

Lecture Notes in Computer Science 4340
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Radu Prodan Thomas Fahringer

Grid Computing

Experiment Management, Tool Integration,
and Scientific Workflows

13

Authors

Radu Prodan
Thomas Fahringer
University of Innsbruck, Institute for Computer Science
Technikerstr. 21a, 6020 Innsbruck, Austria
E-mail: {radu,thomas.fahringer}@dps.uibk.ac.at

Library of Congress Control Number: 2006939015

CR Subject Classification (1998): C.2, D.4, F.3, H.4, H.3, C.4, I.2.8

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-69261-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69261-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg
Printed on acid-free paper SPIN: 11965800 06/3142 5 4 3 2 1 0

To our families

Preface

In the last decade, the interest in computational Grids has increasingly grown
in the scientific community as a means of enabling the application developers
to aggregate resources scattered around the globe for solving large-scale scien-
tific problems. As applications get larger, more complex and dynamic, the use
of software tools becomes vital for tuning application parameters, identify-
ing performance leaks, or detecting program defects. Extensive efforts within
academia and industry over the last decade resulted in a large collection
of tools for practical application engineering. Available tools of broad inte-
rest include program source and structure browsers, editors, static program
analysers, performance predictors, optimising compilers, schedulers, execu-
tion control and monitoring environments, sequential and parallel debuggers
(providing deadlock detection and deterministic replay mechanisms), check-
pointers, data and execution visualisers, performance analysers, or various
program tracers.

Despite all these extensive efforts, building applications that can effec-
tively utilise the Grid still remains an art due to the lack of appropriate
high-level tools to support the developers. In this monograph, we address
four critical software development aspects for the engineering and execution
of applications on parallel and Grid architectures.

First of all, existing available performance analysis tools target single ap-
plication execution which is not sufficient for effective performance tuning of
parallel applications. The most popular performance metrics such as speedup
or efficiency require repeated execution of the application for various machine
sizes for which no automatic tool support exists so far. Additionally, paral-
lelising and tuning of applications for a certain compute platform requires
repeated experimentation for various data distributions, loop iteration sche-
duling strategies, or compiler optimisation options, which is known to be an
NP-complete problem.

Second, tool portability is critical since tools are often based on a monoli-
thic design that does not isolate the inherent platform dependencies required
to support advanced and in-depth analysis. For example, when using a new

VIII Preface

parallel system the users must in most cases learn about and familiarise them-
selves with new tools with different functionality and interfaces, which is in
many cases very time consuming and can be a major barrier in using novel
modern computer architectures.

Third, existing tools cannot be used in cooperation on the same appli-
cation instance to enhance the performance and correctness debugging engi-
neering process since they are not designed for interoperability and often are
based on incompatible instrumentation or monitoring systems.

Fourth, the workflow model that recently emerged as a new attractive pa-
radigm for programming loosely coupled Grid infrastructures requires novel
tools that offer appropriate high-level support, including abstract specifi-
cation mechanisms, optimised scheduling, and scalable fault-tolerant execu-
tion, which are of paramount importance to effectively running distributed
large-scale applications. These topics attract a lot of interest within the Grid
community that aims to evolve the Grid to a commodity platform that trans-
parently aggregates high-performance resources scattered around the globe
in a single virtual supercomputer for performing scientific simulations.

In this monograph, we first propose a new directive-based language called
ZEN for compact specification of wide value ranges of interest for arbitrary
application parameters, including problem or machine sizes, array or loop
distributions, software libraries, interconnection networks, or target execution
machines. We design the ZEN directives as problem-independent with global
or fine-grain scopes that do not change the semantics of the application,
nor require any application modification or special preparation. Irrelevant
or meaningless experiments can be filtered through well-defined constraints.
Additionally, the ZEN directives can be used to request a wide range of
performance metrics to be collected from the application for arbitrary code
regions.

Based on the ZEN language, we develop a novel experiment management
tool called ZENTURIO for automatic experiment management of large-scale
performance and parameter studies on parallel and Grid architectures. ZEN-
TURIO offers automatic analysis and visualisation support across multiple
experiments based on the performance and output data collected and orga-
nised in a common shared data repository. In contrast to existing parameter
study tools, ZENTURIO requires no special preparation of the application,
nor does it restrict the parametrisation to input files or to global input ar-
guments. We validated the functionality and usefulness of ZENTURIO on
several real-world parallel applications from various domains, including theo-
retical chemistry, photonics, finances, and numerical mathematics.

We designed ZENTURIO as a comprehensive distributed service-oriented
architecture for interoperable tool development based on the latest state-
of-the-art Web and Grid services technologies. We illustrate how a service-
oriented architecture facilitates the integration of a broad set of tools and
enables a range of useful tool interoperability scenarios that facilitate the

Preface IX

engineering effort of applications. We illustrate a variety of novel adaptations
of state-of-the-art Web technologies for Grid computing which anticipated
several existing standardisation efforts.

Based on the ZENTURIO experiment management architecture, we pro-
pose a generic optimisation framework that integrates general-purpose meta-
heuristics for solving NP-complete performance and parameter optimisation
problems in an exponential search space specified using the ZEN experiment
specification language. We illustrate a generic problem-independent realisa-
tion of the search engine using a genetic algorithm that allows new optimi-
sation problems to be formulated through appropriate objective functions,
for example, a performance metric using the ZEN language. We illustrate
three case studies that instantiate the framework for Grid workflow schedu-
ling, throughput scheduling of parameter studies, and performance tuning of
parallel applications on the Grid using irregular array distributions.

Finally, we propose a timely approach for modelling and executing scienti-
fic workflows in dynamic and heterogeneous Grid environments. We introduce
an abstract formal model for hierarchical representation of complex directed
graph-based workflows using composite activities (such as parallel and se-
quential loops or conditional activities) interconnected through control and
data flow dependencies comprising advanced collective communication pat-
terns such as broadcast, scatter, and gather. We propose and comparatively
analyse three heuristic-based algorithms for scheduling two real-world scienti-
fic workflows from material science and meteorology domains. The scheduled
applications achieve good performance on the Austrian Grid environment
using advanced runtime techniques such as partitioning, workflow optimi-
sation, and load balancing. We design a steering algorithm that performs
runtime monitoring and workflow schedule adaptations which ensure that
certain quality of service performance contracts are preserved during execu-
tion of the workflow. We conclude with a classification of the most important
performance overheads that may slow down the performance of scientific
workflows and validate them through several experiments.

Innsbruck, October 2006 Radu Prodan
Thomas Fahringer

Contents

1 Introduction . 1
1.1 Motivation . 2

1.1.1 Performance Tuning . 2
1.1.2 Parameter Studies . 3
1.1.3 Optimisation . 3
1.1.4 Scheduling . 3
1.1.5 Parametrisation Language . 4
1.1.6 Instrumentation . 4
1.1.7 Portability . 5
1.1.8 Tool Interoperability . 5
1.1.9 Grid Services . 5
1.1.10 Scientific Workflows . 6

1.2 Goals . 6
1.2.1 Experiment Specification Language 6
1.2.2 Experiment Management Tool . 7
1.2.3 Optimisation . 8
1.2.4 Scientific Workflows . 8
1.2.5 Service-Oriented Grid Architecture 9
1.2.6 Grid Services . 10

1.3 Outline . 10

2 Model . 13
2.1 Introduction . 13
2.2 Distributed Technology History . 14
2.3 Web Services . 15

2.3.1 Web Services Stack . 16
2.3.2 Web Services Runtime Environment 18

2.4 Grid Security Infrastructure . 19
2.5 Globus Toolkit . 20
2.6 Grid Architectural Model . 22

2.6.1 Machine Layer . 22
2.6.2 Grid Services Layer . 28

XII Contents

2.6.3 Application Layer . 30
2.7 Summary . 35

3 The ZEN Experiment Specification Language 37
3.1 Functionality and Use Cases . 37

3.1.1 Shared Memory Application Scalability 38
3.1.2 ZEN Transformation System . 39
3.1.3 Shared Memory Loop Scheduling 40
3.1.4 Distributed Processor Arrays . 41
3.1.5 Distributed Memory Arrays . 41
3.1.6 Work Distribution . 43
3.1.7 Parameter Studies . 43

3.2 Formal Language Specification . 44
3.2.1 ZEN Set . 44
3.2.2 ZEN Directives . 49
3.2.3 ZEN Substitute Directive . 50
3.2.4 Local Substitute Directive . 51
3.2.5 Homonym ZEN Variables . 51
3.2.6 ZEN Assignment Directive . 53
3.2.7 Multi-dimensional Value Set . 54
3.2.8 ZEN Constraint Directive . 55
3.2.9 ZEN Performance Directive . 59
3.2.10 Parameter Study Experiment . 62
3.2.11 Experiment Generation Algorithm 62
3.2.12 Online Monitoring and Analysis 65

3.3 Summary . 68

4 ZENTURIO Experiment Management Tool 69
4.1 User Portal Functionality . 69

4.1.1 ZEN Editor . 70
4.1.2 Experiment Preparation . 71
4.1.3 Experiment Monitor . 73
4.1.4 Application Data Visualiser . 73

4.2 Performance Studies . 76
4.2.1 Ocean Simulation . 76
4.2.2 Linearised Augmented Plane Wave 79
4.2.3 Three-Dimensional Particle-in-Cell 84
4.2.4 Benders Decomposition . 86
4.2.5 Three-Dimensional FFT Benchmarks 89

4.3 Parameter Studies . 94
4.3.1 Backward Pricing . 94

4.4 Architecture . 105
4.4.1 Experiment Generator . 107
4.4.2 Experiment Executor . 108
4.4.3 Experiment State Transition Diagram 110

Contents XIII

4.4.4 Experiment Data Repository . 110
4.5 Summary . 111

5 Tool Integration . 113
5.1 Architecture . 114
5.2 Interoperable Tool Set . 116

5.2.1 Object Code Browser . 117
5.2.2 Function Profiler (Z prof) . 117
5.2.3 Function Tracer (Z trace) . 118
5.2.4 Function Coverager (Z cov) . 119
5.2.5 Sequential Debugger (Z debug) . 121
5.2.6 Memory Allocation Tool (Z MAT) 121
5.2.7 Resource Tracker (Z RT2) . 122
5.2.8 Deadlock Detector (Z deadlock) 122

5.3 Tool Interoperability . 122
5.3.1 Classification . 122
5.3.2 Interaction with a Browser . 123
5.3.3 Performance Steering . 124
5.3.4 Just-in-Time Debugging . 126
5.3.5 Interaction with a Debugger . 127

5.4 The Monitoring Layer . 128
5.4.1 Dynamic Instrumentation . 128
5.4.2 The Process Manager . 130
5.4.3 Dynamic Instrumentation of MPI Applications 134

5.5 The Grid Services Layer . 136
5.5.1 Web Application and Services Platform (WASP) 138
5.5.2 Service Repository . 139
5.5.3 Abstract Grid Service . 140
5.5.4 Factory . 142
5.5.5 Registry . 143
5.5.6 WSDL Compatibility . 144
5.5.7 Dynamic Instrumentor . 144
5.5.8 Aggregator . 145

5.6 Event Framework . 146
5.6.1 Representation . 146
5.6.2 Implementation . 149
5.6.3 Filters . 151

5.7 Firewall Management . 151
5.8 WASP Versus GT3 Technology Evaluation 152

5.8.1 Stub Management . 153
5.8.2 Service Lifecycle . 154
5.8.3 UDDI-Based Service Repository 155
5.8.4 Service Data . 155
5.8.5 Events . 155
5.8.6 Registry . 156

XIV Contents

5.8.7 Security . 159
5.8.8 Grid Service Throughput . 160
5.8.9 Comparison . 163

5.9 Summary . 164

6 Optimisation Framework . 165
6.1 Workflow Scheduling . 167

6.1.1 Schedule Dependencies . 169
6.1.2 Objective Function . 170

6.2 Genetic Search Engine . 174
6.2.1 Initial Population . 175
6.2.2 Selection . 177
6.2.3 Crossover . 177
6.2.4 Mutation . 178
6.2.5 Elitist Model . 178
6.2.6 Fitness Scaling . 179
6.2.7 Convergence Criterion . 180

6.3 Genetic Workflow Scheduling . 180
6.3.1 WIEN2k . 180

6.4 Throughput Scheduling . 192
6.5 Performance Tuning of Parallel Applications 194

6.5.1 Parallel Applications on the Grid 195
6.6 Summary . 201

7 Scientific Grid Workflows . 203
7.1 Workflow Model . 204

7.1.1 Computational Activity . 205
7.1.2 Control Flow Dependencies . 206
7.1.3 Data Flow Dependencies . 207
7.1.4 Conditional Activity . 207
7.1.5 Parallel Loop Activity . 208
7.1.6 Sequential Loop Activity . 211
7.1.7 Workflow Activity . 213

7.2 Scheduler . 214
7.2.1 Workflow Converter . 214
7.2.2 Scheduling Engine . 220
7.2.3 Layered Partitioning . 226
7.2.4 WIEN2k . 227
7.2.5 Invmod . 231

7.3 Enactment Engine . 235
7.3.1 Workflow Partitioning . 236
7.3.2 Control Flow Management . 241
7.3.3 Data Flow Management . 242
7.3.4 Virtual Single Execution Environment 243
7.3.5 Workflow Steering . 244

Contents XV

7.3.6 Fault Tolerance . 248
7.3.7 WIEN2k Execution Experiments 253
7.3.8 Steering Experiments . 255

7.4 Overhead Analysis . 260
7.4.1 Experiments . 263

7.5 Summary . 269

8 Related Work . 271
8.1 Experiment Management . 271
8.2 Performance Study . 271
8.3 Parameter Study . 273
8.4 Optimisation and Scheduling . 273
8.5 Tool Integration . 274

8.5.1 Scientific Workflows . 276

9 Conclusions . 279
9.1 Contributions . 279

9.1.1 Experiment Specification . 279
9.1.2 Experiment Management . 280
9.1.3 Optimisation . 281
9.1.4 Tool Integration Design . 281
9.1.5 Web Services for the Grid . 283
9.1.6 Scientific Workflows . 283

10 Appendix . 285
10.1 Notations . 285
10.2 Code Regions . 288
10.3 Abbreviations . 289
10.4 Performance Metrics . 292

References . 297

Index . 311

List of Figures

2.1 The interoperable Web services stack. 16
2.2 The best practices of publishing a Web service into a UDDI

Service Repository. 18
2.3 The Web services runtime environment. 19
2.4 The GSI single sign-on and proxy delegation chain of trust. . . 20
2.5 The Grid architectural model. 23
2.6 The von Neumann architecture. 24
2.7 The Symmetric Multiprocessor (SMP) architecture. 24
2.8 The Cluster of Workstation (COW) architecture. 26
2.9 The SMP cluster architecture. 26
2.10 The Cache Coherent Non-Uniform Memory Access (ccNUMA)

architecture. 27
2.11 The Grid hardware architecture. 28
2.12 The stateful Grid service design alternatives. 30
2.13 The parallel application execution model. 31
2.14 The execution model of parallel applications on the Grid. 32

3.1 The ZEN Transformation System. 40
3.2 The (CYCLIC(2), BLOCK) distribution of array A(8, 4) onto

processor array P (2, 2). 42
3.3 The ZEN constraint defined by Example 3.5. 44
3.4 The ZEN set element evaluation function. 46
3.5 The ZEN file instances generated by Example 3.2. 50
3.6 The value set constraint defined in Example 3.21. 57
3.7 The experiment generation algorithm data flow. 64

4.1 The ZENTURIO User Portal main panel. 70
4.2 The ZEN editor. 71
4.3 The Experiment Preparation dialog-box. 72
4.4 The Application Data Visualiser for performance studies. 74
4.5 The Application Data Visualiser for parameter studies. 75

XVIII List of Figures

4.6 The Stommel model performance results for various
intra-node and inter-node machine sizes (I), 200 × 200
problem size, 20000 iterations. 80

4.7 The Stommel model performance results for various
intra-node and inter-node machine sizes (II), 400 × 400
problem size, 40000 iterations. 81

4.8 The Stommel model performance results (III). 82
4.9 The LAPW0 performance results for various machine sizes. . . 85
4.10 The 3DPIC performance results for various machine sizes. . . . 87
4.11 The benders decomposition performance results for various

machine sizes. 90
4.12 The parallel three-dimensional FFT computation. 91
4.13 The three-dimensional FFT benchmark results (I). 95
4.14 The three-dimensional FFT benchmark results (II). 96
4.15 The three-dimensional FFT benchmark results (III). 97
4.16 The three-dimensional FFT benchmark results (IV). 98
4.17 The three-dimensional FFT benchmark results (V). 99
4.18 The three-dimensional FFT benchmark results (VI). 100
4.19 The three-dimensional FFT benchmark results (VII). 101
4.20 The constraint defined in Example 4.19. 103
4.21 The backward pricing parameter study results. 104
4.22 The ZENTURIO experiment management tool architecture. . 105
4.23 The Experiment Generator architecture. 107
4.24 The experiment state transition diagram. 110
4.25 The Experiment Data Repository schema. 111

5.1 The tool integration service-oriented architecture. 115
5.2 A snapshot of interoperable online software tools. 124
5.3 The steering configuration. 125
5.4 The cyclic debugging states. 126
5.5 A just-in-time debugging scenario. 127
5.6 The dynamic instrumentation control flow. 129
5.7 The Process Manager architecture. 130
5.8 The instrumentation probe class hierarchy. 132
5.9 The control flow for starting an MPI(CH) application for

dynamic instrumentation. 135
5.10 The dynamic MPI library profiling. 137
5.11 The state transition diagram of WASP-based Web services. . . 139
5.12 The Grid services hierarchy. 141
5.13 The ZENTURIO event architecture. 147
5.14 The event hierarchy. 148
5.15 The Registry throughput results. 158
5.16 The secure versus insecure response time comparison. 160
5.17 The throughput results of WASP, GT3, and vanilla Axis

services. 162

List of Figures XIX

6.1 The ZENTURIO optimisation framework design. 166
6.2 A sample workflow application. 169
6.3 A sample Gantt chart for the workflow depicted in Figure 6.2,

assuming that e2 = e3 (i.e. SCA2 = SCA3). 172
6.4 The genetic operators. 179
6.5 The workflow genetic operators. 181
6.6 A simplified WIEN2k workflow. 183
6.7 The regression functions for LAPW0. 184
6.8 The best individual evolution for various application instances. 186
6.9 The experimental setup for genetic static scheduler tuning. . . 187
6.10 The genetic scheduler tuning results (I). 189
6.11 The genetic scheduler tuning results (II). 190
6.12 The genetic scheduler tuning results (III). 191
6.13 A sample Gantt chart for the activity set defined in

Example 6.13. 194
6.14 The default general block array distribution defined in

Example 6.18. 198
6.15 The default indirect array distribution defined in Example 6.21. 201

7.1 A valid and an invalid conditional activity example. 208
7.2 The collection transfer patterns. 212
7.3 A valid and an invalid sequential loop activity. 213
7.4 A sample workflow with two nested conditional activities. . . . 216
7.5 The two iteration sequential loop unrolling. 218
7.6 The HEFT weights and ranks for a sample workflow. 224
7.7 The WIEN2k workflow representation. 228
7.8 The scheduling Gantt charts. 229
7.9 The WIEN2k scheduling results. 232
7.10 The Invmod scientific workflow. 233
7.11 The Invmod scheduling results. 234
7.12 A workflow partitioning example. 239
7.13 A control flow optimisation example. 241
7.14 A data flow optimisation example. 243
7.15 A VSEE example. 245
7.16 A workflow checkpointing example. 253
7.17 The WIEN2k execution results (I). 256
7.18 The WIEN2k execution results (II). 257
7.19 The WIEN2k execution results (III). 258
7.20 The workflow steering executions traces. 259
7.21 The execution overhead classification. 261
7.22 The WIEN2k overhead analysis (I). 265
7.23 The WIEN2k overhead analysis (II). 266
7.24 The WIEN2k overhead analysis (III). 267
7.25 The WIEN2k checkpointing results (I). 268
7.26 The WIEN2k checkpointing results (II). 269

List of Tables

5.1 The event implementation support. 149
5.2 The events supported by ZENTURIO. 150
5.3 The open firewall ports. 152
5.4 The service data elements. 156
5.5 The comparative analysis of WASP versus GT3-based Grid

services. 163

7.1 The HEFT weight and rank calculations for the sample
workflow depicted in Figure 7.6. 224

7.2 The Austrian Grid testbed for scheduling experiments. 230
7.3 The VSEE results for the WIEN2k workflow. 246
7.4 The input and output data checkpointing for the workflow

example depicted in Figure 7.16. 253
7.5 The Austrian Grid testbed for WIEN2k execution experiments. 254
7.6 The Austrian Grid testbed for overhead analysis experiments. 263

List of Algorithms

1 The experiment generation algorithm. 64
2 The Z trace call-graph function tracing algorithm. 119
3 The Z cov function coverage algorithm. 120
4 The generational genetic search algorithm. 176
5 The workflow conversion algorithm (I). 220
6 The workflow conversion algorithm (II). 221
7 The workflow conversion algorithm (III). 222
8 The HEFT algorithm.. 225
9 The myopic scheduling algorithm. 226
10 The workflow steering algorithm. 249

1

Introduction

Before 1990, the world wide Internet network was almost entirely unknown
outside the universities and the corporate research departments. The common
way of accessing the Internet was via command line interfaces such as telnet,
ftp, or popular Unix mail user agents like elm, mush, pine, or rmail. The
usual access to information was based on peer-to-peer email message exchange
which made the every day information flow slow, unreliable, and tedious.
The advent of the World Wide Web has revolutionised the information flow
though the Internet from obsolete message passing to world wide Web page
publication. Since then, the Internet has exploded to become an ubiquitous
global infrastructure for publishing and exchange of (free) digital information.

Despite its global success and acceptance as a standard mean for pu-
blishing and exchange of digital information, the World Wide Web techno-
logy does not enable ubiquitous access to the billions of (potentially idle)
computers simultaneously connected to the Internet providing peta-flops of
estimated aggregate computational power. Remote access to computational
power is highly demanded by applications that simulate complex scienti-
fic and engineering problems, like medical simulations, industrial equipment
control, stock portfolio management, weather forecasting, earthquake simu-
lations, flood management, and so on.

Nowadays, the common policy of accessing high-end computational re-
sources is through manual remote ssh logins on behalf of individual user ac-
counts. Similar to the World Wide Web that revolutionised the information
access, computational Grids are aiming to define an infrastructure that pro-
vides dependable, consistent, pervasive, and inexpensive access to the world
wide computational capabilities of the Internet [77]. In this context, compu-
tational Grids raise a new class of important scientific research opportunities
and challenges regarding, e.g.:

• secure resource sharing among dynamic collections of individuals and in-
stitutions forming so called Virtual Organisations [77];

• solving large scale problems for which appropriate local resources are not
available;

R. Prodan and T. Fahringer: Grid Computing, LNCS 4340, pp. 1–11, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 1 Introduction

• improving the performance of applications by increasing the parallelism
through concurrent use of distributed computational resources;

• course-grain composition of large-scale applications from off-the-shelf exis-
ting software services or application components;

• exploiting (or stealing) unused processor cycles from idle workstations
(e.g. desktop, network) to increase the overall computational power;

• appropriate distribution and replication of large data files near to places
where subsequent computations will likely take place;

• incorporation of semantic Web technologies [51].

1.1 Motivation

In the past years, the interest in computational Grids has increasingly grown
in the scientific community as a mean of enabling application developers to
aggregate resources scattered around the globe for solving large scale scien-
tific problems. Developing applications that can effectively utilise the Grid,
however, still remains very difficult due to the lack of high level tools to
support developers.

In this monograph, we aim to contribute to various research aspects re-
garding integrated tool development for efficient engineering and high per-
formance execution of scientific applications in Grid environments.

1.1.1 Performance Tuning

Computational Grids have the potential to harness remote high performance
platforms for efficient execution of scientific applications. Existing parallel
applications that leverage the currently successful parallel programming stan-
dards [49, 164], however, require to be tuned to the characteristics of each
particular parallel architecture in order to achieve high performance. The
compiler technology has proven to be inefficient in transparently parallelising
the applications and still relies on the manual user support. In addition, exis-
ting performance tools (e.g. [128]) offer help for advanced analysis of single
experiments only, which is not sufficient for efficient application performance
tuning.

In a traditional approach, the performance tuning of parallel applicati-
ons is a cyclic multi-experimental process. The most popular performance
metrics, such as efficiency or speedup, require the investigation of numerous
problem and machine sizes for, e.g. various compiler options and data or
control flow distributions. This process involves many cycles of code editing,
compilation, execution, data collection, performance analysis, and data vi-
sualisation, which is tedious and error prone to be managed manually. To
this date there is no automatised support for performance analysis of parallel
applications across multiple experiments.

1.1 Motivation 3

1.1.2 Parameter Studies

In the last decade, large scale parameter studies have become feasible through
the appearance of parallel compute engines with multi-gigabyte memories and
terabyte disk farms. Such parameter studies require repeated invocation of
the same application on a variety of input data sets combined with appro-
priate organisation of the output data files for subsequent analysis and visua-
lisation. Existing parameter study tools like Nimrod [5] or ILAB [197] require
special preparation of the application, which is usually the main obstacle for
a tool in achieving user acceptance. The application developers are in general
very reluctant in changing their applications to the peculiarities of each tool
and prefer to write special purpose scripts hard coded for their specific pa-
rameter studies, rather than using general purpose tools that can give them
enhanced graphical interfaces and fault tolerance support.

1.1.3 Optimisation

Exhaustive performance and parameter studies describe the complete evolu-
tion of the performance metric or the output parameter under investigation
as a function of the indicated input parameters. While such studies pro-
vide invaluable information on the application behaviour, they often produce
an overflow of data which is irrelevant for further studies. In many cases
parameter spaces become so large that they are impossible to be exhaus-
tively traversed. On the other hand, users are often only interested in finding
parameter combinations that optimise a certain performance metric or an
output parameter, rather than conducting the complete set of experiments
for all parameter combinations. This is typically an NP-complete optimisa-
tion problem [183], such as performance tuning and scheduling, that requi-
res heuristic-based algorithms to find approximate or satisfactory solutions.
There are currently no tools to support the users in defining and solving ge-
neral NP-complete optimisation problems for scientific applications in Grid
environments.

1.1.4 Scheduling

Fine-grained performance analysis and tuning, as is usually performed on
traditional parallel computers, is often unrealistic to be applied to world
wide course-grain computational Grid infrastructures. The problem of high
performance execution of scientific applications gets shifted from fine-grained
performance analysis and tuning to appropriate scheduling onto the available
computational Grid resources.

Application scheduling in a classical approach is an NP-complete optimi-
sation problem. The scheduling search space, which exponentially depends
on the (potentially unbounded) number of resources and tasks, can achieve
particularly huge dimensions on the Grid which have not been previously

4 1 Introduction

addressed. In addition, static scheduling as an optimisation problem has to
be enhanced with steering capabilities that consider the dynamic availability
of the Grid resources over space and time in order to be effective.

While scheduling is a topic extensively addressed in the past in the dis-
tributed systems, parallel processing, and compiler communities, there is
currently little effort to transfer the existing practice and technology to the
Grid computing field. Most of the current Grid projects approach the schedu-
ling problem in an ad-hoc manner using simple opportunistic matchmaking
techniques [152].

1.1.5 Parametrisation Language

One reason why there is no tool support for automatic experiment manage-
ment regardless the ultimate goal (i.e. performance studies, parameter stu-
dies, optimisations) is the lack of appropriate languages to define experi-
ments. Currently each user takes own ad-hoc approaches in defining value
ranges for relevant application parameters by writing hard coded scripts that
serve a very specific experimental purpose. Moreover, existing performance
and parameter study tools that offer some support for automatic experiment
management, approach the parameter specification problem in a similar ad-
hoc manner through special purpose external scripts that force the developers
to export application parameters to external global variables [4]. Other tools
that aim for a more user friendly parameter specification through graphical
annotations are restricted to input files [197].

We identified the following limitations in existing parameter specification
approaches as being critical for an end-user:

1. the parameter specification is restricted to input files or program argu-
ments;

2. only global variables or program arguments can be expressed;
3. local variables cannot be parameterised;
4. parallelization strategies (e.g. array and loop distributions), or other ap-

plication characteristics that were not considered during tool design, can-
not be expressed;

5. the parametrisation forces the user to perform undesired modifications
and adaptations of the application;

6. there is no formal approach to define a general purpose experiment spe-
cification language.

1.1.6 Instrumentation

Program instrumentation is a common task that all performance analysis
tools need to perform for measuring and collecting the runtime application
data needed to perform the analysis. The various instrumentation technolo-
gies that we encountered so far have the following drawbacks:

1.1 Motivation 5

1. source code instrumentation [18, 153] forces the user to manually insert
probes in the application which, apart from being tedious to perform,
often introduces undesired source code modifications that are bound to
the profiling library used;

2. compiler instrumentation through external flags as performed by most
commercial compilers has serious limitations in specifying fine-grained
local source code regions for which to the collect performance data;

3. dynamic instrumentation [31] and
4. binary rewriting [95] do not interfere with the original source code, but

are limited to binary executables, impossible to be reversibly mapped to
the original source code. In addition, the portability of these technologies
is very critical;

5. object code wrapping [30] is limited to pre-compiled software libraries
statically augmented with instrumentation probes.

1.1.7 Portability

The set of tools available on each individual platform is usually heterogeneous
in functionality and the user interface provided. Before using a new parallel
system, the users must in most cases learn and familiarise themselves with
new tools with different functionality and interfaces. This requires (often
unnecessary) extra time and effort and can be a major deterrent against
using more appropriate computer systems. The main reason for tools not
being available on a large set of platforms is their limited portability.

1.1.8 Tool Interoperability

The cooperative use of software tools can significantly improve the applica-
tion engineering process. For instance, an experiment management tool can
make use of a performance monitor for cross-experiment performance ana-
lysis and tuning. On the other hand, the use of online performance tools in
conjunction with correctness debuggers can significantly improve the perfor-
mance steering process by applying on-the-fly program modifications based
on online performance data analysis.

Unfortunately, most of the tools supporting different phases of the appli-
cation engineering process cannot be used in cooperation to further improve
the user efficiency because they are insufficiently integrated into a single co-
herent environment. The main reason for the lack of interoperability between
existing tools are their incompatible monitoring systems and the critical (not
isolated) platform dependencies. Each tool requires special preparation of the
application which is in most cases the main incompatibility cause.

1.1.9 Grid Services

The Grid community acknowledged Web services [193] as the fundamental
technology for building service-oriented infrastructures for the Grid. The Web

6 1 Introduction

services standards, purposely designed by industry for modeling persistent
and stateless business processes, have fundamental limitations in modeling
Grid resources that are by definition transient and stateful. While there are
present approaches that aim to define new standards for modeling Grid re-
sources with Web services [13, 46], there were little efforts to analyse and
validate their appropriateness by the time we carried out the work presented
in this monograph.

1.1.10 Scientific Workflows

Workflow modeling originating in business process modeling field [187] is
gaining increased interest as the potential state-of-the-art paradigm for pro-
gramming Grid applications. Despite this general consensus, there is little
work to formally define the model and characteristics of scientific workflows
suitable for being executed in Grid environments [198]. For example, while
business workflows are in most cases Directed Acyclic Graphs (DAG) that
consist of a limited number of nodes, scientific workflows that implement
Grid applications are often based on a Directed Graph (DG) model and re-
quire large iterative loops that implement a dynamic convergence behaviour
or a recursive problem definition. In addition, there is still little tool support
that tries to automatise the runtime execution cycle of scientific workflows
on dynamic and unreliable computational Grids, in particular with regard
to scheduling, fault tolerance, and performance analysis. While these topics
have been extensively studied in other fields like business modeling, hetero-
geneous, distributed, and parallel systems, or compiler construction, there is
little effort that tries to apply existing technology and practice to scientific
workflows in Grid environments.

1.2 Goals

We address the motivating problems outlined in the previous sections in the
context of a novel experiment management tool and an open architecture for
integrated tool development in Grid infrastructures.

1.2.1 Experiment Specification Language

We propose a new directive-based language called ZEN [139, 143] to facilitate
the specification of arbitrary application parameters through annotations of
arbitrary application files. We define so called ZEN directives as language
independent comments with a well-defined syntax that do not change the
semantics of the application source files, as they are ignored by compilers
or interpreters that are unaware of their semantics. The scope of the ZEN

1.2 Goals 7

directives can be global or restricted to arbitrary code regions, which al-
lows local fine-grained parametrisation. We associate simple macro-processor-
based string replacement semantics to ZEN directives to ensure that they are
not specific to any particular language or problem and can express new pa-
rameters that were not thought during the language design. We introduce
constraint directives to filter invalid experiments and performance directives
to specify the metrics to be measured and computed for fine-grained code
regions, without altering the application source code with instrumentation
probes. The directive-based approach gives the users the privilege to perform
easy and flexible parametrisation that does not require any inconvenient mo-
dification or adaptation of their application.

1.2.2 Experiment Management Tool

We propose a novel general purpose experiment management tool called ZEN-
TURIO [140, 144] that we purposely design to perform large scale perfor-
mance and parameter studies for parallel and Grid applications. ZENTURIO
uses the ZEN directive-based language to define potentially large value ran-
ges for arbitrary application parameters, including program variables, file
names, compiler options, target machines, machine sizes, scheduling strate-
gies, or data distributions, with no intrusion in the source code and without
forcing the developer to perform any undesired modification or adaptation to
the application. We designed ZENTURIO as a distributed service-oriented
tool consisting of the following client and service components:

1. A graphical User Portal is the only entry point for interacting with the
tool and enables the user to easily create, manipulate, and online monitor
large sets of executing experiments;

2. An Experiment Generator service parses application files annotated with
ZEN directives and generates synthetic experiments based on the seman-
tics of the directives encountered;

3. An Experiment Executor service retrieves a set of experiments and auto-
matically compiles, executes, and monitors them on the target machine;

4. Optionally upon the completion of each experiment, the Experiment Exe-
cutor automatically stores the output files and performance data into an
Experiment Data Repository for post-mortem multi-experiment perfor-
mance and parameter studies;

5. An advanced Application Data Visualiser portlet of the User Portal as-
sists the user in automatically querying the repository and provides a
wide set of analysis diagrams [67] to visualise the variation of any per-
formance metric or output parameter as a function of arbitrary defined
parameters.

8 1 Introduction

1.2.3 Optimisation

As a next natural step, we enhanced ZENTURIO with a modular frame-
work for solving customisable NP-complete optimisation problems [145]. The
user can flexibly instantiate the framework for large scale performance and
parameter optimisation problems by providing two (optionally three) inputs:

1. the parameter space by means of ZEN directive-based parameterisati-
ons [139, 143];

2. an objective function that must implement a problem independent inter-
face defined by the framework. As case studies, we provide three objective
function instantiations for three optimisation problems:
a) application specific analytical prediction function for single static

workflow scheduling [145, 146];
b) random function for simulated independent task-set scheduling [145];
c) performance metric for performance tuning of parallel applications,

provided using the ZEN language and computed through experiment
execution [147];

3. optionally, an encoding of the heuristic-based search engine to find a
point in the parameter space that maximises the objective function, or
employ existing algorithms that we predefine as part of the framework
implementation.

We implement generic meta-heuristics that can be applied to any optimi-
sation problem to surf the search space defined through ZEN directives for
an experiment that maximises the objective function. We illustrate a generic
encoding of the search engine using a genetic algorithm and target various
other algorithms, including subdivision, simplex, and simulated annealing, as
future work.

1.2.4 Scientific Workflows

As the workflow model emerged as an attractive paradigm in the Grid com-
munity for efficiently executing scientific applications in loosely coupled Grid
environments, we contribute to the state-of-the-art practice in the field in the
following aspects [69]:

1. formal specification of scientific workflow model [70] with regards to:
a) scalable representation of large workflows structures consisting of

hundreds to thousands of so called activities interconnected through
control flow and data flow dependencies;

b) support for formal specification of dynamic workflows with runtime
changing structures, comprising dynamic shape, variable number of
activities, variable execution paths, or variable data dependencies;

c) support for concise specification of complex data transfer models bet-
ween large numbers of workflow activities, including collective com-
munication patterns like broadcast, scatter, and gather;

1.2 Goals 9

d) support for DG-based workflows with sequential recursive loops, often
characterised by statically unknown number of iterations, for example
due to application specific dynamic convergence criteria;

2. transfer of scheduling technology techniques [145, 189, 190] from distribu-
ted computing and compiler optimisation fields for optimised mapping of
complex workflow structures onto the computational and network Grid
resources. We bring enhancements to existing scheduling algorithms that
are limited to DAG-based structures and do not consider sequential loops
in the mapping and execution process [146];

3. scalable execution that tries to minimise the rather crude overheads in-
troduced by the Grid middleware technologies through a distributed ar-
chitecture, workflow partitioning, and optimisation techniques [58, 61];

4. incorporation of fault tolerance techniques, especially from the distribu-
ted systems field, including replication, migration, and various levels of
checkpointing mechanisms [59];

5. dynamic steering techniques for runtime adaptation of workflow static
schedules and runtime executions to dynamically changing Grid environ-
ments. We propose a novel hybrid approach for dynamic steering of DG-
based workflow applications that adapts the optimised static schedules to
the heterogeneous and dynamically changing Grid resources upon well-
defined rescheduling events, including performance contracts established
during the scheduling process (as a form of negotiation) [146];

6. overhead analysis that tries to systematically classify and understand the
major sources of overheads encountered when executing large scientific
workflows in distributed Grid environments [58, 133].

1.2.5 Service-Oriented Grid Architecture

The main reason why each computing platform has its own heterogeneous
set of tools is their limited portability. In addition, the tools are usually de-
signed as stand-alone and cannot be used in cooperation to improve the user
efficiency in the application engineering process. We approach the portabi-
lity and interoperability issues through a distributed multi-layered service-
oriented architecture with the following design principles [110, 111]:

1. the platform dependencies are isolated within stand-alone distributed
services and sensors exporting a platform independent interface. The user
tool is therefore decoupled from the intimate hardware and operating
system dependencies which significantly increases the tool portability;

2. we identified and implemented a set of general purpose middleware ser-
vices that provide enhanced functionality to support the tool development
in Grid environments, including factory, registry, experiment generation
and execution, aggregation, instrumentation, and scheduling;

3. the recommendation that every computer vendor provides a core set of
tool services with a platform independent interface significantly eases the
tool development and multi-platform availability;

10 1 Introduction

4. the functionality of each tool is no longer implemented by a single monoli-
thic tool acting as a big black-box. Enabling light weight portals easily to
be installed and managed on local client machines significantly simplifies
the use of Grid environments by non-expert users;

5. the services are designed such that they can be concurrently accessed
by multiple clients. This enables multiple tools interoperate by sharing
common services which possibly monitor the same target application pro-
cesses;

6. an asynchronous event framework enables the services to notify the clients
about interesting application and system events. Events are important for
detecting important status information about the system and application
and can be used to avoid expensive continuous polling.

Beyond the provisioning of an open framework for tool development, we iden-
tify and study various practical scenarios how interoperable use of software
tools can significantly improve the productivity of the application engineering
process [111, 150].

1.2.6 Grid Services

We contribute with several proposals regarding enhancements and adapta-
tions of the Web services technology for implementing services that model
stateful Grid resources [142, 144]:

1. we define and implement of the factory design pattern for on-the-fly ser-
vice instantiation on remote Grid sites;

2. we design and implement a registry service for high throughput service
discovery;

3. we define a service compatibility operation for functionality-based service
discovery (i.e. green pages lookup operation);

4. we adapt existing Web services standards for publishing persistent service
implementations (rather than persistent instances);

5. we model service state and lifecycle using non-standard extensions pro-
vided by existing Web services implementation toolkits;

6. we comparatively analyse and benchmark existing ongoing standards for
modeling transient and stateful Grid services and their underlying imple-
mentations [141, 144].

1.3 Outline

Chapter 2 presents the Grid architectural model which represents the foun-
dation on top of which we will elaborate the concepts presented in this mo-
nograph.

1.3 Outline 11

Chapter 3 presents a complete formal specification of the ZEN directive-
based language used to specify application parameters and performance me-
trics.

Chapter 4 is devoted to a detailed description of the ZENTURIO experi-
ment management tool with particular focus on the tool functionality applied
to a broad range of real-world applications.

Chapter 5 describes the open service-oriented architecture for interope-
rable tool development, in the frame of which we designed the ZENTURIO
experiment management tool. We present in detail the set of sensors, the Grid
services, the event framework, and several prototype online tools, together
with various tool interoperability types and scenarios.

Chapter 6 presents the ZENTURIO optimisation framework validated by
three case studies: workflow scheduling, throughput scheduling, and perfor-
mance tuning of parallel applications.

In Chapter 7 we present a timely approach to modeling, scheduling, fault
tolerant scalable execution, and overhead analysis of scientific workflow app-
lications in dynamic and heterogeneous Grid environments.

Chapter 8 outlines the most relevant related work in all the fields tou-
ched by the previous chapters: experiment management, performance studies,
parameter studies, tool interoperability, scheduling, and scientific workflows.

Chapter 9 summarises the research work presented in this monograph.

2

Model

2.1 Introduction

The mostly used attempt to define Grid computing [77] is through an ana-
logy with the electric power evolution around 1910. The truly revolutionary
development was not the discovery of electricity itself, but the electric power
grid that provides standard, reliable, and low cost access to the associated
transmission and distribution technologies. Similarly, the Grid research chal-
lenge is to provide standard, reliable, and low cost access to the relatively
cheap computing power available nowadays.

Definition 2.1. A computational Grid was originally defined as a hardware
and software infrastructure that provides dependable, consistent, pervasive,
and inexpensive access to high-end computational capabilities [77]. With the
time, the Grid concept has been refined and better formulated, e.g. as a persis-
tent infrastructure that supports computation and data intensive collaborative
activities that spawn across multiple Virtual Organisations.

The natural starting point in building computational Grids is the existing world
wide Internet infrastructure that aggregates a potentially unbounded number
of resources. Analogous to the World Wide Web that provides ubiquitous ac-
cess to the information over the Internet, the computational Grids explore new
mechanisms for ubiquitous access to computational resources and quality of
service beyond the best effort provided by the Internet protocol (IP).

There are currently two recognised architectural approaches for building
scalable Grid infrastructures:

1. Service-oriented architectures [89] are based on the aggregation of porta-
ble and reusable programs called services that can be accessed by remote
clients over the network in a platform and language independent manner.

Definition 2.2. A service is a self-contained entity program accessible
through a well-defined protocol and using a well-defined platform and lan-
guage independent interface that does not depend on the context or the
state of other services.

R. Prodan and T. Fahringer: Grid Computing, LNCS 4340, pp. 13–35, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

14 2 Model

A service-oriented architecture is suitable for implementing Grid environ-
ments due to several significant advantages that it offers:
a) it increases the portability and facilitates the maintenance of the sys-

tem by isolating platform dependent services to appropriate sites ac-
cessible using a well-defined platform independent interface;

b) it enables interoperability by providing well-defined standard network
protocols for communicating with the remote services;

c) it enables light-weight clients which are easy to be installed and ma-
naged by unexperienced users by isolating complex implementation
functionality within external services;

d) it decouples the clients from the rest of the system and allows the users
to move, share, and access the services from different Grid locations;

2. Peer-to-peer architectures [17] are an aggregation of equivalent programs
called peers situated at the edges of the Internet that provide functio-
nality and share part of their own hardware resources with each other
(e.g. processing power, storage capacity, network link bandwidth, prin-
ters) through network contention without passing through intermediate
entities. The strength of peer-to-peer architectures is the high degree of
scalability and fault tolerance.

We build the integrated tool environment presented in this book on the foun-
dation of a generic service-oriented architectural model that is the scope of
the remaining part of this chapter.

2.2 Distributed Technology History

The realisation of service-oriented architectures for building distributed Grid
infrastructures is the outcome of a long track of research and industry expe-
rience on distributed services and component technologies.

Distributed applications require a protocol which defines the communi-
cation mechanism between two concurrent remote processes. Traditionally,
there have been two communication protocol models for building distributed
applications: message passing/queuing and request / response. While both
models have their individual advantages, either one can be implemented in
terms of the other. For example, messaging systems can be built using lower
level request / response protocols, which was the case of the Microsoft’s Dis-
tributed Computing Environment (DCE) [156]. For the (Sun) Remote Proce-
dure Call (RPC) [163] applications, the synchronous request/response design
style is usually a natural fit. In the 1980s, the communication protocol mo-
dels focused on the network layer, such as the Network File System [174]
developed originally by Sun Microsystems (which most networked Unix sys-
tems currently use as their distributed file system) and Microsoft DCE RPC
applications on Windows NT.

In the 1990s, the object-oriented community pushed for an Object RPC
(ORPC) protocol that links application objects to network protocols. The

2.3 Web Services 15

primary difference between ORPC and the proceeding RPC protocols is that
ORPC codifies the mapping of a communication endpoint to a language level
object. This mapping allows the server-side middleware locate and instantiate
a target object in the server process. The Common Object Resource Broker
Architecture (CORBA) [120] designed by the Object Management Group and
the Microsoft’s Distributed Component Object Model (DCOM) [158] have
dominated and competed for many years for an ORPC protocol industry
standard. Although CORBA and DCOM have been implemented on various
platforms, the reality is that any solution built on these protocols is largely
dependent on a single vendor implementation. Thus, if one were to develop
a DCOM application, all the participating nodes in the distributed applica-
tion would have to be running a flavour of Windows. In the case of CORBA,
every node in the application environment would need to run the same Ob-
ject Request Broker (ORB) product. While there are cases when CORBA
ORBs from different vendors do interoperate, that interoperability does not
extend to higher level services such as security and transaction management.
Furthermore, any vendor specific optimisations in this situation is lost.

Other efforts such as the Java Remote Method Invocation (RMI) [93] from
Sun Microsystems enhanced with the Jini [64] network awareness are bound
to the Java language and fail to fulfill the language independence requirement
of Grid computing. The Enterprise Java Beans [157] server-side component
technology for the Java 2 Enterprise Edition (J2EE) platform [105] failed
to become a standard due to incompatible data formats, limited network
transport layer security, the use of non-Web-based communication protocols,
and the lack of semantic information in the data representation.

2.3 Web Services

In the year 2000, a consortium of companies comprising Microsoft, IBM,
BEA Systems, and Intel defined a new set of XML (eXtensive Markup Lan-
guage) [94] standards for programming Business-to-Business (B2B) applica-
tions called Web services [89], which are currently being standardised under
the umbrella of the World Wide Web Consortium (W3C) [193]. The motiva-
tion behind the Web services is to solve existing barriers between traditio-
nal Enterprise Java Beans businesses collaborating in electronic transactions
such as incompatible data formats, security issues, Web access, and semantic
information. Web services are a technology for deployment and access of busi-
ness functions over the Web that compliments existing standards like J2EE,
CORBA, DCOM, RMI, or Jini, which are technologies for implementing Web
services.

Definition 2.3. A Web service is an interface that describes a collection of
operations of a service (see Definition 2.2) that are network accessible through
standardised XML messaging.

16 2 Model

2.3.1 Web Services Stack

The key for interoperability between Web services the outcome of a three
layer Web services stack [113] depicted in Figure 2.1.

1. The Hyper Text Transfer Protocol (HTTP) is a bottom simple and fi-
rewall friendly RPC-like protocol that is the current defacto standard
for Web communication over the TCP/IP protocol. Additionally, HTTP
can operate on top of the Transport Layer Security (TLS) (or its Secure
Socket Layer (SSL) predecessor) to provide secure communication using
authentication and encryption mechanisms provided by the Public Key
Infrastructure (PKI) [19];

2. The Simple Object Access Protocol (SOAP) is the XML-based message
passing standard for communication between remote Web services using
both message passing and request/response communication models on
top of HTTP. SOAP is open to additional underlying network protocol
bindings beyond HTTP, such as File Transfer Protocol (FTP), Simple
Mail Transfer Protocol (SMTP), Message Queuing (MQ) Protocol, Java
Remote Method Protocol (JRMP), or CORBA Internet Inter-ORB Pro-
tocol (IIOP). However, in contrast to the popular belief, Web services do
not mandate the use of SOAP for Web services communication;

3. The Web Service Description Language (WSDL) [38] is the XML stan-
dard for the specification of Web services interfaces, analogous to the
CORBA Interface Definition Language. A WSDL document is commonly
divided into two distinct parts [113]:
a) service interface is the abstract and reusable part of a service defini-

tion, analogous to an abstract interface in a programming language,
that can be instantiated and referenced by multiple service implemen-
tations. A service interface consists of the following XML elements:
i. wsdl:types contains the definition of complex XML schema data

types [195] which are used by the service interface;
ii. wsdl:message defines the data transmitted as a collection of lo-

gical parts (wsdl:parts – e.g. input arguments, return argument,

Network

XML Messaging

Service Description

HTTP
(FTP, IIOP, MQ,

JRMP, SMTP)

SOAP

WSDL

Service Publication
and Discovery

TLS
(SSL)

W
S

-S
ecurity

UDDI

Fig. 2.1. The interoperable Web services stack.

2.3 Web Services 17

and exception messages), each of which being associated with a
different type;

iii. wsdl:operation is a named endpoint that consumes an input
message and returns an output message and a fault message (cor-
responds to a Java class method);

iv. wsdl:portType defines a set of abstract operations (corresponds
to a Java interface definition);

v. wsdl:binding describes the protocol and the data format for the
operations of a portType;

b) service instance part of a WSDL document describes an instan-
tiation of a Web service. A Web service instance is modeled as a
wsdl:service, which contains a collection of wsdl:port elements
(i.e. usually one). A port associates one network endpoint (e.g. URL)
with a wsdl:binding element from a service interface definition.

A common practice is to define the service interface in a separate abstract
interface WSDL document which is further included into the instance
WSDL document through an import element;

4. The Universal Description, Discovery and Integration (UDDI) [137] is
a specification for distributed Web-based information registries of busi-
ness Web services. The WSDL interface and the URL address of per-
sistent Web services are typically published in a centralised UDDI Ser-
vice Repository for remote discovery and access. The UDDI best prac-
tices document [41] requires that the interface part of the WSDL do-
cument be published as a UDDI tModel and the instance part as a
businessService element (i.e. as URLs), as shown in Figure 2.2. The
businessServiceUDDI element is a descriptive container used to group
related Web services. It contains one or more bindingTemplate elements
which contain information for connecting and invoking a Web service. The
bindingTemplate contains a pointer to a tModel element which descri-
bes the Web service meta-data. An accessPoint element is instantiated
with the SOAP address of the service port;

5. The Web Services Security (WS-Security) [131] specification describes
enhancements to the SOAP messaging that provide quality of protec-
tion through message integrity (through XML digital signature), message
confidentiality (through XML encryption), and single message authenti-
cation. These mechanisms can be used to accommodate a wide variety
of security models and encryption technologies, including PKI (see Sec-
tion 2.4). We can observe in Figure 2.1 that security can be applied at
two different layers in the Web services stack:
a) network layer over the TLS protocol;
b) message layer based on WS-Security for signing and encrypting

XML-based SOAP messages.
Security at the message layer is more powerful than the security at the
network layer, since the data encryption happens at a higher level of

18 2 Model

<businessEntity>
name = AURORA
contact = University of Vienna

<businessService>
name = Exp. Generator

<bindingTemplate>
<accessPoint

http://.../EG

<tModel>
name = Exp. Gen.
<overviewURL

http://.../EG.wsdl

Instance
WSDL

Interface
WSDL

Persistent
Web Service

UDDI Service Repository

Fig. 2.2. The best practices of publishing a Web service into a UDDI Service
Repository.

abstraction (i.e. it is easier to read a credit card number from an ASCII
SOAP message than from a network packet). A higher degree of security
can be achieved through authentication and data encryption at both
network and message layers, however, at accumulated security overhead
costs.

2.3.2 Web Services Runtime Environment

The Web services standards omit on purpose to specify any runtime environ-
ment that implements the service-oriented architecture based on XML do-
cument exchange. Java is currently the most popular programming language
supported by high level Web services implementations due to its platform
independent interpreted object code design. Figure 2.3 illustrates the most
common runtime architectural design implemented by existing advanced in-
dustry or open source Web services toolkits for Java [11, 103, 129, 173, 186].

Following the CORBA RPC-based model, advanced implementation tool-
kits completely shield the client application from the underlying XML-based
technologies. Existing tools transform / generate the WSDL description of
a Web service into / from a (Java) interface definition which is understood
by the (Java) clients. Automatically generated stubs that export the Web
service interface in the client implementation language perform automatic
parameter marshaling and (SOAP) message routing.

The Java implementation of the SOAP-based communication infrastruc-
ture can be based either on the synchronous JAX-RPC (Java API for XML

2.4 Grid Security Infrastructure 19

Web
Service

SOAP
RPC

Router

N
et

w
o

rk
en

d
p

o
in

t

JAX-WS
Stub

SOAP

Java
RPC

Provider

SOAP
Message
Router

Java
Message
Provider

Web
Service

JAXM
Stub

UDDI
Repository

Hosting Environment

WSDL WSDL

Client Application

WSIF

Fig. 2.3. The Web services runtime environment.

RPC), JAX-WS (Java API for XML Web Services), or the asynchronous
JAXM (Java API for XML Messaging) libraries designed by Sun Microsys-
tems. These interfaces are used for mapping each remote call from a Java
client into a SOAP message. Additionally, the Web Services Invocation Fra-
mework (WSIF) [62] enables the invocation of WSDL-described services in-
dependently of the underlying (SOAP) protocol implementation.

Similar to the Enterprise Java Beans component model, Web services ty-
pically run within a hosting environment , such as J2EE [105], JBoss [73],
Tomcat [119], Weblogic [134], or Websphere [97], which is an HTTP server
and servlet engine responsible for deploying and managing the service lifecy-
cle. The Web service functionality is typically encoded as a Java class that
implements the service WSDL interface and deployed using the hosting envi-
ronment specific tools. Upon receiving a message at the network endpoint of
the hosting environment, a SOAP RPC / message router (servlet) unmars-
hals the message and forwards it to a Java RPC / message provider. The
Java provider loads the Java class specified in the SOAP message (if not al-
ready loaded) that implements the Web service and invokes the appropriate
method. The results of the method are returned to the SOAP router which
marshals and transfers them to the requesting client.

2.4 Grid Security Infrastructure

The abstract Grid architectural model that we describe in this chapter im-
plicitly assumes the use of the Grid Security Infrastructure (GSI) [78] as the
defacto standard for authentication and secure communication across appli-
cations and services. GSI has the following distinguishing characteristics that
makes it suitable for being applied in Grid environments:

1. Public key cryptography [19] based on private and public key pairs is the
fundamental technology used for encrypting and decrypting messages;

2. Digital signatures are employed for insuring data integrity over the net-
work;

20 2 Model

3. X.509 certificates are used for representing the identity of each user in
the process of authentication. An X.509 certificate includes four primary
pieces of information:
a) Subject name which identifies the person or the object that the cer-

tificate represents;
b) Public key that belongs to the subject;
c) Certificate Authority that signed the certificate and certifies that the

public key and the subject name belong to the same trusted subject;
d) Digital signature of the trusted certificate authority;

4. Mutual authentication is a protocol which ensures that the two parties
involved in communication identify each other and trust their certificate
authorities;

5. Secure private keys promote the encrypted store of the user private key
exclusively on the local personal computer (i.e. laptop) or on cryptogra-
phic smartcards;

6. Single sign-on restricts the user authentication to one single password
(keyboard) specification during a working session;

7. Proxy cryptography creates a new private and public key-pair digitally
signed by the user that temporarily represents the user’s Grid identity.
This allows the true private key of the user be un-encrypted for a mini-
mum amount of time until the signed proxy is generated which minimises
the danger of loosing the identity;

8. Proxy delegation allows remote services behave on behalf of the client
through the creation of remote proxies that impersonate the user (see
Figure 2.4).

2.5 Globus Toolkit

Since 1995, the Globus Toolkit (GT) [76] is the driving force in Grid com-
puting, developing middleware technology aimed to support and ease the

Certificate
Authority

User
Certificate

Proxy 1
Certificate

Proxy 2
Certificate

Private Key
CA

Private Key
User

Private Key
Proxy 1

sign

Private Key
Proxy 2

sign sign

Local Computer Grid Site 1 Grid Site 2Administration Site

Fig. 2.4. The GSI single sign-on and proxy delegation chain of trust.

2.5 Globus Toolkit 21

development of high level Grid infrastructures and applications with special
focus on high performance scientific computing.

The version two of GT, in short GT2, was the most successful and stable
Globus release at the time we carried out this research, which provides the
following three categories of fundamental services for building higher level
Grid infrastructures:

1. Resource management services for executing applications on remote Grid
sites, which comprise:
a) Grid Resource Allocation Manager (GRAM) [47] that provides a sin-

gle GSI-enabled interface for allocating and using remote computa-
tional resources on top of existing local resource managers like Con-
dor [123], Load Sharing Facility [201], Maui, Portable Batch System
(PBS) [29], Sun Grid Engine [172], or simple Unix fork [168] system
call;

b) Dynamically-Updated Request Online Coallocator (DUROC) [48] that
employs multiple GRAM services for co-allocation of several Grid
sites for executing the same application instance. DUROC requires
reservation functionality from the local resource manager in order to
work effectively in real Grid environments;

GRAM and DUROC use the Resource Specification Language (RSL) to
formulate resource requirements;

2. Information services implemented by the Monitoring and Discovery Ser-
vice (MDS) [72] that comprises:
a) Grid Resource Information Service (GRIS) that provides informa-

tion about a particular site using an underlying sensor like the Gan-
glia [126] for machine information;

b) Grid Index Information Service (GIIS) that provides hierarchical
means of aggregating multiple GRIS services for a coherent Grid sys-
tem image and efficient high performance resource query support;

3. Data Grid services represented by the:
a) Global Access to Secondary Storage (GASS) [25] libraries and utilities

which simplify the process of porting and running of applications in a
Grid environment by installing a transparent distributed file system
that eliminates the need for manual login to remote Grid sites;

b) GridFTP [6] which is a high performance, secure, and reliable data
transfer protocol optimised for high bandwidth use of wide area net-
works based on the highly popular FTP protocol;

c) Globus Replica Catalogue [169] which is a mechanism for maintaining
a catalogue of data set replicas;

d) Globus Replica Management [169] which is a mechanism that ties
together the Replica Catalogue and the GridFTP technologies for
remote management of large data set replicas.

22 2 Model

The Globus Replica Catalogue and Replica Management services are very
specific to data Grid and therefore we no longer consider them as part of our
computational Grid architectural model presented in this chapter.

Despite its enormous success in the user Grid research community, GT2
on its own suffers from substantial integration and deployment problems,
which is mostly due to its scripting or C language-based interface and im-
plementation. The Java Commodity Grid Kit (CoG) [184] adds a layer on
top of GT2 that exports a platform independent Java interface to the Globus
services. GT2 and Java CoG, augmented with GSI and Web services sup-
port, represent an excellent starting point for implementing higher level Grid
architectures, like the model that we describe in this chapter.

2.6 Grid Architectural Model

In conformance with the informal recommendations for building Grid envi-
ronments formulated by the Open Grid Services Architecture (OGSA) [79]
within the Global Grid Forum [37], we base our work on tool integration and
development (see Chapter 7) on a service-oriented architecture depicted in
Figure 2.5 which consists of three layers:

1. The machine layer is represented by a broad set of heterogeneous high
performance computational resources that build in aggregation the hard-
ware Grid infrastructure, while providing a set of monitoring sensors that
export intimate machine information using a portable interface;

2. The Grid services layer is the middleware that builds a common bridge
across heterogeneous resources by providing a broad set of high level
functionality required for developing Grid applications such as registries,
factories, schedulers, enactment engines, resource managers, or various
instrumentation, aggregation, and filtering services. Beyond portability
achieved through machine independent interfaces, communication using
standard Web services-based SOAP protocol is the key for achieving in-
teroperability between end-user applications;

3. The application layer is instantiated by user friendly portals or special
purpose tools that interoperate through standardised SOAP message ex-
change on top of the Grid middleware services.

2.6.1 Machine Layer

The machine layer is represented by the set of computational resources, also
called for brevity reasons machines, interconnected through conventional In-
ternet protocols that build in aggregation the physical Grid hardware infra-
structure. The machines can have a broad variety of architectures, ranging
from single sequential computers to complex parallel architectures.

2.6 Grid Architectural Model 23

Sensor

Grid Service

Application Application
Layer

Grid
Services
Layer

Machine
Layer

SOAP HTTP

Portable API

Portable API

Fig. 2.5. The Grid architectural model.

In addition, all machines provide a set of low level platform dependent
sensors that expose online monitoring information about the underlying ca-
pabilities and provide instrumentation and manipulation functionality using
a machine independent interface. Isolating platform dependencies within sen-
sor under a portable interface reduces the effort of porting n services onto m
platforms from n × m to n + m.

Definition 2.4. A sensor is a small light-weight background program, often
also referred as daemon, that monitors and collects low level intimate infor-
mation about running processes and the underlying computational resources.
It additionally exports and provides remote access to this information by
means of a well-defined platform independent interface.

In the following, we summarise some of the most representative computer
architectures that we commonly encounter in today’s Grid environments.

Sequential Computers

Most of the past and present computers are based on the same machine model
called the von Neumann architecture. A von Neumann computer comprises
a single Central Processing Unit (CPU) connected to a single storage struc-
ture which holds both the set of instructions that dictates how to perform
the computation, and the data produced or required by the computation

24 2 Model

Memory
(program and data)

CPU

Secondary
Storage

Communication
Subsystem

User

Network

Fig. 2.6. The von Neumann architecture.

(see Figure 2.6). The unique CPU can execute only one stream of instruc-
tions and therefore supports only the Single Instruction Single Data (SISD)
programming model in Flynn’s taxonomy [74].

Symmetric Multiprocessors (SMP)

A Symmetric Multiprocessor (SMP) is a parallel computer consisting of two
or more identical CPUs connected to a single shared main memory via a
common bus (see Figure 2.7). The cost of accessing the shared memory is the
same for all CPUs, for which reason SMPs are also called Uniform Memory
Access (UMA) architectures. Each CPU, however, may have its local cache to
exploit data locality and reduce the crude memory access latencies. The SMP
architecture supports the Single Instruction Multiple Data (SIMD) and Mul-
tiple Instructions Multiple Data (MIMD) programming models in Flynn’s
taxonomy. One important aspect is that an SMP machine uses a single ope-
rating system and all CPUs share the same input and output resources. SMP
computers allow any CPU work on any task, no matter where the data for
that task is located in memory. With proper operating system support, SMPs
can easily move processes between CPUs to balance the workload effectively.

Processor

Main Memory

Processor Processor Processor

BUS

Cache Cache Cache Cache

Fig. 2.7. The Symmetric Multiprocessor (SMP) architecture.

2.6 Grid Architectural Model 25

The disadvantage of SMPs is their limited scalability in accessing the shared
memory through the common bus that becomes rapidly saturated.

Massively Parallel Processors (MPPs)

Massively Parallel Processors (MPPs) are huge and expensive supercompu-
ters, consisting of possibly thousands of processors. The processor types used
in an MPP machine are the ones commonly present in personal computers
or workstations and are typically interconnected through a high performance
proprietary network designed to achieve low latency and high bandwidth.
The structure of the interconnecting network normally employs hypercube,
tree, or two respectively three-dimensional mesh topologies.

Clusters of Workstations (COWs)

A Cluster of Workstations (COW), often also called Network of Workstations
(NOW), is a collection of loosely coupled computers (compared to SMPs) that
work together closely so that in many respects they can be viewed as a single
parallel computer (see Figure 2.8). Clusters are commonly, but not always,
connected through fast local area networks such as Fast Ethernet, Gigabit
Ethernet, Myrinet, or Infiniband. Clusters are usually deployed to improve
speed and reliability of single (sequential, SMP, MPP) computers, while ty-
pically being much more cost effective than single computers of comparable
speed or reliability.

As any other distributed memory computer, COWs are typically accessi-
ble through manual remote login shells to one front-end (or master) compu-
ter shared by multiple end-users for source code editing, environment setup,
compilation, and job management purposes. A local resource manager gives
the users access (usually exclusive) to the compute nodes (or slaves), typi-
cally by submitting jobs to various cluster queues that run the computational
intensive parallel applications.

SMP Clusters

SMP clusters combine the advantage of SMPs with the scalability of distri-
buted memory computers (see Figure 2.9). An SMP cluster consists of a large
set of SMP nodes interconnected through high performance commodity net-
works. This is presently the most successful parallel computer architecture
employed by almost all supercomputers of today’s top 500 ranking [57].

Cache Coherent Non-Uniform Memory Access (ccNUMA)

The rise in popularity of the single memory image offered by SMP compu-
ters, coupled with the desire to scale systems beyond the limits of bus or

26 2 Model

Interconnect

Front-end node

Computing nodes

ssh login

Local
Resource
Manager

Fig. 2.8. The Cluster of Workstation (COW) architecture.

CPU

Bus

Memory

Router

Fig. 2.9. The SMP cluster architecture.

2.6 Grid Architectural Model 27

CPUCPUMemoryMemory CPUCPUMemoryMemory CPUCPUMemoryMemory

Scalable Interconnect

Fig. 2.10. The Cache Coherent Non-Uniform Memory Access (ccNUMA) archi-
tecture.

crossbar-based systems, led to the development of distributed shared me-
mory architectures. In this model, memory is physically distributed at the
hardware level but the system still presents a single logical memory image
to the end-user (see Figure 2.10). Naturally, the processors will access their
local memory much more quickly than that of a neighbour, thus giving rise to
the term Non-Uniform Memory Access (NUMA). This architecture presents
problems in ensuring that the caches belonging to different processors are
maintained in a coherent state, requiring additional hardware logic.

Although simpler to design and build, non-cache coherent NUMA par-
allel computers become prohibitively complex to program in the standard
programming model of von Neumann architectures. As a result, all NUMA
computers sold to the market use special purpose hardware to maintain
cache coherence, and are therefore referred as cache coherent NUMA (cc-
NUMA) parallel computers. Typically, cache coherence takes place by using
inter-processor communication between cache controllers (also called hubs) to
keep a consistent memory image when more than one cache stores the same
memory location. For this reason, ccNUMA performs poorly when multiple
processors attempt to access the same memory area in rapid succession. Ope-
rating system support for NUMA attempts to reduce the frequency of this
kind of access by allocating processors and memory in NUMA friendly ways
and by avoiding expensive scheduling and locking algorithms.

A good example of leading edge ccNUMA parallel computers are SGI
Origin and Altix range of servers.

Grid Infrastructures

Grid computing represents the next evolution step after cluster computing
in aggregating cheap and widely available computing power required by high
performance scientific applications. The scope of Grid computing is to aggre-
gate and provide coordinated use of large sets of heterogeneous distributed
resources, ranging from sequential and parallel computers, to storage systems,
software, and data, all connected through the Internet-based wide area (high
performance) network (see Figure 2.11). In contrast to dedicated clusters cha-
racterised by close (local area) proximity of their computing nodes and often
homogeneous hardware and software infrastructures, Grids are characteri-

28 2 Model

LANLAN

LAN

Internet Wide Area Network

Grid site
Grid site

Grid site

Grid site

Grid site

Grid site

Grid site

Grid site

Fig. 2.11. The Grid hardware architecture.

sed by the distant proximity of large numbers of aggregated sites, inherently
heterogeneous in terms of hardware, operating systems, and software.

Definition 2.5. We define a Grid site (and often simply call site for bre-
vity reasons) a sequential or parallel computer accessible through one hosting
environment (see Section 2.3.2) and one single Grid Resource Allocation Ma-
nager (GRAM) service (introduced in Section 2.5) using polices establishes
by local administration authorities usually through a local resource allocation
manager.

2.6.2 Grid Services Layer

The Grid services layer largely consists of a set of distributed services that
provide generic high level functionality for advanced tool development, com-
position, integration, and interoperability.

The Grid community has generally acknowledged Web services as the
defacto standard technology for the realisation of the service-oriented Grid
architectures. However, the standard Web services technologies that we sum-
marised in Section 2.3 are designed for integration of persistent and stateless
business processes, in contrast to the Grid services that need to model transi-
ent and stateful Grid resources . Examples of target stateful resources include

2.6 Grid Architectural Model 29

parallel applications, data repositories, local job management queues, or Grid
sites with limited availability.

In this context, the Open Grid Services Architecture (OGSA) [79] is the
generic broad architectural model currently being defined within the Global
Grid Forum [37] that defines design mechanisms to uniformly expose Grid
services semantics, to create, name, and discover transient Grid service in-
stances, to provide location transparency and multiple protocol bindings for
service instances, and to support integration with underlying native plat-
form facilities. Extensive joint efforts in both Grid and Web communities are
currently working towards defining a widely accepted standard for building
OGSA compliant interoperable Grid services [13].

Definition 2.6. A Grid service is a Web service enhanced with standard in-
terface support for expressing lifecycle, state, and asynchronous events re-
quired for modeling and controlling dynamic, stateful, and transient Grid
resources.

A Grid site can host multiple Grid services within its hosting environment
that can be remotely accessed using Web services XML-based document ex-
change. We define in our model two persistent Grid services that are required
to exist in a Grid environment:

1. Factory for creating transient Grid service instances on arbitrary remote
Grid sites;

2. Registry for light-weight publication, management and high throughput
discovery of transient Grid services.

While there were several attempts in the Grid community that aimed to
standardise the specification of state within Grid services [13, 46], there was
no mature and widely accepted standard by the time we have carried out
the work presented in this monograph. We can generally distinguish two
orthogonal design patterns for modeling state within Grid services:

1. Encapsulation uses the Java Beans model of accessing and manipulating
the service state through get and set interface methods. In this model
illustrated in Figure 2.12(a), a stateful Grid service specialises the state-
less Web service with methods concerning service state and lifecycle. The
main advantage of the encapsulation model is the natural object-oriented
design that facilitates specialised extensions through inheritance. The di-
sadvantages are the non-standard extensions brought to the Web services
technology and the poor fault tolerance due to the one-to-one association
between the resource and the Grid service as a single point of failure. The
encapsulation approach was taken by the currently obsolete Open Grid
Services Infrastructure (OGSI) standard [46].

2. Delegation interposes a stateless Grid service (that remains a pure Web
service) between the client and a driver that manages the stateful re-
sources (see Figure 2.12(b)). While the implementation of the Grid service

30 2 Model

Stateful Grid Service
• Lifecycle operations
• State operations
• Resource operations

Resource

1
1

Stateless Web Service
• Stateless operations

(a) Encapsulation

Stateless Grid Service
• Stateless operations

Stateful Resource Driver
• Lifecycle operations
• State operations
• Resource operations

Resource Identifier
m

n

Resource

1
1

(b) Delegation

Fig. 2.12. The stateful Grid service design alternatives.

is stateless, the interface of the service is stateful. The state of the service
within the service interface is represented by the context [32] that identi-
fies and maps a request to an existing stateful resource (for instance by
providing its reference handler). The advantages of the delegation model
over encapsulation are its full compliance with the Web services princip-
les and the high degree of fault tolerance due to the m to n association
between the stateless Grid service and the modeled resource (i.e. mul-
tiple Grid services can be used for accessing a stateful resource). The
task of providing fault tolerance is naturally deferred to the specialised
resource driver. The delegation approach is currently being taken by the
Web Services Resource Framework (WSRF) [13] specification.

2.6.3 Application Layer

The application layer is represented in our architecture by the portable and
interoperable end-user applications, typically represented by graphical user
portals or special purpose applications and tools, built on top of the Grid
middleware services underneath.

In this section, we present three generic models that represent some of
the most representative types of applications that are currently successful in
harnessing the computational power provided by existing Grid environments:
single site parallel applications, workflows, and parameter studies.

Single Site Applications

Single site Grid applications (see Definition 2.6) are typically represented
by traditional sequential and tightly coupled parallel applications running

2.6 Grid Architectural Model 31

on the computer architectures that we introduced in Section 2.6.1. In this
section, we give an abstract execution model of parallel applications depicted
in Figure 2.13, that represents the foundation for the multi-experimental
performance analysis addressed in this monograph (see Chapters 3 and 4).

A parallel application consists of a set of distributed memory processes.
Each process executes a program which is divided in sequential and parallel
regions. A process may dynamically fork, synchronise, and terminate threads
during its execution. All the threads of a process share the same address
space. In a sequential region only one thread of the process is active. In a
parallel region several threads may be active and execute simultaneously.
Depending on the language implementation, the threads may be spawned
at the beginning of the program or at the beginning of each parallel region.

Fig. 2.13. The parallel application execution model.

32 2 Model

At the end of the parallel region the active threads may be synchronised,
for example through a barrier or a join operation. Following the parallel
region, all the parallel threads except the one that continues to execute the
sequential region are either terminated or stopped. A stopped thread can
be resumed by a subsequent parallel region or terminated at the end of the
program execution. The threads active within the same process exchange
data through a common shared memory segment. The distributed memory
processes exchange data through generic send and receive message passing
operations, executed either by the sequential processes or by the parallel
threads. All the parallel processes and all the threads are terminated at the
end of the execution of the parallel application.

There are currently two widely accepted standards that implement in
cooperation this hybrid distributed and shared memory parallel application
model:

1. Message Passing Interface (MPI) [164] for explicit message passing bet-
ween processes on distributed memory architectures (i.e. COW, NOW,
MPP);

2. Open Multiprocessing (OpenMP) [49] for implicit compiler-based paralle-
lization on shared memory architectures (i.e. SMP, ccNUMA).

Figure 2.14 displays a typical generic scenario for executing parallel single
site applications in a Grid environment:

1. query the Monitoring and Discovery Service (MDS) information service
for the remote parallel computers and the underlying hardware and soft-
ware configurations (e.g. processor speed, memory and disk size, compiler
and software libraries available, queue load and permissions) required to
execute the application. Each parallel computer represents in our model
a computational Grid site (see Definition 2.5);

2. transfer the parallel application to the remote Grid site using the
GridFTP file transfer protocol. Remotely running a (C or Fortran) par-

MDS

Application
Code

Application
Code

GRAM

Autoconf

make

execute

1. query resources

User

2. transfer

3. configure
4. build
5. execute

GridFTP

User Site

SOAP

Execution Site

Fig. 2.14. The execution model of parallel applications on the Grid.

2.6 Grid Architectural Model 33

allel application is bound to difficult software dependencies, such as the
availability of shared libraries, or non-standard options required for com-
piling and linking the application. A pragmatic solution for solving such
complex remote dependencies is to build static binary executable code on
a local computer compatible with the remote architecture and operating
system, however, at a certain performance penalty. In cases when the
transfer of the source code to the remote Grid site cannot be avoided,
the next execution steps are required;

3. configure the application source code for the target architecture, typically
by executing a remote auto-configuration program (like Autoconf [82]
employed by the GNU software) using GRAM;

4. build (i.e. compile and link) the application, typically by executing a make
command on the remote execution site front-end processor using GRAM;

5. execute and monitor the application using GRAM, typically configured to
interact with an available back-end local resource manager [29, 102, 123,
172, 201] that gives access to the computing nodes (slaves). Automatic
input and output file staging is automatically performed using GASS
functionality.

Workflow Applications

Workflow modeling is a well established area in computer science that is
strongly driven and influenced by the business process modeling field [187].
Recently, the Grid community has generally acknowledged that orchestrating
Grid services in a workflow represents an important class of loosely coupled
applications suited for programming large scale Grid environments. The Grid
services are usually wrappers around off-the-shelf applications (often also
called components) that solve a well-defined atomic problem.

In this section, we introduce a generic low level workflow model that re-
presents our fundamental internal representation for scheduling and scalable
execution in Grid environments, to which any higher level (user-oriented)
workflow specification needs to be compiled (see Chapter 7).

Definition 2.7. We model a workflow application as a Directed Acyclic
Graph (DAG): A = (Nodes,C-edges), where Nodes is the set of workflow
activities and C-edges is the set of directed control flow dependencies. We
classify the workflow activities in two distinct categories:

Nodes = NodesCA ∪NodesDA :

1. Computational activities, denoted as CA(z) ∈ NodesCA, where z is the
abstract site where the CA activity executes. We ignore in our represen-
tation the concrete type and location (beyond site) of the computational
activity for simplicity and clarity reasons (required in Chapter 6);

34 2 Model

2. Data transfer activities, denoted as DA(z1, z2) ∈ NodesDA, where z1 and
z2 are the source, respectively the destination abstract sites of the transfer.
We ignore in our representation the concrete name and location (exact
path on one site) of the data transfer activity for the same simplicity and
clarity reasons.

Let succ(N) denote the set of successors of one activity N ∈ Nodes:

Ns ∈ succ(N) ⇐⇒ ∃ (N,Ns) ∈ C-edges.

Similarly, let pred(N) denote the set of predecessors of one activity N ∈
Nodes:

Np ∈ pred(N) ⇐⇒ ∃ (Np,N) ∈ C-edges.

If pred(N) = ∅, where ∅ denotes the empty set, then N is a start activity.
Similarly, if succ(N) = ∅ then N is an end activity. Additionally, we refer to
the set of predecessors and successors of rank p of an activity N as:

predp(N) = pred(. . . pred(N)),

respectively:
succp(N) = succ(. . . succ(N))

(p calls). Two activities N1 and N2 are independent if and only if � p such
that N1 ∈ predp(N2) ∨ N1 ∈ succp(N2).

We model a CA activity as a single site Grid application, as described in
Section 2.6.3, remotely allocated and manipulated using GRAM. An DA ac-
tivity uses the GridFTP high performance network communication protocol
to physically transfer a file between two (i.e. source and destination) Grid
sites. We transparently employ GSI for control flow activity authentication
as well as GridFTP control and data channel security.

A workflow can have an arbitrary number of start and end activities.
Additionally, we express input and output file staging in this simple model
through DA workflow activities having predefined fixed (instead of abstract)
source, respectively destination sites.

Parameter Studies

Parameter studies, also called parameter sweeps, are large sets of independent
experiments that represent the same application executed on different input
parameter configurations. The scope of parameter studies is to analyse the
evolution of important output results as a function of various input parameter
values.

We can model parameter studies as a specialisation of the workflow model:
A = (Nodes,C-edges) introduced in Definition 2.7, where:

2.7 Summary 35

1. the set of activities exclusively consists of CA activities: Nodes=NodesCA;
2. the set of DA (i.e. data transfer) activities is empty: NodesDA = ∅;
3. the set of control flow dependencies between the parameter study activi-

ties is empty: C-edges = ∅.

We assume that file staging to the Grid sites available to the parameter study
is done either offline or through GASS functionality.

2.7 Summary

In this section we defined a general Grid architectural and computing mo-
del based on several abstract concepts supported by mature implementation
platforms. We introduced the Web services technology stack that defines the
key middleware standards for achieving interoperability in a service-oriented
Grid environment. Afterwards, we presented the Grid Security Infrastructure
that extends the standard Public Key Infrastructure with functionality re-
quired by the users to access large scale and distributed Grid infrastructures,
including proxy cryptography supporting single sign-on and delegation capa-
bilities. Finally, we presented a three-tier abstract Grid architectural model
comprising:

1. the machine layer that aggregates high performance computers based on
today’s most modern parallel computer architectures;

2. the Grid services layer that enhances the stateless and persistent Web
services technology with functionality for modeling state and lifecycle of
resources, which is one of the main differences that distinguishes Grid
computing from business Web applications;

3. the application layer instantiated by end-user scientific applications or
software tools. In this context, we introduced abstract models for re-
presenting and executing parallel applications, parameter studies, and
scientific workflows in Grid environments.

3

The ZEN Experiment Specification Language

Existing parameter study tools provide support to specify value ranges for
application parameters of interest, e.g. by means of external scripting lan-
guages [5], or through graphical annotation of input files [197]. All these
approaches, however, force the user to export the application parameters
to global input files or program arguments, which often requires undesired
source code adaptation for using the tool. Additionally, there are no tools that
combine the experiment specification and management with cross-experiment
performance analysis. All currently existing performance tools are restricted
to single experiment analysis, which is not enough for efficient application
performance tuning, that is inherently a multi-experimental process.

3.1 Functionality and Use Cases

Under this motivation, we designed the ZEN language that addresses the
parameter specification problem for performance and parameter studies using
a directive-based approach [139, 143]. We define so called ZEN directives as
program comments that can be inserted in any source file to specify value
ranges for arbitrary application parameters.

One main advantage of the directive-based approach over an external
script [5] is the ability to specify experiments at a more detailed granularity,
e.g. associate local scopes to directives, restrict parametrisation to specific
local variables, evaluate different scheduling alternatives for individual loops,
or various distribution options for parallel arrays. Moreover, the ZEN directi-
ves do not change the semantics of the code, as they are ignored by language
processors that are unaware of their semantics. We designed the ZEN direc-
tives as language independent and, therefore, can apply them in the context
of any programming language.

Example 3.1 shows six sample ZEN directives valid, in descending order, in
the context of the following programming languages: FORTRAN 77, Fortran
90/95, C, C++/Java, Lisp, and shell scripting language.

R. Prodan and T. Fahringer: Grid Computing, LNCS 4340, pp. 37–68, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 3 The ZEN Experiment Specification Language

Example 3.1 (Sample ZEN directives in various programming languages).

CZEN$ A = { 1, 2, 3 }
!ZEN$ A = { 1, 2, 3 }
/*ZEN$ A = { 1, 2, 3 }*/
//ZEN$ A = { 1, 2, 3 }
;ZEN$ A = { 1, 2, 3 }
#ZEN$ A = { 1, 2, 3 }

We defined in the ZEN language four categories of directives:

1. Substitute directives, formally specified in Section 3.2.3, assign a set of
values to an application parameter. Each value from the set represents
an experimental value for the parameter that shall be used by the appli-
cation scientist in a separate experiment. The parameter instantiation is
performed through plain string substitution that replaces all occurrences
of the parameter name with its experimental value (in the scope of the
directive);

2. Assignment directives, formally specified in Section 3.2.6, have analo-
gous specification semantics as the substitute directive with the difference
that the parameter instantiation is performed by inserting an assignment
statement in place of the directive, which assigns the experimental value
to the parameter name (as program variable);

3. Constraint directives, formally specified in Section 3.2.8, define a boolean
condition over multiple parameters which restricts the set of possible
experiments to a meaningful subset;

4. Performance directives , formally specified in Section 3.2.9, are used to
request a wide variety of performance metrics for specific code regions of
the program. The scope of the ZEN language is therefore not restricted
to parameter studies.

3.1.1 Shared Memory Application Scalability

OpenMP [49] is a directive-based language which represents the defacto stan-
dard defined by industry for programming shared memory architectures (see
Section 2.6.3). One typical optimisation problem that concerns the users run-
ning OpenMP applications is to determine the ”optimal” number of threads
to execute a parallel region, expressed by the NUM THREADS clause of the
PARALLEL directive. The typical procedure for a user to achieve this goal
is to manually change the number of threads parameter to this clause (or
through a special hard-coded script), recompile the application, and observe
the change in the execution time.

In our generic approach, the user simply inserts a global ZEN substitute
directive d1, as illustrated in Example 3.2, that substitutes all occurrences of
the parameter NUM THREADS(4) in the enclosing file with the elements from
the set:

3.1 Functionality and Use Cases 39

VNUM THREADS(4) =
4⋃

i=1

NUM THREADS(i).

As a result, four experiments will be automatically generated, each one exe-
cuting the loop using a different number of parallel threads.

Example 3.2 (OpenMP parallel region scalability).

d1: !ZEN$ SUBSTITUTE NUM_THREADS\(4\)={ NUM_THREADS({1:4}) }
d2: !ZEN$ CR CR_P, CR_OMPPA PMETRIC WTIME, OSYNC

!$OMP PARALLEL NUM_THREADS(4)
. . .
!$OMP END PARALLEL

In addition, the user can employ ZEN performance directives to specify the
metrics of concern that should be collecting upon the execution of all experi-
ments. The advantage of the directive-based approach in this case is that the
user does not alter the original source code with tool or library specific instru-
mentation probes that can often be rather large in number and intrusive for
parallel applications. The directive d2 requests the wall-clock time (mnemo-
nic WTIME) and the synchronisation time (mnemonic OSYNC) from the entire
enclosing program unit (mnemonic CR P) and all OpenMP parallel regions
(mnemonic CR OMPPA).

It is important to notice that the code shown in this example is semanti-
cally valid for both ZEN-aware and ZEN-unaware compilers, i.e. that under-
stand or ignore the ZEN directives.

3.1.2 ZEN Transformation System

A file parameterised with ZEN directives, which we call ZEN file in Figure 3.1
(and formally define in Section 3.2.2, Definition 3.12), is given as input to a
ZEN Transformation System that parses the ZEN directives and generates
the corresponding (so called) ZEN file instances that instantiate each para-
meter with one concrete value. The ZEN Transformation System can be seen
as a source-to-source language processor. The scanner and parser modules
examine the ZEN directives and construct an abstract syntax tree represen-
tation of the ZEN file. The code generator is different from a conventional
compiler unparser, as it commonly generates a possibly large number of ZEN
file instances (instead of one). The code generation rules are specified by the
semantics of the ZEN directives that annotate the ZEN file.

The number of the ZEN file instances is given by the cardinality of the
value set of the ZEN file which we will formally define in Section 3.2.7.

40 3 The ZEN Experiment Specification Language

ZEN
File Scanner Parser

Abstract
Syntax Tree

Code
Generator

ZEN File
Instances

Fig. 3.1. The ZEN Transformation System.

3.1.3 Shared Memory Loop Scheduling

Appropriate scheduling of parallel loops is another critical optimisation deci-
sion for OpenMP parallel programs. Example 3.3 contains one parallel loop
expressed through one OpenMP directive d2 with a default static scheduling
strategy. We can easily express various other scheduling strategies combined
with different so called chunk sizes [49] for all parallel loops of the enclosing
file by means of a ZEN substitute directive d1, as follows:

STATIC scheduling means that the iterations are assigned to all parallel
threads (i.e. four in this example) statically, before the parallel loop starts
its execution;

DYNAMIC scheduling means that each thread dynamically receives a new set
of iterations after it finishes the iterations assigned;

GUIDED scheduling means that the iteration space is divided into scheduling
pieces, where the size of each successive piece is exponentially decreased.

The chunk size indicates the number of loop iterations to be scheduled atomi-
cally. The ZEN directive d1 replaces the original OpenMP scheduling clause
STATIC with every element from the set1:

VSTATIC = {STATIC,10 , STATIC,100 , DYNAMIC,10 , DYNAMIC,100 ,

GUIDED,10 , GUIDED,100}

in different experiments.

Example 3.3 (OpenMP loop scheduling).

d1: !ZEN$ SUBSTITUTE STATIC = { STATIC\,{1,10:100:10},
DYNAMIC\,{1,10:100:10}, }
GUIDED\,{1,10:100:10} }

d2: !$OMP PARALLEL DO SCHEDULE(STATIC) NUM_THREADS(4)
. . .
!$OMP END PARALLEL

1 We have underlined each individual set element to avoid potential confusion
and allow the reader distinguish between commas as set element delimiters and
commas as regular string characters.

3.1 Functionality and Use Cases 41

3.1.4 Distributed Processor Arrays

High Performance Fortran (HPF) [98] is a directive-based language designed
in the late 1990s to improve the productivity of writing data parallel pro-
grams. HPF has failed to achieve general acceptance in the parallel processing
community due to its poor performance compared to explicit message passing
based programs (i.e. MPI-based) and the rather limited support for expres-
sing irregular problems. It is, however, widely recognised that the HPF ideas
deserve further attention as a high productivity paradigm for programming
next generation high performance computing architectures [167].

To examine the scalability of HPF programs, the user commonly varies
the number of parallel processors organised in an array expressed through
a PROCESSORS directive. The HPF code shown in Example 3.4 defines an
2×2 two-dimensional processor array (see directive d2) onto which the arrays
defined by the programmer are distributed using a DISTRIBUTE directive (see
directive d4). The ZEN substitute directive d1 causes the replacement of all
occurrences of the string P(2,2) with one element from the associated value
set:

VP (2,2) = {P (2, 2), P (4, 2), P (6, 2), P (8, 2), P (2, 4), P (4, 4),
P (6, 4), P (8, 4)} .

Therefore, eight experiments will be generated, each of which investigates the
scalability of the application on a different processor matrix.

Example 3.4 (HPF array and independent loop distributions).

d1: !ZEN$ SUBSTITUTE P\(2,2\) = { P({2:8:2},{2,4}}) } BEGIN
d2 !HPF$ PROCESSORS P(2,2)
d1: !ZEN$ END SUBSTITUTE

. . .
d3: !ZEN$ SUBSTITUTE CYCLIC = { CYCLIC({2:10:2},20) } BEGIN
d4: !HPF$ DISTRIBUTE A(BLOCK, CYCLIC) ONTO P
d3: !ZEN$ END SUBSTITUTE

. . .
d5: !ZEN$ SUBSTITUTE A\(i,j\) = { A(i,j), B(I(i)) } BEGIN
d6: !HPF$ INDEPENDENT, ON HOME(A(i,j))
d5: !ZEN$ END SUBSTITUTE

DO i = 1, N
. . . A(i,j) . . .
. . . B(I(i)) . . .

ENDDO

3.1.5 Distributed Memory Arrays

Beyond the specification of appropriate machine sizes, the distribution of ar-
ray elements across processors is another non-trivial optimisation that can

42 3 The ZEN Experiment Specification Language

significantly influence the overall performance of data parallel HPF applicati-
ons. The HPF standard defines two regular patterns for distributing an array
A(N) onto a processor array PROC(P):

BLOCK(M) distribution indicates that the elements of array A are distributed
in contiguous blocks of size M onto the elements of PROC. If the optional
block size M is omitted, it is as if it were present with M =

⌈
N
P

⌉
. The data

distribution function that maps the data array index dimension [1..N] to
the processor array index dimension [1..P] is defined as follows:

DISTRM : [1..N] → [1..P], DISTRM (i) =
⌈

i

M

⌉
, where M ≥

⌈
N

P

⌉
;

CYCLIC(M) distribution indicates that the elements of array A are distributed
in a round-robing fashion across the elements of PROC in blocks of size
M. If the optional block size M is omitted, it is as if it were present with
M = 1. The data distribution function that maps the data array index
dimension [1..N] to the processor array index dimension [1..P] is defined
as follows:

DISTR′M : [1..N] → [1..P], DISTR′M (i) =
⌊

i − 1
M

⌋
mod P.

The ZEN substitute directive d3 in Example 3.4 defines a parameter CYCLIC
with the value set:

VCYCLIC = {CYCLIC(2), CYCLIC(4), CYCLIC(6), CYCLIC(8),
CYCLIC(10), CYCLIC(20)} .

Every parameter value represents a different array distribution with a diffe-
rent pattern and block size that substitutes the original CYCLIC distribution.
Figure 3.2 illustrates a sample CYCLIC(2) column-wise distribution and a
BLOCK row-wise distribution of a two-dimensional array A(8, 4) onto a two-
dimensional processor array P (2, 2).

The ZEN substitute directive can be similarly employed to examine dif-
ferent options of the HPF REDISTRIBUTE directive.

1,1 1,8

4,1 4,8

P(1,1) P(1,2)

P(2,1) P(2,2)

Distribute

Distributed Array A(4,8) Processor Array P(2,2)

Fig. 3.2. The (CYCLIC(2), BLOCK) distribution of array A(8, 4) onto processor
array P (2, 2).

3.1 Functionality and Use Cases 43

3.1.6 Work Distribution

Similar to the OpenMP loop scheduling (and complementary to the data
distribution approach), the HPF ON and the ON HOME directives allow the pro-
grammer to control the distribution of the computation (i.e. the control flow)
across the processors of a parallel machine. The ON HOME directive requests
the work distribution of a parallel loop be derived according to an array
section provided as argument. Such loops often contain references to array
elements that are distributed using various patterns that are not related to
each other and, therefore, it is NP-hard to determine the optimal distribution
of iterations.

Example 3.4 defines an HPF INDEPENDENT loop (see directive d6) which
accesses the elements of two distributed arrays A and B. The ZEN substitute
directive d5 specifies two different scheduling strategies for the loop iteration
i: the processor A(i,j) and the processor B(I(i)).

An important detail one can notice in Example 3.4 is that the ZEN sub-
stitute directives d1, d3, and d5 have a local scope within the file in which
they are defined, specified through pairs of BEGIN / END directives. This al-
lows the user to focus the parameter specification to certain relevant regions
of the code that require particular analysis or tuning. For example, the local
ZEN substitute directive d5 ensures that the string A(i,j) is replaced only
within the INDEPENDENT directive and not further in the parallel loop.

3.1.7 Parameter Studies

Parameter studies [5, 197] are applications that are executed for different
input parameters to examine their effect on the corresponding output results.
In a typical application encoding, the output parameter values are written
to a distinct output file for every experiment.

Example 3.5 (Parameter study).

d1: !ZEN$ CONSTRAINT INDEX Input1 == Output1 BEGIN
d2: !ZEN$ SUBSTITUTE Input1 = { Input{1:100} }

OPEN(UNIT=2, IOSTAT=IOS, FILE=’INPUT1’, STATUS=’OLD’)
d2: !ZEN$ END SUBSTITUTE

. . .
d3: !ZEN$ SUBSTITUTE Output1 = { Output{1:100} }

OPEN(UNIT=2, IOSTAT=IOS, FILE=’Output1’, STATUS=’NEW’)
d3: !ZEN$ END SUBSTITUTE
d1: !ZEN$ END CONSTRAINT

Example 3.5 illustrates a scenario how ZEN directives can be employed to
manage such parameter studies. The (local) ZEN substitute directives d2
and d3 are used to specify the different input and output data files to be

44 3 The ZEN Experiment Specification Language

Input1 Input2 Input100. . .

Output1 Output2 Output100. . .

Fig. 3.3. The ZEN constraint defined by Example 3.5.

used in each experiment, respectively. The (local) ZEN constraint directive
d1 associates every input file with a correct output file which avoids invalid
input and output file combinations (see Figure 3.3):

VInput1 =
⋃100

i=1 Inputi;
VOutput1 =

⋃100
i=1 Outputi;

V(Input1, Output1) =
⋃100

i=1(Inputi, Outputi).

Thus, 100 parameter study experiments are generated (instead of 100×100 =
10000), each of them reading the data from and writing the data to different
input and output files.

3.2 Formal Language Specification

In previous section we gave an introduction to the basic functionality of the
ZEN language through several of the most relevant use cases that were at
the origins of our design motivations. In this section we formally define the
syntax of the ZEN directive-based language for performance and parameter
study experiment specification.

3.2.1 ZEN Set

One important goal we had in designing the ZEN language was to express
wide value ranges for application parameters using a compact and practical
syntax. For this purpose, we designed a special stand-alone language con-
struct called ZEN set.

Definition 3.6. A ZEN set is a totally ordered set of (integer or real) num-
bers or strings, with a well-defined syntax and a well-defined evaluation func-
tion ε, defined by the Equation 3.1. An element of a ZEN set is called ZEN
element.

We define the ZEN sets with the following regular expression-based syntax:

3.2 Formal Language Specification 45

zen-set is ”{” elem-list ”}”
elem-list is elem [”,” elem]*
elem is num

or comp-elem
num is low :up[:stride]

or number
comp-elem is (zen-num-set | zen-string)+
low is number
up is number
stride is number
number is integer

or real
integer is [+|−]?[0–9]
real is [+|−]?[0–9]+”.”[0–9]∗
zen-num-set is ”{” num-list }
num-list is num [”,” num]*
zen-string is ([ˆ\n{},:] | ”\{” | ”\}” | ”\,” | ”\:”)*

Let · denote the string concatenation operator, also referred in the following
using one blank character. Let P denote the power set and � the set of real
numbers. The semantics (i.e. the concrete set of elements) of a ZEN set is
given by the evaluation function:

ε : zen-set → P(� ∪ string), ε

(
n⋃

i=1

elemi

)
=

n⋃

i=1

ε(elemi), (3.1)

where string denotes an arbitrary string, P(string) denotes the set of strings,
and the function ε is defined in Figure 3.4.

Informally, an elem construct of a ZEN set can be expressed as:

1. a regular real number (see Example 3.7, Equation 3.2);
2. a low:up:stride pattern evaluated to a set of numbers ranging from low to

up with the increment stride (see Example 3.7, Equations 3.4 and 3.6).
The stride is optional and has a default value of one, therefore:

ε(low:up) = ε(low:up:1);

3. a composite element comp-elem that alternates multiple sets of numbers
denoted as zen-num-set, with multiple ZEN strings denoted as zen-string.
The composite element is evaluated to a set of elements by computing the
cross product of the zen-num-sets and replacing each zen-num-set with
the corresponding tuple element (see Example 3.7, Equations 3.7, 3.9,
3.11, and 3.13). The zen-string elements must obey the syntax defined
by the evaluation function εs defined in Figure 3.4, with the following
informal meaning:

46 3 The ZEN Experiment Specification Language

ε : elem → P(� ∪ string),

ε(e) =

⎧
⎨

⎩

low + k ∗ stride | k ∈ 0.. up−low
stride

, e is low:up:stride;
{e}, e is number;
X, e is (zen-num-set | zen-string)+,

(zen-num-set | zen-string)+ = zen-string1 {num11, . . . , num1n1} . . .

zen-stringp {nump1, . . . ,numpnp} zen-stringp+1,

X = {εs(zen-string1) n1 . . . εs(zen-stringp) np εs(zen-stringp+1) |
∀ (n1, . . . , np) ∈ ε({num11, . . . ,num1n1}) × . . . × ε({nump1, . . . ,numpnp})},

εs : string → string,

εs(s) =
s, ∀ e ∈ {”\, ”, ”\{”, ”\}”, ”\ : ”}, e /∈ s;
εs(sl) c εs(sr), s = sl \c sr, ∀ c ∈ {‘, ‘, ‘{‘, ‘}‘, ‘ : ‘, “}.

Fig. 3.4. The ZEN set element evaluation function.

a) commas inside a zen-string must be prefixed by one ’\’ character
which distinguishes them from the value delimiters of a zen-num-set :

ε(stringl \, stringr) = stringl , stringr,

where ‘, ‘ /∈ stringl ∧ ‘, ‘ /∈ stringr (see Example 3.7, Equations 3.8,
3.10, 3.11, 3.12, and 3.13);

b) braces inside a zen-string must be prefixed by one ’\’ character which
avoids zen-num-sets inside zen-strings:

ε(\{num1\, . . . \, numn\}) = {num1, . . . , numn}

(see Example 3.7, Equations 3.8 and 3.10);
c) colons inside a zen-string must be prefixed by one ’\’ character which

allows the pattern low:up:stride be a zen-string:

ε(low\ : up\ : stride) = low : up : stride

(see Example 3.7, Equations 3.5, 3.10, and 3.12).

Example 3.7 (ZEN set evaluation examples).

• Numerical value set enumeration:

ε({1, 2, 3}) = {1, 2, 3}; (3.2)

3.2 Formal Language Specification 47

• Alphanumerical (i.e. ZEN string) value set enumeration:

ε({a, b, c}) = {a, b, c}; (3.3)

• Numerical value ranges using the low:up:stride pattern:

ε({1 : 10 : 2}) = {1, 3, 5, 7, 9}; (3.4)

• The low:up:stride pattern as ZEN string through colon escape:

ε({1\ : 10\ : 2}) = {1 : 10 : 2}; (3.5)

• Mixed numerical enumeration and low:up:stride value range:

ε({0, 1 : 10 : 2, 11}) = {0, 1, 3, 5, 7, 9, 11}; (3.6)

• Function parameter variation:

ε({foo({10, 20, 30})}) = {foo(10), foo(20), foo(30)}; (3.7)

• Inner zen-num-set avoidance through escaped braces and commas:

ε({foo(\{10\, 20\, 30\})}) = {foo({10, 20, 30})}; (3.8)

• Variation of array distribution [98]:

ε({BLOCK({4 : 12 : 4}), CYCLIC({8, 16})}) =
{BLOCK(4), BLOCK(8), BLOCK(12), CYCLIC(8), CYCLIC(16)}; (3.9)

• Inner zen-num-set avoidance through escaped braces, colons, and com-
mas:

ε({BLOCK(\{4\ : 12\ : 4\})\, CYCLIC(\{8\, 16\})}) =
{BLOCK({4 : 12 : 4}), CYCLIC({8, 16})}; (3.10)

• Two-dimensional matrix index annotation through escaped commas:

ε({A({0 : 10 : 5}\, {4 : 12 : 4})}) = {A(0, 4), A(0, 8), A(0, 12),
A(5, 4), A(5, 8), A(5, 12), A(10, 4), A(10, 8), A(10, 12)}; (3.11)

• One-dimensional matrix index annotation through escaped commas and
colons:

ε({A({0 : 10 : 5}\, 4\ : 12\ : 4)}) =
{A(0, 4 : 12 : 4), A(5, 4 : 12 : 4), A(10, 4 : 12 : 4)}; (3.12)

48 3 The ZEN Experiment Specification Language

• Loop scheduling variation [49]2:

ε({STATIC\, {4, 8}, DYNAMIC\, {1 : 4}}) = {STATIC, 4 , STATIC, 8 ,

DYNAMIC, 1 , DYNAMIC, 2 , DYNAMIC, 3 , DYNAMIC, 4}. (3.13)

The total order of the ZEN elements, denoted by the operator ≺, in a ZEN
set:

zen-set =
n⋃

i=1

elemi

is given by the following ordering rules:

1. The order of the elements separated by commas is their enumeration
order (see Example 3.7, Equations 3.2, 3.3, 3.7, 3.10, and 3.13):

∀ elemi, elemj ∈ ε

(
n⋃

i=2

elemi

)
, ∀ i, j ∈ [1..n], elemi ≺ elemj ⇐⇒ i < j;

2. The element order specified by a low:up:stride value range pattern is the
ascending element sequence from low to up with the increment stride (see
Example 3.7, Equations 3.4, 3.6, 3.12, and 3.13):

∀ ei, ej ∈ ε(low:up:stride), ei ≺ ej ⇐⇒
ei = low + ki ∗ stride ∧ ej = low + kj ∗ stride ∧ ki < kj ;

3. The cross product tuples are ordered lexicographically (see Example 3.7,
Equations 3.9, 3.11, and 3.13):

∀ (n1, . . . , np), (n′
1, . . . , n

′
p) ∈ ε

(
n1⋃

i=1

num1i

)
× . . . × ε

⎛

⎝
np⋃

j=1

numpj

⎞

⎠ ,

string1 n1 . . . stringp np stringp+1 ≺ string1 n′
1 . . . stringp n′

p stringp+1

⇐⇒ ∃ i ∈ [1..n] such that
(
∀ j ∈ [1..i − 1] : nj = n′

j

)
∧ ni ≺ n′

i.

Definition 3.8. Let (A,≺) and (B,≺) denote two totally ordered sets with
the same ordering operation ≺. The union of the totally ordered sets A and
B is the totally ordered set (A ∪ B,≺) obtained by appending B\A to A:

∀ a, b ∈ A ∪ B, a ≺ b ⇐⇒ a ∈ A ∧ b ∈ B ⊂ A ∨
(a, b ∈ A ∨ a, b ∈ B ⊂ A) ∧ a ≺ b.

We will need the total order of ZEN sets when defining the ZEN index cons-
traint directive in Section 3.2.8.
2 To avoid any potential confusion and allow the reader distinguish between com-

mas as set element delimiters and commas as regular characters of a string, the
ZEN set elements have been underlined.

3.2 Formal Language Specification 49

3.2.2 ZEN Directives

We designed ZEN as a directive-based language that does not change the
semantics of the code, unless parsed by a ZEN-aware compiler (i.e. prepro-
cessor).

Definition 3.9. A ZEN directive is a comment line that starts with the prefix
ZEN$.

The characters that mark the beginning (and eventually the end) of a com-
ment are the only programming language specific features of ZEN. Exam-
ple 3.1 of Section 3.1 showed six sample ZEN directives valid, in descending
order, in the context of the following programming languages: FORTRAN
77, Fortran 90/95, C++ (or Java), C, Lisp, and shell scripting language.

We associate to every ZEN directive d, except the assignment directive,
a scope denoted as scope(d) which refers to the code region to which the
directive applies.

Definition 3.10. A ZEN variable is an arbitrary application parameter de-
fined by a ZEN substitute or a ZEN assignment directive. A ZEN variable is
a sequence of characters that must obey the following syntax constraints:

1. equality and blank characters must be escaped by a ’\’ character, which
distinguishes them from the assignment character and eventual neighbou-
ring blank characters in a ZEN directive (e.g. count\=4 in Example 4.3);

2. arithmetical (+, −, *, /, %, ˆ), relational (==, !=, <, >, <=, >=), and
logical(!, &&,||) operators, as well as left and right parentheses must be
escaped by a ’\’ character, which distinguishes them from the parentheses
and operators of a ZEN constraint (e.g. BLOCK\(4\) in Example 3.4);

Definition 3.11. The value set of a ZEN variable z, denoted by Vz, is the
totally ordered ZEN set (S,≺) associated with z:

Vz = ε(S),

where the value function ε and the operator ≺ were defined in Section 3.2.1.

We will illustrate the need for the total order of elements in the value set in
Section 3.2.8.

Definition 3.12. An arbitrary application file Z (e.g. source file, input data
file, makefile), annotated with ZEN directives that define n ZEN variables
z1, . . . , zn, is called ZEN file denoted as Z(z1, . . . , zn). A ZEN file instance
denoted as ZI(e1, . . . , en) is an instantiation of the ZEN file Z, obtained by
instantiating each ZEN variable zi with one ZEN element from its value set:
ei ∈ Vzi , ∀ i ∈ [1..n].

50 3 The ZEN Experiment Specification Language

ZEN File Instance (ZI) Generated Code

ZI(NUM THREADS(1)) !$OMP PARALLEL NUM THREADS(1)

ZI(NUM THREADS(2)) !$OMP PARALLEL NUM THREADS(2)

ZI(NUM THREADS(3)) !$OMP PARALLEL NUM THREADS(3)

ZI(NUM THREADS(4)) !$OMP PARALLEL NUM THREADS(4)

Fig. 3.5. The ZEN file instances generated by Example 3.2.

In cases when the ZEN variables are irrelevant, we will denote for brevity
reasons the ZEN files and the ZEN file instances as Z and ZI, respectively.

Informally, a ZEN file represents a parameterised application file. A ZEN
file instance instantiates each application parameter of the ZEN file with one
concrete parameter value. For example, Example 3.2 of Section 3.1 illustrated
an excerpt of a ZEN file that we denote as Z(NUM THREADS(4)), which defines
four machine sizes for running the OpenMP parallel region within four ZEN
file instances, depicted in Figure 3.5.

The ZEN variables can have three different types: integer, real and string.
The motivation for including the integer and real types along side string
(which would have been enough otherwise) are the value set constraints that
we will introduce in Section 3.2.8.

Definition 3.13. The type τ of a ZEN variable z is determined by the ZEN
Transformation System, introduced in Section 3.1.2, in the parsing phase
based on the values of the associated ZEN elements, as follows:

τ(z) =

⎧
⎨

⎩

”integer”, ∀ e ∈ Vz, e is integer;
”real”, ∀ e ∈ Vz, e is number ∧ ¬ (∀ e ∈ Vz, e is integer);
”string”, ∀ e ∈ Vz, e is zen-string ∧ ¬ (∀ e ∈ Vz, e is number).

3.2.3 ZEN Substitute Directive

The ZEN substitute directive employs a conventional macroprocessor-based
string replacement mechanism to overwrite application parameters with value
instances of interest within ZEN files. This is expressed in the ZEN language
by assigning a ZEN set to a ZEN variable. This directive is commonly em-
ployed to examine various language specific parallelization patterns, as we
illustrated earlier in Section 3.1, e.g. machine sizes (see Example 3.2), work
scheduling strategies (see Example 3.3), data distributions (see Example 3.4),
or problem sizes (see Example 3.5).

One flavour of the ZEN substitute directive is the global substitute direc-
tive whose scope comprises the entire ZEN file in which is defined with the
following syntax:

3.2 Formal Language Specification 51

global-substitute-dir is SUBSTITUTE zen-var = zen-set
zen-var is ([ˆ-\+*/%”ˆ”=<>!&\|\(\): \t\r\n\f]|”\=”|

”\+”|”\-”|”*”|”\/”|”\%”|”\ˆ”|”\==”|”\!=”|
”\ <”|”\ >”|”\ <=”|”\ >=”|”\!”|”\&&”|”\||”|
”\(”|”\)”|”\:”|”\”)+

The ZEN Transformation System introduced in Section 3.1.2 replaces all oc-
currences in the entire file of the name of a ZEN variable z with one element
e ∈ Vz. It is the responsibility of the user to ensure that the global substitu-
tion produces a correct outcome (i.e. ZEN file instance). Eventual erroneous
substitutions usually produce subsequent faulty file compilations or faulty
application executions.

3.2.4 Local Substitute Directive

It often occurs in practice that the user needs to apply a parameter substi-
tution to a specific restricted code region, for instance to a certain OpenMP
loop from a file that contains many other loops. The local ZEN substitute
directive restricts the scope of the global version to a specific region of the
ZEN file through the following syntax:

local-substitute-dir is SUBSTITUTE zen-var = zen-set BEGIN
code-region
END SUBSTITUTE

Example 3.4 of Section 3.1 illustrated the use of several local ZEN substitute
directives to express various array and work distribution options for different
machine (processor array) sizes in the context of an HPF parallel program.

The local substitute directives can be also nested.

3.2.5 Homonym ZEN Variables

Example 3.14 defines one global ZEN substitute directive d1 and one local
substitute directive d2, with the peculiarity that the ZEN variables they
define have the same name STATIC. Despite their identical name, the two
ZEN variables are distinct, each one having its own scope and value set.
Intentionally or not, such situations often happen in practice and need special
care. In this particular example, keeping the default STATIC distribution for
both parallel loops, as well as a semantically proper ZEN variable naming
(i.e. STATIC), may be of importance for the user.

52 3 The ZEN Experiment Specification Language

Example 3.14 (OpenMP loop scheduling).

d1: !ZEN$ SUBSTITUTE STATIC = { STATIC\,{1,10:100:10},
DYNAMIC\,{1,10:100:10} }

!$OMP PARALLEL DO SCHEDULE(STATIC) NUM_THREADS(4)
. . .

d2: !ZEN$ SUBSTITUTE STATIC = { GUIDED } BEGIN
d3: !$OMP PARALLEL DO SCHEDULE(STATIC) NUM_THREADS(4)
d2: !ZEN$ END SUBSTITUTE

Definition 3.15. If the textual name of two or more ZEN variables in a ZEN
file is identical, these ZEN variables are called homonyms.

We define the impact of the homonym ZEN variables to the semantics of the
global and local ZEN substitute directives as follows:

1. No homonym global ZEN substitute variables are allowed within one ZEN
file;

2. A local ZEN substitute directive di with a ZEN variable zi, defined in the
scope of any global or local ZEN substitute directive dj with an associated
ZEN variable zj , where zi and zj are homonym augments the value set
of zj as follows:

Vzj = Vzj ∪ Vzi ,

where the union of two totally ordered value sets was defined in Defini-
tion 3.8.

A ZEN variable z is therefore characterised by the:

1. textual name denoted in the following as ν(z);
2. ZEN directive d which assigns a value set Vz to z;
3. ZEN file Z which contains the directive d.

We use the following convention for naming ZEN variables for the remainder
of this chapter:

1. if no homonym ZEN variables were defined, the plain textual name of the
ZEN variable is used for brevity reasons;

2. if other homonym ZEN variables were defined, the ZEN variable is re-
ferred through its textual name subscripted with a unique ZEN directive
identifier.

Therefore, the directive d2 from Example 3.14 defines the following value set
for the ZEN variable STATICd2:

VSTATICd2 = VSTATICd1 ∪ {GUIDED}.

3.2 Formal Language Specification 53

3.2.6 ZEN Assignment Directive

The substitute directive must be used with care as it might replace undesired
occurrences of the ZEN variable in the corresponding scope. For instance, if
the variable D in Example 3.16 must be substituted in a given scope, then
every occurrence of this character will be replaced, even in keywords such as
DO or END. This problem is particularly critical for shortly named variables
(e.g. one character long) that are commonly used by programmers (even as
global external variables), which are problematic or simply inconvenient to
be renamed.

To overcome this limitation and give the user extra flexibility in defining
application parameters, we introduce a new type of directive called ZEN
assignment directive that inserts arbitrary assignment statements into ZEN
files. The purpose of this directive is to indicate the values of interest for a
specific program variable which must be defined in the context of the directive
location in the ZEN file. Formally, a ZEN assignment directive assigns a ZEN
set to a ZEN variable using the following syntax (where zen-var was defined
in Section 3.2.3 and zen-set in Section 3.2.1):

assignment-dir is ASSIGN zen-var = zen-set

The ZEN Transformation System introduced in Section 3.1.2 textually repla-
ces a ZEN assignment directive with a statement which assigns one element
e ∈ Vz to the ZEN variable z. The assignment statement must conform to
the syntax of programming language in which the ZEN file is written. For
example, if the ZEN file represents a C program, the assignment statement
must adhere to the C language syntax. The ZEN Transformation System does
not apply any type checking or examine whether the (ZEN) variable was de-
clared in the scope of the directive (using the target language syntax and
semantics). An eventual ”variable not found” syntax error will be detected
by a subsequent compilation of the ZEN file instance.

Example 3.16 (Shortly named ZEN variables).

INTEGER D, i
s: D = 50
d: !ZEN$ ASSIGN D = { 2**{6:12} }

DO i = 1, D

The ZEN assignment directive d in Example 3.16 assigns seven values to a
ZEN variable D that represents the upper bounds of the immediately follo-
wing DO loop, where ∗∗ denotes the Fortran power operator:

VD =
{
26, 27, 28, 29, 210, 211, 212

}
.

First of all, one can notice that the code is semantically valid for both ZEN-
aware and ZEN-unaware compilers. The ZEN-aware compilers replace the

54 3 The ZEN Experiment Specification Language

ZEN directive d with an assignment statement that assigns one element
e ∈ VD to the (ZEN) variable D. In this example, the default assignment
statement s becomes redundant and will be eliminated as dead code by sub-
sequent optimised compilation. It is worthwhile to further notice that using
a substitution in place of the assignment directive would also replace the
character D in the keyword DO which would produce an erroneous program.

3.2.7 Multi-dimensional Value Set

It is clear that one ZEN directive implies a number of ZEN file instances equal
to the cardinality of the value set that it defines. This section describes how
multiple ZEN directives defined within a single ZEN file impact the number
of ZEN file instances generated.

Definition 3.17. The multi-dimensional value set of n distinct ZEN varia-
bles z1, . . . , zn, denoted as V(z1, . . . , zn), is the cross product of their value
sets:

V(z1, . . . , zn) = Vz1 × . . . × Vzn .

The value set of a ZEN file Z(z1, . . . , zn), denoted as V(Z(z1, . . . , zn)) or
simply VZ , is the entire set of ZEN file instances generated from the multi-
dimensional value set of its ZEN variables:

V (Z (z1, . . . , zn)) =
⋃

∀ (e1,...,en)∈V(z1,...,zn)

ZI (e1, . . . , en) .

For instance, Example 3.14 of Section 3.2.5 defined two ZEN directives d1
and d2, whose multi-dimensional value set is given by the cross product of
their value sets:

V (STATICd1, STATICd2) = VSTATICd1 × VSTATICd2 ,

with the cardinality:

|V(STATICd1, STATICd2)| =
∣∣VSTATICd1

∣∣ ·
∣∣VSTATICd2

∣∣ = 22 · 23 = 506.

Definition 3.18. A ZEN application, denoted as A(Z1, . . . ,Zn) or simply
A, consists of a set of ZEN files:

A(Z1, . . . ,Zn) =
n⋃

i=1

Zi.

A ZEN application instance, denoted as AI(ZI1, . . . ,ZIn) or simply AI,
is a set of ZEN file instances which instantiate each ZEN file of the ZEN
application:

AI(ZI1, . . . ,ZIn) =
n⋃

i=1

{
ZIi | ZIi ∈ VZi

}
.

3.2 Formal Language Specification 55

From an informal perspective, a ZEN application represents a Grid applica-
tion annotated with ZEN directives that confirms to one of the models that
we introduced in Section 2.6.3.

Definition 3.19. The value set of a ZEN application, denoted in the follo-
wing as V(A(Z1, . . . ,Zn)) or simply VA, is the set of application instances
generated by the cross product of the value sets of its constituent ZEN files:

V (A(Z1, . . . ,Zn)) =
⋃

∀ (ZI1,...,ZIn)∈VZ1×...×VZn

AI (ZI1, . . . ,ZIn) .

3.2.8 ZEN Constraint Directive

The plain cross product of the value sets often produces a large number of
ZEN element combinations that have no correct or useful practical meaning.
The consequence can be a dramatic increase in the number of experiments
and the time needed to conduct them, for instance in the context of a pa-
rameter study. We therefore introduce the ZEN constraint directive to filter
the meaningless or irrelevant the parameter combinations from the multi-
dimensional value set.

Similar to the substitute directive, we define the ZEN constraint directives
with global and local scopes, where local constraint directives can be also
nested:

global-constraint-dir is CONSTRAINT type b-expr
b-expr is bool-expr(zen-var-list)
type is VALUE

or INDEX

local-constraint-dir is CONSTRAINT type b-expr BEGIN
code-region
END CONSTRAINT

The term b-expr refers to a boolean expression which contains constants and
ZEN variables as operands. The set of arithmetical operators allowed in a
b-expr is: {+,−, ∗, /, %, ˆ}, the set of relational operators: {==, ! =, <, >
, <=, >=}, and the set of logical operators: {!, &&, ||}. The symbols % and
ˆ denote the modulo, respectively the power operators. The operators ass-
ume the standard mathematical associativity which can be overwritten using
parentheses. The arithmetical operators have precedence over the relational
operators which have precedence over the logical operators. An arithmetical
operation over a set of integers produces an integer result. An operation over
a set of mixed integer and real numbers produces a real result.

There are two types of ZEN variables that can appear in a ZEN constraint:

1. local ZEN variables that must be defined in the scope of the ZEN cons-
traint;

56 3 The ZEN Experiment Specification Language

2. external ZEN variables that must be globally defined in a different ZEN
file, referred by prefixing the ZEN variable with the ZEN file name follo-
wed by a colon (see Example 4.4 in Chapter 4, Section 4.2.1).

A ZEN constraint directive denoted as d, which defines the boolean ex-
pression bool-expr(zen-var1, . . . , zen-varn), refers to all ZEN variables in the
scope of the directive with the name in {zen-var1, . . . , zen-varn}. If there
exist homonym ZEN variables in the scope of the directive with the name in
{zen-var1, . . . , zen-varn}, the following set of constraints is generated:

⋃

∀ {z1,...,zn}⊂scope(d)∧
ν(zi)=zen-vari, ∀ i∈[1..n]

bool-expr (z1, . . . , zn) ,

where ν (zi) is the textual name of a ZEN variable as defined in Section 3.2.5.
The ZEN constraint directive defines two types of constraints, which de-

pend on the type of the ZEN variables involved (see Definition 3.13):

1. value set constraint defines a boolean expression over a set of ZEN varia-
bles of type integer and real;

2. index domain constraint defines a boolean expression over a set of ZEN
variables of any type, including string.

Value Set Constraint

The value set constraint is indicated by the VALUE clause of the ZEN cons-
traint directive and defines a boolean expression over a set of ZEN variables
of types integer and real. We defined the type of a ZEN variable in Defini-
tion 3.13.

Definition 3.20. Let z1, . . . , zn denote a set of ZEN variables. The tuple
(e1, . . . , en) ∈ Vz1 × . . .×Vzn is called value-valid if and only if the following
condition holds:

valid(e1, . . . , en) ⇐⇒ α (Πj1,...,jm (e1, . . . , en)) = true,

∀ α : Vzj1 × . . . × Vzjm → boolean a value set constraint, where:

{zj1 , . . . , zjm} ⊂ {z1, . . . , zn}, ∀ jk ∈ [1..n], ∀ k ∈ [1..m] ∧ m < n.

The notation Πj1,...,jm(e1, . . . , en) denotes the projection of the tuple ele-
ment (e1, . . . , en) from the n-dimensional space Vz1 × . . . × Vzn onto its m-
dimensional subspace Vzj1 × . . . × Vzjm .

Informally, a tuple (e1, . . . , en) ∈ Vz1 × . . . × Vzn is value-valid if and only
if it satisfies all the value set constraints defined across any subset of the
ZEN variables involved. A value set constraint is evaluated by instantiating
each ZEN variable zi with the corresponding ZEN element ei from the tuple
(e1, . . . , en), ∀ i ∈ [1..n]. All the invalid tuples are eliminated from the multi-
dimensional value set.

3.2 Formal Language Specification 57

82

26 27 28 29 210 211 212

122 162P

D

Fig. 3.6. The value set constraint defined in Example 3.21.

Example 3.21 (Value set constraint).

INTEGER D, P, i
!ZEN$ ASSIGN P = { {8:16:4}**2 }
D = 50
!ZEN$ ASSIGN D = { 2**{6:12} }
DO i = 1, D
!ZEN$ CONSTRAINT VALUE D^3 / P < 40000000

In Example 3.21, the ZEN variable P defines a set of three square numbers
from 82 to 162 with the stride 4. Similarly, the ZEN variable D is assigned a
set of seven power of 2 elements from 26 to 212.

VP = {82, 122, 162};
VD = {26, 27, 28, 29, 210, 211, 212}.

The value set constraint directive filters the ZEN elements from the cross
product VN × VP such that the boolean expression defined yields true (see
Figure 3.6):

V(D, P) =
⋃

∀ (e1,e2)∈VD×VP ∧ e31
e2

<4·107

(e1, e2).

Assuming that D represents the size of a three-dimensional array and P the
number of the available processors onto which the array is distributed, the
constraint restricts the value set to those combinations which need less than
40 megabytes of memory on each processor.

Index Domain Constraints

While the boolean expression defined by a value set constraint is meaningful
over ZEN variables of types integer and real, it is problematic to comprise
ZEN variables of type string. This is the main reason for which we defined in
Section 3.2.2 (see Definition 3.11) the value set of a ZEN variable as a totally
ordered set that associates a unique index to each ZEN element, as specified
by the following definition.

58 3 The ZEN Experiment Specification Language

Definition 3.22. The index domain of a ZEN variable z, denoted as Iz, is
the totally ordered set of elements Iz = (S, <), where:

S =
|Vz|⋃

i=1

i

and S ⊂ �∗, where �∗ denotes the set of positive natural numbers (i.e. non-
zero). The total order of elements in Iz is the natural element order. The
value function of a ZEN variable z is the total bijective function:

ϑ : Iz → Vz,

which associates to each element ϑ(i) ∈ Vz an index i ∈ Iz such that:

∀ i, i1, i2 ∈ Iz, i1 < i < i2 ⇐⇒ ϑ(i1) ≺ ϑ(i) ≺ ϑ(i2).

The index function:
ϑ−1 : Vz → Iz

is the inverse of the value function.

For example, the ZEN directives defined in Example 3.21 of the previous
subsection define the following index sets and value functions:

IP = {1, 2, 3};
ϑP : IP → VP , ϑP (i) = (8 + 4 · (i − 1))2;
ID = {1, 2, 3, 4, 5, 6, 7};
ϑD : ID → VD, ϑD(i) = 2i+5.

The index domain constraint , indicated by the INDEX clause of the ZEN
constraint directive, defines a boolean expression over the index domains of
the ZEN variables involved.

Definition 3.23. Let z1, . . . , zn denote a set of ZEN variables. The tuple
(e1, . . . , en) ∈ Vz1 × . . .×Vzn is called index-valid if and only if the following
condition holds:

valid
(
ϑ−1 (e1) , . . . , ϑ−1 (en)

)
⇐⇒

⇐⇒ β
(
Πj1,...,jm

(
ϑ−1 (e1) , . . . , ϑ−1 (en)

))
= true,

where Πj1,...,jm

(
ϑ−1 (e1) , . . . , ϑ−1 (en)

)
was defined in Definition 3.20, ∀ β :

Vzj1 × . . . × Vzjm → boolean an index domain constraint, where:

{zj1 , . . . , zjm} ⊂ {z1, . . . , zn} , ∀ jk ∈ [1..n], ∀ k ∈ [1..m] ∧ m < n.

3.2 Formal Language Specification 59

Informally, a tuple
(
ϑ−1(e1), . . . , ϑ−1(en)

)
∈ Iz1 × . . . × Izn is index-valid

if and only if it satisfies all the index domain constraints defined across any
subset of the ZEN variables involved. An index domain constraint is evaluated
by instantiating each ZEN variable zi with the index of the corresponding
ZEN element ei from the tuple (e1, . . . , en) , ∀ i ∈ [1..n]. All the invalid
tuples are eliminated from the multi-dimensional value set.

Example 3.5 of Section 3.1.7 showed a typical use of the index constraint
directive for associating input and output data files in the context of a com-
mon parameter study experiment. Clearly, value set constraints cannot be
used to express the association between the value set elements of type string
of the Input1 and Output1 ZEN variables, which demonstrates the need for
the index constraint directive.

Multi-dimensional Value Set

In the following definition we redefine the multi-dimensional value set, initi-
ally introduced in Definition 3.17, to take the ZEN constraints into conside-
ration.

Definition 3.24. We define the multi-dimensional value set of a set of ZEN
variables z1, . . . , zn as the set of tuples that are both value-valid and index-
valid:

V (z1, . . . , zn) =
⋃

∀ (e1,...,en)∈Vz1×...×Vzn ∧
valid(e1,...,en)∧ valid(ϑ−1(e1),...,ϑ−1(en))

(e1, . . . , en) .

3.2.9 ZEN Performance Directive

For performance-oriented program development, the user commonly requires
information about the execution of specific code regions such as the overall
execution time, the number of cache misses, the communication time, the
synchronisation time, or the floating-point operations per second. To address
multi-experimental performance analysis, we include support in the ZEN lan-
guage to specify performance metrics to be measured for specific code regions
of the application through ZEN performance directives .

In contrast to the other ZEN directives that have general applicability,
the ZEN performance directives is only meaningful in the context of parallel
applications following the shared and distributed processing model introdu-
ced in Section 2.6.3. The parallel programming paradigms supported in our
implementation are MPI, OpenMP, and HPF. The scope of the ZEN per-
formance directive can be global to the entire enclosing ZEN file or can be
limited to a local code region:

60 3 The ZEN Experiment Specification Language

global-perf-dir is CR cr mnem-list PMETRIC pm mnem-list
local-perf-dir is CR cr mnem-list PMETRIC pm mnem-list BEGIN

code-region
END CR

The ZEN performance directive defines two clauses associated with two sets
of mnemonics:

1. Code region mnemonics (cr mnem) are associated with the CR clause and
define the code regions within the scope of the directive that are going
to be instrumented;

2. Performance metric mnemonics (pm mnem) are associated with the
PMETRIC clause and define the performance metrics to be measured for
the indicated code regions.

Definition 3.25. A code region CR is a quadruple that associates a ZEN
application A, a ZEN file Z, a start line number ls, and an end line number
le:

CR = (A,Z, ls, le),

where ls, le ∈ �∗. A performance measurement, denoted as M, is an asso-
ciation between a performance metric and a code region:

M = (pm mnem, CR).

Let d ∈ Z denote a ZEN performance directive that specifies a set of n
code regions and p performance metric mnemonics. The set of performance
measurements defined by d and denoted as M(d) is given by to the cross
product of the two mnemonic lists:

M(d) =
p⋃

j=1

pm mnemj ×

⎛

⎜⎜⎝
n⋃

i=1

⋃

∀ CR∈scope(d)∧
CR is cr mnemi

CR

⎞

⎟⎟⎠ .

Informally, a global performance directive d collects performance metrics for
all the code regions of the ZEN file that contains d. The code region types
are specified in the CR clause and the performance metrics in the PERF clause
of d. The local performance directive restricts the performance metrics and
the code regions to the corresponding local scope. The local performance
directives can be also nested.

Example 3.26 presents an excerpt of a hybrid parallel application desi-
gned for SMP clusters that uses OpenMP for intra-node parallelization and
MPI for inter-node communication. This example defines one global ZEN
performance directive d1, one local ZEN performance directive d2, the en-
tire program code region CR P, one OpenMP parallel region CR OMPPA, and

3.2 Formal Language Specification 61

one OpenMP parallel loop CR OMPDO. The metrics specified by the two ZEN
performance directives are the wall-clock execution time WTIME, the data mo-
vement ODATA (i.e. the MPI communication time), the level two data cache
misses L2 DCM, and the control of parallelism (i.e. OpenMP fork, join, loop
scheduling, and barrier). This example generates therefore the following set
of performance measurements given the directive nests displayed:

M(d1) = {(WTIME, CR P), (WTIME, CR OMPPA), (WTIME, CR OMPDO),
(ODATA, CR P), (ODATA, CR OMPPA), (ODATA, CR OMPDO)};

M(d2) = {(L2 DCM, CR OMPDO), (OCTRP, CR OMPDO)}.

Example 3.26 (ZEN performance directive).

d1: !ZEN$ CR CR_P, CR_OMPPA PMETRIC WTIME, ODATA
. . .

CR_OMPPA: !$OMP PARALLEL NUM_THREADS(4)
. . .

CR_OMPPA: !$OMP END PARALLEL
d2: !ZEN$ CR CR_OMPPA PMETRIC L2_DCM, OCRTP BEGIN

. . .
CR_OMPDO: !$OMP PARALLEL DO NUM_THREADS(4)

. . .
CR_OMPDO: !$OMP END PARALLEL
d2: !ZEN$ END CR

We implement the ZEN performance directives based on the SCALEA [181]
instrumentation engine and overhead analysis tool built on top of the Vienna
Fortran Compiler [21] that translates HPF programs into mixed OpenMP and
MPI source code equivalents. We currently support approximately 50 code
regions (e.g. CR P = entire program, CR L = all loops, CR OMPPA= all OpenMP
parallel loops) and 140 performance metric mnemonics (e.g. ODATA = data
movement, OSYNC = synchronisation, ODATA L2 = number of level 2 cache
misses) for the OpenMP, MPI, and HPF programming paradigms. We give
a complete list of the code regions and the performance metric mnemonics
supported by our implementation in Appendix 10.2 and 10.4, respectively.

Definition 3.27. Let M(A) denote the set of a performance measurements
of a ZEN application defined through ZEN performance directives:

M(A) =
⋃

∀ d∈Z ∧∀Z∈VA

M(d).

We define an experiment as a tuple (AI,M) that associates a ZEN app-
lication instance AI ∈ VA with a target execution site M. A performance
data is a function which quantifies each performance measurement for one
experiment:

62 3 The ZEN Experiment Specification Language

δM : M(A) × VA → �.

A performance study experiment is a triplet (AI,M, δM (M(A) ×AI)) where
AI ∈ VA and δM (M(A) ×AI) is the image of the performance data function
projected over the sub-domain M(A) ×AI.

Informally, a performance study experiment associates an experiment with
the complete set of performance data collected after executing the experi-
ment on a certain site, as specified by the complete set of ZEN performance
directives.

3.2.10 Parameter Study Experiment

In this section we use the opportunity to define a parameter study experiment
as natural side-effect of the formalism presented in this chapter.

Definition 3.28. Let Zo denote an output file of a ZEN application A.
We represent an output parameter as a tuple (Zo, string-pattern), where
string-pattern is a unique pattern that prefixes the output parameter within
the output file Zo. Let OP(A) denote the complete set of output parameters
of the ZEN application A. We define an output data as a function:

ε : OP(A) → �,

and a parameter study experiment as a tuple: (AI, ε(OP(A))), where AI ∈
VA, and ε(OP(A)) is the image of the output data function.

Definition 3.28 illustrates that the target execution site of a parameter study
experiment is irrelevant.

3.2.11 Experiment Generation Algorithm

The ZEN constraints act as a filter over the cross product of all the ZEN
variable value sets of a ZEN application. In this section we present an efficient
algorithm for generating the valid tuples of ZEN elements, as defined by the
multi-dimensional value set in Definition 3.24.

A straight-forward algorithm which evaluates according to Definition 3.24
all the p constraints for all the tuples of the cross product V1 × . . . × Vn,
has a mathematical complexity of O (p · no), where o denotes the average
cardinality of the value sets. This complexity can be reduced by shifting the
focus from the value sets to the ZEN constraints, which are likely to be defined
over a significantly smaller subset of ZEN variables. The idea of our algorithm
is to filter the invalid tuples from the beginning without generating the full
cross product which avoids further unnecessary and redundant constraint
tests. With this approach, the complexity of the algorithm is reduced to
O(p no), where n is represents the average number of ZEN variables in a
ZEN constraint logical expression. The improvement comes obviously from
the fact that n � n.

3.2 Formal Language Specification 63

Definition 3.29. Let Si1 , . . . , Sir , Sj1 , . . . , Sjs denote r + s arbitrary sets,
(vi1 , . . . , vir) ∈ Si1 × . . . × Sir and (vj1 , . . . , vjs) ∈ Sj1 × . . .× Sjs . We define
the composition operator ⊗ between two tuples as follows:

(vi1 , . . . , vir)
⊗

(vj1 , . . . , vjs)
=

⎧
⎪⎪⎨

⎪⎪⎩

(vk1 , . . . , vkt), ∀ Siu = Sjw ∈ {Si1 , . . . , Sir} ∩ {Sj1 , . . . , Sjs},
1 ≤ u ≤ r ∧ 1 ≤ w ≤ s, viu = vjw ;

(), ∃ Siu = Sjw ∈ {Si1 , . . . , Sir} ∩ {Sj1 , . . . , Sjs},
1 ≤ u ≤ r ∧ 1 ≤ w ≤ s ∧ viu �= vjw ,

where:

(vk1 , . . . , vkt) ∈ Sk1 × . . . × Skt ;
{Sk1 , . . . , Skt} = {Si1 , . . . , Sir} ∪ {Sj1 , . . . , Sjs} ;

(vi1 , . . . , vir) = Πi1,...,ir (vk1 , . . . , vkt);
(vj1 , . . . , vjs) = Πj1,...,js(vk1 , . . . , vkt).

The composition operator ⊗ has the following properties:

1. commutativity: A ⊗ B = B ⊗ A;
2. associativity: A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C;
3. idempotency: A ⊗ A = A;
4. neutral element: A ⊗ () = A;
5. (G,⊗) is an Abelian group, where G = Sk1 × . . . × Skt .

Lemma 3.30. Let z1, . . . , zn denote n ZEN variables and let γ1, . . . , γp de-
note p (value set or index domain) constraints over the n ZEN variables,
where log-expr denotes a logical expression:

γi : Vi1 × . . . × Viq, γi = log-expr(Vi1, . . . ,Viq),
{Vi1, . . . ,Viq} ⊂ {Vz1 , . . . ,Vzn}, ∀ i ∈ [1..p],

and ti ∈ Vi1 × . . .×Viq, γ1(ti) = true, ∀ i ∈ [1..p]. Then t1⊗ . . .⊗ tp is valid,
denoted as valid(t1 ⊗ . . . ⊗ tp).

Proof. The proof of this lemma distinguishes two cases:

Case 1: t1 ⊗ . . . ⊗ tp = (). The empty tuple is obviously valid;
Case 2: t1 ⊗ . . .⊗ tp �= (). Assuming that t1 ⊗ . . .⊗ tp is not valid, according

to the Definition 3.24 there exists a constraint:

γh : Vh1 × . . . × Vhq → boolean,

such that γh(th) = false, where th = Πh1,...,hq(t1 ⊗ . . . ⊗ tp). Since
γ1, . . . , γp are all the constraints defined by the ZEN application, then
γh ∈ {γ1, . . . , γp}, which contradicts one of the p constraints.

The experiment generation algorithm illustrated in pseudocode in Algo-
rithm 1 receives as input n ZEN variables and p (value set or index do-
main) constraints and works according to the workflow depicted in Figure 3.7,
where:

64 3 The ZEN Experiment Specification Language

Algorithm 1. The experiment generation algorithm.
1: function experiment-generator(z1, . . . , zn, γ1, . . . , γp)

2:
γi : Vi1× . . . × Viq, γi = log-expr(Vi1, . . . ,Viq),

{Vi1, . . . ,Viq} ⊂ {Vz1 , . . . ,Vzn} , ∀ i ∈ [1..p]
� Precondition

3: for all i ∈ [1..p] do
4: Ii ← Vi1 × . . . × Viq

5: Ei ←
⋃

∀ (ei1,...,eiq)∈Vi1×...×Viq

∧ γi(ei1,...,eiq)=true

(ei1, . . . , eiq)

6: end for
7: I ← Vzl1 × . . . × Vzlx , ∀ γm : Vzm1 × . . . × Vzmy → boolean ∧

∧ {Vzl1 , . . . ,Vzlx } ∩ {Vzm1 , . . . ,Vzmy } = ∅
8: V (z1, . . . , zn) ←

⋃
∀ (e11,...,e1q)∈E1

∧ ... ∧
∀ (ep1,...,epq)∈Ep

(e11, . . . , e1q) ⊗ . . . ⊗ (ep1, . . . , epq)

9: return V (z1, . . . , zn)
10: end function

1

. . .

I1

pIp

I

E1

Ep

Fig. 3.7. The experiment generation algorithm data flow.

• Ii is the cross product of the value sets of the ZEN variables referred by
the constraint γi, ∀ i ∈ [1..p] (line 4);

• Ei are the valid tuples that fulfil the constraint γi, ∀ i ∈ [1..p] (line 5);
• I is the multi-dimensional value set of the ZEN variables not referred by

any ZEN constraint (line 7);
• V is the multi-dimensional value set, obtained by applying the composition

operator to the valid tuple elements of the cross product E1× . . .×Ep×I
(line 8).

Based on the Lemma 3.30, the tuples belonging to the set V(z1, . . . , zn) are
valid.

Example 3.31 (Constraint evaluations).

!ZEN$ ASSIGN A = { 1 : 100 }
!ZEN$ ASSIGN B = { 1 : 100 }
!ZEN$ ASSIGN C = { 1 : 100 }
!ZEN$ CONSTRAINT VALUE A == B
!ZEN$ CONSTRAINT VALUE B == C

3.2 Formal Language Specification 65

Example 3.31 defines three ZEN variables with the same value set:

VA = VB = VC =
100⋃

i=1

i.

The data flow multi-dimensional value sets computed by the experiment ge-
neration algorithm according to Figure 3.7 are as follows:

I1 = VA × VB;

I2 = VB × VC ;
I = ∅;

E1 =
⋃

∀ a∈VA ∧∀ b∈VB ∧ a=b

(a, b);

E2 =
⋃

∀ b∈VB ∧∀ c∈VC ∧ b=c

(b, c);

E =
⋃

∀ a∈VA ∧∀ b∈VB ∧∀ c∈VC ∧ a=b=c

(a, b, c),

where:

(a, b) ⊗ (b, c) = (a, b, c), ∀ a ∈ VA ∧ ∀ b ∈ VB ∧ ∀ c ∈ VC .

Since |I1| = |I2| = 104 and |E1| = |E2| = 102, the experiment generation
algorithm evaluates 3 · 104 constraints. In contrast, a straight-forward algo-
rithm, which evaluates both ZEN constraints on all the tuples of the cross
product A×B×C according to the Definition 3.24, performs 2·106 constraint
evaluations that is two orders of magnitude higher.

3.2.12 Online Monitoring and Analysis

The performance and parameter study experiments described in Sections 3.2.9
and 3.2.10 assume that the performance and the output parameter data are
available post-mortem (or offline) after the experiments completed. This re-
striction is often critical for users who need access to intermediate data from
the application on-the-fly as the experiments progress. The Grid computing
that defines applications running on unreliable resources is especially prone
to such situations, when online data received from Grid sites unpredictably
overloaded by some external users can be invaluable in taking decisive run-
time steering decisions, for example for completing the application within a
required or expected deadline.

Often users are interested in being notified of important events that are
specific to their application, e.g. when a certain variable changed its value
or when a specific performance metric exceeded a critical threshold. To meet
such requirements, we extended the ZEN language with event directives for

66 3 The ZEN Experiment Specification Language

the specification and collection of online events and runtime data from run-
ning experiments. The event directives proposed in this section are part of a
more general event framework which we will present in detail in Chapter 5
(see Section 5.6).

ZEN Event Directive

We introduce the ZEN event directive to enable the user be promptly infor-
med of well-defined situations that occur during the runtime execution of an
application. We define the ZEN event directive with the following syntax:

zen-event is EVENT ident [FILTER bool-expr] [SAMPLE rate]
ident is string

We define three clauses as part of the ZEN event directive:

1. EVENT defines the event identifier ident which must be an arbitrary unique
string for an application;

2. FILTER is an optional clause that filters the events to those which satisfy
the associated boolean expression. The syntax of the filtering condition
defined over a set of program variables is identical to the one defined by
the ZEN constraint directive in Section 3.2.8. The directive defines no
semantic analysis to examine whether the program variables referred by
the boolean expression are valid within the runtime evaluation scope of
the filtering condition. An eventual ”variable not found” error will be
produced by a subsequent ZEN file compilation;

3. SAMPLE is an optional clause which determines the directive applicability
mode, as follows:
a) procedural mode is selected by omitting the SAMPLE clause. Whenever

the program counter reaches the directive at runtime, an event of type
ident is generated if the filtering condition yields true. The variables
involved in the filtering condition must be valid within the enclosing
scope of the directive;

b) threaded mode is selected by introducing the SAMPLE clause which spe-
cifies the rate (in samples per second) at which the filtering condition
shall be evaluated. If the filtering condition yields true, an event of
type ident is generated. In threaded mode, the variables involved in
the filtering condition must have global scope.

Example 3.32 (ZEN event directive).

!ZEN$ EVENT N1000 FILTER N > 1000 SAMPLE 1

Example 3.32 defines a ZEN event directive operating in the threaded mode,
which generates an event of the type N1000 as soon as the program variable
N is greater than 1000. The variable N must be global and is sampled every
second, which defines the accuracy of the event.

3.2 Formal Language Specification 67

ZEN Performance Directive

To support online performance analysis of parallel applications, we extended
the ZEN performance directive introduced in Section 3.2.9 with three new
clauses for expressing performance events:

global-perf is CR cr mnem-list PMETRIC pm mnem-list
[EVENT ident] [SAMPLE rate] [FILTER bool-expr]

local-perf is CR cr mnem-list PMETRIC pm mnem-list
[EVENT ident] [SAMPLE rate] [FILTER bool-expr] BEGIN
code-region
END CR

The semantics of the three additional (and also optional) clauses are as fol-
lows:

1. EVENT defines the event type;
2. SAMPLE is an event parameter which defines the rate at which the per-

formance metrics specified by the directive are periodically sampled. No
sampling is performed if this clause misses (i.e. post-mortem analysis).
The measurement unit is samples per second. For each measurement, an
event of type ident is generated if the boolean expression specified by
the FILTER clause yields true (or misses). The sampling rate defines the
expiration time of each event;

3. FILTER defines a filter as a boolean expression over the performance me-
tric mnemonics specified by the directive. The performance mnemonics
referred by the boolean expression must be present within the PMETRIC
clause. An expression evaluation occurs at runtime at the rate specified
by the SAMPLE clause and, if the evaluation yields true, an event of type
ident is generated.

We implement the online clauses of the ZEN performance directive as part of
the Process Manager sensor for dynamic instrumentation of running processes
which we will present in Section 5.4.2.

Example 3.33 (Online ZEN performance directive).

!ZEN$ CR CR_P PMETRIC ODATA, WTIME EVENT comm SAMPLE 4
FILTER ODATA > WTIME / 2

Example 3.33 illustrates a global ZEN performance directive which measures
the execution time and the communication time of the entire program. The
two metrics are sampled four times per second. An event of type comm is
generated if the communication overhead ODATA dominates (i.e. is greater
than half of) the wall-clock execution time WTIME.

68 3 The ZEN Experiment Specification Language

3.3 Summary

In this section we presented a formal definition of a directive-based language
called ZEN for the specification of a large number of experiments for per-
formance and parameter studies of parallel applications. Substitute and assi-
gnment directives with arbitrary scopes allow compact specification of large
value sets for arbitrary application parameters, including input problem pa-
rameters, machine sizes, software libraries, compilation options, or advanced
parallelization strategies like array distributions or loop scheduling strategies.
Performance directives implemented on top of a complete Fortran 90 compi-
ler front-end allow us to request approximately 140 performance metrics for
50 different code regions types of parallel applications. Constraint directives
implemented based on an efficient experiment generation algorithm genera-
tes the complete set of experiments while filtering the experiments with no
useful practical meaning. In addition, we designed and implemented online
event and performance directives to support runtime on-the-fly analysis of
applications on dynamic Grid infrastructures. We illustrated a variety of rea-
listic examples of employing the directives defined by the ZEN experiment
specification language for performance and parameter studies of OpenMP,
MPI, and HPF parallel applications.

4

ZENTURIO Experiment Management Tool

We designed ZENTURIO [140, 144] as a tool to automatically generate and
conduct large number of experiments in the context of large scale perfor-
mance and parameter studies on cluster and Grid architectures. ZENTURIO
uses the ZEN language presented in Chapter 3 to specify a large set of per-
formance and parameter study experiments in a compact and user friendly
manner. Thereafter, it automatically generates, conducts, and analyses the
performance and output data through a distributed service-oriented Grid ar-
chitecture shielded from the end-user by means of a graphical User Portal.
ZENTURIO systematically organises the performance and output data pro-
duced by all experiments into a well-defined Experiment Data Repository for
post-mortem analysis.

4.1 User Portal Functionality

The user interacts with the ZENTURIO tool for constructing and conduc-
ting large scale performance and parameter studies through one User Portal
consisting of four panels that export to the user the full functionality using
a graphical and intuitive interface. We designed the User Portal as a small
light-weight program easy to install and manage on the local machine (e.g.
laptop) which shields the end-users from the complexity from the underlying
Grid environment. Figure 4.1 depicts a sample snapshot of the User Portal
main frame conducting a real application, which can be performed in three
modes:

1. Online Grid is the standard mode of operating in a Grid infrastructure.
The user must first authenticate using the GSI credentials (see Secure 2.4)
and generate limited proxy required for secure authentication, encrypted
communication, and credential delegation to the Grid middleware ser-
vices. This mode uses GRAM [47] and DUROC [48] as job managers to
submit experiments to the Grid sites;

R. Prodan and T. Fahringer: Grid Computing, LNCS 4340, pp. 69–112, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

70 4 ZENTURIO Experiment Management Tool

Fig. 4.1. The ZENTURIO User Portal main panel.

2. Online Cluster accommodates a simplified instance of the ZENTURIO
infrastructure on the master front-end computer of the parallel machine.
The middleware Grid services are replaced by ordinary Java objects, while
the GSI security comprising user authentication is disabled. This mode
uses the local job manager of the cluster (e.g. [29, 102, 123, 172, 201])
used by non-Grid users to submit, monitor, and control the experiments
on the parallel machine;

3. Offline employs the User Portal for post-mortem analysis and visualisa-
tion of the data stored in the Experiment Data Repository previous by
experiments conducted by ZENTURIO in the online mode.

4.1.1 ZEN Editor

We designed a so called ZEN editor to provide the user with a friendly graphi-
cal interface which facilitates the annotation of ZEN files with ZEN directives
that hides all syntactic language details (e.g. escape \ characters). The local
scopes of substitute, constraint, and performance directives can be easily in-
dicated through mouse-based code region selection. An important task of the
ZEN editor is to provide a centralised display summary of all the directives
inserted in various ZEN files that may be difficult for a user to remember and
find. Additionally, the editor provides online indication on the total number

4.1 User Portal Functionality 71

Fig. 4.2. The ZEN editor.

of experiments implied by the ZEN directives inserted, which is useful for
tuning the application parameter space to a reasonable size before genera-
ting the full set of experiments. We illustrate a snapshot of the ZEN editor
in Figure 4.2.

4.1.2 Experiment Preparation

The Experiment Preparation is a dialog-box of the User Portal depicted in
Figure 4.3 that assists the user in the specification of a suite of experiments
for performance or parameter study purposes through the following inputs:

1. ZEN application is created by selecting a list of files from arbitrary local
directories, which we categorise into:
a) ZEN files annotated with ZEN directives that must be processed by

the ZEN Transformation System (see Section 3.1.2), which we further
classify as follows:
i. ZEN source files contain source code that requires separate com-

pilation for every individual experiment. In our implementation,
ZEN source files that require performance instrumentation spe-
cified through ZEN performance directives are currently limited
to Fortran 90 source code files that are automatically processed
by the SCALEA instrumentation engine based on the source-to-
source Vienna Fortran Compiler [21];

72 4 ZENTURIO Experiment Management Tool

Fig. 4.3. The Experiment Preparation dialog-box.

ii. ZEN script files are input files, makefiles, job submission scripts,
or any kind of file annotated with ZEN directives that does not
require compilation of the ZEN application instance. This infor-
mation is used by ZENTURIO to optimise the compilation time
of the entire experiment suite;

b) Regular files that do not contain ZEN directives and therefore are
not processed by the ZEN Transformation System and also do not
need separate compilation for each experiment;

Input and output file staging in online Grid mode is achieved through the
GASS [25] functionality and is automatically handled by the GRAM [47]
resource manager (see Section 2.5);

2. compilation directory and compilation command ;
3. execution directory and execution command ;
4. Grid site where to execute the experiments;
5. back-end local scheduler or job manager to use for submitting the ex-

periments. This information is optional and can be also retrieved from
Globus MDS introduced in Section 2.5;

6. output files for parameter study purposes.

After receiving all these inputs, the Experiment Preparation dialog-box auto-
matically contacts the middleware services underneath provided by the ZEN-
TURIO distributed service-oriented architecture which will transparently ge-
nerate, execute, and monitor the progress of experiments, as we will present
in detail in Section 4.4.

4.1 User Portal Functionality 73

4.1.3 Experiment Monitor

The Experiment Monitor is the right panel of the main User Portal dialog-
box depicted in Figure 4.1 which remotely controls and visually monitors
the compilation and execution of experiments on the target Grid site. Upon
selection of a ZEN application in the Experiment Preparation left panel, the
corresponding set of experiments are automatically displayed in the right pa-
nel. The experiments of a ZEN application can be submitted for execution
either individually, or on a collective basis. Each experiment is displayed ac-
companied by its status highlighted using a different colour. Upon clicking
on an experiment, all the ZEN variable instantiations that describe the ex-
periment are tabulated underneath. A filtering capability allows the user to
select, display, or search for a subset of experiments according to specific ZEN
variable instantiations.

4.1.4 Application Data Visualiser

We define in ZENTURIO two types of output data for multi-experimental
post-mortem analysis:

1. performance metrics (e.g. execution time, synchronisation, communica-
tion) are specified through ZEN performance directives that we defined
in Section 3.2.9;

2. output parameters are retrieved from the output files indicated by the
user in the experiment preparation phase through a unique prefix string
pattern (see Section 3.2.10).

We depict in Figure 4.4 a snapshot of the Application Data Visualiser dialog-
box that we employ for automatic performance analysis across multiple ex-
periments. The top-left panel displays the list performance metrics computed
(e.g. barrier, collective communication, control of parallelism) which can be
selected for analysis and visualisation. We organise the performance metrics
in two different tree-based visualisation hierarchies according to the user pre-
ference:

1. Metric-to-Region (see Figure 4.4) displays on the first tree level the com-
plete list of performance metrics computed. The next tree levels below
the metric level display the code region hierarchy for which each parent
metric holds;

2. Region-to-Metric displays the complete hierarchy of code regions for
which performance metrics were collected. The leaves of the tree repre-
sent the performance metrics which were measured for the parent regions
and subregions.

Upon mouse selection of a certain metric, the top-right panel of the Appli-
cation Data Visualiser dialog-box displays the affiliated source code region,

74 4 ZENTURIO Experiment Management Tool

Fig. 4.4. The Application Data Visualiser for performance studies.

if this information is available from the source code compilation. The bot-
tom panel displays the complete set of ZEN variables that annotate the ZEN
application. Every ZEN variable has an associated list-box that contains its
complete value set. To generate a visualisation, the user must select a subset
of experiments and map ZEN variables to visualisation axes by instantiating
each ZEN variable with appropriate ZEN elements. We perform the map-
ping of ZEN variables to visualisation axes by introducing two special ZEN
elements to the value set of each ZEN variable:

1. Wildcard indicates that the ZEN variable is selected as a visualisation
axis. The ZEN elements of the ZEN variable are displayed on the axis
in the order given by the index domain function (see Definition 3.22). A
number of n wildcard selections defines an n+1-dimensional visualisation
diagram;

2. ANY matches any value and indicates that the ZEN variable is irrelevant
for the visualisation and should be ignored. A typical case for an ANY
selection is when the ZEN variable is bound via a ZEN constraint to
another ZEN variable which received a wildcard.

4.1 User Portal Functionality 75

The performance and output analysis data can be either tabulated into plain
text files or graphically represented using a visualisation package that com-
prises linechart, barchart, piechart, and surface diagrams [67]. Our current
implementation is limited to three wildcard ZEN variables which were easy
to integrate and intuitive to visualise using these four types of diagrams. We
predefine the X , Y , and Z axes for each visualisation diagram which can be
indicated in the Application Data Visualiser through three wildcard flavours:
WildcardX, WildcardY, and WildcardZ (i.e. the ZEN variable is displayed on
the X , Y , respectively Z axis). Additionally, we allow the user to select single
or multiple metric-region pairs to be represented in one visualisation. Upon
single metric selection, the metric is mapped to one predefined axis in the vi-
sualisation diagram. Upon multiple metric selection, the metric visualisation
axis must be indicated by the user in the dialog-box menu (i.e. Visualisation
menu item). If no metric wildcard is indicated, only the last selected metric
is visualised.

Figure 4.5 displays a similar Application Data Visualiser dialog-box for
parameter study purposes to visualise the output results across multiple ex-
periments. The performance metric panel is replaced with a list of application

Fig. 4.5. The Application Data Visualiser for parameter studies.

76 4 ZENTURIO Experiment Management Tool

output files, which includes the standard output and standard error streams.
An output parameter is specified by selecting an output file and introducing
a unique string pattern that prefixes the output parameter within the output
file, as formally specified in Section 3.2.10. We use this pattern to extract
the output parameter from the output file of each experiment involved in the
visualisation.

We will give extensive examples on using the Application Data Visualiser
for multi-experimental performance and parameter studies of various real-
world applications in the remainder of this chapter.

4.2 Performance Studies

In this section we present a variety of multi-experimental performance studies
conducted automatically using ZENTURIO experiment management tool on
several real-world scientific parallel applications:

1. an ocean simulation (see Section 4.2.1);
2. a material science kernel (see Section 4.2.2);
3. a photonic application (see Section 4.2.3);
4. a benders decomposition method of a financial application (see Sec-

tion 4.2.4);
5. two three-dimensional Fast Fourier Transform (FFT) kernels (see Sec-

tion 4.2.5);

We defined the application parameters and the performance metrics of inte-
rest using the ZEN directive-based language specified in Chapter 3. Thereaf-
ter, we used the ZENTURIO experiment management tool to automatically
generate and conduct the complete set of experiments. Finally, we employed
the Application Data Visualiser introduced in Section 4.1.4 to automatically
generate customised post-mortem visualisation diagrams that display the va-
riation of any (set of) performance metrics as a function of arbitrary appli-
cation parameters (i.e. ZEN variables).

Unless differently stated, we conducted the experiments presented in this
section on an SMP cluster (called gescher) hosted as a Grid site at the Uni-
versity of Vienna, which consists of 16 SMP nodes interconnected through
both Fast Ethernet and Myrinet networks, where each node contains four
Intel Pentium III Xeon 700 megahertz processors with one gigabyte of RAM.
We used ZENTURIO in online Grid and cluster modes by submitting the
experiments to the dedicated cluster nodes using GRAM [47] and PBS [29]
as local resource manager.

4.2.1 Ocean Simulation

The Stommel model [170] has been thought with the purpose of explaining
the westward intensification of wind-driven ocean currents. In this section we

4.2 Performance Studies 77

present a performance study of a hybrid parallel Fortran 90 implementation
of the Stommel model that uses OpenMP for intra-node shared memory
parallelization and MPI for inter-node network communication.

We specified the following parameters for this application through ZEN
directives:

1. The machine size consists of two dimensions:
a) The number of threads per SMP node are controlled by the input

parameter of the NUM THREADS clause of the OpenMP PARALLEL di-
rective (see Example 4.1);

b) The number of SMP nodes are controlled through directives inserted
in the Globus RSL script as illustrated in Example 4.3.

We submitted each MPI experiment as a single GRAM job type which
allows us to switch between various local communication libraries. We
allocated one MPI process per SMP node by assigning to the count RSL
parameter in Example 4.3 a value equal to the number of SMP nodes
multiplied with the number of processors per node (i.e. four in our case).
The shell script script.sh that we used to start the MPI application (see
Example 4.2) sets the maximum number of MPI processes per node to
one through the MPI MAX CLUSTER SIZE environment variable. One single
MPI process per SMP node leaves the intra-node parallelization to the
OpenMP compiler;

2. Two interconnection networks (i.e. Fast Ethernet and Myrinet) were ex-
amined by linking the application with the corresponding MPI Chame-
leon (MPICH) library implementation [91]. We indicated the MPI im-
plementation library locations by annotating the MPILIB variable in the
application Makefile, as illustrated in Example 4.4. The constraint di-
rective makes the correct association between the implementation specific
MPI libraries and external MPIRUN ZEN variable (defined in Example 4.2)
which contains the path to the mpirun script that starts the application;

3. The problem size was varied by changing the matrix (ocean) size and the
number of iterations, as shown in Example 4.5;

4. The performance metrics of interest for every experiment are the exe-
cution time and the communication overhead (i.e. the mnemonics WTIME
and ODATA), which we measured for the entire program and the outermost
OpenMP parallel loop (i.e. the mnemonics CR P and CR OMPPA) expressed
by the ZEN performance directive in Example 4.1.

Example 4.1 (Source code excerpt).
!ZEN$ CR CR_P, CR_OMPPA PMETRIC ODATA, WTIME
. . .
!ZEN$ SUBSTITUTE NUM_THREADS\(4\) = { NUM_THREADS({1:4}) }
!$OMP PARALLEL NUM_THREADS(4)
!ZEN$ END SUBSTITUTE
. . .
!$OMP END PARALLEL

78 4 ZENTURIO Experiment Management Tool

Example 4.2 (Shell script – script.sh).

#!/bin/sh export
MPI_MAX_CLUSTER_SIZE=1
cd $PBS_O_WORKDIR
nodes = ‘wc -l < $PBS_NODEFILE‘
MPIRUN = /opt/local/mpich/bin/mpirun
#ZEN$ ASSIGN MPIRUN = { /opt/local/mpich/bin/mpirun,

/opt/local/mpich_gm/bin/mpirun }
$(MPIRUN) -np $nodes -machinefile $PBS_NODEFILE omp_02_sis

Example 4.3 (Globus RSL script).

(*ZEN$ SUBSTITUTE count\=4 = { count={1:40:4} }*)
& (count=4)
(jobtype=single)
(directory="/home/radu/APPS/STOMMEL_OMPI")
(executable="script.sh")
(stdin="st.in")
(stdout="st.out")

Example 4.4 (Makefile).

MPILIB = /opt/local/mpich/lib
#ZEN$ ASSIGN MPILIB = { /opt/local/mpich/lib,

/opt/local/mpich_gm/lib }
#ZEN$ CONSTRAINT INDEX MPILIB == script.sh:MPIRUN
. . .
$(TARGET): $(TARGET).o

$(F90) $(TARGET).o -o $@ -L$(MPILIB) -lmpich

Example 4.5 (Input data file – st.in).

!ZEN$ SUBSTITUTE points = { 200, 400 }
points points
2000000, 40000000
1.0e-9 2.25e-11 3.0e-6

!ZEN$ SUBSTITUTE iters = { 20000, 40000 }
iters

!ZEN$ CONSTRAINT INDEX points == iters

We inserted only nine ZEN directives in three files of this application to
specify a total of 160 experiments:

|V(nodes=2, count=4, MPIRUN, NUM THREADS(4), MPILIB, points, iters)| = 160.

4.2 Performance Studies 79

For a 200×200 problem size, the application does not scale with the machine
size (see Figure 4.6(a)) which is explained by the excessive MPI communi-
cation (see Figure 4.6(b)). This problem size, however, scales well with the
number of threads on a single SMP node. For larger number of nodes, the
number of threads does not influence the overall performance due to the
large MPI communication overhead that dominates the intra-node computa-
tion parallelised using OpenMP. The same problem size scales much better
over the high performance Myrinet network compared to the commodity Fast
Ethernet (see Figure 4.6(c)).

The 400 × 400 problem size shows a very reasonable scaling behaviour
until four SMP nodes (see Figure 4.7(a)). Using more than four SMP nodes
no longer decreases the execution time substantially because of the increased
communication overhead and a decreasing ratio between the computation and
the communication times (see Figure 4.7(b)). For smaller number of nodes,
the computation to communication time ratio is high and, therefore, the
intra-node OpenMP parallelization yields a satisfactory scaling behaviour.
As expected, increasing the number of threads decreases the execution time.
Similarly, this problem size scales well over the high performance Myrinet
network (see Figure 4.7(c)).

We elaborated a second experiment to determine the number of nodes
which produce the lowest execution time for different problem sizes over Fast
Ethernet (see Figure 4.8(a)). We annotated the machine and the problem
sizes as shown in the Examples 4.3 and 4.5. Employing four OpenMP par-
allel threads per node yields the best performance for all experiments. As
expected, the optimal number of SMP nodes increases with the problem size.
The flat parts of the curve are caused by imbalanced work distribution on
odd number of processors.

We conducted a third experiment to examine different OpenMP loop sche-
duling strategies and their performance effects. We varied the scheduling stra-
tegy and the chunk size using a ZEN substitute directive, as illustrated in
Example 3.14 (see Section 3.2.5, Chapter 3). We requested the execution time
of the outermost OpenMP parallel loop through one ZEN performance direc-
tive, as shown in Example 4.1. Figure 4.8(b) illustrates that for the problem
size examined, the STATIC scheduling performs better than the DYNAMIC and
GUIDED strategies. The optimal chunk size experienced is 50. Static scheduling
is superior because it implies the least runtime scheduling overhead.

4.2.2 Linearised Augmented Plane Wave

Linearised Augmented Plane Wave (LAPW) is a material science kernel, part
a larger application called WIEN2k [160] (see Section 6.3.1), that calculates
the potential of the Kohn-Sham eigen-value problem. This section presents a
performance study of a Fortran 90 MPI implementation kernel of this method,
called LAPW0.

80 4 ZENTURIO Experiment Management Tool

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Number of SMP Nodes

E
xe

cu
ti

o
n

 T
im

e
[s

ec
.]

1 Thread 2 Threads 3 Threads 4 Threads

(a) Fast Ethernet network.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Number of SMP Nodes

C
o

m
m

u
n

ic
at

io
n

 T
im

e
[s

ec
.]

1 Thread 2 Threads 3 Threads 4 Threads

(b) Fast Ethernet network.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Number of SMP Nodes

E
xe

cu
ti

o
n

 T
im

e
[s

ec
.]

1 Thread 2 Threads 3 Threads 4 Threads

(c) Myrinet network.

Fig. 4.6. The Stommel model performance results for various intra-node and inter-
node machine sizes (I), 200 × 200 problem size, 20000 iterations.

4.2 Performance Studies 81

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10

Number of SMP Nodes

E
xe

cu
ti

o
n

 T
im

e
[s

ec
.]

1 Thread 2 Threads 3 Threads 4 Threads

(a) Fast Ethernet network.

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10

Number of SMP Nodes

E
xe

cu
ti

o
n

 T
im

e
/

C
o

m
m

u
n

ic
at

io
n

 T
im

e
R

at
io

1 Thread 2 Threads 3 Threads 4 Threads

(b) Fast Ethernet network.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

Number of SMP Nodes

E
xe

cu
ti

o
n

 T
im

e
[s

ec
.]

1 Thread 2 Threads 3 Threads 4 Threads

(c) Myrinet network.

Fig. 4.7. The Stommel model performance results for various intra-node and inter-
node machine sizes (II), 400 × 400 problem size, 40000 iterations.

82 4 ZENTURIO Experiment Management Tool

0

2

4

6

8

10

12

200 300 400 500 600 700 800 900 1000

Matrix Size

O
p

ti
m

al
 N

u
m

b
er

 o
f

S
M

P
 N

o
d

es

(a) Various problem sizes, four threads, 20000 itera-
tions.

0

10

20

30

40

50

60

70

80

1 10 20 30 40 50 60 70 80 90 100

Chunk Size

E
xe

cu
ti

o
n

 T
im

e
[s

ec
.]

STATIC DYNAMIC GUIDED

(b) Loop scheduling strategies, 200 × 200 problem
size, 20000 iterations.

Fig. 4.8. The Stommel model performance results (III).

We annotated again a set of interesting application parameters by means
of ZEN directives:

1. The machine size is controlled by the nodes=1 and no procs ZEN va-
riables in the PBS script used to submit the experiments to the cluster
(see Example 4.6). In this performance study we used ZENTURIO in
cluster mode which bypasses GRAM (see Section 4.1). The ZEN variable
nodes=1 controls the number of SMP nodes and no procs indicates the
number of parallel MPI processes to execute. Each node receives four
MPI processes before a new node is allocated. The constraint directive
ensures that the correct amount of SMP nodes is allocated for each num-
ber of MPI processes. We could not execute a sequential version of this

4.2 Performance Studies 83

application because of physical memory limitations on one SMP node.
The PBS script also assigns the path of the mpirun command to the
MPIRUN environment variable through one ZEN assignment directive;

2. The interconnection network is varied by annotating the MPILIB environ-
ment variable that specifies the path to the Fast Ethernet and Myrinet
MPICH library implementations in the Makefile script used to compile
and build the application (see Example 4.7). We used shared memory for
MPI communication inside one SMP node. The ZEN constraint directive
ensures the correct association between the network specific MPI library
and the corresponding mpirun implementation script;

3. The performance metrics measured are the execution time (i.e. WTIME
mnemonic) and the communication time (i.e. ODATA mnemonic) for the
entire program (i.e. CR P mnemonic). This is expressed by the ZEN per-
formance directive from Example 4.8;

4. The problem size is expressed by pairs of .clmsum and .struct input
files indicated in the lapw0.def input file (see Example 4.9). We used
one ZEN substitute directive to specify the file locations that represent
the problem sizes of interest which correspond to 8, 16, 32, and 64 atoms.

Example 4.6 (PBS script – run.pbs).

#ZEN$ SUBSTITUTE nodes\=1 = { nodes={1:40} }
#PBS -l walltime=0:29:00,nodes=1:fourproc:ppn=4
cd $PBS_O_WORKDIR
#ZEN$ ASSIGN MPIRUN = { /opt/local/mpich/bin/mpirun,

/opt/local/mpich_gm/bin/mpirun.ch_gm }
no_procs = 16
#ZEN$ ASSIGN no_procs = { 1:40 }
$(MPIRUN) -np $no_procs ../SRC/lapw0 lapw0.def
#ZEN$ CONSTRAINT INDEX 4 * (nodes\=1 - 1) < no_procs &&

no_procs <= 4*nodes\=1 && no_procs != 1

Example 4.7 (Makefile).

#ZEN$ ASSIGN MPILIB = { /opt/local/mpich/lib,
/opt/local/mpich_gm/lib }

#ZEN$ CONSTRAINT INDEX MPILIB == run.pbs:MPIRUN
LIBS = ... -lsismpiwrapper -L$(MPILIB) -lmpich
. . .
$(EXEC): $(OBJS)

$(F90) -o lapw0 $(OBJS) $(LIBS)

Example 4.8 (Fortran source file excerpt – lapw0.F).

. . .
!ZEN$ CR CR_P PMETRIC WTIME, ODATA
. . .

84 4 ZENTURIO Experiment Management Tool

Example 4.9 (Input data file – lapw0.def).

!ZEN$ SUBSTITUTE .125hour ={.125hour, .25hour, .5hour, 1hour}
8,’ktp_.125hour.clmsum’,’old’,’formatted’,0 . . .
20,’ktp_.125hour.struct’,’old’,’formatted’,0 . . .

We inserted eight ZEN directives into four ZEN files, based on which a to-
tal of 320 experiments were automatically generated and executed by ZEN-
TURIO. Figure 4.9(a) shows the scalability of the application for all four
problems sizes examined. The scalability of the algorithm improves by incre-
asing the LAPW0 problem size (i.e. number of atoms). For a problem size
of 8 atoms (i.e. .125hour), LAPW0 does not scale which is partially due to
the extensive communication overhead with respect to the entire execution
time. Figure 4.9(c) shows the contribution of each computed overhead to the
overall execution time of each experiment. For 64 atoms (i.e. 1hour) the app-
lication scales well until 16 processes, after which the execution time becomes
relatively constant.

Surprisingly, the interconnection network does not influence the commu-
nication time (see Figure 4.9(b)) because the blocking time of all message
receive operations dominates the effective transfer of relatively small amount
of data across MPI processes.

4.2.3 Three-Dimensional Particle-in-Cell

The three-Dimensional Particle-In-Cell (3DPIC) [86] is a Fortran 90 MPI
application simulates the interaction of high intensity ultrashort laser pul-
ses with plasma in three-dimensional geometry. In this section we present a
3DPIC performance study based on the following parameter annotations:

1. The machine size is restricted by the peculiarities of this application to 1,
4, 9, 12, 16, 25, and 36 parallel processes which we have expressed through
the count argument of the GRAM RSL script shown in Example 4.10.
Based on the number of processes of one experiment, GRAM allocates
the correct number of dedicated SMP nodes using PBS as back-end local
job manager. We set the job type to single which gave us flexibility in
selecting the local interconnection network. We started the application
using the shell script illustrated in Example 4.11 which assigns to the
MPIRUN ZEN variable the path to the mpirun script;

2. The interconnection network is studied by annotating the application
Makefile as already shown in Example 4.7 (see Section 4.2.2). Similarly,
a constraint directive associates the implementation specific mpirun com-
mand with the correct MPI library;

3. The performance metrics of interest are the execution time and the com-
munication overhead, which we specified as already shown in Example 4.8
(see Section 4.2.2).

4.2 Performance Studies 85

(a) Four problem sizes, Fast Ethernet network.

(b) Network comparison (Fast Ethernet versus Myrinet), 64 atoms
problem size.

(c) Contribution of Myrinet communication overhead to the wall-clock execution
time, 8 atoms problem size.

Fig. 4.9. The LAPW0 performance results for various machine sizes.

86 4 ZENTURIO Experiment Management Tool

Example 4.10 (Globus RSL script – run.rsl).

(*ZEN$ SUBSTITUTE count\=4 = { count={1,1,3,3,4,7,9} }*)
& (count=4)
(jobtype=single)
(directory="/home/radu/APPS/LAPW0/znse_6")
(executable="script.sh"))

Example 4.11 (Shell script – script.sh).

#!/bin/sh
cd $PBS_O_WORKDIR
n = ‘wc -l < $PBS_NODEFILE‘
#ZEN$ ASSIGN MPIRUN ={ /opt/local/mpich/bin/mpirun,

/opt/local/mpich_gm/bin/mpirun.ch_gm }
$(MPIRUN) -np $n -machinefile $PBS_NODEFILE lapw0

We inserted five ZEN directives into four files to generate a total of four-
teen experiments. Figure 4.10(a) indicates a good scalability behaviour of
the 3DPIC application. The use of the Myrinet network yields approxima-
tely 50% performance improvement compared to the Fast Ethernet, which
is explained by the reduced communication time (see Figure 4.10(b)) over
the faster Myrinet network with lower latency and higher bandwidth. Fi-
gure 4.10(c) shows a relatively low ratio between the application execution
time (i.e. one full pie) and the MPI overheads measured, which explains the
good application scalability.

4.2.4 Benders Decomposition

In this section we present a performance study of a parallel HPF+ [20] im-
plementation of a benders decomposition method for structured stochastic
optimisation employed in the context of a financial application [55] (see Sec-
tion 4.3.1). HPF+ directives, which are an extension of the HPF language
for SMP clusters, are used for inter-node and intra-node data distribution.
As part of the performance instrumentation and experiment generation pro-
cess, ZENTURIO compiles the HPF+ application into a hybrid OpenMP and
MPI parallel program using the SCALEA [181] instrumentation engine built
on top of the HPF+ Vienna Fortran Compiler [21]. The translated program
achieves intra-node parallelization through OpenMP directives and commu-
nication across the SMP nodes using MPI communication routines.

We studied the following parameters for this kernel:

1. The machine size consists of two dimensions:
a) The number of SMP nodes is varied by the count=4 ZEN varia-

ble in the Globus RSL script used to submit the experiments in

4.2 Performance Studies 87

(a) Network comparison (Fast Ethernet versus Myrinet).

(b) Communication overhead comparison (Fast Ethernet versus Myrinet).

(c) Contribution of the Myrinet communication overheads to the wall-clock time.

Fig. 4.10. The 3DPIC performance results for various machine sizes.

88 4 ZENTURIO Experiment Management Tool

Grid mode (see Example 4.12). Based on the count RSL parame-
ter, GRAM allocates the corresponding number of nodes and uses
an available local MPI implementation which must be defined by the
user’s default environment. We used MPICH in this experiment on
top of the p4 communication device over Fast Ethernet. The MPICH
specific MPI MAX CLUSTER SIZE environment variable ensures that the
mpirun script starts only one MPI process per SMP node, which lea-
ves the intra-node parallelization to the OpenMP compiler;

b) The number of threads per SMP node is controlled by annotating a
peculiar global configuration file designed by the application devel-
opers (see Example 4.13) which is used in the application for loop
parallelization using the version one of the OpenMP standard (i.e.
the NUM THREADS clause of a PARALLEL region is available only star-
ting with version two of the standard). This is an example of flexibility
which shows how ZENTURIO deals with less elegant or outdated ap-
plication codes that does not constrain the developers to learn state-
of-the-art programming styles, neither forces them adapt their code
to the newest specification standards;

2. The performance metrics of interest for this algorithm are the execu-
tion time, the MPI communication time, and the HPF+ inspector and
executor overheads [20], which we indicated using one ZEN performance
directive similar to the one illustrated in Example 4.8 (see Section 4.2.2).

Example 4.12 (Globus RSL script – run.rsl).

(*ZEN$ SUBSTITUTE count\=4 = {count={1:10}} *)
& (count=4)
(jobtype=mpi)
(environment=(MPI_MAX_CLUSTER_SIZE 1))
(directory="/home/radu/APPS/HANS")
(executable="bw_halo_sis")

Example 4.13 (Configuration file – bench.in).

!ZEN$ SUBSTITUTE threads = { 1:4 }
threads

We inserted three ZEN directives into two files which specify 40 experiments
automatically generated and conducted by ZENTURIO. Figure 4.11(a) dis-
plays a good scalability of this code. Benders decomposition is a compu-
tational intensive code which highly benefits from the inter-node MPI and
intra-node OpenMP parallelization. The overall execution time of the ap-
plication significantly improves by increasing the number of nodes and the
OpenMP threads per SMP node. Figure 4.11(b) displays a very high ratio
between the total execution time (i.e. one full bar) and the HPF and MPI

4.2 Performance Studies 89

overheads which explains the good scalability behaviour. This ratio decrea-
ses for a high number of SMP nodes for which the overheads significantly
degrade the overall performance.

4.2.5 Three-Dimensional FFT Benchmarks

The performance of parallel scientific applications is heavily influenced by
various mathematical kernels like linear algebra software [188] that needs to
be individually optimised for each particular platform to achieve accepta-
ble high performance. In this context, we deployed ZENTURIO at the Paul
Scherrer Institute, part of the Swiss Federal Institute of Technology, for au-
tomatic benchmarking of three-dimensional FFT kernels required for solving
large scale partial differential simulations [138]. In this section we report ex-
perimental results produced by this international synergy effort.

Let A(n, n, n) denote a three-dimensional array. A three-dimensional FFT
on the array A is defined as:

Bx,y,z =
n−1∑

s=0

n−1∑

t=0

n−1∑

u=0

ω±(xs+yt+zu)As,t,u, ∀ x, y, z ∈ [0..n − 1],

where n = 2m and ω = e
2πi
n is the nth root of unity. This computation is

typically parallelised by distributing the x dimension of the cube onto the set
of available processors (see Figure 4.12). As a consequence, the computation
over the inner y and z dimensions can be performed locally on each processor
in parallel independent loops according to the following first two equations:

Cs,t,z =
∑n−1

u=0 ωzuAs,t,u;
Ds,y,z =

∑n−1
t=0 ωytCs,t,z;

Bx,y,z =
∑n−1

s=0 ωxsDs,y,z.

The summation on the x axis, expressed by the last equation above, requires
redistribution of the matrix elements such that each processor can compute
its sum locally. This is performed by rotating the cube around the z dimension
in an operation called transpose. Finally, a second reverse transpose operation
is required to rearrange the data to the original layout (see Figure 4.12).

In this section we present a comparative analysis between two three-
dimensional FFT implementations:

1. Fastest Fourier Transform in the West (FFTW) [83] is a portable subrou-
tine library for computing the discrete Fourier transform in one or more
dimensions of arbitrary input sizes and of both real and complex data.
Existing benchmarks [84] performed on a variety of platforms show that
the performance of FFTW is typically superior to that of other publicly
available FFT implementation and is even competitive with non-portable
and highly optimised vendor codes. The power of FFTW is the ability
to optimise itself to the target machine through some predefined codelets
executed by a planner function before calling the real FFT;

90 4 ZENTURIO Experiment Management Tool

(a) Wall-clock execution time for various intra-node and inter-node machine sizes.

(b) Contribution of the MPI and the HPF overheads to the wall-clock execution
time, for various inter-node machine sizes, four threads per SMP node.

Fig. 4.11. The benders decomposition performance results for various machine
sizes.

4.2 Performance Studies 91

2. wpp3DFFT developed at the Swiss Federal Institute of Technology Zurich
uses a generic implementation of Temperton’s in-place algorithm [176] for
an n = 2m problem size with the particular focus of making the transpose
faster. The optimised algorithm pays a flexibility price, which restricts
the matrix and the machine size to powers of two.

Both applications are implemented in the C language as parallel MPI pro-
grams which we wrapped with a FORTRAN 77 front-end for the purpose of
using the automatic compiler-based instrumentation provided by ZENTU-
RIO. We conducted all experiments on a single SMP cluster hosted at the
Paul Scherrer Institute, comprising 192 dual Pentium III SMP nodes running
at 500 megahertz with one gigabyte of memory and interconnected through
100 megabit per second Fast Ethernet networks. The nodes are organised into
24 node frames interconnected through one gigabit per second optical links.

We varied the following three application parameters:

1. The problem size ranges from 23 to 28 which we expressed through the
ZEN variable problemsize in Example 4.14. We could not run larger
problem sizes due to memory limitations on one SMP node;

2. The communication library is expressed by the MPI HOME ZEN variable in
the application Makefile (see Example 4.16). The MPI implementation
libraries available on the cluster which we compared are the Local Area
Multicomputer (LAM) [33] and MPICH with the P4 communication de-
vice [91]. We used shared memory for communication within one SMP
node;

3. The machine size ranges from 21 to 26 dual nodes, each node running two
MPI processes. The MPIRUN ZEN variable refers to the implementation
specific mpirun script which is associated with the MPI library location
parameterised externally in the Makefile through one ZEN constraint
directive. We could not run larger machine sizes because of cluster queue
policy restrictions;

4. The performance metrics of interest are the total execution time and the
transpose time which we measured using the ZEN performance direc-
tive illustrated in Example 4.14. We measured the MPI communication
overheads using the SCALEA MPI wrapper library.

Z Direction FFT

Z
Y

X

Y

X

Z

Transpose
Y Y

X X

Z Z

Transpose

Y Direction FFT X Direction FFT Original Distribution

Fig. 4.12. The parallel three-dimensional FFT computation.

92 4 ZENTURIO Experiment Management Tool

Example 4.14 (FFT Fortran wrapper – FLauncher.f).

problemsize=64
*ZEN$ ASSIGN problemsize = { 2**{3:8} }
minutes=5
call MPI_INIT(ierr)
call pre_measure(problemsize, minutes)
*ZEN$ CR wpp3dfft PMETRIC WTIME BEGIN
call to_measure()
*ZEN$ END CR
call post_measure()
call MPI_FINALIZE(ierr)

Example 4.15 (PBS script – run.pbs).

#!/bin/sh
#ZEN$ SUBSTITUTE nodes\=1 = { nodes\={2,4,8,16,32,64} }
#PBS -l walltime=3600,nodes=1:ppn=2
nproc=‘wc $PBS_NODEFILE | awk ’{print $1}’‘
LAM_RUN="/usr/local/apli/lam/bin/mpirun -np $nproc wpp3DFFT"
MPICH_RUN="/usr/local/apli/mpich/bin/mpirun -nolocal

-np $nproc -machinefile $PBS_NODEFILE wpp3DFFT"
/usr/local/apli/lam/bin/lamboot -v $PBS_NODEFILE
MPIRUN=$LAM_RUN
#ZEN$ ASSIGN MPIRUN = { $LAM_RUN, $MPICH_RUN }
#ZEN$ CONSTRAINT INDEX MPIRUN == Makefile:MPIHOME
$MPIRUN

Example 4.16 (Makefile).

MPI_HOME = /usr/local/apli/lam
#ZEN$ ASSIGN MPI_HOME = { /usr/local/apli/lam,

/usr/local/apli/mpich }
. . .
$(EXEC): $(OBJS)
$(MPI_HOME)/bin/mpicc -o $(EXEC) $(OBJS) $(LIBS)

We inserted a total of six ZEN directives into three application files to ex-
press 72 experiments automatically generated and conducted by ZENTURIO.
Since small FFT problems have extremely short execution times (i.e. order
of milliseconds), they are prone to perturbations coming from the opera-
ting system, instrumentation probes, or other background processes that run
with low scheduling priority. To avoid such consequences, we repeated each
experiment for a long enough amount of time (i.e. five minutes) and finally
computed the mean of all measurements.

4.2 Performance Studies 93

Figures 4.13(a) and 4.13(b) display the speedup curves of the two FFT
algorithms normalised against the lowest machine size executed (i.e. two dual
nodes), since we did not have a sequential implementation available. The spee-
dup is poor for small problem sizes for which the parallelization across a large
number of processors deteriorates the performance. Large problem sizes offer
some speedup until a certain critical machine size. The explanation for the
poor speedup curves is given by the large fraction from the overall execution
time used by the transpose operation, denoted as region 2 in Figure 4.14(a),
and the MPI overheads, in particular the MPI Sendrecv replace routine used
to interchange the elements in the transpose (FFTW shows similar overhead
curves). It is interesting to notice that both algorithms scale reasonably well
until 16 dual nodes for a 28 problem size beyond which the performance degra-
des significantly. The reason is the fact that larger machine sizes spawn across
multiple cluster frames which communicate through three bus switches, two
Ethernet, and two Fast Ethernet network cards that significantly affect the
transpose communication time. For small problem sizes, the execution time
is basically determined by the transpose overhead that naturally increases
proportional with the machine size (see Figures 4.15(a) and 4.14(b)). In con-
trast to wpp3dFFT, FFTW shows an interesting behaviour of keeping the
transpose and the total execution time constant even for large machine sizes,
which we explain in the next paragraphs through a load balance analysis.

ZENTURIO offers a series of data aggregation functions, comprising ma-
ximum, minimum, average, or sum, for metrics measured within the parallel
(MPI) processes or (OpenMP) threads of an application.

Definition 4.17. Let Mi denote the performance measurements of a perfor-
mance metric pm mnem for all n parallel processes or threads of a parallel
application, ∀ i ∈ [1..n]. We define the load balance aggregation function
for the performance metric pm mnem as the ratio between the average and
maximum aggregation values:

LBpm mnem =

∑n
i=1 Mi

n

max
∀ i∈[1..n]

{Mi}
.

A value of one indicates a perfect load balance while a value of zero represents
the worse case of load imbalance.

The wpp3dFFT kernel shows a good load balance close to one for all
the problem and machine sizes examined (see Figure 4.17(b)), while FFTW
exhibits a severe load imbalance, the smaller problems are and the larger the
machine sizes get (see Figure 4.17(a)). The explanation of this behaviour is
the fact that FFTW in its planner function that chooses optimised codelets
for a certain platform also detects that a machine size is too large for a
rather small problem size to be solved. As a consequence, it decides to use
only a subset of the processors for doing useful computation and transpose,
while the remaining MPI processes simply exit by calling the MPI Finalize

94 4 ZENTURIO Experiment Management Tool

routine. This explains the even execution time for small problem sizes in
Figure 4.15(a).

Figure 4.16(a) shows a better performance of the LAM MPI implementa-
tion compared to MPICH for small problems and large machine sizes. Such
experiments are characterised by a large number of small message exchanges
dominated by latencies for which the LAM implementation performs better
than MPICH. Large problem sizes shift the focus from message latency to
network bandwidth, in which case both implementations are bound to the
limited physical capabilities of the interconnection network and, therefore,
perform equally well (see Figure 4.16(b)).

We performed a complementary suite of experiments on the gescher clus-
ter (introduced in the beginning of Section 4.2) using the technique already
presented in Example 4.7 (see Section 4.2.2) which shows that the Myrinet
high performance network (not available on the Swiss cluster) gives an ap-
proximate two fold improvement in performance compared to Fast Ethernet
(see Figure 4.15(b)).

A comparative analysis of the two FFT parallel algorithms shows, as
expected, a better performance of wpp3DFFT compared to FFTW for large
problem sizes which is due to the highly optimised wpp3DFFT transpose
implementation for power of two problem sizes (see Figure 4.18(a)). For small
problem sizes, FFTW performs much better due to its intelligent runtime
adjustment of machine size in the planning phase (see Figure 4.18(b)). The
metric in which the Swiss physicists were particularly interested is the ratio
between the transpose and computation time, the latter being defined as the
difference between the overall execution time and the transpose operation.
We comparatively display this metric in Figures 4.19(a) and 4.19(b).

4.3 Parameter Studies

Even though our original idea when building ZENTURIO was to support
multi-experimental performance studies of parallel applications, the general
parameter specification approach taken by the ZEN language enabled us to
perform classical parameter studies with minimal additional effort. We for-
mally defined a parameter study experiment in Section 3.2.10.

4.3.1 Backward Pricing

The backward pricing kernel is a parallel implementation of the backward
induction algorithm which computes the price of an interest rate dependent
financial product such as a variable coupon bond. The algorithm is based on
the Hull and White trinomial interest rate tree models for future develop-
ments of interest rates [55].

This application is originally encoded such that it reads its input parame-
ters from different input data files. We performed the parameter annotations

4.3 Parameter Studies 95

(a) FFTW speedup.

(b) wpp3DFFT speedup.

Fig. 4.13. The three-dimensional FFT benchmark results (I).

96 4 ZENTURIO Experiment Management Tool

(a) wpp3DFFT overheads (28 problem size).

(b) wpp3DFFT overheads (23 problem size).

Fig. 4.14. The three-dimensional FFT benchmark results (II).

4.3 Parameter Studies 97

(a) FFTW overheads (23 problem size).

(b) wpp3DFFT network comparison (LAM versus MPICH, 28 problem size).

Fig. 4.15. The three-dimensional FFT benchmark results (III).

98 4 ZENTURIO Experiment Management Tool

(a) wpp3DFFT network comparison (LAM versus MPICH, 23 problem size).

(b) FFTW network comparison (LAM versus MPICH, 28 problem size).

Fig. 4.16. The three-dimensional FFT benchmark results (IV).

4
.3

P
a
ra

m
eter

S
tu

d
ies

9
9

(a) FFTW load balance.

(b) wpp3DFFT load balance.

Fig. 4.17. The three-dimensional FFT benchmark results (V).

100 4 ZENTURIO Experiment Management Tool

0

5

10

15

20

25

30

2 4 8 16 32 64

Number of Dual Nodes

C
P

U
 T

im
e

[s
ec

.]

WPP3DFFT FFTW

(a) wpp3DFFT versus FFTW, 28 problem size).

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

2 4 8 16 32 64

Number of Dual Nodes

C
P

U
 T

im
e

[s
ec

.]

WPP3DFFT FFTW

(b) wpp3DFFT versus FFTW, 23 problem size).

Fig. 4.18. The three-dimensional FFT benchmark results (VI).

4.3 Parameter Studies 101

0

5

10

15

20

25

30

35

2 4 8 16 32 64

Number of Dual Nodes

C
o

m
m

u
n

ic
at

io
n

 T
im

e
/ C

o
m

p
u

ta
ti

o
n

T

im
e

R
at

io

WPP3DFFT FFTW

(a) wpp3DFFT versus FFTW, 28 problem size.

0

1000

2000

3000

4000

5000

6000

2 4 8 16 32 64

Number of Dual Nodes

C
o

m
m

u
n

ic
at

io
n

 T
im

e
/ C

o
m

p
u

ta
ti

o
n

T

im
e

R
at

io

WPP3DFFT FFTW

(b) wpp3DFFT versus FFTW (23 problem size).

Fig. 4.19. The three-dimensional FFT benchmark results (VII).

102 4 ZENTURIO Experiment Management Tool

for this study by inserting ZEN assignment directives in the source code
immediately after the input parameter read statements, as shown in Exam-
ple 4.18. The read statements become therefore dead code and are eliminated
by subsequent optimised compilation.

We varied the following four input parameters for this application:

1. the coupon bond denoted by the ZEN variable coupon (i.e. from 0.01 to
0.1 with the increment 0.001);

2. the number of time steps over which the price is computed, denoted by
the ZEN variable nr steps (i.e. from 5 to 60 with the increment 5);

3. the coupon bond end time denoted by the ZEN variable bond%end. An
additional constraint directive guarantees that the coupon bond end time
is identical with the number of time steps;

4. the length of one time step denoted by the ZEN variable delta t (i.e.
from 1/12 to 1 with the increment 1/12);

5. the total price is the output parameter of this application, whose variation
as a function of the four input parameters is the subject of the study.

Example 4.18 (Backward pricing source file excerpt – pkernbw.f90).

read(10,*) nr_steps
!ZEN$ ASSIGN nr_steps = { 5 : 60 : 5 }
. . .
read(10,*) delta_t
!ZEN$ ASSIGN delta_t = { 0.08, 0.17, 0.25, 0.33, 0.42, 0.5,

0.58, 0.67, 0.75, 0.83, 0.92, 1 }
. . .
read(10,*) bond%end
!ZEN$ ASSIGN bond\%end = { 5 : 60 : 5 }
!ZEN$ CONSTRAINT VALUE nr_steps == bond\%end
. . .
read(10,*) bond%coupon
!ZEN$ ASSIGN bond\%coupon = { 0.01 : 0.1 : 0.01 }

Example 4.19 (Globus RSL Script – run.rsl).

+ (&
(*ZEN$ SUBSTITUTE gescher = { pc6163-c703.uibk.ac.at,

gescher.vcpc.univie.ac.at/jobmanager-pbs,
iris.gup.uni-linz.ac.at }*)

(*ZEN$ CONSTRAINT INDEX gescher==pkernbw.f90:bond\%coupon/4*)
(resourceManagerContact="gescher")
(count=4)
(jobtype=mpi)
(directory="/home/radu/APPS/Backward/V1.0")
(executable="pkernbw")

)

4.3 Parameter Studies 103

We inserted five ZEN directives into one single source file to specify a total of
1481 experiments that were automatically generated and conducted by ZEN-
TURIO. We submitted the experiments onto the target execution Grid site
using DUROC. To decrease the completion time of this rather large parame-
ter study, we annotated the Globus RSL script with three Grid sites across
which we split the full set of experiments (see Example 4.19 and Figure 4.20):

1. pc6163-c703.uibk.ac.at at the University of Innsbruck;
2. gescher.vcpc.univie.ac.at at the University of Vienna;
3. iris.gup.uni-linz.ac.at at the University of Linz.

By using one ZEN constraint directive, we indicated that the experiments
which satisfy the condition bond%coupon ≤ 0.03 shall be scheduled on
pc6163-c703.uibk.ac.at, the experiments for which 0.04 ≤ bond%coupon ≤
0.07 shall be scheduled on gescher.vcpc.univie.ac.at, and the experiments
having bond%coupon ≥ 0.08 shall be run on iris.gup.uni-linz.ac.at. By
splitting the parameter study throughput onto three Grid sites, we reduced
the completion time of the entire experiment suite by more than 50%. In Sec-
tion 6.4 we will present an automatic throughput scheduling approach that
replaces this manual scheduling method.

From the wide variety of visualisations that we automatically generated
during this study, we illustrate two samples surface diagrams in Figure 4.21.
The three-dimensional surface in Figure 4.21(a) shows the evolution of the
total price as a function of the number of time steps and the coupon bond
which has the following financial significance:

1. the price decreases with the maturity (i.e. number of time steps multiplied
with the length of one time step) because the effect of discounting future
payments increases (i.e. 100 Euro in 20 years are less then 100 Euro in
10 years), but only if the coupon bond is less than the interest rates (e.g.
for 0.06, the coupon rate is greater than the interest rates);

2. the price increases with coupon bond because the higher the coupon rate
is, the higher the future payments are;

3. for very large maturities the price linearly depends on the coupon bond
only.

Figure 4.21(b) shows the total price evolution by varying the number of time
steps and the length of one time step with the financial interpretation:

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

pc6163-c703.uibk.ac.at gescher.vcpc.univie.ac.at iris.gup.uni-linz.ac.at

Coupon
Bond

Grid
Site

Fig. 4.20. The constraint defined in Example 4.19.

104 4 ZENTURIO Experiment Management Tool

(a) Total price for delta t = 1.0.

(b) Total price for coupon = 0.05.

Fig. 4.21. The backward pricing parameter study results.

4.4 Architecture 105

1. the price decreases with the length of a time step because a smaller
payment number implies less money in the future;

2. depending on the number of time steps, the price may increase or de-
crease with the maturity depending on how much the smaller number of
payments are compensated by smaller discount effects.

4.4 Architecture

In the previous sections of this chapter we described the ZENTURIO experi-
ment management tool for conducting large scale performance and parameter
studies with particular focus on the user-oriented functionality and interface.
In this section we describe the internal architectural design of ZENTURIO
illustrated in Figure 4.22, which is based on a distributed service-oriented ar-
chitecture compliant with the Grid infrastructure model presented in Chap-
ter 2.

The entry point for a user is a graphical User Portal which normally re-
sides on the local client machine (e.g. laptop) and whose functionality we
described in Section 4.1. Through the portal, the user creates or loads a ZEN
application annotated with ZEN directives that specify value ranges for any

F
Experiment
Generator

F
Experiment

Executor

DUROC

F
Experiment

Executor

GRAM

F
Experiment

Executor

PBS

Event
Consumer

Experiment
Monitor

Experiment
Preparation

App. Data
Visualiser

WSDL

JAR

Registry

Application
Compilation
Execution
Machine

Web service

Portlet

F Factory

User
Portal

Job Manager

Data Repository

WAS

Control and Data Flow

Asynchronous Events

Deploy Service

Experiment
Data

Repository

Service
Repository

Legend

User

Fig. 4.22. The ZENTURIO experiment management tool architecture.

106 4 ZENTURIO Experiment Management Tool

problem, system, or machine parameter, including program variables, file na-
mes, compiler options, target machines, machine sizes, scheduling strategies,
or data distributions. We use the ZEN performance directives to indicate
the performance metrics to be measured and computed for each experiment.
The functionality of the ZENTURIO experiment management tool described
in this chapter is restricted to post-mortem multi-experimental performance
analysis and parameter studies.

The automatic experiment management functionality of ZENTURIO is
achieved through the cooperative use of various distributed middleware ser-
vices shielded from the end-user by the graphical User Portal. The Service
Repository (see Section 5.5.2) is a database that contains persistent imple-
mentations of generic Grid services. The Factory (see Section 5.5.4) is a
service in charge of creating service instances on arbitrary Grid sites using
implementation information from the Service Repository. The Registry (see
Section 5.5.5) manages an up-to-date list of existing transient Grid service
instances and provides a variety of advanced high throughput service disco-
very operations. The Service Repository, the Factory, and the Registry are
generic Grid services that are fundamental to the tool integration framework
which we will present in Chapter 5.

After the user properly created a ZEN application, ZENTURIO automa-
tically generates, executes, controls, and monitors the experiments on the
target Grid site. The User Portal uses the Registry to locate an Experiment
Generator service, preferably on the local Grid site. If the Experiment Ge-
nerator resides on a different site, the application files are compressed into a
single archive [54] and sent to the destination site using the GridFTP pro-
tocol. If no Experiment Generator service is found, an instance is created
using the Factory service. The Experiment Generator parses the ZEN files,
instruments the application according to the ZEN directives encountered, and
generates the corresponding set of experiments as presented in Section 3.2.11
(see Algorithm 1). After generating one experiment, the Experiment Gene-
rator transfers the corresponding files (i.e. ZEN application instance) to the
target execution Grid site where an Experiment Executor service is respon-
sible for compiling, executing, and managing its execution. If no Experiment
Executor service is available on the Grid site, an instance is created using the
Factory service. Upon the completion of each experiment, the Experiment
Executor automatically stores the experiment output and the performance
data into a well-defined Experiment Data Repository (see Section 4.4.4). The
users can remotely access the data stored in the repository via the User Por-
tal or manually formulate queries for post-mortem performance analysis and
visualisation.

It is usual in Grid computing that the users cannot stay online for the
entire duration of their application, for example when submitting a large set
of performance or parameter study experiments over night or when trave-
ling. For this reason we designed the ZENTURIO architecture such that the

4.4 Architecture 107

Experiment Generator is the only service with which the User Portal inter-
acts. Once the user submitted a ZEN application, the Experiment Generator
maintains together with the Experiment Data Repository the complete in-
formation about the application and its associated experiments. This allows
the users to disconnect the portals from the Grid without loosing the con-
tact information to their experiments. The users can subsequently open the
portal at any time from arbitrary Grid locations, connect to the Experiment
Generator, retrieve the status of the experiments, and perform the desired
performance analysis or the parameter study visualisations.

We provide both synchronous (blocking) and asynchronous (non-blocking)
flavours for all methods of the Experiment Executor and Experiment Genera-
tor services. Asynchronous methods return an asynchronous receipt, on behalf
of which synchronous methods can be invoked to poll for available results.
Such asynchronous methods, which are part of the general event framework
that we will present in Section 5.6, are crucial for implementing highly re-
sponsive clients that do not block upon calling long running synchronous
methods. All services including the Experiment Data Repository can be ac-
cessed concurrently by multiple clients which is a key feature for providing
scalable Grid infrastructures.

4.4.1 Experiment Generator

We designed the Experiment Generator as a Grid service in charge of ge-
nerating the experiments defined by an input ZEN application as formally
specified in Chapter 3 and depicted in Figure 4.23. Each ZEN file of the ZEN
application is first parsed using the scanner and parser modules of the ZEN
Transformation System which produce an abstract syntax tree as presented
in Section 3.1.2. The abstract syntax trees of all ZEN files are then given
as input to the experiment generation algorithm which generates the set of
valid ZEN element tuples as presented in Section 3.2.11 (see Algorithm 1).
The valid ZEN element tuples determine the set of valid ZEN application
instances, whose constituent ZEN file instances are generated using the un-
parser module of ZEN Transformation System. A ZEN application instance
is the foundation of an experiment, as we formally defined in Definitions 3.27
and 3.28 of Chapter 3.

Scanner
Parser

Experiment
Generation
Algorithm

Code
Generator

ZEN
File 1

ZEN
File n

. . .
AST
File 1

AST
File n

. . .

ZEN App.
Inst. 1

ZEN App.
Inst. p

. . .

Fig. 4.23. The Experiment Generator architecture.

108 4 ZENTURIO Experiment Management Tool

We use the SCALEA [181] instrumentation engine based on the Vienna
Fortran Compiler [21] which provides a complete Fortran 90, OpenMP, MPI,
and HPF front-end and code generator to instrument the application for
performance metrics based on the ZEN performance directives. We typically
run the Experiment Generator as a pre-installed Grid service that isolates
several platform dependencies and proprietary components of the Vienna
Fortran Compiler and serves remote experiment generation requests through
a portable and platform independent interface.

Additionally, we provide an interface to logically insert ZEN directives
into the abstract syntax tree of each parsed ZEN file for situations when it
is not practical to insert the directives manually. We will employ this feature
when modeling the Grid scheduling problem in Chapter 6 that requires a
large number of ZEN variables with often large and dynamic (i.e. statically
unknown) value sets.

We provide as part of the Experiment Generator service four methods for
generating the experiments of a ZEN application:

1. synchronous by means of a single method invocation. This approach is
rather primitive since the synchronous invocation can be very expensive
and produces blocking (i.e. non-responsive) clients;

2. iterative, compliant with the pull event model (see Section 5.6), each
experiment being returned by an iterator upon synchronous request;

3. asynchronous , compliant with the push event model (see Section 5.6),
each experiment being sent to the client using an asynchronous callback
as soon as it is generated;

4. random, by instantiating each ZEN variable (or a subset of them) with a
random ZEN element. We use this method for implementing the rando-
mised optimisation algorithms in Chapter 6.

In the case of using ZENTURIO in online Grid mode, the Experiment Ge-
nerator automatically transfers the experiments to the target Grid execution
site using the GridFTP protocol. In the case of using DUROC as job mana-
ger, the experiments are copied to multiple destination Grid sites which we
retrieve from the RSL description of the application.

4.4.2 Experiment Executor

The Experiment Executor is a generic service with a high level interface
for executing and managing experiments on target Grid execution sites. We
designed the Experiment Executor as a stand-alone Grid service independent
of ZENTURIO that can be deployed for experiment management purposes
in other infrastructures too. The Experiment Executor assumes a properly
installed application on the target execution site(s).

The Experiment Executor interacts at the back-end with a local job ma-
nager that controls the execution of experiments on the Grid site which in
our current implementation can be:

4.4 Architecture 109

1. fork [168] for single processor or SMP computers that host both the
Experiment Executor service and the running experiments;

2. Condor [123], Load Leveler [102], Load Sharing Facility [201], Maui, Por-
table Batch System (PBS) [29], and Sun Grid Engine [172] for dedicated
parallel computers. We employ this configuration in the online cluster
mode of ZENTURIO, in which the Experiment Executor resides on the
front-end node of the parallel computer and must receive a job submis-
sion script compliant with the local job manager used to execute the
experiments on the back-end compute nodes;

3. GRAM [47] and DUROC [48] for executing remote experiments on a
single, respectively multiple Grid sites. We employ this configuration in
the online Grid mode of ZENTURIO, in which the Experiment Executor
may reside on an arbitrary Grid site and must receive an RSL script to
execute the experiments.

The Experiment Executor provides functionality to:

• add and remove experiments;
• compile experiments;
• execute experiments;
• retrieve the status of experiments;
• subscribe for experiment status change notification callbacks according

to the push event model (see Section 5.6). For example, an event listener
thread of the Experiment Monitor panel that we presented in Section 4.1.3
subscribes and receives notifications from the Experiment Executor about
changes in the status of individual experiments. This is a light-weight and
highly responsive mechanism for providing a consistent up-to-date view
of the generated experiments and their status which avoids unnecessary
expensive polling. This functionality is part of the more general event
framework which we will present in detail in Section 5.6;

• terminate experiments;
• stage-in input data files from specific Grid sites;
• stage-out experiment output to indicated Grid sites, including standard

output, standard error, output files, and performance data;
• retrieve all experiments associated with a certain application (optionally

filtered to a certain state);
• set the maximum number of experiments that are concurrently executed.

This feature allows the user to restrict the number of experiments simul-
taneously submitted to the cluster queue to a decent predefined number,
or to control the number of experiments concurrently forked on one SMP
computer (i.e. normally one on single processor machines);

• the number of retries in case of faulty execution of experiments. This
feature is crucial for improving the fault tolerance, since often the exe-
cution of large number of experiments on cluster and Grid architectures
is prone to non-deterministic failures due to unpredictable and unreliable
underlying resource management support;

110 4 ZENTURIO Experiment Management Tool

• store the experiment specific data including ZEN variables, ZEN elements,
output files, and performance data into the Experiment Data Repository.

All the operations provided by the Experiment Executor service can be ap-
plied on individual or collective basis by providing appropriate input filters
(e.g. all the experiments belonging to an application).

4.4.3 Experiment State Transition Diagram

We display in Figure 4.24 the state transition diagram of an experiment exe-
cuted with ZENTURIO. The state diagram has one initial state start and
two final states stored and failed. After being created by the Experiment
Generator, the experiment is initialised in the start state. If the Experiment
Executor site is different from the Experiment Generator site, the experiment
goes through the optional transfer state during which it is copied to the tar-
get execution site. If an experiment (i.e. the associated application instance)
needs compilation after being copied to the execution site, it goes through
the compiling state. If the experiment is part of a binary (already compiled)
ZEN application, it skips the compiling state and goes directly into the ready
state. The ready state specifies that the experiment is ready for execution.
From this state, the experiment can go either into the waiting state if the
execution is postponed (e.g. through advance reservation), or into the queued
state if the experiment is submitted to a local resource manager. If the expe-
riment is forked, it goes directly into the running state. After the experiment
completed its execution, the state changes to terminate. The final state stored
indicates that the experiment (including the output files and the performance
data) has been stored into the Experiment Data Repository. If an erroneous
operation takes place (e.g. compilation or execution error) during any of the
states or if the experiment is explicitly killed, the experiment goes in to the
failed state. From the terminated, stored, and failed states an experiment can
change to the ready state, if re-execution is desired (e.g. in case of casual
non-deterministic faulty executions).

start

failed

running terminated

transfer

compile queuedready storedwaiting

Fig. 4.24. The experiment state transition diagram.

4.4.4 Experiment Data Repository

ZENTURIO automatically stores post-mortem information about the ZEN
application and the associated experiments into a common Experiment Data

4.5 Summary 111

Repository. We designed the Experiment Data Repository as a relational
database implemented on top of PostgreSQL [96]. Upon the completion of
each experiment, the Experiment Executor stores the descriptive informa-
tion about the experiment including the ZEN variable instantiations, stan-
dard output, standard error, performance data, and output files, depending
on the experiment type (i.e. performance or parameter study). In the case of
large output files, we store the URL to the location of the GASS file system
instead. The Experiment Data Repository enables various users and tools
to interoperate by exchanging post-mortem performance and output data
from previous experiments. We display in Figure 4.25 the Unified Modeling
Language (UML) diagram that models the Experiment Data Repository re-
lational schema.

-name : String

Application

-ID : Integer

Version

1

1..*

-name : String
-location : String
-contents : String

SourceFile

1

1..*

-startPosX : Integer
-startPosY : Integer
-endPosX : Integer
-endPosY : Integer
-type : String
-unit : String

CodeRegion

1
1..*

0..1

0..*

-info : String
-compileCommand : String
-execCommand : String
-stdout : String
-stderr : String

Experiment

-computationalNode : String
-processID : Integer
-threadID : Integer
-codeRegion : Integer
-parentRegion : Integer
-codeRegionGroup : Integer
-numberCalls : Integer
-numberSubs : Integer
-codeRegionID : Integer

RegionSummary

1

0..*

1

1..1

1

0..*

-name : String
-value : Double

TimingMetrics

-name : String
-value : Double

Temporal Overheads

-name : String
-value : Double

Hardware Metrics

1

0..*

1

0..*

1
0..*

-name : String
-valueSet : String

ZENVariable

1 0..*

-value : String
-index : Integer

ZENElement

1
1..*

10..*

-name : String
-contents : String
-location : String

Output File

1

0..*

Fig. 4.25. The Experiment Data Repository schema.

4.5 Summary

In this section we presented the ZENTURIO experiment management tool
for performance and parameter studies of parallel applications. We described
the functionality of the tool comprising an advanced light-weight portal easy

112 4 ZENTURIO Experiment Management Tool

to install and manage that supports the end-users with a friendly graphical
interface to create ZEN applications using the ZEN experiment specification
language. Additionally, the portal assists the users to automatically generate,
execute, and monitor experiments, as well to perform advanced post-mortem
analysis using the performance and output data automatically organised into
a shared Experiment Data Repository. We illustrated detailed experiments on
using ZENTURIO for automatic multi-experimental performance and para-
meter studies of six real-world parallel applications executed on several SMP
cluster architectures. Finally, we presented the distributed service-oriented
architecture of the tool compliant with the model presented in Section 2 and
consisting of a set of generic services open for extension and interoperability.

5

Tool Integration

As applications get larger and more complex, the use of software tools beco-
mes vital for tuning application parameters, identifying performance leaks,
or detecting program defects. Extensive efforts within academia and industry
over the last decade have resulted in a large collection of tools for practical
application engineering. Available tools of broad interest include program
source and structure browsers, editors, static program analysers, performance
predictors, optimisation compilers, execution control and monitoring environ-
ments, sequential and parallel debuggers (providing deadlock detection and
deterministic message replay mechanisms), data and execution visualisers,
performance analysers, or various program tracers.

Despite all these huge tool development efforts to ease the parallel pro-
gram development, the user acceptance in the scientific community has not
been achieved. Most users still base their application development activi-
ties on manual source program instrumentation and a tedious, error-prone,
and time consuming instrumentation – compilation – link – execution – data
collection – data analysis cycle. There are two reasons for this unfortunate
situation:

1. Most of the existing application tools are not available on multiple par-
allel platforms primarily because of their limited portability. When using
a new parallel system the user must in most cases learn and familiarise
with new tools with different functionality and user interfaces. This re-
quires additional (often unnecessary) time and effort and can be a major
deterrent against the use of more appropriate computer systems.

2. Most of the tools cannot be used cooperatively to further improve pro-
gramming efficiency mainly because they are insufficiently integrated
into a single coherent environment. Existing integrated tool environ-
ments [40, 191] comprising several tools do offer some degree of inter-
operability, however, have the disadvantage that the set of tools provided
is fixed, typically decided by the initial project objectives. The resulted
tools interact through internal proprietary interfaces which cannot easily
be extended. The outcome is in fact not an interoperable tool-set , but a

R. Prodan and T. Fahringer: Grid Computing, LNCS 4340, pp. 113–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

114 5 Tool Integration

more complex monolithic tool which combines the functionality of the
integrated tools but lacks true interoperability and extensibility.

Based on the type of analysis performed, one can distinguish between two
types of software tools:

1. Offline tools completely separate the runtime data collection from the
data analysis phase. Runtime data analysis is typically performed post-
mortem after the application completed its execution. The ZENTURIO
experiment management tool presented in Chapter 4 is a typical offline
tool example;

2. Online tools collect and analyse the data on-the-fly during the execution
of the application using special purpose monitoring systems .

There are two fundamental reasons why most of the runtime tools cannot
be cooperatively used by the program developer on the same application to
improve its programming productivity:

1. Runtime tools use different instrumentation techniques. While offline
tools can easily solve this problem by means of standardised trace data
formats [87] or common data repositories [71], online tools suffer from
incompatible complex runtime monitoring systems. Most tools require
special preparation of the application with specialised compilation and
link flags which leads to undesired conflicts and makes the interoperabi-
lity impossible;

2. At inception, tools are not considered or designed for interoperability.
Most tools are designed and constructed as stand-alone applications and
can only be used in isolation. Tool interoperability is a complex issue
that has to be considered as a major objective when the tools are first
designed and cannot simply be added as an afterthought.

We addressed the offline tool interoperability as part of the ZENTURIO
experiment management tool by proposing a common Experiment Data Re-
pository for sharing performance data which we described in Section 4.4.4.
In the reminder of this chapter we will therefore focus on the online tool
interoperability problem. In the next section we present a generalised exten-
sion of the ZENTURIO service-oriented architecture with new functionality
and services oriented towards online tool integration and interoperability. In
Section 5.2 we introduce a set of interoperable tools accompanied by a set
novel interoperability scenarios in Section 5.3. Finally, we describe the inter-
nal design and implementation details of the two bottom layers of our tool
integration architecture in Sections 5.4 and 5.5.

5.1 Architecture

We designed the ZENTURIO architecture presented in Chapter 4 in the con-
text of a more general tool integration framework [110, 111, 149] depicted in

5.1 Architecture 115

. . .

. . .

Factory Registry

Experiment
Generator

Experiment
Executor

Aggregator

Process
Manager

Instrument.
Service Grid

Services
Layer

Process 11 Process 1p. . .

Machine 1

Process
Manager

Process m1 Process mp. . .

Machine m

Monitoring
Layer

User
Portal 1

User
Portal n

User
Portal 2

Tool
Layer

. . .

Scheduler

Fig. 5.1. The tool integration service-oriented architecture.

Figure 5.1 which defines a three tier service-oriented architecture for inter-
operable tool development that instantiates the abstract Grid architectural
model defined in Chapter 2.

1. Monitoring layer represents the platform dependent part inherent to (al-
most) every tool implementation. This layer consists of a set of light-
weight distributed sensors that build in aggregation the Grid machine
layer and whose main goal in our architecture is to provide support for
online tool development. The sensors typically extract and monitor low
level hardware and software features specific to every platform and ope-
rating system. In designing the sensors, we focused on isolating the plat-
form dependencies under a portable interface which reduces the effort of
porting n tools onto m platforms from n ∗ m to n + m;

2. Grid services layer consists of an open set of high level portable Grid
services that can be dynamically deployed and instantiated on arbitrary
Grid sites, as introduced in Section 2.6.2. The Grid services facilitate
the tool development and enable the interoperability through concurrent
service use;

3. Tool layer consists of the end-user software tools, represented either by
graphical user portals or by simple applications running in batch mode.

116 5 Tool Integration

The functionality of a tool developed within this framework is no longer sto-
red within a single monolithic front-end application acting as a black-box,
but rather is exposed and distributed amongst many small and reusable Grid
services often orchestrated in a loosely coupled workflow. The tool interopera-
bility is achieved by two design properties of our service-oriented architecture:

1. the Grid services can serve concurrent requests coming from potentially
different remote clients (i.e. user portals representing potentially different
end-user tools);

2. the monitoring sensors can be simultaneously invoked by multiple Grid
services. This allows multiple clients to concurrently monitor and mani-
pulate the same physical processes and target machines.

Another important design objective of the framework is to provide an exten-
sible architecture open to further integrations and developments. The exten-
sibility is related to the following three aspects in the proposed architecture:

1. Add new services to the environment. This translates into the ability of
incorporating new Grid services and to add new tools to the environ-
ment. The Web services technology clearly separates the service interface
specification from the service implementation which facilitates the incor-
poration of new services by publishing their interface and implementation
into the Service Repository as specified in Section 5.5.2. In addition, the
service implementation must allow multiple clients concurrently access
and invoke operations with no knowledge of their mutual existence which
enables new client tools be naturally integrated on top of existing Grid
services;

2. Extend existing components with new functionality. Extending existing
services with specialised versions through delegation is not only supported
but encouraged by our framework. Since the Web services technology
does not adhere to the object-oriented design principles, the extensibility
through inheritance is not possible at the WSDL service interface level,
but rather at the Java class service implementation level;

3. Implement new tools based on existing middleware services. The tools
implemented within the framework will interoperate indirectly through
the common use of Grid services, as we will describe in Section 5.3.1.

5.2 Interoperable Tool Set

The ZENTURIO experiment management tool is the principal end-user tool
that we built as part of the tool integration framework presented in this chap-
ter. The ZENTURIO User Portal introduced in Section 4.1 is a thin client
developed on top of high level Grid middleware services that provides trans-
parent performance and parameter study support using a static instrumenta-
tion technology based on ZEN directives and compiler instrumentation. The

5.2 Interoperable Tool Set 117

offline tool interoperability is achieved through post-mortem share of data
stored into the Experiment Data Repository.

In this section we describe a complementary set of interoperable prototype
tools that we implemented based on a new instrumentation technology more
appropriate and flexible for online on-the-fly program analysis called dynamic
instrumentation. In contrast to the compiler-based source code instrumenta-
tion provided by ZENTURIO, dynamic instrumentation is based on runtime
insertion of binary snippets into already running programs. The dynamic in-
strumentation is performed in our architecture by a special purpose sensor
located in the monitoring layer called Process Manager (see Figure 5.1) that
we will present in detail in Section 5.4.2. The tools operate on unmodified
executable programs and can be used to monitor both user and system func-
tions, even when there is no source code available. The tools are generic and
do not depend on any compilation options, link libraries, flags, or any other
preparation steps.

5.2.1 Object Code Browser

The Object Code Browser is a graphical browsing tool which displays the ob-
ject code structure of a given process retrieved from the application binary
executable file. In case of Single Program Multiple Data (SPMD) parallel
applications (e.g. OpenMP and MPI), we retrieve the object code from one
arbitrary process. For Multiple Program Multiple Data (MPMD) parallel ap-
plications, we display the union set of the object structures of all parallel
processes. The Object Code Browser can be used in cooperation with the
other tools presented in this chapter for selecting their instrumentation and
analysis focus (see Section 5.3.2). The Object Code Browser receives automa-
tic push event notifications from the Grid middleware services (i.e. Process
Manager – see Section 5.4.2) upon changes in the object structure of the
application that require the following display updates:

1. fork: show the newly created UNIX process and its object code structure;
2. exec: reload the modified process object code overwritten by this system

call;
3. dlopen: add the new dynamic shared library to the list of application

modules displayed;
4. exit: delete the terminated process from the parallel application process

list;
5. status change: update the process execution status (i.e. running, stopped,

exited).

5.2.2 Function Profiler (Z prof)

The Z prof function profiler, analogous to the UNIX tool prof [128], displays
the call-graph profile data by timing and counting selected function calls. We
implemented an MPI flavour of the tool offers functionality to:

118 5 Tool Integration

1. count:
a) the number of messages sent and received (from the MPI Send and

MPI Recv family);
b) the number of bytes sent and received;
c) the number of input and output operations (based on the MPI-

IO [177] specification);
d) the number of bytes involved in input and output operations;

2. time:
a) the communication routines;
b) the synchronisation routines;
c) the input and output routines.

Additionally, similarly to the UNIX administration tool top [23], the tool
can be configured to display the first n functions in terms of number of
invocations or execution time. We provide this information online as the
application executes, where the refresh interval is determined by the input
data sampling rate indicated during the dynamic instrumentation.

5.2.3 Function Tracer (Z trace)

Z trace is an online tool that traces in the style of the UNIX software tool
truss [66] the functions executed by an unmodified executable binary appli-
cation. The tool does not differentiate between user, system, or library calls
and does not require source code information. However, in order to be able
to extract the function input and return arguments from the stack, the type
information is required to be present in the binary executable. Therefore,
the application needs to be compiled with appropriate flags (i.e. usually -g),
otherwise we only display the function name during the trace process. To
manually provide the function signature to the tracer is platform dependent
and is not always a feasible solution. Since the object code and the function
set of most programming languages is rather large and uninteresting (e.g. the
smallest C++ program has about 1500 functions, most of them located in the
libc library), it is recommended that the tool be focused on an interesting
subset of functions or application modules. The focus can be indicated either
as an input configuration, or graphically using the Object Code Browser (see
Section 5.3.2).

Since the application object code is rather large, it is impractical and
inefficient to pre-instrument all the application points with tracing probes
before starting the execution. Rather, we instrument the functions incremen-
tally before being for the first time executed, as sketched by our incremental
call-graph tracing algorithm displayed in Algorithm 2:

1. The algorithm starts by initialising the list of instrumented functions
with the empty set (line 1) and starts the tracing process with the main
function (line 2);

5.2 Interoperable Tool Set 119

Algorithm 2. The Z trace call-graph function tracing algorithm.
1: instrFunc ← ∅
2: Z trace(”main”)
3:
4: procedure Z trace(func)
5: instrFunc ← instrFunc ∪ func
6: tracePoint(func.entry)
7: tracePoint(func.exit)
8: for all callPoint ∈ func.callPoints do
9: if callPoint.calee �∈ instrFunc then

10: addNotification(callPoint)
11: addBreakpoint(callPoint)
12: end if
13: end for
14: end procedure
15:
16: procedure Notify(callPoint)
17: Z trace(callPoint)
18: removeBreakpoint(callPoint)
19: resume

20: end procedure

2. Z trace (lines 4− 14) is the main function trace routine that inserts tra-
cing probes at the function entry (line 6) and all the exit points (line 7)
which have not yet been instrumented. Additionally, it inserts notifica-
tion probes (line 10) at all the function call points to trigger notification
callbacks for each new function invocation that must be traced too. Since
the instrumentation is performed on-the-fly while the application is run-
ning, we have to combine each notification with a breakpoint (line 11)
that stops the process and allows the tracer instrument the new function
before executing it;

3. Notify (lines 16 − 20) is the callback triggered on behalf of the first
invocation of each function (i.e. by the notification probes and the Process
Manager – see Section 5.4.2). As a consequence, the tracer instruments
the new function with trace probes by calling the Z trace routine (line
17), removes the breakpoint (line 18), and resumes the process (line 19).

5.2.4 Function Coverager (Z cov)

The Z cov tool imitates the UNIX tool tcov to produce a test coverage
analysis at function call granularity. The tool counts the number of times
the program counter hits each instrumentation point which is useful in prac-
tice for detecting dead code due to, e.g. redundant conditionals or obsolete
functions.

120 5 Tool Integration

Algorithm 3. The Z cov function coverage algorithm.
1: instrFuncs ← ∅
2: Z cov(”main”)
3:
4: procedure Z cov(func)
5: instrFuncs ← instrFuncs ∪ func
6: addCounter(func.entry, rate)
7: addCounter(func.exit, rate)
8: for all callPoint ∈ func.callPoints do
9: if callPoint.calee �∈ instrFuncs then

10: addNotification(callPoint)
11: addBreakpoint(callPoint)
12: end if
13: end for
14: end procedure
15:
16: procedure Notify(callPoint)
17: Z cov(callPoint.calee)
18: removeBreakpoint(callPoint)
19: resume

20: end procedure
21:
22: procedure DataCol(counter)
23: if counter > 0 then
24: deleteCounter(counter)
25: write(counter.point has been hit)
26: end if
27: end procedure

Similar to Z trace, Z cov employs an incremental call-graph function co-
verage algorithm sketched in Algorithm 3 that lazily instruments each func-
tion just-in-time before its first execution:

1. The algorithm starts by initialising the list of instrumented functions
with the empty set (line 1) and starts the coverage process with the main
function (line 2);

2. Z cov (lines 4 − 14) is the main instrumentation routine that computes
the coverage of one arbitrary function. Firstly, it inserts counters at the
function entry (line 6) and all the function exit points (line 7). Similar
to the incremental tracing algorithm outlined in Algorithm 2, the co-
verager inserts notification probes at each call point (line 10), followed
by a breakpoint (line 11) that allows to instrument each function before
executing it for the first time;

3. Notify (lines 16 − 20) is a callback from the Process Manager sensor
that trapped a call to a function that has not yet been instrumented (see
Section 5.4.2). As a consequence, the coverager instruments the invoked

5.2 Interoperable Tool Set 121

function by calling the Z cov routine (line 17), removes the breakpoint
(line 18), and resumes the process (line 19);

4. DataCol (lines 22 − 27) is the callback routine from the Process Mana-
ger sensor that contains the count information for each instrumentation
point. Each point whose counter is greater than zero was hit by the
program counter and, therefore, requires no more instrumentation. As a
consequence, the coverager removes this instrumentation (line 24) which
reduces the intrusion in the running process.

5.2.5 Sequential Debugger (Z debug)

Z debug is a traditional sequential debugging server similar to dbx [121] or
gdb [165] that provides the following functionality:

1. create a new process or attach an existing running process;
2. detach the process (i.e. disconnect and leave the process running);
3. manipulate the process state (i.e. stop, resume, terminate);
4. send a UNIX signal to the process;
5. read and write (global) variables;
6. insert and remove breakpoints at arbitrary instrumentation points;
7. insert and remove probes (i.e. counters, timers, traces, notifications) at

arbitrary instrumentation points;
8. delete and replace function calls;
9. retrieve the object code information;

10. display and manipulate the process stack.

5.2.6 Memory Allocation Tool (Z MAT)

Z MAT is a memory allocation tool, inspired from Purify [95], that traces the C
memory allocation functions from the malloc and free family (i.e. malloc,
realloc, calloc, memalloc, valloc, free). The tool provides the following
online functionality during the execution of the application:

1. display the memory allocation blocks;
2. display the totally allocated and the free heap size;
3. detect memory leaks (i.e. memory allocations with no corresponding free

calls);
4. detect erroneous free memory calls that have no corresponding me-

mory allocations (such bugs are often difficult to track and produce non-
deterministic crashes);

5. display the amount of space allocated for the process data segment by
instrumenting the brk and sbrk UNIX system calls.

The C++ new and delete memory allocation operators are handled
differently by each compiler. Our prototype implementation supports
the gcc compiler that translates these operators into builtin new and

122 5 Tool Integration

builtin delete built-in functions, which in turn invoke the malloc and
free memory allocation functions followed by calls to the structure con-
structor, respectively destructor.

5.2.7 Resource Tracker (Z RT2)

Z RT2 is a simple tool in the style of the UNIX icps program that displays
an online a list of the resources allocated by running processes by tracking
several POSIX system calls:

1. open / close to display the open UNIX file descriptors;
2. shmget / shmctl to display the allocated UNIX shared memory seg-

ments;
3. msgget / msgctl to display the UNIX message queues;
4. semget / semctl to display the active UNIX semaphores;
5. sigaction to display the list of UNIX signals trapped by the process.

In addition, the tool displays a post-mortem list of warnings containing the
set of resources which have been allocated and not freed by the process.

5.2.8 Deadlock Detector (Z deadlock)

Z deadlock is a tool that dynamically instruments the blocking MPI receive
communication routines and checks for runtime inter-process communication
cycles based on the message source process identifier.

5.3 Tool Interoperability

An important objective of the tool integration framework described in this
chapter to provide an effective environment for tool interoperability. In this
section we first classify the various types of tool interaction and then illus-
trate several examples that demonstrate how synergy can be gained through
interoperable use of software tools.

5.3.1 Classification

We distinguish in our framework between two types of tool interactions:

1. Direct Interaction assumes direct communication between the tools and
is entirely determined by the tool design and implementation. This type
of interaction happens exclusively within the tool layer and is indepen-
dent of the underlying framework. For example, a performance tool may
provide performance data to a steering tool that checks for a specific
bottleneck, or a steering tool may directly ask a debugger to execute a
command in order to improve a certain metric in the program execution
(see Section 5.3.3);

5.3 Tool Interoperability 123

2. Indirect Interaction is a more advanced type of interaction that is trans-
parently intermediated by the framework via the Grid services and re-
quires no treatment or any particular knowledge from the tools. This
scenario occurs in practice when the middleware Grid services interact
with each other ”behind the scenes” on behalf of the tools. We further
classify the indirect tool interaction as follows:
a) Coexistence when multiple tools operate simultaneously on different

parallel applications but share the same Grid service instances or
sensors (i.e. utilise the same Process Manager sensor to instrument
different application processes on the same processor);

b) Process Share when multiple tools attach and instrument the same
application process simultaneously. This type of interoperability has
the potential of creating a variety of interesting interoperability sce-
narios, as we will show in the next sections;

c) Instrumentation Share when tools share instrumentation probes while
monitoring the same application process in order to minimise their in-
trusion. This type of interoperability is automatically handled by the
Process Manager sensor at the monitoring layer (see Section 5.4.2);

d) Resource Lock when the tools require exclusive access to a specific
resource, for example through the user credential. For example, a tool
can ask the Process Manager sensor for a lock on a certain application
resource (e.g. process, function) in order to perform some accurate
timing. As a consequence, the Process Manager allows no other user
to instrument that resource, though the existing timers may be reused
and sampled through the instrumentation share interoperability type.

Figure 5.2 displays a live screen-shot of four of our interoperable tools instru-
menting and monitoring the same Mandelbrot MPI application instance, i.e.
clockwise from top right: Object Code Browser, Z trace, Z cov, and Z prof.
The tools are independently instrumenting and monitoring various functions
within the same MPI process (i.e. host cama, pid 18462).

5.3.2 Interaction with a Browser

A common task of most runtime tools is to display the application resource
hierarchy which includes the application source or object code structure (i.e.
modules, functions, and instrumentation points), processes, threads, and par-
allel computers that host the application. Since it a redundant effort for every
tool to independently provide this functionality, we give this responsibility
to a single tool like the Object Code Browser presented in Section 5.2. Apart
from displaying the resource hierarchy of an application, the Object Code
Browser can also be used to graphically indicate which resources are to be
used when starting another interoperable tool.

The advantage of this interoperability is that tools such as Z prof ne-
ver need to manipulate the list of application resources and allow the tool

124 5 Tool Integration

Fig. 5.2. A snapshot of interoperable online software tools.

developer concentrate on ”how” to instrument, rather than ”what” to instru-
ment. By selecting a set of functions in the Object Code Browser and running
Z prof with no other arguments, the selected functions will be automatically
profiled.

5.3.3 Performance Steering

Performance optimisation is a non-trivial activity that typically consists of a
four phase cyclic process [116] (see Figure 5.3):

5.3 Tool Interoperability 125

1. performance measurement and data collection when a performance pro-
filer is used to collect data from the application;

2. analysis and visualisation when performance analysis tools are used to
interpret the performance data. Visualisation diagrams may be optionally
employed if the analysis process is deferred to the end-user;

3. optimisation when the programmers choose various options to improve
the performance of their programs. This is the main task of the perfor-
mance steering tool;

4. modification when the optimisations decisions taken at the previous step
are applied to the program.

Once these four stages were completed, the performance tool again evaluates
the application performance and, if the result is still not satisfactory, the
cycle repeats.

We see two options for realising such a steering tool:

1. static offline targets application optimisation through repeated execution
for various parameter instantiations. We will address this technique in
Chapter 6;

2. runtime online targets application steering within one single execution.
We approach this scenario in our framework using our interoperable tool-
set as follows:
a) the performance profiler (e.g. Z prof) collects the performance data

and presents it in an appropriate manner to the steering tool. Addi-
tionally, it might also highlight sources of performance bottlenecks;

b) the steering tool decides whether an optimisation is required based
on the performance information received from the performance pro-
filer and gives the debugger the appropriate application modification
commands;

c) the debugger (e.g. Z debug) modifies the runtime binary code accor-
ding to the commands received from the steering tool by inserting or
removing binary instrumentation snippets or by tuning online varia-
ble values using dynamic instrumentation.

We distinguish between two types of runtime online performance steering:

Performance
Monitor

Steering
Tool

Debugger

Application

performance
data

debugging
commands

instrumentationperformance
data collection

Analysis Optimisation Modification

Fig. 5.3. The steering configuration.

126 5 Tool Integration

a) interactive when the steering tool is replaced by the programmer who
drives the execution of the performance profiler, visualises and analy-
ses the performance data, takes optimisation decisions, and converts
them into debugger commands;

b) automatic in which case the steering tool gives hints about the possi-
ble performance problems and generates alternatives to optimise the
program.

The use of the dynamic instrumentation enables the steering process take
place dynamically within one application execution without restarting it
every time a modification was made. The interoperability type between the
three tools is mixed. The steering tool interacts directly with the performance
profiler and the debugger. The performance profiler and the debugger interact
indirectly, by concurrently manipulating the same application process using
the same underlying Process Manager sensor.

5.3.4 Just-in-Time Debugging

Using a traditional low level debugger to verify the correctness of a program
requires to execute and repeatedly stop the program to inspect its state.
If an incorrect program state is detected, all that is known is that a bug
lies somewhere between the last inspection point and the current execution
point (see Figure 5.4). For parallel programs, the problem gets significantly
magnified due to their non-deterministic nature that leads to hardly repro-
ducible errors. Deterministic execution tools [155], possibly in conjunction
with a checkpointing tool [122, 166], may help in reproducing the error. This
cyclic debugging method is, however, a time consuming process since the pro-
blem has to be repeatedly reproduced. The real bottleneck is the fact that
traditional instruction level debuggers offer too low level support for spot-
ting erroneous program states and provide no information about their real
cause. Furthermore, the deterministic re-execution tools used to reproduce
erroneous program executions can be very time consuming for long program
executions. The just-in-time debugging concept attempts to eliminate the
need of deterministically re-executing the program by using of an online high
level bug detector to spot program defects in conjunction with a traditional
low level debugger to fix the problems on-the-fly using the dynamic instru-
mentation. Just-in-time debugging is an example of direct tool interaction.

start checkpoint last stop
(inspected state)

program counter
(erroneous state)

Fig. 5.4. The cyclic debugging states.

5.3 Tool Interoperability 127

Memory
Access Tool

(Z_MAT)

Sequential
Debugger
(Z_debug)

Process

3. update / remove / skip
free call

1. detect erroneous
free call

2. invoke

Fig. 5.5. A just-in-time debugging scenario.

In our proposed interoperability framework, the Z MAT memory access
tool can be used to detect memory access errors like an attempt to deal-
locate a free memory location. In the just-in-time debugging configuration
depicted in Figure 5.5, Z MAT performs additional instrumentation that stops
the application at the exact location where a memory access error is detected.
Additionally, Z MAT automatically invokes the Z debug sequential debugger
on the stopped process which gives the user the opportunity to analyse the
problem at the exact location where it occurred and eventually pursue online
corrections. In this example, changing the memory block pointer or skipping
/ deleting the free instruction are crucial for avoiding a highly probable
crash.

5.3.5 Interaction with a Debugger

The interaction of software tools with a runtime interactive debugger requires
special care since the debugger severely interferes with the process execution.
We identified the following two indirect interactions (i.e. process share) which
we believe are of promising interest:

1. Consistent Display is an important task required by nearly any runtime
tool. This issue becomes problematic when multiple tools concurrently
monitor the same processes, since the display of each tool depends not
only on its own activity, but also on the actions of other tools. When a
visualisation tool such as the Object Code Browser interoperates with a
debugger, the following sample interactions are possible:
a) if the debugger stops the program execution, the execution visualiser

needs to update its display in order to show this fact;
b) if the debugger changes the value of a variable, the (distributed array)

visualiser must update its display with the new value, for consistency;
c) if the debugger loads a shared library in the application or replaces

a call to a function, the Object Code Browser must change its code
hierarchy accordingly.

2. Accurate timing is an important interaction that can happen between a
performance tool and a debugger. For example, Z debug could choose to
stop a process while the performance tool Z prof is profiling a function

128 5 Tool Integration

of that process. In this situation, while the user and the system timers
stop together with the process, the wall-clock time keeps running. Our
underlying framework takes care of this situation through the Process
Manager sensor that automatically subtracts from the wall-clock time
the time during which the process was stopped by the debugger.

5.4 The Monitoring Layer

The monitoring layer of the tool integration architecture briefly introduced
in Section 5.1 (see Figure 5.1) consists of an open set of sensors that run on
the target Grid sites and provide low level information about the application
processes and the system resources required for online tool development. The
sensors can be remotely accessed through a portable platform independent
interface which we developed on top of the light-weight Globus-IO library [80]
and the Grid Security Infrastructure (GSI) introduced in Section 2.4.

We designed the monitoring layer motivated by the following limitations
of the Vienna Fortran Compiler-based instrumentation engine used by the
ZENTURIO experiment management tool:

1. the compile-time instrumentation can be applied only once prior to the
application execution, which often introduces unnecessary intruding pro-
bes in the application;

2. the application needs special preparation through specific compilation
and link library options which lacks flexibility required for interoperabi-
lity;

3. the performance analysis is done post-mortem based on the data stored
in the Experiment Data Repository;

4. in order to interoperate, all performance analysis tools will largely need
to base their runtime instrumentation system on SCALEA and Vienna
Fortran Compiler.

In the remainder of this section we present a general purpose instrumentation
and monitoring sensor called Process Manager which aims to complement
these limitations by using the dynamic instrumentation technology.

5.4.1 Dynamic Instrumentation

Dynamic instrumentation is a non-conventional instrumentation technology
based on the insertion of binary code snippets at runtime into an already
executing program. Dynamic instrumentation has several unique characteri-
stics that make it suited for tool interoperability since it does not conflict
with other existing instrumentation technologies:

1. it requires no advanced preparation of the application program, like spe-
cial compilation options or link libraries;

5.4 The Monitoring Layer 129

Pre

Relocated
Instruction

Pre

Save Registers

Setup Arguments

Snippet

Restore Registers

foo()

Program Base Trampoline Mini Trampoline Function

Fig. 5.6. The dynamic instrumentation control flow.

2. it allows instrumentation of binary programs compiled from any program-
ming language, even of proprietary applications for which the source code
is not available;

3. the instrumentation snippets can be inserted and removed from the code
at any time which keeps the intrusion minimum.

Figure 5.6 illustrates the basic dynamic instrumentation mechanism to in-
sert code snippets into a running process. The machine instruction code is
inserted into the process by replacing an instruction located at the desired
instrumentation point with a branch to a code snippet called base trampo-
line. The base trampoline saves and restores the process state before and
after executing the instrumentation code. The specific instrumentation code
is contained within a mini trampoline that can be inserted either before or
after the relocated instruction. In case when the instrumentation snippet con-
sists of function calls, additional trampoline guards ensure that the snippet
is executed only if any of the functions is not on the stack.

The main limitation of dynamic instrumentation is its exclusive focus to
binary executable object code. While compilation for debugging purposes
(i.e. usually using the -g compilation flag) produces binary code that largely
matches the source code, optimised compilation for fast execution generates
highly optimised executables that can no longer be uncompiled to the original
source code. The limitation becomes even more critical for high level paral-
lel programming languages like HPF and OpenMP, for which the dynamic
instrumentation cannot be used for computing high level metrics associated
with specific language directives. Moreover, porting this technology to dif-
ferent operating systems, or even upgrading it to new system and compiler
versions, is a hard challenging task that critically impacts the implementation
reliability and availability.

The ZENTURIO source code instrumentation with support from the Vi-
enna Fortran Compiler remains therefore an important asset along side the
dynamic instrumentation in our tool environment.

130 5 Tool Integration

5.4.2 The Process Manager

The Process Manager sensor is a light-weight daemon (implemented in C++)
in charge of controlling and instrumenting running application processes on
single sequential or shared memory parallel computers. The Process Mana-
ger serves instrumentation requests coming from remote Grid services (in
particular from the Dynamic Instrumentor service which we will describe in
Section 5.5.7) and performs dynamic instrumentation on running application
processes using the dynInst [31] C++ library that provides a machine inde-
pendent interface for runtime code patching using the (platform dependent)
dynamic instrumentation technology. Typically the Process Manager sensors
do not communicate with each other, however, there may be special cases
when such interaction is required (see Section 5.4.3).

We provide in the Process Manager two mechanisms for connecting to an
application process required to perform dynamic instrumentation:

1. create a process by providing the complete execution command and the
input arguments;

2. attach to an existing process by providing the operating system process
identifier.

We classify the functionality offered by the Process Manager in five categories
which are implemented by four threads as shown in Figure 5.7 and described
in the reminder of this section.

Information Functions

The information functions provide structural information collected from the
running application processes which includes the object code structure of
each process and (global) variable values. We extract this information from

Information Manipulation Tracing Notification
Data

Collection

RTI
Library

Process
Counters
Timers

dynamic instrumentation signalpipe
shared
memory

Instrumentation
Service

Tool Aggregator

Fig. 5.7. The Process Manager architecture.

5.4 The Monitoring Layer 131

the binary executables and is complementary to the source code information,
if available. Since retrieving the object code structure is a rather intrusive
operation to be repeatedly invoked, the Process Manager extracts and caches
the entire object structure through one single call after attaching to a running
application. We refresh the cache whenever a running process issues the exec
UNIX system call that overwrites the entire process image, or when a dynamic
shared library is loaded.

The object code structure of a process largely matches the original source
code if the application was compiled for debugging purposes (e.g. typically
using the -g compiler option). In the case of highly optimised applications,
however, the mapping from the binary executable to the source code becomes
impossible due to complex irreversible compiler optimisation transformations.

Manipulation Functions

The manipulation functions are primarily used for dynamically injecting in-
strumentation probes into running application processes so that information
about their execution may be gathered. We designed and implemented a run-
time instrumentation library as a UNIX shared library [168] to facilitate the
instrumentation of running application processes with high level probes, as
required by the end-user tools. The library is dynamically loaded by the Pro-
cess Manager into the address space of each monitored process at runtime
which enables the instrumentation of unmodified binary executables. We pro-
vide as part of the runtime instrumentation library the following probe types,
hierarchically depicted in Figure 5.8:

1. Timers, including wall-clock, user, and system time, are associated with
a set of start and stop instrumentation points;

2. Counters are inserted before or after any set of instrumentation points.
We provide two types of counter increments:
a) constant, usually one in case of function call counters;
b) type size used for counting the size of data structures (e.g. number of

bytes passed as argument to various functions);
3. Traces are generated by inserting instrumentation probes that generate

selective focused trace information;
4. Notifications insert probes that generate asynchronous events which are

sent by the Notification thread to the subscribers following the push event
model (see Section 5.6);

5. Breakpoints stop the application process whenever the program counter
reaches a certain instrumentation point.

We provide in the Process Manager one instrumentation function for each
probe type which is responsible for generating and inserting the appropriate
binary instrumentation snippets into the running process using dynInst . We
associate to each instrumentation probe inserted into a running process a
unique handler that can be used to remove the probe if it is no longer needed.

1
3
2

5
T
o
o
l
In

teg
ra

tio
n

Instrumentation Object

-phase : Long
Performance Data

-value : Long
Counter

-type : String
-start : Long
-stop : Long
-value : Long

Timer

-function : String
-location : Short
-arguments : String
-return : String
-address : Long
-timestamp : Long

Trace Data
-module : String
-staus : Short

Notification

-function : String
-location : Short

Point
-function : String
-location : Short

Breakpoint

Fig. 5.8. The instrumentation probe class hierarchy.

5.4 The Monitoring Layer 133

Before instrumenting the application, the Process Manager checks whether
the requested probe was previously inserted and, if so, returns the already
allocated handler which avoids redundant instrumentation and minimises the
intrusion.

Data Collection

We store the online performance data collected by the instrumentation pro-
bes in a memory segment that is shared between the Process Manager and
the application process. From this shared memory segment, the performance
data is sampled by the data collection thread with minimum overhead and
forwarded to the tool (or to an Aggregator service – see Section 5.5.8) for
online performance analysis via an asynchronous notification callback. Each
performance metric has its own associated online sampling rate which is spe-
cified as part of the instrumentation request.

Tracing

The tracing thread collects selective trace information generated by the ap-
plication tracing probes associated with certain instrumentation points. To
simplify the implementation, we designed a simple trace data format that
was sufficient for the implementation of the prototype tools that we use to
validate the framework (see Section 5.2). One entry of our trace data format
contains the following fields which are currently restricted to function level
instrumentation granularity:

1. function name in which the instrumentation point is located;
2. location of the instrumentation point (function entry, exit, or call);
3. argument list of the function instance (if a function entry or a call point);
4. return value of the function (if a function exit or a call point);
5. address of the instrumentation point (needed to distinguish between dif-

ferent calls to the same function);
6. timestamp when the trace was generated.

As the trace data could get unacceptably large to be stored in the shared
memory, we periodically append it to a First In First Out (FIFO) UNIX file
(or pipe) [168] from where it is (albeit less efficiently than the performance
data) collected by the Process Manager.

Notification

The Notification is a light-weight sleeping thread that is awaken through
UNIX signals [168] by the notification probes when certain events happen
during the process execution. As the signals can only achieve process syn-
chronisation (not communication), we store the information that describes

134 5 Tool Integration

the occurring events in a special data structure within the shared memory
segment (i.e. between the Process Manager and the executing process). The
monitored application process and the Process Manager synchronise their
access to this data structure by means of a UNIX semaphore [168]. This ad-
ditional synchronisation is required since multiple simultaneous events may
overwrite the data structure or exhaust the shared memory segment before
the asynchronous notification thread manages to consume and forward the
events to the requesting tool. We are currently handling there three types of
notifications:

1. Arrival at instrumentation point;
2. Load or unload a shared library by trapping the dlopen UNIX system

call [168]. This notification is used by browsing tools to provide an up-
dated view of the application object code structure (see Section 5.2).

3. Status change (e.g. started, stopped, running, terminated) that allows
the tools to dynamically monitor and react upon any modification in the
application status. The stopped state is usually caused by a correctness
debugger and augments the experiment state transition diagram presen-
ted in Figure 4.24 (see Chapter 4).

5.4.3 Dynamic Instrumentation of MPI Applications

We designed the Process Manager sensor for dynamic instrumentation of
generic processes with no particular focus to any programming paradigm.
The use of higher level parallel programming paradigms, however, require
extensions to the existing functionality in order to be of convenient use to
the tool developers. In this section we present a specialisation through (C++)
inheritance of the Process Manager sensor to facilitate the instrumentation
of MPI parallel applications

The challenge in creating an MPI application for dynamic instrumenta-
tion is to obtain the identifiers of all MPI processes which have to be created
through the Process Manager on each individual processor of the parallel
machine. Although MPI provides a standard interface for communicating
between parallel processes, it omits to standardise the mechanism through
which the parallel applications are created [164]. Currently each MPI im-
plementation provides its own customised flavour of the mpirun command
which starts a SPMD program on a specified number of nodes of the paral-
lel machine1. The MPI-2 [92] specification aims to standardise the mpirun
command renamed as mpiexec, but unfortunately it contains only advises
rather than a full portable script to be adopted by all MPI implementations.
The MPI Forum argues that the range of the environments is so diverse (e.g.
there may not even be a command line interface to invoke mpiexec) that
MPI cannot mandate such a universal mechanism.
1 For MPMD applications, the use of the standard library call MPI COMM SPAWN

defined by the MPI-2 [92] standard solves the problem in a portable manner.

5.4 The Monitoring Layer 135

Process
Manager

Master

Dynamic Instrumentor

Process
Manager

Slave

2. create 3. run slave command

4. create slave

6. acknowledge creation

5. create

1. createMPIApplication

Processor 1 Processor 2

Fig. 5.9. The control flow for starting an MPI(CH) application for dynamic in-
strumentation.

Since we cannot achieve a generic solution, we chose the widely spread
MPICH [91] for a case study implementation. We depict the technical scenario
of creating an MPICH application for dynamic instrumentation in Figure 5.9.
The client (i.e. the Dynamic Instrumentor service described in Section 5.5.7)
requests that the Process Manager create an MPI application by invoking
the (MPICH specific) mpirun command. The Process Manager appends the
-t execution flag to the mpirun arguments that executes the command in the
test mode. The result returned by the mpirun test command represents the
list of processors of the parallel computer where the MPI processes will be
started. The last entry in this list is the master process that has to be execu-
ted by the Process Manager on the local computer which will subsequently
spawn the remaining MPI slave processes. The Process Manager appends the
-p4norem flag when executing the master command, thereby preventing the
master process from starting the slave processes automatically. Instead, the
master process returns to the Process Manager the command required to ma-
nually start the slave processes on different processors. The Process Manager
delegates this task to its counterpart running on the same processor where
the slave has to be started. This is the only situation when direct commu-
nication between Process Managers is required. After being created, all MPI
processes must be resumed so that the slaves can acknowledge their creation
to the master within the MPI Init function. As most tools require that the
application be halted immediately after its creation, we insert a breakpoint
at the end of the MPI Init function of each process. Additionally, we insert
a call to PMPI Comm rank before this breakpoint to retrieve the MPI process
identifier within the MPI COMM WORLD communicator.

The implementation of this start-up mechanism raised a peculiar out-
put buffering problem for which dynamic instrumentation as a general run-
time code patching approach enables a very interesting and effective solution.

136 5 Tool Integration

When given the -p4norem flag, the MPI Init implementation of MPICH uses
the C language printf command to write the master output that indicates
how to start the slave processes (see Figure 5.9). Since the standard output
of the master is redirected to a FIFO UNIX file (or pipe) [168] by the Process
Manager, no output will be received until the output buffer is flushed. Rather
than modifying the MPICH source code (which for other proprietary MPI
implementations may not even be available) to explicitly flush the buffer after
the offending printf and rebuild the whole MPICH library (thereby forcing
the use of a customised library version), the Process Manager forces the flush
at runtime by dynamically inserting a call to fflush(stdout) on-the-fly into
the running master process. This enables our implementation to work with
an original and unmodified MPICH library.

Dynamic instrumentation of the MPI-2 MPI Comm spawn multiple and
MPI Comm spawn routines required by the MPMD programming model allow
newly spawned MPI processes be discovered at runtime and instrumented.

The dynamic instrumentation technology enables us profile MPI library
calls with ease. The generic profiling and tracing operations of the Process
Manager can be easily focused on the MPI library routines. The profiling
interface defined by the MPI standard is of no benefit to us, since it is suffi-
cient to apply the profiling and tracing operations to the PMPI -prefixed calls
directly without using the MPI -prefixed wrappers. Furthermore, apart from
the MPI application start-up which unfortunately is not fully standardised,
all the metrics and tools developed can be applied on any (even proprietary)
MPI implementation.

5.5 The Grid Services Layer

We designed the middle Grid services layer of the tool integration architecture
introduced in Section 5.1 and depicted in Figure 5.1 with the following goals
in mind:

1. the services shall provide a broad high level and platform independent
functionality required for tool development;

2. the services can be accessed concurrently and independently by multiple
clients which is essential for tool interoperability;

3. the services shall be easily instantiated on arbitrary remote Grid sites
required for efficient deployment on the Grid;

4. there must be flexible and efficient means for discovering the services.

The Grid community acknowledged the Web services as the defacto ground
technology for building service-oriented Grid architectures [79]. Web services,
however, only mandate the use of XML documents for expressing interfaces
and interactions between stateless Web services. In contrast, Grid services
that model stateful Grid resources require enhancements to the basic Web

5.5 The Grid Services Layer 137

in
t P

M
PI

_I
ni

t(
in

t a
rg

c,
 c

ha
r

**
ar

gv
)

{

Pr
oc

es
s

M
an

ag
er

M
PI

 p
ro

ce
ss

in
t P

M
PI

_S
en

d(
vo

id
 *

bu
ff

,

sn
ip

pe
t

sn
ip

pe
t

in
se

rt

in
se

rt
sn

ip
pe

t

in
se

rt

//
pr

op
ri

et
ar

y
im

pl
em

en
ta

tio
n

tim
er

.s
to

p(
);

by
te

s
+

=
 c

ou
nt

 *
 d

at
as

iz
e;

ca
lls

+
+

;

B
Pa

tc
h_

br
ea

kP
oi

nt
E

xp
r(

);

PM
PI

_C
om

m
_r

an
k(

M
PI

_C
O

M
M

_W
O

R
L

D
,

 &

ra
nk

);
}

//
pr

op
ri

et
ar

y
im

pl
em

en
ta

tio
n

{ }

PM
PI

_T
yp

eS
iz

e(
da

ta
ty

pe
, d

at
as

iz
e)

;

 i

nt
 c

ou
nt

,

 P
M

PI
_D

at
aT

yp
e

da
ta

ty
pe

,

 i
nt

 d
es

t,

 M

PI
_C

om
m

 c
om

m
)

T
im

er
 ti

m
er

;
in

t r
an

k,
 c

al
ls

 =
 0

, b
yt

es
 =

 0
, d

at
as

iz
e;

m
al

lo
c

tim
er

.s
ta

rt
()

;

 i

nt
 ta

g,

Fig. 5.10. The dynamic MPI library profiling.

services technology with functionality regarding state data (including lifecy-
cle) and asynchronous notifications, as introduced in Section 2.6.2.

The Open Grid Services Infrastructure (OGSI) [46] standard proposed by
the Global Grid Forum [37] in June 2003 failed to be acknowledged by the
industry driven Web services community due to its object-oriented approach
in modeling Grid services based on inheritance, lifecycle encapsulation, and

138 5 Tool Integration

service state as WSDL elements, that were not inline with the stateless Web
services principles. OGSI therefore became obsolete soon and replaced by the
Web Services Resource Framework [13] that is a delegation-based approach
currently under standardisation within the Organisation for the Advance-
ment of Structured Information Standards (OASIS) [135]. We carried out
this work in designing the Grid services middleware layer within this this
transitory period and exploited it as an opportunity to provide own contri-
butions through the specification and implementation of several original Web
services extensions for Grid computing.

5.5.1 Web Application and Services Platform (WASP)

We use the Systinet Server for Java, previously known as the Web Appli-
cation and Services Platform (WASP) [129], as the Web services toolkit to
implement the Grid services layer since it proved to be one of the fastest, ro-
bust, and easy to use product from a range of other implementations which
we evaluated.

The WASP Web services runtime environment for Java is compliant with
the Web services model described in Section 2.2. The WSDL interface of
each Web service is automatically generated using WASP specific tools and
is therefore implementation specific. Every Web service is designed and im-
plemented by one Java class, deployed within, and executed by the WASP
hosting environment. Upon the deployment of a Web service, a Web service
instance with an associated WSDL document, whose structure we presented
in Section 2.2, are automatically generated by WASP. Each automatically
generated WSDL document of a Grid service deployed within the WASP
hosting environment contains one service interface and one service instance
section. The service interface has exactly one portType with the same name
as the Java class that implements the service. Each Java method is mapped
to one portType operation. The service interface is represented by exactly
one service element which contains one port that defines the URL address
of the SOAP portType network protocol binding.

Figure 5.11 depicts the state transition diagram of a Grid service de-
ployed within the WASP hosting environment. Offline is the initial state and
indicates that the service is not in memory, but will be loaded by the Java
RPC provider (and transferred to the state Enabled) when a request arrives.
In the Active state the service is processing one or more clients. The state
Stopping indicates that a request to stop the service has been issued, but
some requests are still in process. A service in the state Stopped remains in
memory but rejects all incoming requests. Disabled means that the service is
not in memory and cannot receive any requests. The transitions between the
states are performed by the hosting environment either automatically (see
the transitions marked with italicised text), or through explicit calls to the
WASP administration service (see the transitions marked with typewriter
style text).

5.5 The Grid Services Layer 139

Offline Enabled

Disabled

Stopped

StoppingActive

first
request

start()
stop()

start()
stop()

disable() disable()

incoming request last active
request ends

incoming request

hosting environment shutdown

last active
request ends

Fig. 5.11. The state transition diagram of WASP-based Web services.

5.5.2 Service Repository

The Universal Description, Discovery, and Integration (UDDI) [137] is a spe-
cification for distributed information registries of persistent business Web
services.

One essential difference between business and Grid services, which in ma-
kes the use of UDDI in a Grid environment inappropriate, is the service
lifecycle. While a static UDDI registry (i.e. a database) is suitable for pu-
blishing information about static and persistent business Web services, it is
certainly inappropriate for storing information about dynamic and transient
Grid services. In addition, publishing Grid services implementations in a Grid
environment is crucial, as one cannot assume that the implementation code
is available on the originally unknown remote site where the service instance
would be desired. While compiled programming languages raise severe por-
tability problems (especially due to unstandardised linkers and incompatible
shared library dependencies), this issue is feasible for portable interpreted
Java byte code that we use as the base implementation language for the
middleware layer.

In this section we propose a new and slightly modified use of UDDI as
a Service Repository for publishing Grid service implementations in a dyna-
mic Grid environment (transient Grid service instances are published within a
specialised Registry service that we will describe in Section 5.5.5). The UDDI
best practices model that we briefly introduced Section 2.3.1 requires that
the interface part of the WSDL document be published as a UDDI tModel
and the instance part as a businessService element (i.e. as URLs). The
businessService UDDI element is a descriptive container used to group
related Web services which has one or more bindingTemplate elements
that contain information for connecting and invoking a Web service. The
bindingTemplate contains a pointer to a tModel element which describes the

140 5 Tool Integration

meta-data of a Web service. An accessPoint element is set with the SOAP
address of the service (port). In contrast, we use the UDDI businessService
element to publish service implementation information of transient Grid ser-
vice instances. We use the accessPoint element of a bindingTemplate to
store the URL to the JAR package that implements the Grid service. The
WSDL service interfaces and the service implementations are manually pu-
blished by the users in the UDDI Service Repository. Additionally, a notifi-
cation mechanism compliant with the UDDI version three specification can
be used to inform the clients when new services are registered.

The Registry (see Section 5.5.5) and the Factory (see Section 5.5.4) are
the only two persistent services in our architecture for which we manually
publish two entries in the UDDI repository that correspond to the service
implementations and existing (arbitrary in number) service instances. The
distinction between the service implementation and a persistent service in-
stance is done based on the accessPoint URL syntax. Persistent Factory
instances have a standardised URL derived from the Grid site name and a
predefined port number (i.e. http://hostname:port/Factory/).

5.5.3 Abstract Grid Service

We model the Grid middleware services in a hierarchy displayed in Figure 5.12
designed using inheritance and the state encapsulation model described in
Section 2.6.2. Each service is a specialisation of the Abstract Grid Service
that defines and partially implements the most common denominator of the
functionality required by all Grid services. The Abstract Grid Service imple-
ments the Producer and Consumer interfaces that describe the push events
of the generic event framework what we will present in Section 5.6. The inhe-
ritance hierarchy is materialised, however, only at the Java implementation
level since the Web services technology does not adhere to object-oriented de-
sign principles. Each automatically generated WSDL document of a WASP
specific Grid service contains one single portType operation that merges
the functionality of all the super-classes within the class hierarchy (see Sec-
tion 5.5.1).

We provide the following set of generic operations as part of the Abstract
Grid Service interface:

1. retrieve the URL of the WSDL file constructed using the URL of the
hosting environment plus a suffix path that uniquely identifies the service
instance;

2. set and control the service state within the hosting environment;
3. retrieve and set the service soft-state termination time;
4. register the service with all the available Registries (retrieved from the

UDDI Service Repository) and set the leasing time (see Section 5.5.5);
5. initialise the service after the transition from the state Offline to the

state Enabled ;

5
.5

T
h
e

G
rid

S
erv

ices
L
ay

er
1
4
1

+getURL()
+setState()
+setTerminationTime()
+initialise()
+reset()
+getLoad()

ZENTURIO Grid Service

-WSDL
-URL

+notify()

«Schnittstelle»
Consumer

+subscribe()
+unsubscribe()

«Schnittstelle»
Producer

Event

-type
-timestamp
-producer (URL)
-consumer (URL)
-description
-sequence number
-body

1

1

+create()

Factory

+register()
+unregister()
+lookup()

Registry

-serviceList

+generateExperiments()
+removeApplication()

Experiment Generator

-applicationList
-experimentList

+transfer()
+compile()
+execute()
+store()
+kill()

Experiment Executor

-applicationList
-experimentList

1

1

Filter

+instrument()

Instrumentation

+prepareForFData()

Aggregator

+convert()
+schedule()

Scheduler

Fig. 5.12. The Grid services hierarchy.

142 5 Tool Integration

6. reset the service by eliminating all the state information when the service
is changing to the Disabled state;

7. retrieve the load of a service (in percentage).

The operations two and three implement the Grid service lifecycle based on
the WASP specific interface and state transition diagram described in Sec-
tion 5.5.1 and illustrated in Figure 5.11. The operations five, six, and seven
describe abstract state information and must be specialised by each Grid ser-
vice. Explicit service termination can be achieved by providing a termination
time equal or prior to the current time. Destroying a Grid service requires
to undeploy it from the hosting environment. We implement an additional
softer destroy method that changes the service state to Disabled instead of
undeploying it. A subsequent recreation of the service uses the existing disab-
led instance and changes its state to Offline which avoids extra deployment
and undeployment overhead.

The Factory and the Registry are persistent services while the others are
transient. All services in our Grid environment can be accessed concurrently
by multiple clients which is an essential feature for achieving interoperability.
Additionally, we provide for each service method a synchronous and an asyn-
chronous version. The asynchronous version has the Async suffix and returns
immediately an asynchronous receipt. Synchronous methods can be invoked
against this receipt to verify whether the asynchronous method completed
(optionally with a waiting timeout argument) or to retrieve the return result,
any input or output parameter, and any exception that may have been raised.
We can regard this asynchronous method invocation style as implementing
the pull event model addressed in detail in Section 5.6.

5.5.4 Factory

Each hosting environment that runs on every Grid site contains by default one
persistent Factory service which implements the factory abstract concept or
pattern. We designed the Factory as a generic service that creates and deploys
(Java) Grid services of any type which are previously packaged as JAR files.
The Factory searches in the (UDDI) Service Repository for a service of a
given type (i.e. as a businessService name – see Section 2.3.1) and, if such
a service is found, the Factory creates a Grid service instance through the
following steps:

1. get the URL of the service implementation (represented as an accessPoint
element – see Section 5.5.2);

2. download the corresponding JAR package;
3. deploy the service in the same hosting environment in which the Factory

resides;
4. initialise the service instance;
5. register the instance with all known Registry services (retrieved from the

UDDI Service Repository);

5.5 The Grid Services Layer 143

6. set a leasing time equal to the service termination time;
7. return the URL to the WSDL file of the service instance.

The clients use this URL to retrieve the WSDL file and dynamically bind
to the service through build-time generated stubs. Before searching for a
service, the Factory examines within the hosting environment whether an
instance of the same type was previously destroyed and disabled. If such
an instance is found, the Factory changes its state to Offline, thus saving
expensive download, package, and deployment overhead (see Figure 5.11).

5.5.5 Registry

As opposed to other distributed service technologies (e.g. Jini lookup ser-
vice [64] or CORBA Naming and Trading services [120]), Web services do
not provide any standard network aware means of locating transient services
(we have already emphasised the limitations of UDDI in Section 5.5.2). The
Web services architecture [194] introduces the concept of discovery agent, but
leaves its design and implementation unspecified.

We designed the Registry as a persistent service which maintains an up-
dated list of URLs to the WSDL files of registered Grid service instances.
We organise the service URLs in special purpose hash tables for fast high
throughput service discovery. There may be an arbitrary number of persis-
tent Registries residing on any Grid site which must be registered with the
UDDI Service Repository. The Registry grants leases to the registered ser-
vices similar to the Jini [64] built-in leasing mechanism. If a service does not
renew its lease before the lease expires, the Registry deletes the service from
its internal service list which is an efficient mechanism to cope with dynamic
transient services and network failures. A leasing time of zero seconds expli-
citly unregisters the service. We provide an event mechanism to inform the
clients (e.g. the user tools) about new Grid services that registered with the
Registry or when the lease of existing services expired. Thereby, the clients are
always provided with a dynamically updated view of the Grid services-based
middleware environment. The Registry is a generic service that operates on
Abstract Grid Services and, therefore, can be used to register and discover
services of any type in our architecture.

The Web Services Inspection Language (WSIL) [12] designed by IBM pro-
posed a distributed Web services discovery method which is complementary
to the UDDI centralised approach. WSIL defines an XML document that con-
tains URL references to existing Web service instances (i.e. instance WSDL
documents). We implement in the Registry service a method that generates
upon request one similar WSIL document which contains references to the
registered transient Grid service instances. We also associate a timestamp
with the WSIL document that determines the validity of the data.

We provide as part of the Registry service three types of methods for
performing lookup operations:

144 5 Tool Integration

1. White pages provide service discovery based on the service URL;
2. Yellow pages support service discovery based on the service type com-

pared against the portType of each service. As we already described in
Section 5.5.1, the WSDL document of each WASP Web service contains
one single portType with the same name as the Java class that imple-
ments the service;

3. Green pages perform discovery based on service functionality using the
compatibility operator between two WSDL interfaces that we describe in
the next section.

5.5.6 WSDL Compatibility

Functionality-based service discovery is a key feature in a Grid environment
for which the Web services technology does not provide any standard support.

Definition 5.1. We define an instance WSDL document W1 as compatible
with an instance document W2, denoted as W1 ⊃ W2, if and only if:

1. the set of portType names2 of W1 instantiated by the service element
is a superset of the corresponding set of W2;

2. for each portType of W2 instantiated by the service element, the set of
operation names is a subset of the corresponding set of W1;

3. two operations with the same name are identical (i.e. have identical
parameterOrder, input, output and fault messages).

The Grid services compatibility operator is reflexive, antisymmetric, and
transitive.

5.5.7 Dynamic Instrumentor

We designed the Dynamic Instrumentor as a Grid service for generic dynamic
runtime instrumentation of running parallel applications based on the func-
tionality of the Process Manager sensor described in Section 5.4.2, augmented
with collective operations that apply on multiple parallel processes simulta-
neously. The Dynamic Instrumentor provides the following four categories of
operations:

1. Information operations are based on the Process Manager information
functions which include the retrieval of the application object code or
the inspection of variable values. Because it is an expensive operation at
the Process Manager level, the Dynamic Instrumentor service retrieves
the object code only once during the lifetime of a process (i.e. when the
process is created or attached) and caches it for serving further requests;

2 qnames in the WSDL specification and terminology [38].

5.5 The Grid Services Layer 145

2. Performance metric operations are based on the Process Manager mani-
pulation functions but operate at a higher level of abstraction, e.g. count
number of function calls, compute the execution time of a function, or
count the size of a function parameter. On top of the generic performance
metrics, we built a specialised MPI Dynamic Instrumentor that provides
MPI specific metrics including:
a) the number of messages sent;
b) the number of input and output operations (based on the MPI-

IO [177] standard);
c) the time spent in communication (i.e. by timing the routines from

the MPI Send and MPI Recv family);
d) the time spent in input and output operations;
e) the time spent in synchronisation (i.e. MPI Barrier) ;
f) the number of bytes sent and received in communication routines;
g) the number of bytes involved in input and output operations;

3. Function tracing operations request that the entry, the exit, and the call
points of a user, a system, or a library function are logged;

4. Notification operations request that the client (i.e. the tool) be notified
(using the push event model – see Section 5.6) when certain events oc-
cur in the application (e.g. instrumentation point reached, shared library
loaded, process forked or exited);

5. Breakpoint operations request the insertion of normal or conditional
breakpoints. Since a breakpoint only stops the process when it is reached
by the program counter, a typical use is in conjunction with a Notification
probe that informs the client where such an breakpoint event occurred
(rather than reporting only a process status change).

5.5.8 Aggregator
When dealing with parallel applications, frequently the first step in proces-
sing the collected (performance) data from all parallel processes requires a
reduction step for better data understanding. We designed the Aggregator as
a generic Grid service that receives large amounts of data and, through the
use of a chosen aggregation function, reduces it to more manageable quanti-
ties. The Aggregator supports reduction over time or across processors using
a variety of aggregation functions including mean, total, variance, sum, ma-
ximum, or minimum. A more specialised metric for parallel processing is the
load balance which we defined in Section 4.2.5 (see Definition 4.17) as the ra-
tio between the mean and the max value. A value of one indicates the perfect
load balance and a value of zero indicates the worse case load balance.

The Dynamic Instrumentor provides an Aggregator service when reques-
ting from several Process Managers to collect dynamic performance data
from a parallel application. The Aggregator specialises the Consumer inter-
face for receiving data from the Process Manager (upon subscription) and
the Producer interface for sending data to the client tool. Both interfaces
implement the push event model that we will describe in Section 5.6.

146 5 Tool Integration

5.6 Event Framework

The Grid community widely acknowledged the need of an event framework
for monitoringimportant events that occur in large and dynamic Grid envi-
ronments [179]. Our proposed tool integration architecture adheres to this
consensus by designing and implementing a generic event framework as part
of its Grid service middleware layer.

Definition 5.2. We define an event as a timestamped data structure gene-
rated by a sensor and sent by a producer to a consumer. An event producer
is a Grid service that implements the Producer interface and uses sensors
to generate events. An event consumer is a Grid service (usually a thread
within the client application) that implements the Consumer interface (see
Figure 5.12).

Sensors can be stand-alone like the Process Manager or embedded inside pro-
ducers. The Registry service is responsible in our architecture for maintaining
up-to-date information about existing producers and consumers.

5.6.1 Representation

We model a generic event as a composite structure consisting of two parts:

1. The event header is the standard part of the event structure that com-
prises the following fields:
a) event type is an identifier that refers to a category of events defined

by an event schema;
b) timestamp indicates when the event was generated. If the events are

buffered, the elements in the event body may contain additional ti-
mestamp information;

c) event producer (URL);
d) event consumer (URL);
e) sequence number ;
f) expiration timestamp;

2. The event body represents the effective information carried by the event
which consists of the following four fields, where the last three are optio-
nal:
a) homogeneous collection of elements where every element refers to a

single event. The structure of an element (i.e. the type) is defined by
an event schema;

b) element description (textual);
c) measurement unit ;
d) accuracy.

Our event framework depicted in Figure 5.13 supports three types of inter-
actions between producers and consumers [179]:

5.6 Event Framework 147

Consumer

Producer

RegistryEvent Type

Filter

publish event

publish event

subscribe /
unsubscribe

subscribe /
unsubscribe

push event
(PS, N)

pull event
(QS)

Event

Event

Fig. 5.13. The ZENTURIO event architecture.

1. publish-subscribe (PS) is a generalisation of the push model where the in-
itiator can be either the producer or the consumer. The initiator searches
in the Registry service for the other party (producer or consumer) and
registers for (the production or the consumption of) events. The producer
sends events to the consumers until the initiator unsubscribes. The con-
sumers subscribe for events to the producers by specifying the following
inputs:
a) event type that uniquely identifies the category of events desired;
b) event consumer (i.e. URL to the WSDL file) that specialises the

Consumer interface which receives the asynchronous notifications;
c) event parameters specify the properties (characteristics) of the events

to be sent to the user (e.g. process identifier for which status events
must be sent). The event parameters describe an event and therefore
we included them as part of the event schema (i.e. as data members);

d) filter specifies the conditions that must hold in order for an event to
be generated (e.g. minimum value for a processor load event);

e) subscription expiration time;
2. query-response (QR) generalises the pull event model. The initiator is

the consumer and the event is sent in a single response any time after the
event was requested;

3. notification (N) is a slight specialisation of the push model. The produ-
cer transfers the events to the consumer in a single notification with no
preliminary subscription.

In Figure 5.14 we depict a generic classification of the events supported by
our tool environment, including ZENTURIO experiment management tool,
based on several event types. Table 5.1 displays the producers and the sensors
for each of the event types, while Table 5.2 gives a detailed description of the
event types and their use.

1
4
8

5
T
o
o
l
In

teg
ra

tio
n

Event

Status Event Performance Event

Application Performance

-execution time
-performance overhead
-performance property

Process Performance

-execution time

Thread Performance

-execution time

1

1..*

Appplication Status

-status change
-statement reached
-condition changed
-data/result available
-ZTS compilation error
-compilation error
-execution error

Process Status

-status change
-statement reached
-condition true
-execution error

Network Status

-network down
-network partitioning failure
-protocol failure
-lost data

Service Status

-status (up/down)
-new service
-authentication granted
-authentication denied
-not responding

1

1..*

Thread Status

-status change
-statement reached
-condition true
-execution error

1

1..*

1

1..*

Site Status

-status (up/down)
-out of disk space
-scheduler down
-ftp error
-system under attack

Network Performance

-low latency
-low bandwidth
-network congestion

Site Performance

-CPU load
-disk activity
-number of application
-number of experiments
-available memory

Service Performance

-service idle
-service overloaded
-service load (%)

Fig. 5.14. The event hierarchy.

5.6 Event Framework 149

Table 5.1. The event implementation support.

Event Type Producer Sensor

Experiment Executor Experiment Executor
Application Status Experiment Generator Experiment Generator

Dynamic Instrumentor Process Manager

Process Status Dynamic Instrumentor Process Manager

Thread Status Dynamic Instrumentor Process Manager

Network Status SCALEA-G [182] netstat

Site Status SCALEA-G ping

Service Status Abstract Grid Service Abstract Grid Service
Registry Registry

Application Performance Aggregator Process Manager
Dynamic Instrumentor SCALEA

Process Performance Aggregator Process Manager
Dynamic Instrumentor SCALEA

Thread Performance Aggregator Process Manager
Dynamic Instrumentor SCALEA

Network Performance SCALEA-G NWS

Site Performance SCALEA-G NWS

Service Performance Abstract Grid Service Abstract Grid Service

5.6.2 Implementation

Events require support for asynchronous messaging which is currently stan-
dardised within OASIS through the WS-Notification standard [90], however,
this specification was not supported in WASP or any other Web services
toolkit by the time we carried our this work. For example, the Web services
operations can be of type one-way, in which case no SOAP response is gene-
rated and only a HTTP notification is sent back. Moreover, WSDL version
1.1 defines operations of type Notification that allow an endpoint to send a
message, however, it omits to define an appropriate network protocol binding.

We implement the query-response events using the WASP specific asyn-
chronous methods with the Async suffix, as described in Section 5.5.3. We
realise the publish-subscribe and notification interactions (flavours on the
push event model) based on one-way Web services operations that reverse
the roles of services and clients. The client takes the role of a service that
receives one-way notification callbacks by implementing the Consumer WSDL
interface. We base our implementation on the WASP specific embedded server
that allows one client to start a hosting environment as a separate thread.
Although the declared purpose of this WASP feature is rapid prototyping,
the embedded server enables synchronous or one-way callbacks. The SOAP
address of the embedded server where the callbacks are received is given to
the producer service during the event subscription. This entire event imple-
mentation is, however, WASP specific and therefore not portable across other
Web services toolkits.

1
5
0

5
T
o
o
l
In

teg
ra

tio
n

Table 5.2. The events supported by ZENTURIO.

Event Type Producer Consumer Sensor Parameters Filters Event Elements Interaction

service state Registry User Portal Registry type, site status (up/down) PS, QR

new service Registry User Portal Registry type, site service type, URL PS, QR

authentication Abstract User Abstract user N
failed Grid Service Portal Grid Service name

out of Exp. Generator, User Exp. Generator, site N
disk space Exp. Executor Portal Exp. Executor

compilation Exp. Generator, User Exp. Generator, ZEN file, N
error Exp. Executor Portal Exp. Executor message

fie transfer error Exp. Generator, Factory User Portal Exp. Generator site N

condition Exp. Executor User Exp. Generator identifier, bool-expr PS
true Portal Instrum. app.

application Dynamic User Process metric, app., bool-expr, value PS
performance Instrumentor Portal Manager sample rate max, min

new Exp. Generator User Exp. Generator app., experiment PS,
experiment Portal ZEN vars QR

experiment Exp. Generator, User Exp. Generator, app., experiment PS,
status Exp. Executor Portal Exp. Executor ZEN vars status QR

scheduler down Exp. Executor User Portal Exp. Executor site, scheduler N

unknown scheduler Exp. Executor User Portal Exp. Executor site, scheduler N

service Exp. Generator, User Exp. Generator, site, max / min no. applications, PS,
load Exp. Executor Portal Exp. Executor sample rate load no. experiments. QR

compilation error Exp. Executor User Portal Exp. Executor exp., message N

execution error Exp. Executor User Portal Exp. Executor exp., message N

repository Exp. Executor User SCALEA experiment, N
store error Portal message

repository Exp. Generator, User Exp. Generator, site, N
access error Exp. Executor Portal Exp. Executor message

5.7 Firewall Management 151

5.6.3 Filters

Filters can be either encoded inside event producers (i.e. Grid services) or
designed separately, as special kind of intermediaries.

Definition 5.3. An intermediary is a Grid service that insinuates between
a producer and a consumer during a push (i.e. publish-subscribe and notifi-
cation) event notification. A filter is an intermediary which delivers to the
consumers a subset of the messages received from the producers.

An intermediary can be shared by multiple producers and consumers. The
event subscription method of the producers can receive as input (along with
the event type, consumer, and event parameters) an array of filters of the
Abstract Grid Service type. The filters are chained such that the first filter
receives the messages directly from the producer and the last filter delivers
the output messages to the consumer. This general method of chaining filters
is employed at certain latency costs (unless the deviated path through the
filter has lower latency or higher bandwidth than the direct path from the
producer to the consumer). We implement an abstract template filter that
specialises the Abstract Grid Service and has exactly one producer and one
consumer. We can therefore easily plug-in new filters by specialising this
abstract class and implementing the filtering algorithm.

5.7 Firewall Management

Firewalls are a critical topic in a Grid environment where geographically dis-
tributed Grid services need to transparently communicate through message
exchanges across multiple administrative domains. This section describes the
pragmatic approach we took in our Grid environment for traversing firewalls,
however, a proper solution that satisfies all the security constraints is beyond
its scope.

The Web services hosting environment described in Section 2.3.2 offers
the advantage of a single entry point for accessing all services through the
provision of an embedded SOAP dispatcher. We associate with each Grid
service two communication ports that have to be remotely accessible:

1. synchronous service port is a property of the hosting environment and
therefore is common to all services hosted on a Grid site;

2. asynchronous notification port is a state property that must be exposed
by each stateful Grid service.

All hosting environments and event consumers listening on open site ports
are responsible for authenticating every request using the GSI mechanisms
(see Section 2.4).

During our experience with ZENTURIO, we identified two serious obsta-
cles in deploying large Grid infrastructures across different academic domains:

152 5 Tool Integration

Table 5.3. The open firewall ports.

Port Value

GLOBUS TCP PORT RANGE 40000 − 40100
GRAM gatekeeper 2119
GridFTP server 2811

MDS GRIS 2135
MDS GIIS 2170
NWS Slapd 2112

NWS Nameserver 8090
NWS memory server 8050

NWS sensor 8060
NWS forecast 8070

Process Manager 12345
SCALEA-G 40600 − 40625

Hosting Environment 8080
Experiment Data Repository 5432

1. Independent (and in many cases not interacting) system administrators
usually restrict the access to open ports to certain trusted administrative
domains. However, various scenarios defined by the community within the
Global Grid Forum often require more flexibility. One frequently mentio-
ned requirement of the Grid users is mobility, i.e. the ability to connect
and use the Grid from arbitrary Internet locations (e.g. during confe-
rences), possibly from dynamic unknown IP addresses received through
the Dynamic Host Configuration Protocol (DHCP) [159] which are com-
monly rejected by firewalls;

2. To receive events at the client sites is usually impossible, the following
two scenarios being the ones we encountered most often:
a) firewalls at foreign Internet sites outside the Grid infrastructure (e.g.

where a demo is wanted) where it is impossible to ask the system
administrators for any firewall changes;

b) the use of the Network Address Translation [112] mechanism.

Table 5.3 displays the set of firewall ports that we require to be open and re-
motely accessible in our Grid environment. Our experience with ZENTURIO
revealed that restricting the access to these open ports across n sites requires
tight interaction of C2

n = n·(n−1)
2 pairs of system administrators which is not

scalable in a large Grid environment (where C2
n denotes combinations of n

elements taken two at a time).

5.8 WASP Versus GT3 Technology Evaluation

We designed and implemented the Grid middleware services in the year 2001
based on the WASP toolkit, as described in Section 5.5.1. In the year 2003, the

5.8 WASP Versus GT3 Technology Evaluation 153

Global Grid Forum finalised the Open Grid Services Infrastructure (OGSI)
specification [46] that was aimed to be the standard technology for buil-
ding Grid services. The extensions added by OGSI to conventional Web ser-
vices comprised standard means for managing the service lifecycle (including
time modeling), service data elements which exposed service state within
the WSDL portTypes of each service interface, and a standard interface for
light-weight notification events. The version three of the Globus toolkit (GT3)
implemented the OGSI specification within the Open Grid Services Archi-
tecture (OGSA) [79] based on the Apache Axis [11] SOAP implementation.

Within this wide international effort, we ported our Grid middleware ser-
vices layer to the OGSI technology using GT3 as underlying implementation
platform. Even through OGSI [46] became meanwhile an obsolete standard
replaced by WSRF, we report in the in the reminder of this section a com-
parative analysis of various aspects that were substantially different between
the WASP and GT3-based implementations which we considered a useful
experience and lesson learned during a timely technology evaluation effort in
implementing Grid services [141, 145].

5.8.1 Stub Management

We initially developed the middleware Grid services layer based on the WASP
server and SOAP engine for Java, as presented in Section 5.5.1. The transition
from WASP to the OGSI-based service deployment was straightforward in ac-
cordance to the Web services principles, by using the corresponding automatic
WSDL generation, packaging, and deployment tools. We encountered major
difficulties when porting the clients (i.e. the tools) which was mainly due to
the different stub management in the two SOAP implementations which is
not standardised by the Web services technologies (see Section 2.3.2). Inter-
operability between WASP-based clients and GT3-based services was also not
a feasible solution, since our goal was to use and validate the OGSI extensions
to the Web services (e.g. notifications, service data).

The service stubs in WASP are dynamically generated at runtime during
the service lookup operation and, therefore, completely transparent to the
user. In contrast, the stubs of the GT3 Java clients were statically generated
at compile-time using a special GSDL2Java (WSDL2Java in vanilla Axis) tool.
A limitation of this tool was that it generated not only stubs for transparent
remote invocation of the services, but also Java Bean implementations compa-
tible with the Axis BeanSerializer for all the complex types that appeared
as input or output arguments to the service methods. Each such bean contai-
ned the set and get methods to access the private data members, a default
constructor, and additional bean (de)serialisation code. This meant that the
implementation of each complex type present in a service interface must be a
Java Bean which was overwritten (or generated) by the stub generator. This
limitation is not imposed by WASP which allows arbitrary nontrivial imple-
mentations of the complex types that are defined in the WSDL interfaces.

154 5 Tool Integration

The WASP serialisation is based on a Reflection(De)Serializer which
manages the default type (de)serialisation using a Java Beans introspector
that applies at runtime directly on the bean implementation class provided
by the user.

Our initial WASP-based implementation of the Grid services contained
nontrivial implementations of several complex types to be (de)serialised (e.g.
experiment and ZEN-annotated application classes). We needed therefore
to redesign the code such that the stubs physically generated by Axis do
not overwrite the original implementation and remove the non Java Bean
methods. We considered two solutions for solving this problem:

1. ignore the Java Bean stubs generated for the complex types and paste
the serialisation code into the implementation using a macro-processing
tool. This method is simple but less elegant;

2. re-engineer the implementation in a class hierarchy such that the super-
class is the Java Bean that will be overwritten by the stub generator
and the subclass contains the complex non Java Beans methods. We fi-
nally adopted this second solution which is neater but required a major
re-engineering of the application class hierarchy.

5.8.2 Service Lifecycle

One major contribution of OGSI to conventional persistent Web services was
the standardisation lifecycle management of transient Grid services. Normally
each conventional Web service hosting environment implements its own state
transition diagram which can be manipulated through proprietary interfa-
ces (see Section 5.5.1). The problem is that the implementation of transient
services across various service containers is not portable.

WASP provides two different instantiation models of runtime published
services and automatic lifecycle management:

1. Shared instantiation is the usual instantiation method which shares one
instance of the remote object across multiple clients. The service lifecycle
is controlled through WASP specific time-to-live routines as presented in
Section 5.5.1 and Figure 5.11;

2. Per-client instantiation is a scheme through which the WASP hosting
environment automatically creates a transient instance of a persistent
service for each separate client on behalf of its first service invocation.
This technique is similar with the WS-Context [32] standard for imple-
menting stateful services.

This was an interesting occasion to notice that, while following a different
development path than OGSI, existing advanced Web services toolkits like
WASP do provide advanced proprietary extensions for implementing transi-
ent Grid services. The OGSI specification added lifecycle as a property of Grid
service instances by defining a standard interface as part of the GridService

5.8 WASP Versus GT3 Technology Evaluation 155

portType specification and by including termination time as a WSDL service
data element. This solution had the key advantage of being portable across
multiple OGSI compliant implementations. Moreover, the service lifecycle
management is fully handled by the OGSI implementation toolkits which
substantially simplifies the development of new transient Grid services.

5.8.3 UDDI-Based Service Repository

We presented in Section 5.5.2 a custom centralised repository for publishing
persistent Grid services implementations based on the UDDI standard [137].
The generic WASP-based Factory service downloads the required service im-
plementation from the UDDI Registry (if necessary) and deploys the service
instance on-the-fly using the WASP runtime publishing tools. We could not
implement this runtime on-the-fly service deployment technique in the GT3-
based implementation that required pre-deployment of persistent services
before the hosting environment was started. Transient services are purposely
designed for runtime deployment, however, the corresponding byte code and
WSDL interfaces needed to be pre-deployed in GT3. This limitation is very
critical in a Grid environment where new services need to be deployed on
new sites at runtime based on the dynamic resource availability.

5.8.4 Service Data

The OGSI most radical extension to Web services standards was the ability to
expose service instance state data for query, update, and change notification.
The OGSI approach introduced a serviceData child element to the WSDL
portType to describe stateful Grid services. Service data was an OGSI specific
feature and therefore not supported by WASP and any other traditional
Web services implementation. Our WASP-based implementation exposes the
Grid services state through Java Bean get and set methods which has the
atomicity limitation exemplified in [46].

We enumerate the service data elements exported by our GT3-based ser-
vices in Table 5.4. The service data elements of the Registry and Factory
services were implemented by the GT3 distribution as part of the VORegis-
try respectively the FactoryServiceSkeleton implementation (the latter as
an extension to OGSI). The service data elements were, however, one the
major obstacles for the OGSI adoption within the Web services community
due to their native object-oriented roots that conflict with the stateless Web
services principles.

5.8.5 Events

Originally, OGSI defined three different WSDL portTypes that aimed to
standardise the push event model which afterwards evolved into a separate

156 5 Tool Integration

Table 5.4. The service data elements.

Service Service Data Elements

Experiment ZEN applications
Generator last experiment generated

number of experiments
Experiment Data Repository (JDBC URL)

notification port

Experiment ZEN applications
Executor number of experiments (submitted/

queued/running/terminated/stored)
Experiment Data Repository (JDBC URL)

notification port

Registry registered services
notification port

Factory created services
UDDI URL

notification port

stand-alone OASIS standard [90]: NotificationSource, NotificationSink,
and NotificationSubscription.We presented in Section 5.6 an approach to
realise push events in WASP based on embedded servers which was also adop-
ted by GT3 in the implementation of the OGSI NotificationSinkportType.
This was another interesting occasion for us to notice that existing Web ser-
vices toolkits offer solutions to implement OGSI extensions to Web services
although the declared objectives and development paths were different. In
addition, OGSI specified an event subscription mechanism on serviceData
element changes like those enumerated in Table 5.4. Support for the pull event
model was standardised in OGSI by means of findServiceData introspec-
tion on WSDL serviceData XML elements. This approach was completely
orthogonal to the one taken by us in the WASP implementation based on
asynchronous one-way methods (see Section 5.6).

5.8.6 Registry

In Section 5.5.5 we presented an advanced WASP-based Registry service for
high throughput white, yellow, and green pages-based Grid service instance
discovery. In order to save development time and also evaluate other imple-
mentations, we incorporated in the GT3-based implementation the so cal-
led VORegistry service provided by the GT3 distribution. The uniqueness
of VORegistry was the ability to publish Grid services as service data ele-
ments with service lookup support through findServiceData introspections.
The VORegistry published an additional service data element instantiated by
WSIL [12] document containing a URL list of all services registered. The ser-
vice lookup operations were based on standard XPath [39] queries against

5.8 WASP Versus GT3 Technology Evaluation 157

the WSIL XML document. Subscriptions on service data element changes
provided support push event notifications.

We conducted an additional comparative throughput benchmark to eva-
luate the responsiveness of our WASP-based Registry service against the GT3
VORegistry. We performed the benchmarks automatically using ZENTURIO
by running both the client and the hosting environment on a four processor
750 megahertz Sun-fire SMP computer with nine gigabytes of memory to
avoid processor contention and network delays. We annotated the client app-
lication with ZEN directives as shown in Example 5.4 to specify the following
benchmark parameters:

1. the number of registered services from 100 to 1500 with stride 100, deno-
ted by the ZEN variable svNo;

2. the number of concurrent clients from 100 to 15100 with stride 1000,
denoted by the ZEN variable clnts;

3. the number of requests per second served by the Registry were measured
by manually instrumenting the client with the SCALEA instrumentation
library.

These annotations specify a total of 15 × 15 = 225 experiments which were
automatically generated and conducted by ZENTURIO as described in Chap-
ter 4.

Example 5.4 (GT3 VORegistry benchmark client.).

. . .
svNo = 100;
//ZEN$ ASSIGN svNo = { 100 : 1500 : 100 }
for(int i = 0; i <= svNo; i++) {
((Stub) factory)._setProperty(

ServiceProperties.INVOCATION_ID, i);
factory.createService(new CreationType());

}
. . .
clnts = 100;
//ZEN$ ASSIGN clnts = { 100 : 15100 : 1000 }
for(int j = 0; j < clnts.length; j++) {
new Thread() { public void run() {
ExtensibilityType queryResult = registry.
findServiceData(QueryHelper.getXPathQuery(

"GridServiceRegistryWSInnspection
XPathExpr, namespaces));

}.start();
}

Our WASP-based Registry offers an excellent throughput of approxima-
tely 600 requests per second for around 300 concurrent requests (see Fi-
gure 5.15(a)). As expected, the performance decreases to about 300 requests

158 5 Tool Integration

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

100

2100

4100

6100
8100

10100
12100
14100

0

100

200

300

400

500

600

700

T
h

ro
u

g
h

p
u

t
[

re
q

u
es

ts
 /

se
c.

]

Concurrent Clients

Registered
Services

0-100 100-200 200-300 300-400 400-500 500-600 600-700

(a) WASP-based Registry.

1

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

1

100

2000

2

4

6

8

10

12

14

T
h

ro
u

g
h

p
u

t
[

re
q

u
es

ts
 /

se
c.

]

Registered Services

Concurrent
Requests

0-2 2-4 4-6 6-8 8-10 10-12 12-14

(b) GT3-based VORegistry.

Fig. 5.15. The Registry throughput results.

5.8 WASP Versus GT3 Technology Evaluation 159

per second in the case of 1500 concurrent clients. The number of registered
services does not influence the overall performance due to the hash table-
based organisation of services in our implementation. The various peaks in
the graph are due to the Java Virtual Machine management of this memory
intensive application and the occasional garbage collection invocations. We
expect to see the same sustained performance for higher number of services
until the memory limits are reached and the Registry starts swapping.

For the GT3 VORegistry, the throughput of the service lookup operations
based on findServiceData XPath queries rapidly decreases with the num-
ber of registered services (see Figure 5.15(b)). The reason is the sequential
organisation of the service data elements into a single XML document which
is clearly not a scalable approach for high throughput discovery.

5.8.7 Security

We represent the user identity using the GSI standard (see Section 2.4) based
on a private and public key pair plus an X.509 certificate. We realise the secure
communication across Grid services based on message level WS-Security [131]
standard that describes enhancements to SOAP for message integrity through
XML digital signatures, message confidentiality through XML encryption,
and single message authentication. Our GT3-based implementation includes
complete GSI support comprising proxy delegation from the client to the Grid
services, which is the main limitation of the WASP PKI-based security across
pure Web services. This limitation is critical in using ZENTURIO experiment
management tool in several situations, for example in the following typical
use scenarios:

1. The WASP-based Grid services employ the real user private (and public)
key for mutual authentication which may be a crucial security flow;

2. When the Factory (running potentially with administration permissions)
creates a new Grid service, it is often natural to give to the newly created
instance the identity of the end-user that requested it. This requires that
the remote service instance have access to the user private key which is an
unacceptable security risk. Through the GSI delegation mechanism, the
Factory delivers a limited proxy to the service instance that impersonates
the user for a limited time interval that significantly reduces the security
risks;

3. Similarly, it is natural to generate and execute the experiments of a per-
formance or parameter study on the target Grid site using the identity of
the client that requested them, rather than some neutral identity of the
Experiment Generator and Experiment Executor services;

4. When multiple Grid services are chained in a workflow, they often need
act on behalf on the end-user. Similarly to the Factory case, the proxy
delegation achieves this goal with less security risks than propagating the
user private key on all Grid sites that host the services from the workflow
chain.

160 5 Tool Integration

0

100

200

300

400

500

600

700

800

900

1000

sustained latency 100 integer sustained latency

R
es

p
o

n
se

 T
im

e
[m

ili
se

c.
]

WASP (unsecure) GT3 (unsecure)
WASP XML Digital Signature GT3 XML Digital Signature
GT3 XML Encryption

Fig. 5.16. The secure versus insecure response time comparison.

We employ GSI in the WASP implementation too when interacting with the
Globus infrastructure services like GASS, GRAM, and GridFTP.

The XML message-based security provides a significantly higher degree
of security than the SSL transport-based security protocols (i.e. it is easier
to read a credit card number from an XML message than from a network
packet), however at a higher latency price. We performed a small test for both
WASP and GT3-based implementations that shows an increase in latency of
about two orders of magnitude with each authenticated call, as opposed to
the non-secure version (see Figure 5.16). This high overhead is due to the
additional message exchanges between the client and the Grid service needed
for performing the mutual authentication.

5.8.8 Grid Service Throughput

During the testing phase of the GT3-based prototype of ZENTURIO on
various performance and parameter studies, we experienced a severe decrease
in the responsiveness of the overall Grid middleware services layer compared
to the WASP-based version. The performance was particularly poor in two
situations:

1. when the Experiment Generator service generates experiments at a high
rate and delivers them immediately to the Experiment Executor service
for execution;

2. when many notification events are sent to the User Portal at the same
time as a result of multiple experiments changing state simultaneously.

5.8 WASP Versus GT3 Technology Evaluation 161

We therefore conducted a small automatic benchmark test using ZENTURIO
that compares the WASP and GT3 service throughput. The purpose was not
to perform a fair benchmark between the two SOAP implementations, nor to
debug their internal source code to detect the real cause of the performance
bottleneck, but rather to highlight an existing GT3 performance bug. We
measured the service throughput in requests per second for the following
three different SOAP invocations:

1. an array of 100 elements;
2. a string of 100 characters;
3. an array of 100 strings of 100 characters each.

We included no input argument to the requests (i.e not an echo test) because
we expect most of the real-world Grid applications to send small requests
most of the time. We performed all experiments on a four processor 750 me-
gahertz SMP Sun-fire parallel computer with nine gigabytes of memory to
avoid network delays and processor contention between the client and the
hosting environment. We used the default serialisers and SOAP encodings
of each (i.e. WASP and Axis) SOAP engine. We pre-built the array and the
string structures on the server as static data members and configured a start-
up period of 100 transactions to ignore service loading and other optimisation
settings specific to each hosting environment. We used the default hosting en-
vironments provided by WASP and GT3 distributions, plus an additional test
where both SOAP platforms are deployed within the Tomcat [119] hosting
environment for fairness reasons. We performed the same test also for va-
nilla Apache Axis deployed in Tomcat. We properly configured all hosting
environments to accommodate the full amount of concurrent requests nee-
ded. We automatically conducted the experiments with ZENTURIO using a
benchmark client similar to the one shown in Example 5.4 (i.e. ZEN variable
clnts).

Our results depicted in Figure 5.17 show that WASP is doubling the
throughput offered by the GT3 implementation. The object size and the
memory consumption are similar in both implementations (though WASP
has an overall memory usage slightly larger). The performance differences are
due to a more mature streaming architecture offered by WASP which includes
interception, XML parsing, and SOAP message processing. As expected, GT3
displays similar performance with vanilla Apache Axis, since it does not add
any overhead on top of the JAX-RPC serialisation. The Tomcat deployment
does not influence the results significantly, though for WASP it introduces a
slight overhead. The poor performance of the GT3-alpha release (which was
the initial implementation platform that motivated our entire benchmark) on
manipulating arrays was due to a serialisation performance problem in the
underlying Axis 1.1 Release Candidate 2 used.

162 5 Tool Integration

0

50

100

150

200

250

1 50 100 150 200 250 300 350 400

Number of Concurrent Clients

T
h

ro
u

g
h

p
u

t
[

re
q

u
es

ts
 /

se
c.

]

GT3-alpha WASP GT3-alpha Tomcat
WASP Tomcat Apache Axis GT3
GT3 Tomcat

(a) 100 integer array.

0

20

40

60

80

100

120

140

160

180

200

1 50 100 150 200 250 300 350 400

Number of Concurrent Clients

T
h

ro
u

g
h

p
u

t
[

re
q

u
es

ts
 /

se
c.

]

GT3-alpha WASP GT3-alpha Tomcat
WASP Tomcat Apache Axis GT3
GT3 Tomcat

(b) 100 string array.

0

100

200

300

400

500

600

700

1 50 100 150 200 250 300 350 400

Number of Concurrent Clients

T
h

ro
u

g
h

p
u

t
[

re
q

u
es

ts
 /

se
c.

]

GT3-alpha WASP GT3-alpha Tomcat
WASP Tomcat Apache Axis GT3
GT3 Tomcat

(c) 100 character string.

Fig. 5.17. The throughput results of WASP, GT3, and vanilla Axis services.

5.8 WASP Versus GT3 Technology Evaluation 163

Table 5.5. The comparative analysis of WASP versus GT3-based Grid services.

Functionality ZENTURIO WASP ZENTURIO GT3

WSDL interface single portType OGSI compliant

Grid service Abstract Grid Service GridService interface

Registry yes yes (VORegistry)

Factory yes yes

service creation dynamic, on-the-fly static, pre-installed

service lifecycle WASP proprietary OGSI compliant

events WASP proprietary OGSI compliant
Producer-Consumer NotificationSource-Sink

pull events asynchronous methods Service data queries

service Java Bean WSDL findServiceData

state access methods introspection

Service Repository custom UDDI-based no

security SOAP XML message, SOAP XML message,
no delegation GSI delegation

stubs runtime, dynamic static, compile-time

input structures arbitrarily complex Java Beans only

service 200 req./sec., 100 int array 100 req./sec., 100 int array
throughput 400 req./sec., 100 char string 200 req./sec., 100 char string

registry Registry service VORegistry service
throughput 700 − 300 req./sec. 50 − 0.1 requests/second

WSIF support no yes

5.8.9 Comparison

We present in Table 5.5 a summary of the various features that we compa-
ratively analysed in the WASP and GT3-based implementations.

Despite the portability limitation, there are some clear advantages in our
WASP-based implementation compared to the GT3-based prototype:

1. WASP generates stubs to remote services dynamically at runtime which
avoids unnecessary compilation steps. GT3 Apache Axis generates stubs
statically at compile-time which restricts the implementation of WSDL
complex structures to Java Beans;

2. The WASP-based Factory allows runtime on-the-fly service creation and
deployment. We could not achieve this feature in the GT3-based proto-
type which restricts the transient service creation to pre-deployed ser-
vices. This is a severe limitation in a Grid environment where creating
services dynamically on unknown remote sites is a mandatory require-
ment;

3. We define a novel use of the UDDI standard for storing implementations
of transient Grid services;

4. Our WASP-based services provide a better throughput which is import-
ant in a heavily used Grid environment with multiple concurrent clients;

164 5 Tool Integration

5. Our WASP-based Registry service provides a much better throughput
than the GT3 VORegistry, the reason being the hash table-based organi-
sation or the registered services, as opposed to the sequential XML-based
service data document provided by the VORegistry.

5.9 Summary

We presented in this comprehensive section a distributed service-oriented en-
vironment for interoperable tool development consisting of three layers com-
pliant with the abstract Grid architectural model introduced in Chapter 2.
We described a set of online performance and debugging software tools that
make use of dynamic instrumentation technology to instrument and perform
on-the-fly runtime analysis of running applications. We classified the tool
interoperability and presented a variety of scenarios how cooperative use of
tools can improve the effectiveness in the software engineering process of
applications. Finally, we presented the individual services that we designed
as part of our architecture, including generic Factory, Registry, Aggregator,
Dynamic Instrumentor, UDDI Service Repository, and an event framework
based on the XML Web services technology that ensures interoperability in
a Grid environment. We introduced new custom solutions for modeling state
and lifecycle using a toolkit implementing standard Web services technologies
and compare our approach against other standardisation efforts under way
in the Grid computing field at the time we carried out the work.

6

Optimisation Framework

We introduced in Chapter 4 the ZENTURIO experiment management tool
for multi-experimental performance and parameter studies of parallel appli-
cations. To achieve this goal, ZENTURIO performs an automatic exhaustive
sweep of the entire parameter space defined using the ZEN directive-based
experiment specification language described in Chapter 3.

With the emergence of Grid computing that aggregates a potentially un-
bounded number of resources, new classes of applications such as workflows
and parameter studies are of increasing interest to the scientists. The parame-
ter space of such large scale Grid applications can easily achieve rather huge
dimensions for which the exhaustive parameter sweep performed by ZENTU-
RIO is no longer a feasible solution. In general, a complete parameter sweep
gives useful detailed insight on the application behaviour but also produces
vast amounts of data that are irrelevant for further studies. Often the user’s
ultimate goal is to find parameter combinations that optimise a certain ap-
plication behaviour, such as a performance metric or an output result. Such
optimisation problems are known as NP-complete [85] and require advanced
heuristics to find approximate or reasonably good solutions.

In this chapter we extend ZENTURIO with a generic optimisation fra-
mework [145] sketched in Figure 6.1 that employs general purpose (meta-)
heuristics for solving NP-complete performance and parameter optimisation
problems for parallel and Grid applications. The input to the optimisation
framework consists of a ZEN application and an objective function. The ZEN
application defines through ZEN directives a large parameter space impos-
sible to be exhaustively explored. The ZEN application represents the input
to a heuristic-based search engine that attempts to find a ZEN application
instance which maximises the optimisation function. For the realisation of
the search engine we consider general purpose meta-heuristics like genetic
algorithms.

Definition 6.1. Let A denote a ZEN application and VA its value set defined
in Chapter 3 (see Definition 3.19) representing the complete set of possible
experiments which defines a search space of size

∣∣VA∣∣ (i.e. the cardinality

R. Prodan and T. Fahringer: Grid Computing, LNCS 4340, pp. 165–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

166 6 Optimisation Framework

Generic
Search
Engine

ZEN
Application

Instance

Objective
Function

”Best“ ZEN
Application

Instance

2

3

Prediction
Tool

4

5

6

ZEN
Application

1

Experiment
Execution

Analytical
Function

Fig. 6.1. The ZENTURIO optimisation framework design.

of the value set). We define the objective function to be maximised by the
optimisation framework with the following problem independent signature:

F : VA → �.

The objective function is the only module whose implementation depends on
the target application which must be supplied for each particular optimisation
problem separately. In case of performance tuning of parallel applications, the
objective function is a performance metric defined through ZEN performance
directives as defined in Section 3.2.9 and evaluated through experiment exe-
cution (see Definition 3.27). In case of scheduling problems, the objective
function can be implemented by a performance prediction tool [68], or ap-
proximated through an application specific analytical function. We provide
in our framework a generic objective function interface that hides its internal
problem dependencies, thus keeping the search engine entirely generic (see
Definition 6.1).

To support optimisation scenarios in ZENTURIO, we replace the exhaus-
tive experiment generation algorithm presented in Section 3.2.11 and en-
coded as part of the Experiment Generator service (see Section 4.4.1 and
Figure 4.23) with the heuristic-based search engine that we applied on three
concrete problems:

1. scheduling of single Grid workflow applications in Section 6.1;
2. scheduling of large sets of independent activities (e.g. parameter studies)

for high throughput on the Grid in Section 6.4;
3. optimisation of parallel applications, with particular focus on data dis-

tribution on heterogeneous Grid resources in Section 6.5.

For the realisation of the problem independent search engine we address
a genetic algorithm in Section 6.2 and plan to study new general purpose
heuristics like subdivision, simplex methods, or simulated annealing in future
work.

6.1 Workflow Scheduling 167

6.1 Workflow Scheduling

Workflow modeling is a well established area in computer science that was
strongly influenced by business process modeling work [187]. Recently, the
Grid community generally acknowledged that orchestrating existing applica-
tions in large scale workflows represents a promising paradigm for program-
ming wide area Grid environments [1, 7, 10, 26, 65, 106, 114, 127].

On computational Grids, we see two distinct aspects related to the general
workflow scheduling problem:

1. static scheduling targets mapping of an entire workflow application onto
a fixed set of resources that optimises a certain performance metric. We
address this problem in this section as an instantiation of the ZENTURIO
optimisation framework using genetic algorithms;

2. runtime rescheduling is a steering problem that adaptively changes the
workflow schedule to the dynamic availability of Grid resources which we
will addressed in Chapter 7 (see Section 7.3.5).

Scheduling a workflow of n activities onto m computational Grid resources
is a well known NP-complete optimisation problem of O(mn) (exponential)
complexity [183]. In this section we formally instantiate the workflow sche-
duling problem within the ZENTURIO optimisation framework using the
workflow model introduced in Chapter 2 (see Section 2.6.3).

Definition 6.2. A ZEN variable z is an application parameter that represents
an abstract machine which can be a sequential processor or a parallel compu-
ter (see Section 2.6.1). A ZEN application A (z1, . . . , zn) = (Nodes,C-edges)
implements a workflow as defined in Definition 2.7, where:

1. ∀ CA(z) ∈ Nodes =⇒ z ∈ {z1, . . . , zn};
2. ∀ DA (z, z′) ∈ Nodes =⇒ {z, z′} ⊂ {z1, . . . , zn}.

The value set Vzi of a ZEN variable zi represents the entire set of concrete
processors of all Grid sites available. A workflow schedule is a mapping:

SA = S (A (z1, . . . , zn)) = AI (e1, . . . , en) , ∀ ei ∈ Vzi , ∀ i ∈ [1..n].

Within AI, a computational activity schedule is a mapping:

SCA(zj) = ej , ej ∈ Vzj

and a data transfer schedule is a mapping:

SDA(zk,zl) = (ek, el) , ek ∈ Vzk ∧ el ∈ Vzl .

Finding the workflow schedule that maximises the objective function is the
(static) workflow scheduling problem.

168 6 Optimisation Framework

Example 6.3 (Java CoG-based workflow).

//ZEN$ SUBSTITUTE z1 = { e{1:100} }
//ZEN$ SUBSTITUTE z2 = { e{1:100} }
//ZEN$ SUBSTITUTE z3 = { e{1:100} }
//ZEN$ SUBSTITUTE z4 = { e{1:100} }
//ZEN$ SUBSTITUTE z5 = { e{1:100} }

Task ca1 = createCA("z1");
Task ca2 = createCA("z2");
Task ca3 = createCA("z3");
Task da4 = createDA("z1", "z4");
Task ca5 = createCA("z4");
Task da6 = createDA("z4", "z1");
Task ca7 = createCA("z5");
Task ca8 = createCA("z1");

TaskGraph taskGraph = new TaskGraphImpl();
taskGraph.add(ca1);
taskGraph.add(ca2);
taskGraph.add(ca3);
taskGraph.add(da4);
taskGraph.add(ca5);
taskGraph.add(da6);
taskGraph.add(ca7);
taskGraph.add(ca8);

Dependency dependency = new DependencyImpl();
dependency.add(ca1, ca2);
dependency.add(ca1, ca3);
dependency.add(ca1, da4);
dependency.add(ca2, ca5);
dependency.add(ca3, ca5);
dependency.add(da4, ca5);
dependency.add(ca5, da6);
dependency.add(ca5, ca7);
dependency.add(da6, ca8);
dependency.add(ca7, ca8);
taskGraph.setDependency(dependency);

We base our proof of concept implementation on the a low level workflow
package provided by the Java CoG kit [9]. Example 6.3 sketches an imple-
mentation of the workflow depicted in Figure 6.5 annotated as a ZEN ap-
plication denoted as A (z1, z2, z3, z4, z5), where z1, z2, z3, z4, and z5 are the
abstract machines where the workflow activities need to be scheduled. The

6.1 Workflow Scheduling 169

CA1
z1

CA2
z2

CA3
z3

DA4
z1, z4

CA5
z4

DA6
z4, z1

CA7
z5

CA8
z1

Fig. 6.2. A sample workflow application.

ZEN directive annotations define the aggregated set of processors of all Grid
sites available (with cardinality 100 in our example) that instantiate each ab-
stract machine within a workflow schedule. The search space in this example
contains 1005 = 107 points.

Since Grid workflows can often consist of hundreds to thousands of acti-
vities running in dynamic infrastructures, it is inconvenient for the user to
manually annotate the application as illustrated in Example 6.3. We use in-
stead the instrumentation interface provided by the Experiment Generator
service that we described in Section 4.4.1 for dynamic runtime annotation of
the application with ZEN directives. We instantiate the value set of each ZEN
variable with Grid site information based on the actual availability obtained
by querying the Globus MDS information service.

6.1.1 Schedule Dependencies

Definition 6.4. If the same ZEN variable or abstract machine appears in
the definition of two distinct activities (see Definition 2.7), it defines a static
schedule dependency.

A typical example is the abstract machine z4 in the sample workflow de-
picted in Figure 6.2, where the activity CA5 (z4) stages in its input file from
the machine z1 through the activity DA4 (z1, z4) and stages out its output file
to the machine z1 through the activity DA6 (z4, z1). Static schedule depen-
dencies can also be set between CA activities. In Figure 6.2 for example, the
activities CA1 (z1) and CA8 (z1) define a static schedule dependence that re-
stricts their schedule to the same concrete machine, i.e. SCA1(z1) = SCA8(z1).

170 6 Optimisation Framework

Definition 6.5. Let CA1, . . . ,CAm be a set of independent computational
activities such that SCA1 = . . . = SCAm

. A valid workflow schedule is obtai-
ned by augmenting the original workflow application with runtime schedule
dependencies that prohibit two independent computational activities run on
the same processor concurrently:

C-edges′ = C-edges
⋃

∀ i∈[1..m−1]∧
SCAi

=SCAi+1

(CAi,CAi+1) .

The reason for introducing runtime schedule dependencies is the fact that
executing two computational intensive processes in sequence on the same
processor is faster than competing for processor cycles or other resources.
However, we do not define runtime schedule dependency constraints on data
transfers since multiple streams over the same high performance network are
likely to increase the overall bandwidth utilisation due to limitations of the
TCP protocol caused by limited window and buffer sizes, slow recovery upon
packet loss, or slow restart after idle connections.

We illustrate in Figure 6.2 such a runtime schedule dependency between
the activities CA2 and CA3 assuming that SCA2 = SCA3 , which adds a new
element to the set of workflow control flow dependencies:

C-edges′ = C-edges ∪ {(CA2,CA3)} .

If a runtime schedule dependency involves m independent activities, there
are m! possible runtime schedule dependencies that must be evaluated. We
expect in practice that this number m be relatively low or irrelevant (i.e.
involving similar activities for which the execution order does not matter)
and, therefore, does not add an extra complexity to our scheduling problem.

6.1.2 Objective Function

The objective function for the scheduling problem is represented by a per-
formance metric to be optimised. The computation of workflow performance
metrics for scheduling purposes relies on prediction techniques for each indi-
vidual activity which is a difficult research topic [68] that goes beyond the
scheduling work that we target in this chapter. We adopt in the following a
simple general prediction model that we successfully applied for some of the
real-world applications that we used to validate our work (see Section 6.3.1).

Definition 6.6. Let N be an arbitrary activity with the schedule SN. We
approximate the predicted execution time of activity N onto SN is as:

TSN

N = L +
WN

vSN

,

where L denotes the latency required to start the activity, WN denotes for the
work of activity N, and vSN the speed of SN with the following semantics:

6.1 Workflow Scheduling 171

1. L is the latency usually dominated by the GSI-based mutual authentica-
tion to the Grid services (e.g. GRAM and GridFTP), as well as queuing
and polling for termination time when interacting with local resource ma-
nagers;

2. WCA represents the total number of floating point operations of activity
CA;

3. vSCA represents the performance rate of the machine SCA in floating
point operations per second, e.g. as measured using the LINPACK bench-
mark [56];

4. WDA approximates the size of the file to be transferred;
5. vSDA is the bandwidth of a single TCP stream between e1 and e2, where

SDA = (e1, e2).

Definition 6.7. Let A = (Nodes,C-edges) denote a workflow application. We
evaluate a workflow schedule S by constructing the Gantt chart that simulates
the workflow execution. The end timestamp of each workflow activity N ∈
Nodes is recursively defined by the following function:

end : Nodes → �
∗
+,

end(N) =

{
TSN

N , pred(N) = ∅;
max

(N′,N)∈C-edges

{
end

(
N′)}+ TSN

N , pred(N) �= ∅,

where �∗
+ denotes the set of real positive non-zero numbers and ∅ the empty

set.

Figure 6.3 illustrates a sample Gantt chart for the workflow depicted in
Figure 6.5, assuming the runtime schedule dependency (CA2,CA3) (i.e.
SCA2 = SCA3), where:

end (CA1) = Te1
CA1

;

end (CA2) = end (CA1) + Te2
CA2

;

end (CA3) = end (CA2) + Te3
CA3

;

end (DA4) = end (CA1) + T(e1,e4)
CA3

;

end (CA5) = max {end (CA2) , end (CA3) , end (DA4)} + Te4
CA5

;

end (DA6) = end (CA5) + T(e4,e1)
DA6

;

end (CA7) = end (CA5) + Te5
CA7

;

end (CA8) = max {end (DA6) , end (CA7)} + Te1
CA8

.

Definition 6.8. Let ρ = {N1, . . . ,Np} denote a workflow execution path,
i.e. pred (N1) = ∅ ∧ succ (Np) = ∅ ∧ (Ni,Ni+1) ∈ C-edges, ∀ i ∈ [1..p− 1].
If Np is the activity with the maximum end time and ρ is the shortest path
to Np then ρ is called the critical schedule path:

172 6 Optimisation Framework

CA1

CA2

CA3

CA5DA4

CA7

DA6 CA8e1

e2

e3

e4

e5

Time

Machine

Fig. 6.3. A sample Gantt chart for the workflow depicted in Figure 6.2, assuming
that e2 = e3 (i.e. SCA2 = SCA3).

1. end (Np) = max
∀N∈Nodes∧ succ(N)=∅

{end(N)};

2.
∑

∀N∈ρ TSN

N ≤
∑

∀N′∈ρ′ T
SN′
N′ , ∀ ρ′ =

{
N′

1, . . . ,N
′
q

}
a workflow execution

path (i.e.pred
(
N′

1

)
= ∅ ∧ succ

(
N′

q

)
= ∅ ∧

(
N′

i,N
′
i+1

)
∈ C-edges, ∀ i ∈

[1..q − 1]), such that end (Np) = end
(
N′

q

)
.

Let A =
(
Nodes = NodesCA ∪ NodesDA,C-edges

)
denote a workflow app-

lication and AI (e1, . . . , en) a workflow schedule. In the following, we give a
range of sample workflow performance metrics representing useful objective
functions that can be simply plugged-in to the optimisation framework. Since
we designed the framework to solve maximum problems, we need to subtract
some of the workflow metrics that require minimisation from a large enough
constant C.

• Execution time (or makespan):

F(AI) = C − TAI ,

TAI = end (Np) ,

where {N1, . . . ,Np} is the critical schedule path;
• Speedup uses the sequential execution time on the fastest machine as the

reference execution time:

F(AI) = SAI ,

SAI =
Tseq

AI
TAI(e1,...,en)

,

Tseq
AI = min

∀ i∈[1..n]

{
TAI(ei,...,ei)

}
,

TAI(ei,...,ei) =
∑

∀CA∈NodesCA

Tei

CA,

where AI (ei, . . . , ei) is the sequential workflow schedule on machine ei;

6.1 Workflow Scheduling 173

• Efficiency normalises the speedup against the sum of all the processors
where each individual activity is scheduled, where each processor is weigh-
ted with its relative speed in computing the workflow sequentially:

F(AI) = EAI ,

EAI =
SAI

∑n
i=1

Tseq
AI

TAI(ei,...,ei)

=
T−1

AI(e1,...,en)∑n
i=1 T−1

AI(ei,...,ei)

.

Maximising the efficiency combined with minimisation of the execution
time is a good metric for high throughput scheduling in the context of
multiple workflows or parameter studies;

• Communication due to file transfer activities on the critical path:

F(AI) = C − COMAI ,

COMAI =
∑

∀N∈ρ∩NodesDA

TSN

N ,

where ρ is the critical schedule path;
• Synchronisation due to activity dependencies on the critical schedule

path:

F(AI) = C − SY NAI ,

SY NAI = TAI −
∑

∀N∈ρ

TSN

N ,

where ρ is the critical schedule path;
• Load balance due to uneven work distribution:

F(AI) = LBAI ,

LBAI =

avg
∀ e∈⋃n

i=1 ei

{∑
∀CA∈NodesCA∧SCA=e Te

CA

}

max
∀ e∈⋃n

i=1 ei

{∑
∀CA∈NodesCA∧SCA=e Te

CA

} .

LBAI = 1 indicates the perfect load balance and LBAI = 0 the worst
case load balance;

• Total overhead is defined by the Amdahl’s law [8]:

F(AI) = C − OAI ,

OAI = TAI − Tseq
AI∑n

i=1
Tseq

AI
TAI(ei,...,ei)

=

=
∑

∀N∈ρ∩NodesCA

TSN

N + COMAI + SY NAI − 1∑n
i=1 T−1

AI(ei,...,ei)

;

174 6 Optimisation Framework

• Loss of parallelism due to heterogeneity and activity dependencies on the
critical path:

F(AI) = C − LPAI ,

LPAI = OAI − COMAI − SY NAI =

=
∑

∀N∈ρ∩NodesCA

TSN

N − 1
∑n

i=1 T−1
AI(ei,...,ei)

;

We instantiate these metrics for the workflow defined in Example 6.3 and
depicted in Figure 6.2 as follows:

• TAI = end (CA8);

• SAI =
min

∀ i∈[1..5]

{
TAI(ei,...,ei)

}

end(CA8) , where TAI(ei,...,ei) = Tei

CA1
+Tei

CA2
+Tei

CA3
+

Tei

CA5
+ Tei

CA7
+ Tei

CA8
;

• EAI = end(CA8)
−1

∑5
i=1 T−1

AI(ei,...,ei)

;

• COMAI = T(e1,e4)
DA4

+ T(e4,e1)
DA6

;

• SY NAI = TAI − Te1
CA1

− Te2
CA2

− Te4
CA5

− T(e4,e1)
DA6

− Te1
CA8

, where the
workflow path (CA1,CA2,CA5,DA6,CA8) is the critical schedule path,
which assumes that the following conditions hold:

T
e1
CA1

+ T
e2
CA2

+ T
e4
CA5

+ T
(e4,e1)
DA6

+ T
e1
CA8

≤T
e1
CA1

+ T
e3
CA3

+ T
e4
CA5

+ T
(e4,e1)
DA6

+ T
e1
CA8

;

T
e1
CA1

+ T
e2
CA2

+ T
e4
CA5

+ T
(e4,e1)
DA6

+ T
e1
CA8

≤T
e1
CA1

+ T
(e1,e4)
DA4

+ T
e4
CA5

+ T
(e4,e1)
DA6

+ T
e1
CA8

;

T
e1
CA1

+ T
e2
CA2

+ T
e4
CA5

+ T
(e4,e1)
DA6

+ T
e1
CA8

≤T
e1
CA1

+ T
e2
CA2

+ T
e4
CA5

+ T
e5
CA7

+ T
e1
CA8

;

T
e1
CA1

+ T
e2
CA2

+ T
e4
CA5

+ T
(e4,e1)
DA6

+ T
e1
CA8

≤T
e1
CA1

+ T
e3
CA3

+ T
e4
CA5

+ T
e5
CA7

+ T
e1
CA8

;

T
e1
CA1

+ T
e2
CA2

+ T
e4
CA5

+ T
(e4,e1)
DA6

+ T
e1
CA8

≤T
e1
CA1

+ T
(e1,e4)
DA4

+ T
e4
CA5

+ T
e5
CA7

+ T
e1
CA8

;

• LBAI =
avg
{
T

e1
CA1

+T
e1
CA8

,T
e3
CA3

,T
e4
CA5

,T
e5
CA7

}

max
{
T

e1
CA1

+T
e1
CA8

,T
e3
CA3

,T
e4
CA5

,T
e5
CA7

} .

The two remaining metrics (i.e. total overhead and loss of parallelism) derive
from these five presented.

6.2 Genetic Search Engine

Genetic algorithms [88] are a class of randomised optimisation programs
which mimic the natural evolution of individuals in a population. Genetic
algorithms use a vocabulary borrowed from natural genetics. Often individu-
als are called chromosomes which are made of units called genes arranged in
linear succession. Genes are located at certain places in the chromosome cal-
led loci . The value of a gene which determines one character of an individual
(such as hair colour) is called allele. The genetic algorithms are iterative

6.2 Genetic Search Engine 175

algorithms that start from an initial population and use natural evolution
operators on the population individuals. The selection operator selects some
better fit individuals from the population according to a fitness function. The
selected individuals then qualify for reproduction, crossover , and mutation
with certain probabilities and, as a result, produce a new population of more
superior individuals. The iterative process continues on the newly formed
population until a convergence criterion is fulfilled.

In this section we present a sample instantiation of the generic search en-
gine provided by the ZENTURIO optimisation framework based on a classical
generational genetic algorithm. Our algorithm is independent of the objective
function and therefore can be applied to arbitrary optimisation problems pro-
vided that an appropriate search space and objective function are properly
defined. For the workflow scheduling problem, we define the search space
through ZEN directives as presented in Section 6.1, while the objective func-
tion is instantiated by the performance metrics that we formally defined in
Section 6.1.2.

Definition 6.9. Let A (z1, . . . , zn) denote a ZEN application, where zi are
ZEN variables, ∀ i ∈ [1..n] and let Vzi denote the value set of a ZEN variable
zi. A gene is a ZEN variable zi. An allele is a gene instantiation, i.e. a ZEN
element ei ∈ Vzi . The totally ordered set {z1, . . . , zn} of all ZEN variables
of A is a chromosome. The locus i of a gene zi is given by its index within
the totally ordered set chromosome. An individual is a ZEN application in-
stance AI (e1, . . . , en), where ei ∈ Vzi , ∀ i ∈ [1..n]. We defined the objective
function, called in genetic terms fitness function, in Definition 6.1.

Based on this definition, we illustrate in the following the generic encoding
of the genetic algorithm sketched in Algorithm 4.

6.2.1 Initial Population

We build the initial population of individuals of fixed size p by generating a
random set of ZEN application instances by assigning random ZEN elements
from the value set to ZEN variables (line 2):

POP =
p⋃

i=1

AIi (e1, . . . , en) , ej ∈ Vzj , ∀ j ∈ [1..n].

Usually, the appropriate population size p needs to be experimentally deter-
mined for each particular problem. We provide an additional interface for
manually inserting ZEN application instances, that are known to be good
solution candidates, in the initial population which can significantly improve
the performance of the genetic algorithm since the search starts from a po-
pulation of higher quality individuals.

176 6 Optimisation Framework

Algorithm 4. The generational genetic search algorithm.
1: function genetic-search-engine(A (z1, . . . , zn) ,F , p,Prc,Prm, max gen, T)
2: POP ←

⋃p
i=1 AI (rand(z1), . . . , rand(zn)) � First population (size p)

3: F AI0
B = max

∀ i∈[1..p]
{F (AIi)} � Best individual

4: gen ← 1
5: repeat

6: F ←
∑p

i=1 F(AIi)

p
� Average fitness

7: POP′ ←
⋃p

i=1

⋃
F(AIi)

F
j=1 clone(AIi) � Selection

8: while |POP ′| < |POP | do
9: for all j ∈ [1..p] do

10:

11: if

∑j−1
k=1

F(AIk)
F

∑p
k=1

F(AIk)
F

< rand(0, 1) ≤
∑j

k=1
F(AIk)

F
∑p

k=1
F(AIk)

F

then

12: POP′ ← POP′ ∪ clone(AIj)
13: end if
14: end for
15: end while
16: POPc ← ∅
17: for all i ∈ [1..p] do
18: if rand(0, 1) ≤ Prc then � Prc = crossover probability

19: POPc ← POPc ∪ AIi � Select for crossover

20: end if
21: end for
22: POP ← POP′ \ POPc

23: for all {AI1 (e1, . . . , en) ,AI2 (e′1, . . . , e
′
n)} ⊂ POPc do � Random pair

24: r ← rand(1, n − 1)
25: POP ← POP ∪ {AI′

1 (e1, . . . , er, e
′
r+1, . . . , e

′
n)} � Crossover

26: POP ← POP ∪ {AI′
2 (e′1, . . . , e

′
r, er+1, . . . , en)}

27: POPc ← POPc \ {AI1,AI2}
28: end for
29: for all AI (e1, . . . , en) ∈ POP do
30: for all i ∈ [1..n] do
31: if rand(0, 1) ≤ Prm then � Prm = mutation probability

32: ei ← rand(zi) � Mutation

33: end if
34: end for
35: end for
36: F (AIgen

B) = max
∀ i∈[1..p]

{F (AIi)} � Elitist model

37: if F (AIgen
B) < F AIgen−1

B then � Lost best individual

38: POP ← POP \ AI ∪ AIgen−1
B , AI ∈ POP � Preserve the best

39: end if
40: gen ← gen + 1 � Next generation

41: until gen > max gen ∨AIgen−1
B ≥ T � Maximum generation or

threshold

42: return AIgen−1
B � Return best individual

43: end function

6.2 Genetic Search Engine 177

6.2.2 Selection

The selection operator (lines 6 − 15) creates a new population by choosing
the best ZEN application instances for reproduction. Let POP denote a po-
pulation of cardinality p and F its average fitness:

F =
∑p

i=1 F (AIi)
p

.

We employ the reminder stochastic sampling with replacement [88] selection
model that creates a new population:

POP′ = POP1 ∪ POP2

in two steps, as follows:

1. POP1 =
⋃p

i=1

⋃
F(AIi)

F

j=1 clone (AIi), where �x� denotes the integer part
of the real number x ∈ �. This step is called expected value model because
it selects each application instance proportional with its fitness value and
eliminates stochastic sampling errors (line 7);

2. POP2 =
⋃s

i=1 clone (AIj), where s = |POP| − |POP1|, ri ∈ [0, 1] is a
random number such that:

∑j−1
k=1

{
F(AIk)

F

}

∑p
k=1

{
F(AIk)

F

} < ri ≤
∑j

k=1

{
F(AIk)

F

}

∑p
k=1

{
F(AIk)

F

} ,

where {x} denotes the fractional part of real number x ∈ � (i.e. {x} =
x−�x�) and |POP| denotes the cardinality of the set POP (lines 8− 15).
Informally, the population places that remained empty in the first step
are filled by simulating a roulette wheel with slots proportional with the
fractional part of each individual fitness normalised against the average
population fitness.

6.2.3 Crossover

The crossover operator (lines 16− 28) is used in genetic algorithms for per-
forming quick searches for local maxima. We employ in our algorithm a single
point crossover operator defined by the random function (lines 23− 28):

⊕r : VA × VA → VA × VA,

AI1 (e1, . . . , en) ⊕AI2 (e′1, . . . , e
′
n) =

(
AI ′

1,AI ′
2

)
,

where:

178 6 Optimisation Framework

AI ′
1 = AI ′

1

(
e1, . . . , er, e′r+1, . . . , e

′
n

)
,

AI ′
2 = AI ′

2 (e′1, . . . , e
′
r, er+1, . . . , en) ,

and r ∈ [1, n − 1] is a random number (see Figure 6.4(a)).
Let POP = {AI1, . . . ,AIp} denote a population of ZEN application in-

stances and let Prc be the probability of crossover that has to be experimen-
tally determined for each individual problem. We calculate the subset of ZEN
application instances which undergo crossover as follows:

POPc =
p⋃

i=1

AI ′
i,

where:

AI ′
i =

{
AIi, ri < Prc;
∅, ri ≥ Prc,

and ri ∈ [0, 1] is a random number, ∀ i ∈ [1..p]. We randomly select the
crossover pairs from POPc (lines 16 − 21).

6.2.4 Mutation

The mutation operator (lines 29 − 35) enables the algorithm to jump to
another search space region which avoids local stagnation stages of the po-
pulation. We employ a mutation operator that applies gene-wise on ZEN
application instances, according to the function (line 33):

� : VA → VA, � (AI (e1, . . . , en)) = AI ′ (e′1, . . . , e
′
n) ,

where:

e′i =
{

e′′i , ri < Prm;
ei, ri ≥ Prm,

Prm is the (experimentally tuned) probability of mutation for a gene, ri ∈
[0, 1] is a random number, and e′′i ∈ Vzi is a randomly selected allele, ∀ i ∈
[1..n]. We illustrate a sample chromosome which undergoes a single gene
mutation in Figure 6.4(b).

6.2.5 Elitist Model

Repeated crossover and mutation may lead to the elimination of the best in-
dividual which could have negative impacts on the final solution. Let POPgen

denote a population at some generation gen, AIgen
B ∈ POPgen the current

best ZEN application instance, i.e. F (AIgen
B) ≥ F (AI) , ∀ AI ∈ POPgen,

and POPgen+1 the next generation. We employ the so called elitist model
(lines 36 − 39) that forces the best ZEN application instance be preserved
across generations:

6.2 Genetic Search Engine 179

z1

. . .
zr

zr+1

zn en

. . .

e1

er

er+1

. . .

e’n

. . .

e’1

e’r
e’r+1

. . .

e’n

. . .

e1

er

e’r+1

. . .

en

. . .

e’1

e’r
er+1

=

AI1 AI2 AI’1 AI’2

(a) Crossover.

. . .

en

. . .

e1

er

er+1

. . .

en

. . .

e1

e’r
er+1

AI AI’

z1

zr

zr+1

zn

(b) Mutation.

Fig. 6.4. The genetic operators.

POP′
gen+1 =

{
POPgen+1, AIgen+1

B ≥ AIgen
B ;

POPgen+1 −AI ∪ AIgen
B , AIgen+1

B < AIgen
B ,

where AI ∈ POPgen+1 is a randomly eliminated individual. The elitist model
may lead to premature convergence of the algorithm if not carefully applied.

6.2.6 Fitness Scaling

There are two problems with our selection method that we described in Sec-
tion 6.2.2:

1. at the start of the algorithm, it is common to have several super-
individuals (but globally average) that would dominate the later genera-
tions and lead to fast premature convergence of the algorithm;

2. late in the run, the population average fitness often gets close to the
best fitness. In this case, average and best members get equally represen-
ted in the future generations and the survival of the fittest chromosome
necessary for improvement becomes a random walk among the mediocre.

Let F denote the average population fitness. We define linear fitness scaling
as a new scaled fitness function for one ZEN application instance:

F ′ = a · F + b,

where a and b are determined by solving the following system of equations:
{

a · F + b = F
a · Fmax + b = Cmult · F .

These two equations ensure two crucial aspects for proper genetic algorithm
convergence:

180 6 Optimisation Framework

1. the average scaled fitness F ′ is equal to the average raw fitness F because
each average ZEN application instance is expected to contribute with one
offspring to the next generation;

2. the best ZEN application instance Fmax is expected to contribute with
Cmult offsprings to the next generation. This reduces the gap between
super and average individuals in initial generations (which avoids pre-
mature convergence) and increases this gap in late generations (which
ensures strong competition necessary for continuous healthy survival and
improvement).

6.2.7 Convergence Criterion

For flexibility reasons, we define three convergence criteria for the algorithm
defines which can be freely combined:

1. when the objective function exceeds a user defined threshold (line 42);
2. after a predefined maximum number of generations (line 41);
3. when a steady state stagnation is achieved and no further improvements

are made in new generations. We check the steady state by examining
the fitness function of the best individual within a sliding window of
a predefined number of generations (i.e. percentage from the maximum
generation number).

6.3 Genetic Workflow Scheduling

In this section, we instantiate the genetic algorithm described in the previous
section for the workflow scheduling problem introduced in Section 6.1.

Definition 6.10. Let A (z1, . . . , zn) denote a ZEN application that represents
a workflow application as defined in Definition 6.2. A gene z is a ZEN variable
that represents an abstract Grid machine. An allele ei ∈ Vzi is a concrete
Grid machine, ∀ i ∈ [1..n]. The totally ordered set ({z1, . . . , zn} ,≺c) builds a
chromosome, where the total order ≺c of genes in a chromosome (i.e. loci)
is fixed and respects the (partial) node topological order:

Ni ≺c Nj =⇒ Ni �∈ succp (Nj) .

We depict in Figure 6.5 two sample crossover and mutation operations for the
workflow application illustrated previously in Example 6.3 and Figure 6.2.

6.3.1 WIEN2k

We use as pilot application for our scheduling work the WIEN2k [160] pro-
gram package for performing electronic structure calculations of solids using

6.3 Genetic Workflow Scheduling 181

CA1

CA2 CA3 DA4

CA5

DA6 CA7

CA8

CA1

CA2 CA3 DA4

CA5

DA6 CA7

CA8

CA1

CA2 CA3 DA4

CA5

DA6 CA7

CA8

CA1

CA2 CA3 DA4

CA5

DA6 CA7

CA8

Parents Offsprings

(a) Crossover.

CA1
z1

CA2
z2

CA3
z3

DA4
z1, z4

CA5
z4

DA6
z4, z1

CA7
z5

CA8
z1

CA1
z1

CA2
z2

CA3
z3

DA4
z1, z4

CA5
z4

DA6
z4, z1

CA7
z5

CA8
z1

(b) Mutation.

Fig. 6.5. The workflow genetic operators.

density functional theory based on the full potential (linearised) augmented
plane wave ((L)APW) and local orbital (lo) method. We first ported the ap-
plication onto the Grid by splitting the monolithic code into several course
grain activities coordinated in a workflow as illustrated in Figure 6.6. The
LAPW1 and LAPW2 activities can be solved in parallel by a fixed number of
so called k-points. A final activity called Converged applied on several output

182 6 Optimisation Framework

files tests whether the problem convergence criterion is fulfilled. The number
of sequential loop iterations is statically unknown.

We developed together with the WIEN2k physicists reasonably accurate
prediction functions for the most critical workflow activities following the
model presented in Definition 6.6. For example, we approximate the execution
time of an LAPW1 k-point as:

TLAPW1 =
WLAPW1

v
=

7 · A · N2 + N3

v
,

where A represents the number of atoms, N represents the matrix size, 7 is
a scaling factor, and v is a quantification for the machine speed. Similarly,

TLAPW2 = 10% · TLAPW1.

For LAPW0 we use existing measurements from a previous exhaustive sca-
lability study that we conducted using the ZENTURIO experiment manage-
ment tool, as presented in Section 4.2.2. We generate regression functions of
various types (i.e. linear, polynomial, exponential, power) to approximate the
prediction results on space points that were not measured and choose the one
with the best regression coefficient (i.e. closest to one). Figure 6.7(a) displays
the scalability regression functions for four representative LAPW0 problem
sizes executed on the homogeneous gescher cluster that we introduced in
Section 4.2. Similarly, Figure 6.7(b) calculates the regression function for the
work expressed in floating point operations which we use to approximate the
LAPW0 execution time on different Grid sites. We approximate the largest
file transfer time (of file case.vector) between two LAPW1 and LAPW2
k-point computations as:

T12 =
W12

v12
=

200 · N · A
v12

,

where v12 represents the network bandwidth between the source and the
destination machines measured using the NWS sensor [192].

Example 6.11 (WIEN2k Java CoG excerpt).

//ZEN$ SUBSTITUTE lapw0_host = { machine{1:200} }
//ZEN$ SUBSTITUTE lapw1_host1 = { machine{1:200} }
//ZEN$ SUBSTITUTE lapw1_host2 = { machine{1:200} }
. . .
Task lapw0 = createCA("lapw0_host", "lapw0");
Task lapw1_1 = createCA("lapw1_host1", "lapw1 2");
Task lapw1_2 = createCA("lapw1_host2", "lapw1 1");
Task k1 = createDA("k1","lapw0_host","lapw1_host1");
Task k2 = createDA("k2","lapw0_host","lapw1_host2");
. . .

6.3 Genetic Workflow Scheduling 183

LAPW0
CA1(z1)

SUMPARA
CA9(z9)

LCORE
CA10(z10)

MIXER
CA11(z11)

Converged?
CA12(z11)

. . .case.klist1
DA2(z1, z2)

LAPW1_k1
CA2(z2)

case.vector1
DA5(z2, z5)

case.klist2
DA3(z1, z3)

LAPW1_k2
CA3(z3)

case.vector2
DA6(z3, z5)

case.klistn
DA4(z1, z4)

LAPW1_kn
CA4(z4)

case.vectorn
DA7(z4, z5)

. . .

. . .

LAPW2_k1
CA6(z6)

LAPW2_k2
CA7(z7)

case.scf1
DA11(z6, z9)

case.scf2
DA12(z7, z9)

LAPW2_kn
CA8(z8)

case.scfn
DA13(z8, z9)

. . .

. . .

Stagein
DA1(z, z1)

Stageout
DA14(z11, z)

LAPW2_FERMI
CA5(z5)

case.vector1
DA8(z5, z6)

case.vector2
DA9(z5, z7)

case.vectorn
DA10(z5, z8)

. . .

Fig. 6.6. A simplified WIEN2k workflow.

184 6 Optimisation Framework

y = 9E+08(x-1)-0.4997

R2 = 0.9153

0,00E+00
1,00E+08
2,00E+08
3,00E+08
4,00E+08
5,00E+08
6,00E+08
7,00E+08
8,00E+08
9,00E+08
1,00E+09

0 10 20 30 40 50

Machine Size [processors]

E
xe

cu
ti

o
n

 T
im

e
[m

ili
se

c.
]

8 Atoms, y = 83756(x-1)2 - 3E+06(x-1) + 1E+08
16 Atoms, y = 188062(x-1)2 - 9E+06(x-1) + 2E+08
32 Atoms, y = 4E+08(x-1)-0.3935
64 Atoms, y = 9E+08(x-1)-0.4997

(a) LAPW0 scalability.

8

16

32

64y = -0,0038x2 + 21,359x + 25,308
R2 = 1

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70

Problem Size [atoms]

W
o

rk
 [

g
ig

af
lo

p
s]

(b) LAPW0 work.

Fig. 6.7. The regression functions for LAPW0.

6.3 Genetic Workflow Scheduling 185

TaskGraph activityGraph = new ActivityGraphImpl();
activityGraph.add(lapw0);
taskGraph.add(lapw1_k1);
activityGraph.add(lapw1_k2);
taskGraph.add(k1);
activityGraph.add(k2);
. . .
Dependency dependency = new DependencyImpl();
dependency.add(lapw0.getId(), k1.getId());
dependency.add(lapw0.getId(), k2.getId());
dependency.add(k1.getId(), lapw1_k1.getId());
dependency.add(k2.getId(), lapw1_k2.getId());
. . .
taskGraph.setDependency(dependency);

Example 6.11 illustrates a sample Java CoG program [9] that implements a
fragment of the WIEN2k workflow application. The CA workflow activities
lapw0, lapw1 k1, and lapw1 k2 run on the abstract machines (genetic algo-
rithm genes) lapw0 host, lapw1 host1, respectively lapw1 host2. The DA
activities k1 and k2 transfer the output files of LAPW0 from lapw0 host to
the abstract machines lapw1 host1 and lapw1 host2 where the LAPW1 k-
points execute through static schedule dependencies (see Section 6.1.1). The
ZEN directives illustrated in Example 6.11 specify the possible instantiation
values of each abstract machine that annotates the workflow which we re-
trieve at runtime from the MDS information service. The parameter space
defined by the ZEN directives is the scope of the scheduling search engine
based on the genetic algorithm.

We conduct the experiments in subset testbed of a national Grid infra-
structure [2] consisting of 200 processors. To achieve a more effective eva-
luation of the scheduling algorithm under difficult external conditions, we
introduced artificial perturbations to the processor and network data pro-
vided by MDS and NWS at random time intervals. As a consequence, the
performance of the processor and network resources in our Grid testbed fol-
lows an exponential distribution with overloaded resources outnumbering the
idle high performance ones (which we expect to be the case in future large
scale world wide Grid infrastructures).

Figure 6.8 depicts the generational evolution of the best population indi-
vidual (i.e. workflow makespan) for several instantiations of the genetic algo-
rithm applied on various WIEN2k problem size configurations. Even though
the algorithm exhibits a steady smooth improvement across generations (i.e.
convergence to local minima through crossover and steep escapes from local
minima through mutation), the quality of the resulting solutions is heavily
influenced by several input parameters:

186 6 Optimisation Framework

1. the population size;
2. the crossover probability;
3. the mutation probability;
4. the maximum generation number;
5. the steady state generation percentage;
6. the fitness scaling factor;
7. the use of the elitist model.

A correct tuning of these parameters is crucial for the algorithm to quickly
convergence to high quality solutions. In a conventional approach, this requi-
res extensive manual experimental testing.

Example 6.12 (Genetic algorithm parameter tuning – PBS script).

#!/bin/sh
#PBS -l walltime=00:10:00:nodes=1
#PBS -N scheduler
size = 150
#ZEN$ ASSIGN size = { 50 : 200 : 50 }
crossover = 0.9
#ZEN$ ASSIGN crossover = { 0.4 : 1 : 0.2 }
mutation = 0.001
#ZEN$ ASSIGN mutation = { 0.001, 0.01, 0.1 }
generations = 500
#ZEN$ ASSIGN generations = { 100 : 500 : 100 }
convergence = 0.2
#ZEN$ ASSIGN convergence = { 0.1, 0.2 }
scaling = 2

0

100000

200000

300000

400000

500000

600000

700000

800000

1 36 71 106 141 176 211 246 281 316 351 386 421 456 491

Generation

B
es

t
In

d
iv

id
u

al

Fig. 6.8. The best individual evolution for various application instances.

6.3 Genetic Workflow Scheduling 187

ZENTURIO (Exhaustive)
Performance and Parameter Study

ZENTURIO
Optimisation 1

(Genetic Scheduler)

ZENTURIO
Optimisation n

(Genetic Scheduler)
. . .

Objective
Function

Evaluation 11
(Perf. Metric)

Objective
Function

Evaluation 1p
(Perf. Metric)

. . .
Objective
Function

Evaluation n1
(Perf. Metric)

Objective
Function

Evaluation np
(Perf. Metric)

. . .

ZEN Directive Annotations
(Genetic) Optimisation Parameters

ZEN Directive Annotations
Abstract Machine Parameters

Fig. 6.9. The experimental setup for genetic static scheduler tuning.

#ZEN$ ASSIGN scaling = { 1, 1.5, 2 }
elitist = T
#ZEN$ ASSIGN elitist = { T, F }
${JAVA} -DSIZE=${size} -DCROSSOVER=${crossover} ...

We tuned the genetic algorithm parameters by conducting an aggressive ex-
haustive performance study using ZENTURIO in cluster mode, as presented
in Chapter 4. We inserted seven ZEN directives (see Example 6.12) that
specify total of 2880 experiments in the PBS script used by ZENTURIO to
automatically generate and submit the experiments on the gescher cluster
introduced in Section 4.2. We chose for this experiment a workflow of ave-
rage size of about 55 activities (i.e. 10 parallel k-points). Every experiment
represents an instance of the scheduling algorithm configured using a diffe-
rent genetic parameter combination. Each scheduling experiment annotates
the application with ZEN directives that define the possible instantiations
of each abstract machine, as already illustrated in Example 6.11. All expe-
riments use the Grid resource information retrieved from MDS at the same
time instance (i.e. Grid snapshot). We illustrate in Figure 6.9 this particular
hierarchical experimental setup that applies ZENTURIO (exhaustive) per-
formance study tool on ZENTURIO optimisation search engine (instantiated
for the scheduling problem).

We instantiated the objective (fitness) function with the predicted work-
flow makespan which raises the maximum optimisation difficulty since it con-
siders all workflow activities in the evaluation process. For the purpose of
evaluating the quality of the solutions produced by the algorithm, we pre-
measured the workflow execution time offline on a set of idle (unperturbed)
high performance Grid resources which we regard as optimal fitness Fo. We
computed three metrics for each experiment that characterise the perfor-
mance of the genetic algorithm:

188 6 Optimisation Framework

1. precision P of the best individual Fb compared to the artificial optimum
Fo, defined as:

P =
Fo −Fb

C − Fo
· 100;

2. visited points representing the total set of individuals (i.e. schedules)
which were evaluated by the algorithm during the search process;

3. improvement I in the fitness Fb of the last generation best schedule com-
pared to the first generation best schedule Ff :

I =
Fb −Ff

C − Fb
· 100.

To attenuate the stochastic errors to which randomised algorithms are bound,
we repeated each scheduling experiment for 30 times and report the arith-
metic mean of the results measured in each run.

Due to the large search space (i.e. 1025 points) and difficult external
Grid conditions (i.e. exponential resource load distribution), large popula-
tions above 50 individuals are required in this scenario for converging to
good solutions (see Figure 6.10(a)). As expected, the precision improves with
the number of generations. Lower population sizes (e.g. 50) do not ensure
enough variety in the genes and converge prematurely. Larger populations
(e.g. 200) converge to good solutions in fewer generations, however, the num-
ber of visited points may be unnecessarily large which increases the algorithm
duration. The number of visited points (i.e. the schedules computed) required
for converging to good solutions is of the order of 104 which represents a frac-
tion from the total search space size of 1025 points (see Figure 6.10(b)). The
improvement in the best individual is remarkable of up to 700% over 500 ge-
nerations for large populations (see Figure 6.10(c)). A value of 20% from the
maximum generation number is a good effective estimate for checking whe-
ther the algorithm reached a steady state (see Figure 6.11(a)). The higher
the crossover probability, the faster the algorithm converges to local maxima
(see Figure 6.11(b)). A correct low mutation probability is crucial for esca-
ping from local maxima and for obtaining good solutions (see Figure 6.11(c)).
In this experiment the mutation probability had to be surprisingly low (i.e.
0.001%) due to the rather large population sizes and genes per individual
(i.e. 45). Higher mutation probabilities produce too much instability in the
population and chaotic jumps in the search space that do not allow the al-
gorithm to converge to local maxima through crossover. Fitness scaling is
crucial for smooth steady improvement over large number of generations (see
Figure 6.12(a)) and produces about 10 fold improvement in solution. The use
of the elitist model (see Figure 6.12(b)) is beneficial due to the high hetero-
geneity of the search space and delivers in average 33% better solutions.

As a consequence of this performance tuning experiment, we currently use
the following parameter configuration to run the genetic algorithm within this
Grid testbed:

6.3 Genetic Workflow Scheduling 189

(a) Population size.

(b) Visited points.

(c) Best individual improvement.

Fig. 6.10. The genetic scheduler tuning results (I).

190 6 Optimisation Framework

(a) Generation percentage.

(b) Crossover probability.

(c) Mutation probability.

Fig. 6.11. The genetic scheduler tuning results (II).

6.3 Genetic Workflow Scheduling 191

(a) Fitness scaling factor.

(b) Elitist model.

Fig. 6.12. The genetic scheduler tuning results (III).

1. population size: 150;
2. crossover probability: 0.9;
3. mutation probability: 0.001;
4. maximum generation: 500;
5. steady state generation percentage: 20%;
6. fitness scaling factor: 2;
7. elitist model: yes.

In this configuration, the algorithm constantly delivers 25% precision and a
remarkable 700% improvement in solution by visiting a fraction (i.e. 5 · 104)
of the entire search space points. The most sensitive parameter that needs
be tuned to the workflow characteristics is the mutation probability (i.e.
inversely proportional with the population size multiplied with the workflow
size). The other parameter values have to be tuned to the Grid resource
characteristics and are less dependent on the particular workflow.

192 6 Optimisation Framework

6.4 Throughput Scheduling

Scheduling multiple independent experiments, for example in the context of
a large parameter study, requires optimising the throughput that is another
NP-complete problem in Grid computing. In this section we illustrate an
instantiation the ZENTURIO optimisation framework for throughput sche-
duling of large sets of independent activities as a specialisation of the static
workflow scheduling approach problem in Section 6.1 using the parameter
study model introduced in Section 2.6.3.

Similar to workflow scheduling, we specify the throughput scheduling pro-
blem by defining the parameter space through ZEN directive annotation of
each activity and by supplying appropriate objective (fitness) functions based
on prediction models for each independent activity using the method descri-
bed in Definition 6.6. Example 6.13 defines a set of five independent activi-
ties using the Java CoG kit package as a ZEN application A (z1, z2, z3, z4, z5),
where each ZEN variable zi represents the abstract machine that hosts the
activity CAi, ∀ i ∈ [1..5]. There are no schedule dependencies between ac-
tivities. Similar as for workflow scheduling, the ZEN directives define the
set of possible concrete instantiations (with cardinality 100) of each abstract
machine parameter.

Example 6.13 (Java CoG independent activity set).

//ZEN$ SUBSTITUTE z1 = { e{1:100} }
//ZEN$ SUBSTITUTE z2 = { e{1:100} }
//ZEN$ SUBSTITUTE z3 = { e{1:100} }
//ZEN$ SUBSTITUTE z4 = { e{1:100} }
//ZEN$ SUBSTITUTE z5 = { e{1:100} }
. . .
Task CA1 = createCA("z1");
Task CA2 = createCA("z2");
Task CA3 = createCA("z3");
Task CA4 = createCA("z4");
Task CA5 = createCA("z5");
. . .
TaskGraph activitySet = new ActivityGraphImpl();
activitySet.add(CA1);
activitySet.add(CA2);
activitySet.add(CA3);
activitySet.add(CA4);
activitySet.add(CA5);
activitySet.setDependency(new DependencyImpl());

We specify through the following definition the generic instantiation of the
ZENTURIO optimisation framework and the genetic search engine for the
throughput scheduling problem.

6.4 Throughput Scheduling 193

Definition 6.14. A ZEN application is a set of n independent activities:
A (z1, . . . , zn) = (Nodes,C-edges), where Nodes = {CA1 (z1) , . . . ,CAn (zn)},
and C-edges = ∅. A ZEN variable (gene) zi is a parameter that represents
an abstract Grid machine where the activity CAi executes. The value set Vzi

of a ZEN variable zi represents the entire set of concrete Grid machines. An
allele ei ∈ Vzi is a concrete machine in the Grid, ∀ i ∈ [1..n]. An activity
schedule is a function that maps each activity onto a concrete machine from
the Grid:

S : Nodes → Vzi .

An individual is a ZEN application instance AI (e1, . . . , en), where S (CAi) =
ei and ei ∈ Vzi , ∀ i ∈ [1..n].

The crossover and mutation operators for independent activities can be gra-
phically represented as in Figure 6.4.

Definition 6.15. Let Vz denote the full set of machines in the Grid, Npar

a set of independent activities, and S : Npar → Vz the activity schedule
function. We define the Gantt chart of Npar as a function:

G : Vz → P (Npar) , G (e) =
⋃

∀S(CA)=e

CA,

where P denotes the power set. We define the throughput fitness function as:

F : VA → �+, F (AI (e1, . . . , en)) = C − max
∀ e∈{e1,...,en}

⎧
⎨

⎩
∑

∀CA∈G(e)

Te
CA

⎫
⎬

⎭ ,

where C is a large enough constant. Maximising the throughput fitness func-
tion is the throughput scheduling problem.

Informally, with each individual we associate a Gantt chart that maps each
activity onto one Grid machine. The activities scheduled onto the same ma-
chine are executed sequentially in irrelevant order. The machine with the
maximum execution time determines the schedule makespan that needs to
be minimised. We define the fitness function as the makespan subtracted
from a large enough constant C since our framework solves maximisation
problems. For example, the throughput fitness function or the makespan of
the five activities defined in Example 6.13 can be expressed as:

F (AI (e1, e2, e3, e1, e1)) = C − max
{
Te1

CA1
+ Te1

CA4
+ Te1

CA5
,Te2

CA2
,Te3

CA3

}
,

assuming the Gantt chart depicted in Figure 6.13 :

S (CA1) = S (CA4) = S (CA5) = e1;
S (CA2) = e2;
S (CA3) = e3.

194 6 Optimisation Framework

CA1

CA2

CA3

CA4 CA5e1

e2

e3

Time

Machine

Fig. 6.13. A sample Gantt chart for the activity set defined in Example 6.13.

6.5 Performance Tuning of Parallel Applications

Finding appropriate parameter combinations, often representing paralleliza-
tion options, that optimise a certain performance metric (usually minimise
the execution time) is known as performance tuning that is another NP-
complete problem. We employ the ZENTURIO optimisation framework for
performance tuning of parallel applications by specifying the application pa-
rameters through ZEN substitute, assignment, and constraint directives and
indicating the objective function as a performance metric of interest (or an
arithmetical combination of multiple performance metrics) using the ZEN
performance directive, as formally specified in Chapter 3.

Definition 6.16. Let A denote a ZEN application, M a performance mea-
surement as defined in Section 3.2.9 (see Definition 3.25), and M a target
Grid site. We define the objective function for performance tuning of parallel
applications as follows:

F : VA → �, F (AI) = δM (M,AI) ,

where δM is the performance data defined in Definition 3.27.

Let CR denote the outermost code region of a ZEN application (i.e. the entire
application) as introduced in Definition 3.25 and M a Grid site (i.e. a parallel
computer to execute the application). We define in the following a few repre-
sentative performance metrics that can be plugged-in as objective functions
to be automatically tuned using ZENTURIO optimisation framework. Since
some of the metrics require minimisation, we had to subtract them from a
large enough constant C.

• Execution Time:
F (AI) = C − δM (M,AI) ,

where M = (WTIME, CR) and WTIME denotes the wall-clock time metric
(see Definition 3.25);

6.5 Performance Tuning of Parallel Applications 195

• Communication Time:

F (AI) = C − δM (M,AI) ,

where M = (COMM, CR) and COMM denotes the communication time metric;
• Speedup:

F (AI (e)) =
δM (M,AI (e0))
δM (M,AI (e))

,

where M = (WTIME, CR), z is a ZEN variable that represents the app-
lication machine size, e, e0 ∈ Vz, and AI (e0) represents the sequential
version of A;

• Efficiency:

F (AI (e)) =
δM (M,AI (e))

ϑ−1 (e) · δM (AI (M, e0))
,

where M = (WTIME, CR), z is a ZEN variable that represents the appli-
cation machine size, ϑ−1 (e) is the machine size, e, e0 ∈ Vz, and AI (e0)
represents the sequential version of A;

• Speed: [171]

F (AI) =
δM (M2,AI)
δM (M1,AI)

,

where M1 = (WTIME, CR), M2 = (FPIS, CR), and FPIS denotes the floa-
ting point instructions per second metric;

• Average Speed: [171]

F (AI (e)) =
δM (M2,AI)

δM (M1,AI) · ϑ−1 (e)
,

where M1 = (WTIME, CR), M2 = (FPIS, CR), z is a ZEN variable that
represents the machine size of A, e ∈ Vz, and ϑ−1 (e) is the machine size;

• Scalability: [171]

F (AI (e1, e2)) =
ϑ−1 (e′1, e′2) · δM (M,AI)
ϑ−1 (e1, e2) · δM

(
M,AI ′) ,

where M = (FPIS, CR), z1 and z2 are ZEN variables that represent the
problem size, respectively the machine size of A, e2, e′2 ∈ Vz2 , ϑ−1 (e2)
and ϑ−1 (e′2) are the machine sizes of AI and AI ′, and AI ′ (e′1, e

′
2) is a

reference problem and machine size.

6.5.1 Parallel Applications on the Grid

MPI is currently the most successful standard for writing parallel applicati-
ons especially for distributed memory parallel computers (but not only) based
on a low level message exchange paradigm. Even though the existing MPI

196 6 Optimisation Framework

implementations do not provide appropriate support for Grid computing, for
example with respect to security, job and firewall management, or fault tole-
rance, this low level message passing model has been successfully employed
in the Grid community as an easy and immediate solution for gaining early
experiences in executing existing parallel applications in Grid environments.

The MPICH-G library [75] extends the modular design of MPICH [91]
with a new globus communication device that enables transparent GridFTP-
based communication between MPI processes running on different Grid si-
tes, while using a local optimised (potentially native) MPI installation for
communication between processes on the same site. The MPI application is
submitted to multiple Grid sites using the DUROC [48] co-allocator provi-
ded by the Globus toolkit. This approach enables therefore straightforward
transparent execution of existing parallel MPI applications in a Grid envi-
ronment by simply relinking the compiled parallel application with the new
Grid-enabled counterpart. In this context, optimising MPI applications for
a heterogeneous set of Grid resources raises complex data distributions and
load balancing problems which are difficult to address due to the low level
of abstraction of the message passing paradigm (i.e. often called fragmented
programming).

High Performance Fortran (HPF) [98] was an attempt in the late 1990s
to alleviate the MPI fragmented programming model by providing high level
abstractions for distributing arrays across the distributed memory of parallel
computers, while offering the programmer a single program view which is
not fragmented by low level message passing library routines. Special pur-
pose source-to-source HPF compilers, like the Vienna Fortran Compiler [21],
have been developed by the community to translate a high level HPF appli-
cation into an MPI equivalent. In Section 3.1.5 we presented the BLOCK and
CYCLIC array distributions that are the fundamental HPF distribution pat-
terns used for regular problems on homogeneous parallel computers. In this
section we propose a new case study of applying the ZENTURIO optimisa-
tion framework for distributing (i.e. scheduling) parallel applications on the
Grid using irregular array distributions that were introduced in the HPF-2
standard for parallelising irregular problems. We restrict our presentation to
two-dimensional arrays for clarity reasons without loosing any generality in
our approach.

General Block Distribution

The general block distribution is a generalisation of the regular HPF BLOCK
distribution indicated through a vector representing the individual sizes of
all contiguous distribution blocks, rather than one single homogeneous size
for all blocks.

Definition 6.17. Let MAT(m, n) denote a two-dimensional matrix and let
GRID(p, q) denote a two-dimensional processor array. Let Bx(p) and By(q)

6.5 Performance Tuning of Parallel Applications 197

denote two one-dimensional distribution arrays, such that:
∑p

i=1 Bxi ≥ m
and

∑q
i=1 Byi ≥ n. The general block data distribution of MAT is defined by

the function:

DISTR : [1..m] × [1..n] → [1..p] × [1..q], DISTR(x, y) = (z, w),

where: ∑z−1
i=1 Bxi < x ≤

∑z
i=1 Bxi, ∀ x ∈ [1..p];∑w−1

i=1 Byi < y ≤
∑w

i=1 Byi, ∀ y ∈ [1..q].

The partition:
MATGRIDi,j

=
⋃

DISTR(k,l)=(i,j) ∧
∀ k∈[1..m]∧∀ l∈[1..n]

MATk,l

is called the distribution of MAT onto the processor GRIDij . Each distribution
array element Bxi and Byj, ∀ i ∈ [1..p], ∀ j ∈ [1..q], is a ZEN variable
annotated to specify the complete set of possible general block distributions.

Example 6.18 defines the matrix MAT(m, n) which has both dimensions dis-
tributed over the processor array GRID(p, q) using the HPF general block
mapping arrays Bx(p) and By(q), as specified by the directive d7 (see Fi-
gure 6.14). The elements of the mapping arrays Bx(p) and By(q) are program
constants which are annotated with the ZEN substitute directives d2-d6
that specify the complete set of general block distribution possibilities. A
distribution of size zero on one processor controls the machine size, since
that processor will not take part in the computation. The constraint direc-
tives d8 and d9 ensure that the sum of the general block mapping elements
is equal to the matrix size in each dimension (see Definition 6.17). These
ZEN annotations define a search space of possible array distributions of size
(m + 1)p−1 · (n + 1)q−1, where two orders of magnitude are eliminated by
the two constraints. The HPF and MPI execution models consider the Grid
as a single parallel computer. The HPF PROCESSORS directive d1 in this ap-
proach represents the complete set of processors available on the Grid (i.e. of
cardinality p · q) organised into a two-dimensional array GRID(p, q).

Example 6.18 (HPF general block array distribution).

INTEGER, PARAMETER m = 4
INTEGER, PARAMETER n = 8
INTEGER, PARAMETER p = 2
INTEGER, PARAMETER q = 3
REAL MAT(m, n)

d1: !HPF$ PROCESSOR GRID(p, q)
INTEGER, PARAMETER :: x1 = 3
INTEGER, PARAMETER :: x2 = 1
INTEGER, PARAMETER :: y1 = 2
INTEGER, PARAMETER :: y2 = 2

198 6 Optimisation Framework

A11

A21

A31

A12

A22

A32

A41 A42

A13

A23

A33

A14

A24

A34

A43 A44

A15

A25

A35

A16

A26

A36

A17

A27

A37

A18

A28

A38

A45 A46 A47 A48

P11 P12

P21 P22

P13

P23

Distributee Matrix MAT(4,8) Processor Array GRID(2,3)

Distribute

Fig. 6.14. The default general block array distribution defined in Example 6.18.

INTEGER, PARAMETER :: y3 = 4
d2: !ZEN$ SUBSTITUTE x1 = { 0 : 4 } BEGIN
d3: !ZEN$ SUBSTITUTE x2 = { 0 : 4 } BEGIN
d4: !ZEN$ SUBSTITUTE y1 = { 0 : 8 } BEGIN
d5: !ZEN$ SUBSTITUTE y2 = { 0 : 8 } BEGIN
d6: !ZEN$ SUBSTITUTE y3 = { 0 : 8 } BEGIN

INTEGER, PARAMETER :: Bx(p) = (/ x1, x2 /)
INTEGER, PARAMETER :: By(q) = (/ y1, y2, y3 /)

d6: !ZEN$ END SUBSTITUTE
. . .

d7: !HPF$ DISTRIBUTE MAT(GEN_BLOCK(Bx), GEN_BLOCK(By))
ONTO GRID

d8: !ZEN$ CONSTRAINT VALUE x1 + x2 == 4
d9: !ZEN$ CONSTRAINT VALUE y1 + y2 + y3 == 8

A ZEN application annotated as specified in Definition 6.17 (and exemplified
in Example 6.18) represents the input to the ZENTURIO optimisation frame-
work. The realisation of the search engine is, e.g. as described in Section 6.2
using a genetic algorithm which requires no further attention for this new
problem. The only missing item is the instantiation of the objective function
which we base on a simple primitive performance prediction model for paral-
lel applications, since a more comprehensive approach is a difficult research
topic on its own that goes beyond our present scheduling and optimisation
work [68].

Definition 6.19. Let A denote a ZEN application (e.g. as sketched in Ex-
ample 6.18), CR the outermost code region (i.e. entire program), M1 =
(COMP, CR) the computation time measurement, M2 = (COMM, CR) the com-
munication time measurement (see Definition 3.25), and GRID(p, q) a collec-
tion of Grid sites acting as a single parallel computer organised in a two-
dimensional array of processors. We approximate the objective function that
predicts the execution time of application A on the parallel computer GRID

using the (general block) distribution DISTR as:

6.5 Performance Tuning of Parallel Applications 199

F (AI) = max
∀ (i,j)∈[1..p]×[1..q]

{δGRID (M1,AI (GRIDi,j , DISTR))+

δGRID (M2,AI (GRIDi,j , DISTR))} ,

where AI (GRIDi,j , DISTR) denotes the partition of AI hosted by the machine
GRIDi,j according to the distribution DISTR.

We use again application specific analytical prediction models to estimate
the computation and the communication performance data, denoted as
δGRID (M1,AI (GRIDi,j , DISTR)) and δGRID (M2,AI (GRIDi,j , DISTR)), respec-
tively. For example, a parallel implementation of the Jacobi relaxation me-
thod performs the same computation repeatedly on all matrix elements, while
the communication requires exchanging the boundary elements with all the
neighbouring processors. In case of the general block array distribution, we
can analytically approximate these two metrics as follows:

δGRID (M1, AI (GRIDi,j , DISTR)) = Bxi · Byj · We

vGRIDi,j
· I;

δGRID (M2, AI (GRIDi,j , DISTR)) = L (GRIDi,j)+
+Bxi · Se ·

(
1

B(GRIDi,j ,GRIDi−1,j) + 1
B(GRIDi,j ,GRIDi+1,j)

)
+

+Byj · Se ·
(

1
B(GRIDi,j ,GRIDi,j−1) + 1

B(GRIDi,j ,GRIDi,j+1)

)
,

∀ i ∈ [1..p], ∀ j ∈ [1..q], where:

• We = δGRID(FP INST, CR) is the work required to compute one matrix
element expressed in floating point operations;

• vGRIDi,j
is the speed of the processor GRIDi,j that computes the matrix

element expressed in floating point operations per second (e.g. measured
using the LINPACK benchmark [56]);

• I is the number of iterations performed;
• Se is the size in bytes of a matrix element, i.e. Se = sizeof(e);
• L (GRIDi,j) is the total latency of the communication with the four neigh-

bouring matrix elements:

L (GRIDi,j) = L (GRIDi,j , GRIDi−1,j) + L (GRIDi,j , GRIDi+1,j)+
+ L (GRIDi,j , GRIDi,j−1) + L (GRIDi,j , GRIDi,j+1) ;

• L (GRIDi,j , GRIDk,l) is the latency between the processors GRIDi,j and
GRIDk,l;

• B (GRIDi,j , GRIDk,l) is the bandwidth between the processors GRIDi,j and
GRIDk,l.

Indirect Distribution

The indirect distribution allows arbitrarily complex array distributions which
are no longer restricted to contiguous blocks, by specifying the processor

200 6 Optimisation Framework

mapping for every individual array element separately. We apply the same
parametrisation technique presented in the previous section on this more
general kind of distribution.

Definition 6.20. Let MAT(m, n) denote a two-dimensional matrix and let
GRID(p, q) denote a two-dimensional processor array. Let I(p, q) denote a one-
dimensional distribution array, such that I(i, j) ≤ p · q, ∀ i ∈ [1..m], ∀ j ∈
[1..n]. The indirect data distribution of MAT is a function:

DISTR : [1..m] × [1..n] → [1..p] × [1..q],

DISTR(x, y) =
(

I(x, y) mod p,

⌊
I(x, y)

p

⌋)
.

We define each distribution array element I(x, y), ∀ x ∈ [1..p], ∀ j ∈ [1..q],
as a ZEN variable annotated to specify the complete set of possible indirect
array distributions.

Example 6.21 defines the matrix MAT(m, n) which has the elements indirectly
distributed across the processor array GRID(p, q) according to the mapping
array I(m, n) as specified by the HPF directive d18 (see Figure 6.15). The
elements of the mapping array I(m, n) are program constants which are an-
notated with the ZEN substitute directives d2-d17 that specify the complete
set of possible indirect distributions. These ZEN annotations define a search
space of (p · q)mn possible array mappings. The HPF PROCESSOR directive d1
in this approach represents the complete set processors available on the Grid
(i.e. of cardinality p · q) organised into a two-dimensional array GRID(p, q).
Since it is clearly impractical to manually annotate the application as shown
in Example 6.21, we insert the ZEN directives at runtime with support from
the ZENTURIO Experiment Generator service (see Section 4.4.1) with actual
Grid site availability retrieved from the MDS information service.

We express the objective function similarly as in the context of the gene-
ral block distribution (see Definition 6.19) using application specific analyti-
cal functions. For the Jacobi relaxation application with an irregular array
distribution, we approximate the computation and the communication per-
formance data as follows:

δGRID (M1, AI (GRIDi,j , DISTR)) =
∣∣MATGRIDi,j

∣∣ · We

vGRIDi,j
;

δGRID (M2, AI (GRIDi,j , DISTR)) =
∑

∀ (k,l)∈MATGRIDi,j
Se·

·
(

1

B(GRIDi,j ,GRIDDISTR(k−1,l))
+ 1

B(GRIDi,j ,GRIDDISTR(k+1,l))
+

+ 1

B(GRIDi,j ,GRIDDISTR(k,l−1))
+ 1

B(GRIDi,j ,GRIDDISTR(k,l+1))

)
,

where
∣∣MATGRIDi,j

∣∣ is the cardinality (i.e. number of matrix elements) of the
distribution of MAT onto the processor GRIDi,j . We ignore the less critical
latencies for brevity reasons.

6.6 Summary 201

MAT(4,4)
GRID(2,2)

Fig. 6.15. The default indirect array distribution defined in Example 6.21.

6.6 Summary

In this section we presented a generic framework for optimising parallel
and Grid applications in heterogeneous Grid environments. The framework
accepts as input generic ZEN application that defines a huge parameter
space impossible to be exhaustively explored and uses general purpose meta-
heuristics to search for a ZEN application instance that maximises a certain
input objective function. We implemented a generic search engine based on a
generational genetic algorithm that can be applied to any optimisation pro-
blem which is simply instantiated by the implementation of the objective
function. We illustrated instantiations of the framework for three import-
ant Grid computing problems: Grid workflow scheduling, Grid throughput
scheduling, and performance tuning of parallel application on the Grid.

Example 6.21 (HPF indirect array distribution).

INTEGER, PARAMETER m = 4
INTEGER, PARAMETER n = 4
INTEGER, PARAMETER p = 2
INTEGER, PARAMETER q = 2
DIMENSION MAT(m,n)

d1: !HPF$ PROCESSOR GRID(p,q)
INTEGER, PARAMETER M11 = 1
INTEGER, PARAMETER M12 = 2
INTEGER, PARAMETER M13 = 3
INTEGER, PARAMETER M14 = 4
INTEGER, PARAMETER M21 = 2
INTEGER, PARAMETER M22 = 3
INTEGER, PARAMETER M23 = 4
INTEGER, PARAMETER M24 = 2
INTEGER, PARAMETER M31 = 3
INTEGER, PARAMETER M32 = 4
INTEGER, PARAMETER M33 = 3
INTEGER, PARAMETER M34 = 2
INTEGER, PARAMETER M41 = 4
INTEGER, PARAMETER M42 = 3
INTEGER, PARAMETER M43 = 2

202 6 Optimisation Framework

INTEGER, PARAMETER M44 = 1
d2: !ZEN$ SUBSTITUTE M11 = { 1 : 4 } BEGIN
d3: !ZEN$ SUBSTITUTE M12 = { 1 : 4 } BEGIN
d4: !ZEN$ SUBSTITUTE M13 = { 1 : 4 } BEGIN
d5: !ZEN$ SUBSTITUTE M14 = { 1 : 4 } BEGIN
d6: !ZEN$ SUBSTITUTE M21 = { 1 : 4 } BEGIN
d7: !ZEN$ SUBSTITUTE M22 = { 1 : 4 } BEGIN
d8: !ZEN$ SUBSTITUTE M23 = { 1 : 4 } BEGIN
d9: !ZEN$ SUBSTITUTE M24 = { 1 : 4 } BEGIN
d10: !ZEN$ SUBSTITUTE M31 = { 1 : 4 } BEGIN
d11: !ZEN$ SUBSTITUTE M32 = { 1 : 4 } BEGIN
d12: !ZEN$ SUBSTITUTE M33 = { 1 : 4 } BEGIN
d13: !ZEN$ SUBSTITUTE M34 = { 1 : 4 } BEGIN
d14: !ZEN$ SUBSTITUTE M41 = { 1 : 4 } BEGIN
d15: !ZEN$ SUBSTITUTE M42 = { 1 : 4 } BEGIN
d16: !ZEN$ SUBSTITUTE M43 = { 1 : 4 } BEGIN
d17: !ZEN$ SUBSTITUTE M44 = { 1 : 4 } BEGIN

INTEGER I(m,n) = (/ (/ M11, M12, M13, M14 /),
(/ M21, M22, M23, M24 /),
(/ M31, M32, M33, M34 /),
(/ M41, M42, M43, M44 /) /)

d17: !ZEN$ END SUBSTITUTE
d16: !ZEN$ END SUBSTITUTE
d15: !ZEN$ END SUBSTITUTE
d14: !ZEN$ END SUBSTITUTE
d13: !ZEN$ END SUBSTITUTE
d12: !ZEN$ END SUBSTITUTE
d11: !ZEN$ END SUBSTITUTE
d10: !ZEN$ END SUBSTITUTE
d9: !ZEN$ END SUBSTITUTE
d8: !ZEN$ END SUBSTITUTE
d7: !ZEN$ END SUBSTITUTE
d6: !ZEN$ END SUBSTITUTE
d5: !ZEN$ END SUBSTITUTE
d4: !ZEN$ END SUBSTITUTE
d3: !ZEN$ END SUBSTITUTE
d2: !ZEN$ END SUBSTITUTE
d18: !HPF$ DISTRIBUTE MAT(INDIRECT(I)) ONTO GRID

7

Scientific Grid Workflows

Workflow modeling is a well established area in computer science that was
strongly influenced by business process modeling work [187]. Recently, the
Grid community has generally acknowledged that orchestrating existing soft-
ware applications implemented as Grid services in course grain workflows
represents an important class of applications that matches the loosely cou-
pled Grid model and, therefore, can benefit from being executed in distributed
Grid infrastructures. Similarly, in order to efficiently harness the computatio-
nal resources provided by the Grid, existing monolithic scientific applications
are currently being re-engineered and decomposed in a set of atomic activities
orchestrated in a loosely coupled scientific workflow [58, 133].

Despite their similarities with the workflows originating from the business
world, scientific workflows to be executed in Grid infrastructures present
fundamental differences that make them rather unique and, therefore, impose
specific requirements to support them:

• large number of activity instances (i.e. hundreds to thousands) which are
difficult or impossible to express individually;

• computationally intensive activities with long and often unpredictable
execution times;

• complex data dependencies of various sizes ranging from few bytes to
several gigabytes;

• sequential loops that transform workflows into complex DG-based struc-
tures, as opposed to simpler DAGs characteristic to the business world;

• dynamic control and data flow structure, often unknown before the exe-
cution, that may change at runtime depending on the input workflow
parameters or on the output results produced by the workflow activities;

• unreliable execution resources that raise complex fault tolerant issues.

There is currently a large amount of research in the Grid community devoted
to the specification of scientific workflow applications that range from low
level scripting languages [1, 53, 114, 127, 161], to high level abstract XML
representations [7, 10, 45, 63, 70, 101, 106, 115], and user friendly graphical
interfaces [26, 35, 65, 151]. Still, a common consensus on the fundamental

R. Prodan and T. Fahringer: Grid Computing, LNCS 4340, pp. 203–270, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 7 Scientific Grid Workflows

structural and runtime characteristics of scientific Grid workflows is missing.
In this chapter we aim to complement these efforts by introducing a for-
mal model for expressing scientific workflows and a runtime environment for
reliable and scalable execution in dynamic Grid infrastructures.

7.1 Workflow Model

In Section 2.6.3 we introduced a simple workflow model that represents the
final runtime representation of the application scheduled on heterogeneous
Grid resources using the ZENTURIO optimisation framework. Such a repre-
sentation, however, is clearly not friendly for describing scientific workflows
at the user level assuming the characteristics listed at the beginning of this
chapter, like large sets of activities whose precise number is statically un-
known before the execution of the workflow.

In this section we present a generic abstract model for formally repre-
senting large scale and complex scientific workflows in Grid environments.
Our representation is generic and independent of any language or grammar
as underlying implementation platform. For example, we implemented our
model through the XML-based Abstract Grid Workflow Language (AGWL)
that we described in [70].

Definition 7.1. We define a scientific workflow application as a DAG: W =
(Nodes,C-edges,D-edges, IN-ports,OUT-ports), where:

1. Nodes is the set of workflow activities;
2. C-edges =

⋃
Ns,Nd∈Nodes (Ns,Nd) is the set of control flow dependencies;

3. D-edges =
⋃

Ns,Nd∈Nodes (Ns,Nd,D-port) is the set of data flow depen-
dencies;

4. IN-ports is the set of workflow input data ports;
5. OUT-ports is the set of workflow output data ports.

An activity N ∈ Nodes is a mapping from a set of input data ports IN-portsN

to a set of output data ports OUT-portsN:

N : IN-portsN → OUT-portsN.

A data port D-port ∈ IN-portsN × OUT-portsN is an an association between
a unique identifier (within the workflow representation) and a well-defined
type:

D-port = (identifier, type).

The type of a data port is instantiated by the type system supported by
the underlying implementation language, e.g. the XML schema. The most
important data type according to our experience that shall be supported for
Grid workflows is file along side other basic types such as integer, float, or
string.

An activity N ∈ Nodes can be of several kinds:

7.1 Workflow Model 205

1. computational activity or atomic activity represents an atomic unit of
computation such as a legacy sequential or parallel application following
the model that we defined in Section 2.6.3;

2. composite activity is a generic term for an activity that aggregates mul-
tiple (atomic and composite) activities according to one of the following
four patterns:
a) parallel loop activity allows the user to express large scale workflows

consisting of a large number (i.e. hundreds to thousands) of atomic
activities in a compact manner;

b) sequential loop activity defines iterative recursive computations with
possibly unknown number of iterations determined by dynamic con-
vergence criteria that depend on the runtime output data port values
computed within one iteration;

c) conditional activity models if and switch-like statements that acti-
vate one from its multiple successor activities based on the evaluation
of a boolean condition;

d) workflow activity is introduced for modularity and reuse purposes,
and is recursively defined according to Definition 7.1.

Definition 7.2. Our workflow model is therefore based on a hierarchical re-
presentation, in which an activity N is called the child of the parent com-
posite activity Np = Parent(N) to which it belongs: N ∈ Np. We de-
note as Parentn (N) the ancestor of degree n of the activity N, where:
N ∈ Parent(N) ∈ . . . ∈ Parentn−1 (N) ∈ Parentn (N). We call the work-
flow that models the entire scientific application according to Definition 7.1
as root workflow.

7.1.1 Computational Activity

A computational activity defines an atomic unit of work instantiated at run-
time by a computational job running on a remote Grid site according to
the model defined in Section 2.6.3. A computational activity has a unique
type that defines the computation performed by any underlying implementa-
tion such as matrix multiplication, LAPW material science calculation (see
Section 4.2.2), 3DPIC photonic application (see Section 4.2.3), benders de-
composition method (see Section 4.2.4), or three-dimensional FFT (see Sec-
tion 4.2.5). An activity type has a well-defined interface described by the
type of its input and output data ports.

Definition 7.3. A computational activity deployment is a mapping from an
activity type to a URL that indicates the Grid location where an implemen-
tation of the activity type exists:

AD : type → URL.

206 7 Scientific Grid Workflows

Similarly, a computational activity instance is a mapping from an activity
deployment to an URL that defines the Grid location where the activity de-
ployment is executing. We express the data port runtime value of an activity
instance N using an evaluation function:

ωN : IN-portsN ∪OUT-portsN → type.

In our model, the activity deployment URL uses the gsi GridFTP protocol,
while the activity instance URL is accessible through a Web service-enabled
GRAM server using the http protocol (see Section 2.6.3). Activity types
and activity deployments are typically published within a Grid information
service like Globus MDS.

7.1.2 Control Flow Dependencies

Definition 7.4. The set of control flow dependencies C-edges of a workflow
introduced in Definition 7.1 defines a control precedence relation, denoted as
≺c which is a partial order over the activity set Nodes:

≺c: Nodes × Nodes → boolean, N1 ≺c Nn ⇐⇒
⇐⇒ ∃ ρ = {N1, . . . ,Nn} ⊂ Nodes ∧ (Ni,Ni+1) ∈ C-edges,

∀ i ∈ [1..n − 1] ∧ � (Nj ,Nk) ∈ ρ ∧ 1 ≤ k < j ≤ n.

We call N1 the source and Nn the sink of the control flow dependency
(N1,Nn), with the execution semantics indicating that N1 cannot start before
Nn completes its execution.

The control precedence relation between two activities N1 ≺c Nn can be
of two kinds:

1. direct ⇐⇒ (N1,Nn) ∈ C-edges;
2. indirect ⇐⇒ (N1,Nn) �∈ C-edges.

Similar to Definition 2.7 in Chapter 2, we define the set of predecessors of a
workflow activity N as the set:

pred(N) =
⋃

∀ (Npred,N)∈C-edges

Npred,

and the set of successors of a workflow activity N as the set:

succ(N) =
⋃

∀ (N,Nsucc)∈C-edges

Nsucc.

7.1 Workflow Model 207

7.1.3 Data Flow Dependencies

Definition 7.5. The data flow dependency elements of the D-edges set define
a data precedence relation, denoted as ≺d, over the set of the activities Nodes
of a workflow:

≺d: Nodes × Nodes → boolean,

Ns ≺d Nd ⇐⇒ (Ns,Nd,D-port) ∈ D-edges.

A data flow dependency between two activities is consistent if and only if it
connects one input port of the source activity N1 with one output port of the
sink activity N2:

(N1,N2,D-port) ∈ D-edges ⇐⇒
⇐⇒ D-port ∈ OUT-portsN1 ∧ D-port ∈ IN-portsN2 .

The semantics of the dependency is that the sink activity N2 requires as input
one output data of the source activity N1, denoted as D-port.

In our current execution model, the data precedence is a stronger relati-
onship which implies a control flow precedence too:

N1 ≺d N2 =⇒ N1 ≺c N2.

The semantics for the workflow enactment is that the output data of activity
N1 is considered as completed and can be sent to N2 only after N1 finished
its execution. We are planning in future work to eliminate this constraint
through other communication patterns such as data streams or pipelines.

7.1.4 Conditional Activity

Conditional activities model if or switch-like conditional statements whose
purpose is to select (enact) only one activity from a set of successor activities
(rather than fork all of them in parallel as in the case of DAGs or parallel
loops).

Definition 7.6. We represent a conditional activity of a scientific workflow
as a tuple: Nif =

(
if, Branches, IN-portsNif ,OUT-portsNif

)
where (see Fi-

gure 7.1(a)):

1. Branches =
⋃

∀ i∈[1..n] Ni is a set of so called branch activities that can
be atomic or composite activities, as introduced in Definition 7.1;

2. if is a surjective function that selects (enacts) one of the n branch acti-
vities Ni ∈ Branches based on its evaluation result:

if : D-port1 × . . . × D-portn → Branches,

where IN-portsNif =
⋃n

i=1 D-porti;

208 7 Scientific Grid Workflows

Nprec

Nsucc

N1 N2 Nn. . .

if

Nif

(a) Valid conditional activity.

Nprec

Nsucc

N1 N2 Nn. . .

if

Nif

invalid

invalid

invalid

(b) Invalid conditional activity.

Fig. 7.1. A valid and an invalid conditional activity example.

3. each input data port of the each branch activity must be consistently
connected to one input data port of the conditional activity:

IN-portsNi ⊆ IN-portsNif , ∀ i ∈ [1..n].

This constraint ensures that no input data port of any branch activity
remains not instantiated or connected outside the conditional activity (see
Figure 7.1(b));

4. each output data port of the conditional activity must be consistently
connected to exactly one output port of each branch activity:

OUT-portsNif ⊂
n⋃

i=1

OUT-portsNi .

This constraint ensures that no conditional branch leaves any of the
output data ports of the conditional activity not instantiated (see Fi-
gure 7.1(b)). All the remaining output ports of the branch activities from
the set

⋃n
i=1 OUT-portsNi \ OUT-portsNif are ignored.

7.1.5 Parallel Loop Activity

A common characteristic of scientific workflows is a large number of activities
instances of the same type with no dependencies in between which can be

7.1 Workflow Model 209

executed in parallel on different Grid processors or sites. We therefore intro-
duce the parallel loop as a special type of composite activity which provides
a powerful mechanism for expressing such large scale workflow constructs in
a compact and user friendly manner.

Definition 7.7. We represent a parallel loop activity as a tuple: Npar =(
Nbody, IN-portsNpar ,OUT-portsNpar

)
, where:

1. ∃ (D-portcard, integer) ∈ IN-portsNpar a predefined cardinality input port
of type integer that defines the runtime cardinality of the parallel loop,
denotes as |Npar|:

ωNpar
(D-portcard) = |Npar| ;

2. Nbody is an atomic or composite activity representing the parallel loop
body of which |Npar| independent instances are executed.

The cardinality port can be instantiated either statically before the workflow
execution or at runtime during workflow execution, for example from one
output port of a predecessor activity through a data flow dependency.

Obviously, it is often the case that such large parallel activities involve a
high number of data dependencies that are inconvenient to be individually
expressed, especially since for parallel loops they often follow certain regular
pattern. To meet this requirement and support expressive communication
patterns involving parallel activities of high cardinality, we introduce a new
composite data port type called collection.

Definition 7.8. A collection is a composite data port D-portCOL that consists
of a homogeneous set of atomic data ports (of the same type) of cardinality
|D-portCOL| = card and an additional field called pattern that defines various
types of collective communication, as illustrated in Figure 7.2:

D-portCOL = (identifier, type, card, pattern).

1. broadcast (see Figure 7.2(a)) distributes the collection D-portCOL produced
by one atomic activity A to each atomic activity of the successor parallel
activity according to the constant function:

DISTRBCAST : A × Npar → D-portCOL, DISTRBCAST (A,N) = D-portCOL,

that generates the following set of data dependencies:

D-edgesNpar = A × Npar × DISTRBCAST (A,Npar) =

=
⋃

∀N∈Npar

(A,N,D-portCOL) ,

where × denotes the cross product operator between two sets;

210 7 Scientific Grid Workflows

2. scatter (see Figure 7.2(b)) distributes every ith element of the collection
D-portCOL produced by the atomic activity A to the ith element of the
successor parallel activity Npar according to the bijective function:

DISTRSG : A × Npar → D-portCOL, DISTRSG (A,Npar[i]) = D-portCOL[i],

that generates the following set of data dependencies:

D-edgesNpar = A × Npar × DISTRSG (A,Npar) =

=
⋃

∀N∈Npar

(A,N, DISTRSG (A,N)) .

The cardinality of the collection is equal with the cardinality input port
D-portcard of the parallel activity Npar:

|D-portCOL| = ωNpar (D-portcard) ;

3. gather (see Figure 7.2(c)) is the opposite of scatter and collects the out-
put of every ith atomic activity of the parallel activity Npar into the ith

element of the input data port collection D-portCOL of the successor atomic
activity A that generates the following set of data dependencies:

D-edgesNpar = Npar × A × DISTRSG (Npar, A) =

=
⋃

∀N∈Npar

(N, A, DISTRSG (N, A)) ,

where DISTRSG is a bijection function defined equally as for the scatter
communication. Similarly, the cardinality of the collection is equal with
the cardinality input port of the parallel activity Npar:

|D-portCOL| = ωNpar (D-portcard) ;

4. parallel (see Figure 7.2(d)) distributes the ith collection element produced
by the parallel activity ANpar to the ith activity of the successor parallel
activity BNpar according to the function:

DISTRPAR : ANpar × BNpar → D-portCOL,

DISTRPAR (AN[i], BN[j]) =
{

D-portCOL[i], i = j;
∅, i �= j,

where ∅ denotes the empty set which expresses that no data dependency
between the two activities exists. This produces the following set of data
dependencies:

D-edgesNpar = ANpar × BNpar × DISTRPAR (ANpar, BNpar) =

=
⋃

∀ (N1,N2)∈ANpar×BNpar

(N1,N2, DISTRPAR (N1,N2)) .

7.1 Workflow Model 211

The cardinality of the collection is equal with the cardinality input ports
D-portANpar

card and D-portBNpar

card of the two parallel activities ANpar, respec-
tively BNpar:

|D-portCOL| = ωANpar

(
D-portANpar

card

)
= ωBNpar

(
D-portBNpar

card

)
;

5. parallel broadcast (see Figure 7.2(e)) distributes the entire collection
D-portCOL produced by one parallel activity ANpar to all atomic acti-
vities of the successor parallel activity BNpar according to the constant
function:

DISTRPBCAST : ANpar × BNpar → D-portCOL,
DISTRPBCAST (N1,N2) = D-portCOL,

which generates the following set of data flow dependencies:

D-edgesNpar = ANpar × BNpar × DISTRPBCAST (ANpar, BNpar) =

=
⋃

∀ (N1,N2)∈ANpar×BNpar

(N1,N2,D-portCOL) .

The cardinality of the collection is equal with the cardinality input port
of the input parallel activity ANpar:

|D-portCOL| = ωANpar (D-portcard) .

7.1.6 Sequential Loop Activity

Sequential loops typically model a series of repetitive (recursive) computa-
tions possibly with a statically unknown number of iterations using a con-
trol flow dependency that violates the control precedence relation (see Sec-
tion 7.1.2, Definition 7.4).

Definition 7.9. We define a sequential loop activity of a scientific workflow
as a tuple: Nloop =

(
if,Nbody, IN-portsNloop ,OUT-portsNloop

)
, where (see Fi-

gure 7.3):

1. Nbody is a composite or atomic activity that represents the loop body whose
input ports are a subset of the sequential loop activity input ports for
modularity reasons:

IN-portsNbody ⊆ IN-portsNloop ;

2. if is a boolean function that decides upon true evaluation whether a new
iteration of the loop body Nbody must be executed:

if : IN-portsNloop → boolean;

212 7 Scientific Grid Workflows

Collection D-portCOL

A

N1

Collection
D-portCOL

NnN2

Collection
D-portCOL

Collection
D-portCOL

Npar

. . .

(a) Broadcast.

Collection D-portCOL

A

N1

D-portCOL[1]

N2

D-portCOL[2]

Nn

D-portCOL[n]

Npar

. . .

(b) Scatter.

Collection D-portCOL

A

N1

D-portCOL[1]

NnN2

D-portCOL[2] D-portCOL[n]

Npar

. . .

(c) Gather.

BN1

D-portCOL[1]

BN2

D-portCOL[2]

BNn

D-portCOL[n]

BNpar

. . .

AN1

D-portCOL[1]

ANnAN2

D-portCOL[2] D-portCOL[n]

ANpar. . .

(d) Parallel.

Collection D-portCOL

BN1

Collection
D-portCOL

BNnBN2

Collection
D-portCOL

Collection
D-portCOL

BNpar

. . .

AN1

D-portCOL[1]

ANnAN2

D-portCOL[2] D-portCOL[n]

ANpar
. . .

(e) Parallel broadcast.

Fig. 7.2. The collection transfer patterns.

7.1 Workflow Model 213

if

Nbody

IN-ports

OUT-ports

D-portrec

true

false

Nloop

(a) Valid sequential loop activity.

if

Nbody

IN-ports

OUT-ports

D-portrec

true

false

invalid

invalid

Nloop

(b) Invalid sequential loop activity.

Fig. 7.3. A valid and an invalid sequential loop activity.

3. the conditional and the body activities share a subset of so called recur-
sive ports that dynamically influence condition evaluation and, therefore,
number of loop iterations:

D-portrec = IN-portsNloop ∩ OUT-portsNbody �= ∅;

4. the output ports OUT-ports of the sequential loop must belong to the output
ports of the body activity Nbody or replicate the input ports IN-portsNloop for
consistency and modularity reasons:

OUT-portsNloop ⊆ IN-portsNloop ∪ OUT-portsNbody .

7.1.7 Workflow Activity

Workflow activities isolate composite functionality of scientific workflows for
modularity and reuse purposes.

Definition 7.10. We define a workflow activity of as a tuple compliant
with the scientific workflow introduced in Definition 7.1, where: Wsub =
(Nodessub,C-edgessub,D-edgessub, IN-portssub,OUT-portssub), where

1. every input data ports of the workflow activity must be consistently
connected to one input port of its underlying activities:

IN-portsWsub ⊆
⋃

∀N∈Nodessub

IN-portsN;

214 7 Scientific Grid Workflows

2. each workflow output data port must be consistently connected to one
output port of one underlying activity:

OUT-portsWsub ⊆
⋃

∀N∈Nodessub

OUT-portsN.

7.2 Scheduler

The Scheduler [189, 190] is a best effort service in our tool integration archi-
tecture whose goal is to find good mappings of entire workflows onto available
Grid resources. In Chapter 6 we presented an implementation of the Schedu-
ler within the generic ZENTURIO optimisation framework using a primitive
intermediate workflow representation and a modular architecture open to dif-
ferent plug-and-play algorithms and objective functions. In this section, we
extend our service with two modular components to incorporate the high
level scientific workflow model described in the previous section:

1. workflow converter (see Section 7.2.1) for transforming compact hier-
archical scientific workflows into flat DAGs compliant with the model
presented in Section 2.6.3 that can be given as input to the optimisation
framework described in Chapter 6;

2. scheduling engine (see Section 7.2.2) which includes a specialised graph-
based algorithm that aims to reduce the complexity of the genetic al-
gorithm for finding good workflow schedules, as we will demonstrate in
Sections 7.2.4 and 7.2.5.

7.2.1 Workflow Converter

A peculiarity of the workflow scheduling heuristics, such as our optimisation
approach presented in Chapter 6, is that they are based on the DAG model
for two main reasons:

1. static DAGs allow objective functions be precisely evaluated for the en-
tire workflow. This clearly cannot be achieved for our scientific workflow
model that contains loops with unknown number of iterations or undeci-
dable conditional activities (see Section 7.1);

2. scheduling complete workflows in advance has the potential of producing
better mappings optimised for the particular workflow structure, as we
will demonstrate in the experimental part of this section.

The purpose of the workflow converter is therefore to transform hierarchical
DG-based scientific workflows into plain DAGs, compliant with the model
introduced in Section 2.6.3, that can be subject to heuristic algorithms for
optimised scheduling on the Grid such as the genetic algorithm presented in
Chapter 6. There are four constructs corresponding to the four composite

7.2 Scheduler 215

activities described in Section 7.1 which need to be handled by the con-
verter for transforming hierarchical scientific workflows into static DAGs of
atomic activities: conditional activities, sequential loops, parallel loops, and
sub-workflows. These transformations usually require additional prediction
information such as the probability of execution of each branch in conditio-
nal activities or the number of iterations within sequential and parallel loops,
which we compute from historical data stored in the Experiment Data Re-
pository. Transformations based on correct assumptions can imply substan-
tial performance benefits, while incorrect assumptions require appropriate
runtime adjustments such as undoing existing optimisations or rescheduling
based on the new information available.

Algorithm 5 depicts the pseudocode of the workflow conversion algorithm
implemented by the wf-converter function that inlines a composite activity
N into the root workflow W . The algorithm invokes a custom conversion
function based on the type of composite activity (see lines 3, 5, 7, and 9)
that, as an outcome, is inlined into the original root workflow. The algorithm
is first called using the original root workflow W as composite activity. i.e.

wf-converter(W ,W)

which is transformed into a DAG as a result of the function evaluation. We
present in the following subsections the custom conversion function for each
particular composite activity.

Branch Expansion

Let Nif =
(
if, Branches, IN-portsNif ,OUT-portsNif

)
denote a conditional

activity. The branch expansion transformation uses prediction information
about the probability of execution of each alternative branch activity defined
by the following function:

Pr : Branches → [0, 1],
∑

∀N∈Branches

Pr (N) = 1.

As an outcome, this transformation replaces the conditional activity with the
complete set of branch activities, as follows (see Figure 7.4 and Algorithm 5):

1. add the branch activities to the set of activities of the root workflow (line
17);

2. replace the control and data flow dependencies involving the conditional
activity with control and data flow dependencies to, respectively from,
the branch activities (lines 18 and 19), depending on the data port type;

3. eliminate the conditional activity together with the incoming and out-
going control and data flow dependencies (line 20);

4. recursively apply the workflow conversion algorithm on all the composite
branch activities (lines 21 − 23).

216 7 Scientific Grid Workflows

N1

if1

N2 N3

N5

0.2

if2 N4

N6

Nif1

Nif2
0.40.6

0.8

(a) Original workflow.

N1

N5

N2 N3 N4

N6

(b) Workflow after branch expansion.

Fig. 7.4. A sample workflow with two nested conditional activities.

Definition 7.11. Let N denote an arbitrary workflow activity and TN its
predicted execution time. We calculate the probabilistic predicted time of N
by weighting it with its probability of execution Pr(N):

TN = Pr(N) · TN.

The probability of execution of an arbitrary activity N with respect to the
entire root workflow Wroot = Parentn (N) is the probability of execution Pr(N)
weighted with the execution probabilities all parent activities:

7.2 Scheduler 217

Prroot (N) = Pr (N) ·
n∏

i=1

Pr
(
Parenti (N)

)
.

Obviously, Pr (Wroot) = 1.

We employ the probabilistic predicted time (rather than predicted execution
time) of each individual activity when calculating the makespan objective
function during the scheduling algorithm (see Section 6.1.2).

For example, Figure 7.4(a) displays a workflow containing two conditional
activities Nif1 and Nif2 and the corresponding probabilities of executing the
branch activities, where:

Nif1 = Parent (Nif2) = Parent2 (N2) = Parent2 (N3) =
= Parent (N4) = Parent (N5) ;

Nif2 = Parent (N2) = Parent (N3) ;
Prroot (N1) = Pr (Nif1) = Pr (N6) = 1;
Prroot (Nif2) = 1 · Pr (Nif1) = 0.8;
Prroot (N2) = Pr (N2) · Pr (Nif2) · Pr (Nif1) = 0.6 · 0.8 · 1 = 0.48;
Prroot (N3) = Pr (N3) · Pr (Nif2) · Pr (Nif1) = 0.4 · 0.8 · 1 = 0.32;
Prroot (N4) = Pr (N4) · Pr (Nif1) = 0.2 · 1 = 0.2;
Prroot (N5) = Pr (N5) · Pr (Nif1) = 0.8 · 1 = 0.8.

Parallel Loop Unrolling

Parallel loop unrolling uses prediction information about the number of ato-
mic activities in a composite parallel loop activity which instantiates the
cardinality port:

ωNpar : IN-portsNpar ∪ OUT-portsNpar → integer,

ωNpar
(D-portcard) = |Npar| .

As an outcome, this transformation eliminates the parallel loop and gene-
rates a larger graph of atomic activities suitable for optimisation scheduling
heuristics, as follows (see Algorithm 5):

1. unroll the parallel loop by adding a number of activity body clones (i.e.
identical copies) to the root workflow activity set equal to the runtime
value of the cardinality port (lines 37 and 38);

2. replace the control flow dependencies involving the composite parallel
loop activity with control and data flow dependencies to, respectively
from, all activity body clones representing the unrolled loop iterations
(line 39);

3. replace the data flow dependencies to / from the parallel loop activity
with data flow dependencies to / from all activity body clones according
to the collection transfer patterns presented in Section 7.1.5 (line 40);

218 7 Scientific Grid Workflows

if

Nbody
D-portrec

true

false

Nloop IN-portsNbody

Nbody

Nbody

pred(Nif)

succ(Nif)

D-portrec

IN-portsNbody

\
D-portrec

OUT-portsNif

OUT-portsNif

IN-portsNif

eliminate

eliminate

Fig. 7.5. The two iteration sequential loop unrolling.

4. eliminate the parallel loop activity together with the incoming and out-
going control and data flow dependencies (line 41);

5. recursively convert the unrolled activity body clones in case they are
composite activities (line 42).

For example, Figure 7.7(a) in Section 7.2.4 illustrates a compact representa-
tion of the WIEN2k workflow (originally introduced in Section 6.3.1), while
Figure 7.7(b) displays the new workflow after unrolling the two parallel loops
LAPW1 and LAPW2.

Sequential Loop Unrolling

Sequential loop unrolling uses forecast information about the number of itera-
tions to be executed in sequential loops. As an outcome, the converter unrolls
the loops which eliminates the recursive cycles in scientific workflows that, as
a consequence, are transformed from DG-based structures into DAGs. This
transformation is particularly useful in cases when the resources and execu-
tion time required by the workflow activities depend on the iteration number.
The Scheduler can therefore achieve better mappings by considering multiple
iterations in advance.

The unrolling of one loop iteration is performed in several steps, as follows
(see Algorithm 6):

1. add a clone of the sequential loop body to the set of activities of the root
workflow (lines 53 − 54);

2. insert the body activity in the root workflow by adding the appropriate
control flow and data flow dependencies, as depicted in Figure 7.5 (lines
55 − 56);

3. recursively inline the loop body in the root workflow by recursively app-
lying the workflow conversion function (line 57);

7.2 Scheduler 219

4. connect the control and data flow of the last unrolled loop iteration body
with the successors of the conditional activity (lines 60 − 61);

5. finally, eliminate the sequential loop activity from the workflow (line 62);

For example, Figure 7.7(a) in Section 7.2.4 illustrates a compact representa-
tion of the WIEN2k workflow (originally introduced in Section 6.3.1) using
a UML-based modeling tool [151]. The left window displays the sequential
loop composite activity, while the right window models the loop body. Fi-
gure 7.7(b) displays the new DAG-based workflow after unrolling one itera-
tion of the sequential loop body (and also the parallel loops as presented in
the previous section).

Workflow Inlining

The workflow inlining transformation expands sub-workflows, defined for mo-
dularity and reuse purposes as composite activities, into the root workflow
for optimised mapping of large flat workflow structures using heuristic-based
optimisation algorithms. A sub-workflow is inlined into the parent workflow
through the following steps (see Algorithm 6):

1. add the activities of the sub-workflow to the activity list of the root
workflow (line 68);

2. add the control flow and data flow dependencies of the sub-workflow to
the control flow, respectively data flow dependencies of the root workflow
(see lines 69 and 70);

3. replace the control and data flow dependencies to / from the sub-workflow
with control and data flow dependencies to / from the sub-workflow nodes
with no predecessors / successors (line 71);

4. replace the data flow dependencies to / from the sub-workflow with data
flow dependencies to / from the sub-workflow nodes with the same input
/ output data ports (line 72);

5. eliminate the sub-workflow composite activity together with the incoming
and outgoing control flow and data flow dependencies (line 73);

6. recursively apply the workflow conversion algorithm to all the composite
sub-workflow activities (line 74 − 76).

Data Port Elimination

Data port elimination does one last cosmetic change to the workflow by con-
verting each data flow dependency into one data transfer activity connected
through control flow dependencies to the source, respectively the sink of the
eliminated data dependency (see Algorithm 7, lines 81 − 84). Additionally,
the input and output ports of the workflow are transformed into data transfer
activities that perform input and output file staging (see lines 85−88, respec-
tively 89 − 92). The purpose of this transformation is to make the workflow
compliant with the internal representation introduced in Section 2.6.3 which
we used for optimisation in Chapter 6.

220 7 Scientific Grid Workflows

Algorithm 5. The workflow conversion algorithm (I).
1: function wf-converter(Wroot,N)
2: if N is a Nif then
3: Wroot ← branch-expansion(Wroot,N)
4: else if N is a Nloop then
5: Wroot ← seq-loop-unrolling(Wroot,N)
6: else if N is a Npar then
7: Wroot ← par-loop-unrolling(Wroot,N)
8: else if N is a W then
9: Wroot ← wf-inlining(Wroot,N)

10: end if
11: return Wroot

12: end function
13:
14: function branch-expansion(W,Nif)
15: W = Nodes,C-edges,D-edges, IN-portsW ,OUT-portsW

16: Nif = if, Branches, IN-portsNif , OUT-portsNif � Preconditions

17: Nodes ← Nodes ∪ Branches
18: C-edges ← C-edges ∪ (pred (Nif) × Branches) ∪ (Branches × succ (Nif))

19:

D-edges ← D-edges
⋃

∀ (Npred,Nif ,D-port)∈D-edges∧
∀N∈Branches ∧D-port∈IN-portsN

(Npred,N, D-port) ∪
⋃

∀ (Nif ,Nsucc,D-port)∈D-edges∧
∀N∈Branches ∧D-port∈IN-portsN

(N,Nsucc,D-port)

20: W ← activity-elimination(W,Nif) � Eliminate composite activity

21: for all N ∈ Branches do
22: W ← wf-converter(W, N) � Convert the branch activities

23: end for
24: return W
25: end function
26:
27: function activity-elimination(W,N)
28: W = (Nodes,C-edges,D-edges, IN-ports, OUT-ports) � Precondition

29: Nodes ← Nodes \ N
30: C-edges ← C-edges \ (pred(N) × N) \ (N × succ(N))

31:
D-edges ← D-edges \ pred(N) × N × IN-portsN \

\ N × succ(N) × OUT-portsN

32: return W
33: end function

7.2.2 Scheduling Engine

The scheduling engine is responsible for the actual mapping of a workflow
application converted into a DAG onto the Grid resources. We designed the
engine as an independent module on top of the optimisation framework pre-
sented in Chapter 6, which allows different DAG-based scheduling heuristics
be plugged-in with no external modifications. The algorithms with varying

7.2 Scheduler 221

Algorithm 6. The workflow conversion algorithm (II).
34: function par-loop-unrolling(W, Npar)
35: W = Nodes,C-edges,D-edges, IN-portsW ,OUT-portsW

36: Npar = Nbody, IN-portsNpar ,OUT-portsNpar � Preconditions

37: PN ←
⋃|Npar|

i=1 clone(N)
38: Nodes ← Nodes ∪ PN
39: C-edges ← C-edges ∪ (pred (Npar) × PN) ∪ (PN × succ (Npar))
40: D-edges ← D-edges

⋃
∀ (N,Npar ,D-port)∈D-edges

∀ (Npar ,N,D-port)∈D-edges

D-edgesNpar � D-edgesNpar was

defined in Section 7.1.5

41: W ← activity-elimination(W,Npar) � Eliminate composite activity

42: for all N ∈ Npar do
43: W ← wf-converter(W, N) � Convert the loop body

44: end for
45: return data-port-elimination(W)
46: end function
47:
48: function seq-loop-unrolling(W, Nloop, n) � Unroll n iterations

49: W = Nodes,C-edges,D-edges, IN-portsW ,OUT-portsW

50: Nloop = if,Nbody , IN-portsNloop ,OUT-portsNloop � Preconditions

51: Npred ← pred (Nloop)
52: for all i ∈ [1..n] do � Unroll the loop body

53: CNbody ← clone(Nbody)
54: Nodes ← Nodes ∪ CNbody

55: C-edges ← C-edges ∪ (Npred × CNbody)

56:

D-edges ← D-edges
⋃

∀ (N,Nloop,D-port)∈D-edges∧
D-port∈IN-ports

Nbody \D-portrec

(N, CNbody ,D-port) ∪

⋃
∀ (N,Nloop,D-port)∈D-edges

∧D-port∈D-portrec

(Npred, CNbody,D-port)

� D-portrec was defined in Section 7.1.6

57: W ← wf-converter(W, CNbody) � Convert the loop body

58: Npred ← CNbody

59: end for
60: C-edges ← C-edges ∪ (CNbody × succ (Nloop))
61: D-edges ←

⋃
∀ (Nloop,Nsucc,D-port)∈D-edges (CNbody ,Nsucc,D-port)

62: W ← activity-elimination(W,Nloop) � Eliminate composite activity

63: return W
64: end function

222 7 Scientific Grid Workflows

Algorithm 7. The workflow conversion algorithm (III).
65: function wf-inlining(W,Wsub)
66: W = Nodes,C-edges,D-edges, IN-portsW ,OUT-portsW � Preconditions

67: Wsub = Nodessub, C-edgessub,D-edgessub, IN-portsWsub ,OUT-portsWsub

68: Nodes ← Nodes ∪ Nodessub

69: C-edges ← C-edges ∪ C-edgessub

70: D-edges ← D-edges ∪ D-edgessub

71:

C-edges ← C-edges ∪ pred (Wsub) ×
⋃

∀N∈Nodessub
∧ pred(N)=∅

N ∪

∪
⋃

∀N∈Nodessub
∧ succ(N)=∅

N × succ (Wsub)

72:

D-edges ←
⋃

∀ (N,Wsub,D-port)∈D-edges

⎛

⎝N ×
⋃

∀N′∈Nodessub ∧
D-port∈IN-portsN

′
N′ × D-port

⎞

⎠∪

⋃
∀ (Wsub,N,D-port)∈D-edges

⎛

⎝
⋃

∀N′∈Nodessub ∧
D-port∈OUT-portsN

′
N′ × N × D-port

⎞

⎠

73: W ← activity-elimination(W,Wsub) � Eliminate composite activity

74: for all N ∈ Nodessub do
75: W ← wf-converter(W, N) � Convert all composite activities

76: end for
77: return W
78: end function
79:
80: function data-port-elimination(W)
81: for all (CA1 (z1) ,CA2 (z2) , D-port) ∈ D-edges do
82: Nodes ← Nodes ∪ DAD-port (z1, z2)
83: C-edges ← C-edges ∪ (CA1,DAD-port) ∪ (DAD-port,CA2)
84: end for
85: for all D-port ∈ IN-portsW do
86: Nodes ← Nodes

⋃
∀CA(z)∈Nodes∧

D-port∈IN-portsCA

DA (zD-port, z)

87: C-edges ← C-edges
⋃

∀CA(z)∈Nodes∧
D-port∈IN-portsCA

(DA (zD-port, z) ,CA(z))

88: end for
89: for all D-port ∈ OUT-portsW do
90: Nodes ← Nodes

⋃
∀CA(z)∈Nodes∧

D-port∈OUT-portsCA

DA (z, zD-port)

91: C-edges ← C-edges
⋃

∀CA(z)∈Nodes∧
D-port∈OUT-portsCA

(CA(z),DA (z, zD-port))

92: end for
93: return (Nodes,C-edges)
94: end function

7.2 Scheduler 223

accuracy and complexity are based on different metrics as optimisation goals,
as already presented in Section 6.1.2 (see Chapter 6).

In this section we present two additional heuristics that we use to im-
plement the scheduling engine along side the genetic algorithm presented in
Section 6.1:

1. Heterogeneous Earliest Finish Time (HEFT) [200] algorithm that is a
list scheduling heuristic purposely tuned for scheduling complex DAGs
in heterogeneous environments;

2. a myopic just-in-time algorithm acting like an opportunistic resource bro-
ker, similar to the Condor matchmaking mechanism used by DAGMan.

Heterogeneous Earliest Finish Time Algorithm (HEFT)

Let A = (Nodes,C-edges) denote a workflow application, where Nodes repres-
ents the set of activities, and C-edges the set of control flow dependencies.
The HEFT algorithm, illustrated in pseudocode in Algorithm 8, is an exten-
sion of the classical list scheduling algorithm for heterogeneous environments
which consists of three distinct phases:

1. the weighting phase (lines 3 − 8);
2. the ranking phase (lines 9 − 19);
3. the mapping phase (lines 20 − 22).

We explain in the following these three phases through a concrete example
depicted in Figure 7.6.

Weighting

During the weighting phase (lines 3 − 8) adjusted for heterogeneous Grid
environments, we assign weights to the workflow activities equal to their pro-
babilistic predicted time that we defined in Section 7.2.1 (see Definition 7.11).
We estimate the predicted time of individual computational and data trans-
fer activities based on historical data or application specific analytical models
using techniques that we described in Section 6.1.2 and 6.3.1. Afterwards, we
calculate the weight associated to a computational activity CA ∈ Nodes as
the average value of the predicted execution times T PROC

CA on every individual
processor PROC available on the Grid (lines 3 − 5):

wCA = avg
∀ PROC∈GRID

{
TPROC

CA

}
, ∀ CA ∈ Nodes.

Similarly, we compute the weight associated to a data transfer activity as the
average of the predicted transfer times across all pairs of Grid sites (rather
than all Grid processors – lines 6 − 8).

wDA = avg
∀ (M1,M2)∈GRID

{
T(M1,M2)

DA

}
, ∀ DA ∈ Nodes.

224 7 Scientific Grid Workflows

CA1
weight = 7
rank = 38

DA1

CA2

DA3

CA4

DA2

CA3

DA4

weight = 4
rank = 15

weight = 11
rank = 26

weight = 9
rank = 9

weight = 5
rank = 31

weight = 3
rank = 18

weight = 2
rank = 11

weight = 6
rank = 15

Fig. 7.6. The HEFT weights and ranks for a sample workflow.

In the example depicted in Figure 7.6, the Grid consists of three processors
PROC1, PROC2, and PROC3, therefore, the weight of activity N1 is calculated as
follows:

wCA1 =
TPROC1

CA1
+ TPROC2

CA1
+ TPROC3

CA1

3
=

5 + 8 + 8
3

= 7,

and similarly:

wDA1 =
T(PROC1,PROC2)

DA1
+ T(PROC1,PROC3)

DA1
+ T(PROC2,PROC3)

DA1

3
=

6 + 4 + 5
3

= 5.

Table 7.1 displays the weights of all workflow activities calculated using the
same formulas.

Table 7.1. The HEFT weight and rank calculations for the sample workflow de-
picted in Figure 7.6.

(a) Computational activity ranks.

PROC1 PROC2 PROC3 w

CA1 5 8 8 7

CA2 9 13 11 11

CA3 3 4 5 4

CA4 7 10 10 9

(b) Data transfer activity ranks.

(PROC1, PROC2) (PROC1, PROC3) (PROC2, PROC3) w

DA1 6 4 5 5

DA2 4 2 3 3

DA3 7 4 7 6

DA4 1 1 4 2

7.2 Scheduler 225

Algorithm 8. The HEFT algorithm.
1: function HEFT(W, GRID)
2: W = (Nodes,C-edges) � Precondition

3: for all CA ∈ Nodes do � Weighting phase

4: wCA ←
∑

∀ PROC∈GRID TPROC
CA

|GRID| � |GRID| = no. of processors in GRID

5: end for
6: for all DA ∈ Nodes do

7: wDA ←
∑

∀ PROC1 �=PROC2∈GRID T
(PROC1,PROC2)
DA

C2
|GRID|

� C2
|GRID| = combination of |GRID|

elements taken 2 at a time

8: end for
9: ListC-edges ← C-edges � Ranking phase

10: ListNodes ← Nodes
11: while ListC-edges �= ∅ do
12: for all N ∈ ListNodes ∧ (succ(N) ∩ ListC-edges = ∅) do
13: RN ← wN + max

∀Nsucc∈succ(N)
{wNsucc}

14: ListC-edges ← ListC-edges \ (pred(N) × N)
15:
16: ListNodes ← ListNodes \ N
17: end for
18: end while
19: RL ← sort(Nodes, RN) � Sort the activities based on ranks

20: for all i ∈ [1..|RL|] do � Mapping phase

21: N ← RLi

22: SN ← PROC, where end(N, PROC) = min
∀ P∈GRID

{end(N, P)} � end function

was defined in Section 6.1.2 (see Definition 6.7)

23: end for
24: return SW � Workflow schedule

25: end function

Ranking

The ranking phase (lines 9 − 19) is performed by traversing the workflow
graph upwards and assigning a rank value to each activity. The rank value
of an activity is equal to the weight of the activity plus the maximum rank
value of all the successors (line 13):

RN = max
∀Nsucc∈succ(N)

{
wN + RNsucc

}
.

For example, the rank of the activity CA1 is calculated as:

RCA1 = max
{
wCA1 + RDA1 , wCA1 + RDA2

}
= max {7 + 31, 7 + 18} = 38.

The list of workflow activities is then sorted in a descending order according
to their ranks (line 19), i.e. CA1, DA1, CA2, DA2, CA3, DA3, DA4, and CA4.

226 7 Scientific Grid Workflows

Mapping

Finally in the mapping phase (lines 20−22), the ranked activities are mapped
onto the processors that deliver the earliest completion time according to the
Definition 6.7 in Section 6.1.2, i.e.:

end (CA1) = min {5, 8, 8} = 5 ⇒ S (CA1) = PROC1;
end (CA2) = min {5 + 0 + 9, 5 + 6 + 13, 5 + 4 + 11} = 14 ⇒ S (CA2) = PROC1;
end (CA3) = min {14 + 0 + 3, 5 + 4 + 4, 5 + 2 + 5} = 12 ⇒ S (CA3) = PROC3;
end (CA4) = min {max {14 + 0, 12 + 1} + 7,

max {14 + 7, 12 + 4} + 10,
max {14 + 4, 12 + 0} + 10} = 21 ⇒ S (CA4) = PROC1.

Myopic Algorithm

To compare the two heuristic-based scheduling algorithms addressed so far
(i.e. HEFT and genetic algorithm), we developed a simple and inexpensive
heuristic which makes the mapping based on local optimal decisions similar
to the matchmaking mechanism performed by a resource broker like Condor
DAGMan [1] (see Algorithm 9). The algorithm traverses the workflow in
the top-down direction (lines 5 and 6), analysis every activity separately, and
assigns it to the processor which delivers the earliest completion time (line 7).

7.2.3 Layered Partitioning

We designed two alternative approaches for applying the scheduling algo-
rithms to better cope with various workflow topology structures:

Algorithm 9. The myopic scheduling algorithm.
1: function myopic(W, GRID)
2: W = (Nodes,C-edges) � Precondition

3: ListNodes ← Nodes
4: ListC-edges ← C-edges
5: while ListNodes �= ∅ do
6: for all N ∈ ListNodes ∧ (pred(N) ∩ ListC-edges = ∅) do
7: SN ← PROC, where end(N, PROC) = min

∀ P∈GRID
{end(N, P)} � end

function was defined in Section 6.1.2 (see Definition 6.7)

8: ListNodes ← ListNodes \ N
9: ListC-edges ← ListC-edges \ (N × succ(N))

10: end for
11: end while
12: return SW � Workflow schedule

13: end function

7.2 Scheduler 227

1. full-ahead scheduling considers the entire workflow as part of the conver-
sion and optimisation processes and is more suitable for workflows with
irregular (imbalanced) structures (see Section 7.2.5);

2. layered partitioning considers as input to the conversion algorithm only
a sub-workflow of a given depth of n atomic activities, calculated for
a workflow W =

(
Nodes,C-edges,D-edges, IN-portsW ,OUT-portsW

)
, as

follows:

Wn =
(
Nodesn,C-edgesn,D-edgesn, IN-portsWn ,OUT-portsWn

)
,

where:
• Nodesn ⊆ Nodes;
• succm(N) ∈ Nodesn, ∀ N ∈ Nodesn ∧ pred(N) = ∅ ∧ ∀ m ∈ [1..n];
• succn+1(N) �∈ Nodesn, ∀ N ∈ Nodesn ∧ pred(N) = ∅;
• D-edgesn =

⋃
∀ (N1,N2,D-port)∈D-edges

∧N1,N2∈Nodesn

(N1,N2,D-port);

• IN-portsWn = IN-portsW ;
• OUT-portsWn =

⋃
∀N∈Nodesn ∧

succ(N)
∈Nodesn

OUT-portsN.

This method is more suitable for workflows with regular structures and
large number of activities, since it needs less scheduling time to compute
optimised mappings of smaller sub-workflows (especially for the genetic
algorithm described in Section 6.2) while preserving the overall quality
of the solution (see Section 7.2.4)

7.2.4 WIEN2k

The first real application that we use for the scheduling experiments is the
WIEN2k material science application that we already introduced in Sec-
tion 6.3.1. In the first step, we modeled the application in a compact and
intuitive manner according to the scientific workflow model described in Sec-
tion 7.1 using a graphical UML modeling portal [151]. The hierarchical UML
representation of WIEN2k consists of one outermost sequential loop compo-
site activity called whileConv depicted in the left window of Figure 7.7(a).
The right window displays the content of the sequential loop body (one itera-
tion) which consists of five serialised activities interconnected through control
and data flow dependencies, where LAPW1 and LAPW2 are composite par-
allel loops while the others are atomic activities. We automatically translate
this graphical representation into an XML format [70] that is given as input
to the middleware services for scheduling followed by execution in a Grid
environment.

One peculiarity of the WIEN2k workflow is that the cardinality of paral-
lel LAPW1 and LAPW2 activities (see Section 7.1.5) is unknown until the
first activity LAPW0 completes its execution. Since this number is statically
unknown, the Scheduler instantiates the cardinality port of type integer with
a default value which assumes one single serial activity in each case. As a

228 7 Scientific Grid Workflows

(a) The WIEN2k hierarchical UML model.

(b) The converted WIEN2k DAG.

Fig. 7.7. The WIEN2k workflow representation.

consequence, the workflow is converted into a DAG which has a total of only
nine serialised activities that the Scheduler easily maps onto the same Grid
site that delivers the lowest makespan. Figure 7.8(a) displays the graphical
representation of the Gantt chart produced by the Scheduler after this initial
step, which we implemented based on a customised version of the Jumpshot
tool [199] for postmortem visualisation of MPI(CH) execution traces.

After the LAPW0 activity completes its execution, the Enactment Engine
(which we will present in detail in Section 7.3) reads the LAPW1 cardinality

7.2 Scheduler 229

(a) Initial Gantt chart.

(b) Gantt chart after rescheduling.

Fig. 7.8. The scheduling Gantt charts.

port that indicates the number of activities in the parallel loop (i.e. 250 in
this experiment) and issues an event that sends the workflow back to the
Scheduler for rescheduling. The Scheduler uses this new runtime information
to convert the scientific workflow into a new larger DAG consisting of 250
activities in each LAPW1 and LAPW2 parallel loop, plus one enclosing se-
quential loop iteration. After this second workflow conversion operation, the
Scheduler applies one of the heuristic-based algorithms on the large DAG
depicted in Figure 7.7(b) for optimised mapping onto the Grid. Figure 7.8(b)
illustrates the updated Gantt chart of the new workflow after rescheduling,

230 7 Scientific Grid Workflows

in which one can clearly see the two parallel activities LAPW1 and LAPW2,
whose inner computational activities are distributed across the Grid sites
available. The middle sequential activity LAPW2 FERMI synchronises the
parallel activities of LAPW1, gathers the collection data, and scatters it once
again in the next parallel activity LAPW2.

In the remainder of this section, we comparatively analyse the three heu-
ristic scheduling algorithms that we developed applied on the DAG generated
after the second conversion step (see Figure 7.7(b)) based on two metrics: the
predicted workflow makespan as the optimisation objective function, and the
scheduling time (i.e. time spent in the heuristic algorithm to compute the
schedule). We applied the genetic algorithm on a population of 100 chromo-
somes transformed in 20 generations, which was enough to converge to good
results in a reasonable scheduling time. We fixed the probability of crosso-
ver to 0.25 and the mutation rate to 0.01. We also compare the full-ahead
scheduling with the layered partitioning strategy described in Section 7.2.3.
We applied our Scheduler and the underlying algorithms in two different
scenarios:

1. without performance prediction meaning that we do not provide the Sche-
duler with any predictions about the execution times of the workflow ac-
tivities. In this case, the Scheduler assumes that all activities have equal
execution times on all computer architectures available in our Grid;

2. with performance prediction meaning that we provide the Scheduler with
prediction information, for example using the techniques that we pre-
sented in Sections 6.1.2 and 6.3.1. The predictions are provided to the
Scheduler in a two-dimensional array containing the execution time of
each activity type on each processor architecture available in our Grid.

We performed the experiments on seven heterogeneous Grid sites of the Aus-
trian Grid [2] infrastructure illustrated in Table 7.2, aggregating 116 proces-
sors in total.

Figure 7.9(a) shows that the results when using performance prediction
are in the best case nearly twice better than those achieved without perfor-
mance prediction. Performance estimates are clearly important in heteroge-
neous Grid environments, even if they are not highly accurate. Further, we

Table 7.2. The Austrian Grid testbed for scheduling experiments.

Site Architecture Size Processor Gigahertz Location

agrid NOW, Fast Ethernet 20 Pentium 4 1.8 Innsbruck
hydra COW, Fast Ethernet 16 AMD 2000 1.6 Linz
agrid1 NOW, Fast Ethernet, 16 Pentium 4 1.8 Innsbruck

altix1.jku ccNUMA SGI Altix 3000 Itanium 2 1.6 16 Innsbruck
altix1.uibk ccNUMA, SGI Altix 350 16 Itanium 2 1.6 Linz
schafberg ccNUMA, SGI Altix 350 16 Itanium 2 1.6 Salzburg
gescher COW, Gigabit Ethernet 16 Pentium 4 3 Vienna

7.2 Scheduler 231

can notice that the HEFT algorithm produces better results than the other
algorithms. More precisely, the predicted makespan of the workflow is 17%
shorter than the one produced by the genetic algorithm and 21% shorter
than the myopic one. The simple matchmaking solution applied by the my-
opic algorithm appears to be insufficient for large and complex workflows
and produces the worst results. The genetic algorithm needs two orders of
magnitude longer time to converge to good solutions, however, this is still
negligible compared to the execution time of real-world workflow problem
cases. In case of scheduling without performance guidance, the search space
has a more regular shape and the genetic algorithm performs equally good
(or even better) than the other two algorithms. Additionally, we performed
a three-layer partitioning of the workflow and incrementally scheduled each
partition using the HEFT algorithm. The results obtained using this method
were almost identical as for the entire workflow scheduling strategy due to
the symmetry in the workflow structure while the overhead of the scheduling
heuristic is lower.

7.2.5 Invmod

Invmod [178] is a hydrological application designed at the University of Inns-
bruck for calibration of parameters of the WaSiM tool developed at the
Swiss Federal Institute of Technology Zurich. Invmod uses the Levenberg-
Marquardt algorithm to minimise the least squares of the differences between
the measured and the simulated runoff for a determined time period. We re-
engineered the monolithic Invmod application into a Grid-enabled scientific
workflow consisting of two levels of parallelism as depicted Figure 7.10(a):

1. the calibration of parameters is calculated separately for each value using
multiple, so called, parallel random runs modeled as workflow (outer-
most) parallel loos;

2. for each optimisation step represented by an inner sequential loop itera-
tion, all parameters are simultaneously changed using a nested parallel
loop construct and the goal function is separately calculated.

The number of inner loop iterations is variable and depends on the actual
convergence of the optimisation process, however, it is usually equal to the
input maximum iteration number.

The Invmod workflow is a common case of strongly imbalanced workflows
in which one of the outermost parallel loop iterations is significantly longer
than the others due to the fact that the number of inner sequential loop
iterations significantly differs. In our case, the converted DAG consists of 100
parallel iterations, one of which contains 20 sequential iterations of the inner
optimisation loop, while the other 99 iterations only contain 10 optimisation
iterations each (see Figure 7.10(b)). This means that one parallel iteration
needs approximately approximately twice the execution time of the others.
We performed the scheduling experiments on the same Grid testbed depicted

232 7 Scientific Grid Workflows

0

500

1000

1500

2000

2500

Genetic
algorithm

Myopic
algorithm

HEFT HEFT, part.
depth 3

Scheduling Algorithms

M
ak

es
p

an
 [

se
c.

]

without performance prediction with performance prediction

(a) Execution time.

0

100

200

300

400

500

600

700

Genetic
algorithm

Myopic
algorithm

HEFT HEFT, part.
depth 3

Scheduling Algorithms

S
ch

ed
u

lin
g

 T
im

e
[s

ec
.]

(b) Scheduling time.

Fig. 7.9. The WIEN2k scheduling results.

in Table 7.2, with and without performance prediction information as for the
WIEN2k workflow.

The experimental results for the Invmod workflow illustrated in Fi-
gure 7.11(a) explain how each of the three algorithms deals with such strongly
imbalanced workflow structures. As expected, the myopic algorithm provides
the worst results which are approximately 32% worse than HEFT. The gene-
tic algorithm produces quite good results, however, worse than HEFT since it
does not consider in the optimisation process the execution order of parallel
activities scheduled on same processor. In addition, we applied incremen-
tal scheduling using with 10, 20, and 30 partitioning layers and compared
the results against the full-ahead workflow scheduling consisting of 44 layers.
For such strongly imbalanced workflows, the activities belonging to workflow
execution paths that are much longer than the critical schedule path (see De-

7.2 Scheduler 233

compute_params

rand_runs

find_best

. . .

wasim_a

wasim_b2c

wasim_d

no_params

converged

wasim_b wasim_b. . .

wasim_a

wasim_b2c

wasim_d

no_params

converged

wasim_b wasim_b. . .

(a) Original workflow.

100

(b) Converted DAG.

Fig. 7.10. The Invmod scientific workflow.

234 7 Scientific Grid Workflows

0

10000

20000

30000

40000

50000

60000

Genetic
algorithm

Myopic
algorithm

HEFT HEFT,
part.

depth 30

HEFT,
part.

depth 20

HEFT,
part.

depth 10

Scheduling Algorithms

M
ak

es
p

an
 [

se
c.

]

without performance prediction with performance prediction

(a) Execution time in heterogeneous environment.

0

100

200

300

400

500

600

700

800

900

Genetic
algorithm

Myopic
algorithm

HEFT HEFT,
part.

depth 30

HEFT,
part.

depth 20

HEFT,
part.

depth 10

Scheduling Algorithms

S
ch

ed
u

lin
g

 T
im

e
[s

ec
.]

(b) Scheduling time in heterogeneous environment.

0

5000

10000

15000

20000

25000

30000

35000

40000

Genetic
Algorithm

Myopic
algorithm

HEFT HEFT,
part.

depth 30

HEFT,
part.

depth 20

HEFT,
part.

depth 10

Scheduling Algorithms

M
ak

es
p

an
 [

se
c.

]

without performance prediction with performance prediction

(c) Execution time in homogeneous environment.

Fig. 7.11. The Invmod scheduling results.

7.3 Enactment Engine 235

finition 6.8 in Section 6.1.2) should be given priority which is well handled by
the entire workflow scheduling strategy based on optimisation heuristics like
HEFT and genetic algorithm. Therefore, scheduling strategies based workflow
partitioning deliver worse results than those based on full workflow analysis,
although their results are still better than the one found by the myopic algo-
rithm. The genetic algorithm requires again two orders of magnitude longer
than the others to converge to good solutions (see Figure 7.11(b)). Perfor-
mance prediction is again extremely beneficial for achieving good schedules
in heterogeneous Grid environments. Figure 7.11(c) presents the execution
results of the Invmod workflow in a homogeneous environment consisting of
three nearly identical Grid sites. As expected, in this case there is almost
no difference between scheduling with and without performance prediction
since the execution on each cluster needs relatively the same amount of time.
Again, the HEFT algorithm produces the best results which are 24% better
than the myopic one.

7.3 Enactment Engine

In order to support reliable and high performance execution of scientific work-
flows in dynamic Grid environments, we developed an Enactment Engine
service [59, 60, 61] based on a distributed service-oriented architecture orga-
nised in a master-slave communication model which includes three types of
services:

1. one master engine receives the workflow representation compliant with
the model described in Section 7.1 and interacts with the Scheduler for
appropriate mapping onto the available Grid resources. The master en-
gine monitors the execution of the entire workflow and the state of the
slave engines;

2. several slave engines, usually one for each Grid site, monitor the execution
of individual workflow partitions and report to the master whenever indi-
vidual activities change their state or when the partitions produce some
intermediate output data relevant to other partitions or to the overall
execution;

3. if the master engine crashes, a random backup engine (chosen by the
master beforehand) becomes the master and immediately selects another
backup slave randomly.

Such a distributed architecture increases the fault tolerance of the engine and
offers improved scalability through decentralised orchestration of large num-
bers of activities characteristic to scientific workflows. Every engine consists
of the following modules:

1. workflow partitioning module (see Section 7.3.1) resides within the master
engine and distributes the workflow into smaller partitions that can be

236 7 Scientific Grid Workflows

executed more efficiently and with smaller overheads by individual slave
engines, usually one for each Grid site;

2. control flow management module executes the workflow activities accor-
ding to the control precedence relation;

3. data flow management module manages the efficient transfer of complex
data dependencies between activities and partitions according to the data
precedence relation, including advanced collection management and op-
timisations through archiving and compression of multiple files;

4. fault management module resides in both master and slave engines and
handles different runtime failures through appropriate recovery strategies
like retry, checkpointing, or replication;

5. steering module [146] provides support within the slave engines for work-
flow runtime adaptations to cope with situations when the execution no
longer follows the original optimised plan computed by the Scheduler. Ad-
ditionally, it also handles the case of special workflows whose structure is
statically unknown or may change during the execution.

We perform the optimised and fault tolerant execution of a workflow in a
four phase procedure, as follows:

1. in the first step, the (XML-based) workflow representation is delivered to
the Scheduler for appropriate mapping onto the Grid resources;

2. once the concrete workflow schedule is received, the master engine starts
partitioning the workflow, then performs control and data flow optimisa-
tions which transform and simplify the workflow for a light-weight exe-
cution with reduced latencies and data transfer overheads;

3. after all these optimisations are performed, the master engine sends each
partition to a slave engine for execution;

4. during runtime, the workflow execution is dynamically improved by the
steering module.

7.3.1 Workflow Partitioning

The basis in our approach for distributed execution of scientific workflow is
the workflow partitioning which needs to be performed such that the com-
munication between the master and the slave engines that coordinate the
individual partitions is minimised. Determining the number of partitions of a
set of n numbers is a classical problem of combinatorial mathematics called
the n-th Bell number which is an NP-complete problem. Some related par-
titioning approaches were already proposed to solve this problem although
their algorithms have different goals [15, 53].

Definition 7.12. We define a workflow partition as the largest sub-workflow
WP = (NodesP,C-edgesP,D-edgesP) with the following properties:

1. all activities are scheduled on the same Grid site:

S (N1) = S (N2) , ∀ N,N2 ∈ NodesP;

7.3 Enactment Engine 237

2. there must be no control flow and data flow dependencies to / from acti-
vities that have predecessors / successors within the partition:

pred(N) = ∅ ∨ pred(N) ∈ NodesP, ∀ N ∈ NodesP.

The goal of the partitioning algorithm presented in this section is to generate
a partitioned workflow WP = (NodesP,C-edgesP,D-edgesP) from a workflow
W = (Nodes,C-edges,D-edges), where:

NodesP = {P1, . . . ,Pn}

is the set of partitions that fulfil Definition 7.12, and:

n⋂

i=1

Pi = ∅ ∧
n⋃

i=1

Pi = Nodes,

and n is minimum. We base our partitioning algorithm on graph transforma-
tion theory [16] as the formal background to rigourously express it. We define
several rules for defining valid workflow partitions that aim to decrease the
complexity of the algorithm (to polynomial) and create the set of cooperating
workflow partitions.

Let (W ,R) denote a workflow transformation system, where R denotes
the set of graph transformation rules. We approach the workflow partitioning
problem using a four step transformation sequence:

(
W RCF=⇒ WCF , W RDF=⇒ WDF

) RM1=⇒ W ′ RM2=⇒ WP,

where:
WCF = (NodesCF ,C-edgesCF ,D-edgesCF) ,
WDF = (NodesDF ,C-edgesDF ,D-edgesDF) ,
W ′ =

(
Nodes′,C-edges′,D-edges′

)
,

and WP are partition sets generated using different transformation rules that
preserve the control and data flow dependencies of the original workflow W .
We omit the workflow input and output data ports for clarity reasons since
they are irrelevant to our partitioning algorithm.

Step 1: W RCF=⇒ WCF .

Partition the original workflow according to three control flow dependency
rules RCF :

1. every activity of the workflow must belong to exactly one partition:

∀ N ∈ Nodes, ∃ P ∈ NodesCF ∧ N ∈ P ∧ N /∈ P′ ∧ ∀ P′ ∈ NodesCF \P;

238 7 Scientific Grid Workflows

2. every partition is one composite or atomic activity. Currently we per-
form this step by using additional information provided by the user in
the XML-based workflow representation [70] and mapping one composite
activity (e.g. parallel activity consisting of a set of independent atomic
activities) to one partition;

3. no control flow dependencies between intermediate activities in different
partitions are allowed:

∀ N1 ∈ P1 ∈ NodesCF ∧ (pred (N1) ∈ P1 ∨ succ (N1) ∈ P1) ∧
(� (N1,N2) ∈ C-edgesCF ∧ � (N2,N1) ∈ C-edgesCF ,

∀ N2 ∈ P2 ∈ NodesCF) ,

where pred and succ denote the predecessor, respectively the successor of
an activity in the workflow;

4. the number of activities inside one composite activity must be more than
the average processor number on one Grid site. We introduce this rule to
avoid too fine grained partitions in the workflow that would start slave
engines on sites with little workload.

For example, in Figure 7.12(a) we partition all atomic activities of the com-
posite activities Nif , Npar, and Nseq into one partition, respectively, which
produces the following control flow partitioning:

NodesCF = {{N1} , {N2} , {N3, . . . ,N6} , {N7, . . . ,N10} , {N11} , {N12,N13}} .

Step 2: W RDF=⇒ WDF .

Partition the original workflow according to three data flow dependency rules
RDF :

1. each activity of the workflow must belong to exactly one partition:

∀ N ∈ Nodes, ∃ P ∈ NodesDF ∧ N ∈ P ∧ N /∈ P′, ∀ P′ ∈ NodesDF \ P;

2. the data dependencies between activities scheduled on the same Grid site
are eliminated:

D-edgesDF = D-edges\(N1,N2,D-port) , ∀ N1,N2 ∈ Nodes ∧ SN1 = SN2 ;

3. activities scheduled on the same Grid site belong to the same partition:

∀ N1 ∈ P ∈ WDF ∧ ∀ N2 ∈ P ∧ SN1 = SN2 .

Figure 7.12(b) displays the result of the data flow partitioning according to
the schedule of the workflow activities:

NodesDF = {{N1,N2} , {N3, . . . ,N6,N13} , {N7, . . . ,N11,N12}} .

7.3 Enactment Engine 239

NloopS(N7)=M3

S(N8)=M3 S(N9)=M3

P1

P2

P6

P5

Nif

S(N10)=M3

Nseq

P4

P3

S(N3)=M2

S(N6)=M2

S(N4)=M2 S(N5)=M2

S(N2)=M1

S(N11)=M3

S(N12)=M3

S(N13)=M2

S(N1)=M1

(a) Control flow partitioning (RCF).

S(N1)=M1

S(N2)=M1

S(N3)=M2

S(N6)=M2

S(N12)=M3

S(N7)=M3

S(N10)=M3

S(N11)=M3

P1

P2

P3

S(N13)=M2

S(N4)=M2 S(N5)=M2

S(N8)=M3 S(N9)=M3

(b) Data flow partitioning (RDF).

P4

P3

S(N1)=M1 P1

P2

P6

P7

S(N2)=M1

S(N3)=M2

S(N6)=M2

S(N7)=M3

S(N11)=M3

S(N10)=M3

S(N8)=M3 S(N9)=M3

S(N4)=M2 S(N5)=M2

S(N12)=M3

S(N13)=M2

(c) Partition merge (RM1).

P2

Nif

P6

P5

P1

S(N13)=M2

S(N1)=M1

P3

S(N2)=M1

S(N3)=M2

S(N6)=M2

S(N4)=M2 S(N5)=M2

S(N7)=M3

S(N11)=M3 P4

S(N10)=M3

Nloop

S(N8)=M3 S(N9)=M3

S(N12)=M3

(d) Partitioned workflow (RM2).

Fig. 7.12. A workflow partitioning example.

240 7 Scientific Grid Workflows

Step 3: (WCF ,WDF) RM1=⇒ W ′.

Merge the two sets NodesCF and NodesDF of control and data flow-based
partitions computed in the previous two steps into one partition set, as fol-
lows:

W ′ =
⋃

∀Nodes1∈NodesCF∀Nodes2∈NodesDF

{Nodes1 ∩ Nodes2} ,

while preserving the control and data flow dependencies and the partitioning
goals formally described in the beginning. For our example in Figure 7.12(c)
we obtain:

Nodes′ = {{N1} , {N2} , {N3, . . . ,N6} , {N7, . . . ,N10} , {N11} , {N12} , {N13}} .

Step 4: W ′ RM2=⇒ WP.

Since the partitioning may have been done too fine grain, we merge the
partitions connected through control flow dependencies using the following
two merge rules:

1. merge the partitions that are connected through control flow dependen-
cies but have no data flow dependencies (i.e. they are scheduled on the
same site):

NodesP =
⋃

∀Pi
=Pj∈W′

{{Pi ∪ Pj} \ {Pi} \ {Pj} | ∀ N1 ∈ Pi ∧

∀ N2 ∈ Pj ∧ � (N1,N2,D-port) ∈ D-edges ∧ (Pi,Pj) ∈ C-edges′
}

;

2. in the final partition, there must be no control and data flow dependen-
cies to / from activities that have predecessors / successors within the
partitions. This is achieved by iteratively applying the following formula
within fixed point algorithm until nothing changes anymore and the lar-
gest partitions are achieved:

NodesP =
⋃

∀Pi
=Pj∈W′

{{Pi ∪ Pj} \ {Pi} \ {Pj} |

¬
(
(Pi,Pj ,D-port) ∈ D-edges′

)
∧
(
(Pi,Pj) ∈ C-edges′

)
∧

((
� Px �= Pj ∈ W ′ |

(
(Pi,Px) ∈ C-edges′

))
∧

(
� Px �= Pi ∈ W ′ |

(
(Px,Pj) ∈ C-edges′

)))}
.

Therefore,

NodesP = {{N1} , {N2} , {N3, . . . ,N6} , {N7, . . . ,N11} , {N12} , {N13}} .

This partitioning of a workflow helps the slave engines execute the work-
flow partitions independently with little asynchronous communication among
themselves. The workflow partitioning also contributes to the reduction of the
latency and coordination overheads of large numbers of activities characteri-
stic to our scientific workflows.

7.3 Enactment Engine 241

7.3.2 Control Flow Management

Our experience in running real-world applications in the Austrian Grid en-
vironment revealed that executing one computational activity on a remote
Grid site according to the model that we introduced in Section 2.6.3 con-
tains in average about 10 − 20 seconds of overhead mainly due to mutual
authentication latency and polling for job termination. This overhead may
be significantly larger if the access to Grid sites is performed through local
job management systems and, therefore, becomes critical for large scientific
workflows comprising hundreds to thousands of activities. The objective of
the control flow management module is to simplify and reduce the workflow
structure and size by merging atomic activities into larger aggregate ones
that can be executed as one single remote job submission on a Grid site,
which reduces the overall latencies and decreases the complexity of large and
complex workflows.

The control flow management module receives a workflow partition P and
performs a transformation that produces a new partition PCF that merges
the activities linked through control flow dependencies but with no data de-
pendencies (i.e. since they are scheduled on the same Grid site) into composite
activities that can be executed as an atomic unit of work (i.e. remote GRAM
job submission):

PCF = {CN1, . . . , CNn} ,

where:

CNi = {N} ∨ (∀ N1 ∈ CNi, ∃ N2 ∈ CNi ∧
((N1,N2) ∈ C-edgesP ∨ (N2,N1) ∈ C-edgesP) ∧
� N3 ∈ CNi ∧ ((N1,N3,D-port) ∈ D-edgesP ∨

(N3,N1,D-port) ∈ D-edgesP)) , ∀ i ∈ [1..n].

Figure 7.13(a) illustrates one typical static control flow optimisation in a
workflow consisting of activities A1, . . . , An and B1, . . . , Bn, where Ai and

(a) Original workflow.

A1

Npar

A2 An

B1 B2 Bn

CN1 CN2 CNn

(b) Workflow after control flow op-
timisation.

Fig. 7.13. A control flow optimisation example.

242 7 Scientific Grid Workflows

Bi are linked through a direct control flow dependency and were scheduled
on the same Grid site, which means that any eventual data dependency was
eliminated in the second step of the partitioning algorithm. Figure 7.13(b)
displays the analysis of the control flow optimisation which groups activi-
ties Ai and Bi in one single composite activity that simplifies the workflow
and, therefore, reduces the job submission latencies to half in this particular
example.

7.3.3 Data Flow Management

An important task of the Enactment Engine is to automatically track and
resolve dynamic and statically unknown data dependencies between activi-
ties. Depending on their type, data ports may map at runtime either to data
files referred through (GridFTP or GASS-based) URLs, or to objects corre-
sponding to abstract data types like integer, float, or string. Additionally, the
Enactment Engine transparently supports all five collection communication
patterns introduced in Section 7.1.5 which we did not encounter in related
workflow management systems [10, 65, 136, 1, 184].

Similar to remote job submissions, GridFTP-based authenticated file
transfers in Grid environments exhibit latencies of about 5−10 seconds which
is rather critical in case of a large number of small files produced by the real-
world applications that we use as case study. To address this problem, the
data flow management module reorganises first the input and output of the
partitions and composite activities, analyses the data dependencies between
all activities, groups them according to all dependencies involving the same
source and destination Grid sites, and generates a file transfer activity of
a single compressed archive whenever the source and destination sites are
different:

D-edgesP =
⋃

∀P1,P2∈NodesP

{(P1,P2,D-portarchive)} ,

where:
D-portarchive =

⋃

∀ (N1,N2,D-port)∈D-edges
∧N1∈P1 ∧N2∈P2

{D-port}

is a compressed archive of all data dependencies between partitions P1 and
P2 (typically instantiated during execution by files).

Figure 7.14(a) presents a typical example in which activity B collects the
output data from a large number of parallel activities A1, . . . , An. First of
all, the data flow analysis packages the data output ports of all activities
belonging to the same partition (i.e. scheduled on the same site – see Fi-
gure 7.14(b)). Afterwards, one single (GridFTP-based) file transfer activity
is generated between the partitions that are scheduled on different sites which
reduces the number of file transfers from n to k − 1 in this example, where
k � n (see Figure 7.14(c)).

7.3 Enactment Engine 243

Npar

B

A1 A2 A3 An

(a) Original workflow. (b) Data flow optimisation analysis.

(c) Workflow after data flow optimisation.

Fig. 7.14. A data flow optimisation example.

7.3.4 Virtual Single Execution Environment

Certain scientific workflow applications are characterised by a large (hundreds
to thousands) number of activities with complex data dependencies which are
relatively small in size. In such cases, the overhead of communication is domi-
nated by latencies for sending individual small files where the effective data
transfer is negligible. To handle this situation, we propose a new data flow
optimisation technique called Virtual Single Execution Environment (VSEE)
which replaces the data dependencies between activities with the full data
environment, recursively defined for a partition P as follows:

VP =
⋃

∀ (P′,P,D-port)∈D-edgesP

VP′
⋃

∀ (P,P′′,D-port)∈D-edgesP

{D-port} .

Clearly, the following property holds:

∃
(
P′,P,D-port

)
∈ D-edgesP ⇐⇒ VP′ ⊂ VP.

Upon executing a workflow partition on a Grid site, each slave engine automa-
tically creates and removes one working directory that represents its execu-
tion environment. The VSEE mechanism transforms complex data dependen-
cies between activities into one environment dependency between partitions

244 7 Scientific Grid Workflows

that is packaged and transferred at runtime as one single data transfer acti-
vity. VSEE, therefore, noticeably reduces the latency and the number of data
transfers for compute intensive Grid applications that have large amounts of
small sized data dependencies. The VSEE mechanism can also reduce the
overhead of activity migration upon workflow steering that we will formally
describe in Section 7.3.5 and practically experiment in Section 7.3.7. Another
benefit of using VSEE is the fact that specifying large amounts (tens to hun-
dreds) of input and output data ports between activities (which is often the
case for scientific workflows) can be painful and error prone for the end-user.
With this technique, the users can assume that activities have one single ag-
gregated data dependency to their predecessors which eliminates the need to
specify all fine grained logical data ports explicitly. This simplification shields
the user from the complexity of the workflow definition and it gives to the
scientists from other areas a more friendly interface to Grid computing.

Figure 7.15 illustrates the WIEN2k workflow that we introduced in Sec-
tion 6.3.1 scheduled on three Grid sites {M1,M2,M3}. First of all, the work-
flow is split into seven partitions:

NodesP =
7⋃

i=1

Pi,

based on the algorithm presented in Section 7.3.1 (see Figure 7.15(a)). Then,
the data flow between partitions is optimised according to the VSEE-based
relationships depicted in Table 7.3(a). For example, transferring data between
partitions only according to the data flow dependencies requires P6 receive
the data from:

Vin ∪ V1 ∪ V2 ∪ V3 ∪ V4 = V4,

since Vin ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V4. Table 7.3(b) displays the final result of
this VSEE data flow optimisation process. For certain compute intensive
applications characterised by large numbers of small data dependencies like
WIEN2k, the VSEE mechanism can drastically decrease the number of file
transfers (up to orders of magnitude) as we will experimentally illustrate in
Section 7.3.7.

7.3.5 Workflow Steering

There may occur many external factors that affect the execution of large
workflows in dynamic Grid environments which no longer follows the origi-
nal plan computed by the Scheduler. Such unpredictable factors may include
unpredictable queuing times, external load on processors (e.g. on Grid sites
that also serve as student workstation laboratories in our real Grid envi-
ronment), unpredictable availability of processors on workstation networks
(e.g. if a student shuts down a machine or reboots it in Windows operating
system mode), jobs belonging to other users on parallel machines, congested

7.3 Enactment Engine 245

kgen

LAPW0

LAPW1 LAPW1 LAPW1

LAPW2_FERMI

LAPW2 LAPW2 LAPW2

SUMPARA

LCORE

MIXER

Stage in

Stage Out

Converged

P1

P2 P3

P4
P5 P6

P7

(a) Original partitioned data flow.

kgen

LAPW0

LAPW1 LAPW1 LAPW1

LAPW2_FERMI

LAPW2 LAPW2 LAPW2

SUMPARA

LCORE

MIXER

Stage in

Stage Out

Converged

V0

V1

V2 V3

V4
V5 V6

V7

Data flow

Control flow

Activity
Partition

VSEE

(b) Optimised VSEE data flow.

Fig. 7.15. A VSEE example.

246 7 Scientific Grid Workflows

Table 7.3. The VSEE results for the WIEN2k workflow.

(a) VSEE relationships.

RV V1 V2 V3 V4 V5 V6 V7 Vout

Vin ⊂ ⊂ ⊂ ⊂ ⊂ ⊂
V1 – ⊆ ⊂ ⊆ ⊂ ⊂ ⊂
V2 – ⊆ ⊂ ⊂
V3 – ⊂ ⊆ ⊂
V4 – ⊂ ⊂ ⊂
V5 – ⊂
V6 – ⊆
V7 ⊂ – ⊃

(b) Minimum VSEE transfer set.

Transfer P1 P2 P3 P4 P5 P6 P7 Output

Vin �
V1 �
V2

V3 �
V4 � �
V5 �
V6

V7 � �

networks, or simply inaccurate prediction information. Moreover, we often en-
countered in our real Grid environment sites that offer a reduced capacity for
certain resources, for example small number of input and output nodes that
only allow a limited number of concurrent file transfers, otherwise generate a
denial of service attack. The steering module of the Enactment Engine aims
to minimise the losses upon to such unpredictable situations that violate the
optimised static mapping computed by the Scheduler through appropriate
rescheduling techniques.

For example, executing such large numbers of parallel activities in dyna-
mic Grid environments often produces a load imbalance that leaves some of
the Grid sites idle, while others are overloaded with activities waiting in the
queue. To handle this situation, the Enactment Engine regularly checks the
load of available Grid sites based on the number of activities queued and, if an
uneven distribution is detected (using predicted execution time information),
it selects some of the queued activities for migration and replicates them to
the less loaded sites (e.g. with free processors). Additionally, the engine must
also replicate the necessary input files as part of a data flow optimisation
process.

Rescheduling Events

The steering module of the Enactment Engine continuously monitors the
workflow execution and triggers appropriate rescheduling events whenever
any of the following situations occur:

• cardinality port value change which implies modifications in the workflow
shape, in particular in the size of parallel loops (see Section 7.1.5 for the
formal definition and Section 7.2.4 for a real-world example);

• prediction change of various workflow characteristics based on new execu-
tion performance data available, in particular branch probabilities in con-
ditional activities, number of iterations in sequential and parallel loops,
or more accurate execution time estimations of computational activities;

7.3 Enactment Engine 247

• resource change, in particular in the availability of Grid sites (i.e. number
of processors available) where workflow activities are scheduled, or when
new powerful parallel computers become available;

• performance contract violation [146] which are caused by workflow execu-
tions that no longer follow the original optimised plan computed by the
Scheduler.

Definition 7.13. Let N be a submitted activity, WN its underlying work as-
signed (i.e. floating point operations for CA activities, file size for DA acti-
vities), TSN

N its estimated execution time, and:

start(N) = end(N) − TSN

N

its start timestamp, where the end timestamp end(N) was defined in Sec-
tion 6.1.2 (see Definition 6.7). We define the performance contract [185] of
an activity N at time instance t, such that start(N) ≤ t < end(N), as:

PC (N,SN, t) =
WN

WN(t) · TSN

N

· (t − start(N)),

where WN (t) is the work completed by activity N in the interval [start(N), t].

The steering module of the Enactment Engine triggers a rescheduling event
for activity N at time instance t whenever:

PC (N,SN, t) > fN,

where fN is the predefined performance contract elapse factor of activity N.
Currently the value of the performance contract elapse factor fN needs to
be statically defined by the user for each activity (as activity properties in
the workflow specification [70]) that represents a certain percentage from its
predicted activity execution time TSN

N . We provide two options for monito-
ring the amount of work WN (t) performed by an activity N based on online
performance analysis sensors that we developed:

1. source code-based using the ZEN event directive specified in Section 3.2.12
(see Chapter 3);

2. binary code-based using the dynamic instrumentation technology descri-
bed in Section 5.4.1 (see Chapter 5);

After rescheduling, the workflow activities are restarted or resumed from the
last checkpoint, if available [122, 166] (see Section 7.3.6).

Steering Algorithm

The static workflow scheduling approach that we described in Section 7.2
suffers of two limitations:

248 7 Scientific Grid Workflows

1. loops are not comprised in the DAG-based workflow model used by the
Scheduler;

2. the Grid is not considered as a dynamic environment where the resources
can change runtime load and availability.

Definition 7.14. An activity N ∈ Nodes of the running workflow can be at
a certain time instance t in one of the following states: queued, running,
completed, or failed, denoted as state(N, t).

In this section we propose a simple steering algorithm depicted in Algo-
rithm 10 that is based on the repeated invocation of the static scheduling
algorithm, as informally outlined by the following execution steps [146]:

1. the algorithm receives as input a DG-based scientific workflow compliant
with the model presented in Section 7.1 (lines 1 − 2);

2. the workflow is converted into a DAG and scheduled onto the Grid using
optimisation heuristics as presented in Section 7.2 (lines 3 − 4);

3. the workflow is submitted for execution based on the initial schedule (line
5);

4. the workflow is monitored until it completes its execution (lines 6 − 14);
5. whenever one of the events presented in the previous section occur, a

rescheduling event is triggered (line 7);
6. all activities that violate their performance contract are canceled and

reported as failed (lines 8 − 11);
7. the workflow is converted once again based on the new runtime informa-

tion and rescheduled (lines 12 − 13).

To efficiently handle workflow rescheduling at runtime, we extended the work-
flow conversion algorithm originally presented in Algorithm 5 with a new time
axis that only considers the relevant (i.e. still to be executed) part of the work-
flow as part of the optimisation process (lines 17− 30). More specifically, the
following activities are eliminated and not considered for rescheduling (lines
26 − 27):

1. all properly running activities that fulfill their performance contract;
2. all completed activities that do not have sequential loops as parents and,

therefore, will not be re-executed.

7.3.6 Fault Tolerance

Fault tolerance is sometimes called redundancy management, since one of
the nature of distributed systems is redundancy which provides means for
increased reliability. We handle failures as part of the Enactment Engine at
three levels of abstractions:

7.3 Enactment Engine 249

Algorithm 10. The workflow steering algorithm.
1: function steering(W, GRID)
2: W = (Nodes,C-edges,D-edges, IN-ports, OUT-ports) � Precondition

3: W ′ ← wf-converter(W,W, 0) � Workflow conversion

4: SW ← schedule(W ′) � Workflow scheduling

5: execute(SW) � Workflow execution

6: repeat
7: t ← sleep(n) � Until scheduling event

8: for all N ∈ Nodes ∧ state(N, t) = running ∧ PC (N,SN, t) > fN do
9: cancel(N) � Performance contract violation

10: state(N) ← failed
11: end for
12: W ′ ← wf-converter(W,W, t) � Runtime workflow conversion

13: SW ← schedule(W ′) � Workflow rescheduling

14: until state(N, t) = completed, ∀ N ∈ Nodes ∧ succ(N) = ∅
15: end function
16:
17: function wf-converter(Wroot,N, t)
18: if N is a Nif then
19: Wroot ← branch-expansion(Wroot,N)
20: else if N is a Nloop then
21: Wroot ← seq-loop-unrolling(Wroot,N)
22: else if N is a Npar then
23: Wroot ← par-loop-unrolling(Wroot,N)
24: else if N is a W then
25: Wroot ← wf-inlining(Wroot,N)
26: else if (state(N, t) = running ∧ PC (N,SN, t) ≤ fN) ∨

(state(N, t) = completed ∧ (� n ∈ � ∧ Parentn(N) is a Nloop)) then
27: activity-elimination(N) � Completed or properly running

28: end if
29: return Wroot

30: end function

1. activity level fault tolerance or activity crash failure:
a) retry submits a computational activity multiple times on the same

Grid site until it succeeds;
b) replicate submits the same activities to different Grid sites simulta-

neously, uses the results of the one that finishes first, and cancels the
others;

2. control flow level fault tolerance:
a) checkpointing saves the state of the workflow activities and URLs to

their input and output data port instances in the Experiment Data
Repository. Full backup copies of the data port instances are not
saved;

b) migration moves an activity to a different Grid site upon performance
contract violation, as defined in Section 7.3.5. Upon migration, the

250 7 Scientific Grid Workflows

activity is resumed if an activity level checkpoint is available (see next
section), otherwise it is restarted;

3. workflow level fault tolerance:
a) alternate task uses in case of failure a different implementation of the

same activity with different implementation characteristics;
b) workflow level redundancy simultaneously launches different imple-

mentations of the same activity with different characteristics or qua-
lity of service parameters, hoping that one of the alternative jobs will
finish successfully (e.g. a parallel high performance but unreliable
MPI implementation versus a reliable but slow sequential version);

c) exception handling consists of recovery methods based on user-defined
exceptions or upon activity failures. Typical recovery methods in-
clude, for example, stop the workflow, checkpoint the workflow, or
ignore the fault;

d) checkpointing at the workflow level saves complete backup copies of
the activity input and output data port instances in addition to con-
trol flow level checkpointing. This method is slower but has the ad-
vantage that the user can restore the workflow at any time and from
any Grid location.

Checkpointing

Checkpointing and recovery are fundamental techniques for saving the ap-
plication state during the normal execution and restoring the saved state
after a failure to reduce the amount of lost work. There are two traditional
approaches to checkpointing:

1. system level checkpointing saves to the disk the image of an entire opera-
ting system process, including registers, stack, code and data segments.
This is known to be a rather expensive and platform dependent process
which is very critical to apply for a large number of activities in hetero-
geneous Grid environments;

2. application level checkpointing is usually implemented within the app-
lication source code by programmers, or is automatically added to the
application using compiler-based tools.

We therefore concentrate our checkpointing approach on application level
checkpointing, as a portable and more reliable approach for being applied in
heterogeneous Grid environments. Since it is not always possible to check-
point everything that can affect the program behaviour, it is essential to
identify what to include in a checkpoint to guarantee a successful recovery,
which for our scientific workflow model consists of:

• the state of the workflow activities;
• the state of the data dependencies.

7.3 Enactment Engine 251

We configure the Enactment Engine to checkpoint a workflow application
upon precise events defined, for example as part of the (XML-based) work-
flow specification through property and constraint constructs [70]. Typical
checkpointing events occur when an activity fails, after the completion of an
important number of activities (e.g. workflow phases, parallel loops, or se-
quential loop iterations), or after a user defined deadline (e.g. percentage of
the overall expected or predicted execution time). Other checkpointing events
may happen upon rescheduling certain workflow parts (see Section 7.3.5) due
to the dynamic availability of Grid resources or due to variable or statically
unknown number of activities in workflow parallel loops. Upon a checkpoin-
ting event, the control flow management module stops the workflow execution
and invokes the fault management module that saves the status and the data
flow ports into the Experiment Data Repository.

We designed and implemented a stack of three checkpointing mechanisms:

1. activity level checkpointing is based on existing system level checkpointing
tools like Condor [123] or MOSIX [14] and saves the registers, stack,
and memory segments for every individual activity running on a certain
processor. The advantage of the activity level checkpoint is that an atomic
activity can be recovered upon an internal or a system failure;

2. control flow level checkpointing saves the workflow state and (GASS and
GridFTP-based) URLs to the files that instantiate activity runtime data
ports. Checkpointing URLs rather than complete backup copies of large
data files makes the control flow level checkpointing mechanism a very
fast and light-weight mechanism. The disadvantage is that the input and
output data port instances remain stored on possible unsecured and vo-
latile file systems which makes this recovery approach appropriate only
at runtime during the same workflow execution;

3. workflow level checkpointing enhances the control flow checkpointing by
saving not only the workflow state, but also complete copies of the data
port instances available at the execution point when the checkpoint is per-
formed (see Definition 7.15). The advantage of the workflow level check-
pointing is that the execution can be restored and resumed at anytime and
from any Grid location. The disadvantage is that the checkpointing over-
head grows significantly for large files that instantiate the data ports and
is therefore less suitable for immediate runtime recovery. This approach
is more appropriate for resuming the execution at a later time, possibly
with a different schedule or within a different experimental context.

Definition 7.15. Let W = (Nodes,C-edges,D-edges, IN-ports,OUT-ports)
be a workflow application. We define a workflow checkpoint at the time in-
stance t as a set of tuples:

252 7 Scientific Grid Workflows

CKPT(W , t) =

⎛

⎜⎜⎜⎜⎜⎝

⋃

∀ (N1,N2,D-port)∈D-edges∧
state(N1,t)=completed∧
state(N2,t)
=completed

(N2, state (N2, t) ,D-port) , t

⎞

⎟⎟⎟⎟⎟⎠
.

As we can notice, there are multiple options for the checkpointed state
state (N2) of a not yet completed activity N2, where the activity state was
defined in Section 7.3.5 (see Definition 7.14). We propose three solutions to
this problem:

1. checkpoint immediately and regard the activity as running;
2. wait for the activity to terminate and set its state to completed if the

execution was successful, otherwise set the state to failed. Both solutions
are not obviously perfect and, therefore, we propose a third option that
uses the predicted execution time of the job, as follows:

3. delay the checkpoint for a significantly shorter amount of time, based on
the following parameters:
a) predicted execution time TN is the time that activity N is expected to

execute, computed using analytical models and regression techniques,
as presented in Sections 6.1.2 and 6.3.1;

b) checkpoint deadline CD is a predefined maximum time the check-
point can be delayed, usually equal to the overhead time required for
performing the entire checkpoint;

c) activity elapsed time tN is the activity execution time from the its
start until the checkpoint time t.

We compute the state of an activity N using the following formula:

state(N, t) =
{

running, TN − CD ≥ tN;
completed, TN − CD < tN.

This solution saves the checkpointing overhead and lets the checkpoint
complete within a shorter time frame.

Another important factor that affects the overhead of the workflow checkpoin-
ting is the size of the data port instances to be checkpointed. We propose
two solutions to this problem:

1. output data checkpointing stores all the output files of the executed acti-
vities that were not previously checkpointed;

2. input data checkpointing stores all the input files of the activities not yet
executed that will be used later in the execution.

For a centralised Enactment Engine, the input data checkpointing is ob-
viously the better choice because it ignores all the data files that will not be
used which saves significant data transfer overhead. In case of a distributed
architecture, the slave engines do not know which of the current data files will
be used later and, therefore, must use the output checkpointing mechanism.

7.3 Enactment Engine 253

N1

N2 N3

N4

N5

D-port12 D-port13

D-port24 D-port34

D-port45

D-port14

D-port15

CKPT1

CKPT2

CKPT3

Fig. 7.16. A workflow checkpointing example.

Table 7.4. The input and output data checkpointing for the workflow example
depicted in Figure 7.16.

Output data checkpointing Input data checkpointing

CKPT1 D-port12, D-port13, D-port14 D-port12, D-port13, D-port14
CKPT2 D-port24, D-port34 D-port14, D-port24, D-port34
CKPT3 D-port45 D-port15, D-port45

The advantage, however, is that the checkpoint is performed locally by each
slave engine which saves important network file transfer overhead. Table 7.4
shows the difference between the two checkpointing approaches for the three
checkpoints defined on the sample workflow depicted in Figure 7.16.

7.3.7 WIEN2k Execution Experiments

We use the WIEN2k application that we introduced in Section 6.3.1 for vali-
dating the design and functionality of the Enactment Engine with a problem
size that produces at runtime 250 parallel k-points which means a total of over
500 workflow activities (see Figures 6.6 and 7.15). The workflow execution
experiments presented in this section logically follow the initial scheduling
step that we analysed for this application in Section 7.2.4. We executed the
WIEN2k workflow in a subset of the Austrian Grid infrastructure [2] consis-
ting of a number of parallel computers and workstation networks accessible
through the Globus toolkit and local job managers as separate Grid sites.
We first executed the workflow application on the fastest site available (i.e.
altix1.jku in Linz) that gives us the indication of what can be achieved for
this application by using only local compute resources. Then we incremen-
tally added the next fastest sites for this application as indicated by the rank

254 7 Scientific Grid Workflows

Table 7.5. The Austrian Grid testbed for WIEN2k execution experiments.

Rank Site Architecture Size Processor GHz Job Location
Mgr.

1 altix1.jku ccNUMA, SGI Altix 3000 16 Itanium 2 1.6 Fork Linz
2 altix1.uibk ccNUMA, SGI Altix 350 16 Itanium 2 1.6 Fork Innsbruck
3 schafberg ccNUMA, SGI Altix 350 16 Itanium 2 1.6 Fork Salzburg
4 agrid1 NOW, Fast Ethernet 16 Pentium 4 1.8 PBS Innsbruck
5 arch19 NOW, Fast Ethernet 20 Pentium 4 1.8 PBS Innsbruck
6 arch21 NOW, Fast Ethernet 20 Pentium 4 1.8 PBS Innsbruck

column in Table 7.5 and observed the benefits or losses obtained by execu-
ting the same problem size in a larger Grid environment. We compare in
these experiments the performance delivered by three of our workflow enact-
ment techniques: control and data flow optimisation, control and data flow
optimisation plus dynamic steering, and VSEE.

Figure 7.17(a) presents the number of WIEN2k partitions computed by
the partitioning algorithm for each Grid site configuration. The number of
partitions depends on the workflow structure and the execution plan com-
puted by the Scheduler and is proportional with the number of sites used
for each execution. Figure 7.17(b) shows the execution times for running the
same WIEN2k problem on different Grid size configurations ranging from one
to six aggregated sites. Similarly, Figure 7.17(c) displays the speedup com-
puted as the ratio between the Grid execution time on multiple distributed
sites and the execution time on the fastest local site available (altix1.jku in
Linz). Without any optimisation, the performance and the speedup deterio-
rate with the increase in the number of Grid sites used for scheduling and
running the workflow. With optimisation and steering, the WIEN2k execu-
tion time improves because of the simplified data flow and balanced execution
of the LAPW1 and LAPW2 parallel loops. We exhibit, however, a slow down
from five to six Grid sites using control and data flow optimisation because
of the increased communication time across six distributed sites.

Figures 7.18(a) and 7.18(b) show that the number of file transfers, respec-
tively remote job submissions, are considerably reduced when optimisation
is applied which explains the performance results obtained. Figure 7.18(c)
displays the average GridFTP and GRAM latencies experienced in our runs,
measured for each job from the submission time until it becomes active, which
ranges from one to 18 seconds when a local queuing system is used under-
neath. Figure 7.19(a) shows that the size of transferred data under VSEE is
obviously larger than in the other cases, however, VSEE offers the biggest
execution improvement since it reduces the number of file transfers by three
orders of magnitude that drastically reduces the latencies (i.e. mutual au-
thentication to the GridFTP service). The steering improvement is due to
several external jobs that we submitted to the fastest Grid site which caused
several LAPW1 and LAPW2 activities wait in the queue. The consequence

7.3 Enactment Engine 255

is an increased load imbalance in the execution of the LAPW1 and LAPW2
parallel loops, which is reduced to half through dynamic steering as shown
in Figure 7.19(b).

Figure 7.19(c) compares the data transfer overheads of the activity migra-
tion upon control and data flow optimisation with and without the VSEE me-
chanism. One important aspect is that the data transfer overhead upon migra-
ting LAPW1 and LAPW2 activities is zero when using the VSEE mechanism.
The reason is that the sequential activities LAPW0 and LAPW2 FERMI re-
plicate all their output files to the sites where the following LAPW1 and
LAPW2 parallel loop activities are scheduled. Therefore, these activities will
find their inputs already prepared on the sites where they are migrated which
eliminates the data transfer overhead.

7.3.8 Steering Experiments

Our steering algorithm is based on the repeated invocation of the scheduling
heuristic engne at well-defined scheduling events in attempt to adjust the
optimised workflow schedule to the dynamically changing Grid resources. To
evaluate the algorithm, we generated three experimental WIEN2k workflow
instances (i.e. two DAG and one DG-based) that correspond to different
application input cases (i.e. the number of atoms and matrix sizes) with
different parallelization sizes (i.e. number of k-points). We use a static value
of 50% as the performance contract elapse factor of all workflow activities
(see Section 7.3.5).

Figure 7.20(a) traces the value of makespan objective function optimised
by the genetic algorithm at consecutive scheduling events during the execu-
tion of each experimental workflow. As the workflow activities are scheduled,
execute, and complete, the makespan of the remaining DAG1 and DAG2
sub-workflows obviously decreases with the number of scheduling events.
The abrupt decreases of the makespan happen after the submission of all
the LAPW1 k-points, which are the most time consuming workflow activities
that no longer need to be considered by the Scheduler. The abrupt increases
of the makespan are due the LAPW1 activities that violate their performance
contract which need to be reconsidered by the Scheduler for rescheduling, mi-
gration, and restart. In case of the DG-based workflow, the Scheduler always
receives the complete workflow as input but with different control precedence
relation between nodes, which explains why the makespan does not decrease
with the scheduling events.

Figure 7.20(b) traces the overall predicted workflow makespan (i.e. the
overall time the entire workflow is expected to execute) at consecutive sche-
duling events during the workflow execution. There are several high peaks
in the histogram which are due to severe perturbations applied to the Grid
sites running the LAPW1 k-points. As a consequence of the performance
contract violation, the Enactment Engine rescheduled the critical activities
to new machines at the next scheduling event which drops the next predicted

256 7 Scientific Grid Workflows

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

Number of Grid Sites

N
u

m
b

er
 o

f
P

ar
ti

ti
o

n
s

(a) Number of partitions.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6

Number of Grid Sites

E
xe

cu
ti

o
n

 T
im

e
[s

ec
.]

No Optimisation Optimisation Optimisation and Steering VSEE

(b) Execution time.

0

1

2

3

4

5

6

1 2 3 4 5 6

Number of Grid Sites

S
p

ee
d

u
p

No Optimisation Optimisation and Steering Optimisation VSEE

(c) Speedup.

Fig. 7.17. The WIEN2k execution results (I).

7.3 Enactment Engine 257

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6

Number of Grid Sites

N
u

m
b

er
 o

f
F

ile
s

No optimisation Optimisation Optimisation and Steering VSEE

(a) Number of file transfers.

0

100

200

300

400

500

600

1 2 3 4 5 6
Number of Grid Sites

N
u

m
b

er
 o

f
Jo

b
 S

u
b

m
is

si
o

n
s

No Optimisation Optimisation

(b) Number of job submissions.

0

2

4

6

8

10

12

14

16

18

altix1.jku altix1 schafberg agrid1 arch_19 arch_21

Grid Site

L
at

en
cy

 [
se

c.
]

GridFTP GRAM (Fork) GRAM (PBS)

(c) Latency of GridFTP and GRAM.

Fig. 7.18. The WIEN2k execution results (II).

258 7 Scientific Grid Workflows

0

20

40

60

80

100

120

140

1 2 3 4 5 6
Number of Grid Sites

D
at

a
S

iz
e

[
m

eg
ab

yt
es

]

No optimisation Optimisation and Steering VSEE

(a) Size of transferred files.

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6
Number of Grid Sites

L
o

ad
 Im

b
al

an
ce

 [
se

c.
]

No Optimisation Steering

(b) Overhead of load imbalance.

0

20

40

60

80

100

120

140

160

180

200

LAPW0 LAPW1 LAPW2_FERMI LAPW2

WIEN2k Activity Type

M
ig

ra
ti

o
n

 T
im

e
[s

ec
.]

No VSEE VSEE

(c) Overhead of activity migration.

Fig. 7.19. The WIEN2k execution results (III).

7.3 Enactment Engine 259

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Scheduling Events

S
ta

ti
c

D
A

G
 M

ak
es

p
an

DAG1 DAG2 DG

(a) Static DAG makespan.

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Scheduling Events

D
yn

am
ic

 W
o

rk
fl

o
w

 M
ak

es
p

an

DAG1 DAG2 DG

(b) Dynamic workflow makespan.

0

50

100

150

200

250

DAG1 DAG2 DG

Workflow Case

M
ak

es
p

an
 [

m
in

.]

Initial Prediction (Genetic Algorithm Scheduling)
Prediction with no Migration (Genetic Algorithm Scheduling)
Execution with Migration (Genetic Algorithm Scheduling)
Genetic Algorithm Overhead
Execution (Myopic Scheduling)

(c) Schedule comparison.

Fig. 7.20. The workflow steering executions traces.

260 7 Scientific Grid Workflows

makespan close to the original predicted value. We achieve through resche-
duling an estimate of about two fold improvement in the overall makespan
(see Figure 7.20(c)). Since the workflow referred as DAG2 represents a larger
problem size than DAG1, the benefit obtained through rescheduling and acti-
vity migration is higher. The final makespan of the DAG-based workflows is,
however, about twice as large as it was originally predicted by the Scheduler.
While most of the performance loss is the consequence of activity restarts (i.e.
due to duplicated file transfers and LAPW1 task computations), a fraction
(i.e. about 10%) is due to genetic algorithm execution overhead. For the DG-
based workflow, we could not estimate the makespan of the entire workflow
(i.e. beyond the execution of one sequential loop iteration) since the number
of loop iterations is statically unknown. As a consequence, Figure 7.20 repres-
ents the DG makespan of one workflow iteration only, which is successfully
kept relatively constant through activity migration in two critical occasions.

Figure 7.20(c) compares the use of the genetic algorithm for repeated sche-
duling of the workflow against the myopic just-in-time approach. We perfor-
med the experiments on the same workflow cases and under similar (logged)
Grid conditions as for the previous experiments. For the myopic algorithm,
we generate rescheduling events upon the completion of each workflow acti-
vity and the successor activities are immediately scheduled on the resources
that produce the lowest execution times (with O(n) complexity). The over-
all workflow makespans obtained when using the myopic algorithm were in
average 25% higher, because the genetic algorithm was able to find better
workflow mappings by looking ahead at the entire workflow.

7.4 Overhead Analysis

The ultimate goal of the Enactment Engine service is to support reliable
high performance execution of scientific applications on the Grid. While fault
tolerance techniques and distributed executions have important advantages
that ensure fast and proper completion of the application, they are also the
source of a broad set of additional overheads. In this section we try to classify
and understand the nature of these overheads and their contribution to the
overall workflow execution time [133].

Figure 7.21 presents a hierarchical classification of a set of overheads from
the Enactment Engine perspective that we classify in six main categories, as
follows:

1. Middleware overhead is due communication with the middleware services,
which we further divide in:
a) Scheduling overhead represents the time spent by the Scheduler ser-

vice to appropriately map the workflow activities onto the Grid. The
rescheduling sub-overhead represents the time to needed to re-map
the remaining workflow activities onto other Grid resources upon re-
scheduling events;

7.4 Overhead Analysis 261

Middleware
Scheduling

Resource brokerage

Initial scheduling

Rescheduling

Execution control
Data flow

Queuing
Fault tolerance

Workflow preparation
Environment set-up

Checkpointing

Restore

Data transfer

Activity management

Retry

Migration
Data transfer

Checkpointing

Restore

Data repository

Enactment Engine overhead

Slave engine

Partitioning

User input

Scheduler imput

Third party transfer

Collection archiving

Data staging
Stage in

Stage out

Preparation

Submission

Polling

Queuing

Control flow level

Workflow level

Control flow level

Workflow level

Optimisation
Activity merge

Control flow

Data port archiving

Fig. 7.21. The execution overhead classification.

262 7 Scientific Grid Workflows

b) Resource brokerage overhead accounts for the time needed to query
and retrieve the available resources from the MDS information ser-
vice;

c) Data repository overhead represents the time to access the remote
Experimental Data Repository to store, e.g. performance data and
checkpoint information;

d) Slave engine overhead represents the time needed by the master en-
gine to communicate with other remote slave engines;

2. Execution control overhead consists of the following sub-overheads requi-
red to control the execution of the workflow:
a) Data flow overhead represents the time required by the Enactment

Engine to dynamically analyse and optimise (i.e. archive, compress)
the data dependencies and decrease the number and size of file trans-
fers (see Section 7.3.3);

b) Control flow overhead represents the time needed to process the con-
trol flow dependencies, like fork a set of activities at the beginning
of a parallel loop, or join (synchronise) them at the end (see Sec-
tion 7.3.2);

c) Queuing overhead represents the time to control the maximum num-
ber of parallel jobs submitted to one Grid site, which avoids overloa-
ding the GRAM gatekeepers on slower front-end computers;

3. Fault tolerance overhead comprises:
a) Checkpointing overhead represents the time required to stop the exe-

cution of the workflow and store the state into the Experiment Data
Repository;

b) Restore overhead represents the time taken to restore and resume a
workflow execution from the last checkpoint;

c) Retry overhead represents the time required to re-execute a failed
activity on the same or on a different Grid site;

d) Migration overhead represents the time needed to checkpoint, resche-
dule, and resume an activity;

4. Workflow preparation comprises:
a) Environment setup overhead is the time needed to prepare the execu-

tion environment of a workflow, for example to create the necessary
directory structure required by legacy applications;

b) Partitioning overhead is the time required to partition the work-
flow into smaller parts to be executed by the slave engines (see Sec-
tion 7.3.1);

c) Optimisation overhead represents the time required to optimise the
workflow before the execution using the control flow and data flow
optimisation techniques presented in Sections 7.3.2 and 7.3.3;

5. Data transfer overhead is due to any kind of data transfer that imple-
ments the workflow data dependencies, including:
a) User input overhead (interactive);

7.4 Overhead Analysis 263

b) Input from scheduler overhead for runtime location of data depen-
dencies (see Section 7.3.3);

c) Third party transfer overhead between two remote Grid sites;
d) Collection archiving for archiving and compressing a data collection

before initiating a third party data transfer;
e) Data staging overhead including stage in from the local user machine

to the remote Grid site where the workflow input is needed by the
first activities, and stage out of the workflow output from the remote
site to the local machine;

6. Activity management overhead comprises the following sub-overheads:
a) Preparation overhead corresponds, for example, to the time required

to uncompress data archives or create remote directory structures;
b) Submission overhead represents the time needed to submit a compu-

tational activity on a Grid site;
c) Polling overhead is the time required to poll for job termination to

the GRAM gatekeeper;
d) Queuing overhead is related to jobs waiting in the local queuing sys-

tem of the parallel machines available as Grid sites.

7.4.1 Experiments

For validating our overhead analysis approach, we use again the WIEN2k
material science workflow (presented first in Section 6.3.1) which we executed
in the Austrian Grid testbed depicted in Table 7.6. Our experiments try to
answer multiple questions, such as:

• what speedups can we obtain by running the application on several dis-
tributed Grid sites compared to the fastest parallel computer available?

• what are the most important sources of overheads that slow down the
execution of the Grid application?

• how does the distributed Enactment Engine architecture improve the
workflow execution time?

• what are the overheads of the two workflow level checkpointing approaches
proposed?

Table 7.6. The Austrian Grid testbed for overhead analysis experiments.

Rank Site Architecture Size CPU GHz Job Location
Mgr.

1 altix1.jku ccNUMA, SGI Altix 3000 10 Itanium 2 1.6 Fork Linz
2 gescher COW, Gigabit Ethernet 10 Pentium 4 3 PBS Vienna
3 altix1.uibk ccNUMA, SGI Altix 350 10 Itanium 2 1.6 Fork Innsbruck
4 schafberg ccNUMA, SGI Altix 350 10 Itanium 2 1.6 Fork Salzburg
5 agrid1 NOW, Fast Ethernet 10 Pentium 4 1.8 PBS Innsbruck
6 arch19 NOW, Fast Ethernet 10 Pentium 4 1.8 PBS Innsbruck

264 7 Scientific Grid Workflows

We used an average WIEN2k problem size of 100 parallel k-points that
generates a total of over 200 workflow activities. We first ranked the Grid sites
according to their individual speed in executing the WIEN2k application, as
presented in Table 7.6. Thereafter, we executed the workflow on the fastest
Grid site available (in Linz) and then we incrementally added new sites to
the execution environment. Figure 7.22(a) shows that this modest WIEN2k
problem case considerably benefits from a distributed Grid execution until
three sites. The improvement comes from the parallel execution of WIEN2k
on multiple Grid sites that significantly decreases the computation of the
LAPW1 and LAPW2 parallel loop activities. Beyond four Grid sites we did
not obtain further improvements due to a slow interconnection network of one
megabit per second to the Grid site in Salzburg. As expected, the overheads
increase with the number of aggregated Grid sites, as shown in Figures 7.22(c)
(5.669%) and 7.23(a) (25.933%).

We can rank the importance of the measured overheads as follows:

1. Data transfer overhead increases with the number of Grid sites due to a
high number of GridFTP third party file transfers;

2. Load imbalance overhead increases with the number of Grid sites, mainly
because of heterogeneity. We define the load imbalance as the difference
between the maximum and the average termination time of the activities
in a workflow parallel loop (e.g. LAPW1 and LAPW2). Figure 7.22(b)
displays the distribution of activities to the Grid sites in each Grid con-
figuration, as computed by the HEFT algorithm used to schedule the
workflow;

3. Workflow preparation overhead increases since more preparatory tasks
are required when multiple sites are used;

4. Checkpointing overhead increases with the number of checkpoints perfor-
med;

5. Middleware overhead , including scheduling and resource brokerage over-
heads, remains relatively constant since is done once for every single
execution using the same algorithms;

6. Activity management overhead , in contrast, decreases with the number
of Grid sites since the more activities are executed in parallel, the more
job preparations overheads will overlap.

The most important overhead for this application is, therefore, the data trans-
fer. Figures 7.23(b), 7.23(c), 7.24(a), and 7.24(b) display the breakdown of
the data transfer overhead from one to four Grid site configurations. The
percentages of the input data staging, output data staging, and input from
Scheduler overheads decrease significantly since they are relatively constant
in each execution. The third party GridFTP-based file transfer is the main
source of overhead, which increases from 0% for one site to 94.942% on four
sites.

We configured Enactment Engine to perform a checkpoint after each main
phase of the WIEN2k execution, i.e. LAPW0, LAPW1, and LAPW2. In ad-

7.4 Overhead Analysis 265

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6

Number of Grid Sites

E
xe

cu
ti

o
n

 T
im

e
[s

ec
.]

Computation time Control flow-level checkpointing
Restore Scheduler
Resource manager Data transfer
Load imbalance Activity management
Data repository Workflow preparation

(a) Scalability.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Number of Grid Sites

A
ct

iv
it

ie
s

p
er

 S
it

e

altix1.jku gesher altix1.uibk schafberg agrid1 arch_19

(b) Distribution of parallel activities.

Job
preparation

4,327%

Resource
manager
0,349%

Load
imbalance

0,000%

Control flow-
level

checkpointing
0,206%

Restore
0,047%

Data transfer
0,293%

Scheduler
0,447%

Execution time
94,331%

(c) All overheads on one Grid site (altix1.jku).

Fig. 7.22. The WIEN2k overhead analysis (I).

266 7 Scientific Grid Workflows

Makespan
74,067%

Resource
manager
0,588%

Scheduler
0,719%

Restore
0,137%

Control flow-
level

checkpointing
0,306% Data transfer

2,132%

Load
imbalance
18,060%

Job
preparation

3,991%

(a) All overheads on two Grid sites (altix1.jku,
gescher).

Stage out
34%

Third party
data transfer

0%

Input from
Scheduler

0%
Stage in

66%

(b) Data transfer overheads on one Grid site (al-
tix1.jku).

Stage in
17,788%

Input from
Scheduler

0,024%

Third party
data transfer

75,149%

Stage out
7,039%

(c) Data transfer overheads on two Grid sites (al-
tix1.jku, gescher).

Fig. 7.23. The WIEN2k overhead analysis (II).

7.4 Overhead Analysis 267

Stage in
12,474%

Input from
Scheduler

0,018%

Third party
data

transfer
82,414%

Stage out
5,095%

(a) Data transfer overheads on three Grid sites (al-
tix1.jku, gescher, altix1.uibk).

Input from
Scheduler
0,005%

Stage out
1,414%

Stage in
3,640%

Third party
data transfer

94,942%

(b) Data transfer overheads on four Grid sites (al-
tix1.jku, gescher, altix1.uibk, schafberg).

Fig. 7.24. The WIEN2k overhead analysis (III).

dition, we configured the master engine to perform input data checkpointing
and the slave engines to do output data checkpointing. Figure 7.25(a) com-
pares the overheads of the control flow level checkpointing and the workflow
level checkpointing for a centralised and a distributed Enactment Engine.
The overhead of the control flow level checkpointing is, as expected, very low
and relatively constant since it only stores the workflow state and URLs to
data dependencies. The overhead of the workflow level checkpointing for a
centralised Enactment Engine increases with the number of Grid sites be-
cause more checkpointing data needs to be transferred to the Experiment
Data Repository. For a distributed Enactment Engine, the workflow level
checkpointing overhead is much lower since every slave engine uses a local

268 7 Scientific Grid Workflows

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6

Number of Grid Sites

T
im

e
[s

ec
.]

Control flow level Checkpointing
Workflow level Checkpointing
Distributed Workflow level Checkpointing

(a) Checkpointing overhead comparison.

0

500

1000

1500

2000

2500

3000

3500

4000

M
ak

es
pa

n

LA
PW

0

LA
PW

1

LA
PW

2_
FERM

I

LA
PW

2

Activity Type

G
ai

n
 [

se
c.

]

Control flow level Checkpointing Workflow level Checkpointing

(b) Checkpoint gains.

Fig. 7.25. The WIEN2k checkpointing results (I).

repository to store the checkpointed data files, which eliminates the wide area
network file transfers.

Figure 7.25(b) presents the gains we obtained in the single site workflow
execution because of checkpointing. We define the gain as the difference bet-
ween the timestamp when the last checkpoint is performed tCKPT minus the
timestamp of the previous checkpoint t′CKPT:

Gain = tCKPT − t′CKPT.

The largest gains are obtained after checkpointing the parallel loops LAPW1
and LAPW2. The gain for workflow level checkpointing is lower since it sub-
tracts the time required to copy the data to the Experiment Data Repository.

Figure 7.26(a) shows that the size of the data checkpointed at the work-
flow level is bigger than the overall size of data needed to be transferred for a

7.5 Summary 269

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

Number of Grid Sites

D
at

a
S

iz
e

[m
eg

ab
yt

es
]

Entire Workflow Control flow-level Checkpointing
Workflow level Checkpointing

(a) Size of data transferred.

0

5

10

15

20

25

30

1 2 3 4 5 6

Number of Grid Sites

N
u

m
b

er
 o

f
F

ile
s

Entire Workflow Workflow level Checkpointing
Control flow level Checkpointing

(b) Number of files transferred.

Fig. 7.26. The WIEN2k checkpointing results (II).

small number of Grid sites (up to three, when scalability is achieved). Beyond
four sites, the size of the data dependencies exceeds the workflow level check-
pointing data size. The data size of the control flow level checkpointing is,
of course, negligible. The number of files transferred preserves, more or less,
this behaviour (see Figure 7.26(b)).

7.5 Summary

In this section we introduced an abstract hierarchical model for representing
large and complex scientific workflows supported by a comprehensive Grid
computing runtime environment. A Scheduler service enhances the optimisa-
tion framework presented in Chapter 6 with new techniques for converting dy-
namic workflows into flat static DAGs that can be effectively scheduled using

270 7 Scientific Grid Workflows

graph-based heuristic algorithms. An Enactment Engine distributed across
several Grid sites ensures scalable and fault tolerant execution of large scien-
tific workflows through techniques such as partitioning, control and data flow
optimisation, runtime steering adaptation, and various levels of checkpoin-
ting. We validated our approach by modeling, scheduling, and executing two
real-world applications from the material science and meteorological fields in
a real Grid environment (i.e. Austrian Grid). Finally, we classified the ma-
jor sources of overheads that occur when executing workflows in distributed
Grid environments and presented a large number of experiments and scena-
rios that illustrate how to gain performance in a real, heterogeneous, and
dynamic Grid environment.

8

Related Work

The work presented in this monograph is centred around six different research
fields: experiment management, performance studies, parameter studies, tool
integration, scheduling, and scientific workflows. In the following sections we
outline the most relevant related work in each of these areas.

8.1 Experiment Management

ZOO [104] project took place in the late 1990s at the University of Wisconsin-
Madison to support scientific experiment management based on a desktop
environment. The project defines a clear lifecycle of a scientific experiment,
which iterates through three steps: experiment design, data collection, and
data exploration. Experiments are designed by using an object-oriented data
description language, while input data is provided through a special experi-
ment database. A transformation mechanism maps the contents of the data-
base to application specific input and output files. In contrast, ZENTURIO
and the ZEN language do not restrict the parametrisation to input files, but
enable the parameter specification within arbitrary application files.

UNICORE (Uniform Interface for COmputing REsources) [65] facilitates
the use of parallel computers on the Grid by using modern browser techno-
logy. Experiments have to be manually defined by the users, including source,
input, and output file staging, as well as and eventual compilation processes.
There is no support for experiment set specification and automatic experi-
ment management. Performance analysis is supported for single experiments
by providing an interface to the Vampir performance tool [132].

8.2 Performance Study

Paradyn parallel performance tools [107], developed at the University of
Wisconsin-Madison, supports experiment management through a represen-
tation of the execution space of performance experiments, techniques for the

R. Prodan and T. Fahringer: Grid Computing, LNCS 4340, pp. 271–277, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

272 8 Related Work

quantitative comparison of several experiments, and performance diagnosis
based on dynamic instrumentation. The experiments have to be set up manu-
ally by the user, whereas performance analysis is done automatically by the
tool for every experiment with using historical data [108]. Paradyn is based
on dynamic instrumentation which is difficult or impossible to apply for high
level programming paradigms like OpenMP and HPF. In contrast, the ZEN
performance directives of ZENTURIO support compile-time instrumentation
of arbitrary source code regions and high level language specific performance
overheads.

National Institute of Standards and Technology (NIST) [43] developed
a prototype for an automated benchmarking tool-set to reduce the manual
effort in running and analysing the results of parallel benchmarks. A data col-
lection and storage module implements a central repository for gathering the
performance data. A visualisation module provides an integrated mechanism
to analyse and visualise the data stored in the repository. An experiment con-
trol module assists the user in designing and executing the experiments. In
contrast to ZENTURIO, the experiment specification is restricted to predefi-
ned parameters available through a special purpose graphical user interface.

SKaMPI [154], developed at the University of Karlsruhe, provides a
benchmarking environment for MPI applications with the goal of analysing
the runtime performance of the MPI routines. A predefined set of measure-
ments, machine, and problem size parameters can be controlled by the pro-
grammer through a special purpose planning script. A public performance
database allows to store the benchmark data and perform interactive com-
parison of various MPI performance aspects across different implementati-
ons and computer architectures. The project, however, exclusively focuses on
benchmarking various MPI implementations.

Tracefile Testbed [71] is a community repository for organising the perfor-
mance data of parallel applications which allows the users to flexibly search
and retrieve the trace file metadata based on specific parameters such as the
computer architecture used, the types of events recorded, or the class of ap-
plications. The automatic execution of experiments and the automatic data
collection are not addressed.

XPARE (eXPeriment Alerting and REporting) [52] tools are designed at
the University of Oregon to specify automated benchmark regression tes-
tings for a given set of performance metrics of parallel applications. The tool
provides a historical panorama of the evolution of various performance me-
trics across software versions. Apart from software version control, no other
parametrisation is addressed.

The APART working group, funded by the European Union’s Information
Society Technologies framework, developed a generic design of an automa-
tic performance analysis system that defines and categorises performance
analysis experiments [130]. In this context, ZENTURIO represents an imple-
mentation of some of the design ideas built within APART.

8.4 Optimisation and Scheduling 273

Automatically Tuned Linear Algebra Software (ATLAS) [188] is an empiri-
cal approach for automatic generation and optimisation of numerical software
for processors with deep memory hierarchies and pipelined functional units.
Benchmarking data is organised and stored in a special purpose performance
database server [24]. The scope of ATLAS is, however, limited to linear alge-
bra software and comprises a predefined set of parameters and optimisation
metrics.

8.3 Parameter Study

Nimrod [5] is a tool developed at the Monash University that manages the
execution of parameter studies across distributed computers by hiding the
low level issues of distributing files to remote systems, performing remote
computations, and gathering results. A parameterised experiment is speci-
fied by a declarative plan file which describes the parameters, their default
values, and the commands necessary for performing the work. Nimrod ge-
nerates one job for each unique combination of parameter values by taking
the cross product of all the instantiation values available. The set of possible
parameter value combinations cannot be constrained to a meaningful subset
like in the ZEN language. Another limitation is that the parametrisation is
restricted to global variables which requires appropriate adaptation of the
application. Remote source code compilation is also not addressed. Nimrod
provides several application specific interfaces whereas ZENTURIO provides
a generic user portal for parameterisations, execution, and analysis.

The ILAB [197] project developed by NASA controls parameter studies
through graphical annotations of input files. Value sets can be specified by
enumeration lists or by min:max:inc patterns. So called masking of para-
meter values equivalent to the constraints provided by the ZEN language is
supported via Perl scripts. Program variables cannot be controlled.

8.4 Optimisation and Scheduling

Directed Acyclic Graph Manager (DAGMan) [1], developed by the Con-
dor [123] project at the University of Wisconsin-Madison, allows the spe-
cification of DAG-based workflows using a special input script where each
workflow node is described by a Condor job description file. DAGMan ma-
nages the control flow dependencies between jobs and their input and output
data at a higher level of abstraction than the Condor scheduler. The con-
crete scheduling is based on Condor specific opportunistic techniques such
as resource matchmaking and cycle stealing with no support for advanced
optimisation heuristics.

274 8 Related Work

Pegasus [53] system, developed at the University of Southern Califor-
nia, advocates artificial intelligence-based planning techniques [28] to ap-
proach the workflow scheduling problem. Workflows are based on the Condor
DAGMan model and, therefore, restricted to DAGs. Pegasus reduces large
workflows to more manageable quantities based on the Chimera virtual data
availability model [81]. The workflow activities are scheduled randomly to
the Grid sites where the virtual data is available. Additional research results
report simulation-based scheduling using a weighted min-min heuristic.

AppLeS Parameter Sweep Template (APST) [36] uses application level
scheduling techniques developed by the Application Level Scheduling (App-
LeS) [22] project at the University of California for efficient deployment of
parameter study applications on the Grid. The throughput optimisation algo-
rithms addressed comprise min-min, max-min, and suffrage heuristics [125].

Grid Application Development Software (GrADS) project [50] continues
the tradition of the AppLeS effort on developing techniques for scheduling
MPI, iterative, and master-slave applications on the Grid, with recent fo-
cus on DAG-based workflows [42]. Unlike in ZENTURIO, workflow loops
are not addressed. Scheduling is approached through max-min, min-min, and
suffrage heuristics which were originally developed for throughput schedu-
ling of independent tasks. Additionally, the project investigated the use of
a simulated annealing algorithm for static scheduling of ScaLAPACK MPI
applications [27, 196].

Nimrod/O [4] is a variation of the Nimrod parameter study tool that uses
a broad range of heuristics for output parameter optimisations. Performance-
oriented optimisations are not addressed and genetic algorithms are not used.

Nimrod/G [3] is a Grid aware version of Nimrod enhanced with ad-hoc
techniques for throughput scheduling of parameter studies on multiple Grid
sites based on a user-defined budget and deadline functionality. The Nim-
rod/G scheduler is based on a computational economy model called GRACE
(GRid Architecture for Computational Economy) and does not target general
NP-complete optimisations.

The problem of scheduling task graphs through genetic algorithms has
been addressed in the past [117], however, restricted to homogeneous parallel
computers with a rather limited number of processors.

In [162], a hierarchical genetic algorithm was successfully applied for au-
tomatic optimisation of HPF array distributions within Fortran 90 compi-
lers. The definition of the objective function is based on training set pre-
measurements.

8.5 Tool Integration

The Annai [40] tool environment was the outcome of the collaboration bet-
ween the Swiss Centre for Scientific Computing and NEC in developing an
integrated parallel application engineering environment for parallel proces-
sing. Annai consisted of an extended HPF compiler, a parallel performance

8.5 Tool Integration 275

monitor and analyser, and a parallel debugger for distributed memory parallel
processors. While integration of different tools was achieved by the specifica-
tion of well-defined interfaces and communication protocols, further extensi-
ons were only possible after rethinking, redesigning, and rebuilding the entire
system.

Portable Parallel Distributed Debugger (p2d2) [100] developed by NASA
Ames Research Center promoted the idea of client-server tools, with plat-
form dependencies confined to the server back-end, and the client front-end
implemented in a portable manner. The debugger defined a server interface
that should be provided by any vendor which allows third party front-end
clients be implemented in a platform independent manner.

The Tool-Set [191] integrated tool environment and the Online Monito-
ring Interface Specification (OMIS) [124], both developed at the Technical
University of Munich, built on the ideas of p2d2 affirming that a monitoring
system should separate the application processes from the tools, thereby en-
capsulating the platform dependencies. OMIS defines an open interface for
connecting runtime development tools in a distributed environment with tool
interoperability as a major requirement. Neither p2d2 nor OMIS, however,
built their ideas on top of modern Grid technologies such as Web services.

DDBG/PDBG/TDBG [44] developed at the University Nova of Lisbon is
a suite of distributed debuggers integrated into a wider scope problem solving
environment. DDBG has been interfaced to a graphical parallel programming
tool for high level debugging of parallel programs, and a static analysis and
testing tool for controlled execution of previously generated testing scenarios.

Parallel tools consortium (PTools) coordinated projects in the late 1990s
with the purpose to define, develop, and promote parallel tools for scalable
portable applications. These tools provide flexible open interfaces which faci-
litate their integration and reuse, however, the possibility of integration and
interoperability was not addressed.

High Performance Debugging Forum (HPDF) [118] defined within the
PTools umbrella a useful and appropriate set of standards relevant to debug-
ging tool development for high performance computers that influenced some
of our design decisions.

Dyninst [31] library developed at the University of Maryland exports a
platform independent interface to the dynamic instrumentation technology
provided by the Paradyn project for portable dynamic instrumentation of
single processes.

Dynamic Probe Class Library (DPCL) [99] is an object-based C++ class
library developed by IBM that provides the tool developers with an advanced
infrastructure for building parallel and serial tools based on the dynamic in-
strumentation technology. DPCL allows the tool researchers focus on develo-
ping tools rather than deal with compiler details or distributed infrastructure
development.

276 8 Related Work

8.5.1 Scientific Workflows

DAGMan [1] is a centralised scheduler and enactment engine for Condor jobs
organised in a DAG. The workflow model supported by DAGMan is rather
primitive and misses important control flow constructs such as conditional
activities and loops (both sequential and parallel). Fault tolerance is addres-
sed through a rescue DAG mechanism, automatically generated whenever an
activity instance fails. Our checkpointing mechanism, in contrast, addresses
also the case when the Enactment Engine itself crashes.

Pegasus [53] uses DAGMan (limited therefore to DAG-based workflows)
as enactment engine, enhanced with data derivation techniques that simplify
the workflow at runtime based on data availability. Pegasus provides a layered
partitioning scheduling approach which we demonstrated to be problematic
for strongly imbalanced workflows. In contrast, our Enactment Engine per-
forms workflow partitioning after the scheduling phase which has significant
performance benefits due to decentralised coordination, as opposed to the
centralised approach taken by DAGMan. In [109], several task and workflow-
based scheduling approaches were compared based on simulation rather than
real executions as in our experiments. The conclusion of this simulation was
that workflow-based approaches perform better for data intensive cases while
task-based approaches are suited for compute intensive workflows. In this
monograph we presented a new mechanism called VSEE suited for compute
intensive workflows with large amounts of small data dependencies which
was not considered by Pegasus. [109] also studies the impact of uncertainty
to the overall workflow schedule but does not propose any runtime steering
techniques as we did.

Triana [175] developed at the University of Cardiff uses the Grid Appli-
cation Toolkit [161] interface to the Grid through Web services, but misses
compact mechanisms for expressing large parallel loops. Scheduling is done
just-in-time with no optimisations or performance estimates. Triana has a
distributed engine to partition sections of a workflow to remote machines.
The user has to understand the Grid and the workflow execution, while our
approach partitions and distributes the workflow automatically.

Imperial College E-science Networked Infrastructure (ICENI) [127] sup-
ports low level enactment engine specific constructs such as start and stop in
the workflow definition. Scheduling is done using random, best of n-random,
simulated annealing, and game theory algorithms.

Taverna’s [136] workflow language called SCUFL is also limited to DAGs.
Scheduling is done just-in-time, while fault tolerance is addressed at activity
level through retry and alternate resource mechanisms only. Taverna focuses
on data integration, fault tolerance, and user friendly interfaces for for bio-
informatics, while our approach targets generic scientific workflows that are
not designed for specific domains.

GridAnt [10] centralised workflow engine, developed at the Argonne Na-
tional Laboratory, extends the Ant [180] commodity tool for controlling the

8.5 Tool Integration 277

application composition process in Java using low level constructs such as
grid-copy and grid-execute. Scheduling is done manually and fault tole-
rance is not addressed.

GrADS project [42] restricts workflows to a DAG model and does not pro-
pose any workflow model or language. The architecture is centralised and does
not consider any service-oriented Grid technology. Similar to our approach,
performance prediction models are derived from historical executions based
on processor operations and memory access patterns. The GrADS project
introduced for the first time the term performance contract [185] and applied
it in the context of single site Grid applications, rather than workflows as we
did.

UNICORE [65] provides graphical composition of DG-based workflows,
comprising file transfers and binary or script file executions (including com-
pilation and link tasks). The workflow jobs can be organised in groups. The
UNICORE workflow model does not support parallel loop constructs. Sche-
duling is user-directed (manual) and fault tolerance is not addressed.

Gridbus [34] support to workflow management at the University of Mel-
bourne provides an XML-based workflow language oriented towards QoS re-
quirements and parametrisation, in particular Grid economy mechanisms.
Fault tolerance is limited to activity level using replication.

GridFlow [35] comprises a user portal and a set of services for global Grid
workflow management and local Grid sub-workflow scheduling. Simulation,
execution, and monitoring functionalities are provided at the global Grid level
on top of an existing agent-based Grid resource management system. At each
local Grid, sub-workflow scheduling and conflict management are processed
on top of an existing performance prediction-based task scheduling system. A
fuzzy timing technique is applied for workflow management in a cross-domain
and highly dynamic Grid environment.

Our approach to scientific workflows differs in several aspects from the
above mentioned related projects. Our model (appropriately supported by
an implementation language [70]) allows scalable specification of large num-
bers of parallel activities typical to scientific workflows, by using compact
parallel loops. The Enactment Engine effectively handles large data collecti-
ons generated by large scale control and data flow constructs. Additionally, we
provide two levels of workflow checkpointing for restoring and resuming the
execution in case of failures of the engine itself. Moreover, none of these pro-
jects provide support for scientific workflows with dynamic control and data
flow structure (statically unknown before the execution) that may change at
runtime based on the computations performed by certain activities.

9

Conclusions

9.1 Contributions

In this section we conclude this research monograph by summarising our
main contributions in the areas of experiment management, scheduling, tool
integration, and scientific workflow management in Grid computing.

9.1.1 Experiment Specification

We designed in Chapter 3 a new directive-based language called ZEN [139,
143] to specify a large number of experiments for performance, parameter, or
optimisation studies in a compact and friendly manner. We defined so called
ZEN directives as program comments that annotate arbitrary application
files and, therefore, do not change the semantics of the code, as they are
ignored by compilers or interpreters which are not aware of their semantics.

We defined four types of directives as part of the ZEN experiment speci-
fication language:

1. Substitute directives allow flexible specification of arbitrary application
parameters through string substitution semantics. The ZEN substitute
directives are useful for defining application parameters beyond ordinary
program variables, like (HPF) array distributions, (OpenMP) loop sche-
duling strategies, data locations, compiler options, target execution sites,
software libraries, and so on;

2. Assignment directives are used to parameterise program variables in ca-
ses when the substitute directives are inconvenient or impossible to be
used. A typical case for using the assignment directive is the parame-
trisation of variables with short names (e.g. N) for which the substitute
directive would also replace other equal but invalid string occurrences
(e.g. in language specific keywords like END);

3. Constraint directives are used to restrict the number of experiments to a
meaningful subset;

R. Prodan and T. Fahringer: Grid Computing, LNCS 4340, pp. 279–284, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

280 9 Conclusions

4. Performance directives are used to the specify high level performance me-
trics (i.e. OpenMP, MPI, and HPF specific) to be measured and compu-
ted for fine grained code regions, without altering the application source
code with instrumentation probes.

The scope of the ZEN directives can be global to the entire enclosing appli-
cation file or restricted to arbitrary code regions.

Our approach to specify parameters through ZEN directive-based lan-
guage presents the following advantages over existing ad-hoc scripting [5] or
graphical [197] parameter specification alternatives:

1. it does not require special preparation of the application which is an
essential requirement for a tool to achieve general acceptance;

2. it does not restrict parametrisation to global variables to be exported
outside the scope of the source code;

3. it can parameterise arbitrary local variables with arbitrary names (inclu-
ding homonyms);

4. it can parameterise arbitrary application characteristics beyond those en-
visaged during the design phase (e.g. parallelization options like array and
loop distributions, software libraries, problem and machine sizes, target
execution Grid sites, communication networks, or compilation options);

5. it can be applied at arbitrary fine grained scopes within the application
source files.

We illustrated in Chapter 4 a variety of real-world scenarios [138, 148] how
a large set (e.g. thousands) of experiments can be expressed through a small
number (e.g. under 10) of short (e.g. under 50 characters) ZEN directives.

9.1.2 Experiment Management

We designed in Chapter 4 a general purpose experiment management tool
called ZENTURIO [140, 144] for multi-experimental performance and para-
meter studies of parallel and Grid applications. ZENTURIO employs the
ZEN directive-based language to define wide value ranges for arbitrary appli-
cation parameters, including program variables, file names, compiler options,
target Grid sites, machine sizes, scheduling strategies, or data distributions,
without altering the source code or requiring any application modification. A
lightweight graphical User Portal easy to be installed and managed by non-
expert users allows them to create, control, and monitor the experiments as
they progress from arbitrary Grid locations (i.e. client sites, local laptops).
After the manual annotation of the application with ZEN directives, ZENTU-
RIO automatically generates and conducts the complete set of experiments.
Upon completion of each experiment, the performance and output data are
automatically stored into a relational Experiment Data Repository for post-
mortem analysis. We designed an advanced Application Data Visualiser to

9.1 Contributions 281

automatically query the repository and visualise the variation of any per-
formance metric or output parameter as a function of arbitrary application
parameters across multiple experiments (i.e. ZEN variables).

The multi-experimental performance analysis automatically performed
by ZENTURIO is a unique contributing research feature. The general ex-
periment specification approach taken by the ZEN language allowed us to
support parameter studies within ZENTURIO with minimum extra design
and implementation effort. We demonstrated the practical usefulness of ZEN-
TURIO as a performance and parameter study tool on a variety real-world
parallel applications [148]. Additionally, we installed ZENTURIO at the Paul
Scherrer Institute (Swiss Federal Institute of Technology) for benchmarking
three-dimensional FFT kernels as part of an international cooperation [138].

9.1.3 Optimisation

In Chapter 6 we extended the ZENTURIO experiment management tool with
a generic optimisation framework [145] that employs general purpose meta-
heuristics to reduce the parameter space defined through ZEN directives while
searching for experiments that optimise a certain output parameter or perfor-
mance metric. We designed the framework modularly so that it can be easily
instantiated for a wide variety of performance and parameter optimisation
problems by simply supplying the objective function to be maximised, for
example by means of ZEN performance directives. The platform dependency
of the objective function is hidden under problem independent interface. We
illustrated a first generic encoding of the optimisation search engine using a
genetic algorithm.

As case studies, we illustrated the following framework instantiations:

1. Static scheduling of single workflow applications on the Grid using gene-
tic algorithms. We have successfully applied this feature on a real-world
material science workflow application;

2. Throughput scheduling of large sets of independent tasks on the Grid
using genetic algorithms;

3. Optimisation of parallel applications through repeated experimentation
by defining parallelization parameters as ZEN variables and the objective
function as a ZEN performance directive. In this context, we formally
presented a novel concrete instantiation of the framework for optimising
HPF applications on heterogeneous Grid resources using irregular array
distributions.

9.1.4 Tool Integration Design

We designed the ZENTURIO experiment management tool within a broad
tool integration framework for interoperability compliant with OGSA that we
presented in detail in Chapter 5. Our architecture brings the following design
contributions [110, 111]:

282 9 Conclusions

1. We designed a layered architecture that isolates the platform dependen-
cies under a portable interface that significantly increases the tool availa-
bility and portability. The recommendation that each vendor provide the
required set of platform dependent sensors (and eventual services) using
a platform independent interface significantly increases the tool availa-
bility and, therefore, the acceptance of new computing platforms in the
user community;

2. We carefully developed our light-weight and low level senors such that
they comprise and isolate all hardware and operating system dependencies
under a portable interface;

3. We designed and implemented a broad set of high level services and sen-
sors that support and ease the development of portable tools:
a) A Process Manager sensor encapsulates the platform dependencies for

manipulation and dynamic runtime instrumentation of single proces-
ses;

b) Experiment Generator service encapsulates the platform dependen-
cies (including proprietary software libraries) of the Vienna Fortran
Compiler on which we base the implementation of ZEN performance
directives;

c) Experiment Executor is a general purpose service for remote execu-
tion and management of experiments on the Grid which we interfaced
to a variety of local resource management systems [29, 102, 123, 172,
201];

d) Dynamic Instrumentor service exports a platform independent inter-
face for low level process management, on-the-fly runtime dynamic
instrumentation, and online performance data collection;

e) Scheduler service employs advanced heuristics like genetic or HEFT
algorithms for optimised mappings of complex scientific workflows
onto heterogeneous Grid resources;

f) Enactment Engine service supports scalable execution of scientific
workflows in dynamic Grid environments using advanced partitio-
ning, fault tolerance, and overhead analysis techniques.

4. We carefully designed the services to support concurrent access from
multiple clients which enables end-user tools interoperate through the
common use of services;

5. We designed and promoted light-weight clients or user tools which are
easy to be installed and managed by non-expert users. The client tool
functionality is built through the concurrent use of the underlying high
level Grid services;

6. We classified several levels of tool interoperability and presented various
concrete scenarios how concurrent use of online tools, comprising pro-
filers, debuggers, code coveragers, memory access tools, or tracers, can
improve the application engineering process [111, 150]. In addition, we de-

9.1 Contributions 283

signed a relational Experiment Data Repository that enables postmortem
performance and output data sharing across multiple users and tools.

9.1.5 Web Services for the Grid

We contributed with early techniques regarding the use of standard Web
services technologies for modeling stateful Grid resources which anticipated
several standardisation efforts [142, 144]:

1. We designed a general purpose factory service for creating service instan-
ces on remote Grid sites;

2. We designed a general purpose light-weight registry service for high
throughput service discovery based on white, yellow, and green pages
lookup operations;

3. We defined the WSDL compatibility operation which defines whether two
Grid services implement the same functionality required by green pages
lookup operations;

4. We redesigned the UDDI best practices standard for publishing and ac-
commodating transient Grid services implementations rather than per-
sistent Web services instances;

5. We implemented operations for manipulating the service state and lifecy-
cle based on the non-standard facilities provided by existing Web services
hosting environments;

6. We designed an event framework based on existing Web services techno-
logies that preceded the OASIS WS-Notification [90] standard;

7. We continuously monitored the emergence of new Grid standards and
comparatively evaluated against the own infrastructure which gave useful
feedback to the community [141, 144].

9.1.6 Scientific Workflows

In Chapter 7 we gave a timely contribution to the Grid research community in
the area of scientific workflow modeling, scheduling, execution, and analysis:

1. We introduced a formal workflow model for specifying scientific workflow
applications at a high level of abstraction that shields the user from low
level Grid technology details like explicit job submission or file transfer.
Our workflow specification is generic (see [70] for an implementation) and
supports advanced constructs that we identified as being characteristic
to scientific workflows in Grid environments:
a) a hierarchical specification allows the user to effectively split and focus

the workflow definition at various levels of abstraction;
b) sequential loops transform DAGs into more complex DG-based work-

flows which allow the specification of iterative recursive computations
with dynamic convergence criteria (and therefore statically unknown

284 9 Conclusions

number of loop iterations) that is a common characteristic of scientific
applications;

c) parallel loops allow the specification of large scale workflows consis-
ting of hundreds to thousands of atomic activities in a compact and
intuitive manner for the end-user;

d) so called cardinality ports allow scientific workflows to dynamically
change their shape during execution depending on the intermediate
results of the runtime computation;

e) conditional activities implement if and switch-like statements that
change the workflow control flow depending on the runtime results of
the computation;

f) advanced collective communication patterns like broadcast, scatter,
gather, or parallel broadcast allow convenient specification of data
flow between a large number of activities;

2. We addressed various techniques for scheduling scientific workflows in
heterogeneous Grid environments, in particular [189, 190]:
a) a workflow conversion algorithm for transforming complex hierar-

chical scientific workflows into flat DAGs, which are appropriate for
optimised mapping on the Grid using classical scheduling heuristics;

b) a comparative analysis of various optimisation heuristics, like genetic,
myopic (or opportunistic just-in-time), HEFT, and layered partitio-
ning algorithms, applied on real-world scientific workflows [160, 178]
in a real Grid environment [2];

3. We proposed advanced mechanisms for executing scientific workflows in
dynamic Grid environments, more precisely [59, 60, 61]:
a) a partitioning algorithm and a distributed Enactment Engine archi-

tecture for decentralised workflow execution across various slave en-
gines that offer reduced coordination overhead and improved fault
tolerance;

b) various workflow runtime optimisation techniques, including coales-
cing of several activities and compressing and archiving of multiple
data dependencies;

c) a new method called Virtual Single Execution Environment (VSEE)
that optimises the execution of peculiar scientific workflows contai-
ning a very large number of small sized data dependencies;

d) a systematic workflow steering algorithm that reacts upon well-defined
rescheduling events and adjusts workflow schedules that no longer fol-
low the original optimised mapping computed by the Scheduler;

e) various fault tolerance techniques including two checkpointing mecha-
nisms;

4. We proposed a systematic overhead analysis approach to understand the
sources of bottlenecks that slow down the distributed execution of scien-
tific workflows based on a well-defined hierarchical overhead classifica-
tion [133].

10

Appendix

10.1 Notations

Symbol Description
∑n

i=1 ei e1 + e2 + . . . + en

Πn
i=1ei e1 · e2 · . . . · en

O(mn) Algorithm complexity of mn

avg{S} Average element from the set S of real numbers
F Average population fitness

B(M1,M2) Bandwidth between sites M1 and M2

D-portcard Cardinality input port
|S| Cardinality of set S

CKPT(W , t) Checkpoint of workflow W at time instance t
CR Code region
C2

n Combinations of n elements taken two at a time
CA Computational activity
Nif Conditional activity
C Constant

(N1,N2) Control flow dependency from activity N1 to activity N2

≺c Control flow precedence relation
× Cross product
⊕ Crossover operator

(N1,N2,D-port) Data flow dependency from activity N1 to activity N2

≺d Data flow precedence relation
D-port Data port

ωN Data port evaluation function of activity N
DA Data transfer activity
∅ Empty set
T Execution time

TM
N Execution time of activity N scheduled on site M
∃ Exists
ε Experiment

R. Prodan and T. Fahringer: Grid Computing, LNCS 4340, pp. 285–295, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

286 10 Appendix

Symbol Description
false False boolean value
flops Floating point operations
∀ For all

{x} Fractional part of real number x ∈ �
→ Function mapping
G Gantt chart

GRID Grid
M Grid site
⇐⇒ If and only if equivalence
=⇒ Implication
Iz Index domain of ZEN variable z
ϑ−1 Index function

IN-portsN Input data ports of activity N
IN-portsW Input data ports of workflow W

�x� Integer part of real number x ∈ �
L(M1,M2) Latency between sites M1 and M2

∧ Logical conjunction
∨ Logical disjunction
¬ Logical negation

max{S} Maximum element from the set S of real numbers
min{S} Minimum element from the set S of real numbers

� Mutation operator
ν(z) Name of ZEN variable z
F Objective or fitness function
ε Output data

OUT-portsN Output data ports of activity N
OUT-portsW Output data ports of workflow W

Zo Output file
OP Output parameter

OP(A) Set of output parameters of ZEN application A
Npar Parallel loop activity

Parent(N) Parent of activity N
Parentn(N) Parent of rank n of activity N

fN Performance contract elapse factor of task N
PC(N,SN, t) Performance contract of activity N at time instance t

δ Performance data
δM(M,AI) Perf. data for measurement M of application AI on site M

M Performance measurement
M(m, CR) Performance measurement of metric m for code region CR

M(d) Performance measurements defined by directive d
M(A) Performance measurements defined by ZEN application A
POP Population of individuals
P(S) Power set of S

10.1 Notations 287

Symbol Description
pred(N) Predecessor of activity N
predp(N) Predecessor of rank p of activity N

T Probabilistic predicted time
Pr Probability

Pr(N) Probability of execution of activity N
PROC Processor
ΠP S Projection operator from space S to subspace P
RN Rank of activity N
SN Schedule of activity N
SA Schedule of ZEN application A
SW Schedule of workflow W

scope(d) Scope of ZEN directive d
NodesCA Set of CA activities
NodesDA Set of DA activities

\ Set difference
[a..b] Set of integer numbers from a to b⋂

Set intersection⋂n
i=1 Si S1 ∩ S2 ∩ . . . ∩ Sn

∈ Set membership
| Set restriction

C-edges Set of control flow dependencies
D-edges Set of data flow dependencies
� Set of natural numbers
�

∗ Set of non-zero natural numbers
�+ Set of positive real numbers
�

∗
+ Set of positive non-zero real numbers
� Set of real numbers

[a, b] Set of real numbers from a to b
Nodes Set of workflow activities⋃

Set union⋃n
i=1 Si S1 ∪ S2 ∪ . . . ∪ Sn

Nloop Sequential loop activity
v Speed

start(N) Start timestamp of activity N
state(N, t) State of activity N at time instance t

⊂ Subset of
⊆ Subset of or equal

succ(N) Successor of activity N
succp(N) Successor of rank p of activity N
end(N) Termination timestamp of task N

t Timestamp
≺ Totally ordered set precedence

true True boolean value

288 10 Appendix

Symbol Description
⊗ Tuple composition operator

τ(z) Type of ZEN variable z
ϑ Value function
Vz Value set of ZEN variable z
VA Value set of ZEN application A
w Weight
W Work
W Workflow
N Workflow activity

Wsub Workflow composite activity (sub-workflow)
ρ Workflow path
A ZEN application
AI ZEN application instance
γ ZEN constraint function
d ZEN directive
e ZEN element
Z ZEN file
ZI ZEN file instance
ε ZEN set evaluation function
z ZEN variable

10.2 Code Regions

Mnemonic Description
CR P Main program
CR A Arbitrary code region
CR L All loops
CR U Outermost loop
CR B Branch code region
CR W IO write operation
CR R IO read operation
CR O IO open operation
CR C IO close operation
CR Y Function or subroutine body
CR S Subroutine call
CR F Function calls

CR COMALL All common code regions
CR I HPF INDEPENDENT loop
CR D HPF work distribution
CR N HPF inspector
CR X HPF executor
CR G HPF gather

10.3 Abbreviations 289

Mnemonic Description
CR T HPF scatter

CR HPFALL All HPF code regions
CR OMPPA OMP PARALLEL
CR OMPPD OMP PARALLEL DO
CR OMPPS OMP PARALLEL SECTIONS
CR OMPPW OMP PARALLEL WORKSHARE
CR OMPDO OMP DO
CR OMPSE OMP SECTIONS
CR OMPWO OMP WORKSHARE
CR OMPSI OMP SINGLE
CR OMPMA OMP MASTER
CR OMPBA OMP BARRIER
CR OMPCR OMP CRITICAL
CR OMPAT OMP ATOMIC
CR OMPOR OMP ORDERED
CR OMPFL OMP FLUSH
CR OMPSE OMP SECTION
CR OMPICR OMP CRITICAL
CR OMPIOR OMP ORDERED
CR OMPISE OMP SINGLE
CR OMPBPA OMP PARALLEL directive
CR OMPEPA OMP END PARALLEL directive
CR OMPIDO OMP DO body
CR OMPLO OpenMP locks
CR OMPALL All OpenMP code regions

CR MPISTARTUP MPI Init and MPI Finalize
CR MPIP2P MPI P2P communication
CR MPISEND MPI send
CR MPIRECV MPI receive
CR MPICOL MPI collective communication
CR MPITP MPI data type conversions
CR MPIBA MPI barrier
CR MPIALL All MPI code regions
CR OTHERREP Replicated code regions
CR OTHERSEQ Sequential code regions

10.3 Abbreviations

Abbreviation Description
3DPIC Three-Dimensional Particle-In-Cell
AGWL Abstract Grid Workflow Language
AMD Advanced Micro Devices, Inc.

290 10 Appendix

Abbreviation Description
API Application Programming Interface

ASCII American Standard Code for Information Interchange
ccNUMA Cache Coherent Non-Uniform Memory Access

CoG Commodity Grid kit
CORBA Common Object Resource Broker Architecture
COW Clusters of Workstations
CPU Central Processing Unit
DAG Directed Acyclic Graph
DCE Distributed Computing Environment

DCOM Distributed Component Object Model
DHCP Dynamic Host Configuration Protocol

DG Directed Graph
DUROC Dynamically-Updated Request Online Coallocator

FFT Fast Fourier Transform
FFTW Fastest Fourier Transform in the West
FIFO First In First Out
flops Floating point operations
FTP File Transfer Protocol
GASS Global Access to Secondary Storage
GHz Gigahertz
GIIS Grid Index Information Service

GRAM Grid Resource Allocation Manager
GRIS Grid Resource Information Service
GSI Grid Security Infrastructure
GT Globus toolkit
GT2 Globus toolkit version 2
GT3 Globus toolkit version 3

HEFT Heterogeneous Earliest Finish Time
HPF High Performance Fortran

HTTP Hyper Text Transfer Protocol
Hz Hertz

IBM International Business Machines Corporation
IIOP Internet Inter-Orb Protocol
IO Input-Output
IP Internet Protocol

J2EE Java 2 Enterprise Edition
JAXM Java API for XML Messaging

JAX-RPC Java API for XML Remote Procedure Call
JAX-WS Java API for XML Web Services
JDBC Java Database Connectivity
JRMP Java Remote Method Protocol
LAM Local Area Multicomputer

LAPW Linearised Augmented Plane Wave

10.3 Abbreviations 291

Abbreviation Description
MDS Monitoring and Discovery Service

MIMD Multiple Instructions Multiple Data
MPI Message Passing Interface

MPICH MPI Chameleon
MPMD Multiple Program Multiple Data
MPP Massively Parallel Processors
MQ Message Queue
N Notification

NFS Network File System
NOW Network of Workstations
NP Non-deterministic Polynomial time

NUMA Non-Uniform Memory Access
NWS Network Weather Service
OASIS Organisation for the Advancement of Structured Information Standards

OGSA Open Grid Services Architecture
OGSI Open Grid Services Infrastructure

OpenMP Open Multiprocessing
ORB Object Request Broker

ORPC Object Remote Procedure Call
PBS Portable Batch System
PKI Public Key Infrastructure
PS Publish-Subscribe
QR Query-Response
RMI Remote Method Invocation
RPC Remote Procedure Call
RSL Resource Specification Language

(µ)sec. (micro-) Second
SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data
SMP Symmetric Multiprocessor

SMTP Simple Mail Transfer Protocol
SOA Service-oriented Architecture

SOAP Simple Object Access Protocol
SPMD Single Program Multiple Data
SQL Structured Query Language
ssh Secure Shell
SSL Secure Socket Layer
TCP Transmission Control Protocol
TLB Translation Lookaside Buffer
TLS Transport Layer Security

UDDI Universal Description, Discovery and Integration
UMA Uniform Memory Access
UML Unified Modeling Language

292 10 Appendix

Abbreviation Description
URL Uniform Resource Locator
VSEE Virtual Single Execution Environment
WASP Web Application and Services Platform
WSDL Web Service Description Language
WSIF Web Services Invocation Framework
WSIL Web Services Inspection Language
WSRF Web Services Resource Framework
WWW World Wide Web
XML eXtensive Markup Language

10.4 Performance Metrics

Mnemonic Date Unit Description
Type

WTIME double µsec. Wall-clock time
UTIME double µsec. User CPU time
STIME double µsec. System CPU time
CTIME double µsec. CPU Time (user + system)
NCALLS int64 counter Number of calls
NSUBS int64 counter Number of code region calls
MAJT int64 counter Page faults requiring physical IO
MINT int64 counter Page faults not requiring physical IO
NSWAP int64 counter Number of swaps
L1 DCM int64 counter Level data cache misses
L1 ICM int64 counter Level 1 instruction cache misses
L2 DCM int64 counter Level 2 data cache misses
L2 ICM int64 counter Level 2 instruction cache misses
L3 DCM int64 counter Level 3 data cache misses
L3 ICM int64 counter Level 3 instruction cache misses
L1 TCM int64 counter Level 1 cache misses
L2 TCM int64 counter Level 2 cache misses
L3 TCM int64 counter Level 3 cache misses
CA SNP int64 counter Requests for a snoop
CA SHR int64 counter Exclusive access to shared cache line
CA CLN int64 counter Exclusive access to clean cache line
CA INV int64 counter Cache line invalidation
CA ITV int64 counter Cache line intervention
L3 LDM int64 counter Level 3 load misses
L3 STM int64 counter Level 3 store misses
BRU IDL int64 counter Cycles branch units are idle
FXU IDL int64 counter Cycles integer units are idle
FPU IDL int64 counter Cycles floating point units are idle
LSU IDL int64 counter Cycles load/store units are idle
TLB DM int64 counter Data TLB misses
TLB IM int64 counter Instruction TLB misses

10.4 Performance Metrics 293

Mnemonic Date Unit Description
Type

TLB TL int64 counter Total TLB misses
L1 LDM int64 counter Level 1 load misses
L1 STM int64 counter Level 1 store misses
L2 LDM int64 counter Level 2 load misses
L2 STM int64 counter Level 2 store misses
BTAC M int64 counter Branch target address cache misses
PRF DM int64 counter Data prefetch cache misses
L3 DCH int64 counter Level 3 data cache hits
TLB SD int64 counter TLB shootdowns
CSR FAL int64 counter Failed store conditional instructions
CSR SUC int64 counter Successful store conditional instructions
CSR TOT int64 counter Total store conditional instructions
MEM SCY int64 counter Cycles stalled waiting for memory accesses
MEM RCY int64 counter Cycles stalled waiting for memory reads
MEM WCY int64 counter Cycles stalled waiting for memory writes
STL ICY int64 counter Cycles with no instruction issued
FUL ICY int64 counter Cycles with maximum instruction issued
STL CCY int64 counter Cycles with no instructions completed
FUL CCY int64 counter Cycles with maximum instructions completed
HW INT int64 counter Hardware interrupts
BR UCN int64 counter Unconditional branch instructions
BR CN int64 counter Conditional branch instructions
BR TKN int64 counter Conditional branch instructions taken
BR NTK int64 counter Conditional branch instructions not taken
BR MSP int64 counter Conditional branch instructions mispredicted
BR PRC int64 counter Conditional branch instructions predicted
FMA INS int64 counter FMA instructions completed
TOT IIS int64 counter Instructions issued
TOT INS int64 counter Instructions completed
INT INS int64 counter Integer instructions
FP INS int64 counter Floating point instructions
LD INS int64 counter Load instructions
SR INS int64 counter Store instructions
BR INS int64 counter Branch instructions
VEC INS int64 counter Vector/SIMD instructions
FLOPS int64 counter Floating point instructions per second
RES STL int64 counter Cycles stalled on any resource
FP STAL int64 counter Cycles stalled on floating point units
TOT CYC int64 counter Total cycles
IPS int64 counter Instructions per second

LST INS int64 counter Load/store instructions completed
SYC INS int64 counter Synchronisation instructions completed
L1 DCH int64 counter Level 1 data cache hits
L2 DCH int64 counter Level 2 data cache hits
L1 DCA int64 counter Level 1 data cache accesses
L2 DCA int64 counter Level 2 data cache accesses

294 10 Appendix

Mnemonic Date Unit Description
Type

L3 DCA int64 counter Level 3 data cache accesses
L1 DCR int64 counter Level 1 data cache reads
L2 DCR int64 counter Level 2 data cache reads
L3 DCR int64 counter Level 3 data cache reads
L1 DCW int64 counter Level 1 data cache writes
L2 DCW int64 counter Level 2 data cache writes
L3 DCW int64 counter Level 3 data cache writes
L1 ICH int64 counter Level 1 instruction cache hits
L2 ICH int64 counter Level 2 instruction cache hits
L3 ICH int64 counter Level 3 instruction cache hits
L1 ICA int64 counter Level 1 instruction cache accesses
L2 ICA int64 counter Level 2 instruction cache accesses
L3 ICA int64 counter Level 3 instruction cache accesses
L1 ICR int64 counter Level 1 instruction cache reads
L2 ICR int64 counter Level 2 instruction cache reads
L3 ICR int64 counter Level 3 instruction cache reads
L1 ICW int64 counter Level 1 instruction cache writes
L2 ICW int64 counter Level 2 instruction cache writes
L3 ICW int64 counter Level 3 instruction cache writes
L1 TCH int64 counter Level 1 total cache hits
L2 TCH int64 counter Level 2 total cache hits
L3 TCH int64 counter Level 3 total cache hits
L1 TCA int64 counter Level 1 total cache accesses
L2 TCA int64 counter Level 2 total cache accesses
L3 TCA int64 counter Level 3 total cache accesses
L1 TCR int64 counter Level 1 total cache reads
L2 TCR int64 counter Level 2 total cache reads
L3 TCR int64 counter Level 3 total cache reads
L1 TCW int64 counter Level 1 total cache writes
L2 TCW int64 counter Level 2 total cache writes
L3 TCW int64 counter Level 3 total cache writes
FML INS int64 counter Floating point multiply instructions
FAD INS int64 counter Floating point add instructions
FDV INS int64 counter Floating point divide instructions
FSQ INS int64 counter Floating point square root instructions
FNV INS int64 counter Floating point inverse instructions
ODATA double µsec. Data movement

ODATA L21 double µsec. Level two to level one cache misses
ODATA L23 double µsec. Level three to level two cache misses
ODATA SEND double µsec. Send data
ODATA RECV double µsec. Receive data
ODATA P2P double µsec. Point to point communication
ODATA COL double µsec. Collective communication
ODATA PUT double µsec. Put remote data
ODATA GET double µsec. Get remote data
ODATA FREAD double µsec. File system read

10.4 Performance Metrics 295

Mnemonic Date Unit Description
Type

ODATA FWRITE double µsec. File system write
ODATA FOTHER double µsec. Other file system operations

OSYNC double µsec. Synchronisation
OSYNC BAR double µsec. Barriers in single address space
OSYNC LOCK double µsec. Lock in single address space
OSYNC COND double µsec. Conditional variable in single address space
OSYNC MPBAR double µsec. Barriers in multiple address spaces
OSYNC DCS double µsec. Deferred communication synchronisation
OSYNC CRS double µsec. Collective RMA synchronisation
OSYNC RLO double µsec. RMA locks
OCTRP double µsec. Control of parallelism

OCTRP SCHED double µsec. Schedule
OCTRP INSP double µsec. Inspector
OCTRP EXEC double µsec. Executor
OCTRP FKJN double µsec. Fork / join threads
OCTRP IN double µsec. Initialise / finalise message passing
OCTRP SP double µsec. Spawn processes
OADD double µsec. Additional overhead

OADD ALGR double µsec. Overhead due to algorithm change
OADD COMP double µsec. Overhead due to compiler changes
OADD DTC double µsec. Overhead due to data type conversion
OADD PUI double µsec. Overhead of processing unit information
OLOPA double µsec. Overhead of loss parallelism

OLOPA UNPAR double µsec. Unparallelised code
OLOPA REPL double µsec. Replicated code
OLOPA PPAR double µsec. Partial parallelised code
OALL IDENT double µsec. Identified overhead
OALL UNID double µsec. Unidentified overhead

References

1. DAGMan: Directed acyclic graph manager.
http://www.cs.wisc.edu/condor/dagman/. Condor project, University of
Wisconsin-Madison.

2. The Austrian Grid Consortium. http://www.austriangrid.at.
3. D. Abramson, R. Buyya, and J. Giddy. A computational economy for Grid

computing and its implementation in the Nimrod-G resource broker. Future
Generation Computer Systems, 18(8):1061–1074, 2002.

4. D. Abramson, A. Lewis, T. Peachey, and C. Fletcher. An automatic design
optimization tool and its application to computational fluid dynamics. In
Supercomputing Conference. ACM Press and IEEE Computer Society Press,
2001.

5. D. Abramson, R. Sosic, R. Giddy, and B. Hall. Nimrod: a tool for performing
parameterised simulations using distributed workstations. In 4th Symposium
on High Performance Distributed Computing, pages 520–528. IEEE Computer
Society Press, 1995.

6. B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kessel-
man, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke. Data management
and transfer in high-performance computational Grid environments. Parallel
Computing, 28(5):749–771, 2002.

7. M. N. Alpdemir, A. Mukherjee, N. W. Paton, A. A. A. Fernandes, P. Watson,
K. Glover, C. Greenhalgh, T. M. Oinn, and H. J. Tipney. Contextualised
workflow execution in MyGrid. In European Grid Conference, volume 3470 of
Lecture Notes in Computer Science, pages 444–453. Springer Verlag, 2005.

8. G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In AFIPS Conference, pages 483–485, 1967.

9. K. Amin, M. Hategan, G. von Laszewski, and N. Zaluzec. Abstracting the
Grid. In 12th Euromicro Conference on Parallel Distributed and Network based
Processing. IEEE Computer Society Press, 2004.

10. K. Amin, M. Hategan, G. von Laszewski, N. Zaluzec, S. Hampton, and
A. Rossi. GridAnt: A client-controllable Grid workflow system. In Hawaii
International Conference on System Sciences. IEEE Computer Society Press,
2004.

11. Apache Software Foundation. Apache Axis. http://ws.apache.org/axis.

298 References

12. K. Ballinger, P. Brittenham, A. Malhotra, W. A. Nagy, and S. Pharies. Web
services inspection language (WS-Inspection) 1.0. Specification, IBM Corpo-
ration and Microsoft, 2001.
ftp://www6.software.ibm.com/software/developer/library/ws-wsilspec.pdf.

13. T. Banks. Web Services Resource Framework (WSRF). Specification primer
v1.2, Organization for the Advancement of Structured Information Standards
(OASIS), 2006.

14. A. Barak and O. La’adan. The MOSIX multicomputer operating system for
high performance cluster computing. Future Generation Computer Systems,
13(4–5):361–372, 1998.

15. D. Barbara, S. Mehrotra, and M. Rusinkiewicz. INCAS: a computation model
for dynamic workflows in autonomous distributed environments. Technical
report, Matsushita Information Technology Laboratory, 2 Research Way, 3rd
Floor, Princeton , N.J. 08540 USA, 1994.

16. L. Baresi and R. Heckel. Tutorial introduction to graph transformation: A
software engineering perspective. In 1st International Conference on Graph
Transformation, pages 402–429. Springer Verlag, 2002.

17. D. Barkai. Peer-To-Peer Computing: Technologies for Sharing and Collabora-
ting on the Net. Intel Press, 2002.

18. R. Bell, A. D. Malony, , and S. Shende. A portable, extensible, and scalable
tool for parallel performance profile analysis. In 9th International Europar
Conference, Lecture Notes in Computer Science. Springer Verlag, 2003.

19. M. Benantar. Introduction to the Public Key Infrastructure for the Internet.
P T R Prentice-Hall, Englewood Cliffs, NJ 07632, USA, 2002.

20. S. Benkner. HPF+: High Performance Fortran for advanced industrial appli-
cations. Lecture Notes in Computer Science, 1401, 1998.

21. S. Benkner. VFC: the vienna fortran compiler. Scientific Programming, IOS
Press, 7(1):67–81, 1999.

22. F. D. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-
level scheduling on distributed heterogeneous networks. In Supercomputing
Conference. IEEE Computer Society Press, 1996.

23. J. Berry. Assessing CPU utilization. Sys Admin: The Journal for UNIX
Systems Administrators, 7(5):57–60, 1998.

24. M. W. Berry, J. J. Dongarra, B. H. LaRose, and T. A. Letsche. PDS: a
performance database server. Scientific Programming, 3(2):147–156, 1994.

25. J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A
data movement and access service for wide area computing systems. In 6th
Workshop on Input/Output in Parallel and Distributed Systems, pages 78–88.
ACM Press, 1999.

26. D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. Furmanski, and G. Prem-
chandran. WebFlow – a visual programming paradigm for Web/Java based
coarse grain distributed computing. Concurrency: Practice and Experience,
9(6):555–577, 1997.

27. L. S. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Wha-
ley. ScaLAPACK: a linear algebra library for message-passing computers. In
Conference on Parallel Processing. Society for Industrial and Applied Mathe-
matics, 1997.

References 299

28. J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal, G. Mehta, and
K. Vahi. The role of planning in Grid computing. In 13th International
Conference on Automated Planning and Scheduling. AAAI Press, 2003.

29. B. Bode, D. M. Halstead, R. Kendall, Z. Lei, and D. Jackson. The portable
batch scheduler and the maui scheduler on linux clusters. In 4th Annual Show-
case and Conference (LINUX-00), pages 217–224. USENIX Association, 2000.

30. M. Bubak, W. Funika, B. Balís, and R. Wismüller. Performance measurement
support for MPI applications with PATOP. In Workshop on Applied Parallel
Computing, 2000.

31. B. Buck and J. K. Hollingsworth. An API for runtime code patching. High
Performance Computing Applications, 14(4):317–329, 2000.

32. D. Bunting, M. Chapman, O. Hurley, M. Little, J. Mischkinsky, E. Newcomer,
J. Webber, and K. Swenson. Web services context (WS-Context). Specifi-
cation, Arjuna Technologies Ltd., Fujitsu Limited, IONA Technologies Ltd.,
Oracle Corporation, and Sun Microsystems, Inc., 2003.

33. G. Burns, R. Daoud, and J. Vaigl. LAM: An open cluster environment for
MPI. In Supercomputing Conference, pages 379–386, 1994.

34. R. Buyya and S. Venugopal. The Gridbus toolkit for service oriented Grid and
utility computing: An overview and status report. In 1st International Work-
shop on Grid Economics and Business Models, pages 19–36. IEEE Computer
Society Press, 2004.

35. J. Cao, S. A. Jarvis, S. Saini!, and G. R. Nudd. GridFlow: workflow ma-
nagement for Grid computing. In 3rd International Symposium on Cluster
Computing and the Grid. IEEE Computer Sociery Press, 2003.

36. H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS parameter
sweep template: User-level middleware for the Grid. In Supercomputing Con-
ference, pages 75–76. ACM Press and IEEE Computer Society Press, 2000.

37. C. Catlett. Standards for Grid computing: Global Grid Forum. Journal of
Grid Computing, 1(1):3–7, 2003.

38. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (WSDL). Technical report, The World Wide Web
Consortium, March 2001. http://www.w3.org/TR/wsdl.

39. J. Clark and S. J. DeRose (Eds). “XML Path Language (XPath) Version 1.0”.
Recommendation, World Wide Web Consortium, 1999.
http://www.w3.org/TR/xpath.

40. C. Clémençon, A. Endo, J. Fritscher, A. Müller, R. Rühl, and B. J. N. Wylie.
Annai: An integrated parallel programming environment for multicomputers.
In Tools and Environments for Parallel and Distributed Systems, volume 2 of
Kluwer International Series in Software Engineering, chapter 2, pages 33–59.
Kluwer Academic Publishers, 1996.

41. J. Colgrave and K. Januszewski. Using WSDL in a UDDI registry. UDDI Tech-
nical Note, Organization for the Advancement of Structured Information Stan-
dards, 2004. http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-
spec-tc-tn-wsdl-v2.htm.

300 References

42. K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin,
M. Mazina, J. Mellor-Crummey, F. Berman, H. Casanova, A. Chien, H. Dail,
X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel, D. Reed,
W. Deng, C. Mendes, Z. Shi, A. YarKhan, and J. Dongarra. New Grid schedu-
ling and rescheduling methods in the GrADS project. In International Parallel
and Distributed Processing Symposium, Next Generation Software Workshop.
IEEE Computer Society Press, 2004.

43. M. Courson, A. Mink, G. Marcais, and B. Traverse. An automated benchmar-
king toolset. In 8th European High-Performance Computing and Networking
Conference, Lecture Notes in Computer Science, pages 497–506. Springer Ver-
lag, 2000.

44. J. C. Cunha, c. João Louren and T. A. ao. An experiment in tool integration:
the DDBG parallel and distributed debugger. Euromicro Journal of Systems
Architecture, 45(11):897–907, 1999.

45. F. Curbera, H. Dholakia, Y. G. Bea, J. K. Microsoft, F. Leymann, K. L. Sap,
D. R. Ibm, D. Smith, S. Systems, S. Thatte, I. T. Sap, and S. Weerawarana.
Business process execution language for web services. Specification version
1.1, BEA, IBM, Microsoft, and Siebel Systems, 2003.

46. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. Snel-
ling, and S. Tuecke. From Open Grid Services Infrastructure to WSResource
Framework: Refactoring and evolution. Version 1.1, Global Grid Forum and
Globus Alliance, 2004.
http://www.globus.org/wsrf/specs/ogsi to wsrf 1.0.pdf.

47. K. Czajkowski, I. Foster, N. Karonis, S. Martin, W. Smith, and S. Tuecke. A
resource management architecture for metacomputing systems. In Job Sche-
duling Strategies for Parallel Processing Workshop, volume 1459 of Lecture
Notes Computer Science, pages 62–82. Springer Verlag, 1998.

48. K. Czajkowski, I. Foster, and C. Kesselman. Co-allocation Services for Com-
putational Grids. In High Performance Distributed Computing Symposium.
IEEE Computer Society Press, 1999.

49. L. Dagum and R. Menon. OpenMP: An industry-standard API for shared-
memory programming. IEEE Computational Science and Engineering,
5(1):46–55, 1998.

50. H. Dail, O. Sievert, F. Berman, H. Casanova, A. YarKhan, S. Vadhiyar, J. Don-
garra, C. Liu, L. Yang, D. Angulo, and I. Foster. Scheduling in the Grid Ap-
plication Development Software Project. Resource Management in the Grid,
2003.

51. J. Davies, D. Fensel, and F. van Harmelen. Towards the Semantic Web:
Ontology-Driven Knowledge Management. John Wiley & Sons, 2003.

52. J. D. de St. Germain, A. Morris, S. G. Parker, A. D. Malony, and S. Shende.
Integrating performance analysis in the uintah software development cycle.
In 4th International Symposium on High Performance Computing, pages 190–
206, 2002.

53. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Black-
burn, A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping
abstract complex workflows onto Grid environments. Journal of Grid Com-
puting, 1(1):25–39, 2003.

References 301

54. L. P. Deutsch and J.-L. Gailly. RFC 1950: ZLIB compressed data format
specification version 3.3, 1996.

55. E. Dockner and H. Moritsch. Pricing constant maturity floaters with embee-
ded options using monte carlo simulation. Aurora technical report aur 99-04,
University of Vienna, 1999.

56. J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark: past,
present and future. Concurrency and Computation: Practice and Experience,
15(9):803–820, 2003.

57. J. J. Dongarra, H. W. Meuer, and E. Strohmaier. TOP500 supercomputer
sites. Supercomputer, 11(2–3):133–163, 1995.

58. R. Duan, T. Fahringer, R. Prodan, J. Qin, A. Villazon, and M. Wieczorek.
Real world workflow applications in the ASKALON Grid environment. In Eu-
ropean Grid Conference, Lecture Notes in Computer Science. Springer Verlag,
2005.

59. R. Duan, R. Prodan, and T. Fahringer. DEE: A distributed fault tolerant
workflow enactment engine for Grid computing. In International Conference
on High Performance Computing and Communications, volume 3726 of Lec-
ture Notes in Computer Science. Springer Verlag, 2005.

60. R. Duan, R. Prodan, and T. Fahringer. Data mining-based fault prediction
and detection on the Grid. In International Symposium on High Performance
Distributed Computing. IEEE Computer Society Press, 2006.

61. R. Duan, R. Prodan, and T. Fahringer. Run-time optimization for Grid work-
flow applications. In International Conference on Grid Computing. IEEE
Computer Society Press, 2006.

62. M. J. Duftler, N. K. Mukhi, A. Slominski, and S. Weerawarana. Web Services
Invocation Framework (WSIF). In Object-Oriented Web Services Workshop.
Object Oriented Programming Systems Languages and Architecture Confe-
rence, 2001.

63. M. Dumas and A. Hofstede. UML activity diagrams as a workflow specification
language. In 4th International Conference on UML, number 2185 in Lecture
Notes In Computer Science. Springer Verlag, 2001.

64. W. K. Edwards. Core Jini. P T R Prentice-Hall, 2001.
65. D. W. Erwin. UNICORE – a Grid computing environment. Concurrency and

Computation: Practice and Experience, 14(13-15):1395–1410, 2002.
66. S. E. Fagan. Tracing BSD system calls. Dr. Dobb’s Journal of Software Tools,

23(3):38, 40, 42–43, 105, 1998.
67. T. Fahringer. ASKALON visualization diagrams.

http://www.par.univie.ac.at/project/askalon/visualization/index.html.
68. T. Fahringer. Automatic Performance Prediction of Parallel Programs. Kluwer

Academic Publishers, 1996.
69. T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Sid-

diqui, H.-L. Truong, A. Villazon, and M. Wieczorek. ASKALON: a Grid
application development and computing environment. In 6th International
Workshop on Grid Computing. IEEE Computer Society Press, 2005.

70. T. Fahringer, J. Qin, and S. Hainzer. Specification of Grid workflow applicati-
ons with AGWL: An abstract Grid workflow language. In International Sym-
posium on Cluster Computing and the Grid. IEEE Computer Society Press,
2005.

302 References

71. K. Ferschweiler, M. Calzarossa, C. Pancake, D. Tessera, and D. Keon. A
community databank for performance tracefiles. In 8th Europen PVM/MPI
Conference, volume 2131 of Lecture Notes in Computer Science, pages 233–
240. Springer Verlag, 2001.

72. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tu-
ecke. A directory service for configuring high-performance distributed com-
putations. In 6th Symposium on High-Performance Distributed Computing,
pages 365–375. IEEE Computer Society Press, 1997.

73. M. Fleury and F. Reverbel. The JBoss extensible server. In International
Middleware Conference, volume 2672 of Lecture Notes in Computer Science,
pages 344–373. Springer Verlag, 2003.

74. M. J. Flynn. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, C-21(9):948–960, 1972.

75. I. Foster and N. T. Karonis. A Grid-enabled MPI: Message passing in hetero-
geneous distributed computing systems. In Supercomputing Conference. IEEE
Computer Society Press, 1998.

76. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115–128, 1997.

77. I. Foster and C. Kesselman. The Grid: Blueprint for a Future Computing
Infrastructure. Morgan Kaufmann, 2 edition, 2004.

78. I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for
computational Grids. In 5th Computer and Communications Security Confe-
rence, pages 83–92. ACM Press, 1998.

79. I. Foster, H. Kishimoto, and A. Savva. The open Grid services architecture.
Specification, version 1.0, Global Grid Forum, 2003.
https://forge.gridforum.org/projects/ogsa-wg.

80. I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogill. Remote I/O: Fast access to
distant storage. In 5th Workshop on I/O in Parallel and Distributed Systems,
pages 14–25. ACM Press, 1997.

81. I. Foster, J. Vockler, M. Wilde, and Y. Zhao. Chimera: A Virtual Data Sys-
tem For Representing, Querying, and Automating Data Derivation. In 14th
International Conference on Scientific and Statistical Database Management,
2002.

82. B. Friesenhahn. Autoconf makes for portable software — use of os features
and a freeware scripting utility solves application portability across various
flavors of Unix. BYTE Magazine, 22(11):45–46, 1997.

83. M. Frigo and S. Johnson. FFTW: An adaptive software architecture for the
FFT. In Acoustics Speech and Signal Processing, volume 3, pages 1381–1384.
IEEE Computer Society Press, 1998.

84. M. Frigo and S. G. Johnson. benchFFT. http://www.fftw.org/benchfft/.
85. M. R. Garey and D. S. Johnson. Computers and Intractability / A Guide to

the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco,
1978.

86. M. Geissler. Interaction of High Intensity Ultrashort Laser Pulses with Plas-
mas. PhD thesis, Vienna University of Technology, 2001.

References 303

87. G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A user’s guide
to PICL: a portable instumented communications library. Technical Report
ORNL/TM-11616, Oak Ridge National Laboratory, Oak Ridge, Tennessee,
1992.

88. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Reading. Addison-Wesley, Massachusetts, 1989.

89. K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to Web
services architecture. IBM Systems Journal, 41(2):168–177, 2002.

90. S. Graham, D. Hull, and B. Murray. Web services base notification 1.3 (WS-
BaseNotification). Specification, Organization for the Advancement of Struc-
tured Information Standards, 2006.

91. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-performance, porta-
ble implementation of the MPI Message Passing Interface standard. Parallel
Computing, 22(6):789–828, 1996.

92. W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced Features of
the Message Passing Interface. Scientific and Engineering Computation. MIT
Press, Cambridge, MA, 1999.

93. W. Grosso. Java RMI. O’Reilly & Associates, Inc., 981 Chestnut Street,
Newton, MA 02164, USA, 2002.

94. E. R. Harold. XML: EXtensible Markup Language. IDG Books, San Mateo,
CA, USA, 1998.

95. R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. In Winter USENIX Conference, pages 125–136, 1992.

96. R. Herzog. PostgreSQL – the Linux of databases. Linux Journal, 46, 1998.
97. R. H. High Jr. and M. Kloppmann. WebSphere programming model and

architecture. Datenbank-Spektrum, 8:18–31, 2004.
98. High Performance Fortran Forum. High Performance Fortran language speci-

fication. Scientific Programming, 2(1-2):1–170, 1993.
99. J. K. Hollingsworth, L. Derose, and T. Hoover. The dynamic probe class

library - an infrastructure for developing instrumentation for performance
tools. In 15th International Parallel and Distributed Processing Symposium.
IEEE Computer Society Press, 2001.

100. R. Hood. The p2d2 project: Building a portable distributed debugger. In 1st
Symposium on Parallel and Distributed Tools. ACM Press, 1996.

101. S. Hwang and C. Kesselman. Grid workflow: A flexible failure handling fra-
mework for the Grid. In 12th International Symposium on High Performance
Distributed Computing, pages 126–137. IEEE Computer Society Press, 2003.

102. IBM Corporation. Using and Administering LoadLeveler – Release 3.0, 4
edition, 1996. Document Number SC23-3989-00.

103. IBM Corporation. Emerging technologies toolkit for Web services, 2003.
http://www.alphaworks.ibm.com/tech/ettkws.

104. Y. E. Ioannidis, M. Livny, S. Gupta, and N. Ponnekanti. ZOO: A desktop ex-
periment management environment. In T. M. Vijayaraman, A. P. Buchmann,
C. Mohan, and N. L. Sarda, editors, 22th International Conference on Very
Large Data Bases, pages 274–285. Morgan Kaufmann, 1996.

105. R. Johnson. J2EE Development Frameworks. IEEE Computer, 38(1):107–110,
2005.

304 References

106. A. Jugravu and T. Fahringer. JavaSymphony, a programming model for the
Grid. In International Conference on Computational Science, Lecture Notes
In Computer Science. Springer Verlag, 2004.

107. K. L. Karavanic and B. P. Miller. Experiment management support for per-
formance tuning. In Supercomputing Conference. ACM Press and IEEE Com-
puter Society Press, 1997.

108. K. L. Karavanic and B. P. Miller. Improving online performance diagnosis by
the use of historical performance data. In Supercomputing Conference. ACM
Press and IEEE Computer Society Press, 1999.

109. K. Kennedy, J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, and A. Mandal.
Task scheduling strategies for workflow-based applications in Grids. In In-
ternational Symposium on Cluster Computing and the Grid. IEEE Computer
Society Press, 2005.

110. J. M. Kewley and R. Prodan. A distributed object-oriented framework for
tool development. In 34th International Conference on Technology of Object-
Oriented Languages and Systems, pages 353–62. IEEE Computer Society
Press, 2000.

111. J. M. Kewley and R. Prodan. Interoperable performance and debugging tools
using dynamic instrumentation. Parallel and Distributed Computing Practices,
4(3):245–260, 2001. Special Issue on Monitoring Systems and Tool Interope-
rability.

112. C. Kostick. IP masquerading with Linux. Linux Journal, 27, 1996.
113. H. Kreger. Web services conceptual architecture (WSCA 1.0). Prepa-

red for sun microsystems, inc., IBM Software Group, 2001. http://www-
4.ibm.com/software/solutions/webservices/pdf/WSCA.pdf.

114. S. Krishnan, R. Bramley, D. Gannon, M. Govindaraju, R. Indurkar, A. Slo-
minski, B. Temko, J. Alameda, R. Alkire, T. Drews, and E. Webb. The XCAT
science portal. In Supercomputing Conference. ACM Press and IEEE Compu-
ter Society Press, 2001.

115. S. Krishnan, P. Wagstrom, and G. von Laszewski. GSFL: A workflow frame-
work for Grid services. Technical report, Argonne National Laboratory, 9700
S. Cass Avenue, Argonne, IL 60439, U.S.A., 2002.

116. K. Kunchithapadam and B. P. Miller. Integrating a debugger and a perfor-
mance tool for steering. In Debugging and Performance Tools for Parallel
Computing Systems, pages 53–64. IEEE Computer Society Press, 1996.

117. Y.-K. Kwok and I. Ahmad. Efficient scheduling of arbitrary task graphs to
multiprocessors using a parallel genetic algorithm. Journal of Parallel and
Distributed Computing, 47(1):58–77, 1997.

118. D. LaFrance-Linden. Challenges in designing an HPF debugger. DIGITAL
Technical Journal, 9(3), Jan. 1998.

119. R. M. Lerner. At the forge: Server-side Java with Jakarta-Tomcat. Linux
Journal, 84:50, 52–54, 56–58, 2001.

120. D. S. Linthicum. CORBA 2.0? Open Computing, 12(2), 1995.
121. M. A. Linton. The evolution of Dbx. In USENIX Summer Conference, pages

211–220, 1990.

References 305

122. M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and mi-
gration of UNIX processes in the Condor distributed processing system. Tech-
nical Report UW-CS-TR-1346, University of Wisconsin - Madison, Computer
Sciences Department, 1997.

123. M. J. Litzkow, M. Livny, and M. W. Mutka. Condor: A hunter of idle work-
stations. In 8th International Conference on Distributed Computing Systems,
pages 104–111. IEEE Computer Society Press, 1988.

124. T. Ludwig and R. Wismüller. OMIS 2.0 – a universal interface for monitoring
systems. In 4th European PVM/MPI User’s Group Meeting, Lecture Notes in
Computer Science, pages 267–276. Springer Verlag, 1997.

125. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dyna-
mic mapping of a class of independent tasks onto heterogeneous computing
systems. Journal of Parallel and Distributed Computing, 59(2):107–131, 1999.

126. M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia distributed moni-
toring system: Design, implementation, and experience. Parallel Computing,
30(7):817–840, 2004.

127. A. Mayer, S. McGough, N. Furmento, W. Lee, S. Newhouse, and J. Darlington.
ICENI dataflow and workflow: Composition and scheduling in space and time.
In UK e-Science All Hands Meeting, pages 627–634, Nottingham, UK, 2003.

128. M. K. McKusick. gprof: A call graph execution profiler. In USENIX Summer
Conference, pages 81–88, 1983.

129. Mercury Interactive Corporation. Systinet server for Java.
http://www.systinet.com/products/ssj/overview.

130. B. Mohr. Design of automatic performance analysis systems. Work-
package 3: Implementation issues, EU IST APART, 2000. http://www.kfa-
juelich.de/apart.

131. A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker. Web services secu-
rity: SOAP message security 1.1 (WS-Security 2004). Standard specification,
Organization for the Advancement of Structured Information Standards, 2006.

132. W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAM-
PIR: Visualization and analysis of MPI resources. Supercomputer, 12(1):69–80,
1996.

133. F. Nerieri, R. Prodan, T. Fahringer, and H. L. Truong. Overhead analysis of
Grid workflow applications. In International Conference on Grid Computing.
IEEE Computer Society Press, 2006.

134. G. Nyberg. WebLogic 6.1 Server Workbook for Enterprise JavaBeans. O’Reilly
& Associates, Inc., 981 Chestnut Street, Newton, MA 02164, USA, 3 edition,
2002.

135. Organization for the Advancement of Structured Information Standards.
http://www.oasis-open.org.

136. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. C. adn
K. Glover, M. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054,
2004.

137. Organization for the Advancement of Structured Information Standards.
UDDI: Universal Description, Discovery and Integration. Standard Specifi-
cation version 3.0, 2005.

306 References

138. R. Prodan, A. Bonelli, A. Adelmann, T. Fahringer, and C. Überhuber. Bench-
marking parallel three-dimensional FFT kernels with ZENTURIO. In Inter-
national Conference on Computational Science, volume 3037 of Lecture Notes
in Computer Science, pages 459–467. Springer Verlag, 2004.

139. R. Prodan and T. Fahringer. ZEN: a directive-based language for automatic
experiment management of parallel and distributed programs. In 31st Inter-
national Conference on Parallel Processing. IEEE Computer Society Press,
2002.

140. R. Prodan and T. Fahringer. ZENTURIO: An experiment management sys-
tem for cluster and Grid computing. In 4th International Conference on Clus-
ter Computing. IEEE Computer Society Press, 2002.

141. R. Prodan and T. Fahringer. From Web services to OGSA: Experiences in im-
plementing an OGSA-based Grid application. In 4th International Workshop
on Grid Computing. IEEE Computer Society Press, 2003.

142. R. Prodan and T. Fahringer. A Web service-based experiment management
system for the Grid. In 17th International Parallel and Distributed Processing
Symposium. IEEE Computer Society Press, 2003.

143. R. Prodan and T. Fahringer. ZEN: A directive-based experiment specification
language for performance and parameter studies of parallel and distributed
scientific applications. International Journal of High Performance Computing
and Networking, 5(2/3):103–121, 2004.

144. R. Prodan and T. Fahringer. ZENTURIO: A Grid middleware-based tool for
experiment management of parallel and distributed applications. Journal of
Parallel and Distributed Computing, 64/6:693–707, 2004.

145. R. Prodan and T. Fahringer. ZENTURIO: A Grid service-based tool for opti-
mising parallel and Grid applications. Journal of Grid Computing, 2(1):15–29,
2004.

146. R. Prodan and T. Fahringer. Dynamic scheduling of scientific workflow appli-
cations on the Grid using a modular optimisation tool: A case study. In 20th
Symposion of Applied Computing. ACM Press, 2005.

147. R. Prodan and T. Fahringer. Optimising parallel applications on the Grid
using irregular array distributions. In European Grid Conference, volume
3470 of Lecture Notes in Computer Science. Springer Verlag, 2005.

148. R. Prodan, T. Fahringer, F. Franchetti, M. Geissler, G. Madsen, and H. Mo-
ritsch. On using ZENTURIO for performance and parameter studies on clus-
ters and Grids. In 11th Euromicro Conference on Parallel Distributed and
Network based Processing. IEEE Computer Society Press, 2003.

149. R. Prodan and J. M. Kewley. FIRST: A framework for interoperable resources,
services, and tools. In International Conference on Parallel and Distributed
Processing Techniques and Applications, volume 4, pages 1790–96. CSREA
Press, 1999.

150. R. Prodan and J. M. Kewley. A framework for an interoperable tool environ-
ment. In Euro-Par Conference, volume 1900 of Lecture Notes in Computer
Science, pages 65–69. Springer Verlag, 2000.

151. J. Qin, T. Fahringer, and S. Pllana. UML-based Grid workflow modelling
under ASKALON. In 6th Austrian-Hungarian Workshop on Distributed and
Parallel Systems. Springer Verlag, 2006.

References 307

152. R. Raman, M. Livny, and M. Solomon. Policy driven heterogeneous resource
co-allocation with gangmatching. In High Performance Distributed Computing
Symposium, pages 80–89. IEEE Computer Society Press, 2003.

153. D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz,
and L. F. Tavera. Scalable performance analysis: The Pablo performance
analysis environment. In Scalable Parallel Libraries Conference, pages 104–
113. IEEE Computer Society Press, 1993.

154. R. Reussner, P. Sanders, and J. L. Träff. SKaMPI: a comprehensive benchmark
for public benchmarking of MPI. Scientific Programming, 10(1):55–65, 2002.

155. M. Ronsse, K. D. Bosschere, and C. de Kergommeaux. Execution replay and
debugging. In 4th International Workshop on Automated Debugging, pages
5–18. Computer Research Repository, 2000.

156. W. Rosenberry and J. Teague. Distributing Applications Across DCE and
Windows NT. O’Reilly & Associates, Inc., 981 Chestnut Street, Newton, MA
02164, USA, 1993.

157. B. Roth. An introduction to Enterprise Java Beans technology. Java Report:
The Source for Java Development, 3, 1998.

158. W. Rubin and M. Brain. Understanding DCOM. P T R Prentice-Hall, 1999.
159. B. Satdeva. DHCP: The next generation host configuration scheme. Sys

Admin: The Journal for UNIX Systems Administrators, 4(1), 1995.
160. K. Schwarz, P. Blaha, and G. K. H. Madsen. Electronic structure calculations

of solids using the wien2k package for material sciences. Computer Physics
Communications, 147(71), 2002.

161. E. Seidel, G. Allen, A. Merzky, and J. Nabrzyski. GridLab: A Grid application
toolkit and testbed. Future Generation of Computer Systems, 18(8):1143–
1153, 2002.

162. U. N. Shenoy, Y. N. Srikant, V. P. Bhatkar, and S. Kohli. Automatic data par-
titioning by hierarchical genetic search. Parallel Algorithms and Applications,
14(1):1–29, 2000.

163. C. Sivula. A call for distributed computing (RPC. Datamation, 36(1):75–76,
78, 80, 1990.

164. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI:
The Complete Reference. Scientific and Engineering Computation Series. MIT
Press, Cambridge, MA, 1996.

165. R. Stallman. Debugging with GDB: the GNU source-level debugger. Free
Software Foundation, Inc., 1996.

166. G. Stellner. CoCheck: checkpointing and process migration for MPI. In 10th
International Parallel Processing Symposium, pages 526–531. IEEE Computer
Society Press, 1996.

167. T. L. Sterling and H. P. Zima. Gilgamesh: A multithreaded processor-in-
memory architecture for petaflops computing. In Supercomputing Conference.
ACM Press and IEEE Computer Society Press, 2002.

168. W. R. Stevens and S. Rago. Advanced Programming in the UNIX Environ-
ment. Addison-Wesley, Reading, MA, USA, second edition, 2005.

169. H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, and B. Tierney.
File and object replication in data Grids. Cluster Computing, 5(3):305–314,
2002.

308 References

170. H. M. Stommel. The western intensification of wind-driven ocean currents.
Transactions American Geophysical Union, 29:202–206, 1948.

171. X.-H. Sun and D. T. Rover. Scalability of parallel algorithm-machine combina-
tions. IEEE Transactions on Parallel and Distributed Systems, 5(6):599–613,
1994.

172. Sun Microsystems. Sun Grid Engine. http://gridengine.sunsource.net/.
173. Sun Microsystems. The Web Services Development Pack.

http://java.sun.com/webservices/webservicespack.html.
174. Sun Microsystems, Inc. NFS: Network file system protocol specification. RFC

1094, Network Information Center, SRI International, 1989.
175. I. Taylor, M. Shields, I. Wang, and R. Rana. Triana applications within

Grid computing and peer to peer environments. Journal of Grid Computing,
1(2):199–217, 2003.

176. C. Temperton. Self-sorting in-place fast Fourier transforms. SIAM Journal
on Scientific and Statistical Computing, 12(4):808–823, 1991.

177. R. Thakur, W. Gropp, and E. Lusk. An abstract-device interface for imple-
menting portable parallel-I/O interfaces. In 6th Symposium on the Frontiers
of Massively Parallel Computation, pages 180–187, 1996.

178. D. Theiner and P. Rutschmann. An inverse modelling approach for the esti-
mation of hydrological model parameters. In Journal of Hydroinformatics.
IWA Publishing, 2005.

179. B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, and
M. Swany. A Grid monitoring architecture. Technical report, Global Grid Fo-
rum, 2002. http://www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-
GP-16-2.pdf.

180. J. E. Tilly and E. M. Burke. Ant: The Definitive Guide. O’Reilly & Associates,
Inc., 2002.

181. H.-L. Truong and T. Fahringer. SCALEA: A performance analysis tool for
parallel programs. Concurrency and Computation: Practice and Experience,
15(11-12):1001–1025, 2003.

182. H.-L. Truong and T. Fahringer. SCALEA-G: a unified monitoring and perfor-
mance analysis system for the Grid. In 2nd European Across Grid Conference,
Lecture Notes in Computer Science. Springer Verlag, 2004.

183. J. Ullman. NP-complete scheduling problems. Journal of Computer and Sys-
tem Sciences, 10:384–393, 1975.

184. G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java commodity Grid
kit. Concurrency and Computation: Practice and Experience, 13(8–9):645–
662, 2001.

185. F. Vraalsen, R. A. Aydt, C. L. Mendes, and D. A. Reed. Performance con-
tracts: Predicting and monitoring Grid application behavior. In 2nd Interna-
tional Grid Computing Workshop, volume 2242 of Lecture Notes in Computer
Science, pages 154–166. Springer Verlag, 2001.

186. webMethods Corporation. webMethods Glue and Integration Server.
http://www.webmethods.com/Products/ESP/WebServicesDev.

187. The Workflow Management Coalition. http://www.wfmc.org/.
188. R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software

(ATLAS). In Supercomputing Conference. ACM Press and IEEE Computer
Society Press, 1998.

References 309

189. M. Wieczorek, R. Prodan, and T. Fahringer. Comparison of workflow sche-
duling strategies on the Grid. In International Conference on Parallel Proces-
sing and Applied Mathematics, Lecture Notes in Computer Science. Springer-
Verlag, 2005.

190. M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of scientific workflows
in the ASKALON Grid environment. SIGMOD Record, 34(3):56–62, 2005.
Special Issue on Scientific Workflows.

191. R. Wismüller and T. Ludwig. The Tool-set – an integrated tool environment
for PVM. In High-Performance Computing and Networking, volume 1067 of
Lecture Notes in Computer Science. Springer Verlag, 1995.

192. R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: a dis-
tributed resource performance forecasting service for metacomputing. Future
Generation Computer Systems, 15(5–6):757–768, 1999.

193. World Wide Web Consortium. Web Services Activity.
http://www.w3.org/2002/ws/.

194. World Wide Web Consortium. Web Services Architecture.
http://www.w3.org/TR/2002/WD-ws-arch-20021114/, 2002.

195. World Wide Web Consortium. XML Schemas: Datatypes.
http://www.w3.org/TR/xmlschema-2/, 2004.

196. A. YarKhan and J. J. Dongarra. Experiments with scheduling using simu-
lated annealing in a Grid environment. Lecture Notes in Computer Science,
2536:232–244, 2002.

197. M. Yarrow, K. M. McCann, R. Biswas, and R. F. V. der Wijngaart. ILab:
An advanced user interface approach for complex parameter study process
specification on the Information Power Grid. In International Workshop on
Grid Computing. ACM Press and IEEE Computer Society Press, 2000.

198. J. Yu and R. Buyya. A taxonomy of scientific workflow systems for Grid
computing. SIGMOD Record, Special Issue on Scientific Workflows, 34(3):44–
49, 2005. Special Issue on Scientific Workflows.

199. O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward scalable performance vi-
sualization with Jumpshot. International Journal of High-Performance Com-
puting and Applications, 13(3):277–288, 1999.

200. H. Zhao and R. Sakellariou. An experimental investigation into the rank
function of the heterogeneous earliest finish time scheduling algorithm. In
Euro-Par Conference, pages 189–194, 2003.

201. S. Zhou. LSF: load sharing in large-scale heterogeneous distributed systems.
In Workshop on Cluster Computing, 1992.

Index

BLOCK distribution, 41, 42, 48, 49, 196
CYCLIC distribution, 41, 42, 48
DYNAMIC loop scheduling, 40, 48, 52

GUIDED loop scheduling, 40, 52
STATIC loop scheduling, 40, 48, 51, 52,

54

Z MAT memory allocation tool, 121, 127
Z RT2 resource tracker, 122
Z cov function coverager, 119–121, 123
Z deadlock deadlock detector, 122

Z debug debugger, 121, 122, 125–128
Z prof function profiler, 117, 123,

125–127
Z trace function tracer, 118–120, 123

portType, 17, 138, 140, 144, 153, 155,
156, 163

Abstract Grid Workflow Language
(AGWL), 204, 238, 251

Activity deployment, 205, 206

Aggregator, 145, 149
Allele, 174–176, 180, 193
Amdahl’s law, 173
Annai, 274

Apache Axis, 153, 154, 161–163
AppLeS Parameter Sweep Template

(APST), 274

Application Data Visualiser, 73–76, 280
Application Level Scheduling (App-

LeS), 274
Asynchronous messaging, 107

Asynchronous method, 108, 142, 149,
156

ATLAS, 273

Atomic activity, 203, 205, 207, 209–211,
215, 217, 227, 238, 241, 251

Austrian Grid, 185, 230, 241, 263
Authentication, 18–20, 34, 69

Backward pricing, 94
Bandwidth, 199
Bell number, 236
Benders decomposition, 86, 88
Breakpoint, 119–121, 131, 145
Broadcast, 209, 212, 284

Cache Coherent Non-Uniform Memory
Access (ccNUMA), 25, 27, 230,
254, 263

Cardinality, 209–211, 217, 227, 228, 246
Checkpointing, 126, 236, 247, 249–253,

262–264, 268, 269, 276, 277, 284
Chromosome, 174–176, 180, 230
Cluster of Workstations (COW), 25,

26, 109, 230, 263
Code region, 5, 7, 38, 39, 43, 49–51,

59–61, 67, 73, 194, 198, 272, 280
Collection, 209–211, 217, 236, 242, 263
Common Object Resource Broker

Architecture (CORBA), 15, 16,
18, 143

Communication, 73, 77–79, 83–88, 91,
93, 94, 97, 98, 173, 195, 198–200,
209, 210, 212, 284

Composite activity, 205, 207, 209, 211,
215, 218, 219, 221, 238, 241, 242

Composition operator, 63
Computational activity, 205, 206, 224,

246, 249, 263

312 Index

Conditional activity, 205, 207, 208,
214–216, 246, 284

Condor, 109, 223, 226, 251, 273
Consumer, 140, 145–147, 149–151, 163
Control flow dependency, 33–35, 170,

204, 206, 211, 218, 219, 223,
236–238, 240–242

Control precedence relation, 206, 207,
211, 236, 255

Convergence, 175, 180, 181, 187
Counter, 119–121, 131
Critical schedule path, 171–174
Crossover, 175–177, 181, 186–188, 190,

191, 230

DAGMan, 203, 223, 226, 273, 276
Data collection, 67, 121, 125, 133, 282
Data flow dependency, 204, 207, 209,

210, 218, 219, 223, 238, 242, 244
Data Grid, 21, 22
Data port, 204–211, 213, 219–222, 242,

244, 251
Data precedence relation, 207, 236
Digital signature, 19
Direct tool interaction, 122
Directed Acyclic Graph (DAG), 6,

9, 33, 203, 204, 207, 214, 215,
218–220, 223, 228–231, 233, 248,
255, 259, 273, 274, 276, 277, 283,
284

Directed Graph (DG), 6, 9, 203, 214,
218, 248, 255, 260, 277, 283

Distributed Component Object Model
(DCOM), 15

Dynamic Host Configuration Protocol,
152

Dynamic instrumentation, 5, 67, 117,
128–131, 134, 135, 144, 145, 149,
150, 247, 272, 275, 282

Dynamically-Updated Request Online
Coallocator (DUROC), 21, 69,
103, 108, 109, 196

Efficiency, 2, 173, 195
Elitist model, 176, 178, 179, 186–188,

191
Enactment Engine, 228, 235, 242,

246–248, 251, 252, 260, 262–264,
267, 276, 277, 282, 284

Enterprise Java Beans, 15, 19
Event, 29, 65–67, 109, 131, 134, 143,

146, 148–151, 155, 229, 246–249,
251, 255, 259, 260, 283, 284

Experiment, 37–41, 43, 44, 55, 59,
61–66, 69–79, 84, 86, 88, 91,
92, 94, 103, 105–111, 165, 166,
186–188

Experiment Data Repository, 69, 106,
107, 110, 111, 114, 116, 128, 152,
156, 215, 249, 251, 262, 267, 280,
283

Experiment Executor, 106–111, 149,
150, 156, 159, 160, 282

Experiment generation algorithm,
62–65, 166

Experiment Generator, 62, 106–108,
110, 149, 150, 156, 159, 160, 166,
169, 200, 282

Experiment Monitor, 73, 109
Experiment Preparation, 71–73
eXtensive Markup Language (XML),

15–18, 29, 136, 143, 156, 157,
159–161, 163, 164, 203, 204, 227,
236, 238, 251

External ZEN variable, 56

Factory, 29, 106, 140, 142, 150, 155,
156, 159, 163, 283

Fast Ethernet, 25, 76, 77, 79–81, 83, 85,
87, 88, 91, 230, 254, 263

Fast Fourier Transform (FFT), 76, 89,
91–101, 281

Fastest Fourier Transform in the West
(FFTW), 89, 93–95, 97–101

Fault tolerance, 3, 6, 9, 235, 248–250,
260, 262, 276, 277, 282, 284

File staging, 34, 35, 72, 109
File Transfer Protocol (FTP), 16, 21
Filter, 66, 67, 73, 109, 110, 147, 150,

151
Firewall, 151, 152
Fitness function, 175, 180, 187, 192,

193
Fitness scaling, 179, 186, 187, 191

Ganglia, 21
Gantt chart, 171, 172, 193, 194, 228,

229

Index 313

Gather, 210, 212, 284

Gene, 174–176, 180, 193

General block distribution, 196–199

Generation, 175, 176, 178–180, 185–188,
190, 191, 230

Genetic algorithm, 8, 165–167, 174–177,
179–181, 185–193, 198, 214, 223,
226, 227, 230–232, 234, 235, 255,
260, 274, 281, 282, 284

Gigabit Ethernet, 230, 263

Global Access to Secondary Storage
(GASS), 21, 33, 35, 72, 111, 160,
242, 251

Global Grid Forum, 22, 29, 137, 152

Globus toolkit (GT), 20–22, 72, 77,
78, 86, 88, 103, 128, 152, 153,
155–164, 169, 196, 206, 253

Green pages, 10, 144, 156, 283

Grid Application Development Software
(GrADS), 274, 277

Grid Index Information Service (GIIS),
21, 152

Grid Resource Allocation Manager
(GRAM), 21, 28, 32, 34, 69, 72,
76, 77, 82, 84, 88, 109, 152, 160,
171, 206, 241, 254, 257, 262, 263

Grid Resource Information Service
(GRIS), 21, 152

Grid Security Infrastructure (GSI),
19–22, 34, 69, 70, 128, 151, 159,
163, 171

Grid service, 5, 10, 13, 22, 28–30, 33,
69, 70, 106, 107, 115, 116, 123,
136, 138–144, 146, 149, 151, 152,
154, 155, 159, 160, 162, 163, 282,
283

Grid site, 21, 28–30, 32–35, 61, 62,
65, 69, 72, 73, 76, 103, 106, 108,
109, 115, 128, 139, 140, 142, 143,
150–152, 159, 167, 169, 182, 194,
196, 198, 200, 205, 209, 223, 228,
230, 235, 236, 238, 240–244, 246,
247, 249, 253–255, 262–269, 274,
283

GridAnt, 276

Gridbus, 277

GridFTP, 21, 32, 34, 106, 108, 152, 160,
171, 196, 206, 242, 251, 254, 257,
264

Heterogeneous Earliest Finish Time
Algorithm (HEFT), 223–226, 231,
232, 234, 235, 264, 282, 284

High Performance Fortran (HPF),
41–43, 51, 59, 61, 86, 88, 90, 108,
129, 196–198, 200–202, 272, 274,
279–281

Homonym ZEN variables, 51, 52, 56
Hosting environment, 19, 28, 29, 138,

140, 142, 143, 149, 151, 152, 154,
155, 157, 161, 283

Hyper Text Transfer Protocol (HTTP),
16, 19, 149, 206

ILAB, 273
Imperial College e-Science Networked

Infrastructure (ICENI), 276
Index domain, 44, 56–59, 63, 74
Index function, 58
Indirect distribution, 199–202
Indirect tool interaction, 123
Individual, 174–176, 178–180, 185, 186,

188, 189, 193
Information functions, 130, 144
Instrumentation share, 123
Intermediary, 151
Internet, 1, 13, 14
Internet protocol (IP), 13, 16
Interoperability, 14–16, 22, 28
Invmod, 231–235

Jacobi relaxation, 199, 200
Java 2 Enterprise Edition (J2EE), 15
Java 2 Enterprise Edition (J2EE), 15,

19
Java Commodity Grid (CoG) kit, 22,

168, 185, 192
Java Remote Method Invocation

(RMI), 15
Jini, 15, 143
Just-in-time debugging, 126, 127

Latency, 170, 171, 199, 200
Linearised Augmented Plane Wave

(LAPW), 79, 82–85, 181, 182,

314 Index

184, 185, 205, 218, 227–230, 254,
255, 260, 264, 268

LINPACK, 171, 199
Load balance, 79, 93, 99, 173, 196
Load Leveler, 109
Load Sharing Facility, 21, 109

Local Area Multicomputer (LAM), 91,
92, 94, 97, 98

Local ZEN variable, 55
Loci, 174
Locus, 175, 180
Loss of parallelism, 174

Makespan, 172, 185–187, 193, 217, 228,
230–232, 234, 255, 259, 260

Manipulation functions, 131, 145
Massively Parallel Processors (MPPs),

25
Maui, 21, 109
Message Passing Interface (MPI), 32,

41, 59–61, 77–80, 82–88, 90–94,
108, 117, 118, 122, 123, 134–137,
145, 195–197, 272, 274, 280

Monitoring, 21–23, 32, 65, 114–116,
128, 146, 152, 275

Monitoring and Discovery Service
(MDS), 21, 32, 72, 152, 169, 185,
187, 200, 206, 262

MPI Chameleon (MPICH), 77, 83, 88,
91, 92, 94, 97, 98, 135, 136, 196,
228

Multiple Instructions Multiple Data
(MIMD), 24

Multiple Program Multiple Data
(MPMD), 117, 134, 136

Mutation, 175, 176, 178, 181, 186–188,
190, 191, 230

Myrinet, 25, 76, 77, 79–81, 83, 85–87,
94

Network Address Translation, 152
Network of Workstations (NOW), 25,

230, 263
Network Weather Service (NWS), 149,

152, 182, 185
Nimrod, 273, 274
Non-Uniform Memory Access (NUMA),

27

Notification, 117, 119–121, 131, 133,
134, 137, 140, 145, 147, 149–151,
153, 155–157, 160, 163, 283

NP-complete, 3, 8, 43, 165, 167, 192,
194, 236

Object Code Browser, 117, 118, 123,
124, 127

Object Remote Procedure Call
(ORPC), 14, 15

Object Request Broker (ORB), 15, 16

Objective function, 8, 165–167, 170,
172, 175, 180, 187, 192, 194, 198,
200, 214, 217, 281

Offline tools, 65, 69, 70, 73, 76, 106,
110, 111, 114, 116

Online Monitoring Interface Specifica-
tion (OMIS), 275

Online tools, 65, 67, 69, 114, 115, 118,
124

Open Grid Services Architecture
(OGSA), 22, 29, 136, 153, 281

Open Grid Services Infrastructure
(OGSI), 29, 137, 152–155

Open Multiprocessing (OpenMP), 32,
38–40, 43, 50–52, 59–61, 77–80,
82, 86, 88, 108, 117, 129, 272, 279,
280

Optimisation, 3, 4, 8, 9, 11, 125,
165–167, 172, 174, 175, 187, 192,
194, 196, 198, 204, 214, 273, 279,
281, 284

Organisation for the Advancement of
Structured Information Standards
(OASIS), 138, 149, 156, 283

Output data, 62, 280

Output parameter, 3, 7, 62, 69, 72, 73,
76, 102, 281

Overhead, 173, 174, 231, 236, 240, 241,
243, 244, 251–253, 255, 257, 258,
260–268, 284

Paradyn, 271, 275

Parallel broadcast, 211, 212

Parallel loop, 205, 207–209, 214, 215,
217–219, 227, 229–231, 246, 251,
253–255, 264, 265, 268, 284

Index 315

Parameter space, 3, 8, 56, 71, 165, 169,
175, 178, 182, 185, 188, 191, 197,
200, 231, 281

Parameter study, 3, 4, 7, 30, 34, 35, 37,
38, 43, 44, 55, 59, 62, 65, 69, 71,
72, 75, 76, 94, 102–104, 106, 107,
111, 159, 165, 173, 192, 273, 274,
279, 280

Parameter tuning, 187, 189–191

Peer-to-peer architectures, 14

Pegasus, 274, 276

Performance analysis, 2–8, 11, 37,
59, 65, 67, 69–71, 73–77, 79–82,
84–87, 90, 95–101, 106, 107, 111,
166, 279–281

Performance contract, 9, 247–249, 255,
277

Performance data, 61, 125, 194, 199,
200, 280

Performance measurement, 60, 61, 93,
125, 194, 195, 198–200

Performance metric, 2, 3, 7, 8, 11, 38,
39, 59–61, 65, 67, 69, 73, 75–77,
83, 84, 88, 91, 93, 106, 108, 133,
145, 165, 166, 170, 172–175, 187,
194, 195, 199, 280, 281

Performance prediction, 166

Performance study, 62, 157–159, 161,
162, 271

Performance tuning, 2, 188, 194

Population, 174–179, 185–189, 191, 230

Portability, 5, 9, 14, 22, 23, 113, 139,
163, 282

Portable Batch System (PBS), 21, 76,
82–84, 92, 109, 187, 254, 263

Portable Parallel Distributed Debugger
(p2d2), 275

PostgreSQL, 111

Prediction, 8, 170, 182, 192, 198, 199,
215, 217, 218, 230, 232, 235, 246,
252

Probabilistic predicted time, 216

Process Manager, 67, 119–121, 123,
126, 128, 130, 131, 133–136,
144–146, 149, 150, 152, 282

Process share, 123

Producer, 140, 145–147, 149–151, 163

Proxy credential, 69

Proxy cryptography, 20, 153
Proxy delegation, 20, 69, 159
Public Key Infrastructure (PKI), 16,

17, 19, 159
Publish-subscribe (PS), 146, 149–151
Pull event, 108, 142, 147, 156, 163
Push event, 108, 109, 117, 131, 140,

145, 149, 155, 157

Query-response (QR), 147, 149, 150

Registry, 29, 106, 139, 140, 142, 143,
146, 147, 149, 150, 155–158, 163,
164, 283

Remote Procedure Call (RPC), 14, 15,
18, 19, 138, 161

Replica Catalogue, 21
Replica Management, 21
Reproduction, 175
Resource lock, 123
Resource Specification Language

(RSL), 21, 77, 78, 84, 86, 88, 103,
108, 109

Root workflow, 205, 215, 216, 218–220,
249

Runtime instrumentation library, 131
Runtime schedule dependency, 170

Scalability, 38, 39, 41, 84, 86, 88, 89,
182, 184, 195, 235, 265, 269

SCALEA, 61, 71, 86, 91, 108, 128, 150,
157

SCALEA-G, 149, 152
Scatter, 210, 212, 230, 284
Scheduling, 3, 6, 8, 9, 11, 103, 166, 167,

169–173, 175, 180, 185, 187–193,
196, 204, 214, 215, 217, 218,
220, 223, 225–232, 234–236, 238,
240–242, 244, 246–249, 251, 254,
255, 259, 260, 262–264, 273, 274,
276, 277, 279–284

Scientific workflow, 8
Search engine, 165, 166, 174, 175, 187,

188, 192, 198, 281
Secure Socket Layer (SSL), 16, 160
Selection, 175, 177
Sensor, 21–23, 67, 115–117, 120, 121,

123, 126, 128, 130, 134, 144, 146,
147, 149, 150, 152, 282

316 Index

Sequential loop, 203, 205, 211, 213–215,
218, 219, 227, 229, 231, 246, 248,
251, 283

Service lifecycle, 10, 19, 28, 29, 137,
139, 140, 142, 153–155, 163, 283

Service Repository, 17, 18, 106, 116,
139, 140, 142, 143, 155, 163

Service-oriented architecture, 5, 7, 9,
11, 13, 14, 18, 22, 28, 69, 72, 105,
114–116, 136, 282

Simple Mail Transfer Protocol (SMTP),
16

Simple Object Access Protocol (SOAP),
16–19, 22, 138, 140, 149, 151, 153,
159, 161, 163

Single Instruction Multiple Data
(SIMD), 24

Single Instruction Single Data (SISD),
24

Single Program Multiple Data (SPMD),
117, 134

SKaMPI, 272

SMP cluster, 25, 26, 60, 76, 86, 91
Speed, 170, 171, 173, 182, 195, 199, 200

Speedup, 2, 172, 173, 195

Stateful service, 6, 10, 28–30, 136, 140,
142, 150, 151, 153–155, 163, 283

Static schedule dependency, 169, 185

Steering, 4, 5, 9, 122, 124, 125, 167,
236, 244, 246–249, 255, 259, 284

Stommel, 76–78, 80–82

Sun Grid Engine, 21, 109
Symmetric Multiprocessor (SMP), 24,

60, 77, 79, 82–84, 86, 88–91, 109,
157, 161

Taverna, 276
The Dynamic Probe Class Library

(DPCL), 275
Three-Dimensional Particle-In-Cell

(3DPIC), 84, 86, 87
Throughput, 10, 103, 106, 143, 156–164,

166, 173, 192, 193, 281

Timer, 119–121, 123, 131

Tomcat, 161, 162
Tool coexistence, 123

Tool interoperability, 5, 9, 11, 113–116,
122–124, 126–128, 136, 282

Totally ordered set, 44, 48, 49, 52, 57,
58, 175, 180

Tracing, 118–121, 131, 133, 136, 145
Transmission Control Protocol (TCP),

16, 170, 171
Transport Layer Security (TLS), 16, 17
Triana, 276

UNICORE, 271, 277
Unified Modeling Language (UML),

111, 219, 227, 228
Uniform Memory Access (UMA), 24
Universal Description, Discovery and

Integration (UDDI), 17, 18, 139,
140, 142, 143, 155, 156, 163, 283

User Portal, 69–71, 73, 105–107, 116,
150, 160, 280

Value function, 58
Value set, 39, 41, 42, 46, 47, 49–52,

54–57, 59, 62–65, 165–167, 175,
193

Vienna Fortran Compiler, 61, 71, 86,
108, 128, 129, 196, 282

Virtual Organisation, 1, 13
Virtual Single Execution Environment

(VSEE), 243–246, 254, 255, 276,
284

von Neumann architecture, 23

Web Application and Services Platform
(WASP), 138–140, 144, 149,
152–164

Web Service Description Language
(WSDL), 16–19, 153, 155, 283

Web services, 5, 6, 10, 15–19, 22, 28,
29, 116, 136–139, 143, 144, 149,
151, 153–156, 159, 283

Web Services Context (WS-Context),
30, 154

Web Services Description Language
(WSDL), 116, 138–140, 143, 144,
147, 149, 153, 155, 156, 163

Web Services Inspection Language
(WSIL), 143, 156

Web Services Invocation Framework
(WSIF), 19, 163

Web Services Resource Framework
(WSRF), 30, 138, 153

Index 317

Web Services Security (WS-Security),
17, 159

Weighted predicted time, 217
White pages, 144, 156, 283
WIEN2k, 79, 180, 183, 185, 218,

227–229, 232, 245, 246, 253, 254,
256–258, 263–267

Workflow, 6, 8, 9, 11, 30, 33, 34,
165–175, 180–183, 185, 187,
191, 192, 203–209, 211, 214–216,
218–227, 229–233, 235–238,
240–255, 259–264, 267–269, 273,
274, 276, 277, 279, 281–284

Workflow converter, 214, 215, 217–223,
248

Workflow partition, 9, 226, 230–232,
235–240, 242, 245, 254, 262, 276,
282, 284

World Wide Web, 1, 2, 13, 15–17
World Wide Web Consortium (W3C),

15

X.509 certificate, 20, 159

Yellow pages, 144, 156, 283

ZEN application, 54, 55, 60–63, 71, 73,
74, 105–108, 110, 156, 165, 167,
168, 175, 176, 180, 192–194, 198

ZEN application instance, 54, 55, 61,
106, 107, 165, 175–180, 193

ZEN assignment directive, 38, 49, 53,
54, 56, 64, 78, 83, 86, 92, 102, 103,
157, 187, 194, 279

ZEN constraint directive, 38, 43, 44,
48–50, 55–59, 62–66, 70, 74, 77,
78, 82, 83, 92, 102, 103, 194, 197,
198, 279

ZEN directive, 6–8, 37–40, 43, 49,
52–55, 58, 59, 61, 70–72, 76–78,

82, 84, 86, 88, 92, 103, 106, 108,
116, 157, 165, 169, 175, 185, 187,
192, 200, 279–281

ZEN editor, 70, 71
ZEN element, 44, 46, 48–51, 53–57, 59,

62, 74, 107, 108, 110, 175
ZEN event directive, 65, 66, 247
ZEN experiment specification language,

6, 7, 11, 37, 38, 44, 49, 50, 59, 65,
69, 94, 165, 271, 279, 280

ZEN file, 39, 40, 43, 49–56, 59, 60, 66,
70, 71, 84, 106–108, 150

ZEN file instance, 39, 49, 50, 53, 54,
107

ZEN performance directive, 38, 39,
59–62, 67, 70, 71, 73, 77, 79, 83,
84, 88, 92, 106, 108, 166, 194, 272,
280–282

ZEN script file, 72
ZEN set, 44–46, 48–51, 53
ZEN source file, 71
ZEN substitute directive, 38–43, 49–53,

55, 70, 78, 79, 83, 84, 86, 88, 92,
168, 185, 192, 194, 197, 198, 200,
202, 279

ZEN Transformation System, 39, 40,
50, 51, 53, 71, 72, 107

ZEN variable, 49–59, 62–65, 73–76, 82,
84, 86, 91, 102, 108, 110, 111, 150,
157, 161, 167, 169, 175, 176, 180,
193, 195, 197, 200, 281

ZEN variable type, 50
ZENTURIO experiment management

tool, 7, 8, 11, 69, 70, 72, 73, 76,
82, 84, 88, 89, 91–94, 103, 105,
106, 108–110, 114, 116, 128, 157,
159, 161, 165, 166, 182, 272, 273,
280, 281

ZOO, 271

