads
(Zhong, 2002).

There are naturally many more variations on vehicle routing; interested readers
should refer to Chapters 12 to 14.

15.4 Optimizing Trade-offs in Logistics Costs

In Chapter 5, the models presented for dispatching optimize one type on
consolidation trade-off: the balance between waiting cost and transportation cost
when shipping on a single link of a network. At a strategic level, it is important to
consider more than one transportation link, and to optimize the total logistics costs of
a system. By total logistics costs, we mean those costs that are related to the
movement of goods between locations in the supply chain, including the following:

Inventory and Delay: These are functions of the frequency of service on
transportation routes (see Chapter 5) and the time duration of transportation routes.

Pickup and Delivery Routes: Initial and final routes that serve shipment origins
and destinations, depending on the number of stops per route and the length of these
routes.

Terminal Routes: Routes that connect terminals to each other, depending on the
length of number of routes needed to connect the network.

Terminals: The number and size of terminals that need to be established and
operated.

As discussed in the prior sections, there are many ways to configure a distribution
network. The best network for any given situation is the one that optimizes the
balance between these costs while providing the desired level of service.

Distance Modeling

The length of transportation routes is one of the primary factors affecting these costs.
For instance, the cost of local routes depends on the size of the region served by each
local terminal. With a larger region, vehicles travel longer line-haul distance, adding
to route length and reducing the number of stops that can be visited in a workshift.
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The placement of terminals can also affect the length of terminals routes (Langevin
and Campbell, 1996, survey distance approximation methods).

Transportation route lengths depend on the quality and topology of the network
infrastructure. Within major cities, streets tend to follow a rectangular grid pattern,
which leads to an average route length that is approximately 27% longer than a
straight-line Euclidean path (representing the ratio or the average value of
+ for uniformly distributed Routes connecting major cities tend to be
shorter than rectilinear paths, but still exceed straight-line distances by about 10-20%
in the United States.

For a pure pickup or pure delivery route (without sequencing or timing
constraints, and with uniformly and independently distributed stops), route length, L,
may be approximated by a function of the type:

where N is the number of stops served, d is the average distance from stops to
terminal, c is the vehicle capacity measured in stops, is the stop density per unit
area and k is a network specific parameter, in the range from .6 to .8 (Daganzo,
1984b). The model has two components, representing line-haul distance and local
distance. The average line-haul distance per stop declines as capacity increases, as
more stops are served per trip. The local distance per stop does not depend on the
capacity, but does depend on the distance separating stops on an optimal tour. This
is a function of the stop density: when stops are closer together, local distance
declines.

The average stop-terminal distance, d, depends on the size of the region served
by the terminal, the placement of the terminal within the region and the network
infrastructure. For a centrally located terminal within a circular region, uniformly
distributed trip ends, and Euclidean distance, where A is the region’s
area, d becomes larger for non-circular regions, and for other distance metrics. For
instance, for a centrally located terminal within a square region, rectilinear paths and
uniformly distributed trip ends, also increases when the terminal is
displaced from the central point. On the other hand, clustering of trip ends tends to
reduce average trip length, especially if it is possible to place terminals in the centers
of clusters. There is a fairly large literature on distance calculations; readers may
refer to Vaughan (1984), as well as Chapter 9.

A Combined Vehicular and Temporal Model

Consider now a model that combines vehicle dispatch with vehicle routing
(consolidation approaches 1 and 3). A region is partitioned into territories, each
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served by one vehicle. We wish to optimize two decisions: the size of territories
(measured in stops), and the time interval between service. One possibility might be
to create one long route that serves the entire region, with very frequent vehicle
departures. At the other extreme, each individual stop might be served by its own
route, but only very infrequently. Both options may result in the same average load
sizes, and hence the same level of consolidation. However, the first option produces
highly circuitous routes, while the second option produces long delays (due to low
frequency). As might be expected, the optimum falls somewhere in between.

In examining a simple case, where stops are uniformly and independently
distributed across a region, demand occurs at a constant rate, inventory costs occur at
both origin and destination, and all stops are served from a common source, Burns et
al (1985) obtained the following results:

The optimal territory size corresponds to vehicle capacity, no matter what
time interval is set for the tours. Routes should be made as long as possible,
without exceeding capacity, because transportation cost per stop is a
declining function of route length. Cost is then:

The optimal time interval, T, equals:

Eq. 15.3 is analogous to the basic economic order quantity model in Chapter 5.
However, the optimal interval is a function of the local cost of serving a stop (the
value in the parentheses of the numerator), and not the line-haul cost. Because the
local cost tends to be much smaller than line-haul cost, T tends to be much smaller

where:

d = average line-haul cost from terminal to stop
T = interval between dispatches

= a fixed cost of visiting each stop (independent of distance)
h = inventory holding cost, per unit time and unit demand
V   = vehicle capacity, measured in units of demand
k = parameter representing distance metric, on the order of .6 to .8

= average local cost per unit distance
= demand rate, per stop
= stop density
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for multiple stop tours than for single stop tours, and stops can be visited more
frequently.

Terminal Consolidation

By adding terminals, a distribution network can improve its capability to serve
widely dispersed origins and destinations. For illustration, we consider a 2-terminal
routing strategy, as shown in Figure 15.10. We assume that terminals are equally
spaced on a square lattice within a square region, that shipments travel by rectilinear
paths, and that shipment origins and destinations are independently and uniformly
distributed. Then the following performance measures apply to the network (Hall,
1984):

where

As indicated in Eqs. 15.4a and 15.6a, adding terminals to a network (increasing t) is
advantageous from the perspective of reducing the average origin/destination to
terminal trip length and route length. And although, the average terminal-to-terminal
trip length is an increasing function of t, the entire trip length (origin to destination)
always declines as t increases.

As more terminals are added to a network, costs do eventually rise for two
reasons. First, the cost of building and operating terminals will increase faster than
the transportation savings due to reduced trip length. Second, it will become
impossible to fill vehicles to capacity without resorting to multiple stop tours on
terminal-to-terminal routes. This is clearly seen in the equations for and which

x = length of side of square region
t = number of terminals
M = number of origins and destinations
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increase quadratically as t increases. For large values of t, freight flows are diluted
among too many routes, leading to higher costs per unit freight and distance.

It should be noted that these trade-offs depend little on local pickup and
delivery, as local territories are sized according to vehicle capacity, not linehaul trip
length. There is, however, a natural dependency between the number of terminals, t,
and the shipping interval, T. If T is enlarged, the demand per vehicle route will
increase, which would make it economical to add terminals to the network.
Nevertheless, because and are quadratic functions, the percentage increase in t
would be substantially smaller than the percentage increase in T.

As already indicated, there are numerous variations in network design. While
most networks encounter similar trade-offs – with respect to number of terminals,
size of pickup/delivery territories, and shipping interval – the cost models are highly
dependent on the particular situation. Daganzo (1999) provides numerous examples.

Accounting For Different Requirements and Characteristics

Real supply chains exhibit considerable heterogeneity, in terms of spatial and
temporal distribution of freight flows. Whereas average flows may point to a
particular design, the specific flows from a particular origin or destination may
demand something different. As a consequence, most networks exhibit a mixed
structure, combining elements from different fundamental designs. For example:

Bypass: When freight flow is sufficient, direct routes may be created between
locations that would not normally be connected.

Multiple Networks: Separate networks may be created to serve different classes of
shipments.

Multiple Stops: Locations with less than normal demand may be consolidated into a
multi-stop route, when most other locations have direct routes.

Alternate Frequency: Stops with less than normal, or greater than normal, demand
may be served with different frequency, to achieve a better balance between
waiting/inventory costs and transportation costs.

These are all complicated issues, as the decisions made for one location, or one
origin-destination pair, affect the costs for others. Because distribution costs are
inherently concave, the marginal cost for serving an additional unit of freight flow is
less than the average cost. Therefore, not only is it impossible to determine the
optimal route for one unit of flow without simultaneously knowing the flow patterns
for all other shipments, but there is tremendous incentive to group different types of
shipments and serve them in the same manner. Nevertheless, origin-destination pairs
that generate large freight volumes ought to be treated differently than those that do
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not; it is uneconomical to route a large load through a series of terminals when it
could be loaded on a truck and sent direct to the destination. In a broad sense,
system design might be viewed as a balancing act between exploiting the economies
of consolidation and the needs to serve individual shipments or origin-destination
pairs in a manner that is customized to their specific characteristics.

One of the key decisions is when to provide direct shipments between two
locations, bypassing an intermediate terminal. If the network exhibits a concave cost
structure, and arc flows are uncapacitated (as is often the case), then an optimal flow
pattern will provide “all-or-nothing” routing for each origin-destination pair. This
means that 100% of the flow for each pair will be assigned to a single path. In
addition, in an optimal solution, it must be impossible to reduce the cost by
reassigning the flow for any origin-destination pair to an alternate path. Thus, for
Figure 15.17, the cost of a direct route must be less than or equal to the incremental
cost of serving the freight flow on the terminal route, in order for it to be used.
Likewise, if flow is transported on the terminal route, the cost of the direct route must
be greater than or equal to the incremental savings due to removing the flow from the
terminal route.

These are necessary, but not sufficient, conditions for optimality. In some
instances, a locally optimal solution may place all flow on the terminal route, and
another locally optimal solution may place all flow on direct routes. This is because
the terminal route only becomes attractive once a “critical mass” of flow follows the
route. The search for optimality depends on finding all of the locally optimal
solutions, and comparing them to determine which is best. In simple networks, like
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Figure 15.17, the local optima can be found with a one dimensional search (Hall,
1987a, 1989c); for any value of flow on the terminal arc, the incremental cost of
adding or reducing flow can be calculated to assign origin-destination pairs to routes.
Local optima occur when the flow assigned to the terminal route exactly matches
By searching across different values of local optima can be identified.

A characteristic of distribution networks is that terminals may be used most in
intermediate demand ranges. With very high demand, direct routes become
economical. With very small demand – especially if the number of origin-destination
pairs is small – there may be insufficient demand to reach a critical mass to justify
terminal operation. This does not imply that terminals are abandoned completely,
however. It may instead mean that shipments are sent via a for-hire network rather
than via a private network (Hall, 1995b). Because the for-hire network has the
capability of combining shipments from different companies, they have greater
potential for achieving the critical mass needed to establish a terminal.

It is obvious that the scale economies in transportation have not driven the
industry toward a single monopoly that manages to carry all goods through one
network. Instead, we have many specialized networks, and many competing
networks. Large truck-load or container load shipments bypass trucking terminals,
and are often sent direct from origin-to-destination (or possibly via rail or ship
terminals). Intermediate sized shipments are sent via less-than-truckload networks,
which provide simple terminals for transferring pallets of boxes from one truck to
another. Packages are sent via parcel networks, which operate more elaborate
terminals for sorting and processing shipments. And mail is sent through postal
networks, which provide highly automated systems for sorting and processing
shipments. In each case, shipments flow in different quantities and rates, which
necessitates a different solution. There is sufficient uniqueness to justify creating
specialized networks. In the case of large freight carriers, like UPS and Federal
Express, there may be incentives to establish two or more networks to serve different
types of shipments. For instance, smaller shipments may be separated from large
shipments, or overnight shipments may be separated from lower priority shipments.
Smilowitz(2001).

Another important issue is determining optimal route and shipping frequencies.
The complication here is maintaining synchronization among routes and among
stops. For instance, suppose that a region is served by multi-stop tours that operate in
a constant interval, but the shipping interval for individual stops is permitted to differ
from the tour interval. As with network routing, concave costs and interdependency
are important in this question. As indicated in Eq. 15.1, the cost of serving an
individual stop depends on the stop density – the number of stops actually served per
unit area each time the route is covered (Hall, 1985a, 1991b; Daganzo, 1985). This
number may be less than the total number of stops available, as all stops are not
served on all trips. If the shipping frequency is reduced for some stops, then the per-
stop cost for serving the remaining stops will increase, which will in turn make it
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desirable to reduce their shipping frequency. However, if the stop density is known,
then frequencies can be optimized for individual stops. Thus, to optimize the entire
tour, a search can be completed for the optimal stop density, from which shipping
and tour frequencies can be derived.

To make such a route feasible, it should also be recognized that the shipping
interval should be an integral multiple of the tour interval. In addition, efficient
terminal operation demands some level of synchronization of incoming and outgoing
routes. These issues are discussed in Chapter 5.

All of these factors are indicative of the need for optimization tools that can
simultaneously optimize a huge number of decision variables in a non-linear cost
environment. There are enormous challenges in achieving this goal, but progress is
being made through faster computers, meta-heuristics and more efficient optimization
codes.

15.5 Final Comments

Supply chain networks are the mechanism for transforming raw materials into
finished products, and delivering these products to consumers. Nodes in the supply
chain network serve manufacturing related functions and consolidation related
functions, often simultaneously. Whereas in transportation alone, goods are intended
to be quickly sorted and processed in terminals, in the broader context of supply
chains, goods may remain at a node for a longer period to serve additional purposes.
Instead of transferring boxes from incoming vehicles to outgoing vehicles, the node
may assemble the items into finished products, or simply store them for future use,
while also consolidating them into loads.

Whether an organization relies on for-hire networks for distribution, or its own
private network, depends on its needs to create a network of supply chain nodes for
production and inventory. Grocers, for instance, not only operate large networks of
retail stores but also large networks of distribution warehouses. The warehouses are
needed because of food perishability, because many food products come from local
sources, and because grocers handle sufficient volumes to justify the investments.
Grocer warehouses serve multiple functions, while providing the same consolidation
function as terminals in for-hire networks. Therefore, they do not use for-hire
networks to get products from warehouses to consumers.

Book publishing, on the other hand, has none of the incentives seen in the
grocery industry for establishing large networks. Nevertheless, publishers still have
the ability to reach widely dispersed markets through for-hire transportation
networks. In fact, it is the richness of the transportation infrastructure that enables
our highly specialized, and technology focused, economy to function so well. By
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consolidating different types of products, produced by different firms at different
times, relatively small companies can reach wide markets.

In some instances, a blend of for-hire and private networks is common. A
company may depend more on for-hire networks for replacement parts than for
original equipment, because demands for the latter are larger and more predictable.
Or, in a multi-echelon structure, the distribution strategy may depend on the stocking
level of the item. For instance, fast moving items may be stocked at all echelons, and
distributed through a private network. Slow-moving items may only be stocked at the
highest echelon (taking advantage of the “risk pooling” effect, due to averaging of
demands across many locations), and distributed through for-hire networks
(Blumenfeld et al, 1985). By exploiting the for-hire system, the supply network can
be responsive for all types of items, even though inventories are kept small. Going
one step further, the private network may be specifically designed to exploit the
capabilities of the for-hire network by locating warehouses in the vicinity of major
hub terminals (e.g., near Federal Express’ Memphis hub or UPS’ Louisville hub). In
doing so, next-day deliveries can be guaranteed for orders that are placed late in the
day.

As a final comment, availability and usage of information have had profound
effects on supply chain management. Historically, retailers have provided the dual
function of physically delivering products to customers and offering information to
assist in product selection (sometimes, just by inspecting products). Retailers are
now squeezed in both directions. First, small package companies (UPS and Federal
Express in particular), with their extensive networks, have enabled distributors to
rapidly deliver products direct to consumers from centralized locations. Second, the
Internet is providing product information in a manner that sometimes replicates and
even enhances information available at the store. In many product lines (media,
replacement parts, etc.), the potential exists for eliminating retailers and perhaps local
distributors. Enhanced multi-media tools may one day enable a consumer to
visualize wearing a new outfit, eliminating the need to try it on at a store. But even
this innovation would not mean the elimination of local entities for consolidating
shipments. Instead of consolidating through inventory-stocking private networks,
consolidation would occur through the terminals operated by for-hire networks.
Thus, the technologies of the Internet and communication do not alter the
fundamental economics of transportation for physical products.

15.6 References

Arntzen, B.C., G.G. Brown, T.P. Harrison and L.L. Trafton (1995). Global supply chain management at
Digital Equipment Corporation. Interfaces, 25:1, 69-93.

Blumenfeld, D.E. R.W.Hall and W. Jordan (1985). Trade-off between freight expediting cost and safety
stock inventory costs, Journal of Business Logistics, 6, 79-100.

Bollo, D. and M. Stumm (1998). Possible changes in logistic chain relationships due to Internet
developments. ITOR, 5, 427-445.



596 Handbook of Transportation Science

Brown, A.O., H.L. Lee, and R. Petrakian (2000). Xilinx improves its semiconductor supply chain using
product and process postponement. Interfaces, 30:4, 65-80.

Brynjolfsson, E. and M.D. Smith (2000). Frictionless commerce? A Comparison of Internet and
conventional retailers. Management Science, 46, 563-585.

Burns, L.D., R.W.Hall, D.E. Blumenfeld and C.F. Daganzo (1985). Distribution strategies that minimize
transportation and inventory costs, Operations Research, 33, 469-483.

Campbell, J.F. (1993). Continuous and discrete demand hub location problems, Transportation
Research, 27B 473-482.

Chen, F., Z. Drezner, J.K. Ryan and D. Simchi-Levi (2000). Quantifying the bullwhip effect in a simple
supply chain: the impact of forecast, lead times, and information. Management Science, 46, 436-
443.

Daganzo, C.F. (1984a). The length of tours in zones of different shapes, Transportation Research, 18B,
135-146.

Daganzo, C.F. (1984b). The distance traveled to visit N points with a maximum of C stops per vehicle: an
analytic model and an application. Transportation Science, 18, 331 -350.

Daganzo, C.F. (1985). Supplying a single location from heterogeneous sources. Transportation
Research, 19B, 409-420.

Daganzo, C.F. (1987a). The break-bulk role of terminals in many-to-many logistic networks. Operations
Research, 35, 543-555.

Daganzo, C.F. (1987b). Modeling distribution problems with time windows. Transportation Science,
21, 171-179.

Daganzo, C.F. (1988). A comparison of in-vehicle and out-of-vehicle freight consolidation strategies.
Transportation Research, 22B, 173-180.

Daganzo, C.F. (1999). Logistics Systems Analysis, 3rd Edition. Springer Verlag: Heidelberg, Germany.
Daganzo, C.F. and R.W. Hall (1993). A routing model for pickups and deliveries: no capacity restrictions

on the secondary items, Transportation Science, 27, 315-329.
Dewan, R., M. Freimer, and A. Seidmann (2000). Organizing distribution channels for information

goods on the Internet. Management Science, 46, 483-495.
Feitzinger, E. and H. Lee (1997). Mass customization at Hewlett Packard. Harvard Business Review.
Garg, A. and C.S. Tang (1997). On postponement strategies for product families with multiple points of

differentiation. IIE Transactions, 29, 641-650.
Hall, R.W. (1984). Travel distance through transportation terminals on a rectangular grid, Journal of the

Operational Research Society, 35, 1067-1078.
Hall, R.W. (1985a). Determining vehicle dispatch frequency when shipping frequency differs among

suppliers, Transportation Research, 19B, 421-431.
Hall, R.W. (1985b). Heuristics for selecting facility locations, Transportation and Logistics Review, 21,

353-373.
Hall, R.W. (1987). Direct versus terminal freight routing on a network with concave costs,

Transportation Research, 21B, 287-298.
Hall, R.W. (1987). Comparison of strategies for routing shipments through transportation terminals,

Transportation Research, 21A, 421-429.
Hall, R.W. (1987). Consolidation strategy: inventory, vehicles and terminals, Journal of Business

Logistic, 8, 57-73.
Hall, R.W. (1989a). Configuration of an overnight package air network, Transportation Research, 23A,

139-149.
Hall, R.W. (1989b). Graphical interpretation of the transportation problem, Transportation Science, 23,

37-45.
Hall, R.W. (1989c). Route choice on freight networks with concave costs and exclusive arcs,

Transportation Research, 23B, 177-194.
Hall, R.W. (1989d). Vehicle packing, Transportation Research, 23B, 103-121.
Hall, R.W. (1991a). Characteristics of multi-stop/multi-terminal delivery routes, (R.W.Hall)

Transportation Research, 25B, 391-403.
Hall, R.W. (1991b). Comments on one warehouse multiple retailer systems with vehicle routing costs,

Management Science, 37, 1496-1497.
Hall, R.W. (1991c). Route selection on freight networks with weight and volume constraints,

Transportation Research, 25B, 175-189.



Supply Chains 597

Hall, R.W. (1993). Design of local area freight networks, Transportation Research, 27B, 79-95.
Hall, R.W. (1994). Use of continuous approximations within discrete algorithms for routing vehicles.

experimental results and interpretation, Networks, 24, 43-56.
Hall, R.W. (1995a). The architecture of transportation systems, Transportation Research, 3C, 129-142.
Hall, R.W. (1995b). Transportation with common carrier and private fleets: system assignment and

shipment frequency optimization, IIE Transactions, 27, 217-225.
Hall, R.W. (1996). Pickup and delivery strategies for overnight carriers, Transportation Research, 30,

173-187.
Hall, R.W. and C.F. Daganzo (1985). Vehicle miles for a freight carrier with two capacity constraints.

Transportation Research Record, No. 1038, 1985.
Huang, J. (2001). Future space: a new blueprint for business architecture. Harvard Business Review.
Kahmoun, M. and R.W. Hall (1996b), Design of express mail services for metropolitan regions, Journal

of Business Logistics 17, 265-302.
Klincewicz, J.G. (1998). Hub location in backbone/tributary network design: a review. Location Science:

6, 307-335.
Kuby, M.J. and G.R. Gray (1993). The hub network design problem with stopovers and feeders: the case

of Federal Express. Transportation Research, 27A, 1-12.
Langevin, A., P. Mbaraga, and J.F. Campbell (1996). Continuous approximation models in freight

distribution: an overview. Transportation Research, 30B, 163-188.
Lee, H.L. and C. Billington (1995). The evolution of supply-chain-management models and practices at

Hewlett-Packard. Interfaces, 25:5, 42-63.
Lee, H.L., V. Padmanabhan and S.J. Whang (1997). Information distortion in a suppy chain: the

bullwhip effect. Management Science, 43, 546-558.
Lee, H.L. and C.S. Tang (1997). Modelling the costs and benefits of delayed product differentiation.

Management Science, 43, 40-53.
Newell, G.F. and C.F. Daganzo (1986). Design of multiple vehicle delivery tours—I. A ring-radial

network. Transportation Research, 20B, 345-364.
Newell, G.F. and C.F. Daganzo (1986). Design of multiple vehicle delivery tours—II: Other metrics.

Transportation Research, 20B, 365-376.
O'Kelly, M.E. (1986). The location of interacting hub facilities. Transportation Science, 20, 92-106
O'Kelly, M.E., and D.L. Bryan (1998). Hub location with flow economies of scale. Transportation

Research, 32B, 605-616.
Morrison, D. and R. Wise (2000). Beyond the exchange: the future of B2B. Harvard Business Review,

78:6, 86-96.
Partyka, J.G. and Hall, R.W. (2000). On the road to service. OR/MS Today, August, 26-35.
Simchi-Levi, D., P. Kaminsky and E. Simchi-Levi (2000). Designing and Managing the Supply Chain:

Concepts, Strategies and Cases, Irwin/McGraw-Hill: New York.
Smilowitz, K.R. (2001). Design and Operation of Multimode, Multiservice Logistics Systems, Institute

of Transportation Studies Ph.D. Dissertation, University of California at Berkeley, UCB-ITS-DS-
2001-04.

Ukovich, W., F. Baita and R. Pesenti (1998). Dynamic routing-and-inventory problems: a review.
Transportation Research, 32A, 585-596.

Van Hoek, R.I. (2000). The role of third-party logistics providers in mass customization. International
Journal of Logistics Management, 11, 37-46.

Vaughan, R. (1984). Approximate formulas for average distances associated with zones. Transportation
Science, 18, 231-244.

Zhong, H.S. (2002). Ph.D. Dissertation, University of Southern California.



This page intentionally left blank 



16 REVENUE MANAGEMENT
Garrett J. van Ryzin and Kalyan T. Talluri

16.1 Introduction

Revenue management (RM), refers to the collection of strategies and tactics by
which airlines (and other transportation providers) manage demand for their ser-
vices. This chapter surveys the methods used to perform this demand management
function. While revenue management today is applied in a wide range of industries,
our focus here is on airline and other transportation RM problems. The chapter is
based on excerpted material from our forthcoming book, Talluri and van Ryzin,
2002, The Theory and Practice of Revenue Management.

Airline History

The starting point for revenue management was the Airline Deregulation Act of
1978. Passage of the act led to rapid change in the airline industry. New low-cost
airlines entered the market and tapped into an entirely new – and vast – market for
discretionary travel. The potential of this market was embodied in the rapid rise of
PeopleExpress. The airline started in 1981 with a cost-efficient operation and fares
50–70% lower than the major carriers. By 1984, its revenues were approaching
$1B, and at the close of 1984 PeopleExpress posted a profit of $60M, its highest
profit ever (Cross, 1997).

The result was a significant migration of price-sensitive discretionary travel-
ers from major airlines to the new, low-cost competitors. Yet the major airlines
had strengths that these new entrants lacked. They offered more frequent sched-
ules, service to more cities, and an established brand-name and reputation. For
many business travelers, schedule convenience and service was (and is still) more
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important than price, so the threat posed by low-cost airlines was less acute in the
business-traveler segment of the market.

Nevertheless, the cumulative losses in revenue from this shift in traffic to
low-cost airlines was badly damaging the profits of major carriers. Among major
airlines, a strategy to combat this trend and recapture the leisure passenger was
needed.

Robert Crandall, American Airline’s CEO at the time, is widely credited with
the breakthrough in solving this problem (the low fares and expanded service
created by this new competition were less of a “problem” in the eyes of consumers
and regulators). He recognized that the seats that were going unsold on many
of American’s flights were already being “produced” at a very low cost. This is
because the vast majority of the costs of a flight (capital costs, wages, fuel) are
fixed, and the marginal cost to carry an additional passenger is almost zero. As a
result, American could in fact afford to “compete on cost” with the upstarts using
its surplus seats.

However, two problems had to be solved in order to execute this strategy.
First, American needed to identifying the “surplus” seats on each flight. The
scheme would not be profitable if a sale of a low price seat displaced one of their
high-paying business customers.1 Second, they had to ensure that American’s
business customers did not switch and buy the new low price products targeted at
discretionary, leisure customers.

American solved these two problems using a combination of purchase restric-
tions and capacity-controlled fares.2 Discounts had to be purchased 30 days
in advance of departure and required a seven-day minimum stay, restrictions
that prevented most business traveler from utilizing the new low fares. At the
same time, American limited the number of such seats sold on each flight (it
capacity-controlled the fares).

Initially, the capacity controls American used were based on setting aside a
fixed portion of seats on each flights for the new low-fare products. However, as
American gained experience with its Super-Saver fares, it realized that a more
intelligent approach to capacity control was need to realize their full potential.
American’s operations research staff therefore embarked on the development of
what became known as the “DINAMO” system – the Dynamic Inventory Allocation
and Maintenance Optimizer. Based on massively detailed statistical forecasts and
optimization models, DINAMO determined automatically the number of seats to
reserve for discounted products on each individual departure. DINAMO was, in
essence, the first large-scale RM system.

DINAMO was implemented in full in January of 1985 along with a new fare
program – entitled “Ultimate Super Saver Fares”. The DINAMO system allowed
American to be much more aggressive in its pricing strategy. They now could
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post very low fares on a large number of individual flights, confident of their
capability to accurately control the discounts on every individual departure. Indeed,
this feature – of pricing aggressively and competitively at an aggregate, market
level, while controlling capacity at a tactical, individual-departure level – still
characterizes the practice of RM in the airline industry today.

PeopleExpress was especially hard hit by this move, as American repeat-
edly matched or beat their prices in every market they served (Cross, 1997).
PeopleExpress’s annual profit fell from an all time high in 1984 to a loss of over
$160M by 1986. In just two short years they went bankrupt, and in September
1986 the company was sold to Continental Airlines. This experience was repeated
throughout the industry, and airlines that did not have RM capabilities quickly
scrambled to get them.

As a result of this history, the practice of revenue management in the airline
industry today is both pervasive and mature. Indeed, it’s no exaggeration to say that
a large, modern airline today would quite simply not be able to operate profitably
without revenue management. For example, American Airlines’ estimates that its
RM practices generated $1.4 billion in additional incremental revenue over a three
year period starting around 1988, Smith et al., 1992, a figure comparable to the
airline’s total profits over this period.

Components of an RM System

Here, we briefly describe the generic components of a RM system at a high level.
This serves to introduce the various components involved and gives an overview
of the information flows, controls and design of the overall system.

Revenue management processes generally consist of the following four
steps:

(1)

(2)

(3)

(4)

Data Collection Collect and store relevant historical data (prices, demand,
causal factors).
Estimation and Forecasting Estimate the parameters of the demand model.
Forecast demand and other relevant quantities, like no-show and cancellation
rates.
Optimization Find the optimal set of controls controls for the sale of inven-
tory (allocations, bid-prices, overbooking limits) to be applied until the next
re-optimization.
Control Control the sale of inventory using the optimized controls. This is
done either through the firm’s own transaction-processing systems (internet,
call centers) or through shared distribution systems (e.g. computer reservations
systems).
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The revenue management process typically involves cycling through these
steps at repeated intervals. The frequency with which each step is performed is a
function of many factors that include the volume of data and how fast it changes,
the type of forecasting and optimization methods used and the relative importance
the resulting decisions.

Overview of Topics

This Chapter mainly surveys the Steps 3 and 4 above, and even this coverage
is somewhat abbreviated. Complete details as well as a treatment of forecasting
and implementation issues are provided in Talluri and van Ryzin, 2002. McGill
and van Ryzin, 1999 also provides an overview and annotated bibliography of the
published academic literature in the field through 1998.

We first address the problems of capacity control. Section 16.2 looks at
capacity controls for a single resource (seats on a single flight) which is sold to
differentiated demand classes – the so-called “single-leg” problem in airline RM.
Section 16.3 looks at the same capacity control decisions, but in a setting in which
products require multiple resources – called the “network” setting. In the airline
industry, the main motivation for network methods are to control availability of
discount classes at the origin-destination (O&D) level rather than the flight (leg)
level. Finally, Section 16.4 considers overbooking decisions and their relation to
capacity controls.

16.2 Single-resource Capacity Control

The single-resource (single-leg) problem addresses optimally allocating capacity
of a single resource to different demand segments. We begin by surveying the
nontechnical issues surrounding this problem in the airline industry. The remainder
of the section focuses on various models and methods for making capacity control
decisions.

Fare Classes

As mentioned, the single-resource problem has its roots in the emergence of
capacity-controlled discounted airfares shortly after the airline industry was dereg-
ulated in the U.S. in the mid 1970’s. Today, most airlines offer discounts based on
a relatively stable set of restrictions. These include advance purchase restrictions
of 7, 14, 21 and 30 days, the requirement to stay a Saturday night and nonre-
fundability and/or penalties for changes in the itinerary after purchase. Various
combinations of these restrictions are used to define different fare products.
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In most airline computer reservation systems (CRSs), the allocation of seats
is controlled through the use of fare class codes – or simply fare classes. Fare
classes are not necessarily related to the “class of service” the passenger receives,
though in some cases they are (e.g. “F” designate first class while “Y” designates
coach/economy class). More importantly, they indicate different discount levels
that are available for each cabin of service. However, fare classes are still an
aggregation of actual fares, and thus different fares are frequently sold within the
same fare class. This means that the revenue generated by a fare class is often
quite variable. Every airline is free to chose its own fare class designations, though
commonly “Y” designates a full fare, and letters “Q”, “B” and “M” designate
various discounted classes.

Types of Controls

Reservation systems may provide different mechanisms for controlling fare class
availability. These mechanisms are typically deeply imbedded in the software
logic of the reservation system itself and can be quite expensive (if not impossible)
to change as a result. Therefore, the control mechanism itself is frequently an
important practical constraint faced when implementing revenue management.
Here we review the most common types of controls.

Booking Limits Booking limits are controls that limit the amount of capacity
that can be sold to any particular demand class at a given point in time. For example,
a booking limit of 18 on Class 2 indicates that at most 18 units of capacity can
be sold to customers in Class 2. Beyond this limit, the class would be “closed”
to additional Class 2 customers. This limit of 18 may be less than the physical
capacity, if we want to reserve capacity for higher revenue classes.

Booking limits are either partitioned or nested: A partitioned booking limit
logically divides the available capacity into separate blocks – one for each demand
class – which can be sold only to the designated class. For example, with 30 units
to sell, a partitioned booking limit may set a booking limit of 12 units for Class 1,
10 units for Class 2 and 8 units for Class 3. If the 12 units of Class 1 capacity are
used up, Class 1 would be closed regardless of how much capacity is available in
the remaining buckets. This could obviously be undesirable if Class 1 has higher
revenues than Classes 2 and 3.

With a nested booking limit, the capacity available to different classes overlaps
in a hierarchical manner – with higher revenue classes having availability to all
the capacity reserved for lower-revenue classes (and perhaps then some). Let the
nested booking limit for Class j be denoted With the same 30 units of capacity,
the nested booking limits could be (all the available capacity),



604 Handbook of Transportation Science

and (See Figure 16.1.) We would accept at most 8 Class 3 customers, at
most 18 Class 2 customers, and as many Class 1 customers as possible. Nested
booking limits avoid the problem of capacity being simultaneously unavailable
for a high-revenue class yet available for lower-revenue classes. Most reservations
systems that use booking limit controls, quite sensibly, use nested rather than
partitioned booking limits for this reason.

Protection Levels Protection levels are in many ways equivalent to booking
limits. A protection level specifies an amount of capacity to reserve (protect) for
a particular demand class or set of classes. Again, protection levels can be nested
or partitioned. In the nested case, protection levels are defined for sets of demand
classes – again ordered in a hierarchical manner according to revenue. Suppose
Class 1 is the highest revenue class, Class 2 the second highest, etc. Then the
protection level j, denoted is defined as the amount of capacity to save for
Classes j, j – 1,...,1; that is, for Classes j and higher (in terms of revenue order).
Figure 16.1 shows the relationship between protection levels and booking limits.
The booking limit for Class j, is simply the capacity minus the protection level
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for Classes j – 1 and higher. That is,

where C is the capacity. For convenience, we define (e.g. the highest
revenue class has a booking limit equal to the capacity) and (all classes
have a protection level equal to capacity).

Bid Prices What distinguishes bid-price controls from both booking limits and
protection levels in that they are revenue-based rather than capacity-based controls.
Specifically, a bid-price control sets a threshold price (which may depend on
variables such as the remaining capacity or time), such that a request is accepted
if its revenue exceeds the threshold price and rejected if its revenue is less than the
threshold price.

As shown in Figure 16.1, bid prices can usually be used to implement the same
nested allocation policy as booking limits and protection levels. In our example in
Figure 16.1, the bid price is plotted as a function of the remaining capacity
x. When there are 12 or fewer units remaining, the bid price is over $75 but less
than $100, so only Class 1 demand is accepted. With 13 to 22 units remaining, the
bid price is over $50 but less than $75 so only Classes 1 and 2 are accepted. With
more than 22 units of capacity available, the bid price drops below $50 so all three
classes are accepted. (Note that the bid price must be adjusted after each sale to
reflect the current remaining capacity to achieve this control.)

Static Models

In this section, we examine so-called static, single-leg models of the capacity
control problem. In these models, demand from each class is assumed to arrive
in separate, non-overlapping intervals, with low revenue classes arriving before
high fares.3 The term “static” here is somewhat of a misnomer, because demand
does arrive sequentially over time – albeit in stages ordered from low-revenue to
high-revenue demand. However, this term is now standard and helps distinguish
this class of models from dynamic models that allow arbitrary arrival orders.

The assumption that demand for each class arrives in nonoverlapping intervals
is an approximation of most real reservation processes; in reality, demand for
classes typically overlaps in time. However, this assumption leads to a simple
model, is often approximately true, and represents something of a “worst-case”
(conservative) assumption. Also, the optimal controls that emerge from the model
apply – at least heuristically – in cases where demand comes in arbitrary order.
For all these reasons, the static model is quite popular in practice.
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The static models also assumes that the demand for different classes is sta-
tistically independent. (Brumelle et al., 1990 however do consider a 2-class static
model with dependent demand.) Largely, this is done for analytical convenience,
however the assumptions is partially justified on practical grounds, since in prac-
tice the parameters of the demand distribution are based on detailed forecasts
for individual flights. To the extent that there are systematic factors affecting all
demand classes (e.g. seasonalities), these are usually picked up in the forecast and
become part of the explained variation in demand in the model (e.g. the differ-
ences in the means and variance on different days). Nevertheless, one has to worry
about possible residual dependence in the unexplained variation in demand (i.e.
the noise terms). Even these correlations, however, are partially captured in prac-
tice through frequent cycles of reforecasting and reoptimizing prior to departure
mentioned above.

The static models also assumes risk neutrality, which is usually well-justified
in practice since a firm implementing RM typically makes many such decisions
for a large numbers of flights over time.

Finally, the models here do not consider overbooking. Overbooking is
addressed separately in Section 16.4. In practice, the problems are typically
decomposed; the overbooking limits are set first and the resulting virtual capacity
(physical capacity plus the overbooking pad) is then used in a capacity control
model. This is the perspective taken in this section, though we address combined
overbooking and capacity control models in Section 16.4.

The earliest paper on the static models is Littlewood, 1972. Another early
applied paper is Bhatia and Parekh, 1973. But there are close connections to
earlier work on the stock-rationing problem in the inventory literature by Kaplan,
1969 and Topkis, 1968. Optimal policies for the n > 2 case were obtained in close
succession (using slightly different methods and assumptions) in by Brumelle and
McGill, 1993, Curry, 1990, Robinson, 1995 and Wollmer, 1992.

Littlewood’s Two-class Model The simplest single-resource model was intro-
duced by Littlewood, 1972. The model assumes two product classes, with
associated revenues The capacity (or virtual capacity) is C and it is
assumed that there are no cancellations or overbooking. Demand for class k is
denoted and its distribution is denoted by Demand for Class 2 arrives
first. The central problem is to decide how much of Class 2 demand to accept prior
to seeing the realization of Class 1 demand.

The optimal decision can be argued informally using a simple marginal analy-
sis: Suppose we have x units of capacity remaining and receive a request from
Class 2. If we accept the request, we collect revenues of If we do not accept
it, we will sell seat x (the marginal seat) at if and only if demand for Class 1
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is x or higher. That is, if Thus the expected gain from reserving the x-th
seat (the expected marginal value) is Therefore, it makes sense to
accept a Class 2 request as long as the current revenue exceeds this marginal value.
Equivalently, if and only if

This decision rule can be implemented using either protection levels, booking
limits or bid prices. Note the right hand side above is decreasing in x. Therefore,
there will be an optimal protection level, denoted such that we accept Class 2
if the remaining capacity exceeds and reject it if the remaining capacity is or
less. Formally, satisfies

If the distribution of is continuous, then the optimal protection level is given
by the simpler expression

which is known as Littlewood’s rule. Setting a protection level of for Class 1
according to Littlewood’s rule is an optimal policy for the two-class, static model.
Equivalently, setting a booking limit of on Class 2 demand is optimal.

Alternatively, we can use a bid-price control with the bid-price set at

Static, Multiple-class Models We next consider the general case of n > 2
product classes. Again, we assume that demand for the n classes arrives in n
stages, one for each demand class, with classes arriving in reverse order of their
revenue values. Let the classes be indexed so that Hence,
Class n (the lowest revenue) demand arrives in the first stage (Stage n), followed
by Class n – 1 demand in Stage n – 1, etc. with the highest price class (Class
1) arriving in the last stage (Stage 1). Since there is a one-to-one correspondence
between stages and classes, we will index both stages and classes by j. Demand
and capacity are most often assumed to be discrete, but we will also use continuous
capacity and demand where it helps simplify the analysis or optimality conditions.

Dynamic Programming Formulation This problem can be formulated as a
dynamic program in the Stages j with state variable, x, being the remaining
capacity.
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At the start ofeach Stage j, the demand has not been realized.
Within Stage j, the following sequence of events occurs:

1.
2.

3.

The realization of the demand occurs.
We observe the realized value and decide how much ofthis demand, denoted
u, to accept – subject to the constraint that we can’t accept more demand than
has arrived, and we can’t accept more than the remaining capacity x. So,

The revenue is collected, and we proceed to the start of Period j – 1 with
a remaining capacity of x – u.

Thus, the decision in Stage j is made with perfect information about however,
we know only the distribution of future demand (the “forecast” of demand) for the
remaining stages.

Note this sequence of events does not necessarily reflect how demand is
realized and decisions are made in most real reservations processes. Indeed, it
represents a best-case situation in which we know the demand perfectly when
making our Stage-j decision. However, as we show below, the optimal control
in fact does not require any information about and can be implemented with
simple threshold-type rules.

To proceed, let denote the value function at the start of Stage j. That is,
gives the maximum expected revenue that can be obtained entering Stage j

with x units of capacity remaining. Once the value is observed, the value of u
is chosen to maximize the current Period-j revenue plus the revenue-to-go, or

subject to the constraint The value function entering Stage j,
is then the expected value of this optimization with respect to the demand

Hence, the Bellman equation is4

with boundary conditions

The values that maximize the right-hand-side of (16.2) for each j and x form an
optimal control policy for this model.



Revenue Management

Optimal Policy: Discrete Demand and Capacity We first consider the case
where demand and capacity are discrete. To analyze the form of the optimal control
in this case, define

is the expected marginal value of capacity at Stage j – i.e. the expected
incremental value of the x-th unit of capacity. A key result for determining the
structure of the optimal control concerns how these marginal values change with
capacity x and the Stage j.

Proposition 1 The marginal values of the value function defined by
(16.2) satisfy:

That is, the marginal value is decreasing in the remaining capacity at each
Stage j, and at a given capacity level, x, the marginal value increases in the number
of stages remaining. These two properties are intuitive and also greatly simplify
the control.

To see this, consider the optimization problem at Stage j + 1. From (16.2) and
the definition of we can write

where we take the sum above to be empty if u = 0. Since is decreasing in x
by Proposition 1, Part (i), it follows that the terms in the sum,
are decreasing in z. Thus, it is optimal to increase u (to keep adding terms) until
the terms become negative or the upper bound is reached, whichever comes
first.

The resulting can be expressed in terms of optimal protection levels
Define the optimal protection level for Classes j, j – 1,...,1 (Class j and higher
in the fare order) by

(The optimal protection level by convention.) The optimal control is then

The quantity is the remaining capacity in excess of the protection level,
which is the maximum capacity we are willing to sell in Stage j. Thus, the optimal

609
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policy is to keep selling capacity to Class j + 1 in Stage j + 1 until this limit is
reached. The situation is shown in Figure 16.2.

In practice, therefore, we can simply post the protection level in a reserva-
tion system and accept requests first-come, first-serve until the capacity threshold

is reached or the period ends, whichever comes first. The optimal protection-
level control, therefore, involves only simple rules and requires no information
about the demand within Period j + 1, yet it produces the same optimal
decision had we known exactly at the start of the period.

Part (ii) of Proposition 1 can be used to determine how the protection levels
are related. It implies that if the protection levels are ordered,

This fact is easily seen from Figure 16.2, because if increases with j and
the curve decreases (shifts down) with j, then the optimal protection level

will shift to the left (decrease). Together, this ordering produces the nested-
protection-level structure.

One can also use booking limits in place of protection levels to achieve the
same control. Optimal nested booking limits are defined by

with The optimal control in Stage j + 1 is then to accept
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Note C – x is the total capacity sold prior to Stage j + 1 and is the booking
limit for Class j +1, so is the remaining capacity available for Class
j + 1. The optimal booking limit is also shown in Figure 16.2.

Finally, the optimal control can also be implemented through a table of bid
prices. Indeed, if we define the Stage-j + 1 bid prices by

then the optimal control is

In words, we accept the z-th request in Stage j + 1 if the revenue exceeds the
bid price value of the z-th unit of capacity that is allocated. In practice,
this control can be implemented by storing a table of bid prices and processing
requests by sequentially comparing the revenue to the table values corresponding
to the remaining capacity.

We summarize these results in the following theorem:

Theorem 1 For the static model defined by (16.2), the optimal control can be
acheived using either: (1) Nested protection levels defined by (16.3), (2) nested
booking limits defined by (16.5), or (3) bid price tables defined by (16.6).

Optimality Conditions for Continuous Demand Next, we consider the case
where capacity is continuous and demand at each stage has a continuous distribu-
tion. In this case, the dynamic program is still given by (16.2), however x and
u are now continuous quantities. The analysis of the dynamic program is slightly
more complex than in the discrete-demand case, but many of the details are quite
similar and are omitted. However, one of the chief virtues of the continuous model
is that it leads to simplified expressions for the optimal vector of protection lev-
els We state the basic result without proof. (See Brumelle and
McGill, 1993 for a proof.)

First, for an arbitrary vector of protection levels y, define the following n – 1
fill events

Then is the event that demand-to-come in Stages 1,2,…, j exceeds the
corresponding protection levels. A necessary and sufficient condition for to be
an optimal vector of protection levels is that it satisfy the n – 1 equations



612

Handbook of Transportation Science

That is, the j-th fill event should occur with probability equal to the ratio of
Class-(j +1) revenue to Class 1 revenue. As it should, this reduces to Littlewood’s
rule in the n = 2 case, since

The conditions (16.8) can also be used to define an adaptive algorithm for
determining optimal protection levels, as shown by van Ryzin and McGill, 2000.
The method starts by fixing an arbitrary protection levels y. Then, based on whether
the events occur or not, a simple adjustment to y is made (i.e.
if the event occurs, the protection level is increased and if does
not occur, is decreased in a controlled fashion). Repeated application of these
simple updates is proven to converge to the optimal protection levels under
stationary demand conditions. (See van Ryzin and McGill, 2000.)

Computing Optimal Nested Allocations A common sentiment among some
practitioners is that optimal nested allocations are complex to compute. However,
computing these values is in fact quite easy and efficient algorithmically. There
are two basic approaches: Dynamic programming and Monte Carlo integration.

The first approach is based on using the DP recursion (16.2) directly and
requires that demand and capacity are discrete – or in the continuous case that
these quantities can be suitably discretized. The inner optimization in (16.2) is
simplified by using the optimal protection levels from the previous stage.
Thus, substituting (16.4) into (16.2) we obtain

from which is determined using (16.3). This procedure is repeated starting from
j = 1 and working backwards to j = n – 1.

For discrete demand distributions, computing the expectation above for each
state x requires evaluating at most O(C) terms since
Sincethereare C states (capacity levels), thecomplexityateachstageis The
critical values can then be identified from (16.3) in log (C) time by binary search
since is nonincreasing. Indeed, since we know  the binary search
can be further constrained to values in the interval Therefore computing

does not add to the complexity at Stage j. Since these steps must be repeated
for each of the n – 1 stages (stage n need not be computed as mentioned above),
the total complexity of the recursion is

The second approach to computing optimal protection levels is based on using
(16.8) together with Monte Carlo integration. It is most naturally suited to the case
of continuous demand and capacity, though the discrete case can be computed (at
least heuristically) with this method as well. The idea is to simulate a large number
M of demand vectors One then progressively sorts through
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these values to find thresholds that approximately satisfy (16.8).
Details can be found in Robinson, 1995 and Talluri and van Ryzin, 2002.

Dynamic Models

Dynamic models relax the assumption that fare classes arrive in a strict order.
Instead, they allow for an arbitrary order of arrival, with the possibility of over-
lapping arrivals of several fare classes. While at first this seems like a strict
generalization of the static case, the dynamic models require the assumption of
Markovian (e.g. Poisson) arrivals to make them tractable. As a result, they cannot
model different levels of variability in demand, which one can do rather easily in
the static case. Indeed, this constraint on the distribution of demand is the main
drawback of dynamic models in practice. Also, dynamic models require an esti-
mate of the pattern of arrivals over time (called the “booking curve”), which may
be difficult to estimate in certain applications. Thus, the choice of dynamic versus
static models essentially comes down to a choice of which set of approximations
is more acceptable and which data are available in any given application.

Other assumptions of the static model are retained: Demand is assumed to
be independent over time and the seller is assumed to be risk neutral. Again, the
justification for these assumptions follows the same reasoning as in the static-
model case.

The dynamic model was first analyzed by Lee and Hersh, 1993. Lautenbacher
and Stidham, 1999 provided a unified analysis of both the static and dynamic
single-resource models. See Liang, 1999 for an analysis of a continuous time
version of the dynamic model.

Formulation and Structural Properties In the simplest dynamic model, we
again have n demand classes with associated revenues Let

denote the vector of revenues. Then there are T total periods
and t indexes the periods, with the time index running forward (e.g. t = 1 is the
first period and t = T is the last period). Since there is no longer a one-to-one
correspondence between periods and classes, we use separate indices; t for periods
and j for classes.

In contrast to the static model, in each period we assume that at most one
arrival occurs.5 The probability of an arrival of Class j in Period t is denoted
and we let The assumption of at most one arrival per
period implies that must satisfy
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This condition can be satisfied in practice by discretizing time into sufficiently
small intervals so that the arrival probabilities in any period are small. In general,
the periods need not be of the same duration. Note also the arrival probabilities
may vary with t, so the mix of classes that arrive may vary over time. (In partic-
ular, we do not require lower-revenue classes to arrive earlier than higher revenue
classes.)

Dynamic Program As before, x denotes the remaining capacity and the value
function in Period t is denoted Let if a demand for Class j arrives
in Period t and R(t) = 0 otherwise. Note that Let u = 1 if we
accept the arrival (if any) in and u = 0 otherwise. We seek to maximize the sum
of current revenue and the revenue-to-go, or

The Bellman equation is therefore

where is the expected marginal value of capacity
in Period t + 1. The boundary conditions are

Optimal Policy An immediate consequence of (16.9) is that if a Class j request
arrives, so that then it is optimal to accept the request if and only if

Thus, the optimal control can be implemented using a bid-price control where the
bid price is equal to the marginal value,

Revenues that exceed this threshold are accepted, those that do not are rejected.
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Also, as in the static case, an important property of the value function is that
it has decreasing marginal value Namely,

Proposition 2 The increments of the value function defined by (16.9)
satisfy:

(i)
(ii)

This proof is omitted, but is a natural and intuitive property since one would
expect the value of additional capacity at any point in time to have a decreasing
marginal benefit and the marginal value at any given remaining capacity x to
decrease with time.

As a consequence, the optimization on the right hand side of (16.9) can also
be implemented as a nested allocation policy, albeit one that has time-varying
protection levels (or booking limits). Specifically, we can define time-dependent
optimal protection levels

that have the usual interpretation that is the capacity we protect for Classes
j,j – 1,...,1. Then the protection levels are nested,
and it is optimal to accept Class j if and only if the capacity remaining exceed

The situation is illustrated in Figure 16.3.
Finally, time-dependent nested booking limits can be defined as usual by

That the booking limits and protection levels depend on time in this case essen-
tially stems from the fact that the demand-to-come varies with time in the dynamic
model. The change in demand-to-come as time evolves effects the opportunity
cost and therefore the resulting protection levels. As a practical matter, however,
the value function is not likely to change much over short periods of time. So
fixing the protection levels computed by a dynamic model and then updating them
periodically (as is done in most RM systems in practice), is typically near optimal.
Still, the time-varying nature of the protection levels is a key difference between
static and dynamic models.

We summarize these results in the following theorem:

Theorem 2 For the dynamic model defined by (16.9), the optimal control can
be acheived using either: 1) Time-dependent nested protection levels defined by
(16.11), 2) time-dependent nested booking limits defined by (16.12), or 3) bid price
tables defined by (16.10).
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Computation Computationally, the dynamic model is solved by substituting the
optimal policy into (16.9). This yields the recursion

where denotes the positive part of z. Starting with the boundary
condition we proceed with the recursion backward in time t. Each
stage t requires O(nC) operations, so the overall complexity is O(nCT). Usually,
the value of T is O(C) because in most practical problems the total expected
demand is the same magnitude as the capacity and the periods are typically chosen
so that there are O(1) arrivals per period. So the complexity in terms of n and C is
approximately which is the same as that of the dynamic program for the
static model.
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Approximations and Heuristics

As we have seen, computing optimal controls for either the static or dynamic
single-resource model is not particularly difficult. Despite this fact, exact opti-
mization models are not widely used in practice. Indeed, most single-leg revenue
management systems used in the airline industry use one of several approximate
methods to compute booking limits and protection levels.

There are two main reasons for this state of affairs. The first is simply a case of
practice in the area being one step ahead of the underlying theory. As mentioned, in
the airline industry the practice of using capacity controls to manage multiple fare
classes quickly gained popularity following deregulation in the mid 1970’s. But
this predates the theory ofoptimal controls by more than a decade. The only known
optimal controls in the 70’s were Littlewood’s results for the 2-class problem. As
a result, heuristics were developed for the general n-class problem.

A second reason that heuristics remain widely used is that they are typically
simpler to code, quicker to run and in many cases produce controls that are near-
optimal. Indeed, many practitioners in the airline industry simply believe that
even the modest effort of computing optimal controls is not worth the benefit they
provide in improved revenue performance.

Regardless of one’s view on the use of heuristics, it is important to understand
them. They remain widely used in practice, produce good solutions in most cases,
and can also help develop some useful intuition.

We next look at the two most popular heuristics: EMSR-a and EMSR-b, both
of which are due to Belobaba. (See Belobaba, 1987a, 1987b, 1989, 1992 and
Belobaba and Weatherford, 1996.) Both heuristics are based on the n-class, static,
single resource model and assumptions outlined above in Section 16.2. They differ
only in how they approximate the problem. As before, classes are indexed so that

denotes the cdf of Class j demand and low revenue
demand arrives before high revenue demand in stages that are indexed by j as
well. That is, Class n demand with revenue arrives in the first stage (Stage n),
Class n – 1 with revenue arrives in Stage n – 2, etc. Moreover, for ease of
exposition we assume that capacity and demand are continuous, and the distribution
functions are continuous as well, though these assumptions are
easily relaxed.

EMSR-a EMSR-a (expected marginal seat revenue – version a) is the most
widely publicized heuristic for single-resource problem. Despite this fact, it is
less popular in practice than its close cousin, EMSR-b, which is curiously quite
obscure in the published literature. Generally, EMSR-b provides better revenue
performance, though EMSR-a is important to know just the same.
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EMSR-a is based on the idea of adding the protection levels produced by
applying Littlewood’s rule to successive pairs of fare classes. Consider Stage j + 1
in which demand of Class j + 1 will arrive with revenue We are interested
in computing how much capacity to reserve for the remaining demand classes,
i.e. classes j, j – 1,...,1; that is, the protection level,  for classes j and higher.
Suppose there was only one class remaining, call it Class k. Then we would use
Littlewood’s rule (for continuous demand) and reserve capacity for Class k,
where

Repeating for each future demand class k = j, j – 1,...,1 we could compute
how much capacity we would reserve for each such class in isolation. The idea of
EMSR-a, then, is simply to add up these individual protection levels to approximate
the total protection level That is, set the protection level using

where is given by (16.13). As always, given capacity C one can immediately
define equivalent booking limits One then repeats this same
calculation for each Stage j.

EMSR-a is certainly simple and has an intuitive appeal. However, it is not hard
to show that it can be excessively conservative and produce protection levels that are
larger than optimal in certain cases. This is because adding the individual protection
levels ignores the statistical averaging effect (“pooling effect”) produced by
aggregating demand across classes.

EMSR-b EMSR-b (expected marginal seat revenue – version b) is an alterna-
tive single-resource heuristic that avoids the lack-of-pooling defect in EMSR-a
mentioned above. EMSR-b is again based on an approximation that reduces the
problem at each stage to two classes, but in contrast to EMSR-a, the approximation
is based on aggregating demand rather than aggregating protection levels. Specifi-
cally, the demand from future classes is aggregated and treated as one class with a
revenue equal to the weighted average revenue. The aggregation step is simplified
if we assume demand is normally distributed, so the distribution of the aggregated
demand can be easily determined from the means and variances of demand for
each class.
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Consider Stage j + 1 in which we want to determine protection level Define
the aggregated demand to come by

and let the weighted average revenue from classes 1, . . . j , denoted be
defined by

where denotes the mean of Class j demand. Then the EMSR-b protection
level for Class j and higher, is chosen so that

For example, it is common when using EMSR-b to assume demand for each
Class j is independent and normally distributed with mean and variance in
which case

where is the mean and is the variance of the
aggregated demand to come at Stage j+1 and (recall
is the inverse of the standard normal cdf). Again, one repeats this calculation for
each j.

EMSR-b clearly captures the pooling – or statistical averaging – effect that is
lacking in EMSR-a. This is the key advantage of the approximation.

Numerical Example A simple numerical example gives some sense of the pro-
tection levels and revenues produced by these two approximations. The example
we consider is based on a slightly modified instance of the data reported inWollmer,
1992. There are four fare classes and demand is assumed to be normally distrib-
uted. The data for the example are shown in Table 16.1 along with the protection
levels produced by EMSR-a, EMSR-b and the optimal policy. Note that there
is a considerable discrepancy between the protection levels computed under the
heuristics, both compared to each other and to the optimal protection levels.

The revene performance of the methods from a simulation study are shown
below in Table 16.2. Capacity was varied from 80 to 150 to create demand factors
(ratio of total mean demand to capacity) in the range 1.7 to 0.9. The percentage



620

Handbook of Transportation Science

suboptimality is also reported (one minus the ratio of policy revenues to optimal
revenues). Note for this example that EMSR-a is slightly better than EMSR-b,
though both perform quite well; the suboptimality gap of EMSR-b reaches a high
of 0.52%, while the maximum suboptimality of EMSR-a is only 0.30%. However,
this behavior is somewhat problem specific. For example, using this same example
but with a slight change in the revenue values accross the different classes results
in EMSR-b doing better than EMSR-a.

Group Arrivals

Group arrivals can pose additional complications. A group request is a single
request – but one for multiple units of capacity (e.g. a family of four traveling
together). We will briefly describe this case, but omit any detailed formulations
because the basic ideas follow readily from what we have seen thus far (and the
more complicated ideas are beyond the scope of this text).
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If groups can be partially accepted – that is, given a request for m > 1 units
we can sell any quantity u in the range (and more importantly the
customer is willing to buy any amount in this range, which is not unusual among
tour operators) – then there is little impact on the single-leg models discussed
above. Indeed, the static model (16.2) can be thought of as a group model where in
each period one “large group” of size arrives, because we can sell u units, where

and x is the total available capacity. Thus, with groups that
can be partially accepted, we only need to keep track of the aggregate demand for
each class and the formulations are essentially the same as in the traditional case.

The real complication in group arrivals occurs when groups must be completely
accepted – that is, given a request for m > 1 units we can sell only all m units or
none at all. This seemingly modest change has a profound impact on the structure
of optimal allocation policies. First, we must specify the distribution of group sizes
and we must model how much demand we have from groups of various sizes. But
this in itself does not pose too much of a theoretical difficulty. The bigger problem
is that the value function may not be concave (i.e. the marginal value of capacity
may in fact increase), so using booking limits, protection levels or bid prices may
not be optimal.

Again, we will omit the details here, but essentially, the requirement to com-
pletely accept or reject groups creates a combinatorial (bin packing) phenomenon
in allocating capacity. The resulting nonmonotonicities in the value function mean
that optimal policies are considerably more complex than in the case where groups
can be partially accepted. The problem is addressed in Brumelle and Walczak,
1997, Kleywegt and Papastavrou, 1998 and Van Slyke and Young, 2000.

Buy-up, Diversion and Discrete Choice Models

A key assumption in the above single-resource models is that demand for each of
the product classes is completely independent of the capacity controls being applied
by the seller. That is, it is assumed that the likelihood of receiving a request for
any given product does not depend on which other products are available at the
time of the request. Needless-to-say, this is a somewhat unrealistic assumption.
For example, in the airline case the likelihood of selling a full fare ticket may
very well depend on whether a discount fare is available at the same time and the
likelihood that a customer buys at all may depend on the lowest available fare.
When customers buy a higher fare when a discount is closed it is called buy-up;
when they chose another flight when a discount is closed it is called diversion.

Clearly, such consumer behavior could have important revenue management
consequences and should ideally be considered when making control decisions.
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We next look at some heuristic and exact methods for incorporating consumer
choice behavior in single-resource problems.

Buy-up Factors One approach to modeling consumer choice behavior that works
with the two-class model is to include buy-up probabilities – also called “buy-up
factors” – in the formulation. (See Belobaba and Weatherford, 1996.)

The approach works as follows: Consider the simple two-class static model
and recall that Littlewood’s rule (slightly restated) is to accept demand from Class 2
if and only if

where x is the remaining capacity. That is, if the revenue from accepting Class 2
exceeds the marginal value of the unit of capacity required to satisfy the request.
Now suppose that there is a probability q that a customer for Class 2 will buy
a Class 1 fare if Class 2 is closed. The net benefit of accepting the request is
still the same, but now rather than losing the request when we reject it, there is
some chance the customer will sell-up to Class 1. If so, we earn a net benefit of

(the Class 1 revenue minus the expected marginal cost). Thus,
it is optimal to accept Class 2 now if or
equivalently if

Note that the RHS side above is strictly larger than the RHS of Littlewood’s rule
(16.17), which means that the above rule is more likely to reject Class 2 demand.
This is intuitive, because with the possibility of customers up-grading to Class 1,
we should be more eager to close Class 2.

The difficulty with this approach is that it does not extend very neatly to more
than two fare classes – at least not in an exact way – because the probability that
a customer buys Class i given that Class j is closed depends not only on i and j,
but on which other classes are also available. That is, with more than two fare
classes the consumer faces a multinomial rather than a binary choice.

However, one can at least heuristically extend the buy-up factor idea to
EMSR-a or EMSR-b since these heuristics approximate the multi-class problem
using the two-class model. For example, EMSR-b can be extended to allow for a
buy-up factor by modifying the equation for determining the protection level
(16.16), as follows

where is the probability that a customer of Class j + 1 buys-up to one of the
Classes j, j – 1,...,1, is the weighted average revenue from these classes as
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defined by (16.15) and is an estimate of the average revenue received
given that a Class j + 1 customer buys-up to one of the classes j,j – 1...,1 (e.g.

if customers are assumed to buy-up to the next-lowest price class). Again,
the net effect of this change it to increase the protection level and thus close
down Class j + 1 earlier than one would do under the traditional EMSR-b rule.6

While this modification to EMSR-b provides a simple heuristic way to incor-
porate choice behavior, it is nevertheless a somewhat ad hoc adjustment to an
already heuristic approach to the problem. However, it has proved useful as a
rough-cut approach for incorporating choice behavior in practice.

Discrete Choice Models We next look at a single-resource problem in which
consumer choice behavior is modeled exactly using a general discrete choice
model. The approach is from Talluri and van Ryzin, 2001. (See also Algers and
Besser, 2001 and Andersson, 1989 for an application of similar discrete choice
models at SAS.) In contrast to the heuristic approach of buy-up factors, this model
provides a more theoretically sound approach to incorporating choice behavior.
It also provides insights into how choice behavior affects the optimal availability
controls.

Model Definition As in the traditional dynamic model, time is discrete and
indexed by t, with the indices running forwards in time. In each period there is at
most one arrival. The probability of arrival is denoted by which we assume for
ease of exposition is the same for all time periods t. There are n fare classes and
we let N = {1,..., n} denotes the entire set of fare classes. Each fare class
has an associated revenue and without loss of generality we index fare classes
so that

However, in this model the choice of an arrival is not fixed but is an outcome
of the fare the customer selects. This is modeled as follows: In each period t,
the seller chooses a subset of fare classes to offer. When the fares are
offered, the probability that a customer chooses Class is denoted
We let j = 0 denote the no-purchase choice; that is, the event that the customer
does not purchase any of the fares offered in denotes the no-purchase
probability. The probability that a sale of Class j is made in Period t is therefore

and the probability that no sale is made is Note this
last expression reflects the fact that having no sales in a period could be due either
to no arrival at all or an arrival that does not purchase.

The only condition imposed on the choice probabilities it that they
define a proper probability function. That is, for every set the probabilities
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satisfy

The following running example will be used to illustrate the model and
analysis:

Example 1 An airline offers three fare products, Y,M and Q with fares of $800,
$500 and $450 respectively. The probability of purchasing each fare given the set
S of available fares is given by Table 16.3.

Formulation and Optimal Policy A dynamic program for this model is for-
mulated as follows: Let C denote the total capacity, T denote the number of
time periods, t denote the current period and x denotes the number of remaining
inventory units. Define the value function as the maximum expected rev-
enue obtainable from periods t, t + 1, . . . , T given that there are x inventory units
remaining at time t. Then the Bellman equation for is
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where denotes the marginal cost of capacity
in the next period, and have used the fact that for all S,
The boundary conditions are

The problem (16.19) at first seems to have very little structure. However, a sequence
of simplifications provides a good characterization of the optimal policy.

The first simplification is to write (16.19) in more compact form as

where

denotes the total probability of purchase and

denotes the total expected revenue from offering set S. Table 16.3 gives the values
Q(S) and R(S) for our Example 1.

The second simplification is to note that not all subsets need to be con-
sidered when maximizing the right hand side of (16.21). Indeed, the search can
be reduced to only those sets that are not dominated. We omit a formal definition,
but roughly a set T is said to be dominated if a randomization of other sets S
produces an expected revenue that is strictly greater than R(T) with no increase
in the probability of purchase Q(T) (or at least the same revenue R(T) with a
probability of purchase strictly lower than Q(T)). That dominated sets can be
eliminated from consideration is quite intuitive from (16.21); a dominated set
provides less revenue R(T) than other sets and incurs a higher probability of con-
suming capacity Q(T) (and hence incurs a higher opportunity cost
in (16.21)).

For Example 1, Table 16.3 shows which sets are nondominated, namely the
sets {Y}, {Y,Q} and {Y,Q,M}. That these sets are nondominated follows from
inspection of Figure 16.4, which shows a scatter plot of the value Q(S) and R(S)
for all subsets S. Note from this figure a nondominated set is a point that is on the
“efficient frontier” of the set of points Here, “efficiency” is
with respect to the trade-off between expected revenue, R(S), and probability of
sale, Q(S).
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The third simplification is to note that the nondominated sets can be eas-
ily ordered. Indeed, let m denote the number of nondominated sets. These sets
can be indexed such that both the revenues and probabilities of pur-
chase are monotone increasing in the index: That is, if the collection of m
nondominated sets is indexed such that then

as well. The proof of this fact is again omitted, but
it is easy to see intuitively from Figure 16.4. For our Example 1, note from Table
16.3 that the three nondominated sets can be ordered and

with associated probabilities of purchase and
and revenue and

Henceforth, we assume the nondominated sets are denoted and are
indexed in increasing revenue and probability order. Also, to keep notion simpler
we let and and note and are both increasing in k.
So the Bellman equation can be further simplified to

When expressed in terms of the sequence of nondominated sets,
the optimal policy has a quite simple form as shown by the following theorem (the
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proof is omitted):

Theorem 3 An optimal policy for (16.19) is to select a set from among the m
nondominated, ordered sets that maximizes (16.22). Moreover,
for a fixed t, the largest optimal index is increasing in the remaining capacity
x, and for any fixed x, is increasing in time t.

For example, applying Theorem 3 to Example 1, we see that the nondominated
sets and would be used as follows: with
very large amounts of capacityremaining, is optimal – i.e. all three fare classes
are opened. As capacity is consumed, at some point we switch to only offering

– i.e. Class M is closed and only Y and Q are offered. As capacity is reduced
further, at some point we close Class Q and only offer Class Y (i.e. set is used).

Optimality of Nested Allocation Policies The optimization results above have
significant implications for the optimality ofnested allocation policies. The notion
of dominance and Theorem 3 can be used to provide a quite complete character-
ization of cases in which nested allocation polices are optimal. They also can be
used to provide conditions under which the optimal nesting is by fare order.

We begin with a precise definition ofa nested allocation policy in this context:

Definition 1 A control policy is called a nested policy if there is an increasing
family of subsets and an index, that is increasing in x,
such that set is chosen at time t when the remaining capacity is x.

Though this is a somewhat abstract definition of a nested policy, it is in fact
the natural generalization of nested allocations from the traditional single-resource
models and implies an ordering of the classes based on when they first appear in
the increasing sequence of sets That is, Class i is considered “higher” than
Class j in the nesting order if Class i appears earlier in the sequence. Returning to
Example 1, we see that the the nondominated sets are indeed nested according to
this definition because are increasing.
Class Y would be considered the highest in the nested order, followed by Class Q
and then Class M.

If the optimal policy is nested in this sense, then we can define optimal pro-
tection levels such that classes lower in the nesting order than
those in are closed if the remaining capacity is less than just as in the
traditional single-resource case. The optimal protection levels are defined by
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Nested booking limits can also be defined in the usual way based on these protection
levels,

As shown in Talluri and van Ryzin, 2001, the notion of dominated sets can
also be used to characterize when nesting by fare order is optimal. However, the
details are beyond the scope of this chapter. The conditions confirm, for example,
that for the independent demand model of the traditional dynamic single-resource
problem, nesting by fare order is optimal. They also show that nesting by fare
order is optimal when the choice probabilities are determined by a multinomial
logit (MNL) discrete choice model.

16.3 Network Problems

We next examine the problem of capacity control on a network of resources; for
example, managing the capacities of a set of flights in a hub-and-spoke airline
network with connecting and local traffic. The dependence among the resources
in such cases is created by customer demand; customers may require several
resources simultaneously (e.g. two connecting flights) to satisfy their needs. Thus,
limiting availability of one resource may cause a loss of demand for comple-
mentary resources. This in turn creates dependencies among the resources that
necessitates making control decisions at the network level. In the airline industry,
network revenue management is also called “the passenger mix problem” or “O&D
(origin-destination) control”.

Simulation studies of airline hub-and-spoke networks have shown that there
can be significant revenue benefits from using network methods over single-
resource methods. (See Belobaba and Lee, 2000, Belobaba, 2001 and Williamson,
1992.) In terms of industrial practice, the potential improvements have been
sufficient to justify significant investments in network revenue management sys-
tems within the airline industry, hotel industry and elsewhere. However, network
revenue management poses significant implementation and methodological chal-
lenges. On the implementation side, network revenue management vastly increases
the complexity and volume of data that one must collect, store and manage. On
the forecasting side, it requires a massive increase in the scale of the forecast-
ing system, which now must produce forecasts for each individual itinerary and
price-class combination – which we will call a product – at each point in the
booking process. Optimization is more complex as well. In the case of a single-
resource problem there are many exact optimization methods, but in the network
case exact optimization is, for all practical purposes, impossible. Therefore opti-
mization methods necessarily require approximations of various types. Achieving
a good balance between the quality of the approximation and the efficiency of the
resulting algorithms becomes the primary challenge.
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Types of Controls

As with single-resource problems, in network allocation problems there are a
variety of ways one can control the availability of capacity. We next look at the
major categories of network controls. Most are network versions of the controls
used for single-resource problems. But others, virtual nesting in particular, are
somewhat unique to the network setting.

Partitioned Booking Limits Partitioned booking limits in networks are an exten-
sion of partitioned booking limits in the single-resource setting. In the network case,
partitioned booking limits allocate a fixed amount of capacity on each resource
for every product (i.e. itinerary-fare-class in the airline case) that is offered. These
allocated amounts of capacity are nonoverlapping – or partitioned; demand for one
product has access only to its allocated capacity and no other product may use this
capacity.

Partitioned booking limits have a number of defects. First, the number of
product combinations in even a modest-size network can be very large. Thus,
allocating fixed amounts of capacity to each combination results in dividing the
capacity of each resource into a very large number of small allocations. But even
if they are not practical, partitioned allocation have an important role to play
both theoretically and computationally. Theoretically, they can be used to provide
bounds that are useful in characterizing optimal network revenues and optimal
network controls. Computationally, they are used in many approximate models
that provide inputs to other types of controls. An asymptotic analysis of partitioned
controls is given by Cooper, 2000.

Virtual Nesting Controls Nested booking limits, of the type we saw in
Section 16.2 for the single-resource case, are difficult to translate directly into
a network setting. However, the ability of nested controls to dynamically share
the capacity of a resource – and thereby recover the pooling economies lost in
partitioned controls – is an attractive feature. Thus, it is desirable to have a control
that combines these features.

Virtual nesting control – a hybrid of network and single-resource controls –
provides one solution. This control scheme was developed by American Airlines
beginning in 1983 as a strategy for incorporating some degree of network control
within the single-leg nested allocation structure of American’s (then leg-based)
reservation systems. It was first implemented in SABRE7 in 1986. (See Smith and
Penn, 1988.)

Virtual nesting uses single-resource nested allocation controls at each resource
in the network. However, the classes used in these nested allocations are not the
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fare classes themselves. Rather, they are based on a set of virtual classes that do
not necessarily correspond to the fares of each product. Products are assigned to a
virtual class through process know as indexing. This indexing is typically updated
over time as network demand patterns change, though typically indexing is not a
“real time” process. Nested booking limits (or protection levels) for each resource
are then computed using these virtual classes and their associated displacement
adjusted revenue estimates.

Virtual nesting has proven to be quite effective and popular in practice, espe-
cially in the airline industry. It preserves the booking-class control logic of most
airline CRSs yet incorporates network displacement cost information. It therefore
provides a nice compromise between leg-level and full network O&D control.

Descriptions of virtual nesting can be found in Belobaba, 1987a; Smith
and Penn, 1988; Williamson, 1988; Williamson, 1992 and Vinod, 1989; Vinod,
1995.

Bid-price Controls While nested allocations are difficult to extend directly to
networks, network bid-price controls are a simple extension of their single-resource
versions described in Section 16.2. In a network setting, a bid-price control sets
a threshold price – or bid-price - for each resource in the network. Roughly, this
bid-price is an estimate of the marginal cost to the network of consuming the next
incremental unit of the resource’s capacity. When a request for a product comes in,
the revenue of the request is compared to the sum of the bid prices of the resources
required by the product. If the revenue exceeds the sum of the bid prices, the
request is accepted; if not, it is rejected.

Bid-price controls were first introduced by Smith and Penn, 1988 and
Simpson, 1989. Williamson, 1988 and Williamson, 1992 provides variations of
bid-price controls and provides detailed simulation comparisons with other con-
trol methods. See also the industry publications of Phillips, 1994 and Curry, 1992.
Theoretical properties and an asymptotic analysis of bid-price controls is provided
by Talluri and van Ryzin, 1999a.

A General Network Model

We begin with a basic model of the network allocation problem. The network has
m resources which can be used to provide n products. We let if Resource i
is used by Product j and otherwise. Define the incidence matrix
Thus, the j-th column of A, denoted is the incidence vector for products j;
the i-th row, denoted has entries of one for any column j corresponding to
a Product j that uses Resource i. We also use the notation to indicate
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that Resource i is used by Product j and to mean that Product j uses
Resource i.

The state of the network is described by a vector of resource
capacities. If Product j is sold, the state of the network changes to To simplify
our analysis at this stage, we will ignore cancellations and no-shows and assume
the capacities represent virtual capacity inflated to account for cancellations and
no-shows on each resource.

Time is discrete, there are T periods and the index t represents the current
time (time indices run forwards). Within each time Period t, we assume that at
most one request for a product can arrive; that is, the discretization of time is
sufficiently fine so that the probability of more than one request is negligible. This
assumption can be generalized in many ofthe results below, but is the simplest case
to present. It is analogous to the network version of the dynamic single-resource
model.

To make the notation more compact, demand in Period t is modeled as the
realization of a single random vector If
this indicates a request for Product j occurred and that its associated revenue is

this indicates no request for Product j occurred. A realization
R(t) = 0 (all components equal to zero) indicates that no request from any product
occurred at time t. For example, if we have n = 3 products, then a value R(t) =
(0,0,0) indicates no requests arrived, a value R(t) = (120,0,0) indicates a request
for Product 1 with revenue of $120. Note by our assumption that at most one
arrival occurs in each time period, at most one component of R(t) can be positive
(as indicated in the example above). More formally, let
where is the j-th unit n-vector and is the zero n-vector, and define the set

Then, The revenue associated
with Product j may be random as well. The sequence is assumed to
be independent with known joint distributions in each Period t. When revenues
associated with Product j are fixed, we will also denote these by

Given the current time, t, the current remaining capacity x and the current
request R(t), we are faced with a decision: Do we or do we not accept the current
request?

Let an n-vector u(t) denote this decision, where if we accept a
request for Product j in Period t, and otherwise. In general, the decision
to accept, is a function of the remaining capacity vector x and the revenue
of Product j, i.e. and hence u(t) = u(t, x, r). Since we can accept
at most one request in any period and resources cannot be oversold, if the current
seat inventory is x, then u(t) is restricted to the set
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The Structure of the Optimal Controls

In order to formulate a dynamic program to determine optimal decisions
let denote the maximum expected revenue-to-go given remaining capacity x
in Period t. Then must satisfy the Bellman equation

with the boundary condition

Therefore, a control is optimal if and only if it satisfies:

The control (16.25) says that an optimal policy for accepting requests is of the
form: accept revenue for Product j if and only if we have sufficient remaining
capacity and

where is the revenue value of the request for Product j. This reflects the
rather intuitive notion that we accept a revenue of r for a given product only when
it exceeds the opportunity cost of the reduction in resource capacities required to
satisfy the request.

One can show that bid prices are not able to acheive the optimal control (16.25)
in all cases due to the non-additive nature of the value function. This can be shown
via some simple counter examples. (See Talluri and van Ryzin, 2002 for details.)
At the same time, one can show that bid-price controls have good asymptotic
properties and are in fact asymptotically optimal as the number of seats sold and
the demand are increased (proportionately), as shown in Talluri and van Ryzin,
1999a. However, in practical terms, these results are somewhat crude. The real test
of network control methods and models in practice must be determined through
careful simulation testing.

Approximations Based on Network Models

The exact formulation (16.23) can not be solved exactly for most networks of
realistic size. Instead, one must rely on approximations of various types. Most
approximation methods proposed to date follow one of two basic (not necessarily
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mutually exclusive) strategies: The first, which we look at in this subsection, is
to use a simplified network model. For example, posing the problem as a static
math program. The second strategy, which we look at in the next subsection, is to
decompose the network problem into a collection of single-resource problems.

Whichever method is used, it is useful to view all such methods as producing
different approximations of the optimal value function. The outputs from these
approximations can be used to construct controls of various types, either bid-price
controls; partitioned or nested allocations; or virtual nesting controls.

Among the most useful information provided by an approximation method
are estimates of displacement costs – or bid prices. These are used either directly
in bid-price control mechanisms, or indirectly in other mechanisms like virtual
nesting. Given an approximation method M that yields an estimate of the value
function we can approximate the displacement cost of accepting Product j
by

where is the gradient of the value function approximation
assuming the gradient exists. The bid prices are then defined by

If the gradient does not exist, then is typically replaced (at least implicitly)
by a subgradient of If the approximation is discrete, then first differences
are used in place of partial derivatives.

Clearly, one objective for an approximation method is to produce a good
estimate of the value function – and more importantly, a good estimate of the dis-
placement costs or bid prices. On the other hand, speed of computation matters
as well. The approximation may be a static approximation that must be
resolved quite frequently in practice to account for changes in remaining capacity
x and remaining time t. A static method that is accurate but very computation-
ally complex will therefore be of little use in practice. Thus, one should always
keep these two criteria – accuracy and speed – in mind when judging network
approximation methods.

The Deterministic Linear Programming Model The deterministic linear
programming (DLP) method uses the approximation
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where recall is the vector of demand-to-come (demand over the
periods t, t + 1,..., T) for products j and is the vector of revenues
associated with the n products. The decision variables represent
partitioned allocation of capacity for each of the n products. The approximation
effectively treats demand as if it were deterministic and equal to its mean E[D]
and makes an optimal partitioned allocation accordingly.

The DLP was among the first models analyzed in the early work of D’Sylva,
1982; Glover et al., 1982; Dror et al., 1988; Simpson, 1989; Williamson, 1988;
Williamson, 1992, Wollmer, 1986 and Wong, 1990; Wong et al., 1993. Bertsimas
and Popescu, 2001 investigate a variation of the DLP method that corrects for
integrality and degeneracy of the LP.

Occasionally, the optimal primal solution to (16.26) is used to construct a
partitioned control. More often, the primal allocations are discarded and one uses
only the optimal dual variables, associated with the constraints as bid
prices.

The main advantage of the DLP model is that it is computationally very effi-
cient to solve. Due to its simplicity and speed, it is a popular in practice. The
weakness of the DLP approximation is that it considers only the mean demand and
ignores all other distributional information.

Despite this deficiency, simulation studies have shown that with frequent reop-
timization, the performance of DLP bid prices is quite good, producing higher
revenue than both the probabilistic nonlinear programming model and a variety
of leg-based EMSR heuristics. (See Belobaba and Lee, 2000; Belobaba, 2001;
Williamson, 1988; Williamson, 1992.), though other studies have reported more
mixed results. (See Belobaba, 1998.) In general, the performance of the DLP
method (like many network methods) depends heavily on the type of network, the
order in which fare products arrive and the frequency of reoptimization.8

The Probabilistic Nonlinear Programming Model The probabilistic nonlinear
programming (PNLP) method uses the approximation

where again and are defined as in the DLP case. As in the DLP, the decision
variables represent a partitioned allocation of capacity to each Product j and
the term is the expected sales of Product j under this partitioned
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allocation. While this model results in a nonlinear program, it is a relatively easy
one; the objective function is concave and separable in the variables and the
constraints are linear. A variety of specialized algorithms can be designed that
make solving the PNLP model feasible for large networks.

Again, one can obtain bid-price values from the dual variables of the PNLP. If
the active constraints are linearly independent at the optimal solution, then

exists and is given by the unique vector of optimal dual prices associated
with these constraints; if the active constraints are dependent, then multiple optimal
dual vectors are subgradients of the function

Randomized Linear Programming Randomized linear programming (RLP) is
another approach for incorporating stochastic information into the DLP method
based on replacing the expected value of D in the constraint (16.26) by the random
vector D itself. The expected value of the resulting optimal solution then forms an
approximation to the value function. That is, define

The optimal value is a random variable. Let denote an optimal
vector of dual prices for the set of constraints and note that is also
a random vector.

Next, consider approximating the value function by the expected value of

Note the right hand side corresponds to a “perfect information” approximation,
because it reflects a case in which future allocations (and revenues) are based on
perfect knowledge of the realized demand D. We then use as a
vector of bid prices.

The RLP approximation (16.29) requires a method to efficiently compute
One simple approach is to simulate k independent samples of the

demand vector, and solve (16.28) for each sample. Then estimate
the gradient using

That is, simply average the dual prices from k perfect-information allocation
solutions on randomly generated demands. Hence the name randomized linear
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programming (RLP) method. The randomized linear programming method first
mentioned in Smith and Penn, 1988, and later investigated by Talluri and van
Ryzin, 1999b.

Approximations Based on Decomposition

Another strategy for generating network controls is to decompose the problem
(approximately) into m single-resource problems, each of which may incorporate
some network information, but which are nevertheless independent. Formally, one
can think of such a decomposition method as follows: an approximation method M
decomposes the network problem into m single-resource models, denoted Model
i = 1, . . . , m, with value functions  that depends on the time-to-go t and the
remaining capacity of Resource i. These may be constructed by incorporating
some static, network information into the estimates. Then, the total value function
is approximated by

Typically, such approximations are discrete and yield bid prices

where is the usual marginal expected value
produced by Model i.

Decomposition approximations have several advantages relative to network
approximations. First, because they are based on single-resource problems, the
displacement costs and bid prices are typically dynamic and can be represented as
a table of outputs (in the case of dynamic programming models) or simple formu-
las (in the case of EMSR approximations). Thus, it is easy to quickly determine
the effect of changes in both the remaining time t and remaining capacity x on the
resulting bid prices. This should be contrasted with network models, which must
typically be re-solved to determine the effects of such changes. Second, because
they are often based on simple, single-resource models, decomposition meth-
ods allow for more realistic assumptions, such as discrete demand and capacity,
sequential decision making over time and stochastic dynamic demand.

The primary disadvantage of decomposition methods is that in the process
of separating the problem by resources, it can be difficult to retain important
network effects in the approximations. However, as we show below, hybrids of
the two approaches can be used to try to achieve the benefits of both network and
decomposition methods.
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Prorated EMSR This idea was first investigated by Williamson, 1992 with
EMSR and was called the prorated expected marginal seat revenue (PEMSR)
scheme.

The PEMSR schemes involve allocating a portion of the revenue of each
product to the resources used by the product. One then solves m single-resource-
level models using the EMSR heuristic, though other single-resource models can
be used as well. The resulting marginal values from each resource are then used
as bid prices in a bid-price control scheme or the allocations are used directly in
resource-level nested allocation controls.

Specifically, let be a non-negative real vector. For each
Product j, define new revenues, one for each Resource i in the product, by

Next, treat each resource i independently as if it received demand but with
reduced revenue and solve the corresponding EMSR model. The approximation
to the value function is then

where denotes the expected revenue of Model i under the alloca-
tion

Williamson, 1992 investigated several methods for determining the allocation
weights in airline problems, including prorating based on mileage, number of
resources and the relative revenue value of local demand on each resource. Her
conclusion is that none of these fixed allocations is very robust in general. This is
one of the main disadvantages of fixed proration, and hence the idea is not used
much anymore in practice.

Displacement Adjusted Virtual Nesting (DAVN) While virtual nesting is often
viewed as a control strategy – and indeed is used as such in most cases in practice
– it can also be viewed as a decomposition approximation to the network value
function. Indeed, the marginal values produced by the virtual nesting approxima-
tion can be used in a bid-price control scheme which avoids the virtual nesting
controls entirely.

DAVN starts with a set of static bid prices – or marginal value estimate –
which we denote by These estimates may be obtained, for
example, from one of the various network math programming models presented in
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Section 16.3. Given the bid prices one then solves a leg-level problem at each
resource i as follows:

First, for all Products j that use Resource i, a displacement adjusted revenue
is computed using

That is, the revenue of Product j on Resource i is reduced by the static bid-price
values of the other resources used by Product j. This adjustment is intended to
approximate the net benefit of accepting Product j on Resource i.9

The next step is clustering – or indexing. In this step, the displacement adjusted
revenue values on each resource are clustered into a specified number of virtual
classes – or buckets – denoted The number of virtual classes, is
a design parameter, but is typically on the order of 10. It may also vary across
resources. The indexing from Product j to Virtual Class c on each resource can be
performed using a variety of clustering algorithms. The particular indexing method
and clustering criteria are also design decisions and vary from implementation to
implementation.

Once the virtual classes are formed, we compute a representative revenue
value for each class – usually the demand-weighted average revenue. Then, the
distribution of total demand in a virtual class is computed – typically by adding the
means and variances of demand-to-come. Next, one solves a multi-class, single-
resource problem based on these data. The problem could be solved exactly using
the static single-leg model or approximately using an EMSR heuristic. We call this
Model i. This procedure yields a set of booking limits (or protection levels) for the
virtual classes at each resource i and a value function estimate

The resulting DAVN approximation can be used in two basic control strategies.
Most often, the control is a booking limit control on the virtual classes. That is,
a request for Product j is converted into a request for the corresponding virtual
class at each Resource i required by Product j. (Note the virtual class on each
of these resources need not be the same.) If the virtual class on each resource is
available, the request is accepted. If the virtual class on one or more resources is
closed, the request is rejected. Thus, once the indexing from products to virtual
classes is performed, the control logic is an independent, nested allocation class-
level control at each resource in the network. This is the primary appeal of – and
motivation for – the method in the airline industry, because it produces the sort of
booking-class-level controls that are widely used by CRSs.

However, DAVN can also be used to produce bid-price controls. The bid price
for Resource i is simply given by
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where as usual denotes the marginal
value generated by Model i.

Regardless of the control method, typically the network model that was used
to generate the static bid prices is re-solved and the products are re-indexed
periodically as demand conditions change. In the airline industry, for example, the
indexing process is a fairly major change to the CRS, so often it is only done on
a seasonal basis.

Dynamic Programming Decomposition

Dynamic programming decomposition is very similar in spirit to DAVN. Indeed,
the only real difference is that while DAVN takes displacement adjusted revenues
and aggregates them into a small number of virtual classes, in dynamic program-
ming decomposition, the revenue and demand remains disaggregated. As with
other decomposition methods, there are several possible variations to the basic
approach. However, for purposes of illustration we focus on one special case here;
specifically, the dynamic single-resource model in which demand for Product j
arrives in Period t with probability

We start the decomposition as in DAVN with a static vector of bid price
Again, this may be computed in a variety of ways, though typically using one of the
network math programming models of Section 16.3. Then, for each Resource i, we
solve a single-resource dynamic program based on displacement adjusted revenues.
That is, for each Product j that uses Resource i, compute the displacement adjusted
revenue

Then formulate a dynamic single-resource model for Resource i (Model i) with
arrival rates and revenues Let the resulting value function be denoted

The total value function approximation is then

and the bid prices are given by

where is the marginal value from Model i.
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Because dynamic programming decomposition is so similar to DAVN, the
choice of which one to use is most often dictated by the control strategy one
wants to use in the end. If the objective is to construct virtual nesting controls,
then aggregating and indexing as in DAVN will more accurately match the control
strategy. If one is using bid-price controls, then the aggregating and indexing of
DAVN is not necessary and a dynamic programming decomposition will tend to
yield more accurate bid prices approximations.

Iterative Decomposition Methods Iterative decomposition methods are also
closely related to DAVN. The methods were originally based on the EMSR heuris-
tics for the single-resource problem and so were called iterative prorated EMSR
methods, but there are several variations of the general idea and it can be used
with any single-resource model. The approach can be found in several sources,
including Williamson, 1988; Williamson, 1992; Phillips, 1994. Here we look at
only one version to illustrate the idea.

Iterative DAVN is essentially a method for computing the static bid prices,
used by DAVN. The motivation for the approach is heuristic but intuitively

appealing. Namely, if indeed represents the marginal displacement cost vector,
then once DAVN is solved, for consistency we should have that

where the marginal value generated by Model i at
the current time (time t). That is, the marginal costs produced by the DAVN
decomposition should match our static estimate

A natural question arises then: What happens if The idea
of iterative methods is that if these values do not match, we simply feed back the
estimates as new static bid prices into the procedure and recompute
the DAVN models.

Abstractly, this algorithm produces a mapping, from the space of bid-
price vectors onto itself. That is, The algorithm terminates
if it finds a fixed point of this map, However, whether is
a contraction mapping or not has not been investigated to date for DAVN. For a
similar scheme based on prorating revenues by the bid prices, Bratu, 1999 proves
this mapping is convergent. Howver, one ought not to read too much into this fact
(e.g. a convergence of all bid prices to zero would satisfy this claim), and there are
some counter examples that show that the resulting convergent bid prices can be
quite bad. (See Talluri and van Ryzin, 2002.)
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16.4 Overbooking

Overbooking is somewhat distinct from the core pricing and capacity allocation
problems of revenue management. While most of revenue management is con-
cerned with how to best use or price a given amount of capacity, overbooking is
concerned with how much capacity to provide in the first place. These two prob-
lems are, of course, quite related, and generally both are considered part of revenue
management.

From a historical standpoint, overbooking is the oldest – and, in financial
terms, among the most successful – of revenue management practices. For exam-
ple, in the airline industry it is estimated that approximately 50% of reservations
result in cancellations or no-shows and, as a result, about 15% of all seats would
go unsold without some form of overbooking. (See Smith et al., 1992.) This is to
be compared to fare class allocation, which by most estimates accounts for on the
order of5% in incremental revenues. Despite this, many researchers consider over-
booking a somewhat mature area and it has received less attention in the research
literature than fare class allocation and pricing.

We first review the history and practice of overbooking. We then survey the
main methods for making overbooking decisions.

History and Practice of Overbooking

Rothstein’s series of articles (Rothstein, 1971; Rothstein, 1975; Rothstein, 1985)
provide the best source for the history of overbooking in the airline industry. There
was also much lively debate surrounding the oversale auction idea, captured in a
series of articles (Simon, 1968; Simon, 1972; Simon, 1993; Simon, 1994). Here,
we briefly review this history.

Prior to 1961, intentional overbooking was practiced somewhat clandestinely
by U.S. airlines and was not acknowledged publicly. Despite this fact, Rothstein,
1985 reports that as director of OR at American Airlines he “... found much pub-
licly available evidence that all the major airlines were deliberately overbooking.”
In 1961, the Civil Aeronautics Board (CAB) reported a no-show rate of 1 out of
every 10 passengers booked among the 12 leading carriers at that time. The CAB
acknowledged that this situation created real economic problems for the airlines.
The CAB conducted another study of overbooking in 1965–66. They found that
the denied boarding rate at that time was only 7.69 per 10,000 passengers boarded
(Civil Aeronautics Board, 1967) and concluded that, overall, overbooking prac-
tices benefited the traveling public by lowering the cost of air travel. Thus, as of
1965, overbooking was an officially sanctioned practice, provided it was “carefully
controlled,” a criterion that was never precisely defined by the CAB.
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In parallel, the CAB also increased the denied boarding penalty to 100%
of the coupon. Airlines controlled the percentage of denied boardings and the
CAB carefully monitored the denied boarding performance of each airline.
The involuntary denied boarding rate is still carefully monitored in the U.S.
by the Department of Transportation (DOT) and currently hovers around 1–2
involuntary and 15–20 voluntary denied boardings per 10,000 passengers (see
Table 16.4).

In 1968, economist Julian Simon proposed what he called “an almost practical
solution to airline overbooking,” in which airlines would conduct a sealed-bid
“reverse auction” to find passengers willing to accept monetary compensation for
being bumped. Simon predicted (rightly so, as initial responses to his letters to
airline executives later indicated) that the airlines would object to the scheme.
Simon wrote many letters to executives, regulators, policy makers and consumer
groups arguing for his “oversale auction” idea. Despite these efforts, he failed to
get even one airline to experiment with it on one flight. The scheme continued to
flounder until 1977 when Alfred Kahn, an economist, was appointed to head the
CAB. Simon wrote to Kahn about his proposal and Kahn liked and largely adopted
it under the heading of a “volunteer” bumping plan, as mentioned above. It has
since proved very successful in the industry, providing a fair and efficient means
of implementing voluntary denied boarding in the airline industry, and is now a
widespread practice.
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Static Models

We next look at the methodology for making overbooking decisions. The simplest
and most widely used methodology is based on static overbooking models. In static
models, the dynamics of customer cancellations and new reservation requests over
time are ignored. Rather, the models simply determine the maximum number
of reservations to hold at the current time given cancellation probabilities from
the current time until the day of service. This maximum number of reservations,
or overbooking limit, is then recomputed periodically prior to service to reflect
changing cancellation probabilities over time. While more sophisticated dynamic
overbooking models have been developed, the simplicity, flexibility and robustness
of the simpler static models has made them more popular in practice.

Two types of events impact the overbooking decision: cancellations and no-
shows, with the difference simply related to the timing of the events. A cancellation
is a reservation that is withdrawn by a customer strictly prior to the time of service.
A no-show is a reservation that is in the system until the time of service, but
the customer does not show up at the time of service. Under a static model, the
distinction between the two is unnecessary, since a static model assumes a static
overbooking limit is set without recourse to adjust it. Thus, all that matters is the
probability that a reservation survives to the time of service (the show demand as
it is sometimes called). In dynamic overbooking models, however, the distinction
between no-shows and cancellations is quite important.

As mentioned, static models are typically used to compute overbooking
limits – also called virtual capacities or authorization levels in the airline indus-
try – which in turn are inputs to capacity control models. These static overbooking
models are typically resolved periodically to account for changes in the cancel-
lation and no-show probabilities over time, resulting in overbooking limits that
vary (typically decline) over time. The maximum number of reservations one can
accept at any time is given by the current overbooking limit.

The situation is illustrated in Figure 16.5. The top, wide line is the overbooking
limit over time. Solving a static model gives one point on this curve. Overbooking
limits are initially high because the probability of a reservation currently in the
system cancelling or no-showing prior to the time of service is typically higher
when the time to service is further away. At the time of service (T) approaches,
the overbooking limits fall. At the same time, reservations are being accumulated
in the system over time. The dark line in Figure 16.5 shows that with overbooking
in place, the reservations in the system can exceed the capacity C, and we don’t
stop accepting reservations until the overbooking limit is reached. At that point
reservations are rejected. The resulting show demand at time T is (ideally) close to
the capacity C. The lighter line shows the same trajectory of reservations without
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overbooking. In this case, the reservations in the system are truncated at the capac-
ity C early on in the booking process. As a result, once reservations start to cancel
and no-show, the show demand is significantly less than capacity.

The static overbooking problem first appeared in a pair of papers by Beck-
mann, 1958; Beckman and Bobkowski, 1958. Other early treatments of the static
problem are Taylor, 1962, Thompson, 1961 and Rothstein and Stone, 1967. See
also Bierman Jr. and Thomas, 1975 and Shlifer and Vardi, 1975. Dynamic over-
booking models (not covered here) are addressed in Chatwin, 1993 and subsequent
published articles Chatwin, 1997; Chatwin, 1999.

The Binomial Model

The simplest static model is based on a Binomial model of cancellations in which
no-shows are lumped together with cancellations (e.g. a no-show is treated simply
as a cancellation that occurs at the day of service).

The following assumptions are made:

Customers cancel independently of one another.
Each customer has the same probability of canceling.
The cancellation probability is Markovian; it depends only on the time
remaining to service and is independent of the age of the reservations.

(Martinez and Sanchez, 1970 tested the Markovian property of the binomial model
empirically and showed it is a reasonable approximation.)
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Let t denote the time remaining until service, C denote the physical capacity,
u denote the number of reservations on-hand and q denote the probability that
a reservation currently on hand shows up at the time of service (1 – q is the
probability they cancel prior to the time of service). Note q is really a function of
the time remaining, since in general the more time remaining the more likely it
is that customers cancel before the time of service. However, to keep the notation
simple we suppress the dependence of q on t.

Under the assumptions stated above, the number of customers who show up
at the time of service (the show demand), denoted Z(u), is binomially distributed
with p.m.f.

c.d.f.

mean E[Z(u)] = qu and variance Var(Z(u)) = uq(1 – q). It is convenient to work
with the compliment of the distribution denoted by which is defined by

Several studies have validated this binomial model of cancellations. For exam-
ple, in one of the earliest investigations of overbooking, Thompson Thompson,
1961 considers data from 59 flights from Auckland to Sydney operated by Tasman
Empire Airways. He eliminated groups of 6 or more since they exhibit much lower
cancellation rates and although rare (11 total booking on the 59 flights), can sig-
nificantly distort the cancellation rate on the flights involved. Parties of 6 or less
constituted 99.6% of all bookings; 81% of the remaining were singles; 15% were
paired and 4% were parties of 3-6. While the results showed that group cancellation
behavior does invalidate the the binomial model for certain cabins at certain time
periods, overall he concludes the binomial model adequately fits the data. (Group
cancellation effects are discussed further below.)

Overbooking Based on Service Level Criteria One measure of service is the
probability of oversale at the time of service, which we call the Type 1 service
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level. Given that there are u reservations on hand, this probability is denoted
and is given by

A more intuitive measure of service is the fraction of customers who are denied
service, which we call the Type 2 service level and denote by This fraction
is given by

Through some algebraic simplification, this simplifies to

which is a more convenient formula for computations.10

Tabel 16.5 shows the Type 1 and Type 2 service levels for an example with
c = 150, q = 0.85 and varying overbooking limits Typically, one first specifies
a service standard and then numerically searches for the largest booking level
satisfying this standard. The resulting is the overbooking limit. The quantity

(the excess over capacity) is typically referred to as the overbooking pad.

Example 2 Suppose we want an average of no more than 0.1% of customers to
be denied service and our capacity is C = 150 and q = 0.85.
From Table 16.5, we should accept at most 168 reservations (Thought
169 has a service level only slightly over the standard and might be a candidate
as well.) Reservations would then be accepted as long as the number ofbookings
on hand was less than The overbooking pad would be 168 – 150 = 18, so we
would be willing to oversell the capacity by 18 units.

Overbooking Based on Economic Criteria An alternative to setting overbook-
ing limits based on service standards is to use an economic criteria. This approach
requires an estimate of the revenue loss from not accepting additional reservations
and an estimate of the cost of denied service. We first develop the details of the
economic-based model, and then discuss some of the issues involved in estimating
the required revenue and cost inputs.
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Let z denote the number of customers who show up on the day of service
(the show demand) and let c(z) denote the denied service cost. We shall assume
c(z) is an increasing convex function of z. For example, a simple and common
assumption in practice is that each denied service costs the provider a constant
marginal amount h, in which case

An arguably more realistic assumption is to assume strictly increasing marginal
costs, reflecting the need to offer higher levels of compensation (or incur higher
goodwill costs) as each additional customer is denied service.

Let r denote the marginal revenue of accepting an additional reservation. One
could also allow this marginal revenue to vary, but it is a common simplification
in practice to consider it fixed, though we discuss this issue further below. Then
the total profit from having u reservations on hand is given by
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where recall that the random variable Z(u) denotes the number of customers who
show up on the day of service out of u reservations. One can show for the binomial
model that if c(z) is convex, then is convex in u.11 Therefore a maximizing

is the largest value of u satisfying

For the constant marginal cost case where this condition reduces
to

This expression can be argued intuitively by noting that when we accept the u-th
reservation, we incur a marginal denied boarding penalty of h if and only if: (i) the
current reservations on hand consume all the capacity and (ii) the
u-th customer shows up. The left-hand-side above is simply the marginal penalty
multiplied by the probability of this event, or equivalently the expected marginal
cost. Then u* is the largest value of u for which the expected marginal cost is less
than the marginal revenue.

We can express (16.38) as

Note this is equivalent to setting a fixed Type 1 service level for a capacity of
C – 1. For large capacities C, so using economic criteria with
constant marginal costs corresponds approximately to specifying a particular Type
1 service level, which provides one justification for using Type 1 service levels.

Table 16.5 displays probabilities for for the example C = 100
and q = 0.85. To illustrate (16.38), suppose the overbooking cost is h = $500 and
the marginal revenue is r = $100. Then r/qh = 0.235. We see from Table 16.5
that the optimal overbooking limit is then

Static Model Approximations

While the binomial model is quite simple, it is often desirable to have simpler,
closed-form expressions for the overbooking limits. We next look briefly as such
approximations.

Deterministic Approximation The deterministic approximation simply sets the
overbooking limit so that the average show demand is exactly equal to the capacity.
That is,



Revenue Management

649

As simplistic as this is, we have seen implementations where this approximation
(or variations of it) are in fact used.

Normal Approximation A popular approximation in practice is the normal
approximation, in which is replaced by the normal distribution with mean,

and variance, chosen to match the binomial, viz

The Type 1 service level is then approximated by

where and is the standard normal distribution

Let denote the p.d.f. of the standard normal.

The Type 2 service level is then approximated by:12

The last columns of Table 16.5 show the estimates produced by the normal approx-
imation for our example with C = 150 and q = 0.85, which are resonably close
to the values of the binomial model.

The economic-based overbooking limit (16.38) for the constant-marginal-cost
function (16.35) is approximated by chosing to satisfy

Group Cancellations

The presence of groups also has an important effect on cancellation models in
practice. If a group decides to cancel, then all reservations are cancelled simulta-
neously. The resulting positive correlation in cancellations increases the variance
of the show demand. When dealing with large numbers of reservations, it is often
possible to ignore the effect of groups but with small numbers of reservations,
group effects can result in significant deviations from the binomial model.

To gain some sense of the presence of groups in airline reservations, Table 16.6
provides an empirical distribution of group sizes over approximately one half



650

Handbook of Transportation Science

million airline reservations, showing that about half of reservations are individual
reservations while the other half are from groups of two or more.

One simple technique used in practice to adjust for group size is to simply
inflate the variance of the show demand by a factor that accounts for group size.
For example, if one is using the normal approximation to the binomial model
as described above, then the mean estimate, is unchanged but the variance
estimate, is modified; that is,

where k is an estimate of the average group size.13 A more refined technique based
on moment generating functions and is discussed in Talluri and van Ryzin, 2002.

Combined Capacity Control and Overbooking Models

Thus far, we have analyzed the overbooking problem in isolation without con-
sidering the interaction of overbooking decisions with capacity controls. We next
look at both exact and approximate methods to model cancellations and no-shows
together with class allocations. The treatment here is largely based on the work of
Subramanian et al., 1999.
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Incorporating no-shows or cancellations in either the static or dynamic single-
resource model is not too difficult theoretically provide one makes the following
set of assumptions:

Assumption 1
(i)
(ii)
(iii)

(iv)

The cancellation and no-show probabilities are the same for all customers.
Cancellations and no-shows are mutually independent accross customers.
Cancellations and no-shows in any period are independent of the time a
reservation was accepted.
The refunds and denied service costs are the same for all customers.

As a result of these assumptions, the number of no-shows and the costs incurred
are only a function of the total number of reservations on hand. Therefore, we only
need to retain a single state variable, and the resulting dynamic programs are only
slightly more complex than those presented in Section 16.2.

The most offensive of these assumptions in practice are (i) and (iv). In par-
ticular, because cancellation options and penalties are often linked directly to a
booking class, cancellation and no-show rates and costs can be vary significantly
from one class to the next. Ideally, these differences should be accounted for when
making allocation decisions. However, this significantly complicates the problem
as discussed below. As already mentioned, Assumption 1-(ii) is often unrealistic,
because reservations from people in groups typically cancel at the same time.
Assumption 1-(iii) is typically less of a problem in practice and as mentioned
above has some empirical support (See Thompson, 1961.).

It is partly for all these reasons that in practice the overbooking problem is
separated from the capacity allocation problem. Often, an approximate overbook-
ing model can be solved that is able to relax (at least heuristically) some or all
parts of Assumption 1. However, given Assumption 1 the two problems can be
combined exactly as shown below.

Exact Methods for No-shows Under Assumption 1 We first consider only
no-shows without cancellations. (Recall, a no-show is a customer who does not
show up at the time of service, while a cancellation is a reservation that departs
the system strictly before the time of service.) Let denote the probability that a
customer with a reservation shows up for service is the no-show probability).
By Assumption 1 (i), this probability is assumed to be the same for all customers,
and by Assumption 1 (ii) it is assumed to be independent of when the reservation
was made.

Let if customer i shows up for service and otherwise. Given x
reservations on hand at the time of service, the number of customers who show up
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at time zero (the show demand), denoted Z(x), is then

and by Assumption 1-iii) is a random variable, with

By Assumption 1 iv), the total cost of denied service is only a function of the
show demand z. Let c(z) denote the overbooking cost given z. We will require the
c(z) be increasing and convex with c(0) = 0. Convexity in cost is quite natural
since the marginal cost of denying service to customers tends to increase with the
number denied. For example, we could have a simple linear cost h per denied
customer in which case where, as before, C is the capacity. If
customers are refunded a class

Given this no-show model, the expected cost of service given that there are x
reservations on hand at the time of service, which we denote is given by

Stochastic convexity arguments show that is concave in x if is convex. The
above expression then replaces the boundary conditions of the dynamic program
for the static and dynamic models. We look at each in turn.

Static Model Consider the static model of Section 16.1, where the classes are
ordered and we assume classes arrive in the order of lowest
to highest revenue. Classes and stages are indexed by j. The state variable, x, is
now defined to be the number of reservations on-hand rather than the remaining
capacity.

The Bellman equation (16.2) for the static model is then modified to account
for no-shows as follows

with boundary conditions (16.41), where here is now interpreted as the
expected net benefit (expected revenue minus the expected terminal cost) of oper-
ating the system from period j onward given that there are x reservations on
hand.14
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Given the concavity of a modification of Proposition 1 shows that the
value function in (16.42) is concave in x for all j and x. Since there is no
hard capacity constraint in this case, it is more meaningful to express the optimal
policy in terms of booking limits. The optimal nested booking limits are given by

where now has the interpretation as the marginal
opportunity cost of holding another reservation in Stage j – 1. It is then optimal to
accept Class j if and only if the number of reservations on hand, x, is strictly less
than

Dynamic Model Similarly, the optimality equations (16.9) for the dynamic
model of Section 16.2 are modified to account for no-shows as follows:

where again the state variable x is the number of reservations on hand. The
boundary conditions are

Again, it is optimal to accept an arrival of Class j iff

where again has the interpretation as the
marginal cost of accepting another reservation.

Note that under this model, one can always justify accepting a sufficiently
high revenue provided the marginal cost is finite. This makes perfect
economic sense since we should in principle we willing to accept an almost certain
denied service cost if some customer is willing to pay enough to compensate us
for this cost. For example, if the overbooking cost is linear of the form

then one can show that the marginal cost is never more than h, so any
request with revenue greater than h will always be accepted. This property of not
having an explicit limit on the number of reservation (only an economically driven
limit) has been called “infinite overbooking” by some in the airline industry, since
it is in sharp contrast to the usual practice of setting a hard overbooking limit.
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Also, it highlights some of the potential suboptimality of using fixed overbooking
limits.

Exact Methods for Cancellations under Assumption 1 Cancellations com-
plicate the dynamic program a little more than no-shows, but they are still quite
manageable given Assumption 1. Again, we look at the static and dynamic models
in turn.

Static Model Let denote the probability that a reservation in the system at
the start of period j survives to period k + 1. Then is the probability that a
reservation cancels in Period j. By Assumption 1 (i), (ii) and (iii) these probabilities
are the same and independent for all customers and are independent of the age of
the reservation. Let denote the number of reservations that survive Period j
given that there are x reservations on-hand in Period j are the number
of cancellations in Period j).

The Bellman equation (16.2) for the static model is then modified to account
for cancellations as follows

with boundary conditions (16.41), where

is the expected value function after cancellations in Period j. Again, stochastic
convexity arguements show that if is concave in z, then is concave
in x and hence a modification of the argument in Proposition 1 shows that the value
function defined by (16.45) is concave in x.

Again, nested booking limits are optimal with the optimal booking limits given
by

where it is optimal to accept Class j if and only if the number of reservations on
hand, x, is strictly less than

Dynamic Model As in the static model, let denote the probability that a
reservation in the system at the start of Period t survives to Period t + 1, so by
Assumption 1 (i), (ii) and (iii) the number of surviving reservations, is again
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binomial. Similar to ths static case, the optimality equations for the dynamic model
with cancellations become:

where

is the expected value function after cancellations in Period t. The boundary
conditions are given by (16.44).

As a result, it is optimal to accept an arrival of Class j iff

16.5 Conclusions

Revenue management has come a long was since its birth in the wake of the
deregulation of the U.S. airline industry in the 1970’s. It is now a highly devel-
oped scientific and professional practice in the airline industry. And perhaps more
importantly for the future of the field, this airline success has lead to a rapidly grow-
ing interest in using revenue management techniques in other industries. Current
industry adopters include hotels, car rental companies, shipping companies, televi-
sion and radio broadcasters, energy transmission companies and apparel retailers.
Both industrial practice and research in the field has truly blossomed over the last
decade as a result. While the details of RM problems can change significantly from
one industry to the next, the focus is always on making better demand decisions
– and not manually with guess work and intuition – but rather scientifically with
models and technology, all implemented with disciplined processes and systems.
This “industrialization” of the entire demand decision-making process is what
defines the practice of revenue management today.

We have focused our attention on the core methodology developed for use in
the airline industry (and related industries like hotels) over the last 25 years. These
and other methods are covered in more depth in Talluri and van Ryzin, 2002, along
with a broader range of RM-related problems on dynamic pricing and auctions that
are important in other business contexts.

But regardless of the details, the best RM work always strives to balance rigor-
ous science with the complex, real-world concerns of practical implementation. It
is this balance of theory and practice that makes revenue management both intel-
lectually challenging and professionally rewarding. It is likely to remain so for
many years to come.
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Notes

1. As we will show in this chapter, the notation of this sort of displacement cost is central to the
theory and practice of RM.

2. Though in fact, the use of capacity-restricted discount fares with restrictions predates
this American Airlines story. APEX (advanced purchase excursion) fares orginally used in many
international markets as early as the 1960’s.

3. Though the low-before-high fare assumption is not difficult to relax, as shown by Robinson,
1995.

4. Readers familiar with dynamic programming may notice that this Bellman equation is of the
form E[max{·}] and not max E[·] as in many standard texts. The max E[·] form can be recovered by
considering the demand to be a state variable along with x. While the two forms can be shown to
be equivalent, the E[max{·}] is simpler to work with in many revenue management problems.

5. The assumption of one arrival per period can in fact be relaxed as shown by Lautenbacher
and Stidham, 1999.

6. That it increases the protection level about the usual EMSR-b value can be seen by noting
that in the usual EMSR-b case and thus, as to increase to satisfy
the equality (16.18).

7. SABRE was American Airlines central reservation system (CRS), subsequently spun off from
American’s parent, AMR Corp., to become a separate corporation in 1996.

8. Interestingly Cooper, 2000 shows that more frequent reoptimization is not always better; there
are cases where reoptimizing the DLP more frequently can actually result in strictly worse revenue
performance,

9. Observe that the displacement adjusted revenue could be negative. In this case, Produce j
is never accepted on Resource i, and typically we either eliminates Product j from the problem on
Resource i or (equivalently) set the displacement adjusted revenue value to zero.

10. As a technical aside, note that one may be tempted to define the Type 2 service level as

the average fraction denied service, rather than by (16.34). This is wrong, however, because it does not
account for the varying number of customers served. For example, if C = 100 then it would count a
day in which Z(u) = 1 and a day in which Z(u) = 100 equally as two days with denied service fractions
of zero, when in reality the second day represents 100 times as many customers. The renewal-reward
theorem leading to (16.34) provides the correct measure of the long-run fraction of customers who are
denied service.

11. This follows from stochastic covexity arguments; see Talluri and van Ryzin, 2002 for details.

12. This follows from the fact that if Z is a normal random variable with mean and variance
then

where
13. Setting k equal to the average group size can be obtained by assuming that all reservations

are in groups of exactly size k, in which case with u reservations on hand, there are u/k groups of size
k, so the variance of the show demand is

14. Note in this case, is a decreasing function of x, since the more reservations we have
on hand now, the fewer future opportunities to collect revenue and/or the higher the expected future
terminal costs.
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17 SPATIAL INTERACTION
MODELING

Piet Rietveld
Peter Nijkamp

17.1 Transport Systems Analysis: A Portrait

The ancient Greek philosopher Heraclitos is often quoted for his historical remark
that “everything is in motion, except the motion process itself”. Most likely he did
not refer to our modern, highly mobile society, but in any case he recognized the
phenomenon of perpetual motion. Our age is the age of mobility, in the sense of
intensive geographical movement of people, goods, and also information. The past
centuries have witnessed an uninterrupted growth in distance traveled. Economic
historian Charles van Doren (1992) has made some simple, but intriguing
observations on the past and future mobility pattern of modern man. According to his
estimates, the average distance that could conveniently be traveled in the year 1800
was 12 miles a day. This figure had already risen to 60 miles a day in 1900, and 300
miles in 2000. Extrapolation of these figures would lead to the expectation that by the
year 2100 the average daily distance that could conveniently be bridged would be
1500 miles and by the year 2200 even 7500 miles. Despite some speculation, it ought
to be recognized that the growth rate of daily mobility is a surprising phenomenon.
The ‘homo mobilis’ has become a dominant species on earth.

It is evident that the growth in mobility is not an autonomous factor, but is
dependent on several background factors, such as the rise in income and welfare, the
rise in leisure time, demographic developments etc. It is indeed surprising that many
countries exhibit more or less the same mobility pattern (see for a presentation of
many statistical details Salomon et al. 1993).
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It should be added that in most cases transport behavior is not an independent
phenomenon with its own intrinsic value, but is dependent on other motives (e.g.,
work, shopping, recreation etc.). Transport is often seen as a derived demand; the
underlying motives originate form other societal or individual objectives.
Consequently, the intricate pattern of spatial transport flows finds its origins in
human choices and decisions of various kind outside the physical transport system.
This observation has also laid the foundation for the so-called activity-based
modeling in transportation research.

A major determinant of the growth in transport flows stems from changes in
economic structures or in relocation of people or firms. A substantial change in
accessibility of cities or regions will have a decisive influence on the size and
distribution of transport flows. On the other hand, transport is an input factor in the
economic process and, therefore, any change in the costs or productive contribution
of transport has a clear impact on the economy, not only national, but also regional or
local. Thus, changes in the efficiency of transport systems do not only affect welfare
positions of countries or regions, but influence also the relative competitive position
of these countries or regions. National-economic and regional-economic development
on the one hand, and efficiency changes in the transport system and resulting
distributional flow changes on the other hand, are two sides of the same coin. This is
also witnessed in the income elasticity of transport (both passenger traffic measured
as person-km and freight traffic measured as tonne-km), which in many countries is
rather stable and fluctuates around 1. In a broader context, the impact of transport
investments on economic growth has been discussed by Aschauer (1989).

At the same time, transportation has become a source of much concern because
of its great many externalities, such as decay in quality of life, climate change,
congestion, landscape segmentation, and decline in safety. The concept of sustainable
transport has gained much popularity in recent years (see Nijkamp et al. 1999) and it
has penetrated increasingly policy analysis of transport initiatives, but it has not yet
sufficiently been incorporated in transportation modeling in relation to land use (for a
review see Hayashi and Roy, 1996).

It is no surprise that in a world dominated by mobility a vast array of transport
systems modeling has been developed. These models range from simple single-
equation models (e.g., price or income elasticities of transport) to large-scale spatial
equilibrium models (see e.g. Van den Bergh et al. 1996). We have also observed the
emergence of an array of network models (see Nagurney and Siokos 1997). With the
emergence of network models we have also witnessed an increasing use of
communication and information models (see e.g., Batten et al. 1995), as well as of
models addressing the impact of telematics or intelligent transport systems (ITS) on
transportation behavior (see Nijkamp et al. 1996). Network models do not only
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address the user side, but also the supply impacts of infrastructure (including quality-
upgrading devices such as information and communication technology).

An important but often neglected element in network modeling is the presence of
externalities. Such externalities may refer to non-market negative externalities such
as unpriced environmental effects (see for a review Verhoef 1996), but also to
broader positive effects such as club externalities (see e.g. Capello 1994).

Another underrepresented element in network modeling is the dynamics of a
spatial and transportation system (see e.g. Nijkamp and Reggiani 1992, 1998). This
issue has prompted inter alia research in synergetic behavior, chaos phenomena,
catastrophy theory and self-organization. The elegance of such approaches is without
any doubt, but the empirical verification and application is still the Achilles heel of
such dynamic spatial and transportation models. More recently, this has also led to
new forms of network modeling, in particular the use of neural network modeling and
genetic algorithms (see e.g. Himanen et al. 1998).

A particular class of transport systems models that has received a prominent
place in literature is the family of spatial interaction models. This family comprises a
vast array of members. We will present here the most common types of spatial
interaction models, followed by a exploration of complementary approaches which
might make the use of such models more oriented towards real-world transport
issues.

17.2 The Four Stage Model: A Comprehensive Approach.

In this review we will pay special attention to the four-stage transportation model.
The reason is not that this model is the ideal standard, but because it has been applied
frequently for various policy purposes and because there is not yet an operational
alternative for it. The basic components of the four-stage model are:

Trip generation and attraction (determining the total number of trips attracted
by zones of origin and destination)
Trip distribution (determining the travel flows between zones of origin and
destination)
Modal choice (analysis of the choice of transport mode for combinations of
origin and destination
Assignment (choice of route).

The four-stage model is usually applied at the level of metropolitan areas where
some 100-1000 or more zones are distinguished. The primary aim of the model at the
time that it was developed was to predict the effects of changes in transport networks
(for example the construction of a new express way) on transport flows, and this is
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still a main aim for its use. We note in passing that in addition to models developed
for metropolitan areas also a series of national models have been developed for a
sample of European countries with model features that are close to those of the
metropolitan areas (see Lundqvist and Mattsson, 2001, for a review).

A simple version of the model is illustrated in Figure 17.1. According to this
figure the model has a recursive structure starting from generation and attraction to
assignment. In terms of demand and supply factors the first three stages relate to
demand. The demand for trips is essentially analysed by means of a conditional
model: the number of trips per origin-destination pair is conditional on the total
number of trips per origin generated and a similar structure holds for the number of
trips per origin-destination pair that use a certain transport mode. Supply factors are
included in the model via the various costs (in terms of out-of-pocket costs and time)
imposed on users of the network. Confrontation of supply and demand takes place in
the last phase (the assignment model). When capacity on road links is not sufficient
to achieve free flow speeds the time costs of the use of the links will be higher than
the free flow travel times and this will induce road users to look for other routes. This
is represented in the model by means of the feedback from assignment to earlier
phases such as the choice of destination of trips.

The basic model obviously focuses on the demand side of transport markets. The
supply side in terms of the provision of transport infrastructure and transport services
(public transport) is assumed to be given. This makes the model suitable for policy
analyses in terms of ‘what if’ questions like: how does transport demand respond to
measures such as the upgrading of a road, or the increase of frequencies of services.
In case the private sector would have a strong influence on these variables, the model
would need to be extended in such a way that responses from the supply side would
be incorporated. The fact that such additions are not usually implemented reveals that
the model has a mainly short-term nature.

An extended version of the model is presented in the other part of Figure 17.1.
This model version is more advanced in two respects: it includes a time-of day
element and in addition it gives a more refined treatment of choice of trip destination
and mode choice. The time of day element is an important addition when transport
networks are rather congested and part of the users are flexible in their choice of time
to travel. The integrated analysis of the choice of destination and transport mode
implies that rigid assumptions on the sequence in which these choices are made are
avoided. These two versions of the model indicate that a considerable variety of
applications exist. Details of these variations will be discussed in the next sections.
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The history of the four-stage model has recently been described by Bates (2000)
and McNally (2000). Early versions of the model were developed in the USA in the
1950’s. Further developments took place in the decades thereafter. The model has
been gradually improved and it has become popular all over the world.

At the same time the model has been broadly criticised for its limitations (see for
example McNally, 2000). A major point of criticism concerns the assumption that
total travel demand is inelastic; this is the consequence of using the total number of
trips per zone as the starting point of the analysis. Changes in transport costs are
assumed not to affect the total number of trips; they only affect choices of
destination, mode and route. A related point is that the model is trip-based rather
than activity based. Thus, the model ignores the spatial temporal choices of people
who have to organise their various activities at home and elsewhere. As a
consequence complex patterns of timing of home and non-home based trips jointly
with the activities themselves emerge that are not dealt with in trip based models in
an adequate way (see for example Bhat and Koppelman, Chapter 3). A more specific
consequence of this limitation is that the analysis of the timing of trips is problematic
in trip based models. It is exactly this timing issue that is essential in so many policy
applications where congestion plays a role. The introduction of the choice of time of
day (peak versus off-peak) is a first step to come to meet this criticism, but it does not
go far enough to do justice to the complexities of behavioural choices involved and
the functioning of transport networks in congested periods. Another limitation of the
four-stage model is the lack of feed back from the transport system on the spatial
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location of activities. Especially the choice of location of residence by households
and firms is assumed to be given in the standard model so that it can be interpreted as
a short-term model. Extensions of the basic four-stage model towards integrated
transport-land use models are discussed in Section 17.7. Other limitations of early
versions of the four stage model concern the lack of feed-back between the various
stages and the lack of individual choice elements in it. However, these limitations
have in the course of time been overcome by introducing feed backs between the
stages and by the introduction of results of discrete choice theory in these models
(Chapter 2).

In the next sections we will discuss the components of the four-stage model with
the exception of the fourth stage, the assignment model, which is already covered by
Chapter 11 in this handbook.

17.3 Trip Generation.

Trip production and attraction are the corner stones of transport modelling. Trips are
usually distinguished into home based and non-home based trips. In the case of home
based trips, the home of the trip maker is either the origin or the destination of the
trip. The remaining trips (usually some 25% of the total number of trips) are called
non-home based. Based on this distinction, the concept of trip production can be
outlined; with home based trips, trip production relates to the home end of home
based trips; in the case of non-home based trips it relates to the origin of the trips.
Trip attraction can be defined in a similar way: with home based trips, trip attraction
relates to the non-home end of the trips; for non-home based trips it relates to the
destination of the trips. It is important to note that data on home based trips are
usually better than on non-home based trips. Also, data on the home end of the trip
are usually better than data on the activity end of a trip. Hence, research on trip
production tends to generate more reliable results than research on trip attraction.
Since the total numbers of produced and attracted trips are equal, the usual approach
is to use the total number of produced trips as a control total for the total number of
attracted trips (Ortuzar and Willumsen, 2001).

In principle, transport models deal with all trips going through part of a certain
metropolitan area. This means that not only the trips made by all residents have to be
considered, but also visits from residents living outside the metropolitan area. In
addition, through traffic has to be considered. In practice the two latter categories
tend to be treated in a less refined way than the trips made by residents of the area.
As with the trips made by the residents of the area, some underdeveloped or ignored
segments can be discerned. First, there is often a lower age limit implying that trips
made by children below a certain age are not covered. In addition, it often appears
that short trips are ignored or incompletely covered. The background of the latter
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problem is that most of these short trips will be realised within one zone so that they
do not play a large role in the multi-zonal transport models that focus on interzonal
trips (Rietveld, 2000). Comparison of trip data in various countries reveals that there
are substantial differences between countries in trip production rates (see for example
Salomon et al., 1993). A substantial part of these differences can be explained by
differences in efforts to include short distance trips. The importance of including
short distance trips obviously depends on the aim of the analysis. Especially when
one is interested in the role of non-motorised transport in transport systems, or in
issues of traffic safety (pedestrians being an important group of victims) short
distance trips should not be ignored. However, even when the focus would be on
much more general themes where non-motorised transport does not seem to play an
important role, the issue of underreporting of short distance trips deserves attention.
The reason is that one may expect that there will be a certain degree of substitution
between short distance trips and long distance trips. Therefore, under-representation
of short distance trips makes the total number of trips more elastic for changes in the
transport system. Thus, the usual assumption that trip production is inelastic in a zone
is more difficult to defend when short trips are not well covered.

A final consideration is that in addition to passenger transport also freight
transport should be included, at least when one wants to take into account road
congestion since trucks and private cars make use of the same infrastructure. Given
the longer trip distances of lorries compared with private cars, the share of lorries
tends to be higher on express ways than on other road types. With shares of up to
30% of all vehicles on certain express ways, the role of lorries cannot be ignored,
especially since per vehicle they use more road capacity so that their contribution to
congestion is above average. There is an extensive literature on freight transport
modelling (see for example Chapters 12 and 13, d’ Este, 2000) but at the level of
multizonal metropolitan modelling freight models have not reached the same level of
spread and sophistication compared with personal transport models. One of the
reasons is that freight transport is part of complex logistical chains where production,
warehousing and distribution activities take place in an integrated manner. Therefore,
there is not just origin-destination traffic, which is relatively easy to model, but also
multi-stop trips of delivery vans have to be considered that are involved in pick-up
and delivery operations.

A standard element in all transport models is the distinction between trip
purposes. Purposes usually covered in transport models are work, social &
recreation, shopping, education, business and others (see also Salomon, Bovy and
Orfeuil, 1993). Table 17.1 gives a view on the trip frequencies of these purposes for
The Netherlands. The distinction according to purposes is important because for
some of them behavioral choices such as changes of destination or changes in terms
of departure time are much more flexible than for others. Compare for example work
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at a fixed location and given working times with shopping at a shopping centre of
choice at some time of the day).

Table 17.1 gives an overview of trip rates for several purposes for a selection of
time slots. It demonstrates that the morning peak is less peaked than the afternoon
peak. And it also appears that trips rates between 10.00 and 12.00 are higher than
between 7.00 and 9.00. The morning peak stands out because of its high share of
work and education. Both activities usually imply high scheduling costs. Shopping is
the most frequently mentioned purpose during the afternoon peak. Social visits and
recreation dominate the evening travel pattern. Thus from the trip frequencies
themselves one cannot infer that express way congestion is high between 7.00 and
9.00. The reason is that congestion only becomes visible when also the elements of
trip distribution, modal choice and route choice are taken into account.

Trip frequencies depend on a good number of individual features such as age,
income, educational level and car ownership. We list some results in Table 17.2.
The table shows that trip frequencies are rather insensitive to age for most age
groups. Only after the age of 50 years a strong decline can be noted. There appears to
be positive relation between income and trip frequency. The only exception is that
the lowest income group has high frequencies. Table 17.3 shows that educational
level appears to be an important determinant of trip frequencies: people with high
educational attainment travel much more than people with little education. The
gender difference appears to have remarkably little impact on the average trip
frequencies.
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It should be noted that the above figures only relate to the total number of trips so
that trip purposes are ignored. For specific trip purposes of course much larger
differences among the various groups can be observed. A second observation is that
the above results ignore interrelationships between features of people. Since
education and income are correlated, part of the positive correlation between income
and trip frequency may stem from the education effect. This calls for the estimation
of propensities to make trips based on micro-data. Combination of such propensities
with detailed data on the composition of zones would allow one to predict trip
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production per zone. This means essentially that rather detailed data are needed on
the composition of population per zone according to various classes. Ortuzar and
Willumsen (2001) discuss a number of issues in this respect, such as the problem that
one may easily end up with untractable numbers of classes. Another point of interest
is that for practical applications one would need updating procedures when detailed
information on trip frequencies in the past has to be combined with more recent, but
incomplete information. Another issue in trip production models is whether
classifications should be based on individual features (as presented above) or on
household features.

An important point of discussion is whether the number of trips made depends
on the location of the zone. As Table 17.4 shows there are only small differences
between zones in terms of their degree of urbanisation. One might expect that since
in highly urbanised areas accessibility of various services is high so that the number
of trips made is also higher. This indeed appears to be the case with shopping, sport
and recreation. The pattern for shopping suggests that in non urban areas people plan
their shopping activities in a more careful way so that they go to shops less
frequently. A similar pattern seems to exist for sport and recreation. However, the
total number of trips does not reveal a consistent pattern. The background is of
course that the populations in these types of areas will be rather different. For
example the figures on work related trips indicate that participation on the labour
market is smaller in highly urbanised areas (probably due to demographic factors) so
that the number of work trips is smaller there. As Ortuzar and Willumsen (2001)
indicate the evidence of an impact of accessibility on trip rates is rather weak. The
figures in the table suggest that for some trip purposes such an impact is indeed
relevant, but that it is difficult to trace for the aggregate of all trips.

The above discussion was focussed on trip production. The literature on trip
attraction is much smaller since trip attraction data are less accurate. Nevertheless the
issue of trip attraction is important, not only for the purpose of modelling per se, but
also for many practical and policy purposes. For example, for the development of
shopping areas or the planning of schools, the issue of trip attraction is of utmost
importance. It is plausible that the attraction of zones for education or shopping trips
depends to a much stronger extent on accessibility than the production of zones for
these trips. This is an issue that will be further discussed in the context of the next
section, which is on trip distribution.
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17.4 Trip Distribution.

Trip distribution concerns the volumes of flows between zones of origins and of
destination. In trip distribution models the flow between two zones depends on:

Properties of the zone of origin i for example, population size)
Properties of the zone of destination j for example employment)
Transport cost indicator between zones i and j for example distance, travel
time, monetary costs or generalised costs).

A possible formula for the flow between zones i and j would be:

Note that this formulation does not include constraints on the total number of trips
per zone of origin or destination. Therefore it is called the unconstrained model. For

and the usual formulations are and Thus, a and b can be
interpreted as elasticities: for example, when increases with 1%, the flow between i
and j increases with a %. The function represents the impact of transport costs
on spatial interaction. It is known as the deterrence function and indicates the
sensitivity of spatial interaction to transport costs.
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Form of the Deterrence Function.

For the deterrence function common forms are the exponential form and the power
form:

or

The parameters and have different interpretations (see for example Fotheringham
and O’Kelly, 1989). In the case of the power function, can be interpreted as an
elasticity: when the costs of interaction between i and j increase with 1 %, the flow
between the two zones will decrease with Thus, the power function implies a
constant relationship between relative changes in costs and relative changes in flows.
With the exponential form, the elasticity is not constant because the relative change
in flows is related to the absolute change in costs, not to the relative change. Thus the
relative effect of a cost increase of say $ 1 of a trip does not depend on the current
level of the trip in this case. The two functions have been illustrated in Figure 17.2.

A notable difference between the two functional forms is that the power function
goes to infinity for very low levels of costs, whereas the exponential form remains
finite. The consequence is that intra-zonal transport may become difficult to deal with
the power function because outcomes become very sensitive to small errors in
transport costs within a zone (usually little is known about intra-zonal transport
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costs). Similarly, also flows between nearby zones may become sensitive for errors in
cost estimates. The exponential form does not lead to these problems. For very high
costs a similar but reversed problem occurs. Both formulas imply that flows tend to
zero when costs become very high, but in this cost range the exponential formula is
much more sensitive to changes in costs than the power formula. Because of these
reasons Fortheringham and O’Kelly (1989) indicate that as a rule of thumb the
power formula is most suitable for spatial interaction where long distances dominate
(for example aviation or migration), whereas the exponential formula is more suitable
for short distance spatial interactions (for example shopping behaviour). This means
also that in the context of modeling metropolitan transport the exponential form will
most probably be the more attractive candidate.

The power function specification has the feature that is independent from the
unit ofmeasurement of In the exponential form this is no longer true: for example,
when costs would be measured in terms of dollars in stead of in cents, this would
entail that the parameter has to be multiplied with 100. This means that one cannot
automatically transfer the values of from one context to the other.

Despite these differences between the two formulas it should be noted, however,
that they are more closely linked than is often thought. The point is that in the case of
heterogeneity when individuals vary according to the parameter of the exponential
function, if this parameter has a Gamma-distribution, the resulting aggregate
deterrence function can be approximated with a power function (See Choukroun,
1975 and Fotheringham and O’Kelly, 1989).

In the literature several ways can be detected to use more general forms for the
deterrence function. A first possibility would be to formulate flexible forms such as
the following step function with a constant for each step k:

This obviously yields a very flexible form since the number of parameters equals the
number of travel cost classes distinguished. On the other hand when these classes are
very narrow empirical applications may lead to improbable (for example non-
monotone decreasing) patterns of the estimated parameters

Another solution sometimes proposed is to use a combination of the power form and
the exponential form:

This is of course a more flexible form than the two standard forms, but it does not
yield a solution for the tendency that the power function grows to infinity for low
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transport costs and that the exponential function tends to be sensitive for small cost
changes with high transport costs since the product of the two functions will take on
board both problems. A more promising form is the use of the Box-Cox
transformation (see Box and Cox, 1964):

Thus, by using this special form a variable can be shown to vary between a linear
(b=l) and a logarithmic (b=0) specification. Note that with the exponential form of
the deterrence function as used above in the value b=0 implies
the power form, whereas b=l leads to the exponential form. Thus, by introducing the
parameter b the exponential and the power forms become special cases of a more
general set of functional forms (see Table 17.5).

As demonstrated by Fik and Mulligan (1998) and Ortuzar and Willumsen (2001) the
use of the Box-Cox transformation often shows that the parameters a and b are
significantly different from 0 and 1. As a result the values of the parameters may be
strongly affected. The obvious reason why the Box-Cox specification often remains
unused is that it leads to intrinsically non-linear forms so that as a result OLS
approaches cannot be used. Maximum likelihood estimation is the approach to arrive
at estimations of the model parameters in this case.

Double, Single and Unconstrained Models

After this discussion of the functional form of the deterrence function, we address
another issue in the distribution model, i.e. the link between the flow volumes and
the stock volumes and Consider the form
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In these forms one often observes values for a and b that are close to 1. Then, a
uniform increase of 1% in the X and Z variables (for example population, income,
number of workplaces, etc) will lead to the conclusion that the flows will increase by
about 2%. This is an implausible conclusion since it would imply that as metropolitan
areas grow, traffic would grow twice as fast, which should be considered as extreme.
Therefore there is a need for alternative specifications of the distribution function
that do not give rise to such implausible results. The standard way to do so is to
provide a link between the trip distribution and trip generation models in the

zones i and Then the distribution function can be formulated as:

Where

The factors and have been added to ensure that the definitional requirements are
met that all trips leaving and entering a certain a zone add up to their totals
determined in the trip generation model. They are usually interpreted as balancing
factors. After rewriting the following expressions can be obtained for the balancing
factors:

Thus it appears to be impossible to find explicit solutions for the balancing factors.
Iterative procedures have to be used to arrive at values for and An
interpretation that is often used for these factors is that and are interpreted as
accessibility indicators. See for reviews Rietveld and Bruinsma (1998) and Reggiani
(1998). Note that in the present model an increase in and with 1% leads to an
increase in the flows of 1%. Thus by the introduction of the balancing factors the
problem that flows grow systematically faster than stocks has been removed. The
above formulation is known as the doubly constrained model. An obvious underlying
assumption of this model is that the trip generation model can be used to produce
reliable estimates of the total number of trips entering and leaving the respective
zones. Typical examples of trip purposes for which the doubly constrained model
may apply are social visits and work trips (when the number of jobs in zones is
given). We note in passing that whereas in most applications the origin zones i and

following way. Let and denote the total number of trips leaving and entering
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destination zones j will be of the same type, this is not necessarily the case. For
example it may well be that residential zones are different from employment zones; a
similar case holds for hospital visits.

There may be cases where it is not so evident that for both origins and
destinations the total number of trips can be imposed beforehand. Consider for
example shopping trips. Whether or not a zone will attract many trips of this type will
depend on its accessibility. Therefore for shopping one may expect that the
production constrained model makes sense. This means that

where

This formulation implies that the total number of visits to shops in zone j just follows
as after the model has been solved to arrive at the flows. The model predicts
that in a zone j with a large number of nearby residences (high and low transport
costs there will be many shopping trips2. The impact of accessibility of the
zones of origin means that nearby residential zones with a high level of accessibility
will have a lower impact on shopping visits in j. The reason is that residents in these
highly accessible zones apparently have ample opportunity to visit other shopping
zones at short distances. We note in passing that Table 17.4 in the preceding section
suggests that also the total number of trips made by the residents in a zone is not
exogenous but depends on accessibility. In Section 17.6 we will discuss other
formulations of the spatial interaction models that have this property.

Similar to production constrained models, there may also be attraction
constrained models. In this case the model reads:

Where

A possible example of an attraction constrained model is the case of modeling the
location of residence of students who are studying at particular educational
institutions with limited capacity, or of the choice of hospital by patients3.

Estimation of the unconstrained model by means of ordinary least squares (OLS)
after logarithmic transformation of the variables is straightforward. However, in the
case of the constrained models a more complex estimation results. As shown by
Cesario (1975) OLS can still be used in the production or attraction constrained
model, but there is a need to add origin (or destination) specific constant terms.
Concerning the doubly constrained model Sen and Soot (1981) have solved the
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problem of separating the estimation of the parameter of the distance deterrence
function and the computation of the balancing factors by using as the
starting point of the estimation procedure. An alternative approach is that the
interaction models are estimated by means of Maximum Likelihood methods. This
has as an additional advantage that the problem of zero flows disappears. The OLS
regressions rely on logarithmic transformations and therefore zero flows cause
difficulties. Especially when there are many zones and many groups of travellers, the
probability of zero flows will be considerable. When maximum likelihood methods
are used, the zero flow observations can be accommodated by using the Poisson
model.

We end this section by noting that the various combinations of constraints
considered have strong implications for the elasticity of total travel demand. As
already hinted above, in the case of doubly constrained models total travel demand is
given when it is measured terms of the total number of trips entering or leaving each
zone. In the unconstrained model the total number of trips is entirely flexible. Thus,
the chosen constraints have considerable impact on the elasticity of travel demand in
terms of total number of trips. In Section 17.7 a class of more general models will be
discussed which has the large advantage that the outcomes do not depend on the a
priori chosen constraint regime. The difference is probably smaller when one
considers the total distance travelled instead of the total number of trips because in
that case even the doubly constrained model would allow substantial changes in total
number of kilometres travelled when the generalised transport costs would change.
The issue of elasticities will be further discussed in the context of modal choice
(Section 17.5).

17.5 Modal Choice

It is customary to distinguish three clusters of variables that affect modal choice:

1. Features of the individual.
2. Features of the modal alternatives.
3. Features of the choice context.

Among the individual features to be considered are factors such as the availability of
a car, possession of driver’s license, income and household type.
The modal features relate to factors such as price or costs (possibly distinguished
between fuel costs, toll costs, parking costs, fares) travel time (in the case of public
transport possibly distinguished between in vehicle time, waiting time, access time
and egress time), comfort, reliability, availability and other qualitative indicators.
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Finally the choice context is relevant. For example, the time of the day may have
an impact on the attractiveness of transport modes (for example, during the evening
non-motorised traffic may be considered to give rise to extra social risks). Also the
trip purpose may play a role because activities such as working are confronted with
stricter scheduling compared with social visits. Weather conditions have an impact
on the attractiveness of certain transport modes. During winter-time the use of
bicycles for commuting is less than during the summer.

The choice of a transport mode starts with the formation of the choice set (see
for example Ortuzar and Willumsen, 2001, Punj and Brookes, 2001 and Exel and
Rietveld, 2002). The choice set depends partly on objective factors such as the
existence of a railway station in a city or ownership of a car by a household. In the
long run these factors may change, for example when households buy an additional
car. Also car pooling as an alternative may deserve longer-term preparation since
partners have to be found.

Another part of choice set formation relates to information and perception issues.
People may be uninformed or mis-informed on travel alternatives. In addition
travellers may impose threshold values on certain attributes so that for a certain
origin-destination connection they would, for example, never consider an alternative
with a travel time longer than 1 hour. Fotheringham and O’Kelly (1989) propose to
include the dimension of choice set formation by a stochastic process implying that
alternatives with a low attractiveness are not included in the choice set. Then
observed choice probabilities that alternative j is selected are the result of two
choice processes: the probability that alternative j is included in the choice set,
and the probability that alternative j is selected from the choice set, given that it is
in the choice set (see also Lerman, 1984, and Morikawa, 1996).

The problem is that in many cases we have little information on the two sub-
processes so that when both are governed by the same criteria and strategies of
weighing these (compensatory versus non-compensatory) it will be difficult to
distinguish them. Exel and Rietveld (2002) show that when there is explicit
information on the availability of the modal alternative (‘could you have made this
trip by transit’) there is no problem in differentiating the two. They find that the two
steps are not entirely governed by the same considerations.

Consider the choice between two modes: private transport (car) and public
transport (bus). The choice between the two is governed by the factors mentioned
above such as travel time, comfort and price. Note that for those who do not have a
car the choice probability is 1 for public transport: these travellers can be considered
as captives. For the other travellers the choice is governed by the utility function:
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where all factors except travel time are incorporated into note that b is negative.

Then, using the simple logit model (see Chapter 2) the probability that the public
transport alternative (j=2) is chosen equals:

An illustration is given in Figure 17.3. It shows that when travel time increases, the
probability of a choice for public transport will tend to zero when the difference in
travel times between the two modes will get very large.

Note, however, that the observed choice probabilities for various combinations do
not only depend on the trade-offs considered in (16), but also on the share of the
population that has access to alternative 1. Therefore, it will not be possible to
estimate directly the parameters of the utility function above on the basis of observed
modal shares without information on the availability of modes. This obviously holds
true for aggregate data, but also in the case of individual data this has to be taken into
account. For example in research on the choice of carrier in aviation research it is
usually taken for granted that the passenger has a choice between the available
flights. However, when some planes are fully-booked this is not a realistic
assumption. Along similar lines the observed choice for a transport mode may be
governed by incidental factors having an impact on availability of modes. For
example the car is not available for use (it happens to be used by another household
member, or needs reparation), strikes occur from time to time in public transport, and
adverse weather conditions (inland navigation may be impossible when rivers are
frozen).
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We conclude that actual behaviour does not always provide a reliable indication
of the preferences governing modal choice. Stated choice is therefore an attractive
alternative. Note that stated choice experiments can also help to avoid the perception
problems mentioned above. Another attractive property of stated choice approaches
is that it may overcome problems of multicollinearity. It often happens that the
features of alternatives are strongly correlated (for example travel time and price). In
that case estimates of the relative importance of price versus travel time in modal
choice would lead to unreliable results. It is no surprise therefore that stated choice
has become a popular way to study modal choice (cf. Henscher, 1994).

The standard way to analyse stated preference data on modal choice is the use of
limited dependent variable models such as the logit model, the probit model and
extensions. These models entail the estimation of utility functions governing
individual choice behaviour. They are surveyed by Ben Akiva and Bierlaire in
Chapter 2. Once these models have been estimated they can be used to derive some
parameters that have high policy relevance: the value of travel time and choice
elasticities.

Value of Travel Time.

For the measurement of the value of travel time, consider the utility function

Then the measurement dimensions of the parameters b and d are [utility per money]
and [utility per time]. The absolute meaning of the parameters has little relevance, but
the ratio d/b has the dimension [money per time] and can be interpreted as a value of
travel time, accordingly. This is a very relevant input for policy studies because it
provides a key for the monetarisation of time gains and time losses in cost benefit
analysis (see also Small, 1992). It appears that in many infrastructure projects time
gains of passengers play a decisive role in the balance between benefits and costs. In
a review of value of time studies from the UK, Wardman (1998) finds that the value
of time depends on several factors: individual characteristics, modal features and the
choice context. Personal factors play a role: people with higher incomes have higher
opportunity costs and may be expected to have higher values of time. This implies
that in a context of increasing incomes, values of time may be expected to increase. It
also means that as people get richer they pay more attention to the quality aspects of
trips rather then to the direct monetary expenses.

Also the features of the modal alternatives are important: values of time depend
on travel modes. This is no surprise since the levels of comfort are different. An
obvious example is the comparison between a railway versus an airline trip between
two destinations, both taking four hours. The difference in comfort will lead to a



Spatial Interaction Modeling 681

higher valuation of the time costs for the flight compared with the railway trip. In
addition, the value of time will depend on trip purpose. Trips with a business purpose
tend to have a higher value than commuting trips which in their turn have a higher
value of time than trips made for social visits. An example for the Netherlands is
given in Table 17.6.4

Another finding from comparative analysis is that the values of time appear to
depend on the specific choice context. For example, when the alternatives used in the
Stated Preference research are phrased in terms of tolls to be paid the resulting trade-
offs appear to be higher than when the costs relate to fuel (Wardman, 1998). The
probable reason is that tolls are paid immediately, whereas fuel is bought from time
to time.

Another aspect of value of time studies is that various components of travel time
deserve attention. In addition to in vehicle time, total travel time relates to walking
time, waiting time, search time, etc. For example, McCarthy (2001) finds that the
value of walking time is about four times as high as the value of in vehicle time.
Also travel time variability (uncertainty) is important. These findings have important
implications for scheduling policies of public transport operators. For example,
policies aiming solely at improving the speed of the services by reducing the number
of bus stops may be counterproductive when these would imply higher access times.
A broader review of these issues is given by Wardman (2001)

Price Elasticity of Travel Demand.

Elasticities are of equal relevance for policy purposes because they reveal how
changes in features of modal alternatives lead to changes in choice probabilities. An
elasticity is defined as the relative change in the use of a mode divided by the relative
change in a feature of that mode (for example the price). The choice probability of
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an alternative j directly depends on its price j, for example in the ordinary logit
model:

Thus, when the parameters of have been estimated it is possible to compute the
elasticity of the choice probability with respect to price or any other feature. The
literature has yielded a large number of estimates of price elasticities of travel
demand in the mean time. Comparative analyses of these can be found among others
in Oum et al. (1992), Goodwin (1992), Kremers et al. (2002) and Brons et al. (2002).
It is important to pay attention to the exact definition of the dependent variable when
comparing price elaticities of travel demand. In the context of modal choice the
dependent variable is actually a choice probability, which is closely related to the
number of trips made. However, in other models the elasticity relates to the number
of kilometres travelled, so that also the other elements of travel decisions play a role,
in particular trip generation and trip distribution. Therefore, one may expect that
elasticities based on discrete choice analysis of modal choice are closer to zero than
elasticities based on total number of kilometres travelled. This is indeed confirmed in
the literature (Oum et al., 1992, Kremers et al., 2002).

Another important reason for differences between price elasticities is the
difference between short and long-run estimates. Brons et al. (2002) find that long-
run estimates are more elastic than short-run estimates. The background is that in the
short-run there are fewer possibilities to adjust to price changes (for example, jobs
and dwellings are fixed in the short run). Trip purposes are also important. A general
finding is that business traffic is least elastic, whereas social visits are most price
elastic. For commuting intermediate values are found. One of the reasons for this
pattern is that the costs of business and commuting travel are not entirely borne by
the traveller himself. In many countries institutional arrangements exist such that
such that (part of) the travel costs are paid by the employer. Many employers face the
problem that the transaction costs of dealing with these transport expenses are high so
that simple arrangements are made implying that there are little incentives for
employees to reduce travel.

Other factors that have an impact on price elasticities concern the number of
alternatives and the specific way in which payment takes place. When the number of
alternatives is small, one may expect travel demand to be relatively inelastic
compared with the situation where the number of alternatives is large. Thus, demand
for transport in an urban context (where often many alternatives exist) tends to be
more elastic than in contexts where the choice set is small.

Another point that deserves attention is that price elasticity estimates can be
based on both revealed and stated preference data. Kremers et al. (2002) find a
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tendency that according to stated preference estimates demand is more elastic
compared with revealed preference estimates. This may be an indication that, in
stated preference studies, people exaggerate their responsiveness to price changes.
On the other hand, as has been indicated already above, the difference may also relate
to estimation problems with revealed choice data.

The way of payment is also important. For example, public transport demand is
often rather elastic in terms of ticket prices compared with demand for travel by car.
The reason is that with public transport the ticket price is 100% of the total price,
whereas with car use there are many other price components (car ownership, fuel
costs, maintenance, parking, etc.). Consider the case that total monetary costs of a
trip are and is the contribution of a certain cost component. Let be the
elasticity of travel demand with respect to total costs. Then it is not difficult to
demonstrate that the elasticity with respect to this cost component follows as:

Thus, cost shares play an essential role in the link between total price elasticities and
specific price elasticities.

The above results on values of time and prices elasticities indicate that there is a
large variation in outcomes between the various studies. This raises the issue of
transferability of estimation results. Meta analyses as reported above are useful tools
for this purpose.

Transferability does not only relate to elasticities and values of travel time, but
also to parameters of the utility functions underlying these. An important finding in
transport modeling is that transferability of the model parameters is difficult. In
particular it appears that mode-specific constants such as in equation (15) are
needed to arrive at plausible modelling outcomes for modal choice. The implication
is that although one may have the ambition to make all quality aspects of transport
modes explicit in utility functions, in practice one will still need mode specific
constants. These constants appear to absorb various situation specific circumstances
that cannot be transferred from one situation to the other. Note that when these
constants would be close to zero, the utility model can easily be used to predict the
market potential for a new transport mode (for example the introduction of a metro
system in a metropolitan area where only buses and cars are employed). This was the
main idea behind the classic contribution of Quant and Baumol (1966) who
introduced a model for travel demand in terms of abstract modes where mode
specific coefficients did not play a role. It is a pity that this vision has not been
realised thus far, because it limits the usefulness of the existing transport models for
policy purposes. It implies that existing models cannot directly be used for the
analysis of the introduction of a new transport modes, but that one should first carry
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out stated preference type of interviews in order to get meaningful estimates of the
market potential for the new mode.

17.6  Transport – Land Use Linkages

There has been a long debate in the transportation and land use literature on the
relationship between transportation behavior and the geographical location of
economic activities. Do land use and location determine transport flows or do
transport networks determine the location of economic activity? Much of the debate
has taken the form of a chicken and egg dilemma and has neglected the difference
between slow and fast motion. A well-specified dynamic land-use transportation
model would be able to encapsulate both phenomena simultaneously.

Nevertheless, in many urban and infrastructure planning debates we often
observe a one-sided perspective. For example, in the new urbanism we witness much
emphasis on the causality from land use to travel behavior, with the consequence that
the policy handles are sought in land use planning. The problem here is that human
behavior does not obediently follow the logic imposed by the land-use transportation
causality, because of inertia in human behavior and limits to flexibility regarding
spatial relocation. It ought to be recognized that – even though transportation is
regarded by individuals and society at large as a problem in terms of congestion, air
quality, quality of life or safety – the ultimate outcomes of individual and collective
choices (in terms of trip generation, trip length, modal split or route choice) do not
necessarily reflect an optimal result of the transport system in terms of long-term
environmental sustainability.

There is a main point of difference between environmental aspects and land use
aspects in transport systems. The environmental aspects can mainly be considered as
an outcome of transport systems in combination with travel demand. On the other
hand, land use aspects are a determinant of travel demand: as explained in the section
on trip generation, the number of trips produced and attracted by zones depends
strongly on land use in the zones. However, although this land use is assumed to be
exogenous in many urban transport models, it is not necessarily so because changes
in transport systems may lead to changes in land use. This calls for an integrated
analysis of land-use and transport. Reviews of integrated transport – land use models
can be found in Webster et al. (1988), Webster and Paulley (1990), Wegener (1991),
Hayashi and Roy (1996) and Martinez (2000)

In the context of the present paper we will discuss a specific example of a
transport-land use model that is closely linked to the transport models discussed in
the section on distribution models. It can actually be formulated as a generalisation of
this model (see Alonso, 1978 and De Vries et al., 2002). In this section we discussed
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the various cases of the double, single and non-constrained model. A general
formulation that would cover all these models would be:

In this information and denote exogenous features of origin and destination
zones. It can easily be verified that the following special cases hold (see Table 17.7).

The new element of the above model is obviously that the total number of trips
produced and attracted by a zone is dependent on accessibility in a flexible way. This
means that changes in transportation systems, leading to changes in accessibility
indicators and will in their turn lead to changes in activities such as shopping,
housing and hence to changes in the use of land in the pertaining zones. Note that the
double constrained formulation is a special case where such feedbacks of transport
costs on zonal activities are rules out. However, an implication of this formulation is
that also single constrained models imply a transport land use interaction. An obvious
example is shopping. The model shows that as shopping areas get better accessibility
they will also attract more customers so that one may expect expansion of shops. The
large advantage of the above model compared with the standard single and double
constrained models is that there is no need to impose a priori the degree of the
constraint. Between the extremes of a proportional response and a non-response with
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respect to accessibility this formulation also allows intermediate elasticities, implying
values for and between 0 and 1.

17.7 New Perspectives

The above described classes of transportation models are essentially members of the
family of spatial interaction models. Such models map out the geography of
movement and are a prominent approach to the analysis of spatial flows (see for an
overview Nijkamp and Reggiani 1992). A popular set of spatial interaction models is
based on gravity theory. The use of such physics-based models can be justified due to
its link (or formal analogy) with utility theory, either at an aggregate (systemic) level
or on individual (choice-maker’s) level. Parallel approaches can be found in entropy
theory and in Alonso’s theory of movement as outlined in Section 17.6. It can be
demonstrated that also these models have their roots in standard utility and cost
principles, while also a parallel can be drawn to linear programming models. The
family of spatial interaction models comprises at present indeed a wide variety of
different but largely complementary models, such as micro-simulation models,
random utility models, activity-based choice models and spatial search models. The
close orientation of spatial interaction models to micro-utility models has several
major advantages, such as a firm behavioural underpinning, the possibility of a multi-
level aggregation, the opportunity to organize panel studies in a a longitudinal
context, the possibility to include categorical measurement of response variables and
the possible inclusion of multi-actor effects (e.g., congestion). For the study of
dynamic spatial interaction models, in particular in the context of catastrophy and
chaos models, the reader in referred to Nijkamp and Reggiani (1992).

A promising direction of research in the field of spatial interaction modeling is
the integration of trip modeling and activity modeling. This will lead to a more
explicit treatment of the duration element of activities in transport models. It will also
provide a good basis for a further introduction of scheduling issues of trips and
activities in transport models. Scheduling of trips and activities is an important way
to avoid bottleneck congestion in metropolitan areas. To make the present spatial
interaction models more relevant for the analysis of congestion problems the themes
of scheduling and activity based modeling deserve more attention than they usually
receive.
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Endnotes

1 The values of and may be assumed to be given here: they result from the trip generation model.
2 A more general formulation of the model would allow for the inclusion of a factor in the model that
reflects the attractiveness of zone j for shopping activities.
3 Along similar lines as in the production constrained model a factor may be added to take into account
origin specific factors spatial interaction patterns.
4 Note that the differentiations mentioned here with respect to variations in value of time correspond
closely with the dimensions mentioned at the beginning of this section on modal choice.



18 PRINCIPLES OF TRANSPORT
ECONOMICS

Richard Arnott and Marvin Kraus

Traditionally, courses in transport economics were divided into three sections:
demand, supply, and regulation. The section on demand focused on empirical work
estimating mode-specific demand elasticities and on short-term demand forecasting
using discrete choice models. The section on supply concentrated on applied work
estimating mode-specific cost functions, but also contained some discussion of the
technology of congestion. And the section on regulation considered both the positive
and normative aspects of regulation in different transport industries. The normative
part applied textbook microeconomic theory to identify market failures and to derive
optimal corrective policy, and the positive part applied the same body of theory to
examine the effects of alternative regulatory policies.

18.1 Introduction

This chapter will have a considerably narrower scope, focusing on the
application of microeconomic theory to resource allocation in the transportation
sector. There are two basic issues. How should transportation be priced? And how
should capacity be determined? There are correspondingly two basic principles.
First, economic agents make socially efficient decisions when they face the full
social costs of their decisions and derive the full social benefit from them; typically,
this entails pricing at short-run marginal social cost or, where this is not practicable,
pricing as close to short-run marginal social cost as is practicable. Second, capacity
should be expanded to the point where the social benefit from additional capacity
equals the social cost. Of course, the application of these principles in different
contexts entails a host of subtleties; otherwise, transport economics would be a short
subject.
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Happily there is now more exchange of ideas between transport economists and
transportation scientists than there was a generation ago. Transportation scientists
are coming to appreciate the power of prices, and transport economists are beginning
to realize that there is more to their job than deriving first-order optimality conditions
in unrealistically simple models. While it is narrowing, there remains a gulf between
the two fields. To some extent, this derives from the different roles transportation
scientists and transport economists play in the policy/project evaluation process. But
more important are methodological differences in training. Engineering training
stresses the practical, producing something that does the job well, which requires
paying attention to detail. Economics training stresses the theoretical — how to
conceptualize problems — in the belief that practical knowledge will come through
experience. Since different conceptualizations entail different models, economic
reasoning tends to be model-based. Furthermore, economists tend to reason from the
general to the specific, and from the simple to the complex. They start with simple
models that illuminate general principles and then add complications that do not
undermine the basic principles but affect how they are applied.

The central issue in most of economics is the appropriate role of government.
Most mainstream economists believe that most economic activity should be
organized through markets, with the government intervening only when the market,
for clearly-identified reasons, fails. Microeconomists use as points of reference
models in which markets perform perfectly so that no government intervention is
required, then introduce realistic complications and constraints which induce market
failures, and then derive the minimal government intervention needed to correct or at
least alleviate those market failures, so that the market assisted by government policy
achieves constrained efficiency in resource allocation.

This is the approach we shall follow in this chapter. Section 18.2 will present
the traditional highway pricing and investment model. It will start by developing
quite thoroughly the simplest variant of the model, and will then add realistic
complications one by one. Section 18.3 will examine the highway bottleneck model,
whose focus is on trip timing. Section 18.4 will investigate how the traditional
model is adapted to deal with mass transit. Given the narrow scope of the essay,
many other important topics in transportation on which the application of economics
can throw light — such as regulation, transportation and land use, scrappage and
maintenance, privatization, and logistics — shall be ignored.

18.2 The Traditional Highway Pricing and Investment Model

There are two broad classes of models in microeconomics — general equilibrium
and partial equilibrium. A general equilibrium model provides an exhaustive
description of a self-contained abstract economy, while a partial equilibrium model
describes only a part of an economy — often a market — treating as implicit what is
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happening in the rest of the economy. General equilibrium models are conceptually
preferable since they account explicitly for everything, but provide a distracting
amount of detail, such as the effect of widening a road on the cost of producing a jar
of peanut butter. Fortunately, economists have a good understanding of the
circumstances under which partial equilibrium analysis is "valid" — gives the same
results as would be obtained from a corresponding general equilibrium analysis —
and so frequently adopt the short cut of employing a partial equilibrium model. The
model to be presented in this section — of a single road link — is partial
equilibrium. The main requirement for the conclusions derived from analyzing the
model to be valid is that the rest of the economy be efficient — that throughout the
rest of the economy, the marginal social benefit of every economic action equal its
marginal social cost. Suppose, for example, that a driver who is deterred from taking
a trip by a slight increase in congestion uses the time and money saved to eat a
peanut butter sandwich. The fact that he consumes peanut butter sandwiches up to
the point where the marginal social benefit equals the marginal social cost means that
the social benefit from his eating that extra sandwich equals the social cost. The net
social benefit therefore equals zero, and can be ignored in welfare analyses. By the
same token, all of the millions of other incremental adjustments that economic agents
make to that slight increase in congestion can be ignored.

The Model

Consider a one-way highway link from point A to point B. Individuals are identical,
and conditions on the road are uniform over time (travel on the road is steady state)
and space.

At any point in time, there will be a certain number of vehicles on any one-mile
stretch of road — the traffic density. The hourly rate at which vehicles pass by any
point on the road — the traffic flow — is denoted by N. Flow is the road's output
variable, since it is the rate at which trips from A to B are produced. Travel time
from A to B is T minutes per vehicle. As density increases, so does travel time. The
relationship between the two is assumed to be technological and such that, for the
relatively low densities to which the analysis is applied, flow increases with
density.1,2 The maximum flow on the road is termed its capacity, and denoted by s.

Figure 18.1 displays the relationship between travel time and flow over the
range of densities to which the analysis is applicable. Density is zero at point D and
increases steadily for left-to-right movements along the curve. Most empirical
analyses have found travel time to be a convex function of flow, and that is assumed
in the analysis. An improvement of the road increases capacity, and lowers travel
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time for each level of flow. The traditional analysis assumes a technological
relationship between travel time, flow, and capacity in which travel time depends on
flow and capacity only through their ratio, N/s, which is termed the volume-capacity
ratio. Accordingly,

We assume a constant vehicle operating cost of c and a given value of travel
time, v. The time plus operating cost of a trip will be referred to as the user cost, and
written as

where from (18.1),             and Thus, the total user costs per hour
corresponding to a flow N per hour are



Principles of Transport Economics 693

Note that is homogenous of degree zero in N and s, and that is
homogenous of degree one.

The marginal social cost of N is the increase in total hourly user costs from
increasing the flow rate by one unit:

This has two components. The first, f, is the user cost of the extra vehicle per hour;
the second, is the congestion externality — the increase in the total hourly
user costs of the existing or inframarginal trip takers from being slowed by the
increase in traffic. Economists use the term externality to refer to an external cost, a
cost that an economic agent's actions engender but which is external to that agent —
that agent does not pay for.

The relationship between user cost and marginal social cost (msc) is displayed in
Figure 18.2. The congestion externality at a given flow rate equals the vertical
distance between marginal social cost and user cost at that flow rate. To illustrate
traffic congestion, a user cost function of the form

is frequently posited. Other functions fit the data better, but this function is used
because has a nice interpretation as the congestibility of the road and because the
ratio of the congestion externality to the congestion cost incurred by a traveller,
f( N/s) –  f(0), equals Thus, if and if a traveller's trip cost increases from $1
to $2 as a result of congestion, that traveller's presence on the road imposes a cost of
$5 on other travellers.

Sadly, the microeconomist's assumption that economic agents are completely
selfish performs remarkably well. In the traffic congestion context, this corresponds
to the assumption that, in making her travel decisions, an individual considers only
her user cost — the cost she herself bears directly — and not the cost she imposes on
others, the congestion externality. In the absence of a toll, the individual will travel
to the point where the marginal private benefit of the last trip equals the user cost.
Since the marginal social cost exceeds the user cost (and under the additional
assumptions that marginal social benefit equal marginal private benefit, and that
marginal benefit is decreasing in the amount of travel), she will travel too much —
beyond the socially optimal level of travel for her, for which marginal social benefit
equals marginal social cost.

Economists have a number of standard policy remedies for dealing with
externalities. The preferred remedy for traffic congestion is to charge the individual
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for the congestion externality she imposes on others. This will result in her facing
the social cost of a trip, and hence choosing the socially optimal amount of travel for
her. The externality is thereby internalized. We shall examine this remedy in more
detail shortly.

Above we have described the congestion technology. There are two other
elements in the analysis, capacity costs and demand. The capacity cost function,
K(s), indicates the hourly cost of building the road so that it has capacity s,
employing the least-cost construction method and holding factor prices fixed. For
the moment, we make only the natural assumption that The capacity cost
function and the user cost function together characterize the supply side of the
model. Total hourly costs are given by C(N,s) + K(s).

The demand side of the model is characterized simply by a demand function,
which relates the flow demand for trips to trip price, P:3
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it is natural to assume that We shall also work with the inverse demand
function P = P(N). An individual's trip price equals the user cost plus any fee she is
charged for taking the trip, which we term the toll and denote by Thus,

The next step in the analysis is to bring together the supply and demand sides of
the market to determine market equilibrium. Substituting (18.7) into (18.6),

Equation (18.8) implicitly defines the equilibrium flow rate as a function of and s:

Under our assumptions that and it is straightforward to show that

and which accords with intuition. Substituting (18.9) back into
(18.7) gives a corresponding expression for the equilibrium trip price:

where              and

We now ask the questions: What is the socially optimal level of the toll? And
what is the socially optimal level of capacity?

First-best Analysis

Recall our earlier discussion of the conditions under which partial equilibrium
welfare analysis is valid — basically that the welfare effects from the spillovers into
other markets due to changes in the "market for travel from A to B" net out, which
occurs when the rest of the economy is efficient. We assume these conditions to
hold. We also assume that there are no constraints on the operation of the market for
travel from A to B other than those captured in the supply and demand functions.
Under these circumstances, we conduct what is termed first-best partial equilibrium
analysis.

We wish to choose road capacity and the level of the toll so as to maximize
social welfare. For the conditions under which partial equilibrium is valid, we may
ignore the repercussions of changes in s and on the rest of the economy. The
maximization of social welfare then reduces to the maximization of hourly social
surplus from the road, which equals the direct social benefits from the road minus
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the direct social costs. The direct social costs are simply the total costs identified
earlier, the sum of user costs and capacity costs. The direct social benefits are given
by the area under the demand curve up to the equilibrium trip flow. To see this, note
that a point on the demand curve indicates the marginal private benefit of a trip,
since the individual who takes that trip is willing to pay the corresponding price but
no more. The demand curve is therefore the marginal private benefit curve, and the
area under the demand curve up to a specified level of flow the total private benefit
associated with that level of flow (this is strictly correct only in the absence of
income effects, which we have assumed). Two additional assumptions are required
to interpret the area under the demand curve as the total social benefit. The first is
that there be no consumption externalities — that only the person taking a trip derive
utility or disutility from his doing so (smoking is an example of a consumption
externality). The second, which is considerably more contentious, is that the social
planner values a dollar's worth of benefits equally whether it goes to a rich person or
a poor person. One rationale for this is that interpersonal utility comparisons are not
scientific, so that the only defensible assumption is that different individuals' benefits
be weighted equally; another is that the social planner has exercised her authority to
redistribute income in lump-sum fashion to the point where everyone's marginal
social benefit from income is equalized. We employ the assumption to simplify the
exposition. The analysis can be extended straightforwardly to allow for the planner
to attach different social valuation to a dollar going to different people, but the
results include additional terms reflecting equity considerations.

The objective function is therefore

The first-order condition with respect to is

Since this implies that

the toll should be set so that each driver pay a trip price equal to its marginal social
cost. Since this result holds regardless of whether capacity is optimized, it
demonstrates the optimality of short-run marginal cost pricing. Substituting (18.4)
and (18.7) into (18.11) yields
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Price equals user cost plus the toll, while marginal social cost equals user cost plus
the congestion externality. Thus, price equals marginal social cost implies that the
toll equal the congestion externality.

This result is displayed in Figure 18.3. The socially optimal number of trips
occurs where the marginal social benefit of a trip equals the marginal social cost, and
is therefore characterized by the point of intersection of P(N) and point E. In
the absence of a toll, individuals take trips up to the point where marginal private
benefit equals marginal private cost, which in the absence of a toll equals the user
cost. Thus, the no-toll equilibrium is characterized by the point G.4 Because
individuals do not pay for the congestion externality they impose on others, there is
excessive travel. Now suppose that a toll is imposed equal to the congestion
externality, evaluated at the socially optimal number of trips — the height EF in the
figure. This causes the marginal private cost to shift up by EF, and hence to intersect
the demand curve at E. Thus, imposition of a toll equal to the congestion externality
evaluated at the socially optimal number of trips induces the socially optimal amount
of travel.
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This result is robust. The model can be generalized to incorporate
heterogeneous individuals, multiple modes, networks, etc., If tolls are applied to all
links (and nodes, where there is nodal congestion) of a network equal to the
corresponding congestion externalities, the socially optimal amount of travel will
occur throughout the network. Individuals therefore make socially optimal choices
with respect to not only the amount of travel but also route and mode. This accords
with the general principle that when rational, self-interested individuals face the full
social costs of their actions (no production externalities) and derive the full social
benefit from them, they will make efficient decisions. The result also extends to the
case where demand varies over time, so that congestion and hence the congestion
externality and the optimal toll are higher in peak than in off-peak periods. This
result is known as peak-load pricing.

One qualification is in order. Our analysis assumed that congestion is
anonymous in the sense that all individuals impose the same congestion externality.
But in fact the magnitude of the congestion externality a driver imposes depends on
how he drives and the type of vehicle he drives. If the toll can be personalized so
that each driver pays for the congestion externality he imposes, then all drivers
continue to make socially efficient decisions.5 But if tolls cannot be fully
personalized so that, for instance, bad drivers pay no more than good drivers, full
efficiency is no longer achieved. In this case, we say that there is a constraint on the
extent to which tolls can be differentiated, which precludes attainment of the full or
first-best optimum. The planner will then choose the level of the toll to maximize
social welfare subject to the constraint on the extent of toll differentiation, which is
an exercise in the theory of the second best. Under the constrained efficient toll, bad
drivers will drive too much and good drivers too little. We shall examine second-
best optimality in some detail in the next subsection.

Return to the first-best problem, (18.10). The first-order condition with respect
to capacity is

where denotes the partial derivative of with respect to its second
argument. If the toll is set so that (18.11) holds, (18.13) reduces to

which is the first-order condition for producing the equilibrium number of trips at
minimum cost, and is therefore a production efficiency condition. Equation (18.14)
states that capacity should be expanded to the point where the reduction in total user
costs, the marginal social benefit of capacity, equals the increase in capacity costs,
the marginal social cost of capacity.
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The highway authority incurs capacity costs of K(s) and receives toll revenues of
Under (first-best) optimal pricing and investment, what proportion of capacity

costs is financed out of toll revenues? This is known as the self-financing question
and owes its basic results to Mohring and Harwitz (1962) and Strotz (1965).

Initially, we do not assume the user cost function to be homogenous of degree
zero in N and s. Define TC(N,s) = C(N,s)+ K(s) and AC(N,s) = TC(N,s)/N.

and are the short-run total and average cost functions. The long-run
total and average cost functions are

and LRAC( N) = LRTC(N)/N, and are the lower envelopes of the short-run total and
average cost functions, respectively. Long-run marginal cost is given by

With N and s as the choice variables, the planning
problem is

Maximizing (18.16) with respect to N gives

— users should face a trip price equal to short-run marginal cost, whether or not
capacity is optimal. Maximizing (18.16) with respect to s is equivalent to
minimizing TC(N,s), which from (18.15) results in costs of LRTC(N). Following
(18.17) then results in long-run marginal cost pricing, because N must now solve

which yields the first-order condition

Thus,

where indicate values at the first-best optimum. Equation (18.20) indicates that,
at the first-best optimum, toll revenues exceed/equal/fall short of capacity costs
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according to whether long-run marginal cost exceeds/equals/falls short of long-run
average cost, or equivalently whether long-run average cost is (locally) rising, flat, or
falling. We state this as:

Proposition 1. At the first-best optimum, toll revenues exceed/equal/fall short
of capacity costs according to whether long-run average cost is (locally) rising, flat,
or falling.

Proposition 1 is illustrated for the case of locally decreasing long-run average cost in
Figure 18.4. From (18.19) the optimal number of trips occurs where the demand
curve intersects the long-run marginal cost curve. The optimal level of capacity, ,
is such that average cost is minimized for that number of trips, and the corresponding
short-run average cost curve, drawn as is tangent to the long-run
average cost curve at . The corresponding short-run marginal cost curve intersects
LRMC at and also goes through the minimum point of the short-run average cost
curve. The user cost curve corresponding to optimal capacity is drawn as
and the vertical distance between and at YX, gives the
congestion externality at the optimum.

The optimal toll equals the congestion externality at the optimum, and so toll
revenue equals the area ABYX. Total cost, meanwhile, can be calculated as average
cost times the number of trips, area and total user costs as individual user
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cost times the number of trips, Total capacity cost equals the difference
between these two areas, area ACZX. Thus, toll revenue is insufficient to finance
optimal capacity, which accords with the stated result since at long-run average
cost is locally decreasing.

Consider now the special case of constant long-run average cost.
Since LRMC = LRAC in this case, with marginal cost pricing the value of output PN
equals LRTC, implying that profits, defined as the value of output minus total costs,
are zero. Thus,

This line of argument indicates that the self-financing result stated in Proposition 1 is
essentially the same as the well-known result in competitive equilibrium theory that
with constant long-run average cost and competitive pricing (price equals marginal
cost), a competitive firm's long-run profits equal zero.

When the user cost function is assumed to be homogenous of degree zero in N
and s, one can say even more. Euler's Theorem states that for a function

which is homogenous of degree

Applying this theorem gives

From (18.3), combining this with (18.14) and (18.21) yields

Finally, substituting (18.12) into the above equation gives

The expression on the left-hand side is toll revenue and the expression on the right-
hand side capacity costs times the elasticity of capacity costs with respect to
capacity. Thus, we have
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Proposition 2. When the user cost function is homogenous of degree zero in N
and s, the ratio of the revenue from the optimal toll to the cost of providing optimal
capacity equals the (local) elasticity of capacity costs with respect to capacity.

This result indicates that with homogeneous user costs, the degree to which the road
is self financing is determined by returns to scale in capacity provision. With
decreasing (increasing) costs in capacity provision, the revenue raised from the
optimal toll falls short of (exceeds) the amount needed to pay for the optimal
capacity. Also,

Corollary 1. When the user cost function is homogenous of degree zero in N
and s and there are constant costs of capacity, with optimal tolling and capacity the
road is self-financing.

These are central results in transportation economics, and merit scrutiny. An
obvious implication is that, in the first best, the magnitude of the government subsidy
a transport mode merits depends on the degree of returns to scale in capacity
provision, which in turn points to the importance for policy purposes of obtaining
accurate empirical estimates of the degree of returns to scale in capacity provision.
The way in which our model is specified masks an important subtlety. Since we
worked with cost functions defined with factor prices fixed, the elasticity of capacity
costs with respect to capacity, a property of a cost function, is simply the reciprocal
of the degree of returns to scale in capacity provision, a property of a production
function. But when factor prices vary with the scale of capacity provision, this
simple relationship no longer holds. Which is crucial to the degree of self financing
in the first-best optimum, the scale properties of the cost function or of the
production function? This is the subject of a recent paper by Berechman and Pines
(1991), who demonstrated that the answer is the production function. In other
words, the correct way to determine the degree of self financing in the first-best
optimum is to hold factor prices fixed.

In our model, capacity is a one-dimensional variable. But in actual policy
situations, the degree of scale economies will depend on how scale is expanded —
increasing the capacities of existing links versus adding new links, or in the context
of mass transit, providing more frequent versus denser service. It can be shown
(Kraus (1981)) that production efficiency entails equalizing the degree of scale
economies on all active margins on which scale can be expanded. Thus, when
production efficiency is realized, which it is in the first best, there is no ambiguity in
the measurement of scale economies. In real-world situations, production efficiency
cannot be expected, so the relevant measure of scale economies depends on how
scale is to be expanded.

The self-financing results are robust, just as the optimal tolling results were
earlier. The reason we have treated the first best at such length is that it provides a
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very valuable point of reference in deriving second-best results, which are the
essence of optimal policy in realistic situations.

First-best policy analysis examines the policy choices of a benevolent planner who is
constrained only by resources and technology; in the previous section, the planner
took as given the congestion technology, the technology of capacity provision, and
resource availability. Since the analysis was partial equilibrium, resource
availability was captured by prices, which in a first-best analysis are assumed to
accurately capture the corresponding social opportunity cost.

In second-best policy analysis, be it partial equilibrium or general equilibrium,
the planner faces other constraints as well, and these affect policy choices. These
additional constraints can take many forms. Transactions costs, broadly interpreted,
may rule out certain policy options; for example, it is often argued that congestion
tolling on city streets is infeasible because implementation costs are excessive. Since
transactions costs are difficult to quantify, they are normally treated implicitly rather
than explicitly by ruling out certain policy options. There may be political
constraints on the planner's actions; for instance, if he is an elected official, he may
consider only those policies consistent with his reelection. The planner may face
informational constraints. The best-known example of this (which was highlighted
in James Mirrlees' and William Vickrey's Nobel Prize citations) is the limits to
redistribution. Recall that one defense of the assumption that a dollar's worth of
benefits is valued the same by the planner to whomever it goes was that the planner
is at liberty to redistribute in lump-sum fashion, taking from the rich and giving to
the poor until the social value of a dollar given to each is equalized. Such lump-sum
redistribution presupposes that the planner is able to identify who is needy. Typically
the planner cannot do this directly but must infer an individual's need from some
signal over which the individual has some control. The most frequently identified
signal is income. But if the government redistributes via income taxation, it will
distort individuals' labor-leisure choices, which should be accounted for in the policy
analysis. The list could be extended virtually ad infinitum.

In partial equilibrium analysis, these additional constraints may impinge directly
either on the market under analysis or in some other market. The former case is
easier to deal with since the general equilibrium repercussions of policy intervention
in the market under examination can be ignored, on the assumption that rest of the
economy is undistorted. The latter case is trickier. Suppose that the policy
intervention is in market A while the distortion occurs in market B, with the rest of
the economy undistorted. Then in policy analysis it is necessary to examine markets
A and B simultaneously; repercussions in the rest of the economy can be ignored.

Second-best Analysis
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The theory of the second best was originally developed in the context of optimal
taxation, but was soon applied to transport policy and remains central to its study.

Before proceeding to the theory of the second best in the context of
transportation, we introduce the concept of deadweight loss. Deadweight loss, which
is also known as efficiency cost or loss (and excess burden in the context of
taxation), is the dollar cost of a distortion, or equivalently the loss in social surplus.
Consider a single market in an undistorted economy. The optimal level of output
occurs where marginal social cost equals marginal social benefit — in Figure
18.5. The social benefit provided by units of output equals the area under the
marginal social benefit curve (which coincides with the demand curve under the
assumptions for which partial equilibrium analysis is valid) up to , area in
the diagram. Ignoring fixed costs, the social cost of units of output is the area
under the marginal social cost curve up to area in the diagram. Thus,
social surplus at the undistorted optimum is ABC, which has the interpretation as the
net benefit to society from units of the good being provided rather than none.
Suppose now that the market is supplied by a profit-maximizing monopolist who is
constrained to charging all consumers the same price. The profit-maximizing output
rule is then to choose output so that marginal revenue (with a linear demand curve,
the marginal revenue curve is also linear and has the same price intercept and twice
the slope of the demand curve) equals marginal cost, in the diagram. The
monopolist's profit equals (revenue) minus (cost). Social
surplus equals social benefit minus social cost                      ABXY.   The
deadweight loss due to monopoly is the loss in social surplus under monopoly
compared to the social optimum: the
familiar monopoly deadweight loss triangle. The deadweight loss may be more
simply and intuitively derived as follows: The distortion due to monopoly derives
from a less than socially optimal level of output. Starting from the monopoly level
of output, increase output one unit at a time from to and calculate the gain in
social surplus. Increasing output by one unit from    to increases social
benefit by the height X', social cost by the height Y', and social surplus by the area
YXX'Y'. Increasing output from to therefore increases social surplus by the
area YXC.

Second-best policy minimizes the loss in social surplus due to distortions. The
first application of second-best analysis to transportation was to the optimal pricing
of mass transit when congestion tolling cannot be applied to auto travel (Lévy-
Lambert (1968), Marchand (1968)). To begin, we make the assumptions that travel
from A to B by auto (superscript a) and by mass transit (superscript m) are perfect
substitutes (which implies that an individual chooses whichever mode is cheaper),
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that there is no congestion interaction between the two modes, and that the total
demand for travel is completely inelastic — independent of price — and fixed at N.
Figure 18.6 displays the user cost and marginal social cost curves for each mode,
with the mass transit cost curves drawn backwards and the origin for the mass transit
mode placed such that The total social cost of travel from A to B is
minimized by allocating travellers over the two modes such that the marginal social
cost of travel on each is equalized — the allocation For any other allocation, the
total social cost of travel can be reduced by transferring a traveller from the mode
with the higher marginal social cost to the mode with the lower marginal social cost.
Now suppose that auto congestion tolls cannot be imposed so that the price of an
auto trip is the user cost, but that first-best pricing is employed in mass transit so that
the mass transit price is given by the mass transit marginal social cost curve.
Individuals will distribute themselves across the two modes such that trip prices are
equalized, resulting in the allocation A. Because auto travel is underpriced

too many individuals choose to travel by auto; the corresponding
deadweight loss is QRJ. To correct this inefficient allocation of travel over the two
modes, the mass transit fare should be reduced until the optimum allocation of travel
between the two modes is achieved, which requires a negative transit fare of In
this simplified situation, the first-best optimum can be achieved by this second-best
policy.

Now consider the same model but with total travel demand sensitive to price.
Reducing the mass transit fare below the mass transit congestion externality will then
have two effects. First, as before, doing so will improve the efficiency of the modal
split. But second, since both modes will then be underpriced, there will be excessive
travel. One may envision one deadweight loss triangle associated with an inefficient
modal split and another associated with excessive overall travel. The mass transit
fare should be chosen to minimize the sum of the areas of the two deadweight loss
triangles. This illustrates the principle that may be stated as "Two small deadweight
loss triangles are better than one large one" or "The best way to deal with a distortion
is typically to introduce an offsetting distortion."

Here, we consider only the simple case in which the two modes are perfect
substitutes in demand and mass transit is not subject to congestion.7 At the first-best
optimum, the number of trips is such that the marginal social benefit of a trip equals
the marginal social cost, and the modal split is such that the marginal social cost of a
mass transit trip equals the marginal social cost of an auto trip. In Figure 18.7, these
conditions are fulfilled with OA auto trips and AB mass transit trips, and would be
achieved by setting a toll XY for auto and a zero mass transit fare; the corresponding
social surplus would be ZXWV. Now suppose auto travel is untolled and that the
mass transit fare is held at zero. All trips are made by car, the equilibrium number of
trips is OU, and the social surplus is ZQV – QRT .    The deadweight loss is XWTR,
which can be decomposed into XWF, the deadweight loss due to an inefficient modal
split, and WFRT, the deadweight loss from excessive travel. Now lower the mass



Principles of Transport Economics 707

transit fare by     which results in an efficient modal split but even more excessive
travel. The deadweight loss is WGE, all of which is due to excessive travel. Now
raise the mass transit fare a small amount. Doing so reduces the deadweight loss
from excessive travel but has only a second-order effect on the deadweight loss from
an inefficient modal split. Continue raising the mass transit fare until the marginal
decrease in deadweight loss from excessive travel equals the marginal increase in
deadweight loss from an inefficient modal split. This is the second-best mass transit
fare.

A similar analysis can be applied to another problem in which there is a single
mode, say auto, but a peak and an off-peak period. In the first best, the toll in each
period is set equal to that period's congestion externality. Suppose, however, that the
toll cannot be varied between peak and off-peak periods. What is the second-best
toll with this uniform toll constraint? It should be raised to the point where the
marginal decrease in deadweight loss from underpricing peak travel equals the
marginal increase in deadweight loss from overpricing off-peak travel.

Another important second-best problem arises when there is a deficit
constraint.8 Consider, for example, a bridge whose construction is characterized by
decreasing costs. With first-best optimal capacity and first-best tolling, the bridge
would operate at a loss. Suppose, however, that by statute the bridge is required to
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break even. What is the second-best policy with this constraint? Shortly we shall
consider how optimal capacity should be modified when pricing is distorted. But for
the moment, we assume that the bridge has been built at first-best optimal capacity,
and examine how the peak and off-peak tolls should be set to maximize social
surplus subject to the break-even constraint. To simplify, we assume that peak travel
occurs one-half the time, and off-peak travel the other half, and that peak and off-
peak demands are independent. Denoting peak-period variables with a 1 subscript,
and off-peak variables with a 2, the planner's problem is:

where is the capacity that is common to the peak and off-peak periods,
is total user cost over the demand cycle,

and is capacity cost over the cycle. The first-order conditions are

Rewriting (18.24):

where is the (absolute value of) elasticity of demand. Taking the ratio of (18.25)
for i = 1 to i = 2 gives

Equation (18.26) is the famous Ramsey pricing formula, which states that the
proportional (to price) markup of price over marginal cost for the two time periods
should be in inverse proportion to their demand elasticities. The intuition is as
follows. The deadweight loss from a distortion derives from the change in behavior
it induces. If demand is completely inelastic in say the peak period, raising the peak-
period price above marginal social cost generates no distortion, and so the extra
revenue needed to finance the bridge deficit should be raised from peak-period
travellers. More generally, the efficient way to finance the bridge deficit is to set the
prices such that the marginal deadweight losses from raising an extra dollar of
revenue in the peak and off-peak periods are equal, which entails Ramsey pricing.

A couple of remarks are in order before moving on to discuss second-best
optimal capacity. First, we remind the reader that the preceding analysis of second-
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best pricing has ignored distributional considerations. This is a defensible but not an
innocuous assumption. If transit passengers are disproportionately poorer than auto
users and if lump-sum redistribution is infeasible, the planner may want to take
equity considerations into account in pricing. This can be done at varying levels of
sophistication. The simplest is to apply distributional weights, not only to different
groups in the population but also to the revenue raised by the government, with the
distributional weight accorded government revenue depending on the distributional
effects of government expenditure. Second, by making a number of simplifying
assumptions, we have made second-best pricing appear straightforward and intuitive.
But when the simplifying assumptions are relaxed, second-best pricing analysis is
not only complex but also full of subtleties. For example, the analysis needs to take
into account what information the government has and what policy instruments it has
at its disposal. A good introduction to the theory is provided in Atkinson and Stiglitz
(1980).

Second-best optimal capacity. To start, let us consider the classic second-best
optimal capacity problem in the context of urban transportation, which was stated
and partly solved by Wheaton (1978) and then more fully solved by Wilson (1983).
Consider a single road in isolation. Solve for optimal capacity under the assumption
that efficient pricing is employed and term this first-best optimal capacity. Now
suppose that the road cannot be tolled, so that trip price equals user cost. What is
optimal capacity taking this constraint into account — what is second-best optimal
capacity, and how is it related to first-best optimal capacity?

To conceptualize this problem, imagine starting at the first best, with first-best
pricing and first-best optimal capacity, and then removing the toll. Should the road
be widened or narrowed? There are two effects. First, removing the toll will result
in more cars and more congestion; holding fixed the number of cars at this level, the
marginal benefit from increasing capacity is higher than in the first best. However,
widening the road will lower trip price even further, which will cause the already
excessive traffic to be even more excessive. The increase in traffic that occurs with a
road expansion is termed the latent demand it induces.

This tradeoff is shown diagramatically in Figure 18.8. Expanding the road
causes the user cost function to shift down from to and the marginal social

cost function to shift down from to Consider first the benefit from the
road expansion with optimal tolling. The equilibrium shifts from B to B', which
results in an increase in social surplus (ignoring the additional capacity costs) —
which is the benefit from expanding the road — of ABB'. With no toll, the
equilibrium shifts from C to C'. Initially, the social surplus is AHB– BGC; after
the road expansion, it is AHB' – B'G'C'. Thus, the gain in social surplus is
ABB' +(BGC– B'G'C')= ABB' + (BGIB' –CIG'C'). BGIB' is the amount by
which the benefit from expanding capacity is higher in the no–toll equilibrium than
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with the optimal toll, holding fixed the number of cars at the no-toll equilibrium.
CIG'C' is the increase in deadweight loss due to the underpricing of car travel in the
no-toll equilibrium ascribable to the latent demand induced by the road expansion.
While the figure portrays linear demand and cost curves, the reader can visualize that
with nonlinear curves, whether the analog to BGIB' is larger or smaller than the
analog to CIG'C' depends in a complicated way on the curvature properties of the
demand and cost curves.

We may obtain precise results with local, algebraic analysis. Specifically, we
ask: Is the marginal social benefit (msb) from an infinitesimal road expansion larger
or smaller when the toll is raised an infinitesimal amount? The answer is
complicated, depending on the sign of

where e is the congestion externality, the elasticity of marginal user
cost, and other variables as previously defined. One important insight is that in the
neighborhood of the first-best optimum (where ), the road should be widened
when the toll is reduced; this is because the deadweight loss due to the latent demand
generated by the toll decrease is of second order. Another is that since the
expression depends on, among other things, how the demand elasticity varies with
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trip price, on which the empirical literature provides scant information, local analysis
provides little practical guidance concerning the relative magnitudes of first- and
second-best optimal capacity. Wilson however derives a global condition under
which optimal capacity with underpricing exceeds the first-best level, that he argues
can be expected to hold in practice.

The above analysis was complex enough. Calculation of second-best capacity in
practical situations is even more difficult because of network effects. A good place
to start in considering network effects is a road network with optimal tolling
everywhere on the network. In this special case, cost-benefit analysis of a link
expansion need consider only that link. The link expansion will change flows
throughout the network, but since the marginal social benefit of a trip equals the
marginal social cost everywhere on the network, the changes in flows induced by the
link expansion have no effect on social surplus and can hence be ignored (This is an
example of the Envelope Theorem). To determine whether a small link expansion is
desirable, all that is required is to compare the direct benefit from the link expansion,
ignoring the induced change in traffic on that and all other links, with the cost of the
expansion.

Now consider the other extreme where no links of the network are tolled, in
which case the marginal social benefit of a trip on a link does not generally equal the
marginal social cost. Then the changes in flow throughout the network induced by a
link expansion will affect social surplus and hence the benefit from the link
expansion. There is no simple way around the problem. One must calculate social
surplus in the pre-expansion network equilibrium, then estimate the post-expansion
network equilibrium and calculate the corresponding social surplus, and then
compute the benefit from the link expansion as the corresponding gain in social
surplus.

The literature has identified numerous traffic paradoxes (see Arnott and Small
(1994) for a simple exposition), where the addition of a link to a network or the
expansion of an existing link would lower social surplus even if the improvement
were costless, A useful way to think about these paradoxes is to decompose the
change is social surplus generated by an improvement into a direct benefit and an
indirect cost. The direct benefit is the gain in social surplus that would be achieved
if all link flows were held fixed. The indirect cost is the loss in social surplus
deriving from the changes in link flows induced by the improvement. The paradoxes
illustrate that, with inefficient pricing, it is quite possible for the indirect cost to
exceed the direct benefit. With efficient pricing, however, indirect cost is zero — for
the reasons given earlier — so that traffic paradoxes never occur.

This raises an important point. If the prices are right, to determine the optimal
capacity of a link the planner needs information pertaining only to that link; in
contrast, if they are distorted, to determine simply whether an incremental expansion
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of a link is desirable, the planner needs to forecast how the link expansion alters
flows through the entire network. Thus, if efficient congestion pricing is employed,
substantially less information is needed to correctly evaluate transport investment
projects.

Other second-best policy issues. The recent literature has focused on a number of
other second-best policy issues. One is second-best optimal pricing given that only a
subset of roads — typically urban freeways — can be tolled. Until recently, work on
this problem assumed identical individuals. Based on numerical simulation with
realistic parameter values, this work came to the pessimistic conclusion that the lion's
share of the efficiency gains from tolling are lost when only partial coverage tolling
is applied. The more recent literature (Verhoef and Small (2000)) treats
heterogeneity in individuals' value of time and finds, again in carefully-calibrated
simulations, that partial coverage tolling achieves a significantly larger proportion of
the potential gains from tolling. The reason is that travellers with a high value of
time benefit considerably from the tolling of urban freeways.

Another form of partial coverage congestion tolling is cordon pricing, under
which a toll is charged to enter the central city. Singapore and the major Norwegian
cities have cordon pricing, and it is being implemented in other cities. A major
problem with cordon pricing is that many drivers choose to circumvent the toll,
resulting in a substantial increase in congestion just outside the cordon. One study of
the Singapore cordon found that the increase in travel costs outside the cordon
actually exceeded the reduction in travel costs inside it. Recently, a Cambridge
University team headed by David Newbery has been attempting to ascertain the
determinants of optimal cordon placement for a selection of UK cities, using
microsimulation with actual street networks (Santos, Newbery and Rojey (2001)).

One of the arguments against congestion tolling is that it is regressive since it
essentially causes travellers to pay with money rather than with time. Urban
transport economists have investigated two classes of schemes to make congestion
tolling more progressive. The first (Small (1992a, 1993)) is to earmark the toll
revenue and spend it in a way that disproportionately benefits the poor, typically by
improving mass transit. The second (Verhoef and Small (2000)) is to deliberately
congestion toll only a subset of roads or subset of lanes of a freeway. Those with
high values of time choose the tolled alternative, those with low values of time the
untolled alternative.

Thus far in the analysis, we have assumed that outside the transport sector the
economy is free of distortions. But there are two distortions in the rest of the
economy that are so obvious and so important that they should not be ignored. The
first is that the revenue to finance government expenditure is raised in a distortionary
manner. This is sometimes treated by assuming that the social cost of raising a
dollar of revenue, which is termed the marginal cost of funds, exceeds $1.00 (a
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typical figure assumed is $1.30). If mass transit is run at a deficit of S, the social cost
of the revenue raised to finance the deficit is mS, where m is the marginal cost of
funds. The second is related — the distortion in the labor/leisure choice caused by
the income tax. Treating this explicitly essentially endogenizes the marginal cost of
funds. By increasing the cost of working, congestion tolling exacerbates the labor-
leisure distortion induced by the income tax. Calibrated numerical examples (Parry
and Bento (1999), Calthrop et al. (2000)) suggest that this effect may be so
quantitatively important that second-best congestion tolls — taking the labor/leisure
distortion into account — may be negative.9

The asymmetric information revolution has not yet had a major impact in
transportation economics, except through consideration of the interaction between
income taxation and congestion tolling. There are however other policy contexts in
which asymmetric information is clearly of central importance and to which it should
therefore be applied. One is the design of optimal tendering mechanisms for the
awarding of infrastructure construction and maintenance contracts and of optimal
incentive mechanisms for performance under these contracts. Another is mass
transit regulation. We have already considered a number of reasons why transit
authorities do not simply first-best/marginal-cost price: equity, underpriced auto
travel, and distortionary taxation. Another is that if the government were to commit
to covering a transit authority's deficits, the transit authority would have no incentive
to lower costs by introducing transport innovations, resisting union demands for
higher wages, etc., or to improve service quality. In other areas, incentive regulation
(Laffont and Tirole (1993)), which designs regulatory policy taking into account the
incentives created for managers, has had a major impact; the same can be expected
for urban mass transit.

No discussion of the application of second-best theory in the context of urban
transportation would be complete without a discussion of cost-benefit theory and
practice. Drèze and Stern (1985) provides an elegant treatment of cost-benefit
theory. The basic idea is that with distortions, the social opportunity cost of
commodities (including factors), which are termed shadow prices, deviate from
market prices. Based on a general equilibrium model of the economy, which
includes all distortions and a well-specified objective function, the central planner
calculates the shadow prices of all commodities as the Lagrange multipliers on the
corresponding market-clearing constraints in the optimization problem. He transmits
these prices to project assessors, such as transit authorities, and instructs them to
accept all projects that generate a shadow profit — a profit where shadow rather than
market prices are employed. Most cost-benefit practice in transportation falls far
short of this ideal, but does often replace two particularly important market prices
with their shadow prices — shadow wage rates replacing market wage rates, and the
social rate of discount replacing the interest rate. The network effects identified
earlier are typically taken into account in the evaluation of large transportation
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projects, as should be done, but usually not in the evaluation of small projects, which
is a serious shortcoming of current cost-benefit practice.

18.3 The Bottleneck Model

With the exception of the peak-load problem, all the analysis we have presented thus
far is atemporal. The traditional model assumes that traffic is in a steady state, while
the peak-load problem assumes that traffic is in different steady states during the
peak and off-peak periods, with the two periods being related if at all only through
cross-price effects in demand. This is unsatisfactory. Capacity is built for the peak
of the rush hour, not for the steady state; furthermore, traffic evolves in a particular
way over the rush hour, with the rush hour lengthening as the overall
volume/capacity ratio increases. Thus, it is obviously desirable to develop an
economic model of non-steady-state, rush-hour traffic. There are two difficulties in
developing such a model. The first is to obtain an analytically tractable model of
non-stationary-state traffic flow — not an easy task; the second, to incorporate
individuals' decisions concerning when to travel.

Such a model was originally presented by William Vickrey, the dominant figure
in the history of transport economics and a Nobel Prize winner, in a 1969 paper. The
model, now known as the bottleneck model, was further developed by Arnott et al.
(1993) and Braid (1989) and has subsequently been extended in numerous ways and
has generated a host of insights. The first of the difficulties mentioned above was
dealt with by modeling non-steady-state traffic flow as a queue behind a traffic
bottleneck of fixed flow capacity. This representation may or may not be
empirically accurate, depending on context, but does succeed in capturing the
essentials of non-steady-state traffic flow at a conceptual level. The second
difficulty was dealt with by making an assumption analogous to the Wardrop (1952)
condition for route choice. The Wardrop condition is that individuals will choose
what route to take so as to minimize the generalized trip price (which includes the
value of time and tolls payable); the analogous Vickrey condition is that individuals
will choose when to travel so as to minimize the generalized trip price defined to
include as well the costs of travelling at inconvenient times, which have come to be
termed schedule delay costs.

Let us now turn to the basic model. A fixed number, N, of identical commuters
must travel from point A (home in the suburbs) to point B (work downtown) in the
morning rush hour. All commuters have the same work start time, A and B are
connected by a single road on which the only congestion that occurs is at a single
bottleneck of fixed flow capacity s. If the arrival rate at the bottleneck exceeds s, a
queue develops. The fact that the bottleneck's capacity is of the flow type means that
not all commuters can arrive at work at practically all commuters have to incur
schedule delay costs. To simplify the analysis somewhat, we assume that late arrival
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is prohibitively costly. We also ignore vehicle operating costs. As a result, when
deciding when to travel, a commuter will trade off travel time costs, time early costs,
and where applicable toll costs.

The natural case to start with is the no-toll equilibrium. Each commuter will
choose to depart so as to minimize the generalized trip price, which now consists of
travel time and time early costs. An equilibrium departure pattern is defined to be
one in which no commuter can reduce his trip price by changing his departure time.
Since commuters are identical, this implies that the trip price is uniform over the
departure interval. To simplify the algebra, we assume that trip price, which equals
user cost since there is no toll, is linear in travel time and time early:

where t is the departure time, P(t) and C(t) trip price and user cost as a function of
departure time, T(t) travel time, the value of travel time, and the value of time
early.10 Thus, is travel time cost, t + T(t) arrival time, time
early and time early cost. To further simplify the algebra, we
ignore free-flow travel time. Accordingly, a commuter arrives at the bottleneck as
soon as he leaves home, and arrives at work as soon as he gets. through the
bottleneck. His only travel time is therefore time spent in the queue behind the
bottleneck. Let Q(t) be the number of cars in the queue (the queue length). Since the
flow capacity of the bottleneck is s,

Substituting (18.29) into (18.28) yields

The equilibrium trip price condition is over the departure interval.
Substituting this condition into (18.30) gives an equation which indicates how queue
length must evolve over the departure interval in order to satisfy the equal trip price
condition. All that remains is to solve for the equilibrium departure interval and the
equilibrium trip price. First, the bottleneck must be used to capacity over the
departure interval; otherwise, a person could depart after the first person to depart,
experiencing no travel time cost and lower time early cost, which would violate the
Vickrey condition. Second, the last person to arrive must arrive exactly on time; if
he were to arrive earlier, a commuter departing after him but still arriving early
would experience a lower time early cost and no larger a travel time cost, which
would violate the Vickrey condition; and late arival is not permitted. Let be the
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time of the first departure, and the time of the last departure. Since the first person
to depart faces no queue and hence no travel time,

and since the queue must start at t and end at

also, since the last person to depart arrives exactly on time,

Combining these equations with (18.30) implies

Over the departure interval, since queue length evolves according to

where r(t) is the departure rate,

The no-toll equilibrium is portrayed diagrammatically in Figure 18.9. The
vertical distance between the cumulative departures and cumulative arrivals
schedules at time t is the queue length at that time, and the corresponding horizontal
distance is the queuing time for a commuter departing at t. The queue length
increases linearly over the departure interval. The key insight is that the queue
length evolves to satisfy the Vickrey condition, which in turn determines the
equilibrium pattern of departure times.

Total user costs are with all individuals having the same user cost

Because of the linearity of the cost function in (18.28), total travel time

costs equal total time early costs. Marginal social cost is Several

features of the equilibrium are noteworthy. First, in equilibrium user cost is a
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function of N/s, just as it is in the basic static model. Thus, the basic static model
may be interpreted as the reduced form of a more complex model which treats
endogenously the equilibrium time pattern of congestion over the rush hour. Second,
marginal social cost and the congestion externality are independent of departure
time. This is remarkable since it might seem that the first person to depart generates
the largest congestion externality by causing all drivers to face a queue length which
is one car longer, with the last person by the same reasoning generating no
congestion externality. The fallacy in this reasoning is that the addition of a
commuter at any departure time causes the equilibrium departure time distribution to
adjust such that the increase in social cost caused by the additional commuter is
independent of when he departs; for example, an extra driver departing just before t
causes all other commuters to face a queue that is cars longer but no

change in arrival time, and hence generates a congestion externality of while
an extra driver departing just before causes everyone to depart 1/s earlier,
generating the same congestion externality. Third, the model endogenizes the length
of the rush hour, thereby accounting for peak spreading.

Consider now the social optimum, again with a fixed number N of identical
commuters. The planner chooses the departure pattern so as to minimize total user
costs, which equal total travel time costs plus total time early costs. Total user costs
are certainly minimized if each of these two components is minimized. A departure
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rate of s from t to minimizes both. No queue forms so that total travel time costs
equal zero. And since the length of the arrival interval is minimized, the bottleneck
being utilized to capacity over the rush hour, and since the arrival interval is as close
to as possible subject to the constraint of no late arrivals, total time early costs are
minimized, equaling

Thus, in the social optimum, total time early costs are the same as in the no-toll
equilibrium, and total user costs are one-half those in the no-toll equilibrium. The
deadweight loss in the no-toll equilibrium therefore equals the total travel time costs,
which equal one-half of total user costs. The model is very simple but indicates
starkly the potentially very sizeable efficiency gains that could be achieved in
switching from the no-toll equilibrium departure pattern to the socially optimal one.

The socially optimal departure pattern can be supported as an equilibrium by
imposing a time-varying toll of over the departure interval.
Essentially, travel time costs are replaced by toll costs, so that trip price is the same
in the social optimum as in the no-toll equilibrium. In contrast to the no-toll
equilibrium, however, in the social optimum on average one-half of the trip price is
collected as toll revenue, which can be redistributed or spent on expanding capacity
so as to make everyone better off.

Optimal first- and second-best capacity can be analyzed straightforwardly.
Suppose that there is a constant marginal cost of providing capacity, k. Then first-
best capacity minimizes while second-best capacity minimizes

Thus, second-best capacity is larger by a factor of This is
consistent with the results obtained from (what we have argued may be interpreted
as) the reduced-form model treated in the previous section, since our assumption of a
fixed number of commuters precludes latent demand.

Because of its simplicity, the bottleneck model has been enriched analytically in
numerous ways to treat elastic demand, simple networks, heterogeneous commuters
(differing in and ), uncertainty in demand and realized capacity, and driver
information systems, and has been applied to examine the full range of second-best
problems, including situations where there are constraints on the time variaiton of the
toll (the optimal uniform and one-step toll, etc.) and on the set of roads that can be
tolled (see Arnott et al. (1998) for a review).

Analyzing the class of bottleneck models has contributed considerably to the
understanding of the economics of non-stationary-state traffic flow. But is the
congestion technology it assumes sufficiently realistic to make it useful as a traffic
planning tool? The evidence is not yet in. Small (1992b) provides evidence that
average travel time on a section of highway is approximately a linear function of
flow, and Daganzo et al. (1999) in a recent paper provides strong evidence of queues
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developing behind freeway bottlenecks that have stable locations and stable
discharge rates, both of which are consistent with the bottleneck model. However,
there are many observed traffic flow phenomena that cannot be explained by the
bottleneck technology — gridlock, which derives from the physical length of queues
that are ignored in the bottleneck model; the deceleration of cars on approaching a
bottleneck and their acceleration on leaving it; turbulence just beyond entry ramps;
the nodal congestion at intersections; the congestion on city streets caused by
cruising for parking; etc. Nevertheless, it seems likely that dynamic network
simulation models of non-stationary-state traffic flow with treatments of congestion
that enrich the basic bottleneck technology will be heavily used by the next
generation of traffic planners. An example is QUATUOR, a simulation model of
traffic congestion in the Paris metropolitan area that is being developed by a team
being headed by André de Palma at the University of Cergy-Pontoise.

Thus far in the chapter, we have presented the central, canonical model of
transport economics, emphasizing economic principles and intuition. This model has
proved to be very valuable, providing a unified conceptualization that accommodates
most aspects of transport economics, and because of its analytical simplicity,
permitting a rich and varied set of extensions and applications. At the same time, the
power of the model has caused transport economic theorists to slight aspects of
transportation that do not fit neatly into its conceptualization, and to hark on
principles at the expense of the practical detail that is so necessary in policy
application. One example is the treatment of congestion. By treating congestion as
technological, they have ignored behavioral aspects of congestion, which their
training makes them well-suited to analyze; for instance, how traffic flow depends on
individual driving decisions which are based in part at least on the tradeoff between
travel speed (relative to the mean speed of traffic) and the probability of accident.
By focusing on simple specifications of link flow congestion, they have tended to
overlook stock (e.g., parking) and nodal (e.g., intersection) congestion and to ignore
the complexity and variety of congestion phenomena, and therefore to considerably
underestimate the practical difficulties of applying their panacea — congestion
pricing. And by concentrating on individual travel, especially in the urban context,
they have neglected freight transportation. Another example is the treatment of
traffic-related pollution and traffic accidents. Transport economists have tended to
subsume both under the rubric of congestion and to apply the canonical model in
analyzing them, thereby ignoring their particularities.

18.4 Mass Transit

Most of urban transport economic theory has been developed in the context of urban
auto travel. This section investigates models of mass transit, with the aim of
demonstrating that the general principles developed in the previous sections in the
context of auto travel carry over to mass transit.
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There are three obvious differences between mass transit and auto travel. First,
in mass transit, unless all passengers are perfectly informed of timetables and trains
run exactly on time, waiting time at transit stops needs to be considered, for which
there is no analog in auto travel. Second, while in auto travel there were only two
policy variables, the toll and capacity, in mass transit there are the fare, number of
trains, train capacity, scheduling, and perhaps others. Third, in auto travel, the short
run and long run have natural interpretations, with capacity being fixed in the former
and variable in the latter, but in mass transit, with so many margins of policy choice,
the distinction is not as clear cut.

We start with a stripped-down version of Mohring's (1972) classic model of
steady-state urban bus travel. Buses travel round a circle of arbitrary radius. N
passengers arrive at the circle per mile-hour, each of whom travels m miles. It is
assumed that they do not know the bus timetable, and so arrive at a uniform rate.
Buses themselves are uncongestible. The congestion that occurs derives from the
time it takes a passenger to get on and off the bus, Each passenger therefore
boards the first bus that passes by after she arrives at the circle. A passenger's value
of waiting time is and value of transit time

The transit authority operates b buses per mile at a cost per bus-hour (which
includes operating and capital costs) of c. A bus' speed when in motion is v. The
service frequency f is endogenous.

The transit operator's short-run problem is to choose the efficient bus fare, and
its long-run problem is to choose the number of buses as well. Consider first the
short-run problem. With some elasticity of demand, short-run efficiency entails each
passenger facing a trip price equal to short-run marginal (social) cost. Since trip
price equals the user cost plus the fare while short-run marginal cost equals the user
cost plus the congestion externality, this condition is equivalent to the fare being set
to equal the congestion externality. To obtain the congestion externality, we first
derive short-run total variable costs (TVC) per mile-hour, which comprise total
waiting time costs (TWC) and total transit time costs (TTC) per mile-hour. Now

since the average wait for a bus is 1/2f. Also,

since each bus picks up and drops off N/f passengers per mile, its travel time per mile
is resulting in a transit time cost of per passenger.
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Finally, since there are b buses per mile and bus travel time per mile is
the time headway between buses is so that service frequency solves

This yields

where Using (18.36) in (18.34) and (18.35) gives

which yields

and

The last three terms in (18.39) constitute the congestion externality. The first is the
waiting time externality, which operates via service frequency; the second is the
direct transit time externality that derives from a passenger delaying the other Nm/f
passengers on a bus by when getting on and off the bus; and the third is another
component of the transit time externality, which operates via service frequency.
Appending a demand side N=N (P ) , where P denotes the trip price, yields the
short-run equilibrium.

In order to solve the long-run problem, b must be set to minimize total costs.
Writing total costs as

highlights the tradeoff in the determination of the efficient number of buses. Buses
should be added up to the point where the marginal benefit of a bus, deriving from
the increase in frequency of service it induces, just covers the marginal cost c.
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Minimizing (18.40), after substitution of (18.36), with respect to b yields12

Substituting this into (18.40) yields the long-run total cost relationship:

from which it can be seen that there are decreasing long-run average costs which
operate through waiting time. There are two important insights from the preceding
analysis. The first is that the mass transit problem has essentially the same reduced
form as the canonical auto model; the short-run cost function can be written as a
function of the number of travellers and capacity variables, which in the preceding
analysis was simply the number of buses; the long-run cost function can be written
as a function of only the number of travellers; and the same diagrammatic analysis
applies. The second important insight is that mass transit travel is characterized by
economies of density. In the model, an increase in passenger density led to increased
service frequency and correspondingly reduced waiting time. But there are other
sources of economies of density in mass transit systems. Increasing density makes it
optimal to decrease the spacing between stops and to increase the number of routes,
both of which lead to reductions in walking time, and to operate longer trains and
larger buses, which take advantage of technological returns to scale in vehicle
construction and operation.

We demonstrated earlier that first-best efficient pricing and capacity provision
with economies of scale leads to operation at a financial loss. This provides one
rationale for subsidizing mass transit. Other rationales include equity (since mass
transit travellers are on average poorer than auto travellers) and second-best
considerations, which were discussed earlier. Thus, there are economically sound
justifications for mass transit systems operating at a loss. This does not mean, of
course, that all losses are defensible on economic grounds. Indeed, a considerable
proportion of the losses of actual transit systems are waste, deriving from political
patronage, union labor, and inefficiency deriving from poor incentives.

The model presented in this section was pedagogical in nature. Actual mass
transit systems are evidently considerably more complicated. Running a bus system,
for example, entails choices with respect to not only the number of buses but also
their capacity, comfort, acceleration, servicing and cleaning, as well as routing,
scheduling, and scrappage. The basic principles still apply, however.

In the previous section, in our examination of highway bottlenecks, we showed
that the steady-state highway model can be interpreted as a reduced form
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representation of a dynamic model which accounts for the pattern of traffic over the
rush hour. Kraus and Yoshida (2002) develops a dynamic model of an urban rail
system and show that an analogous result holds.

18.5 Conclusion

Economists are experts in the efficient allocation of scarce resources. Crudely put,
they are trained how to maximize the size of the pie whose division is decided by a
combination of special interest groups operating through government, firms with
market power, and anonymous market forces. Policy decision making in
transportation – from traffic signing to freeway pavement thickness to parking policy
– has tended to be dominated by engineers who until recently at least have not
typically been well trained in economics. The result has been grossly inefficient
transportation policy; examples include irrational pricing (such as removing tolls
from a bridge when it has paid for itself), the excessive building of highways due to
using faulty cost-benefit analysis which ignores that a considerable portion of the
potential benefits are dissipated through the combination of the underpricing of auto
travel and latent demand, the application of uniform engineering standards to widely
different roads, and a failure to incorporate flexibility into transport system design
due to improperly accounting for uncertainty.

Economists, in turn, have themselves to blame for their lack of influence in
transport policy circles. Through preoccupation with simple models which were
designed to elucidate basic principles and not to confront nuts-and-bolts policy
issues, their advice is often too abstract and divorced from practical detail to be
helpful in specific policy applications. Their mantra of "congestion pricing," without
thought being given to the political, engineering, and practical problems associated
with its implementation, is a prime example. Their advice would be more useful if
they were to become better acquainted with the transportation science and traffic
engineering literatures and to devote more of their attention to policy at the level of
detail at which most transport policy decisions are made.

This chapter has presented the central principles of transport economics through
a series of very simple models which illustrate the principles starkly. The world is
far more complex than the models, and most policy is made at a level of detail that
the models ignore. Knowledge of these general economic principles is essential for
efficient and enlightened policy decisions. But so too is the knowledge contained in
the traffic engineering and transportation science literatures and the practical
experience of traffic engineers and transportation scientists. Hopefully in the years
ahead, improved communication and cooperation between economists on the one
hand and traffic engineers and transportation scientists on the other will lead to better
transport policy.
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18.6 Notes

Economists term travel under these conditions congested travel, and travel
under conditions with higher densities for which flow decreases with density
hypercongested travel. This terminology differs from that employed by traffic
engineers, who term the former uncongested travel and the latter congested
travel.

Much ink has been spent by economists in attempting to extend the steady-
state analysis to hypercongested travel. The current view is that
hypercongestion is an intrinsically non-steady-state phenomenon to which
steady-state analysis cannot fruitfully be applied.
These relationships were first suggested by Walters (1961). Johnson (1964)
expands on his treatment.
Economists distinguish between compensated and uncompensated demand
functions. A rise in the price of a good makes an individual worse off. Her
uncompensated demand function describes how her quantity demanded
changes with price, with no compensation for being made worse off from the
price rise. Her compensated demand function describes how her quantity
demanded changes with price, when she is compensated by an amount such
that the price rise with the compensation makes her neither better nor worse
off. We shall ignore the distinction between the two types of demand
functions, which is strictly valid only when the demand for trips is independent
of income. In microeconomic theory, demand functions are typically derived
from utility functions. Here we treat the demand function as a primitive.
What we have termed "the optimum," transportation scientists refer to as the
"system optimum." And what we have termed the "no-toll equilibrium,"
transportation scientists refer to as the "user optimum."
Thus, for example, our analysis extends to trucks transporting freight.
Transport economists tend to be rather cavalier in their treatment of motorized
vehicles other than autos, treating them as so many auto-equivalents. The form
of the congestion interaction between autos and other motorized vehicles is
actually considerably more complex.
Treating the impracticability of employing a negative fare would introduce
another constraint.
Sherman (1971) relaxes both of these assumptions and allows the modes to
have interdependent cost functions.
Both this and the uniform toll constraint are analyzed in Mohring (1970).
These examples assume that travel is more complimentary to work than to
leisure, which is by no means obvious.
We assume that which accords with empirical evidence in Small
(1982).
There is a tendency to treat the value of time as a parameter which is
exogenous to the transport policy maker. It should be kept in mind, however,
that since an individual's travel time cost on a trip is the product of the value of
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12.

time and travel time, travel time cost can be halved not only by halving travel
time but also by halving the value of time, which can in principle be achieved
by making the trip more enjoyable.
Equation (41) implies that as N increases, b should increase somewhat more
than proportionately than When the effect of an increase in N on bus
travel time is ignored, (41) simplifies to a pure square-root relationship, which
is known as the square-root principle (Mohring (1972)).

18.7 References

Arnott, R., de Palma, A. and Lindsey, R. (1993). A structural model of peak period
congestion: A traffic bottleneck with elastic demand. American Economic
Review 83, 161-179.

Arnott, R., de Palma, A. and Lindsey, R. (1998). Recent developments in the
bottleneck model. Road Pricing, Traffic Congestion and the Environment:
Issues of Efficiency and Social Feasibility (K. Button and E. Verhoef, eds.),
Edward Elgar, Aldershot, England.

Arnott, R. and Small, K. (1994). The economics of traffic congestion. American
Scientist 82, 446-455.

Atkinson, A.B. and Stiglitz, J.E. (1980). Lectures on Public Economics. McGraw-
Hill, New York.

Berechman, J. and Pines, D. (1991). Financing road capacity and returns to scale
under marginal cost pricing. Journal of Transport Economics and Policy 25,
177-181.

Braid, R.M. (1989). Uniform versus peak-load pricing of a bottleneck with elastic
demand. Journal of Urban Economics 26, 320-327.

Calthrop, E., Proost, S. and Van Dender, K. (2000). Optimal road tolls in the
presence of a labor tax. Working paper.

Daganzo, C.F., Cassidy, M.J. and Bertini, R.L. (1999). Possible explanations of
phase transitions in highway traffic. Transportation Research 33A, 365-379.

Drèze, J. and Stern, N. (1985). The theory of cost-benefit analysis. Handbook of
Public Economics, Vol. 2 (A.J. Auerbach and M. Feldstein, eds.), North-Holland,
Amsterdam.

Johnson, M.B. (1964). On the economics of road congestion. Econometrica 32,
137-150.

Laffont, J-J. and Tirole, J. (1993). A Theory of Incentives in Procurement and
Regulation. MIT Press, Cambridge, MA.

Lévy-Lambert, H. (1968). Tarification des services à qualité variable: Application
aux péages de circulation. Econometrica 36, 564-574.

Kraus, M. (1981). Scale economies analysis for urban highway networks. Journal
of Urban Economics 9, 1-22.

Kraus, M. and Yoshida, Y. (2002). The commuter's time-of-use decision and
optimal pricing and service in urban mass transit. Journal of Urban Economics
51, 170-195.



726 Handbook of Transportation Science

Marchand, M. (1968). A note on optimal tolls in an imperfect environment.
Econometrica 36, 575-581.

Mohring, H. (1970). The peak load problem with increasing returns and pricing
constraints. American Economic Review 60, 693-705.

Mohring, H. (1972). Optimization and scale economies in urban bus transportation.
American Economic Review 62, 591-604.

Mohring, H. and Harwitz, M. (1962). Highway Benefits: An Analytical Framework.
Northwestern University Press, Evanston, IL

Parry, I. and Bento, A.M. (1999). Revenue recycling and the welfare effects of road
pricing. Policy Research Working Paper 2253. World Bank, Washington, DC.

Santos, G., Newbery, D.M. and Rojey, L. (2001). Static vs. demand sensitive
models and the estimation of efficient congestion tolls: An exercise for eight
English towns. Transportation Research Record 1747, 44-50.

Sherman, R. (1971). Congestion interdependence and urban transit fares.
Econometrica 39, 565-576.

Small, K. A. (1982). The scheduling of consumer activities: Work trips. American
Economic Review 72, 467-479.

Small, K.A. (1992a). Using the revenues from congestion pricing. Transportation
19, 359-381.

Small, K.A. (1992b). Urban Transportation Economics. Harwood Academic, Chur,
Switzerland.

Small, K.A. (1993). Urban traffic congestion: A new approach to the Gordian knot.
Brookings Review 11, 6-11.

Strotz, R.H. (1965). Urban transportation parables. The Public Economy of Urban
Communities (J. Margolis, ed.), Resources for the Future, Washington, DC.

Verhoef, E.T. and Small, K.A. (2000). Product differentiation on roads:
Constrained congestion pricing with heterogeneous users. Working paper.

Vickrey, W.S. (1969). Congestion theory and transport investment. American
Economic Review Proceedings 59, 251-260.

Walters, A.A. (1961). The theory of measurement of private and social cost of
highway congestion. Econometrica 29, 676-699.

Wardrop, J.G. (1952). Some theoretical aspects of road traffic research.
Proceedings of the Institute of Civil Engineers, Part II, Vol. 1, 325-378.

Wheaton, W.C. (1978). Price-induced distortions in urban highway investment. Bell
Journal of Economics 9, 622-632.

Wilson, J.D. (1983). Optimal road capacity in the presence of unpriced congestion.
Journal of Urban Economics 13, 337-357.



BIOGRAPHIES

Moshe E. Ben-Akiva (Chapter 2) is the Edmund K. Turner Professor of Civil and
Environmental Engineering at the Massachusetts Institute of Technology (MIT) and
Director of the MIT Intelligent Transportation Systems Program. He has developed
discrete choice methods and behavioral demand model systems and has supervised
the development of two traffic simulators: MITSIMLab and DynaMIT. Dr. Ben-
Akiva has co-authored over one hundred and fifty published research papers and two
books, including the textbook Discrete Choice Analysis, published by MIT Press in
1985. He is the recipient of honorary doctor degrees from the Université Lumière
Lyon, France and the University of the Aegean, Greece. Dr. Ben-Akiva serves as the
Editor-in-Chief of Transport Policy: The Journal of the World Conference on
Transport Research Society, and as Associate Editor for Transportation Science. Dr.
Ben-Akiva has worked as a consultant in industries such as transportation,
telecommunications, financial services and energy. He is a Principal and member of
the Board of Directors of Cambridge Systematics and a Senior Advisor to RAND
Europe.

Richard Arnott (Chapter 18) received his S.B. in civil engineering from M.I.T. in
1969 and his Ph.D. in economics from Yale in 1975, and is currently Professor of
Economics at Boston College. His research has focused on urban economics, and in
recent years on the economics of urban traffic congestion. Having completed a long-
term research project with Andre dePalma and Robin Lindsey elaborating the
bottleneck model of rush-hour traffic dynamics, he is currently working on parking
policy and the interaction between urban land use and traffic congestion. His interest
in urban transportation was kindled by Marvin Mannheim and later rekindled by
William Vickrey.

Cynthia Barnhart (Chapter 14) is a Professor in the Civil and Environmental
Engineering Department and serves as Co-Director of the Center for
Transportation and Logistics at the Massachusetts Institute of
Technology. She has developed and teaches courses including Carrier
Systems, Optimization of Large-Scale Transportation Systems, Airline
Schedule Planning and the Airline Industry. Her research activities
have focused on the development of planning models and algorithms to
improve carrier operations, particularly airlines. Her work has been
published in several books and scholarly journals. She has served as an
Associate Editor for Operations Research and Transportation Science, as



728 Handbook of Transportation Science

a Board member for INFORMS, and as a liaison between the INORMS
Transportation Science Section and the INFORMS Aviation Applications
Special Interest Group. She has been awarded the Mitsui Faculty
Development Chair, the Junior Faculty Career Award from the General
Electric Foundation and the Presidential Young Investigator Award from
the National Science Foundation.

Martin Beckmann (Chapter 9) is Professor Emeritus of Economics at Brown
University and Professor Emeritus of Applied Mathematics at the Technical
University of Munich. He has authored 14 books, his latest Lectures on Location
Theory, to be published by Springer-Verlag in 1999. As a research associate of the
Cowles Commission, the University of Chicago, he worked under T.C. Koopmans on
Studies in the Economics of Transportation (with C.B. McGuire and C. Winsten) and
continued his interest in Operations Research and Transportation during his active
years at Yale University (1956-59), Brown University (1959-89), the University of
Bonn (1962-69) and the Technical University of Munich (1969-89). From 1969-89 he
was a consultant to the Transportation Science Department at the General Motors
Research Laboratories. He makes his home in Providence, Rhode Island, and
Munich, Germany.

Dr. Chandra R. Bhat (Chapter 3) is an Associate Professor of Civil Engineering at
The University of Texas at Austin, where he teaches courses in transportation
systems analysis and transportation planning. Dr. Bhat has contributed toward the
development of advanced econometric techniques for travel behavior analysis,
including discrete choice models, discrete-continuous econometric systems, and
duration models. His research interests include land-use and travel demand
modeling, policy evaluation of the effect of transportation control measures on
mobility and mobile-source emissions, marketing research of competitive positioning
strategies for transportation services, air travel behavior modeling, individual activity
pattern analysis, and use of non-motorized modes of travel. Dr. Bhat serves on the
editorial boards of Transportation Research B and Transportation. He is also on the
editorial review board of the International Journal of Operations and Quantitative
Management. He is the Chairman of the TRB Committee on Passenger Travel
Demand Forecasting (A1C02), and serves on several other Transportation Research
Board Committees. He is the secretary and treasurer of the International Association
of Travel Behavior Research (IATBR), and is a member of the Board of Directors of
this association. Dr. Bhat received his PhD in Civil Engineering from Northwestern
University in 1991.

Michel Bierlaire (Chapter 2) is Maître d'Enseignement et de Recherche at the Ecole
Polytechnique Fédérale in Lausanne (EPFL), and Research Affiliate at the
Massachusetts Institute of Technology (MIT). He teaches operations research,
simulation and optimization to undergraduate, graduate and post-graduate students.



Biographies 729

Dr. Bierlaire has been active in transportation research for the last 10 years, focussing
on mathematical models for transportation demand modeling, and on real-time
systems for Intelligent Transportation Systems. He is the author of HieLoW and
Biogeme, specialized packages for the estimation of discrete choice models. Dr.
Bierlaire is also a member of the Editorial Advisory Board of Transportation
Research B, and a reviewer for Transportation Science and the Journal of
Mathematical Programming..

Lawrence Bodin (Chapter 12) is a Professor Emeritus of Decision and Information
Technologies in the Robert H. Smith School of Business at the University of
Maryland in College Park. His main research interests are in the areas of network
optimization, large scale optimization models, transportation planning and logistics,
vehicle routing and scheduling and the use of multi-criteria decision analysis in
sports applications. He has consulted for many organizations including the United
States Postal Service, Federal Express and United Parcel Service. He has served on
the editorial boards of several professional journals and has presented tutorials and
workshops on vehicle routing and geographic information systems at numerous
meetings. Profesor Bodin received his PhD in Industrial Engineering and Operations
Research from the University of California at Berkeley in 1967.

Arnab Bose (Chapter 7) is a Senior Research Engineer at Real-Time Innovations,
Sunnyvale, California. He received his B.Tech. in EE from Indian
Institute of Technology, Kharagpur in 1996. He received his M.S. and
Ph.D., both in EE from University of Southern California, in 1998 and
2000, respectively. His research interests include object-oriented
modeling, design and development of control systems for embedded and
real-time systems, distributed systems, intelligent vehicle and highway
systems, hybrid and discrete event systems. Dr. Bose has authored several
technical papers and reports and has published in the Society of
Automotive Engineers Journal and the Transportation Research Record. Dr. Bose
was awarded the Best Presentation Award at the 1999
American Control Conference and was a recipient of the Dean's Doctoral
Merit Fellowship from the School of Engineering at University of
Southern California. He is a member of the IEEE Computer Society and
the IEEE Control Systems Society.

Michael Cassidy (Chapter 6) is Assoicate Professor in the Department of Civil and
Environmental Engineering at University of California at Berkeley. He received a
doctorate in Civil Engineering (majoring in Transportation Engineering) from the
University of California, Berkeley in 1990. He served for 3.5 years as an Assistant
Professor of Civil Engineering at Purdue University in West Lafayette, Indiana
before joining the Berkeley faculty in 1994. His research interests are in
transportation operations, particularly the empirical study of highway traffic.



730 Handbook of Transportation Science

Amy Cohn (Chapter 14) received her doctorate in Operations Research from the
Massachusetts Institute of Technology in 2002. She subsequently joined
the faculty at the University of Michigan, where she is an assistant
professor in the department of Industrial and Operations Engineering.
Her current research focus is on modeling and solution techniques for
large-scale problems in transportation and logistics.

Teodor Gabriel Crainic (Chapter 13) is Professor of Operations Research in the
Dept. of Management and Technology of the Université du Québec à Montréal, and
adjunct Professor at the Dept, of Computer Science and Operations Research of the
Université de Montréal and the Dept. of Quantitative Logistics of Molde College,
Norway. His research interests are in operations research models, exact and
metaheuristic methods, and planning tools applied to transportation, logistics, e-
business, and telecommunications, as well as the study of parallel computing and its
impact on the design of models and algorithms. He has authored or coauthored over
eighty scientific articles and coauthored STAN, a method and interactive-graphic
software for strategic planning of multimodal multicommodity transportation
systems used in over 30 organizations in 16 countries. Dr. Crainic co-founded the
TRISTAN (TRienial Symposium on Transportation Analysis) series of international
meetings and served as Director of the Centre for Research on Transportation
(Montréal), president of the Transportation Science Section of INFORMS, and
Associate Editor for Operations Research. He is North American Editor of the
International Journal of Mathematical Algorithms, Area Editor for the Journal of
Heuristics, and serves on the editorial boards of several other operations research and
transportation journals.

Mark S. Daskin (Chapter 10) is a Professor in the Department of Industrial
Engineering and Management Sciences at Northwestern University. He is the
immediate past chair of the department. Dr. Daskin's research interests include
facility location models and algorithms, transportation planning, supply chain
management, and production planning. He is the author of approximately fifty
refereed papers in these fields as well as the text Network and Discrete Location:
Models, Algorithms and Applications (John Wiley, 1995). He is the immediate past
editor-in-chief of Transportation Science. In 1989-90 he was a visiting professor in
the Department of Statistics and Operations Research at Tel Aviv University funded
on a Fulbright Research Grant. He is the editor-in-chief of IIE Transactions, serves
on the editorial board of advisors of Transportation Science and is on the editorial
board of The International Journal of Logistics Management. He is the immediate
past Vice President of publications of INFORMS, the Institute for Operations
Research and the Management Sciences.



Biographies 731

Leonard Evans (Chapter 4) is President of Science Serving Society
(http://www.scienceservingsociety.com). an organization he formed to continue
research and other professional activities after completing a 33-year research career
with General Motors Corporation. He has a bachelors degree in physics from the
Queen's University of Belfast, Northern Ireland, and a doctorate in physics from
Oxford University, England. Dr. Evans' 143 publications appear in 40 different
technical journals. In 1991 his widely acclaimed influential book Traffic Safety And
The Driver was published. His contributions to highway safety have received many
honors, including major awards from the National Highway Traffic Safety
Administration, the International Association for Accident and Traffic Medicine, the
Association for the Advancement of Automotive Medicine, the Human Factors and
Ergonomics Society, and General Motors. He is president of the International
Traffic Medicine Association, former president of the Association for the
Advancement of Automotive Medicine, a fellow of the Human Factors and
Ergonomics Society, a fellow of the Society of Automotive Engineers, a fellow of the
Association for the Advancement of Automotive Medicine, and a member of the
National Academy of Engineering.

Michael A. Florian (Chapter 11) is Professor of Computer Science and Operations
Research at the University of Montreal. He served as the first Director of the Centre
for Research on Transportation and continues to collaborate in its research activities.
He has worked in various areas of network analysis and optimization methods. His
major contributions are in the area of network equilibrium methods and their
applications. He supervised the development of EMME/2 and STAN, which are
interactive-graphic packages for transportation planning which are used intensively
in practice. He has authored more than 130 published research papers and edited
three books. He has been elected to the Royal Society of Canada in 1990 and was
awarded the Robert D. Herman Lifetime Achievement Award by the Transportation
Science section of INFORMS in 1998. He was named Honorary Professor by the
Shanghai University of Science and Technology in 1999 and was awarded an
Honorary Doctorate by the University of Linköping in 2000. He is currently a
member of the Editorial Advisory board of the journals Transportation Science,
Network and Spatial Theory and Associate Editor of International Transactions in
Operations Research and Transport Policy. His professional activities include
consulting assignments in the field of transportation planning to organizations on
five continents.

Randolph W. Hall (Chapters 1,5,15) is Chairman of the Daniel J. Epstein
Department of Industrial and Systems Engineering at University of Southern
California. He also serves as Associate Dean for Research in the School of
Engineering at University of Southern California. Dr. Hall was previously the
founding director for the METRANS University Transportation Center. He has also
held research and faculty positions at PATH, University of California at Berkeley and



732 Handbook of Transportation Science

General Motors. He holds a Ph.D. in Transportation Engineering and a B.S. in
Industrial Engineering and Operations Research, both from University of California
at Berkeley. He has published extensively on logistics and transportation operations,
and is the author of Queueing Methods for Services and Manufacturing. He also has
extensive consulting experience in architectural design of computing and
communication systems for transportation. Dr. Hall has served as the chair of the
Transportation Research Board’s Transportation Network Modeling committee. He
is editor of the Intelligent Transportation Systems Journal, and is on the editorial
boards for Computers and Industrial Engineering and Institute of Industrial
Engineers Transactions.

Donald Hearn (Chapter 11) is Professor and Chair of Industrial and Systems
Engineering and Co-Director of the Center for Applied Optimization at the
University of Florida. He received an undergraduate degree in physics at the
University of North Carolina as a Morehead Scholar and received Masters and Ph.D.
degrees from Johns Hopkins University in management science and operations
research. His teaching includes decision modeling and methods, nonlinear
optimization and large-scale optimization. In addition to the University of Florida,
he has taught at M.I.T. and has given short courses at the University of Rome and the
Royal Institute of Technology in Stockholm. His research interests include applied
optimization and transportation science. Recent work has concerned the
development of efficient algorithms for models that arise in production planning,
urban traffic assignment and water management. He is founding editor of OPTIMA,
the newsletter of the Mathematical Programming Society, associate editor of
Computational Optimization and Applications and a past associate editor of
Operations Research. He is author/co-author of over 60 refereed articles, co-editor
of the recent books Large-Scale Optimization: State of the Art and Network
Optimization, and co-editor of the Kluwer book series Applied Optimization.

Petros A. Ioannou (Chapter 7) is a Professor of Electrical Engineering-Systems and
Director of the Center of Advanced Transportation Technologies at University of
Southern California. He received the B.Sc. degree with First Class Honors from
University College, London, England and the M.S. and Ph.D. degrees from the
University of Illinois, Urbana, Illinois. He is the author/co-author of 5 books and over
300 research papers in dynamics and control, neural networks, and intelligent
transportation systems. In 1984 he was a recipient of the Outstanding Transactions
Paper Award for "An Asymptotic Error Analysis of Identifiers and Adaptive
Observers in the Presence of Parasitics," which appeared in the IEEE Transactions
on Automatic Control. Dr. Ioannou is the recipient of a Presidential Young
Investigator Award. He has been an Associate Editor for the IEEE Transactions on
Automatic Control, the International Journal of Control and Automatica and he is a
fellow of IEEE. He has served as a technical consultant with Lockheed, Ford Motor
Company, Rockwell International, General Motors.



Biographies 733

Ellis L. Johnson (Chapter 14) is the Coca-Cola Chaired Professor in the School of
Industrial and Systems Engineering. He received a B.A. in mathematics at
Georgia Tech and a Ph.D. in operations research at the University of
California. Before joining Georgia Tech in 1995, he was at IBM's T.J.
Watson Research Center for 26 years. There, he founded and managed the
Optimization Center from 1982 until 1990, when he was named IBM
Corporate Fellow. In 1980-1981, he was at the University of Bonn,
Germany, as recipient of the Alexander Von Humboldt Senior Scientist
Award. In 1984, he received the George Dantzig Award for his research in
mathematical programming. In 1986, he was awarded the Lanchester Prize
for his paper with Crowder and Padberg. In 1988, he was elected to the
National Academy of Engineering. In 2000, Dr. Johnson won the INFORMS
John Von Neumann Theory Prize. From 1990 to 1995, he began teaching and
conducting research at Georgia Tech, where he co-founded and co-directed
the Logistics Engineering Center with Professor George Nemhauser. His
research interests in logistics include crew scheduling and real-time
repair, fleet assignment and routing, distribution planning, network
problems, and combinatorial optimization.

Diego Klabjan (Chapter 14) is an assistant professor at the University of Illinois,
Urbana-Champaign. After obtaining his doctorate from the School of
Industrial and Systems Engineering of the Georgia Institute of
Technology in 1999, in the same year he joined the Department of
Mechanical and Industrial Engineering at the University of Illinois. He
is the recipient of the first prize of the 2000 Transportation Science
Dissertation Award. He is serving as the vice-president of the INFORMS
Aviation Applications Section. His research is focused on airline
operations research, integer programming and parallel computing.

Frank S. Koppelman (Chapter 3) is Professor of Civil Engineering and
Transportation at Northwestern University, where he has taught since 1975. He has
worked on the development of activity based demand models and the integration of
econometric and market research methods to enhance understanding of travel
behavior and models for both urban and intercity travel. Dr. Koppelman is principal
investigator of Northwestern University’s participation in a multi-university research
program to develop advanced models of traveler behavior as a component of
enhanced transportation planning models. Professor Koppelman holds a Ph.D. and
B.S. in Civil Engineering (Transportation) from the Massachusetts Institute of
Technology (MIT) and an MBA from the Harvard University Graduate School of
Business Administration (HBS). He is active in the Transportation Research Board,
where he is past-Chairman of the Committee on Travel Demand Analysis and
Forecasting and he was Associate Editor of Transportation Research-B.



734 Handbook of Transportation Science

Marvin Kraus (Chapter 17) is a Professor of Economics at Boston College, where
he has been on the faculty since 1972. He received a B.S. in Mathematics from
Purdue University in 1967 and a Ph.D. in Economics from the University of
Minnesota in 1973. He has authored or coauthored numerous articles on various
aspects of transportation economics, with a particular focus on optimal pricing and
investment in urban transportation.

Vittorio Maniezzo (Chapter 12) is a researcher at the Department of Computer
Science at the University of Bologna, Italy. His main research interests include exact
and heuristic algorithms for combinatorial problems, such as the quadratic
assignment problem, the vehicle routing problem, project scheduling problems and
frequency assignment problems. His scientific papers have appeared in various
international journals in operations research and computer science. Dr. Maniezzo has
consulted for several companies in Italy. Dr. Maniezzo.received his Ph.D. in
Computer Science Engineering from the Politecnico of Milan in 1994.

Aristide Mingozzi (Chapter 12) is an Associate Professor of Operations Research at
the Department of Mathematics of the University of Bologna, Italy. His major fields
of research include exact combinatorial optimization methods for variants of the
vehicle routing problem, crew scheduling problems, project scheduling problems and
two-dimensional cutting problems. Professor Mingozzi specializes in solving these
NP-hard problems using mathematical programming techniques based on innovative
formulations of these problems. Professor Mingozzi is the author of many scientific
papers that have been published in international journals and presentations at many
professional society meetings. Professor Mingozzi has also consulted for many
companies in Europe. Professor Mingozzi received his Ph.D. in Operations Research
from the University of London in 1984.

George L. Nemhauser (Chapter 14) is the A. Russell Chandler Professor in the
Schoolof Industrial and Systems Engineering and an Institute Professor at the
Georgia Institute of Technology, where he has been since 1985. He has
served ORSA as Council Member, President, and Editor of Operations
Research, and is the Past Chairman of the Mathematical Programming
Society. He is the founding Editor of Operations Research Letters, and
co-editor of Handbooks of Operations Research and Management Science.
Dr. Nemhauser received his Ph.D. in Operations Research from
Northwestern University in 1961, and joined the faculty of the Johns
Hopkins University as Assistant Professor of Operations Research and
Industrial Engineering. In 1970, he was appointed Professor of
Operations Research and Industrial Engineering at Cornell University and
Leon Welch Professor in 1984. He served as School Director from 1977 to
1983. Dr. Nemhauser's honors and awards include membership in the



Biographies 735

National Academy of Engineering, Kimball medal and Lanchester prize
(twice) and Morse lecturer of ORSA.

Peter Nijkamp (Chapter 17) is professor in regional and urban economics and in
economic geography at the Free University, Amsterdam. His main research interests
cover plan evaluation, multicriteria analysis, regional and urban planning, transport
systems analysis, mathematical modelling, technological innovation, and resource
management. In the past years he has focused his research in particular on
quantitative methods for policy analysis, as well as on behavioural analysis of
economic agents. He has a broad expertise in the area of public policy, services
planning, infrastructure management and environmental protection. In all of these
fields he has published many books and numerous articles. He has been visiting
professor in many universities all over the world. He is past president of the
European Regional Science Association and of the Regional Science Association
International. At present, he is vice-president of the Royal Netherlands Academy of
Sciences.

Susan H. Owen (Chapter 10) is Engineering Group Manager for the Operations
Research Department of General Motors’ North American Engineering division.
She received her Ph.D. in Industrial Engineering and Management Sciences at
Northwestern University. Her research interests and publications are focused in the
areas of facility location, mathematical modeling, modern heuristic methods, and
scenario planning. Her current work with GM is concentrated on decision support
applications for solving resource management and scheduling problems. She is a
member of INFORMS.

Markos Papageorgiou (Chapter 8) is Professor and Director of the Dynamic
Systems and Simulation Laboratory at the Technical University of Crete. He
received the Diplom-Ingenieur and Doktor-Ingenieur (honors) degrees in Electrical
Engineering from the Technical University of Munich, Germany, in 1976 and 1981,
respectively. In 1988-1994 he was a Professor of Automation at the Technical
University of Munich. He is the author of the books Applications of Automatic
Control Concepts to Traffic Flow Modeling and Control (Springer, 1983) and
Optimierung (R. Oldenbourg, 1991; 1996), and the editor of the Concise
Encyclopedia of Traffic and Transportation Systems (Pergamon Press, 1991). His
research interests include automatic control, optimization, and their application to
traffic and transportation systems and water networks. He is an Associate Editor of
Transportation Research-Part C and Chairman of the IFAC Technical Committee on
Transportation Systems. Dr. Papageorgiou was awarded the 1983 Eugen-Hartmann
prize from the Union of German Engineers and received a Fulbright Research and
Lecturing award (1997). Dr. Papageorgiou is a Fellow of the IEEE.



736 Handbook of Transportation Science

Tönu Puu (Chapter 9) was Associate Professor of Economics at Uppsala University
from 1964-1971, and is currently Full Professor of Economics at Umeå University,
Sweden. He holds a PhD from Uppsala University, Sweden. Dr. Puu has published
100 papers and 10 books on the subjects of: investment, portfolio selection,
production, natural resources, spatial economics, nonlinear dynamics, economics of
the arts, and the philosophy of science. His latest works are Mathematical Location
and Land Use Theory (Springer, Heidelberg 1997) and Nonlinear Economic
Dynamics (4th ed. Springer, Heidelberg 1997). Dr. Puu is also initiator and director
of the Nordic Baroque Music Festival.

Piet Rietveld (Chapter 17) is professor in Transport Economics at the Free University,
Amsterdam. He has been working on various topics in the field of transport economics
and regional economics. This research has been extensively reported in authored and
edited books, and in about 250 papers published in scientific journals or as contributions
to books. Internationally Piet Rietveld is active as the chairman of NECTAR, a
European association of transport experts. He is on the editorial board of several
scientific journals in the field of transport and regional development and a member of
various advisory committees to the government. He has both chaired the cluster for
spatial research of the Netherlands Organisation for Scientific Research (NWO), and the
Dutch speaking division of the Regional Science Association (RSA). In 1999 he was
awarded the Dr Hendrik Muller prize by the Royal Dutch Academy of Sciences
(KNAW) for his scientific work in the field of the spatial sciences.

Garrett J. van Ryzin (Chapter 16) is Professor of Decision, Risk and Operations at
the Columbia University Graduate School of Business, where he has been on the
faculty since 1991. He received his B.S.E.E. degree from Columbia University, and
his S.M. in Electrical Engineering and Computer Science and Ph.D. in Operations
Research from the Massachusetts Institute of Technology. His research interests
include stochastic optimization, pricing and revenue management and supply chain
management. Professor van Ryzin’s research has been supported by grants from the
National Science Foundation and major corporations, and he has served as a
consultant to several leading companies in the area of pricing and revenue
management. He is Area Editor for Operations Research and is an associate editor
for Management Science and Transportation Science.

Kalyan T. Talluri (Chapter 16) is Associate Professor in the Department of
Economics and Business at the Universitat Pompeu Fabra (UPF) in Barcelona,
Spain. He did his Ph.D in Operations Research at M.I.T in the area of network
design. Subsequently, he worked at USAir in the areas of airline scheduling and fleet
planning and revenue management. His recent research has been in the area of
pricing and revenue management. He has been teaching at UPF since 1995. He has
consulted for many industrial groups in Europe, USA and Asia in the areas of
dynamic pricing and revenue management.



Biographies 737

Pamela H. Vance (Chapter 14) is an Assistant Professor in the Goizueta Business
School at Emory University. Dr. Vance holds Ph.D. and M.S. degrees in operations
research, and a bachelors degree in chemical engineering, all from the Georgia
Institute of Technology. Her research interests include applying integer
programming techniques to large-scale problems arising from applications in
transportation. Some specific applications are airline crew scheduling problems,
cutting stock problems, integer multicommodity flow problems and multilevel
distribution problems. She is a recipent of the National Science Foundation’s Early
Career Development (CAREER) Award for her work on network design problems
arising in transportation. She also serves as an Associate Editor for Transportation
Science and Operations Research Letters.



This page intentionally left blank 



INDEX

Activity Episodes 42
Activity-based Modeling 39
Backhaul 443,584
Bid Prices 605
Booking Limits 603
Bottleneck 165,714
Braess Paradox 399
Branch-and-Bound 430,540
Branch-and-Cut 429
Branch-and-Price 478,540
Bulk Service 131
Bundle Constraints 472
Capacity 171
Classification (sorting) 457
Column Generation 536
Communication (in control) 211
Conformal Mapping 310
Consolidation 454,572
Continuous Space Modeling 279
Cost Metrics 305,587
Covering 326
Crew Assignment 522,525
Crew Pairing 521,523
Crew Rostering 544
Crew Scheduling 495,517
Cumulative Diagrams 125,159,717
Customization 569
Deadhead 519,583
Density 158
Departure Time 29,715
Discrete Choice Models 7,621
Dispatching 133
Distribution 134,565
Domicile 517
Driver Information 264
Duty Period 520
Dynamic Programming 432
Dynamic Resource Allocation 499
Economic Order Quantity (EOQ) 134
Economic Production Quantity

(EPQ) 134
Economics 689
Empty Flow 459,497

Equilibria 289,373,710,715
Euclidean Distance 417
Euclidean Metric 306
Externalities 693
Fare Classes 602
First-best Analysis 695
Fixed Time Control 248,250
Flight Network 531
Fluid Models 126,161
Four-stage Model 663
Freeway Traffic Control 255
Freight 451
Gap Acceptance 178
Generalized Extreme Value 12
Geodesies 295
Geographic Information Systems

(GIS) 422
Hazard Duration Models 52
Headway & Spacing 157,213,721
Highway Capacity Manual 172
History 1
Hub Location 361
Independence of Irrelevant

Alternatives 13
Integer Program 539
Intersections 124,248
Inventory 563,567
Investments 315,690
Iso-vectures 283
Lagrangean Relaxation 335
Land Use 684
Lane Changing 220
Latent Class Choice 22
Lateral Control 200
Linear Program Relaxation 535
Linehaul Operations 495
Location Models 321

Algorithms 335
Continuous vs. Network 323
Dynamic 355
Multi-objective 345
Probabilistic 343,350
Queueing-based 124,351



740 Handbook of Transportation Science

Undesirable Facility 333
Location Routing 357
Logistics Networks 469
Logistics Queueing Network 502
Logit 12
Longitudinal Control 195
Manhattan Metric 306
Market Areas 283
Market Equilibrium 289
MAXBAND 250
Median, Location 332
Minkowski Metric 306
Modal Choice 677
Multicommodity Flows 470
Network Equilibrium 373

Algorithms 380
Deterministic 374
Dynamic 394
Multi-modal 391
Stochastic 379,390
Validation 393

Network Design 308,470,479
Backbone 586
Local Area 576
Multi-hop 580
Peer 578
Service Networks 479
Wide Area 576

Network Location 323
Network Loading 476
Overbooking 641
Pairing 521,523
Pipes Model 202
Pricing 398,591,690

Elasticity 681
Network 398
Peak Load 698
Roadway 398

Probit 18
Production Models 134
Projections, Map 312
Queueing 113
Ramp Metering 255
Ramsey Pricing 708
Refraction 308

Repositioning 497
Revenue Management 599

Diversion 621
Dynamic 613
Network 628

Rostering 544
Route Choice 24
Route Guidance 264
Safety 67

Country 99
Driver Age 89
Driver Behavior 86
Fatalities 71
Roadway Engineering 81
Vehicle Control 214,219
Vehicle Engineering 83

SCOOT 252
Second-best Analysis 703
Sensing in Control 212,218
Service Frequencies 479
Set Partitioning 432,529
Set-up Costs 139
Shock Waves 180
Shortest Paths 281
Social Benefit 696
Social Cost Pricing 400
Space-mean 158
Spatial Interaction Modeling 661
Spatial Queueing 124
Stability in Control 224
Stationarity 115,159,230
Subtour Elimination 429
Supply Chains 561
System Optimality 267
Tabu Search 477
Terminals 495,573,591
Throughput 115
Time Windows 439
Time-mean 158
Time-Space Models  58,156,563
Time, Value of 24
Tolls 400,698
Traffic Control 243
Traffic Flow 116,155
Traffic Responsive Control 249,252



741Transportation Science

Traffic Signals 118,175,248
Trajectories 159
TRANSYT 251
Tree Location 323
Trip Distribution 671
Trip Generation 666
User Optimality 267
Utility Theory 9
Vehicle Control 193

Automated 205
Human/Manual 202

Vehicle Dynamics 195
Vehicle Routing 413,582

Long-haul 451
Streets/Short-haul 413

Wardrop 295,310,373




