
Springer
New York
Berlin
Heidelberg
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

The IMA Volumes
in Mathematics

and its Applications

Volume 123

Series Editor
Willard Miller, Jf.

Institute for Mathematics and
its Applications

IMA

The Institute for Mathematics and its Applications was estab
lished by a grant from the National Science Foundation to the University
of Minnesota in 1982. The IMA seeks to encourage the development and
study of fresh mathematical concepts and questions of concern to the other
sciences by bringing together mathematicians and scientists from diverse
fields in an atmosphere that will stimulate discussion and collaboration.

The IMA Volumes are intended to involve the broader scientific com
munity in this process.

1982-1983
1983-1984

1984-1985
1985-1986
1986-1987
1987-1988
1988-1989
1989-1990
1990-1991
1991-1992
1992-1993
1993-1994
1994-1995
1995-1996
1996-1997
1997-1998
1998-1999
1999-2000
2000-2001
2001-2002
2002-2003

Willard Miller, J r., Professor and Director

* * * * * * * * * *

IMA ANNUAL PROGRAMS

Statistical and Continuum Approaches to Phase Transition
Mathematical Models for the Economics of Decentralized
Resource Allocation
Continuum Physics and Partial Differential Equations
Stochastic Differential Equations and Their Applications
Scientific Computation
Applied Combinatorics
Nonlinear Waves
Dynamical Systems and Their Applications
Phase Transitions and Free Boundaries
Applied Linear Algebra
Control Theory and its Applications
Emerging Applications of Probability
Waves and Scattering
Mathematical Methods in Material Science
Mathematics of High Performance Computing
Emerging Applications of Dynamical Systems
Mathematics in Biology
Reactive Flows and Transport Phenomena
Mathematics in Multimedia
Mathematics in the Geosciences
Optimization

Continued at the back

Brian Marcus Joachim Rosenthal
Editors

Codes, Systems, and
Graphical Models

With 93 Illustrations

Springer

Brian Marcus
IBM Almaden Research Center, K65-802
650 Harry Rd.
San Jose, CA 95120
USA
e-mail: marcus@almaden.ibm.com

Joachim Rosenthal
Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556-5683
USA
e-mail: rosen@nd.edu

Mathematics Subject Classification (2000): lIT, 37B, 65F, 68Q, 93B, 93C, 94A, 94B

Library of Congress Cataloging-in-Publication Data
Codes, systems, and graphical models I editors, Brian Marcus, Joachim Rosenthal.

p. cm. - (The IMA volumes in mathematics and its applications; 123)
Includes bibliographical references and index.
ISBN 0-387-95173-3
1. Coding theory--Congresses. 2. System theory--Congresses. 3. Symbolic

dynamics--Congresses. I. Marcus, Brian, 1949- II. Rosenthal, Joachim, 1961- III.IMA
Workshop on Codes, Systems, and Graphical Models (1999) IV. Series.
QA268 .C63 2001
003'.54--dc21 00-052274

Printed on acid-free paper.

© 2001 Springer-Verlag New York, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York,
NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.
Authorization to photocopy items for internal or personal use, or the internal or personal use of
specific clients, is granted by Springer-Verlag New York, Inc., provided that the appropriate fee is
paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, USA (Tele
phone: (508) 750-8400), stating the ISBN number, the title of the book, and the first and last page
numbers of each article copied. The copyright owner's consent does not include copying for general
distribution, promotion, new works, or resale. In these cases, specific written permission must first
be obtained from the publisher.

Production managed by A. Orrantia; manufacturing supervised by Joe Quatela.
Camera-ready copy prepared by the IMA.
Printed and bound by Sheridan Books, Inc., Ann Arbor, MI.
Printed in the United States of America.

9 8 765 432 1

ISBN 0-387-95173-3 SPIN 10789096

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH

FOREWORD

This IMA Volume in Mathematics and its Applications

CODES, SYSTEMS, AND GRAPHICAL MODELS

is based on the proceedings of a very successful 1999 IMA Summer Program
with the same title.

I would like to thank G. David Forney, Jr. (Massachusetts Institute
of Technology), Brian Marcus (IBM Almaden Research Center), Joachim
Rosenthal (University of Notre Dame), and Alexander Vardy (University
of California, San Diego) for their excellent work as organizers of the two
weeks summer program. Special thanks to Brian Marcus and Joachim
Rosenthal for their role as editors of the proceedings.

I also take this opportunity to thank the National Science Foundation
(NSF) and the National Security Agency (NSA), whose financial support
made the workshop possible.

Willard Miller, Jr., Professor and Director
Institute for Mathematics and its Applications
University of Minnesota
400 Lind Hall, 207 Church St. SE
Minneapolis, MN 55455-0436
612-624-6066, FAX 612-626-7370
miller@ima.umn.edu
World Wide Web: http://www.ima.umn.edu

v

PREFACE

Codes and systems based on graphical models form a prominent area
of research in each of the following subjects: coding theory, systems theory,
symbolic dynamics and automata theory. The aim of the IMA Workshop
on Codes, Systems and Graphical Models (August 2-13, 1999) was to bring
together mathematicians, computer scientists, and electrical engineers in
these subjects to learn how techniques from one area might be applied to
problems in the other areas.

The workshop was divided into two weeks, each with a different focus.
The first week, organized by Dave Forney and Alex Vardy, focused on
codes on graphs and iterative decoding. The second week, organized by
Brian Marcus and Joachim Rosenthal, turned to connections among coding
theory, system theory and symbolic dynamics.

A major goal of coding theory is to find a class of codes, together
with corresponding decoding algorithms, that realize in a practical way the
promise of Shannon's coding theorems. Nearly forty years ago, Gallager
introduced low density parity check codes (LDPC's), with iterative decod
ing algorithms, for this purpose. Recently, the subject of iterative decoding
has enjoyed a burst of intense activity with the discovery of turbo codes
and the realization that both turbo codes and LDPC's perform remark
ably well. Also, it has recently been recognized that the iterative decoding
algorithms used for these codes are instances of belief propagation, an algo
rithm originally developed by Pearl in artificial intelligence. This has led to
much work devoted to understanding and exploiting this connection. While
Pearl's algorithm is guaranteed to work well on graphs without cycles, it
has been demonstrated empirically to work well on graphs with cycles. A
central impetus of current work on iterative decoding is to understand why
this is so. The first week of the workshop focused on these issues.

Coding theory, system theory and symbolic dynamics have much in
common. Among the central themes in each of these subjects are the
construction of state space representations, understanding of fundamen
tal structural properties of sequence spaces, construction of input/output
systems, and understanding the special role played by algebraic structure.
The second week of the workshop was devoted to understanding how these
themes are treated in each of the subjects and how ideas from one subject
may be useful in the others. This continued the interactions initiated in an
IEEE workshop on codes, systems and symbolic dynamics in 1993.

This volume is a collection of papers on the subjects of the workshop.
Our intention was to collect in one place many pieces of work on these
subjects; some were presented at the workshop, while others were not.

vii

viii PREFACE

Part 1 contains papers with significant tutorial or overview content.
Parts 2 and 3 contain papers on the main themes of week 1, 'Codes on
Graphs' and 'Iterative Decoding'(although Part 3 contains some system
theoretic papers on non-iterative decoding). Parts 4 and 5 contain papers
on the main themes of week 2, 'Convolutional Codes' and 'Symbolic Dy
namics and Automata Theory'.

In addition to the material collected in this volume, the reader can
find copies of slides of many of the workshop talks as well as an exceptional
trove of related bibliographic material on the IMA Web site at:

http://www.ima.umn.edu/csg
For a collection of related papers, the reader may also wish to consult

the Special Issue on 'Codes on Graphs and Iterative Algorithms' of the
IEEE Transactions on Information Theory to be published in 200l.

Finally, we are happy to acknowledge the excellent organization and
facilities provided by the IMA as well as financial support from the IMA, the
IEEE Information Theory Society and the U. S. National Security Agency.

Brian Marcus (IBM Almaden Research Center)

Joachim Rosenthal (University of Notre Dame)

CONTENTS

Foreword ... v

Preface ... vii

PART 1. OVERVIEWS

An introduction to the analysis of iterative coding
systems ... 1

Tom Richardson and Rudiger Urbanke

Connections between linear systems and convolutional
codes .. 39

Joachim Rosenthal

Multi-dimensional symbolic dynamical systems. .. 67
Klaus Schmidt

PART 2. CODES ON GRAPHS

Linear-congruence constructions of low-density
parity-check codes. .. 83

J. Bond, S. Hui, and H. Schmidt

On the effective weights of pseudocodewords for
codes defined on graphs with cycles. .. 101

G. David Forney, Jr., Ralf Koetter,
Frank R. Kschischang, and Alex Reznik

Evaluation of Gallager codes for short block
length and high rate applications. .. 113

David J.C. MacKay and Matthew C. Davey

Two small Gallager codes ... 131
David J. C. MacKay and Matthew C. Davey

Mildly non-linear codes. .. 135
Alan Parks

Capacity-achieving sequences. .. 153
M.A. Shokrollahi

ix

x CONTENTS

Hypertrellis: A generalization of trellis and factor
graph ... 167

Wai Ho Mow

PART 3: DECODING TECHNIQUES

BSC thresholds for code ensembles based on
"typical pairs" decoding. 195

Srinivas Aji, Hui Jin, Aamod Khandekar,
David J.C. MacKay, and Robert J. McEliece

Properties of the tailbiting BCJR decoder 211
John B. Anderson and Kemal E. Tepe

Iterative decoding of tail-biting trellises and
connections with symbolic dynamics .. 239

G. David Forney, Jr., Frank R. Kschischang,
Brian Marcus, and Selim Tuncel

Algorithms for decoding and interpolation. .. 265
M argreet K uijper

An algebraic description of iterative decoding schemes. 283
Elke Offer and Emina Soljanin

Recursive construction of Gr6bner bases for the
solution of polynomial congruences. .. 299

Henry O'Keeffe and Patrick Fitzpatrick

On iterative decoding of cycle codes of graphs. .. 311
Gilles Zemor

PART 4. CONVOLUTIONAL CODES AND CODES OVER RINGS

Convolutional codes over finite Abelian groups:
Some basic results. .. 327

Fabio Fagnani and Sandro Zampieri

Symbolic dynamics and convolutional codes 347
Bruce Kitchens

Linear codes and their duals over artinian rings. 361
Thomas Mittelholzer

CONTENTS xi

Unit memory convolutional codes with maximum
distance .. 381

Roxana Smarandaehe

Basic properties of multidimensional convolutional
codes ... 397

Paul Weiner

PART 5. SYMBOLIC DYNAMICS AND AUTOMATA THEORY

Length distributions and regular sequences. .. 415
Frederique Bassino, Marie-Pierre Beal,
and Dominique Perrin

Handelman's theorem on polynomials with positive
multiples. .. 439

Valerio de Angelis and Selim Tuneel

Topological dynamics of cellular automata 447
Petr Kurka

A spanning tree invariant for Markov shifts 487
Douglas Lind and Selim Tuneel

List of workshop participants. .. 499

Part 1. Overviews

AN INTRODUCTION TO THE ANALYSIS OF ITERATIVE
CODING SYSTEMS

TOM RICHARDSON" AND RUDIGER URBANKEt

Abstract. This paper is a tutorial on recent advances in the analysis of iterative
coding systems as exemplified by low-density parity-check codes and turbo codes.

The theory described herein is composed of various pieces. The main components
are concentration of system performance over the ensemble of codes and inputs, the ex
istence of threshold phenomena in decoding performance, and the computational and/or
analytical determination of thresholds and its implications in system design.

We present and motivate the fundamental ideas and indicate some technical aspects
but proofs and many technical details have been omitted in deference to accessibility to
the concepts. Low-density parity-check codes and parallel concatenated codes serve as
contrasting examples and as vehicles for the development.

Key words. turbo codes, low-density parity-check codes, belief propagation, it
erative decoding, stability condition, threshold, output-symmetric channels, Azuma's
inequality, support tree.

AMS(MOS) subject classifications. 94B05.

1. Introduction. This paper is a tutorial on recent advances in the
analysis and design of iterative coding systems as exemplified by low
density parity-check (LDPC) codes and turbo codes~ We will outline a
mathematical framework within which both of the above mentioned coding
systems may be analyzed. Certain aspects of the theory have important
practical implications while other aspects are more academic. Provable
statements concerning the asymptotic performance of these iterative cod
ing systems can be made. Here, asymptotic refers to the length of the
code. For codes of short length the theory we shall present does not yield
accurate predictions of the performance. Nevertheless, the ordering of cod
ing systems which is implied by the asymptotic case tends to hold even
for fairly short lengths. The bit error probability is the natural measure of
performance in the theory of iterative coding systems but the theory also
offers insights and guidance for various other criteria, e.g., the block error
probability.

We will here briefly describe an example and formulate some claims
that represent what we consider to be the apex of the theory: Let us
consider the class of (3,6)-regular LDPC codes (see Section 2.1.1 for a
definition) of length n for use over an additive white Gaussian noise channel,
i.e., we transmit a codeword consisting of n bits Xi E {±1} and receive n
values Yi = Xi + Zi where the Zi are Li.d. zero mean Gaussian random

"Bell Labs, Lucent Technologies, Murray Hill, NJ 07974, USA; email:
tjr@lucent.com.

tSwiss Federal Institute of Technology - Lausanne, LTHC-DSC, CH-I015 Lausanne,
Switzerland; email: Rudiger.Urbanke@epfl.ch .

1

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

2 TOM RICHARDSON AND RUDIGER URBANKE

variables with variance (12. We choose the particular code, as determined
by its associated particular graph, at random (see Section 2). We transmit
one codeword over the channel and decode using the sum-product algorithm
for e iterations. The following statements are consequences of the theory:

1. The expected bit error rate approaches some number E = E(e) as n
tends to infinity and this number is computable by a deterministic
algorithm.

2. For any 0 > 0, the probability that the actual fraction of bit errors
lies outside the range (E - 0, E + 0) converges to zero exponentially
fast in n.

3. There exists a maximum channel parameter (1* (in this case (1* ~

0.88), the threshold, such that liml-+oo E(e) = 0 if (I < (1* and
liml-+oo E(e) > 0 if (I > (1*.

Each of these statements generalize to some extent to a wide variety of
codes, channels, and decoders. The existence of E(e) in statement 1 is
very general, holding for all cases of interest. In general there may not be
any efficient algorithm to compute this number E(e) but, fortunately, for
the case of most interest, namely the sum-product algorithm, an efficient
algorithm is known. Statement 2 holds in essentially all cases of interest
and depends only on the asymptotics of the structure of the graphs which
define the codes. Statement 3 depends on both the decoding algorithm
used and the class of channels considered (AWGN). It depends on the fact
that the channels are ordered by physical degradation (see section 7) and
that the asymptotic decoding performance respects this ordering.

Although the threshold, as introduced above in 3, is an asymptotic
parameter of the codes, it has proven to have tremendous practical signif
icance. It is only a slight exaggeration to assert that, comparing coding
systems with the same rates, the system with the higher threshold will per
form better for nearly all n. The larger n is, the more valid the assertion
is. Even though the assertion is not entirely true for small n, one can still
significantly improve designs by looking for system parameters that exhibit
larger thresholds.

To design for large threshold one needs to be able to determine it or
at least accurately estimate it. Therefore an important facet of the theory
of these coding systems deals with the calculation of the threshold.

In his Ph.D. thesis of 1961, Gallager [13] invented both LDPC codes
and iterative decoding. With the notable exceptions of Zyablov and Pinsker
[45] and Tanner [40] (see also Sourlas [39]), iterative coding systems were
all but forgotten until the introduction of turbo codes by Berrou, Glavieux
and Thitimajshima [4] (see also [19]). In the wake of the discovery of turbo
codes LDPC codes were rediscovered by MacKay and Neal [24], completing
the cycle which had started some thirty years earlier.

For some simple cases Gallager was able to determine thresholds for
the systems he considered. In the work of Luby et. al. [22] the authors used
threshold calculations for the binary erasure channel (BEC) and the binary

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 3

symmetric channel (BSC) under hard decision decoding to optimize the
parameters of irregular LDPC codes (Gallager had considered only regular
LDPC codes) with respect to the threshold. By this approach they showed
that very significant improvements in performance were possible. Indeed,
they explicitly exhibited a sequence of LDPC code ensembles which, under
iterative decoding, are capable of achieving the (Shannon) capacity of the
BEC. To date, the BEC is the only non-trivial channel for which capacity
achieving iterative coding schemes are explicitly known.

Another important aspect of the work presented in [22] is the method
of analysis. The approach differed from that taken by Gallager in certain
key respects. The approach of Gallager allowed statements to be made
concerning the asymptotics of certain special constructions of his codes.
The approach of Luby et. al., allowed similar and, in some ways, stronger
statements (such as the ones given in our example above) to be made
concerning the asymptotics of random ensembles, i.e., randomly chosen
codes from a given class. This placed the emphasis clearly on the threshold
and away from particular constructions and opened the door to irregular
codes for which constructions are generally very difficult to find.

In [30] the approach taken in [22] was generalized to cover a very
broad class of channels and decoders. Also in [30], an algorithm was intro
duced for determining thresholds of LDPC codes for the same broad class
of channels and the most powerful and important iterative decoder, the
sum-product algorithm, also called belief propagation, which is the name
for a generalization of the algorithm as independently developed in the AI
community by Pearl [28].1 In [29] the full power of these results was re
vealed by producing classes of LDPC codes that perform extremely close
to the best possible as determined by the Shannon capacity formula. For
the additive white Gaussian noise channel (AWGNC) the best code of rate
one-half presented there has a threshold within O.06dB of capacity, and sim
ulation results demonstrate a LDPC code of length 106 which achieves a bit
error probability of 10-6 , less than 0.13dB away from capacity. Recent im
provements have demonstrated thresholds within 0.012dB of capacity [5].
These results strongly indicate that LDPC codes can approach Shannon
capacity. As pointed out above, only in the case of the BEC has such a
result actually been proved [23]. Resolving the question for more general
channels remains one of the most challenging open problems in the field.

In the case of turbo codes the same general theory applies, although
there are some additional technical problems to be overcome. In the setting
of turbo codes belief propagation corresponds to the use of the BCJR algo
rithm for the decoding of the component codes together with an exchange
of extrinsic information. This is generally known as "turbo decoding".2

IThe recognition of the sum-product algorithm as an instance of belief propagation
was made by Frey and Kschischang [12] and also by McEliece, Rodemich, and Cheng
[26].

2The original incarnation ofturbo decoding in [4] was not belief propagation, Robert-

4 TOM RICHARDSON AND RUDIGER URBANKE

Thus, one can similarly explore turbo codes and generalizations of turbo
codes from the perspective of threshold behavior. It is possible to describe
an algorithm for computing thresholds for turbo codes but such an al
gorithm appears computationally infeasible except in the simplest cases.
Fortunately, it is possible to determine thresholds to any desired degree
of accuracy using Monte-Carlo methods. The putative deterministic algo
rithm used to compute thresholds can be mimicked by random sampling.
One can prove that certain ergodic properties of the computation guaran
tee convergence of the Monte-Carlo approach (assuming true randomness)
to the answer that would have been determined by the exact algorithm.
Moreover, all of the information used to optimize LDPC codes is available
from the Monte-Carlo approach and, therefore, it is possible to optimize
thresholds for various extensions of turbo codes. Generalizations of turbo
codes appear to exhibit thresholds approaching Shannon capacity. The
work described here appears in [31].

In a very precise sense, determining the threshold by the methods in
dicated above corresponds to modeling how decoding would proceed on
an infinitely long code. One determines not merely the threshold, but the
statistics of the entire decoding process. Decoding proceeds in discrete time
by passing messages along edges in a graph. In the infinite limit one con
siders the distribution of the messages (pick an edge uniformly at random,
what message is it carrying?) These distributions are parameterized in
a suitable fashion and the algorithms mentioned above iteratively update
the distributions in correspondence with iterations of the decoding process.
The sequence of distributions so obtained and the method used to obtain
them are referred to as density evolution. Clearly, density evolution is key
to understanding the decoding behavior of such systems and the study of
density evolution is a fundamental outgrowth of the general theory.

Our purpose in this paper is to provide the reader with a vehicle for
quickly grasping the key features, assumptions, and results of the general
theory. The paper consists of further details and examples intended to be
sufficient to equip the reader with a practical overview of the current state of
knowledge as embodied in this theory. The paper is loosely organized along
the lines of assumptions and conclusions: Each section is devoted to stating
assumptions required for some part of the theory, usually some examples, to
stating what conclusions can be drawn, and indicating what mathematical
techniques are used to draw the conclusions. We have ordered material
from most general to most specific. Rather that attempting to present the
most general, all-encompassing, form of the theory, we have tried to make
the main ideas as accessible as possible.

2. Graphical representations of codes. The mathematical frame
work described in this paper applies to various code constructions based on
graphs. To keep notation to a minimum, we will restrict our attention in

son [33) refined the algorithm into a form equivalent to belief propagation.

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 5

this paper to the standard parallel concatenated code with two component
codes and to LDPC codes. For a more detailed treatment of turbo codes
which includes also serially concatenated codes and generalized turbo codes
we refer the reader to [31]. The theory developed here also extends to much
more general graphical representations such as those developed by, e.g., N.
Wiberg and H.-A. Loeliger and R. Kotter [44], Kschischang, Frey, Loeliger
[21], Kschischang and Frey [20], or Forney [11]. LDPC codes as well as
turbo codes can be represented using quite simple graphs and the decoders
of interest operate directly and locally on these graphs. (In the case of
turbo codes one should bear in mind windowed decoding. For a description
of windowed decoding see Section 5.2. The theory extends to standard, i.e.,
non-windowed, turbo decoding by taking limits but the analogy between
LDPC codes and turbo codes is closer in the case of windowed decoding.)

The theory addresses ensembles of codes and their associated ensem
bles of graphs. For block codes the idea of looking at ensembles of codes
rather than individual codes is as old as coding theory itself and originated
with Shannon. In the setting of turbo codes this idea was introduced by
Benedetto and Montorsi [3] and it was motivated by the desire to bound
the maximum likelihood performance of turbo codes.3 The ensembles are
characterized by certain fixed parameters which are independent of the
length of the code. The graphs associated to LDPC codes, for example,
are parameterized by their degree sequences (,x, p) (see below for details).
The graphs associated to turbo codes are parameterized by the polynomi
als determining the constituent codes, their interconnection structure, i.e.,
parallel vrs. serial, and puncturing patterns. Given the size of the code n,
these fixed parameters determine the number of the various node types in
the graph. The ensemble of codes is defined in terms of the possible edges
which complete the specification of the graph. In both of the above cases,
the graphs are bipartite: One set of nodes, the variable nodes, corresponds
to variables (bits) and the other set, the check nodes, corresponds to the
linear constraints defining the code.

In general, the fixed parameters and the length n determine the nodes
of the graph and a collection of permissible edges. One then considers
the set of all permissible edge assignments and places on them a suitable
probability distribution. The theory addresses properties of the ensemble
as n gets large.

2.1. Ensembles of codes and graphs. We shall now present more
detailed definitions for code ensembles of LDPC codes and parallel con
catenated codes. These examples, although important, are not exhaustive.
Note that the local connectivity of the graphs remains bounded indepen
dent of the size of the graph. This is the critical property supporting the

3 A considerable amount of additional research has been done in the direction of
bounding the maximum likelihood performance of a code from information on its spec
trum, see e.g. [10, 42, 34, 35, 9].

6 TOM RICHARDSON AND RUDIGER URBANKE

asymptotic analysis, i.e., the concentration theorem.

2.1.1. LDPC codes. As described above, low-density parity-check
codes are well represented by bipartite graphs in which the variable nodes
corresponds to elements of the codeword and the check nodes correspond
to the set of parity-check constraints satisfied by codewords of the code.
Regular low-density parity-check codes are those for which all nodes of the
same type have the same degree. Thus, a (3,6)-regular low-density parity
check code has a graphical representation in which all variable nodes have
degree three and all check nodes have degree six. The bipartite graph
determining such a code is shown in Fig. 1.

VI

V2

V3

Cl

V4

C2

V5

C3

V6

C4

V7

C5

Vs

Vg

VlO

FIG. 1. A (3, 6)-regular code of length 10 and rate one-half. There are 10 variable
nodes and 5 check nodes. For each check node Ci the sum (over GF(2)} of all adjacent
variable nodes is equal to zero.

For an irregular low-density parity-check code the degrees of each set
of nodes are chosen according to some distribution. Thus, an irregular low
density parity-check code might have a graphical representation in which
half the variable nodes have degree three and half have degree four, while
half the constraint nodes have degree six and half have degree eight. For a
given length and a given degree sequence (finite distribution) we define an
ensemble of codes by choosing the edges, i.e., the connections between vari
able and check nodes, randomly. More precisely, we enumerate the edges

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 7

emanating from the variable nodes in some arbitrary order and proceed in
the same way with the edges emanating from the check nodes. Assume
that the number of edges is E. Then a code (a particular instance of this
ensemble) can be identified with a permutation on E letters. Note that all
elements in this ensemble are equiprobable. In practice the edges are never
chosen entirely randomly since, e.g., certain potentially unfortunate events,
such as double edges and very short loops, in the graph construction can
be easily avoided.

Hence, for a given length n the ensemble of codes will be determined
once the various fractions of variable and check node degrees have been
specified. Although this specification could be done in various ways the
following notation introduced in [22] leads to particularly elegant state
ments of many of the most fundamental results. Let dl and dr denote
the maximum variable node and check node degrees, respectively, and let
>.(x) := L~:"l >'ixi-1 and p(x) := L~';;'l Pixi-1 denote polynomials with
non-negative coefficients such that >'(1) = p(1) = 1. More precisely, let the
coefficients, >'i (Pi) represent the fraction of edges emanating from variable
(check) nodes of degree i. Then, clearly, this degree sequence pair (>', p)
completely specifies the distribution of the node degrees. The alert reader
may have noticed several curious points about this notation. First, we do
not specify the fraction of nodes of various degrees but rather the fraction
of edges that emanate from nodes of various degrees. Clearly, it is easy
to convert back and forth between this edge perspective and a node per
spective. E.g., assume that half the variable nodes have degree three and
half have degree four and that there is a total of n nodes. Since every
degree three node has three edges emanating from it, whereas every degree
four nodes has four edges emanating to it we see that there are in total
1/2·3n edges which emanate from degree three nodes and that there are
in total 1/2. 4n edges which emanate from degree four nodes. Therefore
\ 1/2·3 3/7 d \ 1/2.4 4/7 th . h'
/\3 = 1/2.3+1/2.4 = an /\4 = 1/2.3+1/2.4 = so at m t 1S case
>.(x) = 3/7x2 + 4/7x3 • Second, the fraction of edges which emanate from a
degree i node is the coefficient of X i - 1 rather than xi as one might expect at
first. The ultimate justification for this choice comes from the fact that, as
we will see later, simple quantities like >"(0) or p'(l) take on an operational
meaning. A particular striking example of the elegance of this notation is
given by the stability condition which we will discuss in Section 8.3. This
condition takes on the form >.'(O)p'(l) < g(o-) where 9 is a function of the
channel parameter 0 only.

2.1.2. Turbo codes. For every integer n we define an ensemble of
standard parallel concatenated codes in the following manner. We first fix

the two rational functions G1 (D) = :~fg~ and G2 (D) = :~fg~ which de
scribe the recursive convolutional encoding functions. Although the general
case does not pose any technical difficulties, in order to simplify notation,
we will assume that all codewords of a convolutional encoder start in the

8 TOM RICHARDSON AND RUDIGER URBANKE

zero state but are not terminated. For x E {±I}n let ')'i(X), i = 1,2,
denote the corresponding encoding functions. Then for fixed component
codes and a given permutation 7f on n letters the unpunctured codewords
of a standard parallel concatenated code have the form (x, ')'1 (x), ')'2 (7f(X))).
Therefore, for fixed component codes and a fixed puncturing pattern there
is a one-to-one correspondence between permutations on n letters and codes
in the ensemble. We will assume a uniform probability distribution on the
set of such permutations. This is the same ensemble considered in [3] but
the present focus is on the analysis of the performance of turbo codes under
iterative decoding rather than under maximum likelihood decoding.

The graphical representation of the code contains variable nodes, as
in the LDPC code case, and check nodes, which, in this case, represent a
large number of linear constraints on the bits associated to the variable
nodes. A check node represents the linear constraints imposed by an en
tire constituent code. Equivalently, it represents the trellis which in turn
represents the constituent code. Hence, for standard parallel concatenated
codes with two component codes, there are only two check nodes.

3. Decoding: Symmetries of the channel and the decoder. In
this paper we will limit ourselves to the case of binary codes and transmis
sion over memory less channels since in this setting all fundamental ideas
can be represented with a minimum of notational overhead. The gener
alization of the theory to larger alphabets [7] or channels with memory
[14, 16, 15, 18, 25] is quite straightforward and does not require any new
fundamental concepts. As usual for this case, we will assume antipodal
signalling, i.e., the channel input alphabet is equal to {±1}.

The decoding algorithms of interest operate directly on the graph,
described in Section 2.1, that represents the code. The algorithms are lo
calized and distributed: edges carry messages between nodes and nodes
process the incoming messages received via their adjacent edges in order
to determine the outgoing messages. The algorithms proceed in discrete
steps, each step consisting of a cycle of information passing followed by pro
cessing. Generally speaking, computation is memoryless so that, in a given
step, processing depends only on the most recent information received from
neighboring nodes. It is possible to analyze decoders with memory but we
will not consider such decoders here. Given the above setup we distinguish
between two types of processing which may occur according to the depen
dency of the outgoing information. When the outgoing information along
an edge depends only on information which has come in along other edges,
then we say that the algorithm is a message-passing algorithm. The sum
product algorithm is the most important example of such an algorithm.
The most important example of a non message-passing algorithm is the
[lipping algorithm. This is a very low complexity hard-decision decoder
of LDPC codes in which bits at the variable nodes are 'flipped' in a given
round depending on the number of unsatisfied and satisfied constraints they

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 9

T
Systematic bits x

1
T

Parity bits '1'1 (x)

~

T
Parity bits 'Y2 (1f(x)) •

~ :

FIG. 2. A graphical representation of a standard parallel concatenated code analo
gous to the bipartite graph of a LDPC code.

are connected to. Here, we say that a constraint is satisfied if and only if the
modulo two sum of its neighbor bits is O. We note that the techniques used
to analyze these two types of decoders are quite distinct and the nature of
statements which can be made tend to differ significantly. (Nevertheless,
certain aspects of the theory outlined here, in particular the concentration
results, carryover to many variants of flipping.) The statements usually
made for the flipping algorithm are more reminiscent of traditional coding
theory in that they assert that for all error patterns of weight less than
a given threshold the decoder will decode correctly [45, 38]. For message
passing decoders the overall focus is on the resulting bit error probability.
A large fraction of high weight error patterns might be correctable but
occasionally even low weight error patterns may lead to errors. Currently
the best coding schemes are based on message-passing decoders but the

10 TOM RICHARDSON AND RUDIGER URBANKE

flipping algorithm is often of interest because of its inherent extremely low
complexity.

It is helpful to think of the messages (and the received values) in
the following way. Each message which traverses an edge (v, c), in either
direction, represents an estimate of the particular bit associated to v. More
precisely, it contains an estimate of its sign and, possibly, some estimate
of its reliability. To be concrete, consider a discrete case in which the
received alphabet, the alphabet of estimates provided to the decoder from
the channel, is 0 := {-qo, -(qo-l), ... , -1,0,1, ... , (qo-l), qo} and where
the message alphabet is M := {-q, -(q - 1), ... , -1,0,1, ... , (q - 1), q}
where we assume q ~ qo. The sign of the message indicates whether the
transmitted bit is assumed to be -1 or +1, and the absolute value of
the message is a measure of the reliability of this estimate. In particular,
the value 0 represents an erasure. In the continuous case we may assume
that 0 = M = lit Again, the sign of the message indicates whether the
transmitted bit is assumed to be -1 or + 1, and the absolute value of the
message is a measure of the reliability of this estimate. Of course, it is
not necessary that 0 be included in either alphabet, nor is it necessary
that the messages actually have this symmetric form, but they should be
representable as such.

3.1. Restriction to the all-one codeword. For all algorithms of
interest in the current context computation is performed at the nodes based
on information passed along the edges. Thus, for every occurring variable
degree d we have a map I}i~ft : 0 x Md -+ Md to represent the computation
done at a variable node of degree d. Similarly, for every occurring check
node of degree d we have a map I}i~ght : 0 x Md -+ Md to represent the
computation done at a check node of degree d. (In some cases, i.e., turbo
codes, outgoing messages to variable nodes of degree one have no effect
on subsequent messages and are therefore usually not actually computed.)
Although it is not necessary, one will usually have symmetry under per
mutation of the input messages so that if I}i~ft (uo, UI, ••• , Ud) = (Wl, ... , Wd)
then l}i~ft(UO,U7r(l),,,,,U7r(d)) = (W 7r (l)"",W7r(d)) for any permutation 7r on
d letters. In the case of LDPC codes we also have such symmetry for l}idght

but for turbo codes, because of trellis termination, we do not.4

Under the message-passing paradigm the message maps have the fur
ther property that the i-th outgoing message does not depend on the i-th
incoming message. In this case, and under the permutation symmetry as
sumption, we have functions Ml~ft : 0 x M d- 1 -+ M such that

I}i~ft (uo, Ul, ... , Ud) =
(Ml~f.(UO' U2, ... , Ud), Ml~ft (uo, Ul, U3, ... , Ud), ... , Ml~ft (uo, Ul, ••• , ud-d)·

4 Asymptotically, however, some permutation symmetry is present in the turbo code
case but the permutations must be restricted to, e.g., the information (x) bits.

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 11

Similarly, under permutation symmetry at the check nodes, we shall have
a map Mr~ght : 0 X Md --+ M.

Our subsequent analysis and notation will be greatly simplified by as
suming the following symmetry conditions on the channel and the decoding
algorithm.

• Channel symmetry: p(Y = qlX = 1) = p(Y = -qlX = -1).
• Check node symmetry: If ~~ght(Ul, .•. ,Ud) = (Wl, ... ,Wd) then

~~ght(blUb ... ,bdUd) = (b1wl, ... ,bdWd) for any ±1 sequence
(b1 , ... , bd) satisfying the constraint associated to the check node.

• Variable node symmetry:

We claim that under these conditions the (bit or block) error probability
is independent of the transmitted codeword. For a proof in the message
passing case see [30]. The reader may recognize the channel symmetry
condition as the condition that the channel be output-symmetric. Note
that linear codes are known to be capable of achieving capacity for binary
input memoryless output-symmetric channels.5 This is reassuring, since
our search for low complexity coding schemes which can approach capacity
takes place in the class of linear codes.

The great simplification which accrues from the symmetry assump
tion is that one need only determine the probability of error for a single
codeword, the all-one codeword.6 In this case, messages are 'correct' when
their sign is positive and 'incorrect' when their sign is negative. When
we consider the distribution of the messages we invoke the all-one code
word assumption so that the probability of an incorrect message is just the
probability mass of the distribution supported on negative values. In other
words, we are really interested in tracking the distribution of messages rel
ative to the transmitted codeword. Under the symmetry assumptions this
takes a particularly simple and appealing form.

In the sequel we will assume that the symmetry conditions are fulfilled
and that the all-one codeword was transmitted. We will now present some
examples of channels and decoders satisfying the above conditions

EXAMPLE 1 (BSC, LDPC code, Gallager A). The channel provides
only hard information 0 = {-I, + I} and the messages are also binary

~ = {~1, +2}' T~e d~oding i~ message passing w.ith M,'t(uo, Ub ... , ud-d
- -Uo if Ul - U2 - ... - Ud-l - -Uo, and, otherwzse, M 'eft (uo, Ul, ... , Ud- d
= uo. The check node rule is given by M~9ht (Ul , ... , Ud- d = Ul U2 ... Ud-l. 0

For this decoder thresholds and optimal codes can be analytically de
termined in many cases, see [2].

5The key for the proof of this statement lies in the observation that in this case an
input distribution of [1/2,1/2] is optimal.

6This should be compared to the concept of geometrically uniform codes in the
setting of maximum likelihood decoding.

12 TOM RICHARDSON AND RUDIGER URBANKE

EXAMPLE 2 (BEC, LDPC codes, Belief Propagation). The channel
either correctly relays the transmitted bit or this bit is erased. These events
happen with probability (1- 8) and 8, respectively. Thus, assuming that the
output of the channel is represented as log-likelihood ratios we have 0 =
{ -00,0,00}. Because of the special structure of this channel we have M =
0, where the messages are again represented as log-likelihood ratios. The
decoding is message passing with M,~ft(UO, Ul, ..• , ud-d = L~~~ Ui. Note
that this rule is well defined since, by construction, the sum can never
contain +00 and -00 together. The check node rule is given by

d-l

M~9ht(Ul' ... , Ud-l) = II Ui,
i=l

where 0 . 00 = O. 0

EXAMPLE 3 (BSC, LDPC codes, Belief Propagation). The channel
provides only hard information but associated to these values is the reliabil
ity magnitude given by loge (1- €) / €) where € is the cross-over probability of
the BSC. Thus, we have 0 = {-log((l - €)/€), 10g((1 - €)/€)}. Messages,
like the received values, are log-likelihoods, hence M = JR. The decoding is
message passing with M,~ft (uo, Ul, ... , Ud-l) = L~~~ Ui. The check node rule

is given by M~ght(Ul' ... , ud-d = 2tanh-l(I1~~11 tanh(ui/2)). The decoding
algorithm described in this example can be applied in general provided the
received alphabet is mapped into the associated log-likelihood representation.
o

EXAMPLE 4 (AWGNC, Turbo Codes, Belief Propagation). We as
sume the channel provides the log-likelihood estimate of the bit based on
the observation y = x + z where x E {± I} is the transmitted bit and z is
zero mean Gaussian with variance a 2 • The log-likelihood estimate is given
by 2a-2 y. Messages are log-likelihoods so 0 = M = lIt The decoding is
message passing with M,~ft (uo, Ul, ... , Ud-l) = L~~~ Ui. The check node rule
is given by APP decoding of the associated constituent code, which corre
sponds to performing the BCJR algorithm on the trellis and outputting the
extrinsic information. 0

The final example is a flipping type algorithm. Various flipping al
gorithms have been considered in the literature. Some, such as list-based
flipping, do not directly fit into our general description. This is because, in
these algorithms, the decision on whether to flip a bit or not is based on a
global criterion. Nevertheless, such an algorithm can be mimicked to any
degree of accuracy by properly chosen local algorithms so that the analysis
can still be applied to such algorithms by taking limits. We present here
the flipping algorithm in a somewhat unusual form.

EXAMPLE 5 (BSC, LDPC codes, Flipping). We assume a (d1), dc)

regular LDPC code and transmission over a BSC. Hence, the channel pro
vides only hard information 0 = { -1, + I} and the messages are also binary

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 13

M = {-I, +1}. We are given a threshold t and

if !{Ui : Ui = uo}! > t and

otherwise. For the check nodes we have

where p = fIt::! Ui. 0
Note that the check node message map satisfies the message-passing

paradigm but the variable node message map does not. In general t will
depend on the iteration number and on the degree of the node. To ap
proximate list based flipping algorithms we might also allow t to depend
on some exogenous random variable.

4. Decoding: Localization and concentration. As we have seen,
the coding systems we consider can be represented as graphs on which the
decoders directly operate. More precisely, decoding consists of local com
putations at the nodes in the graph together with exchange of information
along the edges of the graph. Time is measured discretely so that if decod
ing proceeds through e time steps then any random variable associated to a
node v in the graph can influence computations at only those nodes whose
distance in the graph from the associated node is e, i.e., an influenced node
must be able to reach to v in e steps along the graph. Because of this, and
because of the boundedness of the degree of the graph the range of influ
ence of local properties (either of the graph or of received data) remains
bounded independent of the size of the graph given a bounded number of
iterations.

In this paper we focus mainly on message-passing algorithms although,
as pointed out previously, there are decoding algorithms of interest, e.g.,
the flipping algorithm, which do not fit directly into this framework. Our
main reason for this restriction is that the class of message-passing decoders
contains the locally-optimal decoder, namely belief-propagation, as well as
many other very good and low-complexity decoders. Further, the class
of message-passing decoders can be analyzed in a unified manner whereas
other decoders, like the flipping algorithm, require quite distinct methods
for their analysis. Nevertheless, it is worth pointing out that the concentra
tion theorem, which we will discuss in this section, in its most general form
applies to all types of local algorithms and not only to message-passing
algorithms.

What is the role of the concentration-theorem in the context of iterative
coding systems? Consider, e.g., the bit error probability for a particular

14 TOM RICHARDSON AND RUDIGER URBANKE

code and decoding algorithm. Clearly, this is a quantity of great practi
cal significance. Choosing a code from an ensemble amounts to choosing
one of the possible random instances for the graph. E.g., in the case of
turbo codes a considerable amount of attention has been paid to the issue
of choosing a good interleaver. For short lengths different randomly cho
sen instances of the interleaver may exhibit significantly different behavior.
It has been observed, however, that as the codes get longer the variation
among interleavers becomes less significant (although it is easy to find bad
interleavers). This is a direct consequence of the concentration theorem
which asserts that, as n increases, certain quantities, such as the aver
age decoded bit error probability, concentrate: In the probabilistic sense,
different instances of the graph and different channel realizations will be
have similarly with respect to average quantities. It should be understood
that the rate at which this concentration occurs is not well predicted by
the current theory: The theory predicts exponential convergence in n but
the actual exponent might differ significantly from the bounds which one
derives. To make an analogy, the concentration theorem plays a similar
role for iterative coding systems that the asymptotic equipartition theorem
plays in much of information theory.

The method of analysis has extremely broad application since it re
quires very few assumptions. The mathematical technique which leads to
the concentration theorem is now virtually standard among probabilistic
techniques used to analyze combinatorial problems. In the next section we
shall present the technique as applied to graph coloring. For an extended
introduction to the iterative decoding application we refer the reader to
[32). The migration of the technique into coding theory was initiated in the
work of Luby et. al. [22). They analyzed LDPC codes in an essentially com
binatorial setting: transmission over the binary symmetric channel (BSC)
or the binary erasure channel (BEC) with hard decision message-passing
decoding. In [30) the basic technique, as applied to LDPC codes, was signif
icantly generalized to encompass essentially any message-passing decoding
algorithm, including belief propagation, and any memory less channel.

The general concentration theorem itself consists of two distinct parts.
The first part shows convergence of the expected performance to the asymp
totic value, the second part shows concentration of the performance around
the mean as a function of length. This concentration is further separated
into concentration over input' noise and concentration over the random
ensemble of graphs. In practice it is the concentration over the random
ensemble of graphs that is of most interest. Ideally one would like to find
the graph that offers the best performance averaged over the channel noise
statistics. Simulation performance curves convey precisely this informa
tion.

The key asymptotic behavior required for the first part is that, as n
increases, the graphs become more and more locally tree-like, i.e., loop
free. Although it is readily apparent that this holds in the case of LDPC

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 15

codes it is not so apparent for the case of turbo codes. In fact, as initially
defined, the graphs associated to turbo codes do not exhibit this tree-like
asymptotic. Nevertheless, the theory applies to this case because depen
dencies among variables at the check nodes, i.e., in the trellis, decay with
'distance' along the trellis. In the case of windowed decoding this is pre
cise: edges sufficiently well separate participate in non-overlapping disjoint
windows and, assuming incoming messages are independent, their outgoing
messages will be independent. Since we fix the number of iterations and
let n grow, the expected fraction of nodes whose decoding neighborhood is
not tree-like decays as n -1. Hence, the expected bit error rate converges to
that for a random tree.

The key asymptotic behavior required for the second part is that
graphs which are strongly similar, i.e., have most edges in common, will
perform similarly on the same input. This can be seen most easily as fol
lows. Consider a LDPC code and its associated graph. Imagine altering
the graph by swapping the connections of two edges, i.e., replace edges
(vl,cd,(V2,C2) with (Vl,C2),(V2,cd. Now compare results when decoding
a particular input. Since decoding proceeds locally and we consider only
a finite number of iterations, the effect of the swap is bounded in the
graph, limited only to those nodes and variables that are sufficiently close
to VI, Cl, V2, and C2. The larger the graph, the smaller will be the fraction of
the affected portion. If we look at, e.g., the number of errors in the decod
ing, then the difference between the two graphs is bounded by a constant
independent of n. In the following section we describe the mathematical
technique which exploits this property.

4.1. Dooh martingales and Azuma's inequality. Although we
are most interested in applying the mathematical techniques described in
this section to iterative decoding, they are most conveniently presented via
their application to graph coloring. It was in this application, due to Shamir
and Spencer [36], that the method first made its impact in combinatorics.

Consider a random graph on n vertices in which each possible edge,
i.e., vertex pair, is independently admitted with probability p. Consider
the problem of coloring the vertices of a randomly constructed such graph
so that no two vertices connected by an edge have the same color. The
number of colors required is called the chromatic number of the graph H
and is denoted by X(H). What Shamir and Spencer showed, in effect, is
that the chromatic number X(H), viewed as a random variable, is tightly
concentrated around its expected value lE[X(H)]. Perhaps most striking,
this result was obtained without the determination of lE[X(H)].

The argument used is now known as a vertex exposure martingale ar
gument. Let H denote a graph constructed randomly as above. Pick an
arbitrary ordering of the n vertices. Imagine that the graph H is unknown
but that vertices will be revealed one at a time. Each time a vertex is re
vealed all edges connected to previously revealed vertices are revealed, i.e.,

16 TOM RICHARDSON AND RUDIGER URBANKE

when vertex i is revealed the presence or absence of the edge (j, i) for j < i
is revealed. Let Ij,i denote a random variable which indicates whether the
edge (j, i) is present or not. Let Xo(H) denote the expected chromatic
number of H when nothing has been revealed, i.e., Xo(H) = IE[X(H)].
Let Xi(H) denote the expected chromatic number of H conditioned on
the information obtained after revealing the first i vertices of H, i.e.,
Xi(H) = lE[x(H)I{Ij,kh~j<k~i]' Thus, in particular, Xn(H) = X(H).
Now, recall that H is a random variable and therefore Xi := Xi(H) is a
random variable as well (with the randomness residing in the set of random
variables {Ij,dI9<k~i)' Note that

IE[Xi+II{ Ij,kh~j<k~i]

= 1E[IE[x(H)I{Ij,dl~j<k~i+1l1{Ij,kh~j<k~i]

= IE[X(H) I{ Ij,k h~j<k~i]
=Xi

so that the sequence IE[X(H)] = Xo, Xl, ... , Xn = X(H) forms a martin
gale. More precisely, a martingale constructed this way, as sequence of
conditional expectations where the information conditioned on is increas
ing, is usually called a Doob's Martingale [27, p. 90]. If we take the graph
H and modify the edges involving the i-th vertex in an arbitrary way to
obtain a graph G, then IX(H) - x(G)1 ~ 1 : given a coloring of H we
need at most one more color to color G and vice versa. It follows that
IXi(H) - Xi-I(H)1 ~ 1 since X i- 1 (H) is an average of all possible values
for Xi(H), hence, IXi - Xi-II ~ l.

In the case of a random walk, Xi = L:~=1 Zj where the Zj are inde
pendent random variables with finite expectation, we can use the Chernoff
bound to give an exponential bound on the probability that Xi will deviate
from its mean by more than a fraction €. Azuma's inequality provides a
similar bound for the case of dependent random variables assuming that
the sequence of these random variables forms a martingale.

THEOREM 4.1 (Azuma's Inequality). Let X o, Xl.'" be a martingale
sequence such that for each k 2: 1,

IXk - Xk-ll ~ CXk,

where the constant CXk may depend on k. Then, for aU I 2: 1 and any ,\ > 0

The sequence Xo, ... , Xn constructed above satisfies the conditions re
quired by Azuma's inequality with CXk = 1. Since Xo(H) = IE[X(H)] and
Xn(H) = X(H), we obtain

Pr[Jx(H) -1E[x(H)]1 > AJn=!] ~ 2e->.2/2.

This is Shamir and Spencer's result [36]. For further applications see [27, 1].

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 17

4.1.1. Application to iterative decoding. The application of the
technique described above to iterative decoding involves some additional
complexities but follows essentially the same lines of argument. For both
LDPC codes and turbo codes, once the nodes are fixed, the ensemble of
graphs is in one-to-one correspondence with the set of permutations on
m letters for some m. A Doobs martingale is formed: conceptually, we
reveal the permutation one element at a time. In the case of LDPC codes
this corresponds to revealing one edge in the graph. In the case of turbo
codes this corresponds to revealing a pair of edges in the graph. As the
permutation is revealed we look at the expected number of decoding errors.
The martingale may be extended by revealing received values after the
graph is fully revealed. In this way one can prove concentration not only of
average performance but also concentration of performance on individual
inputs.

When revealing the graph, the bound required for Azuma's inequality
is derived using the swapping argument indicated earlier. Different possi
bilities for the revealed edges are compared by identifying the continuations
of the revelation process through swapping. In this way the impact of the
revealed edge can be shown to be bounded. When revealing the received
values the argument is easier. Since we consider a finite number of itera
tions, the effect of any received value is restricted to a finite portion of the
graph independent of n.

Let Z£[n] be the random variable denoting the fraction of incorrect
messages passed in the f-th iteration of a randomly chosen code and set
of received values for a code of length n. For either LDPC codes or turbo
codes one obtains a theorem of the following form.

THEOREM 4.2. For any f there exists a constant f3 such that the
probability that IZl[n] - E[Zdnlll > !'; is less than e-/3e n Furthermore,
Zdoo] := limn--too IE[Z£ [n]] exists and there exists a constant "y such that
IIE[Zdn]] - ZtlooJl < ~.

5. The support tree of message-passing decoders. In anticipa
tion of the analysis of message-passing algorithms, we shall describe in some
detail the dependency structure of messages in the graphs of interest under
the message-passing paradigm. The extension to non-message-passing is
straightforward and we shall not consider it in detail.

Consider a message passed along an edge during a message-passing
decoding. Depending on the iteration number this message will, in general,
be a function of some subset of the received values and some sub-graph of
the graph defining the code. The subset of received values on which the
message depends are those associated to variable nodes of the sub-graph.
Thus, we can view the message simply as a function of the sub-graph. Note
that the sub-graph depends only on the iteration number and not on the
particular message-passing algorithm used. (In the case of turbo codes one
should bear in mind windowed decoding of width W = 2w + 1.) Since the

18 TOM RICHARDSON AND RUDIGER URBANKE

message traverses the edge in a particular direction the sub-graph depends
on this direction. If the iteration number is i then the sub-graph is called
the i-directed neighborhood of the (directed) edge.

By proceeding backwards in time, one can 'unvolve' the directed neigh
borhood of the edge in terms of iteration number. Described in more detail
below, the unvolved graph can be conveniently pictured as a tree and we
refer to such a tree as a support tree. In general the support tree is not
actually a tree because certain elements of the tree, i.e., nodes or edges,
may be replicated.

If there are no repetitions in the support tree, then we say that the
corresponding i-directed neighborhood of the edge is a tree. In all cases
of interest, as n increases the probability that the directed neighborhood
is a tree approaches one at a rate of O(l/n). The underlying reason for
this property is the boundedness of the degrees of the nodes in the graph.
To see this: imagine picking a node and revealing its neighbors up to
distance i in order of increasing distance, then, at any point there will be
at most a constant number of edge placements which will create a loop. The
total number of possible edge placements grows linearly in n and the total
number of edges to be revealed is bounded by a constant independent of n.
Since the connections are chosen randomly it follows that the probability
of creating a loop decays like lin.

5.1. Support trees of LDPC codes. For simplicity we consider a
(dv , dc)-regular LDPC code. Consider a randomly chosen edge e = (v, c)
from the graph and consider the message passed along e from v to c in the
i-th iteration under message-passing decoding. This message is a function
of the received value at v and the messages arriving at v in the (i - 1)
th iteration along its other edges. These other edges are connected to
some collection of constraint nodes. For each such constraint node and
connecting edge the message sent to v along that edge in the (i - l)-th
iteration is a function of the messages sent to this constraint node along
its other edges. Continuing in this recursive fashion we can determine the
support tree of the original message under consideration by unvolving the
graph, tracing back the dependency of the message on previous messages.
Fig. 3 gives a pictorial representation of the support tree for a (3,6) LDPC
code over one and a half iterations.7 Given the appropriate labelling of the
nodes, this picture represents the sub-graph of the original graph on which
the message passed from v to c depends.

If we write the directed neighborhood in the form of a support tree
rooted at e, as in Figure 3, then, under message passing, information flows
up the tree from the leaves to produce the message carried along e. Messages
are passed up the tree: a message from a node is a function only of messages
which come from below and, in the case of variable nodes, the received value

7 Although depicted as a tree, some of the nodes and edges in the unvolved picture
may be identical to other nodes and edges.

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 19

check node Cj

variable node Vi

(dv - 1)(de - 1) variable nodes

FIG. 3. The directed neighborhood of depth 2 of the edge e = (Vi, Cj) for an LDPC
code.

associated to the node.
In general, for fixed n the directed neighborhoods of an edge will con

tain repetitions (nodes and/or edges). As pointed out above, for any fixed
l and, assuming a randomly chosen edge e, the probability that some rep
etition does occur tends to zero as n increases at the rate of n -1. Hence,
asymptotically the behavior of the decoder after l iterations is equivalent
to the behavior of the messages on a true tree.

In the case of regular LDPC codes the support trees of different edges
look the same. In the case of irregular LDPC codes the support trees vary
because of the different possible degrees of the nodes. In this case one
considers the distribution on trees obtained by picking an edge from the
graph uniformly at random, and, in effect, averages over this distribution.
How can this averaging be accomplished? Consider choosing uniformly at
random an edge e = (v, c) and developing its directed neighborhoods for
increasing i. The degree of the variable node v is distributed according to
A, i.e., the node v has i-I children with probability Ai. Each of the check
nodes connected to the variable node v has a degree which is distributed
according to p., i.e., each such check node has i-I children with probability
Pi, and so on.

5.2. Support trees of turbo codes under windowed decoding.
A standard technique for the implementation of Viterbi decoders is to limit
the trace-back to a fixed window size [41, p. 258]. Similarly, the Bahl
algorithm can be modified to work within a fixed window size and it is well
known that for a large enough window size the resulting loss in performance
is negligible. Hence, to decode the i-th systematic bit we apply a window of
length W = 2w+ 1 symmetrically around the i-th bit. We locally construct
the trellis of length Wand initialize the Bahl algorithm by assigning the
end states a uniform probability. We now run the forward, backward and
combining iteration as for the standard Bahl algorithm and determine the

20 TOM RICHARDSON AND RlJDIGER URBANKE

FIG. 4. The support tree of a extrinsic information message for a turbo code. Note
continuation of systematic bits only.

extrinsic information for the i-th bit. We proceed in the same way for
every bit. The important thing to notice is that the extrinsic information
output for bit i is a function only of the inputs for bits i - w to i + 1 + w,
assuming a linear ordering of the systematic bits along the trellis, and the
parity-check bits connected to the associated trellis sections.

Fig. 4 shows the resulting graphical representation for the support
tree of a message from a particular information bit variable node to its
neighboring check node when w = 3. Note that the value of each bit is
now only a function of a finite number of other bits where the number is
determined only by the window length and the number of iterations but
not by the length of the code. This notion of the support tree for turbo
codes and windowed decoding was introduced by Wiberg in his thesis [43]
and it is a crucial ingredient for the subsequent analysis (see also [17]).

In the support tree representation given above, different check nodes
will come from decoder 1 or decoder 2 depending on the depth of the check
node. What is important here is that, as n tends to infinity, the trellis
segments indicated by check nodes in the tree become disjoint with high
probability. Thus, asymptotically, there will be no dependencies in the tree
other than those indicated by the edges.

The importance of using windowed decoding for the analysis is that it
allows one to assert that asymptotically the support tree really is a tree, i.e.,
there are no repetitions with high probability. In standard turbo decoding
dependencies extend along the entire trellis so, strictly speaking, the same
assertion cannot be made. Nevertheless, it is a fact that dependency decays
along the trellis (for a proof see [31].) Thus, the standard algorithm will
behave as if the trellises at different levels were independent when the length
of the code is sufficiently large. Based on the fact indicated above it can
be proved that the results of decoding using a window of size w converge

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 21

as w tends to infinity to the standard turbo decoding except that each
appearance of the trellis can be assumed to have independent realizations of
the received values, and, for any fixed number of iterations, the performance
of standard turbo decoding is indistinguishable from this in the infinite code
length limit.

Therefore, in the analysis of the asymptotic performance of turbo de
coding one may assume that the window sizes are in fact infinite and that
there are no repetitions in the support tree.

6. Density evolution. In this section we consider the evolution of
message distributions as the messages are passed up a support tree. As we
have indicated, this amounts to determining the distribution of messages
when decoding an infinitely long code. Only for certain message-passing
algorithms do we presently know efficient algorithms to determine these
distributions. Fortunately, the cases of greatest interest are among them.

6.1. Density evolution for LDPC codes. Let us imagine how we
can determine the distribution of messages passed by a message-passing
decoder on an infinitely large (dv , de)-regular LDPC code.

Let Ml~;' : 0 x Mdv- l -7 M denote the left (variable node) message
map and let Mr~;ht : Mdc-l -7 M denote the right (check node) message
map where, we recall, 0 denotes the alphabet of the received values and
M denotes the message alphabet. For simplicity we shall assume that the
maps are independent of the iteration number and that the initial messages
sent out by the variables nodes are equal to their received values.

The received values given to the decoder have distribution Po, hence
this is the distribution of the messages initially sent out from the variable
nodes to the check nodes. Now, choose an edge at random and consider
the message sent along it from its neighboring check node c. That mes
sage is Mr~;ht(Ul,,,,,Udc-d where (Ul, ... ,Udc-d are the messages which
came in along the other edges connected to c. The probability of a repe
tition among (Ul' ... , udc-d is zero, so the messages Ui are i.i.d. with dis
tribution Po. Let Rl denote the distribution of Mr~;ht(Ul,,,,,Udc-d. Now
consider the distribution of messages sent in the next round from vari
able nodes to check nodes. Again, pick an edge at random and let v
be its incident variable node. Then the message sent along this edge
is given by Ml~f.(UO,Ul, ... ,Udv-l) where (Ul, ... ,Udv-d are the messages
which came in along the other edges connected to v and Uo is the received
value for v. Let us consider the check nodes Cl, ... , Cdv-l from which the
messages (Ul' ... , Udv-l) originate. With probability one they are disjoint,
i.e., there are no repetitions. Let us consider for each of them their other
de - 1 variable node neighbors. With probability one there are no repe
titions among all of these neighbors. Thus, (Ul' ... , udv-d are i.i.d. with
distribution R l . Let Pl denote the distribution of Ml~ft(UO,Ul, ... ,Udv-d

where (Ul' ... , Udv-l) are Li.d. with distribution Rl and Uo is independent
with distribution Po. More generally, let us recursively define distributions

22 TOM RICHARDSON AND RUDIGER URBANKE

Pi, Rl, l = 1,2, ... by setting Rl to be the distribution of M~;ht (UI' ... , udc-d
where UI, ... , Udc-l are Li.d. with distribution Pi-I, and by setting Pi to
be the distribution of MI~;t(UO,UI, ... ,Udv-l) where UI, ... ,Udv-1 are LLd.
with distribution Ri, and Uo is independent with distribution Po. Then Pi
is the distribution of messages sent from variable nodes to check nodes in
iteration land Rl is the distribution of messages sent from check nodes to
variable nodes in iteration e.

Now, fix the number of decoding iterations to be L and consider en
sembles of finite graphs. For each n there will be distributions for the
messages passed in the graph, call them R~n) and pin). Not surprisingly

the distributions R~n), Pi(n) converge (in an appropriate sense) to Ri, Pi
for l < L as n tends to infinity. The concentration results from the pre
ceding section further imply that if one picks at random a code from the
ensemble and a set of received values distributed according to Po then the
distribution of the messages in the particular decoding of that particular
received sequence will be 'close to'8 Rl, Pi for l < L with high probability
as n tends to infinity.

The sequence of distributions Ri, Pi and their determination is col
lectively referred to as density evolution. The generalization to irregular
LDPC codes is straightforward. In this case, when we pick an edge at ran
dom the distribution of the degree of its neighboring constraint node c is
given by p. Thus, if Rt[k] denotes the return message distribution assum
ing c has degree k, then Rl is given by Rl = l:k PkRt[k]. Similarly, when
we pick an edge at random its neighboring variable node v has degree dis
tributed according to A and, if Pi[k] denote the return message distribution
assuming c has degree k, then Pi is given by Pi = l:k AkPi[k].

EXAMPLE 6 (BSC, Gallager A). Recall Gallager's decoding algorithm
A described in Example 1. For this decoder the message density can be
represented by a single real variable x, namely the probability of error.
Under the all-one codeword assumption we identify x with the probability
of sending a minus-one. Let E denote the cross-over probability of the ESC.
If x is the probability of a minus-one message entering a variable node
of degree d, then the probability that a minus-one is passed up the tree
from that node is given by E(l - (1 - x)d-l) + (1 - E)Xd- l . If x is the
probability of a minus-one message entering a check node of degree d, then
the probability that a minus-one is passed up the tree from that node is
given by ~ (1 - (1 - 2x)d-l). Let Xl denote the probability of a minus-one
being passed up from a variable node to a check node in the l-th iteration
where Xo = E. Then, given an LDPC code with degree sequence pair (A, p),
we obtain for l 2:: 1

Xl = E(l _ A(1 + p(1 - 2xi - d)) + (1 _ E)A(1 - p(l - 2Xl - 1)).

2 2

8The appropriate metric will depend on, e.g., the message alphabets.

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 23

6.2. Density evolution for LDPC belief propagation. In this
section we consider the important special case of density evolution for
LDPC codes and belief propagation decoding. We start with the simplest
example, namely belief propagation for the BEC.

EXAMPLE 7 (BEC, Belief Propagation Decoding). Consider the belief
propagation decoder for a BEC described in Example 2. In this case the
message density can be represented by a single real variable x, the probability
of erasure. Let 8 denote the probability of erasure in the channel. If x is the
probability of an erasure for messages entering a variable node of degree d,
then the probability that an erasure is passed up the tree from that node is
given by 8Xd- 1 . If x is the probability of an erasure for messages entering a
check node of degree d, then the probability that an erasure is passed up the
tree from that node is given by I - {I - x)d-l. Let Xl denote the probability
of an erasure being passed up from a variable node to a check node in the
e-th iteration where Xo = 8. Then given a LDPC code with degree sequence
(A, p) we obtain Xl = 8A{1 - p{1 - Xl-d) for e 2: 1.

The above example is uncharacteristically simple due to the special
nature of the channel. At any point in the decoding algorithm there are
only two possible states for a given bit: it can either be known (with infinite
confidence) or its log-likelihood ratio is equal to O. It is for that reason that
the progress of the system can be characterized by a single real variable,
namely the fraction of erasure messages.

The general scenario is more complicated. Recall that for belief propa
gation we may represent input and output messages as log-likelihood ratios,

I p{ylx = 1)
og p{ylx = -1) ,

where y represents all the observations, including the received value in the
case of variable nodes, conveyed to the node at that time. In general,
message distributions are probability distributions on the two-point com
pactification of R, which we denote by lR (we require ±oo.) To simplify the
presentation we shall generally assume that distributions are smooth and
can therefore be represented by their densities. 9

At a check node, Le., internal to the computation at check nodes, it is
actually more convenient, see [13, p. 46], to represent the input and output
messages as a tuple (s,r) where s E 1F2 := {±l} indicates the associated
hard decision and where r E R+ is equal to

IIoglp{x = lly) - p{x = -llv)ll·

Here 1F2 denotes the two-element group with elements {±l} and group

9 A couple of exceptions will be made for certain discrete measures. In particular, we
shall require the distribution c'oo , the 'delta function at infinity.' We shall also require
the distribution C.O the 'delta function at zero,' corresponding to an erasure.

24 TOM RICHARDSON AND RUDIGER URBANKE

operation equal to real multiplication. Evidently, there is a straightforward
transformation from one representation to the other.

Assume now that the received message from the channel and the in
coming messages at a variable node are given in log-likelihood form. The
outgoing message along an edge e is then simply the sum of the received
message plus all incoming messages, excluding the message incoming along
edge e. Therefore, assuming independence (tree assumption), the density
of the outgoing message is the convolution of the densities of the messages
participating in this sum.

An equivalent statement holds for the check nodes. Assume that the
incoming messages to a check node are all in the form (s,r). The outgoing
message (again in (s, r) representation) along an edge e is then simply the
sum of all incoming messages, excluding the message incoming along edge
e (here "addition" is performed component-wise, i.e., (S1' r1) + (S2' r2) =
(S1 * S2, r1 + r2), where the first component is in IF'2 = {±1} and "addition"
corresponds to real multiplication, and the second component is an element
of IR with regular addition.) Thus, as in the previous case, the density of
the outgoing message, over IF'2 x ~+, can be written as the convolution
of the corresponding densities of the incoming messages. Here, ~+ refers
to [0,00] the compactification of 1R+ . To complete the description we need
only specify the change of variables necessary to convert a density from one
representation to the other and to incorporate the degree sequences.

To obtain the distribution of messages from check nodes back to vari
able nodes, we must perform a change of measure. To this end we define
the operator 'Y which takes the space of distributions on ~+ into itself. For
densities on 1R+ we define 'Y as

(6.1) 't/y ~ 0: 'Y(j)(y) := f(lncothy/2) csch(y).

The operator 'Y represents a change of variables y -+ In coth y/2, i.e.,

f (y) dy = 'Y(j)(y) dy, since i; In coth y /2 = - csch(y).

For any distribution f on ~ let f- denote l[-oo,oJ f and let f+ denote
l[o,ooJ f, where 1A denotes the characteristic function of A so that f =
f+ + f-· 1O

Given a distribution f over ~ of log-likelihoods l, we can represent
it as a distribution over IF'2 x ~+ by representing l as the pair (s,r). We
therefore define r, the change of variable operator, by

r(j)(l,r) = 'Y(j+)(r) and r(j)(-l,r) = 'Y{1?-f-)(r).

where Rf- denotes the reflection of f about 0, i.e., Rf-(x) = f-(-x).
Now, let 9 be a distribution over IF'2 x ~+. Let g+ and g- be defined

by g+(r) = O{l}(s)g(s,r) and g-(r) = O{_1}(s)g(s,r). Then the inverse of

lOIn the general case, where a point mass at 0 is allowed, the mass at 0 should be
split equally between f- and f+.

INTRODUCTION TO THE ANALYSIS OF ITERATNE CODING SYSTEMS 25

r is given by

We have now explicitly constructed the change of measure operator for
both directions.

Let Po be the distribution of the received log-likelihoods and Pi denote
the distribution of log-likelihoods sent from the variable nodes to the check
nodes in the £-th iteration. Let Ri denote the distribution of log-likelihoods
sent from the check nodes to the variable nodes in the £-th iteration. We
may initialize with Ro = ~o.

The distribution of messages passed from a variable node of degree dv

to a check node in the £-th iteration is given by the convolution Pt[dv] :=

Po 0 RT!],-l, where, here and in the sequel, 0 denotes convolution and
ROm denotes R convolved with itself m times.

Suppose that we have a graph with left and right edge degree distri-
d . 1 d' 1 butions given by).(x) = Li~l).iX·- , and p(x) = Li:l PiX'- , respec-

tively. We follow [22] and use the following convention: for a polynomial
q(x) = Li qixi-1 with non-negative real coefficients qi and q(l) = 1 we
denote by q(f) the distribution Li qi/0(i-l).

THEOREM 6.1 (Density Evolution). Let Po denote the initial message
distribution, under the assumption that the all-one codeword was trans
mitted, of a low-density parity-check code specified by edge degree distribu
tions Li).i xi- 1 and Li Pi xi- 1. If Ri denotes the density of the messages
passed from the check nodes to the variable nodes at round £ of the belief
propagation, with Ro := ~o, then we have

Note that the above indicated computations consist of two main com
ponents: convolutions and change of measures. It should therefore not be
surprising that density evolution can efficiently be computed by means of
Fourier transform based methods.

6.3. Density evolution for turbo code belief propagation. Al
though one can consider density evolution for other decoders of turbo codes,
we will describe the process only for the belief propagation decoder as ap
plied to standard parallel concatenated codes.

We consider the distribution of messages as they are passed up the
support tree as described in Section 5.2. One can view the window w
as fixed but it is appropriate to consider the limit as w -+ 00 since the
resulting distributions converge in this limit and we thereby remove the
ancillary variable w.

Imagine a very long trellis and suppose that the systematic variables
have distribution Pi and the parity-check variables have distribution Po. In

26 TOM RICHARDSON AND RUDIGER URBANKE

the forward-backward decoding algorithm one computes one-sided condi
tional densities for states in the trellis. Usually denoted by Q and 13, these
vectors are recursively computed from the two terminal ends of the trellis
and represent conditional distributions of the states in the trellis condi
tioned on the trellis section to the 'left' and the trellis section to the 'right'
respectively. In our current view, the inputs to the trellis are random vari
ables and hence so are the Q and 13 vectors. Under very general hypotheses
one can show that the distributions of the Q and 13 vectors converge to a
unique steady state distribution (depending on Pi and Po) regardless of
the trellis termination. (In the case of periodic puncturing of the parity
bits one has convergence to a periodic sequence of distributions.) These
steady state distributions thereby induce steady state distributions for the
extrinsic information which will be returned from the trellis. (In the case
of periodic puncturing of the parity bits one has a periodic sequence of
extrinsic distributions but if the interleaver ignores this additional struc
ture then the distributions can be mixed into a single one for purposes of
the asymptotic analysis.) Thus, in the limit of infinite length, one has a
well-defined map e which takes pairs of input distributions, one for the
systematic bits and one for the parity bits, into the output distribution
of the extrinsic information. Let Ri denote the distribution of extrinsic
information returned to the systematic variable nodes at the £-th (half)
iteration. Then Ri = e(pi-l, Po).

In principle the steady state distributions of Q and 13 can be directly
computed. Unfortunately, the computational complexity of such an ap
proach renders practically infeasible. For memory four, for example, the
vector Q is fifteen (16-1) dimensional. Even just representing an arbitrary
probability distribution in fifteen dimensional space with sufficient accuracy
seems hopeless. Of course, the distributions which arise are not arbitrary
but there seems to be no obvious way to exploit the constraints which exist.
Thus, in practice one estimates the distribution Ri by using Monte-Carlo
simulation of a very long trellis. Certain structural conditions on the form
of Ri contribute to make such an approach highly practical (see Section
8.1.)

The update of distributions at the variable nodes is identical to that for
LDPC codes. In the case of parallel concatenated codes it is particularly
simple. Assuming a log-likelihood representation for the messages, the
distribution Pi returned from the systematic check nodes is simply given
by Pi = Ri 0 Po. Thus, one has

Pi = Po 0 e(Pi-l, Po).

7. Monotonicity and thresholds. Assume we are given a class of
channels fulfilling the required symmetry condition and that this class is
parameterized by Q. This parameter may be real valued as is the case for,
e.g., the cross-over probability E for the BSC and the standard deviation (1

for the AWGNC, or it may take values in a different domain. For a fixed

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 27

parameter a we can use the above algorithm to determine if, for a given
code, the fraction of incorrect messages tends to zero with an increasing
number of (loop free) iterations.

In many cases the parameter a actually reflects a natural ordering of
the channels - the capacity decreases with increasing parameter a. It is
therefore natural to ask in such cases whether convergence to zero of the
probability of error for a parameter d automatically implies convergence
to zero of the probability of error for every parameter a such that a :::; a l •

More generally, we might want to define a partial ordering of channels with
respect to a given code and decoder. In the case of the belief propagation
decoder quite general results are possible.

Let a channel W be represented by its transition probability pw(ylx).
We say that a channel WI is physically degraded with respect to W if
pWI(y/lx) = pQ(y/ly)pw(ylx) for some auxiliary channel Q, see [6].

Very often a family of channels is ordered by physical degradation, Le.,
if a :::; d, then the channel with parameter d is physically degraded with
respect to the channel with parameter a. Examples of families of channels
ordered by physical degradation in this way include the BSC, the AWGNC,
the Laplace channel, the erasure channel, and many others.

Our most general result on the question of monotonicity of perfor
mance is the following.

THEOREM 7.1 (Monotonicity for Physically Degraded Channels). Let
Wand WI be two given memoryless binary input channels that fulfill the
required channel symmetry conditions. Assume that WI is physically de
graded with respect to W. For a given code and a belief propagation decoder,
let p be the expected fraction of incorrect messages passed at the £-th decod
ing step assuming tree-like neighborhoods and transmission over channel
W, and let pi denote the equivalent quantity for transmission over channel
WI. Then p:::; pl.

For a proof see [30]. The main idea of the proof is that belief prop
agation is optimal, Le., maximum likelihood, in graphs that are trees. As
an alternative one could, in principle, degrade the observations before per
forming maximum likelihood decoding. This can clearly not be any better
than performing maximum likelihood decoding on the original data and it
is equivalent to decoding the output from the weaker channel.

The arguments used to prove monotonicity of performance under be
lief propagation do not carryover to other - non maximum-likelihood -
message-passing decoders. Nevertheless, for many natural decoders of in
terest monotonicity can be proved directly. Virtually all message-passing
decoders of interest can be interpreted as approximations to belief prop
agation and it is not surprising that many of them inherit the mono
tonicity property. We do not know of any decoder of interest for which
monotonicity on any family of physically degraded channel has been dis
proved. There are several examples of decoders of interest, however, for
which such monotonicity has not been proved. For various examples we

28 TOM RICHARDSON AND RUDIGER URBANKE

refer the reader to [30].
Given an ordered family of channels, an ensemble of codes, and a

decoder for which monotonicity holds one can then define a threshold as
the maximum channel parameter a* such that the probability of error under
density evolution converges to zero if a < a* . In some degenerate cases this
threshold can actually be zero. For example, for an LDPC code ensemble
with a non-zero proportion of degree one variable nodes the threshold is zero
since in this case these degree one variables prevent the error probability
from reaching zero (see Section 8.3). In most cases of interest, however, a
non-trivial threshold will exist demarking the noise limit beyond which the
iterative decoding system can not be expected to perform well regardless
of the length of the code and below which iterative decoding is expected to
work well. In practice one observes that codes approach their asymptotic
performance from below. Finite size effects only degrade performance.
Also, the orderings induced by the asymptotic performance tend to hold
over a wide range of lengths.

8. Analysis of density evolution for belief propagation. In the
preceding section we stated a general result on the monotonicity of the
asymptotic performance of the belief propagation decoder. There are many
other interesting properties associated to density evolution of belief prop
agation. In this section we present the most important results in this
direction.

8.1. Consistency. In the following, we call a distribution f on i
consistent if it satisfies f(x) = f(-x)e X for all x E lR. Let us first consider
a few examples of received distributions. Note that in each case Po is
consistent.

EXAMPLE 8 (BEC). For the BEe the initial message distribution is
o~o + (1 - o)~(X" where ~x denotes a delta function at position x. 0

EXAMPLE 9 (BSC). For the BSe the initial message distribution is
Po (y) := t:~_log 1~. + (1 - t:)~log 1~. • 0

EXAMPLE 10 (AWGNC). Here, the initial message distribution is
{;2 (y_~)20"2

Po(y) := V g:e- Vs • The consistency condition is then easily veri-

fied:

o
In [29] the following proposition was stated and proved.
PROPOSITION 8.1. Suppose we are given a binary-input, output-sym

metric memoryless channel. Then Po, the initial message distribution in
log-likelihood ratio form under the all-one word assumption, is consistent.

It was next shown in [29] that the set of consistent distributions is
invariant under LDPC density evolution, i.e., each distribution Ri and Pi

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 29

which arise from density evolution is consistent. It turns out that the
consistency condition is much more general than this.

PROPOSITION 8.2. Suppose we are given a binary-input, output-sym
metric memoryless channel and let x be a bit from a binary linear code.
Then P, the density of the conditional log-likelihood of x assuming the all
one codeword was transmitted and the entire codeword observed, is consis
tent.

For a proof of this proposition we refer the reader to [31]. This result
implies Proposition 8.1 and it also implies that the distributions of extrin
sic information which arise in asymptotic turbo decoding are consistent.
Consistency is an important property both for theoretical and for practical
reasons. As explained in more detail below, the consistency condition can
be used to improve the accuracy of some numerical algorithms and it is
also helpful in giving a compact description of the stability condition, see
Section 8.4.

Let f(x) be a consistent distribution. We define the error probability
operator asll

An easy but helpful consequence of the consistency condition is noted in
the following

COROLLARY 8.1. If f(x) is a consistent distribution then Pr,rr(f) = 0
if and only if f = ~oo.

Hence, requiring the probability of error to converge to zero is equiv
alent to requiring the message density to converge to a delta function at
infinity.

8.1.1. Application of consistency to density evolution for
turbo codes. One important application of the consistency condition is to
the numerically accurate estimation of the threshold for turbo codes. For
turbo codes, the message distributions induce distributions on the state
probability vectors (usually denoted 0: and (3) and the outgoing messages
(extrinsic information) are functionals of the state probability vectors. It
is not known (and seems unlikely) whether the distribution of the extrinsic
information can be computed without first computing the distribution of
the state probability vectors. The state probability vectors are, in general,
vectors in 1R2'" -1. Thus, even for quite small m, e.g., m = 3, representa
tions of distributions of state probability vectors are prohibitively complex.
Thus, direct computation of density evolution appears to be practically in
tractable except in the simplest cases.

Nevertheless, it is possible to estimate the distributions of density evo
lution via simulation of the decoding process. We simulate decoding on a

11 If f has a point mass at 0 then exactly half of that mass is included in Pr ••• (I).

30 TOM RICHARDSON AND RUDIGER URBANKE

very long trellis in which all variables are independently sampled from their
known distributions, determining the outgoing extrinsic information for
each variable. These outgoing messages thus provide an empirical sample
of the true message distribution. Since the decoding process, in this sense,
is ergodic, the empirical distribution converges weakly to the true message
distribution. In actual computations the distributions are quantized and
hence discrete, thus, with sufficiently long simulation, an arbitrarily accu
rate estimate of the message distribution can be obtained with arbitrarily
high probability.

A substantial savings in simulation time can be had by exploiting the
consistency of the true message distribution. In simulation we need only
determine the distribution of the magnitude of the extrinsic log-likelihoods.
For a given log-likelihood magnitude x then we have P(x) = H!-z (P(x) +
P(-x)) and P(-x) = l~ez (P(x)+P(-x)). Since P(x)+P(-x) is exponen
tially larger than P(-x) this provides a very significant acceleration of the
convergence of the empirical distribution to the true message distribution
with regard to estimates of rare error events.

8.2. Fixed points. Recall from Example 7 that for the BEC and
a belief propagation decoder the state of the system at any iteration is
described by the remaining fraction of erasures. Denote the remaining
fraction of erasures by x and let h(x) be the remaining fraction of erasures
after a further iteration. Then the threshold is given by the maximum
fraction Xo such that

(8.1) 'v'O<x<xo: h(x) <x.

Recall further from Example 1 that a similar statement is true for the
BSC under Gallager's decoding algorithm A. In this case x signifies the
remaining number of errors.

In these cases, an alternative description of the threshold can be given
in terms of fixed points. The threshold is given by the maximum number
Xo such that the equation

(8.2) h(x) = x

has no solutions for x E (0, xo).
Assume now we are given a general discrete memoryless channel which

fulfills the channel symmetry conditions and we employ a belief propaga
tion decoder. The state of the system is now described by the message
density. Let f denote such a density and let h(f) denote the corresponding
density after a further iteration. Clearly, there is no characterization of
the threshold which corresponds to (8.1) since there is, a priori, no given
linear ordering of densities. The alternative formulation in (8.2) involv
ing fixed points looks more promising. Unfortunately, the non-existence of
fixed-points for iterated function systems in more than one dimension is in

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 31

general not enough to guarantee convergence. So it is quite surprising, as
it turns out, that, for message distributions of belief propagation decoders,
fixed points sufficiently characterize the convergence of the sequences.

Let Pe(x) denote the distribution of the messages at the £-th iteration
assuming, as usual, that the all-one word was transmitted. Suppose that we
were to decide on the transmitted bit according to the sign of the message.
In this case the conditional error probability is equal to Prerr(Pe). But,
because of the symmetry conditions, this is equal to the error probability
even without conditioning on the transmitted codeword. Since the sign of
the message is equal to the MAP estimate, this error probability is clearly
a non-increasing function of £.

This monotonicity property is the key to the fixed point theorem be
low. It is not hard to see that there is actually a whole family of such
monotonicity conditions.

THEOREM 8.1 (General Monotonicity Law). Let Pi be the message
distribution at the £-th decoding step and let 9 be a consistent distribution
on lit Then

Pr ... (Pe 0 g)

is a non-increasing function of £.
THEOREM 8.2 (Fixed Point Theorem). Let f be a consistent distri

bution and assume that f has support over the entire real axis. Let Pil (x)
and Pl2 (x) denote the message distributions at the £1 -th and £2 -th iteration
respectively. If

(8.3)

then Pll(X) = Pe(x) for £ ~ min{£1,£2} i.e., Pll(X) = Pi2(X) is a fixed
point of density evolution.

We note that the above theorem has some very strong implications.
Although the message distributions for a belief propagation decoder live
nominally on]RIR, the above theorem implies that the possible message dis
tributions can be ordered by one real parameter (the projection). Hence,
roughly speaking, we are dealing with a one-dimensional manifold embed
ded in an infinite dimensional space. This is very much analagous to the
simple one-dimensional case we encounter in the case of an erasure channel,
or Gallager's decoding algorithm A.

8.3. Stability. Consider transmitting over the BEC with erasure
probability 8 using LDPC codes. Recall from example 7 that the expected
fraction of erasure messages at the £-th iteration is given by

(8.4) Xi = 8'x(1 - p(l - xl-d),

where Xo = 8. As pointed out earlier, the threshold 8* is the single most
important parameter describing the performance of an iterative coding sys
tem. We recall that 8* is the supremum of all values of 8 such that Xl tends

32 TOM RICHARDSON AND RUDIGER URBANKE

to zero as l tends to infinity. In general, it is not an easy task to determine
the threshold analytically but we can give an analytical upper bound on 8*
by considering the behavior of (8.4) for very small values of Xl. Hence, let
h(x) := 8,\(1 - p(l - x)). Then h(x) = 8X(0)p'(1)x + O(x2). Therefore,
to first order in x, the fraction of erasure messages will evolve from X to
8'\'(0)p'(1)x. Clearly, if we want the fraction of erasure messages to tend
to zero then we need '\'(O)p'(l) < 1/8. From this we can deduce the bound
8* <).'(O)1p/(1). Vice versa, if '\'(O)p'(l) < 1/8 then there exists an 8 > 0
such that the values of the recursion tend to zero if the recursion is initial
ized with a value which does not exceed 8. The condition X(O)p'(l) < 1/8,
first discussed in [37], can be seen as a stability condition of the fixed point
x =0.

Such a stability condition can be given in a much more general setting
and it plays an important role in the theory of iterative coding systems. As
we have seen it leads to an upper bound on the threshold of an interative
coding system. In the case of, e.g., cycle codes and the BSC this upper
bound is tight, i.e., the stability condition determines the threshold of
cycle codes for the BSC exactly [8]. The stability condition can also be
interpreted in an alternative way. Assume we are trying to construct degree
sequence pairs which achieve capacity on a given channel. In this case the
desired threshold is determined by the capacity formula. E.g., for the case
of the BEC we have 8* = 1 - r, where r is the rate of the code. Now
we can write the stability condition as X(O) ::; (1 r)p/(1) , i.e., the stability
condition imposes an upper bound on the fraction of edges which connect
to degree two nodes. It has been shown in the case of the BEC that
capacity achieving sequences must fulfill the above inequality with equality
and we conjecture that this is true in general. We will now describe some
important instances of the stability condition.

8.4. Stability condition for LDPC codes and belief propaga
tion. Consider now a transmission over a general binary-input, memory
less, output-symmetric channel and assume that we use a belief propagation
decoder. Observe that if Pi = .6000 for some l 2: 0 then PHi = .6000 for any
i 2: 0, i.e., .6000 is a fixed point of density evolution. Since we desire that
the error probability associated with density evolution converge to zero, it
is clear that the fixed point described above should, in some sense, be an
attractor (recall Corollary 8.1). To analyze local convergence to this fixed
point we shall consider a linearization of density evolution about the fixed
point.

Consider a density lOP + (1- 10).6000 where P is any (consistent) density,
P # .6000 • After a complete iteration of density evolution this density will
evolve to

where X(x) and p'(x) denote the derivatives of '\(x) and p(x), respectively.

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 33

In other words, the linearization of density evolution at the fixed point Aoo
is given by P -+ ,A'(O)p'(l)P ® Po.

One would expect, therefore, that a necessary condition for conver
gence to zero of the probability of error be that the probability of error
associated with

(,A'(O)p'(l))n P ® ptjn

be decaying to zero as n grows. Under very general conditions (see Lemma
8.1) the limit

(8.5)

is well defined. In this case, since P =j:. Aoo, the quantity

converges to zero if and only if (,A'(O)p'(1))nPre<r(P00n) converges to zero.
Although the above argument is only heuristic, the assertion is correct.
This is summarized in the following.

THEOREM 8.3. If N(O)p'(l) > er , then the probability of error of den
sity evolution is strictly bounded away from o. Conversely, if ,A'(O)p'(l) <
er , then there exists € > 0 such that if density evolution is initialized with
a consistent message distribution P satisfying Pr<rr(P) < €, then the prob
ability of error will converge to zero.

We note that in all cases of interest the exponent r can be computed
using moment generating functions as stated in the following.

LEMMA 8.1. Let g(s) be the moment generating function correspond
ing to the distribution Po(x), i.e., g(s) = E po [esx], and assume that g(s) <
00 for all s in some neighborhood of zero. Then r = -log (infs<o g(s)).
Further, if Po is consistent then r = - log (2 fooo PrJ (x) e -x /2 dx) .

EXAMPLE 11 (BEC). For the BEC (see Example 2) we have

Therefore, the stability condition reads

,A'(O)p'(l) < ~,

as noted above. 0
EXAMPLE 12 (BSC). For the BSC (see Example 9) we have

e-r = 2 roo (1 - €)A 1og != e-X / 2 dx = 2V€(1 - €) . 10 .

34 TOM RICHARDSON AND RUDIGER URBANKE

It follows that the stability condition for the BSC is given by

o
EXAMPLE 13 (AWGC). For the AWGNC (see Example 10) we have

e r = 2 - e 8 e-x / 2 dx = e-~ . _ 100 ~2 _ (2_?),,2

o 81T

Thus, the stability condition reduces to

A'(O)p'(l) < e~ .

o
8.5. Examples of other instances of the stability condition.

The stability condition is not limited to LDPC codes and belief propagation
decoders. Consider, e.g., the case of LDPC codes decoded with Gallager's
decoding algorithm A and transmission over a binary symmetric channel
with cross-over probability to, as discussed in Example 1. In this case it was
shown in [2] that the appropriate stability condition reads

1- A'(O)p'(l)
A'(l)p'(l) _ A'(O)p'(O) > to.

We note that for some codes e.g., the (4,8), (5,10) and the (4,6) regular
codes, this condition is tight, i.e., it determines the threshold exactly.

Consider next the special case of a parallel concatenated turbo code
with the simple component code [1, l~D], no puncturing and transmission
over the BEC with erasure probability 8. In this case it was shown in [31]
that the erasure probability Xl evolves as

The stability condition is easily found to be 8 < ~. Again, the stability is
tight, i.e., the threshold 8* can be shown to be equal to ~. The general
form of the stability condition for turbo codes has not been explored in any
depth so far and this promises to be a fruitful direction for future research.

9. Acknowledgment. We would like to thank David Proietti and
the anonymous reviewer for pointing out to us some typos in a previous
version of this paper.

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 35

REFERENCES

[lJ N. ALON, J. SPENCER AND P. ERDOS, The Probabilistic Method, John Wiley &
Sons, Inc., New York, 1992.

[2J L. BAZZI, T. RICHARDSON, AND R. URBANKE, Exact thresholds and optimal codes
for the binary symmetric channel and Gallager's decoding algorithm A. sub
mitted IEEE IT.

[3J S. BENEDETTO AND G. MONTORSI, Unveiling turbo codes: Some results on par
allel concatenated coding schemes, IEEE Trans. Inform. Theory, 42 (1996),
pp. 409-428.

[4J C. BERROU, A. GLAVIEUX, AND P. THITIMAJSHIMA, Near Shannon limit error
correcting coding and decoding, in Proceedings of ICC'93, Geneva, Switzer
land, May 1993, pp. 1064-1070.

[5J S.-Y. CHUNG. personal communication.
[6J T.M. COVER AND J.A. THOMAS, Elements of Information Theory, Wiley, New

York,1991.
[7J M.C. DAVEY AND D.J.C. MACKAY, Low density parity check codes over GF(q),

IEEE Communications Letters, 2 (1998).
[8J L. DECREUSEFOND AND G. ZEMOR, On the error-correcting capabilities of cycle

codes of graphs, Combinatorics, Probability and Computing (1997), pp. 27-
38.

[9J D. DIVSALAR, A simple tight bound on error probability of block codes with appli
cation to turbo codes. TMO Progress Report 42-139.

[10J T.M. DUMAN AND M. SALEHI, Performance bounds for turbo-coded modulation
systems, IEEE Transactions on Communications, 47 (1999), pp. 511-521.

[l1J D. FORNEY, Codes on graphs: Generalized state realizations. submitted to IEEE
Trans. Inform. Theory.

[12J B. FREY AND F. KSCHISCHANG, Probability propagation and iterative decoding, in
Allerton Conf. on Communication, Control and Computing, 1996.

[13J R.G. GALLAGER, Low-Density Parity-Check Codes, M.I.T. Press, Cambridge, Mas
sachusetts, 1963.

[14J J. GARCIA-FRIAS AND J.D. VILLASENOR, Combining hidden Markov source mod
els and parallel concatenated codes, IEEE Communications Letters, 1 (1997),
pp. 111-113.

[15J J. GARCIA-FRIAS AND J.D. VILLASENOR, Exploiting binary Markov channels with
unknown parameters in Turbo decoding, in Proc. Globecom'98, Sydney, Aus
tralia, Nov. 1998, pp. 3244-3249.

[16J ---, Turbo decoders for Markov channels, IEEE Commun. Lett., 2 (1998),
pp. 257-259.

[17J E.A. GELBLUM, A.R. CALDERBANK, AND J. BOUTROS, Understanding serially con
catenated codes from a support tree approach, in Proceedings of the Interna
tional Symposium on Turbo Codes and Related Topics, Brest, France, Sept.
1997, pp. 271-274.

[18J E.K. HALL AND S.G. WILSON, Design and analysis of turbo codes on Rayleigh fad
ing channels, IEEE Journal of Selected Areas in Communications, 16 (1998),
pp. 160-174.

[19J P. HOEHER, J. LODGE, R. YOUNG AND J. HAGENAUER, Separable map "filters"
for the decoding of product and concatenated codes, in Proceedings of ICC'93,
Geneva, Switzerland, May 1993, pp. 1740-1745.

[20] F. KSCHISCHANG AND B. FREY, Iterative decoding of compound codes by prob
ability propagation in graphical models, IEEE Journal on Selected Areas in
Communications (1998), pp. 219-230.

[21] F. KSCHISCHANG, B. FREY, AND H.-A. LOELIGER, Factor graphs and the sum
product algorithm. submitted to IEEE Trans. Inform. Theory.

36 TOM RICHARDSON AND RUDIGER URBANKE

[22] M. LUBY, M. MITZENMACHER, A. SHOKROLLAHI, AND D. SPIELMAN, Analysis of
low density codes and improved designs using irregular graphs, in Proceedings
of the 30th Annual ACM Symposium on Theory of Computing, 1998, pp. 249-
258.

[23] M. LUBY, M. MITZENMACHER, A. SHOKROLLAHI, D. SPIELMAN, AND V. STEMANN,
Practical loss-resilient codes, in Proceedings of the 29th annual ACM Sympo
sium on Theory of Computing, 1997, pp. 150-159.

[24] D.J.C. MACKAY AND R.M. NEAL, Good codes based on very sparse matrices, in
Cryptography and Coding. 5th IMA Conference, C. Boyd, ed., no. 1025 in
Lecture Notes in Computer Science, Springer, Berlin, 1995, pp. 100-111.

[25] LD. MARSLAND AND P. MATHIOUPOULOS, Multiple differential detection of parallel
concatenated convolutional (turbo) codes in correlated fast rayleigh fading,
IEEE Journal of Selected Areas in Communications, 16 (1998), pp. 265-275.

[26] R. McELIECE, E. RODEMICH, AND J.-F. CHENG, The turbo decision algorithm, in
Proceedings of the 33rd Allerton Conference on Communication, Control, and
Computing, Monticello, IL, 1995.

[27] R. MOTWANI AND P. RAGHAVAN, Randomized Algorithms, Cambridge University
Press, Cambridge, 1995.

[28] J. PEARL, Probabilistic reasoning in intelligent systems: networks of plausible
inference, Morgan Kaufmann Publishers, 1988.

[29] T. RICHARDSON, A. SHOKROLLAHI, AND R. URBANKE, Design of provably good
low-density parity check codes. submitted IEEE IT.

[30] T. RICHARDSON AND R. URBANKE, The capacity of low-density parity check codes
under message-passing decoding. submitted IEEE IT.

[31] ---, The capacity of turbo codes and other concatenated codes under message
passing decoding. in preparation.

[32] ---, Concentrate!, in Allerton Conf. on Communication, Control and Comput
ing, 1999.

[33] P. ROBERTSON, Illuminating the structure of code and decoder of parallel concate
nated recursive systematic (turbo) codes, in Proceedings of GLOBECOM'94,
Nov. 1994, pp. 1298-1303.

[34] L SASON AND S. SHAMAI (SHITZ), Improved upper bounds on the decoding error
probability of parallel and serial concatenated turbo codes via their ensemble
distance spectrum, in 1998 IEEE International Symposium on Information
Theory, Boston, MA, Aug. 16-21 1998, p. 30.

[35] --, Bounds on the error probability of ML decoding for block and turbo-block
codes, Annales de Telecommuncations, 54 (1999), pp. 61-78.

[36] A. SHAMIR AND J. SPENCER, Sharp concentration of the chromatic number on
random graphs Gn,p, Combinatorica, 7 (1987), pp. 121-129.

[37] A. SHOKROLLAHI, New sequences of linear time erasure codes approaching the
channel capacity, in Proceedings of AAECC-13, Lecture Notes in Computer
Science 1719, 1999, pp. 65-76.

[38] M. SIPSER AND D. SPIELMAN, Expander codes, IEEE Trans. on Information Theory,
42 (1996).

[39] N. SOURLAS, Spin-glass models as error-correcting codes, Nature, 339 (1989),
pp. 693-695.

[40] R.M. TANNER, A recursive approach to low complexity codes, IEEE Trans. Inform.
Theory, 27 (1981), pp. 533-547.

[41] A. VITERBI AND J. OMURA, Principles of Digital Communication and Coding,
McGraw-Hill, 1979.

[42] A. VITERBI, A. VITERBI, J. NICOLAS, AND N. SINDHUSHAYANA, Perspective on
interleaved concatenated codes with iterative soft-output decoding, in Proceed
ings of the International Symposium on Turbo Codes and Related Topics,
Brest, France, Sept. 1997, pp. 47-54.

[43] N. WIBERG, Codes and Decoding on General Graphs, PhD thesis, Linkoping Uni
versity, S-581 83, Linkoping, Sweden, 1996.

INTRODUCTION TO THE ANALYSIS OF ITERATIVE CODING SYSTEMS 37

[44] N. WIBERG, H.-A. LOELIGER, AND R. KOTTER, Codes and iterative decoding
on general graphs, European Transactions in Telecommuncations, 6 {1995},
pp. 513-526.

[45] V. ZYABLOV AND M. PINSKER, Estimation of the error-correction complexity
of Gallager low-density codes, Problemy Peredachi Informatsii, 11 {1975},
pp.23-26.

CONNECTIONS BETWEEN LINEAR SYSTEMS AND
CONVOLUTIONAL CODES*

JOACHIM ROSENTHALt

Abstract. The article reviews different definitions for a convolutional code which
can be found in the literature. The algebraic differences between the definitions are
worked out in detail. It is shown that bi-infinite support systems are dual to finite
support systems under Pontryagin duality. In this duality the dual of a controllable
system is observable and vice versa. Uncontrollability can occur only if there are bi
infinite support trajectories in the behavior, so finite and half-infinite-support systems
must be controllable. Unobservability can occur only if there are finite support trajecto
ries in the behavior, so bi-infinite and half-infinite-support systems must be observable.
It is shown that the different definitions for convolutional codes are equivalent if one
restricts attention to controllable and observable codes.

Key words. Convolutional codes, linear time-invariant systems, behavioral system
theory.

AMS(MOS) subject classifications. Primary 37BIO, 93B25, 94BIO.

1. Introduction. It is common knowledge that there is a close con
nection between linear systems over finite fields and convolutional codes. In
the literature one finds however a multitude of definitions for convolutional
codes, which can make it confusing for somebody who wants to enter this
research field with a background in systems theory or symbolic dynamics.
It is the purpose of this article to provide a survey of the different points
of view about convolutional codes.

The article is structured as follow: In Section 2 we will review the way
convolutional codes have often been defined in the coding literature [20,
21, 28, 35, 38].

Section 3 reviews a definition for convolutional codes that can be found
in the literature on symbolic dynamics. From the symbolic dynamics point
of view [24, 29, 32], a convolutional code is a linear irreducible shift space.

In Section 4 we will review the class of time-invariant, complete linear
behaviors in the sense of Willems [50, 51, 52]. We will show how these
behaviors relate to the definitions given in Section 2 and 3.

In Section 5 we will give a definition for convolutional codes in which
it is required that the code words have finite support. Such a definition was
considered by Fornasini and Valcher [48, 5] and by the author in collabora
tion with Schumacher, Weiner and York [42, 44, 49]. The study of behaviors
with finite support has been done earlier in the context of automata the-

"The work was supported in part by NSF grant DMS-96-10389. This research has
been carried out while the author was a guest professor at EPFL in Switzerland. The
author would like to thank EPFL for its support and hospitality.

tDepartment of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556-
5683. E-mail: Rosenthal. l@nd. edu.

39

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

40 JOACHIM ROSENTHAL

ory and we refer to Eilenberg's book [1]. We show in Section 5 how this
module-theoretic definition relates to complete, linear and time-invariant
behaviors by Pontryagin duality.

In Section 6 we will study different first-order representations con
nected with the different viewpoints. Finally, in Section 7 we compare the
different definitions. We also show how cyclic redundancy check codes can
naturally be viewed in the context of finite-support convolutional codes.

Throughout the paper we will emphasize the algebraic properties of the
different definitions. We will also restrict ourselves to the concrete setting
of convolutional codes defined over finite fields. It is however known that
many of the concepts in this paper generalize to group codes [3, 12, 9] and
multidimensional convolutional codes [4, 5, 16,48,49]. All of the definitions
which we are going to give are quite similar, but there are some notable
differences.

Since the paper draws from results from quite different research areas,
one is faced with the problem that there is no uniform notation. In this pa
per we will adopt the convention used in systems theory in which vectors are
regarded as column vectors. For the convenience of the reader, we conclude
this section with a summary of some of the notation used in this paper:

IF
IF[z]
IF[z, Z-l]
IF{z)
IF[[z II
IF{ (z))
IF[[z, Z-l]]
Z
Z+
Z_

A fixed finite field;
The polynomial ring over IF;
The Laurent polynomial ring over IF;
The field of rationals;
The ring of formal power series of the form Z:::o aizij

Field of formal Laurent series having the form Z:::d aizi ;

The ring of formal power series of the form Z:::-oo aiz i ;

The integers;
The nonnegative integers;
The nonpositive integers.

Consider the ring of formal power series IF[[z, z-l]]. We will identify
the set IF[[z, Z-l)] with the (two-sided) sequence space JFZ. We have natural
embeddings:

IF -+ IF[z) -+ IF[Z,Z-l]-+ IF{z) -+ IF{{z)) -+ IF[[Z,Z-l]].

With these embeddings we can view e.g. the set of rationals IF{z) as a
subset of the sequence space IFz , and we will make use of such identifications
throughout the paper.

The set of n-vectors with polynomial entries will be denoted by JF'1 [z].
Similarly we define the sets JF'1{z),JF'1{{z)) etc. All these sets are subsets
of the two sided sequence space {JF'1)z = JF'1 [[z, Z-l]]. The definitions of
convolutional codes which we will provide in the next sections will all be
IF-linear subspaces of {IF")z.

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 41

The idea of writing a survey on the different points of view about
convolutional codes was suggested to the author by Paul Fuhrmann during
a stimulating workshop on "Codes, Systems and Graphical Models" at the
Institute for Mathematics and its Applications (IMA) in August 1999. A
first draft of this paper was circulated in October 1999 to about a dozen
people interested in these research issues. This generated an interesting
'Internet discussion' on these issues, in which the different opinions were
exchanged bye-mail. Some of these ideas have been incorporated into
the final version of the paper and the author would like to thank Dave
Forney, Paul Fuhrmann, Heide Gluesing-Luerssen, Jan Willems and Sandro
Zampieri for having provided valuable thoughts. The author wishes also
to thank the IMA and its superb staff, who made the above mentioned
workshop possible.

2. The linear algebra point of view. The theory of convolutional
codes grew out and extended the theory of linear block codes into a new
direction. Because of this reason we start the section with linear block
codes and we introduce convolutional codes in a quite intuitive way.

An [n, k]linear block code is by definition a linear subspace C c IF''
having dimension dimC = k. Let G be a n x k matrix with entries in IF.
The linear map

cp: P ---t IF"", m 1---+ c = Gm

is called an encoding map for the code C if im (cp) = C. If this is the case
then we say G is a generator matrix or an encoder for the block code C.

Assume that a sequence of message blocks ma, ... ,mt C P should be
encoded into a corresponding sequence of code words Ci = Gmi ElF"", i =
0, ... ,t. By introducing the polynomial vectors m(z) = L~=a mizi E

JFk [z] and c(z) = L~=a CiZi E IF''[z] it is possible to describe the encoding
procedure through the module homomorphism:!

(2.1) cp: P [z] ---t IF"" [z], m(z) 1---+ c(z) = Gm(z).

The original idea of a convolutional code goes back to the paper of
Elias [2], where it was suggested to use a polynomial matrix G(z) in the
encoding procedure (2.1).

Polynomial encoders G(z) are physically easily implemented through
a feedforward linear sequential circuit. Massey and Sain [34, 45] showed
that there is a close connection between linear systems and convolutional
codes. Massey and Sain viewed the polynomial encoder G(z) as a transfer
function. More generally it is possible to realize a transfer function G(z)
with rational entries by (see e.g. [20, 21]) a linear sequential circuit whose
elements include feedback components. If one allows rational entries in

IThroughout the paper we use the symbol cp to denote an encoding map. The context
will make it clear what the domain and the range of this map is in each situation.

42 JOACHIM ROSENTHAL

the encoding matrix then it seems natural to extend the possible message
sequences to the set of rational vectors m(z) E JFk (z) and to process this
sequence by a 'rational encoder' resulting again in a rational code vector
c(z) E JFIl (z). With this we have a first definition of a convolutional code as
it can be found e.g. in the Handbook of Coding Theory [35, Definition 2.4]:

DEFINITION A. A IF(z)-linear subspace C of JFIl(z) is called a convo
lutional code.

If G(z) is a n x k matrix with entries in IF(z) whose columns form a
basis for C, then we call G(z) a generator matrix or an encoder for the
convolutional code C. G(z) describes the encoding map:

cp: r (z) -t JFIl(z), m(z) t---7 c(z) = G(z)m(z).

The field of rationals IF(z) viewed as a subset of the sequence space JFZ =
IF[[z, Z-l]] consists precisely of those sequences whose support is finite on
the negative sequence space JFZ - and whose elements form an ultimately
periodic sequence on the positive sequence space JFZ +. It therefore seems
that one equally well could restrict the possible message words m(z) E
JFk (z) to sequences whose coordinates consists of Laurent polynomials only,
in other words to sequences of the form m(z) E JFk [z, Z-l].

Alternatively one could allow message words m(z) whose coordinates
are not ultimately periodic and possibly not of finite support on the neg
ative sequence space lFz - . This would suggest that one should take as
possible message words the whole sequence space (IF'')z = IF" [[z, Z-l]].
The problem with this approach is that the multiplication of an element
in IF[[z, Z-l]] with an element in IF(z) is in general not well defined. If
one restricts however the message sequences to the field of formal Laurent
series then the multiplication is well defined. This leads to the following
definition which goes back to the work of Forney [7]. The definition has
been adopted in the book by Piret [38] and the book by Johannesson and
Zigangirov [21], and it appears as Definition 2.3 in the Handbook of Coding
Theory [35]:

DEFINITION A'. A IF((z))-linear subspace C of JFIl{(z)) which has a
basis of rational vectors in JFIl (z) is called a convolutional code.

The requirement that C has a basis with rational entries guarantees
that C has also a basis with only polynomial entries. C can therefore be
represented by a n x k generator matrix G(z) whose entries consist only of
rationals or even polynomials. The encoding map with respect to G(z) is
given through:

(2.2) cp: r{(z)) -t JFIl({z)), m(z) t---7 c(z) = G(z)m(z).

If G(z) is a polynomial matrix, then finitely many components of m{z)
influence only finitely many components of c(z), and the encoding proce
dure may be physically implemented by a simple feedforward linear shift
register.

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 43

If G(z) contains rational entries, then it is in general the case that
a finite (polynomial) message vector is encoded into an infinite (rational)
code vector of the form c(z) = L~s CiZ i • This might cause some difficulties
in the decoder. For the encoding process, G(z) can be physically realized
by linear shift registers, in general with feedback (see e.g. [20, 21)).

From a systems theory point of view, it is classical [23] to view the
encoding map (2.2) as an input-output linear system. This was the point
of view taken by Massey and Sain [34, 45] and thereafter in most of the
coding literature. However unlike in systems theory, the important object
in coding theory is the code C = im (c.p). As a result one calls encoders c.p
which generate the same image im (c.p) equivalent; we will say more about
this in a moment. In Sections 3 and 4 we will view (2.2) as an image
representation of a time-invariant behavior in the sense of Willems [50, 51],
which we believe captures the coding situation in a more natural way.

Assume that G(z) and G(z) are two n x k rational encoding matrices
defining the same code C with respect to either Definition A or A'. In this
case we say that G(z) and G(z) are equivalent encoders. The following
lemma is a simple result of linear algebra:

LEMMA 2.1. Two n x k rational encoders G(z) and G(z) are equivalent
with respect to either Definition A or A' if and only if there is a k x k
invertible rational matrix R(z) such that G(z) = G(z)R(z).

It follows from this lemma that Definition A and Definition A' are
completely equivalent with respect to equivalence of encoders.

From an algebraic point of view we can identify a convolutional code
in the sense of Definition A or Definition A' through an equivalence class of
rational matrices. The following theorem singles out a set of very desirable
encoders inside each equivalence class.

THEOREM 2.2. Let G(z) be a n x k rational encoding matrix of rank k
defining a code C. Then there is a k x k invertible rational matrix R(z)
such that G(z) = G(z)R(z) has the properties:
(i) G(z) is a polynomial matrix.
(ii) G(z) is right prime.
(iii) G(z) is column reduced with column degrees {el, ... ,ed.
Furthermore, every polynomial encoding matrix of C which is right prime
and column-reduced has (unordered) column degrees {ell ... ,ed. Thus
these indices are invariants of the convolutional code.

The essence of Theorem 2.2 was proved by Forney [6, Theorem 3].
In [8] Forney related the indices appearing in (iii) to the controllability and
observability indices of a controllable and observable system. Paper [8]
had an immense impact in the linear systems theory literature. We will
follow here the suggestion of McEliece [35] and call these indices the Forney
indices of the convolutional code, despite the fact that Theorem 2.2 can be
traced back to the last century, when Kronecker, Hermite and in particular
Dedekind and Weber studied matrices over the rationals and more general

44 JOACHIM ROSENTHAL

function fields. In Sections 4 and 5 we will make a distinction between the
Forney indices as defined above and the Kronecker indices of a submodule
of IF" [z).

In the coding literature [21, 38), an encoder satisfying conditions (i),
(ii) and (iii) of Theorem 2.2 is called a minimal basic encoder.

So far we have used encoding matrices to describe a convolutional code.
As is customary in linear algebra, one often describes a linear subspace as
the kernel of a matrix. This leads to the notion of a parity-check matrix.
The following theorem is well known (see e.g. [38)).

THEOREM 2.3. Let C c IF"«z)) be a rank-k convolutional code in the
sense of Definition A'. Then there exists an r x n matrix H(z) such that
the code is equivalently described as the kernel of H(z):

C = { c(z) ElF" «z)) I H(z)c(z) = 0 }.

Moreover, it is possible to choose H(z) in such a way that:
(i) H(z) is a polynomial matrix.
(ii) H(z) is left prime.
(iii) H(z) is row-reduced having row degrees {h,· .. , fr}.
Furthermore, every polynomial parity check matrix of C which is left prime
and row reduced will have (unordered) row degrees {h, ... , fr}. Thus these
indices are invariants of the convolutional code.

Properties (i)-{iii) essentially follow from the fact that the transpose
Ht(z) is a generator matrix for the dual (orthogonal) code C.L.

The set of indices {el, ... , ek} and {h, ... , fr} differ in general, their
sum is however always the same, and is called the degree of the convolu
tional code. One says that a rank-k code C C IF"«z)) has transmission
rate kin, controller memory m:= max{el, ... ,ek} and observer memory
n := max{h, ... , fr}.

Another important code parameter is the free distance. The free dis
tance of a code measures the smallest distance between any two different
code words, and is formally defined as:

(2.3)

where dH (,) denotes the usual Hamming distance on IF".

3. The symbolic dynamics point of view. In this section we
present a definition of convolutional codes as it can be found in the sym
bolic dynamics literature [24, 29, 32). Convolutional codes in this frame
work are exactly the linear, compact, irreducible and shift-invariant subsets
of IF" [[z, Z-l)). In order to make this precise, we will have to develop some
basic notions from symbolic dynamics.

In the sequel we will work with the finite alphabet A := IF". A block
over the alphabet A is a finite sequence f3 = XIX2 ••• Xk consisting of k

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 45

elements Xi E A. If W = W(Z} = LiWiZi E IF''[[Z,Z-l]] is a sequence,
one says that the block f3 occurs in W if there is some integer j such that
f3 = WjWj+1·· .Wk+j-1· If X c IF''[[Z,Z-l]] is any subset, we denote by
13(X} the set of blocks which occur in some element of X.

The fundamental objects in symbolic dynamics are the shift spaces.
For this let l' be a set of blocks, possibly infinite.

DEFINITION 3.1. The subset X c IF''[[Z,Z-l]] consisting of all se
quences w(z} which do not contain any of the (forbidden) blocks of l' is
called a shift space.

The left-shift operator is the IF-linear map

Let In be the n x n identity matrix. The shift map a extends to the shift
map

One says that X c IF''[[z,Z-l]] is a shift-invariant set if (aIn)(X) c X.
Clearly shift spaces are shift-invariant subsets of IF'' [[z, Z-l]].

It is possible to characterize shift spaces in a topological manner. For
this we will introduce a metric on IF''[[Z,Z-l]]:

DEFINITION 3.2. If v(z} = Li Vizi and w(z} = Li Wizi are both
elements of IF'' [[z, Z -1]] we define their distance through:

(3.2) d(v(z}, w(z}} := :L 2-!i!dH(Vi, Wi}.
iEZ

In this metric two elements v(z},w(z} are 'close' if they coincide over a
'large block around zero'. One readily verifies that d(, } indeed satisfies all
the properties of a metric and therefore induces a topology on IF'' [[z, Z-l]].
Using this topology we can characterize shift spaces:

THEOREM 3.3. A subset of IF'' [[z, Z-l]] is a shift space if and only if
it is shift-invariant and compact.

Proof. The metric introduced in Definition 3.2 is equivalent to the metric
described in [29, Example 6.1.10]. The induced topologies are therefore the
same. The result follows therefore from [29, Theorem 6.1.21]. 0

The topological space IF'' [[z, Z-l]] is a typical example of a linearly
compact vector space, a notion introduced by S. Lefschetz. There is a
large theory on linearly compact vector spaces, and several of the results
which we are going to derive are valid in this broader context. We refer
the interested reader to [25, §10] for more details.

A further important concept is irreducibility which will turn out to be
equivalent to the concept of controllability in our concrete setting.

46 JOACHIM ROSENTHAL

DEFINITION 3.4. A shift space X C IF'' [[z, Z-l]] is called irreducible
if for every ordered pair of blocks 13, 'Y of 13(X) there is a block I-" such that
the concatenated block j3l-"'Y is in 13(X).

We are now prepared to give the symbolic dynamics definition for a
convolutional code and to work out the basic properties for these codes.

DEFINITION B. A linear, compact, irreducible and shift-invariant sub
set of IF'' [[z, Z-l]] is called a convolutional code.

This is an abstract definition and it is not immediately clear how one
should encode messages with such convolutional codes. The following will
make this clear.

Let G(z) be a n x k matrix with entries in the ring of Laurent poly
nomials F(z, Z-l]. Consider the encoding map:

(3.3) cp: JB* [[z, Z-l]] -+ IF'' [[z, Z-l]], m(z) t---+ c(z) = G(O")m(z).

In terms of polynomials the map cp is simply described through m(z) t---+
c(z) = G(z-l)m(z).

Recall that a continuous map is called closed if the image of a closed
set is closed. Using the fact that IF'' [[z, Z-l]] is compact, one (easily) proves
the following result:

LEMMA 3.5. The encoding map (3.3) is IF-linear, continuous and
closed.

Clearly im (cp) is also shift-invariant, and one shows [29] that the image of
an irreducible set under cp is irreducible again.

In summary we have shown that im (cp) describes a convolutional cbde
in the sense of Definition B. Actually the converse is true as well:

THEOREM 3.6. C c IF''[[Z,Z-l]] is a convolutional code in the sense of
Definition B if and only if there exists a Laurent polynomial matrix G(z)
such that C = im(cp), where cp is the map in (3.3).

A proof of this theorem will be given in the next section after Theo
rem 4.8.

The question now arises how Definition B relates to Definition A and
Definition A'. The following theorem will provide a partial answer to this
question.

THEOREM 3.7. Assume that C C IF''[[z,z-l]] is a nonzero convolu
tional code in the sense of Definition A or Definition A'. Then C is not
closed, but the closure of C of C is a convolutional code in the sense of
Definition B.

Proof. Let G(z) be a minimal basic encoder of C and let w(z) E IF''[z]
be the first column of G(z). Note that w(z) E C and that there is at
least one entry of w(z) which does not contain the factor (z - 1). Let
<PN(Z) := 2:[:_Nzi E F(z,z-l] and consider the sequence of code words
wN (z) := <PN(Z)W(Z). For each N > 0 one has that wN (z) E C. However

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 47

limN>-ToowN(z) is in IF''[[Z,z-l]] \ IF''((z)) C IF''[[Z,Z-l]] \ C. This shows
that C is not a closed set inside IF'' [[z, Z-l]]. The closure C is obtained
by extending the input space Fk((z)) to all of Fk[[z,Z-l]]. The image of
Fk[[z, Z-l]] under the encoding map (3.3) is closed by Lemma 3.5, hence
the closure is a code in the sense of Definition B. D

Actually one can show that there is a bijective correspondence between
the convolutional codes in the sense of Definition A (respectively Defini
tion A') and the convolutional codes in the sense of Definition B, as we
will show in Theorem 7.1 and Theorem 7.2. It is also worthwhile to remark
that already in 1983 Staiger published a paper [47] where he studied the
closure of convolutional codes generated by a polynomial generator matrix.

In analogy to Lemma 2.1, one has:
LEMMA 3.8. Two n x k encoding matrices G(z) and G(z) defined

over the Laurent polynomial ring Jlf[z, Z-l] are equivalent with respect to
Definition B if and only if there is a k x k invertible rational matrix R{z)
such that G(z) = G(z)R(z).

We leave the proof again as an exercise for the reader. We remark
that rational transformations of the form R{z) are needed to describe the
equivalence, even though it is in general not possible to use a rational
encoder G(z) in the encoding procedure (3.3). This is simply due to the
fact that in general the multiplication of an element of Jlf(z) with an element
of Jlf[[z, z-l]] is not defined. The following example should make this clear.
(Compare also with Remark 4.4.)

EXAMPLE 3.9. Consider f(z) = l~Z = 2::0 zi E Jlf(z) and g(z) =
2::-00 zi E lB1[z, Z-l]]. Trying to multiply the two power series f(z), g(z)
would result in a power series in which each coefficient would be infinite.

In the same way as at the end of Section 2 we define the transmission
rate, the degree, the memory and the free distance of a convolutional code
C in the sense of Definition B.

4. Linear time-invariant behaviors. In this section we will take
the point of view that a convolutional code is a linear time-invariant be
havior in the sense of Willems [50, 51, 52]. Of course behavioral system
theory is quite general, allowing all kinds of time axes and signal spaces.
In order to relate the behavioral concepts to the previous points of view,
we will restrict our study to linear behaviors in {IF'')z = IF''[[Z,Z-l]] and
(IF'')z+ = IF'' [[z]].

Let tj be the shift operator defined in (3.1). One says that a subset
Be IF''[[Z,Z-l]] is time-invariant if (tj1n)(B) c B. The concept therefore
coincides with the symbolic dynamics concept of shift-invariance.

In addition to linearity and time-invariance, there is a third important
concept usually required of a time-invariant behavior:

DEFINITION 4.1. A behavior Be IF''[[z,z-l]] is said to be complete
if w E IF'' [[z, Z-l]] belongs to B whenever wlJ belongs to BIJ for every finite
subinterval J C Z.

48 JOACHIM ROSENTHAL

The definition simply says that B is complete if membership can be
decided on the basis of finite windows. Completeness is an important well
behavedness property for linear time-invariant behaviors, as Willems [50,
p. 567] emphasized with the remark:

As such, it can be said that the study of non-complete sys
tems does not fall within the competence of system theo
rists and could be left to cosmologists or theologians.

In Definition 3.2 we introduced a metric on the vector space IF" [[z, z-l]].
We remark that with respect to this metric a subset B c IF"[[z,z-l]] is
complete if and only if every Cauchy sequence converges inside B. In other
words, the completeness notion of Definition 4.1 coincides with the usual
topological notion of completeness.

The following result is known for linearly compact vector spaces, a
proof can be found in [50]:

LEMMA 4.2. A linear subset Be IF"[[Z,Z-l]] is complete if and only
if it is closed and hence compact.

With these preliminaries we can define a convolutional code as follows:
DEFINITION C. A linear, time-invariant and complete subset B c

IF" [[z, Z-l]] is called a convolutional code.

It is immediate from Lemma 4.2 that the convolutional codes defined
in Definition B are complete and that Definition C is more general than
Definition B, since no irreducibility is required. It also follows from Theo
rem 3.7 and Lemma 4.2 that the convolutional codes defined in Definition A
and Definition N are in general not complete.

Before we elaborate on these differences we would like also to treat the
situation when the time axis is Z+ since traditionally a large part of linear
systems theory has been concerned with systems defined on the positive
time axis. We first define the left-shift operator acting on (IF'')z+ = IF"[[z]]
through:

(4.1) (7: IF[[z]] -+ IF[[z]], w(z) t---+ Z-l(W(Z) - w(O)).

We have used the same symbol as in (3.1) since the context will always
make it clear if we work over Z or Z+. In analogy to (3.1) (7 extends to
the shift map (7in : JF"l[[z]]-+ JF"l[[z]J, and one says a subset Xc IF"[[zlJ
is time-invariant if ((7in)(X) C X. Notice however that the map of (4.1),
unlike that of (3.1), is not invertible.

With this we have:
DEFINITION ct. A linear, time-invariant and complete subset B C

JF"l [[z]] is called a convolutional code.

The following fundamental theorem was proved by Willems [50, The
orem 5].

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 49

THEOREM 4.3. A subset Be JF"[[z,z-lll (respectively a subset B C
JF" [[z]J) is linear, time-invariant and complete if and only if there is a r x n
matrix P(z) having entries in JFlz] such that

(4.2) B = {w(z) I P(a)w(z) = 0 }.

By Lemma 3.5 the linear map '¢: JF"[[Z,Z-l]] --+ JF"[[z,z-lll, w(z) t---+

P(a)w(z) is continuous and its kernel is therefore a complete set. It is there
fore immediate that the behavior defined in (4.2) is linear, time-invariant
and complete. The harder part of Theorem 4.3 is the converse statement.

Equation (4.2) is often referred to as a kernel (or AR) representation
of a behavioral system. We will denote a behavior having the form (4.2)
by ker P(a). By contrast, the encoding map <p defined in (3.3) describes
an image (or MA) representation of the behavior im (<p) = im G (a).

The most general representation is an ARMA representation. For this
let P(z) and G(z) be matrices of size r x nand r x k respectively, having
entries in the Laurent polynomial ring IF[z, z-l]. Then

(4.3)
B = {w(z) E JF"[[Z,z-l]] I 3m(z) E IFk [[z, Z-l]] :

P(a)w(z) = G(a)m(z)}

is called an ARMA model. One immediately verifies that the set B is linear
and time-invariant. It is a direct consequence of Lemma 3.5 that B is also
closed and hence complete. Theorem 4.3 therefore states that it is possible
to eliminate the so called 'latent variable' m(z) and describe the behavior B
by a simpler kernel representation of the form (4.2). It follows in particular
that the code im(<p) = imG(a) defined in (3.3) has an equivalent kernel
representation of the form (4.2) but that in general the converse is not true.

REMARK 4.4. As we explained in Section 2 it is quite common to use
rational encoders for convolutional codes. In the ARMA model (4.3) we
required that the entries of P(z) and G(z) be from the Laurent polynomial
ring. If P(z) and G(z) were rational matrices, then the behavior B C

JF" [[z, Z-l]] appearing in (4.3) might not be well defined, as we showed in
Example 3.9. On the other hand if one restricts the behavior to the positive
time axis Z+, i.e. if one assumes that B C JF"[[z]], then the set (4.3) is
defined even if P(z) and G(z) are rational encoders. This is certainly one
reason why much classical system theory focused on shift spaces B C JF" [[z]]
or B C JF" ((z)).

In the sequel we will concentrate on representations of the form (4.2).
Again the question arises, when are two kernel representations equivalent?

LEMMA 4.5. Two r x n matrices P(z) and F(z) defined over the
Laurent polynomial ring IF[z, Z-l] describe the same behavior ker P(a) =
ker F(a) C JF"[[z, z-l]] if and only if there is a r x r matrix U(z), unimod
ular over IF[z, Z-l], such that F(z) = U(z)P(z).

50 JOACHIM ROSENTHAL

Proof. [52, Proposition 111.3]. o
Similarly, if P(z) and p(z) are defined over IF[z], then these matrices define
the same behavior ker P(a) = ker P(a) C IF''' [(:]] if and only if there is a
matrix U(z), unimodular over IF[z], such that P(z) = U(z)P(z).

The major difference between Definition B and Definition C seems
to be that Definition C does not require irreducibility. This last concept
corresponds to the term controllability (see [10]) in systems theory. We
first start with some notation taken from [42]:

For a sequence w = L~oo Wizi E IF''' [[z, Z-l]], we use the symbol w+
to denote the 'right half' L~ Wizi and the symbol w- to denote the 'left

o .
half' L-oo WiZ·.

DEFINITION 4.6. A behavior B defined on Z is said to be controllable
if there is some integer £ such that for every wand w' in B and every integer
j there exists a w" E B such that (zjw")- = (zjw)- and (zj+lw")+ =
(zj+lw')+.

REMARK 4.7. Loeliger and Mittelholzer [30] speak of strongly con
trollable if a behavior satisfies the conditions of Definition 4.6. 'Weakly
controllable' in contrast requires an integer £ which may depend on the
trajectories wand w'. The notions are equivalent in our concrete setting.

We leave it as an exercise for the reader to show that irreducibility
as introduced in Definition 3.4 is equivalent to controllability for linear,
time-invariant and complete behaviors B C IF''' [[z, Z-l]]. The next theorem
gives equivalent conditions for a behavior to be controllable.

THEOREM 4.8. (cf. [51, Prop. 4.3]) Let P(z) be a r x n matrix of rank
r defined over IF[z, Z-l]. The following conditions are equivalent:
(i) The behavior B = kerP(a) = {w(z) E IF'''[[Z,Z-l]] I P(a)w(z) = O} is

controllable.
(ii) P(z) is left prime over IF[z, Z-l].
(iii) The behavior B has an image representation. This means there exists

an n x k matrix G(z) defined over IF[z, Z-l] such that

B = {w(z) E IF''[[Z,Z-l]] I 3m(z) E P[[Z,Z-l]]: w(z) = G(a)m(z)}.

Combining the theorem with the facts that completeness corresponds
to compactness and irreducibility corresponds to controllability gives a
proof of Theorem 3.6.

We conclude the section by defining some parameters of a linear, time
invariant and complete behavior. For simplicity we will do this in an al
gebraic manner. We will first treat behaviors B C IF''' [[z]], i.e. behaviors
in the sense of Definition C'. In Remark 4.10 we will explain how the
definitions have to be adjusted for behaviors defined on the time axis Z.

Assume that P(z) is a r x n polynomial matrix of rank r defining
the behavior B = ker pea). There exists a matrix U(z), unimodular over

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 51

IF[z] , such that F(z) = U(z)P(z) is row-reduced with ordered row degrees
III 2: ... 2: lIr · The indices II = (lII' •.. , lIr) are invariants of the row module
of P(z) (and hence also invariants of the behavior B), and are sometimes
referred to as the Kronecker indices or observability indices of B. The
invariant 0 := L~=llli is called the McMillan degree of the behavior B. If
we think of B as a convolutional code in the sense of Definition C' then we
say that B has transmission rate n~r. Finally, the free distance of the code
is defined as in (2.3).

REMARK 4.9. The Kronecker indices II are in general different from
the minimal row indices (in the sense of Forney [8]) of the IF(z)-vector space
generated by the rows of P(z). They coincide with the minimal row indices
if and only if P(z) is left prime.

REMARK 4.10. If B c r[[z,z-I]] is a linear, time-invariant and
complete behavior, then we can define parameters like the Kronecker in
dices and the McMillan degree in the following way: Assume P(z) has the
property that B = ker P(a). There exists a matrix U(z), unimodular over
IF[z, Z-I], such that F(z) = U(z)P(z) is row-reduced and P(O) has full row
rank r. One shows again that the row degrees of F(z) are invariants of
the behavior. The McMillan degree, the transmission rate and the free
distance are then defined in the same way as for behaviors B c r [[z]].

5. The module point of view. Fornasini and Valcher [5, 48] and the
present author in joint work with Schumacher, Weiner and York [42, 44, 49]
proposed a module-theoretic approach to convolutional codes. The module
point of view simplifies the algebraic treatment of convolutional codes to
a large degree, and this simplification is probably almost necessary if one
wants to study convolutional codes in a multidimensional setting [5, 48, 49].

From a systems theoretic point of view, the module-theoretic approach
studies linear time-invariant systems whose states start at zero and re
turn to zero in finite time. Such dynamical systems have been studied by
Hinrichsen and Priitzel-Wolters [18, 19], who recognized these systems as
convenient objects for the study of systems equivalence.

In our development we will again deal with the time axes Z and Z+ in
a parallel manner.

DEFINITION D. A sub module C of r [z, Z-I] is called a convolutional
code.

We like the module-theoretic language. If one prefers to define ev
erything in terms of trajectories then one could equivalently define C as
IF-linear, time-invariant subset of r [[z, Z-I]] whose elements have finite
support.

The analogous definition for codes supported on the positive time axis
Z+ is:

DEFINITION D'. A submodule C of r [z] is called a convolutional
code.

52 JOACHIM ROSENTHAL

Since both the rings IF[z, Z-l] and IF[z] are principal ideal domains
(PID), a convolutional code C has always a well-defined rank k, and there
is a full-rank matrix G(z) of rank k such that C = COISPIF[z,z-l]G(z) (re
spectively C = COISPIF[z]G(Z) if C is defined as in Definition D'). We will
call G(z) an encoder of C, and the map

(5.1) cp: P[Z,Z-l]--+ IF"'[Z,Z-l], m(z) 1---+ c(z) = G(z)m(z)

an encoding map.
REMARK 5.1. In contrast to the situation of Section 3, it is possible

to define a convolutional code in the sense of Definition D (respectively
Definition D') using a rational encoder. For this, assume that G(z) is an
n x k matrix with entries in IF(z). Then

C = {c(z) E IF"'[Z,Z-l] I 3m(z) E p[Z,Z-l]: c(z) = G(z)m(z) }

defines a submodule of IF'' [z, Z-l]. Note that the map (5.1) involving a
rational encoding matrix G(z) has to be 'input-restricted' in this case.

In analogy to Lemma 3.8 we have:
LEMMA 5.2. Two n x k matrices G(z) and G(z) defined over the

Laurent polynomial ring IF[z, z-l] (respectively over the polynomial ring
IF[z]) generate the same code C C IF''[Z,Z-l] (respectively C C IF''[z]) if and
only if there is a k x k matrix U(z), unimodular over IF[z, z-l] (respectively
over IF[z]), such that G(z) = G(z)U(z).

As we already mentioned earlier convolutional codes in the sense of
Definitions D and D' are linear and time-invariant. The following the
orem answers any question about controllability (i.e. irreducibility) and
completeness.

THEOREM 5.3. A nonzero convolutional code with either Definition D
or IY is controllable and incomplete.

Sketch of Proof. The proof of the completeness part of the Theorem is
analogous to the proof of Theorem 3.7. In order to show controllability, let
G(z) be an encoding matrix for a code C C IF'' [z] and consider two code
words w(z) = G(z)(aO+al +-. ·+aszS) and w'(z) = G(z)(bo+b1 + .. +bszS).

The codeword wI! (z) required by Definition 4.6 can be constructed in the
form

o
Submodules of IF''[Z,Z-l] (respectively of IF''[z]) form the Pontryagin

dual of linear, time-invariant and complete behaviors in IF'' [[z, z-l]] (re
spectively IF'' [[z]]). In the following we follow [42] and explain this in a
very explicit way when the time axis is Z. Of course everything can be
done mutatis mutandis when the time axis is Z+.

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 53

Consider the bilinear form:

(,): W'[[Z,Z-l]] x W'[z,z-l] --+ IF

(5.2) (w,v)
00

f-7 L (Wi, Vi),
i=-oo

where (,) represents the standard dot product on W'. One shows that
(,) is well defined and nondegenerate, in particular because there are only
finitely many nonzero terms in the sum. For any subset C of W' [z, Z-l] one
defines the annihilator

(5.3) C.L = {w E IF"[[Z,Z-l]] I (w,v) = O,'v'v E C}

and the annihilator of a subset B of IF" [[z, Z-l]] is

(5.4) B.L = {v E IF"[Z,Z-l] I (w,v) = O,'v'w E B}.

The relation between these two annihilator operations is given by:
THEOREM 5.4. If C ~ IF" [z, z-l] is a convolutional code with generator

matrix G(z), then C.L is a linear, left-shift-invariant and complete behavior
with kernel representation P(z) = Gt(z). Conversely, if B ~ W'[[Z,Z-l]]
is a linear, left-shift-invariant and complete behavior with kernel repre
sentation P(z), then B.L is a convolutional code with generator matrix
G(z) = pt(z).

REMARK 5.5. An elementary proof of Theorem 5.4 in the case of the
positive time axis Z+ is given in [42].

REMARK 5.6. Theorem 5.4 is a special instance of a broad duality
theory between solution spaces of difference equations on the one hand and
modules on the other, for which probably the most comprehensive reference
is Oberst [37]. In this article Oberst [37, p. 22] works with a bilinear form
which is different from (5.2). This bilinear form induces however the same
duality as shown in [16]. Extensions of duality results to group codes were
derived by Forney and Trott in [12].

For finite support convolutional codes in the sense of Definition D or
Definition D' the crucial issue is observability. In the literature there have
been several definitions of observability [4, 11, 5, 9, 30, 42] and it is not
entirely clear how these definitions relate to each other.

In the sequel we will follow [4, 42].
DEFINITION 5.7. (cf. [4, Prop. 2.1]) A code C is observable if there

exists an integer N such that, whenever the supports of v and v' are sepa
rated by a distance of at least Nand v+v' E C, then also v E C and v' E C.

With this we have the 'Pontryagin dual statement' of Theorem 4.8:
THEOREM 5.8. (cf. [42, Prop. 2. 1 OJ) Let G(z) be a n x k matrix of

rank k defined over IF[z, z-l]. The following conditions are equivalent:

54 JOACHIM ROSENTHAL

(i) The convolutional code C = COISPIF[z,z-llG(z) is observable.
(ii) G(z) is right prime over IF[z, Z-I].
(iii) The code C has a kernel representation. This means there exists an

r x n 'parity-check matrix' H(z) defined over IF[z, z-l] such that

C = { v(z) E wn [z, Z-I] I H(z)v(z) = 0 }.

REMARK 5.9. The concept of observability is clearly connected
to the coding concept of non-catastrophicity. Indeed an encoder is non
catastrophic if and only if the code generated by this encoder is observable.
In the context of Definition A (respectively Definition A') every code has a
catastrophic as well as a non-catastrophic encoder. In the module setting
of Definition D every encoder of an observable code is non-catastrophic
and every encoder of an non-observable code is catastrophic. If one de
fines a convolutional code by Definition D then one could talk of a 'non
catastrophic convolutional code'. The term observable seems however much
more appropriate.

As at the end of Section 4, we now define the code parameters. We do
it only for codes given by Definition D' and leave it to the reader to adapt
the definitions to codes given by Definition D.

Assume that G(z) is an n x k polynomial matrix of rank k defining
the code C = COISPIF[zP(Z). There exists a unimodular matrix U(z) such

that G(z) = G(z)U(z) is column-reduced with ordered column degrees
"'1 ~ ... ~ "'k· The indices '" = ("'1, ... , "'k) are invariants of the code
C, which we call the Kronecker indices or controllability indices of C. The
invariant 8 := L:~=1 "'i is called the degree ofthe code C. The free distance
of the code is defined as in (2.3). Finally we say that C has transmission
rate ~.

6. First-order representations. In this section we provide an over
view of the different first-order representations (realizations) associated
with the convolutional codes and encoding maps which we have defined.

We start with the encoding map (2.2). As is customary in most of the
coding literature, we view the map (2.2) as an input-output operator from
the message space to the code space. The existence of associated state
spaces and realizations can be shown on an abstract level. Kalman [22,
23] first showed how the encoding map (2.2) can be 'factored' resulting
in a realization of the encoding matrix <po Fuhrmamnn [13] refined the
realization procedure in an elegant way. (Compare also [15, 17].)

In the sequel we will simply assume that a realization algorithm exists.
We summarize the main results in the following two theorems:

THEOREM 6.1. LetT(z) be apxm proper transfer function of McMil
lan degree 8. Then there exist matrices (A, B, C, D) of size 8 x 8, 8 x m,
p x 8 and p x m respectively such that

(6.1) T(z) = C(zI - A)-1 B + D.

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 55

The minimality conditions are that (A, B) forms a controllable pair and
(A, C) forms an observable pair. Finally (6.1) is unique in the sense that if
T(z) = 6(zI - A)-1 B + iJ with (A, B) controllable and (A, 6) observable,
then there is a unique invertible matrix S such that

(6.2) (A, B, 6, iJ) = (SAS- 1, SB, CS-1, D).

Consider the encoding map (2.2) with renerator matrix G(z). Let
m(z) = L!=s mizi E I8* ((z)) and c(z) = Li=s Cizi E JF'l ((z)) be the se
quence of message and code symbols respectively. Then one has:

THEOREM 6.2. Assume that G(z) has the property that rankG(O) =
k. Then G(Z-1) is a proper transfer function, and by Theorem 6.1 there
exist matrices (A, B, C, D) of appropriate sizes such that G(Z-1) = C(zI
A)-1 B + D. The dynamics of (2.2) are then equivalently described by:

(6.3)
Xt+1 = AXt + Bmt,

Ct CXt + Dmt·

The realization (6.3) is useful if one wants to describe the dynamics
of the encoder G(z). It is however less useful if one is interested in the
construction of codes having certain properties. The problem is that ev
ery code C has many equivalent encoders whose realizations appear to be
completely different.

EXAMPLE 6.3. The encoders

(
1-z)
z-4

G(z) =
l+z
z-4

and G(z) = (
(z - 12)(: + 3))

l+z
(z - 2)(z + 3)

are equivalent since they define the same code in the sense of Definition A.
The transfer functions G(Z-1) and G(z-1) are however very different from a
systems theory point of view. Indeed, they have different McMillan degrees,
and over the reals the first is stable whereas the second is not. The state
space descriptions are therefor very different for these encoders.

This example should make it clear that for the purpose of constructing
good convolutional codes, representation (6.3) is not very useful.

We are now coming to the realization theory of the behaviors and
codes of Section 4 and 5. We will continue with our algebraic approach.
The results are stated for the positive time axis Z+, but they hold mutatis
mutandis for the time axis Z.

THEOREM 6.4 (Existence). Let P(z) be an r x n matrix of rank r
describing a behavior l3 of the form (4.2) with McMillan degree o. Let

56 JOACHIM ROSENTHAL

k = n - r. Then there exist (constant) matrices G,F of size 0 x (0 + k)
and a matrix H of size n x (0 + k) such that B is equivalently described by:

(6.4)
B = {w(z) E r[[zJlI3(z) E Jr5+k[[zJl :

(17G - F)(z) = 0, w(z) = H(z)}.

Moreover the following minimality conditions will be satisfied:
(i) G has full row rank;

(ii) [~] has full column rank;

(iii) [ZG;F] is right prime.

For a proof, see [26, Thm. 4.3] or [27,41]. Equation (6.4) describes the
behavior locally in terms of a time window of length 1. The computation
of the matrices G, F, H from a kernel description is not difficult. It can
even be done 'by inspection', i.e., just by rearranging the data [41]. The
next result describes the extent to which minimal first-order realizations
are unique. A proof is given in [26, Thm.4.34].

THEOREM 6.5 (Uniqueness). The matrices (G,F,H) are unique in
the following way: If (0, F, if) is a second triple of matrices describing the
behavior B through (6.4) and if the minimality conditions (i), (ii) and (iii)
are satisfied, then there exist unique invertible matrices Sand T such that

(6.5)

The relation to the traditional state-space theory is as follows: Assume
that P(z) can be partitioned into P(z) = (Y(z) U(z» with U(z) a square
r x r matrix and degdet U(z) = 0, the McMillan degree of the behavior
B. Assume that (G, F, H) provides a realization for B through (6.4). Then

one shows that the pencil [ZG;F] is equivalent to the pencil:

(6.6) [
ZI5 - A B 1

o h.
C D

The minimality condition (iii) simply translates into the condition that
(A, C) forms an observable pair, showing that the behavior B is observable.
One also verifies that the matrices (A, B, C, D) form a realization of the
proper transfer function U (z) -1 Y (z) and that this is a minimal realization
if and only if (A, B) forms a controllable pair. Finally (A, B) is controllable
if and only if the behavior B is controllable.

The Pontryagin dual statements of Theorem 6.4 and 6.5 are (see [42]):
THEOREM 6.6 (Existence). Let G(z) be an n x k polynomial matrix

generating a rate ~ convolutional code C ~ r[z] of degree o. Then there

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 57

exist (8 + n - k) x 8 matrices K,L and a (8 + n - k) x n matrix M (all
defined over IF) such that the code C is described by

(6.7) C = {v(z) E r[z] I 3x(z) E P [z]: zKx(z)+Lx(z)+Mv(z) = O}.

Moreover the following minimality conditions will be satisfied:
(i) K has full column rank;
(ii) [K M] has full row rank;
(iii) [zK + LIM] is left prime.

Equation (6.7) describes the behavior again locally in terms of a time
window of length l.

THEOREM 6.7 (Uniqueness). The matrices (K,L,M) are unique in
the following way: If (K, L, M) is a second triple of matrices describing
the code C through (6.7) and if the minimality conditions (i), (ii) and (iii)
are satisfied, then there exist unique invertible matrices T and S such that

(6.8)

If G(z) can be partitioned into G(z) = [~~;~] with U(z) a square

k x k matrix and deg det U (z) = 8, the degree of the code C, then the pencil
[zK + LIM] is equivalent to the pencil:

(6.9) [
zIo - A 0ox(n-k)

-C I n - k

-B].
-D

The minimality condition (iii) then translates into the condition that (A, B)
forms a controllable pair, showing that the code C is controllable. One
also verifies that the matrices (A, B, C, D) form a realization of the proper
transfer function Y(z)U(Z)-l, that this is a minimal realization if and only
if (A, C) forms an observable pair, and that this is the case if and only if
the code C is observable. Finally, the Kronecker indices of C coincide with
the controllability indices of the pair (A, B) [44].

The systems-theoretic meaning of the representation (6.9) is as follows
(see [44]). Partition the code vector v(z) into:

v(z) = [y(z)] E r[z]
u(z)

and consider the equation:

(6.10) [
zIo - A

-C
Oox(n-k)

I n - k

B] [x(z) 1
-D y(z) = O.

u(z)

58 JOACHIM ROSENTHAL

Let

() '1 '1-1
XZ =XOZ +X1Z +",+X'Y; Xt E r, t = 0, ... ,,,,/,

() '1 '1- 1
U Z = UOZ + U1Z + ... + U'Y; Ut E JF* ,t = 0, ... ,,,,/,

() '1 '1- 1
Y z = YOZ + Y1 Z + ... + Y'Y; Yt E IF"'-k, t = 0, ... ,,,,/.

Then (6.10) is satisfied if and only if

(6.11)
Xt+1 = AXt + BUt,

Yt = eXt + DUt,

Vt = (~:) , Xo = 0, x'Y+ 1 = 0,

is satisfied. Note that the state-space representation (6.11) is different
from the representation (6.3). Equation (6.11) describes the dynamics of
the systematic and rational encoder

The encoding map u(z) H y(z) = G(z)U- 1 (z)u(z) is input-restricted, i.e.
u(z) must be in the column module of U(z) in order to make sure that y(z)
and x(z) have finite support. In terms of systems theory, this simply means
that the state should start at zero and return to zero in finite time. Linear
systems satisfying these requirements have been studied by Hinrichsen and
Pditzel-Wolters [18, 19].

7. Differences and similarities among the definitions. After
having reviewed these different definitions for convolutional codes, we would
like to make some comparison.

The definitions of Section 2 and Section 3 viewed convolutional codes
as linear, time-invariant, controllable and observable behaviors, not neces
sarily complete. Definition C and Definition C' were more general in the
sense that non-controllable behaviors were accepted as codes. Definition D
and Definition D' were more general in the sense that non-observable codes
were allowed.

In the following subsection we show that all definitions are equiva
lent for all practical purposes if one restricts oneself to controllable and
observable codes.

7.1. Controllable and observable codes. Consider a linear, time
invariant, complete behavior B C IF'" [[z, z-l]J, i.e. a convolutional code in
the sense of Definition C. Let

C :=BnlF"'((z)).

Then one has

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 59

THEOREM 7.1. C is a convolutional code in the sense of Defini
tion A', and its completion C is the largest controllable sub-behavior of
B . Moreover, one has a bijective correspondence between controllable be
haviors B c IF"'[[z,Z-l]] and convolutional codes C C IF"'((z)) in the sense
of Definition A'.

Sketch of Proof. Let B = kerP(O") = {w(z) E IF"'[[Z,Z-l]] I P(O")w(z) =
O}. If B is not controllable, then P(z) is not left prime and one has a
factorization P(z) = V(z).P(z), where .P(z) is left prime and describes the
controllable sub-behavior ker .P(O") C B. Since ker V(O") is an autonomous
behavior it follows that

C = B n r((z)) = ker P(O") n r((z)) = ker .P(O") n r((z)).

It follows (compare with Theorem 3.7) that the completion C =
ker .P(O"). 0

Consider now a convolutional code C C IF"'((z)) in the sense of Defini
tion A'. Define:

C:= C n r[z,z-l)

C:= C nr[z).

Conversely if C c IF'" [z) is a convolutional code in the sense of Definition D',
then define:

C := spanlF[z,z-lj{V(Z) I v(z) E C}.

C := spanlF((z)) {v(z) I v(z) E C}.

By definition it is clear that C C C are convolutional codes in the sense of
Definition D and Definition A' respectively.

THEOREM 7.2. Assume that ~ C IF"'((z)) is a convolutional code in
the sense of Definition A'. Then C C IF'" [z) is an observable code in the
sense of Definition A'. Moreover the operations: and ~ induce a bijective
correspondence between the observable codes C C IF'" [z) and convolutional
codes C C IF"'((z)) in the sense of Definition A'.

Theorem 7.2 is essentially the Pontryagin dual statement of Theo
rem 7.1; we leave it to the reader to work out the details. Theorem 7.1
and 7.2 together show that there is a bijection between controllable and
observable codes in the sense of one definition and another definition. For
controllable and observable codes the code parameters like the rate kin,
the degree 8 and the Forney (Kronecker) indices are all the same. Moreover
the free distance is in every case the same as well. For all practical purposes
one can therefore say that the frameworks are completely equivalent, if one
is only interested in controllable and observable codes.

60 JOACHIM ROSENTHAL

The advantage of Definition D (respectively Definition D/) over the
other definitions lies in the fact that non-observable codes become naturally
part of the theory. It also seems that for construction purposes the relation
between quasi-cyclic codes and convolutional codes [33, 46] is best described
in a module-theoretic framework.

Definition C (respectively Definition C/) allows one to introduce non
controllable codes in a natural way.

A Laurent series setting as in Definition N seems to be most natural if
one is interested in the description of the encoder and/or syndrome former.
Extensions of the Laurent series framework to multidimensional convolu
tional codes is however much less natural than the polynomial framework,
which is why the theory of multidimensional convolutional codes has mainly
been developed in a module-theoretic framework [5, 48, 49].

7.2. Duality. In (5.2) we introduced a bilinear form which induced a
bijection between behaviors B c 1F"[[Z,Z-lJ] and modules C C IF''[z,z-l].
This duality is a special instance of Pontryagin duality, and generalizes to
group codes [12] and multidimensional systems [37].

In this subsection we show that the bilinear form (5.2) can also be used
to obtain a duality between modules and modules (both in IF" [z, z-l]) or
between behaviors and behaviors (both in IF" [[z, Z-l lJ).

For this let C C IF" [z, Z-l] be a submodule. Define:

(7.1) Cf- :=c.lnlF"[z,z-l].

One immediately verifies that Cf- is a sub module of IF" [z, Z-l], which nec
essarily is observable. One always has C C (crt.

One can do something similar for behaviors. For this let B C IF" [[z, Z-lJ]
be a behavior. Define:

(7.2)

Then it is immediate that Bf- is a controllable behavior, (Bf-t C Band
(Bf-t describes the controllable sub-behavior of B.

It is also possible to adapt (5.2) for a duality of subspaces C C IF" ((z)).
For such a subspace we define:

(7.3)

The duality (7.1) does not in general correspond to the linear algebra
dual of the R = IFlz, Z-l] module CeRn since there is some 'time reversal'
involved. The same is true for the duality (7.3), which does not correspond
to the linear algebra dual of the !F((z)) vector space C without time reversal.

(7.4)

If one works however with the 'time-reversed' bilinear form:

[,] : 1F"[[Z,Z-lJ] x IF"[Z,Z-l]

(w(z), v(z))

--t !F
00

t--+ L (Wi, V-i)
i=-oo

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 61

then the definitions (7.1) and (7.3) do correspond to the module dual
(and the linear algebra dual respectively), used widely in the coding liter
ature [38]. In this case one has: If G(z} is a generator matrix of Cl-- then
H(z} := Gt(z} is a parity check matrix of (Cl--)f--.

In the Laurent-series context it is also possible to induce the dual
ity (7.3) directly through the time-reversed bilinear form defined on the set
IF''((z)} x IF''((z}}:

[,] :
(7.5)

IF''((z)) x IF''((z}}

(w(z), v(z}}

--+

t--+

IF
00

L (Wi, V-i).
i=-oo

Note that the sum appearing in (7.5) is always well defined. This bilinear
form has been widely used in functional analysis and in systems theory [14].

7.3. Convolutional codes as subsets of IF[[z, Z-l]], a case study.
In this subsection we illustrate the differences of the definitions in the
peculiar case n = 1.

If one works with Definition A or Definition B then there exist only the
two trivial codes having the 1 x 1 generator matrix (I) and (O) as subsets
of IF[[z, Z-l]].

The situation of Definition C is already more interesting. For each
polynomial p(z} one has the associated 'autonomous behavior':

(7.6) B = {w(z} I p(CT}W(Z} = 0 }.

Autonomous behaviors are the extreme case of uncontrollable behaviors. If
degp(z} = 0, then B is a finite-dimensionallF-vector space of dimension o.
For coding purposes B is not useful at all. Indeed, the code allows only 0
symbols to be chosen freely, say the symbols WO,Wl, ... ,WO-l. With this
the codeword w(z} = 2::-00 Wizi E B is determined, and the transmission
of w(z} requires infinite symbols in the past and infinite symbols in the
future. In other words, the code has transmission rate O. The distance of
the code is however very good, namely dfree(B} = 00. If B is defined on
the positive time axis, i.e. B C IF[[z]] then the situation is only slightly
better. Indeed in this situation, one sends first 0 message words and then
an infinite set of 'check symbols'. As these remarks make clear, a code of
the form (7.6) is not very useful.

The most interesting situation happens in the setup of Definition D
and Definition D'. In this situation the codes are exactly the ideals <
g(z} > c IF[z, Z-l] (respectively < g(z) > C IF[z]). We now show that
ideals of the form < g(z} > are of interest in the coding context.

EXAMPLE 7.3. Let IF = lF2 = {O, I}. Consider the ideal generated by
g(z} = (z + I). < g(z} > c IF[z, z-l] consists in this case of the even-weight

62 JOACHIM ROSENTHAL

sequences, namely the set of all sequences with a finite and even number
of ones. This code is controllable but not observable.

Ideals of the form < g(z) > are the extreme case of non-observable be
haviors. In principle this makes it impossible for the receiver to decode
a message. However with some additional 'side-information' decoding can
still be performed, as we now explain.

One of the most often used codes in practice is probably the cyclic
redundancy check code (CRC code). These codes are the main tool to
ensure error-free transmissions over the Internet. They can be defined in
the following way: Let g(z) E IF(z] be a polynomial. Then the encoding
map is simply defined as:

(7.7) <p: IF(z] -+ IF(z], m(z) f---t c(z) = g(z)m(z).

The code is then the ideal < g(z) > = im (<p). The distance of this code is
2, since there exists an integer N such that (zN - 1) E < g(z) >. As we
already mentioned the code is not observable. Assume now that the sender
gives some additional side information indicating the start and the end of
a message. This can be either done by saying: "I will send in a moment
1 Mb", or it can be done by adding some 'stop signal' at the end of the
transmission. Once the receiver knows that the transmission is over, he
applies long division to compute

c(z) = m(z)g(z) + r(z), degr(z) < o.
If r(z) = a the receiver accepts the message m(z) as the transmitted mes
sage m(z). Otherwise he will ask for retransmission.

The code performs best over a channel (like the Internet) which has the
property that the whole message is transmitted correctly with probability p
and with probability 1-p whole blocks of the message are corrupted during
transmission. One immediately sees that the probability that a corrupted
message m(z) is accepted is q-6, where q = IlFl is the field size.

One might argue that the code < g(z) > = im (<p) is simply a cyclic
block code, but this is not quite the case. Note that the protocol does not
specify any length of the code word and in each transmission a different
message length can be chosen. In particular the code can be even used if
the message length is longer than N, where N is the smallest integer such
that (zN - 1) E < g(z) >.

EXAMPLE 7.4. Let IF = lF2 = {a, I} and let g(z) = Z20 + 1. Assume
transmission is done on a channel with very low error probability where
once in a while a burst error might happen destroying a whole sequence of
bits. Assume that the sender uses a stop signal where he repeats the 4 bits
0011 for 100 times. Under these assumptions the receiver can be reasonably
sure once a transmission has been complete. The probability of failure to
detect a burst error is in this case 2-20 which is less than 10-6 . Note that
g(z) is a very poor generator for a cyclic code of any block length.

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 63

REMARK 7.5. CRC codes are in practice often implemented in a
slightly different way than we described it above (see e.g. [36]). The sender
typically performs long division on z6m(z) and computes

Z6m(Z) = j(z)g(z) + r(z), degr(z) < 8.

He then transmits the code word c(z) := zOm(z) -r(z) E < g(z) >. Clearly
the schemes are equivalent. The advantage of the latter is that the message
sequence m(z) is transmitted in 'plain text', allowing processing of the data
immediately.

7.4. Some geometric remarks. One motivation for the author to
take a module-theoretic approach to convolutional coding theory has come
from algebraic-geometric considerations. As is explained in [31, 39, 40], a
submodule of rank k and degree 8 in If'l [z] describes a quotient sheaf of
rank k and degree 8 over the projective line 1P'1. The set of all such quotient
sheaves having rank k and degree at most 8 has the structure of a smooth
projective variety denoted by Xt,n. This variety has been of central interest
in the recent algebraic geometry literature. In the context of coding theory,
it has actually been used to predict the existence of maximum-distance
separable (MDS) convolutional codes [43].

The set of convolutional codes in the sense of Definition A or A' or B
having rate ~ and degree at most 8 form all proper Zariski open subsets
of XZ n. The points in the closure of these Zariski open sets are exactly
the n~n-observable codes if the rate is ~. These geometric considerations
suggest that non-observable convolutional codes should be incorporated
into a complete theory of convolutional codes. The following example will
help to clarify these issues:

EXAMPLE 7.6. Let 8 = 2, k = 1 and n = 2, i.e., consider Xl 2 • Any
code of degree at most 2 then has an encoder of the form: '

We can identify the encoder through the point (ao,al,a2,bo,b1,b2) E]lD5.

The variety Xl 2 is in this example exactly the projective space 1P'5. For
codes in the se~se of Definition A or A' or B, G(z) must be taken as a
basic minimal encoder in order to have a unique parameterization. This
requires that gl(Z) and g2(Z) are coprime polynomials. The set of coprime
polynomials gl(Z),g2(Z) viewed as a subset of 1P'5 forms a Zariski open
subset U C 1P'5 described by the resultant condition

64 JOACHIM ROSENTHAL

For codes in the sense of Definition D, we require that ao and bo are not
simultaneously zero in order to have a unique parameterization. Defini
tion D leads to a larger Zariski open set V, i.e. U eVe IP5. Only with
Definition DI does one obtain the whole variety Xr,2 = IP5.

In the general situation XZ n naturally contains the non-observable
codes as well. If k = 1, then Xf n = IPn(O+l)-l, and the codes in the
sense of Definition DI having rate' ~ and degree at most 8 are exactly
parameterized by xf,n'

8. Conclusion. The paper surveys a number of different definitions
of convolutional codes. All definitions have in common that a convolutional
code is a subset C c wn [[z, z-l)) which is both linear and time-invariant.
The definitions differ in requirements such as controllability, observability,
completeness and restriction to finite support.

If one requires that a code be both controllable and observable, then
the restriction to any finite time window will result in equivalent definitions.
Actually Loeliger and Mittelholzer [30) define a convolutional code locally
in terms of one trellis section and they require in their definition that a code
is controllable and observable. Algebraically such a trellis section is simply
described through the generalized first order description (6.4) or (6.7).

If one wants to have a theory which allows one to work with rational
encoders, then it will be necessary that the code has finite support on the
negative time axis Z_ (or alternatively on the positive time axis Z+). This
is one reason why a large part of the coding literature works with the field
of formal Laurent series.

If one wants in addition to have a theory which can accommodate
non-observable codes (and such a theory seems to have some value) then
it is best to work in a module-theoretic setting.

REFERENCES

[1] S. ElLENBERG. Automata, languages, and machines. Vol. A. Academic Press, New
York, 1974. Pure and Applied Mathematics, vol. 59.

[2] P. ELIAS. Coding for noisy channels. IRE Conv. Rec., 4:37-46, 1955.
[3] F. FAGNANI AND S. ZAMPIERI. Minimal syndrome formers for group codes. IEEE

Trans. Inform. Theory, 45(1):3-31, 1999.
[4] E. FORNASINI AND M.E. VALCHER. Observability and extendability of finite support

nD behaviors. In Proc. of the 34th IEEE Conference on Decision and Control,
pp. 3277-3282, New Orleans, Louisiana, 1995.

[5] E. FORNASINI AND M.E. VALCHER. Multidimensional systems with finite support
behaviors: Signal structure, generation, and detection. SIAM J. Control Op
tim., 36(2):760-779, 1998.

[6] G.D. FORNEY. Convolutional codes I: Algebraic structure. IEEE Trans. Inform.
Theory, IT-16(5):720-738, 1970.

[7] G.D. FORNEY. Structural analysis of convolutional codes via dual codes. IEEE
Trans. Inform. Theory, IT-19(5):512-518, 1973.

[8] G.D. FORNEY. Minimal bases of rational vector spaces, with applications to mul
tivariable linear systems. SIAM J. Control, 13(3):493-520, 1975.

CONNECTIONS BETWEEN SYSTEMS AND CONVOLUTIONAL CODES 65

[9] G.D. FORNEY. Group codes and behaviors. In G. Picci and D.S. Gilliam, edi
tors, Dynamical Systems, Control, Coding, Computer Vision: New Trends,
Interfaces, and Interplay, pp. 301-320. Birkauser, Boston-Basel-Berlin, 1999.

[10] G.D. FORNEY, B. MARCUS, N.T. SINDHUSHAYANA, AND M. TROTT. A multilingual
dictionary: System theory, coding theory, symbolic dynamics and automata
theory. In Different Aspects of Coding Theory, Proceedings of Symposia in Ap
plied Mathematics number 50, pp. 109-138. American Mathematical Society,
1995.

[11] G.D. FORNEY AND M.D. TROTT. Controllability, observability, and duality in
behavioral group systems. In Proc. of the 34th IEEE Conference on Decision
and Control, pp. 3259-3264, New Orleans, Louisiana, 1995.

[12] G.D. FORNEY AND M.D. TROTT. The dynamics of group codes: Dual abelian
group codes and systems. Preprint, August 1997; submitted to IEEE Trans.
Inform. Theory, January 2000.

[13] P .A. FUHRMANN. Algebraic system theory: An analyst's point of view. J. Franklin
Inst., 301:521-540, 1976.

[14] P .A. FUHRMANN. Duality in polynomial models with some applications to geomet
ric control theory. IEEE Trans. Automat. Control, 26(1):284-295, 1981.

[15] P .A. FUHRMANN. A Polynomial Approach to Linear Algebra. Universitext.
Springer-Verlag, New York, 1996.

[16] H. GLUESING-LuERSSEN, J. ROSENTHAL, AND P.A. WEINER. Duality between mul
tidimensional convolutional codes and systems. E-print math.OC/9905046,
May 1999.

[17] M.L.J. HAUTUS AND M. HEYMANN. Linear feedback-an algebraic approach. SIAM
J. Control, 16:83-105, 1978.

[18] D. HINRICHSEN AND D. PRATZEL-WOLTERS. Solution modules and system equiva
lence. Internat. J. Control, 32:777-802, 1980.

[19] D. HINRICHSEN AND D. PRATZEL-WOLTERS. Generalized Hermite matrices and
complete invariants of strict system equivalence. SIAM J. Control Optim.,
21:289-305, 1983.

[20] R. JOHANNESSON AND Z. WAN. A linear algebra approach to minimal convolutional
encoders. IEEE Trans. Inform. Theory, IT-39(4):1219-1233, 1993.

[21] R. JOHANNESSON AND K. SH. ZIGANGIROV. Fundamentals of Convolutional Coding.
IEEE Press, New York, 1999.

[22] R. E. KALMAN. Algebraic structure oflinear dynamical systems. 1. The module of
E. Proc. Nat. Acad. Sci. U.S.A., 54:1503-1508, 1965.

[23] R.E. KALMAN, P.L. FALB, AND M.A. ARBIB. Topics in Mathematical System
Theory. McGraw-Hill, New York, 1969.

[24] B. KITCHENS. Symbolic dynamics and convolutional codes. Preprint, February
2000.

[25] G. KOTHE. Topological Vector Spaces I. Springer Verlag, 1969.
[26] M. KUIJPER. First-Order Representations of Linear Systems. Birkhauser, Boston,

1994.
[27] M. KUIJPER AND J .M. SCHUMACHER. Realization of autoregressive equations in

pencil and descriptor form. SIAM J. Control Optim., 28(5):1162-1189, 1990.
[28] S. LIN AND D.J. COSTELLO. Error Control Coding: Fundamentals and Applica

tions. Prentice-Hall, Englewood Cliffs, NJ, 1983.
[29] D. LIND AND B. MARCUS. An Introduction to Symbolic Dynamics and Coding.

Cambridge University Press, 1995.
[30] H.A. LOELIGER AND T. MITTELHOLZER. Convolutional codes over groups. IEEE

Trans. Inform. Theory, 42(6):1660-1686, 1996.
[31] V. LOMADZE. Finite-dimensional time-invariant linear dynamical systems: Alge

braic theory. Acta Appl. Math, 19:149-201, 1990.
[32] B. MARCUS. Symbolic dynamics and connections to coding theory, automata theory

and system theory. In Different aspects of coding theory (San Francisco, CA,
1995), vol. 50 of Proc. Sympos. Appl. Math., pp. 95-108. Amer. Math. Soc.,
Providence, RI, 1995.

66 JOACHIM ROSENTHAL

(33) J.L. MASSEY, D.J. COSTELLO, AND J. JUSTESEN. Polynomial weights and code
constructions. IEEE Trans. Inform. Theory, IT-19(1):101-110, 1973.

[34] J.L. MASSEY AND M.K. SAIN. Codes, automata, and continuous systems: Explicit
interconnections. IEEE Trans. Automat. Contr., AC-12(6):644-650, 1967.

[35] R.J. McELIECE. The algebraic theory of convolutional codes. In V. Pless and
W.C. Huffman, editors, Handbook of Coding Theory, volume I, pages 1065-
1138. Elsevier Science Publishers, Amsterdam, The Netherlands, 1998.

[36] H. NUSSBAUMER. Computer Communication Systems, vol. I. John Wiley & Sons,
Chichester, New York, 1990. Translated by John C.C. Nelson.

[37] U. OBERST. Multidimensional constant linear systems. Acta Appl. Math, 20:1-175,
1990.

[38] PH. PIREt. Convolutional Codes, an Algebraic Approach. MIT Press, Cambridge,
MA,1988.

[39] M.S. RAVI AND J. ROSENTHAL. A smooth compactification of the space of transfer
functions with fixed McMillan degree. Acta Appl. Math, 34:329-352, 1994.

[40] M.S. RAVI AND J. ROSENTHAL. A general realization theory for higher order linear
differential equations. Systems €3 Control Letters, 25(5):351-360, 1995.

[41] J. ROSENTHAL AND J.M. SCHUMACHER. Realization by inspection. IEEE Trans.
Automat. Contr., AC-42(9):1257-1263, 1997.

[42] J. ROSENTHAL, J.M. SCHUMACHER, AND E.V. YORK. On behaviors and convolu
tional codes. IEEE Trans. Inform. Theory, 42{6, Part 1):1881-1891, 1996.

[43] J. ROSENTHAL AND R. SMARANDACHE. Maximum distance separable convolutional
codes. Appl. Algebra Engrg. Comm. Comput., 10(1):15-32, 1999.

[44] J. ROSENTHAL AND E.V. YORK. BCH convolutional codes. IEEE Trans. Inform.
Theory, 45(6):1833-1844, 1999.

[45] M.K. SAIN AND J .L. MASSEY. Invertibility of linear time-invariant dynamical sys
tems. IEEE Trans. Automat. Contr., AC-14:141-149, 1969.

[46] R. SMARANDACHE, H. GLUESING-LUERSSEN, AND J. ROSENTHAL. Constructions of
MDS-convolutional codes. Submitted to IEEE Trans. Inform. Theory, August
1999.

[47] L. STAIGER. Subspaces of GF{q)W and convolutional codes. Information and
Control, 59:148-183, 1983.

[48] M.E. VALCHER AND E. FORNASINI. On 2D finite support convolutional codes: An
algebraic approach. Multidim. Sys. and Sign. Proc., 5:231-243, 1994.

[49] P. WEINER. Multidimensional Convolutional Codes. PhD thesis, University of
Notre Dame, 1998. Available at http://www.nd.edurrosen/preprints.html.

[50] J.C. WILLEMS. From time series to linear system. Part I: Finite dimensional linear
time invariant systems. Automatica, 22:561-580, 1986.

[51] J .C. WILLEMS. Models for dynamics. In U. Kirchgraber and H.O. Walther, editors,
Dynamics Reported, volume 2, pp. 171-269. John Wiley & Sons Ltd, 1989.

[52] J.C. WILLEMS. Paradigms and puzzles in the theory of dynamical systems. IEEE
Trans. Automat. Control, AC-36(3):259-294, 1991.

MULTI-DIMENSIONAL SYMBOLIC DYNAMICAL
SYSTEMS

KLAUS SCHMIDT'

Abstract. The purpose of this note is to point out some of the phenomena which
arise in the transition from classical shifts of finite type X C AZ to multi-dimensional

shifts of finite type X C AZ d , d 2: 2, where A is a finite alphabet. We discuss rigidity
properties of certain multi-dimensional shifts, such as the appearance of an unexpected
intrinsic algebraic structure or the scarcity of isomorphisms and invariant measures. The
final section concentrates on group shifts with finite or uncountable alphabets, and with
the symbolic representation of such shifts in the latter case.

Key words. Multi-dimensional symbolic dynamics, Tiling systems, symbolic rep
resentation of Z d-actions.

AMS(MOS) subject classifications. Primary: 37B15, 37B50j Secondary:
37 A15, 37 A60.

1. Shifts of finite type. Let d ~ 1, A a finite set (the alphabet), and
let Azd be the set of all maps x: Zd ---+ A. For every nonempty subset
F c Zd, the map

7rF: AZd ---+ AF

is the projection which restricts each x E Az d to F. For every n E Zd we
define a homeomorphism (Tn of the compact space Azd by

(1.1)

for every x = (xm) E Az d
• The map (T: n r-t (Tn is the shift-action of Zd on

AZd , and a subset X C Az d is shift-invariant if (Tn(x) = X for all n E Zd.
A closed, shift-invariant set X C AZd is a shift of finite type (8FT) if there
exist a finite set F C Zd and a subset P C AF such that

(1.2) X = X(F, P) = {x E AZd : 7rF 0 (Tn(x) E P for every n E Zd}.

A closed shift-invariant subset X C AZd is a 8FT if and only if there
exists a finite set F C Zd such that

(1.3) X = {x E AZd : 7rF 0 (Tn(x) E 7rF(X) for every n E Zd}.

An immediate consequence of this characterization of 8FT's is that the
notion 8FT is an invariant of topological conjugacy. For background and
details we refer to [21]-[25].

'Mathematics Institute, University of Vienna, and Erwin Schrodinger Institute for
Mathematical Physics, Boltzmanngasse 9, A-I090 Vienna, Austria.
Email: klaus.schmidt@univie.ac.at .

67

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

68 KLAUS SCHMIDT

If Xc Az d is a SFT we may change the alphabet A and assume that

d

F={O,I}d or F={O}UU{e(i)},
i==l

where e(i) is the i-th basis vector in Zd.
Let X C Azd be a SFT. A point x E X is periodic if its orbit under a

is finite. In contrast to the case where d = 1, a higher-dimensional SFT X
may not contain any periodic points (we give an example below). This po
tential absence of periodic points is associated with certain undecidability
problems (cf. e.g. [1], [9], [19] and [32]):

(1) It is algorithmically undecidable if X (F, P) ¥ 0 for given (F, P)j
(2) It is algorithmically undecidable whether an allowed l partial con

figuration can be extended to a point x E X(F, P).
In dealing with concrete SFT's undecidability is not really a problem,

but it indicates the difficulty of making general statements about higher
dimensional SFT's. There have been several attempts to define more re
strictive classes of SFT's with the hope of a systematic approach within
such a class (cf. e.g. [16]-[17], the algebraic systems considered in [9],
or certain specification properties - such as in [13] - which guarantee
'sufficient similarity' to full shifts).

2. Some examples.
EXAMPLE 1 (Chessboards). Let n :::: 2 and A = {O, ... , n - I}. We

interpret A as a set of colours and consider the SFT X = x(n) c Az2

consisting of all configurations in which adjacent lattice points must have
different colours.

For n = 2, X(2) consists of two points. For n :::: 3, x(n) is uncountable.
There is a big difference between n = 3 and n :::: 4: for n = 3 there

exist frozen configurations in X(3), which cannot be altered in only finitely
many places. These points are the periodic extensions of

0 1 2 0 1 2 0 2 1 0 2 1
2 0 1 2 0 1 1 0 2 1 0 2
1 2 0 1 2 0 2 1 0 2 1 0
0 1 2 0 1 2 0 2 1 0 2 1
2 0 1 2 0 1 1 0 2 1 0 2
1 2 0 1 2 0 2 1 0 2 1 0

EXAMPLE 2 (Wang tilings). Let T be a finite nonempty set of dis
tinct, closed 1 x 1 squares (tiles) with coloured edges such that no horizon
tal edge has the same colour as a vertical edge: such a set T is called a

llf X = X(F,P) is a 8FT and 0 =I- E C Zd, then an element x E AE is an allowed
partial configuration if 1T(F+n)nE(X) coincides (in the obvious sense) with an element of
1TFn(E-n)(P) whenever F n (E - n) =I- 0.

MULTI-DIMENSIONAL SYMBOLIC DYNAMICAL SYSTEMS 69

collection of Wang tiles. For each T E T we denote by r(T), t(T), I(T), b(T)
the colours of the right, top, left and bottom edges of T, and we write
C(T) = {r(T), t(T), I(T), b(T) : T E T} for the set of colours occurring on
the tiles in T. A Wang tiling w by T is a covering of]R2 by translates of
copies of elements of T such that

(i) every corner of every tile in w lies in Z2 C]R2,

(ii) two tiles of ware only allowed to touch along edges of the same
colour, i.e. r(T) = I(T') whenever T, T' are horizontally adjacent
tiles with T to the left ofT', and t(T) = b(T') ifT,T' are vertically
adjacent with T' above T.

We identify each such tiling w with the point

where Wn is the unique element of T whose translate cover's the square
n + [0,1]2 C]R2, n E Z2. The set WT C T Z2 of all Wang tilings by T is
obviously a 8FT, and is called the Wang shift of T.

Here is an explicit example of a two-dimensional Wang shift: let TD
be the set of Wang tiles

DODD
with the colours H, h, V, v on the solid horizontal, broken horizontal, solid
vertical and broken vertical edges. The following picture shows a partial
Wang tiling of]R2 by TD and explains the name 'domino tiling' for such a
tiling: two tiles meeting along an edge coloured h or v form a single vertical
or horizontal 'domino '.

The Wang shift WD C T/!/ of TD is called the domino (or dimer) shift,
and is one of the few higher dimensional 8FT's for which the dynamics is
understood to some extent (cf. e.g. [2J, [3J, [7]). The shift-action 0WD of
Z2 on W D is topologically mixing, and its topological entropy h(owD) was
computed by Kastelleyn in [7J:

h(awD) = ~ 101 101
(4 - 2cos21rs - 2 cos 21rt) dsdt.

The domino-tilings again have frozen configurations which look like 'brick
walls'.

EXAMPLE 3 (A shift of finite type without periodic points). Consider
the following set T' of six polygonal tiles, introduced by Robinson in [19J,

70 KLAUS SCHMIDT

each of which which should be thought of as a 1 x 1 square with various
bumps and dents.

We denote by T the set of all tiles which are obtained by allowing horizontal
and vertical reflections as well as rotations of elements in T' by multiples
of I' Again we consider the set WT C T Z2 consisting of all tilings of IR2
by translates of elements of T aligned to the integer lattice (as much as
their bumps and dents allow). The set WT is obviously a SFT, and WT
is uncountable and has no periodic points. If we allow each (or even only
one) of these tiles to occur in two different colours with no restriction on
adjacency of colours then we obtain a SFT with positive entropy, but still
without periodic points.

The paper [19} also contains an explicit set T of Wang tiles for which
the extension problem is undecidable.

3. Wang tiles and shifts of finite type.
THEOREM 3.1. Every SFT can be represented (in many different

ways) as a Wang tiling.
Proof. Assume that F = {O, IP C Z2. We set T = 7rF(X(F, P}} and

consider each

T = x(O,l)

x(O,O)

X(l,l) E T
X(l,O)

as a unit square with the 'colours' [X(O,O) X(1,O) 1 and [X(O,l) X(l.l) 1 along its
bottom and top horizontal edges, and [~~~:~~] and [~~~:~~] along its left
and right vertical edges. With this interpretation we obtain a one-to-one
correspondence between the points x = (x n) E X and the Wang tHings
w = (wn) = (7rF 0 an(x)} E TZ2. 0

This correspondence allows us to regard each SFT as a Wang shift
and vice versa. However, the correspondence is a bijection only up to
topological conjugacy: if we start with a SFT X c AZ with F = {O, 1 p,
view it as the Wang shift WT C T Z2 with T = 7rF(X), and then interpret
WT as a SFT as above, we do not end up with X, but with the 2-block
representation of X.

DEFINITION 3.1. Let A be a finite set and X C Az2 a SFT, T a set of
Wang tiles and WT the associated Wang shift. We say that WT represents
X if WT is topologically conjugate to X. Two Wang shifts WT and WT'
are equivalent if they are topologically conjugate as SFT's.

Since any given infinite SFT X has many different representations by
Wang shifts one may ask whether these different representations of X have
anything in common. The answer to this question turns out to be related to

MULTI-DIMENSIONAL SYMBOLIC DYNAMICAL SYSTEMS 71

a measure of the 'complexity' of the 8FT X. For this we need to introduce
the tiling group associated with a Wang shift.

Let T be a collection of Wang tiles and WT C T Z2 the Wang shift of
T. Following Conway, Lagarias and Thurston ([4), [29)) we write

qT) = (C(T)lt(T)I(T) = r(T)b(T), T E T)

for the free group generated by the colours occurring on the edges of el
ements in T, together with the relations t(T)I(T) = r(T)b(T), T E T. The
countable, discrete group r(T) is called the tiling group of T (or of the
Wang shift WT). From the definition of r(T) it is clear that the map
(): qT) -+ 1£2, given by

()(b(T)) = ()(t(T)) = (1,0),

()(I(T)) = ()(r(T)) = (0,1),

for every T E T, is a group homomorphism whose kernel is denoted by

ro(T) = ker(()).

Suppose that E C]R2 is a bounded set, and that w E T R2,E is a Wang
tiling of]R2 "E. When can we complete w to a Wang-tiling of]R2 (possibly
after enlarging E by a finite amount)? After a finite enlargement we may
assume that E is the empty rectangle in the left picture of Figure 1 (the
tiles covering the rest of]R2 " E are not shown). If we add a tile legally

I I
'3

b, b2 b3 b.
13 '3

- -
'2 I 12

-

" I, t" 13
1

I I
FIG.l.

(as in the right picture), then the words in r(T) obtained by reading off
the colours along the edges of the two holes coincide because of the tiling
relations:

(3.1)
-1 -1 -1b-1b-1b-1b-11 I Itt t t r 1 r 2 r3 1 2 3 4 3 2 1 4 3 2 1

-1 -1 -1b-1b-1b-1b-11 I tIt t t = r 1 r 2 r3 1 2 3 4 3 2 3 2 1

In particular, if the hole can be closed, then the word must be the identity.
If X c Az 2 is a 8FT and WT a Wang representation of X then the

tiling group r(T) gives an obstruction to the weak closing of bounded holes

72 KLAUS SCHMIDT

(i.e. the closing of holes after finite enlargement) for points x E AZ 2
" E,

where E c Z2 is a finite set. However, different Wang-representations of
X may give different answers.

EXAMPLE 4. Let X be the 3-coloured chessboard, and let T be the set
of Wang tiles

[J'. c-:: D··'· c·· ~ [J r--:: I ... J I··· ~ n :-0 :- -1 :- -, :' ':' ':: :': :' L_ L_-, L_ L_-, •... • ... J •••• , ••• J

with the colours

ho = - , hl = - - - , h2 = ,

I · . Vo = ,Vl = • , V2 = : . .

on the horizontal and vertical edges. Then WT represents X. The tiling
group qT) is of the form

r(Tb) = {hi, vi, i = 0,1, 21vlho = V2hO = hlVO = h2Vo,

V2 hl =VOhl = h2Vl = hOVl' VOh2 =vl h2 = hOV2 = hlV2}.

Since ho = hl = h2' Vo = Vl = V2 and hovo = voho, qT) ~ Z2, and every
hole appears closable.

With a different representation of X as a Wang shift we obtain more
information. Let T' be the set of Wang tiles

flOlr12ll2OlflOll2Oll21lroil102ll21l
~~~~~~~~~ 
roill2Oll21lroil102lr12lf02lrtOlr12l 
~~~~~~L:2JL:2JL:2J 

with the colours hij = [i j 1 on the horizontal and vi = [1] on the vertical
edges, where i,j E {O, 1, 2} and i:/; j. Then WT' represents X.

There exists a group homomorphism ¢: r(T') --+ Z with

¢(hod = ¢(hl2) = ¢(h20) = ¢(v6) = ¢(vi) = ¢(vg) = 1,

¢(hlO) = ¢(h21) = ¢(h02) = ¢(v~) = ¢(v~) = ¢(v~) = -1.

This homomorphism detects that the hole with the edge

121
2 ? 0
o 1 2

cannot be closed, no matter how it is extended on the outside, and how
much it is enlarged initially.

This example raises the alarming possibility that more and more com
plicated Wang-representations of a SFT X will give more and more com
binatorial information about X. Remarkably, this is not the case.

MULTI-DIMENSIONAL SYMBOLIC DYNAMICAL SYSTEMS 73

THEOREM 3.2. For many topologically mixing Z2-SFT's there exists
a Wang-representation WT of X which contains all the combinatorial in
formation obtainable from all possible Wang-representations of X.

For examples we refer to [25] and [5]. In order to make this statement
comprehensible one has to express it in terms of the continuous cohomology
ofX.

4. Wang tiles and cohomology. Let X C Az2 be a 8FT and G
a discrete group with identity element 1G. A map c: Z2 X X ---+ G is a
co cycle for the shift-action u of Z2 on X if c(n, .): X ---+ G is continuous
for every n E Z 2 and

c(m + n, x) = c(m, unx)c(n, x)

for all x E X and m, n E Z2. One can interpret this equation as path
independence.

A co cycle c: Z2 x X ---+ G is a homomorphism if c(n,·) is constant
for every n E Z2, and c is a coboundary if there exists a continuous map
b: X ---+ G such that

for all x E X and n E Z2. Two co cycles c, c': Z2 x X ---+ G are cohomol
ogous with continuous transfer function b: X ---+ G, if

for all n E Z 2 and x EX.
For every Wang representation WT of X we define a tiling cocycle

GT: Z2 X WT ---+ r(T) (and hence a cocycle c~: Z2 X X ---+ r(T)) by
setting

cT((l, 0), w) = b(wo), CT((O, 1), w) = I(wo)

for every Wang tiling wE WT C T Z2 , and by using the co cycle equation to
extend CT to a map Z2 x WT ---+ r(T) (the relations t(r)l(r) = r(r)b(r), r
E T, in the tiling group are precisely what is needed to allow such an exten
sion). Conversely, if G is a discrete group and c: Z2 x X ---+ G a cocycle,
then Theorem 4.2 in [25] shows that there exists a Wang representation WT

of X and a group homomorphism TJ: r(T) ---+ G such that

(4.1) c = TJ 0 CT.

In order to establish a link between cocycles and the 'closing of holes'
discussed in the last section we return for a moment to the Wang tiles in
Figure 1 and assume that the partial configuration wn , n E Z2" E, shown
there extends to an element w E WT with I(wo) = rl and b(wo) = tl

74 KLAUS SCHMIDT

(i.e. the tile Wo occupies the bottom left hand corner of the 'hole' E in
Figure 1). Then

depending on the route chosen from 0 to (4,3), which is equivalent to (3.1).
If WT' is another Wang representation of X, then there exists a topo

logical conjugacy ¢: W T --+ W T', and the coordinates Wn, n E Z 2 " E,
determine the coordinates ¢(w)m, mE Z2"E', for some finite set E' C Z2
which we may again assume to be a rectangle. If the tiling co cycle CT' of
WT' is a homomorphic image of WT in the sense of (4.1), then WT' cannot
lead to any new obstructions (other than those already exhibited by CT).

A slightly more refined version of the same argument shows that WT' will
not lead to any new obstructions even if it is only cohomologous to a homo
morphic image of CT. This observation is the motivation for the following
definition.

DEFINITION 4.1. A cocycle c*: Z2 X X --+ G* with values in a discrete
group G* is fundamental if the following is true: for every discrete group
G and every cocycle c: Z2 x X --+ G there exists a group homomorphism
(): G* --+ G such that C is cohomologous to the cocycle () 0 c*: Z2 x X --+
G.

In this terminology we can state a more precise (but still rather vague)
form of Theorem 3.2 (cf. [25]).

THEOREM 4.1. In certain examples of topologically mixing Z2-SFT 's
there exists an explicitly computable Wang representation WT of X whose
tiling cocycle c!r: Z2 x X --+ f(T) is fundamental.

For a list of examples (which includes the chessboards in Example 4
and the domino-tilings in Example 2) we refer to [5] and [24]-[25].

Although one can make analogous definitions for classical (one-dimen
sional) SFT's, they never have fundamental cocycles. The existence of fun
damental co cycles is a rigidity phenomenon specific to multi-dimensional
SFT's.

5. Group shifts and their symbolic representations. In this sec
tion we leave the general setting of multi-dimensional shifts of finite type
with all its inherent problems and restrict our attention to SFT's with
a group structure. This class of SFT's is of interest in coding theory
and allows much more detailed statements about conjugacy and dynamical
properties than arbitrary SFT's.

Let d 2: 1, and let X be a compact abelian group with normalized
Haar measure Ax. A Z d-action a: n H an by continuous automorphisms
of X is called an algebraic Zd-action on X. An algebraic Zd-action a on X
is expansive if there exists an open neighbourhood U of the identity Ox in
X with nnEZ d a-n(U) = {Ox}.

Suppose that a is an algebraic Zd-action on a compact abelian group
X. An a-invariant probability measure f..t on the Borel field 1) x of X is

MULTI-DIMENSIONAL SYMBOLIC DYNAMICAL SYSTEMS 75

ergodic if

JL(U a-n(B)) E {O, I}
nEZ d

for every B E ~ x, and mixing if

lim JL(B n a-n(B')) = JL(B)JL(B')
n-+oo

for all B, B' E ~ x. The action a is ergodic or mixing if AX is ergodic or
mixing.

Let aI, a2 be algebraic Zd-actions on compact abelian groups Xl and
X 2 , respectively. A Borel bijection ¢: Xl --+ X 2 is a measurable conjugacy
of al and a2 if

and

(5.1)

for every n E Zd and AX1 -a.e. x E Xl.
A continuous group isomorphism ¢: Xl --+ X 2 is an algebraic conju

gacy of al and a2 if it satisfies (5.1) for every n E Zd and x E Xl'
The actions aI, a2 are measurably (resp. algebraically) conjugate if

there exists a measurable (resp. algebraic) conjugacy between them.
Finally we call a map ¢: Xl --+ X 2 affine if there exist a continuous

group isomorphism 1j;: Xl --+ X 2 and an element x' E X 2 such that

¢(x) = 1j;(x) + x'

for every x E Xl.
Here we are interested in algebraic Zd-actions of a particularly simple

form. Let A be a compact abelian group, and let n~) = AZd be the
compact abelian group consisting of all maps w: Zd --+ A, furnished with
the product topology and coordinate-wise addition. We write every w E
n~) as w = (wn) with Wn E A for every n E Zd and define the shift-action

(7 of Zd on n~) by (1.1). Clearly, (7 is an algebraic Zd-action on n~). A
group shift is the restriction of the shift-action (7 to a closed, shift-invariant
subgroup X c n~) .

Throughout the following discussion we shall assume that the 'alpha
bet' A is either finite or A = 1['. In the former case every group shift
X c n~) is automatically a d-dimensional shift of finite type (cf. [9]-[10]
and [23]). In our earlier discussion of 3FT's we were interested in topologi
cal conjugacy invariants. Here we are interested in the connection between
measurable and algebraic conjugacy.

76 KLAUS SCHMIDT

EXAMPLE 5. The shift automorphisms

on the compact abelian groups

x = (Zj4Z)z,

y = ((Z j2Z) x (Z j2Z))z.

are measurably (even topologically) conjugate, but the groups X and Yare
not algebraically isomorphic.

EXAMPLE 6. For every nonempty finite set E C Zd we denote by
XE C X = (Zj2Z)Zd the closed shift-invariant subgroup consisting of all
x E X whose coordinates sum to 0 in every translate of E in Zd. If E has
at least two points then XE is uncountable and the restriction aE of a to
XE is an expansive algebraic Zd-action.

For d = 2 and the subset

E = {CO, 0), (1,0), (0, I)} C Z2,

the Z2- action aE on XE is called Ledrappier's example: aE is mixing and
expansive, but not mixing of order 3 (for every n ~ 0, X(O,O) + X(2n,o) +
X(o,2n) = 0).

In this example, 3-mixing breaks down in a particularly regular way:
if we call a finite subset S C Z d mixing for a group shift X if

(5.2) lim Ax (n a-km Bm) = II Ax (Bm)
k-+oo

mES mES

for all Borel sets B m , III E S, and nonmixing otherwise, then the last para
graph shows that S = {(O, 0), (1,0), (0, I)} is nonmixing for Ledrappier's
example.

We also consider the subsets

El ={(O, 0), (1,0), (2,0), (1, 1), (0, 2)},

E2 ={(O, 0), (2,0), (0, 1), (1, 1), (0, 2)},

E3 ={(O, 0), (1,0), (2,0), (0, 1), (1, 1), (0, 2)}.

of Z2. The shift-actions ai = aE. of Z2 on Xi = XE. are again mixing,
but the set S = {(O, 0), (1,0), (0, I)} is nonmixing for each of these actions
(cf. [11]).

For every n E Z2, the automorphisms ai are measurably conjugate.
However, as was shown in [12J, these three Z2- actions are not even mea
surably conjugate.

In general, if X C Az2 is a group shift with finite alphabet A, then X
has nonmixing sets if and only if it does not have completely positive entropy

MULTI-DIMENSIONAL SYMBOLIC DYNAMICAL SYSTEMS 77

or, equivalently, if and only if it is not measurably conjugate to a full shift
Y = Bz 2

, where B is a finite set (cf. [15J, [llJ and [20]). However, even
if X has completely positive entropy, it need not be topologically conjugate
to a full shift.

For d = 1, algebraic conjugacy of group shifts X C Azd to full shifts
Y = Bz d

, where A and B are finite abelian groups, is a matter of consider
able interest in coding theory (cf. e.g. [18]), and results for d > 1 are just
beginning to emerge.

Example 6 is based on a special case of another rigidity phenomenon
specific to Zd-actions with d > 1. We call an algebraic Zd-action a on
a compact abelian group irreducible if every closed, a-invariant subgroup
Y <;; X is finite. The following statement is proved in [8) and [12).

THEOREM 5.1. Let d > 1, and let a1 and a2 be mixing algebraic
Zd-actions on compact abelian groups Xl and X 2, respectively. If a1 is
irreducible, and if ¢: Xl --+ X2 is a measurable conjugacy of a1 and a2,
then a2 is irreducible and ¢ is Ax! -a.e. equal to an affine map. Hence
measurable conjugacy of a1 and a2 implies algebraic conjugacy.

Irreducibility of algebraic Zd-actions with d > 1 implies that these
actions have zero entropy (as Zd-actions). For actions with positive entropy
one cannot expect this kind of isomorphism rigidity, since positive entropy
implies the existence of nontrivial Bernoulli factors (cf. [23]). However, it
is sometimes still be possible to apply Theorem 5.1 to prove measurable
nonconjugacy of actions with positive entropy.

EXAMPLE 7 (Conjugacy of Z2-actions with positive entropy). We

modify Example 6 by setting Y = (Zj4Z)Zd and consider, for every
nonempty finite set E C Zd the closed shift-invariant subgroup YE C Y
consisting of all y E Y whose coordinates sum to 0 (mod 2) in every trans
late of E in Zd. The group YE is always uncountable, and the restriction
TE of the shift-action (J" to YE is an expansive algebraic Zd-action with
entropy log 2. As in Example 6 we set d = 2 and consider the the sub
sets E, E 1, E2, E3 C Z2 defined there. Theorem 6.5 in [15J implies that
the Pinsker algebra 7r(TE.) of TEi is the sigma-algebra ~YEdZEi of ZEi

invariant Borel sets in YEi , where

ZEi = {x = (xn) E Y Ei : Xn = 0 (mod 2) for every n E Z2}.

Then the Z2- action T.ki induced by TEi on YE.!ZEi is algebraically conjugate
to the shift-action (J"Ei on the group X Ei in Example 6.

Since any measurable conjugacy of TEi and TEj would map 7r(TEi) to
7r(TE-) and induce a conjugacy of TE' . and TE' _ and hence of (J"E- and (J"E,

J '& J '& J

Example 6 implies that Ti and Tj are measurably nonconjugate for 1 :S i <
j :S 3.

EXAMPLE 8 (Group shifts with uncountable alphabet). We write
9ld = Z[ut1, ... ,UJ 1) for the ring of Laurent polynomials with integral
coefficients in the commuting variables U1, ... ,Ud, and represent every f E

78 KLAUS SCHMIDT

!Rd as f = LmEZd fmum with urn = U;"l ... U;;'d and fm E Z for every
m = (ml, ... ,md) E Zd.

Let CT be the shift-action (1.1) of Zd on n(d) = ']['Zd. For every nonzero
f E !Rd and x E X we set

(5.3) f(CT)(X) = L fnCTnX
nEZ d

and note that f(CT): n(d) --+ n(d) is a continuous surjective group homo
morphism. For every ideal I C !Rd we set

(5.4) XI = n ker(f(CT))
lEI

and denote by CTI the restriction of CT to XI. If {gl,"" gL} is a set of
generators of I (such a finite set of generators always exists, since !Rd is
Noetherian), then

m

XI = n ker(gj(CT)).
j=l

The dynamical properties of group shifts of the form XI are described in
[22}, [15} and [23}. In the special case where the ideal I is principal, i.e.
where I = (f) = f!Rd for some f E !Rd , the entropy of CT(f) is given by

h(CT I) = {Jo1 ••• J; log If(e211"ih, ••• , e211"itd) I dh ... dtd if f ¥- 0,
() 00 otherwise.

Furthermore, CT(f) is expansive if and only if

If CT(f) is expansive then it is automatically mixing and Bernoulli (in par
ticular, it has finite and positive entropy).

Although the group shifts CT(f), f E !Rd, in Example 8 are of finite type
in the sense that they are determined by restrictions in a finite 'window'
of coordinates (consisting of those n E Zd with fn ¥- 0), their uncountable
alphabets put them outside the customary framework of symbolic dynam
ics. In view of this (and for a variety of other reasons) it seems desirable
to find 'symbolic' representations of such systems, analogous to the repre
sentation of hyperbolic toral automorphisms as SFT's by means of Markov
partitions.

Following [6) we consider the Banach space foo(Zd, IR) and write

MULTI-DIMENSIONAL SYMBOLIC DYNAMICAL SYSTEMS 79

for the subgroup of bounded integer-valued functions. Consider the surjec
tive map 'fJ: £00 (Zd, IR) ---+ 1l'Zd given by

'fJ(v)n = Vn (mod 1)

for every v = (vn) E £00 (Zd, IR) and n E Zd. Let a be the shift-action of Zd
on £00 (Zd, IR), defined as in (1.1), and set, for every h = LnEZd hnun E 9td
and v E £oo(Zd, Z),

h(a)(v) = L hnanv.
nEZd

The expansiveness of (j(f) can be expressed in terms of the kernel of f(a):
(j(f) is expansive if and only if ker(f(a)) = {O} C £00 (Zd, IR).

According to Lemma 4.5 in [14] there exists a unique element wil E
£00 (Zd, IR) with the property that

f(a)(wil)n = {1 if n = ?,
o otherwIse.

The point w il also has the property that there exist constants Cl > 0,0 <
C2 < 1 with

Iwill < C cllnll n _ I 2

for every n = (nI,"" nd) E Zd, where Ilnll = maxi=l, ... ,d Inil. From the
properties of w il it is clear that

[(v) = L vna-nwil

nEZ d

is a well-defined element of £00 (Zd, IR) for every v E £00 (Zd, Z), and we set

The map~: £oo(Zd,Z) ---+ X(f) is a surjective group homomorphism, and

~ 0 an = (j(f) 0 ~ for every n E Zd,

ker(~) = f(a)(£oo(Zd, Z)).

The point xil = ~(wil) is homoclinic:

(5.6) lim (j(/) (xil) = O. n-+oo

Furthermore, xil is a fundamental homoclinic point in the sense that every
homo clinic point of (j(f) (Le. every x E X(f) satisfying (5.6) with x re
placing xil) lies in the countable subgroup of X(f) generated by {(j(f)xil :

80 KLAUS SCHMIDT

n E Zd}. It can be shown that an expansive algebraic Zd-action Q on a
compact abelian group X has a fundamental homo clinic point if and only
if it is of the form Q = (7U)' X = XU), for some f E 9'td satisfying (5.5)
(d. [26]).

From the definition of ~ it is clear that its restriction to every bounded
subset of £00 (Zd, Z) is continuous in the weak*-topology. One can easily
find bounded (and thus weak*-compact) subset V C £00 (Zd, Z) with ~(V) =
X(f):

PROPOSITION 5.1. For every h = LnEZ d hnun E 9'td we set

h- = - L min (0, hn)un,
nEZ d

Ilh+lI~ = max (1Ih+III - 1, 0), Ilh-lI~ = max (1Ih-IiI - 1,0),

Ilhll~ = Ilh+lI~ + Ilh-II~·

Then the set

V = {v E £00 (1£ d, Z) : 0 ::; Vn ::; II! II ~ for every n E Z d}

satisfies that ~(V) = XU),
The restriction of the homomorphism ~ to V is surjective, but generally

not injective, and the key problem in constructing symbolic representations
of the Zd-action (7(f) is to find closed, shift-invariant subsets W C V with
the following properties:

(a) W is a 3FT or at least sofic, i.e. a topological factor of a 3FT,
(b) ~(W) = XU), and the restriction of ~ to a dense Go-set in W is

injective.
Examples of such choices of W C £00 (Z, Z) for appropriate polynomials

f E 9't1 can be found in [26], [27], [28], [30] and [31]. Examples in higher
dimensions (with d ~ 2) are much more difficult to find, and there are
many unresolved problems in this area. We end this section with one of
the few successful examples.

EXAMPLE 9 ([6]). Let d = 2 and f = 3 - UI - U2 E 9't2 . Then
II!II~ = 3, but the set

(5.7)

also satisfies that ~(W) = XU), Furthermore, the restriction of ~ to W is
almost injective in the sense of Condition (b).

MULTI-DIMENSIONAL SYMBOLIC DYNAMICAL SYSTEMS 81

REFERENCES

[1] R. BERGER, The undecidability of the Domino Problem, Mem. Amer. Math. Soc.
66 (1966).

[2] R. BURTON AND R. PEMANTLE, Local characteristics, entropy and limit theorems
for spanning trees and domino tilings via transfer-impedances, Ann. Probab.
21 (1993), 1329-1371.

[3] C. COHN, N. ELKIES AND J. PROPP, Local statistics for random domino tilings of
the Aztec diamond, Duke Math. J. 85 (1996), 117-166.

[4] J.H. CONWAY AND J.C. LAGARIAS, Tilings with polyominoes and combinatorial
group theory, J. Combin. Theory Ser. A 53 (1990), 183-208.

[5] M. EINSIEDLER, Fundamental cocycles of tiling spaces, Ergod. Th. & Dynam. Sys.
(to appear).

[6] M. EINSIEDLER AND K. SCHMIDT, Markov partitions and homoclinic points of al
gebraic Zd-actions, Proc. Steklov Inst. Math. 216 (1997), 259-279.

[7] P.W. KASTELEYN, The statistics of dimers on a lattice. I, Phys. D 27 (1961),
1209-1225.

[8] A. KATOK, S. KATOK AND K. SCHMIDT, Rigidity of measurable structure for alge
braic actions of higher-rank abelian groups, in preparation.

[9] B. KITCHENS AND K. SCHMIDT, Periodic points, decidability and Markov subgroups,
in: Dynamical Systems, Proceeding of the Special Year, Lecture Notes in
Mathematics, vol. 1342, Springer Verlag, Berlin-Heidelberg-New York, 1988,
440-454.

[10] B. KITCHENS AND K. SCHMIDT, Automorphisms of compact groups, Ergod. Th. &
Dynam. Sys. 9 (1989), 691-735.

[11] B. Kitchens and K. Schmidt, Mixing sets and relative entropies for higher dimen
sional Markov shifts, Ergod. Th. & Dynam. Sys. 13 (1993), 705-735.

[12] B. KITCHENS AND K. SCHMIDT, Isomorphism rigidity of irreducible algebraic Zd_
actions, Preprint (1999).

[13] S. Lightwood, An aperiodic embedding theorem for square filling subshifts of finite
type, Preprint (1999).

[14] D. LIND AND K. SCHMIDT, Homoclinic points of algebraic Zd-actions, J. Amer.
Math. Soc. 12 (1999), 953-980.

[15] D. LIND, K. SCHMIDT AND T. WARD, Mahler measure and entropy for commuting
automorphisms of compact groups, Invent. Math. 101 (1990), 593-629.

[16] N.G. Markley and M.E. Paul, Matrix sub shifts for zn symbolic dynamics, Proc.
London Math. Soc. 43 (1981), 251-272.

[17] --, Maximal measures and entropy for zn subshifts of finite type, Preprint
(1979).

[18] R.J. McEliece, The algebraic theory of convolutional codes, in: Handbook of Cod
ing Theory (2 vols.), North Holland, Amsterdam, 1998, 1065-1138.

[19] R.M. ROBINSON, Undecidability and nonperiodicity for tilings of the plane, Invent.
Math. 12 (1971), 177-209.

[20] D.J. Rudolph and K. Schmidt, Almost block independence and Bernoullicity of
Zd-actions by automorphisms of compact groups, Invent. Math. 120 (1995),
455-488.

[21] K. SCHMIDT, Algebraic ideas in ergodic theory, in: CBMS Lecture Notes, vol. 76,
American Mathematical Society, Providence, R.I., 1990.

[22] K. SCHMIDT, Automorphisms of compact abelian groups and affine varieties, Proc.
London Math. Soc. 61 (1990), 480-496.

[23] K. SCHMIDT, Dynamical systems of algebraic origin, Birkhauser Verlag, Basel
Berlin-Boston, 1995.

[24] K. SCHMIDT, The cohomology of higher-dimensional shifts of finite type, Pacific J.
Math. 170 (1995), 237-270.

[25] K. SCHMIDT, Tilings, fundamental cocycles and fundamental groups of symbolic
Zd-actions, Ergod. Th. & Dynam. Sys. 18 (1998), 1473-1525.

82 KLAUS SCHMIDT

[26] K. SCHMIDT, Algebraic coding of expansive group automorphisms and two-sided
beta-shifts, Monatsh. Math. (to appear).

[27] N.A. SIDOROV AND A.M. VERSHIK, Ergodic properties of Erdos measure, the en
tropy of the goldenshift, and related problems, Monatsh. Math. 126 (1998),
215-261.

(28) N. SIDOROV AND A. VERSHIK, Bijective arithmetic codings of the 2-torus, and
binary quadratic forms, to appear.

(29) W. THURSTON, Conway's tiling groups, Amer. Math. Monthly 97 (1990),757-773.
[30] A. VERSHIK, The fibadic expansion of real numbers and adic transformations,

Preprint, Mittag-Leffler Institute, 1991/92.
[31] A.M. VERSHIK, Arithmetic isomorphism of hyperbolic toral automorphisms and

sofic shifts, Funktsional. Anal. i Prilozhen. 26 (1992), 22-27.
(32) H. WANG, Proving theorems by pattern recognition II, AT&T Bell Labs. Tech. J.

40 (1961), 1-41.

Part 2. Codes on graphs

LINEAR-CONGRUENCE CONSTRUCTIONS OF
LOW-DENSITY PARITY-CHECK CODES*

J. BONDt, s. HUI~, AND H. SCHMIDT§

Abstract. Low-Density Parity-Check codes (LDPCC) with Iterative Belief Propa
gation (Message Passing) decoding are attractive alternatives to Thrbo codes. LDPCC
previously discussed in the literature have involved matrices constructed using random
techniques. In this paper, we discuss construction techniques for LDPCC involving mul
tiple permutation matrices, each specified by a linear congruence. Construction options
depend on the size of the parity-check matrix and the rate of the code. We relate desir
able properties of the code to the parameters defining the linear congruences specifying
the permutation matrices used to construct the code. For example, codes with few or
no 4-cycles can be readily constructed. We summarize the construction options and
describe selection processes for the parameters of the congruences. We then provide
performance results for regular parity-check matrices constructed by random and the
linear-congruence techniques for rate 1/2 transmit block-size 980 and rate 4/7 transmit
block-size 847 codes. We introduce a symmetric channel model for decoding with the
iterative belief propagation algorithm and describe its use as a heuristic for deciding
whether a code is likely better or worse than most codes of the given rate and block size.

1. Introduction. Renewed interest in Low-Density Parity-Check
Codes (LDPCC), originally discovered by Gallager [8], followed the work
of David MacKay [11], who rediscovered the codes through his work on the
Iterative Belief Propagation (or Message Passing) Decoding algorithm for
codes with sparse parity-check matrices. Our work began in the summer of
1996 after hearing a presentation by MacKay, with the realization that LD
PCC were promising candidates for use in a new communication system we
were developing. We have focused on constructing the best possible codes
of rates 1/2 or more and transmit block sizes of at most several thousand
bits for our particular application.

LDPCC have been constructed by MacKay and others using random
techniques [11, 12, 13, 14, 7]. In contrast, our focus has been on using
systematic or algebraic techniques to construct codes. In [1, 2, 3], we de
scribe codes for which each parity-check matrix contains a full rank circu
lant matrix in conjunction with the random construction of the remaining
columns of the parity-check matrix. These codes performed as well as those
described in the literature with both portions of the matrices constructed
randomly. A LDPCC code is regular if each row and each column of the
parity-check matrix contains a constant number of ones. The iterative be-

·The authors would like to thank the reviewer and Pascal O. Vontobel for useful
comments.

tScience Applications International Corporation, 4015 Hancock Street, San Diego,
CA 92110; bond_jw@nosc.mil.

*Department of Mathematical Sciences, San Diego State University, San Diego, CA
92182; hui@saturn.sdsu.edu.

§Technology Service Corporation, 962 Wayne Avenue, Suite 800, Silver Spring, MD
20910; hschmidt@tscwo.com.

83

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

84 J. BOND ET AL.

lief propagation appears to perform best when the columns of the regular
matrices have exactly three ones. For this reason, most of our work has
concentrated on codes with rates ~/(~ + 3) for an integer ~ (for example,
1/2 and 4/7) and relatively small transmit block sizes (less than 1000).

In this paper, we describe techniques for the construction of regular
LDPCC in terms of permutation matrices, each specified by a single linear
congruence. In this manner, a given code is associated with a few algebraic
equations and it becomes feasible to relate desirable code properties with
the parameters of the linear congruences. At present, we do not have a
complete theoretical analysis of this approach. We do not know the best
way to choose the code parameters except to avoid 4-cycles (note that there
are no 2-cycles since any two nodes can be connected by at most one edge).
However, we have succeeded in constructing codes that perform at least
as well as, if not better than, most codes constructed randomly, especially
when performance is measured in terms of block error rates. This is done
by choosing linear congruences to control the occurrences of cycles and
thereby presumably low-weight codewords. We also give a condition that
will guarantee the absence of cycles up to any desired length. We hope that
when this approach is better understood, we can obtain better performance
and better bounds for the minimum distance.

We also attempted to construct irregular codes for these small block
sizes using two different approaches: the Richarson-Urbanke method and
MacKay's super-Poisson method. The performance of the irregular codes
we constructed did not match the performance of the regular codes. This
indicates that constructing irregular LDPCC codes for small block sizes
may be quite subtle and difficult. Since our focus in this paper is on linear
congruence codes, we did not pursue this further.

2. Linear-congruence constructions. Let H = [R CJ, with C an
invertible matrix, denote the parity-check matrix. In this paper, we intro
duce the method of constructing C and R in terms of permutation matrices
each described by linear congruences and develop a theory for appropriately
choosing the parameters of the linear congruences so that the matrices are
regular and have no 4-cycles. We will also include the condition for avoiding
cycles of any length without the technical details.

We first consider the construction of a permutation matrix using a
linear congruence. Let a, b be integers. Let P be an n x n matrix with a one
in the j-th column of the i-th row if and only if j = ai+b mod n. IT a given
column has two ones, then there exist i l and i2 such that ail + b = ai2 + b
mod n. It is easy to see that P is a permutation matrix if and only if a and n
are relatively prime, and when this condition holds, the matrix P could also
be described by the location of the one in each column, i = aj + b mod n,
with a = a-l and b = -a-lb. Since these representations are equivalent,
we will use both without further notice but always with the i's referring to
the rows and the j's to the columns. Observe that a circulant is a sum of

LINEAR-CONGRUENCE CONSTRUCTIONS 85

matrices P described by congruences of the form j = i + b mod n.
Circulants are attractive for constructing the matrix C (see [4]). The

best constructions to be discussed herein for regular rate 1/2 and 4/7 codes
have R constructed in terms of permutation matrices described by general
linear congruences and C a circulant. Codes constructed with carefully
chosen circulants for C with R constructed randomly performed as well as
codes with both Rand C constructed randomly. Furthermore, it is easy
to condition the primitive polynomial so that the C portion of the matrix
has no 4-cycles, although it necessarily has some 6-cycles.

Codes constructed with both Rand C circulants perform poorly be
cause Rand C commute. See Appendix A for details. However, by gener
alizing R to a sum of matrices associated with general linear congruences,
Rand C need no longer commute. Furthermore, since traditionally ran
dom numbers were sometimes generated by appropriate linear congruences,
we hoped that the judicious choices of the parameters a and b will yield
sufficiently random matrices. Indeed, we have found sufficient conditions
on the parameters of the congruences that lead to candidate codes that
should perform well. The nature of these conditions depends on n. The
most important class of constructions for practical applications are those
when n is composite with a factor greater than 3. We have also found a
construction for the special case when n is a prime, but we will not present
this rather special case.

2.1. Square matrices defined by linear congruences. In this
section, we discuss the linear-congruence construction for square matrices.
Before introducing the linear-congruence construction, we first observe that
the linear-congruence construction can be considered a generalization of the
circulant construction.

Let C be an n x n circulant matrix and let b1 , ... ,b~ be the positions
of the nonzero entries of the first row of C. Then for i = 0,1, ... ,n - 1,
the nonzero positions of the i + 1-st row of Care

i + b1 , i + b2 ..• , i + b~ mod n,

which can obviously be written as

a1i+b1, a2i+b2 ... , a~i+b~ modn,

where al = ... = a~ = 1. The linear-congruence method uses the same
technique with distinct ai's. Of course, the ai's must be chosen appropri
ately so the resulting matrices will have certain desired properties, such as
regularity and no 4-cycles.

Unless stated otherwise, we assume that R is n x n and the required
number of ones in each row and each column is ,. We use linear congruences
to construct n x n matrices with exactly , ones in each row and column.
For each row, we need to find, positions for the ones so that each column
of each matrix will also have, ones.

86 J. BOND ET AL.

Let R denote the matrix to be constructed. Let a, b be positive integers
less than n. Consider the sequence

ri = (ai + b) mod n, i = 0, ... ,n-1.

For each i, let Ri,r, = 1. Note that we identify ° and n. If a, b are chosen
properly, then ri ::j:. rj for i ::j:. j and there is exactly one 1 in each row
and column. We iterate this procedure ~ times, with a different set of a, b
for each iteration, to generate the matrix R. Of course, the a's and b's
need to be chosen so that the ones are at different locations. We need the
following theorems from number theory (see, for example, Hua [10] and
Stewart [15]).

THEOREM 2.1. Let aI, ... , a~ and b be integers. The equation

alXI + ... + a~x~ + b = ° mod n

has a solution (Xl, ... ,xe) if and only if the greatest common divisor of
aI, ... ,a~, n divides b. If the equation is solvable, there are

n~-lgcd(al"" ,a~,n)

solutions that are not equivalent modulo n.
THEOREM 2.2. For j = 1, ... ,~, let ajl, ... ,aj~ and bj be integers

and let

L j = ajlXI + ... + aj~x~ + bj .

Let Lj = L j for j ::j:. k and

L~ = clL I + ... + CkLk + ... + c~L~.

If gcd(Ck, n) = 1, then the system

L j = ° mod n, j = 1, ... ,~

is equivalent to

Lj = ° mod n, j = 1, ... ,~.

Let aj, bj be positive integers used in the j-th iteration in the con
struction of the matrix. To ensure that the ones for each iterations are in
different locations, the equation

cannot have solutions for i = 0, ... , n - 1 and j ::j:. m. The above equation
is equivalent to

(2.1)

LINEAR-CONGRUENCE CONSTRUCTIONS 87

and using Theorem 2.1, we see that this equation is not solvable if and only
if

(2.2)

Observe that if n is prime, then gcd(aj - am, n) = 1 and it is not possible
to construct R using this method directly. However, by using n prime and
the bj's zero, we can obtain an R with size (n - 1) x (n - 1). In general, it

is easier to find {aj, bj }]=1 if n has more factors.

2.2. General linear-congruence construction. We have seen in
the previous section how to construct square regular linear-congruence ma
trices using sums of permutation matrices. Clearly, this method can only
be used to construct square regular matrices, which can be used as the R
or C part of the parity-check matrix as described above. To construct ma
trices that are not square, we need to use different methods. The methods
impose certain restrictions on the size of the matrix and the number of
entries in each row and column.

A large class of non-square regular parity-check matrices can be con
structed from permutation matrices using:

1. matrix overlap and
2. matrix partitioning.

2.2.1. Matrix overlap. We first discuss the matrix overlap method.
Suppose we wish to construct an m x n, m < n, regular matrix with ~ ones
in each column. The idea is to construct s permutation matrices of size
m x m and place them as blocks in a row to form an m x sm matrix and
then "fold" the long block matrix modulo m into an m x n matrix so that
the ones from the different blocks do not collide. By simple counting of the
ones, we have

sm=n~ or
n~ s--
m

Therefore, to use the overlap method, m must divide n~. It is clear that if
there are no collisions of ones, the resulting matrix is regular.

For example, suppose we wish to generate a 363 x 484 regular matrix
with three ones in each column. Then we construct s = (484)(3)/363 =
4 permutation matrices of size 363 x 363, say Po, P1, P2, P3 • Form the
363 x 1452 matrix [Po P1 P2 P3], which we rewrite as [Qo Q1 Q2], where
each Qj is 363 x 484. The final matrix is then Qo + Q1 + Q2. Of course,
we must be careful that the nonzero entries are all in different positions.
We will see how this can be arranged when the permutation matrices are
constructed using linear congruences.

We next show that if m does not divide n, the above construction is
equivalent to embedding each m x m matrix into an m x n matrix, cyclically
shifting the s matrices by multiples of gcd(m, n), and then summing. For

88 J. BOND ET AL.

example, in our 363 x 484 example given above, we cyclically shift the ma
trices Po, P3 , P2 , P1 (note the order of the matrices), by 121k, k = 0,1,2,3,
columns modulo 484 and add. More explicitly, let Pk = [Pk1 Pk2 Pk31,
where each Pkj is 363 x 121. Then the overlap matrix is formed by a row
of four 363 x 121 matrices:

Suppose m does not divide n. Let u = gcd(m, n) and let n = n'u
and m = m'u. Then 8 = n~/m = n'~/m' and m' -11. It follows that m'
divides~. Since n'm = m'n, n' matrices of size m x m can be folded into an
m x n matrix with m' ones in each column. Therefore, folding a block of 8

matrices of size m x m into an m x n matrix with ~ ones in each column is
equivalent to breaking the 8 matrices into ~/m' blocks of n' matrices, fold
each n' block into an m x n matrix with m' ones in each column and then
summing the ~/m' resulting matrices.

We now consider each n' long block of m x m matrices separately.
Each block is folded into an m x n matrix with m' ones in each column.
Since m' and n' are relatively prime, there exists t, 1 ::; t ::; n', such that
m't = 1 mod n'. Let B = [Po P1 .•. Pn, -1] be the block of m x m matrices
to be folded into a m x n matrix. Assume that Po starts at column O. It
is easy to see that for i = 1, ... , n' - 1, Pit starts at position iu modulo n.
Therefore, the folding of B modulo n to form a m x n matrix is equivalent to
cyclically shifting Po, Pt, ... , P(n'-l)t by 0, u, . .. , (n' -l)u columns modulo
n, respectively, and then summing.

To ensure that the ones from the different permutation matrices occupy
different positions, it is sufficient that the equation

does not have any solutions for i = 0, ... , m-1, p -I q, and k = 1, ... ,8-1.
As in the square matrix case, the above equation will have no solution if

gcd(ap - aq , n) does not divide bq - bp + ku.

One way to guarantee the above non divisibility condition is the following.
Let v > 1 be a factor of u. Choose the {aj, bj } so that the aj's are relatively
prime to m, v divides ap - aq and v does not divide bq - bp for all p -I q.
Then v divides gcd(ap-aq, n) and u but not bq-bp, and thus gcd(ap-aq, n)
does not divide bq - bp + ku. For example, suppose we wish to construct a
363 x 484 regular matrix with three ones in each column. In this case,

~ = 3, m = 363, n = 484, u = 121, m' = 3, n' = 4.

We can let v = 11, a1 = 23, a2 = 34, a3 = 67, a4 = 89, and bj = j - 1 for
j = 1, ... ,4.

LINEAR-CONGRUENCE CONSTRUCTIONS 89

2.2.2. Partition. We next describe the partition method. Again, let
the dimension of the desired matrix be m x n, m < n, and the number of
ones in each column be~. To use the partition method, we need m = ku
and n = qu, where q and u are positive integers. With this assumption,
we can partition the m x n matrix into a ~ x q block matrix, where each
block is u x u. One can then put a permutation in each block and obtain a
regular matrix with ~ ones in each column. However, it is easier to control
the number of short cycles if we use [q / k 1 blocks of m x m linear-congruence
matrices and then fill the remaining u x u blocks with either random or
linear-congruence permutation matrices.

For example, to construct a 363 x 484 regular matrix with three ones
in each column, we first construct a 363 x 363 regular matrix that has
three ones in each column given by congruences. The remaining 363 x 121
matrix is constructed by stacking three 121 x 121 permutation matrices in
a column. The permutation matrices can be constructed randomly or by
linear congruences.

3. The avoidance of cycles. In this section, we give equations whose
solutions give cycles in the bipartite graph corresponding to the matrix R.
The matrix R generates a bipartite graph with the rows and columns as the
two vertex or node sets. Row vertex i is connected by a single undirected
edge to column vertex j if and only if Rij = 1. A cycle is a path in the
graph with the same starting and end points such that each undirected
edge in the path appears only once. The number of edges in the path is
called the length of the cycle and a cycle of length k is called an k-cycle.
Clearly, a cycle in a bipartite graph must have even length and each vertex
in a cycle must have an even number of edges. The number of edges ending
at a vertex is called the degree of the vertex.

3.1. The square matrix case. We first treat the 4-cycle case with
three ones in each column in detail, which is the case of main concern in
practice and will also serve as an introduction to the more complicated
general case.

3.1.1. The 4-cycle case. To avoid 4-cycles, two distinct rows of R
can have at most one 1 at the same position. To have a 4-cycle, two
different rows, say i and j, must have ones in two different columns and so
the following system of equations must be solvable with i "I j mod n:

api + bp = arj + br mod n
aqj + bq = a.i + b. mod n,

(3.1)

where {p, q, r, s} C {1, ... ,0 with p "I r, q "I s, p "I s, and q "I r, since
each permutation matrix can only have one 1 in each row and column.
Equation (3.1) can be rewritten as

(3.2) -ar] [i] = [br - bp] d . b b mo n.
aq J s - q

90 J. BOND ET AL.

Pre-multiply both sides of equation (3.2) by

to obtain

() () [i] _ [ap(br - bp) + ar(bs - bq)] d
3.3 apaq - aras j - as(br _ bp) + aq(bs _ bq) mo n.

Using Theorem 2.1, we see that the matrix has no 4-cydes if one of the
following two conditions holds:

(3.4) gcd(apaq - aras, n) lap(br - bp) + ar(bs - bq)
gcd(apaq - aras,n) las(br - bp) + aq(bs - bq).

Since gcd(apaq-araS ' n) need not be 1, the systems given by equations (3.2)
and (3.3) may not be equivalent. However, if {ap, aq, an as} are relatively
prime to n, then the following is true.

THEOREM 3.1. If {ap, aq, ar, as} are relatively prime to n, the follow-
ing are equivalent:

(i) equation (3.2) has no solutions;
(ii) gcd(apaq - aras, n) lap(br - bp) + ar(bs - bq);

(iii) gcd(apaq - aras, n) las(br - bp) + ap(bs - bq).

Proof We have seen that (ii) or (iii) implies (i). We show that (i)
implies (iii); the proof that (i) implies (ii) is similar and will be omitted.

Let

Ll = api - arj + bp - br
L2 = -asi + aqj + bq - bs

Then equation (3.2) is the same as

{ Ll = 0 mod n.
L2 = 0

Since gcd(ap, n) = 1, a;l exists in iZn . Let

(3.5) L~ = asLl + apL2

(3.6) = (apaq - aras)j + ap(bq - bs) + as(bp - br)·

By Theorem 2.2, the system

{ Ll = 0
L~ = 0 modn

is equivalent to the system given by equation (3.2). If

gcd(apaq - aras,n)lap(bq - bs) + as(bp - br),

LINEAR-CONGRUENCE CONSTRUCTIONS 91

then L~ = 0 mod n can be solved for j by Theorem 2.1. Replace j in L1
by any solution of L~ = 0 mod n, say], and call this formula £1. The
equation £1 = 0 mod n can be solved for i since gcd(ap, n} = 1. Let i be
a solution. Then it is clear that (i,]) is a solution of equation (3.2). The
proof of (i) implies (iii) is complete. 0

We give an example of how the condition (3.4) can be used to find
matrices with no 4-cycles.

EXAMPLE 1. Suppose n is divisible by an odd prime v > 3 and we
wish to generate an n x n matrix with three ones in each column. Let t1 ,

t2, t3 be distinct integers modulo n and let d be an integer not divisible by
v. For j = 1,2,3, let aj = tjV + d and choose bj such that v does not divide
bk ±bl for k =j:. f. In particular, we can take b1 = 0, b2 = 1, and b3 = 2. We
show that if the aj 's are relatively prime to n, then the matrix generated is
regular and has no 4-cycles.

In every collection {ap, aq , an as}, at least two of them must be the
same since there are only three aj 's and three bj 'so Taking into account the
condition that p =j:. rand p =j:. s, we can assume without loss of generality
that p = q. Note that

vlgcd(aj -ap,n}

and v does not divide bj - bp, equation (2.1) is not satisfied. By direct
computation, it is easy to see that

via; - aras

and thus

vi gcd(a; - aras,n}.

To ensure that there are no 4-cycles, we need to check equation (3.4).
First consider the case of r = s. Then

ap(br - bp} + ar(bs - bp} = (ap + ar)(br - bp)

= [v(tp + tr) + 2d](br - bp}.

Since the bj's are chosen so that br - bp is not divisible by v for r =j:. s,

gcd(a; - a;, n} %ap(br - bp} + ar(br - bp}.

We next consider the case of p f. q. Then

ap(br - bp} + ar(bs - bp} = apbr + arbs + (ap - ar}bp

= (tpbr + trbs}v + (br + bs)d + (ap - ar)bp

is not divisible by v if v does not divide (br + bs)d. We conclude that there
are no 4-cycles.

These results indicate that it is usually quite easy to construct regular
sums of up to three permutation matrices that have no 4-cycles.

92 J. BOND ET AL.

3.1.2. The general square case. We briefly describe the general
case without giving all the technical details. A cycle of length 28 can be
represented in the a natural way by

(3.7)

where r(i) denotes the i-th row and c(j) the j-th column. The above should
be taken to mean that row i1 is connected to column 11, which is connected
to row i2 , etc. Since the edges in a cycle cannot repeat, we must have

where is+1 = i1 and jsH = j1. If ip = iq or jp t= jq for p t= q, then the
cycle contains another cycle with shorter length.

Using the representation given in (3.7), we have

which we can express, using the relationship between rows and columns in
our construction, by

(3.8) { jp = ajpip + bjp mod n
. . b d' P = 1, ... ,8,

Jp = aj' Zp+1 + jt mo n
p p

where {ajp' aj~ : p = 1, ... ,8} C {a1' ... ,a{}. Equating the two equations
for jp, we obtain

We can summarize the above system of equations by the following matrix
equation:

where dj = bj' - bj . Note that the coefficient matrix is upper triangular
except for one nonzero entry at the (8,1) position. One must verify that

LINEAR-CONGRUENCE CONSTRUCTIONS 93

equation (3.9), or any of its equivalents, has no solutions that satisfy the
no-repeat condition of a cycle to guarantee that the matrix R has no 2s
cycles. The equation can be transformed into an equivalent upper triangle
form to make checking its solvability easier. We have the following theorem.

THEOREM 3.2. Let
s

'Y = gcd(II aj~ - II ajp' n).
p=1 p=1

The system given by equation (3.9) is solvable if and only if

s-1 s-1 (P-l) (8-1)
'Y divides dj• II aj. + aj~ L II aj~ II aj. djp .

q=1 p=1 q=1 q=p+l

If the system is solvable, it has exactly 'Y solutions.

We briefly comment on the computational requirement. The pairs
{jl, j~}, ... ,{js, j~} each has ~(~-l) possible combinations from {I, ... ,0.
Hence the total possible number of systems that need to be checked is
[~(~ - IW. In fact, by permuting the indices, one can show that we only
need to check the cases when jl < j~, which reduces the total number of
systems to be checked to [~(~ -IW /2. For example, suppose ~ = 3 and we
need to avoid 6-cycles, we only need to check 108 systems. In particular,
the number of checks is independent of n.

3.2. Cycle avoidance for matrix overlap. We will transform the
equations for the avoidance of cycles for the overlap construction to the
same form as those for the square matrix case. We use the same approach
and notation as in Section 3.1.2. Suppose the matrix to be constructed is
mxn with m not a factor of n. Let u = gcd(m, n). Using the representation
given in (3.7), we have

which we can express, using the relationship between the rows and columns
in our construction, by

(3.10)

These equations can be put in the form

(3.11) {
jp = aj ip + bj mod n

p p...... , p = 1, ... ,s,
jp = aj~ ip+l + bj~ mod n

where bjp = bjp + kpu, and bj~ = bj~ + k~u. Let djp = bj~ - bjp. The above
system can be put in the form given by equation (3.9) and the condition

94 J. BOND ET AL.

for the existence of 4-cycles is given by Theorem 3.1 and the condition for
the general case is given by Theorem 3.2.

In the next example, we show how the above condition can be used to
construct regular overlap matrices with no 4-cycles.

EXAMPLE 2. Suppose the matrix to be constructed is m x n with m),n
and e ones in each column. Thus we need ne/m permutation matrices. Let
u = gcd(m, n). As we have seen in Section 2.2.1, if v> 1 is a factor of u

and {aj, bj } ;!~m are chosen so that the aj 's are relatively prime to m, that
v divides ap - aq and does not divide bq - bp for all p =j; q, then the matrix
constructed will be regular with e ones in each column. We showed how

can be used to construct a regular matrix. We now use this form for the aj 's
to simplify the problem of constructing a regular matrix with no 4-cycles.

By Theorem 3.1, the matrix will have no 4-cycles if

gcd(apaq - aras,n))'ap(br - bp) + ar(bs - bq)

for all indices {p, q, r, s} C {I, ... , e} such that p =j; r, q =j; s, p =j; s, and
q =j; r. From aj = tjV + d andbj = bj + kju, we obtain

and

ap(br - bp) + ar(bs - bq) = [tp(br - bp) + tr(bs - bq)]v +
d[br - bp + bs - bq] + [kr - kp + ks - kq]du.

Therefore

and since vlu,

if

(3.12)

If v and d are relatively prime, then the matrix will have no 4-cycles if

We now give an explicit construction of a 363 x 484 regular matrix
with three ones in each column and no 4-cycles. In this case m = 363,
n = 484, u = gcd(363,484) = 121, and n' = n/u = 4. We have seen in

LINEAR-CONGRUENCE CONSTRUCTIONS 95

Section 2.2.1 that if we let v = 11, al = 23, a2 = 34, a3 = 67, a4 = 89,
and bj = j - 1 for j = 1, ... ,4, then the overlap matrix is regular. It is
easy to see that these bj's will not satisfy equation {3.12} since

b1 - b2 + b4 - b3 = O.

In fact, if b1 = 0, b2 = 1, and b3 = 2, then no choice of b4 will work since

A simple search shows that b1 = 0, b2 = 1, b3 = 3, and b4 = 11 work. The
matrix constructed with these aj 's and bj 's is regular, has no 4-cycles and
24 6-cycles.

4. Simulation results. To show the potential of the linear-congruence
method for constructing LDPCC, we compare the performances of the var
ious construction methods with the best randomly constructed regular ma
trices. We generated rate 4/7 codes with block length 847 and rate 1/2
codes with block length 980 using the different methods described in the
previous sections. For each rate, we plotted the bit error rate and the
block error rate for the codes. For the block errors, we also include for
comparison a curve that we derived from a simple model of the decoding
process. We have found that this curve generated from the model gives
an approximate upper bound for performance for the codes that we have
considered. The details about this model is given in Appendix B.

The parity-check matrices for the codes are regular and have three
ones in each column. For the rate 4/7 codes, there are 7 ones in each row
and for the rate 1/2 codes, there are 6 ones in each row. For each rate, we
use the best randomly constructed codes that we have found. For the rate
4/7 codes, we use parity-check matrices of the form [LC C], where LC is a
363 x 484 linear-congruence matrix and C is a 363 x 363 circulant matrix.
We give three different constructions for LC:

1. the left 363 x 363 submatrix is a linear-congruence matrix and
the right 363 x 121 matrix is a stack of three random 121 x 121
permutation matrices;

2. the left 363 x 363 submatrix is a linear-congruence matrix and the
right 363 x 121 matrix is a stack of three 121 x 121 linear-congruence
permutation matrices;

3. the matrix is constructed using the overlap method.
It is clear from Figure 1 that the different methods of construction give
essentially the same result. For this particular code rate and block size, we
are confident that the linear-congruence method can produce codes that
match the best randomly constructed regular parity-check codes.

For the rate 1/2 code, we use parity-check matrices of the form
[LC RC], where LC is a 490 x 490 linear-congruence matrix and RC has
dimension 490 x 490 and is either a linear-congruence matrix or is a cir
culant matrix. The bit error rate and the block error rate curves are in

96 J. BOND ET AL.

Bit Errors for Rate 417, block size=847
1~ r-------~------,_------~

Block Errors for Rate 417, block size=847
1~ ~_4~~~------,-------~

g
w
ffi
~ 10-3

~
:c
~ e
Il.

10-4 0 Congruence 1 & Circulant
o Congruence 2 & Circulant
* Congruence 3 & Circulant
<I Random & Random

o Congruence 1 & Circulant
o Congruence 2 & Circulant * Congruence 3 & Circulant
<I Random & Random
+ Model

10-6 L..-______ "--______L.-______ --' 10-5 '--______ "--______L.-______ --'

o 3 o 2
Et/No (dB)

FIG. 1. Performance comparison for the rate 4/7 codes.

3

Figure 2. There is a little more difference in the performances for this code
rate but the differences are small, within 0.2 dB of each other. For the bit
error rate, there is no clear winner and for the block error rate, the random
code is better by a very small margin.

APPENDIX

A. Parity-check matrix with two circulant matrices. In this
section, we consider codes with parity-check matrices of the form

H = [C2 Cd,

where Cl and C2 are circulant matrices. We show that the mlnImUm
distance of a code with parity-check matrix of this form is bounded above
by 2~, where ~ is the number of ones in each column of Cl and C2 • Hence,
for small values of ~, such as h = 3, we expect this class of code to have
inferior performance. Simulations show that this is indeed the case. This
class of codes should in general be avoided.

We assume that Cl is invertible. Let C be a circulant matrix with first

LINEAR-CONGRUENCE CONSTRUCTIONS 97

Bit Errors for Rate 1/2, block size=980
1~ r----.----,----.----,.---,

o 80nSruence & 8irculant o on ruence & ongruen
<l Ran om & Random

t 0-8 '-----'-----'-----'-------'------'

1 1.5 3 3.5

Block Errors for Rate 1/2, block size=980
10° r----.----,.----,-----,------,

10-4

o Congruence & Circulant
o Congruence & Congruen
<l Random & Random
+ Model

10-5 '-----'-----''-----'-----'------'

t 1.5 3 3.5

FIG. 2. Performance comparison for the rate 1/2 Codes.

row

Cn -1]

It is known that C is invertible over ~2 if and only if the associated poly
nomial

is primitive over ~2 provided that the polynomial is not a factor of xn - 1.
Therefore the requirement that C1 be invertible is easy to fulfill.

Let B be the circulant matrix

0 1 0 0
0 0 1 0

B=

0 0 0 1
1 0 0 0,

where each row contains exactly one 1. Then a circulant matrix C with
first row

Cn -1]

98 J. BOND ET AL.

can be expressed as

Since it is obvious that powers of a fixed matrix commute, we conclude that
the circulant matrices commute. This property of circulant matrices leads
to an upper bound on the minimum distance of codes with parity-check
matrix of the form [C2 Cd. Let C1 and C2 have ~ ones in each column.
Let

Using the commutativity property, we have

where G is the generator matrix in systematic form. Since C1 is invertible,
{; generates the same code as G. By assumption, C1 and C2 have ~ ones in
each column, and it follows that the code has minimum distance no greater
than 2~.

Since C1 is invertible, the matrix {; has full rank and thus there are
at least n codewords of weight 2~.

B. A heuristic criterion for code selection. In this section, we
present an experimental observation that a simple model gives a surpris
ingly good approximation of the block error rate of LDPCC with Belief
Propagation decoding for a fairly broad range of Eb/NO. In the range
where the approximation is less accurate, the model seems to give an up
per bound to performance. We model the decoding process by assuming
that the decoding algorithm first uses hard decisions to decode each bit and
then corrects a certain number of bit errors in a codeword up to a certain
maximum, which we refer to as the radius of convergence. We next show
how this maximum number in our model can be computed.

Let Re be the radius of convergence and let p be the probability that
a bit is in error if the bit is decoded using hard decisions. Note that p can
be computed from Eb/No. Using p and the assumption that the decoding
algorithm can correct up to Re errors, the probability of block error is

To find Re , we generate a family of codes at the desired rate and use
simulations to estimate the probability of block error at an Eb/No, usually
chosen to be at the center of the operating range of the code for this family.
We use the best probability of block error from the family of codes and use

LINEAR-CONGRUENCE CONSTRUCTIONS 99

that as Pbloek. The above equation relating Rc and Pbloek is then used to
solve for Re. Once Rc has been found, we assume that it is fixed for all
Eb/No and use the above equation to generate a curve using p from the
different Eb/No.

We have found that the radius of convergence provides an excellent
indicator of code performance and we have found that it can be used for
deciding that a high-performance code has been constructed.

Note. The reviewer pointed out that one possible explanation for the
observed phenomenon is that for large block lengths, the probability of
error as a function of the number of input errors has a sharp transition
exactly at the observed radius of convergence. For smaller block lengths,
which is the case we are interested in, the transition is less sharp. The
reviewer also pointed out that this heuristc fails if there are nodes with
degree 2 in the graph of the parity-check matrix. The matrices we used in
this paper do not have any nodes of degree 2.

REFERENCES

[1] J.W. BOND, S. Hur, H. SCHMIDT, Low Density Parity Check Codes based on
Sparse Matrices with No Small Cycles, Institute of Mathematics Applications,
Coding and Cryptography Conference, December 1997.

[2] J.W. BOND, S. Hur, H. SCHMIDT, Decoding Low-Density Generator Matrix Codes
with the Aid of Comma-free Source Codes, Proceedings of 1988 Information
Theory Workshop, Killarney, Ireland, 22-26 June 1998.

[3] J.W. BOND, S. Hur, H. SCHMIDT, Constructing low-density parity-check codes
with circulant matrices, 1999 IEEE International Symposium on Information
Theory, Metsovo, Greece, June 27-July 1, 1999.

[4] J.W. BOND, S. Hur, H. SCHMIDT, The Euclidean Algorithm and Primitive Polyno
mials over Finite Fields, to be published in a book associated with AAECC-13
on Applied Algebra, Fall 1999.

[5] J.W. BOND, S. Hur, H. SCHMIDT, Belief Propagation Decoding for Gaussian Chan
nels, September 21, 1998.

[6] J.F. CHENG AND R.J. McELIECE, Some High-Rate Near Capacity Codes for the
Gaussian Channel, presented at the 34th Allerton Conference on Communi
cation, Control, and Computing, 1996.

[7] M.C. DAVEY AND D.J.C. MACKAY, Monte Carlo Simulations of Infinite Low Den
sity Parity-Check Codes over GF(q), March 30, 1998, Proceedings of 1988
Information Theory Workshop, Killarney, Ireland, 22-26 June 1998.

[8] R. GALLAGER, Low-Density Parity-Check Codes, MIT Press, Cambridge Mass,
July 1963.

[9] G.H. HARDY, AND E.M. WRIGHT, An Introduction to Number Theory, Fourth
Edition, Clarendon Press, Oxford, 1968.

[10] L.K. HUA, Introduction to Number Theory, Springer-Verlag, Berlin, 1982.
[11] D.J.C. MACKAY, Good Error-Correcting Codes Based on Very Sparse Matrices,

IEEE Transactions on Information Theory, pp 399-431, Vol. 45, No.2, March
1999.

[12] D.J.C. MACKAY AND M.C. DAVEY, Evaluation of Gallager Codes for Short Block
Length and High Rate Applications, Preprint.

[13] T. RICHARDSON, A. SHOKROLLAHI AND R. URBANKE, Design of Provably Good
Low-Density Parity-Check Codes, 1999, Preprint.

100 J. BOND ET AL.

[14] T. RICHARDSON AND R. URBANKE, The Capacity of Low-Density Parity Check
Codes under Message-Passing Decoding, Preprint.

[15] B.M. STEWART, Theory of Numbers, Second Edition, Macmillan, New York, 1964.

ON THE EFFECTIVE WEIGHTS OF PSEUDOCODEWORDS
FOR CODES DEFINED ON GRAPHS WITH CYCLES

G. DAVID FORNEY, JR.", RALF KOETTERt, FRANK R. KSCHISCHANGt,

AND ALEX REZNIK" §

Abstract. The behavior of an iterative decoding algorithm for a code defined on
a graph with cycles and a given decoding schedule is characterized by a cycle-free com
putation tree. The pseudocodewords of such a tree are the words that satisfy all tree
constraints; pseudocodewords govern decoding performance. Wiberg [12] determined
the effective weight of pseudocodewords for binary codewords on an AWGN channel.
This paper extends Wiberg's formula for AWGN channels to nonbinary codes, develops
similar results for BSC and BEC channels, and gives upper and lower bounds on the
effective weight. The 16-state tail-biting trellis of the Golay code [2] is used for exam
ples. Although in this case no pseudocodeword is found with effective weight less than
the minimum Hamming weight of the Golay code on an AWGN channel, it is shown
by example that the minimum effective pseudocodeword weight can be less than the
minimum codeword weight.

Key words. Codes on graphs, iterative decoding, pseudocodewords, effective
weights, tail-biting.

AMS(MOS) subject classifications. 94B99.

1. Introduction. The subject of codes defined on graphs was founded
by Tanner [10], inspired by Gallager's low-density parity-check (LDPC)
codes [4]. The thesis of Wiberg [12, 13], along with the practical successes
of turbo codes and LDPC codes, has stimulated great current interest in
this subject. For recent developments, see [1, 6, 7, 8].

By now it is well known that if C is a block code defined on a cycle-free
graph G (i.e., a tree), then the min-sum decoding algorithm is guaranteed
to converge to the maximum-likelihood (ML) code sequence [12, 13].

The min-sum algorithm may also be applied to a graph with cycles,
but its behavior then depends on the decoding schedule, and convergence
is not guaranteed. Given a decoding schedule, there exists a cycle-free
computation tree G' such that the behavior of the min-sum algorithm on
G' with the given schedule is identical to that of the iterative algorithm on
G [3, 11, 12, 13]. In general, a node in G has more than one representation
in G'.

A codeword in C is a sequence c of node values in G that satisfies all
the constraints of G. A pseudocodeword [3] is a sequence of node values in
G' that satisfies all the constraints of G'. There exists a pseudocodeword

"Laboratory for Information and Decision Systems, M.I.T., Cambridge, MA 02139,
USA.

tCoordinated Science Laboratory, University of illinois, Urbana, IL 61801, USA.
tDept. of Electrical and Computer Engineering, University of Toronto, Toronto, Onto

M5S 3G4, Canada.
§InterDigital Communications Corporation, Melville, NY 11747, USA.

101

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

102 G. DAVID FORNEY, JR. ET AL.

corresponding to every codeword c E C, obtained by assigning the values of
the nodes of G to the corresponding nodes of G'. In general there will also
exist pseudocodewords that do not correspond to valid codewords, because
different values are assigned to nodes of G' that correspond to the same
node of G.

The examples in this note will focus on pseudocodewords of tail-biting
trellises, whose significance is particularly clear. A tail-biting trellis (TBT)
corresponds to a graph G that consists of a single cycle. A computation
tree G' is obtained by "unwrapping" G into a conventional trellis defined on
an ordered time axis. A codeword c of G corresponds to a pseudocodeword
on G' that repeats periodically with a period equal to one cycle of G. But
there also exist periodic pseudocodewords on G' whose period is a multiple
of the cycle length of G and which do not correspond to any valid codeword.

In Chapter 6 of [12], Wiberg developed a formula for the effective
Hamming weight ("generalized weight") Weff of a pseudocodeword ("tree
configuration") for the case of binary codes and binary antipodal signaling
on an additive white Gaussian noise (AWGN) channel, namely

(1.1)

where nj is the number of nodes in G' corresponding to the jth node in
G that have value equal to 1. If the pseudocodeword corresponds to a
valid codeword c, then Weff = WH(C), the Hamming weight of c. For a
binary linear code, the probability of a decoding error on G' is governed
by the minimum effective weight Weffj therefore it is important that all
pseudocodewords of G' have effective weight Weff at least as great as the
minimum Hamming weight dH of C if performance is not to be degraded.

In this note we develop some extensions of Wiberg's result, as follows:
1. We extend Wiberg'S formula to the nonbinary casej
2. We give lower and upper bounds on Weffj
3. We develop similar results for the binary symmetric channel (BSC)

and binary erasure channel (BEC).
As examples, we compute the effective weights of certain pseudocode

words in the 16-state TBT of the binary (24, 12, 8) Golay code of [2]. For
the AWGN channel, we have not found any examples of pseudocodewords
with effective weight less than 8j however, neither have we been able to
prove that 8 is the minimum effective weight for this case. For the binary
symmetric channel, on the other hand, we exhibit a pseudocodeword with
effective weight 6.

2. Effective weight on AWGN channels. Let C be a block code
of length n defined on a graph G, and let G' be a computation tree corre
sponding to some schedule for min-sum decoding of C. Let N j , 1 :::; j :::; n,
be the number of occurrences of the jth node of G in G'.

ON THE EFFECTIVE WEIGHTS OF PSEUDOCODEWORDS 103

Let c = {cj, 1 :S j :S n} be a codeword of G, and let {pji,l :S j :S
n, 1 :S i :S N j } be a pseudocodeword of G', where Pji represents the value
of the ith occurrence of the jth node, 1 :S i :S Nj •

For each symbol Xm in the symbol alphabet A, let njm be the number
of times that Pji = Xm , and let fJm = njm/Nj; i.e., Jjm is the frequency
with which Xm appears in the Nj occurrences of the jth node. In the fol
lowing, we think of the fractions fJm as defining a random pseudocodeword
p = {Pj} in which Pj takes on value Xm E A with probability fJm' and we
will take expectations over this distribution.

Note that p is non-random (p = E[p]) if and only if p corresponds to
a valid codeword c', for then and only then fJm = 1 when Xm = cj and
fJm = 0 otherwise.

Define the variance

(2.1) 0"; = L (E [pJ] - E [pj]2) = E [llpI12] - liE [p]112.
j

We have the following obvious lemma:
LEMMA 2.1. The variance O"~ is greater than or equal to 0, with equal

ity if and only if p is non-random; i.e., if and only if p corresponds to a
valid codeword c'.

Let c be the input codeword to an AWGN channel whose output se
quence is r = c + n, where n is an i.i.d. Gaussian sequence with mean 0
and variance 0"2 per symbol. A maximum-likelihood (ML) decoder on G'
chooses the pseudocodeword p that minimizes the squared distance

Ilr - pl12 = LNj L fJmh - xm)2.
j m

For simplicity we will assume that G' is balanced [3, 11]- i.e., that
~ ~ 1 for a large number of iterations. For such balanced graphs we
can normalize by Nj , which we will tacitly assume in the sequel. Then an
ML decoder chooses the pseudocodeword p that minimizes the expected
squared distance

j m j m

The probability Pr(c -+ p) that an ML decoder will choose the pseudocode
word p over c is thus

Pr(c -+ p) = Pr {E [llr - p112] :S Ilr - cI12}.

(If G' is not balanced, then a similar result holds if we replace E[llr - p112]
by the expectation of the weighted squared distance Nj(rj - xm)2.)

104 G. DAVID FORNEY, JR. ET AL.

Defining (r, c) = "Ej TjCj, we can write

Ilr - ell2 = IIrl12 - 2(r, c) + IIell 2j

E [llr - pl12] = IIrl12 - 2(r, E[p]) + E [ilp112] ,

where (r, E[p]) = "Ej TjE[pj] = "Ej rj "Em limXm. Thus

Pr(e -t p) = Pr {2(r, e - E[p]) :::; IIel1 2 - E [llpl12]} .

Define d = e - E[p] and D = IIel1 2 - E [llpl12] j then

Pr(e -t p) = Pr {2(r, d) :::; D}.

Given Cj, the received symbol Tj is a Gaussian random variable (r.v.)
with mean Cj and variance (72. Therefore Tjdj is a Gaussian r.v. with mean
cjdj and variance (72dJ. The inner product (r,d) = "EjTjdj therefore has

mean (e,d) = "Ejcjdj and variance (72 "EjdJ = (72I1dI1 2. The probability
that (r, d) :::; D /2 is thus the probability that a Gaussian r.v. with mean
(e, d) - D /2 and variance (7211d11 2 is less than zero, which is given by

Q (e,d) - D/2)
(7lldll '

where Q(x) = 2~ Jxoo exp(-x2 /2) dx is the usual Q function.
Therefore if we define the effective squared Euclidean distance as

(2.2)

then we obtain the familiar expression

(2.3) Pr(e -t p) = Q (defft, p») .

If p corresponds to a codeword e', then E[p] = e' and E[llpI12] = Ile'112,
so

2(e, d) - D = 2(e, e - e') - IIel12 + IIe'I1 2 = lie - e'112.

Also IIdl12 = lie - e'112, so we have as usual

d;ff(e, e') = lie - e'11 2.

More generally, if (7; = E [llpl12] -IIE[p]112 is the variance of p defined
in (2.1), then we have

2(e, d) - D = 2(e, e - E[p]) - IIel1 2 + E [llpl12]

= lie - E[p]112 + E [llpl12] -IIE[p]112

= IIdl12 + (7;.

ON THE EFFECTIVE WEIGHTS OF PSEUDOCODEWORDS 105

This leads to our main theorem:
THEOREM 2.1. Let e be a codeword and p a pseudocodeword in a

balanced computation tree. Then the effective squared Euclidean distance
between e and p is

(2.4)
2 (lIdll2 + 0-;) 2

deff(c, p) = IIdl12 '

where d = e - E[p] and 0-; = ElIlpW]-IIE[p]112. If c is transmitted, then
the probability that the received word r is closer to p than e is

(2.5) Pr(e -+ p) = Q (deff~~' p)) .

By Lemma 1, 0-; ~ 0, with equality if and only if p corresponds to a
codeword c'. Thus we obtain the following two lower bounds on d~ff(e,p):

COROLLARY 2.1. The effective squared Euclidean distance d~ff(c,P)
satisfies

with equality in both cases if and only if p corresponds to a codeword e'.
This result shows that the variation 0-; in non-codeword pseudocode

words p causes d~ff(e,p) to be greater than the squared distance IIdl12 =
lie - E[p]112 between e and the average E[p]. Thus the more variation 0-;
in a pseudocodeword p, the less troublesome it is likely to be, for a given
average E[p].

3. Binary signaling on the AWGN channel. With binary antipo
dal signaling using the symbol alphabet A = {±1}, we have IIcl12 = E[IIpll2],
so D = O. Define

m

where Ii is the fraction of Pji equal to -1; i.e., fj = (1 - E[pj])/2. If we
take e = 1 (the all-zero codeword), then

If we further define If I = l:j Ii and IIfl12 = l:j ff, then we have

IIdl12 = 111 - E[p]112 = 411f112;
0-; = E [llpI12] -IIE[p]112 = 4(lfl-llfI12);

(11 d112 + 0-;) 2 Ifl2
d;ff(l,p) = IIdl12 = 411f112'

106 G. DAVID FORNEY, JR. ET AL.

This yields Wiberg's formula (1.1) for Weff{p) in the balanced case:
COROLLARY 3.1. On an A WGN channel, the effective Hamming

weight of a binary pseudocodeword P with frequency /j of ones in the jth
position is

(3.1)
Ifl2

Weff(p) = Ilf11 2 '

where If I = Lj fj and IIfl12 = Lj ff·
The quantity If I = Lj /j may be interpreted as the average Hamming

weight of p. Corollary 2.1 then has the following corollary:
COROLLARY 3.2. lfp is binary, then its effective weight Weff(p) sat-

isfies

(3.2)

with equality if and only if p corresponds to a codeword c'.
In other words, Weff(p) is lowerbounded by the average Hamming

weight If I , with strict inequality if p does not correspond to a codeword.
For example, three pseudocodewords of low effective weight in the

Golay TBT have the following parameters:

Exalllple 1. Suppose /j equals ! in 8 places and 0 elsewhere. Then

IIfl12 = 8 x (1/4) = 2;

If I = 8 x (1/2) = 4;

Ifl2 42
Weff(p) = IIfl12 = 2 = 8.

Exalllple 2. Suppose /j equals! in 8 places, 1 in 2 places, and 0 elsewhere.
Then

IIfl12 = 8 x (1/4) + 2 x 1 = 4;

If I = 8 x (1/2) + 2 x 1 = 6;

Ifl2 62
Weff(p) = IIfl12 = 4 = 9.

Exalllple 3. Suppose /j equals ~ in 6 places, ~ in 2 places, 1 in 2 places,
and 0 elsewhere. Then

IIfl12 = 6 x (1/9) + 2 x (4/9) + 2 = 32/9;

If I = 6 x (1/3) + 2 x (2/3) + 2 = 16/3;

Ifl2 3
Weff(p) = IIfl12 = 2 = 8.

Example 1 illustrates the general proposition that if all nonzero fj are
equal, then Weff(p) is equal to their number, Weff(p) = I supp(f) I. (We

ON THE EFFECTIVE WEIGHTS OF PSEUDOCODEWORDS 107

will see that the support size I supp(f) I is the effective weight on a binary
erasure channel.) More generally, we can show that I supp(f) I is an upper
bound on Weff (p):

THEOREM 3.1. If P is binary, then its effective weight Weff (p) satisfies

(3.3) Weff(P) ~ I supp(f)l,

with equality if and only if all nonzero fj are equal.
Proof Define 1 as the vector whose components are equal to one on

the support of f and equal to zero elsewhere. Then 111112 = I supp(f)l, and
(1, f) = If I· Now by Schwarz's inequality,

with equality if and only if f = al for some a. The conclusion follows from

Ifl2 (1, f)2
Weff(p) = IIfl12 = lifiI2 ~ I supp(f)l,

with equality if and only if f is proportional to 1. o
4. Binary symmetric channels. Now let us consider binary sig

naling on a binary symmetric channel (BSC) with crossover probability
e < 1/2. As in the previous section, a pseudocodeword P will be repre
sented by a vector f, where h is the fraction of pseudocodeword compo
nents equal to 1 in the jth position.

Suppose that the all-zero word is sent and that the received word is e,
where ej = 1 if there is an error in the jth position and ej = 0 otherwise.
The Hamming distance between e and the all-zero word is lei = l:j ej.
Given a pseudocodeword p represented by f, the average Hamming distance
in the jth component is equal to h if ej = 0 and 1 - h if ej = 1, so the
average Hamming distance dH (e, p) is

(4.1) dH(e, p) = L h(1- ej) + ej(1 - fj)·
j

Thus the error event {dH(e,p) ~ lei} is the event

(4.2) {(f, 1 - 2e) = L h(1- 2ej) = ~ h(_1)e j ~ o}.
J J

The probability of error is thus the probability that l:j h (-1)e j ~ O. This
is a sum of independent random variables Vj, where Vj = fj with probability
e and Vj = - h with probability 1 - e.

We would like again to define the effective Hamming weight Weff(p)

of p as a single parameter that has the same significance as the usual

108 G. DAVID FORNEY, JR. ET AL.

Hamming weight WH(C) of a codeword C for error probability, and that
reduces to Hamming weight when p is actually a codeword. This cannot
be done quite as neatly in the BSC case as in the Gaussian case, but a
reasonable approach is as follows.

We ask for the minimum number of errors lei that can cause a decoding
error to p. Clearly, given the total weight If I = Lj Ij of f, the worst case
occurs when e errors occur in the e positions for which Ij is greatest. A
decoding error may occur if the sum of the weights /j in these e positions
is equal to Ifl/2, and must occur if the sum exceeds Ifl/2. The effective
weight in the former case will be taken as WBSC (p) = 2e, and in the latter
case as WBSC (p) = 2e - 1.

To a first approximation, the decoding error probability to p will there
fore be of the order of K ce(p), where e(p) = r WBSC (p) /21 is the minimum
number of channel errors required to make a decoding error to p.

The correspondence between effective weight and Hamming weight is
not precise, because whereas with an ordinary codeword the multiplicity K
is the number of ways that e(c) errors can occur in WH(C) positions, with
pseudocodewords the number of possible combinations of e(p) errors will
in general be less.

The three examples given earlier illustrate these points and show that
the effective weight for Gaussian channels and for BSCs are in general
different.

Example 1. (cont.) If /j equals ~ in 8 places and 0 elsewhere, then
If I = 4. There exist error patterns of weight e = 4 such that the sum of the
e largest components of f is equal to Ifl/2 = 2, namely any error pattern
with 4 errors in places where Ij = ~. Thus the effective weight of such a
pseudocodeword is WBSC (p) = 8. In this case the number of error patterns
of weight 4 that could cause a decoding error is 4~~! = 70, as in the usual
case.

Example 2. (cont.) If /j equals ~ in 8 places, 1 in 2 places, and 0
elsewhere, then If I = 6. There exist error patterns of weight e = 4 such
that the sum of the e largest components of f is equal to Ifl/2 = 3, namely
error patterns with errors in the two places where /j = 1 and in two other
places where /j = ~. Thus the effective weight of such a pseudocodeword
is WBSC (p) = 8. The number of error patterns of weight 4 that could cause
a decoding error is 6~~! = 28, compared to 4~~! = 70 in the usual case.

Example 3. (cont.) If Ij equals t in 6 places, j in 2 places, 1 in 2 places,
and 0 elsewhere, then If I = 136 • There exist error patterns of weight e = 3
such that the sum of the e largest components of f is equal to Ifl/2 = ~,
namely error patterns with errors in the two places where /j = 1 and in one
other place where /j = j. The effective weight of such a pseudocodeword
is WBSC (p) = 6. The number of error patterns of weight 3 that could cause
a decoding error is 2, compared to 3~~! = 20 in the usual case.

ON THE EFFECTIVE WEIGHTS OF PSEUDOCODEWORDS 109

From these examples one might conjecture that the effective Hamming
weight of a binary pseudocodeword on a BSC is always less than or equal to
its effective weight on an AWGN channel. We can construct a counterex
ample to such a conjecture as follows. Let d be an even integer greater
than 4, let 8 be a very small number such as 8 = 0.001, and let

1
N = d - 2+-,

8

where we assume that 1/8 is an integer. Consider a set of nonzero weights
fJ with one weight equal to 1 and N weights equal to 8. Then

Ifl = 2 + 8(d - 2) ~ 2j

IlfW = 1 + N82 ~ 1j

Ifl2
Weff(p) = IIfl12 ~ 4j

d- 2 d
e= 1+-- =-j

2 2
WBSC(p) = 2e = d > Weff(p),

where we note that on a BSC it takes one error in the position where fJ = 1
and (d - 2)/2 errors in positions where fJ = 8 to accumulate a weight of
Ifl/2 = 1 + 8(d - 2)/2.

5. Binary erasure channels. Now let us consider binary signaling
on a binary erasure channel (BEC) with erasure probability c. Again, a
pseudocodeword P will be represented by a vector f, where fJ is the fraction
of pseudocodeword symbols equal to 1 in the jth position.

Suppose that the all-zero word is sent and that lSI erasures occur in
a certain set S of coordinates. The remaining unerased symbols will all
agree with the all-zero word. They will evidently also all agree with a
pseudocodeword P represented by f if and only if fJ = 0 for all j ~ S.

Therefore we define the effective Hamming weight WBEC (p) of a pseu
docodeword on a BEC as I supp(f)l, the number of nonzero components of
f. Then:

(a) A decoding error to P may occur if and only if lSI ~ WBEC(p)j
(b) If P is actually a codeword c, then WBEC (p) = WH (c).
By Theorem 3.1, the effective weight WBEC(p) of a pseudocodeword

p on a BEC is greater than or equal to its effective weight on an AWGN
channel, with equality if and only if P is actually a codeword. Similarly, by
the discussion in Section 4, WBEC (p) ~ WBSC (p), with equality if and only
if P is actually a codeword.

For example, for Examples 1, 2 and 3, the effective weights on a BEC
are 8,10 and 10, respectively, compared to 8,9 and 8 on an AWGN channel
and 8, 8 and 6 on a BSC.

110 G. DAVID FORNEY, JR. ET AL.

6. Examples with low pseudocodeword weights. In this section,
we present a family of examples of binary tail-biting trellises for which the
minimum effective pseudocodeword weight on an AWGN channel is strictly
less than the minimum codeword weight.

For a first example, let C be the binary linear (16,6,4) code generated
by the following 6 generators:

100 110000 110000 1
010 001100 001100 1
001 000011 000011 1

000 110000 001100 0
000 001100 000011 0
000 000011 110000 0

With a TBT constructed from these generators, the sum of the shifted
generators shown below gives a low-weight three-cycle pseudocodeword:

000 000011 110000 0
110000 1 100 110000

000 110000 001100 0
001100 1 010 001100

001 000011
000 001100 000011 0

000011 1

001 000000 000000 1 100 000000 000000 1 010 000000 000000 1

The resulting pseudocodeword has Ii = ~ in 3 places, Ii = 1 in 1 place,
and 0 elsewhere. Thus If I = 2, IIfl12 = t, and the effective Hamming weight
on an AWGN channel is If1 2 /llfW = 3. Notice that since one position has
weight Ifl/2 = 1, the effective weight on a BSC is only 2.

A generalization of this construction yields for every integer a 2: 3 a
binary linear (n, k, d) code C with d = 2r a/2l and a TBT with an a-cycle
pseudocodeword with effective weight

4a
Weff = --1 < d. a+

The generator matrix has the form

[1 B B 1]
o B CO'

where 1 is an a x a identity matrix, B is the matrix obtained from 1 by
repeating every column b times where b = r a/2l, 1 is a column of a ones, 0
is an a x a zero matrix, C is the cyclic shift of B to the right b times, and
o is a column of a zeroes. It is straightforward to verify that the minimum
nonzero codeword weight is d = 2b.

By a similar concatenation to that above, we obtain an a-cycle pseu
docodeword with Ii = ~ in a places, Ii = 1 in 1 place, and 0 elsewhere.

ON THE EFFECTIVE WEIGHTS OF PSEUDOCODEWORDS 111

Thus If I = 2, IIfl12 = (a + 1)/a, and the effective Hamming weight on an
AWGN channel is If12/llf112 = 4a/(a + 1) < 4. Notice that in general one
position has weight Ifl/2 = 1, so the effective weight on a BSC is only 2.
On the other hand, the effective weight on a BEC is a + 1 :::: d.

For a = 3,4,5, ... , the minimum nonzero codeword weight is 4,4,6, ... ,
while the pseudocodeword weight on an AWGN channel is 3,3.2,3.33, ... ,
approaching a limit of 4.

We note that the TBT that produces this low-weight pseudocodeword
is not in general minimal in the sense of [5]; however, it is linear, biproper
and one-to-one.

7. Conclusions. We have determined the effective weight and dis
tance of pseudocodewords on the AWGN channel, the BSC, and the BEC.
In general pseudocodewords are least troublesome on a BEC.

For the Golay TBT, we have found pseudocodewords whose effective
weight on the BSC is less than the minimum distance of the code, which
indicates that ML decoding using this TBT will be distinctly suboptimal.
For the AWGN channel, we have found no such pseudocodewords; more
over, simulations have shown that ML decoding using the Golay TBT is
near-optimal [9]. However, as far as we know, there is no proof yet that
the minimum nonzero pseudocodeword weight is 8.

For more general graphs, the concept of pseudocodeword may need
some refinement. Just as in Viterbi decoding the influence of symbols far
in the past eventually dies out, at least probabilistically, we expect that the
influence of nodes far away from the root node in the computation tree will
eventually die out. The concepts of pseudocodeword weight used in this
paper do not have this property, which suggests that they need refinement.

Acknowledgments. We wish to acknowledge helpful discussions with
S.M. Aji, B.J. Frey, G.B. Horn, H.-A. Loeliger, R.J. McEliece, A. Vardy,
N. Wiberg and M. Xu.

REFERENCES

[1] S.M. An AND R.J. McELIECE, The generalized distributive law, IEEE Trans. In
form. Theory, 46 (2000), 325-343.

[2] A.R. CALDERBANK, G.D. FORNEY, JR., AND A. VARDY, Minimal tail-biting trel
lises: The Golay code and more, IEEE Trans. Inform. Theory, 45 (1999),
1435-1455.

[3] B.J. FREY, R. KOETTER, AND A. VARDY, Skewness and pseudocodewords in iter
ative decoding, in Proc. 1998 IEEE Inti. Symp. Inform. Theory, Cambridge,
MA, Aug. 1998, p. 148.

[4] R.G. GALLAGER, Low-Density Parity-Check Codes, MIT Press, Cambridge, MA,
1963.

[5] R. KOETTER AND A. VARDY, Construction of minimal tail-biting trellises, in Proc.
1998 Inform. Theory Workshop, Killarney, June 1998, 72-74.

[6] F.R. KSCHISCHANG AND B.J. FREY, Iterative decoding of compound codes by prob
ability propagation in graphical models, IEEE J. Selected Areas Commun., 16
(1998), 219-230.

112 G. DAVID FORNEY, JR. ET AL.

[7] F.R. KSCHISCHANG, B.J. FREY, AND H.-A. LOELIGER, Factor graphs and the sum
product algorithm. submitted to IEEE. Trans. Inform. Theory, July 1998.

[8] R.J. McELIECE, D.J.C. MACKAY, AND J.-F. CHENG, Turbo decoding as an in
stance of Pearl's 'belief propagation' algorithm, IEEE J. Selected Areas Com
mun., 16 (1998), 140-152.

[9) A. REZNIK, Iterative decoding of codes defined on graphs, Master's thesis, M. I. T.,
Cambridge, MA, May 1998.

[10) R.M. TANNER, A recursive approach to low complexity codes, IEEE Trans. Inform.
Theory, 27 (1981), 533-547.

(11) Y. WEISS, Correctness of local probability propagation in graphical models with
loops, Neural Comp., 12 (2000), 1-41.

[12) N. WIBERG, Codes and decoding on general graphs, PhD thesis, University of
Linkoping, Linkoping, Sweden, 1996.

[13) N. WIBERG, H.-A. LOELIGER, AND R. KOETTER, Codes and iterative decoding on
general graphs, Euro. Trans. Telecomm., 6 (1995), 513-525.

EVALUATION OF GALLAGER CODES FOR SHORT
BLOCK LENGTH AND HIGH RATE APPLICATIONS

DAVID J.C. MACKAY· AND MATTHEW C. DAVEY·

Abstract. Gallager codes with large block length and low rate (e.g., N ~ 10,000-
40,000, R ~ 0.25-0.5) have been shown to have record-breaking performance for low
signal-to-noise applications. In this paper we study Gallager codes at the other end
of the spectrum. We first explore the theoretical properties of binary Gallager codes
with very high rates and observe that Gallager codes of any rate offer runlength-limiting
properties at no additional cost.

We then report the empirical performance of high rate binary and non-binary Gal
lager codes on three channels: the binary input Gaussian channel, the binary symmetric
channel, and the 16-ary symmetric channel.

We find that Gallager codes with rate R = 8/9 and block length N = 1998 bits out
perform comparable BCH and Reed-Solomon codes (decoded by a hard input decoder)
by more than a decibel on the Gaussian channel.

Key words. Error-correcting codes, Sum-product algorithm, Magnetic recording.

1. Introduction.

1.1. Definition of Gallager codes. A regular Gallager code [4] has
a parity check matrix with uniform column weight j and uniform row weight
k, both of which are very small compared to the blocklength. If the code
has transmitted blocklength N and rate R then the parity check matrix
H has N columns and M rows, where M ~ N(l - R). [Normally parity
check matrices have M = N(l - R), but the matrices we construct may
have a few redundant rows so that their rate could be a little higher than
1- MIN.]

In this paper we explore whether Gallager codes are useful for high
rates (R > 2/3) and small block lengths (N < 5000).

1.2. High-rate codes. Reed-Solomon codes are the industry stan
dard error-correcting codes for high rate, low block length applications
such as magnetic disc drives and compact discs. They have good distance
properties and they have an efficient bounded-distance decoder.

When we proposed evaluating Gallager codes with high rate and small
block length for disc drive applications, a common response was 'why
bother? You'll never beat Reed-Solomon codes.' But there are several
reasons for checking the performance of Gallager codes.

1. Gallager codes with large block length N have good distance prop
erties, with high probability [5, 10]. Given an optimal decoder,
Gallager codes can get arbitrarily close to the Shannon limit of a
wide variety of channels [10] .

• Department of Physics, University of Cambridge, Cavendish Laboratory, Madingley
Road, Cambridge, CB3 OHE, United Kingdom. mackaylmcdavey@mrao. cam. ac. uk.

113

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

114 DAVID J.C. MACKAY AND MATTHEW C. DAVEY

2. There is a practical sum-product decoder for Gallager codes which
works well for codes with block lengths of order N = 10,000 and
rates of order R = 1/4-2/3 [11].
At rates of R = 1/2 and R = 1/4, regular binary Gallager codes de
coded using this algorithm have near-Shannon limit performance.
Irregular binary and non-binary Gallager codes with these rates
perform better on the binary Gaussian channel than all known
practical codes, including turbo codes [2, 14].
This decoder has three important features:
(a) It is better than a bounded-distance decoder - it works well

at noise levels significantly larger than the Gilbert noise level
(that is, the noise level at which typical error events have
weight greater than half the minimum distance of a code at
the Gilbert bound).

(b) It is a soft-input decoder, able to make use of likelihood infor
mation from the channel output. Such decoders can have con
siderable advantages over decoders that take hard inputs [5].

(c) The decoder can be generalized to infer bursts if the channel
is believed to be a bursty channel [15].

3. According to Berlekamp [1], one reason that high rate Reed
Solomon codes are used is that lower rate Reed-Solomon codes
are more costly to encode and decode - the complexity increases
with increasing redundancy.
In contrast, the encoding and decoding complexity for Gallager
codes hardly depend on rate. Furthermore, Gallager codes of any
desired rate and block length can easily be constructed.

If Reed-Solomon codes can be surpassed, the disc drive industry could
benefit in various ways. A higher rate code with the same probability
of error would allow a small increase in the storage capacity of a drive.
Alternatively, a code that can cope with larger raw error rates would make
the system more tolerant to tracking errors, and the disc could be spun
faster, offering a higher data rate.

1.3. Outline of paper. In section 2, we explore four theoretical is
sues. First, we ask how good is the ensemble of random, high-rate, regular
Gallager codes, if we do not constrain the overlap between the columns?
We find that the expected distance properties of these codes are not good.
Second, we ask what are the highest possible rates that regular Gallager
codes could have if we do constrain the overlap between columns - these
codes correspond to 'Steiner systems' - and could these codes have good
distance properties? We prove that such codes, with j = 3, have bad dis
tance, and we give a conjecture that, for larger j, the codes might be good.
Third, we prove that a particular construction of Gallager codes in terms
of permutation matrices leads to bad codes. Fourth, we show that Gallager
codes can be constructed to have fortuitous runlength-limiting properties.

GALLAGER CODES FOR BLOCK LENGTH AND RATE APPLICATIONS 115

In section 3, we describe the empirical performance of high-rate binary
regular Gallager codes with j = 4 and of a high-rate non-binary regular
Gallager code with j = 3. We compare these Gallager codes with codes
similar to those used in discdrives and show that their performance is good.

In section 4, we discuss difference-set cyclic codes, which are codes
similar to Gallager codes, but having the special property that they sat
isfy many more than M low-weight parity constraints. They outperform
equivalent Gallager codes by a significant margin [13, 7). If we could find
more codes like these, they could be very useful.

2. Theory of high rate Gallager codes.

2.1. Distance properties of random Gallager codes. The expec
tation of the weight enumerator function of a random Gallager code with
M x N parity check matrix can be computed for two ensembles.
Ensemble G: In Gallager's ensemble [5), a row weight k is selected, and

(1)

(2)

(3)

(4)

a blocklength N. We find the weight enumerator function A(w; 1)
of the following submatrix with column weight 1 (illustrated for
the case k = 4):

[

1111000000000000 1
H(l) = 0000 111100000000

0000000011110000 .
0000000000001111 ...

As shown by Gallager [5), A(w; 1) is given by convolving (*) to
gether N / k copies of the function

a(w) = { (~) w even
wodd

We define an ensemble of random Gallager codes with column
weight j by stacking j copies of H(1) vertically above each other,
each individual copy having its columns randomly permuted. We
can then find the expected weight enumerator function A(W; j) of
the resulting (N, M, j, k) code with M = iN using:

(A(w;j)) = AG(w;j) " A(w; 1) [A\~) 1) r-'
Ensemble M: An alternative ensemble of matrices that have column

weight at most j, and arbitrary M and N, but do not have fixed
row weight k, was used by [10). Each column of the matrix H is
created by flipping j not-necessarily-distinct entries. With high

116

(5)

(6)

DAVID J.C. MACKAY AND MATTHEW C. DAVEY

probability, any particular column has weight j, but it may, with
smaller probability, have weight j - 2, etc. The expected weight
enumerator function is

where

p~~) = rM t, (~) (1 - ~ r
These ensembles are not the best ensembles for making good Gallager
codes, but they are convenient for estimating weight enumerator functions
and getting a feel for the dependence on block length and rate. Figure 1
shows the expected weight enumerator functions for a sequence of codes
with block length 540 bits and rate increasing from 1/3 to 8/9.

It seems that for small block lengths and large rates such as R = 8/9,
codes constructed by this random construction will almost certainly be bad
codes, in that their distance will be nowhere near the Gilbert distance.

We therefore use constrained random constructions. The constraint
used by Gallager [5] and MacKay and Neal [11], which we also use here,
constrains the maximum overlap between any two columns in the matrix
to be one. We will call this the overlap constraint.

2.2. Steiner systems and Gallager codes.

2.2.1. Existence of high rate codes. If we insist on the constraint
that the overlap between any two columns in the parity check matrix should
be at most one, then it is not possible to build Gallager codes with arbi
trary values of (N,M,j); in particular, we cannot make the blocklength N
arbitrarily large for fixed number of rows M. The blocklength N of such a
code with column weight j and M rows is bounded above by the size of a
Steiner system S(M, j, 2).

A Steiner system S(M, j, t) is a set M of M points, and a collection
N of subsets of M of size j, called blocks, such that any subset of t points
of M are in exactly one of the blocks. The size of the Steiner system, N, is
defined to be the number of blocks N = INI. The special case j = 3, t = 2
is called a Steiner triple system.

The number of subsets of size t in M is (~) and the number of subsets
of size t in a block is ({), so the size of an (M, j, t) Steiner system is

(7) Ns(M,j, t) = (~) / G)
In the case of interest, t = 2, we obtain:

(8)
. M(M -1)

Ns(M,J) = j(j -1) .

GALLAGER CODES FOR BLOCK LENGTH AND RATE APPLICATIONS 117

Rate

1/3

2/3

8/9

1 e+30 r--TT""7.--.----,---,.---,---,
.il

/1/ 1e+20

1e+10

:/i

//i
// i
:Ii ,7//---------------------------- ------

1e-10 \"''/ j/ i
1e-20

,
i
i
i 1 e-30 L-..I--'-_.L-_-'-_-'-_.l...I.....J

o 100 200 300 400 500

1e-20

1 e-30 '---'-_'---"-_L-....L._L-....L..J
o 20 40 60 60 100 120 140

1e+10

1e-10

A(w,3) -
A(wA)•
A(w,5) ...
A(w,R) _._ .•

1 e-20 L--'--'--'-...LL--'---'_'--.1.-.L-..J
o 5 10 15 20 25 30 35 40 45 50

FIG. 1. Expected weight enumerator functions computed using ensemble M. [The
results for ensemble G are similar.] Block length is 540 bits in all cases. Top figure
shows the expected weight enumerator function for codes with rate 1/3 having j = 3,
4 and 5. The lowest line shows the expected weight enumerator function of a random
linear code with the same Nand M. This line crosses the horizontal line A(w) = 1 at the
Gilbert distance. The neighbouring figure shows detail from the first figure. Subsequent
figures show the corresponding graphs for rates 2/3 and 8/9. It is evident that the
typical distance of a Gallager code is becoming an increasingly small fraction of the
Gilbert distance as the rate increases.

The row weight of H, k, is

(9) k = jNs(M,j)
M

(M -1) = ..:.."...----:-'-
(j -1)

Any (M, j, 2) Steiner system defines an (N, M, j) Gallager code with N =
Ns(M,j). If N exceeds Ns(M,j), it is impossible to make a regular Gal
lager code with parameters N, M, j that satisfies the overlap constraint. So
for any chosen M and j the overlap constraint implies a maximum possi-

118 DAVID J.C. MACKAY AND MATTHEW C. DAVEY

ble rate, and for any rate R and column weight j, it implies a minimum
possible blocklength.

These constraints are illustrated in Figure 2, which shows Ns(M,j)
as a function of M for various values of j. This figure also shows some
actual values of (N, M, j) that have been constructed by the random con
structions mentioned above. Fortunately, codes with column weight t = 4,
blocklength N :: 2000 and rate R :: 0.9 are just buildable. Considerable
computer time was spent searching for the highest rate codes that appear
in later sections.

M

100

10
10 100 N

, ,

1000

FIG. 2. Parameters (N, M,j) that can be built without violating the constraint on
column overlaps. Horizontal axis: N; vertical axis: M; the labels '3' and '4' show
examples of parameters that have been built by random construction methods, including
codes presented in this paper. The 45-degree lines are lines of constant rate R = (N -
M) / N. The near-horizontal lines show the curves (N, M) defined by Steiner systems
for various j (Equation (8)). Points (N, M,j) below the Steiner curve S(j) are not
buildable. For low rates such as 1/2 or 1/3, very small blocklengths are buildable but as
the rate is increased, the smallest possible blocklength becomes quite large.

2.2.2. Weakness of Steiner system codes with j = 3. Having
established that certain high rate, small blocklength codes can be con
structed, we now ask whether we expect these codes to be good codes.
Randomly chosen Gallager codes with large enough blocklength N have
good distance properties [5, 10], but for small N, some of these properties
deteriorate. In the case j = 3, there is bad news.

THEOREM 1. Any Gallager code defined by a Steiner system with
j = 3 has minimum distance less than or equal to 10.

Proof. We define a (w, v) near-codeword of a code with parity check
matrix H to be a vector x with weight w whose syndrome z(x) == Hx has
weight v.

GALLAGER CODES FOR BLOCK LENGTH AND RATE APPLICATIONS 119

We prove that the Gallager code derived from a Steiner triple system
has words of weight 10 by counting how many (5,1) near-codewords it has.
If a code with M x N parity check matrix H has more than M distinct
(w, 1) near-codewords, then its minimum distance is at most 2w, because,
by the pigeonhole principle, there must be at least two of them whose
syndromes are identical; the sum of these two near-codewords must be a
codeword of weight at most 2w.

We can generate a (5, 1) near-codeword using the Steiner system prop
erty as follows. First, pick a row of H; we call this row a. (M choices.)
Second, pick two columns nl, n2 satisfying Han = 1. ((~) choices.) These
two columns define a (2,4) near-codeword. Call the rows in which the
syndrome of this word is non-zero rows b1 , b2 , b3 and b4 • Third, add two
more columns n3, n4 to make either a (4,2) near-codeword or a weight 4
codeword. There are two choices for n3, n4, one of which is illustrated
diagrammatically in Figure 3. Either, as shown in the figure, n3 is the
column in which points b1 and b3 appear and column n4 contains b2 and
b4 ; or n3 contains b1 and b4 and n4 contains b2 and b3 . Call the new rows
introduced by columns n3 and n4 rows Cl and C2. These rows might be
the same as each other, in which case we have found a weight 4 codeword
(nl, n2, n3, n4). Otherwise, rows Cl and C2 take us to a unique fifth column
n5 which contains points Cl and C2' Adding this column, we have a (5,1)
near-codeword. The final row d is distinct from rows b*-c* but might be
identical to row a.

nl n2 n3 n4 n5

a 1 1
bl 1 1
b2 1 1
b3 1 1
b4 1 1
CI 1 1
C2 1 1
d 1

FIG. 3. Construction of a (5,1) near- codeword (or a weight 4 codeword) in a
Steiner system code.

We can create such (5,1) near-codewords in M x (~) x 2 ways. We will
assume that none of these constructions generated a weight 4 codeword
- if one did, then we already have the desired result that the minimum
distance d ~ 10. Now, are all these

(10) 2M G) = Mk(k - 1) = M(M - l)(M - 3)/4

(5,1) near-codewords distinct, or have we created duplicates? If rows a
and d are different, then they are all distinct, because we can hang each

120 DAVID J.C. MACKAY AND MATTHEW C. DAVEY

subgraph defined by a (5,1) near-codeword from row dj the nearest neigh
bours of row d are rows Cl and C2 j the next nearest neighbours are the rows
b* j and the furthest row in the subgraph from d is row a. Thus we can
recover the 2M (;) choices that produced the word. If a and d are equal in
one (5,1) near-codeword, however, then the above procedure will generate
the same near-codeword in three ways (starting from (nl, n2), (nl, n5), and
(n2,n5)). So the number of (5,1) near-codewords is at least

(11) C = M(M - I)(M - 3)/(4 x 3).

If M exceeds 7, then C exceeds M, so, by the pigeonhole principle, the
code has minimum distance at most 10. 0

This negative result for binary Gallager codes with j = 3 gives a reason
for concentrating on larger values of j when dealing with high rate binary
codes.

2.2.3. Properties of high rate codes with small blocklength
and j ~ 4. Do the codes derived from Steiner systems with j ~ 4 have
better distance properties? We do not have a theorem, but using similar
pigeonhole arguments to those used above, we conjecture that the best
codes corresponding to Steiner systems have minimum distance satisfying
the following scaling laws:

(12) j = 4 :d ~ log M

(13) {
j = 5:

. i=..!
J ~ 5:d ~ Mi- 2 e.g., j = 6:

j = 8:

d> M 1/3

d;: M 1 / 2

d ~ M2/3

2.3. Weakness of any Gallager codes built from commuting
permutations. Some Steiner systems and other constructions of Gallager
codes have the property that the parity check matrix contains a grid of
non-overlapping permutation matrices. For example, the matrix

(14)
R12 R13

R22 R23

R32 R33

where {Ri} are permutation matrices, defines a rate 1/4 Gallager code with
j = 3 and k = 4. If the permutations commute, that is, RijRkl = RklRij

- which need not be the case for random constructions, but is the case for
some algebraic constructions (John Fan, personal communication) - then
the distance properties of the code are limited by the following theorem.

THEOREM 2. If a parity check matrix of height M contains a subma
trix of height M and width (j + I)M fj containing j (j + 1) non-overlapping
permutation matrices that all commute with each other, then the corre
sponding code has minimum distance less than or equal to (j + I)!. This
result applies to Gallager codes of any rate, not just high rate codes. For

GALLAGER CODES FOR BLOCK LENGTH AND RATE APPLICATIONS 121

example, a code with j = 3 built from commuting permutations has dis
tance at most 24, and a similar code with j = 4 has distance at most 120.

Proof. We call the vertical and horizontal divisions of the matrix of
size Mfj 'blocks'. We will construct a codeword of a matrix H whose
size is j row-blocks x (j + 1) column-blocks, for example, if j = 3, the
matrix in Equation (14). This matrix is in general a sub-matrix of the
parity check matrix from which we started. In each of the column-blocks
1,2, ... , (j + 1) we will set j! bits to 1 as follows. Define the operator dh
associated with column-block h (h = 1 ... (j + 1)) to be the 'determinant'
(modulo 2) obtained from the j x j matrix given by deleting column-block
h from the matrix H. For example, for the case j = 3,

(15)
d2 = Rl1R23R34 + Rl1R24 R 33 + R13 R 21 R 34

+ R13 R 24R 31 + R14R21 R 33 + R14R23 R 31 .

Each of these operators has weight j!, that is, if we hit a weight-one vector
of length Mfj with dh , we get a vector of weight at most j!. We can now
make a codeword w starting from any weight-one vector of length M / j, x,
thus:

(16)

Here, the commas correspond to the block boundaries. That this is a
codeword can be seen by computing the syndrome in each row. In the top
row-block, for example, the syndrome is:

which is equal to the product of x and the determinant of the square matrix:

Rl1 R12 R 1(j+l)

Rl1 R12 R 1(j+1)

(18) R21 R22 R 2(j+l)

Rjl Rj2 Rj(j+l)

which is zero, since the top two rows are equal. Similarly, the syndrome
in any row-block h is the product of a determinant that is equal to zero
with x. Thus w is a codeword, and the distance is at most the weight of
w, which is at most (j + I)!. 0

2.4. Gallager codes are fortuitous runlength-limiting codes.
A potential benefit of Gallager codes is that they can be constructed to
have a runlength-limiting property.

Optimal runlength-limiting codes for noiseless channels are nonlinear.
But if we are using an error correcting code for a noisy channel, it would be

122 DAVID J.C. MACKAY AND MATTHEW C. DAVEY

nice if we could get the runlength-limiting property for free, as part of the
error-correcting code. The standard procedure in discdrives is to use a small
inner runlength-limiting code, for example, a nonlinear (N, K) = (16,15)
code, and an outer code such as a Reed-Solomon code. This method has
the disadvantage that the outer code cannot be given detailed likelihood
information from the noisy channel; the errors introduced by the decoder
of the inner code are complex.

2.4.1. Getting runlength constraints for free. IT a Gallager code
has row weight k and there are N / k rows in the parity check matrix like
this (if k = 5):

(19) r
11111000000000000000
00000111110000000000
00000000001111100000
00000000000000011111 ...

or this (if k = 4):

(20) r
1111000000000000
0000111100000000
0000000011110000
0000000000001111 ...

then these constraints enforce local properties that we can use .

(21)

• If k is odd (as in (19)), then these constraints force each block
of k successive transmitted bits to have even parity. Since k is
odd, this means that there must be at least one 0 in every block
of k bits. Thus a Gallager code with odd k is automatically a
runlength-limiting code with maximum runlength of ls equal to
2(k-l). There is no constraint on the maximum runlength of Os.

• If k is even, then the original Gallager code is not necessarily a
runlength-limiting code, but we can modify the code by adding
a constant vector to all codewords in the code. For example, if
k = 4, we could add the vector

[100010001000 ... 1000]

to all codewords, modifying the decoder appropriately. Now, the
number of ls in any block of k bits is odd, and so is the number
of Os. So there must be at least one 1 and one 0 in each of these
blocks. So the maximum runlength for ls is 2(k - 1), and the
maximum runlength for Os is 2(k - 1).

One could also construct a Gallager code, without impairing its error
correcting capabilities (at least if the channel is a memoryless channel),
so that its top rows look like this:

(22)

GALLAGER CODES FOR BLOCK LENGTH AND RATE APPLICATIONS 123

r
11111000000000000
00001111100000000
00000000111110000 '
00000000000011111 ...

in which case the maximum runlength would be 2k - 3.
For practical purposes, Gallager codes have to have a column weight

roughly equal to j = 3 or 4. A code with rate R = (N - M)jN and column
weight j has a row weight k ~ j N j M = j j (1 - R). So examples of the
fortuitous runlength limits that can be obtained with Gallager codes are
as follows:

R j=3 j=4
2(k - 1) 2k - 3 2(k - 1) 2k - 3

0.25 6 5 9 8
0.50 10 9 14 13
0.75 22 21 30 29
0.90 58 57 78 77

If the rate is about 0.9 then these runlengths are not of much use - the
maximum runlength used in current discdrives is about 15 - but perhaps
as technology advances, this idea will become useful, especially if lower
rate codes are used. The benefits could be substantial: not only would
there be an increase of about 6% in the storage capacity if the inner code
were removed, but the outer code could be provided with better likelihood
information, which, as we will see below, can give a great improvement in
performance for codes with appropriate decoders.

Almost-certainly runlength-limiting codes. Further methods for
making high-rate runlength-limited transmissions without using a nonlin
ear inner code are described in [8]. The three key ideas are (a) make the
outer code a coset code with the offset varying pseudorandomly from block
to block; (b) space the parity bits of the outer code uniformly through the
block and put aside a small number of source bits that can be set arbitrarily
so that the parity bits take on the values required to satisfy the runlength
constraints; and (c) flip any remaining bits that need to be changed, and
rely on the outer code to correct them. By combining these methods, we
can remove the need for any complicated inner code.

3. Empirical results.

3.1. Construction of Gallager codes. There are various methods
for randomly constructing a parity check matrix with given j and k. When
we make codes with large blocklengths these alternative methods generally
give codes with equivalent performance. When the blocklengths are small,
however, good codes become more difficult to find. We have implemented

124 DAVID J.C. MACKAY AND MATTHEW C. DAVEY

two construction methods. Both these methods attempt to constrain the
maximum overlap between two columns in the matrix to be one. We find
this constraint to be more important in codes with small blocklengths than
it was with large blocklengths.
Permutation matrix method. This method is similar to Gallager's (see

the appendix of his book), except that the largest possible sizes of
random permutation matrix are used. This distinction is shown
pictorially for rate 3/4 codes by the following figures, in which
integers show the number of superposed permutation matrices in
each square.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Small permutation matrices Large permutation matrices

Left to right method. This is construction 1A from MacKay and Neal.
We have concentrated on regular constructions with columns weights

j = 3 and j = 4. For high rate codes with small blocklengths, a col
umn weight j = 3 gives weak codes, having small numbers of low-weight
codewords. We therefore report results for column weight j = 4 only.

3.2. Binary Gallager codes, Gaussian channel.

3.2.1. Method. A sequence of noise levels was selected. At each
noise level, a large number of block de co dings was simulated. The decoding
algorithm was run for up to 1000 iterations, halting earlier if the best guess
of the decoder corresponded to a valid codeword. The outcome of each
decoding was either a success (i. e., the algorithm returns the transmitted
codeword without any errors) or a failure. There are two possible types of
failures.
Detected errors. The decoding algorithm failed to find a valid codeword.

We could call these failures block erasures.
Undetected errors. The decoding algorithm halts in a valid codeword

that differs from the transmitted codeword. This failure mode is
expected to be very rare in codes that have good distance proper
ties.

3.2.2. Errors observed. The codes with column weight j = 4 have
never made undetected errors in these experiments. In the graphs, the
'undetected' error bars show empirical upper bounds on the probability of
undetected error. We might conjecture that these codes have minimum
distance similar to the Gilbert-Varshamov distance, and that undetected
errors only occur when the maximum likelihood decoder would also make
undetected errors. Using this conjecture, the probability of undetected
error can be bounded above by the probability of error of the maximum
likelihood decoder, which could probably be computed.

GALLAGER CODES FOR BLOCK LENGTH AND RATE APPLICATIONS 125

3.2.3. Decoding times. Figure 4 shows the cumulative distribution
of decoding times for the code s2. 94.594 at three noise levels. The decod
ing usually halts in fewer than ten iterations. Under good conditions three
iterations usually suffice.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(a)

.--~ .. -.---------- -
-'

rr'
r

···-·',·r:,i __ l::J· EblNo = 4.55 --EblNo = 4.35 -.-..... .
EblNo = 3.95 -------

.. ~ __ J

//
r'r

.'

0.98 EblNo = 4.55 -
EblNo = 4.35 ..
EblNo = 3.95 -------

O'----'--'~~~-'--~~~~
1 10 100 100 1000

(b) (c)

FIG. 4. Regular Gallager code with rate R = 8/9 and N = 1998.
(aJ Dependence of block error rate on signal to noise ratio. Weight per column

t = 4 and transmitted blocklength N = 1998. Vertical axis: block error rate. Horizontal
axis: Eb/NO (decibels). Also shown are performance curves for Reed-Solomon, Reed
Muller and BCH codes with similar rate. These curves assume that the channel outputs
are thresholded to give binary signals to the decoder. (That is, no soft decoders for the
algebraic codes.)

(bJ Decoding times, cumulative distribution.
(c) Detail from (b). The parity check matrix of this code, 82.94.594, can be found

in the online archive (9j.

The number of arithmetical operations per iteration is about four times
the number of Is in the parity check matrix. That makes 16 operations per
iteration per transmitted bit, or 32000 operations per iteration if N = 2000.

3.3. Non-binary Gallager codes, q-ary symmetric channel.
Gallager codes over GF(q) were first reported in [3]; improved perfor
mance was gained at the expense of a decoding complexity that scaled

126 DAVID J.C. MACKAY AND MATTHEW C. DAVEY

as q2. This .complexity can be reduced using a Fourier transform of the
probabilities [12].

In the following, we use the notation of [3]. Let N(m) := {n : Hmn f
O} be the set of noise symbols that participate in check m. The decoder
needs to update quantities r~n' the probability of check m being satisfied
if symbol n of the message x is considered fixed at a E GF(q) and the
other noise symbols have a separable distribution given by the probabilities
{s~m' : n' E N(m)\n}. The new value of r~n is:

(23) r~n = I: 8 (I: Hmn,x n, = zm) IT s:':j'
X:Zn=a n'EN(m) jEN(m)\n

This function of a is a convolution of the quantities S~j' and so the sum
mation can be replaced by a product of the Fourier transforms (taken over
the additive group of GF(q)) of S~j for j E N(m)\n, followed by an inverse
Fourier transform. The Fourier transform F of a function lover GF(2)
is given by FO = 1° + p, FI = 1° - p. Transforms over G F(2k) can be
viewed as a sequence of binary transforms in each of k dimensions. Hence
for GF(4) we have

(24)

(25)

(26)

(27)

FO = [1° + l] + [/2 + 13]

FI = [1° - l] + [P - 13]

F2 = [10 + II] - [/2 + 13]

F3 = [1° - II] - [/ 2 - 13] •

The inverse transform is the same, except that we also divide by 2k.
With a slight abuse of notation, let (S~j"'" S~jl) represent the

Fourier transform of the vector (s~j" .. , S';,.jl), after permuting the com
ponents to take account of the matrix entry H mj . Now r~n is the ath
coordinate of the inverse transform of

(28) ((IT S~j)' ... , (IT S';,.jl))
jEN(m)\n jEN(m)\n

The update of the quantities S is unchanged.
Each fast Fourier transform takes q log2 q additions and q multiplica

tions. Assuming a column weight j = 3 and taking q = 16, the total cost
per iteration is 96 additions and 72 multiplications per bit. All these op
erations can be implemented in low precision arithmetic with a small loss
in performance [12].

Figure 6 shows the performance of a column weight 3 rate 8/9 Gal
lager code over GF(16) applied to 16-ary symmetric channel. The code is
compared with two Reed-Solomon codes.

GALLAGER CODES FOR BLOCK LENGTH AND RATE APPLICATIONS 127

0.1

0.01

0.001

0.0001

1a-OS

1a-OS

"." """:'" '-"~'-.>. GaJlager{O.936) __
"-::" ". Sbannonlo.936) -........ .

"'>::'" "">~~lg:~~l ~:~:~:::
"':". ·-BCI<!{O.941) --------

'-"':"" B~HlQ;932) --------.

\<':;':\> ,
\

......... ::,::\\\ \ \

1e-07 \, """
3 4 S 6 7

FIG. 5. Regular Gallager code with blocklength 4376 and rate 0.936. Dependence
of block error rate on signal to noise ratio. Weight per column t = 4. Also shown are
performance curves for two nearby RS codes and two BCH codes with similar rate and
blocklength 1023. These curves assume that the RS symbols are transmitted over the
binary Gaussian channel and that the outputs are thresholded to give binary signals to
the decoder. {That is, no soft decoders for the algebraic codes.} The parity check matrix
of this code, 4376.282.4.9598, can be found in the online archive [9j.

0.1

0.01

0.001

0.0001

1e-05

"/'.~:~:--::--::-:;"--

/~.:. ,
/ " 1:/ .. '

/(/
/ "

i(:' Gallager, GF(16)
/:' RS(252.224)
// RS (2 interleaved)

0.007 0.01 0.02 0.03 0.04

FIG. 6. Gallager code over GF{16} applied to 16-ary symmetric channel. Weight
per column t = 3. Vertical axis: block error rate. Horizontal axis: symbol error prob
ability. The code is compared with two Reed-Solomon codes similar to those used in
discdrives.

4. Difference-set cyclic codes. The performance of Gallager codes
can be enhanced by making a non-random code with redundant sparse
constraints [13, 7]. There is a difference-set cyclic code, for example, that
has N = 273, and K = 191, but the code satisfies not M = 82 but N,
i.e., 273, low-weight constraints (Figure 7). It is impossible to make ran
dom Gallager codes that have anywhere near this much redundancy among
their checks. The redundant checks allow the sum-product algorithm to
work substantially better, as shown in Figure 7, in which a DSC code

128 DAVID J.C. MACKAY AND MATTHEW C. DAVEY

outperforms a comparable regular binary Gallager code by about 0.7 dB.
The (73,45) DSC code has been implemented on a chip by Karplus and
Krit [6] following a design of Tanner [13]. Product codes are another fam
ily of codes with redundant constraints. For example, the product with
itself of a (n, k) = (64,57) Hamming code satisfying m = 7 constraints
is a (N, K) = (n2 , k2) = (4096,3249) code. The number of independent
constraints is M = 847, but the sum-product decoder can make use of
2nm = 896 equivalent constraints. Such codes have recently been named
'turbo product codes', but we think they should be called 'Tanner prod
uct codes', since they were first investigated by Tanner [13]. Product codes
have the disadvantage, however, that their distance does not scale well with
blocklength; the distance of a product code with blocklength n 2 , built from
two codes with distance d, is only d2 , so the ratio of distance to blocklength
falls.

An open problem is to discover codes sharing the remarkable properties
of the difference-set cyclic codes but with larger blocklengths and arbitrary
rates. I call this task the Tanner challenge, in honour of Michael Tanner,
who recognised the importance of such codes twenty years ago.

4.1. Notes on DSC codes.

Do the extra checks help? To confirm that the extra 191 redundant
parity checks are responsible for the good performance of the DSC code,
we tried decoding the code using only 82 of the parity checks. In ('~"'~

82h, we took the first 82 rows of the cyclic parity check matrix; in case '.-2r
we picked 82 random non-redundant rows from the matrix. This choice
appears to make little difference. Either way, the performance is much
worse than that of the code using the full M = 273 checks (Figure 7(b)).
The random Gallager code with j = 4 performs slightly better than either
of the crippled DSC codes.

Undetected errors. The (273,191) DSC code makes undetected er
rors. The frequency of these errors is shown in Figure 7(c).

Rescaling the log-probability messages. An ad hoc procedure
found helpful by Tanner (personal communication) involves scaling down
the log-probabilities by a 'fudge factor' f at the end of each iteration. We

(1)

seize the message amn == log ~ on its way from bit n to check m, and
qmn

replace it by amn / f. Experimenting with a range of values of f, we find
that values slightly greater than 1 reduce the error probability a little at
large Eb/No. Figure 7(d) shows graphs for f = 1, f = 1.25, f = 1.37,
f = 1.50, and f = 2. This fudge appears to reduce the frequency of de
tected errors and has little effect on the frequency of undetected errors, so
that the error probability is dominated by undetected errors. We speculate
that the fudged algorithm is indistinguishable from the optimal decoder for
this DSC code, and the performance is only limited by the code's distance
properties.

GALLAGER CODES FOR BLOCK LENGTH AND RATE APPLICATIONS 129

N 7 21 73 273 1057 4161
MTrue 4 10 28 82 244 730

K 3 11 45 191 813 3431
d 4 6 10 18 34 66
k 3 5 9 17 33 65

(a)

0.1 -~"I;.~c.
DSC, M=82h · .. ·x· "x",
DSC, M=82r "..... \.

Gallager(273,82) .. ".... "' ..
DSC, M=273 -- ...

0.01

0.001

0.0001

le'05 L..----''----'-_--'-_---'-_-'-_-u
1.5 2 2.5 3 3.5 4 4.5

(b)

0.1

0.01 "1<> __
total __ "!Ii~~:::-__ _

detected ---e--- !.>
undetected .. ·lIE"· "ji

0.001

0.0001

le·05

0.1 '?:;~;.:.'='t.:.;,~~;~ .. '"
0.01 1=2.00 -I- ""

1=1.50 ---)(--- '~,
1=1.37 .. ·lIE .. • ",
1=1.25 e· .. ·.. """
1=1.00 _.-.. --. '.

'~ ...
'II

0.001

0.0001

le·05

le-06 '----'----'---'----'----' le-06 '----'-----'---'----'----'
1.5 2 2.5 3 3.5 4 1.5 2 2.5 3 3.5 4

(c) (d)

FIG. 7. Difference-set cyclic codes - low-density parity-check codes satisfying
many redundant constraints - outperform equivalent Gallager codes.

(a) The table shows the N, MTrue (the number of independent rows in the parity
check matrix, as opposed to the total number of rows M), K, distance d, and row weight
k of some difference-set cyclic codes, highlighting the codes that have large d/ N, small
k, and large N/M. All DSC codes satisfy N constraints of weight k.

(b) In the comparison the Gallager code had (j, k) = (4,13), and rate identical to
the DSC codes. Vertical axis: block error probability; horizontal axis: Eb/NO/dB.

(c) Decomposition of the DSC code's errors into detected and undetected errors.
(d) The error rate of the DSC code can be slightly reduced by using a 'fudge factor'

of 1.25 or 1.37 during the sum-product decoding.

5. Discussion. Comparisons of Gallager codes with Reed-Solomon
codes have been made before by Worthen and Stark [15). They made a
belief propagation decoder appropriate for bursty channels and achieved 3
dB performance gain over the Reed-Solomon code for rate 1/2 and block
size of about 10000. Worthen and Stark attributed 2 dB of the gain to the
use of soft decisions rather than hard decisions and 1 dB to code improve
ment. Using that reasoning, the gain of the shorter-blocklength Gallager
codes over Reed-Solomon codes in our paper can be attributed entirely to
using soft decisions. Our work makes a case for finding good short length
codes that use soft decisions. Gallager codes over GF(16) appear to be
good candidates for this role.

130 DAVID J.C. MACKAY AND MATTHEW C. DAVEY

The task of constructing Gallager codes with very short block lengths
remains an interesting area for further research.

Acknowledgements. This work was supported by the Gatsby Foun
dation. DJCM thanks the researchers at the Sloane Center, Department
of Physiology, University of California at San Francisco, for their gener
ous hospitality, and Elywn Berlekamp, Michael Luby, Virginia de Sa, Bob
McEliece, Emina Soljanin, Clifton Williamson, John Morris and Bernardo
Rub for helpful discussions.

REFERENCES

[1] BERLEKAMP, E.R. (1968). Algebraic Coding Theory. New York: McGraw-Hill.
[2] DAVEY, M.C. AND MACKAY, D.J.C. (1998a). Low density parity check codes

over GF{q). In Proceedings of the 1998 IEEE Information Theory Workshop,
pp. 70-71. IEEE.

[3] DAVEY, M.C. AND MACKAY, D.J.C. (1998b). Low density parity check codes over
GF{q). IEEE Communications Letters 2(6):165-167.

[4] GALLAGER, R.G. (1962). Low density parity check codes. IRE Trans. Info. Theory
IT-8:21-28.

[5] GALLAGER, R.G. (1963). Low Density Parity Check Codes. Number 21 in Research
monograph series. Cambridge, Mass.: MIT Press.

[6] KARPLUS, K. AND KRIT, H. (1991). A semi-systolic decoder for the PDSC-73
error-correcting code. Discrete Applied Mathematics 33:109-128.

[7] LUCAS, R., FOSSORIER, M., Kou, Y., AND LIN, S., (1999). Iterative decoding of
one-step majority logic decodable codes based on belief propagation. Submit
ted.

[8] MACKAY, D.J.C. (1999a). Almost-certainly runiength-limiting codes.
vOl.ra.phy.cam.ac.uk/mackay.

[9] MACKAY, D.J.C. (1999b). Encyclopedia of sparse graph codes (hypertext archive).
http://vol.ra.phy.cam.ac.uk/mackay/codes/data.html.

[10] MACKAY, D.J.C. (1999c). Good error correcting codes based on very sparse
matrices. IEEE Transactions on Information Theory 45(2):399-431.

[11] MACKAY, D.J.C. AND NEAL, R.M. (1996). Near Shannon limit performance oflow
density parity check codes. Electronics Letters 32(18):1645-1646. Reprinted
Electronics Letters 33(6):457-458, March 1997.

[12] RICHARDSON, T. AND URBANKE, R. (1998). The capacity of low-density parity
check codes under message-passing decoding. Submitted to IEEE Trans. on
Information Theory.

[13] TANNER, R.M. (1981). A recursive approach to low complexity codes. IEEE
Transactions on Information Theory 27(5):533-547.

[14] URBANKE, R., RICHARDSON, T., AND SHOKROLLAHI, A. (1999). Design of provably
good low density parity check codes. Submitted.

[15] WORTHEN, A. AND STARK, W. (1998). Low-density parity check codes for fading
channels with memory. In Proceedings of the 36th Allerton Conference on
Communication, Control, and Computing, Sept. 1998, pp. 117-125.

TWO SMALL GALLAGER CODES

DAVID J.C. MACKAY· AND MATTHEW C. DAVEY·

Abstract. We present a pair of Gallager codes with rate R = 1/3 and transmitted
blocklength N = 1920 as candidates for the proposed international standard for cellular
telephones.

A regular Gallager code [2] has a parity check matrix with uniform
column weight j and uniform row weight k, both of which are very small
compared to the blocklength. If the code has transmitted blocklength N
and rate R then the parity check matrix H has N columns and M rows,
whereM ~ N(I-R). [Normally parity check matrices have M = N(I-R),
but the matrices we construct may have a few redundant rows so that their
rate could be a little higher than 1- MIN.]

It is easy to make good Gallager codes. We have found that for just
about any blocklength N and rate R, a randomly chosen Gallager code
with j ~ 3 gives performance (in terms of word error probability on a
Gaussian channel with signal to noise ratio EblNo) that is within a fraction
of a decibel of the best known codes [6]. Furthermore, with a little effort,
irregular Gallager codes can be found which equal, or even exceed, the
performance of what were the best known codes [1, 8].

We show in Figure 1 the performance of two rate 1/3 codes with trans
mitted blocklength N = 1920 and source blocklength K = 640 that we
constructed and tested within the space of one week. The first code is
a nearly-regular code over GF(2) with column weights 3 and 2 and row
weight 4 (Construction 2A from [6]). The second is an irregular code over
GF(4) with a profile of column weights and row weights that was found by
a brief Monte Carlo search. The irregular code was constructed according
to the profile given in Figure 3, using the Poisson construction method
described in [7]. The irregular code - which we expect could be further
improved - is less than 0.2dB from the line showing the performance of
the CCSDS turbo codes on the JPL code imperfectness web-page [3].

Gallager codes have advantages that these comparisons do not make
evident. First, whereas turbo codes sometimes make undetected errors,
Gallager codes are found to make only detected errors - all incorrectly
decoded blocks are flagged by the decoder. Second, their decoding com
plexity is low - lower than that of turbo codes. The costs per bit per
iteration are about 4 additions and 18 multiplies for the binary code, and
14 additions and 31 multiplies for the GF(4) code. The expected number
of iterations depends on the noise level, as we now describe.

·Department of Physics, University of Cambridge, Cavendish Laboratory, Madingley
Road, Cambridge, CB3 OHE, United Kingdom; mackaYlmcdavey@mrao.cam.ac.uk.

131

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

132 DAVID J.C. MACKAY AND MATTHEW C. DAVEY

0.01

0.001

0.0001

le-05

Bit error probability

iE.
··s

'.
··.s

"'E

Regular GF2 -+
Irregular GF4 .+ ..

Word error probability

Regular GF2 -+-
0.1 ". Irregular GF4 .+ ..

RA -+-.-
iE.

-'5. "
••••• ''$..

0.01

0.001 ····5 ..

""'. 0.0001

••••.•. r.- _-:;E.

le-06 '1
le-05

le-07+----r--,---,.---r-,...-~-_r.l
0.8 1.2 1.4 1.6 1.8 2 2.2 0.8 1.2 1.4 1.6 1.8 2 2.2

(a) (b)

FIG. 1. (a,b) Performance of Gallager codes with N = 1920, R = 1/3, as a
function of Eb/NO. In (b) we also show the performance of a repeat-accumulate code
with N = 3000.

~CJ ~GJ ~[] ,,[] (a) 0.15 0.15 0.15 0.15
0.1 0.1 0.1 0.1

0.05 0.05 0.05 0.05
0 0 0 0

o 10 20 30 40 50 o 10 20 30 40 50 o 10 20 30 40 50 o 10 20 30 40 50

"'[B "~ "ITS] "U] (b) 0.01 0.01•. 0.01 0.01 \.
10-3 ". 10-3 10-3 ... 10-3 '.
10-4 10-4 ". 10-4 ... 10-4
10-5 10-5 10-5 10-5 '.

10 100 10 100 10 100 10 100

x/a 0.90 0.95 1.00 1.05
(Eb/No)/dB 0.846 1.315 1.761 2.185
Pw 0.19 0.014 1.7 x 10-4 9.0 X 10-6

Power, p 3 4 6 10

FIG. 2. Histograms showing the frequency distribution of decoding times for the
binary Gallager code from Figure 1 : (a) linear plot; (b) log-log plot. The graphs show
the number of iterations taken to reach a valid decoding; the value of Pw gives the
frequency with which no valid decoding was reached after 1000 iterations. The power
p which gives a good fit of the power law distribution P(T) ex T-P (for large T) is also
shown.

Decoding times follow power laws. We have previously noted [5, 7]
that the probability distribution of the decoding time r of Gallager codes
and turbo-like codes appears to follow a power law, P(r) ex: r-P , with the
exponent p depending on the noise level and the code. Figure 2 shows the
histograms of decoding times at four signal-to-noise ratios for the binary
Gallager code shown in Figure 1.

TWO SMALL GALLAGER CODES 133

The parity check matrix of the binary code, 1920.1280.3.303, can
be found in the online archive [4]. We expect that these codes could be
further improved by a careful optimization of their profiles.

Acknowledgements. This work was supported by the Gatsby Foun
dation. We thank Bob McEliece for helpful discussions.

Columns Rows
2 449 5 635
3 389 6 5
4 72
5 1

11 2
13 4
19 39

FIG. 3. The profile of the irregular code over GF(4), whose blocklength was 960
symbols.

REFERENCES

[1] DAVEY, M.C. AND MACKAY, D.J.C. (1998). Low density parity check codes
over GF(q). In Proceedings of the 1998 IEEE Information Theory Workshop,
pp. 70-71. IEEE.

[2] GALLAGER, R.G. (1962). Low density parity check codes. IRE Trans. Info. Theory,
IT-8: 21-28.

[3] JPL (1999). Code imperfectness.
http://vvv331.jpl.nasa.gov/public/imperfectness.html.

[4] MACKAY, D.J.C. (1999a). Encyclopedia of sparse graph codes (hypertext archive).
http://vo1.ra.phy.cam.ac.uk/mackay/codes/data.html.

[5] MACKAY, D.J.C. (1999b). Gallager codes - recent results. In Proceedings of
International Symposium on Communication Theory and Applications, Am
bleside, 1999, ed. by M.D.B. Honary and P. Farrell. Research Studies Press.

[6] MACKAY, D.J.C. AND NEAL, R.M. (1996). Near Shannon limit performance oflow
density parity check codes. Electronics Letters, 32(18):1645-1646. Reprinted
Electronics Letters, 33(6):457-458, March 1997.

[7] MACKAY, D.J.C., WILSON, S.T., AND DAVEY, M.C. (1999). Comparison of con
structions of irregular Gallager codes. IEEE Transactions on Communica
tions, 47 (10):1449-1454.

[8] URBANKE, R., RICHARDSON, T., AND SHOKROLLAHI, A. (1999). Design of provably
good low density parity check codes. Submitted.

MILDLY NON-LINEAR CODES·

ALAN PARKSt

Abstract. We consider codes coming from systems of sparse linear equations.
(These low-density parity check codes are examples of what are called Gallager codes.)
We suggest how non-linear equations very close to the given linear equations might
be used to improve decoding properties while retaining the same level of coding and
decoding complexity.

1. Linear and single product predicates. We will write the coor
dinates of an element y of the set Z~ of n-bit vectors as y[j] for 1 :::; j :::; n.
An n-bit predicate is a function I taking Z~ to the set {O, I}, which latter
set is regarded as real because of wanting fourier coefficients. This describes
both the setting where the equation I(y) = 1 defines a code and the case
where this equation constitutes one check equation among many. In the
former case, I is obviously the product of predicate functions for single
check equations.

A linear n-bit predicate I: Z~ --+ {O, I} comes about from a subset Q
of the numbers 1,2, ... , n, where I(y) = 1 if and only if

L y[j] = 0 mod 2.
jEQ

To obtain a "mildly non-linear" perturbation of I, choose SeQ, and
define g(y) = 1 if and only if

II y[j] + L y[j] = O.
jES jEQ

We call 9 a single product predicate. If S is "small," then we think of 9 as
"mildly" non-linear.

We are interested in comparing single product predicates to their linear
counterparts. To facilitate the comparison, we will consider the following
set-up, designed to keep the code rate the same for both types of predicates
and to keep the coding and decoding complexity comparable.

We begin with a regular, low-density parity check matrix, of the kind
considered in [1] and constructed in [2]. (Our ideas were motivated by the
construction techniques of the latter paper.) We suppose that this matrix
is m x n and that it has rank m (full row rank). Then the null space
of the matrix forms a code in which the code constraints are n-bit linear
predicates Ii for 1 :::; i :::; m. The code rate is (n - m)/m .

• Much of this work was done under the auspices of Lawrence University's sabbatical
program.

tDepartment of Mathematics, Lawrence University, Appleton, WI 54912. Email:
parksa@lawrence. edu.

135

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

136 ALAN PARKS

Recall that coding can be accomplished if we have a reduced row
echelon version of the parity check matrix. Given some particular elimina
tion, let M be the set of pivot bit positions and let F be the set of free bit
positions. Then, of course, IMI = m and IFI = n - m, and the bit positions
of F are the information bits. If bits y[j] are given, for j E F, then there
are unique bits y[i] for i E M such that y is a code vector.

We modify the code predicates as follows. Temporarily, we will need
to identify the subset Qi of 1,2, ... , n such that h(y) = 1 if and only if
LiEQ. y[i] = 0 (mod 2). For each h, choose a "small" subset Si of Qi\M.
Define

1ri(Y) = IT y[k] for
kES.

and define modified predicates fI where II (y) = 1 if and only if

1r(y) + L y[i] = 0 mod 2, for 1 ~ i ~ m.
iEQ.

Thus, the constraints fI are single product predicates formed by suffixing
a product term to the mod 2 equation involved with Ii- Notice that no bit
position from M is involved in the product part of the iI.

We can regard the product term 1ri as a new variable y[n + i], so
that the modified code constraints are linear in y[l], ... , y[n + m]. The
same elimination that brought the original system of constraints into row
echelon form will bring this modified system into row-echelon form and
with the same pivots M. The information vectors are also the same in
both codes, involving bit positions y[j] with j E F. Indeed, in the modified
system, these values determine the product variables y[n+i] for 1 ~ i ~ m,
and then the row-echelon form of the modified system determines the pivot
variables y[k] for k E M. This proves that the rates of the linear code and
the modified code are equal, and it shows that encoding in the modified
code is comparable to that in the linear code. (In the modified code, the
products must be computed, requiring a number of arithmetic operations
proportional to m.)

We could also consider codes coming from non-homogeneous linear
equations. If we restrict, as we did above, to check matrices with full row
rank, and if we modify as we did above, then the modified codes still have
the same rate and coding complexity as the linear codes they come from.
We will stay with homogeneous codes to simplify the exposition somewhat.

In Sections 4 and 5 we describe theoretical and empirical comparisons
made between linear and modified codes; in Sections 2 and 3, we build
up the notation and results we need to describe those comparisons. The
theoretical result is encouraging; there is improved probability of error
correction when a modified code is used in place of its linear ancestor. The
empirical results are somewhat weak, but since we have not attempted a
definitive experiment, a thorough follow-up seems in order.

MILDLY NON-LINEAR CODES 137

2. Bias and bias leverage. We have an n-bit code predicate f, and,
as usual, we imagine a transmitted vector y E Z~, such that fey) = 1,
incurring a noise vector z with (known or unknown) probability distribution
P, resulting in a received vector x = y + z (mod 2). Decoding algorithms
employ the equation f(x + z) = 1 to make probabilistic statements about
the bits in z. For a given bit position j, the bias toward z[j] is the ratio
of the probability that z[j] = 1 with the probability that z[j] = O. Given
that x is received, this bias is equal to

prob(z[j] = 11 x)
prob(z[j] = 0 I x)

l:z,z[j]=l P(z) . f(x + z)

l:z,z[j]=o P(z) . f(x + z)

It will be convenient to define the bias leverage Bj(x) to be the ratio of
the bias just given and the apriori bias - the bias on the noise in general.
Thus,

(2.1)
Bj(x) = l:z,z[j]=l P(z)· f(x + z) . l:z,z[j]=o P(z)

l:z,z[j]=o P(z) . f(x + z) l:z,z(j]=l P(z)

(N.B. In the notation Bj(x), the predicate f and the distribution Pare
assumed.)

If the noise distribution, restricted to the event that x is received,
were a product distribution on the bit positions, then the bias from the
entire code predicate would tell us what z[j] is, or the bias would identify
an essential ambiguity in that bit. In practice, the biases from individual
check equations are used to approximate the bias from the entire code
predicate. For instance, the event that the bias leverage, from an individual
check equation, is greater than 1 is used both to design decoders employing
voting schemes (if a received bit gets enough "votes" it is flipped) and as
a tool to estimate the effect of message passing algorithms that keep track
of the estimated bias on each noise bit.

We show how to use the fourier coefficients of linear and single product
predicates to calculate the leverage in cases of interest. For the predicates
we will consider, very few of the fourier coefficients will be non-zero, and so
the use of the coefficients is efficient numerically. Let f be an n-bit linear
predicate, defined by the subset Q of 1,2, ... ,n. We write YQ to stand
for the vector of bit positions from Qj in other words YQ : Q -+ Z2 where
yQ[j] = y[j] for j E Q. We also write Iyl for the weight of the vector y (the
number of non-zero coordinates). This allows us to write f in the following
form:

(2.2)

The fourier coefficients of f are obvious from this form: they are 0 except for
being 1/2 at the zero vector and at the vector having ones in the positions
ofQ.

138 ALAN PARKS

To obtain the fourier coefficients for a single product predicate, we
will need the following notation. Assume that 8 ~ Q, and for w : 8 -+ Z2
define w E Z~ where

w[j]

1

o

if j E 8

ifjEQ-8

if j i Q

We will also need the particular function u : 8 -+ Z2, where u[j] = 1 for
all j E 8. The straightforward proof of the following is left to the reader.

PROPOSITION 2.1. Assume all the notation just given, and let f be
the single product predicate defined by 8 and Q. Let s = 181. Then, for
v E Z~, we have fourier coefficients

fv =

1
2

cr2-S • (_l)s-H!w!

1 2-8 2-
o

if v = 0

if v = w where w : 8 -+ Z2 and w =f u

if v = U

otherwise

We will also employ the fourier coefficients of probability distributions
on (noise) bit-vectors. Our distributions P : Z~ -+ IR will always come
about, by hypothesis or as an approximation, as product distributions over
the bit positions. For position j, we will write Pj(a) for the probability
that bit j has value a E Z2' For a product probability distribution P on
Z~, and for a subset Q of 1,2, ... ,n, define

II(Q, P) = II (1 - 2· Pj (l)) .
jEQ

The following is well known; we include a proof for the sake of com
pleteness.

PROPOSITION 2.2. Let P be a product probability distribution over the
bit positions 1 :::; j :::; n. Let Q be a subset of 1,2, ... ,n, and let v be the
n-bit vector having v[j] = 1 if and only if j E Q. Then 2-n . II(Q, P) is the
fourier coefficient Pv of P with respect to v.

Proof. We have

Z

We can view the sum as the expected value of

n
(_l)v,z = II(-l)v[jj.z[jj .

j=l

MILDLY NON-LINEAR CODES 139

Since P is a product distribution over the bit positions, this product ran
dom variable has expected value equal to the product of the expected values
of each of its factors (_I)v[j).z(j). This latter expected value is

Pj(O). (_I)v[j).o + Pj (I). (_I)v[j)'l = Pj(O) + Pj (I). (_I)v[j) .

If v(j] = 0, then the expected value of its factor is 1. If v(j] = 1, the
expected value is 1 - 2Pj (I). D

In order to calculate the bias leverage in the situations of interest to
us, we will need two convolution formulas.

PROPOSITION 2.3. Let the set Q define the n-bit linear predicate f.
Let the probability distribution P on Z~ be a product distribution. If x E Z~,
then

L P(z)· fez + x) = ~ [1 + (_I)lxQI. IT(Q,P)] .
ZEZ;

Proof Using the fourier series for P and for f, we have that

L P(z)· f(x + z) = 2n. L Pv ' fv' (_I)v,x .

The result follows from the formula for fv and from Proposition 2.2. D
A proof of the following more complicated result is given in the

Appendix. For x E Z~, the set S, and the distribution P, we define

xs[j)=l Xs[j)=O

In each of the products on the right, we consider only j E S.
PROPOSITION 2.4. Let the sets S t; Q define the n-bit single product

predicate f. Let P be a product probability distribution on Z~. If x E Z~,
then

LnP(Z) ·f(z+x) = ~+(-I)IXQI.n(Q\S,p). [~. IT(S,P)-ITs(x,P)] .
ZEZ2

We will also record the following triviality.
PROPOSITION 2.5. Let f be an n-bit predicate, and let P be a proba

bility distribution on Z~. If x E Z~, then

L P(z)· (1 - fez + x)) = 1 - L P(z)· fez + x) .

To connect these ideas, we find the bias leverage in the case of a linear
predicate and in the case of a single product predicate. These formulas

140 ALAN PARKS

have relevance to the more interesting case of a predicate that is a product
of linear or single product predicates.

PROPOSITION 2.6. Let the set Q define the n-bit linear predicate f. Let
the probability distribution P on Z~ be a product distribution, and assume
that Pj (l) < 1/2 for each j. Let x E Z~. If j tt Q, then Bj(x) = 1. If
j E Q, then

1- (_l)lxQI. II(Q\{j},P)
B j (x) = -1 -+ -'-(--1-'-,) I-x Q-'-I .-II--'-(Q-'--\":"'::{':""::j }-'-, P--'-)

Furthermore, in this case we have B j (x) > 1 if and only if f (x) = O.
Proof For z E Z~, define z' E Z~-l by deleting the j-th bit from z.

Then P(z) = Pj(z[j]) . P(z'), where P(z') evaluates the distribution on
Z~-l obtained from P in the obvious way.

If j tt Q, then since bit j does not enter into the calculation of f,
we view f as a function on Z~-l, and then f(x + z) = f(x' + z') for all
x, z E Z~. It follows, for each a E Z2, that

L P(z)· f(z + x) = Pj(a)· L P(z')· f(x' + z') .
z[j]=a zIEZ;-l

Equation (2.2) then yields that Bj(x) = 1 in this case.
In the case j E Q, the formula for Bj is Theorem 4.1 of [1). In this

case, Bj(x) > 1 if and only if

(-l)lxQI.II(Q\{j},P) < O.

Since each Pj (l) < 1/2, this condition is that IXQI == 1 mod 2, in other
words, f(x) = O. 0

Proposition 2.6 simply explains, in terms of leverage, how a linear con
straint furnishes a check equation on a received vector. Next, we compute
Bj(x) in the case of a single product predicate when bit position j is not
involved in the product, and we will observe this same property. The for
mula in Proposition 2.7 is a perturbed version of that of Proposition 2.6.
When we use these formulas to study decoding, the perturbed version will
show an apparent advantage over the leverage in the linear case.

In the following proposition there is a condition that the bit probabil
ities are "not too large"; this will cause no difficulty in practice.

PROPOSITION 2.7. Let the sets S ~ Q define the n-bit single product
predicate f. Let P be a product probability distribution on Z~. Let p be
the maximum of the Pj (l), and assume both that p < 1/2 and that 2p <
(1- 2p)lsl. Let x E Z~. If j tt Q, then Bj(x) = 1. For j E Q - S, let

Xj(x) = (-l)lxQI.II(Q\SU{j},P). [~'II(S,P) -IIs(X,P)] .

MILDLY NON-LINEAR CODES 141

Then

Furthermore, we have Bj(x) > 1 if and only if f(x) = O.
Proof. The case j ~ Q proceeds exactly as in the proof of Proposi

tion 2.6. Let j E Q - S, and let Q' = Q - {j}. Let a E Z2' If z,X E Z~
and z[j] = x[j] = a, then f(x + z) = 1 if and only if

II (x[k] + z[k]) + L (x[k] + z[k]) = 0 .
kES jEQ'

Let 9 be the single product predicate arising from this equation. As before,
define z' by deleting coordinate j. Put

C = L P(z)· f(x + z) = Pj(a). L P(z'). g(x' + z') .
z[jl=a zIEZ;-l

Proposition 2.4 then gives

pj~a) = ~ + (_l)lxQII. Il(Q'\S,P). [~. Il(S,P) - Ils(x,P)]

Since a = x[j], we can replace the exponent IXQII by a+x[j] + IXQII without
changing the value of the expression. Notice that x[j] + IXQII == IXQI mod
2, and we have that

(2.3) ~ =! + (_l)a. X·(x)
Pj(a) 2 J'

We were assuming that x[j] = a = z[j]. If x[j] :I a = z[j], then
f(z + x) = 1 if and only if

II (x[k] + z[k]) + L (x[k] + z[k]) = 1 .
kES JEQ'

Let 9 be the single product predicate arising from the left side of this
equation equalling 0, and then f(z + x) = 1 if and only if g(z' + x') = O.
Let

C = L P(z)· f(x + z) = Pj(a)· L P(z')· (1- g(x' + z')) .
z[jl=a z'EZ;-l

Dividing by Pj(a) and using Proposition 2.5 and Proposition 2.4 yields

pj~a) = 1- ~ - (_l)lxQII. Il(Q'\S,P)· [~'Il(S,P) - Ils(X,P)] .

142 ALAN PARKS

Since x[j] "# a, we can replace the exponent IXQI I by a + x[j] + IXQI I at the
expense of cancelling the minus sign that precedes this term. We obtain

~ = ~ + (_I)a. X.(x)
Pj(a) 2 J'

This is identical to (2.3)j in other words, whether x[j] is equal to a or not,
equation (2.3) holds. Equation (2.1) now establishes the claimed formula
for Bj(x).

Continuing the case j E Q\S, we see that Bj(x) > 1 if and only if
Xj(x) < O. Recall the definition of p as the maximum Pk(I).

There are two cases to consider. Suppose first that Xs is not all I'sj
recall the definition of IIs, and we claim that

1 2' II(S, P) - IIs(x, P) > 0 .

Indeed, since there is k E S such that x[k) = 0, we estimate

II (-Pk(I)) ~p and II Pk(O) ~ 1 and II(S,P) ~ (I-2p)I S I .
xs[k]=O xs[k]=l

By hypothesis, the rightmost term is greater than 2p. Thus,

1 1 2' II(S, P) - IIs(x, P) > 2' 2p - p = 0 .

as claimed. Turning to the II(Q'\S, P) factor in X, since p < 1/2, this
factor is positive. We conclude that Xj (x) < 0 in this case if and only if
IXQ I == 1 mod 2. Since Xs is not all I's, the product term in f is OJ since
IXQI == 1, we see that f(x) = O.

We have left to consider the case that Xs is alII's. Compute

(2.4)
1 1 2 . II(S, P) - IIs (x, P) = 2 . II(S, P) - II Pk (0) .

kES

Each factor 1 - 2 . Pk (1) in II(S, P) is positive and no greater than the
corresponding factor Pk(O) = 1 - Pk(I) in the other product. It follows
that the expression in (2.4) is negative. Thus, Xj(x) < 0 if and only if
IXQI == 0 mod 2. Since Xs is alII's, this is that f(x) = O. D

The formula for Bj(x) in Proposition 2.7 shows that it can be calcu
lated numerically using a number of arithmetic operations proportional to
IQI. This is at the same level of complexity as the formula in the linear
case in Proposition 2.6.

3. Hub bits. In most coding paradigms, the bias leverage (or some
equivalent quantity) at a particular bit position is calculated for the set
of constraints that involve that bit. We will say that a bit position is a

MILDLY NON-LINEAR CODES 143

hub if the constraints involving it have no other bit positions in common.
Hub bits prevent short cycles from occurring in the dependence graph of
a linear system, and so their desirability is fairly obvious. This idea goes
back at least as far as [1] and has been used in many other papers.

We write V(f) for the set of bit positions involved in I : Z; --+ lR (the
set of bit positions in which I is not constant). Then, say for bit position
0, we have code predicates Ij for 1 :S j :S r, such that 0 E V (/j) but
otherwise the distinct V (fj) are disjoint. Let n be the total number of bit
positions in the V(fj), and, for the moment, we will ignore any other bit
positions there are (coming from constraints not involving bit position 0).
The code predicate for bit position 0 is the product of the Ij.

For x E Z;, we write x = (X[0],X1, ... ,Xr) where (x[O],Xj) hold the
bit positions in V(fj). We regard /j as a function of (x[O]'Xj). Because
position 0 is a hub, there is an obvious correspondence between the set of
x E Z; and tuples of the type just written.

Bringing in the probability distribution P, we write

P(X) = Po(x[1)). P(xt}·· ·P(xr)

where P(Xj) uses the correct probabilities for the bit positions held by Xj.
Proposition 2.6 and Proposition 2.7 used the convolution formulas in

Proposition 2.3 and Proposition 2.4 to calculate the bias leverage for a
single constraint equation. The notation we have just established allows us
to write a formula for the numerator and denominator of the leverage in the
current setting; each of these will be seen to be a product of convolutions
of the type considered in Proposition 2.3 and Proposition 2.4, since, if each
predicate /j is linear or single product, then the predicate Ij(a + x[O], Zj +
Xj), where a+x[O] is given, is either linear, single product, or the negation of
one of those types. The proof of the following is obvious from the notation
above.

PROPOSITION 3.1. Given the notation above, let a E Z2 and x E Z;.

Then

r

L P(z) . II /j(z + x)
ZEZ; ,z[Oj=a j=1

is the product 01 Po (a) and

4. Comparing linear and single product constraints. Using
Proposition 3.1, we compared the bias leverage at given hub bit positions for
linear constraints to the leverage for single product constraints. Empirical

144 ALAN PARKS

results are summarized in Table 1. Each line of each table is parameterized
by q (the number of bit positions in each linear or single product con
straint), r (the number of constraints on the given hub bit), and the weight
of the noise vector. The single product predicates had product terms with
2 factors (so lSI = 2 in the notation used above). In each line of the table,
we randomly chose 1000 pairs (code vector, noise vector); each vector has
(q - 1) . r + 1 bit positions, of which (q - 2) . r + 1 are free and determine
r pivot bits. We set Pj (l) = 0.01 uniformly for the sake of experiment. Of
course, this models the binary symmetric channel; the particular choice of
Pj (l) does not seem to matter much.

q,r,weight Non-lin%
6,3,0 1.00
6,3,1 1.00
10,5,1 1.00
6,3,2 1.00
10,5,2 1.00
6,3,2 0.56
10,5,2 1.00
14,7,2 1.00
6,3,3 0.55
10,5,3 1.00
14,7,3 1.00
6,3,3 0.61
10,5,3 0.63
14,7,3 1.00
6,3,4 0.55
10,5,4 0.65
14,7,4 1.00

TABLE 1

Bias leverage.

Lin.% A ve.non-lin.B
1.00 1.7e+04
1.00 1.7e+04
1.00 3.0e+05
1.00 3.5e+03
1.00 4.5e+04
0.29 3.7e+03
1.00 4.4e+04
1.00 3.3e+05
0.29 3.7e+03
1.00 4.5e+04
1.00 3.2e+05
0.75 2.2e+03
0.49 1.6e+04
1.00 7.3e+04
0.72 2.1e+03
0.51 2.2e+04
1.00 8.ge+04

Ave.lin.B
7.8e+03
7.8e+03
1.6e+05
2.0e+Ol
1.3e+03
2.3e+03
2.6e+04
2.0e+05
2.2e+03
2.8e+04
1.ge+05
1.5e+Ol
6.5e+02
1.0e+04
1.4e+Ol
6.8e+02
9.6e+03

When z[j] = 1, larger values of Bj(x) are good, since they increase
the (estimated) probability that we will conclude from the received vector
that z[j] = 1. When z[j] = 0, we want small values of Bj(x) to decrease
the same estimated probability. In order to avoid distinguishing these two
cases, we recorded the reciprocal of Bj(x) in the case z[j] = O. Thus,
the larger value is the "winner" in each case, and in every case the single
product predicates win. We also recorded the percentage of code, noise
pairs for which the bias leverage correctly estimates whether z[j] = 1. (If
z[j] is, in fact 1, then the bias leverage should be greater than 1; if z[j]
is 0, it should be less than 1.) In all lines of the table except for one, the
leverage for the single product predicates estimate z[j] correctly at least as

MILDLY NON-LINEAR CODES 145

often as do the linear predicates.
We also compared the two types of predicates more directly in terms

of decoding characteristics. We considered a standard decoding algorithm
which flips bits in an input (received) vector according to "votes" by the
constraints that estimate the likelihood of noise in those bits. We imagine
a set F of code predicate constraints. Recall the notation V (f) for the set
of bit positions in which the function f is not constant.

Algorithm: Given the input n-bit vector x, produce the output n
bit vector x', as follows. For each k with 1 ::::; k ::::; n, if it is the case that
the bias leverage is greater than 1 for every code predicate f E F such that
k E V(f), then set x'[k] = 1- x[k]i otherwise, set x'[k] = x[k].

A simple decoder may be obtained by iterating the Algorithm, stop
ping when the output vector is a code vector or when a failed state occurs
at a maximum number of iterations.

One way to estimate the performance of this algorithm is to compute
the expected change in the weight of the noise vector. Going back to
the transmitted vector y and the noise vector z, we have received vector
x = y + z (mod 2). If input x to the Algorithm produces output x', set
z' = y+x', and we can regard z' as the updated noise vector, the Algorithm
as replacing (x,z) by (x',z'). (Of course, z and z' are not observed.) The
change in the weight of the noise vector is Izl - Iz'li if this quantity is
negative, then the weight of z' is less than that of z, and x' is a more
accurate approximation to the transmitted vector y. The expected change
in weight may be computed over the set of pairs (x, z) of received and noise
vectors, whose probability distribution comes about from the probability
distribution P of the noise, along with the assumption that each code vector
is equally likely.

We will approximate the expected change by limiting, as we did in
tabulating the bias leverage, to a set of predicates involved in the decision
whether to flip some particular hub bit position - say position O. Invoking
the notation used before, let fJ with 1 ::::; j ::::; r be the code predicates with
o E V(fJ). For a received vector x, only (x[O],Xj) is necessary to compute
fJ(x[O], Xj) or to compute the bias leverage for this function. Let gj (x [0], Xj)
be the predicate that tells whether the bias leverage toward bit position
o and involving fJ is greater than 1. Proposition 2.6 and Proposition 2.7
show that the predicate gj(x[O],Xj), as a function of Xj, is linear, single
product, or the negation of one of those types.

Suppose there are K vectors (y[O], Yl, ... ,Yr) such that fJ(y[O], Yj) = 1
for all 1 ::::; j ::::; r. If P is the distribution of the noise, as usual, then the
(received, noise) pair x, z has probability

1 r 1 r

K . P(z)· II fJ(x+z) = K . P(z[OJ)· II [P(Zj)' fJ(x[O]+z[O],Xj+Zj)] .
j=l j=l

146 ALAN PARKS

For a given x, the event that the Algorithm flips bit 0 is that gj (X [0], Xj)
is equal to 1 for aliI ~ j ~ r. Under these circumstances, if z[O) = 1, then
the pair (x, z) contributes a -1 to the change in the noise weight (bit 0
is correctly flipped by the Algorithm); whereas, if z[O) = 0, then the pair
contributes a +1 to the change in noise weight (bit 0 is incorrectly flipped).
In both cases the contribution is (-1)z[oJ. Thus, the expected change f-to
in bit 0 is

2) _l)Z[OJ . ~ . Po(z[OJ) . IT [P(Zj) 'h(x[O)+z[O), Xj+Zj) . gj(X[O), Xj))
x,z j=l

and if, for a, bE Z2, we write

C(a, b) = Q [,~ P(Zj)· !j(a+b,zj+xj)· 9j(b,Xj)]

then we have

f-to = L (_I)a. ~ . Po (a) . C(a, b) .
a,bEZ2

The factor C(a, b) is the product of convolutions at the zero vector. If
the code constraints are linear or single product, then, as we have remarked
above, h(a + b,zj + Xj) as a function of Zj + Xj is linear, single product,
or the negation of one of these. Then Proposition 2.6 and Proposition 2.7
show that the predicate gj(b,xj) as a function of Xj is of the same type.
We know the fourier coefficients of these functions and of the distribution
P, and this shows that f-to can be calculated efficiently.

We have graphed f-to, under the set of assumptions we used in con
structing the tables of leverages. Bit 0 is a hub bit, involved in r predi
cates, each of which involves position 0 and the same number q - 1 of other
positions. Single product predicates always had two factors. We compared
three different cases.

• Case 1. Pure linear. Each predicate is linear.
• Case 2. Linear part of single product. Each predicate is a

single product predicate; position 0 is not in the product part of
any of these predicates.

• Case 3. One product ignored. Each predicate is a single
product predicate; position 0 is in the product part of at most one
of these predicates, in which case this predicate is ignored in the
voting part of the Algorithm.

We have graphed f-to as a function of Po(I) (the crossover probability)
in these cases, for various choices of q, r. The definition of f-to shows that
the more negative it is, the better. Cases 2 and 3, involving single product
predicates, frequently post values of f-to less than that for Case 1, giving at

MILDLY NON-LINEAR CODES 147

least preliminary evidence that single product predicates may be capable
of providing improved decoding. The /-to curve for Case 1 is a solid line,
Case 2 a dotted line, Case 3 a dashed line. The units on the vertical axis
are multiples of K (the number of code vectors).

X 10-4

O~~-'-----.-----r----.-----.-----r----'-----.----,

~
Q)
<:
o
_5 -1
2J,
<:

'" -5
-§,
-~
-c -1.5

I
-2

q=6. r=3, s=2

" "

-2_5 "--__ -----' ____ ----'-____ -'--____ --'-____ --'-____ L-__ -----' ____ ----'-____ ->

1 2 3 4 5 6 7 8 9 10
Crossover probability_ x 10-4

FIG. 1.

In all cases, Case 2 is no worse than Case 1, showing that code modifi
cation does not hinder decoding at bit positions not involved in the product
terms used. Notice that the same crossover interval is considered in the
second and third graphs, with differing q, T_

We have also performed random sampling to estimate the standard
deviation of /-to in each case; apparently the deviations in Cases 2 and 3 are
less than the deviations for strictly linear codes. This did not seem telling
one way or the other.

5. Implementation experiments. Here is an explicit implementa
tion of the foregoing ideas.

We ran computer tests on modified codes along with the linear code
which, in each case, was used to construct the modified version. Our linear
codes were constructed by a variation of the techniques discussed in [2]; to
construct an m x n parity check matrix, we utilize parameters q, T, s where
q is the number of bit positions in each linear constraint, T is the number
of constraints involving each given bit position. If we count the number
of ones in the matrix, we see that m . q = n . T. We want the rank of the

148 ALAN PARKS

X 10·'
Or----.-----.-----.----.-----.-----.----.-----.----~

-0.5

,

-2.5

, , , , , , ,
, , , , , , ,

" "

................

q= 10, r=5, 5=2

-3~--~----~----~----~----~----~--~----~--~~
1 2 3 4 5 6 7 8 9

Crossover probability.

FIG. 2.

matrix to be m, and the code rate will then be (n - m)/m = (q - r)/r.
The parameter s is the number of terms used in each product term of each
single product predicate,

We formed random, square invertible blocks, making sure that each
column of each block contained r ones and each row less than q ones. We
placed the blocks in diagonal fashion in the parity check matrix. Suppose
that a row of some particular block had t ones; then we chose q - t random
ones from among the variables not involved in any of the diagonal blocks
to complete that row, in such a way that each column ends up with r ones.
This construction is unsuccessful about half the time; when it succeeds, it
constructs a regular Gallager code.

The columns in the diagonal blocks furnish the pivots of the resulting
matrix. For each row, if we could choose s non-pivot columns having a
one in that row, then those variables were used to form a product term in
the modified code. Some equations, therefore, were not modified, and this
suited our purposes as well, since we did not want to perturb the linear
code over much. In this construction, the information vectors and block
length are the same for both the linear and modified code, although the
actual code vectors differ.

In testing the codes, because the modified code is non-linear, one can
not assume transmission of the zero vector; for each test, we chose between

X 10"
-1

-2

-3 \

\

~
Q) -4 c
0

.S
Q)
0> -5 c ..
"" u
1:
0>

-6 .~

'0 .,
i -7
)(

UJ

-8

-9

-10
1

\ ,

2 3

MILDLY NON-LINEAR CODES

, , , , ,

q=6, r=3, s=2

4 5 6 7
Crossover probability.

FIG. 3.

149

8

100 and 1000 pairs (information vector, noise vector). Each information
vector produced a linear code vector and a modified code vector. The noise
vector, whose length was equal to the block length, was then added.

We employed two familiar decoding schemes: an iterated version of
the Algorithm and iterative re-estimation of the biases. The block lengths
used were 200, 400, and 800_ In the first decoding paradigm, in each loop
we flipped those bits involved in a maximal number of equations having
bias leverage greater than L With crossovers between 0.001 and 0.01, the
linear and modified codes performed comparably. The standard deviation
of the noise weight change per iteration was often but not always smaller for
the modified codes, indicating slightly more reliability_ With crossover in
creased above 0.02, the modified codes began to degrade, decoding roughly
85% of the test vectors, while the linear codes still decoded over 95% of
the test vectors.

In the second decoding paradigm, the modified codes usually achieved
quicker convergence of estimated probabilities at each bit to 1 or O. We
would like to run tests on larger block sizes, but our experiments sug
gest that modification of linear constraints to mildly non-linear constraints
might lead to improved decoding. We chose a very particular kind of mildly
non-linear constraint, and we wonder about optimal choices under more
specialized hypotheses about the noise.

150 ALAN PARKS

APPENDIX

Proof of Proposition 2.4. Taking the hypothesis and notation of that
result, define V to be the set of all w : S -T Z2. Write

C = L P(z)· f(z + x) .
ZEZ;

Let s = lSI. We use the fourier coefficients of P, given in Proposition 2.2,
writing hj = 1-2·Pj (I), and the coefficients of f, given in Proposition 2.1,
to compute

v v[j]=l

= ~ + L II(Q\S,P). II hj· 218 . (_1)8-1+ lw l . (_I)w.x
wEV w[j]=l

+II(Q,P). ~. (_I)u.x .

The sum over V can be evaluated by parameterizing V in the following
way. For w E V, let a hold the bits of w(j] with xs(j] = 1 and b hold the
bits of w[j] with xs[j] = O. Thus, w corresponds to the pair (a, b). Let x'
hold the bits x[j] with j E Q\S. Then Iwl = lal + Ibl and w· x == lal + Ix/l.
We write the sum over V, collecting the a-factors and b-factors, thus.

C=~+LII(Q\S,P)·218·(-1)8-1+IX'I. II hj· II hj .(-I)lbl
a,b a[j]=l b[j]=l

+II(Q,P). ~. (_1)Uox •

Since a, b run over sets of functions into Z2, the sums over these vari
ables can be reversed with the product terms.

C = ~ + II(Q\S, P) . ;8 . (_ly-1+lx'l. II (1 + h j)· II (1 - hj)
xs[j]=l xs[j]=o

+ II(Q, P) . ~ . (_I)U O X .

We have 1 + hj = 2(1 - Pj (l)) = 2Pj (0), and 1 - h j = 2Pj (I). There are
s factors of 2 involved in all the hrfactors. Thus,

C = ~ + II(Q\S, P) . 218 . (_1)8-1+ lx'l .28 . II (1 - Pj (l))· II Pj (l)
xs[i]=l xs[j]=O

+ II(Q, P) . ~ . (_1)U o x .

MILDLY NON-LINEAR CODES 151

We have "iI'X == IXQI mod 2. We write 1-Pj (1) as Pj(O), we cancel the
28 terms, and we replace each Pj (1) factor, where xs[j] = 0, by -Pj (1).
This amounts to multiplication of the product by (_1)8- I"'sl. We insert this
factor next to the factor (_1)8-1+1""1. The result of this latter insertion is
to change (_1)8-1+1",'1 into (-1)1+I"'QI.

c = ~ + II(Q\S, P) . (_1)1+I"'QI. II Pj(O)· II (-Pj (1))
"'s[j]==l "'s[j]==o

+ II(Q, P) . ~ . (_1)I"'QI

= ~ + II(Q\S, P) . (_1)I"'QI . [~II(S' P)- II Pj(O)· II (-Pj (1))]
"'s[i]==l "'s[j]==o

as claimed. D

REFERENCES

[1) R.G. GALLAGER, Low-Density Parity-Check Codes, no. 21 in Research Monograph
Series, Cambridge MA: MIT Press, 1963.

(2) D.J.C. MACKAY, Good Error-Correcting Codes Based on Very Sparse Matrices,
IEEE Transactions on Information Theory, Vol. 45, no. 2, March 1999.

CAPACITY-ACHIEVING SEQUENCES

M.A. SHOKROLLAHI"

Abstract. A capacity-achieving sequence of degree distributions for the erasure
channel is, roughly speaking, a sequence of degree distributions such that graphs sam
pled uniformly at random satisfying those degree constraints lead to codes that perform
arbitrarily close to the capacity of the erasure channel when decoded with a simple era
sure decoder described in the paper. We will prove a necessary property called flatness
for a sequence of degree distributions to be capacity-achieving, and will comment on pos
sible applications to the design of capacity-achieving sequences on other communication
channels.

Key words. Low-density parity-check codes, erasure channel.

1. Introduction. Low-density parity-check codes, discovered in the
early 1960's by Gallager [2) have received a lot of attention lately. Advances
in the theory of graphs, and connections to other fields like theoretical
computer science have made it possible to rigorously analyze Gallager's
original ideas, and to improve them in several directions [4-9, 11, 12).

In this paper, we will mostly focus on codes for the erasure channel.
The Internet is perhaps the most appealing example of such a channel.
When data is sent over the Internet, it is divided into packets. Each packet
has an identifier which uniquely describes the entity it comes from and its
location within that entity. Packets are then routed through the network
from a sender to a recipient. Often, some packets do not arrive at their
destination; in certain protocols like the TCP lIP the recipient requests in
this case a retransmission of those packets, upon which the sender initi
ates the retransmission. These steps are iterated several times until the
receiver has obtained the complete data. This protocol is excellent in cer
tain cases, but is very poor in scenarios in which feedback channels do not
exist (satellite links), or when one sender has to serve a large number of
recipients (multicast).

Based on this motivation, the authors introduce in [6) a simple erasure
recovery algorithm for low-density parity-check codes and derive a con
dition for that algorithm to finish successfully. Low-density parity-check
codes are constructed from sparse bipartite graphs, and their combinato
rial behavior is intricately related to that of the underlying graph. From
a practical point of view, it is very appealing that the codes come with
an efficient decoder. To make the decoder work well on the induced code,
however, one has to design the graph in the right way. The situation is
thus opposite to traditional coding, in which the codes are known and one
wants to find efficient algorithms for them.

"Bell-Labs, Rm. 2C-381, 700 Mountain Ave, Murray Hill, NJ 07974, USA.

153

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

154 M.A. SHOKROLLAHI

A priori, it would seem like an almost impossible task to analyze the
behavior of decoding algorithms on a graph, let alone designing the graph
in such a way that the algorithm performs well. One of the main and
surprising results of [6] was that the only parameter that decides on the
success of the algorithm is the distribution of nodes of various degrees on
both sides of the graph. More precisely, the paper shows that, given a
fixed distribution on the nodes of the graph, there is a threshold value p
such that if the graph is sampled uniformly at random from the ensemble
of graphs with that distribution, then the erasure recovery algorithm can
recover from any fraction of erasures less than p, and will fail if the fraction
of erasures is larger than p. The exact description of the conditions will be
provided later in Section 2.3.

The question that arises is whether it is possible to create degree se
quences such that the corresponding codes approach the capacity of the
erasure channel when decoded by the simple erasure decoder. This ques
tion is answered in the affirmative in [6] by exhibiting such a sequence of
capacity-achieving degree distributions. Meanwhile, there is a second such
sequence [10], but these two sequences remain the only ones known. These
sequences share certain properties, and we will prove later in Section 3
that this is no coincidence. We will prove an analytic condition, called the
flatness condition which any capacity-achieving sequences of degree distri
butions have to satisfy. We hope that this condition will help to design
methods for constructing capacity-achieving sequences for other types of
channels, like the Binary Symmetric or the AWGN Channel. Thoughts
about possible directions and some open problems are presented in the
final section of the paper.

2. Low-density parity-check codes.

2.1. Code construction. In the following we will assume that the
code-alphabet A is the binary field F2 • Let G be a bipartite graph between
n nodes on the right called message nodes and r nodes on the right called
constraint (or check) nodes. The graph gives rise to a code in two different
ways, see Figure 1: in the first version (which is Gallager's original version),
the coordinates of a codeword are indexed by the message nodes 1, ... , n
of G. A vector (Xl,"" Xn) is a valid codeword if and only if for each
constraint node the sum (over F2) of the values of its adjacent message
nodes is zero. Since each constraint node imposes one linear condition on
the Xi, the rate of the code is at least (n - r)jn.

In the second version, the message nodes are indexed by the original
message. The constraint nodes contain the redundant information: the
value of each such node is equal to the sum (over F2) of the values of its
adjacent message nodes. The block-length of this code is n + r, and its rate
is nj(n + r).

These two versions look quite similar, but differ fundamentally from
a computational point of view. The encoding time of the second version is

CAPACITY-ACHIEVING SEQUENCES 155

a

b

nE!l cEa f ~ o
d

bS effi d ffi e~ o
e

f

I g
a ffi eS e= 0

h

j

(a) (b)

FIG. 1. The two versions of low-density parity-check codes: (a) Original version,
and (b) dual version.

proportional to the number of edges in the graph G, while it is not clear
how to encode the first version without solving systems of linear equa
tions. (This needs to be done once for the graph; each encoding afterwards
corresponds to a matrix/vector multiplication.) If the graph is sparse, the
encoding time for the second version is essentially linear in the block-length,
while that of the first version is essentially quadratic (after a pre-processing
step).

While the second version is advantageous for the encoding, the first
version is more suited to decoding. I don't want to go into further details on
this issue, and will in the following only consider Gallager's original version
of low-density parity-check codes. Readers are invited to consult [12, 6] to
learn more about the second version.

2.2. Decoding on the erasure channel. It is not hard to see [1]
that a linear code of minimum distance d is capable of correcting any
pattern of d - 1 or less erasures. The algorithm is rather straight-forward,
and uses a multiplication of a matrix of size (n - k) x (n - d + 1) with
a vector of length n - d + 1, followed by solving a quadratic system of
equations of size d -1, where k is the dimension of the code. Further, Elias
showed that random linear codes achieve capacity of the erasure channel
with high probability. In typical applications that we have in mind, the
running time of the recovery algorithm is majorized by the time O(d3) to
solve the system of linear equations, and this is far too slow considering
that typical values of d are in the 100,000's.

In contrast, the decoder that we use for the low-density parity-check
codes is extremely fast and simple. It maintains a register for each of the
message and constraint nodes. All of these registers are initially set to
zero. In the first round of the decoding, the value of each received message

156 M.A. SHOKROLLAHI

node is added to the values of all of its adjacent constraint nodes, and then
the message nodes and all the edges emanating from it are deleted. Once
this direct recovery step is complete, the second substitution recovery phase
kicks in. Here, one looks for a constraint node of degree one. Note that
since the value of a constraint node in an intact codeword should be zero,
a constraint node of degree one contains the value of its unique adjacent
message node. This value is copied into the corresponding message node,
that value is added to those of all its adjacent constraint nodes, and the
message node together with all edges emanating from it are deleted from
the graph. If there are no nodes left, or if there are no constraint nodes
of degree one left, then the decoder stops. Note that the decoding time is
proportional to the number of edges in the graph. If the graph is sparse, i.e.,
if the number of edges is linear in the number of nodes, then the decoder
is linear time (at least on a RAM with unit cost measure). An example of
a complete decoding is given in Figure 2.

FIG. 2. An example of complete decoding.

The hope is that there is always enough supply of degree one constraint
nodes so that the decoder finishes successfully. Whether or not this is the
case depends on the original fraction of erasures and on the graph. Sur
prisingly, however, the only important parameter of the underlying graph
is the distribution of nodes of various degrees. This analysis is the topic of
the next section.

2.3. The analysis. To describe the conditions for successful decoding
concisely, we need one further piece of notation. We call an edge in the
graph G of left (right) degree i if it is connected to a message (constraint)
node of degree i. Let Ai and Pi denote the fraction of edges of left degree i

CAPACITY-ACHIEVING SEQUENCES 157

and right degree i, respectively. Further, we define the generating functions
A(X) = Li A;Xi- 1 and p(x) = Li PiXi-1. The rather peculiar look of the
exponent of x in these polynomials is an artifact of the particular message
passage decoding that we are using. This is best explained by the analysis
itself, which I will now describe in an informal way.

Let e be an edge between the message node m and the constraint node
c. What is the probability that this edge is deleted at the lth round of the
algorithm? This is the probability that the check node c is of degree one
at the lth round, and, equivalently, it is the probability that the message
node m is corrected at that round. To compute this probability, we unroll
the graph in the neighborhood of the node m and consider the sub graph
obtained by the neighborhood of depth l of m. This is the sub graph of all
the nodes in the graph except those that are connected to m via the edge e,
for which there is a path of length at most 2l connecting them to m. In the
following we will assume that this graph is a tree. Suppose that the graph
is sampled uniformly at random from the set of graphs which have an edge
distribution according to the polynomials A(X) and p(x). Let Pi denote
the probability that m is not corrected at round l. Further, let 0 denote
the original fraction of erasures. Then, obviously Po = o. Further, because
we have assumed that the neighborhood of m is a tree, at each level l of
the tree the message nodes are still erased with independent probability Pl.
(We assume that only the message nodes contribute to levels in the tree,
so that the message nodes forming the leaves are at level ° and the root
m is at level l.) From this, we can establish a recursion for Pi. A message
node at level l + 1 is not corrected if and only if it has not been received
directly, and all the constraint nodes it is connected to have degree larger
than 1. A constraint node has degree one if and only if all its descending
message nodes at level l have already been corrected. This happens with
independent probability 1 - Pi, and since the message node has j edges
emanating from it with probability Pj, and j - 1 of them are descending
message nodes in the tree, the probability that such a check node is of
degree one is p(l- Pi). Hence, the probability that a message node at level
l + 1 is connected only to descending constraint nodes of degree larger than
1 is A(l - p(l - Pi)). That node is thus not corrected with probability
oA(l- p(l- Pi)), where the factor 0 explains the probability that the node
has not been received directly. Hence, this gives PHl = oA(l - p(l - Pi)).
Altogether, we obtain the condition

(2.1) oA(l - p(l - Pi)) < Pi

for successful decoding. More precisely, this says that if neighborhoods of
depth l of message nodes are trees, and if oA(l- p(l-x)) < (1- E)X for x E
(0,0) and some E > 0, then after l rounds of the algorithm the probability
that a message node has not been corrected is at most (1 - E)lO. For large
random graphs the probability that the neighborhood of a message node is
not a tree is small, and the argument shows that the decoding algorithm

158 M.A. SHOKROLLAHI

reduces the probability of undecoded message node below any constant.
To show that the process finishes successfully, one needs expansion [6].

The above informal discussion can be made completely rigorous us
ing proper martingale arguments [4, 9]. Summarizing, the condition for
successful decoding after a c5-fraction of erasures is

(2.2) c5'\{1 - p{1 - x)) < x for x E (O,c5).

It is easy to see that this condition is equivalent to

(2.3) p{1 - c5'\{1 - x)) < x x E (0,1).

To see this, first note that '\(x) is invertible as a function on the interval
(O, 1), since it is a convex linear combination of monotonically increasing
functions. Hence, (2.2) is equivalent to

p{l-x)2:1-r1(~).

Now, set x = c5'\{1 - u), where now u E (0,1).

2.4. Capacity-achieving sequences. The condition (2.2) is very
handy if one wants to analyse the performance of random graphs with a
given degree distribution. For instance, it turns out that the performance of
regular graphs deteriorates as the degree of the message nodes increases [6].
In fact, the best performance is obtained if all message nodes have degree
three. On the other hand, this condition does not give a clue on how to
design good degree distributions .A and p. Our aim is to construct sequences
that asymptotically achieve the capacity of the erasure channel. In other
words, we want 15 in (2.2) to be arbitrarily close to 1 - R, where R is the
rate of the code. To make this definition more rigorous, we call a sequence
(.An, Pn)n?:O capacity-achieving of rate R if for all 15 < 1 - R there exists
no E N such that for all n 2: no we have

(2.4) Pn(1- c5.An (1- x)) > x 't/x E (0,1).

Note that any 15 satisfying the inequality above can be at most 1- R. This
follows either from the fact that, information theoretically, no recovery is
possible if the fraction of erasures is larger than 1 - R. Equivalently, one
can prove this by elementary integration [10].

It is surprising that such sequences do really exist. The first such
sequence was discovered in [6]. To describe it, we first need to mention
that, given ,\ and p, the average left and right degree of the graph is
1/ l:i ,\i/i and 1/ l:i pili, respectively. These quantities can be conve
niently expressed as 1/ f; '\{x)dx and 1/ f01 p{x)dx. As a result, the rate

of the code is at least 1 - f; p{x)dx/ f01 '\{x)dx. It is a nice exercise to
deduce from the equation (2.2) alone that 15 is always less than or equal to
1- R, i.e., less than or equal to f; p{x)dx/ f01 '\{x)dx.

CAPACITY-ACHIEVING SEQUENCES 159

Fix a parameter D and let AD(X) := HtD) 2:~1 xi Ii, where H(D) is

the harmonic sum 2:~1I/i. Let pD(X) := el'(X-1), where J-L is the unique
solution to the equation

1 I-R (1)
~(I - e-I') = H(D) 1 - D + 1 .

Since J; AD(x)dx = HlD) (I-I/(D + 1)) and J; PD(X) = (1- e-I')/ J-L, the
sequence (AD (x), PD(X))D?:1 gives rise to codes of rate at least R. Further,
we have

8AD(1- PD(I - x)) = 8AD(I - e-I'X)

-8 I (-I'X)
::; H(D) n e

8J-Lx
H(D)·

Hence, successful decoding is possible if the fraction of erasures is no more
than H(D)/ J-L. Note that this quantity equals (1- R)(I - I/(D + 1))/(1-
e-I'), and that this quantity is larger than (1 - R)(I - 1/ D). Hence, we
have that

(1 - R)(I - 1/ D)AD(I - PD(I - x)) < x for x E (0, (1 - R)(I - 1/ D)).

This shows that the sequence is indeed capacity-achieving. We have named
these sequences the Heavy- Tail/Poisson sequences, or, more commercially
oriented, Tornado codes.

In the meantime, I have obtained yet another capacity-achieving se
quence whose left side is closely related to the power series expansion of
(1- X)1/D, and which is right-regular, i.e., all nodes on the right have the
same degree [10]. More precisely, the new sequence is defined as follows.
For integers a 2 2 and n 2 2 let

",n __ -1 ("') (_I)k+1 xk
() a -1 A (x). _ =L.J::..::k=-1 -"k~,---:.-:---:--

PaX :=x, a,n·- I-n(~)(-I)n+l'

where a: := I/(a - 1). For the correct choice of the parameter n and other
properties of these sequences we refer the reader to [10].

I would like to close this section with a few comments on the trade
off between proximity to the channel capacity and the running time of
the decoder. For the Heavy-Tail/Poisson sequence the average degree of a
message node was less than H(D), and it could tolerate up to (1- R)(I-
1/ D) fraction of erasures. Hence, to get close to within 1- € of the capacity
1 - R, we needed codes of average degree O(log(I/€)). This is shown to
be essentially optimal in [10]. In other words, to get within 1 - € of the
channel capacity, we need graphs of average degree n(log(I/€)). The same
relation also holds for the right-regular sequences. Hence, these codes are
essentially optimal for our simple decoders.

160 M.A. SHOKROLLAHI

3. Flatness. The capacity-achieving sequences of the previous section
share an interesting property: As n goes to infinity, the function 8n An (1 -
Pn(1 - x)) - x and all its derivatives converge uniformly to zero on the
interval [0,1], where 8n is the supremum over all 8 such that 8An(1- Pn(1-
x)) ~ x on [0,1]. This can be verified by looking at the Taylor expansion
of this function, and we leave it as an exercise to the reader. In terms
of the decoding process, this means that as n grows large, the decoding
process converges more slowly. In this section, we are going to prove that
any capacity-achieving sequence will necessarily have this property, which
we call flatness.

We will need several preliminary results before being able to prove the
flatness condition. The following result gives equivalent formulations for a
sequence of degree distributions to be capacity-achieving.

LEMMA 3.1. Let (An(X),Pn(x)) be a sequence of degree distributions
of rate R. The following statements are equivalent:

(a) The sequence is capacity-achieving.
(b) The sequence (8n) converges towards 1 - R as n goes to infinity,

where 8n is the supremum over all 8 for which {2.2} is satisfied.
(c) The sequence (8n) converges towards 1 - R as n goes to infinity,

where 8n is the supremum over all 8 for which the following holds:

(3.1) for x E (0,1).

(d) For any fixed ~ < 1, any c > 0 and any T > 0 there is an no such
that for all n :::: no and all x E (o,~] we have

Proof. Statements (b) and (c) are shown to be equivalent using a
simple algebraic manipulation:

(Note that Pn(x) is invertible on (0, 1), being a polynomial with nonnegative
coefficients). We thus need to prove the equivalence of (a), (b) and (d).

(a) {=:} (b): This is very easy, but we will nevertheless carry out the
argument. Suppose that (An(X),Pn(x)) is capacity-achieving Then, for all
c > 0 there exists no such that for all n 2: no the condition (2.2) is satisfied
with 8 = 1 - R - c. Hence, for all n 2: no we have 8n 2: 1 - R - c. Noting
that 8n ~ 1- R, this implies (b). Conversely, suppose that (b) is satisfied.
Let 8 = 1 - R - c be given, where c > O. Since 8n converges to 1 - R,
we have 8n > 1 - R - c for all sufficiently large n. Hence, (2.2) is satisfied
for all sufficiently large n, which means that the sequence (An(X), Pn(x)) is
capacity-achieving

(a) {=:} (d): since (d) implies (c), we only need to show that (a)
implies (d). First we show that An(X) converges uniformly to zero on [O,~]

CAPACITY-ACHIEVING SEQUENCES 161

as n goes to infinity. Let On be the quantity defined in (b). It is proved
in [10] that On ~ (1 - R)(I - Ran), where I/an = 101 Pn(x)dx. Hence,
for the sequence to be capacity-achieving it is necessary that an goes to
infinity, i.e., that 101 Pn(x)dx (and hence the same integral for An(X)) goes
to zero. Since An(X) is monotonically increasing (its derivative is obviously
positive on (O,~]), this shows that An(X) converges to 0 uniformly. In the
same way, we show that 1 - p~I(1 - x) converges to zero uniformly, as
this function is also monotonically increasing, and its integral from 0 to 1
equals that of Pn(x). Let c and 0 be positive real numbers. There exists
nl (depending on T) such that for any n :?: nl we have

Further, since (An (x), Pn (x)) is capacity-achieving, there exists n2 (depend
ingonc) such that for alln :?: n2 and all x E (0,1) we have (I-R-c)An(x)
I+p~I(I-x) < O. Setting no := max(nl' n2) shows that (1) indeed implies
(4) and finishes the proof. 0

In the following, we denote by Ck [a, b] the space of all k times contin
uously differentiable functions on the interval [a, b].

LEMMA 3.2. Let l be a fixed positive integer, a < b be real num
bers, and suppose that Un(x)) and (gn(x)) are sequences of functions in
Cl+1[a,b] such that f~k)(x) > 0 and g~k)(x) > 0 on [a,b] for all 0 ~
k ~ l + 1, 9(k) (x) is bounded by a real number Ck on [a, b] for all n, and
fn(x) - 9n(X) converges to zero uniformly for all x E [a, b]. Then, for all
o ~ k ~ l, f~k)(X) - 9~k)(x) converges to zero uniformly for all x E [a,b].

Proof Let k be the smallest positive integer for which the claim is
not true and assume that k ~ l. The assumptions imply that k :?: 1. Let
0: E [a, b] be a point such that f~k) (0:) - g~k) (0:) does not converge to zero.
Hence, there exists T > 0 such that the absolute value of this difference is
larger than T for infinitely many n. Suppose first that f~k) (0:) - g~k) (0:) > T

for infinitely many n and consider the Taylor-expansion of f n - gn around 0::

k-l .
fn(x) - 9n(X) = L (!~i) (0:) _ g~i) (0:)) (x ~! 0:)' +

i=O Z

(f~k)(o:) _ g~k)(o:)) (x ~t)k +
()k+l

(f~k+l) (ry) - 9~k+l) (J1.)) ~;: I)! '

for some." and J1. in [a, b]. The first term in the above sum can be made
arbitrarily small by choosing n large enough. This is because f~i)(o:) -
g~i) (0:) converges to zero by the choice of k. The third term is bounded

from below by -Ck+llx-xolk+1 /(k+ I)!, since f~k+l) (x) is positive on [a, b].
Hence, we can choose an x depending on T and k only, so that the right hand

162 M.A. SHOKROLLAHI

side of the above expression is bounded from below by a positive quantity
depending on T and k only. This is a contradiction to the assumption that
fn{a) - gn{a) converges to zero. The case that fAkl{a) - g~kl{a) < -T for
infinitely many n is handled analogously by bounding the expression on
the right hand side of the above equality from above. 0
With the help of the previous lemma, we can now show that the function
onAn{1- Pn{I - x)) - x has to converge uniformly to zero on any compact
subinterval of [0, 1]. This is done in two steps. In the first step, we prove this
assertion for the function onAn{x) -1 + p;;,l (I-x), see the next proposition.
Then, using this result, we will prove the general assertion in Theorem 3.1
below.

PROPOSITION 3.1. Let (An{X), Pn{x)) be a capacity-achieving sequence
of rate R, and suppose that there is an integer £ such that for all sufficiently
large n all the derivatives ofI-p;;,l{I-x) up to the order £+1 are positive on
(O,I). Then, for anyO:::; k:::; £, the kth derivative ofOnAn{x)-I+p;;,l{I-x)
converges to zero uniformly on any closed subinterval of (O, 1).

Proof In view of the previous lemma, it suffices to show that the
kth derivative of Rn{x) := 1 - p;;,l{I - x) and onAn{x) are both bounded
on [a, b] for all ° :::; k :::; £ + 1. The assertion is clear for OnAn{X), since
An{X) is a polynomial with nonnegative coefficients. For the same reason,
all the derivatives up to the order £ + 1 of Pn{x) are bounded from above
on any compact subinterval of (O, 1), if n is sufficiently large. Further, if
this subinterval does not contain 0, all these derivatives are also bounded
from below by a positive constant (depending possibly on the order of the
derivative as well as the boundaries of the interval). This follows from
the fact that the degrees of An{X) and Pn{x) have to grow beyond bounds
if these polynomials are from a capacity-achieving sequence [10, Theorem
1]. Note now that the kth derivative of Rn{x) at any point a is obtained
as a polynomial (with coefficients depending on k only) of the derivatives
of Pn (x) up to the order k at point P;;' 1 (I - a), divided by some power
of p~{p;;,l{I - a)). Since k is at most £ + 1 and £ is fixed, and since
the derivatives of Pn{X) are bounded from above and below by constants
independent of n, this shows that the derivatives of onAn{x) - Rn{x) are
bounded. 0

Now we can state and prove the "flatness condition."
THEOREM 3.1 (Flatness Condition). Let (An (x), Pn (x)) be a capacity

achieving sequence of rate R, and suppose that there is an integer £ such that
for all sufficiently large n all the derivatives ofl-p;;,l (I- x) up to the order
£+1 are positive on (O, 1). Then, the kth derivative of Pn{1-onAn{x))-I+x
converges to zero uniformly on any closed subinterval of (O, 1) for any ° :::;
k:::; £.

Proof. Let un{x) := Pn{1 - onAn{x)) - 1 + x. Using the previous
proposition, it suffices to show that the derivatives of Un up to the order
£ + 1 converge uniformly to zero if and only the same is true for vn{x) :=
onAn{x) -1 + p;;,l{I_ x). We first need a simple preliminary result, whose

CAPACITY-ACHIEVING SEQUENCES 163

proof is left to the reader: for any k 2: 0 there exists a polynomial fk in
2k + 2 variables and with integer coefficients such that for any functions
h, 9 which are at least k times continuously differentiable on an interval I,
we have

(h(l-g(x)) - (l_x))(k) =!k (h,hl, ... ,h(k),g,gl, ... ,g(k»).

Let Rn(x) := 1- p~l(l - x). Then we have Pn(1- Rn(x)) - (1 - x) = O.
For any k, we thus have

(3.2) f (I (k) R RI R(k») - 0 k Pn'Pn""'Pn , n, n"", n -.

Furthermore, we have

(3.3)
(Pn(1- bnAn(x)) - (1- X))(k) =

fk (Pn, P~,' .. , p~k), bnAn, bnA~, . .. , bnA~k») .

By Proposition 3.1 we know that for any fixed k :s; £ the kth derivative of
bnAn(x) - Rn(x) converges to zero uniformly on any closed subinterval of
(0,1). But then, since fk is a continuous function, this implies that for any
x in that interval the absolute value of the difference of (3.2) and (3.3) can
be made arbitrarily small by letting n grow large. This is the assertion to
be proved. 0

4. Codes on other channels. The model of an erasure channel is
rather simple compared to other channels like the Binary Symmetric Chan
nel, or the Additive White Gaussian Noise Channel. However, many of the
above results can be carried over to the case of these channels as well, as
it is possible to design iterative decoding algorithms which, at each step,
pass messages along the edges of the graph. The most powerful such "mes
sage passage decoder" is the belief propagation for a description of which
we refer the reader to [7]. Richardson and Urbanke were able to analyze
this decoder [9]. One of the main results of that paper is the derivation
of a recursion for the (common) density functions of the message nodes
at each iteration round of the algorithm. The analysis was further simpli
fied in [8], and will be described below. First, we assume that the input
alphabet is the set {±1}. At each round, the algorithm passes messages
from message nodes to check nodes, and then from check nodes to message
nodes. We assume that at the message nodes the messages are represented
as log-likelihood ratios

I p(Ylx = 1)
og p(Ylx = -1) ,

where Y represents all the observations conveyed to the message node at
that time. Now let It denote the probability density function at the message

164 M.A. SHOKROLLAHI

nodes at the fth round of the algorithm. fo is then the density function
of the error which the message bits are originally exposed to. It is also
denoted by Po. These density functions are defined on the set IR U {±oo}.
It turns out that they satisfy a symmetry condition [8] f(-x) = f(x)e- x .

As a result, the value of any of these density functions is determined from
the set of its values on the set 1R>0 U { 00 }. The restriction of a function f to
this set is denoted by f?'O. (The technical difficulty of defining a function
at 00 could be solved by using distributions instead of functions, but we
will not further discuss it here.)

For a function f defined on 1R?0 U { oo} we define a hyperbolic change
of measure, via

,(J)(x) := f(Incothx/2)csch(x).

If f is a function satisfying the symmetry condition, then ,(J?O) defines a
function on 1R>0 U { oo} which can be uniquely extended to a function F on
IR U {±oo}. The transformation mapping f to F is denoted by r. It is a
bijective mapping from the set of density functions on IRU {±oo} satisfying
the symmetry condition to itself. Let It denote the common density func
tion of the messages passed from message nodes to check nodes at round f
of the algorithm. Suppose that the graph has a degree distribution given
by A(X) and p(x). Then we have the following:

(4.1) It = Po 18) A(r-l(p(r(It-d))), f 2: 1.

Here, 18) denotes convolution, and for a function f, >..(J) denotes the function
Li >"d®(i-l). In the case of the erasure channel, the corresponding density
functions are two-point mass functions, with a mass Pl at zero and a mass
(1 - Pi) at infinity. In this case, the iteration translates to

Pi = 8>"(1 - p(l - Pi-d),

where 8 is the original fraction of erasures. This equality describes the
progression of the erasure probability at each round of the decoding. Stated
in this form, successful decoding translates to the condition (2.2).

The question now arises whether (4.1) can be used to obtain capacity
achieving sequences for the BSC or the AWGN channel. This is still an
open question, and it seems that one would at least need an analytic con
dition to decide whether for a given initial noise function Po, and given
degree distributions >..(x) and p(x), the density functions converge to a
Delta function at infinity.

It is conceivable that the flatness condition turns out to be helpful in
designing capacity-achieving sequences. To argue for such an approach, let
us take a closer look at how we would design capacity-achieving sequences
of codes over the erasure channel. Suppose that we knew that there is a
sequence of capacity-achieving right regular codes, say. This means that

CAPACITY-ACHIEVING SEQUENCES 165

all the nodes on the right hand side of the graph have the same degree, say
n. Then, we could find 'x(x) by differentiating

15'x(1- (1- x)n-l) - X

and requiring that the derivatives be zero. This way we could recursively
solve for the various derivatives of 'x(x) at zero, and we would stop the
procedure as soon as we encounter a negative derivative. Then we would
increase n, and continue. Because of the flatness condition, this procedure
would give us sequences with better and better erasure protection.

We cannot really apply this procedure to codes on channels other than
the erasure channel. This is mainly because we do not have a flatness
condition on those channels, though I think that a similar assertion has to
hold there too. But it is remarkable that some minor parts of this approach
can indeed be carried over. For instance, if we let f (x) = 15,X (1- p(1-x)) - x,
then we know that for successful decoding, we need to have f (x) :::; 0 on
[0,1]. In particular, this shows that 1'(0) :::; 0, which gives us the condition

'x'(O)p'(l) :::; ~.
(See also [10].) This condition can be generalized to other channels, and
is called the stability condition in [8]. capacity-achieving sequences have to
satisfy this condition with equality in case of codes over the erasure channel.
It is conjectured that the same is true for other channels if one replaces
this condition with the stability condition. If one could find analogues of
higher stability conditions, then this would presumably lead to candidates
for capacity-achieving sequences. On the practical side, this would lead to
a deterministic algorithm for the design of good low-density parity-check
codes.

REFERENCES

[1] P. ELIAS. Coding for two noisy channels. In Information Theory, Third London
Symposium, pages 61-76, 1955.

[2] R.G. GALLAGER. Low Density Parity-Check Codes. MIT Press, Cambridge, MA,
1963.

[3] M. LUBY, M. MITZENMACHER, AND M.A. SHOKROLLAHI. Analysis of random pro
cesses via and-or tree evaluation. In Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 364-373, 1998.

[4] M. LUBY, M. MITZENMACHER, M.A. SHOKROLLAHI, AND D. SPIELMAN. Analysis of
low density codes and improved designs using irregular graphs. In Proceedings
of the 30th Annual A CM Symposium on Theory of Computing, pages 249-258,
1998.

[5] M. LUBY, M. MITZENMACHER, M.A. SHOKROLLAHI, AND D. SPIELMAN. Improved
low-density parity-check codes using irregular graphs and belief propagation.
In Proceedings 1998 IEEE International Symposium on Information Theory,
page 117, 1998.

[6] M. LUBY, M. MITZENMACHER, M.A. SHOKROLLAHI, D. SPIELMAN, AND V. STE
MANN. Practical loss-resilient codes. In Proceedings of the 29th annual ACM
Symposium on Theory of Computing, pages 150-159, 1997.

166 M.A. SHOKROLLAHI

[7] D.J .C. MACKAY. Good error-correcting codes based on very sparse matrices. IEEE
Trans. Inform. Theory, 45:399-431, 1999.

[8] T. RICHARDSON, M.A. SHOKROLLAHI, AND R. URBANKE. Design of provably good
low-density parity-check codes. IEEE Trans. Inform. Theory (submitted),
1999.

[9J T. RICHARDSON AND R. URBANKE. The capacity of low-density parity-check codes
under message-passing decoding. IEEE Trans. Inform. Theory (submitted),
1998.

[10J M.A. SHOKROLLAHJ. New sequences of linear time erasure codes approaching the
channel capacity. In Proceedings of AAECC-13, M. Fossorier, H. Imai, S. Lin,
and A. Poli eds, number 1719 of Lecture Notes in Computer Science, pages
65-76, 1999.

[I1J M. SIPSER AND D. SPIELMAN. Expander codes. IEEE Trans. Inform. Theory,
42:1710-1722,1996.

[12J D. SPIELMAN. Linear-time encodable and decodable error-correcting codes. IEEE
Trans. Inform. Theory, 42:1723-1731, 1996.

HYPERTRELLIS: A GENERALIZATION OF TRELLIS
AND FACTOR GRAPH

WAI HO MOW"

Abstract. Factor graphs have recently been introduced as an efficient graphical
model for codes to study iterative decoding algorithms. However, it is well-known that
a factor graph generalizes only the time axis of a trellis, but omits the state transition
representation. In this paper, a new graphical model, called the hypertrellis, is proposed
to overcome this insufficiency of factor graphs. A hypertrellis is in essence a weighted
hypergraph generalization of a traditional trellis. Its time topology, which extends the
time axis of a trellis, can take the form of any factor graph. A key to this extension is the
interpretation of a factor graph as a factor hypergraph. This is facilitated by introducing
a "starfish" drawing representation for hypergraphs, which enhances the applicability
of hypergraph models by enabling simpler drawing and easier visualization, relative to
the traditional representation. The maximum likelihood decoding (MLD) problem is
then formulated as a shortest hyperpath search on a hypertrellis. For hypertrellises
with an acyclic time topology, a hyperpath-oriented MLD algorithm, called the one-way
algorithm, is introduced. The one-way algorithm, as a hypertrellis generalization of the
celebrated Viterbi algorithm, provides insights into efficient management of the surviving
hyperpath history and various practical hyperpath-oriented simplifications. It is shown
that as a MLD algorithm, the one-way algorithm has a lower minimal decoding delay.
The computational complexity and the amount of storage needed are also better than
with the well-known min-sum algorithm. Some connections between the hypertrellis and
another recently proposed bipartite graph model, called the trellis formation, are also
discussed.

Key words. Trellis, factor graph, hypergraph, hypertrellis, shortest hyperpath
search, maximum likelihood decoder, iterative decoding, one-way algorithm.

1. Introduction. An important key to the great success of the Turbo
coding schemes by Berrou et al. [3] is the "near-optimality" of the low
complexity iterative decoding algorithms. MacKay and Neal [17] subse
quently observed that Gallager's classical iterative decoding algorithms [7]
are also "near-optimal" when applied to low-density parity-check codes.1

While some researchers have successfully extended and applied the Turbo
principle [9] to more sophisticated detection problems, most iterative de
coding algorithms were derived heuristically. In 1995, Wiberg et al. [27],
[26] presented a systematic way to devise a class of iterative decoding algo
rithms based on the extended Tanner graphs (also called the TWL graphs)
of codes. Subsequently, McEliece et al. [18] and others pointed out that
Pearl's famous belief propagation technique [21] can be used to systemati
cally derive iterative decoding algorithms based on Bayesian belief network

"Department of Electrical and Electronics Engineering, Hong Kong Univer
sity of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Email:
Iii' .molii'@ieee.org) .

1 Here the term "near-optimality" is used to describe the observation that the per
formance of a suboptimal decoder is only a fraction of a dB in signal-to-noise ratio worse
than the optimal decoding performance at a specified error probability (e.g. at 10- 5) in
the reported computer experiments.

167

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

168 WAIHOMOW

representations of codes. The two approaches are equivalent and gener
ate essentially the same class of iterative decoding algorithms. In 1997,
the factor graph was collectively introduced by a group of researchers as
a generalization of Tanner graphs and other graphical models (see [14]).
The tutorial paper of Kschischang et al. [15] has demonstrated that the
sum-product algorithms on factor graphs generalize many well-known al
gorithms in various research areas, among which iterative decoding algo
rithms are only a special case. It is clear that graphical modelling of codes
plays a very important role in the theoretical understanding and practical
applications of iterative decoding algorithms.

In the area of coding, the most frequently used graphical model is
the trellis, which is a weighted layered graph representation for codes. It
is well-known that the maximum likelihood decoding (MLD) problem can
be formulated as a shortest path search on a trellis. The latter can be
solved efficiently by the celebrated Viterbi algorithm (VA), which is closely
related to the classical dynamic programming technique of Masse and Bell
man (c.f. [10, Section 9]). It is also well-known that any linear convolu
tional or block code can be represented by a trellis. Determination of the
least complicated trellis representation of codes has recently been a topic
of intensive study. The complexity profile of a code trellis is typically mea
sured by the numbers of nodes or edges along the time axis of the trellis.
The VA has also been widely applied to many other detection problems
in the wide areas of communications and signal processing, such as the
demodulation of continuous phase modulation schemes, the sequence de
tection for intersymbol-interference channels, and the multiuser detection
for asynchronous code-division multiple-access channels.

Because of its ubiquitousness, the trellis representation and the VA
have already become essential textbook materials in the area of digital
communications. While the VA is in essence a solution to the problem of
maximum a posteriori (MAP) sequence detection for hidden Markov mod
els [5], most textbooks introduce it as a trellis search algorithm. Although
its other (such as probabilistic and algebraic) formulations are also avail
able in the research literature, the shortest path search formulation is by
far the simplest and most understandable interpretation for the VA. This is
because the path search interpretation allows maximum visualization of the
algorithmic details involved. It is indispensable for efficient implementation
of the VA, especially when practical path-oriented simplifications (such as
the sequential decoding, the M- and the T-algorithms) are required as in
many real-world applications.

With the advent of the Turbo coding technique, the iterative decod
ing algorithms become a very attractive approach to achieve near-MLD
performance. The efficient graphical modelling of codes, say, by using
Bayesian belief networks or factor graphs, holds the key to systematically
devise low-complexity iterative decoding algorithms. As a result, the prob
lem of determining the least complicated graphical representation of codes

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 169

becomes very important. However, the definitions and usefulness of a com
plexity measure depend crucially on the choice of an appropriate graphical
model, which in turns depends on the targeted application. Currently, the
graphical model that attracts most attention in the coding community is
the factor graph.

One might expect that factor graphs will soon become as popular as,
if not more popular than, trellises. However, factor graphs can never take
the place of trellises since they essentially model codes at different "reso
lution" levels. A trellis is a model for Markov chains, whose factor graphs
always have a chain structure. In other words, the useful information of
the state transition structure, which can be visualized in a trellis, is com
pletely omitted in the factor graph representation. In this sense, the factor
graph only generalizes the time axis of a trellis. Roughly speaking, a fac
tor graph models the topology of time variables, whose structure need not
be a chain. The fact that factor graphs do not allow the visualization
of any generalized state transition structure calls for a more sophisticated
graphical model. The introduction of a new graphical model, called the
hypertrellis, that enables visualization of both the time topology and the
generalized state transition structure is the main objective of this work.
In this sense, the hypertrellis "generalizes" both the trellis and the fac
tor graph. It should however be noted that unlike the factor graph, the
hypertrellis is a hypergraph (rather than a bipartite graph) modeI.2

With the hypergraph formulation, it is now possible to generalize some
very well-known results from trellises to hypertrellises. This generalizing
approach is adopted here. Specifically, MLD on a hypertrellis will be for
mulated as a shortest hyperpath search. Based on this formulation, a MLD
algorithm, called the one-way algorithm, which is a generalization of the
VA, will be introduced for a class of hypertrellises. The one-way algorithm
is functionally equivalent to the well-known min-sum algorithm [26, Chap
ter 3]) (also called Pearl's belief revision algorithm [21]) in the sense that
they produce exactly the same hard decoding decisions. Their relationship
is similar to that between the VA and the forward-backward max-MAP
algorithm. The one-way algorithm is computationally simpler than the
min-sum algorithm, and has a smaller storage requirement. Besides, the
min-sum algorithm is commonly formulated as a message-passing mecha
nism while the one-way algorithm will be presented based on the accumu
lation of hyperpath metrics. It should be noted that a similar algorithm on
factor graphs was hinted in Section 3.3 of Reference (26), but no details or
properties of the algorithm were given therein. 3 Besides, it is anticipated

2Strictly speaking, the hypertrellis is not a true generalization of the factor graph,
since the hypertrellis is a hypergraph while the factor graph is a bipartite graph.

3While preparing the final version of this paper, it is recognized that the so-called
one-way algorithm is an instance of non-serial dynamic programming [20], [4] when
applied to optimization problems. It has also been discussed by Shenoy [24] in a general
axiomatic setting. Therefore, the one-way algorithm is actually well-known at least in

170 WAIHO MOW

that the hyperpath search formulation of the one-way algorithm can pro
vide additional insights into various issues on efficient implementation and
reduced-complexity modifications of the algorithm.

The rest of this paper is organized as follows. Section 2 presents
some basics of factor graphs. Section 3 introduces the background and the
"starfish" drawing representation of hypergraphs.4 Based on this represen
tation, the factor hypergraph is introduced as the hypergraph equivalent
of the factor graph. The hypertrellis model, which enables extension of
the time axis of a trellis to any factor hypergraph called the time topol
ogy, is proposed in Section 4. MLD on hypertrellis is formulated as a
shortest hyperpath search in Section 5. Section 6 introduces the one-way
algorithm as a hyperpath-oriented MLD algorithm for hypertrellises with
an acyclic time topology. Some connections between the hypertrellis and
the so-called trellis formation, which is the consequence of another recent
attempt to extend trellises and factor graphs, are discussed in Section 7.
Finally, the concluding remarks are presented in Section 8.

2. Basics of factor graphs. This section presents the basics of factor
graphs necessary for the discussions in the forthcoming sections.

A factor graph model shows how a multivariate global function fac
torizes into a product of local functions. Let g be the global function of a
lSI-variable set denoted by Xs = {Xl, X2,"', xlsl}, where S is the index
set {I, 2, ... , lSI}. The variable domain, called the alphabet, can take val
ues from any specified discrete set and the function can be defined on any
commutative semi-ring. Let Ii, for j = 1,2,···, N, be a local function of
a ISjl-variable set denoted by XS j with Sj C S such that the collection
Q = {Sl, S2,"', SN} of subsets of S corresponds to the factorization

N

(1) g(Xs) = II fj(Xsj).
j=l

The factor graph G = (V, E) representing this factorization is a bipartite
graph with its node (or vertex) set V being partitioned into a variable node
set Vx = S and a (local) function node set Vf = Q. The edge set E is
defined by all variable-function node pair (vx,vf) E (vx, Vf) with Vx E vf'
Typically S = Sl U S2 U ... USN and Q alone is sufficient to characterize
the topology of G.

As an example, for the (7,4,3) Hamming code, Q = {{I, 2, 3, 5}, {I, 2,
4,6},{1,3,4,7}}. Figure 1 shows the factor (or actually Tanner) graph

the area of optimization. However, to the best of our knowledge, its formulation as a
shortest hyperpath search is new.

4Wbile preparing the final version of the paper, it is recognized that the proposed
"starfish" drawing representation of hypergraphs is not new, and was used to depict
hypergraph-theoretic language grammars by Habel [8].

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 171

representing the following factorization of its codeword indicator function

which equals 1 if the arguments (i.e. Xl, X2, •.• , X7 in this case) form a
valid codeword and equals 0 otherwise. Here, all variables and local func
tions take only binary 0-1 values, "ED" denotes the mod-2 addition, and
"x" denotes the usual integer multiplication. Note that in this case, the
multiplication and addition operators in the commutative semi-ring are
specialized to mod-2 addition and integer multiplication operators respec
tively. In Figure 1, variable nodes are drawn as circles and function nodes
as "ED". Every edge is drawn as a line joining the variable-function node
pair it specifies.

FIG. 1. The factor graph of the (7,4,3) Hamming code.

A trellis T = (V, E) is a layered graph, where the node set V partitions
into m disjoint classes of nodes denoted by Vi, V2 , .•• , V m respectively, and
the edge set E partitions into m - 1 disjoint classes of edges denoted by
E l , E 2 ,···, Em - l respectively. For every edge ei E Ei with 1 ~ i < m,
ei = {Vi, Vi+d for some Vi E Vi and Vi+l E Vi+l' The labels of node classes
can be interpreted as discrete time indices, so that a node Vi represents a
state at time i and an edge ei represents a possible state transition from
time i to time i + 1. Note that though it is typical that a trellis begins
with a known state (i.e. IVll = 1), our definition of a trellis does not impose
any restriction on the sizes of the node classes. As mentioned in Section
1, a factor graph in essence generalizes only the time axis of a trellis,

172 WAI HO MOW

but omits the representation of the state transition structure. Figure 2
exemplifies this insufficiency of the factor graph representation, which is
the key motivation behind this work. Two different trellises corresponding
to the same factor graph are shown in the figure. As a matter of fact, any
trellis with the same time axis (or the same number of layers) corresponds
to the same factor graph. This is of course the consequence of the lack of
any state transition information in the factor graph representation. Further
properties of factor graphs can be found in References [14] and [15].

~ .-........ ~.-\ " { ~.

t J

FIG. 2. Two different trellises corresponding to the same factor graph.

3. Hypergraph modelling. For some modelling problems, the hy
pergraph notion is required as the conventional graph concept becomes
insufficient. This section introduces the hypergraph model, which is a key
concept required for the introduction of the hypertrellis model. It should be
noted that the "starfish" drawing representation to be presented is for gen-

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 173

eral hypergraph models, though only factor hypergraphs and hypertrellises
will be discussed in this paper.

3.1. Definitions. A hypergraph is a pair H = (V, E), where the node
set V is defined as {I, 2, ... , IVI} and the hyperedge set E={el,e2, ... ,eIEI}
is a collection of subsets of V. Note that V is defined as an index set here
for the sake of notational convenience, and can in fact be replaced by any
other set with the same number of elements. Note also that by taking
the hyperedge set as the second class of nodes, a hypergraph has also a
description as a bipartite graph. The degree of a node is the number of
hyperedges to which it belongs (or it is graphically joined). The degree of a
hyperedge is simply its set size (or the number of nodes it graphically joins).
An edge is a hyperedge of degree 1 or 2.5 A hyperedge is said to be proper
if it is not an edge. In words, a hypergraph is a generalization of a graph
so that three or more nodes can be joined together by a single hyperedge.
Clearly, if a hypergraph has no proper hyperedge (Le. all hyperedges are
edges), it reduces to a graph. Note that all hypergraphs considered in this
section are undirected. A directed hypergraph can be defined by associating
a direction to every hyperedge, as will be done in Section 4.

The following definitions will be useful in the forthcoming discus
sions. A leaf node is a node of degree one. A hypergraph is weighted
if every hyperedge is associated with a value called a weight. A con
nected hypergraph H is said to be cyclic if it contains at least one hy
peredge whose removal does not disconnect H. Only connected hyper
graphs will be considered here. Any hypergraph that is not cyclic is said
to be acyclic. The dual of a hypergraph is defined by exchanging the re
spective roles of the node set and the hyperedge set. Mathematically, the
dual hypergraph H* = (V*, E*) of a hypergraph H = (V, E) is defined by
V* = {I, 2,···, lEI} and E* = {ei, e:;, ... , eivl}' where i E ej if and only if
j E ei, for all i E V* and j E V. It is not difficult to see that the dual of
H* is H itself.

3.2. Traditional "closed-curve" drawing representation. Like
a graph, a hypergraph is conventionally drawn as a set of circles repre
senting the nodes, and a set of lines joining one or two nodes representing
the edges. Every proper hyperedge of degree k (Le. k 2 3) is traditionally
drawn as a simple closed curve encompassing the k nodes it joins. Refer to
[2] and [16] for further background knowledge on hypergraphs.

As an example, the hypergraph in Figure 1 of [2] is reproduced here
as Figure 3. In this example, there are eight nodes and six hyperedges,
three out of which are edges. Namely, in our notation, el = {3, 4, 5},
e2 = {5,8}, e3 = {6, 7, 8}, e4 = {2, 3, 7}, e5 = {1,2}, and e6 = {7}. Even
from this small example, it is not difficult to see that drawing and labelling

5 A degree-l edge is viewed here as a dangling edge connected to one node only and
is in fact unpopular in the traditional graph representation.

174 WAIHOMOW

hyperedges could be quite challenging in general, especially for hypergraphs
having many high-degree hyperedges.

FIG. 3. The traditional "closed-curve" representation of a hypergraph example.

Almond [1] pointed out that hypergraphs are difficult to visualize and
draw, and hence may be less favorable than its alternative graphical models.
Indeed, difficulties in visualization and drawing may limit the application
of hypergraph models to mostly simple unrealistic models.

3.3. The "starfish" drawing representation. It is observed that
these disadvantages of hypergraph models are unessential, but are mainly
due to the traditional manner of drawing proper hyperedges. To overcome
this problem, we introduce the "starfish" drawing representation of proper
hyperedges, which can be viewed as a consequence of the bipartite graph
description of a hypergraph. A proper hyperedge of degree k is drawn as
a starfish-like k-line segment, each of the k ends is connected to one node.
Compared with the traditional "closed-curve" representation, it is in fact
a more natural extension of the single-line representation of edges. Fig
ure 4(a) shows the "starfish" representation of the same hypergraph shown
in Figure 3. Though unessential, for the sake of clarity, a solid circle is
added to the "starfish" center of every proper hyperedge. This represen
tation avoids the unnecessary complication arising from drawing multiple
overlapping closed curves and allows hyperedges to be labelled in a straight
forward manner. As we shall see later, the "starfish" representation allows
rather complicated hypergraphs to be drawn and labelled in a systematic
manner and enables easy visualization.

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 175

o

(b)

FIG. 4. The hypergraph example in Figure 3 redrawn in: (a) the "starfish" repre
sentation; (b) the "closed-curve" representation after rearrangement.

To show that the clarity of Figure 4(a) is not merely due to careful re
location of the nodes, the same hypergraph is redrawn in the "closed-curve"
representation in Figure 4(b). While the latter is an obvious improvement
of Figure 3 (thanks to the insight gained from Figure 4(a)), drawing and la
belling proper hyperedges are still non-straightforward. The relative merit

176 WAIHOMOW

of the "starfish" drawing representation will become even more obvious
when practical hypergraph models of large sizes are represented.

3.4. Factor hypergraph. Without loss of generality, let the two
classes of nodes in a bipartite graph be represented by circles and "EB"
respectively. The existence of the aforementioned bipartite graph descrip
tion for any hypergraph suggests that the two graphical models can be
made mathematically equivalent. Furthermore, they are almost graphically
identical with the "starfish" drawing representation of hypergraphs. The
"starfish" of a proper hyperedge of degree k (with the central solid circle)
resembles a "EB" node together with its k connecting edges in a bipartite
graph. The only exception is when k = 2 and the hyperedge reduces to an
edge, which is simply drawn as a single-line segment without any solid cir
cle. It is noteworthy that the role of a solid circle in a hyperedge "starfish"
is like that of a "soldering point" in the drawing of a circuit diagram. Its
presence is for the purpose of clarity and, in some cases, may be omitted
without ambiguity. For example, all solid circles in Figure 4(a) can be
omitted without ambiguity. Figure 5 shows the factor graph corresponding
to the hypergraph in Figure 4(a). Note however that this equivalence re
lationship depends on how the two node classes in the bipartite graph are
labelled. More specifically, if every circle node together with its connecting
edges in the bipartite graph is interpreted as a hyperedge, a hypergraph
that is the dual of the previous one is resulted.

G) CD

FIG. 5. The factor graph corresponding to the hypergraph in Figure 4(a).

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 177

Based on this graphical equivalence, any factor graph drawing can be
interpreted as a factor hypergraph. A factor hypergraph H = (V, E) has
the node set V = Vx and the hyperedge set E = VI, where Vx and VI
are the respective variable and function node sets of the equivalent factor
graph. There is no factor hypergraph counterpart corresponding to the
definition of an edge set in a factor graph. In this sense, the mathematical
definition of a factor hypergraph is simpler than that of a factor graph.
Following the discussion, it is now unsurprising that any algorithm defined
on a factor graph has a factor hypergraph equivalent, and vice versa. 6

In the "starfish" drawing representation, the choice of using a solid
circle to indicate the center of a proper hyperedge is arbitrary. In other
words, the solid circle can be replaced by any other marker. If it is replaced
by "EB", any hypergraph having only proper hyperedges has exactly the
same appearance as a factor graph. For example, Figure 1 may as well
be interpreted as the factor hypergraph of the (7,4,3) Hamming code. In
subsequent sections, whether a graphical drawing should be interpreted as
a factor graph or as a factor hypergraph will be clarified by the context
of discussion. From here on, only the "starfish" drawing representation of
hypergraphs will be used.

4. Hypertrellis modelling. The graphical similarity between fac
tor hypergraphs and factor graphs implies that both graphical models also
share similar shortcomings. In particular, both models have omitted the
state transition information as discussed in Section 2. The discussion so
far seems to suggest that factor hypergraphs are simply as good (or as
bad) as factor graphs as a graphical model. Is there any significant advan
tage of factor hypergraphs over factor graphs besides its slightly simpler
mathematical definition? Our introduction of factor hypergraphs is sim
ply an intermediate step to the derivation of the hypertrellis model, which
is a natural weighted hypergraph extension of trellises. In our opinion,
the trellis-like extensions of other graphical models such as factor graphs
and Bayesian networks are also possible. However, they appear to be less
natural and more complicated without applying the notion of a weighted
hypergraph. This topic will be further discussed in Section 7.

4.1. Definitions. A hypertrellis is a triple T = (H, V, E), where
the time topology H = (VH,EH) with VH = {1,2,·· ·,m} and EH =
{e{i, e!f, ... , e;;} is a hypergraph, the node set V partitions into m dis
joint classes of nodes denoted by VI, V2 ,···, Vm respectively, and the hy
peredge set E partitions into n disjoint classes of hyperedges denoted by
E I , E2 ,· •• , En respectively. Define the one-to-one mapping a by a(i) = Vi,
for i = 1,2,···, m. It maps the ith node of the time topology to the ith

6 According to Almond [1], Kong [11] has already pioneered the use of hypergraphs to
represent the factorization of a global belief function in as early as 1986. It is likely that
the so-called factor hypergraph is just a rediscovery of Kong's factorization hypergraph.

178 WAIHOMOW

node class of the hypertrellis. For j = 1,2, ... , n, the jth hyperedge class
E j is a subset of the Cartesian product of all node classes in a(ef\ where
a operates on e? element-wise. Note that a hypertrellis T is itself a hyper
graph with the node set V and the hyperedge set E. Only hypertrellises
with a connected time topology are considered in this paper.

As a hypergraph, a hypertrellis is weighted if each of its hyperedges
is assigned a value called a hyperedge weight. Adopting the notation in
Section II, if a weighted hypertrellis T represents the factorization structure
of a global function g, its time topology is the factor hypergraph of 9 (i.e.
(VH,EH) = (8,Q)), the ith node class Vi is the alphabet of Xi, the jth
hyperedge class Ej is the alphabet of Xsj , and the hyperedge e E Ej

representing the realization XSj = e has a hyperedge weight >.(e) = Ji(e).
A hypertrellis is said to be t-acyclic if its time topology is an acyclic

hypergraph. Otherwise, it is said to be t-cyclic. Note that it is possible
that at-acyclic hypertrellis is a cyclic hypergraph.

A complete hyperpath P = (VP, E P) = ({vi, vf,···, v~}, {ei, ef,···,
e;}) in T is a sub-hypergraph of T with vf E Vi for i = 1,2, ... ,m, ef E E j

for j = 1,2, ... ,n and ef U ef ... U e; = V p. Any complete hyperpath in
T is isomorphic to its time topology. Any connected sub-hypergraph of a
complete hyperpath is called a hyperpath. If a hyperpath is not complete,
it is said to be partial. A hyperpath is said to be weighted if each of its
hyperedge is assigned a hyperedge weight. The sum of all hyperedge weights
associated with a hyperpath is called the hyperpath metric. It is assumed
that every hyperedge in T belongs to at least one complete hyperpath.
Therefore, a hypertrellis is essentially equivalent to the union of all of its
complete hyperpaths.

A hypertrellis specializes to a trellis if its time topology reduces to
a time axis, that is isomorphic to a chain graph. In our notations, it
means that after a proper re-Iabelling of the edges in the time topology,
e? = {j, j + I}, for j = 1,2, ... ,n = m - 1. In words, a hypertrellis is the
generalization of a trellis, whose time axis is extended to a time topology
represented by the equivalent factor hypergraph. A trellis is conventionally
viewed as a two-dimensional graph, whose nodes are located according to
the time and state axes. From this perspective, a hypertrellis is a gener
alized trellis whose time axis has been extended from a chain graph to a
hypergraph. It is also an extension of the factor hypergraph so that the
generalized state transition structure can also be visualized.

4.2. Drawing representation. As a hypertrellis is also an m-partite
hypergraph, the "starfish" drawing representation can be applied. For prac
tical applications, it is important to find a systematic way of drawing hy
pertrellises that facilitates the visualization of the relationships among hy
perpaths. To achieve this, one can imagine a hypertrellis as a 3-dimensional
network model with all nodes in Vi grouped together in the same horizon-

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 179

tal but different vertical position. The hypertrellis can then be drawn as a
projected 2-dimensional view of the 3-dimensional network model.

In Figures 6 to 10, the following notations for drawing hypertrellises
will be adopted. Each node is drawn as a cube. All nodes encircled by
a dotted line belong to the same node class. To highlight the all-zero
hyperpath, all of its hyperedges are drawn as bold lines. The upper and
lower nodes of the same class represent the bits 0 and 1 respectively.

Figure 6 shows the hypertrellis and the factor hypergraph of the (3,2)
single parity check code. Node classes in the hypertrellis are in one-to
one correspondence with nodes in the time topology. As there is only
one hyperedge in the time topology, it corresponds to a single hypertrellis
section. There are a total of four hyperedges in the section. Every three
nodes joined together by a hyperedge specifies a valid codeword.

\

FIG. 6. The hypertrellis and the factor hypergraph of the (3,2) single parity check
code.

Figure 7 shows the hypertrellis and the factor hypergraph of a (7,4,2)
linear binary code. There are seven node classes and three hypertrellis
sections. Hyperedges in the same section belong to the same class. Node
classes in the hypertrellis are in one-to-one correspondence with nodes in
the time topology. Hypertrellis sections in the hypertrellis are in one-to
one correspondence with hyperedges in the time topology. Hypertrellis

180 WAIHOMOW

sections are joined together via common nodes. Nodes joined together by
a hyperedge specify a valid codeword segment for the corresponding vari
ables. In other words, every hyperedge specifies a possible choice of the
corresponding codeword segment. Consequently, every valid codeword cor
responds to a unique complete hyperpath in the hypertrellis. A rigorous way
to derive this one-to-one correspondence between codewords and complete
hyperpaths is to set all hyperedge weights (i.e. all local function values
fj(.)'s) to 1 so that the global function g becomes the codeword indicator
function. Therefore, a code hypertrellis, even without specifying weights,
allows graphical visualization of the codeword indicator function.

Figure 8 shows some possible factor graph and hypertrellis represen
tations of a 3-section 2-state unterminated trellis. It is widely accepted in
the literature that the factor graph in Figure 8(a) corresponds to the time
axis of the trellis in Figure 8(d). Contrary to the conventional wisdom, the
introduced hypertrellis model suggests that the factor graphs in Figures
8(a) and (b) should correspond to the time topology of the hypertrellis in
Figure 8(c) and the time axis of the trellis in Figure 8(d) respectively.

Figure 9 shows the hypertrellis of the (7,4,3) Hamming code, whose
factor graph was shown in Figure 1 and whose codeword indicator function
was expressed in (2). The hypertrellis and the factor hypergraph of a Turbo
code with unit-memory recursive systematic convolutional components and
a 3-bit interleaver are shown in Figure 10.

Note that there is no degree-l edge in the time topologies of the hy
pertrellises shown in Figures 6 to 10 because all the local functions have
more than one variables as their arguments. In general, a local function
of one variable specifies the weights assigned to a class of dangling edges,
each of which connects to a distinct node in a node class. For notational
simplicity, all degree-l edges are omitted and their weights are shown next
to their associated nodes. As an example, Figure 11 shows the decoding
hypertrellis equivalent to the factor (actually Tanner) graph example of the
(7,4,2) binary linear code in Figure 3 of Reference [6], which is actually a
polished version of Wiberg's example presented in Figure 3.3 of Reference
[26]. The hyperedge weights therein are given by the correlation metrics
derived from the outputs of an additive white Gaussian noise channel.

4.3. Complexity measures. The efficiency or complexity of a spe
cific graphical model for a given code is reflected in some combinatorial
properties of the model in use. For the hypertrellis model, two natural
complexity measures are the node-complexity profile and the hyperedge
complexity profile. The node-complexity profile (NCP) is defined by the
sequence (lVII, 1V21,' .. , IVml), where IViI represents the number of nodes in
the ith node class. The hyperedge-complexity profile (ECP) is defined by
the sequence (IEIllell,IE21Ie21"",IEnllenl), where lejl and IEjl represents
the degree and the number of hyperedges in the jth hyperedge class respec
tively. They are reasonably good estimates of the complexity of decoding

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 181

algorithms with a hypertrellis formulation and may be used as efficiency cri
teria for comparing different hypertrellis representations of the same code.

As an example, consider the hypertrellis of the (7,4,3) Hamming code
in Figure 9. Its NCP and ECP are (2,2,2,2,2,2,2) and (84,84,84) respec
tively.

5. Maximum likelihood decoding as a shortest hyperpath
search. For MLD over memory less channel, the commutative semi-ring,
on which the global function 9 is defined, is typically taken as the min-sum
real-number ring. That is, the multiplication and addition operators in the
general semi-ring are specialized to the real-number addition and minimum
operators respectively. Adopting the mathematical notations in Section 2,
the factorization in (1) becomes

N

g(Xs) = LJj(XsJ.
j=l

The goal of MLD is to find the most likely information symbols correspond
ing to the value of Xs (Le. the most likely codeword) with

ming(Xs),
Xs

where the minimization is taken over all possible values of Xs. As dis
cussed in Section 4.2, every value of Xs corresponds to a unique complete
hyperpath in the code hypertrellis. Among all possible hyperpaths in the
decoding hypertrellis, the one with minimum hyperpath metric gives the
most likely codeword. Such a hyperpath is called the shortest hyperpath.
Therefore, MLD can be viewed as a shortest hyperpath search on the de
coding hypertrellis. This is a hypertrellis generalization of the well-known
result that MLD can be interpreted as a shortest path search on the de
coding trellis.

Remark. Strictly speaking, a shortest hyperpath search only finds the
most likely codeword instead of information symbols as required by the
MLD. This is not a problem for systematic codes, since information sym
bols are simply part of the codeword. In the case of non-systematic codes,
the code should be first expanded into a systematic one by including all
information symbol variables before being modelled by a hypertrellis. Typ
ically, the information symbol variables are leaf nodes in the time topology
and do not increase the ECP of the hypertrellis. For example, an MLD
algorithm based on the hypertrellis in Figure 8(c) or the trellis in Figure
8(d) has the same complexity since the only function of the information
bits (or the leaf nodes) is to label the hyperedges.

6. One-way algorithm for T-acyclic hypertrellises. The short
est hyperpath search interpretation of MLD on hypertrellis discussed in
Section 5 is valid whether the hypertrellis is t-cyclic or t-acyclic (as defined

182 WAIHOMOW

in Section 4.1). It is well-known that the min-sum algorithm performs
MLD on acyclic factor graphs [26]. Likewise, the one-way algorithm to
be presented is an MLD algorithm on t-acyclic hypertrellises (Le. also on
acyclic factor graphs or hypergraphs). For this reason, we shall only con
sider t-acyclic hypertrellises in this section.

Note however that the one-way algorithm is not identical to the min
sum algorithm. The min-sum algorithm specializes to the Max-MAP algo
rithm,7 while the one-way algorithm specializes to the VA.

Consider the time topology of at-acyclic hypertrellis, which is essen
tially a factor hypergraph with a tree structure. The computation of the
one-way algorithm progresses according to a directed version of the time
topology called the computational time topology. By selecting a variable
node as the root node, all variable nodes can be classified according to
which levels of the tree they belong to. Let us adopt the convention that
the root node is in level 0 and the level numbers are in increasing order.
As a consequence of the tree structure of the acyclic hypergraph, all nodes
connected by the same hyperedge have the same level number except one,
whose level number is exactly one less than the others. A direction can be
defined for every hyperedge by assigning the connected node with a smaller
level number as a sink node and other connected nodes as source nodes. In
this way, a directed acyclic hypergraph is resulted for every choice of the
root node. Figure 12 shows an example of how to obtain a computational
time topology from the acyclic factor hypergraph in Figure 7. In the figure,
an arrow head is added to point to the sink node joined by every directed
hyperedge.

The computational procedure follows the hyperedge directions of the
computational time topology, namely, from leaf nodes to the root node.
The set of level-k hyperedges are those joining level-k nodes and level-(k+ 1)
nodes. The computation for nodes and hyperedges on the same level may
proceed in any order. This essentially imposes a partial ordering constraint
in the computational procedure. For notational convenience, the one-way
algorithm will be presented in decreasing levels of nodes and hyperedges.
It is important to remember that the actual computational time schedule
needs only to satisfy the aforementioned partial ordering constraint.

Denote the (K + I)-level partition of node classes {VI, V2 ,···, Vm } by
{Vl, vl,···, Vk}, and the K-level partition of hyperedge classes {EI , E2 ,

···,En } by {EJ',Er,···,Ef{_I}' Note that vl = {Vroot} contains only
the root node class corresponding to the root node in the time topology.
Define by E (v) = {e E E : vEe} the set of all hyperedges joining node v,
and recall that A(e) denotes the weight of the hyperedge e.

7Strictly speaking, it is the max-sum (rather than the min-sum) algorithm that spe
cializes to the Max-MAP algorithm. However, the max-sum and the min-sum algorithms
are algorithmically equivalent since the minimum operator becomes the maximum op
erator (and vise versa) if all of its operands are negated and the output is negated
again.

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 183

The one-way algorithm recursively computes the so-called
node metric r(v) as follows:
Step 1: For all vL E vI< and for all v E vL , set r(v) =
,x({v}).
(Remark. This step initializes alllevel-K node metrics as
the corresponding degree-l edge weights).
Step 2: For k = K - 1, K - 2, ... ,0, and for all vL E VkL

and for all v E vL ,

(3) r(v) = ,x({v}) + L {~~~ [,x(e) + L r(v1
)]}

eLEEf(v) v'Ee-{v}

where Et(v) = {e L n E(v) : eL E En is the collection
of all level-k hyperedge classes, which consist only of the
hyperedges joining node v. After computing the minimum
in (3) for each hyperedge class eL , the surviving hyperedge
in eL that achieves the minimum is memorized.
(Remark. This step calculates, in a node-by-node level-by
level manner, the node metric r(v) as the hyperpath met
ric of the shortest partial hyperpath terminating at node v,
following the hyperedge directions in the computational
time topology. It is noteworthy that the add-compare
select-add operations in (3) generalizes the well-known
add-compare-select operations in the Viterbi algorithm.)
Step 3: Compute minvEv,oot r(v) as the overall shortest
complete hyperpath metric and identify the node Vrnin that
achieves the minimum. The shortest hyperpath is then
obtained by tracing back all surviving hyperedges starting
from node Vrnin. Each information symbol associated with
the most likely codeword is decoded according to which
node in the corresponding node class belongs to the short
est hyperpath.

An example will clarify the details of the algorithm. Figure 13 presents
a detailed application of the algorithm to the decoding hypertrellis in Fig
ure 11. Figures 13(a) and (b) show the surviving hyperedges and node
metrics after the respective level-l and level-2 computations in Step 2. As
weights in the example are based on the correlation metric instead of the
Euclidean metric, the minimum operation in (3) is replaced by the maxi
mum operation (see also Footnote 7). In the figure, the node metrics r(v)'s
and the hyperedge values calculated by the expression in the square brack
ets of (3) are shown. Surviving hyperedges are drawn as bold lines. From
Figure 13(b), it can be seen that the "shortest" hyperpath metric is 15,
and the overall "shortest" complete hyperpath is shown as a bold dotted
line. The seven decoded bits, four of which are information bits, are also

184 WAIHOMOW

shown as node labels in a factor hypergraph. Unsurprisingly, the decoded
bits in the example are exactly the same as those in Figure 3 of [6].

The example sheds light on some general implementation issues of the
presented algorithm. Let a node v in a hypertrellis belong to the node
class a(vH), where vH is a variable node in the time topology. (Recall the
definition of the mapping a in Section 4.1.) The number of surviving hy
peredges needed to be memorized at node v is deg(vH) -1, where deg(v H)

denotes the degree of the variable node vH • In particular, if vH is a leaf
node, it is unnecessary for node v to memorize any surviving hyperedge.
The storage requirement depends on the number of hyperedges in the hy
peredge class E j joining v. For the example in Figure 13, there are only
4 out of 14 nodes, which need to memorize surviving hyperedges. Each of
the two nodes in the center needs to memorize two hyperedges, and each of
the other two nodes needs to memorize one hyperedge. There are a total
of six selections of surviving hyperedges, each of which requires only 1 bit.
Hence, a total of 6 bits are sufficient to store the whole hyperpath history.
In addition, the number of node metrics to be stored is upper-bounded by
the maximum number of nodes in one level of hypertrellis excluding the
highest level K, i.e. maxJ:=c/ L:vLEVkL IvLI. The actual storage requirement
is typically much less.

With the same performance, the computational complexity of the one
way algorithm is approximately half of that of the min-sum algorithm.
Following the discussion above, the storage requirement of the former is also
much lower than that of the min-sum algorithm, which typically requires
to store the node metric for every node. Therefore, the presented one-way
algorithm can achieve the same performance at much lower computational
and storage complexities relative to the well-known min-sum algorithm.

It should be clear from the procedure that it is a hypertrellis gener
alization of the VA. If the central node of the computational time axis of
a trellis is chosen as the root node, the one-way algorithm specializes to
the bidirectional VA, which is well-known for halving the decoding delay
by doubling the hardware complexity. For general hypertrellises, different
choices of the root node in the computational time topology may result in
different decoding delays. For delay-constrained applications, a high degree
of parallelism in the decoding algorithm is desirable. Assuming maximal
parallelism, it is not difficult to see that the minimum achievable delay in
terms of the number of hyperedges is equal to approximately half of the
diameter of the time topology. The minimum decoding delay achievable by
the min-sum algorithm is twice as long.

7. Connections with trellis formations. Independent of our work
on hypertrellises [19], there is another graphical generalization of factor
graphs and trellises, called trellis formations, proposed by Kotter and
Vardy [13]. As suggested by its name, it is a graphical structure based
on trellis sections. In general, a factor graph has to be properly normalized

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 185

before it can be converted into a trellis formation. A normalized factor
graph satisfies the constraint that each of its function nodes must join no
more than two state nodes [12] so that it corresponds to a trellis section.8

In our terminology, the normalization process ensures that the factor hy
pergraph must be a graph.

There is another type of normalized factor graphs which are equiva
lent to Forney's generalized state realization graphs. This second type of
normalized factor graphs satisfy the constraint that each state node must
be joined by no more than two edges [12]. In our terminology, this second
type of normalization ensures that the dual of the factor hypergraph must
be a graph (c.f. Section 3.1 for the definition of a dual hypergraph).

Since the time topology of a hypertrellis can be an arbitrary hyper
graph, trellis formations are equivalent to a subclass of hypertrellises whose
time topologies satisfy the aforementioned graph constraint. From our
viewpoint, the graph constraint on factor hypergraphs is necessary simply
because trellis formations are constructed based on trellis sections. With
the concept of hypertrellis sections, any factor graph (or its equivalent fac
tor hypergraph) can be expanded into hypertrellis in a systematic manner
as discussed.

Finally, the differences in the respective complexity measures for trel
lis formations and hypertrellises deserve some remarks. As an example,
consider the (7,4,3) Hamming code again. The node-complexity and edge
complexity profiles of its trellis formation are (2,2,2,2,2,2,2,8,8,8) =
(2783) and (8,8,8,8,8,8,8,8,8,8,8,8) = (812) respectively, while the node
complexity and hyperedge-complexity profiles of its hypertrellis are (27)
and (8~) respectively, as given in Section 4. The complexity measure of
a code depends on the graphical model in use. In [12], the product of all
elements in the node-complexity profile of a trellis formation was used to
measure the complexity of a particular code representation. For a given
code, the simplest representation under the trellis formation modelling and
that under the hypertrellis modelling could be very different. As no nor
malization process of the factor graph is involved and trellis formations are
equivalent to a subclass of hypertrellises, we believe that the complexity
measure defined on hypertrellises should give a more accurate measure of
the actual decoding complexity.

8. Concluding remarks. A "starfish" drawing representation of hy
pergraphs that enables simpler drawing and easier visualization than the
traditional "closed-curve" representation has been introduced to enhance
the applicability of hypergraph models. A hypergraph approach to mod
elling the function factorization was investigated. The hypergraph equiv
alents of factor graphs, called factor hypergraphs, were introduced. Using
the "starfish" representation, the graphical appearance of the factor hy-

8 A reviewer pointed out that Kotter introduced the constraint simply for easier
mathematical handling.

186 WAIHOMOW

pergraph was made almost identical to that of the equivalent factor graph.
Hypertrellises have been proposed as a weighted hypergraph extension of
trellises and factor graphs so that both the generalized time and state tran
sition structures can be visualized graphically. It was pointed out that the
recently proposed trellis formations are equivalent to a subclass of hyper
trellises and the complexity measures defined on hypertrellises are likely to
be more accurate.

MLD was formulated as a shortest hyperpath search on hypertrellises.
For t-acyclic hypertrellises, the one-way algorithm was introduced as a
solution to the shortest hyperpath search problem. It is more attractive
than the well-known min-sum algorithm in terms of the computational
complexity, the storage requirement and the minimal decoding delay.

The role of the one-way algorithm for hypertrellises is similar to that
of the famous VA for trellises. It is anticipated that hyperpath-oriented
simplifications of the one-way algorithm can be derived in a way similar to
those well-known path-oriented simplifications of the VA such as the M
algorithm and the T-algorithm. This is one of our future research topics.

Finally, it should be remarked that while the hypertrellis model and the
one-way algorithm were discussed in the context of decoding, its application
areas beyond coding are numerous and are as wide as those of factor graphs
[15].9

Acknowledgements. This author is deeply indebted to Prof. Joachim
Hagenauer and his research team, Technische Universitat Miinchen, for
their hospitality and many stimulating activities during his visit in 1996
sponsored by the Humboldt Foundation. Without them, the motivation
behind this work would not have existed. He sincerely thank Prof. Ray
mond Yeung, The Chinese University of Hong Kong, who noted what was
originally called the "joint-oriented graph" is in fact the well-known hyper
graph and brought his attention to Kotter's works in Reference [12]. He
would also like to acknowledge Prof. Susumu Yoshida, Kyoto University,
for providing an excellent working environment, in which the first draft of
this paper was completed, during his I-month visit in 2000 sponsored by
the Telecommunications Advancement Organization of Japan. He is grate
ful to Prof. P. P. Shenoy, University of Kansas, for providing information
about his works on valuation networks. Finally, he would like to thank the
anonymous reviewer and the editors, Dr. J. Rosenthal and Dr. B. Marcus,
for their efforts in detailed proofreading and improving the presentation of
this paper.

9While preparing the final version of this paper, it is recognized that the factor
graph is in fact a special case of Shenoy's valuation network [23] and the sum-product
algorithm is an instance of the Shenoy-Shafer local computation architecture [25]. The
latters are well-known in the area of probabilistic expert systems [22]. Therefore, the
proposed hypertrellis model can as well be considered as an extension of the valuation
network.

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 187

FIG. 7. The hypertrellis and the factor hypergraph of the (7,4,2) linear binary code.

188 WAIHOMOW

(a) (b)

... "' ~

~) !) ... , , .. ~

(c)

(....

:)

(d)

FIG. 8. Various factor graph and hypertrellis representations for a 3-section 2-state

unterminated trellis.

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 189

FIG. 9. The hypertrellis of the (7,4,3) Hamming code.

190 WAI HO MOW

FIG. 10. The hypertrellis and the factor hypergraph of a Turbo code with 2 unit
memory recursive systematic convolutional component codes and a 3-bit interleaver.

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 191

!O
\

,
....)

FIG. 11. The decoding hypertrellis equivalent to the factor graph example of the
(7,4,3) linear binary code in Figure 3.3 of Reference [6j.

FIG . 12. A computational time topology with tree level numbers as node labels,
where the root node is labeled with O.

192 WAIHOMOW

(................... \
! i

............ \
!

.. ".,
r

10
"'~""""'-

(a)
,. ,
i i

i

\..,-... ,.~ ... -.. --- \~ -......)

(b)

FIG. 13. The one-way algorithm applied to the weighted hypertrellis in Figure 11.
(a) Level-1 computation. (b) Level-O computation and the decoded codeword.

A GENERALIZATION OF TRELLIS AND FACTOR GRAPH 193

REFERENCES

[1] R.G.ALMOND, Graphical Belief Modelling, Chapman and Hall: London, 1995.
[2] C. BERGE, Hypergraphs, North-Holland, 1989.
[3] C. BERROU, A. GLAVIEUX, AND P. THITIMAJSHIMA, "Near Shannon limit error

correcting coding and decoding: Thrbo codes," Proc. IEEE Int. Con/. Com
mun. (ICC'93), Geneva, Switzerland, 1993, pp. 1064-1070.

[4] U. BERTELE AND F. BRJOSCHI, Nonserial Dynamic Programming, New York: Aca
demic Press, 1972.

[5] G.D. FORNEY, "The Viterbi Algorithm," Proc. IEEE, 61, pp. 268-278, Mar. 1973.
[6] G.D. FORNEY, "On Iterative Decoding and the Two-Way Algorithm," Proc. Inter

national Symposium on Thrbo Codes, Brest, France, 1997.
[7] R.G. GALLAGER, Low-Density Parity-Check Codes, Cambridge, MA: MIT Press,

1966.
[8] A. HABEL, Hyperedge Replacement: Grammars and Languages, Berlin: Springer

Verlag, 1992.
[9] J. HAGENAUER, "The Thrbo Principle: Thtorial Introduction and State of the Art,"

Proc. International Symposium on Turbo Codes, Brest, France, 1997.
[10] A. KAUFMANN, Graphs, Dynamic Programming, and Finite Games, translated

by H.C. Sneyd, Academic Press, 1967, Methodes et Modeles de la Recherche
Operationnelle, originally published in 1964 (in French).

[11] C.T.A. KONG, "Multivariate Belief Functions and Graphical Models," PhD thesis,
Technical Report S-107, Harvard University, Department of Statistics, 1986.

[12] R. KOTTER, "Factor Graphs, Trellis Formations, and Generalized State Re
alizations," presented at the IMA Summer Program on Codes, Sys
tems and Graphical Models, August 2-6, 1999. Downloadable from
http://www. ima. umn. edu/talks/workshops/aug2-13. 99/8-2-13. 99.html.

[13] R. KOTTER AND A. VARDY, "Factor Graphs: Constructions, Classification, and
Bounds," Proc. International Symposium on Information Theory (ISIT'98),
Cambridge, MA, USA, August 1998.

[14] F.R. KSCHISCHANG AND B.J. FREY, "Iterative Decoding of Compound Codes by
Probability Propagation in Graphical Models," IEEE J. Selected Areas in
Commun., 16, pp. 219-230, 1998.

[15] F.R. KSCHISCHANG, B.J. FREY, AND H.-A. LOELIGER, "Factor Graphs and the
Sum-Product Algorithm," submitted to IEEE Trans. Inform. Theory, July 27,
1998. Downloadable from http://www.comm.utoronto.ca/frank/factor/ .

[16] S.L. LAURITZEN, Graphical Models, Oxford University Press, 1996.
[17] D.J.C. MACKAY AND R.M. NEAL, "Near Shannon limit performance oflow density

parity check codes," Electron. Lett., 32(18), pp. 1645-1646, 1996.
[18] R.J. McELIECE, D.J.C. MACKAY AND J.-F. CHENG, "Thrbo decoding as an in

stance of Pearl's belief propagation algorithm," IEEE J. Selected Areas in
Commun., 16, pp. 140-152, 1998.

[19] W.H. MOW, "Hypertrellis: a Generalization of Trellis and Factor Graph," material
presented at the Hong Kong University of Science and Technology, July 7,
1999. Accepted by (though not presented at) the IMA Summer Pr09ram on
Codes, Systems and Graphical Models, August 2-6, 1999. Downloadable from
http://www.ima.umn.edu/talks/workshops/aug2-13.99/8-2-13.99.html .

[20] G.L. NEMHAUSER, Introduction to Dynamic Programming, New York: John Wiley
& Sons, 1966.

[21] J. PEARL, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[22] G. SHAFER, Probabilistic Expert Systems. CBMS-NSF Regional Conference Series
in Applied Mathematics, 67, PA: SIAM, 1996.

[23] P.P. SHENOY, "A Valuation-based Language for Expert Systems," International
Journal of Approximate Reasoning, 3(5), pp. 383-411, 1989.

194 WAI HO MOW

[24] P.P. SHENOY, "Valuation-based Systems for Discrete Optimization," in Uncer
tainty in Artificial Intelligence, 6, pp. 385-400, 1991.

[25] P.P. SHENOY AND G. SHAFER, "Axioms for Probability and Belief-function Prop
agation," in Uncertainty in Artificial Intelligence, 4, pp. 169-198, 1990.

[26] N. WIBERG, Codes and Decoding on General Graphs, Linkoping Studies in Science
and Technology. Dissertations, No. 440, 1996.

[27] N. WIBERG, H.-A. LOEGLIGER AND R. KOTTER, "Codes and Iterative Decoding on
General Graphs," European Transactions on Telecommunications, 6, pp. 513-
525, 1995.

Part 3. Decoding techniques

BSC THRESHOLDS FOR CODE ENSEMBLES BASED ON
"TYPICAL PAIRS" DECODING*

SRINIVAS AJIt, HUI JINt, AAMOD KHANDEKARt, DAVID J.C. MACKAY~,

AND ROBERT J. MCELIECEt

Abstract. In this paper, we develop a method for closely estimating noise thresh
old values for ensembles of binary linear codes on the binary symmetric channel. Our
method, based on the "typical pairs" decoding algorithm pioneered by Shannon, com
pletely decouples the channel from the code ensemble. In this, it resembles the classical
union bound, but unlike the union bound, our method is powerful enough to prove
Shannon's theorem for the ensemble of random linear codes. We apply our method
to find numerical thresholds for the ensembles of low-density parity-check codes, and
"repeat-accumulate" codes.

1. Introduction. In this paper, we consider the performance of en
sembles of codes on the binary symmetric channel. Our particular focus is
on the question as to whether or not a given ensemble is "good," in the
sense of MacKay [7]. In short, an ensemble of codes is said to be good,
if there is a p > 0 such that the ensemble word error probability (with
maximum-likelihood decoding) on a BSC with crossover probability p ap
proaches zero as the block length approaches infinity. The largest such p
for a given ensemble is called the (noise) threshold for the ensemble. Our
main result (Theorem 4.1) is a technique for finding a lower bound on the
ensemble threshold, which is based on the ensemble's weight enumerator.

Of course the classical union bound provides one way of using weight
enumerators to estimate ensemble thresholds, but the estimates are poor.
Gallager [4, Chapter 3] gave a variational method for upper bounding the
probability of maximum-likelihood decoding error for an arbitrary binary
code, or ensemble of codes (given an expression for the average weight
enumerator function) on a general class of binary-input channels. Gal
lager's technique, however, is quite complex, and even in the special case of
the BSC it is difficult to apply to the problem of finding ensemble thresh
olds.1

In this paper we abandon the full maximum-likelihood decoder, and
instead focus on a slightly weaker decoding algorithm, which is much easier
to analyze, the typical pairs decoder. This technique was pioneered by

°The work of Aji, Jin, Khandekar, and McEliece on this paper was supported by NSF
grant no. CCR-9804793, and grants from Sony, Qualcomm, and Caltech's Lee Center for
Advanced Networking. David MacKay's work is supported by the Gatsby Charitable
Foundation.

tDepartment of Electrical Engineering (136-93), California Institute of Technology,
Pasadena, CA 91125.

t Department of Physics, University of Cambridge, Cavendish Laboratory, Madingley
Road, Cambridge, CB3 ORE, United Kingdom.

1 We have been able to show that the thresholds obtained by our method are the
same as the best obtainable by the Gallager methodology.

195

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

196 SRINIVAS AJI ET AL.

Shannon [11, Theorem 11], but as far as we can tell was not used to analyze
ensembles other than the ensemble of all codes (which we call the Shannon
ensemble in Section 5, below) until the 1999 paper of MacKay [7], in which
it was used to analyze certain ensembles of low-density-parity check codes.
In brief, when presented with a received word y, the typical pairs decoder
seeks a codeword x such that the pair (x, y) belongs to the set T of "typical
pairs." (We give a precise definition of T in section 2, which follows.) In
Section 3, we develop an upper bound on the typical-pairs decoder's error
probability (Theorem 3.1) which, like the classical union bound, decouples
the code's weight enumerator from the channel, but unlike the union bound,
when combined with the law of large numbers, gives good estimates for code
thresholds (Theorem 4.1).

We then apply Theorem 4.1 to three families of binary code ensembles:
(1) The Shannon ensemble, consisting of all linear codes of rate R; (2) the
Gallager ensemble, consisting of (j, k) low-density parity-check codes; and
(3) the ensemble of Repeat-Accumulate codes introduced by Divsalar, Jin
and McEliece [2]. In the case of the Shannon ensembles, we show that our
method yields thresholds identical to those implied by Shannon's theorem.
Thus the typical sequence method, despite its sub optimality, loses nothing
(in terms of coding thresholds) for the Shannon ensemble.

Finally, we compare our thresholds to the iterative thresholds for the
Gallager and RA ensembles recently obtained by Richardson and Urbanke
[10], in order to estimate the price paid in coding threshold for the benefits
of iterative decoding. In most cases, this loss is quite small, and in the case
of j = 2 LDPC codes, there appears to be no penalty at all.

The method described in this paper can be readily extended to many
other channel models, including channels with memory (cf. [7, Section II]).
This extension will be developed in a forthcoming paper, where the empha
sis will be on the binary erasure channel and the additive Gaussian noise
channel.

2. Typical pairs. Let T be a set of binary vectors of length n which
is closed under coordinate permutations, and let Z = (Zl, Z2, ... , Zn) be
the BSC noise vector, i.e., the Zi'S are Li.d. random variables with common
density

Pr{Z = O} = 1 - p, Pr{Z = I} = p.

If we define the set T to be a set of "typical" noise vectors, then T repre
sents the typical channel outputs if the zero-word is transmitted, and the
T + x represents the set of typical channel outputs if the codeword x is
transmitted. In the typical-pairs decoder (to be defined shortly)' decoder
errors can result if the channel output is in the typical set of more than one
codeword. We are therefore interested in the quantity Pr{Z E Tn (T+x)}.

If T is invariant under coordinate permutations, the probability
Pr{Z E Tn (T + x)} depends only on the weight of x. Thus we define, for
h = O,l, ... ,n,

BSC THRESHOLDS FOR CODE ENSEMBLES 197

(2.1) Ph(T) = Pr{Z E Tn (T + x)},

where x is any vector of weight h. The quantity Ph (T) is then the proba
bility of error in a typical-set decoder in the case of a code having only two
codewords separated by a Hamming distance h.

For example,

(2.2) Po(T) = Pr{Z E T}.

Since any set T which is invariant under coordinate permutations must
consist of all vectors of weight k E K, where K is a subset of {O, 1, ... ,n},
the probabilities Ph(T) depend only on the set K. A short combinatorial
calculation gives

This is because a vector of weight kl has probability pkl (1 - p)n-k1 , and
there are exactly (h+kl ~k2)/2) (kl-~~~2)/2) vectors of weight kl' which
have the property that when the first h components are complemented,

h n-h
~~

i.e., the vector x = (11···100···0) is added, the resulting vector has
weight k2 . Applying (2.3) to the case h = 0, we obtain

in agreement with (2.2).
In our main application (Theorem 4.1) the set T will be the "typical

sequences" of length n and so will be denoted by Tn. The definition of Tn
is

(2.4)

where <On is a sequence of real numbers approaching zero more slowly than
n-1/ 2 , i.e., <OnVn -+ 00. Then by a straightforward extension of the weak
law of large numbers,

(2.5) lim Pr{Z E Tn} = l.
n-too

Furthermore, by defining Kn = {k : n{p - <on) :::; k :::; n{p + <On)}, and using
the formula (2.3), it is relatively easy to prove that for any 8 in the range ° :::; 8 :::; 2p, we have

(2.6)
. 1

hm --logP6n(Tn) = K(8,p),
n-too n

198 SRINIVAS AJI ET AL.

where K(<5,p) is given by the equivalent formulas

(2.7) K(<5,p) = H(p) - <5 log 2 -(1- <5)H (p; :~2)

(2.8) = H(<5) - pH (:p) - (1 - p)H (2(1 ~ p)) ,

where H(x) is the entropy function, i.e., H(x) = -x log x- (I-x) log(I-x).
(These formulas are true only for <5 < 2Pi for <5 ~ 2p, K (<5, p) is infinite,
since Ph(Tn) = ° for h > 2n(p + En).) In Figure 1, we have plotted the
function K(<5,p) for several values of p.2

1

0.8

0.6

0.4

0.2 p = 0.07 p = 0.10
p = 0.15

0.05 0.1 0.15 0.2 0.25 0.3

FIG. 1. The Function K(o,p) for p = 0.07,0.10.,0.15.

In fact, a closer examination of the limit in (2.6) shows that for a
fixed value of p, the limit is uniform. That is, for a fixed p, there exists a
sequence of positive numbers fin -+ 0, such that

(2.9) I-~ logP"n(Tn) - K(<5,p)I < fin for all 0 < <5 < 2p.

Alternatively, we can write (2.9) as

(2.10)

where <5 = hln.

2In Figure 1, and all the other figures in the paper, computations using logarithms
use natural logarithms.

BSC THRESHOLDS FOR CODE ENSEMBLES 199

3. The typical pairs decoding method. Suppose C is an (n, k) bi
nary linear code, with weight enumerator (Ao, A1 , ••• ,An), i.e., C contains
exactly Ah words of Hamming weight h, for h = 1, ... ,n. We suppose that
at the transmitter, a codeword x E C is selected at random, transmitted
over a BSC with crossover probability p, and received at the destination
as y. The T-decoder tries to infer x based on knowledge of the code C,
the noisy codeword y, and the channel noise parameter p. The T -decoder
works as follows.

For every codeword Xi, the ith "pseudonoise" Zi = Y - Xi is computed.
If there are no indices i for which Zi E T, the decoder fails. Otherwise,
among those indices such that Zi E T, the decoder choose one for which
the Hamming weight W(Zi) is smallest. In short, the decoder chooses the
most likely codeword for which Zi is typical. In what follows we do not
distinguish between decoder error and failure, and denote the probability
of decoder error (or failure) by PE.

THEOREM 3.1. If PE denotes the probability that the T -decoder does
not correctly identify the transmitted codeword, then

n

(3.1) PE :S (1 - Po(T)) + L Ah min(,Bh, Ph(T)),
h=l

where,B = 2Jp(1 - p) is the channel Bhattacharyya parameter.3
Proof. Let (xo, Xl,"" XM-t) be an ordering of the code with Xo being

the all-zeros word, and suppose Xo is transmitted. For i = 0,1, ... , M - 1,
define the following events:

Ti = {Zi E T} (Zi is typical)
Vi = {W(Zi) :S w(zo)} (Zi is more likely than zo)
Si = Ti n Vi (Zi is typical and is more likely than zo)

Then the T -decoder will fail only if at least one of the events To, Sl, ... ,
SM-1 occurs. Thus if £ denotes the event "T-decoder fails, given that Xo
was transmitted," we have (here To denotes the complement of To)

(3.2) = To U To n Uf!~l Si)

= To U lUf!~l Si)

= To U Uf!~l(To n Si)) .

Therefore the probability of T-decoder error, given that Xo was trans
mitted, can be upper bounded as follows:

M-1

(3.3) Pr{£lxo} :S Pr{T~lxo} + L Pr{To n Silxo}.
i=l

3The term f3h in (3.1) is present for technical reasons, e.g., the proof of Theorem 4.1.
Normally, it will be smaller than the term Ph(T) only for very small values of h.

200 SRINIVAS AJI ET AL.

But Pr{Tolxo} = 1 - Pr{Tolxo}, and Pr{Tolxo} = Pr{Z E T} = Po(T),
from (2.2). Thus

(3.4) Pr{T~lxo} = 1 - Po(T).

Also, since Si = Ti n Vi, it follows that

By the familiar union bound argument [8, Theorem 7.5], we have

where hi is the Hamming weight of Xi.
Also note that by definition Zi = Y - Xi, and so we have, for i

1, ... , M - 1, Zi = Zo + (xo - Xi) = Zo - Xi, since Xo is the all-zeros word.
Thus Ti = {zo E T + Xi}, and so

Pr{To n Tilxo} = Pr{Z E Tn (T + Xi)}
= Ph.(T)

where hi is the Hamming weight of Xi. Hence

(3.5)

M-l M-l

L Pr{To n Silxo} :S L min(,Bh., Ph. (T)),
i=l i=l

n

= L Ah min(,Bh, Ph (T)),
h=l

since there are exactly Ah words of Hamming weight h in C. Combining
(3.3) with (3.4) and (3.5), gives (3.1). 0

4. Code ensembles. By an ensemble of linear codes we mean a se
quence Cn1 , Cn2 , ... of sets of linear codes of a common rate R, where Cn•
is a set of (ni' ki) codes with kdni = R. We assume that the sequence
nl, n2, ... approaches infinity. If C is an (n, k) code in the ensemble, we
denote the weight enumerator of C by the list Ao (C), Al (C), ... , An (C).
The average weight enumerator for the set Cn is defined as the list

-(n) -(n) -(n)
Ao (C), Al (C), ... , An (C),

where

(4.1) for h = 0,1, ... ,n.

We define, for each n in the sequence nl, n2, ... , the function

(4.2)
.6. 1 -(n)

rn(<5) = -logA lonJ n
for 0 < <5 < 1,

BSC THRESHOLDS FOR CODE ENSEMBLES 201

Also, we define the ensemble spectral shape :

(4.3) r(c5) ~ lim rn(c5)
n-HxJ

for 0 < c5 < 1,

assuming that the limit exists. In this case, we may write

(4.4) -A(n) _ en(r(o)+o(l))
h - ,

where c5 = hln.
Now we apply Theorem 3.1, using the set Tn, defined in (2.4), to a

code C E Cn:

n

(4.5) PE :::; 'fJn + L Ah(C)Ph(Tn),
h=l

where 'fJn = Pr{T~} -+ 0 by (2.5). If we average (4.5) over all codes in the

ensemble Cn, we obtain the following upper bound on p(;}, the ensemble
decoder error probability:

n

(4.6) P<;';) :::; 'fJn + LA):') Ph (Tn).
h=l

Replacing A~n) with the right side of (4.4), and Ph(Tn) with the right side
of (2.10), (4.6) becomes

n

(4.7) P<;';) :::; 'fJn + L e-n(K(o,p)-r(o)+o(l)).

h=l

It now appears that if p is chosen so that the function K(c5,p) - r(c5) is
positive for all 0 < c5 < 1, so that the exponent in the sum in (4.7) is

always negative, the ensemble word error probability P<;';) will approach
zero, as n -+ 00. This is in fact true, provided we make the following two

technical assumptions about the behavior of A):'), for h = o(n) .
• Assumption 1. There exist a sequence of integers dn such that dn -+

00 and

(4.8)
dn

1· L-A(n) - 0 1m h - .
n-too

h=l

(This assumption says, roughly, that the minimum distance of the ensemble
is at least dn .)

• Assumption 2. There exist a sequence of real numbers On ~ 0 such
that

(4.9) where 1· nOn - 0 1m -- .
n-too dn

202 SRINIVAS AJI ET AL.

We now state our main result:
THEOREM 4.1. Suppose the code ensemble has spectral shape r(8), and

also that it satisfies Assumptions 1 and 2. Then if the crossover probability
p < 1/2 of the channel satisfies

K(8,p) > r(8) for 0 < 8 < 2p,

then pC;;) -+ 0 as n -+ 00.

There is a slightly weaker version of Assumption 1 that guarantees
that the ensemble bit error probability approaches zero:

• Assumption I'. There exist a sequence of integers dn such that
dn -+ 00 and

d n h
lim L _A~n) = O.

n-+oo n
h=l

(4.10)

The corresponding modification of Theorem 4.1 follows.
THEOREM 4.2. Suppose the code ensemble has spectral shape r(8), and

also that it satisfies Assumptions I' and 2. Then if the crossover probability
p < 1/2 of the channel satisfies

K(8,p) > r(8) for 0 < 8 < 2p,

then p~n) -+ 0 as n -+ 00, where Pb denotes the T -decoder's bit error
probability.

(A proof of Theorem 4.1 will be found in the Appendix. The proof of
Theorem 4.2 is similar and is omitted.)

In the following three sections, we will apply Theorem 4.1 to three
different ensembles of binary linear codes: (1) The Shannon ensemble, con
sisting of all linear codes of rate Rj (2) the Gallager ensemble, consisting
of (j, k) low-density parity-check codesj and (3) the ensemble of Repeat
Accumulate codes introduced by Divsalar, Jin and McEliece [2].

5. The Shannon ensemble. For the set of random linear codes of
rate R, we have

(5.1)

from which it follows via a routine calculation that

(5.2) r(8) = H(8) - (1 - R) log 2.

This function is shown for R = 1/3 in Figure 2.
To apply Theorem 4.1 to the Shannon ensemble,4 for a given rate R

we must find the largest p such that K(8,p) > H(8) - (1 - R) log 2 for all
0<8 < 2p.

4 Assumptions 1 and 2 are satisfied with dn = K n for a suitable positive constant
K = K(R), and en = o.

BSC THRESHOLDS FOR CODE ENSEMBLES 203

0.2

0.1

r(b)
0.2 0.4 0.6 0.8 1

-0.1 8

-0.2

-0.3

-0.4

FIG. 2. The function r(o) for the ensemble of R = 1/3 linear codes.

Using (5.2) and (2.8), this inequality becomes

(5.3) pH (:p) + (1 - p)H (2(1 ~ p)) < (1 - R) log2.

The maximum of the left side of (5.3) in the range ° < 8 < 2p occurs at
8 = 2p(1-p), and is H(p). Thus the inequality K(8,p) > H(8)-(1-R) log 2
required by Theorem 4.1 becomes simply H(p) < (1- R) log2, or H2(p) <
1 - R, where H2(P) is the binary entropy function. Thus we have proved

THEOREM 5.1. The ensemble of random linear codes of rate R is good
on a BSC with crossover probability p if H2(P) < 1 - R.

The idea of the proof is illustrated in Figure 3, where we see the
function K(8,0.174) just touching the r(8) curve of Figure 2. This shows
that the threshold for the ensemble of R = 1/3 linear codes is p = 0.174,
which reflects the fact that H2(0.174) = 1 - 2/3.

Of course, Theorem 5.1 is just Shannon's theorem for linear codes
on the BSC. We have included it only to demonstrate that Theorem 4.1 is
powerful enough to reproduce Shannon's theorem. In the next two sections
we will apply it to more interesting ensembles.

6. The Gallager ensemble. In this section, we discuss the appli
cation of Theorem 4.1 to the ensemble of (j, k) low-density parity-check
codes defined by Gallager [4].5 In brief, every code in Gallager's (j, k) en
semble is defined by a parity-check matrix which has j ones in each column

5There are numerous ways to define this ensemble. The definition we follow was
given by Gallager [4, Section 2.2], and differs, e.g. from the ensemble analyzed by
MacKay in [7, Section II].

204 SRINIVAS AJI ET AL.

1

0.8

0.6

0.4

0.2

1

-0.2

0
-0.4

FIG. 3. The function r(o) for the ensemble of R = 1/3 linear codes, together with
the function K(o,p) for p = 0.174.

and k ones in each row. The rate of each code in the ensemble is at least
Rj,k = 1- (jlk).

The spectral shape rj,k(c5) for the (j, k) ensemble was determined by
Gallager. It can be expressed in parametric form, as follows:

lop
= 'k os (s,k)

j (Op). (lOP) ='k p(s,k)-sos(s,k)+(k-1)log2 -(J-1)H 'kos(s,k)

where the parameter s ranges from -00 to +00, and the function p(s, k)
is defined by

Figure 4 shows the function rj,k for (j, k) = (3,6).
Given the spectral shape, it is an easy task to apply Theorem 4.1 to

find the corresponding BSC ensemble thresholds.6 A short table of these
thresholds, together with the corresponding Shannon limit, is given below.

6To satisfy Assumptions 1 and 2 for j ~ 3, we can take dn = Kn for a suitable
constant K = K(j), and (In = O. For j = 2, we can prove the existence of a sequence of
dn's which satisfy Assumptions l' and 2 with (In = 0, though we do not have an explicit
expression for them.

BSC THRESHOLDS FOR CODE ENSEMBLES 205

0.35

0.3

0.25

r(8) 0.2

0.15

0.1

0.05

0.2 0.4 0.6 0.8 1

FIG. 4. The function r(o) for the ensemble of (3, 6) LDPC codes.

(j, k) Rj,k Pj,k RU limit Shannon limit
(3,6) 1/2 0.0915 0.084 0.109
(3,5) 2/5 0.129 0.113 0.145
(4,6) 1/3 0.170 0.116 0.174
(3,4) 1/4 0.205 0.167 0.214
(2,3) 1/3 0.0670 0.0670 0.174
(2,4) 1/2 0.0286 0.0286 0.109

For example, consider the "(3,5)" line in the table. The corresponding
Gallager ensemble consists of codes which have parity-check matrices with
3 ones per column and 5 ones per row. The rate of all codes in this ensemble
at least R3 ,5 = 1- (3/5) = 2/5. Using Theorem 4.1, it is calculated that for
any BSC with crossover probability P < 0.129, the (3,5) ensemble is good,
i.e., the average word error probability of the T-decoder approaches 0, as
n -+ 00. This should be compared to the Shannon limit for the ensemble
of all linear codes of rate 2/5 (cf. Theorem 5.1), which is P = 0.145, which
indicates the price which is paid for having the (3,5) structure. Finally,
we note that the Richardson-Urbanke limit [10) for the (3,5) ensemble
is P = 0.113, i.e., with belief propagation-style iterative decoding, the
ensemble decoder error probability approaches 0 if and only if P < 0.113.

(The values Pj,k for (j, k) = (3,6), (3,5), (4,6), and (3,4) given in
the above table appear to agree with the values given by Gallager [4) in
his Figure 3.5, although he gave no numerical values. However, as we
mentioned above, we have been able to show that the thresholds obtained

206 SRINIVAS AJI ET AL.

from our Theorem 4.1 are the same as the best obtainable using Gallager's
methodology, so our threshold values are at least as good as Gallager's.)

We conclude this section with some remarks on the ensemble of (2, k)
LDPC codes. Originally dismissed by Gallager because their minimum
distance is O(logn) [4, Theorem 2.5], they are nevertheless quite interest
ing, and are variously called "graph-theoretic," "circuit," or "cycle" codes
[9, Section 5.8], [6] because of their close connection to finite undirected
graphs. Using Theorem 4.2, we can show that for p < p*(k), the bit error
probability for T -decoding of the (2, k) ensemble approaches zero, where
p* (k) is given by the exact formula

(6.1)

(The ensemble word error probability does not approach zero for any p > 0.)
Furthermore, Wiberg [12, Example 5.1] showed that with iterative de

coding, the ensemble of (2, k) cycle codes has ensemble bit error probabil
ity approaching zero for p < p*(k). Numerically, the Richardson-Urbanke
method appears to give the same value, so it seems safe to say that (6.1)
gives the exact iterative threshold for the Gallager (2, k) ensemble.7

Finally, it was shown by Decreusefond and Zemor [3] that for an "ex
purgated" ensemble of (2, k) cycle codes, the exact maximum-likelihood
BSC coding threshold is equal to p* (k). Since as we have seen, the thresh
old for the unexpurgated ensemble is at least this good, it seems very likely
that p* (k) is the exact ML threshold for the unexpurgated ensemble as
well. These results strongly suggest that that for (2, k) cycle codes, the
iterative and maximum-likelihood thresholds are the same, and are given
by the formula (6.1).

7. The ensemble of repeat-accumulate codes. In brief, for an
integer q 2: 2, the ensemble of q-repeat accumulate codes consists of those
codes which can be encoded by the serial concatenation of a q-ary repetition
encoder, followed by a pseudorandom permutation, followed by a rate 1
code with (square) generator matrix of generic shape

(

1 1
o 1

G= 0 0
o 0
o 0

1 1
1 1
1 1
o 1
o 0

1) .
The basic combinatorial fact about the ensemble of (qk, k) RA codes

is the following formula for the average number of input words of weight w

7For a survey of iterative decoding of cycle codes, see [5].

BSC THRESHOLDS FOR CODE ENSEMBLES 207

which are encoded into output words of weight h [2, Eq. (5.4)]:

(7.1)
A(qk) _

w,h -

(k)(qk-h)(h-1)
w Lqw/2J fqw/21 - 1

(:~)
It follows then that if A~qk) denotes the average number of words of weight
h in the ensemble,

N

(7.2) A (qk) _ "-A(qk)
h - L....J w,h·

w=l

From (7.1) and (7.2), it can be shown that the spectral shape r(o) for
the ensemble of q-RA codes is as follows:

(7.3) r(o)= max {_q-1 H (qX)+(1-0)H(2(qX O))+OH(q~)}.
o::;x9/q q 1 - 2u

Figure 5 shows the r(o) curve for the ensemble of q = 3 RA codes.8

0.2

0.15

0.1

0.05

0.2 0.4 0.6 0.8 1

FIG. 5. The function r(8) for the ensemble of R = 1/3 RA codes.

Combining (7.3) with Theorem 4.1, it is a straightforward computation
to obtain the thresholds in the following table.

8To satisfy Assumptions 1 and 2 for q :::: 3, we can take dn = log2 n and en =
(K log n) / n for suitable constants K = K (q). For q = 2, we can only show the existence
of a sequence dn satisfying Assumptions l' and 2 by taking dn = 2 and en = (K log n)/n.

208 SRINIVAS AJI ET AL.

q Rq Pq RU limit Shannon limit
2 1/2 0.029* - 0.109
3 1/3 0.132 0.142 0.174
4 1/4 0.191 0.188 0.215
5 1/5 0.228 0.216 0.243
6 1/6 0.254 0.235 0.264
7 1/7 0.274 0.250 0.281

For example, consider the q = 3 line of the table. It indicates that the
common rate for all q = 3 RA codes is R = 1/3, and that this ensemble
is good on any BSC with crossover probability p < 0.132. By way of
comparison, the Shannon threshold for the ensemble of all rate 1/3 linear
codes is seen to be P < 0.174. Finally, the Richardson-Urbanke iterative
decoding threshold [Richardson and Urbanke, private commmunication] is
p < 0.142. Since we can show that the T-decoding algorithm always gives
the same ensemble threshold as does maximum-likelihood decoding, which
must be at least as good as the iterative threshold, this apparently shows
either that the thresholds given in Theorem 4.1 are not always the best
possible for T-decoding, or that the R-U theorem is not correct for this
ensemble. A resolution of this paradox would be very welcome.

Finally we note that for the ensemble of q = 2 RA codes, the word
error probability for T -decoding does not approach zero for any P > 0,
but, again by using Theorem 4.2, we can show that the ensemble bit error
probability approaches zero for P < 0.029.

APPENDIX

A. Proof of Theorem 4.1. We first define the ensemble threshold
as follows:

(A. 1) Po = sup{p: K(8,p) > r(8), 0 < 8 < 2p}.

LEMMA A.I. If P < Po, then there exist real numbers ao > 0 and
1'0 > 0, and a positive integer No, such that for n 2: No,

"on L A~n),6h = O(e- dn 1'O),
h=dn

where,6 = 2Vp(1 - p).
Proof. Using the definition (2.7), It is straightforward to show that

1· K(8,po) _ 8K(0,po) _ -1 a
o~ 8 - 88 - og,..,o,

BSC THRESHOLDS FOR CODE ENSEMBLES 209

where f30 = 2Jpo(1 - Po). Hence for P < Po, we have

< 1· K(~po) _ Imc5-+0

= -logf3o = 2V~po-:-(-:-1 --po--'-)

< -logf3 = 2Jp(1 - p).

This, together with Assumption 2, implies that there exists ao > 0, ')'0 > 0,
and a positive integer No such that for n ~ No, we have

rn(15) nOn r(15)
sup -- < - + sup - < -logf3 - ')'0'

dn /n-:::'c5<o.o 8 dn 09<0.0 8

Hence we have, for n ~ No,

o.on
L A~n)f3h

o.on o.on
= L e-h(log,B-rn (c5)/c5) < L e-h'Yo

h=dn
00

< L e-h'Yo = O(e-dn'YO),

h=dn

which completes the proof. D
Now we can give the proof of Theorem 4.1. With the notation being

as established above, we have, by Theorem 3.1, for p < Po,

d n non n

(A.2) P E ~ LA~n) + L A~n) f3h + L At) Ph(T) + o(n).
h=l h=dn h=o.on

The first sum in (A.2) approaches zero by Assumption 1, the second sum
approaches zero by Lemma A.l together with the fact that dn -+ 00. The
third sum is

n

L A~n) Ph(T)

(A.3) h=o.on

n L e-n (K(c5,p)-r(c5)+o(l))

h=o.on
n

~ L e-n (K(c5,p)-K(c5,po)+o(l)),

h=o.on

where the first line follows from (2.10) and Assumption 2, and the second
line follows from the definition (A.l) of PO.

Finally, let cO be such that

K(15,p) - K(15,po) ~ cO for a o ~ cO ~ 2p.

Then for n sufficiently large, the exponent in (A.3) will be ~ cO/2, and so
the sum will be upper bounded by n· e-nf / 2 , which goes to zero as n -+ 00.

D

210 SRINIVAS AJI ET AL.

Acknowledgement. This paper is an outgrowth of conversations that
took place at the Institute for Mathematical Analysis, Minneapolis, Min
nesota, during the workshop on Graphical Models and Iterative Decoding
that took place in August, 1999. The authors wish to thank IMA for its
hospitality and conducive work environment.

REFERENCES

[1] T.M. COVER AND J .A. THOMAS, Elements of Information Theory. New York: John
Wiley and Sons, 1991.

[2] D. DIVSALAR, H. JIN, AND R. McELIECE, "Coding Theorems for 'Turbo-Like'
Codes." Proc. 1998 Allerton Conf., pp. 201-210.

[3] L. DECREUSEFOND AND G. ZEMOR, "On the error-correcting capabilities of cycle
codes of graphs," Combinatorics, Probability, and Computing, vol. 6 (1997),
pp.27-38.

[4] R. GALLAGER, Low-Density Parity-Check Codes. Cambridge, Mass.: The M.LT.
Press, 1963.

[5] G.B. HORN, "The iterative decoding of cycle codes," submitted to IEEE Trans.
Inform. Theory.

[6] D. JUNGNICKEL AND S.A. VANSTONE, "Graphical codes revisited," IEEE Trans.
Inform. Theory, vol. IT-43 (Jan. 1997), pp. 136-146.

[7] D.J .C. MACKAY, "Good error-correcting codes based on very sparse matrices,"
IEEE Trans. Inform. Theory, vol. IT-45 (March 1999), pp. 399-431.

[8] R.J. McELIEcE, The Theory of Information and Coding. Reading, Mass.:
Addison-Wesley, 1977.

[9] W.W. PETERSON AND E.J. WELDON, JR., Error-Correcting Codes, 2nd. ed. Cam
bridge, Mass.: The MIT Press, 1972.

[10] T. RICHARDSON AND R. URBANKE, "The capacity of low-density parity-check codes
under message-passing decoding," submitted to IEEE Trans. Inform. Theory.

[11] C.E. SHANNON, The Mathematical Theory of Information. Urbana, IL: University
of lllinois Press, 1949 (reprinted 1998).

[12] N. WIBERG, Codes and Decoding on General Graphs. Linkoping Studies in Sci
ence and Technology. Dissertation, no. 440. Linkoping University, Linkoping,
Sweden, 1996.

PROPERTIES OF THE TAIL BITING BCJR DECODER

JOHN B. ANDERSON* AND KEMAL E. TEPEt

Abstract. The tailbiting BCJR algorithm extends the maximum a posteriori
(MAP) decoder of Bahl et al. to the case of tailbiting trellis codes. The algorithm
consists of forward and backward recursions that start from the left and right principal
eigenvectors of the product of the trellis gamma matrices. The result is a slightly sub
optimal symbol-by-symbol MAP decoder that performs much less computation than the
true MAP decoder. The decoder has both iterative and non-iterative realizations. We
formally justify the algorithm and develop its properties. Storage of the entire recursion
outcome is not required and we relate the needed length to the encoder memory and the
encoder decision depth parameter. By tests of actual decoders, the bit error rate of the
algorithm is compared to that of true MAP, maximum likelihood, and circular Viterbi
decoders. For a given encoder, the BER of these decoders depends on the ratio of the
tailbiting circle size to the encoder memory. We argue that there exists a certain prac
tical optimum ratio of circle size to memory, and at this ratio the BER of the tailbiting
BCJR decoder is essentially that of the true MAP decoder.

AMS(MOS) subject classifications. 94BlO Convolutional codes; 94B35 Decod-
ing.

1. Introduction. We study a decoding algorithm for tailbiting trellis
codes that is based on the idea of a posteriori probability, or APP, decoding.
An APP decoder is one that computes the probability of a transmitted data
symbol or encoder state or encoder transition, given the observed channel
outputs and any a priori probability known about the encoder states. A
MAP (maximum a posteriori probability) decoder is an APP decoder that
makes a hard decision about a data symbol or state by choosing the one
with highest APP. The classical BCJR algorithm, named for the authors
of an early paper [1], computes the probabilities of states and transitions
of a Markov source and has been applied to APP and MAP decoding of
terminated trellis codes. The algorithm and its notation trace back to the
statistical literature of the 1960s. In an earlier paper [2] we extended the
BCJR idea to the decoding of codes that have a tailbiting trellis structure.
In this paper we give a formal justification for the algorithm's structure and
a detailed rendering of its properties as a decoder for binary convolutional
tailbiting codes. Both BSC and AWGN coding are considered.

Tailbiting (TB) convolutional codes trace back to works by Solomon
and Tilborg [3] and Ma and Wolf [4], among others. They are defined by the
fact that the encoder begins at the same state in which it will later end.
The paper focuses on rate 1/2 time-invariant feedforward convolutional
encoders, and a notation for these is defined with the aid of Fig. 1. The
encoder is defined by two shift register tap sets gl and g2 expressed as left-

"Dept. Information Technology, Box 118, Univ. of Lund, SE-221 00 Lund, SWEDEN.
tElec., Computer and Systems Eng. Dept., Rensselaer Poly. Institute, Troy, NY

12180, USA.

211

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

212 JOHN B. ANDERSON AND KEMAL E. TEPE

justified octals; for example (gu g2) = (11101,11001) is denoted (72,62).
The tap sets are of length m + 1, where m is the memory of the encoder.
To start the encoder in the TB mode, the last m data bits are used to
initialize the shift register. Another useful class of encoders is the recursive
systematic class. Recent work shows that they may be used in the TB
mode [6, 19]. We have studied them extensively as well, but since results
of the type in this paper hardly differ from the feedforward class, we will
not discuss them separately. .

Branch Bit 1

Branch Bit 2

... Data ---I

FIG. 1. (a) (Above) General rate 1/2 memory m feedforward encoder with gener
ators (91,92). (b) (Below) 8-stage circular tailbiting trellis for encoder (111,101).

Because of the TB condition, the trellis generated by the encoder is
circular, and Fig. 1 gives an 8-stage example for the (7,5) encoder. Define

PROPERTIES OF THE TAILBITING BCJR DECODER 213

an (N, L, d) binary tailbiting code to have N-bit codewords comprising L
stages, whose minimum Hamming distance is d. Its rate is R = L/N bits
per channel use. In [5], we give an exhaustive list of TB encoders that
optimize d at all short and medium L and rates 1/4 - 2/3.

Convolutional tail biting codes are important for several reasons. First,
the codes are very powerful. Reference [5] shows that (N, L, d) TB codes
achieve the minimum distance of most of the best known block codes at
short and medium N and that they do so at a relatively small trellis com
plexity. Second, as convolutional codes they do not require terminating
bits in order to avoid a higher error rate at the ends of words. There is
thus no rate reduction on the coding and no accompanying loss of energy
efficiency. Finally, as trellis codes these TB codes allow the use of trellis al
gorithms that have computational advantages and that easily adapt to soft
channel input and soft decoder output. The BCJR decoder in this paper
is one such decoder. Soft output APP decoders are essential in iterative
decoding methods such as turbo coding. As soft input decoders, MAP de
coders can take account of a priori data probabilities. When these exist
the improvement in, e.g., bit error rate over distance-minimizing decoders
can be dramatic [2, 7].

One result of this paper is that there is a subtle difference between the
MAP and BCJR decoders, and so we next define carefully what is meant
by each. The sequence MAP decoder solves for the a posteriori most likely
sequence of state transitions in the encoder trellis. Its output is an entire
codeword. The symbol-by-symbol MAP decoder solves for the most likely
value of the encoder state St or transition or data symbol at time t. The
sequence of these may not correspond to states or data in the sequence
MAP output. The true symbol-by-symbol MAP decoder would exhibit all
sequences of states and their probabilities and sum the probabilities of all
state sequences that contain the desired state or transition or symbol at
time t. Our colleague K. Zigangirov has proposed such a MAP decoder for
tailbiting codes [18, Chap. 7]. It can be thought of as two recursions that
each produce and store a sequence of 2m X 2m matrices.

In contrast, decoders of the BCJR type do not work with probabilities
of whole state sequences. Let us formally take a BCJR-type decoder as one
with two recursions that produce and store a sequence of size-2m vectors
instead of 2m X 2m matrices, with each vector relating to the 2m state
probabilities at a time t. Its reason for being is that it is simpler by a
factor 2m . It is well known that the BCJR decoder is true symbol-by
symbol MAP for terminated codes. We will find that this is not quite so
for tailbiting codes.

An important aspect of APP-based decoders is that their recursions
can be viewed as matrix and vector operations. This can be a great ad
vantage: Objects such as eigenvectors in fact have physical meaning, and
when expressed in a vector programming language the recursions become
startlingly simple. The dynamic programming in a Viterbi algorithm is a

214 JOHN B. ANDERSON AND KEMAL E. TEPE

less natural operation to an arithmetic-based processor and matrix prop
erties have less physical meaning. But the vector nature of APP decoders
can sometimes also mislead: Certain matrices in APP recursions are sparse
and multiplications with them do not have the complexity of full matrix
operations. Both BCJR and true MAP decoders can be simplified by tak
ing account of sparsity and trellis structure. We will not pursue this in
detail.

APP-based decoders form a subset of the more general class of "belief
propagation" algorithms, a field that has attracted much recent interest.
See for example refs. [8, 9] and other papers in this book. Belief propaga
tion around a tail biting circular code trellis is a very special simple case.
Sensible code trellises are irreducible - meaning that any state may be
reached from any other - and in addition belief can be considered to prop
agate in just two directions, clockwise and counter-clockwise. The sections
that follow display many properties that we suspect do not apply beyond
this bidirectional propagation case.

A formal justification of the tailbiting BCJR (henceforth denoted TB
BCJR) decoder appears in Section 2. The critical difference from a ter
minated BCJR decoder is the appearance of principal eigenvectors in the
decoder and this leads to interesting properties. Section 3 explores how to
find the eigenvectors. It turns out that finding them is a fixed overhead
that depends on the convolutional tap set and not on the tailbiting circle
sizej similarly, the storage of recursion outcomes can be limited. The rest
of the paper turns from a formal approach to one of exploring decoder be
havior through measurements of bit error rate (BER). Section 4 studies the
TB-BCJR error rate and compares it to that of tailbiting Viterbi and true
MAP decoders. It turns out that no more than a certain encoder memory
m is needed for a fixed circle size L and only a certain L is needed for a
given mj put another way, the ratio Lim should assume a certain value.
This value depends on the decision depth parameter of the convolutional
encoder. This parameter also gives an insight into when the TB-BCJR and
true MAP decoders have similar BERs.

2. Formal justification of the tailbiting BCJR. In this section
we adapt the BCJR algorithm to tailbiting and show that under tailbiting
an algorithm of the BCJR type should be initialized with the principal
eigenvectors of a certain matrix. These are unique and component-wise
positive vectors. Properties of the forward and backward BCJR recursions
are developed, including particularly the fact that the recursions converge
to these eigenvectors. It will turn out that the TB-BCJR, whether based
on eigenvectors or converging recursions, is not quite a true MAP decoder.

The BCJR for Terminated Trellis Codes. The BCJR is known also as
the forward-backward or sum-product algorithm. It solves for the set of

PROPERTIES OF THE TAILBITING BCJR DECODER 215

probabilities

(2.1) P{St = i I Y/}

that the encoder state St at trellis stage twas i, given that the codeword
Y1, ... ,YL was received. Here each yt is the set of c channel outputs cor
responding to stage t when the code is convolutional with rate bjcj the
notation y lL is shorthand for the c-groups 1 through L. Actually, the
algorithm solves a system of equations in the variables

(2.2)

which are simply the probabilities in (2.1) scaled by the fixed number
P{Y1L}. It is convenient to group together At(i),i = 1, ... ,2m , into a
vector At, one for each trellis stage.

To find these probabilities, the procedure defines three sets of working
probabilities. Define for each time t the row vector at with ith element

(2.3) Cl:t(i) = P{St = i, yn, t = 1, ... , L.

Define the column vector f3t with jth element

(2.4) f3t(j) = P{~~l I St = j}, t = 1, ... , L - 1.

Finally, define the matrix r t with i, j element

(2.5) ft(i,j) = P{St = j, yt I St-1 = i}, t = 1, ... , L.

The matrix set here comprises the input to the algorithmj it contains the
channel outputs, the encoder transition pattern and the a priori probabil
ities. Given r 1, ... , r L, the BCJR works as follows.

(i) Form the set of row vectors 0.1, ... , aL by the forward recursion

(2.6)

(ii) Form the set of column vectors f3 L-1' ... ,f31 by the backward recursion

(2.7)

(iii) Form the output set AI, ... , AL by the operation

(2.8)

where '.' means component-wise multiplication. Observe that with a vector
processing algorithm, (2.6),(2.7) and (2.8) are each a single line.

The relationships (2.6)-{2.8) here hold if the encoder outputs are
Markov and the channel is memoryless. Under the same conditions, (2.5)
can be written as

(2.9) ft{i,j) = P{yt Ii -+ j}P{i -+ j},

216 JOHN B. ANDERSON AND KEMAL E. TEPE

where i -7 j is the tth state transition. For the BSC, Yt consists of symbols
o and 1, and the probabilities P{Yt I i -7 j} stem from the crossover
probability p. For the AWGN channel, the data-bearing values +#s and
-#s are corrupted by additive Gaussian noise with variance No/2 to form
the c variables in each Yt. Now P{Yt Ii -7 j} should be taken as a Gaussian
density that depends on the signal-to-noise ratio Eb/NO = Es/RNo, and
corresponding changes should be made in (2.3)-(2.5).

For terminated coding the encoder starts before transition 1 and ends
after transition L in state O. Some contemplation of recursions (2.6) at
t = 1 and (2.7) at t = L - 1 shows that they produce the right outputs
when they are initialized by ao = (1,0, ... ,0) and (3L = (1,0, ... ,0)'. Since
successive a and (3 become rapidly smaller, it is convenient to normalize
each to unit sum as it appears. This will have no formal mathematical
effect on At, since it will always be normalized by Li At(i). Because of this
normalization, we will scale a and {3 at will through the rest of the paper.

For a feedforward encoder it turns out that the APP that data symbol
dt is 0 (+#s in the AWGN case) is the sum

(2.10)

where At has been normalized and S is the set of states to which data 0
transitions lead. For a feedback encoder the same APP is

L O"t(i -7 j), O"t(i -7 j) = at-l(i)rt (i,j)!3tU);
i-+jE:T

here O"t(i -7 j) is the normalized probability of a transition i -7 j at time t
and T is the set of such transitions caused by data O. In the sequel we will
use only (2.10). These expressions are probabilities; the BCJR decoders in
this paper are MAP decoders that make a hard decision on dt , by putting
out the symbol with the highest probability.

The Extension to Tailbiting - Forward Recursion. In the case of tail
biting, the start and end states of the encoder, So and S L, are equal but
unknown and must somehow be estimated by the decoder. For the BCJR
algorithm the problem comes down to initiating the recursions: The for
ward recursion at t = 1 starts from some So and the backward one at
t = L - 1 from the same So.

In what follows we will equate not the states So and SL, but their
distributions; that is, we will set P{So = i, Y1L} = P{SL = i, y1L}, all i.
A true TB decoder enforces So = SL. The implies but is not implied by
equal distribution. The rest of the decoder is (2.6)-(2.8), but the decoder
begins from an assumption weaker than tailbiting, and it therefore may not
solve for the exact probabilities (2.1)-(2.4). It does nonetheless produce
probability distributions. These solutions have special properties, the most

PROPERTIES OF THE TAILBITING BCJR DECODER 217

interesting of which is that they apparently tend in practical situations to
the true tailbiting APP decoder solutions. To distinguish the new solutions
we will call them tailbiting BCJR (TB-BCJR) solutions and denote them
by Q{St = i, y1L}, Q{¥;;~l = i, St = j}, etc., rather than with P as in for
example (2.1)-(2.4).

We will take first the forward recursion and give an argument that
produces the fundamental equation of the TB-BCJR algorithm. Strictly
speaking, the equation follows from the Perron-Frobenius theorem and the
fact that the algorithm consists of recursions, but the argument will give
us a useful insight. From (2.6) at t = 1,

Q{Sl = j, Yd = a1(j) = :Lao(i)f1(i,j) =
i

:L ao(i)Q{Sl = j, Y1 I So = i}.

From the laws of probability it is clear that ao (i) in this expression must
be a probability distribution on the outcome of So. We can select any
distribution, and with the equal distribution assumption in mind, we choose

(2 11) (.) Q{SL = i, YiL} Q{S . I vL} . 1 2m . ao t = {L} = L = t .I1 , t = , ... , .
Q Y1

Now iterate (2.6) L - 1 times to obtain O:L = 0:0r1 ... rL . From (2.11),

adi) ~ Q{SL = i, Y/} = ao(i)Q{Y/}, i = 1, ... , 2m.

Consequently,

(2.12)

that is, the 0:0 selected is a left eigenvector of the matrix r 1 ... r L/Q{Y1L}.
In fact, 0:0 is the unique, positive principal1 left eigenvector of the ma

trix in (2.12), henceforth abbreviated as the l.p.e.v. This is a consequence
of the century-old Perron-Frobenius Theorem. A classic description2 of this
theorem of linear algebra appears in Bellman [11]. It states that a positive
matrix G has a unique (to a constant) positive l.p.e.v. and the eigenvalue
corresponding is positive. A positive vector or matrix iz one whose com
ponents are all greater than zero. Moreover, all other eigenvectors have
at least one component with opposite sign. The matrix in (2.12) will be
positive if the encoder in the absence of the tailbiting condition can reach

1 A principal eigenvector, whether left or right, is the one with largest eigenvalue.
The principal eigenvalue is the largest eigenvalue; the principal left and right eigenvectors
correspond to the same principal eigenvalue.

2We use Bellman's terminology. A recent treatment of the theorem appears in [21].

218 JOHN B. ANDERSON AND KEMAL E. TEPE

every state at L from every state at 1. We will restate the theorem as a
property of the tailbiting matrix product G = r 1 ... rL/Q{YIL}.

Property 2.1 Let a satisfy a = oG, where G is the positive tail
biting matrix just defined. Then there exists precisely one a that is a
probability distribution and it is the l.p.e.v. of G.

Another implication of Perron-Frobenius is that a value Q{YIL} > 0
exists (it is the l.p.e.v. of r 1 ... rL)j since a positive 0 0 exists as well, the
Q distribution used in (2.11)-(2.12) exists.

We turn next to a second fact of matrix algebra, that for any matrix
A with principal eigenvalue>. and an initial u not orthogonal to the l.p.e.v.
v, the l.p.e.v. satisfies

(2.13)
uAn

v = lim -,
n-+oo An

If now G is positive and a = oG, then>. = 1 and uGn converges to
a for any positive u. The last follows because for u -:f. 0, uG has no
zero components and hence cannot be orthogonal to a positive l.p.e.v. We
summarize as:

Property 2.2 Let the tailbiting G be positive. The l.p.e.v. a sat
isfying a = oG satisfies uGn -+ a with n for any nonnegative nonzero
starting distribution u. The recursion (2.6), iterated nL times and nor
malized each cycle to unit sum, necessarily converges to the l.p.e.v. of
G.

There are important facts here for a physical tailbiting encoder. First
and foremost, Property 2.2 says that iterating the forward BCJR recursion
for n cycles always leads to the same result in the limit, namely the 00

that stems from the equal distribution assumption. Whether we first make
that assumption ourselves and proceed as in (2.11)-(2.12) is actually irrel
evant. Such an ongoing recursion is a natural way to construct a decoder:
Properties 2.1 and 2.2 imply that the strategy indeed converges, but that
it converges to the "Q" solution set, not the tail biting one.

A second fact is that the key condition for both properties is that G
be positive. That will be so if, (i), an L-step encoder transition exists from
state i to state j for all i,jj (ii), p > 0 in the BSC and Eb/No < 00 in
the AWGN channelj and (iii), all data sequences have nonzero probability.
These are sufficient but not necessary conditions for Properties 2.1 and 2.2.
They are an obvious set of regularity conditions for a TB coding system.
If the TB trellis contains two non communicating subsections, for example,
different positive starting u can lead to different limits in (2.13), but we
take this to be an irregular code.

Forney and Horn and others [10, 20] have advocated the idea of pseu
docodewords as a way to illustrate the difference between the "P" and "Q"
solutions here. Pseudocodewords are multicycle words that start at a state
and end in the same state after n cycles, but not necessarily after fewer
than n.

PROPERTIES OF THE TAILBITING BCJR DECODER 219

Tailbiting Symmetry. As just explained, a set 0::1, •.. , O::L of state
distributions, one for each stage, is produced via solution of (2.12) and
L - 1 applications of (2.6). Suppose the equal distribution assumption is
applied at a different stage and the solution performed from there. By
symmetry, the same essential distributions should be produced for a given
channel output Y1L , no matter which trellis stage is labeled as time O. We
can formalize this notion as the following Tailbiting Symmetry Principle:
A solution for the data symbol (or encoder state or encoder transition)
probabilities cannot depend on the starting stage of the analysis. We look
now at several properties that stem from this principle.

As a preliminary, define the notation '" to mean that two positive
distributions are alike except for a scalar multiple. For example, the distri
butions 0::0 and O::L in the TB-BCJR solution satisfy 0::0 '" O::L. The scale
factor is in fact l/Q{¥;.L}.

In what follows it is useful to think of 0::0 not as a state distribution at
t = 0 on a tailbiting circle, but as a fortuitous choice of starting distribution
for a straight-line trellis, as shown in Fig. 2. The solution for the state
distribution at the following stages will be unaffected. Yet it is often easier
to think about the solution.

Y3

Yj Y2 Y3 YL

"---- "'0 "'1 "'2 "'3 (kL-l "'L

Start
---........

",(1) (1) (1) ",(1) ",(1) ",(1) 1 "'2 "'3 L-1 L 1

Start

FIG. 2. Two straight line portrayals of the same circular TB trellis word, one
beginning one stage later. Subscripts indicate an arbitrary absolute time. Y1 , ... , YL
are arriving channel outputs. BCJR forward recursions as indicated for the two cases.

220 JOHN B. ANDERSON AND KEMAL E. TEPE

We have first the following simple property, which expresses the fact
that consistent I.p.e.v.'s are obtained when the equal distribution assump
tion is applied, no matter where the TB circle is opened out into a straight
trellis.

Property 2.3. Consider the sequence of vectors VI, ... ,V L and ma
trices AI, ... A L, where the Vi satisfy Vi = Vi-lAi and Vo = VL. Further
more, all cyclic products of the matrices are positive. Then one V k is the
I.p.e.v. for cyclic shift product Ak+l ... ALAI . .. Ak with eigenvalue A, if
and only if the remaining vectors Vi are the I.p.e.v.'s with the same A for
the cyclic products Ai+1 ... ALAI ... Ai' That is, all the vectors succeed
as principal eigenvectors or none of them do.

Proof. By hypothesis, AVk = VkAk+l ... ALAI ... A k. Right multi
ply by Ak+l to obtain AVkAk+l = vkAk+1'" ALAI'" AkAk+l. Since
Vk+1 = VkAk+l, we have AVk+l = Vk+1Ak+2 ... ALAI ... A k+l , which
proves the result for Vk+1' Repeat to show for all Vi. This proves the
forward implication. To prove the reverse implication, we show that if any
vector in the chain fails to be an eigenvector then all the rest fail as well.
Suppose Vi-l succeeds as an eigenvector for A at some f. - 1 and lies next
to a Vi that fails. This must happen somewhere if some but not all of the
vectors fail as eigenvectors. Then the same argument as above shows that
Vi succeeds as an eigenvector, contra the assumption. 0

Returning now to the forward BCJR recursion, we have from (2.12)
that aD = aOrl · .. rL/Q{YIL}. The I.p.e.v. of rl···rL/Q{ylL} is the
same as that of r l ... r L; only the eigenvalue is scaled by l/Q{YIL}. It
is reasonable to add to the aforementioned TB trellis regularity conditions
that all cycles of the r -matrices are positive. The property thus applies to
the cyclic rotations of r 1, ... , r L and their 1. p.e. v .'s.

Consider a forward recursion that begins one stage to the right, as
illustrated in Fig. 2. The superscripts indicate the starting point of the
recursions in units to the right, and the subscripts denote absolute time.
By the property, the I.p.e.v. of r 2 .. ·rLrl , which will be the starting
vector ail), must be a scalar multiple of aiD) = a~O)rl' which is an a that
stems from the recursion that begins at time O. It is the logic leading to
(2.12) - the equating of distributions - that specifies ail); the Symmetry
Principle says that this start vector should lead to a set of vectors that are
consistent with the set produced by a recursion that starts at time O. The
property confirms that no other vector can do this.

The statement ap) '" aiD) now says that the distributions Q{SI =
i I Yi L} and Q { S 1 = i, Yi}, i = 1, ... , 2m , are alike to a scalar. Repeating the
arguments one shift left shows that ai-I) "" aiD), so that Q{SI = i, Yl }
and Q{SI = i, YL, Yd are similarly alike to a scalar. Now scale these
second two by scalars l/Q{Yl } and l/Q{YL, Yl }, respectively; all three
distributions are now valid probability distributions and so they are not

PROPERTIES OF THE TAILBITING BCJR DECODER 221

just scalings, but are in fact equal:

Repetitions of the argument at all shifts and all St demonstrates
Property 2.4. Let time run mod L. Then at any stage t and for any

state i,

(2.14)
Q{St = i I yt} = Q{St = i I yt-1, yt} = ...

= Q{St = i I yt+1,"" YL, Y1, ... , yt}.

That is, the state Q distribution at t given the observation yt does not
depend on earlier observations. This is a consequence of the equal distri
bution that leads to (2.12). We stress once again that the probabilities
here are those that stem from (2.12), not those in true tailbiting.

The Backward Recursion. It remains to investigate the backward TB
BCJR recursion. The recursion (2.7) continues to hold and as with the
forward one, the problem is how to start the recursion. We will show that
as a consequence of the equal distribution assumption, the backward /3 t

are the right principal eigenvectors (r.p.e.v's) of the r-products.
First we cite another useful property of the TB-BCJR recursions. It

states that every backward recursion is the forward recursion of some other
TB trellis, and vice versa. Without loss of generality, let the forward di
rection in the "first" trellis be left to right for straight-line trellises and
clockwise for a circular one.

Property 2.5. Suppose /30,/31"" ,/3L are the outcomes of a back
ward recursion starting from /3 L' Here the channel outcomes Y1 , •.. , YL

give rise to r 1, ... ,rL and /3t = r tH/3tH' t = 1, ... ,L - 1. Then
a forward recursion 00,01,"" OL exists whose vectors are identical to
/30,/31"" ,/3L taken in reverse order (Le., Ot = /3L-t). For this recursion,
the forward direction is right to left (counterclockwise). The channel out
comes from first to L-th are YL , . .. ,Y1 and the gammas are r~, ... , r~ ,
where r t stems from yt for the first trellis. The starting 00 in the second
trellis is /3 L from the first. The data symbols in the second numbered ac
cording to 01, ... ,OL in the second are the symbols dL-1, ... ,d1, dL in the
first.

These relationships are all sketched in Fig. 3, which shows the structure
of both recursions. At stage t, the first backward recursion is /3t-1 = r t/3t.
Complementing both sides, we get /3~-1 = /3~r~; this shows that the new
O£ is /3~-1l f = 1, ... , L, provided that the new a-recursion starts with
00 = /3L' The new r-matrices are evidently transposes of the old. From
the properties of any forward recursion, the new 00 must satisfy 00'" 0L.

Thinking instead in reverse, we see that there must exist a backward recur
sion for every proper circular trellis for which /3L = r 1 ·· ·rL/3L/Q{y1L}.
This follows because in the matching a-recursion in the reversed trellis, it

222 JOHN B. ANDERSON AND KEMAL E. TEPE

must be that 0:0 = O:Or~ ... rUQ{yl}; complementing both sides and
taking f3 L = o:~ gives

f3L here is evidently a right principal eigenvector (denoted r.p.e.v.), which
satisfies the Perron-Frobenius Property 2.1, with right substituted for left.

f3o +--- 131 f3L-3 +--- f3L-2 +--- f3 L- I +--- f3L CW,B-Recursion

r l r 2 r L- 2 r L- I rL Applicable r

dl d2 dL- 2 dL- I dL Data Positions

YL So YI SI Y2 SL-3 YL- 2 SL-2 YL- l SL-I YL SL CHANNEL OUTPUTS

dL d l dL- 3 dL- 2 dL- I Data Positions

r~ r; r~_2 r~_1 r' L Applicable r

aL +--- aL_I a3 +--- a2 +--- al +--- aD CCWa-Recursion

FIG. 3. Equivalence of clockwise backward recursion (top) to counterclockwise for
ward recursion (bottom). At the middle is the received Yl, ... , YL. All subscripts show
absolute time except the bottom a-row, which is subscripted backwards. Top f3-set and
bottom a-set will be identical if ao = f3~ and Y and r are used as indicated.

Clearly, the property does not depend on which direction is taken as
forward, and we could as well have begun with a forward recursion and
ended with a backward one. The property expands on the well known fact
about terminated trellises (i.e., those with 0:0 = f3~ = (1,0, ... ,0)) that
they can equally well be decoded in either direction.

To summarize, we have shown that a backward recursion exists be
ginning from a positive f3L that is the r.p.e.v. of r 1 ... r L , for which
f30 = r 1f31 and f30 rv f3 L. Furthermore, Properties 2.1-2.4 apply; that is,
(i), there is only one such r.p.e.v. and one such recursion outcome; (ii), in
the limit of many cycles the recursion converges to this f3 L for any nonneg
ative nonzero starting vector; (iii), if a backward recursion starts instead
from position f, with f3l generated as in (i), it will generate a set of vectors
that are the same to a scalar multiple; and (iv), a backward version of
(2.14) will hold.

PROPERTIES OF THE TAILBITING BCJR DECODER 223

The discussion here shows that a circular backward recursion exists
based on the stage to stage relations (2.6}-(2.7) and that solving for it,
by iteration or otherwise, produces a unique, inescapable result. When
combined in step (2.8) with the unique forward outcome, the result is a
unique TB-BCJR outcome set AI,"" AL.

3. Implementation aspects. It is convenient to characterize tail bit
ing coding by its circle size relative to the encoder memory m, since the
decoder error performance and much other behavior organize themselves
this way. There are three cases: We will call these short, medium and long
tailbiting. In short tailbiting at rate 1/2, the circle size is roughly 1-2 times
mj or alternately m is between L/2 and L. These codes tend to behave like
short block codes and here the TB-BCJR may have a somewhat higher bit
error rate than a true MAP decoder.

In medium tailbiting, the circle is 2m-4m, or m lies in (L/4, L/2).
Decoders behave like trellis decoders and the TB-BCJR has essentially the
true MAP error rate. In ref. [5] we show that the minimum distance of the
best TB codes of size L does not grow once m approximately exceeds L /2j
this says that the minimum distance of a given convolutional generation is
circle-size limited when tailbiting is short and achieves its full size only with
medium tailbiting. Extensive tests of the bit error rate of real decoders [12]
has shown that the same general conclusion applies to BER. For a given
L, medium tailbiting seems to be ideal in the sense that lowering m tends
to decrease performance and raising m increases trellis complexity unnec
essarily. In long tailbiting, m is less than L / 4 and the decoder behavior
is similar to a terminated decoder's with two differences: There is no rate
reduction and if the circle is traversed only once there is a brief period of
raised BER during which the TB decoder decides the starting state.

The L/m ratios that mark the cases depend on the rate, and the
discussion here focuses on rate 1/2.

Finding the Eigenvector: The Power and Wrap Algorithms. The TB
BCJR algorithm consists of steps (2.6}-(2.8), preceeded by finding the right
and left principal eigenvectors of r l ... r L, or at least something close to
them. Different ways of performing the eigen calculation lead to several
practical versions of the TB-BCJR. In many applications, it will be unnec
essary to form the full matrix r l ... rL , and in no case is it necessary to
perform the full solution for all 2m eigenvectors.

The baseline procedure is to find the principal eigenvectors by one of
the well-known accurate procedures. We emphasize that this method is
not iterative: It directly computes the exact solution to a set of equations.
It is interesting to tryout initial vectors for the recursions other than the
l.p.e.v and r.p.e.v., in an effort to find ones that are somehow better, or
perhaps better embody the tailbiting condition. We have tried many and
compiled histograms that show observed decoder error rate as a function

c:
0
'1ij
u
0

...J
~
u

'" w
iii
a:
w
ClJ

224 JOHN B. ANDERSON AND KEMAL E. TEPE

of trellis stage. An example is shown in Fig. 4 for the code (72,62), an
AWGN channel with Eb/No = 2.5 dB and L = 20 stages. The figure shows
the four cases of a starting with the uniform and left p.e.v. and (3 starting
with the uniform and right p.e.v. The uniform vectors cause a starting
and/or ending transient in the BER which dies out as the decoding moves
away from the incorrect start or end. We have observed that only the p.e.v.
starts seem to give a flat histogram. No lower histogram than this flat one
has ever been observed. In particular, starting the backward recursion with
the forward 0: at that stage leads to a startup transient and a poorer BER
histogram.

0.0022

Iii,.: ...
0.002

0.0018

0.0016

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

eigenvector alpha, beta -+
eigenvector alpha, equipr beta -+-_. '
equipr alpha, eigenvector beta -0 - - I

equipr alpha, equipr betax· j
!

J
:f

f.i

/C-~t
,"

,/
f

f /.
.//

./,'
,)(/,/

"''''''+/

"

0.0002 "--_--lL.-_---' __ --< __ --'-__ -'-__ -'--__ --'-__ -'-__ --'-_---'
o 2 4 6 8 10 12 14 16 18 20

Bit Location in L

FIG. 4. Histogram showing bit error rates divided by L at each circle position,
with equiprobable and principal eigenvector starting vectors for the recursions. Four
combinations shown. Only the case with both PEVs is flat. Encoder (72,62), AWGN,
Eb/No = 2.5dB, L = 20. To find overall BER integrate the histogram.

We turn next to an algorithm that is iterative. Property 2.2 states
that the result of simply iterating the forward and backward recursions
around and around the trellis circle must eventually converge to the 0:0

and {3 L that correspond to the equal distribution assumption. This occurs
for any nonnegative starting vector. When nothing is known about the

starting distribution, we may as well start with the equiprobable one, e ~
2-m (1, 1, ... ,1). In formal terms we have for w complete iterations

(3.1) 0:0 = lim eGw
w-too

where G = cr 1 ... r L is the r -product scaled by C so that it has unit

PROPERTIES OF THE TAILBITING BCJR DECODER 225

principal eigenvalue. The calculation is said to "wrap" w - 1 times. We
have called this method the wrap algorithm in [2].

The flow of a practical wrap algorithm is shown in Fig. 5. The figure
imagines two w-fold repetitions of the trellis and the Y1 , • •• , YL sequence
in two straight runs. The recursions execute along the arrows and the last
sets of 01,···,OL and /3L,···,/31 are held as output. The present sets
can overwrite the previous ones, so that the total storage is 2L vectors;
in addition the r-set needs to be either stored or regenerated as needed.
The storage and the last of the w wraps are unchanged from the baseline
algorithm.

Final Values

---.j f<--

Forward Recursion

o:L ... 1 o}. o:~, '" of, ... ,eri
L L

wL
wL

L L

Backward Recursion

WRAP ALGORITHM

Find r-Product

L L Find C/ and f3

POWER ALGORITHM

FIG. 5. The wrap and power algorithms for finding Q- and {3-sets, envisioned as
working on repeated copies of the trellis and received signal.

226 JOHN B. ANDERSON AND KEMAL E. TEPE

Another method, called the power algorithm, is based on the so
called power method for finding principal eigenvectors. In this method
the recursions themselves are not iterated. We achieve (3.1) by forming
G = cr1 •.. rL directly as a matrix product; then G is raised to a power;
finally, aL, aD is taken as eGv and {31 as G V e', where v is an integer.
Only then are the BCJR recursions performed, one cycle only to produce
the Q- and j3-sets. Storage is again that of the baseline and wrap algo
rithms.

The important issue in the power scheme is the size of v. We find
that v=2-3 is almost always enough. Figure 6 shows the BER for the code
(72,62) with circle 20, an AWGN channel, and the power algorithm with
v = 1,2,3,50. The power 2 achieves virtually the baseline algorithm BER.
We find similar behavior with the BSC and in general with codes that
employ medium tailbiting. Codes with short tailbiting need a little higher
power. Codes with long tailbiting can use a power smaller than 1; that is,
the product r 1 •.. r L need not be fully carried out. We turn to this case
shortly.

a:
w
Ol

0.1

0.01

0.001

0.0001

1e·05

factor=1 -
factor=2 -+--
factor=3 . G···

factor=50 ... J(.

1 e·06 '-------'---'----'----'---'----'----'---'-----'
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

EblNo

FIG. 6. Bit error rate of (72,62), L = 20, over AWGN channel, with the decoder
using the outcome of the power algorithm calculation of the Q- and {3-sets. Power
v = 1,2,3,50.

As is well known in matrix theory, if the principal and next-largest
eigenvalues of r 1 ... r L have ratio close to 1, the convergence of the power
algorithm with v will be slow. By solving for the ratio and trapping such

PROPERTIES OF THE TAILBITING BCJR DECODER 227

cases during decoder operation, we have observed that slow convergence
is not common. It happens almost exclusively in good channels and then
only when the received sequence has a similar probability of being sent in
two conflicting ways. A power algorithm with small v will now produce
somewhat distorted vectors, but since there is no clear decoder decision to
take and since the tie event is unlikely in a good channel, the distortion's
effect on the overall BER is negligible.

When the power v and the wrap cycles ware the same, the two pro
cedures will in principle lead to the same estimate for the eigenvector. In
practice they generally do so, but the power algorithm is the more stable
one mathematically and it is simpler to implement in terms of software
steps. In Section 4 we use the power algorithm. However, a strict count
of arithmetic operations shows that the wrap algorithm is the only truly
efficient procedure. In fact, the power algorithm under short and medium
tailbiting leads to the same order of computation as the more complex true
MAP decoder. We intend to return to this subject in a future paper.

The Convergence Depth ofr1 ... rK. With long tailbiting only a frac
tion of the total product r 1 ... rL needs to be computed for an accurate
estimate of one a and {3. A rough statement of the convergence problem is:
After how many stages does the trellis decoding "forget" its starting condi
tions? For a more precise statement we note that element i, j of the product
H = r 1 ... r K is the probability that y1K was the channel output and the
encoder moved from state i to state j in K steps. If the rows of H are es
sentially the same, then the distribution Q{SK = j, y1K I So = i} does not
depend on the starting state and we have an estimate of Q{SK = j, Y1K}
instead. At which K does this happen?

With reference to Fig. 7a, consider now the problem for the BSC(p)
when all zeros are sent. This will serve to illustrate ideas and motivate an
algorithm to estimate the convergence depth. The i,l element of H is made
up of a number of path terms of the form pp ... p(l- p)(l- p) ... (1- p)Co,
in which the number of p's is equal the Hamming distance d of the path
from state i to 1 and the number of (1- p)'s is Kc - dj Co is set by the a
priori data probabilities for the path and we will assume that Co exceeds
o by a reasonable margin. As p tends to 0, the path i --t 1 with smallest d
dominates H(i, 1). This path is heavier in Fig. 7a.

If all paths to other states are heavier than dafter K stages, then
entry H(i,j), which represents the path i --t j,j :f 1, is much smaller than
H(i,l). Such a K must ,eventually be reached, because the other paths out
of i all continually gain weightj furthermore, it will also be true at stages
K + 1, K + 2, ... because the least-weight path to state 1 continues to have
weight d while the weights to other states can only grow. Let K* be the
deepest such stage for all the starting states i. Then for H that includes
K* rs, we have H(i,l) » H(i,j), j :f 1, for all starting states i, as p
tends to O.

228 JOHN B. ANDERSON AND KEMAL E. TEPE

H.D.=O
(j)-----

>d

(a)

>d

>d
>d

LD(d)-----=0

(b)

>d
>d
>d

FIG. 7. (a) Illustration of the problem of finding convergence time for a ESC with
no errors. d is least Hamming distance (H.D.) of any path from state i to state 1.
(b) Illustration of finding decision depth function at distance d.

PROPERTIES OF THE TAILBITING BCJR DECODER 229

To conclude, let 00 be any starting distribution. Then after K* stages,
ooH is a vector dominated by its first element. This is a statement that
P {S K* = j I YIK*} is virtually 1 for j = 1 and 0 otherwise.

We are led to the following algorithm to find the convergence depth at
small p or high Eb/No • Since the tailbiting code is linear, we can continue
to assume that all zeros are sent. Note that slightly different answers may
be obtained with forward and backward searches.

Convergence Depth Algorithm

(i) Repeat for starting states i = 1, .. . 2m :

Execute a dynamic program (i.e., a VA) on the tailbiting trellis from
state i (set the starting weight of node i to 0 and of the others to 00), in
order to find the least-weight trellis path to each node j at stage K.

Stop when weight(node 1) < weight(node j), all j =/;1. Record K.
(ii) The largest K is the convergence depth.

We have carried out the algorithm for all the codes in this paper, and
for many others as well, and in all cases the observed depth is very close
to a tabulated parameter called the decision depth, L D . This depth mea
sures the channel observation width in stages needed by a trellis decoder
that starts from a known state (a so called "first decision" decoder), if its
asymptotic error probability is to be that predicted by the encoder free
distance. Decision depths for most feedforward convolutional encoders are
listed in [13]. The depth approximately satisfies

(3.2)

where df is the free distance of a convolutional code of rate R with c bits on
each trellis branch, and h i/ () is the inverse of the binary entropy function.
For example, rate 1/2 decoders need to satisfy LD(df) ~ 4.54df. A formal
definition is:

Definition. Consider all paths diverging from the all zero state of
a convolutional code, which do not later merge to the all zero state (our
state 1). The decision depth is the first depth at which all such paths have
weight> df.

The calculation is illustrated in Fig. 7b.
Figure 8 shows the convergence behavior as a function of trellis depth

K for several rate 1/2 best-df codes over the AWGN channel. The vertical
axis of both plots is the measured standard deviation in the estimate of
OK after K stages forward and /30 after K stages backward, according to
the following scheme. First, the all +#s data sequence is transmitted
through noise with variance No/2 and both recursions begin from the uni
form vector, which is the best starting vector in the absence of any source

230 JOHN B. ANDERSON AND KEMAL E. TEPE

10°.----,-----,----,-----,----,-----,----,----,

EblNo·10dB

10-"

10-4

(75.53)

K

10~L----J--~~L-~~--__ ~ __ -J ____ ~ ____ ~ __ ~
o 5 10 15 20 25 30 35 40

(a)

EblNo:3dB

K
10-'° L-____ --'-______ -'-______ "--____ --'-______ -'-____ ----'

o 10 20 30 40 50 60

(b)

FIG. 8. (a) rms deviation of a and f3 components after trellis depth K. Average
over 60 trials. AWGN, Eb/No = lOdB; codes (7,5), (74, 54}, (72, 62}, (75, 53}. Conver
gence depths from algorithm A4 are shown. (b) Same, but Eb/No = 3dB. Codes (7,5),
(74,54), (72, 62}.

PROPERTIES OF THE TAILBITING BCJR DECODER 231

or channel information. Then the recursions are repeated for each of the
2m starting vectors of the form (0, ... , 1,0, ... ,0). The standard deviation
among the 2m final a or f3 components relative to their uniform-start esti
mate is computed. Sixty repetitions of the entire experiment are performed
and the average of the outcomes appears in the plots. They thus show the
rms outcome over the 2m most extreme starting vectors.

Figure 8a, for Eb/No = 10 dB, shows a precipitous drop for each code
at close to the code's decision depth. Table 1 lists the decision depths
for both the forward and backward trellises, as well as the outcomes of
the foregoing algorithm for the precise depth. Figure 8b is a repeat at
Eb/No = 3 dB. Now the decline in average standard deviation is slower
with depth but it has still fallen to 10% after one decision depth of stages.
The falloff is even slower at very poor Eb/No, but it is clear that at least
for this rate and these codes and for reasonable Eb/ No, one at and f3 t may
be considered known after Lv stages.

TABLE 1

Standard decision depths and convergence depth algorithm estimates for clockwise
and counterclockwise trellises for some generators used in this paper. "df" indicates
free distance. Forward (0.) recursion is in the clockwise direction.

Convergence Depth Alg. Measured Decision Depth
Encoder df Alpha Depth Beta Depth CW (Alpha) CCW (Beta)
(7,5) 5 7 7 8 8
(74,54) 6 10 10 10 11
(72,62) 7 14 14 15 19
(75,53) 8 19 21 19 23
(414,730) 8 23 26 18 24
(554,744) 10 28 29 28 27
(712,476) 10 30 31 29 28
(561,753) 12 39 37 37 33

From the definitions of decision depth and convergence depth, it seems
clear that adding decoder path memory significantly beyond Lv cannot
improve the decoder bit error rate in a reasonable channel. It thus appears
that (3.2) is the approximate start of what we have called the long tailbiting
range. At rate 1/2, in fact L/m ~ 4-5 has been observed experimentally
as the starting point; (3.2) yields 4.5m. It also makes sense that circle size
(3.2) is related to the point where the TB-BCJR and true MAP tailbiting
decoders have similar BER. A rough proof of an estimate goes as follows.
The true MAP tailbiting decoder may be realized as a weighted sum of
2m applications of the terminated BCJR, one for each of the 2m starting
states3 . Once the recursions proceed beyond the convergence depth, their
outcomes are essentially the same, regardless of starting state. For both
the forward and backward recursions to be independent of starting state,

3This algorithm was communicated to us by L. Wei of Australian National Univ.

232 JOHN B. ANDERSON AND KEMAL E. TEPE

the TB circle must exceed the sum of the a- and ,B-depths. If we accept
that these depths are both approximately (3.2), then the TB-BCJR and
true MAP decoders have similar outcomes when the circle is larger than
about twice (3.2).

The discussion here leads to the following conclusions about the TB
BCJR algorithms.

(i) In short and medium tailbiting, the recursions do not "forget"
their origin in one cycle. The transition to long tailbiting occurs after one
decision depth of stages.

(ii) For short and medium tailbiting, the computation needs more than
one trip around the circle. 2-3 trips are sufficient if BER is the performance
measure. The wrap algorithm is most efficient.

(iii) For long tailbiting, the computation of a single 0: or {3, essentially
the p.e.v. calculation, takes less than one TB circle; as the circle size grows
for a fixed encoder, the computation in this step dwindles in relation to the
whole.

(iv) For circles larger than about 2dJlchI/(1- R} , the true MAP and
TB-BCJR algorithms make similar decisions.

4. BER performance and comparisons to non-BCJR decod
ing. A major issue in the performance of the TB-BCJR is how the error
rate compares to ordinary minimum distance decoding. A second issue
is how close the TB-BCJR comes to the true MAP decoder. This sec
tion presents the results of decoder tests over simulated AWGN and BSC
channels. We need to make comparisons among the design paradigms in
troduced in Section 1: maximum a posteriori versus maximum likelihood
decoding, symbol-by-symbol versus sequence decoding, and decoding based
on probability versus distance. Here is a list of decoders that will be tested
in this section together with their identifying acronyms.

(i) ML will denote the sequence maximum likelihood tailbiting de
coder. One implementation of the ML is based on the usual Viterbi algo
rithm, started successively at each trellis state Si, i = 1, ... , 2m . Making
one trip around the circle, the decoder records the minimum distance path
starting at Si; the calculation is repeated for each Si; the decoder output is
the minimum distance path for the 2m starts so recorded. With both the
BSC and the AWGN channels, the distance-minimizing decoder is also a
sequence ML decoder. When the source data are LLd., the decoder is also
sequence MAP. The ML decoder will constitute our baseline performance.

(ii) sbsMAP will denote the true symbol-by-symbol tailbiting MAP
decoder of Zigangirov [18, Chap. 7].

(iii) TB-BCJR denotes the power TB-BCJR. This algorithm approxi
mates the sbsMAP.

(iv) CVA denotes the circular Viterbi algorithm, a distance-minimizing
tailbiting decoder that works in one pass. Different versions of the CVA
have been proposed [14, 15] which have in common that the usual VA

PROPERTIES OF THE TAILBITING BCJR DECODER 233

traverses a number of times around the TB circle, comparing outcomes
from earlier circles until a stopping condition is met. Our CVA traverses
U + L + U stages, where L is the circle size, and puts out the middle L
branches of the minimum-distance length U + L + U path. The algorithm
and the optimal choice of U are described in a forthcoming paper [16]. In
brief, U need not be long, and the scheme has virtually the same error
performance as the ML decoder under medium and long tailbiting.

Before proceeding to the tests, we emphasize several points about these
schemes. The ML and sbsMAP are 2m-fold more complex, more or less,
than the TB-BCJR and CVA, and their significance is mostly as base
lines. The practical schemes are these last two. Second, the CVA, being a
straightforward VA in essence, is simpler than the TB-BCJR and is surely
preferred when the data are Li.d. When they are not, the TB-BCJR, which
alone uses the data probabilities, can have a large advantage. Finally, if
a probability rather than a symbol is to be the output (an APP decoder),
then the CVA and the ML cannot be used. Finally, we remark that some
tests are performed for the BSC and others for the AWGN channel; both
have similar behavior with the one difference that the AWGN needs 2-2.5
dB less Eb/No than the BSC for the same error rate.

The first set of tests applies to the BSC and a circle of size L = 10.
Figure 9 shows the BER versus equivalent Eb/No. when a good encoder
of memory 2-5 is employed with this TB circle size. (These best-BER
encoders were found by an exhaustive procedure described in [12], which
also presents the semi-analytic method which was used to compute the
BER; these encoders are similar to but not always the same as the best
minimum distance encoders). The transition from long to short tailbiting
is clear here. The m = 2 encoders are in the long mode while the m = 5
encoder is in the short mode; the extra memory does not much lower the
BER because the L = 10 circle is too short for the longer memories.

Figure 10 shows the opposite case, a fixed encoder (66,62) with a circle
size that progresses through 5,8,16,24,40. The channel is AWGN. The first
two cases are medium tail biting and the later ones are long. To get nearly
maximum performance out of (66,62), the tailbiting needs to be long, about
16 in this case, but once it is indeed long a further lengthening does not
save much on the Eb/No axis.

The TB-BCJR, CVA and the ML baseline BERs are compared in
Fig. 11 for the AWGN channel. The encoder is (72,62), a memory 4 encoder
with df = 7, the best available distance at this memory; tests [12] show
that it also has close to optimal BER for m = 4. Circle sizes are 6 and
20 stages. At size 20 the coding is solidly in the medium tail biting mode
and all the decoders have the same performance. At size 6 the tailbiting is
short: Now the TB-BCJR and the CVA are still the same, but both are a
small but statistically significant margin worse than ML decoding.

A second AWGN comparison of these decoders appears in Fig. 12.
This time the encoder is quite a special one, the time-invariant tailbit-

234 JOHN B. ANDERSON AND KEMAL E. TEPE

10' ,-----,-----,-----,--,--,--,--,----.--_,------,

lO-'!::-O --;------;;-----;;-----:-----;;-----:----::---'---'----,!10

EblNo

FIG. 9. Measured bit error rate versus Eb/No in dB for the best BSC codes at
memory 2,3,5 and circle size 10. Best m = 4 code lies in between 3 and 5 curves.

ing representation of the (24,12) extended Golay code, with generators
(414,730)4. In earlier work [5, 18] it has been shown that these generate
the best minimum distance rate 1/2 memory 6 code with circle 12. No
other m = 6, L = 12 code has its minimum distance of 8; however, it has a
huge number, 759, of nearest neighbors and there exist considerably better
m = 6 codes for larger circles, both in terms of distance and neighbors.
Figure 12 shows that the CVA and the TB-BCJR at circle 12 are signifi
cantly worse than ML decoding, about 0.5 dB. Work by P. Stahl shown in
[18, p. 334] plots the sbsMAP error rate; it is almost identical to the ML
curve here. In short, the ML and sbsMAP decoders have one performance
and the CVA and TB-BCJR have another. At circle 48, the code is in the
medium mode, the BER curve improves by more than a dB, and all three
algorithms perform the same. The optimum-distance m = 6 encoder at
L = 48, incidentally, is (564,634) with dmin = 10 and 528 neighbors [5, 18];
this encoder will contribute a second dB of gain.

We have observed the behavior in Figs. 11 and 12 with many codes,
both for BSC and AWGN channels. We can summarize it as follows. When
the tailbiting is short, the ML and probably the sbsMAP have a better BER
than the CVA and TB-BCJR decoders. The Golay code is the most perni
cious example we have seen and the difference is otherwise much smaller.
As the tailbiting grows to medium, the BER differences among all these

4For a full discussion of this code's interesting properties, see Horn [20] and references
therein.

PROPERTIES OF THE TAILBITING BCJR DECODER 235

BER

AWGN, (66,62)

Eb/No

FIG. 10. Measured bit error rate versus Eb/No in dB for code (66,62) over AWGN,
at circle sizes 5,8,16,24,40. Note that an L = 10 curve here would lie approximately
2.5 dB left of those in Fig. g, because of the AWGN channel.

decoders disappear. To extract the best performance from a given encoder
memory, the tailbiting should be at least medium. This is forcefully shown
by the m = 6 case in Fig. 12. We doubt in fact that there is any practical
use for short tailbiting in BER-criterion decoding.

5. Conclusions. By a study of rate 1/2 codes we have illustrated
how tailbiting decoder BER depends on the length of the tail biting circle.
Short, medium and long modes are set approximately by the ratio of two
encoder parameters, the memory and the decision depth. We have focused
on a new efficient decoder called the tailbiting BCJR, which is based on the
forward and backward vector recursion principle of Bahl et al. in [1] and
earlier works. We have given a formal justification of this decoder, detailed
a number of properties and shown in particular how the decoder design
stems from certain principal eigenvectors. On the practical side, we have
shown that the eigenvectors are essentially found after a certain number of
trellis stages.

We have compared the new decoder to a number of related decoders
and found evidence that its performance may fall a little short of optimal
when the tailbiting circle is short. Unfortunately, this shortfall is inevitable
since an incorrect solution is the limit of the standard BCJR recursions.
The incorrect solution may be viewed as stemming from equating the TB
state distribution rather than the states themselves. We can say at this
writing, however, that few practical applications exist for which this short
fall is significant. In return for the slightly suboptimal performance comes
a 2m-fold saving in computation.

236

a:
w
In

JOHN B. ANDERSON AND KEMAL E. TEPE

0. 1 r--'T'"""--r---.----r--~-_._-__._-_,

<. '- .•.•..•.• "~. "!

0.01

0001

0.0001

le'OS

MlL.-20 -
BCJR l . 20 .- ..
eVA lz20 ·0

Ml Go6 •
•••••••.• BCJR Go6 •• •

··: ~ .C,VA L~6 •• .

~ _-.... ::

le-06 2:---2~.5:--~3~-3:":.5:-----'4--4 5----<5--5 5-.....J6
EbINo

FIG. 11. Measured bit error rate versus Eb/No in dB for code (72,62) over AWGN
and circles 6 and 20, comparing ML, CVA and TB-BCJR decoders.

It should be mentioned that the TB-BCJR itself may be made more
efficient by modifications in the style of those in sequential, or "reduced
search", decoders. Some of these appear in ref. [17]. Another point is that
when the data are Li.d. and hard output is acceptable, the dynamic pro
gram based ML and CVA schemes may apparently be used without much
harm to the bit error rate. The family of circular VA algorithms are sim
pler than the linear algebra based BCJR family and are thus worth further
attention. When the soft output is the object or the data probabilities are
skewed, one must use the TB-BCJR, or if the last degree of optimality is
the goal, the true symbol-by-symbol MAP.

6. Acknowledgments. We wish to acknowledge informative discus
sions with K. Zigangirov and R. Johannesson of Lund University, L. Wei
of Australia National University, G.D. Forney, Jr. of Motorola, and S. M.
Hladik of General Electric Research and Development Center, as well as a
dedicated anonymous reviewer. Further, the following researchers shared
results from their own implementations of the TB-BCJR algorithm, which
were important to verifying the work presented here: P. Stahl and M. Han
dlery of Lund University, E. Offer of Technical Univ. Muenchen, and S.M.
Hladik.

This work was supported in part by a gift to Rensselaer Polytechnic
Institute by L.M. Ericsson Inc., Research Triangle Park, NC 27709 USA.

a:
UJ

'"

PROPERTIES OF THE TAILBITING BCJR DECODER

0,1 r---~--~--'---~---r--~--~--~----r--.

0.01

0,001

0.0001

BCJRL=12 -
ML L=12 .~ ...

CVA L=12 0

BCJR L=48 •
ML L=48 •• •.

CVA L=48 . • .

1 e·OS '----'---'----'----''---'---'---'------'- - '------'
2 2.2 2 .4 2,6 2.8 3 3 .2 3.4 3.6 3 .8 4

EbiNo

237

FIG. 12. Measured bit error rate versus Eb/No in dB for code (414,730) over
AWGN and circles 12 and 48, comparing ML, CVA and TB-BCJR. The optimal-BER
code at L = 48 has asymptotically 2dB better performance than the L = 48 result here.

REFERENCES

[1) L.R. BAHL, et al., "Optimal decoding of linear codes for minimizing symbol error
rate," IEEE Trans. Information Theory, 20, pp. 284-287, Mar. 1974.

[2] J.B. ANDERSON AND S.M. HLADIK, "Tailbiting MAP decoders," IEEE J. Sel. Areas
Commun., 16, pp. 297-302, Feb. 1998.

(3) G. SOLOMON AND H.C.A. VAN TILBORG, "A connection between block and convo-
lutional codes," SIAM J. Appl. Math., 37, Oct. 1979.

(4) H.H. MA AND J.K. WOLF, "On tailbiting convolutional codes," IEEE Trans. Com-
munications, 34, pp. 104-111, Feb. 1986.

(5) P. STAHL, J.B. ANDERSON AND R. JOHANNESSON, "Optimal and near-optimal en-
coders for short and moderate-length tailbiting trellises," IEEE Trans. Infor
mation Theory, 45, pp. 2562-2571, Nov. 1999.

(6) J.B. ANDERSON AND R. JOHANNESSON, "A condition for feedback tailbiting convo-
lutional encoders and a short list of allowed feedback polynomials," Proceed
ings, Conf. on Information Systems and Sciences, Princeton Univ., Princeton,
NJ, Mar. 1998.

(7) J. HAGENAUER, "Source-controlled channel decoding," IEEE Trans. Communica-
tions, 43, pp. 2449-2457, Sept. 1995.

[8) S.M. An, G.B. HORN AND R.J. McELIECE, "On the convergence of iterative decod-
ing on graphs with a single cycle," Proceedings, Conf. on Information Systems
and Sciences, Princeton Univ., Princeton, NJ, Mar. 1998.

(9) R.J. McELIECE, D.J.C. MACKAY AND J.-F. CHENG, "Thrbo decoding as an in-
stance of Pearl's 'Belief Propagation' Algorithm," IEEE J. Sel. Areas Com
mun., 16, pp. 140-152, Feb. 1998.

238 JOHN B. ANDERSON AND KEMAL E. TEPE

[10] G.D. FORNEY, JR., F.R. KSCHISCHANG AND B. MARCUS, "Iterative decoding of
tail-biting trellises," unpublished manuscript (25pp), July 1998; summary in
Proceedings, IEEE Information Theory Society Workshop, San Diego, CA,
Feb. 1998.

[11] R. BELLMAN, Introduction to Matrix Analysis, 2nd Ed., McGraw-Hill, New York,
1970.

[12] J .B. ANDERSON, "Best short rate 1/2 tailbiting codes for the bit error rate crite
rion," IEEE Trans. Communications, 48, Apr. 2000.

[13] J.B. ANDERSON AND K. BALACHANDRAN, "Decision depths of convolutional codes,"
IEEE Trans. Information Theory, 35, pp. 455-459, Mar. 1989.

[14] K. SH. ZIGANGIROV AND V.V. CHEPYZHOV, "Study of tailbiting convolutional
codes," Proceedings, 4th Joint Swedish-Soviet Intern. Workshop Information
Theory, Gotland, Sweden, pp. 52-55, 1989.

[15] R.V. Cox AND C.-E. SUNDBERG, "An efficient adaptive circular Viterbi algorithm
for decoding generalized tailbiting convolutional codes," IEEE Trans. Vehic
ular Tech., 43, pp. 57-68, Feb. 1994.

[16] J.B. ANDERSON AND S.M. HLADIK, "An optimal circular Viterbi decoder," in sub
mission, IEEE J. Sel. Areas Commun., Mar. 2000.

[17] V. FRANZ AND J.B. ANDERSON, "Concatenated decoding with a reduced-search
BCJR algorithm," IEEE J. Sel. Areas Commun., 16, pp. 186-195, Feb. 1998.

[18] R. JOHANNES SON AND K.SH. ZIGANGIROV, Introduction to Convolutional Coding,
IEEE Press, Piscataway, NJ, 1999.

[19] R. RAMESH, E. WONG AND H. KOORAPATHY, "On tailbiting recursive systematic
convolutional encoders," in submission, IEEE Trans. Communications, 1998.

[20] G. HORN, Ph.D. Thesis, "Iterative decoding and pseudo-codewords," Dept. Elec
trical Eng., Calif. Inst. Technology, Pasadena, May 1999.

[21] P. LANCASTER AND M. TISMENETSKY, The Theory of Matrices, 2nd Ed., Academic
Press, San Diego, 1985.

ITERATIVE DECODING OF TAIL-BITING TRELLISES
AND CONNECTIONS WITH SYMBOLIC DYNAMICS*

G. DAVID FORNEY, JR.t, FRANK R. KSCHISCHANGt, BRIAN MARCUS§,

AND SELIM TUNCEL'

Abstract. The sum-product and min-sum algorithms are used to decode codes
defined by trellises. In this paper, we discuss the behavior of these and related algorithms
on tail-biting (TB) trellises.

The convergence of the sum-product algorithm on tail-biting trellises was analyzed
recently by Anderson and Hladik [2] and was shown to give approximate a posteriori
probabilities.

We introduce and analyze generating function versions of both algorithms, each
involving a parameter x. This involves the minwps graph, a tool borrowed from the
symbolic dynamics of Markov chains. We determine the limiting behavior as x --+ 0 of
the result of the generating-function sum-product algorithm and show how this relates
to maximum-likelihood sequences and the generating-function min-sum algorithm.

Key words. Tail-biting trellises, pseudocodewords, generating-function sum
product algorithm, generating-function min-sum algorithm, weight-per-symbol, minwps
graph.

AMS(MOS) subject classifications. 94B99, 37BI0.

1. Introduction. The iterative algorithms used for decoding
capacity-approaching codes such as turbo codes and low-density parity
check codes are instances of a general class of decoding algorithms for
codes defined on graphs, called the sum-product algorithm over a semi
ring [19, 5, 10, 13]. Special cases include the forward-backward (APP,
BCJR, "MAP," belief propagation) algorithm and the min-sum (bidirec
tional Viterbi, belief revision) algorithm.

The behavior of these algorithms on cycle-free graphs is well under
stood. However, little is known about their theoretical performance and
behavior on graphs with cycles, although empirically they often work very
well. The simplest graph with cycles is a single cycle, which in coding
corresponds to a tail-biting (TB) trellis.

Anderson and Hladik [2] showed that the sum-product algorithm over
the real numbers converges on TB trellises. In fact, Perron-Frobenius the
ory provides a very strong convergence result. We review the result of [2]
in Section 5 (see Proposition 5.1).

The convergence behavior of the min-sum algorithm for TB trellises
is governed by the trellis path(s) with the minimum average weight per

• A preliminary version of this paper was presented at the IEEE Information Theory
Workshop, San Diego, CA, February 9-11, 1998.

tMIT, Cambridge, MA 02139.
tECE Department, University of Toronto, Toronto, Ont., M5S 3G4, CANADA.
§IBM Almaden Research Center 650 Harry Rd., San Jose, CA 95120.
'Mathematics Department, University of Washington, Seattle, WA 98195.

239

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

240 G. DAVID FORNEY, JR. ET AL.

cycle, called the "dominant pseudocodeword(s)." Thus, if the dominant
pseudocodeword(s) is not a codeword, i.e., if its length is more than one
cycle, then the min-sum algorithm will tend to detect a non-codeword.

The dominant pseudocodewords can be assembled into a graph, called
the minwps graph, which is a special case of an object used in the analysis
and construction of codes between Markov chains ([14, 17, 15, 4]). We
rely heavily on the minwps graph in our analysis of the algorithms. In
particular, we show that the maximum likelihood paths spend all but a
tiny fraction of time in the minwps graph (Proposition 6.1 of Section 6).

In Section 7, we introduce a generating-function version of the sum
product algorithm involving a parameter x, which more explicitly reveals
the dominant pseudocodewords and helps to clarify the relationship be
tween the ordinary sum-product and min-sum algorithms on TB trellises.
We show that the generating-function sum-product algorithm converges for
each x > 0 (Proposition 7.1), and in Section 8 we determine its limiting be
havior as x -+ 0 (Proposition 8.2). We show how this can be used to detect
some dominant pseudocodewords (Proposition 8.3), but that it may fail to
detect all such words (Example 4 of Section 9). In Section 10, we introduce
a generating-function version of the min-sum algorithm and show that it
converges over a particular subsequence of the integers (Proposition 10.2).

Leading terms of eigenvalue and eigenvector functions play an impor
tant role in determining the limiting behavior of the generating-function
sum-product algorithm. This is discussed in detail in Section 8 and il
lustrated with examples in Section 9. Proposition 10.1 shows how these
leading-term functions represent eigenvectors over a semiring of monomial
functions.

A Note on notation: We use""' to denote "equal up to scale" and
* to denote the componentwise product of two vectors.

2. Conventional and tail-biting trellises. A series conventional
finite-length trellis T is defined on an ordered discrete index set ("time
axis") I ~ Z that may be identified with an interval [0, n] = {O, 1, ... , n},
where n is the trellis length.

Given the time axis, finite state spaces ~k' 0 :s; k :s; n, and output
alphabets Ak , 0 :s; k < n, are defined, with I ~o I = I ~n I = 1. Further, a
trellis section Tk ~ ~k X Ak X ~kH is defined for 0 :s; k < n as the set
of allowed state transitions (Sk' ak, sk+d from state Sk to state Sk+l with
label ak. The elements of Tk are called branches. The indicator function
of Tk is:

rPk(Sk, ak, sHd 1, if (Sk' ak, sHd E Tk;
= 0, otherwise.

A valid trellis path is a state/output sequence (s, a) E (I1 k ~k) X

(I1k Ak) that satisfies all local constraints (Sk' ak, SkH) E Tk for all 0 :s;

ITERATIVE DECODING OF TAIL-BITING TRELLISES 241

k < n. The indicator function

¢(s,a) = II ¢k(sk,ak,Sk+d
k

equals 1 if (s, a) is a valid trellis path, and equals ° otherwise. The code
defined by the trellis is the set of all output sequences a that correspond
to valid trellis paths.

A tail-biting (TB) trellis T is defined on an index set I that is
identified with a cyclic group Zn = {O, 1, ... ,n - I}, where n is the TB
trellis length [3]. All index arithmetic is performed modulo n.

Again, for each k E Zn, a finite state space ~k and output alphabet Ak
are defined, with ~n = ~o. A trellis section Tk is defined for each k E Zn

as the set of allowed triples (Sk' ak, sk+d, and ¢k(Sk, ak, Sk+l) is defined as
the indicator function of Tk . Again a valid TB trellis path is a state/output
sequence (s,a) that satisfies all local constraints (sk,ak,Sk+l) E Tk for all
k E Zn, and Sn = so. For j = 0, ... , n - 1, the branches beginning in ~j
constitute the jth phase of the TB trellis. Figure 1 shows a TB trellis for
a linear block code.

-1-~'7--0 I~

-0-10 1--. o o-1 o~

FIG. 1. TB trellis for a linear block code.

Note that a conventional trellis of length n may be regarded as a TB
trellis with I ~o I = I ~n I = 1.

3. The sum-product algorithm on conventional trellises. On
a conventional trellis, the sum-product algorithm involves a forward
and a backward recursion, and is sometimes called the forward-backward
algorithm.

Given a trellis section Tk ~ ~k X Ak x ~kH and branch weights Ik =
{,k(ak), ak E Ad, the forward recursion of this algorithm computes ak =
{ak(sk), Sk E ~d by:

ak+l (SkH) = L ak(sk)Tk(ak)¢k(sk, ak, sk+d,

for each Sk+l E ~k+l' where the sum is implicitly over ~k x Ak, and
ao = (1). This may be viewed as a matrix multiplication

where ak and akH are regarded row vectors, and r k is the matrix with
entries:

(3.1)

242 G. DAVID FORNEY, JR. ET AL.

where the sum is implicitly over Ak • Thus

It is straightforward to verify by induction that

where

and

'Y[O,k) (a[O,k)) = II 'Yj(aj),
O~j<k

<P[O,kj(S[O,k), a[O,k), Sk) = II <Pj(Sj, aj, sj+d·
O~j<k

In other words, Uk(Sk) is the sum of the product 'Y[O,k)(a[O,k)) of weights
'Yj(aj) of all valid trellis paths that start at the unique time-O state and
reach state Sk at time k.

If the weight 'Yk (ak) = p(rk I ak), the likelihood of the received symbol
rk given the transmitted symbol ak, and the channel is memoryless, then

'Y[O,k) (a[O,k))

Uk(Sk)

P(rrO,k) I a[O,k));

P(rrO,k) I Sk).

If moreover all trellis paths are a priori equiprobable, then the vector
Uk is equal, up to scale, to the vector of a posteriori probabilities (APPs)
p(Sk I r[O,k)), and so

Uk = {p(r[O,k) I Sk)} '" {p(Sk I r[O,k))},

(where the symbol", denotes "equal up to scale"). Thus the sum-product
algorithm is sometimes called the "APP algorithm." (It is sometimes also
called the "MAP algorithm," but since no maximization occurs, we prefer
the term "APP algorithm".)

Similarly, the backward recursion computes

which may be viewed as a matrix multiplication

where 13k and 13k+! are regarded as column vectors, and fk is the same
matrix as in the forward recursion. Thus

ITERATIVE DECODING OF TAIL-BITING TRELLISES 243

where f3n = (I). So

the sum of the product 'Y[k,n)(a[k,n)} of weights 'Yj(aj} of all valid trellis
paths that start at state Sk at time k and end at the unique time-n state.

If 'Yk(ak} = p(rk I ak}, the channel is memoryless and all trellis paths
are a priori equiprobable, then

The final outputs of the algorithm are as follows. The final state weight
vector is the componentwise product Ak of the Q;k and f3k vectors, denoted

therefore

where the sum is over trellis paths (s, a) that pass through state Sk at time
k. Thus, with the same assumptions as above, Ak is equal up to scaling to
the APP vector

Similarly, the final output weights are the products

where the sum is implicitly over ~k x ~k+l' which yields

where the sum is over trellis paths (s, a) that contain symbol ak at time k.
Thus

4. Matrices, graphs, and tail-biting trellises. In preparation for
discussing the convergence of the iterative decoding algorithms on tail
biting trellises, we review a bit of the Perron-Frobenius theory of nonnega
tive matrices as well as notions of weighted graphs. We also show how TB
trellises are related to weighted graphs and nonnegative matrices.

244 G. DAVID FORNEY, JR. ET AL.

4.1. Perron-Frobenius theory. A real matrix or vector is said to
be positive (resp. nonnegative) if all of its entries are positive (resp. non
negative). A nonnegative square matrix r is irreducible if for any pair
of indices (s, s'), for some integer n = n(s, s') the corresponding entry of
the nth power is positive: rn(s, s') > O. A stronger condition than irre
ducibility is primitivity: a nonnegative square matrix r is primitive if for
some integer n, rn > O. Note that any positive matrix is automatically
primitive.

THEOREM 4.1. (Perron-Frobeniu8 theorem (see Seneta [16, Chap
ter lJ or [12, Chapter 4]): Let r be an irreducible (nonnegative, square)
matrix. Then

(a) r has a positive eigenvalue J.L, called the Perron eigenvalue,
which dominates all other eigenvalues: i.e., every eigenvalue 1/ of r has
magnitude II/I :s; J.L"

(b) r has a positive (left, resp. right) eigenvector corresponding to the
Perron eigenvalue J.L (called the left Perron eigenvector v, resp. right
Perron eigenvector w).

(c) The Perron eigenvalue J.L is algebraically simple (i.e., it is a simple
root of the characteristic polynomial, x(x) = det(xl - r) of r),. in particu
lar, it is geometrically simple (i.e., the space of corresponding eigenvectors
has dimension 1 and is simply the space generated by v),.

(d) Every positive eigenvector of r is a positive multiple of v.
Moreover, if r is primitive, then
(e) the inequality in (a) above is strict, and
(f) for any positive vector a, arm / J.Lm converges (up to scale) to v:

i.e., in the limit as m ~ 00, arm "-' v. In particular, the sequence of
matrices rm / J.Lm converges.

A nonnegative square matrix r which is not irreducible is called re
ducible. A reducible (nonnegative) matrix is usually studied via its irre
ducible pieces: an irreducible component of a nonnegative matrix is a
maximal irreducible submatrix, i.e., a square submatrix which is irreducible
and is not contained in any larger irreducible submatrix. A reducible matrix
breaks down into irreducible components with possibly some "transient"
connections between the components. This can be expressed by saying that
given a reducible matrix r (other than the 1 x 1 zero matrix), for some
ordering of the indices, r is block lower triangular with more than one
block.

A principal component is an irreducible component whose Perron
eigenvalue is maximal among all irreducible components. Equivalently, a
principal component of r is an irreducible component whose Perron eigen
value is the largest (in magnitude) eigenvalue of r. A sink is an irreducible
component from which there is "no escape"- i.e., an irreducible compo
nent C such that for any index s of C, if r(s, s') > 0, then s' must also
be an index of C. Note that any irreducible matrix automatically has only
one principal component, and that component is automatically a sink.

ITERATIVE DECODING OF TAIL-BITING TRELLISES 245

Part (f) of the Perron-Frobenius Theorem extends to a fairly general
class of matrices, including irreducible matrices, as follows. By the period
of an irreducible matrix r, we mean the g.c.d. of positive integers k such
that Tr(rk) > OJ by the period of a nonnegative matrix we mean the I.c.m.
of the periods of its irreducible components.

THEOREM 4.2. (see Seneta [16, Chapter 1]) Let r be a nonnegative
square matrix. Let p denote the period of r. Let j.L denote the largest (in
magnitude) eigenvalue of r. If all principal components of r are sinks
(in particular, if r is irreducible), then the sequence of matrices r mp / j.Lmp
converges as m -t 00.

In principle, a direct way of computing the Perron eigenvectors is given
as follows (for more detail, see Seneta [16, pp. 7-8] or [12, p. 112]). Given
a square matrix M, its adjugate, adj(M), is defined as the matrix of
cofactors of M. Define

A(x, r) = adj(xI - r),

where x is an indeterminate. The rows (resp. columns) of A(j.L, r) turn out
to be positive multiples of the left (resp. right) Perron eigenvectors of rj in
particular, A(j.L, r) is a rank-1 matrix formed as the outer product of left
and right Perron eigenvectors of r.

4.2. Weighted graphs. A finite directed graph (or simply graph)
G is defined by a set 1; of states and a set of (directed) edges, with each
edge having an initial state and a terminal state. Such a graph is essentially
a trellis section with the same starting and ending state set 1;. A path
in a graph is simply a concatenation of edges, where the terminal state of
each edge coincides with the initial edge of the succeeding edge. A cycle
is a path whose initial and terminal states agree.

A finite directed weighted graph (or simply weighted graph) is
a finite directed graph with weights assigned to its edges. An unweighted
graph is a weighted graph where the weight of every edge is 1.

There is a natural one-to-one correspondence between nonnegative
square matrices and finite directed weighted graphs with positive weights:
namely, given such a graph G with state set 1;, we associate the square
matrix r with index set 1; that is obtained by defining r(s, s') to be the
sum of weights of all edges from s to s'.

Properties of nonnegative matrices may be interpreted in terms of the
corresponding graphs. For example, a matrix is irreducible if and only if
for any pair of states (s, s') in the corresponding graph there is a path from
s to s'. Also, the period of an irreducible matrix is the g.c.d. of lengths of
cycles in the corresponding graph.

4.3. Relationship to TB trellises. A TB trellis T defines a graph
G = G(T)j here, the state set is 1;0 and the edges of G are trellis paths
of length n from 1;0 to 1;0 (but the terminal state Sn need not agree with
the initial state so). If T is endowed with branch weights, then paths of

246 G. DAVID FORNEY, JR. ET AL.

T inherit weights by multiplying weights along the branches (here, what
is meant by "multiplying" may depend on a semiring structure chosen
for the branch weights of T). Then G inherits these weights and thus
becomes a weighted graph. The nonnegative matrix corresponding to G is
the composite matrix multiplication around one trellis length:

(4.1)

where fk is defined as in (3.1).

5. The sum-product algorithm on tail-biting trellises. The
sum-product algorithm may be applied to TB trellises by assigning an ar
bitrary initial positive weight vector ao (usuallyao = 1, the all-one vector)
to the state space ~o and then applying the algorithm to compute

for arbitrarily large k E Z (see [2]).
Since fk = f k - n for k > n, we have

where f is as defined in (4.1) above.
For the remainder of this paper, we assume:

Standing assumption: f is primitive.

Note that the primitivity condition is much weaker than requiring f to be
positive, which would be equivalent to the condition that for every pair of
states (8,8') of ~o, there is a path in the TB trellis of length n from 8 to
8'; this latter condition holds for most good codes.

If v is the left Perron eigenvector of f = fof l ··· f n-I with eigen
value J.1., then vfo is the left Perron eigenvector of f' = fl ... f n-IfO with
eigenvalue J.1., since

Thus by part (f) of the Perron-Frobenius Theorem, for each 0 ::; j ::; n - 1,
as m --t 00, amn+j converges, up to scale, to the left Perron eigenvector
vfofl ... f j - I . In other words, the sum-product algorithm applied to Vo =
v produces a cycle of compatible vectors VI = vfo, V2 = vfofl'" . , that
comes around to Vn = vf = J.1.V '" v. In principle, the rate of convergence is
determined to first order by the ratio of the magnitudes of the two largest
eigenvalues of f. In practice, the memory of the forward recursion is of the
order of a few times the code constraint length (the controller memory of
the trellis), and convergence often takes only one trellis length plus a few
constraint lengths [2).

Similarly, in the reverse direction, f3mn converges in direction to the
right Perron eigenvector w of f; i.e., in the limit f3mn "'.W. More generally,

ITERATIVE DECODING OF TAIL-BITING TRELLISES 247

for 0 :::; j :::; n - 1, in the limit as m -+ 00, (3mn-j "-' Wj == r n-j ... r n-1W,

Since the eigenvalues of r and its transpose are the same, the rate of
convergence is the same in the reverse direction.

The final state weight vectors Ak and final output weights (J'k are com
puted from the a's and (3's as in Section 3. Thus, we have:

PROPOSITION 5.1. For 0 :::; j :::; n - 1, in the limit as k -+ 00, with
k == j (mod n),

In particular, setting j = 0, we have: in the limit as k -+ 00, with k ==
o (mod n),

It follows from Proposition 5.1 and the discussion of the adjugate ma
trix in Section 4.1 that the limiting (over multiples k of n) final state weight
vector Ak is, up to scale, the componentwise product of any row and any
column of the adjugate matrix A(j.L, r); in particular, Ak may be taken to
be proportional to the diagonal entries of A(j.L, r).

6. The min-sum algorithm on tail-biting trellises. The sum
product algorithm may be generalized to any commutative semiring (S,
+, x), whose addition and multiplication operations (+, x) satisfy the
associative, commutative and distributive rules of ordinary arithmetic.

The min-sum algorithm is the sum-product algorithm over the
"min-sum" semiring (R, min, sum); Le.,"sum" is replaced by "min" and
"product" is replaced by "sum," and the branch weights 'Yk(ak) = p(rk I ak)
are replaced by their negative logarithms -log'Yk(ak) = -logp(rk I ak).
Matrix multiplications over this semiring become the "add-com pare-select"
operations of the Viterbi algorithm, and the min-sum algorithm becomes
a bidirectional Viterbi algorithm.

By a maximum-likelihood (ML) path, we mean a path with min
imum weight. For instance, a ML past trellis path to state Sk is a path
of length k ending at state Sk with minimum weight. It follows from the
definitions of the forward and backward recursions that a state weight
-logak(sk) (resp. -log(3k(sk)) is equal to the negative log likelihood of
the ML past (resp. future) trellis path to state Sk, Le., the path of length
k ending at state Sk with minimum weight. The final state weight

is the negative log likelihood of the ML trellis path passing through state Sk.

Similarly, the final output weight -log(J'k(ak) of ak becomes the negative
log likelihood of the ML trellis path that includes ak.

248 G. DAVID FORNEY, JR. ET AL.

Any TB trellis T yields a corresponding bi-infinite trellis Too obtained
by declaring the received weights to be repeated periodically with period
n; i.e., 'Yk(ak) = 'Yk-n(ak), for k > n. (Too is sometimes referred to as
the "unwrapped" or "periodic" version of the TB trellis; this notion of
"unwrapping" a graph with cycles into a cycle-free "computation tree"
was first introduced by Gallager [8], and has been substantially developed
in [19, 20, 7].

We define a pseudocodeword (after [7]) as a length-mn path
(S[O,mn],a[O,mn) on Too that starts and ends in the same state: So = Smn E
I:o. The valid TB trellis paths (codewords) are precisely the length-n
pseudocodewords. A pseudocodeword (S[O,mn], a[O,mn) is called simple if it
never passes through the same state twice at times {O, n, 2n, ... , (m -1)n}.
Every pseudocodeword can, in some sense, be "decomposed" into simple
pseudocodewords, although not necessarily as a simple concatenation.

The weight-per-symbol (wps) of a pseudocodeword (S[O,mn],

a[O,mn) is defined to be:

We define the dominant pseudocodeword(s) to be the pseudocode
word(s) with the minimum wps, which we denote by woo

Recall that G = G(T) denotes the weighted graph corresponding to
a TB trellis T (as described in Section 4.3). Using the min-sum semiring
for weights in T, the weight of an edge in G is defined to be the sum of
the weights (the negative logarithms) of the branches that define the edge.
Note that paths in G correspond to paths in Too which begin and end in I:o.
In particular, a pseudocodeword (S[O,mn] , a[O,mn) corresponds to a cycle in
G of length m.

Now, define the minwps graph Go = Go(T) to be the subgraph of G
consisting of all edges in G that belong to a dominant pseudocodeword. It
can be shown that the dominant pseudocodewords correspond precisely to
the cycles in Go (in particular, any cycle formed from edges in Go turns out
to be a dominant pseudocodeword) and that Go is the disjoint union of its
irreducible components, i.e., there are no "transient" connections between
the components (see [14, Proposition 3.9]). If there is a unique dominant
pseudocodeword, then Go will consist of a single simple cycle. If not, then
Go can be much more complicated.

The following result says that for large k == ° mod n, the past and
future ML paths spend all but a vanishingly small fraction of time in the
minwps graph. Since it is clear that any ML path that passes through a
state Sk must be the concatenation of a past ML path to Sk and a future
ML path from Sk, this gives a description of the result of the min-sum
algorithm on TB trellises.

ITERATIVE DECODING OF TAIL-BITING TRELLISES 249

PROPOSITION 6.1. Given a TB trellis T, there is a constant Ko such
that for any k == 0 (mod n), any state Sk E ~o, and any past (resp. future)
ML path to (resp. from) Sk, the number of edges in which the path does not
lie in the minwps graph Go(T) is at most Ko.

Proof. Any finite path in the graph G can be "decomposed" (again, not
necessarily as a simple concatenation) into simple cycles of G together with
a path of bounded length at most I~ol. In particular, given k == 0 (mod n)
and state Sk E ~o, this holds for a path 1T in G corresponding to an ML
path in the trellis which ends at Sk.

Now, there is a path 1T' of length k to state Sk that lies in the minwps
graph Go except for perhaps a suffix of bounded length of length at most
I~ol. Such a path can be "decomposed" into simple cycles of Go together
with a path of length at most 21~ol. Since 1T corresponds to an ML path,
the weight of 1T' is at most equal to that of 1T. But since the simple cycles
of Go have minimum wps (among all possible cycles in G), it follows that
only a bounded number of the simple cycles in the decomposition of 1T can
fail to be contained in Go. With the exception of these cycles and a path
of bounded length, the path 1T lies within Go. 0

7. The generating-function sum-product algorithm. The sum
product algorithm computes a sum over paths of likelihood weights. The
largest term in this sum is contributed by the ML path, which is com
puted by the min-sum algorithm. We may therefore expect some relation
between the convergence behavior of the sum-product and min-sum algo
rithms. More precisely, we expect that the min-sum algorithm should in
some sense be a limiting case of a sequence of sum-product algorithms,
which in the limit detects ML paths.

To this end, we introduce a generating-function sum-product algorithm
as follows.

By a monomial in an indeterminate x we mean a function of the form
xr for some real number r. By a generating function we mean a linear
combination of monomials with positive coefficients over R. Generating
functions form a semiring under the usual definition of sum and product.
The generating-function sum-product algorithm is defined as the
sum-product algorithm applied over this semiring to a TB trellis, where
the weight of a branch in the kth section with label ak is taken to be the
monomial x-1og'Yk(ak).

The forward recursion of this algorithm yields forward generating
function vectors

where fk(x) is the generating-function matrix with components defined
by:

250 G. DAVID FORNEY, JR. ET AL.

and we again choose 00 = 1. Observe that

Analogous expressions are obtained for the generating function vectors
13k (X) obtained from the backward recursion of this algorithm, and similarly
for the final state weights Ak(X) and final output weights O"k(X).

For x > 0, let

(7.1)

and let J.L(x), v(x), w(x) denote the Perron eigenvalue, left Perron eigenvec
tor and right Perron eigenvector, respectively of r(x) (with v(x, s), w(x, s),
S E I:o denoting components of these vectors). Since we have assumed
r = r(e-1) to be primitive, we can apply the Perron-Frobenius Theorem
to see that for each x > 0, these quantities are well defined, and as m -+ 00,

up to scale, omn(x)jJ.L(x)m converges to v(x) and f3mn(x)jJ.L(x)m converges
to w(x). Applying Proposition 5.1, we immediately obtain:

PROPOSITION 7.1. For each x > 0, in the limit as k -+ 00, with
k == 0 (mod n),

Note that the generating-function sum-product algorithm reduces to
the ordinary sum-product algorithm if we substitute x = e-1 . As x -+ 0,
more emphasis is given to the branches with small -log'Yk(ak) (equiva
lently, large 'Yk(ak)), and this is why one might expect the convergence
behavior of this algorithm as x -+ 0 to depend heavily on the ML paths.

Generating function matrices corresponding to finite directed weighted
graphs have been used in the study of Markov chains in symbolic dynam
ics (actually, where the matrix entries are polynomials in several variables).
The states of the graphs are the states of the Markov chain and the weights
are representations of the transition probabilities. A collection of induced
subgraphs (including the minwps graph) is used as an invariant for prob
lems of isomorphism between Markov chains (see, e.g., [14, 17, 15, 4]).

8. Behavior of the generating-function sum-product algor
ithm as x -+ O. We are interested in the behavior of Ak(X) as x -+ O.
For this purpose, we would like to express each v(x, s) and each w(x, s) as
a power series expansion in a neighborhood of x = 0, and then pull out
the leading terms of these power series. But as x varies, the scaling factors
could vary wildly, and so v(x) and w(x) could behave poorly.

We may tame the variation of scaling factors by use of the adjugate
matrix:

A(J.L(x), r(x)) = adj(J.L(x)I - r(x))

ITERATIVE DECODING OF TAIL-BITING TRELLISES 251

(see the end of section 4.1). So, we fix v(x) and w(x) to be an arbitrary
row and column of A(J.L(x) , f(x)).

Now, since v(x, s) and w(x, s) are cofactors of the matrix J.L(x)I -r(x),
each is expressible as a polynomial in x and J.L(x). So it suffices to express
J.L(x) as a power series expansion.

Let xdt) denote the characteristic polynomial of the matrix r(x).
This is a polynomial in one variable t whose coefficients lie in the polynomial
ring Z[x] (i.e, the coefficients are polynomials in x). Now, by definition,
J.L(x) is a root of the characteristic polynomial (Le., XdJ.L(x)) = 0). The
ring Z[x][t] is a unique factorization domain (UFD) (Le., elements factor
uniquely into irreducible factors), since Z is a UFD and the ring obtained by
adjoining an indeterminate to a UFD is still a UFD [6, Theorem 32.3]. So
xdt) can factored uniquely into irreducible factors. One of these factors is
the minimal polynomial of J.L(x). This particular factor can be identified
readily as the factor that contains the (unique, by virtue of part (e) of
the Perron-Frobenius Theorem) dominant root J.L(x) for any evaluation of
x > o. Let d denote the degree of this minimal polynomial; then J.L(x) is
said to be an algebraic function of degree d.

As an example, if d = 2, then the minimal polynomial would be of the
form:

(8.1) t2 + a(x)t + b(x)

where a(x) and b(x) are polynomials in x. In this case, we could use
the quadratic formula to solve for J.L(x). Because of the square root in
the quadratic formula, J.L(x) may fail to be differentiable, in particular at
x = 0, and this might dash our hopes for a power series expansion valid
in a neighborhood of x = o. However, it would still remain plausible that
J.L(x) has a power series expansion in fi instead of x. Indeed, it does! In
fact, the general theory of algebraic functions (see [9, Chapter 12]) shows
that any algebraic function of degree d always has a power series expansion
in powers of x1/ u for some positive integer u ~ d.

EXAMPLE 1. As an example, consider

f(x) = [i
The root J.L(x) satisfies

J.L(X)2 - (2 + x3)J.L(x) + 1 - x - x2 + x3 = O.

Applying the quadratic formula, we obtain

J.L(x) ((2 + x3) + J(2 + X3)2 - 4(1 - x - x2 + x3)) /2

1 + x3 /2 + (V4x + 4x2 + x6)/2
1 + x3 /2 + fiJI + O(x)
1 + fi + O(x).

252 G. DAVID FORNEY, JR. ET AL.

So, the initial part of the expansion of p,(x) is 1 + xl/2. Note that we
chose the "+" root for the solution to the quadratic because p,(x) is, by
definition, the largest eigenvalue.

EXAMPLE 2. As another example, consider

r(x) = [1 + x
x+x2

The root p,(x) satisfies

Applying the quadratic formula, we obtain

1
2((2+x+x3)

+J(2 + x + x3)2 - 4((1 + x)(l + x3) - (x2 + x3)(x + x2)))

~ ((2 + x + x3) + Jx2 + O(x3))

1 + x/2 + +x3 /2 + (x/2)Jl + O(x)
1 + x + O(x2).

So, the initial part of the expansion of p,(x) is 1 + x (in this case, the
expansion turns out to be in powers of x, not X 1/ 2).

Of course, in general the quadratic formula is not available. But the
terms of the power series expansions can be determined inductively from
the minimal polynomial using either implicit differentiation or by setting
the minimal polynomial to 0, substituting into the minimal polynomial
an expansion of t = p,(x) with unknown coefficients, and solving for the
coefficients [9, Chapter 12).

For an algebraic function f = f(x) (such as a polynomial or the func
tion p,(x)), let f(x)(O) denote the leading term in the power series expansion
(in some fractional power of x) of f at x = 0:

f(x) = f(x)(O) + higher order terms,

where

here c = c(f) i- 0 denotes the coefficient of the leading term, and a = a(f)
denotes the degree of this term. For a vector or matrix f (x) of algebraic
functions define f(x)(O) (resp. c(f), a(f)) to be the vector or matrix of
leading terms (resp. corresponding coefficients, degrees).

The following result, which follows from [17, p. 411), characterizes the
leading term in the expansion of p,(x).

ITERATIVE DECODING OF TAIL-BITING TRELLISES 253

PROPOSITION 8.1. p,(x) (0) = P,oxwo , where Wo is the minimum wps
and J-lo is the largest eigenvalue of the matrix corresponding to the un
weighted (i.e., weights of all edges are 1) minwps graph.

Since every pseudocodeword can be decomposed into simple pseu
docodewords, the minimum wps occurs as the wps of a cycle of length
at most I~ol. Thus, the minwps Wo can be determined from the traces of
the matrix powers r(x)i, i = 1, ... , I~ol.

For each state s E ~o, define the order of s to be 8(v(x, s))+8(w(x, s)).
Let So denote the set of states with minimal order (over all states s E ~o),
and let w be the minimal order itself. The following result, together with
Proposition 7.1, gives a sense in which the "limiting version" (as x --t 0)
of the generating-function sum-product algorithm picks out the states of
minimal order. A complete proof of a much more general result is given in
[4, Theorem on p. 117].

PROPOSITION 8.2. Let f(x) be as in (7.1) above with corresponding
left and right Perron eigenvectors vex) and w(x). Then

1. (a) For each state s E So,

lim vex, s)w(x, s)/xw = c(v(x, s))c(w(x, s)) =1= o.
x--tO

(b) For each state s E ~o \ So,

lim vex, s)w(x, s)/xw = o.
x--tO

2. The set So of minimal-order states is the union of the sets of states
of a collection of principal components of the minwps graph.

For each phase j = 0, ... , n - 1, let Vj(x) and Wj(x) denote the corre
sponding left and right Perron eigenvectors for fj(x)··· f n-l(x)fo(x)···
fj-dx). Just as in Section 5, these vectors can be obtained inductively
from vo(x) = vex) and wn(x) = w(x) by

Vj(x) = Vj_l(x)f j_1 (x)

and

Wj(x) = f j (x)wj+1(x)

(for j ~ n, we find it convenient to also define Vj(x) = Vj-l(x)f j-dx) =
p,(x)Vj_n(x)). The corresponding vectors of leading terms, Vj(x)(O) and
Wj(x)(O), can then be readily determined. As a result, we obtain a set Sj
of minimal-order states for each phase.

The sets Sj can be used to trace out dominant pseudocodewords. For
this, we need a criterion to tell which branches actually participate in
dominant pseudocodewords.

For 0 ~ j < n -1, a branch (Sj, aj, Sj+1) is called a minimal-weight
branch if

254 G. DAVID FORNEY, JR. ET AL.

Here, for j = n - 1, we take

not vo(x).
PROPOSITION 8.3. A path is a dominant pseudocodeword if and only

if it is a cycle consisting of a concatenation of minimal-weight branches.
Proof. This follows from the discussion in [17) and [4). For complete

ness, we sketch the rough idea. Since each Vj (x) > 0 whenever x > 0, it
follows that the leading terms Vj (x, Sj)(0) have positive coefficients. Also,
by definition, the entries of rj(x) have positive coefficients. It follows that
there can be no cancellation in the branches involved in the part of the sum

L Vj(x, Sj)r(x, sj,sj+d
{(Sj,aHl,sHd}

that contributes to Vj+1 (x, S j+1) (0), and these are precisely the minimal
weight branches. For the same reason, no branch can contribute to a term
of degree lower than 8(vj+1 (x, Sj+1)), and so for all branches other than
minimal-weight branches we have

By following the progression of eigenvectors vo(x), VI (x), ... , and using the
fact that they are indeed eigenvectors for the eigenvalue J.-t(x) = J.-toxwo (+
higher order terms), we see that the only branch that can contribute to a
dominant pseudocodeword is one of minimal weight and that any cycle of
minimal-weight branches is indeed a dominant pseudocodeword. 0

By a minimal-weight edge, we mean an edge of the graph G(T)
obtained as a concatenation of minimal-weight branches in T. From [4,
discussion on p. 118], it follows that the principal components of the min
wps graph are sinks of the subgraph defined by the minimal-weight edges.
By Proposition 8.2 (part 2), any minimal order state So belongs to a prin
cipal component, and so any minimal-weight branch that emanates from
So must terminate at a minimal-order state in the same principal compo
nent. Thus, if at each minimal-order state we recursively pick out minimal
weight branches, then we will trace out entire principal components. Any
cycle in such a component will be a dominant pseudocodeword (by Propo
sition 8.3). So, in this sense, the "limiting version" (as x -+ 0) of the
generating-function sum-product algorithm detects at least some of the
dominant pseudocodewords. However, Example 4 below shows that it may
not detect all dominant pseudocodewords.

9. Examples.

EXAMPLE 3. Figure 2 shows a trellis section for the standard rate-1/2
4-state binary linear convolutional code. Anderson and Hladik [2) consider

ITERATIVE DECODING OF TAIL-BITING TRELLISES 255

the TB trellis T with length n = 5 that is based on this code. The channel
is a binary symmetric channel with error probability p < 1/2. (For our
purposes, the value of p is immaterial.) The branch weights are set equal
to the Hamming distance dH(ak, rk) between the transmitted and received
binary 2-tuples (since -logp(r I a) = dH(ak, rk) log(~) plus a constant).
Branches therefore have weights 0, 1 or 2, which will be indicated in some
of the figures by solid, dashed, or invisible lines, respectively.

FIG. 2. Trellis section for rate-l/2 4-state binary linear convolutional code.

Assume that the received sequence is (00 10 10 00 00). This defines
branch weights on T, and therefore also the matrices rj(x), j = 0,1, ... ,4
as well as the matrix r(x), defined in (7.1), computed over one trellis length
of T. A straightforward computation shows that the leading terms of the
entries of r(x) are:

Examination of the first four powers of this matrix reveals that the min
imum wps wo is 3/2, and the only cycle that achieves the minwps is the
cycle of length 2 which alternates between states 1 and 3 with weights x
and x 2 (so the minwps graph Go(T) consists of a single cycle of length 2).
This cycle corresponds to the following pseudocodeword at state 1

(00 11 10 00 10 00 10 11 00 00),

which is shown in darkened lines in Figure 3. The two phases of this
pseudocodeword are then the only dominant pseudocodewords.

According to Proposition 8.1, we thus have J.L(x)(O) = X 3 / 2 . In this
case, the degree of J.L(x) turns out to be 3, so v(x) and w(x) all have power
series expansions in some fractional power l/u of x with u ~ 3, valid in
a neighborhood of x = O. (It turns out that the expansion is actually in
powers of X 1/ 2.)

The vectors of leading terms of v(x), w(x) are entries of the adjugate
matrix A(J.L(x) , r(x))(O). We would like to compute this matrix using only

256 G. DAVID FORNEY, JR. ET AL.

00 10 10 00 00 00 10 10 00 00

FIG. 3. The dominant pseudocodeword.

p.(x)(O) and r(x)(O). However, this may not be enough information. For
instance, consider the (2,2) entry of A(p.(x)(O), r(x)(O)); this entry is det(S)
where

Expanding this determinant, we see that the lowest-degree term in det(S)
is X 9/ 2 - X 9/ 2 = 0; the next-lowest-degree term is _x5 • Since this term is
negative and A(p.(x) - r(x)) > 0 for any x > 0, it follows that _x5 cannot
possibly be the leading term of the (2,2) entry of A(p.(x), r(x)). Thus the
leading term can be resolved only by plugging in more of the initial part
of the expansion of p.(x).

On the other hand, consider the (1,2) entry, which is - det(S) where

S = [=~: :3~~ -x 3 =~:].
_x2 2x3 X3 / 2 - 2x3

Expanding this determinant, we see that the lowest-degree term has degree
11 /2 and that there is no cancellation, so we are left with 2Xll/2. Any
higher-degree term in the expansion of p.(x) or any higher-degree terms in
the entries of r(x) must therefore contribute to terms of degree> 11/2.
So in this case we can reliably say that 2Xll / 2 is the leading term of the
(1, 2)-entry of A(p.(x), r(x)).

If we do this for each entry, we obtain the following (where Ox'" means
that cancellation occurred and we were unable to determine the lowest
degree term of the entry):

2Xll/ 2

OX9 / 2

2x5
Ox5

Since there are no zero entries in the first row and column, we can
read off the leading terms of v(x) and w(x) as:

v(O) (x) = [X9/2,2xll/2,X5,x5] rv [1,2x,X1/ 2,x1/ 2]

ITERATIVE DECODING OF TAIL-BITING TRELLISES 257

and

Figures 4 and 5 show the sequences of vectors vaO) (x), viol (x), ... , viol (x)
(0) () (0) () (0) () . and Wo x, wI x, . .. ,w4 x. From thIS, we see that

and so the minimal-order states in phase 0 are states 1 and 3.

1 X x 3 / 2 X 3 / 2
x 3 / 2 1

2x. 2x5/ 2

x 1/ 2 x 2

x 1 / 2 x 2

FIG. 4. The forward recursion.

FIG. 5. The backward recursion.

In Figure 6, the minimal-order states are shown as darkened dots and
the minimal-weight branches passing through these states are darkened.
Note that these branches trace out the two halves of the (unique) dominant
pseudocodeword in Figure 3.

Notice that the best candidates among the actual codewords are the
all-zero codeword (00 00 00 00 00) and the nonzero codeword (01 10 10
01 00); each has Hamming distance 2 per trellis length from the received
sequence. However, the dominant pseudocodeword (00 11 10 00 10 00 10
11 00 00) has Hamming distance 3 per two trellis lengths; therefore it has
the minimum wps and is detected instead.

258 G. DAVID FORNEY, JR. ET AL.

1 1 1
1~----~-----'----______ -4~ __ ~1

1 1

FIG. 6. Minimal-order states and minimal-weight branches.

EXAMPLE 4. Consider the (rather poor) single-error-correcting, rate-2/7
convolutional code defined by the generator matrix:

[1 1
o D

1
1

o 0 0
I+D D D

This code is also defined by the trellis section in Figure 7.

0000000

FIG. 7. Trellis section for a rate-2/7 2-state convolutional code.

Consider the TB trellis T with trellis length n = 1 defined by this
code. Assume that the received sequence is

(1 0 0 0 1 0 0).

Then we have:

Clearly, the minwps graph Go(T) consists of the union of the two self
loops at states 1 and 2 with weight X 2 j thus Wo = 2, and the dominant
pseudocodewords are actually the codewords

(0 0 0 0 0 0 0) and (1 0 0 0 1 1 1)

(each with distance 2 from the received word). So, by Proposition 8.1, the
leading term in the power series expansion for f.L(x) is x2 . Substituting this

ITERATIVE DECODING OF TAIL-BITING TRELLISES 259

for /-L(x) in the adjugate A(/-L(x), f(x)) yields:

the zero entries occur because there may be a degree 3 term in the expansion
of /-L{x). Indeed, the second-to-Ieading term in the expansion is X 3 j in
Example 2, we computed /-L{x) for the matrix r(x)/x 2 , and found the initial
part of that expansion to be 1 +x. Now, plugging x2 +x3 in for /-L{x) yields:

[~: OXx42].

The first row and column of this matrix are nonzero, and so we obtain:

From this, we see that state 1 has order 3 + 3 = 6, while state 2 has
order 3 + 4 = 7. Thus, only state 1 is a minimal-order state, so the
limiting version of the generating-function sum-product algorithm detects
only one (of the two) dominant pseudocodewords (in this case, these are
actually codewords). In other words, the algorithm would conclude that
(O 0 0 0 0 0 0) was sent, whereas it is equally likely that (1 000 1 1 1) was
sent.

10. The generating-function min-sum algorithm. In the pre
ceding section, we defined the leading term of an algebraic function (in
particular a polynomial) or a vector or matrix of such functions, and we
explained the significance of the leading terms of the Perron eigenvector
function. This motivates us to define a sum-product algorithm over single
term generating functions, i.e., scalar multiples of monomials. The set of
such functions carries a natural semiring structure, called the leading
term semiring. Let "sum" be defined by:

if r < Sj

if r > Sj

if r = s,

and let "product" be the usual notion of product. With this semmng
structure, we can define matrix multiplication and the sum-product algo
rithm, which we call the generating-function min-sum algorithm. Its
forward recursion computes

where the matrix multiplications are over this semiring (Le., do ordinary
matrix multiplication over the polynomial ring Z[x], but keep only the
lowest-degree term in each component).

260 G. DAVID FORNEY, JR. ET AL.

Thus the components of the vector generating function ak(x)(O) are:

ak(x,sk)(O) = Nmax xmin {-log"Y[o,k)(a[o,k»)},

where the minimum is taken over all past paths (S[O,k), a[O,k), Sk) that ter
minate at Sk, and Nmax is the number of past paths achieving this min
imum. Thus this algorithm computes both the ML past path weight,
maxi'Y[O,k) (a[O,k))}, and also the number Nmax of past paths with this
weight, so it gives slightly more information than the ordinary min-sum
algorithm.

The backward recursion is defined similarly, as well as the computation
of final state weights and final output weights.

If Perron-Frobenius theory extended nicely to this semiring, then we
might expect the forward recursion of this algorithm to converge to some
kind of eigenvector (Le., an eigenvector for the matrix r(x)(O) over the
leading-term semiring). Proposition 10.1 below shows that we can find
meaningful eigenvectors over this semiring, and Proposition 10.2 below
gives a version of convergence of the generating-function min-sum algo
rithm. However, we will see in Example 5 below that we do not always
obtain convergence to these eigenvectors.

PROPOSITION 10.1. Let r(x) be as in (7.1) above with corresponding
left, right Perron eigenvectors v(x), w(x). Then the leading-term vectors
v(x)(O),w(x)(O) are eigenvectors corresponding to the eigenvalue Jl.(O) (x) for
the leading-term matrix r(x)(O) over the leading-term semiring:

(10.1)

and

(10.2)

Proof. The following proof is essentially contained in [17, Theorem
20(d)]. By definition, the entries of r(x) have positive coefficients. Since
Jl.(x), v(x) and w(x) are positive for all positive x, it follows that the the
leading terms in the power series expansion of Jl.(x) and each component of
v(x), w(x) have positive coefficient. Thus, there can be no cancellation in
determining the lowest-degree terms in the equations v(x)r(x) = Jl.(x)v(x)
and r(x)w(x) = Jl.(x)w(x). It then follows that equations (10.1) and (10.2)
~d. 0

PROPOSITION 10.2. Let r(x) be as in (7.1) above. Let n be the trellis
length and p be the period of the minwps graph Go. Then the forward
recursion of the generating-function min-sum algorithm converges on the
subsequence of multiples of np.

Proof. Let D(x) denote the diagonal matrix defined by D(x, s, s) =
xds , where ds = 8(v(x,s)). Let

B = (D(x)r(x)D- 1 (x)/x wO)(O).

ITERATIVE DECODING OF TAIL-BITING TRELLISES 261

It turns out (see [17, pp. 411-412] and [4, pp. 117-118]) that B is a nonneg
ative matrix, all principal components of B are sinks and for every state
s, we have rn(s, s') =I- 0 for some n and some state s' belonging to a sink.
Note that we can write:

(10.3) r(x) = xWo D-1(x)(B + H(x))D(x),

where H(x) is a matrix whose nonzero entries are polynomials with positive
integer coefficients in some fractional power of x and have no constant
terms.

Now, rk(x)(O) is the matrix obtained from the kth power of r(x) ob
tained by keeping only the lowest-degree term in each entry. From equation
(10.3) above, we have:

rk(x s t)(O) = Zd,-d.+kwox , , s,t,k

where Xs,t,k is the lowest-degree term (with coefficient) in the (s, t)-entry
of (B + H(x))k. Now, Xs,t,k involves only those terms in the expansion
of (B + H(x))k that contain a bounded number of appearances of H(x).
Suppose for simplicity that at most one appearance of H(x) contributes
to Xs,t,k (the general case will follow from similar arguments). Then, only
terms of the form Bk or BiH(x)Bk- i- 1, i = 1, ... , k -1, can contribute to
Xs,t,k·

Now, since all principal components of B are sinks, it follows from
Theorem 4.2 that Bmp / Il;;'P converges as m -+ 00 to some limit matrix L.
If Bmp(s, t) contributes to Xs,t,mp for some m, then for all sufficiently large
m, we have Xs,t,mp = BmP(s, t), and so we have convergence, up to scale,
to L(s, t). For the remainder of the proof, we may assume that for all m,
BmP(s, t) does not contribute to Xs,t,mp.

For a given pair of states s, t, let C denote the set of congruence
classes c mod p such that there exist an m and an i == c mod p for which
(Bi H(x)BmP-i-l)(s, t) contributes to Xs,t,mp. There is a constant No such
that for all sufficiently large m, all c E C and all i == c mod p, with i > No
and i < mp - No, (Bi H(x)Bmp-i-l)(s, t) contributes to Xs,t,mp (this fol
lows from the fact that for every state s, we have rn(s, s') =I- 0 for some n
and some state s' belonging to a sink).

Fix v E (0,1/2). Then for sufficiently large m, all c E C, and all i ==
c mod p, with i > vmp and i < (l-v)mp, we have that (Bi H(x)Bmp-i-l)
(S,t)/Il;;'P is close to (LBCH(x)LBC-l)(s,t)/1l5c • We may assume that m
is so large that vmp > No.

Decompose the set of all i = 0, ... , mp-1 such that (Bi H(x)BmP-i-l)
(s, t) contributes to Xs,t,mp into two subsets: 9(s, t, m) is the set of all such
i with vmp :::; i :::; (1 - v)mp, and B(s, t, m) is the set of all such i with
i < vmp or i > (1 - v)mp. Now, write

l:iEg(s,t,mp) (Bi H(x)Bmp-i-l)(s, t)/(mpll;;'P)
+ l:iEB(s,t,mp) (Bi H(x)Bmp-i-l)(s, t) / (mpll;;'P).

262 G. DAVID FORNEY, JR. ET AL.

Since vmp > No, the first term in the sum is close to:

(1 - 2v) L (LBC H(x)LBC-1)(s, t)/(J.tO)2c.
cEC

The second term in this sum is bounded by a function of v that tends
to 0 as v tends to 0 (uniformly in m). Since v is an arbitrary number
in (0,1/2), it follows that the second term can be made arbitrarily small.
Thus, by taking v smaller and smaller and then n larger and larger, de
pending on v, we obtain convergence to

L (LBC H(x)LBC-1)(s, t)/(J.tO)2c.
cEC o

EXAMPLE 5. We continue with Example 3. Recall that the trellis length
is n = 5. The minwps graph Go consists of one cycle of length 2, and thus
the period of Go is p = 2.

Figure 8 illustrates the behavior of the forward recursion of the gener
ating-function min-sum algorithm (normalized by division by x 3 after every
two trellis lengths). Here, the forward recursion over 2k trellis lengths
yields:

Thus, over the subsequence of multiples of 10 = np, the forward recursion
converges to

[1, 2x, 0, 0].

Note that this is different from

v(x)(O) ,...., [1, 2x, X 1/ 2 , X 1/ 2].

The backward recursion over 2k trellis lengths gives [1, 2x, k + 2, 2x]. So,
over the subsequence of multiples of 10, the backward recursion converges
to

(0,0,1,0).

Note that this is different from

w(x)(O) ,...., [x1/ 2 , 2x3 / 2, 1, 2X3 / 2].

The final weights (after 2k trellis lengths) are

Ak = [(k + 1)x3 , (4k + 6)x5 , (k + 2)x3 , 2x4],

which in the limit is (up to scale)

[1,4x2,1,0].

ITERATIVE DECODING OF TAIL-BITING TRELLISES 263

Thus the algorithm detects the states of the dominant pseudocodeword
(the states 1 and 3 with minimal degree in the final weight vector), but the
final weights are different from the final weights of the limiting version of
the generating-function sum-product algorithm:

[1, 4x2 , 1, 2X3/ 2].

x x x x x x 2 2x3 2x3
2x 3

6x 4

x 3

x 3

2x x x x x x 2 3x3 3x3
3x 3 2

7x4

x 3

x 3

3 3x x x x
3

x x 2 4x 3 4x 3
4x 3

9x4

x 3

x 3

FIG. 8. Behavior of the generating-function min-sum algorithm.

Note that in these computations, the result of the generating-function
min-sum algorithm agrees with the limiting (as x -+ 0) version of the
generating-function sum-product algorithm, except for the components
that have fractional exponents. Is this an accident?

Finally, note that the forward recursion over an odd number 2k + 1 of
trellis lengths gives:

Q2k+l = [1, 2x, (k + l)x, (k + l)x].

which converges to

[0,0,1,1].

Thus, the result of Proposition 10.2 cannot be extended to convergence
over the entire sequence of multiples of n = 5.

Acknowledgments. The results in this paper are closely related to
work of others, including D. Agrawal, S. Aji, J. Anderson, B. Frey,
S. Hladik, R. Koetter, R. McEliece, H.-A. Loeliger, A. Reznik, A. Vardy,

264 G. DAVID FORNEY, JR. ET AL.

N. Wiberg and Y. Weiss (d. [1,18, 11]), whose help is gratefully acknowl
edged. The authors wish to thank the IMA for hosting the 1999 Summer
Workshop on Codes, Systems and Graphical Models, where some of this
work was done. The second author also wishes to acknowledge the hospi
tality of M.LT. and Motorola.

REFERENCES

[1] S.M. AJI AND R.J. McELIECE, The generalized distributive law, IEEE Trans. In
form. Theory, 46 (2000), pp. 325-343.

[2] J.B. ANDERSON AND S.M. HLADIK, Tailbiting MAP decoders, IEEE J. Select. Areas
Commun., 16 (1998), pp. 297-302.

[3] A.R. CALDERBANK, G.D. FORNEY, JR., AND A. VARDY, Minimal tail-biting trel
lises: The Golay code and more, IEEE Trans. Inform. Theory, 45 (1999),
pp. 1435-1455.

[4] E. CAWLEY, B. MARCUS, AND S. TUNCEL, Boundary measures of Markov chains,
Israel J. Math., 94 (1996), pp. 111-123.

[5] G.D. FORNEY, JR., On iterative decoding and the two-way algorithm, in Proc. IntI.
Symp. 'IUrbo Codes and Related Topics, Brest, France, Sept. 1997.

[6] J.B. FRALEIGH, A First Course in Abstract Algebra, Addison-Wesley, 1977.
[7] B.J. FREY, R. KOETTER, AND A. VARDY, Skewness and pseudocodewords in it

erative decoding, in Proc. IEEE Int. Symp. Inform. Theory, Cambridge, MA,
Aug. 1998, p. 148.

[8] R.G. GALLAGER, Low-Density Parity-Check Codes, MIT Press, Cambridge, MA,
1963.

[9] E. HILLE, Analytic Function Theory, Chelsea, 1962.
[10] F.R. KSCHISCHANG AND B.J. FREY, Iterative decoding of compound codes by proba

bility propagation in graphical models, IEEE J. Select. Areas Commun. (1998),
pp. 219-230.

[11] F.R. KSCHISCHANG, B.J. FREY, AND H.-A. LOELIGER, Factor graphs and the sum
product algorithm. submitted to IEEE 'Dans. Info. Theory, 1998.

[12] D. LIND AND B. MARCUS, An Introduction to Symbolic Dynamics and Coding,
Cambridge U. Press, Cambridge, UK, 1995.

[13] D.J.C. MACKAY, R.J. McELIECE, AND J.-F. CHENG, Turbo decoding as an in
stance of Pearl's 'belief propagation' algorithm, IEEE J. Select. Areas Com
mun. (1998), pp. 140-152.

[14] B. MARCUS AND S. TUNCEL, The weight-per-symbol polytope and scaffolds of in
variants associated with Markov chains, Ergod. Thy. and Dynam. Sys., 11
(1991), pp. 129-180.

[15] --, Matrices of polynomials, positivity, and finite equivalence of Markov
chains, J. Am. Math. Soc., 6 (1993), pp. 131-147.

[16] E. SENETA, Nonnegative Matrices and Markov Chains, Springer, 1981.
[17] S. TUNCEL, Faces of Markov chains and matrices of polynomials, Contemp. Math.,

135 (1992), pp. 391-422.
[18] Y. WEISS, Correctness of local probability propagation in graphical models with

loops, Neural Comp., 12 (2000), pp. 1-41.
[19] N. WIBERG, Codes and decoding on general graphs, PhD thesis, Dept. Elec. Engg.,

U. Linkoping, Sweden, Apr. 1996.
[20] N. WIBERG, H.-A. LOELIGER, AND R. KOETTER, Codes and iterative decoding on

general graphs, Euro. Trans. Telecomm., 6 (1995), pp. 513-525.

ALGORITHMS FOR DECODING AND INTERPOLATION

MARGREET KUIJPER*

Abstract. In this paper we consider various algorithms for decoding BCH/RS/
Goppa codes, in particular the euclidean algorithm, the Beriekamp-Massey algorithm
and the Welch-Beriekamp algorithm. We focus on relationships of these algorithms with
interpolation methods in system theory. We note that the problem statements in the
two areas can be different: from a system theoretic point of view, rational interpolating
functions with common factors between numerator and denominator are undesirable
whereas common factors can be required in a decoding context.

The behavioral approach was introduced by Jan C. Willems into system theory in
the eighties. It proposes the family of trajectories of a system as its central focus.
This makes the approach attractive for coding theorists (most naturally in the context
of convolutional codes where the family of trajectories corresponds to the code). In
this paper we focus on a connection between behavioral modeling and the decoding of
BCH/RS/Goppa codes. In this context, the behavioral modeling approach is attractive
because it naturally generates solutions with common factors.

We present slight modifications of both the Berlekamp-Massey and the Welch
Berlekamp algorithm and give a derivation in terms of behavioral modeling. In partic
ular, we derive the latter algorithm directly from Reed & Solomon's original approach.
We demonstrate the similarity of the two algorithms and show that they are special
instances of one general iterative behavioral modeling procedure.

Key words. Reed-Solomon codes, Beriekamp-Massey algorithm, Welch-Berlekamp
algorithm, behaviors, exact modeling.

1. Introduction. Interpolation techniques have proved useful tools
for various system-theoretic problems, see [2] and references therein. In a
system-theoretic context the interpolant is usually required to be a rational
function, say N / D, where Nand D are polynomials. Thus any common
factors between Nand D are cancelled. Then, if the objective is to obtain
an interpolant of minimal McMillan degree (i.e. max { deg D, deg N} min
imal), the occurrence of common factors can interfere with the minimality
requirement, see also [7]. Let us illustrate this with a small example.

EXAMPLE 1. Consider an interpolation problem over lR. The inter
polation data are given by (xl,yd = (0,1), (X2,Y2) = (1,0) and (X3,Y3) =
(-1,1). Then a unique minimal polynomial solution is given by

(D(s), N(s)) = (s - 1, s - 1).

Indeed, for i = 1,2,3, D(Xi)Yi = N(Xi). However, rational interpolants

are all of degree ~ 2. (For example Y(s) = (3;~il is a minimal rational
interpolant; indeed Y(Xi) = Yi for i = 1,2,3.)

However, as we will see in this paper, in a coding-theoretic context, the
minimal interpolation problem is most naturally formulated as a polyno-

"Department of EE Engineering, University of Melbourne, VIC 3010, Australia;
m.kuijper@ee.mu.oz.au.

265

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

266 M.KUIJPER

mial interpolation problem, in which common factors playa crucial role in
retrieving the transmitted message.

In recent years, Reed-Solomon decoding methods based on interpolation
have captured a renewed interest as they provide a natural setting for
successive erasure decoding ([5)) and list decoding [25, 26, 12]. In the
latter references it was shown how Reed-Solomon error correction beyond
half the minimum distance can be achieved by a list decoding technique
based on interpolation.

In this paper we show how a system-theoretic modeling procedure, based
on a behavioral approach, gives rise to interpolating solutions with com
mon factors in a natural way, thus making it relevant to coding theoretic
applications.

The behavioral approach to system theory has been introduced in [28]
[30]. Using this approach, ideas concerning the modeling of data have
been developed in [29, 30, 3, 1, 31]. More specifically, [30, p. 289] gives a
modeling procedure for the construction of exact linear models. In [16] it
was shown how the Berlekamp key equation of [4] can be reformulated as
minimal modeling of a certain finite dimensional behavior. It was further
shown in [16] how the Berlekamp-Massey algorithm can be interpreted as a
special instance of the modeling procedure of [30, p. 289], involving a clever
choice of update matrix at each step. This work formed the basis for the
multivariable algorithm of [17] which was then used to achieve improved
decoding of BCH codes in [19, 14, 15].

An alternative decoding method ([24)) that is noniterative is the euclidean
algorithm. It was shown in [18] how the euclidean algorithm fits into this
approach. This extends (see subsection 4.3 of this paper) to interpolation
based decoding, connecting with results in [8].

In this paper we show how the Welch-Berlekamp key equation (see e.g. [5])
can be reformulated as minimal modeling of a finite dimensional behav
ior. The Welch-Berlekamp algorithm [27] exhibits similarities with the
Berlekamp-Massey algorithm, see e.g. the presentation in [9]. However,
unlike the Berlekamp-Massey algorithm, it makes no direct use of the so
lution's degree e at each step to determine which type of update matrix
is used. In this paper we present a modification of the Welch-Berlekamp
algorithm that does use this parameter e. We believe that its workings
are then particularly transparent in showing that this algorithm is, like
the Berlekamp-Massey algorithm, another special instance of the modeling
procedure of [30, p. 289].

2. The behavioral approach and exact modeling of data. In
this section we first present some preliminaries on the behavioral approach
and then proceed with a brief outline of the relevant part of the behavioral
theory of exact modeling. In particular, we present the general iterative

ALGORITHMS FOR DECODING AND INTERPOLATION 267

modeling procedure of [30] in Procedure 2.1. In the sequel, trajectories will
take values in a field, denoted as 18'. For system-theoretic applications, 18'
is usually infinite (~or C)j however, in the coding-theoretic context of the
sequel, 18' will be a finite field.

In the behavioral approach [22], [28]-[30], a system is essentially defined
as a set of trajectories. We will be concerned with linear shift-invariant
behaviors on the time-set Z+ of the form B = ker R(a), where R is a
polynomial matrix of, say, size p x m and a is the backward shift operator:

The behavior B consists of trajectories w : Z+ H IF"', for which

(2.1) R(a)w = o.

The representation (2.1) is called a kernel representation of B.

Let us repeat some notions from [28], and start with the following lemma
(see e.g. [13, Th. 3.9] for a detailed proof).

LEMMA 2.1. Let Rl E JFPl xm[s] and R2 E JFP2 xm[s]. Then

if and only if there exists a polynomial matrix F E JFP2 XPl [s] such that

It is a corollary of the above lemma that polynomial matrices Rl and
R2 of full row rank represent the same behavior if and only if there exists
a unimodular matrix U (i.e., a polynomial matrix with constant nonzero
determinant) such that R2 = UR1 .

As a measure of complexity of a model we introduce the order n(B) of a
behavior. It is defined as the minimum value of the sum of the row degrees
of R, where the minimum is taken over all possible full row rank kernel
representations (2.1) of B. This minimum is attained exactly when R is
"row reduced":

DEFINITION 2.1. Let R E JFPxm[s] have full row rank. Define Rd E
~pxm as the leading row coefficient matrix of R, i.e., the constant matrix
that consists of the coefficients of the highest degree terms in each row of
R. Define R to be row reduced if Rd has full row rank.

When a matrix R is not row reduced, a unimodular matrix U can be found
such that URis row reduced. A procedure is given in [32, p. 27], see
also [13, p. 24] where it is shown that not only the sum of the minimal
row degrees is an invariant of a behavior, but also the minimal row degrees
themselves are invariants of a behavior.

268 M.KUIJPER

Let us next repeat some standard notions and terminology from [29] (see
also [30, 3]) and assume that we have a data set D = {b1 , ... ,bv } where
bi E (JRffi)z+ are observed trajectories (i = 1, ... , II). A behavior 8 is
called an unfalsified model for D if D ~ 8. A model 8 1 is called more
powerful than a model 8 2 if 8 1 ~ 8 2 , A model 8* is called the most
powerful unfalsified model (MPUM) for D, if 8* is unfalsified for D and
D ~ 8 ===} 8* ~ 8. It has been shown in [29] that a unique MPUM 8*
exists for D. However, note that a kernel representation (2.1) of 8* is far
from unique.

We are now ready to present the procedure of [30, p. 289], which provides
a framework for the iterative construction of a kernel representation of the
MPUM for D = {b1 , ... , bv }. It can be easily understood from Lemma 2.l.

PROCEDURE 2.1. ([30)) Initially define

Ro := I (where I is the identity matrix).

Proceed iteratively as follows for k = 1, ... , II. Define, after receiving
{b1, ... , bd, the k-th error trajectory ek as

ek := Rk-1 «(J)bk.

Compute a kernel representation Vk«(J)W = ° of the MPUM for {ed. Then
define

THEOREM 2.1. ([30J) For k = 1, ... , II, the kernel representation

Rd(J)w = 0,

with Rk defined in Procedure 2.1, represents the MPUM for {b1, ... , bd.
With the above procedure we only need to be able to compute a MPUM
representation for a single trajectory (the error trajectory) in order to de
rive an MPUM representation for a finite set of trajectories. Furthermore,
row reducedness (Definition 2.1) of the representation Rk(O-)W = ° can be
achieved by cn()osing Vk in such a way that VkRk-1 remains row reduced
at each step k (k = 1, ... ,II).

3. Decoding and interpolation. There are various ways of defining
Reed-Solomon codes. In their original presentation [23], Reed & Solomon
defined their code as a set of polynomial evaluations at all points of a Galois
field. More specifically, writing

F = GF(q) = {O,a, ... ,aq - 1 = 1}

with a a primitive element, the code consists of codewords c, given by

(3.1) c = (A1(0),A1(1),A1(a), ... ,A1(aQ- 2)

ALGORITHMS FOR DECODING AND INTERPOLATION 269

where M is a polynomial of degree < K,. Decoding then amounts to curve
fitting:

given a received word r = (ro, rl,' .. , rq-d, find a poly
nomial M of degree < K, such that the vectors

[I] ~d
M(O)
M(l)
M(a)

agree in q - e places, with e minimal.
In Reed & Solomon's original paper [23] this was simply solved by repeated
Lagrange interpolation followed by majority voting. The inefficiency of this
method caused attention to shift to the generator polynomial approach
([11]), which then became common in textbooks. In this approach it was
recognized that Reed & Solomon's original code is an extension of a (q-1, K,)
cyclic code C, consisting of codewords of the form

(3.2) c = (M(l), M(a), ... , M(aq - 2))

where M is a polynomial of degree < K,. The code C is cyclic since each
codeword can be shown to have zeros at a, a2 , ••• ,aq - 1 - K • The code C was
subsequently called a (q - 1, K,) Reed-Solomon code and attention focused
on the derivation of efficient decoding methods based on the syndrome
sequence (r(a), ... , r(aq- 1- K)), where r denotes a received polynomial.
Methods that were derived include the Berlekamp-Massey algorithm [4,20]
and the euclidean algorithm [24]. Both these algorithms compute a shortest
linear recurrence relation for the above syndrome sequence. Let us consider
this in somewhat more detail.

3.1. The first key equation. Early work by Berlekamp recognized
that the crucial step in syndrome decoding of Reed-Solomon/BCH codes
amounts to solving the following (here n := q - 1 and II := n - K,):

Given a received polynomial r, compute syndromes

and solve

(key equation 1)

such that C(O) = 1 and max { deg C, deg P} is minimal.

270 M. KUIJPER

We can readily recognize this as minimal rational interpolation at multiple
points 8 = O. Of course, another constraint is that C has distinct zeros
whose reciprocals are code locations. (In the case of BCH codes they should
in addition give rise to errors of value 1, see [14, 15]). For the sake of brevity,
we will not repeat these constraints in the sequel.

The polynomial C gives error locations aI, ... ,at through

t

(3.3) C(8) = II (1 - ai8).

Error values are obtained from

i=l

ajP(aj-1)
C'(aj-1)

for j = 1, ... , f.

The above key equation was originally put forward by Bedekamp in [4], to
gether with an iterative algorithm for solving it, that later resulted in the
Bedekamp-Massey algorithm, incorporating ideas from [20). Let us here re
formulate this key equation plus accompanying constraints in a behavioral
framework, recalling [16).

With the syndrome sequence aI, a2, ... ,ay we first associate a trajectory
b : Z+ f-7 JF'2 given by

The MPUM 8* for b is given by

(3.4) [~ -(a10' + a20'2 + ... + ayO'Y)
O'y+1] W =0.

Solving Key equation 1 with the accompanying constraints is now equiv
alent to the construction of a minimal representation of 8*, i.e. a repre
sentation R(O')w = 0 where the 2 x 2 polynomial matrix R has minimal
row degrees. The row of R that does not vanish at 8 = 0 constitutes the
solution [C - Pl. Note that there always is such a row since in a minimal
representation of 8* not both rows can vanish at 8 = O.

A slightly different key equation which involves the reversed syndrome se
quence, is detailed in the next subsection.

3.2. The second key equation. It is easily verified that an alter
native key equation that involves the reciprocal of the polynomial of (3.3),
namely the polynomial D(8) = n~=l (8 - ai), is given by

(key equation 2)

ALGORITHMS FOR DECODING AND INTERPOLATION 271

such that deg H ~ deg D and deg D is minimal. (In this paper we will
call D(s) the "error locator polynomial"; note though that this terminology
is sometimes used for the polynomial of (3.3». This amounts to minimal
polynomial interpolation at s = 0 with the additional constraint that deg
H ~ deg D. Error values are now obtained from

e _ -H(aj) -H(aj)
j - ",,,+211 ('" "') - "'J",+2D'("'J') u.j i#j u.i - u.j u.

for j = 1, ... ,e.

In [24] a slightly different key equation (requiring deg H < deg D) was
presented and it was then shown how the euclidean algorithm acts as a
solution method. As we will see in subsection 4.3, for key equation 2 above,
the euclidean algorithm can also be applied, namely to the polynomials
S,,+l and a"s + a,,_ls2 + ... + a1s" to produce a solution that satisfies the
accompanying constraints.

Adopting a behavioral approach, we associate a trajectory jj : Z+ H JF2
with the syndrome sequence aI, a2, ... ,a" as follows

(3.5) jj := ([~1], ... , [aO] , [~] , [~] , ...) .

This time the MPUM for jj consists of all solutions of

(3.6) [01 -(a"O' + a"_10'2 + ... + a10''')] - 0
0',,+1 W - .

key equation 2 with the accompanying constraints can now be solved by
constructing a minimal representation of the above MPUM, i.e. a repre
sentation R(O')w = 0 where the polynomial matrix R has minimal row
degrees. The row [D - H] of R that has minimal row degree and obeys
the constraint deg H ~ deg D then constitutes the solution. An important
observation is that there always is such a row because of row reducedness
of R.

3.3. The third Key equation. Next, let F(s) = Fo + ... + F"s" be
a polynomial with F" =j:. 0 and let f3 E IF. define F(s) := (s - (3)F(s) and
define transformed syndromes by

Next, define a polynomial A by A(s) := (s - (3)(a" + a,,_IS + ... + alS,,-I).
Then it can be proven that solving key equation 2 under accompanying
constraints is equivalent to solving the following equation

D(s)A(s) = N(s) mod F(s) (key equation 3)

272 M. KUIJPER

such that deg N ~ deg D and deg D is minimal. Indeed, with D (s) =

n:=l (s - ai) and

[~: 1 ~ e, [~; 1 +. + e, [~; 1 '
we have that

D(s)A(s) = D(s)(s - /3)(av + av-ls + ... + alsv- l)

has degree ~ f.

= (s - /3)~~=1 (II (s - ai)ajej(F(s) - F(aj)))

= -(s - /3)~~=1 (II (s - ai)ajejF(aj)) mod F(s)
if.j

A solution can be derived by applying the euclidean algorithm to the poly
nomials A and F. In the case that the polynomial F is a Goppa polyno
mial, having no zeros at code locations, this accomplishes Goppa decoding,
see [24]. Error values are calculated as

-N(a .)
ej = _ J

ajF(aj)D'(aj)
for j = 1, ... ,f..

Let us now step away from the requirement that F has no zeros at code
locations and consider the case /3 = a V and

F(s) = (s - l)(s - a)··· (s - a V - l).

Define al, ... ,av and A as before. Now key equation 3 can be reformulated
as the interpolation requirement

(3.7) D(Xi)Yi = N(Xi) for Xi = a i (i = 0, ... , v),

where Yi = A(Xi) for i = 0, ... ,v. We will see in subsection 3.4 that this
equation constitutes the key equation for our modified Welch-Berlekamp
algorithm.

Let us now reformulate the problem of solving (3.7) such that deg D is
minimal and deg N ~ deg D in a behavioral framework. With the data
(Xi, Yi) (i = 0, ... , v) we associate trajectories bi : Z+ f-t JF'2 given by

Let L be the Lagrange interpolating polynomial that maps Xi to Yi (i =
0, ... , v). Then the MPUM B for bo, ... , bv is given by

ALGORITHMS FOR DECODING AND INTERPOLATION 273

Solving (3.7) under the above constraints is now equivalent to the con
struction of a minimal representation of B, i.e. a representation R(o')w = °
where the 2 x 2 polynomial matrix R has minimal row degrees. The row
[D - N] of R that has minimal row degree and obeys the constraint deg
N:::; deg D then constitutes the solution. Again, such a row always exists
because of row reducedness of R.

3.4. The fourth key equation. Let us now move away from the
generator approach and go back to Reed & Solomon's original curve fitting
formulation outlined in the beginning of this section. This is readily refor
mulated as an interpolation problem involving the error locator polynomial
D:

given a received word r = (ro,rl, ... ,rn-l), find polyno
mials E and D such that

D(Xi)r; = E(Xi)

for Xi = (Xi and i = 0, ... , n - 1 with
• deg D minimal
• E(s) = D(s)M(s) with deg M < K,.

Note that the common factor M between D and E is of crucial importance.
In a behavioral approach we again can associate trajectories

([ri] [riXi] [riX?]) 1 ' Xi ' Xi 2 ,. .. .

with the data (Xi, ri) (i = 0, ... ,n - 1). It is however important to note
that the above problem statement is not solved by constructing a minimal
representation for the corresponding MPUM. The reason for this is that
the degree requirements on D and E are not equivalent to a row degree
requirement.

In order to reformulate the problem in such a way that we can use the
theory of behavioral modeling, let us now re-encode the last K, entries of r,
resulting in a codeword c = (co, ... , cn-r) such that (recall that II = n - K,)

Ci = ri for i = II, ... ,n - 1.

(Denoting the code's generator polynomial by g, we then have c(s) =
r(s) mod g(s) + r(s), which is why this approach is sometimes called
"remainder decoding", see [10]).

Since rand r := r - c are necessarily disturbed by the same error pattern,
we might just as well decode r. In the following we use the fact that the
last K, entries of r are zero to reformulate the problem statement at the
beginning of this subsection as a case of behavioral minimal modeling.

For i = 0, ... ,n - 1, we first introduce trajectories

- ([fi] [fiXi] [fiXi2]) bi := l' Xi ' Xi 2 ,

274 M. KUIJPER

Next we define the polynomial Gas G(s) := (s - a"+ I) ... (s - an-I) and
we define B as the behavior spanned by trajectories

- [1 0]-
bi := 0 G(a) bi (i = 0, ... , n - 1).

Then, since G(Xi) = 0, we have that bi = 0 for i = v + 1, ... , n -1, so that
B is of dimension v + 1. Furthermore, for i = 0, ... , v, we have

Let us now define, for i = 0, ... , v,

and

It can then be shown that the interpolation data (Xi, Yi) coincide with
the data from subsection 3.3, that were obtained from the conventional
syndrome sequence, see also [10]. In particular, the trajectories bo, ... , bll

are as in subsection 3.3 (note that YII = 0). As outlined in subsection 3.3,
the decoding problem is now readily formulated as the problem of finding
a minimal representation

R(a)w = 0

for B = {bo, bl , ... , bll }. Indeed, the row [D - N] of the polynomial ma
trix R that has minimal row degree and for which deg N ~ deg D gives rise
to error locations and values as follows: the error locations aI, ... , at are
the zeros of D, whereas the error values are obtained from the polynomial
if := NG, namely by writing if = MD with deg M < K, and calculating
ej := fj - M(aj) (j = 1, ... , f). In other words, the decoding problem can
be reformulated as follows:

Given a received word r = (ro, rl,·.·, rn-d, compute Yi
as above for i = 0, ... , v. Now find polynomials D and N
such that

(key equation 4)

for i = 0, ... , v with deg D minimal and deg N ~ deg D.
Observe that this is a problem of minimal polynomial interpolation at dis
tinct points xo, ... , XII in which common factors between D and N are of
importance.

EXAMPLE 2. Consider a (7,3) Reed-Solomon code over GF(8} given
by (3.2). Suppose that c = (a3 ,a, 1,a3 , 1,0,0) is sent but

r = (a, a, 1, a 3 , 1,0, a)

ALGORITHMS FOR DECODING AND INTERPOLATION 275

is received. Reencoding the last 3 entries of r, we get

- (4632 10) r=r- a,a,a,a",a

= (a2,a5 ,a,a5 ,0,0,0).

With G (s) = (s - a 5) (s - a 6), the new interpolation data are given by

Xo = 1,Xl = a,x2 = a 2,x3 = a 3,x4 = a 4 and

a 2 3
Yo = G(l) = a

a 5

Yl = G(a) = a

a 5
Y2 = G(a2) = a

a 5 6
Y3 = G(a3) = a

Y4 = O.

As we will see in the next section, a solution of key equation 4 under ac
companying constraints is obtained as D(s) = (s - l)(s - a 6) and N(s) =
a 4 (s - l)(s - a 4). From this we obtain N(s) = N(s)G(s) = a 4(s - l)(s
a 4)(s - a 5)(s - a 6), so that M(s) = a 4(s - a 4)(s - a 5). This leads to

el = a 2 - a 6 = 1 and e2 = 0 - a = a.

4. Algorithms. In this section we present algorithms for solving the
various key equations of the previous section. Our starting point will be
the corresponding behavioral formulations.

4.1. Iterative algorithm for key equation 1. Let us start with
solving Key equation 1, Le. construct a representation for 8*, given by (3.4),
of the form R(O")w = 0, where R has minimal row degrees (Le. is row re
duced). An iterative algorithm would, at each step k, aim to construct a
row reduced representation Rk(O")W = 0 of the MPUM corresponding to
al, a2, ... , ak (k = 1, ... ,1/). Such an algorithm can be designed by using
the iterative modeling procedure outlined in Procedure 2.1. It has been
shown in [16) how the Berlekamp-Massey algorithm ([4, 20, 6)) chooses the
update matrix Vk such that Rk is not only row reduced but also has its sec
ond row vanish at s = 0, so that the solution can be read off from the first
row of Rk. We here present a slightly modified version of the Berlekamp
Massey algorithm which involves a different initialization and replaces the
condition £k-l :S k/2 by £k-l < k/2. Neither of these modifications af
fects the outcome of the algorithm-they are here introduced to increase
similarity with the algorithms of subsection 4.2 and subsection 4.4.

276 M. KUIJPER

ALGORITHM 4.1.

For k = 0, ... ,v denote Ck := [1 0] Rk [~]. Initially define

Ro := [~ ~] , and fo := O.

Proceed iteratively as follows for k = 1, ... , v. Define, after receiving
aI, a2, ... , ak, the number tlk as the coefficient of Sk in Ck-ds)(als +
... + ak sk).

Compute the matrix Rk and the integer fk as follows:

Rk := VkRk-l,

where, if tlk i= 0 and fk- I < k/2,

Vk(S) := [S/~k
and, if otherwise,

In the algorithm the integer fk denotes the first row degree of Rk' Denoting
the second row degree of Rk by i k, we have fk + i k = k + 1, so that the
algorithm's condition f k- 1 < k/2 is nothing else than f k- I < ik- I , whereas
fk := k - f k- 1 is equivalent to fk := i k- 1 •

It has been shown in [16] that the first row [C - P] of R y constitutes
a solution of key equation 1 such that max { deg C, deg P} is minimal
and C(O) i= O. In fact, the matrix Ry contains all information necessary to
derive solutions of any degree (not necessarily minimal). Indeed, we need
only apply Lemma 2.1 to get a parametrization in terms of the entries of
R y , see also [14, 15]. This could, in principle, be used for the purposes of
list decoding. However, the efficiency of this method is low since check
ing for the validity of zeros of candidate error locator polynomials is a
computationally intensive operation.

4.2. Iterative algorithm for key equation 2. The algorithm that
we will present in this subsection, follows the main outline of Algorithm 4.1,
except for the fact that this time the algorithm is tailored to produce, at
each step k, a row reduced matrix

for which deg Hk :s; deg D k . The resulting algorithm bears close resem
blance to the Berlekamp-Massey algorithm but does not exhibit any jumps
in the integer parameter f k •

ALGORITHMS FOR DECODING AND INTERPOLATION 277

ALGORITHM 4.2.

[Dk
For k = 0, ... ,v denote R k := Kk =g:]. Initially define

~:= [~ ~] , and eo := o.

Proceed iteratively as follows for k = 1, ... , v. Compute, after receiving
av, ... , av-k+l, the numbers D.k and f k as follows:

D.k := the coefficient of sk in Dk-I(s)(avs + ... + aV_k+lsk)

fk := the coefficient of sk in Kk-ds)(avs + ... + aV_k+lsk) - Qk-I(S).

Compute the matrix Rk and the integer ek as follows:

where, if D.k i 0 and (ek- I < kj2 or fk = 0),

Vk(S) := [s ~] j ek := ek-I + 1, _D..
~k

and, if otherwise,

Vk(S) := [~ ~] - Jk j ek := ek- I .

The next theorem shows that the above algorithm produces a solution to
key equation 2 under accompanying constraints.

THEOREM 4.1. Let Algorithm 4.2 operate on a sequence av, aV-l, ... ,
al. Then for k = 1, ... , v the polynomials Dk and Hk satisfy

Dk(s)(avs + av-I + ... + aV_kHsk) = Hk(S) mod sk+1

with ek = deg Dk minimal and deg Hk ::; deg Dk. In particular, Dv and
Hv are a solution of key equation 2 with ev = deg Dv minimal and deg
Hv::; deg Dv.

Proof Let the trajectory jj be defined as in (3.5). In the following
we show that the above algorithm is a special instance of Procedure 2.1
applied to the data set {O"vjj, O"v-Ijj, ... ,jj}. At each step k (k = 1, ... ,v),
the error trajectory €k = Rk_I(O")O"v-kjj satisfies O"€k = O"Rk_I(O")O"v-kjj =
Rk_I(O")O"V-k+Ijj = 0, so that €k is of the form

€k = ([~:] , [~] , [~] , .. .) .

Here Lik is the coefficient of sk in Dk- I (s)(avs + ... + aV_k+lsk) - Hk- I (s)
and fk is as defined in Algorithm 4.2. Again, the integer ek in Algorithm 4.2

278 M. KUIJPER

should be interpreted as the first row degree of Rk. Denoting the second
row degree of Rk by fk' we have fk + fk = k + 1. Because of this, it
is now easily proven that fk :S k for k = 0, ... ,1/, so that deg Hk :S k.
Because of this, we can reformulate the expression for ii k as i:l k , defined
in Algorithm 4.2. Note also that the condition f k - I < k/2 translates into
f k - I < f k - I •

The update matrix Vk clearly represents the MPUM for {ek}, so that for
k = 1, ... ,1/, Rk(O")W = ° represents the MPUM for {O"vb, ... , O"v-kb}. It
follows by induction that the choice of Vk'S ensures that each Rk has mini
mal row degrees. Indeed, this holds trivially for k = ° and the assumption
that Rk- I has minimal row degrees implies that Rk has minimal row de
grees because of the fact that Vk increases the degree of only one row of
R k - I byone.

It also follows by induction that deg Q k > deg K k, so that, because of row
reducedness of R k ,

k = 0, ... ,1/.

Now any solution of key equation 2 of smaller degree that satisfies the
accompanying constraints leads to a row reduced MPUM representation
with smaller sum of row degrees. This contradicts the minimality of the
row degrees of the matrix Rk and proves the theorem. 0

4.3. The euclidean algorithm. A noniterative method to solve key
equations 1-4 under accompanying constraints is the euclidean algorithm.
Its usefulness for key equations 2 and 3 was first detailed in [24]. Let us
illustrate the workings of this algorithm for key equation 4, compare [8].
The reasoning is immediately extendable to key equations 1-3 ([18]). Recall
that we need to construct a minimal representation for the behavior B
associated with the interpolation data (Xi, Yi), as specified in subsection 3.3.
One way of constructing such a representation is to left multiply

[~ -L(s)]
-(s - xv)F(s)

by a unimodular polynomial matrix U such that the resulting matrix is
row reduced. This can be achieved by applying the euclidean algorithm to
L(s) and (s - xv)F(s) as follows. Initializing roes) := (s - xv)F(s) and
rl(s) := L(s), we compute, for k = 0,1, ... , polynomials rk and qk+1 such
that

with deg rk+2 < deg rk+I' Next define toes) := 0, tl(S) := 1 and

ALGORITHMS FOR DECODING AND INTERPOLATION 279

Let k* be the smallest integer such that deg rk* ::; deg tk*. Then, with

u = [-q~*-l ~] [~] ... [~]
it follows that

is row reduced. As a result, D := tk* and N := rk* solve key equation 4
under the accompanying constraints.

4.4. Iterative algorithm for key equation 4. In this subsection
we present an algorithm that is a direct generalization of the algorithm
of subsection 4.2. The algorithm produces a solution to key equation 4
that obeys the accompanying constraints. At each step it produces a row
reduced matrix Rk whose first row contains the solution corresponding to
the interpolation data processed so far.

ALGORITHM 4.3.

[Dk
For k = -1, ... , v-I denote R k := Kk =~:]. Initially define

o], and £-1 := o.
s - Xv

Proceed iteratively as follows for k = 0, ... , v -1. Compute, after processing
(Xi, Yi) for i = 0, ... , k, the numbers D..k and r k as follows:

D..k := Dk- 1(Xk)Yk - Nk-dxk)

r k := K k- 1 (Xk)Yk - Qk-1 (Xk).

Compute the matrix Rk and the integer £k as follows:

where, if D..k =J. 0 and (£k-1 < (k + 1)/2 or r k = 0),

and, if otherwise,

ilk] -r;;- .
s - Xk '

The next theorem shows that the above algorithm produces a solution to
key equation 4 under accompanying constraints.

280 M. KUIJPER

THEOREM 4.2. Let interpolation data (Xi, Yi) (i = 0, ... , v) be given
as in subsection 3.4. Let the above algorithm operate on these data. Then
for k = 0, ... , v - 1 the polynomials Dk and Nk satisfy

Dk(Xi)Yi = Nk(Xi)

for i = v, 0,1, ... , k with £k = deg Dk minimal and deg Nk ~ deg Dk. In
particular, D v - 1 and N II - 1 are a solution of key equation 4 with £11-1 =
deg D II - 1 minimal and deg N II - 1 ~ deg D II - 1 •

Proof. Define trajectories bi : Z+ t--+ J[f2 as in subsection 3.4 (i =
0, ... , v):

b. = ([Yi] [YiXi] [YiXi2]) • l' Xi ' Xi 2 ,

In the following we show that Algorithm 4.3 is a special instance of Pro
cedure 2.1 applied to the data set {b ll , bo, b1 , .. . , bll - 1 }, starting with

R-2 := [~ ~]. Then the error trajectory e-1 = bll , whereas for

k = 0, ... , v - 1, ek = Rk- 1 (a")bk is given by

ek = ([~:] , [~:::] , [~::l] , ...) .
Here tlk and r k are given as in Algorithm 4.3. In particular, tl-1 = 0,
r -1 = 1 and R-1 (O')w = 0 is a minimal representation of the MPUM of
{e-l}' Further, the update matrices Vk , defined in Algorithm 4.3, represent
the MPUM for {ed (k = O, ... ,v -1), so that Rk(O')W = 0 represents
the MPUM for {b ll , bo, b1 , ... , bd. The rest of the proof is completely
analogous to the proof of Theorem 4.1. 0

5. Conclusions. In approaching the decoding of Reed-Solomon codes
we adopted a behavioral view. In contrast to transfer function oriented
approaches, such a view enables the study of finite dimensional sets of tra
jectories which turns out to be of crucial importance in this context. In
particular, the simple iterative procedure of [30] for modeling such sets
turns out to be a key ingredient. In the main results of this paper two
algorithms were formulated as special instances of this modeling proce
dure. The first algorithm (Algorithm 4.2) solves the Berlekamp-Massey
key equation, whereas the second algorithm (Algorithm 4.3) solves the
Welch-Berlekamp key equation. Both algorithms are similar to the original
Berlekamp-Massey algorithm in that they make use of the solution's degree
£ at each step to determine which type of update matrix is used.

In addition, a simple derivation in terms of behavioral modeling was pre
sented to convert Reed & Solomon's original decoding formulation into
the Welch-Berlekamp key equation. It was also shown how the Welch
Berlekamp key equation can be derived from the Berlekamp-Massey key
equation.

ALGORITHMS FOR DECODING AND INTERPOLATION 281

It is a topic of further research to extend this approach towards list decoding
based on interpolation [12, 21, 25, 26] and to derive efficient algorithms for
improved Reed-Solomon decoding.

REFERENCES

[1] ANTOULAS, A.C., Recursive modeling of discrete-time time series, in "Linear Alge
bra for Control Theory", P. Van Dooren and B. Wyman eds., Springer-Verlag,
IMA, 62, 1994, 1-20.

[2] ANTOULAS, A.C., J.A. BALL, J. KANG AND J.C. WILLEMS, On the solution of the
minimal rational interpolation problem, Linear Alg. Appl., 137, 1990, 511-573.

[3] ANTOULAS, A.C. AND J.C. WILLEMS, A behavioral approach to linear exact mod
eling, IEEE Trans. Aut. Control, 38, 1993, 1776-1802.

[4] BERLEKAMP, E.R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.
[5] BERLEKAMP, E.R., Bounded distance + 1 soft-decision Reed-Solomon decoding,

IEEE Trans. Inform. Theory, 42, 1996, 704-720.
[6] BLAHUT, R.E., Theory and Practice of Error Control Codes, Addison-Wesley, 1983.
[7] BLACKBURN, S.R., A generalized rational interpolation problem and the solution of

the Welch-Berlekamp algorithm, Designs, Codes and Cryptography, 11, 1997,
223-234.

[8] CHAMBERS, W.G., Solution of Welch-Berlekamp key equation by Euclidean algo
rithm, Electronics Letters, 29, 1993, p. 1031.

[9] CHAMBERS, W.G., R.E. PElLE, K.Y. TSIE AND N. ZEIN, Algorithm for solving the
Welch-Berlekamp key-equation, with a simplified proof, Electronics Letters,
29, 1993, 1620-1621.

[10] DABIRI, D. AND I.F. BLAKE, Fast parallel algorithms for decoding Reed-Solomon
codes based on remainder polynomials, IEEE Trans. Info. Theory, 41, 1995,
873-885.

[11] GOREN STEIN , D. AND N. ZIERLER, A class of error correcting codes in pm symbols,
Journal of the Society of Industrial and Applied Mathematics, 9, 1961, 207-
214.

[12] GURUSWAMI, V. AND M. SUDAN, Improved decoding of Reed-Solomon and
algebraic-geometric codes, IEEE Trans. Info. Theory, 45(6), 1999, 1757-1768.

[13] KUIJPER, M., First-Order Representations of Linear Systems, Series on "Systems
and Control: Foundations and Applications", Birkhauser, Boston, 1994.

[14] KUIJPER, M., Parametrizations and finite options, in "The Mathematics of Systems
and Control: from Intelligent Control to Behavioral Systems" (Festschrift on
the occasion of the 60th birthday of Jan C. Willems), H.L. Trentelman, J.W.
Polderman eds., ISBN 90-367-1112-6, 1999, 59-72.

[15] KUIJPER, M., Further results on the use of a generalized B-M algorithm for BCH
decoding beyond the designed error-correcting capability, in "Proceedings of
the 13th Symposium on Applied Algebra, Algebraic Algorithms, and Error
Correcting Codes (AAECC)", Hawaii, USA, 1999, 98-99.

[16] KUIJPER, M. AND J.C. WILLEMS, On constructing a shortest linear recurrence
relation, IEEE Trans. Aut. Control, 42, 1997, 1554-1558.

[17] KUIJPER, M., An algorithm for constructing a minimal partial realization in the
multi variable case, Systems & Control Letters, 31, 1997, 225-233.

[18] KUIJPER, M., Partial realization and the Euclidean algorithm, IEEE Trans. Aut.
Control, 44(5), 1999, 1013-1016.

[19] KUIJPER, M., The Berlekamp-Massey algorithm, error-correction, keystreams and
modeling, in "Dynamical Systems, Control, Coding, Computer Vision: New
trends, Interfaces, and Interplay", G. Picci, D.S. Gilliam (eds.), Birkhauser's
series "Progress in Systems and Control Theory", 1999, 321-341.

[20] MASSEY, J.L., Shift-register synthesis and BCH decoding, IEEE Trans. Info. The
ory, 15,1969, 122-127.

282 M. KUIJPER

[21] NIELSEN, R.R. AND T. HOEHOLDT, Decoding Reed-Solomon codes beyond half the
minimum distance, Draft manuscript, 1999.

[22] POLDERMAN, J.W. AND J.C. WILLEMS, Introduction to Mathematical Systems
Theory-a behavioral approach, Springer Verlag, New York, 1998.

[23] REED, r.S. AND G. SOLOMON, Polynomial codes over certain finite fields, SIAM
Journal on Applied Mathematics, 8, 1960, 300-304.

[24] SUGIYAMA, Y., M. KASAHARA, S. HIRASAWA AND T. NAMEKAWA, A method for
solving key equation for decoding Goppa codes, Information and Control, 27,
1975, 87-99.

[25] SUDAN, M., Decoding of Reed-Solomon codes beyond the error correction bound,
Journal of Complexity, 13, 1997, 180-193.

[26] SUDAN, M., Decoding of Reed-Solomon codes beyond the error correction diameter,
in "Proceedings of the 35th Allerton Conference on Communication, Control
and Computing", 1997, http://theory .1cs .mit. edurmadhu/papers .html.

[27] WELCH, L.R. AND E.R. BERLEKAMP, Error correction for algebraic block codes,
U.S. Patent 4 633 470, issued Dec. 30, 1986.

[28] WILLEMS, J .C., From time series to linear system. Part I: Finite-dimensional linear
time invariant systems, Automatica, 22, 1986, 561-580.

[29] WILLEMS, J.C., From time series to linear system. Part II: Exact modeling, Auto
matica, 22, 1986, 675-694.

[30] WILLEMS, J.C., Paradigms and puzzles in the theory of dynamical systems, IEEE
Trans. Aut. Control, 36, 1991, 259-294.

[31] WILLEMS, J.C., Fitting data sequences to linear systems, in "Systems and Control
in the Twenty-First Century", C.r. Byrnes, B.N. Datta, C.F. Martin and D.S.
Gilliam, eds., Birkhiiuser, Boston, 1997, 405-416.

[32] WOLOVICH, W.A., Linear Multivariable Systems, Springer Verlag, New York, 1974.

AN ALGEBRAIC DESCRIPTION OF ITERATIVE
DECODING SCHEMES*

ELKE OFFERt AND EMINA SOLJANINt

Abstract. Several popular, suboptimal algorithms fOt bit decoding of binary block
codes such as turbo decoding, threshold decoding, and message passing for LDPC, were
developed almost as a common sense approach to decoding of some specially designed
codes. After their introduction, these algorithms have been studied by mathematical
tools pertinent more to computer science than the conventional algebraic coding theory.
We give an algebraic description of the optimal and suboptimal bit decoders and of the
optimal and suboptimal message passing. We explain exactly how suboptimal algorithms
approximate the optimal, and show how good these approximations are in some special
cases.

Key words. Iterative decoding, soft-output decoding, suboptimal decoding, bit
optimal decoding.

AMS(MOS) subject classifications. 94B05, 94B25, 94B35, 94B60.

1. Introduction. We propose an entirely new approach to the prob
lem of iterative decoding, which is algebraic in nature and derives the well
known suboptimal algorithms from the bit-optimal as a starting point. The
approach gives new insights into the issues of iterative decoding from the
algebraic coding theorist's point of view.

We are concerned with a binary block code C defined by its parity-check
matrix H = {hijhn-k)xn, i.e., by the group generators hi = {hijhxn,
i E I, of the dual code C/, where I is used to denote the index set I =
{a, 1, ... , n - k - I}. The channel is assumed to be memoryless.

The bit-optimal decoder computes the probability that the bit at po
sition m is equal to b E {a, I} given the received word r. To do this, it
computes and adds probabilities (given r) of each codeword in the code C
with b at position m. It can equivalently compute the Fourier Transform of
the probabilities and add them up over the dual code ct. This equivalence
was first shown by Hartmann and Rudolph in [1], and Battail et al. in [2].
We point out that it is merely based on the Poisson summation formula.
Working with the the dual code is in practice preferred when C/ has fewer
codewords than C, i.e., when dealing with high rate codes.

Since the suboptimal algorithms we are concerned with (turbo decod
ing, threshold decoding, and message passing for LDPC) operate with the
generators hi of the dual code, we derive an expression for optimal decod-

*This work was supported by the 1999 German-American Networking Research Grant
given by the national academies of engineering of Germany and the USA.

tInstitute for Communications Engineering, Munich University of Technology, D-
80290 Munich, Germany; elke@lnt.e-technik. tu-muenchen. de .

tMathematical Sciences Research Center, Bell Labs, Lucent Technologies, Murray
Hill, NJ 07974, USA; emina@lucent.com.

283

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

284 E. OFFER AND E. SOLJANIN

ing based on the dual code and then rewrite it so that it explicitly involves
only hi' Since sub optimal algorithms operate on sub codes of the dual
code, we define L subcodes of C' by partitioning its set of generators hi,
i E I. Thus each c: c C' is defined by its set of generators h il , il E II,
II C I, where the index sets II are disjoint and uf=tII = I. We then
expand our expression for optimal decoding to show the participation of
each subcode C;. We use this expression to point out the approximation
each of the suboptimal schemes performs.

2. Bit optimal decoding. Let block code C be a subgroup of the
additive group of 1F2. The bit optimal decoding rule maximizes P(Cm =
blr), the probability that Cm equals b E {O, 1} given the received word r.
This probability, given by

P(Cm = blr) = L P(clr),
CEC,cm=b

can be expressed as

" P(c) P(Cm = blr) = ~ -(r) p(rlc)ab,c.ent ·

CEC p

Therefore the log-likelihood of bit m over code C, Lc;,., is given by

(2.1) Lc I P(cm = Olr) I l:cEcp(rlc)c5o,c.ent
m = og = og

P(cm = 11r) l:CEC p(rlc)c5t ,c.ent

when the codewords are equiprobable. In the above equation ent denotes
the unit vector whose all components are 0 except the m-th which is 1, and
a.,. denotes the Kronecker delta function.

Let f : IF2 -t lR be a real valued function defined on IF2 and j its DFT
on the additive group 1F2, i.e.,

j(v) = L f(u)(-l)u.v.
uEiF2

Then, by the Poisson summation formula

(2.2) 1" 1 "A, -ICI ~ f(c) = 1lF!:1 ~ f(c),
CEC 2 C'EC'

where C' is the dual of C in 1F2. For feu), u E 1F2, defined as

feu) = p(rlu)ab,u.ent

AN ALGEBRAIC DESCRIPTION OF ITERATNE DECODING SCHEMES 285

and p(rlu) = Ilj=l phluj), it follows that j(v), v E F2, is given by

(2.3)

n-l

j(v) = L Ob,um II p(rjluj)(-1)u;v;
uEIF'~ j=O

n-l

=p(rm lb)(-l)bVm II [phI O)+p(rjI1)(-1)V;].
;=0
j:#;rn

By using (2.2) with j defined by (2.3), equation (2.1) can be expressed as

(2.4)

which is basically the result of Hartmann and Rudolph derived and pre
sented somewhat differently in [1], and of Battail et al. in [2].

Note that expression (2.4) explicitly involves all codewords of the dual
code ct. Recall that suboptimal algorithms we are concerned with (turbo
decoding, threshold decoding, and message passing for LDPC) operate with
the parity-check matrix H = {hijhn-k)xn, i.e., with the generators (in
dependent parity checks) of the dual code, hi = {hijhxn, 0 ~ i < n - k.
Because of that, we derive an expression for optimal decoding (2.4) which
explicitly involves only hi' We denote

(2.5) L· = logp(rjIO) and,A' = p(rjIO) - phil) = tanh(L-j2),
J phil) J p(rjIO) + p(rjI1) J

which when substituted in (2.4) gives

(2.6)

i=O ;=0
;=FTn

We introduce special multiplication as a commutative and associative bi
nary operation ®:

286 E. OFFER AND E. SOLJANIN

For a E R, a ® Aj = aAj. For aj, bj E Jl?2,

j j j

where EB is the addition in Jl?2
It is easy to see that equation (2.4) can be formally written as

(2.7)

where I is used to denote the index set I = {O, 1, ... , n - k - I}. We now
derive a formal companion expression for A~ = tanh(L~/2).

THEOREM 2.1. Let Aj defined by {2.5} be the j-th soft input to the bit
optimal decoder for code C. Then its soft output for bit m is given by

n-l

Am ® It~ [1 + II A7· j
]

(2.8) A~ = tanh(L~/2) = iEI n_;=o
IT® [1 + IT A7· j

]

iEI j=O

Proof Let

n-l

and A;;' = II~J 1 + (_l)h. m II A7· j]·

iEI j;~

Then

LC = 10 (1 + Am)A~ .
m g (1- Am)A;

By using the definition tanh(x/2) = (eX - l)/(eX + 1), we get

AN ALGEBRAIC DESCRIPTION OF ITERATIVE DECODING SCHEMES 287

Note that (At, + A;;')/2 represents the summation over all dual codewords
with a '0' at position m, where Am (At, - A;;')/2 is the summation over all
dual codewords with a '1' at position m. Therefore,

which can formally be written as (2.8). o

3. Optimal message passing bit decoders. We define L sub codes
of the dual code C' by partitioning its set of generators hi, i E I. Thus each
C; C C' is defined by its set of generators hiz' i l E II, II C I, where index
sets II are disjoint and uf=1I1 = I. Note that in this scenario equation
(2.8) becomes

(3.1)

THEOREM 3.1. Let C~M be the subcode of C' defined by its index set
If1 = Ut!,1 II· Then

(3.2)

Proof Without loss of generality, we assume M = 2. Thus ct = C1

and Cr = C. From equation (2.8), for 0 1 and O2 we have

(3.3)

288 E. OFFER AND E. SOLJANIN

and

n-l

(3.4)

Am ® IT® [1 + IT A7ij
]

A C2 = iEI2 j=O
m n-l

IT® [1 + IT A7ij
]

iEI2 j=O

where ACl = IT. [1 + n~==-ol A?iI]. We replace (update) each Aj in
®.EIl

equation (3.4) by A71 given by (3.3), and change the real product in equa
tion (3.4) by the special multiplication product, thus obtaining

(3.5)

where [A~h denotes the result for bit m of the second iteration in decoding
of C2 • We can further transform the above equation by taking into account
that

(3.6)

v

and obtain

(3.7)

which is precisely (3.1) for M = 2. Therefore AC = [A~h, and the optimal
solution is reached in 2 steps. 0

With optimal message passing in the L subcode case, we obtain A~ in
L steps. We start with computing A~ by using (3.3), and continue with

CM +1

computing Ant by optimal message passing (3.2) for 1 :::; M :::; L.
REMARK 3.1. The optimal message passing (3.5) from decoder of C1

to decoder of C2 doesn't simplify the computations required for the optimal
solution (3.7). It only shows how the information from decoder of C1 should
be used by decoder of C2 to obtain the optimal solution, which we need as a
reference for comparison with suboptimal algorithms.

AN ALGEBRAIC DESCRIPTION OF ITERATIVE DECODING SCHEMES 289

REMARK 3.2. Once A;' is computed, further iterations will leave it
unchanged. Namely, A1 used as new information to compute [A~ lz will not
change its value, starting with C1 and so on. This is again easily shown by
using equalities of type {3.6}.

In what follows, we consider several popular, suboptimal bit detection
algorithms. For each algorithm, we give an expression of (2.4) or (2.8)
which is the most suitable for the analysis of its relation to the optimal
algorithm.

4. Turbo codes. We consider a turbo coding scheme with two com
ponent codes C1 and C2 as introduced in [3], [4]. The bit-optimal decoder
computes the log-likelihood for bit m by (2.7), which can be expressed as

LC -1 1 + Am
m - og 1- Am +

The corresponding soft output A;' can be written as

(4.1)

As described in the previous section, the optimal decoding (4.1) can be
performed sequentially. First, the optimal decoder of C1 computes soft
information (3.3). Then, decoder of C2 uses the soft information in the
optimal message passing equation (3.5) to obtain the optimal solution (4.1).

Turbo decoding also starts with the optimal decoding of C1 by com
puting the first iteration log-likelihood for bit m as

v

[L~.eh

290 E. OFFER AND E. SOLJANIN

with corresponding

n-1

Am ® IT® [1 + IT A7ij
]

[A~h = tanh([L~h/2) = iEII n_:=o
IT® [1 + IT A7ij

]

iEII j=O

The second term in equation (4.2) is known as (first iteration) extrinsic
information of decoder C1 for bit m. It is denoted by [L~,eh with corre
sponding [A~ eh = tanh([L~ eh/2), and transfered to the decoder of C2

for all bit positions m checked by both codes. Note that

[\c I] _ Am + [A~,eh
/\ 1- C·

m 1 + Am [Ani,eh

Turbo decoding continues with the decoding of C2 by computing

where [A7 1 h = Aj if position j is checked only by C2 • Now, the extrinsic

information [L~ elz is transfered to the decoder of C1 for the bit positions m
checked by both' codes, and the process continues iteratively, as illustrated
in Fig. 1. In the iteration 1/, when component decoder C1 is active, we
have the following scenario: The input information are the channel values
Ar for the bit positions r checked only by code C1 and channel values
Am together with the extrinsic information [A~,e]v-1 of code C2 from the
previous iteration for bit positions m checked by both component codes.
As described above for the two first iterations, the soft output of decoder
C1 is calculated as

AN ALGEBRAIC DESCRIPTION OF ITERATIVE DECODING SCHEMES 291

from the channel-detector

[Aflv

from the channel-detector

iteration v
decoder C1 active

iteration v + 1
decoder C2 active

FIG. 1. Message passing procedure and the corresponding soft-output in a serial
turbo decoding procedure. Here the symbol positions checked by both component codes
Cl and C2 are denoted by m. The symbol positions involved only in the parity check
equations of code Cl, respectively C2, are denoted by r, respectively I.

giving

n-1

Am 0 II0 [1 + A~m II [AJ2l~~1]
[A~ 1 v = ___ '_·E_I_l ____ n_---'-!""·;-.!.----

IT0 [1 + A~m IT [AJ2l~~1]
iEI1 1;.!.

The overall soft-output of the decoding scheme after iteration v is
computed by

[LC 1 - 1 1 + Am [LC2 1 [C1 1
m v - og 1 _ Am + m,e v-1 + Lm,e v

= [L~lv-1 + [L~,elv
= [L~,elv-1 + [L~lv·

292 E. OFFER AND E. SOLJANIN

Therefore the corresponding [A~lv can be expressed as

n-l

[A~lv-l ® II® [1 + n [AJ21~~1]
[A~lv = _____ i_E_I"-l -n-_-::-1-3-=-0----

II® [1 + n [AJ21~~1]
iEIl 3=0

and, similarly,

n-l

[A~ lv ® II® [1 + II [AJll~i;]
C iEI2 j=O [Amlv+1 = ------=---n---l-----

II® [1 + II [AJll~i;]
iEI2 j=O

We have thus proved the following:
THEOREM 4.1. Two-iterations turbo decoding algorithm of [3J, !4J

approximates the optimal by substituting the term

(4.4)

for

(4.5)

in the optimal message passing equation {3.5}. An example is given in the
Appendix.

Expression (4.5) evaluates to

2n - k _l n-l

(4.6) a L II A;:;,
i=O j=O

whereas expression (4.4) evaluates to

(4.7)
2n - k _l n-l

L ai II A;:;, ai ~ o.
i=O j=O

Both expressions are sums over all dual codewords c' of the turbo code C of
the same weighted terms. The weights in (4.5) are constant; in (4.4) they
are in general not and each is equal to ai. These factors ai originate from
the difference between the special multiplication ® and the real number
multiplication. The convergence of the suboptimal decoder is thus related
to the asymptotic properties of the factors ai.

AN ALGEBRAIC DESCRIPTION OF ITERATIVE DECODING SCHEMES 293

5. Low-density parity-check codes. Equation (2.7) can be
expressed as

(5.1)

Let C be an LDPC code such that, for all pairs of bits m and I, there is
at most one index i E I for which him = 1 and hi! = 1. In the bipartite
graph terminology, we say that, for any two variable nodes m and I, there
is at most one common check node c(m, I) i.e., there are no loops of length
4. We first illustrate Gallager's belief propagation algorithm [5] in our
terminology on a special one-step case, and then consider a general case in
terms of the results presented earlier in the paper.

The optimal soft output for bit m based solely on the channel infor
mation Lm and the knowledge of the parity check equations in which it
participates is given by

(5.2)

Because of the low-density assumption the special multiplication above is
equal to the real multiplication. Let Ami denote the message passed from
variable node I to variable node m through their unique common check
node c(m, I), i.e.,

Ami = tanh(Lml/2),

where (as proposed by Gallager)

n-k-l n-l

IT (1 + IT A7ij
)

i=O j=O
hi/=l jopl

L - I 1 + Al I iopc(m,l)
ml - og 1 _ Al + og -n---k---l---n---l---

IT (1 - IT A7ij
)

i=O j=O
hi/=l jopl

iopc(m,/)

294 E. OFFER AND E. SOLJANIN

It can be easily shown (in the manner of proof of Theorem 2.1) by using
the low-density assumption that

n-k-l

Al ® II
I8i

i=O

Upon receiving this message, the update for bit m is computed by (5.2)
with Ami in the place of AI, giving the following

This brings us a step closer to the expression for optimal decoding of bit
m given by (5.1).

We now consider a general case. Let N(m} denote the set of neighbors
of m, namely

N(m} = {liO :s l :s n - 1 and:3i E I such that him = 1 and hi/ = 1}.

For our low-density assumption, we shall also require that no two members
of N(m} are neighbors themselves, i.e., there are no loops of length 6.

In connection with decoding of bit m, we look at the set of sub codes
of C whose index sets are defined as follows:

Im = {i E II him = 1}

Iml = {i E Ilhi/ = 1 and him = O}

IN(m),m = (UIEN(m) I ml) U Im .

Note that these index sets are disjoint.

THEOREM 5.1. Let C, Am, I m, I ml , and IN(m),m be as previously
defined. Then Gallager's belief propagation algorithm [5} gives optimal de
coding of bit m over the code CN(m),m.

Proof By Theorem 2.1, the optimal decoder of Cml outputs the fol
lowing soft information for bit l:

AN ALGEBRAIC DESCRIPTION OF ITERATIVE DECODING SCHEMES 295

n-l

Al 0 II® [1 + II A7 i
;]

C iEIml)=0 Al ml = ----~~--n--~l------

II® [1 + II A7 i
;]

iEIml j=O

Gallager's algorithm replaces the special multiplication product II® by

the real product but, because of the low-density assumption (no loops of
length 4), the result is the same.

By Theorem 3.1, the optimal soft output for CN(m),m can be computed
by the optimal message passing (3.2) as follows:

Gallager'S algorithm replaces both special multiplication products II® by

the real products but, because of the low-density assumption (no loops
of length 4 for the outer product and no loops of length 6 for the inner
product), the result is the same. 0

Note that by the above proof, we showed that the LDPC codes are a
special case of turbo codes for which the participating subcodes are also
optimally decoded. Only the optimal decoding of subcodes of an LDPC
code is performed by message passing (and can be because of the low
density assumption), rather than by a straight-forward optimal algorithm
such as the one in [4].

6. Threshold decoding. Equation (2.7) can be expressed as

c l+Am
Lm = log 1 _ Am +

n-k-l n-l n-k-l n-l

II® [1 + II A7';] 0 II® [1 + II A7';]
i=O j=O i=O j=O

log him=D i#m him:::;:1 i#m

n-k-l n-l n-k-l n-l

II® [1 + II A7';] 0 II® [1 - II A7';]
i=O j=O i=O ;=0

hiTn =0 i::t=m him =1 j:f.:Tn

We follow the principle of threshold decoding introduced in [6]. Thus,
for bit position m, the subcode over which we decode is determined by a
subset of parity checks which have a 1 at position m and are orthogonal to
each other masking out position m. With such parity checks, the special

296 E. OFFER AND E. SOLJANIN

multiplication 0 in the above equation is the same as the real number
multiplication, and we get for the sub-optimal threshold decoding algorithm
of [6]:

c 1 +Am
Lm = log 1 _ Am + log

n-k-1 [n-1] II 1 + II A~ij
i=O j=O J

him.=l i:;t:m

n-k-1 [n-1] II 1 - II A~ij
i=O j=O J

him=l i=l:-m

[1 + 'IT1 Ahij]
n-k-1 j=O J

L "I i=FTn = m + L...J og .
[1 - nit A~ij]

j=O J
j""",

APPENDIX

A. Turbo decoding of an (8,4) single-loop code. We consider a
code C whose Tanner graph and the parity check matrix H are shown in
Fig. 2. There are four parity check equations of code C: ho and h1 corre-

4 5

ho 1 h1

H~ [~
100 100

~l 0 2
1 100 1 0
o 1 100 1
o 0 1 000

h3 3 h2

7 6

FIG. 2. An (8,4) single-loop code.

sponding to code C1 and h2 and h3 corresponding to code C2, as indicated
by the dividing line of H in the figure.

The optimal decoder of C computes

(A. 1)

AN ALGEBRAIC DESCRIPTION OF ITERATIVE DECODING SCHEMES 297

where

Ac =(1 +).0).1).4) ® (1 +).1).2).5) ® (1 +).2).3).6) ® (1 +).0).3).7).

=1 +).0).1).4 +).1).2).5 +).0).2).4).5 +
).2).3).6 +).0).1).2).3).4).6 +).1).3).5).6 +).0).3).4).5).6 +).0).3).7 +
).0).1).2).3).5).7 +).2).3).4).5).7 +).0).1).5).6).7 +).1).3).4).7 +
).1).2).4).6).7 +).4).5).6).7 +).0).2).6).7·

The turbo decoding process starts with decoding of C1 by calculating
the messages to be passed to the decoder of C2 :

Note that these are the only bit positions also checked by C2 •

In the second iteration, the decoder of C2 is active. It uses the in
formation received from the first component decoder, and calculates the
messages to pass back to it in the next iteration:

and

For the soft-output of the whole decoding system after the second
iteration, we combine the results from both sub decoders:

(A.2) [).c] = [).f1h ® (1 + [).f1h).3).7) ® (1 + [).f1h).3).6)

o 2 (1 + [).f1h).3).7) ® (1 + [).f1h).3).6)

and

[).c] _ [).glh ® (1 + [).glh).3).7) ® (1 + [).glh).3).6)

22- (1 + [).glh).3).7) ® (1 + [).glh).3).6)

For bit position '0', one should compare the soft output).g of the
optimal decoder given by (A.I) with the soft output of the turbo decoder
[).~h given by (A.2).

Acknowledgement. The authors would like to thank J. Mazo, 1. Sa
son, A. Shokrollahi, and R. Urbanke for their comments on an earlier ver
sion of this article.

298 E. OFFER AND E. SOLJANIN

REFERENCES

[1] C.R.P. HARTMANN AND L.D. RUDOLPH, "An optimum symbol by symbol decoding
rule for linear codes," IEEE Trans. Inform. Theory, Vol. IT-22, pp. 514-517,
Sept. 1976.

[2] G. BATTAIL, H.C. DECOUVELAERE, AND P. GODLEWSKI, "Replication decoding",
IEEE Trans. Inform. Theory, Vol. IT-25, pp. 332-345, May 1979.

[3] C. BERROU, A. GLAVIEUX, AND P. THITIMAJSHIMA, "Near Shannon limit error
correcting coding and decoding: Turbo-codes(1)," Pmc. 1993 IEEE Int. Con/.
Commun. (ICC'93), Geneva, Switzerland, May 1993, pp. 1064-1070.

[4] J. HAGENAUER, E. OFFER, AND L. PAPKE, "Iterative decoding of binary block and
convolutional codes," IEEE Trans. Inform. Theory, Vol. IT-42, pp. 429-445,
March 1996.

[5] R. GALLAGER, "Low-density parity-check codes," IRE Trans. Inform. Theory,
Vol. IT-8, pp. 21-28, Jan. 1962.

[6] J. MASSEY, "Threshold Decoding," Cambridge: The M.I.T. Press, 1963.

RECURSIVE CONSTRUCTION OF GROBNER BASES FOR
THE SOLUTION OF POLYNOMIAL CONGRUENCES

HENRY O'KEEFFE" AND PATRICK FITZPATRICK"

Abstract. A number of questions in systems theory and coding theory can be
formulated as the solution of a system of polynomial congruences in one or more vari
ables. We present a new generalised algorithm, based on Grabner basis techniques, that
recursively solves a wide class of such problems.

Key words. Grabner basis, systems theory, coding theory, partial realization,
rational interpolation, discrete-time behaviours.

AMS(MOS) subject classifications. 93B, 93C, 94B.

1. Introduction. Let A = F[Xl' ... ,xn] be a polynomial ring over a
field F. Let (b1 , ..• , bq) E Aq be a solution of the system of congruences

(1.1)
q

L bihik == 0 mod I(k)

i=1

where hik E A, and I(k) is an ideal in A, for 1 :S i :S q, 1 :S k :S p. The set
of solution vectors (b1 , ..• , bq) forms a sub module M of Aq. Under suitable
conditions on the ideals I(k), and with an appropriate term order, we shall
construct a Grabner basis of M, using an algorithm which recursively deter
mines Grabner bases of submodules in a descending sequence terminating
in M. Since the method is independent of the term order chosen, it can be
used to select solution vectors for a range of different criteria. In particular,
the recursive nature of the construction and its flexibility with regard to
the sequence in which the data are processed makes it suitable for systems
with time-invariant constraints or where not all of the data are known at
the outset. Although it is intended primarily as computational tool, the
algorithm can produce closed theoretical solutions in certain cases. The
algorithm presented here extends and generalises the results of [6, 7, 8, 9].

2. Definitions and notation. In this section we introduce some no
tation and terminology on Grabner bases; detailed treatments can be found
in ([1],[3],[4]). The standard basis vector with 1 in position i and 0 else
where (and length defined by the context) is denoted ei. A term in Aq is
a vector of the type X = X ei where X = xil X~2 ••• x;n is a term in A.
Thus a term in Aq is a vector all of whose components are zero except for
one which is a term in A. A term order in A q is a total order < on terms
satisfying

(i) X < ZX for each term X in Aq and each term Z :/;1 in A,

"Department of Mathematics, National University of Ireland, Cork, Ireland; Email
hok@ucc.ie, fitzpat@ucc.ie.

299

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

300 HENRY O'KEEFFE AND PATRICK FITZPATRICK

(ii) if X < Y then ZX < ZY for all terms X, Yin Aq and each term
Z in A.

An example of such a term order is obtained as follows. Let <lex denote
lexicographic order in A and define X = X ei < Yej if either i < j, or i = j
and X <lex Y. This is a position-over-term (or POT) order.

For non-zero f E Aq we may write

(2.1)

where the ai are non-zero constants and the Xi are terms satisfying Xl >
X 2 > ... > X r . The leading term It(f) of f is Xl, and the leading coefficient
lc(f) is a1. These definitions are extended to all of Aq by setting It(O) =
0, lc(O) = O. For example, with n = 2, q = 3, Xl <lex X2, and f = (X~X2 +
3X~,X2 + 1,2xt), and using the POT order defined above, we find that

f = 2x1eS + X2 e 2 + e2 + Xix2el + 3x~el

has leading term Xl es and leading coefficient 2.
If X = X ei and Y = Yej are terms in A q we say X divides Y provided

i = j and X divides Y in A, that is, if there is a term Z (the quotient) in A
satisfying ZX = Y. A set of non-zero vectors G = {gl, ... , gr} contained
in the submodule M is called a Grabner basis of M if for all f E M there
exists i E {I, ... , r} such that It(gi) divides It(f). In particular G is a basis
of M. A Grabner basis is minimal if none of its elements has leading term
a multiple of the leading term of another of its elements. Each f E M has a
standard representation with respect to a Grabner basis G = {gl, ... ,gr}
of the form

r

f = "Lfigi
i=l

where Ii E A and It(figi) :S It(f), 1 :S i :S r. A minimal element in a
submodule M ~ Aq is one whose leading term is least among the elements
of M, under the given term order <. It is unique up to a constant multiple
and must appear in any Grabner basis relative to <. If the leading terms
of the elements of a Grabner basis (resp. minimal Grabner basis) are in
non-decreasing (resp. increasing) order then we call it an ordered Grabner
basis.

3. The incremental step. The incremental step defined in the fol
lowing theorem will be applied to ideals II, II+1 in A with II 2 It+1 such
that for each s = 1, ... ,n there exists f3s E F satisfying

(3.1)

We also require an F -homomorphism

(3.2) a:II--+F

RECURSIVE CONSTRUCTION OF GROBNER BASES 301

with ker(a) = 11+1.
If W is an ordered set then W[j] denotes its j th element, and if W[j]

is a vector then W[j]i denotes its i th component.
THEOREM 3.1. Let II ~ II+! be ideals in A satisfying {3.1} and {3.2}.

Let 8 be the submodule of Aq of solution vectors (b1 , ••• , bq) of

(3.3)
q

L bihik == 0 mod II
i=1

and let 8 1 ~ 8 be the submodule of 8 of elements satisfying

(3.4)
q

L bihik == 0 mod II+!.
i=1

If W is an ordered minimal Grabner basis of 8 relative to a given term
order < then a Grabner basis WI of 8 1 relative to < can be constructed as
follows.

Define aj := a 0:;=1 W[j]ihik) for 1 ~ j ~ IWI·
If aj = 0 for all j then WI := W.
Otherwise

j* := least j for which aj =I 0
WI := {W[j] : j < j*}
W2 := {(xs - ,Bs)W[j*] : 1 ~ s ~ n}
W3 := {W[j]- (aj/aj>)W[j*] : j > j*}
W/:= WI U W2 U W3.
Proof. By definition, ~i=1 W[j]ihik E I/, so if aj = 0, for all j,

then W ~ 8 1 so 8 1 = 8. Thus suppose some aj =I 0 and let j* be as
defined. If j < j* then clearly W[j] E 8 1 • Next, ~i=1 W[j*]ihik E II, so
(xs - ,Bs) ~i=1 W[j*]ihik E 11+1, by (3.1), and hence (xs - ,Bs)W[j*] E 8 1•

Finally, for j > j*,

a (t(W[j]i - (aj/aj>)W[j*]i)hik) = aj - (aj/aj>)aj> = 0

so W[j]- (aj/aj>)W[j*] E 8 1 by (3.2). We have now proved that WI ~ 8 1•

We show that WI is a Grabner basis as follows. By assumption, W is
a minimal Grobner basis of 8 so It(W[i]) does not divide It (W[j]), i =I j.
Now, It((x s - ,Bs)W[j*]) = xslt(W[j*]) and It(W[j]- (aj/aj»W[j*])) =
It(W[j]),j > j*. Let f E 8 1 ~ 8. Then It(f) is divisible by some It(W[j]).
If j =I j* then It(f) is divisible by the leading term of an element of WI.

Thus, we may suppose that It(W[j*]) is the only leading term of the
basis elements W[j] that divides It(f). We show that xslt(W[j*]) also
divides It(f) for some s. Consider the standard representation

f= LliW[j]
jEJ

302 HENRY O'KEEFFE AND PATRICK FITZPATRICK

with fJ I- 0, and J ~ {I, ... , IWI}. By definition of this representation, and
by the assumption on It(W[j*]), it follows that j* E J, It(f) = It(lj> W[j*]),
and It (lj W [j]) < It(f) for j I- j *. Let X j, j E J be terms in A such that
It(fJ W[j]) = Xjlt(W[j]). Thus Xjlt(W[j]) < Xj>lt(W[j*]). Suppose that
there is some j E J with j > j*. If X j > = 1 then

Xjlt(W[j]) < It(W[j*]) ~ Xjlt(W[j*])

which contradicts the increasing order ofW. Hence X j > I- 1, so xslt(W[j*])
divides It(f) for some s. Otherwise, J ~ {I, ... ,j*} and

r-l
f - L fJ W[j] = fJ> W[j*]

j=l

lies in Sf. Therefore Ii> I- 1 since W[j*] ~ Sf. As a consequence, X j > I- 1
and again xslt(W[j*]) divides It(f) for some s. This completes the proof.
o

REMARK 3.1. Note that the position of the leading term of (x s - [3) f
is the same as that of f. Similarly, if It(g) < It(f) then f - cg, where c is a
constant, also has leading term in the same position as f.

3.1. The generalised algorithm. The title of this section indicates
that the algorithm presented is a generalisation of that in [6, 7, 8, 9].
Moreover the proof is significantly simpler than the one given in [8] (for a
special case - see Section 4.3).

We consider the problem of finding a Grabner basis of the solution
module M of (1.1), given a set of sequences of ideals 16k) ;2 Iik) ;2 ... ;2

I~l = I(k), k = 1, ... ,p. As before, all computations are carried out rel
ative to a fixed term order < in Aq. We begin with an ordered minimal
Grabner basis of the solution module Mo of

(3.5) k = 1, . .. ,p.
i=l

In particular, if 16k) = A, for all k, then Mo = Aq and an ordered standard
basis for Aq provides the required starting Grabner basis. We also assume
that there exist [3sk E F such that

(3.6)

and that we have a set of F -linear functions

(3.7)

RECURSIVE CONSTRUCTION OF GROBNER BASES 303

At each step we choose some k such that lk < Nk and use Theorem 3.1
to determine the Grabner basis of the solution module for the system of

congruences in which Il~) is replaced by II~~l. The procedure ord(S) puts
the elements of a list S ~ A q in non-decreasing order of leading term with
respect to < and removes any element whose leading term is a multiple
of the leading term of another element. In the event of there being more
than one element with the same leading term only one is retained. If S is a
Grabner basis then ord(S) an ordered minimal Grabner basis. Verification
of the algorithm is straightforward from the observation that it implements
a finite sequence of incremental steps as defined in the previous section.
Algorithm
Input:

hik, i = 1, ... , q, k = 1, ... ,p

Il~) , k = 1, ... , p, lk = 0, ... , Nk
/3sk,S = 1, ... ,n,k = 1, ... ,p

(k)
a 1k

< a term order
Mo the initial solution module
Wo an ordered minimal Grabner basis of Mo

Output:
W an ordered minimal Grabner basis of M

Main Routine:
W:=Wo
WHILE lk < Nk for some k DO

choose k such that lk < Nk
FOR j FROM 1 TO IWI DO

aj := af~) (L:i=l W[j]ihik)
IF aj = 0 for all j THEN

W'=W
ELSE

j* := least j for which aj =P °
W/:=0
FORj FROM 1 TO j* -1 DO

W' := W' U {W[j]}
FOR s FROM 1 TO n DO

W' := W' U {(xs - /3sk)W[j*])
FOR j FROM j* + 1 TO IWI DO

W' := W' U {W[j]- (aj/aj')W[j*])
W:= ord(W/)

3.2. A single indeterminate. When A = F[x] several simplifica
tions can be made.

LEMMA 3.1. A Grabner basis G for a module M ~ F[x]q is a min
imal basis if and only if no two basis elements have leading terms in the
same position.

304 HENRY O'KEEFFE AND PATRICK FITZPATRICK

Proof If the leading terms of the basis elements are all in different
positions then none of them is a multiple of another. Conversely, if two of
the leading terms are in the same position then one of them divides the
other. 0

Using Remark 3.1 we have the following consequence.
COROLLARY 3.1. A minimal Grabner basis of a submodule of F[xl q

has at most q elements. Each basis produced during the algorithm has the
same number of elements as that in the initial basis.

It follows that in this case the procedure ord is greatly simplified. The
positions of the leading terms are unchanged by the incremental step and
the degrees of the leading terms are unchanged except for that of xW[j*l.
Thus, re-ordering takes the form of inserting this element into its correct
new position.

For many applications the function a can also be quite simple. The
next lemma provides a useful setting.

LEMMA 3.2. Let J ;2 [be ideals in F[xl generated by PJ,PI and
suppose that PI = (x - (3)PJ for some (3 E F. The function a : J ---+ F
defined by a(h) = a(fpJ) = f({3) is F -linear and has kernel [.

Proof Each h E J has the form h = fpJ for uniquely defined f. By
the division algorithm f = (x - (3)q + f({3), for some q, and thus h E [if
and only if f({3) = O. It is straightforward to prove that a is linear. 0

Suppose that the ideals I(k) are of the form

and the corresponding sequences of approximating ideals are

If h E J = [l~) ;2 [1~ll = [is expanded as a polynomial in x - {3k then
afk (h) can be "read off" directly as the coefficient of (x - {3k)lk.

4. Applications. The generalised algorithm can be applied to a wide
range of problems. In this section we review previous work on scalar partial
realisation and rational interpolation and on solving multi variable polyno
mial congruences, and, in more detail, present a new application to the
modelling of discrete-time behaviours. In general, the input data are pro
vided by the hij , the term order < corresponds to "degree" constraints, and
the [(k), {3sk relate to "order" contraints and interpolation points. Of par
ticular interest are situations where there is a unique "required solution"
that can be identified as the minimal element of the solution module with
respect to a certain term order defined by the problem. Such an element
must lie in a Grabner basis with respect to that term order.

4.1. Partial realisation, scalar rational interpolation. Both of
these problems can be viewed as the parameterisation of the solutions of

RECURSIVE CONSTRUCTION OF GROBNER BASES 305

the system of congruences

where hk = L:~o-1 Ckt(X-/3k)t. Thus, q = 2 and hlk = -1, h2k = hk for all
k. Here the initial module is Mo = A2. Various conditions may be imposed
on the solutions, such as, 8b1 < 8b2,8b1 + 8b2 < N = L:~=1 Nk, b1, b2
relatively prime, b2(/3k) :f 0 for all k, and so on. These are used to define
an appropriate term order for the solution module and in certain situations
to identify a unique required solution as the minimal element in the module.
The partial realisation problem corresponds to the case p = 1 (and /31 = 0),
while the distinct-abcissae rational interpolation problem corresponds to
Nk = 1 for all k. See [7] for more details.

4.2. Errors-and-erasures decoding of alternant codes. The spe
cific context of decoding was addressed in [6, 9]. The errors-only case cor
responds to the solution of the single congruence

subject to the conditions 8b1 ~ m1,8b2 ~ m2,m1 + m2 < nand b1,b2
relatively prime. This is a partial realisation problem in which a required
solution is shown to be minimal with respect to a certain term order defined
relative to the parameter r = m1 - m2. The algorithm produces a Grabner
basis of the solution module containing the required solution. The general
isation to errors-and-erasures decoding involves the solution of the congru
ence subject to the further condition that b2 be divisible by a fixed poly
nomial j. In this case initialisation is at the basis {(x,,!+r+l, 0), Uh, jn,
where j h is the remainder of j h modulo x"c+r+l. This provides an appli
cation in which the initial solution module Mo is not Aq.

4.3. Multiple indeterminates. The main problem analysed in [8]
is the determination of a Gr6bner basis of the solution module of the con
gruence

q

b1 (-1) + 'Lbihi == 0 mod I
i=2

where I ~ F[X1' ... ' x n] is a zero dimensional ideal. Thus p = 1 in this
case. A recursive algorithm is given that applies in the special case where
a sequence of approximating ideals can be defined with the property that
for each I there is a term (Pt ¢:. 11+1 such that

11= ((Pt,!/+1) and Xs¢1 E II+l,s = 1, ... ,n

For 9 E II the value 0:(9) is the coefficient of ¢I in the normal form of 9
modulo 1/+1 . Applications to multivariable Pade approximation, Hensel
codes, and algebraic geometry codes are given.

306 HENRY O'KEEFFE AND PATRICK FITZPATRICK

4.4. Modelling discrete-time behaviours. Antoulas ([2]) uses a
behavioural approach to determine models of vector-valued discrete-time
time series. In particular, autonomous, linear, time-invariant models are
sought and it is shown that one such model ()*, with minimal complex
ity, generates all linear time-invariant models of the time series, and also
contains a minimal complexity controllable model. A recursive procedure
for constructing this model is given. Multivariable (in the systems theory
sense) partial realisation is a special case of this problem (see also Dickin
son, Morph and Kailath [5) and Kuijper [10]).

The models () under consideration are matrices with q columns whose
elements are polynomials in the forward shift 0"-1. The behavior B(()) of
() is the set {w E (Fq)Z- : ()(O"-l)w = o}. Equivalently, each w can be
viewed as a (negative) power series, L:tEZ_ Wtxt, where Wt E Fq. The
forward shift is equivalent to multiplying by x and truncating at the term
of degree zero.

The time series w(k), k = 1, ... ,p is zero until a finite time -Nk in the
past and current time is at the origin. Such a time series is in B(()) if and
only if the polynomial q-vector h(k) = xNkw(k) satisfies

()(x)h(k) == 0 mod XNk+1, k = 1, ... ,p.

If we view each of the q components individually and consider a row
(b1, ... , bq) of the model (), then () contains w(k) in its behaviour if and
only if each row of () satisfies

q

(4.1) '" b h(k) - 0 d Nk+1 k - 1 ~ i i = mo x , - , ... , p.
i=l

Thus a generating model corresponds to a basis of the submodule of F[x)q
whose elements satisfy this system of congruences. This makes the problem
amenable to solution by our techniques.

For each k, the sequence of approximating ideals can be chosen as

I (k) - (lk) 1 - 0 N lk - X , k - ,... k·

The function o:f~) returns the coefficient of xlk in L:i=l bih~k). The term
over-position (TOP) term order in F[x)q is defined by xT ei < xtej if r < tor
if r = t and i < j. With this term order our algorithm produces a Grobner
basis which corresponds to a generating model equivalent to that given in
[2). The degree of the leading term of a basis element is the row degree
of the corresponding model row. The procedure ord need only maintain a
table giving degree and position of the leading term for each basis element.
These pairs are unchanged by the incremental step except for the degree
of the element W[j*), and so re-ordering takes the form of inserting the
multiple xW[j*) into its correct new position. The initial module is A

RECURSIVE CONSTRUCTION OF GROBNER BASES 307

with Gr6bner basis {el, ... , eq }. The final basis produced corresponds to
a model with ordered row degrees, which is row reduced by Lemma 3.1. A
minimal complexity controllable model can be extracted as a subset of the
basis at each stage. We illustrate the application of our algorithm in this
context using an example of Antoulas ([2, Example B]).

EXAMPLE 1. We want to determine a generating system and a
controllable model of minimum complexity from the following Markov pa
rameters (Ai, i = 0, ... ,4) of a three-input, two-output system.

Ao = 0 (111)
Al = 2 2 0 (221)

A2 = 4 4 0

63)
10 2

The corresponding matrix of polynomials h~k) is

o
1
o

x + 2x2 + 6x3 + llx4

2x + 4x2 + 10x3 + 21x4

and we denote the columns of this matrix h(l), h(2), h(3).

We apply our algorithm using the TOP term order. After the Markov
parameters A l , A 2, A3 have been processed we have the basis consisting of
the rows of the matrix

~x
3

~x
3 -*x * - *x -*+x

Ix2
2

Ix2
2 x2 -x+x2 Ix

4

_Ix + x3 -~x -*x * - *x - x2 1
3 -6

x3 x3 0 0 _lx2
2

0 0 x3 -x2 Ix2
2

and the controllable model is derived from rows 1 and 3.
The next step is to consider the component hl modulo x5 . The (Xj are

0,0, -2, -2,0 and this gives j* = 3 and the next basis

~x
3

~x
3 -~x ~ - ~x

3 3 -~+x 3
Ix2
2

Ix2
2 x 2 -x+x2 Ix

4

Ix
3 Ix + x3

3
~x
3

-~+~X+X2
3 3

1_lx2
6 2

0 0 x3 _x2 Ix2
2

_lx2 + X4 _lx2 _~X2 ~x - ~X2 - x3 -~x 3 3 3 3 3

308 HENRY O'KEEFFE AND PATRICK FITZPATRICK

The new controllable model is in row 1 and row 3 (which was row 4 in the
previous basis). When the two remaining series h 2 , h3 are processed, the
final basis is

and the controllable model is in rows 1 and 3.
Finally, we give an example to illustrate the possibility of deriving a

closed form solution.
EXAMPLE 2. For modelling discrete-time behaviours a formal im-

plementation of the algorithm allows us to "write down" a Grabner basis
with respect to Position Over Term (POT) order, defined in this I-variable
situation by Xrei < xtej if i < j or if i = j and r < t. In this setting the
operation of the algorithm is predictable in advance and the final result
can be derived directly from the input data without any computation. In
the previous example this gives the basis

x 5 0 0 0

1) ("
x 5 0 0

0 0 x 5 0

-x - 2X2 - 4x 3 _ 8x4 -x - 2X2 - 6x 3 _ 11x4 -x - x 2 - 3x3 - 6x 4

-2x - 4x2 - 8x 3 - 16x4 -2x - 4x 2 - 10x 3 - 21x4 _2x 3 _ 7x4 0

REFERENCES

[IJ ADAMS, W.W., AND LOUSTAUNAU, P, An Introduction to Grobner bases, Springer
Verlag, New York, Berlin, 1994.

(2) A.C. ANTOULAS, Recursive modeling of discrete-time time series, in P. Van Doren
and B. Wyman (eds.) Linear Algebra for Control Theory, IMA, Vol 62, 1776-
1802, Springer, Berlin, 1994.

(3) THOMAS BECKER, VOLKER WEISPFENNING, Grobner Bases A Computational Ap
proach to Commutative Algebra, Springer Verlag, New York, Berlin, 1993.

[4] DAVID Cox, JOHN LITTLE, DONAL O'SHEA, Ideals, varieties, and algorithms: An
introduction to computational algebraic geometry and commutative algebra.,
Springer-Verlag, New York, Berlin, 1992.

[5) B.W. DICKINSON, M. MORPH, AND T. KAILATH, A minimal realization algorithm
for matrix sequences, IEEE Trans. on Automatic Control, AC-19 (1974), 31-
38.

[6] P. FITZPATRICK, On the key equation, IEEE Trans. on Information Theory, IT-41
(1995), 1290-1302.

[7] P. FITZPATRICK, On the scalar rational interpolation problem, Mathematics of
Control, Signals, and Systems, 9 (1996), 352-369.

[8) P. FITZPATRICK, Solving a multivariable congruence by change of term order, J.
Symbolic Computation, 11 (1997), 505-510.

RECURSIVE CONSTRUCTION OF GReBNER BASES 309

[9] P. FITZPATRICK, Errors and erasures decoding of BCH codes, lEE Proc.-Commun.,
146, No.2 (1999), 79-81.

[10] M. KUIJPER, An algorithm for constructing a minimal partial realization in the
multivariable case, Systems and Control Letters, 31 (1997), 225-233.

ON ITERATIVE DECODING OF CYCLE CODES
OF GRAPHS

GILLES ZEMOR*

Abstract. We analyze iterative decoding of cycle codes of graphs for the era
sure channel and the binary symmetric channel. Cycle codes can achieve vanishing
error-probability after decoding: furthermore, threshold probabilities can be computed
exactly. We also prove that, for these codes, the asymptotical performance of iterative
decoding and maximum-likelihood decoding coincide.

Key words. Graphs, Cycle codes, iterative decoding, min-sum algorithm.

AMS(MOS) subject classifications. 60C05, 68RI0, 94B35, 94B70.

1. Introduction. Cycle codes of graphs are codes that have a parity
check matrix with exactly two "ones" per column. Among all codes that
are amenable to iterative decoding, i.e. codes with "low-density" parity
check matrices (among which Gallager codes, Tanner codes, Turbocodes
and others), cycle codes of graphs are therefore the codes with lowest pos
sible density. Even though they turn out to be not truly practical, their
study is interesting from the point of view of iterative decoding because
their simpler structure makes their analysis easier than that of the other
low-density codes. It is natural to hope that understanding properly iter
ative decoding for the simpler codes will give insight into the performance
of the more sophisticated families of codes.

In [1] and [13] we studied the behaviour of maximum-likelihood de
coding of cycle-codes of graphs for the binary symmetric channel. In [1],
together with L. Decreusefond we showed that, for cycle codes of 6.-regular
graphs, the error probability of maximum-likelihood decoding cannot van
ish with the block length if the transition error probability p of the channel
satisfies p > 0 where

In [13], together with J-P. Tillich we showed that the cycle codes of some
classes of D.-regular Ramanujan graphs are such that the error probability
of maximum-likelihood decoding vanishes with block length when p < O.
The quantity 0 can therefore be considered as a threshold probability for
maximum-likelihood decoding.

It turns out that for p < 0, iterative decoding achieves vanishing bit
error probability. Therefore 0 is a threshold value in more than one sense.

"Ecole Nationale Superieure des Telecommunications, Computer Science and Net
work Dept., 46 rue Barrault, 75634 Paris 13, France. Email: zemor@infres.enst.fr.

311

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

312 GILLES ZEMOR

In this paper we wish to address these issues and take up the subject of
cycle codes of graphs from the perspective of iterative decoding: we shall
explain the relevant probabilistic tools from [1].

2. Cycle codes, overview. Let G be a finite, undirected, connected
graph without loops or multiple edges. It is defined by its vertex-set V
and its edge-set where an edge is a pair of vertices. Let rand n denote
the number of vertices and edges respectively, and let the set of edges
be numbered, so that it is identified with {I, ... n}. Identify furthermore
subsets of edges with their characteristic vectors in {O, 1 }n: A cycle c E
{O,l}n of G is a subset of edges with the property that any vertex of G
is incident to an even number of edges of c. The set C of cycles of G is a
subset of {O, l}n stable under addition modulo 2: it is therefore a linear
code of length n called the cycle code of G.

An incidence matrix H = (hij) of G is a r x n matrix whose rows
are indexed by the vertices of G, whose columns are indexed by the edges,
and such that hij = 1 whenever vertex i belongs to edge j and hij = °
otherwise. An incidence matrix of G is also a parity check matrix of the
cycle code C. The cycle code of a graph has therefore a parity check matrix
with exactly two 1 's per column: it is a low-density parity check code in
the sense of Gallager [3].

It is well known that the dimension of C is k = n - r + 1 when the
graph is connected. The study of the minimum distance d of C, i.e. the
size of the smallest cycle, or girth, of G has been of interest to graph
theorists since the early 60's and is still very much open, but the bad news
for coding-theorists is that for fixed rate R = kin and growing n, d cannot
grow faster than a logarithm of n.

Here is a short proof of this in the case when G is regular. A graph
G is said to be il-regular if every vertex is incident to exactly il edges, or
equivalently if every vertex has exactly il neighbouring vertices. Note that
R = 1 - 21 il + lin, so that for large n, fixing the degree fixes the rate.
Let v be any given vertex of the graph and consider the set of vertices at
distance from v strictly less than d/2 in the graph. Because G does not
contain a cycle of length strictly smaller than d, the subgraph induced by
this set of vertices must be a tree, as represented in figure 1.

The number of vertices of G at distance 1 from v is therefore il, the
number of vertices at distance 2 from v is il(il - 1), and the number of
vertices at distance i from v, i < d/2, is il(il - If We conclude that the
total number of vertices IVI in the graph has to be bigger than

1 + il + il(il- 1) + ... + il(il_1)rd/ 21-1 .

In other words, when n is large d cannot be significantly larger than

210g(.l_1) IVI·
Let us mention in passing that it still is a challenging open problem to know
just how good this upper bound is asymptotically. Erdos and Sachs [2]

ITERATIVE DECODING OF CYCLE CODES 313

v

- --

FIG. 1. The neighbourhood of v in a ll-regular graph (here II = 4) with no small
cycles.

showed with random arguments that families of .6.-regular graphs exist that
satisfy d ~ IOg(.6._l) !VI, and Margulis [10] , and independently Lubotsky,
Philips and Sarnak [8], found an algebraic construction of graphs satisfying
d ~ 4/3Iog(.6._l) !VI: this is at present where the gap stands between upper
and lower bounds on d.

For non-regular graphs the situation is rather worse. For coding pur
poses the regular graphs tend to be the best and most of our efforts will be
concerned with them. We shall occasionally encounter the general irregular
case.

Cycle codes of graphs aroused early interest [6], but because of their
poor minimum distance they were quickly discarded by the early coding
theorists. Possibly this was one of the reasons Gallager focused his analysis
on codes whose parity-check matrices have at least three l's per column.

However, even though they have poor minimum distances, cycle codes
of graphs can achieve vanishing error probability after decoding. This is
true both for maximum-likelihood decoding and for iterative decoding. Fur
thermore, their performance can be analyzed rigorously and their asymp
totical error-correcting capabilities computed exactly. We give a precise
meaning to these statements in the next sections.

3. Decoding. Our main objective is the understanding of the asymp
totical behaviour of cycle codes on the binary symmetric channel. We will
also be concerned with the erasure channel which is simpler and will serve
as a very useful intermediate study.

3.1. Maximum-likelihood decoding. Let us say that a vector x =
(Xl, ... , xn) of IF2 covers another vector Y = (Yl, ... , Yn) if Yi = 1 implies
Xi = 1. Let us write Y C X to signify that x covers y. Let C be any binary
linear code of length n.

The erasure channel. When submitted to the erasure channel with

314 GILLES ZEMOR

erasure probability p, each symbol of the transmitted codeword

is erased, independently of the others, with probability p. Let

be the characteristic vector of the set of positions where an erasure occurs,
and let us call it the erasure vector. The codeword x can be recovered
with no ambiguity by the receiver if and only if the erasure vector does not
cover a non-zero codeword c. The probability that this does not happen,
i.e. that unrecoverable ambiguities occur, is therefore:

P[e E A] = 2: p1al(1_ p)n-1a l
aEA

where lal denotes the weight of a and where

A = {a E ~ 13c E e, c tf 0, c C a}.

The binary symmetric channel. When a codeword x = (Xl, ... ,xn)

is submitted to the binary symmetric channel with bit error probability p,
the receiver gets x + e where the error vector e = (el' ... ,en) E IF2 is such
that ei = 1 with probability p, independently of the others. Maximum
likelihood decoding consists of picking one of the codewords (there might
be several) closest to x + e for the Hamming distance. Decoding fails if
e E E where E is defined as the set of vectors closer to a non-zero codeword
than to the zero codeword, i.e.

E = {e E ~ 13c E e,d(e,c) < lei}.

Notice that E may be redefined as

E = {e E ~ 13c E e,y C c, Iyl > Icl/2, and y C e}.

In other words, E is the set of vectors that "cover half the coordinate
positions of some non-zero codeword". Note the similarity of this wording of
E with the set A defined above for erasures. Maximum-likelihood decoding
fails with probability at least

pre E E].

3.2. Iterative decoding. When recovering from erasures is possible,
then it can be done with reasonable complexity, since this involves at worst
solving a system of n -lei linear equations in k binary variables. However,
maximum-likelihood decoding for the binary symmetric channel is NP
complete [4], and even when the code e is restricted to the class of cycle

ITERATIVE DECODING OF CYCLE CODES 315

codes of graphs no polynomial algorithm is known. Iterative decoding
is suboptimal, but its complexity is polynomial (actually almost linear)
in n. Several versions of iterative decoding schemes exist and have been
extensively discussed [15]: for the sake of clarity and self-containment we
give here a brief description of the one that will be most adapted to our
purposes.

A. Local decisions. Here is a very general decoding idea. Let x =
(Xl, ... ,xn) be the original codeword. Let i E {I, ... ,n} be a given coor
dinate position and let us try and decide whether Xi = 0 or Xi = 1 based
on the received vector. Since complete decoding is difficult let us consider
a subset I C {I, ... ,n} of coordinate positions such that i E I, and let us
base our decision locally, i.e. only on the subset I of coordinates. For any
vector Y E 182, denote by YI the shortened vector YI = (Yj)jEI and by CI
the shortened code

Now define

CI(i,O) = {CI E CI,Ci = O}

CI(i, 1) = {CI E CI,ei = I}.

Note that CI(i, 0) is a subcode of CI and that CI(i, 1) is a coset of CI(i, 1).
We shall drop the i when the coordinate i is implicit and write CI(O) and
CI (l).
For the erasure channel, the situation is very similar to the global case.
The value of Xi can be recovered unambiguously if and only if the shortened
erasure vector CI covers a shortened codeword of CI (l).
For the binary symmetric channel, the situation is somewhat modified.
MAP (Maximum A Posteriori Probability) decoding involves computing,
conditional on the received bits in the positions of I, the probabilities PI(O)
and PI(l) that XI E CI(O) and that XI E CI(l) respectively. The decoder
then decides what is the value of Xi based on which of the two probabilities
is largest. Note that since PI(O) and PI(l) are functions of p, the decoder
must know p.

We shall rather consider the following variant for decoding. Let v =
X + e be the received vector. Let us decide that Xi = 1 if the minimum
number of coordinates of X + e in I that must be changed in order to obtain
a codeword of CI(l) is smaller than the minimum number of coordinates
that must be changed to obtain a codeword of CI(O). In other words,
this means computing the Hamming distances DI(O) = d(VI' CI(O)) and
DI(l) = d(VI' CI (l)), and deciding that Xi = 0 if DI(O) < DI(l) and
Xi = 1 if DI(O) > DI(1).

Strictly speaking, this differs slightly from MAP decoding, but it may
be argued that the events leading to different decisions for Xi are rare and
concern unlikely code structures.

316 GILLES ZEMOR

Note that DI(O) and DI(I) can always be computed by exhaustively
examining all the codewords of C I.

B. Iterating procedures. If I is too large, the direct computation of
the quantities we just discussed may be too complex, so suppose now that
I = JUK where i E J and where JnK = {j}, j i'i. Let us discuss briefly
how, by using this decomposition of I, a decision on the value of Xi can be
computed that takes into account all the coordinates in I.
For the erasure channel, it should be clear that the shortened erasure
vector CI covers a shortened codeword of CI(i, 1) if and only if

• either Xj is unerased and CJ covers a shortened codeword of CJ(i, 1)
• either Xj is erased and CJ covers a shortened codeword of CJ(i, 1)

and CK covers a shortened codeword of CK(j, 1).
Therefore, to discover Xi it is enough to first discover (if possible) Xj by
decoding CK and then to decode CJ.
For the binary symmetric channel, we need to compute DI(O) and
DI(1). We have:

DI(O) = min (d(vJ, cJ) + d(VK' CK(j, Cj) - d(vj, Cj))
cJECJ(i,O)

DI(I) = min (d(vJ, cJ) + d(VK' CK(j, Cj) - d(vj, Cj)).
cJECJ(.,l)

Therefore, to compute DI(O) and DI(I) we can first compute

and then apply the above equalities. This strategy can be generalized if
I can be decomposed into a treelike union of subsets, any two of which
have an intersection of at most one element. This is now known as the
"min-sum" algorithm and is essentially Tanner's algorithm B [12].

C. Cycle codes. We now turn to the case when C is the cycle code of a
A-regular graph G. Keep in mind that a coordinate position i numbers an
edge of the graph. To obtain a "local" set I of coordinates (edges), take
the set Nl of edges incident to one of the endpoints of i, together with the
set N2 of edges that have an endpoint incident to Nl and so on, so that

Let us call the edge i the root of the neighbourhood I and call h the depth
of I. We shall suppose throughout that I has the tree structure depicted
in figure 2, i.e. that I contains no cycle.

To justify this, note that if G is a randomly chosen A-regular graph
with n edges, it can be proved that the expected number of cycles of a
given fixed length is constant (does not grow with n). Therefore, for fixed
h and growing n, almost all edges i will have tree-like neighbourhoods.
Even better, there exist constructions (for example those of [8] and [10]) of

ITERATIVE DECODING OF CYCLE CODES 317

FIG. 2. The local decoding region I associated to edge, or coordinate, i. Here the
depth of I is h = 2.

~-regular graphs with n edges and no cycle of length smaller than a linear
function of log n.

From now on we are not concerned anymore with algorithmic and
complexity issues. By this we mean that we shall not try to analyze the
iterative procedure itself, but rather, since we have just seen that it is
equivalent, we shall study directly the probability that complete decoding
of C1 recovers the correct value of Xi. We shall focus in particular on the
behaviour, as the depth of I grows, that decoding on I fails.

4. Cycle codes and the erasure channel. In this section let us
denote by fI(p) the probability that the symbol in position i is erased and
that local decoding will not recover it, i.e. that the erasure vector covers a
word of C1 (1).

We shall prove that:
PROPOSITION 4.1.
1. When p < 1/ (~ - 1), then fI (p) converges to zero as h tends to

infinity.
2. a. When p > 1/(~ -1), then, independently of the depth h of I,

fI(p) is lower bounded by a non-zero constant.
b. Furthermore, "global" decoding will not fare better. The prob

ability that the whole erasure vector covers a codeword is also
lower bounded by a constant (depending only on p and not on
the graph).

The first step is to notice that the erasure vector 61 covers a codeword
of Cl(l) if and only if 61 covers a path of I of length h + 1 that contains
the root i.

Proving point 1 is now easy. The probability that the erasure vector
covers a path of I rooted at i of length h + 1 is less than the expected

318 GILLES ZEMOR

number of such paths, so that:

(4.1)

This clearly deals with point 1. Actually II (p) may be estimated more pre
cisely. If we write h instead of I to specify the depth of the neighbourhood
I we have the relation

(4.2)

By studying (4.2) it is straightforward to see that fh (p) decreases with h
(also seen directly, since a path of length h + 1 contains a path of length
h), and that it converges to a non-zero value when p > 1/(1:1 - 1). This
proves point 2a. We shall later give an alternative proof of this that can
be generalized in ways that (4.2) cannot.

Let us now address point 2b. The intuition behind our argument is
that when p > 1/(1:1 - 1) then with non-zero probability we can follow an
infinite path of "erased" edges on an infinite tree rooted at i that "projects"
onto a path of the finite graph G. Since G is finite, this path must wrap
around itself and contain cycles.

The rest of this section is devoted to making this argument rigorous.
Let Pp be the measure on {a, I} defined by p({I}) = P and p({I}) =

1 - p = q. We have two probability spaces: one is defined on the edge-set
of G with the product measure Pa = p~{1,,,. ,n}, the other is defined on
the edge-set (. of an infinitel:1-regular tree r with the product measure
Pr = p:e. It is useful to view the infinite tree r as the universal cover of
G. This is obtained from G by considering all possible paths in G starting
at a given edge i. In this way all edges of r are labeled by a path of G
starting at i.

Let Ah be the event consisting of all subsets of edges of the infinite
tree that include a path of length h > n containing i. Let us compare the
probability Pa(€ covers a cycle) in the finite graph G with the probability
Pr(Ah) in the tree r.

Let 'J' be the collection made up of the emptyset and of all subgraphs
T of G which are trees, contain the edge i, and are such that that no edge
of G has both its endpoints in T. Let T E 'J' be given and let a be the
number of edges of T and let (3 be the number of edges of G that have
exactly one endpoint in T. Now consider the set of erased edges of G and
let Ra be the induced connected component containing the edge i. The
probability in G that Ra = Tis:

Pa(Ra = T) = po.qf3.

Because we have supposed that edges outside T have at most one endpoint
in T we must have

{3 = (a + 1)(1:1- 2) + 2.

ITERATIVE DECODING OF CYCLE CODES 319

Now any tree T containing i is isomorphic to a subtree of r containing i.
Consider any random subset w of edges of r and let Rr be the induced
connected component in r that contains i: the key observation is that in
r we also have

Therefore we have

(4.3) Pr(Rr E 'J) = Pa(Ra E 'J).

Let w be a random set of edges of r and suppose w E A h , i.e. w is an event
which includes a path of length h containing i. Because we have chosen
h > n and all subtrees of G have at most n vertices we must have Rr (j. 'J.
Therefore Pr(Ah) ~ Pr(Rr (j. 'J). Put'fJ = limh-too Pr(Ah): the hypothesis
p> 1/(Ll- 1) implies'fJ > 0 by point 2a, so that:

'fJ < Pr(Rr (j. 'J).

But (4.3) means that we have proved:

'fJ < Pa(Ra (j. 'J).

Now the event (Ra (j. 'J) in G means that the connected component con
taining i is either not a tree, and therefore contains a cycle, or is a tree, but
which contains two vertices joined by a non-erased edge. In other words,
we have bounded away from zero (by 'fJ) the probability that the erasure
vector covers, either a cycle, or a cycle with a missing edge.

Strictly speaking, this is not completely what we want, namely to
bound away from zero the probability that the erasure vector covers a
cycle. This technical difficulty could be dealt with directly by a more careful
comparison of the relevant events on the finite graph G and on the infinite
tree. However we can also deal with it with an indirect argument along the
following lines. Consider the random vector c· A = (cIAl, ... ,cnAn) where
the Ai are chosen independently and such that Ai = 1 with probability 1r,

Ai = 0 otherwise. Choose 1r such that

p1r = _1_ + ~ (p _ _ 1_).
~-1 2 Ll-1

We have p7r > 1/(Ll - 1), so the probability that the vector c· A covers
a cycle, or a cycle with a missing edge is, as we have seen, bounded away
from zero. But then the probability that the remaining set of edges of c,
i.e. those j such that c i = 1 and Ai = 0, contains the missing edge is also
bounded away from zero.

320 GILLES ZEMOR

5. Interlude: percolation on trees. Consider an infinite graph r,
with edge-set c.., and pick a privileged vertex v. Choose a random subset of
edges of r by picking each edge independently of the others with probability
p. In other words we are measuring events on {o,l}e with the product
probability measure Pr = J.L?e. Percolation theory concerns itself with the
probability f(p) that the random subset contains an infinite path passing
through v. The theory is especially concerned with critical probabilities:
the quantity B E (0,1) is a critical probability for the function f if f(p) = 0
for p < Band f(p) > 0 for p > B. Probably the most famous result of
percolation theory is that B = 1/2 is a critical probability when r is the
infinite square lattice on Z2 (Kesten, [7]). A very readable account of the
theory is [5).

The quantity B = l/(Do - 1) appearing in proposition 4.1 is in effect
the critical probability for percolation when r is the infinite Do-regular tree.
Indeed, our discussion in sections 3.2 and 4 has shown that, in the case of
the erasure channel, the limiting behaviour of iterative decoding for cycle
codes of Do-regular graphs is really given by f(p) for the Do-regular tree:
(well, almost, because in choosing the neighbourhood I in figure 2 we have
thrown away one of the branches leading away from i, but this does not
affect critical probabilities).

As we have seen in section 4, proving that f (p) = 0 for p < B can
be achieved simply by computing expectations, namely proving that the
expected size of the connected component R containing v is finite. When
p > B, the expected size of R is infinite, but this is not enough in itself to
ensure that the probability f (p) that R contains an infinite path is non-zero.
When r is the Do-regular tree there is a straightforward way around this
difficulty, which consists of studying the probabilities ih (p) that the random
set of edges w contains a path of length h starting at v. Because there is a
relation between fh+l(p) and ih(p) (akin to (4.2») the limit limh-too fh(p)
can be computed. One finds that when p > B this limit is positive, and so
is f(p).

Here is an alternative way of proving that f(p) > 0, which does not in
volve any formula of the type (4.2), and which will turn out to be especially
interesting for us: it is due to R. Lyons [9).

For any vertex a of r denote by 8a the depth of a, i.e. the length of
the (unique) path from v to a. Denote by Sh the sphere of radius h, Le.
the set of vertices of r of depth h. For any subset w c c.. of edges of r let
us say that a vertex a is reachable if all the edges of the path from v to a
are in w. Define the set R(w) of reachable vertices. For any vertex a define

Finally, define the random variables

(5.1) X h = L ¢(a)p-hlR(w) (a).
UESh

ITERATIVE DECODING OF CYCLE CODES 321

In words, the variable Xh counts the number of reachable vertices in Sh
and multiplies them by the quantity (~ - l)-hp-h.

The variable X h depends only on the state (in w or not in w) of the
edges at distance ~ h from v: furthermore it is straightforward to check
that the sequence (Xh) forms a martingale. Martingale theory tells us that
(X h) must converge almost surely to some variable X. It also tells us that
if

(5.2) sup E[X~] < 00
h2:1

then we must have E[X] = E[Xh] = 1. In that case X must be non-zero
on a set of non-zero probability, so that, on a set of non-zero probability,
X h i- 0 for all h, which means exactly that R(w) is infinite and that there
exists an infinite path passing through v.

Note that the function ¢ is a unit fiow, i.e. satisfies ¢(v) = 1 and for
any a

l1-+r

where a --+ 7 means that 7 is a neighbour of a of depth 87 = 8a + 1. This
makes the evaluation of E[X~] simple, we have:

E[X~] = L ¢(a)¢(7)p-2h P[a, 7 E R(w)]
11,rESh

= L ¢(a)¢(7)p-a(11/\T)
11,rESh

where a 1\ 7 means the vertex furthest away from v which is on both paths
from v to a and from v to 7. We have therefore

E[X~] = L p-at/J L ¢(a)¢(7)

(5.3)
t/J,at/J'5.h l1/\r=t/J, 11,rESh

E[X~] ~ L p-at/J¢('l/J)2,
t/J,at/J9

because ¢ is a flow. From the upper bound (5.3) it is now straightforward
to obtain (5.2) whenever p > 1/(~ - 1) and the desired result that there
exists, with non-zero probability, an infinite path passing through v.

This argument may seem involved, but it has a number of advantages,
in particular it generalizes to arbitrary, non-regular trees, for which there
is no equivalent of the relation (4.2). Let Xh be defined as before by (5.1)
but with an arbitrary unit flow ¢. Inequality (5.3) still holds and can be
upper bounded by introducing the quantity

(5.4) brf = supp(¢)

'"

322 GILLES ZEMOR

where ¢ runs over all unit flows and p(¢) is the radius of convergence of
the series

this last sum extending to all vertices (J' of f. With this definition and the
same argument as before we have that whenever p > l/brf, there exists
an infinite path passing through v with non-zero probability.

R. Lyons [9] calls the quantity brf the branching number of f, and
shows that we have

(5.5) brf = inf {A> 0, i}}f L r8a-}
a-EK

where K runs over all cutsets K. A cutset K is a set of vertices of f such
that the connected component of f \ K is finite, and such that K is min
imal with this property. Actually, Lyons shows that definitions (5.4) and
(5.5) are equivalent (this involves the max-flow min-cut theorem). With
definition (5.5) it is straightforward to show that whenever p < l/brf,
the expected number of paths of length h starting at v must tend to zero
with h and therefore the probability that an infinite path passes through
v is zero. The quantity l/brf is therefore the critical probability for the
function f(p) for any infinite tree f.

The branching number is related to a simpler quantity called the
growth grf, defined by:

grf = lim inf M~/h
h--+oo

where Mh = cardSh . We have

grf :S brf,

and the inequality may be strict, see [9] for examples of such trees. However,
if f is the universal cover of a finite graph we have brf = grf.

6. Cycle codes and the binary symmetric channel. Consider
now the binary symmetric channel and the issue of local decoding on the
neighbourhood I = h (figure 2) of an edge i. When does local decoding go
wrong? We have seen that it goes wrong when the shortened error vector
eI is closer to the coset of the shortened subcode CI(l) than to CI(O). In
particular, for this to happen, the error vector eI must be closer to C1 (1)
than to the the 0 vector (which is in C1(0)). Now the reader will easily
convince himself that this happens if and only if there exists in I a path of
length h + 1 containing i, and with more than (h + 1)/2 edges in error.

Let us consider this last event, that there exists in I a path of length h+
1 containing i with more than (h + 1)/2 edges in error, and denote by FI(p)

ITERATIVE DECODING OF CYCLE CODES 323

its probability. Our last discussion has just shown that the probability that
local decoding fails is smaller than FJ(p). There is a critical value for FJ(p)
when the depth h of I goes to infinity, which is:

(6.1) e = ~ (1-V1 - (~~ 1)2).
We have results similar to those of proposition 4.1, they read:

PROPOSITION 6.1.
1. When p < e, then FJ(p) converges to zero as h tends to infinity.

In particular the probability that iterative decoding fails converges
to zero as h tends to infinity.

2. a. When p > e, then, independently of the depth h of I, FJ(p)
is lower bounded by a non-zero constant.

b. Furthermore, "global" decoding will not fare better. The prob
ability that the whole error vector is closer to a non-zero code
word than to the zero vector is also lower bounded by a con
stant (depending only on p and not on the graph).

Proving point 1 is not difficult and is very much similar to the way
point 1 of proposition 4.1 was proved. Let us say that an edge j is extreme
in I if the unique path leading from i to j contains h + 1 edges (is of length
h + 1). Let us call an edge j of I reachable if the path leading from i to
j has more than half its edges "in error". Let us now count the expected
number of reachable extreme edges. There are (~-l)h extreme edges, and
the probability that a given extreme edge is reachable is

" (h + 1) l h+l-l L.t f pq .
l>(hH)/2

Since p < 1/2, the dominant term in this sum is that of the lowest f, the
sum is therefore equal to "Ih with "I asymptotically equivalent to 2(pq)1/2.
The expected number of reachable extreme edges tends therefore to zero
with h if and only if 2(~ - 1)(pq)1/2 < 1. This yields point 1 of the
proposition after some rearranging.

Assume point 2a for the moment and let us address point 2b. The
same technique can be applied as in the proof of point 2b of proposition
4.1, namely comparing probabilities of events on the finite graph G and on
the infinite ~-regular tree r. Call R the set of vertices of G "reachable"
from a given edge i: by this we mean those vertices that are at the other
end of a path starting at i and with more than half its edges in error. Then
consider the event that the subgraph of G induced by the set R of reachable
vertices is a tree. On the one hand this is very close to the probability that
i does not belong to a cycle with more than half its edges in error, and on
the other hand this must be less than 1 - Fh (p) for h large enough.

To turn this argument into a formal proof involves some technicalities.
We need to modify slightly the definition of "reachable" vertices to mean

324 GILLES ZEMOR

vertices that are the endpoints of path containing a fraction A of edges in
error with A slightly larger than 1/2, and we also need to demand that
the relevant paths make up a sufficiently balanced set of edges in error and
edges not in error. This is technical but not conceptually difficult: we leave
out the details here and refer the interested reader to [1] for a complete
proof.

Let us now finally address point 2a, the most difficult issue. The
neighbourhood I can be imbedded in an infinite .6.-regular tree r. As in
section 5, let C denote the set of edges of r and let us measure events on
{O, l}e with the product probability measure It = J.L: e . As before, let v
be a fixed vertex of r. This time, however, let us define a vertex 0' to be
reachable for wee if the unique path from v to 0'

is such that, for every f, 1 :S f :S h, at least half the edges of the path

are in w. Let R(w) denote the set of reachable vertices and let F(p) be the
probability that R(w) is infinite. It should be clear that Fh (p) ~ F(p) for
every h, so that we will be home when we prove:

THEOREM 6.1. The quantity () in (6.1) is a critical probability for
F(p), i.e. F(p) = 0 for p < () and F(p) > 0 for p > ().

That F(p) = 0 for p < () is a consequence of point 1 of proposition
6.1. To prove that F(p) > 0 when p > () we need an indirect method, since
there is no direct way to compute Pr(IR(w)1 ~ h) or similar quantities.
The martingale approach of section 5 turns out to be adequate. We just
sketch the argument, refering the reader to [1] for details.

We need to restrict the definition of "reachable". Let (Ul)l>1 be an
increasing sequence of positive integers and let Uh = 2:;=1 Ul. L;t us say
that a path

is heavy if for every f, 2 :S f :S h, at least half the edges of the path

[0'1,0'2, ... ,O'tl

are in w. Let us say that a vertex 0' of depth Uh is u-reachable if the
subpaths of [v, 0']

[v, . .. , O'uJ, [O'U1' ... , O'U2]' .. [O'Uh_1" .. , O'Uh = 0']

are all heavy. Finally, Let R~(w) denote the set of u-reachable vertices
of SUh and let 7r(h) denote the probability that a vertex of depth Uh is
u-reachable. Define the random variables

Xh = L ¢(0')7r(h)-11R~(w)(0')
uESuh

ITERATIVE DECODING OF CYCLE CODES 325

for a unit flow ¢. The sequence (Xh) is a martingale and by choosing
¢(u) = (~ - 1)-BO" the same strategy as that of section 5 yields theorem
6.1. The proof extends naturally to arbitrary trees r and we have [1]:

THEOREM 6.2. Let F(p) be the probability that there exists an infinite
path passing through v such that, for any vertex u on that path, the subpath
[v, u] has more than half its edges in w. The quantity

(6.2)

is a critical probability for F(p), i.e. F(p) = 0 for p < 0 and F(p) > 0 for
p> O.

7. Conclusion and comments.

7.1. ~-regular graphs. On the binary symmetric channel, when
p < 0, for 0 given by (6.1), we have shown implicitly that the min-sum
iterative algorithm must converge to the right decision with error probabil
ity vanishing with block length n. This is because the probability that the
min-sum algorithm fails is less than the quantity Fh (p) studied in section
6. For the same reason, the sum-product algorithm, which is equivalent to
MAP decoding on I must also have a vanishing probability of failure.

It is not clear however, how many bits will stay in error after itera
tive decoding? Only their proportion is proved to go to zero for p < O.
Maximum-likelihood decoding may perform better in one way because it
can correct all the bits in error, but only if the graph structure is right, i.e.
it is not enough for the graph to have no small cycles. Those graphs do
exist, and can be constructed, see [13].

When p > () then we know that maximum-likelihood decoding fails
with probability bounded below by a constant. A little more can be proved:
if G belongs to a family (Gm) of ~-regular graphs with girth tending to
infinity with m, then the probability that maximum-likelihood decoding
fails must tend to 1 with m. This is achieved by invoking Margulis's graph
connectivity theorem [11] or its improvements [16, 14]. From the point of
view of iterative decoding however, It is not really clear what fraction of
bits will be left in error.

7.2. Irregular graphs. In that case the situation is somewhat more
difficult to assess because individual bits can be protected differently. For
instance one can choose a family (Gm) of graphs such that their cycle
codes have fixed rate, but with a growing "handle", (a connected subgraph
of degree 2). The bits corresponding to an edge in the middle of this
"handle" can be corrected with a probability of error going to zero with
m for any p < 1/2. However, if we restrict every Gm to the family of
graphs with a given universal cover r, then the arguments of section 6
generalize and proposition 6.1 holds with the value of 0 replaced by the

326 GILLES ZEMOR

formula (6.2). An example of a family of graphs with a given irregular
universal cover is that of biregular bipartite graphs with degrees .601 and
.602 • In that case the branching number equals the growth and we have
brr = grr = J(.601 - 1)(.602 - 1).

REFERENCES

[1] L. DECREUSEFOND AND G. ZEMOR, On the Error-Correcting Capabilities of Cycle
Codes of Graphs, Combinatorics, Probability and Computing (1997), 6, 27-38.

[2] P. ERDOS AND H. SACHS, Regulii.re Graphen gegebener Taillenweite mit minimaler
Knotenzahl, Wiss. Z. Univ. Halle-Wittenberg, Math.-Nat. (1963), 12, 251-
258.

[3] R.G. GALLAGER, Low-density parity-check codes, M.LT. Press, 1963.
[4] M.R. GAREY, D.S. JOHNSON, AND L. STOCKMEYER, Some simplified NP-complete

graph problems, Theor. Comput. Sci. (1976), 1, 237-267.
[5] G. GRIMMET, Percolation, Springer-Verlag, 1989.
[6] S.L. HAMKIMI AND J.G. BREDESON, Graph theoretic error-correcting codes, IEEE

Trans. on Inf. Theory (1968) IT-14, 584-591.
[7] H. KESTEN, The critical probability of bond percolation on the square lattice equals

t, Communications in Mathematical Physics (1980), 74,41-59.
[8] A. LUBOTSKY AND R. PHILIPS AND P. SARNACK, Ramanujan graphs, Combinator

ica (1988), 8, 261-277.
[9] R. LYONS, Random walks and percolation on trees, The annals of probability

(1990), 18(3), 931-958.
[10] G.A. MARGULIS, Explicit group-theoretical constructions of combinatorial schemes

and their application to the design of expanders and concentrators, Problemy
Peredachi Informatsii (1988), 24,51-60.

[11] G.A. MARGULIS, Probabilistic characteristics of graphs with large connectivity,
Problemy Peredachi Informatsii (1974), 10,101-108

[12] M. TANNER, A recursive approach to Low-complexity codes, IEEE Trans. on Inf.
Theory (1981) IT-27, No.5, 533-547.

[13] J-P. TILLICH AND G. ZEMOR, Optimal cycle codes constructed from Ramanujan
graphs, Siam Journal on Discrete Math. (1997), 10(3), 447-459.

[14] J-P TILLICH AND G. ZEMOR, Isoperimetric inequalities and the probability of a
decoding error, to appear in Combinatorics, Probability & Computing.

[15] N. WIBERG, Codes and decoding on general graphs, Ph.D. Thesis, Linkoping,
Sweden, 1996.

[16] G. ZEMOR, Threshold effects in codes, in First French-Israeli workshop on algebraic
coding, 1993 Lecture notes in Comput. Sci. 781, Springer-Verlag.

Part 4. Convolutional codes
and codes over rings

CONVOLUTIONAL CODES OVER FINITE ABELIAN
GROUPS: SOME BASIC RESULTS

FABIO FAGNANI* AND SANDRO ZAMPIERIt

Abstract. Abelian groups provide the most natural structure to represent codes
over phase modulation signals. Convolutional codes over finite Abelian groups are intro
duced and the properties of linear encoders for this class of codes are analyzed. Through
the structure theorem for finitely generated Abelian groups this analysis can be reduced
to the study of of convolutional codes over the ring Zn. We can in this way introduce the
concept of encoding group and to compare it with the more classical input group intro
duced in [6]. In the last part of the paper the state space realization of a convolutional
code and of a convolutional encoder is investigated.

1. Introduction. Often the most convenient way to represent a linear
code is by an encoder, which is an injective map whose range coincides
with the code. For linear convolutional codes the encoders which are more
classically considered are the so called "canonical feedback-free" encoders
and the "systematic" encoders.

In recent years linear codes over rings and groups have attracted much
attention, since they appear to be particularly suitable for the representa
tion of codes over phase modulation signals [12, 13]. Encoder represen
tation is particularly useful also for this class of codes. In the literature
two different methods have been proposed to solve the encoder synthesis
problem. The first method [6, 11] aims to extend the concept of canonical
feedback-free encoder to this setup and to connect it with the controllabil
ity structure of the code. This strategy has the advantage that it can be
applied to very general codes. Actually it can be proved that such a con
struction can be pursued even for timevaring linear codes over non-Abelian
groups. The disadvantage is given mainly by the nonlinearity of the en
coder it provides. This is the main reason why duality in this context is
a difficult issue so that the canonical feedback-free syndrome former con
struction does not follow as a dual procedure [4]. Another disadvantage of
this approach is that it is not based on polynomial matrices, which consti
tute a very powerful tool for the manipulation and the characterization of
convolutional encoders over fields.

The second strategy in the encoder construction for convolutional
codes over groups and rings, first proposed in [12, 13] and then developed in
[7,4], is based on the preliminary requirement that the encoders have to be
homomorphisms. The advantage of this approach is on the one hand that
the use of polynomial matrices is now allowed, and, on the other hand, that
the duality for these encoders is straightforward. The main disadvantage of

*Dipartimento di Matematica, Politecnico di Torino, C.so Duca degli Abruzzi, 24,
10129 Torino, Italy.

tDipartimento di Elettronica ed Informatica, Universita di Padova, via Gradenigo,
6/a, 35131 Padova, Italy.

327

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

328 FABIO FAGNANI AND SANDRO ZAMPIERI

this approach is the fact that the class of codes for which the homomorphic
encoders can be found is much more limited. For instance the concept of
systematic encoder can be easily defined in this context [13]. However it
can be shown that not every convolutional code over a ring admits such an
encoder [13].

Most of the results according to this second approach, which can be
found in the literature, are limited to codes characterized by an input space
which is a free module [13, 12, 7, 4]. The aim of this paper is to show that it
is possible to overcome this restriction and develop a more general theory.

Here we will focus our attention on some system theoretic properties
of convolutional codes over finite Abelian groups and of their linear con
volutional encoders. Moreover we will show the relations between some
basic notions of convolutional codes and encoders, such as completeness,
rationality, state space realizability. In a forthcoming paper we will inves
tigate more specific coding theoretic properties of this class of codes, such
as non-catastrophicity, minimality and systematicity. In Section 2 we will
briefly recall certain classical facts for convolutional codes over finite fields.
In Sections 3 and 4 we will establish a number of intrinsic characterizations
for convolutional codes over finite Abelian groups, while in Section 5 we
will obtain some structure results for their encoders.

2. Convolutional codes over finite fields. We start by recalling
the main definitions in the theory of convolutional codes over fields.

Let F be any field and let F((D)) denote the field of Laurent power
series in D. Thus, F((D)) consists of elements of the form

+00

a(D) = L ak Dk ,
k=-oo

where only finitely many coefficients with negative indices may be non-zero.
The ring of formal power series F[[D]], i.e. of power series having only non
negative powers, is a sub ring of F((D)). Also the polynomial rings F[DJ,
F[D- 1] and F[D, D-1] are subrings of F((D)). With the symbol F((D))q
we will indicate the F((D))-vector space of q-dimensional rows with entries
in F((D)). The field of rational functions F(D) is a subfield of F((D)).
A convolutional code C over the field F can be defined as a subspace of
F((D))q admitting a set of generators in F(D)q [14].

Notice that, if a subspace C of F((D))q admits a set of generators in
F(D)q, then it admits a basis in F(D)q. Let {91(D), ... ,9m(D)} be a basis
of C. Then

CONVOLUTIONAL CODES OVER FINITE ABELIAN GROUPS 329

and so, defining the rational matrix

[
91 (D) 1

G(D) := :

gm(D)

we can write

C = {w(D)G(D) : w(D) E F((D))m}.

The rational matrix G(D) can be seen as a map from F((D))m to F((D))q
whose range coincides with the convolutional code C. This map is called
an encoder for C. The advantage of rational encoders is the fact that they
can be realized through a state space realization. More precisely, given
a rational matrix G(D) E p(D)mxq, there exist integers n, lEN and
matrices A E pnxn, B E pmxn, C E pnx q, D E pmxq such that, given
an input sequence w(D) = l:k wkDk E p((D))m and an output sequence
v(D) = l:k VkDk E P((D))q, we have that v(D) = u(D)G(D) if and only
if there exists a state sequence x(D) = l:k xkDk E p((D))n for which the
following relations hold

(1) XkA +Wk B
= XkC +wkD

for all k E Z. The vector space pn is called the state space, n is called the
dimension of the state space realization and finally the integer l is called
the delay of the state space realization.

3. Convolutional codes over finite Abelian groups. In general,
a convolutional code over a finite Abelian group V is a subgroup of the
Laurent power series group V((D)) admitting a rational encoder, a concept
which can be defined as follows. The fundamental decomposition theorem
for finite Abelian groups insures that V can be decomposed as the direct
sum of of subgroups

where Vi are subgroups of V which are isomorphic to (Zp~)qi and where
Pi are prime numbers in Z. Similarly also the convolutionai code C can be
decomposed as

where each Ci is a convolutional code over (Zp~)qi. For this reason, without
loss of generality, in the sequel we will present the definitions and the results
assuming that C is a convolutional code over (Zp.)q. In this case we can
define the concept of convolutional code generalizing the definition we gave

330 FABIO FAGNANI AND SANDRO ZAMPIERI

for convolutional codes over fields. To this aim we need the concept of
Laurent power series with coefficients in /lp., which can be defined as
above and that will be denoted by /lp. ((D)). This is not a field, and so
/lp. ((D))q is not a vector space but only a module over /lp. ((D)). While
the rings /lp.[[D]], /lp.[D], /lp.[D-1] and /lp.[D,D-l] can be defined in
the obvious way, more attention must be paid to the definition of rational
functions [4]. The ring of rational functions over /lp. can defined as follows

/lp. (D) := {p(D)j Dmq(D) : p(D), q(D) E /lp. [D], qo = 1, mEN}.

Notice that according to this definition the ring of rational functions con
stitutes a subring of /lp. ((D)).

Definition. A convolutional code Cover /lp. is a /lp. ((D))-submodule of
/lp. ((D))q admitting a set of generators in /lp. (D)q.

The previous definition extends the definition given in [13, 12, 7, 4],
since it does not requires that C is a free module, i.e. that C admits a
rational basis. The generality of this extension will be clarified further by
Theorem 3.2.

As above, if we take a set of generators {gl (D), ... ,gm(D)} E /lp. (D)q
of C and if we define from them the rational matrix G (D) E /lp. (D) m x q, we
have that the rational matrix G(D) can be seen as a map from /lp. ((D))m
to /lp. ((D))q, whose range coincides with the convolutional code C. How
ever, if C is not a free module, this map will never be an encoder for C,
since the generators gl(D), ... ,gm(D) will never be linearly independent
and, consequently, the map associated with G(D) will never be injective. In
the literature devoted to linear encoder analysis, only convolutional codes
admitting a rational basis have been considered. In order to overcome this
difficulty we need to enlarge the class of modules which can be the input
of the encoder. This is consequence of the following theorem.

THEOREM 3.1. Given a subset C of /lp. ((D))q, the following facts are
equivalent.

(2)

1. C is a convolutional code over /lp •.
2. There exist rational matrices Gi(D) E /lp. (D)m. xq, i = 0,1, ... ,s-

1, such that
(a) C = {wo(D)Go(D)+Wl(D)G1(D)+· ··+ws-l(D)Gs-dD) :

wi(D) E pi/lp' ((D))m.};
(b) there exist polynomial matrices Y;(D) E /lp.[D,D-1]qxm i ,

i = 0,1, ... ,s - 1, such that

[
Go(D) 1 G1(D)

: [Yo(D)

Gs - 1 (D)

Ys - 1 (D)] = I,

CONVOLUTIONAL CODES OVER FINITE ABELIAN GROUPS 331

where I is the m x m identity matrix and where m := mo +
ml + ... + ms-l'

The integers mi are uniquely determined by C.
Proof. (2.::} 1.) is straightforward.

(1.::}2.) Observe that the ring Zp. (D) is a principal ideal ring [4) and
so matrices over this ring admits the Smith form [9).

Assume now that C is Zp.((D))-submodule of Zp.((D))q admitting
a set of generators in Zp. (D)q. This implies that there exists a matrix
L(D) E Zp.(D)/xq such that

C = {u(D)L(D) : u(D) E Zp. ((D))I}.

Consider the Smith form of L(D)

L(D) = A(D) [~ ~] B(D),

where A(D) E Zp. (D)/XI and B(D) E Zp. (D)qX q are unimodular matrices
and A is the diagonal matrix

and where 1mi is the mi xmi identity matrix. Let m := mO+ml + .. +ms-l
and let G(D) be the submatrix of B(D) formed by the first m rows of B(D).
Notice that

C = {u(D)L(D) : u(D) E Zp. ((D))/}

= {w(D)AG(D) : w(D) E Zp. ((D))m}.

Observe now that, since G(D) is a submatrix of a unimodular matrix,
there exists Y(D) E Zps (D)qxm such that G(D)Y(D) = I. Moreover,
there exists a polynomial r(D) E Zps[D,D-l) such that r(D)Y(D) is a
polynomial matrix. Let Y(D) := r(D)Y(D) and G(D) := r(D)-lG(D).
Then we have that

C = {w(D)AG(D) : w(D) E Zps ((D))m}

= {wo(D)Go(D) + wl(D)G1(D) + ... + wS-l(D)Gs-dD)
wi(D) E piZps((D))mi},

where the matrices Gi(D) are produced by the partition of G(D)

(3) [
Go(D) 1 G1(D)

G(D) = . .

Gs-1(D)

332 FABIO FAGNANI AND SANDRO ZAMPIERI

Moreover, by partitioning Y(D) in a suitable way, we obtain that (2) holds
true.

In order to prove the uniqueness of the indices mi introduce the fol
lowing subgroups of C

It can be proved that Ci are vector spaces over Zp((D)) and that they are
isomorphic to Zp((D))mo+··+m i _ 1 • This implies that the indices mi are
canonically determined from C. •

Notice that the previous theorem has various important consequences.
First, the theorem shows that there exists an injective rational encoder for
any convolutional code Cover Zps subject to the fact that the input space
is given by the Laurent series space W((D)), where

W = W(C) := Z;'o ffi pZ;'l ffi··· ffi pS-1Z;'_-1.

Indeed, the rational matrix G(D) E Zps (D)mxq introduced in (3) can be
seen as an injective map from Zps ((D))m to Zp. ((D))q, and, restricting this
map to the sub module W((D)) of Zps ((D))m, we obtain a new map, still
denoted by the symbol G(D), which is injective and whose range coincides
with C. Therefore this map can be considered an encoder for C. The
Abelian group W(C) is called the encoding group of C and depends only on
the convolutional code C.

The previous theorem ensures moreover that this encoder is non
catastrophic [5] since, by property 2b in the previous theorem, a finite
support codeword in C must be the image of a finite support sequence in
the input space W((D)).

Finally the previous theorem shows that a polynomial encoder can be
obtained from the encoder proposed in theorem. Indeed, observe that there
exists a polynomial r(D) E Zps [D, D- 1] such that P(D) := r(D)G(D) is a
polynomial matrix. It is clear that the polynomial matrix P(D) provides
a map form W((D)) to Zp.((D))q which constitutes an encoder for the
convolutional code C.

We want to give now a more intrinsic characterization of convolutional
codes over Zps. To this aim we need to introduce the concept of complete
ness. Given a Laurent power series v(D) = L:k vkDk E Zps ((D))q, for any
a ~ b E Z we define the truncation

b

v(D)I[a,b] := L vkDk.
k=a

Moreover, given a subset C of Zps((D))q, we define CI[a,b] to be the set of
the truncations v(D)I[a,b] for all v(D) E C.

CONVOLUTIONAL CODES OVER FINITE ABELIAN GROUPS 333

Definition. [16] A subset C of Zps ((D))q is said to be complete if

v(D) E Zps ((D))q such that v(D)I[k,k+L] E CI[k,k+L]' Vk E Z,

VLEW =} v(D)EC.

We can now give a result which provides a nice intrinsic characteriza
tion of convolutional codes. The proof of this theorem follows easily from
[4, Lemma 3].

THEOREM 3.2. Given a subset C of Zps ((D))q, the following facts are
equivalent.

1. C is a convolutional code over Zps.
2. (a) C is a Zps -module (linearity).

(b) DC = C (time-invariance).
(c) C is complete.

In fact, convolutional codes satisfy a stronger version of completeness,
called strong completeness. This is defined as follows.

Definition. [16] A subset C of Zps ((D))q is said to be L-complete if

v(D) E Zps ((D))q such that v(D)I[k,k+L] E CI[k,k+L],

Vk E Z =} v(D) E C.

A subset C of Zps ((D))q is said to be strongly complete if it is L-complete
for some LEW.

We have the following result, whose proof can be found in [11, Prop.
2.3] or [17, Prop. 1].

THEOREM 3.3. A convolutional code C is strongly complete.
We noticed in Theorem 3.1 that the encoding group W(C) is canoni

cally determined starting from the convolutional code C and it constitutes
the right input space for all the homomorphic encoders for C. In the canon
ical encoder synthesis proposed in [6] the following finite Abelian group

+00
U(C) = {vo E Z!s : v(D) = L vkDk E C}

k=O

appeared to be the right input space for the non-homomorphic encoders
proposed there. The finite Abelian group U(C) is called the input group of
the convolutional code C.

The following result establishes the relation between the input group
and the encoding group of a convolutional code.

PROPOSITION 3.1. Let C ~ Zps((D))q be a convolutional code over
Zps. Then the finite Abelian groups U(C) and W(C) have the same cardi
nality.

334 FABIO FAGNANI AND SANDRO ZAMPIERI

Proof. The proof uses techniques from symbolic dynamics. The reader
is referred to [10) for the explanation of the various concepts which will
be used. Consider in Z!. the discrete topology and in (Z!.)Z the induced
product topology. Let C be the closure of C in (Z!.)Z. Since C is complete,
it can be shown that

On the other hand, it follows from Theorem 3.1 that there exists a poly
nomial encoder for C

'lj; : W((D)F -+ C,

where W := W(C). This encoder 'lj; can be trivially extended to a map

It can be shown that ¢(WZ) = C, while the kernel ker ¢ of ijj can be
non-zero.

For closed time-invariant sets of trajectories, such as ker ¢, W Z and
C, the important concept of topological entropy can be introduced. The
entropy, which is denoted by the symbol h(·), is a sort of measure of the size
of these sets. It is known [10) that the entropy of a closed time-invariant
set of trajectories B which forms a group coincides with log21U(B)I, where
IU(B)I is the cardinality of the input group of B. It is known [10] moreover
that the following additive formula holds true

(4)

These facts imply that h(WZ) = log21WI and moreover, since

U(ker¢) = U(ker¢ n W((D») = U(ker'lj;) = {O},

we have that h(ker ¢) = O. Finally, since U (C) = U (C), then h(C)
log21WI which yields the result. •

In general the Abelian groups W(C) and U(C) are not isomorphic as
shown in the following example.

Example. Consider the convolutional code Cover Z4 defined as follows

C := {w(D)G(D) : w(D) E Z4((D»},

where G(D) := [2 D) E Z4(D)lX2. It is clear that G(D) provides an
encoder for C and this implies that W(C) = Z4. On the other hand it can
be shown that U (C) = 2Z4 EB 2Z4. Therefore in this case we have that
W(C) and U(C) are not isomorphic.

CONVOLUTIONAL CODES OVER FINITE ABELIAN GROUPS 335

4. Generalized convolutional codes. In the following we provide
also a generalized version of a convolutional code, which corresponds to a
convolutional code without the requirement of rationality of the generators.
We will then compare this class of codes with the class of convolutional
codes.

Definition. A generalized convolutional code Cover Zps is a Zps ((D))
sub module of Zps((D))q.

It is interesting to notice that this generalization of convolutional codes
can be introduce also in the context of convolutional codes over fields as
the following example clarifies.

Example. Consider the systematic encoder [1 a(D) 1 E Z2 [[DW X2,
where

+00
a(D) = LD2k.

k=O

Since a(D) is not rational, this encoder clearly defines a generalized con
volutional code. Notice that this code has infinite free distance, but, as we
will clarify in the sequel, does not admit an encoder which can be realized
by finite state space realization.

Also in this case, if we take a set of generators {gl (D), ... , gm (D)} E
Zps ((D))q of C and if we define from them the matrix G(D) E Zps ((D))mx q,
we have that the matrix G(D) can be seen as a map from Zps ((D))m to
Zps ((D))q, whose range coincides with the convolutional code C. However,
also in this case we may have that no such maps are injective. This problem
can be solved as we did for convolutional codes, i.e. by enlarging the class
of modules which can be the input of the encoder. More precisely, we
can find a subgroup W of Z;, and a matrix G(D) E Zps((D))mxq such
that, by restricting this map to the sub module W((D)) of Zps ((D))m, we
obtain a new map, still denoted by the symbol G(D), which is injective
and whose range coincides with C. Therefore this map can be considered
an encoder for C. In this case G(D) will be called a generalized encoder for
the generalized convolutional code C.

These facts are shown by the following Theorem where we provide also
an intrinsic characterization for such class of codes. To this aim, we need
to introduce first a weakened version of the concept of completeness.

Definition. A subset C of Zps ((D))q is said to be past-complete if

v(D) E Zp.((D))q such that v(D)I(-oo,bj E CI(-oo,bj,

Vb E Z =} v(D) E C.

THEOREM 4.1. Given a subset C of Zps ((D))q. Then the following
facts are equivalent.

336 FABIO FAGNANI AND SANDRO ZAMPIERI

1. C is a generalized convolutional code over Zps.
2. (a) C is a Zps -module (linearity).

(b) DC = C (time-invariance).
(c) C is past-complete.

3. There exists a subgroup W of Z; and a right invertible G(D) E
Zps ((D))mxq such that G(D) : W((D)) -+ Zp' ((D))q provides a
generalized encoder for C.

Moreover, if GdD) : W1((D)) -+ Zps((D))q and G2 (D) : W2 ((D)) -+
Zp. ((D))q are two generalized encoders for C, then the groups W1 and W2

are isomorphic.
Proof. (3.::::}2.) The fact that C is a Zp.-module and that DC = C is
trivial. We have to prove that C is past-complete. Let v(D) E Zps ((D))q
be such that v(D)I(_oo,tj E CI(-oo,tj for every tEN. Then for every tEN
there exists vt(D) E C such that

v(D)I(-oo,tj = vt(D)I(_oo,tj.

Let G(D) be a right invertible matrix in Zps ((D))mxq providing a general
ized encoder G(D) : W((D)) -+ Zps ((D))q for C. Notice that there exists
wt(D) E W((D)) such that vt(D) = wt(D)G(D). It is not restrictive to as
sume that G(D) is causal. Assume moreover that the right inverse of G(D)
has support in [-I, +00), with I 2': 0 Define w(D) E W((D)) as follows

if k < -I

if k 2': -l

Observe that vt+n(D) - vt(D) has support in [t + 1, +00) for all n E N
and this implies that wt+n(D) - wt(D) has support in [t -I + 1, +00) and
so wt(D)I(_oo,t_lj = wt+n(D)I(_oo,t_lj for all n E N. l.From this we can
argue that for any T ::; t we have that WT = W;+l = w~+l showing that
w(D)I[(-oo,tj = wt+I(D)I(_oo,tj' Using the causality of G(D), this implies
that

w(D)G(D)I(_oo,tj = wt+l(D)G(D)I(_oo,tj = vt+1(D)I(_oo,tj

= vt(D)I(_oo,tj = v(D)I(-oo,tj'

Since this happens for all t, we can argue that v(D) = w(D)G(D) and so
v(D) E C.

(2.::::}1.) We have to show that C is a Zp. ((D))-submodule ofZp. ((D))q.
Let v(D) E C and assume that v(D) has support in [to, +00) for some
to E Z. Let r(D) = L,~7 riDi E Zp. ((D)). Then, for all t E Z we have
that

(
t-to)

(r(D)v(D))I(_oo,tj = L riDiv(D) I(-oo,tj E CI(-oo,tj'
.=1

CONVOLUTIONAL CODES OVER FINITE ABELIAN GROUPS 337

The result now immediately follows from past-completeness.
(1.:::}3.) Observe first that Zp. ((D))q is a free module over the ring

Zp. ((D)). It can be shown that this ring is a principal ideal ring. Indeed,
observe that any Laurent power series a(D) E Zps ((D)) can be expressed
as a(D) = pi(b(D) - pc(D)), where b(D) has unitary trailing coefficient.
Observe moreover that

(b(D) - pc(D))(b(D)S-l + b(D)S-2pC(D) + ... + pS-1 c(D)S-1) = b(D)S

which is a unit in Zps ((D)). Therefore also (b(D) - pc(D)) is a unit in
Zps ((D)). This shows that this ring is a principal ideal ring.

Assume now that C is a Zps ((D))-submodule of Zps ((D))q. This im
plies that there exists a matrix L(D) E Zps ((D))lxq such that

C = {w(D)L(D) : w(D) E Zps ((D))l}.

Consider the Smith form of L(D), whose existence is ensured by the fact
that the ring Zps ((D)) is a principal ideal ring [9]

L(D) = A(D) [~ ~] B(D),

where A(D) E Zps ((D))IXI and B(D) E Zps ((D))qxq are unimodular ma
trices and A is the diagonal matrix

[

ImO 0
o pIml

A= . .

o 0

and where 1m; is the mi xmi identity matrix. Let m := mO+m1 + .. ·+ms -1
and let G(D) be the submatrix of B(D) formed by the first m rows of B(D).
Consider moreover the Abelian group

8-1
ffi i I; W:=WpZp •.
i=l

It is easy to verify that G(D) is right invertible, since it is a portion of a
unimodular matrix, and that it induces a generalized encoder for C with
input space W((D)).

In order to prove the uniqueness of the Abelian group W we have to
show that the indices ti, which determine W, can be canonically determined
from C. This fact can be proved using the same argument used in the proof
of Theorem 3.1. •

Notice that, as observed in the previous theorem, also for generalized
convolutional codes the concept of encoding group is well defined.

338 FABIO FAGNANI AND SANDRO ZAMPIERI

We complete the comparison between generalized convolutional codes
and convolutional codes by giving the following result. We need to intro
duce the concept of canonical state space of a generalized convolutional
code. Given a generalized convolutional code C ~ Zp. ((D))q, we define

C
X(C) := C C'

+ E9 -

where C+ := C n Zps[[DW and where C := C n D-1Zp.[D-1]q. This is
called the canonical state space of C. This is a group which plays a funda
mental role in the analysis of the complexity of the trellis representations
of group codes [6].

THEOREM 4.2. Let C ~ Zps ((D))q be a generalized convolutional code
over Zps. Then the following facts are equivalent.

1. C is a convolutional code over Zps .
2. The canonical state space X(C) is a finite Abelian group.

Proof. (1.=>2.) In the proof of this implication we use the fact that a
convolutional code is strongly complete and so it is L-complete for some
LEN. Consider the the homomorphism

7r : CI[O,L] -+ X(C)

defined as follows: given m(D) E CI[O,L] , let v(D) E C be such that
v(D)I[o,L] = m(D) and define 7r(m(D)) := v(D) + C + C+. This is a good
definition. Actually, if v'(D) E C is such that v'(D)I[o,L] = m(D), then
c5(D) := v(D)-v'(D) E C and c5(D)[O,L] = 0 and so, by L-completeness, the
signal Vl (D) such that Vl (D)I(-oo,-l] = c5(D)I(-oo,-l] and Vl (D)I[o,+oo) = 0
is in C. It is clear that vdD) E C and V2 (D) := c5(D) - Vl (D) E C+.
Therefore c5(D) E C_ + C+. The map 7r is clearly surjective and so X(C) is
isomorphic to CI[O,L]/ ker 7r that is a finite Abelian group.

(2.=> 1.) To prove this implication we need a preliminary fact. Consider
the decreasing sequence of Abelian groups

(5) Ci := {v(D) E C : v(D)I[o,i] = O},

Notice that

This implies that

Cil(-oo,-l] C CI(-oo,-l]
C - C

i E N.

and the right hand side is known [6, State space theorem] to be isomorphic
to X(C). This fact implies that the sequence of Abelian groups (5) must
become stationary, i.e., there exists LEN such that Ci = CL for all i ~ L.

CONVOLUTIONAL CODES OVER FINITE ABELIAN GROUPS 339

To prove the implication we need only to prove that C is complete.
Assume that v(D) E Zp. ((D))q is such that v(D)I[k,k+N] E CI[k,k+N] for all
k E Z and N E N. We want to show that v(D) E C. It is not restrictive to
assume that v(D) E Zp. [[DW. Then we have that v(D)I[-L,n] E CI[-L,n]
for all n E N. Therefore for every n E N there exists vn(D) E C such that
vn(D)I[-L,n] = v(D)I[-L,n]. Notice that

(6) "Vi ~ L.

Define vln(D) := vn(D)I(-oo,-l] and v2n(D) := vn(D) - vln(D). From (6)
we can argue that vln(D)I(-oo,m] E CI(-oo,m] for all mEN, and this, by
past completeness, implies that vln(D) E C and that v2n(D) E C. Observe
finally that

which again, by past completeness, implies that v(D) E C. •
5. State space realization of encoders. In this last section we will

consider the problem of state space realization of encoders. More precisely
we will show how to characterize non-rational, rational and polynomial
encoders in terms of their state space realizations.

Let Wand V be finite Abelian groups. An element

+00
(7) N(D) = L NkDk E Hom(W, V)((D))

k=l

naturally induces a time-invariant homomorphism

(8)

by letting

(9)

N(D) : W((D)) --7 V((D))
w(D) f--7 v(D) = N(D)(w(D))

+00
Vk := L Ni(Wk-i).

i=l

Operators defined in this way are called convolution operators. If N(D)
in (7) is non-zero, then we can assume that Nl i- O. The non-negative
integer max{O, l} is called the anticipation of the convolution operator.
Convolution operators with zero anticipation are called causal.

It is clear that, when W = Z; and V = Z!., then Hom(W, V) ((D)) =
Zp' ((D))mxq and N(D) E Hom(W, V)((D)) operates on elements in
Zp. ((D))m by right multiplication.

When N(D) E Hom(W, V)[D,D-1], it is called a polynomial con
volution operator. A convolution operator N(D) E Hom(W, V)((D)) is

340 FABIO FAGNANI AND SANDRa ZAMPIERI

said to be rational if there exist polynomial convolution operator P(D) E
Hom(W, V)[D,D- 1] and polynomial r(D) E Z[D,D- 1] having unitary
trailing coefficient such that

r(D)N(D) = P(D).

The class of rational convolution operators is denoted by the symbol
Hom(W, V)(D). Also in this case it is not difficult to verify that, when
W = Z;. and V = Z!s, then Hom(W, V)(D) = Zps (D)mxq.

Let Wand V be finite Abelian groups and let N(D) : W((D)) --+
V((D)) be a convolution operator. A state-space realization of N(D) is a
quadruple (X, f, g, 1), where X is a set called the state space, f and 9 are
maps

f : XxW---+X
9 : XxW---+V

and 1 E N is called the anticipation of the realization, such that, given
w(D) E W((D)) and v(D) E V((D)), we have that v(D) = N(D)(w(D))
if and only if there exists a sequence (Xk) E XZ for which the following
relations hold

(10)

for all k E Z. When the state space X is also an Abelian group and f and
9 are homomorphisms, (X, f, g, 1) is called a linear state-space realization
of N(D).

In the following proposition we show that all convolution operators
admit a state space realization.

PROPOSITION 5.1. Let Wand V be finite Abelian groups and let
'ljJ : W((D)) --+ V((D)) be a time invariant homomorphism. The following
conditions are equivalent

1. 'ljJ is a convolution operator with anticipation l.
2. 'ljJ admits a linear state-space realization with anticipation l.

Proof. (1.::}2.) This implication is based on the existence of a canonical
realization of input/output maps [8]. Assume that 'ljJ is a convolution oper
ator with anticipation l. Then the map ,(fi mapping w(D) into Dl'ljJ(w(D))
is causal. It is clear that, in order to prove this implication, it is sufficient to
show that ,(fi admits a linear state-space realization with zero anticipation.

Consider the following quotient group

- D-1W[D-1]
X('ljJ) := _

D-l W[D-l] n 'ljJ-l (D-l V[D-l])
(11)

and define f;j, : X (,(fi) x W --+ X (,(fi) and g;j, : X (,(fi) x W --+ V in the following

way: let a E Wand x E X(,(fi) and let w(D) E D-1W[D-1] be any of the

CONVOLUTIONAL CODES OVER FINITE ABELIAN GROUPS 341

representatives of x. Let w(D) E D-1 W[D- 1] be such that Wk = Wk+l for
all k :S -2 and W-l := a. Let x be the state associated with w(D) and
v(D) := 'ljJ(w(D)). We define

l;p(x, a) := x
g;p(x, a) := Va.

Standard considerations show that (X(-/f) , l;p, g;p, 0) is a linear state-space

realization for -/f and so, letting X('ljJ) := X(-/f), I", := l;p and g", := g;p, we
obtain that (X ('ljJ), I"" g"" l) is a linear state-space realization for 'ljJ.

(2.:::} 1.) Assume that 'ljJ admits a linear realization with delay t. Define
-/f from 'ljJ as above. Then -/f admits a linear realization with zero anticipa
tion. We now prove that -/f is a causal convolution operator which implies
that 'ljJ is a convolution operator with anticipation t. First observe that, if
w(D) E W[[D]], then -/f(w(D)) E V[[D]]. Define recursively, x E X[[D]] by

(12) I(Xk, Wk) k 2: 0
= O.

Then define v(D) E V[[D]] by

Vk = g(Xk' Wk)'

It is easy to verify that w(D), x(D), v(D) satisfy the state equations (10)
and this implies that -/f(w(D)) = v(D) E V[[D]].

For each k E Z consider the homomorphism Nk E Hom(W, V) defined
as follows. Take a E Wand consider it as an element in W((D)). Let
v(D) := -/f(a) and let Nk(a) := Vk. From Nk E Hom(W, V) we can define
the causal convolution operator N(D) := L:k NkDk. We want to show
that the maps -/f and N(D) coincide. Observe that, by linearity and time
invariance, these maps coincides over the subset W[D, D-1] of W((D)).
Observe moreover that, if w(D) E W((D)), then

-/f(w(D)) = -/f(w(D)I(-oo,k]) + -/f(w(D)I[k+l,+oo))'

By causality of -/f we have that the support of -/f(w(D)I[k+l,+oo)) is con
tained in [k + 1, +00) and so

-/f(W(D))(-oo,k] = -/f(w(D)I(-oo,k])I(- injty,kj'

In a similar way it can be shown that

N(D)(w(D))(_oo,k] = N(D)(w(D)I(-oo,kj)I(-oo,k]'

Observe finally that, since w(D)I(-oo,kj E W[D, D-1], then

N(D)(w(D)I(_oo,kj) = -/f(w(D)I(-oo,kj)'

342 FABIO FAGNANI AND SANDRO ZAMPIERI

Therefore N(D)(w(D) and ;j;(w(D)) coincide on (-00, k] for every k, and
so they must coincide. •

For a convolutional operator 'lj! : W((D)) --7 V((D)) the linear state
space realization (X('lj!) , f"" g"" l) introduced in the proof of (1.=>2.) of
Proposition 5.1 is called the canonical realization and possesses an impor
tant minimality property. To illustrate this consider another state space
realization (X, f, g, l) of'lj!

(13)
= f(Xk, Wk)
= g(Xk' Wk)

Vk E Z,

where we don't necessarily assume that f and g are homomorphisms. Con
sider the set

Xo := {z EX: :3 w(D) E W((D)), v(D) E V((D)), (Xk) E XZ

satisfying (13) and Xo = z}

and define

7r : Xo --7 X('lj!)

as follows: given a z E X o, suppose that w(D) E W((D)), v(D) E V((D)),
(Xk) E XZ satisfy (13) and that Xo = z. Then define

7r(z) := w(D)!(_oo,_l] + D-1W[D-1] n ;j;-1(D-1V[D-1]).

It is easy to see that 7r is a well-defined surjective map. This shows that
the cardinality of X ('lj!) must be less than or equal to the cardinality of the
state space X.

It may happen that the convolution operator admits only state realiza
tion with infinite cardinality state space. The following proposition shows
that only rational convolution operators admits state realization with finite
cardinality state space. This result is quite classical [2, 3, 15]. Nonetheless,
for aims of completeness, we prefer to give a sketch of the proof of this
result, following [3].

PROPOSITION 5.2. Let Wand V be finite Abelian groups and let
'lj! : W((D)) --7 V((D)) be a time invariant homomorphism. The following
conditions are equivalent

1. 'lj! is a rational convolution operator.
2. 'IjJ admits a linear state-space realization with a finite Abelian group

as state space.
Proof. Notice first that, as in Proposition 5.1, we can assume without loss
of generality that 'lj! is causal convolution operator.

(2.=>1.) By hypothesis we have that the canonical state space X('lj!) is
a finite Abelian group and so it is a finitely generated Z-module. The mul
tiplication by D-1 naturally induces a homomorphism 7r from X('lj!) into

CONVOLUTIONAL CODES OVER FINITE ABELIAN GROUPS 343

itself. This implies that X('ljJ) is a Z[D-l]-module. Applying Nakayama's
lemma [1, Proposition 2.4], there exists a polynomial

n-l

r(D) = D-n + L riD - i E Z[D-1]
i=O

such that

(14) r(D)X('ljJ) = O.

We want to show that r(D)'ljJ E Hom(W, V)[D, D-1]. To this aim, it is
enough to prove that for any finitely supported w(D) E W[D,D-l] we
have that r(D)'ljJ(w(D)) is finitely supported. Notice that we can assume
without loss of generality that w(D) E D-1 W[D-l]. Equation (14) implies
that r(D)w(D) E 'ljJ-l (D-1 V[D-1]) and so

r(D)'ljJ(w(D)) = 'ljJ(r(D)w(D)) E D-1V[D-1]

which must be finitely supported.
(1.:::>2.) Since 'ljJ is rational, then there exists a r = E~=o riD-i E

Z[D-1] having unitary trailing coefficient such that r(D)'ljJ E Hom(W, V)
[D, D-1]. It is possible to choose r(D) E Z[D-1] such that r(D)'ljJ E
Hom(W, V)[D-1]. This implies that, for any w(D) E D-1W[D-1], we
have that r(D)'ljJ(w(D)) E D-1V[D-1]. Consider the homomorphism

J.L : X('ljJ) -+ vn
w(D) + D-1 W[D-1] n 'ljJ-l (D-1 V[D-1]) I-t 'ljJ(w(D))I[O,n-l]

It is easy to see that this homomorphism is well defined. It is injective.
Indeed, let w(D) E D-1W[D-1] and v(D) := 'ljJ(w(D)) and assume that
v(D)I[O,n-l] = O. Since r(D)v(D) = 'ljJ(r(D)w(D)) E D-1 V[D-1], we have
that

n

Lr;Vk+i = 0 Vk ~ O.
i=O

This together with the fact that v(D)I[O,n-l] = 0 implies that v(D)I[o,+oo) =
O. The fact that J.L is injective and that the codomain of J.L is finite implies
that X ('ljJ) must be finite. •

Also polynomial shift operators admit a nice characterization as shown
in the following theorem. For proving it we need the following lemma.

LEMMA 5.1. Let X be a finite Abelian group which is a Z[[D-l]]
module. Then there exists n E N such that D-n X = 0
Proof. Consider the ideal of annihilators

A:= {s(D) E Z[[D-1]] : s(D)X = O}.

344 FABIO FAGNANI AND SANDRO ZAMPIERI

Since X is finite and since it is Z[D-1)-module, applying Nakayama's
lemma [1, Proposition 2.4), there exists in A a polynomial

Fix any prime number p E Z. The polynomial r(D) can be decomposed
as r(D) = h(D) + pg(D), where h(D) = hmD-m + hm+lD-m-1 + ...
has coefficient hm, m ~ n, which is not divisible by p. Then there exist
a, {3 E Z such that ahm + (3p = 1. This implies that

ar(D) = a(hmD-m + hm+lD-m- 1 + ...) + pag(D) =

= (D-m + ahm+1D-m- 1 + ...) + p(ag(D) - (3D- m)

The first term of the previous sum is invertible in Z[[D-1J]. Taking into
account that m ~ n, this implies that D-n + pq(D) E A for some q(D) E
Z[[D-1J]. Notice now that for any x E X we have that (D-n+pq(D))x = 0
and so we have that D-nx = py for some y E X depending on p. Since
this is true for any prime number p, this implies that D-nx = 0 and so
D-nX = O. •

PROPOSITION 5.3. Let Wand V be finite Abelian groups and let
't/J: W((D)) -+ V((D)) be a time invariant homomorphism. The following
conditions are equivalent.

1. 't/J is a polynomial convolution operator.
2. 'lj; can be extended to a time invariant homomorphism ¢ : W Z -+

V Z admitting a linear state space realization with a finite Abelian
group as state space.

Proof. (1.=>2.) It is clear that a polynomial convolution operator 't/J can be
extended to a time invariant homomorphism ¢ : W Z -+ V Z . This operator
admits a canonical state space realization with state space

(15)
- D-1 W[[D- 1))

X ('t/J):= D-1 W[[D-1)) n ¢-1 (D-1 V[[D-1)))

The fact that this Abelian group is finite can be shown using the same
arguments used in the proof of the implication (1.=>2.) of the previous
proposition.

(2.=> 1.) Since the state realization of ¢ is a state realization also of
't/J, by Proposition 5.2 we have that 't/J is a rational convolution operator.
The fact that it is a convolution operator allows us to assume without loss
of generality that 't/J is causal. Consider the canonical state space X(¢)
of ¢. By the same arguments used above it can be shown that the state
space X(¢) of the canonical state space realization has smaller cardinality
than every other state space realization of ¢. This shows that X(¢) has
finite cardinality. To prove the assertion we need to prove the following
intermediate fact.

CONVOLUTIONAL CODES OVER FINITE ABELIAN GROUPS 345

Fact: X(,(f) is a Z[[D-1lJ-module.
Since D-1W[[D-1]] is clearly a Z[[D-1]]-module, it is enough to prove
that W := D-1 W[[D-1lJ n ,(f-1 (D-1 V[[D-1]]) is a Z[[D-1lJ-module. Let
s(D) E Z[[D-1]] and w(D) E W. We have to show that s(D)w(D) E W.
Let v(D) := ,(f(w(D)). Notice that the canonical state space realization
(X(,(f), f,J,' g,J" 0) of,(f can be introduced as done in the proof of the impli
cation (1.=}2.) of Proposition 5.1. The following sequence of states in the
canonical state space X(,(f)

Xk := Dkw(D)/(_oo,k_1] + W,

verify the state space equations

(16)
f,J,(Xk, Wk)
9,J,(Xk, Wk)

Vk E Z.

Notice that x(D) := L:: xkDk E D-1 x (,(f)[[D-1]]. Define

x(D) := s(D)x(D) E D-1 X(,(f)[[D-1]]

w(D) := s(D)w(D) E D-1W(,(f)[[D-1]]

v(D) := s(D)v(D) E D-1 V[[D-1lJ .

It is easy to verify that the sequences (Xk) E X(,(f)'"L, (Wk) E W Z , (Vk) E V Z

still satisfy the state space equations (16) and so we have that v(D) =
,(f(w(D)). Since v(D) E V[[D-1]], then w(D) E W.

We want to show finally that 'l/J is a polynomial convolutional op
erator. For this it is enough to prove that, if w(D) E W((D)) is such
that w(D)I[-n,o] = 0, then 'l/J(w(D)) = ,(f(w(D)) is zero at zero. De
compose w(D) = wI(D) + w2(D) such that wI(D) E D-n- 1 W[[D-1]],
W2 (D) E DW[[D]]. Observe that from the fact proved above and by Lemma
5.1 we have that DnwdD) E D-1W[[D-1]]. Since D-nX(,(f) = 0, we can
argue that ,(f(w2(D)) = D-n,(f(DnW2 (D)) E D-1V[[D-1]]. On the other
hand, by causality of,(f, we ~ave that ,(f(w1(D)) E DV[[D]]. These two
facts imply that 'l/J(w(D)) = 'l/J(w1(D)) + 'l/J(w2(D)) is zero at zero. •

6. Conclusion. In this paper the class of convolutional codes over
finite Abelian groups are analyzed. Using the structure theorem we could
reduce to investigating convolutional codes over the ring Zps. Since ratio
nal functions over Zps form a principal ideal ring, using the Smith canonical
form, for any convolutional code we could define a rational encoder which
is defined over an Abelian group, called the encoding group of the convolu
tional code. We compared this group with the more classical input group,
introduced in [6]. We provided also a system theoretic characterization of
the class of convolutional codes in terms of completeness. We introduced
moreover the concept of generalized convolutional code which is a code

346 FABIO FAGNANI AND SANDRO ZAMPIERI

generated by a non-rational encoder and we provided also a system theo
retic characterization of this class of codes in terms of past-completeness.
We showed that convolutional codes are exactly the generalized convolu
tional codes having finite canonical state space [6]. Finally we considered
the problem of state realization of polynomial, rational and non-rational
encoders.

The analysis of more specific classes of convolutional codes and en
coders, such as systematic, minimal and basic convolutional codes or en
coders, is the subject of our present investigation.

REFERENCES

[1] M.F ATIYAH AND 1.G. MACDoNALD. Commutative Algebra. Addison-Wesley, 1969.
[2] R. BROCKETT AND A.S. WILLSKY. Finite group homomorphic sequential systems.

IEEE Trans. Automatic Control, AC-11:483-490, 1972.
[3] R. DEB. JOHNSTON. Linear systems over various rings. PhD thesis, Massachusetts

Institute of Technology, 1973.
[4] F. FAGNANI AND S. ZAMPIERI. System theoretic properties of convolutional codes

over rings. 1999. Submitted for publication.
[5] G.D. FORNEY. Convolutional codes I: Algebraic structure. IEEE Trans. Informa

tion Theory, IT-16:720-738, 1970.
[6] G.D. FORNEY AND M.D. TROTT. The dynamics of group codes: State spaces,

trellis diagrams and canonical encoders. IEEE Trans. Information Theory,
IT-39:1491-1513, 1993.

[7] R. JOHANNESSON, Z. WAN, AND E. WITTENMARK. Some structural properties of
convolutional codes over rings. IEEE Trans. Information Theory, IT-44:839-
845, 1998.

[8] R.E. KALMAN, P.L. FALB, AND M.A. ARBIB. Topics in Mathematical System
Theory. McGraw Hill, 1969.

[9] 1. KAPLANSKI. Elementary divisors and modules. Trans. of Amer. Math. Society,
66:464-491, 1979.

[10] D. LIND AND B. MARCUS. Symbolic Dynamics and Coding. Cambridge Univ.,
1995.

[11] H.A. LOELIGER AND T. MITTELHOLZER. Convolutional codes over groups. IEEE
Trans. In/. Theory, IT-42:1660-1686, 1996.

[12] J.L. MASSEY AND T. MITTEL HOLZER. Convolutional codes over rings. In Proc.
Joint Swedish-Soviet Int. Workshop on Inform. Theory, pp. 14-18, Gotland,
Sweeden, 1989.

[13] J .L. MASSEY AND T. MITTELHOLZER. Systematicity and rotational invariance of
convolutional codes over rings. In Proc. Int. Workshop on Alg. and Combi
natorial Coding Theory, pp. 154-158, Leningrad, 1990.

[14] R.J. McELIECE. The algebraic theory of convolutional codes. In V.S. Pless and
W.C. Hoffman, editors, Handbook of Coding Theory, Volume I, Elsevier, 1998.

[15] E.D. SONTAG. Linear systems over commutative rings: A survey. Ricerche di
Automatica, 7:1-34, 1976.

[16] J .C. WILLEMS. Models for dynamics. Dynamics Reported, 2:171-269, 1988.
[17] S. ZAMPIERI AND S.K. MITTER. Linear systems over Noetherian rings in the be

havioural approach. Journal of Math. Systems, Est., and Cont., 6:235-238,
1996.

SYMBOLIC DYNAMICS AND CONVOLUTIONAL CODES

BRUCE KITCHENS*

Abstract. Convolutional codes and their encoders are examined in a symbolic
dynamics setting. Two previously unrelated areas of dynamics are used. The first is the
Adler-Coppersmith-Hassner formulation of the finite memory channel coding problem.
The second is the Kitchens-Schmidt use of algebraic duality to define and examine
algebraic dynamical systems. Convolutional codes and their encoders are seen as lying
in the intersection of these two areas. Codes, encoders, memory, distances and other
invariants are examined in this framework.

1. Symbolic dynamics. In this section we will very briefly discuss
subshifts of finite type, continuous maps between them and two equivalence
relations. The results we will use are stated but not proved. For a thorough
discussion of these ideas see [Kit98] or [LM95].

Begin with a finite symbol set {I, ... , n} and form the two-sided se
quence space {I, ... , n }z. Define a metric on the space by d(x, y) = 0 if
x = y and d(x, y) = 1/2N with N the integer where Xi = Yi for Iii < Nand
XN -:j:. YN or X-N -:j:. YN. When n > I the space with this metric topology
is compact, totally disconnected and homeomorphic to the usual middle
thirds Cantor set. Define the shift homeomorphism, (J, from the space to
itself by (J(X)i = XH1. The space {I, ... , n}Z together with the map (J is a
dynamical system and is called the full shijt on n symbols or just the full
n-shijt.

A subshijt of finite type or topological Markov shijt is a closed, shift
invariant subset of a full shift which is defined by a finite set of admissible
blocks. Let L <;;; {I, ... , n}k, for some k, be a list of admissible blocks. The
list L defines a space which is

~ = {x E {I, ... ,n}z: [Xi,XiH,'" ,XHk-l] E L for all i E Z}.

Let ~ have the topology defined by the metric on {I, ... , n}Z, then the
space ~ together with the shift map is a dynamical system and is called
the sub shift of finite type defined by L. A sub shift of finite type that
contains a point whose orbit under (J is dense in the entire space is said to
be transitive or irreducible.

Let ~ <;;; {I, ... , n}Z be a subshift of finite type and let

W(~, £) = {[xo, ... , Xl-l]: x E ~}.

These are words of length £ of~. A word [xo, ... , Xl-l] E W(~, £) has a
follower and a predecessor set. The follower set is

f([xo, ... , Xl-l]) = {j E {I, ... , n} : [xo, ... , xl-l,j] E W(~, £ + I)}.

*IBM Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598;
brucek@us.ibm.com.

347

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

348 BRUCE KITCHENS

Correspondingly, the predecessor set is

p([Xo, ... , Xl-I]) = {j E {I, ... , n} : [j, Xo, ... , Xl-I] E W(L:, e + I)}.

Suppose L: is a sub shift of finite type. There will exist an e so that for
any k 2: 0 and any word [X-k, ... , X-I, xo, ... , Xl-I] in W(L:, e + k)

f([xo, ... , xl-d} = f([x-k> ... , X-I, Xo,··· , Xl-I]).

Note that the corresponding statement will necessarily hold for the same
e and the predecessor sets. If e is the minimal integer for which these
conditions hold we say that L: is an e - step sub shift of finite type. This
means that the subshift of finite type has a memory of only e steps and the
symbols preceding those e symbols do not affect which symbols can occur
next. A one-step sub shift of finite type is defined by a transition matrix.
For a one-step sub shift of finite type L: ~ {I, ... , n}Z define an n x n, {O, I}
matrix A by

Then

{ I ifjEf(i)
A;j= 0 ifjrf-f(i)·

L: = {x : AXiXi+l = I for all i E Z}.

We denote the one-step subshift of finite type defined by the transition ma
trix A by L:A . A one-step sub shift of finite type is transitive or irreducible
(as defined above) if and only if its transition matrix is irreducible (in the
matrix theoretic sense).

Let L: be a subshift of finite type. The topological entropy of L: is
defined to be

h(L:) = lim ~ log IW(L:, e) I,
l-+oo {.

where 1 . 1 denotes the cardinality of the set. This limit always exists.
Topological entropy was originally called capacity by C. Shannon. If A is
an irreducible transition matrix then it has a unique eigenvalue of largest
modulus. It is a nonnegative real number and is called the Perron value of
A. For an irreducible transition matrix A it can be seen that h(L:A) = log,\,
where A is the Perron value of the matrix A.

Let L: and L:' be two sub shifts of finite type. A map <p from L: to L:' is
a block map if it is defined by a rule <p' from some W(L:, 2£ + I) to W(L:', I)
where <p(x}; = <p'([Xi-l, ... , XiH]) for all X E L: and all i E Z. Such a
map is said to be a (2£ + I)-block map. A block map is a continuous map
and it commutes with the shifts on the domain and range. The converse of
this statement is also true and the two statements together are the Curtis
Hedlund-Lyndon Theorem: A map between two subshifts of finite type is
continuous and commutes with the shifts if and only if it is a block map.

SYMBOLIC DYNAMICS AND CONVOLUTIONAL CODES 349

A continuous, onto, shift-commuting map from one sub shift of finite
type to another is called a factor map and a shift-commuting homeomor
phism between two subshifts of finite type is called a topological conjugacy.
In the case of a factor map the image sub shift of finite type is said to be a
factor of the domain sub shift of finite type and in the case of a conjugacy
the two subshifts of finite type are said to be topologically conjugate. It
is easy to see that an i-step subshift of finite type is topologically con
jugate to a one-step subshift of finite type with symbols W(~, i). There
are a number of important properties of factor maps between irreducible
subshifts of finite type. Here we briefly mention some of them. A discus
sion of these properties and proofs of the results can be found in Chapter
4 of [Kit98J. Factor maps between irreducible subshifts of finite type fall
into two classes. A factor map is said to be finite-to-one if it is uniformly
bounded to one. When this happens there will be a d so that each point in
the image subshift of finite type with a dense forward and backward 0" orbit
has exactly d preimages under the factor map. The integer d is the degree
of the map. A factor map which is not finite-to-one is said to be infinite
to-one and in this case each point in the image sub shift of finite type with
a dense forward and backward 0" orbit has uncountably many preimages
under the factor map. If there is a factor map between two irreducible sub
shifts of finite type then the factor map is finite-to-one if the two subshifts
of finite type have the same topological entropy and infinite-to-one if the
topological entropy of the domain is greater than the topological entropy
of the range.

There is a particular type of factor map which is especially useful for
coding purposes. These are the resolving maps. Suppose cp is a one-block
factor map between the one-step subshifts of finite type ~A and ~B. Then
cp is said to be right resolving if for each symbol i E W(~A, 1) the map
cp defines a bijection between f(i) ~ W(~A, 1) and f(cp(i)) ~ W(~B' 1),
where we consider cp both as a map on symbols and on points. We say
a factor map is left resolving if the analogous statement holds between
predecessor sets. A resolving map is always a finite-to-one factor map.

We have said that two sub shifts of finite type are topologically con
jugate if there is a shift commuting homeomorphism between them and
we have seen that any subshift of finite type is topologically conjugate to
a one-step subshift of finite type. But, it is not known how to determine
whether or not two subshifts of finite type are topologically conjugate from
their transition matrices. In fact, it is not known whether or not this is
algorithmically decidable. However, there is another important equivalence
relation which is easily decidable. We say two subshifts of finite type, ~A
and ~B, are finitely equivalent if there is a third subshift of finite type, ~c,
and finite-to-one factor maps from ~c to ~A and to ~B. Then, there is
the following result by W. Parry [Par77J: Two irreducible subshifts of finite
type are finitely equivalent if and only if they have the same topological
entropy. The proof actually produces a stronger result, it shows ~c can be

350 BRUCE KITCHENS

made irreducible, that one of the factor maps can be made left resolving
and the other right resolving.

2. Channel coding. In this section we very briefly discuss an ap
plication of symbolic dynamics to channel coding. The application is due
to R. Adler, D. Coppersmith and M. Hassner [ACH83]. The proof of the
crucial theorem (Theorem 2.1) is not included here but can be found in
[ACH83] and in either [Kit98] or [LM95]. The problem is to code a stream
of unconstrained data into a sequence of channel constrained symbols in
such a way that the original data can be recovered in an efficient manner.
The unconstrained data is modeled by a full n-shift and the channel con
strained data by a sub shift of finite type~. The topological entropy of
the full n-shift is log n and let the topological entropy of ~ be log A. The
value A is the Perron value of a transition matrix for~. Let p/q be any
rational number so that p log n :::; q log A. We will see that it is possible
to construct an encoder, embodied by a finite state machine, which takes
blocks of length p of the unconstrained data to blocks of length q of the
channel constrained symbols. The encoder is constructed in such a way
that the decoder is a block map. The block map condition means that an
error in the encoded channel sequence will only propagate to a uniformly
bounded number of decoded data symbols. The construction is based on
the proof of the following theorem.

THEOREM 2.1. Suppose ~ is an irreducible subshift of finite type with
topological entropy log A :2 logn. Then there is an irreducible subshift of
finite type ~I ~ ~ and a right resolving factor map cp from a one-step
representation of ~I to {I, ... ,n}z.

The proof of this theorem is constructive and it solves the channel
coding problem. A right resolving map can be "locally inverted" by a
finite state machine. This follows because for each symbol i E W(~/, 1)
the one-block map cp defines a bijection between f(i) and f(cp(i)). The
finite state machine has the symbols of ~I as internal states and outputs.
The inputs to the finite state machine are the symbols {I, ... ,n}. Fix any
symbol io as the initial state, then a sequence XOXl . •. of data is encoded
by starting at the initial state io and using the bijection between f (io) and
f (cp(io)) to encode Xo E f (cp(io)) to the corresponding symbol Zo E f (io).
Then continue to Xl E f(xo) and Zl E f(zo) and so forth. This encoding
is then decoded by the block map cpo

Suppose we have our original channel coding problem with {I, ... ,n }Z,
~ and p / q. Then {I, ... ,n}Z acted on by (1P is the full shift on the blocks
{I, ... ,n}P and ~ acted on by (1q is a subshift of finite type on the sym
bols W(~, q) and has topological entropy q log A. Now apply the previous
observation to produce the desired encoder and decoder.

3. Algebraic shifts. In this section we present results about shift
spaces which have a group structure. These results can be found in [Kit87].
Let G be a finite group and form the sequence space GZ • Then it is a com-

SYMBOLIC DYNAMICS AND CONVOLUTIONAL CODES 351

pact zero-dimensional group where the group operation is defined coordi
nate by coordinate and the shift map is a continuous group automorphism.
The space GZ together with the shift automorphism is called a full group
shift. Suppose E ~ GZ is a closed shift invariant subgroup. Then E must
be a subshift of finite type. Such a subgroup together with the shift auto
morphism is a group shift or a Markov subgroup. The fundamental result
is the following theorem [Kit87].

THEOREM 3.1. If E is a group shift then it is topologically conjugate to
a full shift cross a finite group with an automorphism and if E is irreducible
then it is topologically conjugate to a full shift.

In the proof of the theorem the topological conjugacy is constructed
in a concrete manner. If a factor map between two group shifts is also a
group homomorphism then it is said to be an algebraic factor map and if a
topological conjugacy is also a group isomorphism then it is said to be an
algebraic conjugacy and the two groups shifts are said to be algebraically
conjugate. Note that Theorem 3.1 says that any group shift is topologically
conjugate to a full shift cross a finite group with an automorphism. It does
not say that is algebraically conjugate to the direct sum of a full group shift
and a finite group with an automorphism. In [Kit87] there is an example
of a group shift that is topologically conjugate to a full shift but is not
algebraically conjugate to a full group shift.

We also have the following useful proposition.
PROPOSITION 3.1. A finite-to-one algebraic factor map between ir

reducible group shifts must be exactly d-to-one on every point for some d.
The group shifts can be recoded so the factor map is both left and right
resolving.

Suppose G is a finite group and we form Gz d
, the space of d-dimen

sional arrays with entries in G. It is a compact zero-dimensional group
when the group operation is defined coordinate by coordinate. There are
d commuting automorphisms 0"1, .. • ,O"d, where O"i is the shift along the
ith coordinate axis. This space with the shifts is the full d-dimensional
group shift. If A ~ GZd is a closed, shift invariant subgroup then it is
ad-dimensional subshift of finite type. Such sub shifts are d-dimensional
group shifts or d-dimensional Markov subgroups. When d > 1 a group
shift need not be topologically conjugate to a full shift cross a finite group
with automorphisms. Suppose X is a compact abelian group. A group
character for X is a group homomorphism X from X into the unit circle
in the complex plane. The set of a group characters for X is itself a group
using pointwise multiplication as an operation. It is the character group of
X. A good reference for the theory of character groups is [HR63]. To each
group shift is associated its character group which is a quotient of a Laurent
polynomial ring and there is a developing theory of relating the dynamics
of the group shift to the algebra of the character group. A description of
these ideas, results, and problems can be found in [Sch95].

352 BRUCE KITCHENS

4. Algebra. The main results that follow about convolutional codes
rely on the Structure Theorem for Finitely Generated Modules over a Prin
cipal Ideal Domain. An excellent treatment and the relationship to poly
nomial matrices can be found in [Jac85]. Let R be a principal ideal domain
and M a module over R. A cyclic module is one with a single generator.
If x E M we denote by Rx the cyclic module generated by x. Let x E M
and define the ring annihilator of x to be ann x = {a E R : ax = a}. Note
that any two generators for a cyclic module have the same ring annihilator.
The torsion submodule of M is tor M = {x EM: ax = 0 for some a =I- o}.
A module with no torsion elements is said to be torsion free. A module
M is a free module if it has a linearly independent generating set. If M
is a free module over a commutative ring then the cardinality of any two
linearly independent generating sets is the same. This cardinality is the
rank of M.

Now we state the Structure Theorem for Finitely Generated Modules
over a Principal Ideal Domain.

THEOREM 4.1. If R is a principal ideal domain and M a finitely
generated module over R then M is a direct sum of cyclic modules

M = Rxl EEl Rx2 EEl ••• EEl Rxs

satisfying

ann Xl ~ ann x 2 ~ ••• ~ ann x'.

Moreover, the set of ring annihilators is unique for any such decom
position.
This is a generalization of the familiar Structure Theorem for finitely gen
erated abelian groups.

A consequence of this decomposition is that there is an r such that
ann xi = {a} for i ::; r and ann Xi =I- {a} for i > r. Then E9 Rxi , i ::; r
is a free module and tor M = E9 Rxi , i > r. We will call such a set
of generators {Xl, ... X S } a base for M. Note also that if M is a finitely
generated module over a principal ideal domain then it is a free module
if and only if it is torsion free. The relevant point is that a polynomial
or Laurent polynomial ring in one variable with coefficients in a field is a
principal ideal domain.

Now we will see how the above applies. Let IF be a finite field, then
the full group shift (IF"')Z is an infinite dimensional vector space over IF and
(J is a vector space automorphism. Rather than focusing on the character
group of (IF"')Z we will focus on its dual vector space. A linear functional
on a vector space X over a field IF is a vector space homomorphism from
X into IF. The set of all linear functionals forms the dual space. We
denote the dual space of a vector space X by X. The dual space has more
structure than the character group and we will take advantage of it. The
dual space of (IF"')Z is isomorphic to IF[u±l]n and multiplication by u is the

SYMBOLIC DYNAMICS AND CONVOLUTIONAL CODES 353

dual automorphism to the shift. If X is a vector space and Y C X is a
closed vector subspace then the annihilator of Y in X is -

yl. = {f EX: f(y) = 0 for all y E Y}.

In what follows it will be more useful to consider the sequence space (JF" rz
as module over IF(0'±1] where the shift 0' acts as expected. This module has
torsion elements and is not finitely generated. However, the set

WS(O) n WU(O) = {x: d(O'i(x),O) --+ 0 as i --+ ±oo}

= {x: Xi = 0, lil2 r for some r},

where 0 denotes the sequence of all O's, is a free, rank n submodule which
is topologically dense in (JF")2:. This is the submodule of sequences with
finite support which we denote by F((JF")2:). In this setting the dual vector
space of (JF")2: is IF(u±l]n and it is considered as a free, rank n, module over
the Laurent polynomial ring IF(u±l].

The next propositions are stated but proofs are not included since
they are formulations of standard theorems about character groups in the
setting of dual spaces.

PROPOSITION 4.1. Let ~ ~ (JF")2: be a closed IF[O'±l] submodule.
Then:

1. ~ 's annihilator submodule ~l. ~ IF(u±l]n is free with rank (n - k),
for some k ~ n and so is isomorphic to IF[u±l]n-k;

2. ~ 's dual module ~ '::: IF[u±l]n /~l. has rank k over IF(u±l].
PROPOSITION 4.2. Let ~ ~ (JF")2: be a closed submodule whose an

nihilator submodule has rank (n - k) and suppose its dual module ~ ':::
IF(u±l]n /~l. is free. Then:

1. the dual module ~ '::: IF[u±l]n /~l. '::: IF[u±l]k;
2. the module IF[u±l]n '::: ~l. EEl ~ '::: ~l. EEl IF[u±l]n /~l.;

3. the dual module (£L) is isomorphic to a closed submodule of (JF")2:
whose dual module is isomorphic to the free module ~l.;

4. the full group shift (JF")2: '::: ~ EEl (£L);
PROPOSITION 4.3. Let ~ ~ (JF")2: be a closed submodule whose an

nihilator submodule has rank (n - k) and suppose its dual module ~ ':::
IF[u±l]n /~l. is free. If {iI, ... , fd is a base for ~ '::: IF(u±l]n /~l. then the
map

defined by

is a module isomorphism.
An interesting point to consider is the formulation of Proposition 4.3

when the dual module of ~ is not free.

354 BRUCE KITCHENS

5. Convolutional codes.
Definition. An irreducible subshift C ~ (JF1')Z which is a vector space over
F is a convolutional code.
Definition. The free distance dfree of a convolutional code is the minimal
number of nonzero symbols appearing in a nonzero element of the code.

EXAMPLE 1. Let F2 be the finite field with two elements and C ~ (Il1)Z
be defined by the labeled graph in Figure 1. Then C is a convolutional code
with free distance 5.

00 11

G---------- 0

ll(00)01

0---------(0
01 10

FIG. 1. Transitions for convolutional code.

A convolutional code C ~ (JF1')Z is a vector space over F and so it is
also a closed sub module of (JF1')z over the principal ideal domain F[a±1].
We will think of a convolutional code as a module and apply the results
from Section 4. By Proposition 4.1 we know that there is a one-to-one
correspondence between closed sub modules of (JF1')Z and their annihilator
submodules in lFlu±l]n. Next we see how the irreducibility of a submodule
in (JF1')Z relates to the algebra of its corresponding submodule in F[u±l]n.

PROPOSITION 5.1. A convolutional code is a closed submodule of (JF1')Z
whose dual module is free.
Proof. This follows immediately from 3.1 or by applying the reasoning used
to prove Proposition 4.3. 0

This sets up a one-to-one correspondence between convolutional codes
contained in (JF1')Z and submodules M ~ F[u±l]n whose quotient modules
IF[u±1]n / M.L are free.

From Propositions 4.1 we also know that the dual module of every
convolutional code C ~ (JF1')Z has rank k :S n.
Definition. A convolutional code C ~ (JF1')Z whose dual module has rank
k is an (n, k) convolutional code.

Let C be an (n, k) convolutional code then (C, a) is a dynamical system
and we define the finite support submodule of C to be

F(C) = {x E C: d(ai(x),O) --+ 0 as i --+ ±oo}

= {x E C: Xi = 0, Iii 2: r for some r}.

The next two propositions follow immediately.

SYMBOLIC DYNAMICS AND CONVOLUTIONAL CODES 355

PROPOSITION 5.2. The module :F(C) is a free, rank k submodule of C
and is topologically dense in C.

PROPOSITION 5.3. The topological entropy of an (n, k) convolutional
code C is h(C) = k log IFI.

EXAMPLE 2. The code described in Example 1 is a (2,1) convolutional
code with free distance 5.

From Proposition 5.1 and Proposition 4.3 we obtain the next result.
PROPOSITION 5.4. If C is an (n, k) convolutional code then it is iso

morphic to (IF")Z and consequently C is an f.-step subshift of finite type for
some f.
Definition. If a convolutional code is an f.-step subshift of finite type then
it is said to have memory f..

In Proposition 5.11 we see that this definition of the memory of a
convolutional code agrees with the definition in [McE98] formulated with
polynomial generator matrices.

EXAMPLE 3. The code described in Examples 1 and 2 has memory
two.

If C c;;:; (If")Z is an (n, k) convolutional code then its annihilator sub
module Cl. c;;:; F[u±l]n is a free module ofrank (n-k). Let {PI, ... ,Pn-d c;;:;

F[u±1]n be a base for Cl.. Then (PI, ... ,Pn-k) defines a map from (If")Z
to If"-k and

The map (PI, ... ,Pn-k) is a parity check map and the matrix with poly
nomial entries that represents the map is a parity check matrix.
Definition. Let C be an (n,k) convolutional code and {Xl, ... ,xr} c;;:;

C. Define (xl, ... ,Xr) to be the topological closure in C of the module
(F[U±l])xl + ... + (F[u±1])xT •

PROPOSITION 5.5. Let C be an (n, k) convolutional code, x E :F(C)
and a E 1F[0"±1]. Then (F[u±l])(ax) c;;:; (F[u±1])x with equality if and only
if a is invertible in (F[u±1]). However, when a :j:. 0 we have (ax) = (x).
Proof. The first statement is clear. The final statement follows because F
has characteristic P for some p. This means a shift of apt (x) approaches
x E C and so x E (ax). 0

PROPOSITION 5.6. Let C be an (n, k) convolutional code and x E :F(C)
then (x) is an (n, 1) convolutional code.
Proof. By definition (x) is a topologically closed 1F[0"±1] submodule of C.
The only question is whether it has a dense 0" orbit. When x E :F(C) a
point in (x) with a dense orbit is easily constructed. 0

Note If x E C but x ~ :F(C) then (x) may not be a convolutional code.
For example let x be the point of 0" period three defined by the block 110
in (F2)Z. Then (x) is a four point space and is not irreducible.

Suppose C and C' are convolutional codes contained in (If")z. Then
C + C' is a topologically closed submodule of (If")z. It can be seen to be

356 BRUCE KITCHENS

closed by observing that C + C' contains the limit point of a convergent
sequence which lies in the set. If C n C' = {O} we denote the sum by C EB C'.

PROPOSITION 5.7. Let C ~ (JF"l)Z be an (n, k) convolutional code
and C' be an (n, k') convolutional code also contained in (JF"l)z. Suppose
C n C' = {O}. Then C EB C' ~ (JF"l)Z is an (n, k + k') convolutional code with
memory equal to the larger of the memories of C and C' .
Proof. Clearly, C EB C' is a topologically closed submodule of C. It is also
easily seen to be irreducible. It is an (n, k + k') code because it is a direct
sum. The memory of C EB C' cannot be any greater than the larger of the
memories and it is seen to be no less by thinking of W(C,f) and W(C',f)
as subsets of W(C EB C', f) and considering their follower sets. 0
Definition. Let C be an (n, k) convolutional code and let {Xl, ... ,xr} ~
F(C). The set {Xl, ... ,xr} is a generating set for C if (Xl, ... ,Xr) = C.

If C is an (n, k) convolutional code and {Xl, ... ,xk} is a base for F(C)
then it is a generating set for C. Conversely, any generating set for C must
have at least k elements.

PROPOSITION 5.B. Let C be an (n, k) convolutional code and let
{Xl, ... ,xk} be a generating set for C. Then

C = (Xl) EB··· EB (xk).

Proof. This is a consequence of Propositions 5.6 and 5.7. 0

Definition. Let C be an (n, k) convolutional code and {Xl, ... ,xk} a
generating set for C. Each (x j) is an (n,l) convolutional code and so
has a memory which we denote by m(x j). The set has combined memory
m({Xl, ... ,xk}) = m(xl) + ... + m(xk). For convenience we order any
generating set for C with k elements so that m(xl) :s m(x2) :s ... :S m(xk)
and we say (m(xl), ... ,m(xk)) are the indices of the generating set.

PROPOSITION 5.9. Let C be an (n, k) convolutional code and let
{Xl, ... ,xk} be a generating set for C. Then the memory of the code C
is m(k).
Proof. This is also a consequence of Proposition 5.7. 0

PROPOSITION 5.10. Let C be an (n, k) convolutional code. Also, let
{Xl, ... ,xk} and {yl, ... ,yk} be two generating sets for C whose combined
memories are minimal over all generating sets for C. Then the indices for
the sets are the same.
Proof. Let {Xl, ... ,xk} and {yl, ... ,yk} be generating sets for C with
minimal combined memories. Suppose m(xr) < m(yr) and m(xi) = m(yi)
for i < r. Consider the convolutional codes (Xl, ... ,xr) and (yrH, ... yk).
Since the memory of (Xl, ... ,xr) is less than the memory of (yj) for each
j = r + 1, ... k we use Proposition 5.7 to see that

(xl, ... ,Xr) n (yrH, ... yk) = {O}.

Applying Proposition 5.7 again shows

(Xl, ... ,xr) EB (yr+l, ... yk) = (Xl, ... ,Xr, yr+l, ... yk)

SYMBOLIC DYNAMICS AND CONVOLUTIONAL CODES 357

is an (n, k) convolutional code. By Proposition 5.3 we see that its topolog
ical entropy is k log IFI and so it is equal to C. Then

{ I r r+l k} X , ••• ,x ,y , ... y

is also a generating set for C with

This contradicts the supposition {yl, ... ,yk} has the minimal combined
memory. 0

Definition. The Forney indices are the indices of any base with minimal
combined memory and are denoted by (h, ... ,fk). The degree of a con
volutional code C is deg C = h + ... fk or the minimal combined memory
of the code.
Definition. An (n, k) convolutional code with degree m and free distance
d is said to be an (n, k, m, d) code.

EXAMPLE 4. The convolutional code in Examples 1, 2 and 3 has a
single Forney index which is two. This makes it a (2,1,2,5) convolutional
code.

PROPOSITION 5.11. The definition of the Forney indices agrees with
the definition given in [M cE98 j using polynomial generator matrices. This
means the memory as previously defined is equal to the kth Forney index
and so also agrees with the definition of memory given there.

6. Encoders and decoders. In coding theory an (n, k) convolutional
encoder is defined by four matrices A, B, C, and D with entries in F and
dimensions

A is f x f,

B is k x f,

Cis f x n,

B is k x n.

The convolutional encoder may have up to IFlt internal states. It
converts an input sequence u E (Jfk)1\I into an encoded sequence x E (Jr'l)I\I.
It works by specifying that the internal state at time zero is s(O) = 0 and
for i ~ 0,

s(i + 1) = s(i)A + u(i)B

x(i) = s(i)C + u(i)D.

This means both the output and the next internal state are linear
functions of both the input and the current internal state. The set of all
possible outputs defines the convolutional code C.

358 BRUCE KITCHENS

EXAMPLE 5. The following matrices describe an encoder for the
(2,1,2,5) code of Section 5

A=[~ ~] B=[l 0] O=[~ ~] D=[l 1].

If C and C' are two convolutional codes with a finite equivalence be
tween them given by <p : ~ -+ C and 'lj; : ~ -+ C' where ~ is a convolutional
code and <p and 'lj; are module homomorphisms then we say that there
is an algebraic finite equivalence between them. This leads to the next
observation.

PROPOSITION 6.1. A convolutional encoder is an algebraic finite equiv
alence between (JFk)Z and an (n, k) convolutional code C ~ (JF")z.
Proof. First we see that an encoder defines an algebraic finite equivalence.
Suppose we have a convolutional encoder defined by the matrices A, B, 0
and D. Define a new convolutional code ~ whose alphabet consists of the
internal states of the encoder. There is one transition from state s to s'
for each input u with s' = sA + uB. The homomorphisms <p : ~ -+ C and
'lj; : ~ -+ (JFk)Z are two block maps with 'lj; defined by mapping the transition
from a state s to state s' to the input u which gave rise to the transition
in the equation s' = sA + uB. The map <p is then defined by mapping the
transition to the output x defined by the equation x = sO + uD.

Next suppose ~ ~ (JFl)Z is an (£, k) convolutional code and <p: ~ -+ C
and 'lj; : ~ -+ (JFk)Z are algebraic factor maps. By Proposition 3.1 we can
recode so that 'lj; is right resolving. Then we apply the discussion about
channel encoders in section 2. The encoder takes input sequences from
(JFk)Z, uses 'lj; to lift them to sequences in ~ just as in Section 2, and then
uses <p to convert the sequences in ~ to output sequences in C. The sequence
in ~ is the sequence of internal states. 0

EXAMPLE 6. The encoder of Example 5 describes an algebraic finite
equivalence where ~ ~ (~)Z and the two-block algebraic factor maps <p :

~ -+ C and 'lj; : ~ -+ (JF2)Z are defined by the diagram in Figure 2. The
code ~ is defined by the graph and the maps are defined by the labelings on
the edges with the pair representing 'lj; / <p.

A crucial point is that if the map <p is an isomorphism then the decoder
is the block map defined by 'lj;o<p-l just as for the codes described in Section
2. If the map <p is not an isomorphism then the encoding mayor may not
be inverted by a block map. If it is not inverted by a block map then
a single error may be propagated forever. When 'lj; 0 <p-l is not a block
map the encoder is said to be catastrophic. By Proposition 5.4 we see the
following.

PROPOSITION 6.2. If C is any convolutional code then there exists a
noncatastrophic encoder for C.

SYMBOLIC DYNAMICS AND CONVOLUTIONAL CODES 359

0/00 r;; 0/11

\"""(9'0~ (0,1)

(
1100)

1111 0/01
0/10

(1,0~(1,0
1101 1110

FIG. 2. Transitions for I: and the two-block maps.

7. Dual codes. Let C ~ (JF'l)2: be an (n, k) convolutional code with
memorye. Then W(C,e + 1) is a vector subspace of (JF'l)l+1 and

C = {x E (JF"')2: : [Xi, ... ,Xi+i] E W(C, e + 1) for all i E Z}.

Let W (C, e + 1).1.. be the annihilator vector space of W (C, e + 1) in
(JF'l)l+1 and

A = {x E (JF"')2:: [Xi, ... ,Xi+i] E W(C,e + 1).1.. for all i E Z}

be the subshift of finite type defined by W(C, e + 1).1...
PROPOSITION 7.1. The subshijt of finite type A ~ (JF'l)2: defined above

is an (n, n - k) convolutional code.
Proof. The character sub module of A is isomorphic to C.L which is a free
rank (n - k) module over F[u±1]. 0

PROPOSITION 7.2. Let C S; (IF''')2 be an (n, k) convolutional code and
A S; (JF'l)2: be the (n, n - k) convolutional code defined as above from C.
Then:

1. (JF'l)2: === C EB A;
2. IF[u±1]n === C.L EB A.L;

3. C === A.L;
4. A === C.L.

Definition. The (n, n - k) convolutional code A defined from C is the
Wyner-Ash dual code of C.

PROPOSITION 7.3. If C ~ (JF'l)2: is an (n, k) convolutional code with
memorye then the Wyner-Ash dual code also has memory e.
Proof. This follows by the symmetry of the duality. 0

8. Descriptions. There are three standard ways to describe a convo
lutional code and they have their analogues in the description of algebraic
symbolic systems. This is summarized below.

PROPOSITION 8.1. Let C ~ (JF'l)2: be an (n, k) convolutional code. It
may be described in any of the following ways.

360 BRUCE KITCHENS

1. A polynomial generator matrix which corresponds to a set of gen
erators {x\ ... ,xk} ~ :F(C) with (Xl, ... ,xk) = C.

2. A parity check matrix which corresponds to a set of generators
{Pi, ... ,Pn-d ~ lFlu±l]n for the annihilator submodule C..L.

3. A convolutional encoder which corresponds to an algebraic finite
equivalence between C and (JFk)2:.

[ACH83)

[For99)

[HR63)

[Jac85)
[Kit87)

[Kit98)

[LM95)

[McE98)

[Par77)

[Ros99)

[Sch95)

REFERENCES

Roy ADLER, DON COPPERSMITH, AND MARTIN HASSNER. Algorithms for
sliding block codes. IEEE Transactions on Information Theory, pp.
5-22, 1983.

G. DAVID FORNEY, JR. The dynamics of group codes: Dual abelian group
codes and systems. Preprint, 1999.

EDWIN HEWITT AND KENNETH Ross. Abstract Harmonic Analysis. Academic
Press and Springer, 1963.

NATHAN JACOBSON. Basic Algebra I. Freeman, 1985.
BRUCE KITCHENS. Expansive dynamics on zero-dimensional groups. Ergodic

Theory and Dynamical Systems, 7:249-261, 1987.
BRUCE KITCHENS. Symbolic Dynamics, One-sided, Two-sided and Countable

State Markov Shifts. Springer, 1998.
DOUGLAS LIND AND BRIAN MARCUS. Symbolic Dynamics and Coding. Cam

bridge, 1995.
ROBERT McELIECE. The algebraic theory of convolutional codes. In V.S.

Pless and W.C. Hoffman, editors, Handbook of Coding Theory, Volume 1.
Elsevier, 1998.

WILLIAM PARRY. A finitary classification of topological markov chains and
sofie systems. Bulletin of the London Mathematical Society, pp. 86-92,
1977.

JOACHIM ROSENTHAL. Connections between linear systems and convolutional
codes. Preprint, 1999.

KLAUS SCHMIDT. Dynamical Systems of Algebraic Origin. Burkhiiuser, 1995.

LINEAR CODES AND THEIR DUALS OVER
ARTINIAN RINGS

THOMAS MITTELHOLZER'

Abstract. Linear codes over commutative artinian rings R are considered. For a
linear functional-based definition of duality, it is shown that the class of length-n linear
block codes over R should consist of projective submodules of the free module Rn. For
this class, the familiar duality properties from the field case can be generalized to the ring
case. In particular, the MacWilliams identity is derived for linear codes over any finite
commutative ring. Duals of convolutional codes are also considered, and it is shown that
for convolutional codes over commutative artinian rings, the duality property holds for
a code and its dual as well as for the local description of the code by its canonical trellis
section and its dual trellis section.

1. Introduction. Extensive work has been done on duality properties
of linear codes in the framework of character-based (or Pontryagin) duality
[1-4]. Recently duality of modules over a finite ring R was studied in [5],
where it was shown that if R is a quasi-Frobenius ring (i.e., if R is injective
as an R-module) then the duality concept based on Pontryagin duality via
characters is equivalent to the duality concept based on linear functionals.
In that study, the underlying category of codes consisted of all finitely
generated R-modules.

In this paper, we restrict the category of codes to projective modules
that are submodules of Rn. As a consequence of this reduction, one can
extend the class of rings for which the usual duality properties hold. In
particular, this approach provides duality relations for linear codes over
commutative artinian rings.

The linear functional-based dual (or orthogonal) of an R-submodule
M c Rn is defined via orthogonality in Rn, i.e., M 1. = {f E H om(Rn, R} :
f(m} = 0 all m E M},1 which is equivalent to

(I) M1. = {x E Rn : x·mT = 0, all m E M}.2

The motivation to study linear functional-based duality is twofold. First,
it allows one to obtain the desired duality properties for codes over some
infinite rings, for which character-based duality is not suitable. Second,
in the case of finite rings, both duality concepts apply, however, they do
not agree, in general, i.e., different duality properties may hold, which is
illustrated by the following example.

EXAMPLE 1. The commutative ring R = GF(2}[x, yl/(x2, y2, xy} is
artinian but not quasi-Frobenius (i.e., is not injective as an R-module).

'IBM Research, Zurich Research Laboratory, Siiumerstrasse 4, CH-8803 Rueschlikon,
Switzerland; Email: tmi@zurich.ibm.com.

1 H om{Rn, R) denotes the set of all R-homomorphims from R n to R.
2m is considered a row vector and m T denotes the transpose.

361

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

362 THOMAS MITTELHOLZER

Let C C R2 be the free rank-1 module generated by the systematic encoding
matrix

G = [1 1 + x + y],

i. e, the code C equals

{[O 0], [II+x+y], [I+x+y 1], [x x], [y y], [I+x I+y], [I+y I+x], [x+y x+y]}.

The parity check matrix for this code is equal to the generator matrix,
H = G; that is, the code is self-dual, C1. = C, when using the linear
functional duality concept.

Pontryagin duality is based on the notion of a continuous character,
that is of a continuous group-homomorphism from the additive group of R
to the multiplicative group of the complex number field C. Let il denote
the set of all such homomorphisms.

Regarded as an additive group, R is isomorphic to Z~ and, therefore,
il ~ Z~ as groups. An explicit description of the character group of R is
obtained by fixing some isomorphism, for instance,

given by ¢(r1, rx , ry) = r1 + rxx + ryy. Every a = a1 + axx + ayy then
defines a character Xa, which operates on an element r = r1 + rxx + ryy,
by

Xa{r) = {_1)a1·r1+a •. r.+ay.ry.

Thus, the group-isomorphism ¢ induces a group-isomorphism a : R ~ R.
Note that a is not a natural isomorphism; actually, there is no natural
i!omorphism between Rand il, which is in contrast to the fact that Rand

il are naturally isomorphic (see Chap. 1.7 in [6]).
The character-based (or Pontryagin) dual of the code C is defined by

orthogonality

(2) Cf- = {[X(l), X(2)] E il2 : X(l) (C1) . X(2) (C2) = 1, all leI C2] E C}.

When regarded as a subgroup of R2, the Pontryagin dual a-1(Cf-)
equals

{[O 0], [11], [x I+x], [y I+y], [I+x x], [I+y y], [I+x+y I+x+y], [x+y x+y]}.

Note that a-1(Cf-) is not an R-module and C1. =j:. a-1(Cf-). Moreover,
the complete weight enumerators for the code C and the dual a -1 (Cf-) are
different; they are given by the following two polynomials in the 8 indeter
minates Zo, Zl, Zx, ZY' Zl+x, Zl+y, Zx+y, Zl+x+y

A(Z) = Z6 + 2Z1Zl+x+y + Z; + Z; + 2Zl+xZl+Y + Z;+y

B(Z) = Z6 + Z; + 2ZxZl+x + 2ZyZl+Y + Z;+x+y + Z;+y

LINEAR CODES AND THEIR DUALS OVER ARTINIAN RINGS 363

respectively. It is interesting that although A(Z) -:j:. B(Z), the corresponding
weight enumerator polynomials with respect to Hamming weight (which are
obtained by setting Zo = 1 and the 7 other indeterminates to Z) are equal,
i.e., AH(Z) = 1 + 7Z2 = BH(Z).

The Mac Williams identities always hold for the character-based defini
tion of duals for 'linear' codes defined over finite abelian groups [3}; in par
ticular, they hold for the polynomials A(Z) and B(Z) as well as for AH(Z)
and B H (Z), when considering the dual pair C and Cf-. For the dual pair C
and C1. of codes based on linear functionals, the generalized Mac Williams
identities do not hold because C = C1. -:j:. 0:-1(Cf-) but A(Z) -:j:. B(Z).
However, in the special case of the weight enumerator polynomials AH(Z),
BH(Z) with respect to Hamming weight, the identity (6) as given below
holds.

Whether C1. and 0:-1 (Cf-) are isomorphic as R-modules depends on
the choice of the isomorphism ¢. By choosing instead of ¢ another (suit
able) isomorphism ¢', one can obtain an induced isomorphism 0:' for which
C1. = 0:'-1 (Cf-). To obtain this equality, one needs to choose the isomor
phism ¢' as a function of the code C and there is no (fixed) canonical map
¢, which induces a natural R-isomorphism between a code and its Pon
tryagin dual. In particular, one can show that if one chooses as a second
code 6 with generator matrix G = [1 xl then there is no isomorphism
¢ for which one obtains simultanous R-isomorphisms C1. ~ 0:-1 (Cf-) and
61. ~ 0:- 1 (6f-). Thus, for finite commutative rings, duality based on linear
functionals and character-based duality are not equivalent, in general.

After setting a suitable framework for duals over commutative artinian
rings in the next section, a generalization of the MacWilliams identities
from the field to the ring case will be formulated and proved in Section 3
for weight enumerators with respect to Hamming distance. In Section 4,
the duality results are extended from linear block codes to convolutional
codes.

2. Duality properties of codes over artinian rings. Let R be an
abelian3 artinian ring. According to the structure theorem for such rings
[7], R can be written as a finite direct sum of local rings R i , Le.,

(3)

PROPOSITION 2.1. Let R be a commutative artinian ring with a de
composition (3). Then,

(i) R has e maximal ideals, which are of the form

where m~ denotes the maximal ideal of Ri;

3The terms abelian and commutative are used interchangeably.

364 THOMAS MITTELHOLZER

(ii) the localization of R at the maximal ideal mi is isomorphic to Ri ,
i.e., Ri ~ Rm •.

Proof. (i) is clear because m~ is maximal in Ri .
To prove (ii), we consider the homomorphism i : Ri -+ Rm. given by

sending an element r(i) E Ri to r(i) /1 in Rm. ~ {r / s : r E R, s E R \ mi}
and show that it is an isomorphism. The homomorphism i is injective
because the annihilator of an element r(i) =f. 0 is an ideal that is contained
in the maximal ideal mi and, hence, there is no s E R \ mi such that
s . r(i) = O. To show surjectivity, consider an arbitrary element r / s E Rm •.
Using (3), one has r = (r1, . .. , ri, . .. , re) and s = (Sl, . .. , Si, . .. , se), where
Si E Ri \ m~. As m~ is a maximal ideal, Si is invertible in Ri with inverse
s~. The element s~ri is mapped onto r/s, i.e., there is an element t E R\mi
such that t(r - ss~ri) = 0, viz., t = (0, ... , 1, ... ,0) with a single component
1 at position i. 0

For arbitrary R-modules there is no duality relation, in general. A
suitable subcategory, for which duality holds, is the class of all finitely gen
erated projective R-modules. A projective R-module is a direct summand
in a free R-module (see Chap. 3.10 in [7]) and, thus, it can be regarded as a
generalization of a free module. In the following, we recall some results on
projective modules and show that they satisfy the desired duality relations.
Using (3), every R-module M can be decomposed as

where Mi = Ri 0R M is the tensor product of the R-modules Ri and M.
The following proposition results by applying a well-known local-global
result in commutative algebra (see [8] Chap. 1.3, Corollary 3.4) to the
special case of artinian rings and by using Ri ~ Rm. (d. Proposition 2.1
(ii)).

PROPOSITION 2.2. Let M be a finitely generated module over R. Then,
M is R-projective if and only if Mi is Ri-projective for all i = 1,2, ... , e.
Remark. The Ri-modules Mi are actually free because the rings Ri are
local, i.e., Ri contains exactly one maximal ideal [7].
The following lemma for projective modules over commutative artinian
rings is crucial for the orthogonality (or duality) property of linear
functional-based duals.

LEMMA 2.1. Suppose M C Rn is projective. Then there exists a
projective submodule Q of Rn such that

(4) R n = MEBQ.

Proof. Using the results above, one can assume without loss of essential
generality that R is local artinian and, hence, consider M to be free over
R. For this case, (4) was proved in Appendix II of [9]. 0

LINEAR CODES AND THEIR DUALS OVER ARTINIAN RINGS 365

It is well known in commutative algebra that when localizing a finitely
generated projective module U at a prime ideal p, one obtains an Rp
module Up that is free (see e.g. Chap. 7.7 in [7]). This allows one to define
the p-rank rkp(U) of a finitely generated projective module U, which is
given by the cardinality of a basis of the localization Up.

PROPOSITION 2.3. Let R be commutative artinian and suppose that
U and V are submodules of Rn , which are projective. Then

(i) U.l.. is projective and (U .l..).l.. = U; moreover, rkp(U.l..) = n-rkp(U)
for any prime ideal p.

(ii) (U + V).l.. = U.l.. n V.l...
(iii) U + V and U n V are projective and for any prime ideal p, the

following rank formula holds

rkp(U n V) + rkp(U + V) = rkp(U) + rkp(V).

Remark. If R is artinian but not local then even if U and V are free
the intersection U n V need not be free. A simple example of this fact is
obtained by letting R be the ring Z6 of integers modulo 6 and by considering
the rank-1 Z6-submodules U and V of R2 generated by [2 3] and [1 0],
respectively. Then, Un V = {[O 0], [2 0], [4 OJ} is projective but not free.
Thus, when R is commutative artinian, the class of free modules need
not be closed under the intersection operation, but the class of projective
modules is.

Proof Using Proposition 2.2, one can assume that R is local and,
hence, that the projective modules U and V are free with rk(U) = k.
Proof of (i): Choose a basis gl" .. ,gk for U. Let a be the corresponding
generator matrix. By the above Lemma, there is a complementary free
module U' such that

(5) Rn = UEeU'.

In other words, the basis of U can be extended by n - k n-tuples qk+l" .. ,

qn to form a basis of Rn. Let Q be the (n - k) x n matrix with qk+l , ... , qn
as rows. The nxn matrix consisting of the submatrices a and Q is invert
ible, i.e.,

[a] . [KT HT] = [h 0] = [K] . [aT QT],
Q 0 In - k H

where Ik denotes the kxk identity matrix and Hand K are (n - k) xn and
kxn matrices, respectively. It follows that the rows of H form a basis for
U.l.., hence U.l.. is free of rank n - k and, therefore, rkp(U.l..) = n - rkp(U).
Similarly, the rows of a form a basis for (U.l..).l.. and, therefore, (U.l..).l.. = U.
Proof of (ii):

(U + V).l.. = {x ERn: X· yT = 0, for all y E U or y E V}

= {x : X· u T = 0, for all u E U} n {x: X· yT = 0, for all y E V}
=U.l..nv.l...

366 THOMAS MITTELHOLZER

Proof of (iii): (5) implies V n U EB V n U' = V. Thus, V n U is a direct
summand in the free module V and, hence, projective. Using (i), it follows
similarly that V~ n U~ is projective. Now (ii) and (i) imply that U + V is
projective.

To show the rank formula, we make use again of the above Lemma to
conclude that there is a free R-module V' such that Rn = V EB V'. One
easily verifies that U + V = UnV +unv' + vnu' and that the right-hand
side is actually a direct sum. Thus,

(U n V) EB (U + V) e:: Un V EB U n V' EB U n V EB V n u' e:: U EB V

and this implies the rank formula

rk(U n V) + rk(U + V) = rk(U EB V) = rk(U) + rk(V),

which also holds after further localization at a prime ideal p. 0
In terms of category theory [7], the result of Proposition 2.3 can be

expressed by saying that ~ is a (contravariant) duality functor from the
category of projective submodules U c Rn onto itself. Here, the morphisms
considered must be defined for the entire space Rn. Duality means that
the functor that results from applying ~ twice is naturally equivalent to
the identity functor.

EXAMPLE 2. The commutative ring R = GF(2)[x, y]/(x2, y2, xy) is
artinian but not quasi-Frobenius. The non-projective R-module U = {O, x}
has as dual UJ.. = {O,x,y,x + y}. But U =I (U~)~ = U~ and, therefore,
~ is not a duality functor on the category of finitely generated R-modules.
This shows that the restriction to projective modules is essential.

The two notions of duality (1) and (2), which are based on linear func
tionals and on characters, coincide for finite commutative quasi-Frobenius
rings [5]. In the case of other rings, the two duality notions can be con
sidered complementary. For example, the ring of integers Z is not quasi
Frobenius (not injective) and not artinian. The linear functional based
functor does not give the desired duality properties but Pontryagin duality
does.

A complementary example is given by the field of rational numbers
Q. The rationals are not locally compact. Another example is the ring of
rational functions Z4(t) over the integers modulo 4 (d. Section 4.1). This

ring is a subgroup in the bi-infinite direct product group Z~. Putting the

discrete topology on the component groups Z4, the infinite product Z~ is a
compact group with respect to the product topology; the subgroup Z4(t) is
neither open nor closed and, hence, not locally compact. Similarly, one can
show that if R(D) is regarded as a subgroup of the Laurent sequence space
R((D)), it is not locally compact. For these two examples, Pontryagin
duality does not provide the desired duality property but duality based on
linear functionals does.

LINEAR CODES AND THEIR DUALS OVER ARTINIAN RINGS 367

3. Mac Williams identities. In the following discussion it is as
sumed that the ring is finite and commutative; in particular, R is artinian
and the results of the preceding section apply. The class of codes consid
ered are projective modules U c Rn. The spectrum of a code U and its
dual U 1. is given by

Ai= I{u E U : WH(U) = i}1
Bi= I{v E U1. : WH(V) = i}l,

where WH(U) denotes the Hamming weight of a codeword U and IVI denotes
the cardinality of a set V.

The MacWilliams identities give a relation between the weight coeffi
cients Ai and Bi .

THEOREM 3.1. (Mac Williams identity) Let R be a finite commutative
ring and let Ai and Bi be the weight coefficients of an R-linear code U and
its dual U 1., respectively. Then, the following polynomial identity holds:

(6) tBiXi = ~ tAj (l- X)j{l + (IRI-1)x}n- j .
i=O I I j=O

Remark. From Example 1 it is clear that the generalized MacWilliams
identity does not hold for generalized distance measures.

Proof. The proof goes along the lines of the original proof No.1 in
[10]. Setting X = 1/(1 + Y) in (6), one obtains

tBi(l + y)n-i = ~ tAjyj(y + IRJ)n- j .
i=O I I j=O

Expanding and comparing coefficients of yl yields

(7)

It is sufficient to show (7) for all f = 0,1, ... ,n.
For each subset s = {Sl' ... ,st} c {I, ... ,n} of cardinality f, we define

a free rank-f submodule Fs C Rn with support in s:

Fs = {x E R n : supp(x) ~ s} = ReSl EEl ••• EEl Resl>

where e1, ... ,en is the standard basis for R n and supp(x) denotes the sup
port, i.e., the indices with non-zero components, of x. Let t = {I, ... ,n} \ s
be the complementary set of s. Then, clearly Fs1. = Ft. Using Proposi
tion 2.3, one obtains

(U + Fs)1. = U1. nFt

rkm(U + Fs) = rkm{U1. n Ft)1. = n - rkm(U1. n Ft)

rkm(U) + rkm(Fs) = rkm{U n Fs) + rkm{U + Fs),

368 THOMAS MITTELHOLZER

where m is one of the e maximal ideals of R. As rkm(Fs) = f, the latter
two equations imply

or, equivalently,

(9)

where Rm denotes the localization at the maximal ideal m.
For fixed cardinality f, consider pairs (8, u), where u E Un Fs. For

each choice of 8, there are IU n Fsi = ITm IRmlrkm(unF8) such pairs, where
the product is over all the e maximal ideals m of R. Considering all possible
choices for s, the total number of such pairs is

L II IRmlrkm(unF8).

s C {I, ... ,n} m

lsi = f

A second way of counting these pairs is as follows. For each u E U
of weight j, there are n - j zero components. Thus, any subset t =
{tl' ... ' tn-l} C {I, ... , n} \ 8Upp(U) of cardinality n - f defines a comple-

mentary set s, which can be paired with u. There are (~ = ~) choices

for t or 8, respectively. There are Aj codewords of weight j in U, hence

Applying the same argument to U 1., one obtains

L g IRmlrkm(Ul.nFt) = ~ Bi (n; 2) .

tC{l, ... ,n}
It I = n - f

Using (9) and the fact that the complementary sets 8 and t are in one-to-one
correspondence yields

~ Bi (n; 2) = L II IRmlrkm(ul.nFt)

.=0 t C {l, ... ,n} m

It I = n - f

LINEAR CODES AND THEIR DUALS OVER ARTINIAN RINGS 369

L II IRmln-Hrkm(UnF.)-rkm(U)

t c {I, . .. ,n} m

It I = n - £

= II IRmln-l-rk",(U) t Aj (~ = ~)
m)=0

_ IRln-l l . (n _ j)
- lUI L AJ n - £ .

)=0

o
EXAMPLE 3. [2 2) generates a Z6-module U = {[O 0), [2 2], [4 4]},

which is projective but not free. The dual code is

U.L = {[O 0], [3 0), [0 3), [33], [2 4], [4 2], [15], [51], [12], [21], [4 5), [54]}.

The weight enumerator polynomials of U and U.L are A(X) = 1 + 2X2
and B(X) = 1 + 2X + 9X2, respectively. The MacWilliams identities are
readily verified:

2

B(X) = ~ L Aj (1 - X)j (1 + 5X)2- j .
j=O

4. Duality of convolutional codes over rings.

4.1. Dual and convolutional dual. An (n, k) convolutional code
over a field F can be regarded as a block code over the field of rational
functions F(D) [11). For a commutative ring R, we can define the ring of
rational functions similarly as in the field case by

{ f(D) }
R(D) = Dms(D): !(D), s(D) E R[D], s(O) = 1, mE Z .

A convolutional code over R is a projective R(D)-submodule of R(D)n. For
coding purposes, one considers the standard embedding of R(D) in the ring
of formal Laurent series R((D)), which allows one to view a codeword of
an (n, k) code over R(D) as a code sequence with components in Rn. The
following proposition is crucial to extend the duality results from linear
block codes to convolutional codes.

PROPOSITION 4.1. If R is commutative artinian, then so is R(D).
Proof Owing to the structure theorem for commutative artinian rings

(3), the ring of rational functions decomposes as

Thus, one can assume that R is local, artinian with a nilpotent maximal
ideal p, say pt = 0 but p(t-l) =p O. We will show that R(D) is local and has

370 THOMAS MITTELHOLZER

the nilpotent maximal ideal pR(D). By the structure theorem mentioned
above, this implies that R(D) is artinian.

As p is nilpotent, it is clear that pR(D) is also nilpotent. Thus, it
remains to show that R(D) is local, which will be proved by showing that
R(D)\pR(D) consists of invertible elements.

Let r(D) = ~ig~ E R(D)\pR(D). As s(D) is invertible it is sufficient
to show that f(D) E R[D]\pR[D] is also invertible. Write

f(D) = a(D) + b(D),

where a(D) E (R\p)[D] and b(D) E pR[D]. By successive multiplication
of a(D) + b(D) by complementary binomial-like terms, one obtains

f(D) . (a(D) - b(D)) = a2 (D) - b2 (D)

f(D) . (a(D) - b(D))(a2 (D) + b2 (D)) = a4 (D) - b4 (D)

etc.

Continuing in this way, one finds a polynomial h(D) such that f(D).h(D) =
l l l

a2 (D) - b2 (D) for some f, such that t ~ 2. As pt = 0, it follows that

b2\D) vanishes and, therefore, f(D)· h(D) = a2\D). By construction, the
trailing coefficient aT of a(D), i.e., the first non-zero coefficient of lowest
order, is a unit of R because it lies in R\p. Therefore, the trailing coefficient
of a2l (D), which equals 4, is also a unit. Thus, f(D) . h(D) = a2l (D)
and, a fortiori, f(D) is invertible in R(D). 0
Remark. For a commutative artinian ring, the structure theorem implies
that R contains only a finite number of maximal ideals ml, m2, ... , me. Let
Y = ml Um2 U ... Ume and note that R\Y is a multiplicatively closed set.
The above proof shows that for any polynomial f(D) E R[D]\Y[D], there
exists a polynomial h(D) such that the trailing coefficient of f(D)h(D) is
1. This implies that one can use the multiplicatively closed set R[D]\Y[D]
as denominators and the ring of rational functions can be characterized as

(10) R(D) = {;~~j : f(D) E R[D], s(D) E R[D]\Y[D] } .

Following [12], we define the convolutional dual of a convolutional code
C c R(D)n as in the block code case:

c1.c = {x(D) E Rn(D) : c(D).x(Df = 0, all c(D) E C}.

COROLLARY 4.1. Let R be a commutative, artinian ring. Then, every
convolutional code Cover R has a convolutional dual C1.c, which satisfies
(C1.c)1.c = C. Moreover, if C C R(D)n is free of rank k, then C1.c has
rank n - k.

LINEAR CODES AND THEIR DUALS OVER ARTINIAN RINGS 371

EXAMPLE 4. Consider the ring of integers Z, which is not an artinian
ring, and let C be the convolutional code over Z that is generated by the
1 x 1 generator matrix

G(D) = [2 + D).

One can show that 1 is not a codeword and, thus, C i- Z(D). As Z has
no zero divisors, x(D)G(D) = 0 implies x(D) = 0 and, therefore, the
convolutional dual equals C..lc = O. Now, the twofold dual is (C..lc)..lc =
Z(D) and, hence, the duality property does not hold.

In the field case, duality for convolutional codes is based on the non
degenerate pairing (cf. [4) and Appendix in [13)) of formal Laurent series
R((D)) and formal anti-Laurent series R((D-1))

(11) 1f: R((D)) x R((D-1)) --+ R

defined by 1f(D-a(so+s l D+s2D 2+ .. .), Db(to+t_1D-1 +L2D-2+ .. .)) =
'Ei sHaLi-b. The rational functions R(D) or R(D-1) can be expanded
around zero or around infinity to yield a formal Laurent series or anti
Laurent series, respectively. By restricting the pairing 1f to the rational
functions, one obtains a pairing for R(D)xR(D-l).

We can now define the dual of a convolutional code using the above
pairing, which can be extended from the scalar case to the case of n code
word components in the usual way. Let C c Rn(D) C Rn((D)) be a
convolutional code, then the dual code lies in Rn(D-1) C Rn((D-1)) and
is defined by

(12) C..l = {x(D-1) E Rn(D-1) : 1f(c(D),x(D-l)) = 0, all c(D) E C}.

Note that in contrast to the field case, R(D) = R(D-1) does not hold,
in general (cf. the above example). However, for commutative artinian
rings, this equality holds.

PROPOSITION 4.2. Let C be a convolutional code over a commutative
artinian ring R. Then,

(i) R(D) = R(D-1);
(ii) C..l = C..lc rev ,

where C:/"ev denotes the time reversal of the dual c..l.
Proof (i) follows from (10) and the fact the a polynomial s(D)

So + slD + ... + seDe is contained in R[D]\Y[D] if and only if D-es(D) =
soD- l + slD-i+l + ... + Se is contained in R[D-1]\Y[D-1].

To show (ii), one can assume without loss of essential generality that
R is local. The proof of proposition 4.1 implies that R(D) is also local.
It is well known [7] that a projective module over a local ring is free and,
therefore, C is a free R(D)-module. Thus, C has some generator matrix
G(D).

Consider a codeword x(D) of the convolutional dual, which by defini
tion satisfies G(D)x(D)T = 0 or, equivalently, gi(D)x(D)T = 0 for all the

372 THOMAS MITTELHOLZER

rows gi(D) of the generator matrix. The dual codeword can be expanded
into a formal Laurent series xeD) = D-a(xo + xlD + x2D2 + ...). Let
x(D-I)rev = Da(xo + xID-I + X2D-2 + ...) be the time reversal of xeD).

One then checks that the condition gi(D)x(D)T = ° is equivalent to
the condition n(Dl. gi(D),x(D-I)rev) = 0, for all integer shifts t. Thus,
any codeword xeD) of the convolutional dual CJ.c gives rise to a code
word x(D-I)rev in CJ. and, conversely, every codeword x(D-I)rev E CJ.
determines a time-reversed codeword xeD) E cJ.c • This proves claim (ii).
o
Remark. By part (i) of Proposition 4.2, the rational functions R(D) have
both a formal Laurent series expansions around zero as well as around
infinity. Thus, the codewords of CJ. C Rn(D-I) C Rn((D-I)) can also be
considered elements of Rn(D) C Rn((D)); but note that a codeword will
have different expansions around zero or infinity, in general.

4.2. Locally defined duals. In the framework of character-based
duality, one can define a convolutional code and its dual locally by the
canonical trellis section and the dual trellis section [14]. This local descrip
tion of the dual is of particular interest because it can be generalized to
codes defined over graphs [4]. In this section, we will consider this local
duality description in the context of linear functional-based duals. To mo
tivate these duality results, we start with an example. We assume that the
reader is familiar with the notion of a trellis as defined, for instance, in [9]
or [15].

EXAMPLE 5. Consider the ring R = GF(2)[x,y]/(x2,y2,xy), which is
not a quasi-Frobenius ring. Let C be the convolutional (2,1) code generated
by the generator matrix

G(D) = [1 1 + xD].

~0--{~-'of-++---CD -
FIG. 1. 2-state realization of the generator matrix G(D).

This generator matrix has a minimal 2-state realization as shown in
Fig. 1. The scalar multiplication by the ring element x as well as the
addition is with respect to the arithmetic of the ring R. Note that the
delay cell will contain only the values ° and x, thus, this is indeed a 2-state
realization with state space S = {a, x}. A branch of the trellis corresponding
to this realization is a triple b = (s, VI V2, Sf), where s E S is the current

LINEAR CODES AND THEIR DUALS OVER ARTINIAN RINGS 373

state, s' E S is the next state, and Vl V2 are the two outputs produced by the
given realization, where Vi E R. The set of all branches B at a fixed time
instant of this time-invariant trellis consists of all the triples

(0,00,0)
(O,l1,x)
(x,Ox,O)
(x,l1+x,x)

(0, xx, 0)
(O,l+xl+x,x)
(x,xO,O)
(x,l+xl,x)

(0, yy, 0)
(0, l+yl +y, x)
(x,yx + y, 0)
(x, l+yl+x+y, x)

(0, x + yx + y, 0)
(O,l+x+yl+x+y,x)
(x,x + yy, 0)
(x, l+x+yl+y, x).

Note that B forms a group under componentwise composition of the triples
b = (s, Vl V2, s').

As G(D)G(D)T = 0, the code C is self-dual, i.e., C = C.Lc. The
dual code C.L, which is the time reversal of C.Lc, has a 2-state minimal
trellis that is the time reversal of the trellis for C. The state space S of
the dual code can be endowed with an algebraic structure as follows. Let
fx : {O,x} -+ R be the inclusion map, i.e., fx(O) = ° and fx(x) = x,
and set S = {O,fx}. If we define (/x + fx)(s) = fx(s) + fx(s), then S
is isomorphic to the cyclic group of order 2, hence, isomorphic to S. The
branch group B.L for the time-reverse trellis with state space S consists of
triples b.L = (/, Wl W2, 1'), where f, I' E S and Wi E R. The set of all
branches in B.L is given by

(0,00,0)
(Ix, 11,0)
(O,Ox,lx)
(lx,l1+x,lx)

(0, xx, 0)
(1:", HxHx,O)
(0, xO, Ix)
(Ix, l+xl, Ix)

(0, yy, 0)
(Ix, HyHy, 0)
(0, yx + y, Ix)
(Ix, l+yl+x+y, Ix)

(0, x + yx + y, 0)
(Ix, Hx+yHx+y, 0)
(O,x+yy,lx)
(Ix, l+x+yl+y, Ix).

We now define a pairing (.,.) on (SxR2 xS) x (SxR2 xS) with values
in R by

This pairing gives the following orthogonality characterization of the dual
branch group

To formulate duality locally, we need the notion of the canonical trel
lis of a convolutional code. We briefly review the relevant concepts, as
presented e.g. in [9]. The canonical state space of a convolutional code
CCRn(D)CRn((D)) (or CCRn(D- 1)CRn((D-1)))4 is given by the R
quotient module

4The definition actually applies to any time-invariant code that is a subgroup in the
sequence space of all bi-infinite sequences [9].

374 THOMAS MITTELHOLZER

where C+ = C n R[[D]] consists of all causal codewords and C_ = C n
D-1 R[[D-1ll consists of all anti-causal codewords.5 Every codeword x(D)
determines an equivalence class, i.e., an element in the quotient module
S(C)i this equivalence class will be denoted by [x(D)]. A trellis section of
the canonical (time-invariant) trellis is determined by the canonical branch
set of C, which is a subgroup of S(C)xRnxS(C) characterized by

B(C) = (([x(D)], xo, ([D-1x(D)]) : x(D) E C},

where Xo is the time-O component of the codeword x(D). The dual code
Cl.. C Rn(D-1) has a canonical branch group lying in the ambient space
S(Cl..)xRnxS(Cl..), which is determined by

B(Cl..) = (([y(D-1)], Yo, ([D-1y(D-1)]) : y(D-1) E Cl..}.

The key to obtain a duality relation for the above branch groups is
based on a pairing of the canonical state spaces. This pairing is defined as
follows:

p:

(13)

S(C) xS(Cl..)

([x(D)], [y(D-1)])
-1

L
i=-oo

R

T
Xi· Yi ,

where Xi and Yi denote the time-i components of the codewords.
LEMMA 4.1. The pairing p is well defined.
Proof. Note that the sum in (13) contains only finitely many non-zero

terms because the codewords of C are regarded as formal Laurent series
and the codewords of the dual Cl.. are formal anti-Laurent series.

It remains to be shown that the sum does not depend on the choice of
representatives for the states. We will show that the sum does not depend
on the choice of x(D) to represent the state [x(D)]. The independence
of the sum from the representative for the dual state can be proved in a
similar manner and is left to the reader.

As p is an R-homomorphism with respect to the first argument, it
is sufficient to check that p([x(D)], [y(D-1)]) = 0 holds for any codeword
[x(D)] that goes through the zero-state at time zero, which is equivalent
to the condition x(D) E C_ + C+. Let x_(D) and x+(D) be the anti
causal and causal part, respectively, of the codeword x(D). It is clear that
p([x_(D) + x+(D)], [y(D-1)]) = p([x_(D)], [y(D-1)]) because the sum in
(13) runs only through the negative time components. As x_ (D) and
y(D- 1) are dual codewords, they are orthogonal and the desired result
follows from

00 -1

0= L x~-). y; = L x~-). y; = p([x_(D)], [y(D-1)]),
i=-oo i=-oo

5 R[[Dll denotes the ring of formal power series.

LINEAR CODES AND THEIR DUALS OVER ARTINIAN RINGS 375

where x~-) denote the components of the anti-causal codeword x_(D). 0
We can now define a pairing (., .)p for the ambient spaces S(C)xRnx

S(C) and S(C.L)xRnxS(C.L) of the canonical branch groups B(C) and
B(C.L) of the code and its dual, respectively. This pairing takes values in
R and is given by

((s, X, s'), (f, y, 1'))p = p(s, f) + x·yT - p(s', f')·

THEOREM 4.1. Let C be a convolutional code over a commutative
artinian ring R. The pairing (., .)p provides a duality relation between the
canonical branch group B(C) of the code C and the canonical branch group
B(C.L) of the dual code C.L. In particular,

(i) B(C.L) = {(f, y, f') : < (s, X, s'), (f, y, 1') >p= 0, for all (s, x, s') E
B(C)};

(ii) B(C) = ({s,x,s'):< (s,x,s'),(f,y,J') >p= 0, for all (f,y,f') E
B(C.L)}.

Proof. (i) We write B.L for the right-hand side of statement (i). Every
branch in the branch group b.L E B(C.L) is determined by a code sequence
y(D-1) in the dual code C.L, viz., b.L = ([y(D- 1)], Yo, [D-1y(D-1)]). Let
b = ([x(D)]' Xo, [D-1x(D)]) be an arbitrary branch of B(C). The definition
of p implies

This shows that B(C.L) is contained in B.L.
To prove the equality B(C.L) = B.L, consider a sequence y(D-1) E

Rn((D-1)) that is generated by the trellis with branch group B.L. By
definition of B.L, this sequence is orthogonal to C. Hence, all such sequences
y(D-1) that come from rational functions lie in C.L. Therefore, the code
CB.l. in Rn(D-1) that is generated by B.L is contained in C.L and the first
part of the proof implies CB.l. = C.L. Now, as B(C.L)CB.L, and B(C.L)
and B.L generate the same code and have the same state space S (C.L), it
follows that B(C.L) = B.L.

(ii) We write B for the right-hand side of statement (ii). A similar argument
as in part (i) of the proof shows that B(C)CB and that the code CB, which
is generated by B, is contained in (C.L).L. Now, the fact that R is artinian
implies (C.L).L = C by Corollary 1 and Proposition 5. The same arguments
as in part (i) show that B(C) = B. 0

If R is artinian, then S(C) and S(C.L) are also artinian. Hence,
B(C) = Band B(C.L) = B.L generate minimal trellises (cf. [9]). The
minimality criterion (Theorem 5.2 in [9]) implies that Band B.L have
no nontrivial branches of the form (s, 0, 0). We now show that p is non
degenerate. Suppose that there is a state s E S (C) such that p(s, f) = 0
for all f E S(C.L). This is equivalent to having a branch (s,O,O) E B. But
B is minimal and, hence, one must have s = O. Similarly, p(s, f) = 0 for
all s E S(C) implies f = O. This proves the following proposition.

376 THOMAS MITTELHOLZER

PROPOSITION 4.3. If R is commutative and artinian, then the pair
ing p is non-degenerate. In particular, p induces the following two R
homomorphisms,6 which are one-to-one:

(14)

(15)
p,: S(C)

s

-+ S(C)*
t-+ p(.,f)

COROLLARY 4.2. For a convolutional code C over a commutative,
artinian ring R one has

(i) the dual Cl. is generated by the branch group

B* = {(f, y, /') E S(C)* x Rn x S(C)* : f(s)+x· yT - /'(s') = 0

for all (s, x, s') E B(C)}.

Moreover, B* ~ B(Cl.).

(ii) B(C) = ((s,x,s') E S(C)xRnxS(C): f(s)+x.yT -/'(s') = 0

for all (f,y,/,) E B*}.

Proof (i) As the map 1/ in (14) is one-to-one, an isomorphic image of
S(Cl.) is contained in S(C)* and, therefore, B* generates Cl. or a larger
code. This code must be Cl. because there is no larger code in R(D-l)n
that is orthogonal to C.

To prove B* ~ B(Cl.), we will show that B* is a minimal branch
group, i.e., it generates a minimal time-invariant trellis for the dual Cl..
To apply the minimaIity criterion in [9], we make the trellis state-trim by
omitting unused states, i.e., states that are not connected by any branch.

If B* were not minimal, then by Theorem 5.1 (i) in [9], either there
exists a negative-time, nontrivial, semi-infinite, zero-label path

(16) ... , (f-3, 0, f-2), (f-2, 0, f-d, (f-1, 0, fa)

or a positive-time, nontrivial, semi-infinite, zero-label path

(17) (fa, 0, f1,), (h, 0, 12,), (12,0, h,),···

through the trellis generated by B* with fa i- o. We will show that fa i- 0
is not possible by assuming the first case (16); the proof for the other case
(17) is similar.

As R is commutative artinian, the code C and the trellis generated by
B(C) are strongly controllable and, therefore, any state So = s E S(C) at

6 M* = Hom(M, R) denotes the dual of an R-module M.

LINEAR CODES AND THEIR DUALS OVER ARTINIAN RINGS 377

time ° can be reached from the zero state, say S-l = 0, by some length-f
path

through this trellis. From the definition of B* it follows that

Thus, 10 maps every element of S(C) to zero and, therefore, 10 = 0, which
concludes the proof of (i).

(ii) Let (B*)l.. denote the right-hand side of the equation in statement (ii).
Clearly, every branch (s, x, Sl) E B(C) satisfies the orthogonality condition
I(s) + xyT - 1'(SI) = ° for all (f,y,ll) E B*, hence, B(C) C (B*)l...

Conversely, as the map v in (14) is one-to-one, an isomorphic image of
B(Cl..) is contained in B* and, thus, (B*)l.. C B(C), by Theorem 4.1(ii).
o

Corollary 4.2 is the linear functional-based duality counterpart of The
orem 2 in [14]. Note that S(Cl..) '=F S(C)*, in general, which is illus
trated in the example below. However, in the case of finite quasi-Frobenius
rings, linear functional-based and character-based duality are equivalent
and S(Cl..) ~ S(C) ~ S(C)* (cf. [5]).

EXAMPLE 5. (continued) The state space S = {O, x} is an R-module
and has as dual R-module

where la(x) = a, for a = 0, x, y, x + y. The branch group B* as given in
Corollary 4.2 coincides with the previously defined dual branch group BJ....
Hence, B* is not state-trim, i.e., there are no branches that start or end
in the states fy or Ix+y of S*.

One can show that S* ~ Z2 X Z2 as additive groups and, moreover, that
(S*)* contains 16 elements. Thus, the duality property (S*)* ~ S does not
hold but Band B* are nevertheless dual to each other by Corollary 4.2.

5. Conclusions. A framework for studying duality properties of lin
ear codes over commutative artinian rings was developed. As in the field
case, duality can be based on linear functionals rather than on characters
if the class of 'linear' codes is chosen appropriately. In the block code
case, this class of 'linear' length-n block codes over R consists of all projec
tive submodules of Rn, and for convolutional codes the rational functions
trick [11] was used, i.e., convolutional codes are regarded as block codes
over the ring of rational functions R(D). This class of 'linear' block and
convolutional codes is closed under the operations of taking the dual (or
orthogonal) of a code, the intersection, and the sum of two codes, provided
R is commutative artinian.

378 THOMAS MITTELHOLZER

Linear functional-based duality is equivalent to character-based dual
ity for linear codes over finite quasi-Frobenius rings [5] but, in general, the
two duality concepts are shown to be complementary in the sense that for
certain infinite rings there are instances where only one of the two duality
concepts provides the desired duality properties. An example was given
to illustrate that even for some finite ring, the two duality concepts are
not equivalent. Despite this fact, it was shown that for a finite commuta
tive ring the MacWilliams identity holds for linear block codes and their
linear functional-based duals (the corresponding result for character-based
duality is well known [3]).

Two notions of linear functional-based duals of convolutional codes
were considered, the dual and the convolutional dual [12], which were shown
to be time reversals of each other in the case that the underlying ring is
commutative artinian. In the framework of character-based duality, the
local (trellis-based) characterization of a dual convolutional code [14] has
proved to be suitable to define duality of linear codes over graphs [4]. It
is shown that a trellis-section-based characterization of the dual also ap
plies to linear functional-based duality, which can be generalized to codes
over graphs. The main result concerning local duality is the orthogonality
(duality) relation between the canonical branch group of a code C and its
dual branch group as given in Corollary 4.2. This orthogonality relation
is remarkable in view of the fact that the state spaces S(C) and S(C)* of
these branch groups do not satisfy the duality property S(C)** ~ S(C), in
general.

Acknowledgments. This paper has benefited from comments by
G.D. Forney, Jr., and an anonymous reviewer.

REFERENCES

[1] G.D. FORNEY, JR., "The Dynamics of Group Codes: Dual Group Codes and
Systems," Manuscript, Sep. 1994.

[2] G.D. FORNEY, JR., "Controllability, Observability, and Duality in Behavioral
Group Systems," Proc. 34th Conf. Dec. Ctrl. (New Orleans), Vol. 3, Dec.
1995, pp. 3259-3264.

[3] T. ERICSON AND V. ZINOVIEV, "On Fourier-invariant partitions of finite abelian
groups and the MacWilliams identity for group codes," Prob. Peredachi Infor
matsii, 32, 137-143, 1996.

[4] G.D. FORNEY, JR., "Group Codes and Behaviors," Proc. MTNS '98 (Padova,
Italy); Zurich: Birkhauser, 1998, pp. 1-20.

[5] J .A. WOOD, "Duality for Modules over Finite Rings and Applications to Coding
Theory," American J. of Math., Vol. 121.3, June 1999, pp. 555-575.

[6] W. RUDIN, Fourier Analysis on Groups, Wiley, 1962.
[7] N. JACOBSON, Basic Algebra II, Freeman, San Francisco, 1980 .
[8] T.Y. LAM, Serre's Conjecture, LNM 635, Springer, 1978.
[9] H.-A. LOELIGER AND T. MITTELHOLZER, "Convolutional Codes over Groups, IEEE

Trans. Information Th., Vol. 42(6), Nov. 1996, pp. 1660-1686.
[10] J. MACWILLIAMS, "A Theorem on the Distribution of Weights in a Systematic

Code," Bell Syst. Tech. J., Vol. 42, pp. 79-94, 1963.

LINEAR CODES AND THEIR DUALS OVER ARTINIAN RINGS 379

[11] JAMES L. MASSEY, Coding Theory, in Handbook of Applicable Mathematics (Ed.
W. Ledermann), Vol. V, Part B, Combinatorics and Geometry (Ed. W. Led
ermann, S. Vajda). Chichester & New York: Wiley, 1985.

[12] ROLF JOHANNESSON AND KAMIL ZIGANGIROV, Fundamentals of Convolutional Cod
ing, IEEE Press, New York, 1999.

[13] G.D. FORNEY, JR., "Structural Analysis of Convolutional Codes via Dual Codes,"
IEEE Trans. Inform. Th., Vol. IT-19, July 1973, pp. 512-518.

[14] T. MITTELHOLZER, "Convolutional Codes over Groups: A Pragmatic Approach,"
Proc. 33rd Ann. Allerton Con/. on Communication, Control, and Computing
(Monticello, IL, Oct. 4-6, 1995), pp. 380-381.

[15] A. VARDY, Trellis Structure of Codes, in Handbook of Coding Theory, Part II,
Eds. V.S. Pless and W.C. Huffman. North-Holland, Elsevier Science, 1998.

Part 4. Convolutional codes
and codes over rings

UNIT MEMORY CONVOLUTIONAL CODES WITH
MAXIMUM DISTANCE

ROXANA SMARANDACHE'

Abstract. Unit memory codes and in particular, partial unit memory codes are
reviewed. Conditions for the optimality of partial unit memory codes with degree k - 1
are given, where optimal codes are the codes having the maximum free distance among
all codes of the same parameters k, n and degree J.I.. A binary construction of unit
memory codes with J.I. = k - 1 is discussed for the cases that satisfy the optimality
conditions. This construction is generalized for codes over fields of characteristic p > 2.

Key words. Unit memory convolutional codes, MDS-convolutional codes.

1. Introduction. Maximum distance separable (MDS) convolutional
codes, introduced first in [10], are convolutional codes characterized
through the property that their free distance is maximum among all codes
of the same parameters n, k and degree J.L. The free distance of an MDS
code represents a bound for the free distance of all the other codes with
the same parameters. We call this bound the generalized Singleton bound,
since in the case of block codes it obviously reduces to the Singleton bound.
The existence of MDS convolutional codes was established in [10] by using
elements of algebraic geometry and an input-state-output representation
of convolutional codes. The proof was existential and could not provide a
method of construction. A constructive proof was given later in [12]. The
construction starts from a large Reed Solomon block code and therefore
needs a fairly large finite field.

The question of finding a lower bound for the field size and MDS codes
attaining this bound was now raised. Since unit memory codes have the
simplest representation among the codes of nonzero memory we started our
study by analyzing the conditions these codes need to satisfy in order to
be maximum. We also took a new approach. We started with the binary
field and came to study the binary partial unit memory codes with degree
J.L = k - 1, this being the only nontrivial case where binary MDS codes
exist.

Binary partial unit memory codes were studied in the literature by
Lauer [4] and Justesen [3] who showed that in some situations a unit mem
ory code performs better than the codes having the same rate and degree
but memory larger than 1. Some constructions given in [4] are the inspi-

'Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556-
5683, USA, e-mail: Smarandache.l@nd.edu. The author was supported by NSF grant
DMS-96-10389 and by a fellowship from the Center of Applied Mathematics at the
University of Notre Dame.

381

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

382 ROXANASMARANDACHE

ration for the idea of this paper. In [3] quasi-cyclic unit memory codes are
studied and some constructions and computer search results are presented.
Furthermore some of the basic structural properties are discussed, such as
noncatastrophicity, minimality conditions, distance measures, properties
that we will use in this paper. Therefore we chose to use the same lan
guage as in these papers, only mentioning what this means in terms of the
language of the MDS papers [10, 12]. For the development of this paper
this is quite enough.

The paper consists of 6 sections, the first two being introductory and
the last one an appendix section containing material that we will heavily
use. In Section 3 we state some equivalent conditions for binary PUM codes
to be optimal and in Section 4 we give a method of construction for this
type of codes. Section 5 generalizes the binary construction to the case
where the field has characteristic larger than 2. We add examples of both
methods in Section 6.

2. Unit memory codes. Let IF denote a finite field. A unit memory
encoder is defined through the following encoding scheme:

(2.1)

where Ut E JFk is the k information tuple at time t, t = 0,1, ... and Vt E IF"
is the n-tuple denoting the encoded vector at time t. By convention Ut = 0
for t < O. The matrices Go and G l are defined over the field IF and have
size k x n. We assume that Go has rank k.

Then a rate kin unit memory code (UMC) is the set of all sequences
generated by an encoder (Go, G l), with Go of rank k, satisfying the above
encoding rule.

The code can also be defined through the compressed k x n matrix

Go + DG1 ,

where D defines the time delay operator.
Following [4] we will say that two unit memory encoders: (Go, Gd

and (G~, G~) are equivalent if there exists a nonsingular matrix T such
that G~ = TGo and G~ = TG1 . Two equivalent encoders generate the
same code. An encoder is called catastrophic if an information sequence
with infinitely many nonzero information vectors produces an encoded se
quence with finitely many nonzero encoded vectors. Thus two equivalent
encoders are either both catastrophic or both non catastrophic. We have
the following criteria from [3]:

THEOREM 2.1. [3} A UM encoder (Go,Gd is catastrophic if and only
if there exists an s x k matrix P of rank s, s > 0 and a nonsingular s x s
matrix Q such that

QPGo = PG l

UNIT MEMORY CONVOLUTIONAL CODES 383

Following the lines of [4) and [3) we define the degree J.L of the encoder
to be the rank of G l . We consider the degree to be the third important
parameter of a convolutional code C and in [10, 12) we define it in the
general case of the convolutional codes of memory greater or equal to 1,
as the maximal degree of the k x k full size minors of G(D). (See [9) for
details). If Goo denotes the high order coefficient matrix of a polynomial
matrix G(D), then we have that every code C of rate kin has a k x n
generator matrix G(D) whose matrix Goo has rank k and whose row degrees
are non-increasing or non-decreasing. The degree J.L is in this case equal to
the sum of the row degrees of the encoder G(D) and we say that G(D) is
in column proper form. In the literature the degree J.L is sometimes called
the total memory of the code (see [5)) or state-complexity.

We therefore have that for any PUM code generated by (Go, Gd there
exists an encoder (TGo, TGd with T nonsingular such that the first k - J.L

rows of TG l are zero. We say that this encoder is in standard form. We say
that a standard form encoder (Go, Gd is minimal if among all encoders,
G l has the smallest number of nonzero rows. We have from [3]:

THEOREM 2.2. (3} A non catastrophic UM encoder (Go, Gd of the
form:

[G'
[Go Gl] = G~

where G~, G~ have J.L rows, is minimal if and only if:

[Gil]
rank Gb = k.

Unit memory codes having J.L < k are called partial unit memory codes
(PUM) since the encoder requires only J.L memory cells for storage.

There are several distance functions that are important when deciding
on the decoding properties of a convolutional code. The free distance dfree

of the code, defined as the minimum Hamming weight of the nonzero en
coded sequences having minimum weight, seems to be the most important.
We will define also the jth column distances dj and the jth row distances
dj. We follow the approach of [1,2].

The jth order column distance dj is defined as the minimum of the
weights of the truncated codewords V[O,j] := (vo, Vl, •.. , Vj) resulting from
an information sequence U[O,j] := (uo, Ul, ... , Uj) with Uo "# O. The tuple
dP = [do, dll is called the distance profile. The limit d~ = limj-+oo dj exists
and we have do ::; di ::; ... ::; d~.

The jth row distance dj is defined as the minimum of the weights
of all the finite codewords V[O,j+l] := (vo, Vl, ... , vj+d resulting from an

384 ROXANASMARANDACHE

information sequence
U[O,j] := (UO, Ul,···, Uj) i:- O. The limit d~ = limj-+oo dj exists and, if the
encoder is noncatastrophic, we have (see [11, 2] for details):

(2.2) dg :::; di :::; ... :::; d~ = dfree = d~ :::; ... :::; d~ :::; d~.

In terms of state space descriptions d~ is equal to the minimal weight
of a nonzero trajectory which starts from and returns to the all zero state.
d':x, is equal to the minimal weight of a nonzero trajectory which starts from
and not necessarily returns to the all zero state. Also it follows that for a
non-catastrophic encoder the minimal weight codewords are generated by
finite information sequences, so the free distance can be computed from
the weights of finite encoded sequences.

We will discuss now the PUM codes with degree J-L = k -1 and we will
search for conditions they need to satisfy in order that they are optimal
among the codes with the same parameters, in the sense that they attain
the maximum distance possible. We will work first over the binary field
and then over larger finite fields.

We have the following obvious bound on the free distance of an PUM
code with degree J-L = k - 1:

THEOREM 2.3. Let C be a rate kin PUM convolutional code of degree
J-L < k generated by a minimal encoder (Go, Gd over IF:

(2.3) [Go

Then the free distance

G' o

gn

d free :::; n - k + J-L + 1.

o
G~

This bound is a particular case of the more general bound studied
in [10] and [12]:

LEMMA 2.1. Let C be a convolutional code of rate kin and degree J-L

and let G(D) be a polymnomial encoder in row proper form.
Let II denote the smallest value of the row degrees of G(D). Let l be the

number of row degrees having the value equal to II. Then the free distance
must satisfy:

(2.4) dfree :::; n(1I + 1) - l + 1.

We called this bound the generalized Singleton Bound and we showed
III [10] that there are codes attaining this bound, over sufficiently large

UNIT MEMORY CONVOLUTIONAL CODES 385

finite fields. We called them MDS convolutional codes. In [12] we were
able to give a concrete construction of MDS codes, starting from some
Reed Solomon block codes.

Therefore we know that there are PUM codes of degree k - 1 attaining
the maximum bound, there is n, over some finite field with enough elements.
We will call them PUM-MDS codes with J.L = k -1. We will take a different
approach from [12] in the construction of such codes. We will start with the
field F2 and discuss the cases when maximum distance codes exist, and also
we will give a construction in these specific cases. Then we will generalize
the construction for fields Fp , p > 2 obtaining constructions in some other
cases not covered yet.

We conclude the section with a simple theorem that tells us how to
obtain k'in rate PUM codes of degree J.L = k' - 1 and maximum distance
djree = n from kin rate PUM-codes of degree J.L = k - 1 and djree = n
maximum, where k' < k.

THEOREM 2.4. Let C be a PUM code of rate kin generated by the
minimal encoder (Go,Gd with J.L = k -1. Let (Oo,Od E jF(k-1)x2n be the
matrix obtained from (Go, Gd by omitting any of the last k - 1 rows of
(Go, Gd· If C has free distance n, then the same is true for the code C
generated by the encoder (00,01)'

Proof The theorem follows from the inclusion C ~ C. 0

3. Partial unit memory codes over F2. If Go, G1 generate a kin
PUM code of degree J.L = k - 1 with maximum distance n over F2, then the
matrices need to have the following form:

(3.1) [Go Gd = [1 G~ 1 o G~ 0], with rank(G~) = k - 1,

where G~, G~ need to satisfy some conditions that make the encoder Go, G1

noncatastrophic and minimal and the code generated by it through (2.1)
optimal, i.e. MDS.

REMARK 3.1. It can be easily shown that if 2k - 1 ::; n, the code is
noncatastrophic provided that the matrix:

(3.2) [1 ~~ 1 1 has full rank 2k - 1.
G~

That assures the minimality as well.
For the next theorem we will need the following definition:
DEFINITION 3.1. A block code (k, n) is called equidistant if all nonzero

codewords have the same weight dmin .

If a code is equidistant and G an arbitrary k x n encoder, then the
entries of G have the property that all F-linear combinations of its rows

386 ROXANASMARANDACHE

have the same weight dmin . Such a matrix will be called an equidistant
matrix.

Then we have the following theorem:
THEOREM 3.1. Let (Go, G l) of the form (3.1) generate an UM-MDS

code over 1F2 • Then:
1. n is even
2. G~, G~ generate equidistant (k - 1, n) block codes.
Proof. Let U E ~-l, u:I 0 arbitrarily chosen. Let x = wt[uG~l, y =

wt[uG~l. We need to prove that x = y = n/2. Let Ul, Uk+! E 1F2 .

Since dr = n we have that the weight of

o ... 0 1
G~

1 ... 1

is greater or equal to n. By giving different values to Ul, Uk+! we have:
x + y 2: n, n - x + y 2: n, x + n - y 2: n, n - x + n - y 2: n

=> x = y, x + y = n. Hence, we obtain that n is even and that

x = y = n/2,

which means that G~, G~ generate equidistant (k - 1, n) block codes. 0
In the same way we proved that n is even we can prove that 2k - l I n.

Hence n = 2k - l j.
Actually we have the following straight forward lemma:
LEMMA 3.1. The matrices G~ and G~ generate equidistant (k, 2k- l)

block codes if and only if the matrix

[Go Gl]

given through (3.1) is a generator matrix for a (k + 1, 2k) equidistant block
code.

Proof. Suppose G~, G' are equidistant. If U = (Ul, ... , Uk) E ~ then
uGo and uG l have the weight either n and respectively 0, if (U2, ... , Uk) =
0, or n/2, if not. Hence [Go Gl] is equidistant as well.

The other implication was just proved by the previous theorem 3.1. 0
We therefore have a stronger statement:
THEOREM 3.2. Suppose (Go, Gt) of the form (3.1) generate a PUM

code over 1F2 • Suppose 2k - 1 ~ n and that condition (3.2) is satisfied
(therefore the code is noncatastrophic). Then C is a non catastrophic PUM
MDS convolutional code over 1F2 if and only if

1. n = 2k - l j.
2. G~ and G~ generate equidistant (k - 1, n) block codes.

UNIT MEMORY CONVOLUTIONAL CODES 387

In other words this statement gives us all the kin MDS-PUM codes
for k ~ 4 (so that 2k - 1 ~ 2k - 1).

Proof Theorem 3.1 gives us the necessity implication. We still need to
prove the sufficiency of the two conditions. From 2. we have that do = n.
Let Ul, Uk+l E 1F'2 and u, v E ~-l, so that (Ul, u) =j:. O. The weight

1 o 0
G~

1 1
Gh

o
G' 1

{
wt(Ul'U)GO+wt(v.G~)~n, if v =j:.O

~ wt (Ul,U)GO + wt (U,Uk+1) [1 G~ 1] ~ n, if v = 0 '

because of condition (3.2). Hence d~ = n. In the same way we show di = n.
Also because of (3.2) we have:

dg ~ n/2, d~ ~ n/2 + 1, d~ ~ n/2 + 2, ... ,d~/2 ~ n/2 + n/2 = n =;.

=;. dfree = n.

Hence the code is MDS.
The noncatastrophicity is implied by the full rank condition on the

(2k - 1, n) matrix. Due to this condition an infinite weight input can not
produce a finite output. 0

Therefore in order to construct rate 2/O~lj UPM codes with degree
J.L = k - 1 and maximum distance over 1F'2' it is enough to construct rate
2/Ok_i' J.L = k - 1, dfree = n, MDS codes and concatenate them j times.
From this, using the Theorem 2.4 we get PUM-MDS codes of rate 2k~lj'
1 ~ i ~ k.

4. A binary construction of partial unit memory codes with
maximum free distance. For the construction of PUM codes having
maximal distance n over 1F'2 we use an idea found in (4) but we will have a
slightly different approach.

(4.1)

For that we need to introduce the following natural association:
REMARK 4.1. Through the following isomorphism of vector spaces:

1F'2 [X)/(X 2k - 1) ---+
ao + a1X + ... + a2k_lX2k_l f---t

~k
2

(ao, al,···, a2k-l),

any scalar encoded sequence in a PUM code (vo, Vl, V2, •••), given through
(2.1), where Vi E ~k can be viewed as a polynomial encoded sequence:

388 ROXANASMARANDACHE

(Vo(X), VI (X), V2(X), .. .), where all Vi(X) are polynomials of degree at
most 2k - 1.

V sing the above isomorphism (4.1) we can also define an association
between polynomial matrices k x 1 and their coefficient matrices k x 2k:

A=

(4.2)

With this association we have that

It follows from Definition 3.1 and the above associations that an equidis
tant scalar matrix has the property that the associated polynomial matrix
through (4.2) has all the polynomial entries of weight 2k- 1 and any 1F'2-
linear combination of those polynomials gives another polynomial of the
same weight. The weight of a polynomial is defined as the sum of the
Hamming weights of all the coefficients.

Therefore instead of looking for (k -1) x (2k - 1 -1), k 2:: 2 equidistant
scalar matrices G~, G~ we could instead look for (k - 1) x 1 polynomial ma
trices with the equivalent property. For this we will heavily use Lemmas 7.1
and 7.2 in the appendix. These lemmas will provide us such polynomial
matrices. We have the following theorem:

THEOREM 4.1. Let G~, G~ be (k - 1) x (2k- 1 - 1), k 2:: 4, scalar
matrices associated to

(4.3) G~(X) := [
PI (X) 1 P2 (X)

Pk~~(X) ,

G~(X) := [
QI(X) 1
Q2(X)

Qk~~(X) ,

where all polynomials Pi(X), Qj(X),i,j = l,k -1, have degree less or
equal to 2k - 1 - 2. Then the rate 2i-i PUM convolutional code generated
by Go, G I of the form in {3.1} is a noncatastrophic MDS code over 1F'2 {i.e.
it has maximal distance n} if and only if:

1. Any 1F'2 -linear combination of polynomials PI (X), . .. ,Pk- I (X) and
any 1F'2 -linear combination of polynomials QI (X), ... ,Qk-I (X) have weight
2k-l.

UNIT MEMORY CONVOLUTIONAL CODES 389

2. The polynomials PI (X), ... , Pk- 1 (X), Ql (X), ... , Qk-l (X) are lin
early independent.

Proof. The linear independence of the polynomials is equivalent to the
noncatastrophicity of the code, condition given by 3.2 and the fact that all
polynomials have degree strictly less than 2k - 1 - 1. 0

The following lemma will give an inductive construction of PUM codes
with maximal distance n over lF2 :

THEOREM 4.2. Let PI (X), ... , Pk- 1 (X) be polynomials of degree
less or equal to 2k- 1 - 2 and weight 2k- 2. Moreover, suppose that any
linear combination of the k - 1 polynomials has also weight 2k- 2. Then the
following polynomials:

(4.4) P1(X)(X2k - 1 + 1), ... , Pk_1(X)(X2k - 1 + 1), (X + 1)2k- 1-1

form a set of k polynomials with the property that any linear combination
of the polynomials has degree less than 2k and weight 2k- 1.

The same weight property holds for the set of k polynomials :

(4.5) 2k- 1 2k- 1 2k- 1 1 P1(X)(X + 1), ... , Pk-1(X)(X + 1), [X(X + 1)] -

Moreover if Ql (X), ... , Qk-l (X) form also a set of k - 1 polynomials
of degree less or equal to 2k- 1 - 2 with the same property that any linear
combination of the polynomials has weight 2k- 2 and if the polynomials

are lF2 -linearly independent, then the polynomials:

(4.7) 2k - 1 2k - 1 2k- 1 1 PdX)(X + 1), ... , Pk- 1 (X)(X + 1), (X + 1) -,

Ql(X)(X2k- 1 + 1), ... , Qk_l(X)(X2k - 1 + 1), [X(X + 1)]2k- 1-1
are lF2 -linearly independent.

Proof. Let P(X) = UIPI (X) + U2P2(X) + ... + Uk-lPk-l (X), Ui E
lF2' Vi = 1, k - 1 be a linear combination of PI (X), P2(X), ... , Pk-l (X). A
linear combination of the new k polynomials has the form:

U(X + 1)2k- 1-1 +p(X)(X2k- 1 + 1) = u(X + 1)2k- 1-1 +P(X)(X + 1)2k- 1 =

= (X + 1)2k- 1 -1 (u+ P(X)(X + 1)), with U E lF2' or, in the second situation:

u[X(X + 1)]2k-1-1 + P(X)(X2 k - 1 + 1) =

= (X + 1)2k-1-1(UX2k-1-1 + P(X)(X + 1)).

390 ROXANASMARANDACHE

If u = 0 we obtain P(X)(X + I)2k-l that has weight twice the weight
of P(X) as we stated before in the lemma 7.4. If u = 1 we use the weight
retaining property (7.3):

2: wt [(X + I)2 k
-

1-1] . wt [(u + P(X)(X + I»mod (X + 1)] = 2k-1.

The second case goes the same way.
For the second part let Q(X) = V1 Q1 (X) + ... +Vk-1 Qk-1 (X), Vi E lF2'

Vi = 1, k - 1 be a linear combination of Q1 (X), Q2(X), ... , Qk-1 (X). Let

(X +I)2k- 1 -1(U+p(X)(X +I»+(X +It-1
- 1 (VX 2k - 1

- 1+Q(X)(X +1» =

be a linear combination of the new polynomials that is equal to zero. It
implies u = V and we obtain:

u(I + X 2k- 1
- 1) + (Q(X) + P(X»)(X + 1) = 0 ¢:>

u(I + X + X2 + ... + X 2k- 1
- 2) + Q(X) + P(X) = 0,

which leads to u = U1 = ... = Uk-1 = V1 = ... = Vk-1 = 0 because of (4.7).
That gives the linear independence of the new polynomials. 0

Basically, Theorem 4.2 says that if we have two equidistant matrices
G~ and G~ of sizes (k - 1) x (2 k - 1 - 1), k 2: 4 associated to the poly
nomial matrices G~(X), G~ (X) through (4.3), where the sets of polyno
mials P1 (X), ... , Pk-dX) and Q1 (X), ... ,Qk-1 (X) satisfy the conditions
in Theorem 4.2, we can inductively construct equidistant matrices of size
j x (2j - 1), j 2: k.

For example, if we take 1 (k = 2), multiply it with (X2 + 1) and add
the extra polynomial 1 + X, respectively X (1 + X) we obtain the 2 x 4
matrices:

I [1 + X] I [(1 + X)X] Go(X) = 1 + X 2 ,G1 (X) = (1 + X2) ,

and the 3 x 8 matrices, after the next step:

UNIT MEMORY CONVOLUTIONAL CODES 391

Of course this is not a good choice, since the polynomials obtained are not
linearly independent, the code generated in this way being catastrophic.
Therefore we have to change somehow these matrices in order to have the
properties of Theorem 4.2. We will keep the matrix G~(X) and change
the matrix G1 (X) by multiplying the entries with different powers of X
modulo X 7 + 1. The following choice for G1 (X):

[
(1 + X)3 . X 4mod (X7 - 1) 1

G~ (X) = (1 + X)5 . X 3mod (X7 - 1) .
(1 + X)6 . X3 mod (X7 - 1)

together with the G~(X) constructed above will satisfy the condition of
the theorem. Hence we could use the polynomial entries of G~(X), G1 (X)
for the inductive construction of Theorem 4.2. We have the following con
struction theorem:

THEOREM 4.3. Let P1 = (1+X)3, P2 = (1+X)5, P3 = (1+X)6 and
Ql = (1 + X)3. X4 mod (X7 -1), Q2 = (1 + X)5. X 3 mod (X7 -1), Q3 =
(1 + X)6 . X3 mod (X7 - 1).

Applying Theorem 4.2 inductively we obtain rate 2kk_i noncatastrophic
convolutional codes that have maximal free distance 2k - 1 over 1F2' for all
k 2 4.

REMARK 4.2. The rate 2/-1 code constructed above has the matrix
G~ associated to the following polynomial matrix:

G~(X) = [~; ~g:: 1
(X + 1)'k-1

with i 1 , i2 , .•. , i k - 1 nonnegative integer strictly less than 2k - 1 of weight k-
2, where we defined the weight of an integer in (7.1). We could apply (7.2)
to show directly that the matrix G~ generates an equidistant (k - 1, 2k - 1)

block code. We will use this direct approach rather than the inductive one,
in the following section, for constructing MDS convolutional codes of rate
kin where n is odd. Of course we will have to use a larger field.

S. Constructions of partial unit memory codes with maximum
free distance over IFp. Let IFp be the field with p elements. Let k 2 1, n =
pk-l.

THEOREM 5.1. Let GO,G1 be the k x n scalar matrices associated to
the following polynomial matrices:

392 ROXANASMARANDACHE

with io = (p - 1) + (p - l)p + ... + (p - 1)pk-2 = pk-l - 1 = n - 1,
I := {i l , ... i k - l } the set of all nonnegative integers with radix-p form (see
Lemma 7.1) having one component equal to p - 2 and the other k - 2 com
ponents equal to p - 1, and J := {iI, ... ,ik-l}, the set of all nonnegative
integers having one component equal to 0 and the other k - 2 components

equal to p - 1. Both sets have (~:::;) = k - 1 elements. Then the convolu

tional code generated by Go, Glover lFp is noncatastrophic and MDS.
Proof. We compute do and di·

By (7.1) we have: wt[(X + l)il] = {
(p _1)pk-2, l:l 0

pk-l, I = 0 and wt[(X +

Let u = (Uo, ... , Uk-I) E ~,u :I O. Then:

wt[uGo] = wt[uGo(X)] = wt [~UI(X + l)il] >

2: wt [(X + l)imin] 2: (p - 1)pk-2,

by (7.2). We denoted by i min the smallest of all integers it, 1 E {O, ... ,k-1}
with, Ul :I O. Therefore do 2: (p - 1)pk-2 and since there is a row of this
weight we have:

For di we do the same. Let U = (uo, ... , U2k-I), E ~k-l, U :I O. If
(UI, ... ,U2k-d = 0, we obtain the codeword associated to uo(X + l)io
which has weight pk-l by the choice of i o. If (UI, ... , U2k-d :I 0 then the
weight

[GI] [GI (X)]
wt U Go = wt U Go(X) =

by (7.2), since all the powers iI, I = 0, k - 1 differ from is, s == 1, k - 1.
Then

d~ 2: (p - 1)pk-2 + pk-2 = pk-l = n.

Therefore di = djree = n and the code is noncatastrophic and MDS. 0
REMARK 5.1. Since the main fact we used was that the sum

UNIT MEMORY CONVOLUTIONAL CODES 393

for any l = 0, k - 1, s = 1, k - 1, we could use instead in the construction
the sets I and J, with I and J formed by all nonnegative integers having the
radix-p form with one component equal to p - i, respectively i - 2, and the
rest k - 2 components equal to p - 1, for all i such that p - i > i - 2, i.e. for

all i = 2, l ~ J. The weights wt[(X + 1)'/] = p k-l P , _
. {(- i + 1) k-2 l ¥: 0

p, l- 0
and wt[(X + l)j/] = (i _1)pk-2 have also the sum greater than pk-l. Also
the sets I and J formed like this have both k - 1 elements as it is needed.

6. Examples. We will give here two concrete examples to show how
Theorems 4.3 and 5.1 are applied, the rate 4/8 and 3/9. After that we
will discuss also the cases k = 2, k = 3 that have not been covered by the
binary theorem. We will use here the polynomial matrix representation
G(D) = Go + DG1 •

EXAMPLE 1. We already showed in the previous section how to
choose the matrices Go, G l of sizes 4 x 8 over IF2. In conformity with
Theorem reffinal we have that the polynomial matrix G(D) = Go + DG1 ,

given by:

[
1 1 1 1 1 1 1

~ 1
l+D 1 1 1 D D D
l+D l+D 0 D l+D 1 0
l+D 0 l+D D 1 D 1

generates a rate 4/8 PUM convolutional code of degree f.1. = 3 and maximum
distance 8.

EXAMPLE 2. Let Go, G l be the 3 x 9 matrices over IF3 associated to
the following polynomial matrices:

[(X+ 1)'] [
0

] (X+1)5 , (X + 1)2

(X + If (X + 1)6

The convolutional code generated by

OlD) ~ [1 JD
-1 1 -1 1 -1 1 -1

~] -1 1 1-D -1 1 D 0
l+D 1-D D -1 -1 0 1 1

is noncatastrophic, has degree f.1. = 2 and maximum distance 9.

EXAMPLE 3. We will construct rate 2/n PUM convolutional codes
that are MDS and noncatastrophic, for all n 2: 3.

1. In the case n even we can do the construction over the binary field.

394 ROXANASMARANDACHE

Let:

G(D)= [. H: D! ~ ~ ,j, G(D)= [, ,1 D !
J tImes J tImes

1 1
o D

1
l+D

for n = 4j, respectively n = 4j + 2. Then the 2/n code generated by G(D)
is noncatastrophic and has distance n over IF2 . The code has the column
distances: do = n/2, d'i = n = dfree in both cases.

2. The cases where n is odd requires more field elements. It turns out
that a field with 3 elements is enough for a construction. Therefore, over
IF3 we obtain:

11111] 1111111]
G(D)= I+D .1 0 D D+2 ,G(D)= I+D .1 0 D 2+D I+D 0'

J tImes J tImes

for n = 4j + 1, respectively n = 4j + 3. The column distances are in both
cases:

do = In/2J + 1, d'i = n = dfree.
EXAMPLE 4. The construction Theorem 3.2 can not be applied in the

case of k = 3. It turns out that any choice of binary matrices Go, G l we
take gives a catastrophic encoder. Therefore there is no noncatastrophic
PUM convolutional code of rate 3/4, degree 2, having distance 4. The
smallest field we can construct such a 3/4, code with degree 2, distance 4
is IF3 . Taking

[
1111] [0000]

Go = 0 1 1 0 ,G l = 0 1 0 1
0101 1100

we obtain an MDS code but over a field of characteristic p t= 2. The column

distances are do = 2, d'i = 2, d~ = 3, d~ = 3, d4 = 4 = dfree.

7. Appendix. We state here some results that we need along the
paper. For more details see [6].

LEMMA 7.1. [6 j Let c E IF, c t= 0 and let i ~ 1 with radix-p form
rio, i l ,···, im- l], i.e. i = io + ilP + ... + im_lpm-l. Then:

m-l
(7.1) wt[(X + c)i] = II (i j + 1).

j=O

In particular, for p = 2,

(7.2)

UNIT MEMORY CONVOLUTIONAL CODES 395

where wt(i) is the number of 1 's in {io, i I , ... , im - I }.

LEMMA 7.2. [6} Let I be any nonempty finite set of nonnegative
integers with least integer imin and let

P(X) = L bi(X - c)i,
iEI

where c, bi E IF, all nonzero. Then:

(7.3) wt[P(X)] ~ wt[(X + c)imin].

LEMMA 7.3. [6} For any polynomial P(X) over IF, any c E IF, c -:j:. 0,
and any nonnegative integers nand N,

(7.4) wt [p(x)(xn + c)N] ~ wt [(X + c)N] wt [P(X)mod (xn - c)].

The following lemma gives a very obvious result that we need for the
constructions. It could be also seen as a corollary to Lemma 7.3:

LEMMA 7.4. If P(X) is a polynomial over lF2 of degree less or equal

to 2k - 1, then the weight wt [p(X)(X 2k + 1)] = 2wt[P(X)].

REFERENCES

[1] R. JOHANNESSON AND K. ZIGANGIROV. Distances and distance bounds for convo
lutional codes - an overview. In Topics in Coding Theory. In honour of L. H.
Zetterberg., Lecture Notes in Control and Information Sciences # 128, pages
109-136. Springer Verlag, 1989.

[2] R. JOHANNESSON AND K.SH. ZIGANGIROV. Fundamentals of Convolutional Coding.
IEEE Press, New York, 1999.

[3] J. JUSTESEN, E. PAASKE, AND M. BALLAN. Quasi-cyclic unit memory convolutional
codes. IEEE Trans. Inform. Theory, IT-36(3):540-547, 1990.

[4] G.S. LAUER. Some optimal partial-unit-memory codes. IEEE Trans. Inform.
Theory, 25:240-243, 1979.

[5] S. LIN AND D.J. COSTELLO. Error Control Coding: Fundamentals and Applica
tions. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[6] J.L. MASSEY, D.J. COSTELLO, AND J. JUSTESEN. Polynomial weights and code
constructions. IEEE Trans. Inform. Theory, IT-19(1):101-110, 1973.

[7] R.J. McELIECE. The algebraic theory of convolutional codes. In V. Pless and W.C.
Huffman, editors, Handbook of Coding Theory, Volume 1, pages 1065-1138.
Elsevier Science Publishers, Amsterdam, The Netherlands, 1998.

[8] PH. PIRET. Convolutional Codes, an Algebraic Approach. MIT Press, Cambridge,
MA,1988.

[9] J. ROSENTHAL, J.M. SCHUMACHER, AND E.V. YORK. On behaviors and convolu
tional codes. IEEE Trans. Inform. Theory, 42(6, Part 1):1881-1891, 1996.

[10] J. ROSENTHAL AND R. SMARANDACHE. Maximum distance separable convolutional
codes. Appl. Algebra Engrg. Comm. Comput., 10(1):15-32, 1999.

396 ROXANA SMARANDACHE

[11] J. ROSENTHAL AND E.V. YORK. BCH convolutional codes. IEEE Trans. Inform.
Theory, 45(6):1833-1844, 1999.

[12] R. SMARANDACHE, H. GLUESING-LUERSSEN, AND J. ROSENTHAL. Constructions of
MDS-convolutional codes. Submitted to IEEE Trans. Inform. Theory, August
1999.

BASIC PROPERTIES OF MULTIDIMENSIONAL
CONVOLUTIONAL CODES*

PAUL WEINERt

Abstract. Let IF be a finite field, and let V = IF[Zl' ... , Zml be a polynomial ring in
m indeterminates over IF. In this paper, we define an m-dimensional convolutional code
of length n to be a 'O-submodule, C, of the free module 'On. Using this point of view, a
multidimensional convolutional code may be regarded as the row space of a polynomial
matrix (the number of columns gives the length of the code).

We will consider some of the algebraic properties of multidimensional convolutional
codes, seeing that their structure is different from the structure of one-dimensional con
volutional codes.

We will also look at distance properties of multidimensional convolutional codes.
In this regard, we will apply some ideas regarding monomial orders to give a code
construction with a lower distance bound; additionally, we will show that for dimension
2 or higher, arbitrarily large distance may be achieved by convolutional codes that are
the row spaces of 1 x 1 polynomial matrices.

1. Introduction. According to one point of view, a (one-dimensional)
convolutional code is a submodule of IF[z]n where IF[z] is a polynomial ring
in one indeterminate over a finite field. We generalize this to using a
polynomial ring in several indeterminates. Multidimensional convolutional
codes, especially in the two-dimensional case, using a Laurent polynomial
ring have been considered by Fornasini and Valcher [3, 11,4]. The algebraic
theory of multidimensional convolutional codes is similar over a polynomial
ring or over a laurent polynomial ring, but there are some differences in
the notion of catastrophicity of a code-see Remark 4.17 below or [12].
Multidimensional convolutional codes have been considered by the current
author in his dissertation [12], and some of the material below follows along
the lines of that dissertation. In [9] in this volume, Rosenthal includes a
survey of different possible frameworks for convolutional codes (although [9]
is about what here we would call one-dimensional convolutional codes, the
ideas do generalize to the higher-dimensional case).

Using a module theoretic point of view gives (multidimensional) convo
lutional codes and (multidimensional) behavioral systems as dual objects.
This module-system duality is developed in detail by Oberst [7]. We will
not pursue this duality here, though in addition to the paper by Oberst,
the interested reader may also see [12, Section 2.6], or [5].

We begin by setting some notation that will be used throughout this
paper. Let IF = lFq be the finite field with q elements. Let N be the set
of nonnegative integers. Let V = IF[Zl' ... , zml be the polynomial ring in
m indeterminates over IF. The free V-module, Vk, of k-component row

'This work was supported in part by a fellowship from the Center for Applied Math
ematics, University of Notre Dame.

tDepartment of Mathematics; Saint Mary's University of Minnesota; Winona, MN
55987, USA; e-mail: pweiner@smumn.edu.

397

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

398 PAUL WEINER

vectors with entries in 1) will be called the m-dimensional (m-D for short)
message space of length k. Elements of 1)k carry m-D information as the
following example illustrates.

ExaIllple 1.1 Consider a very small black and white picture on a 4 x 4
pixel field. Each pixel can be white {O} or black {1}. Here is the picture.

-I -0 -0 -I

-0 -0 -0 -I
-I -I -I -0

-I -0 -I -I

This picture can be represented as a polynomial in 1) = lF2[x,y] {often
in the 2-D case we use x and y as indeterminates instead of Zl and Z2}. In
this context the picture is 1+y+x2+xy+x3+ x2y+y3+ x3y2+x3 y3. This is
obtained by associating the monomial xiyj with the pixel whose cartesian
coordinates are (i,j) where the lower left pixel has cartesian coordinates
(0,0). Then each monomial gets as a coefficient its color in the form of 0
or l.

We may also have a color picture with more than two colors. In this
case we attach to each pixel {monomial} a string of k bits {allowing for
2k different colors}. We then form k polynomials as above, one from the
first bit on each pixel, one from the second bit, and so on. Then the pic
ture is represented by a vector of k polynomials. For instance the vector
[1 + y x + y 1 + x + xy] corresponds to the picture

-110 -001

-101 -011

Note that this polynomial vector may also be expressed as

[1 0 1] + [0 1 l]x + [1 1 O]y + [0 0 1]xy.

This idea extends to higher dimensions where m-D data is finitely
supported on NTn. Then we need monomials in m indeterminates to rep
resent pixels. I. e., the monomial z11 z;;;. corresponds to the pixel
(i 1 , •.. ,im) E NTn. Thus m-D information is carried by polynomial vectors
in m indeterminates.

Our next goal is to introduce error protection. To do this we will inject
the message space 1)k into a larger space.

Definition 1.2 An m-dimensional code of length n over IF is a subset C ~
1)n. A n element wEe is a codeword.

A code C is linear if it is an IF-linear subset of 1)n {i.e., C is closed
under addition and under scalar multiplication by elements of IF}. C is

MULTIDIMENSIONAL CONVOLUTIONAL CODES 399

right shift invariant if it is closed under multiplication by Zi, i = 1, ... ,m
(i.e., ziG ~ G for i = 1, ... ,m).

It follows at once that a code G is linear and right shift invariant if
and only if G is a V-submodule of v n .

Definition 1.3 An m-dimensional convolutional code of length n is a V
submodule of the free module v n .

Remark 1.4 A O-dimensional convolutional code of length n is a linear
block code of length n. A I-dimensional convolutional code is a convolu
tional code in the sense used by York [13}.

2. Generator matrices, free codes, and encoders. Any m-D con
volutional code, C, of length n is finitely generated as a V-module because V
is a noetherian ring. So there is a positive integer l and a matrix G E Vlxn
such that C = rowspacev(G) = Vi . G. Such a matrix G is a generator

matrix of C. Note that C is the image of the map Vi ~ V n. For this
reason we write C = im(G) for the convolutional code C that has G as a
generator matrix. We may also call G an image representation for C. Every
convolutional code C has an image representation.

Definition 2.1 Given a polynomial matrix G E VI x n, the rank of the
convolutional code C = im(G) is the largest integer k for which there is a
nonzero k x k minor of G. We write rank(C) = k.

Equivalently, letting Q(V) be the field of fractions of V, rank(C) is the
dimension of the vector subspace spanned by the rows of G in Q(v)n over
the field Q(V).

If the rank of C is k, then the rate of C is ~.

We note that the rank and rate of a convolutional code C are indepen
dent of the generator matrix chosen for C.

Definition 2.2 The m-dimensional convolutional code C is free if it is free
as a V-module. IfC is free of rate kin, then C = im(G) for some G E vkxn
(i.e., C has a full row rank generator matrix). In this case we say G is an
encoder for C.

Remark 2.3 If m = 1, then V is a principal ideal domain (PID), and so
any submodule ofVn is free. Thus any 1-D convolutional code is free. This
fails in dimension ~ 2 (see Example 2.8 below).

If C is free of rate kin with encoder G E V kxn , then the map

400 PAUL WEINER

is an injective map with image C. So this maps the message space V k

bijectively to the code C. This justifies calling G an encoder for C.
Recall that a matrix U E V kxk is unimodular if det(U) is a nonzero

element of the ground field F. Equivalently, U is unimodular if and only if
U is invertible as an element of Vkxk.

Proposition 2.4 Let G E V1xn,G1 E vllxn (not necessarily of full row
rank). Let C = im(G) and C1 = im(Gd. C1 ~ C if and only if there exists
a matrix T E V hxl such that G1 = T· G.

Proof. Observe that C1 ~ C if and only if rowspacez,(Gd ~
rowspace1) (G). This in turn occurs if and only if every row of G1 can
be written as a V-linear combination of the rows of G. This is equivalent
to the statement of the proposition. 0

Corollary 2.5 Let G, G1 E V kxn be of full row rank. Let C = im(G)
and C1 = im(G d. C = C1 if and only if there exists a unimodular matrix
U E V kxk such that G1 = U· G.

Proof. Suppose C = C1 . By Proposition 2.4 there are matrices U, V E
V kxk such that G1 = U· G and G = V . G1 . Hence G = V . U· G. Since
G is of full row rank, V . U = Idk . So U is unimodular.

The converse follows immediately from Proposition 2.4. 0
We conclude this section with some examples to clarify the above ideas.

All of the following examples will use the binary field, IF = lF2 as the ground
field and will be 2-D with V = IF[x, y).

Example 2.6 G = [1 + xy + x 3 X + y2). The code C = im(G) is a free
rate 1/2 code with encoder G.

Example 2.7 Let G = [+xy 1 + x++ x2y+ 2 +x2 2]. The code
y xy x xy x y x x

C = im(G) is of rate 1/3 (the reader can easily verify that all 2 x 2 minors
of G are 0). C is free. An encoder for C is G1 = [y 1 + xy x). Note

that G = [1 ~ x] G1 and G1 = [1 1)G. So by Proposition 2·4, C =
im(Gd·

Example 2.8 Let G = [x x2 x~]. The code C = im(G) is rate
y xy y

1/3 but not free. That is, C has no 1 x 3 generator matrix. To see this,
suppose G1 = [f g h) is a 1 x 3 generator matrix of C. Then the
rows of G, [x x 2 xy) and [y xy y2), must both be in im(Gd. So
we must have f I x and fly . Hence f = 1. From this it follows that
G1 = [1 x y).

MULTIDIMENSIONAL CONVOLUTIONAL CODES 401

In fact, we then have C ~ im(G1). However, [1 x y] rf- C since
no V-linear combination of the rows of G produces [1 x y]. So C is
properly contained in but not equal to the free code im(Gd.

3. Parity check matrices and orthogonal codes.

Definition 3.1 Let C be an m-D convolutional code of length n. A matrix
H E vjxn is a parity check matrix for C if C = {w E vn : wHt = o}. Note
that this gives C as the left kernel of the matrix Ht, and for that reason we
may call Ht a kernel representation of C and write C = ker(Ht).

It turns out that not every m-D convolutional code has a kernel rep
resentation. We will have more to say about this later in this section.

Definition 3.2 Let C be an m-D convolutional code of length n. An ele
ment p E vn is a parity check vector for C if wpt = 0 for all code words
w E C. The zero-vector in vn is the trivial parity check vector.

Remark 3.3 Suppose C = im(G), G E vlxn. The vector p E vn zs a
parity check vector for C if and only if Gpt = o.

Example 3.4 Let V = lF2 [x, y, z]. Let G = [~ ~ y: x;]. Let C =
im(G). The vector p = [x 2 + yz x 1 0] is a parity check vector for C
since Gpt = O.

Definition 3.5 The set of all parity check vectors of the convolutional code
C form the orthogonal code, C 1., of C. That is

C1. = {p E V n : wpt = 0 for all w E C}.

Remark 3.6 For a convolutional code C, the orthogonal code, C1., is also
a submodule of v n . So C1. is itself an m-D convolutional code of length n.

Moreover, if C = im(G), then C1. = ker(Gt). So automatically the
orthogonal code of any m-D convolutional code has a kernel representation.

The following lemma gives some standard properties of the orthogonal
code.

Lemma 3.7 Let C,C1 , and, C2 be m-D convolutional codes of length n.
(i) If C1 ~ C2 , then ct ~ ct·

(ii) C ~ C1.1..
(iii) C1. = C 1.1. 1. .

We use the preceding lemma to derive conditions under which a con
volutional code has a parity check matrix.

402 PAUL WEINER

Proposition 3.8 Let C be an m-D code of length n. The following condi
tions are equivalent.

(i) C has a parity check matrix.
(ii) C is the orthogonal code of some code (i.e., C = ct for some con

volutional code C1).

(iii) C = c1.1..

Proof
(i) ::::} (ii): Suppose C has a parity check matrix H. So C = ker(Ht). Let
C1 = im(H). So by Remark 3.6 we have ct = ker(Ht) = C. So C is an
orthogonal code.

(ii) ::::} (iii): Suppose C = ct for some convolutional code C1 • Then

C 1.1. - C1.1.1. - C1. - C -1 -1-'

(iii) ::::} (i): Suppose C = C1.1.. Let C1. have generator matrix H. So
C1. = im(H). Then C1.1. = ker(Ht), and so C = ker Ht. Therefore H is a
parity check matrix for C. 0

Definition 3.9 If the convolutional code C satisfies the equivalent condi
tions of the preceding proposition, then C1. is called the dual code of C.

The following result giving a necessary and sufficient condition for a
free m-D convolutional code to have a parity check matrix is proved in [12,
Theorem 3.3.8].

Proposition 3.10 Suppose C is a free m-D convolutional code of rate kin.
C has a parity check matrix if and only if C has a minor prime encoder
G E 1)kxn. (To say that G E 1)kxn is minor prime means that the k x k
minors of G have no nonunit common factors in 1).)

It is possible for an m-D code to be free with a dual code, but to have
the dual code not be free.

Example 3.11 Let 1) = lF2 [x,y,zl. Let G = [y z xl. Let C = im(G). So
C is a free 3-D convolutional code of rate 1/3. C has a dual code because its
encoder, G, is minor prime. However the dual code has generator matrix

H=[~ ~ ;].
z y 0

This code has rate 2/3 but is not free (see [15) or [12, Example 3.4·8} for
a proof of this).

There are however classes of free codes for which the dual code exists
and is also free.

MULTIDIMENSIONAL CONVOLUTIONAL CODES 403

Definition 3.12 Let G E V kxn be of full row rank. G is zero prime if the
ideal of V generated by the k x k minors of G is all of V. Or equivalently,
if 1 E V is a V-linear combination of the k x k minors of G.

Proposition 3.13 Suppose C is a free m-D convolutional code of rate kin.
If C has a zero prime encoder G E V kxn , then C has a free dual code.

Proof By the Quillen-Suslin Theorem (see for instance [14]), by adding
rows, G can be completed to a unimodular matrix in vnxn. That is,

there exists P E v(n-k)xn such that [~] E vnxn is unimodular. This

matrix then has an inverse which we partition as [Qt I Ht] where Q E

V kxn , and H E v(n-k)xn. We then have

This in turn gives us five equations:
(i) GQt = Idk ,

(ii) GHt = Okx(n-k),

(iii) PQt = O(n-k)xk,

(iv) PHt = Idn-k, and
(v) QtG + Ht P = Idn .

We use these equations to show that C = ker(Ht), thus showing that H
is a parity check matrix for C and that C has a dual code. Since G Ht = 0 we
have that C = im(G) ~ ker(Ht). For the reverse inclusion, let wE ker(Ht).
So wHt = O. But also from (v) above,

We then have w = wQtG E im(G) = C. So ker(Ht) ~ C. So indeed
C = ker(Ht), and so C has a dual code by Proposition 3.8 and Definition 3.9.

Next we show that the dual code C..L is equal to im(H). We know that
C..L = ker(Gt) (Remark 3.6). Hence we must show that ker(Gt) = im(H).
This follows along the exact same lines as the previous argument, using the
transposed forms of the equations (i)-(v) above.

Finally the dual code C..L = im(H) is free because H consists of the

last n - k rows of the unimodular matrix [~]. 0

Remark 3.14 Another situation in which the dual code {if there is one}
is free is in the case of dimension 2 {or lower} when any orthogonal code
is free {see [12, Proposition 3.4.5j for a proof of this statement}.

404 PAUL WEINER

4. Weight and distance. In this section we consider the notions of
weight and distance for multidimensional convolutional codes. These will
generalize the definitions of Hamming weight and distance for a block code
or for a one-dimensional convolutional code.

We begin with some notation. Let a = (al, ... ,am) E f\F be a
multi-index of length m. By zO: we mean the monomial Zfl z~"'.
Then a polynomial f E 1) may be written as f = L f o:zO: where f 0: E F.

o:EN'"
Similarly a polynomial vector W = [WI ... wn] E 1)n may be written as

W = L wo:zO: where Wo: ElF"'.
o:ENm

Definition 4.1 Let a ElF"'. The weight of a, wt(a), is the number of
nonzero entries of a.

Let f E 1). The weight of f, wt(f), is the number of nonzero terms
of f·

Let W = [WI ... wn] E 1)n. The weight of W is given by wt(w) =
n

L wt (w j). Equivalently if W = L bo: zO: where bo: ElF"', then wt (w) =
j=1 o:EN'"

L wt(bo:).
o:EN'"

Exalllple 4.2 If W = [1 + x2 1 + x2 + xy y + xy], then also W can be
written as w = [1 1 0] + [0 0 l]y + [1 1 0]X2 + [0 1 l]xy.

We have wt(w) = 7, and this may be obtained by counting nonzero
terms in the first expression for w or by counting the total number of
nonzero vector entries in the second.

Definition 4.3 Given two elements, w, 'Iii E Dn, the (Hamming) distance
between them is given by dist(w, 'Iii) = wt(w - 'Iii).

Given any m-D code C (not necessarily convolutional) of length n, the
distance of C is defined as

dist(C) = min{dist(w, 'Iii) : w, 'Iii E C, wi- 'Iii}.

For a convolutional code C, we have that

dist(C) = min{wt(w) : wE C, wi- O}.

This is because dist(w, 'Iii) = wt(w-'lii) and iv-'Iii E C whenever w, 'Iii E C.
The Hamming distance is a metric on 1)n called the Hamming metric.

The following result is standard in coding theory. It follows immediately
from the definition of the Hamming distance and from properties of a metric
space.

MULTIDIMENSIONAL CONVOLUTIONAL CODES 405

Proposition 4.4 Let C ~ 1)n be a convolutional code with d = dist(C).
Let t = l d2l J where l x J denotes the greatest integer that is less than or
equal to x. Let y E 1)n. If w E C is a codeword with dist(w, y) :S t, then w
is the unique codeword nearest to y {with respect to the Hamming metric}.
We say C can correct up to terrors.

4.1. The block code bound. Next we derive an upper bound on
the distance of an m-D convolutional code. This generalizes to the m-D
case a I-D result that may be found in the paper [6] by Lee.

Lemma 4.5 Let G E 1)kxn. Let C = im(G) be the m-D convolutional code
generated by G. Write

r

G = LGiZOl.i,
i=l

where Gi E pxn, and O!i E f':F is a multi-index with O!i "I O!j for i "I j.
{That is, G may be written with only r different monomials among its
entries.}

Let G = [G l I G2 I ... IGr] E px(rn). Let C be the linear block code
generated by G (i.e., C is the subspace ofJF"n spanned by the rows of G).
We allow the possibility that dim (C) < k, but we observe that in any event,
C = P . G.

Then dist(C) :S dist(C).

Proof Suppose C has a word of weight p. That is, there exists v E IB*
such that wt(vG) = p. We note that

vG = [vGl I vG2 I ... I vGr] E]F<rn).

Hence p = wt(vG) = wt(vGd + wt(vG2) + ... + wt(vGr).
We may also consider v E 1)k. Then since v and Gi have all entries in

F, we have

wt(vG) wt(vG1ZOIl + ... + vGrzOl.r)
wt(vG1ZOl.l) + ... + wt(vGrzOl.r)
wt(vG l) + ... + wt(vGr)
p.

Now C has a nonzero codeword of weight dist(C), and so C also has a
codeword of weight dist(C). The lemma follows immediately from this. 0

The next proposition follows immediately from Lemma 4.5.

Proposition 4.6 (The block code bound) Suppose G is as in Lemma
4.5 above. Suppose every block code of rate r'"n has distance less than or
equal to do. Then C = im(G) has distance less than or equal to do.

406 PAUL WEINER

The next example is an application of the block code bound. It requires
the fact that any binary linear block code, C, of rate 32r has distance at
most 2r. To see this, fix one of the 3r coordinates of C. By linearity, either
all four codewords of C have a 0 in this coordinate, or else two have a 0
and two have a 1 in this coordinate. Hence the number of l's in all four
codewords together is at most 2 . 3r = 6r. Of course the zero codeword has
no l's in it. So by a variant of the pigeonhole principle, not all of the three
nonzero codewords can have weight more than 2r. Hence dist(C) ::; 2r.

Example 4.7 Suppose G E V 2x3 can be written using just r different
monomials. Let C = im(G). Then dist(C) ::; 2r.

We will come back to this example later, showing that the distance
upper bound of 2r can be reached by a code with a generator matrix of
polynomials of degree at most 1, provided that m 2': r - 1. (See Exam
ple 4.22 below.)

4.2. Monomialorders. Our later results rely on properties of mono
mial orders which we review here. More details on monomial orders may
be found in [1, 2].

Definition 4.8 A monomial order on the indeterminates Zl, .•• , Zm is a
total order, ~, on the the set of monomials formed with these indetermi
nates such that

(i) 1 ~ z'" for all a E N"" with a -:p (0, ... ,0),
(ii) If a, 13, 'Y E N"" with z'" ~ z!3, then z"'z'Y ~ z!3z'Y.

Regarding such a total order, ~, we use :;, >-, t in the usual way.

Next we give some examples of monomial orders.

Example 4.9 (Lexicographic order) Choose any ordering of linear
monomials, say Zl >- Z2 >- ... >- Zm Then for a = (a1,... , am), 13 =
(131, ... ,13m) EN"", z'" ~ z!3 if ai < 13i where i is the index of the greatest
linear monomial (with respect to the chosen linear monomial ordering) at
which a and 13 disagree.

For instance, z~ z2zK ~ z~ z~ .

Example 4.10 (Degree lexicographic order) As in the previous ex
ample, an ordering for linear monomials is chosen. Then monomials are
first ordered by total degree (the total degree of a monomial is the sum of the
exponents on its variables). In the case of a tie in total degree, lexicographic
ordering is used as a tiebreaker. So for instance if Zl >- Z2 >- ... >- Zm, then
with degree lexicographic order we have Z~Z2 ~ zi ~ ZlZ~. (By contrast, with
lexicographic order these monomials are ordered by zi ~ ZlZ~ ~ Z~Z2.)

MULTIDIMENSIONAL CONVOLUTIONAL CODES 407

Example 4.11 (Weight order) Let rl,r2, ... ,rm be positive numbers
(weights). Define the weight of the monomial zO: = Zfl z~'" to be
weight(zO:) = Qlrl + ... + Qmrm.

We define the weight order, -<, relative to the weight vector
(rl, ... , rm) by zO: -< zf3 if weight(zO:) < weight(zf3). In the case of two
different monomials having equal weights, ties may be broken by applying
some fixed lexicographic order. For our purposes it will suffice to always
use the lexicographic order with Zl :>- Z2 :>- ... :>- Zm to break ties.

So for instance we may have weights rl = 1, r2 = 5/3 for monomials
in JF[x, yj. Then weight(x2y4) = 2·1 +4· ~ = 236 and weight(x5y2) = 2;. So
x5 y2 -< x2y4. In this example we have weight(x5) = weight(y3). However,
using our tie breaking convention, y3 -< x 5 •

Note that degree lexicographic order is a special case of a weight order
namely with the weight vector (1,1, ... ,1).

A monomial order allows us to order the terms of a polynomial, and in
particular it allows us to identify a leading term and a trailing term (which
are respectively the terms with the greatest and least monomial parts rela
tive to the given order). We will denote the leading and trailing terms of a
polynomial, f, by LT(f) and TT(f). We observe that different monomial
orders may give rise to different leading terms and different trailing terms.
We will call a term of the polynomial f an extreme term if it is the leading
or trailing term of f with respect to some monomial order.

We now state some simple properties of monomial orders.

Lemma 4.12 Let -< be a monomial order for monomials in Zl,'" , Zm,
and let Q,/3,,,,(,8 E wm. If zO: ::S zf3, and z'Y -< z", then zO:z'Y -< zf3 z".
Equality holds only if Q = /3 and "'(= 8.

Corollary 4.13 Suppose f and 9 are polynomials. For a fixed monomial
order, we have LT(f· g) = LT(f) . LT(g), and TT(f . g) = TT(f) . TT(g).

In multiplying polynomials f and g, a term product of f . 9 is a term
of f times a term of g.

The following proposition, which follows easily from Lemma 4.12 and
Corollary 4.13, gives an essential property of extreme terms of a product
of polynomials.

Proposition 4.14 Any extreme term of f . 9 is formed by a single term
product. That is only one term product of f . 9 has the monomial part of the
given extreme term. In particular, while a general nonzero term product of
f . g may be cancelled by some other term product(s}, a term product of the
form LT(f)LT(g) or TT(f) TT(g) (where these terms are with respect to a
fixed monomial order) cannot be cancelled by any other term products.

408 PAUL WEINER

Example 4.15 Over JF2 [x, y], let f = 1 +X+y+y2 and 9 = x+x2 +xy+y2.
There are only four possible orders for the monomials involved in f and g.
We give them here along with the corresponding leading and trailing terms
of f and g.

order LT(f) LT(g) TT(f) TT(g)
1 -< x -< y -< x"L. -< xy -< y2 y2 y"L. 1 x
1 -< y -< x -< y2 -< xy -< x 2 y2 x 2 1 x
1 -< x -< x 2 -< y -< xy -< y2 y2 y2 1 x
1 -< y -< y2 -< X -< xy -< x 2 X x 2 1 y2

So the extreme terms of f· 9 are y4, x 2y2, x 3 , x, and y2. We may apply
Proposition 4.14 to this example: There must be at least five terms in the
product f . 9 since there are five extreme terms.

4.3. Weight of a rate 1/1 code. In this subsection we show that
for dimension two (or higher), there are rate 1/1 codes of arbitrarily high
distance. This is in sharp contrast to the I-D case where the distance of
a rate 1/1 code is at most 2 (this is because a polynomial p(x) in one
indeterminate over a finite field divides x N - 1 for some positive integer N
that depends on p(x)).

We will show in dimension two (or higher) that for any positive integer
d, we can find a polynomial p(z) with d distinct leading terms. Then by
Proposition 4.14, the rate 1/1 code C = im([p]) will have distance at least
d.

To do this, consider the two-dimensional situation where'D = JF[x, y].
Fix a target distance d. Choose d - 1 distinct rational numbers

al a2 ad-l
-b < -b < ... < -b-'

1 2 d-l

(Here ai, bi are positive integers such that the fraction ~ is reduced to
lowest terms.)

Next define positive integers

Al al + a2 + a3 + ... + ad-I BI = 0

A2 = a2 + a3 + ... + ad-I B2 bl

A3 = a3 + ... + ad-l B3 = b1 + b2

A d- 1 ad-l Bd-I b1 + b2 + ... + bd-2

Ad 0 Bd b1 + b2 + ... + bd-l

Define a polynomial p = x A1 yBl + ... + xAdyBd. Now consider mono
mial weight orders with weight vectors of the form (1, r).

MULTIDIMENSIONAL CONVOLUTIONAL CODES 409

Case 1: 0 < r < ~.
With respect to this weight order, xAlyBl is the leading term of p. To see
this, note that we have

a1 a2 ad-1
0< r < -b < -b < ... < -b-'

1 2 d-1

So rb i < ai for i = 1,2, ... ,d - 1. Hence for i > 1 we have

weight(xAiyBi) Ai + rBi
ai + ai+1 + ... + ad-1 + rb1 + rb2 + ... + rbi - 1

< ai + ai+1 + ... + ad-1 + a1 + a2 + ... + ai-1

weight(xA'yB,).

So x Al yBl is a leading term of p.

Case 2: abi - l < r < abi (j = 2,3, ... ,d -1).
J-l }

With respect to this weight order, XAi yBi is the leading term of p: we have

a1 aj-1 aj ad-1
-b < ... < -b- < r < -b < ... < -b-'

1 j-1 j d-1

So ai < rb i for 1 ::; i ::; j - 1 and rb i < ai for j ::; i ::; d - 1.
Then for 1 ::; i ::; j - 1 we have

weight(xAiyBi) = ai + ... + aj-l + aj + ... + ad-l + rb1 + rb2 + ... + rbi-l
< rbi+'" + rbj _ 1 + aj+'" + ad-l + rb1 + rb2 +··· + rbi-l
= weight(xAiyBi).

A similar argument shows that for j + 1 ::; i ::; d - 1, we also have that
weight(xAiyBi) < weight(xAiyBi).

This establishes that in this case, XAi yBi is the leading term of p.

Case 3: r > ad - l • bd-l
With respect to this weight order we have that xAdyBd is the leading term
of p. The details are similar to the previous cases and are left to the reader.

Example 4.16 We use the rational numbers

11213
- < - < - < - <-.
32312

The corresponding polynomial based on the above construction is

p = x8 + x7 y3 + x6y5 + X4y8 + X3y9 + yll.

Using weight vectors (1, t), (1, ~), (1, ~), (1, ~), (1, ~), (1,2) gives each of the
six terms of p as a leading term. Hence letting C = im((p]) , we have
dist(C) = 6.

410 PAUL WEINER

It is interesting in this example to look at the exponents on the mono
mials as points in N2. That is, consider the points (8,0), (7,3), (6, 5), (4,8),
(3,9), and (0,11). In the diagram below, the lower left '-' marks the point
(0,0) E N2. The '+' marks are at the points that are used as exponents in
the polynomial p.

+

+
+

+

+

+

If we connect the marked points in order of increasing x-coordinate
with line segments, and then join the last point to the first, we get a convex
polygon. This will always occur when the above construction is carried out.

Remark 4.17 In the one-dimensional case, a rate 1/1 convolutional code
is always catastrophic unless the generator polynomial is a monomial.
(Here we refer to a catastrophic code as one for which an infinite weight
message word may produce a finite weight code word. So for instance the
code generated by G = [1 + z] is catastrophic since the infinite weight
message word v = [1 + z + z2 + ...] produces the finite weight codeword
w = vG = [1].) Such one-dimensional codes are still useful, and in fact
cyclic redundancy check codes (CRC codes) are rate 1/1 one-dimensional
convolutional codes that are used for error protection in internet transmis
sions [9, Example 7.3].

In the case of higher dimensional convolutional codes, a rate 1/1 code
may be noncatastrophic even if the generator matrix consists of a polyno
mial that is not a monomial. For instance the two-dimensional code gen
erated by G = [x + y] is non catastrophic (to see this, consider any infinite
weight message word p = p(x, y), a formal power series in x and y with
infinitely many nonzero terms. We may write p as p = Po + Pl + P2 + ...
where Pi is the homogeneous part of p of degree i-that is all terms of p of
total degree i. Then pG = PoG + Pl G + ... , which gives a decomposition
of pG by total degree-piG is the degree i + 1 part of pG. Now since p has
infinite weight, infinitely many of the Pi have positive weight. Then the
the corresponding homogeneous paris, PiG, of pG have positive weight, and

MULTIDIMENSIONAL CONVOLUTIONAL CODES 411

since there are infinitely many such homogeneous parts, pG has infinite
weight}.

This notion of catastrophicity is different if one uses Laurent polynomi
als rather than polynomials. The interested reader may consult [3} and [12,
Chapter 5} for further details.

4.4. Unit Memory Codes. In this subsection we will define multi
dimensional unit memory codes and give a code construction with a lower
distance bound.

The following definition may be regarded as a generalization to the
m-D case of the concept of unit memory encoders, described in papers by
Thommesen and Justesen [10] and by Lee [6].

Definition 4.18 A unit memory code is an m-D convolutional code that
has a generator matrix with all polynomials of first degree. A unit memory
encoder is a matrix G E '[)kxn of rank k, all the entries of which are of
first degree.

A unit memory code has a generator matrix of the form G = Go +
Zl G1 + ... + zmGm where Gi E F1xn (0::; i ::; m) is a matrix with entries
in the ground field F. We have had good results considering a special type
of unit memory codes. We give the motivation for and description of this
below.

Piret gives a 1-D code construction in [8] in which he forms a parity
check matrix of the form Ho + ZHI where Ho, HI are (n - k) x n parity
check matrices of Reed-Solomon codes. The code construction we suggest
here was inspired by Piret's construction, but it is different in several ways.
First, we define the generator matrix directly; second, we do not restrict
ourselves to using Reed-Solomon codes; and third, we generalize our con
struction to the m-D case.

Let Co, C1 , •.• ,Cm be rate k / n linear block codes with generator ma
trices

Let dist(Ci) = di , i = 0,1, ... ,m. Let

Let C be the m-D convolutional code generated by G.
First we prove that with this construction G is a unit memory encoder.

Lemma 4.19 Let G and Gi (0 ::; i ::; m) be as in the above construction.
G is of rank k, and consequently G is an encoder for a free rate ~ m-D
convolutional code.

412 PAUL WEINER

Proof We must show that G has a nonzero k x k minor. Now Go is
the generator matrix of a rate ~ block code and hence has a nonzero k x k
minor. Then writing G = G(ZI, . .. ,zm) we have G(O, ... ,0) = Go, and so
the corresponding k x k minor of G must be nonzero. 0

Next we give an important lower bound on the distance of the code C
in terms of the distances of its constituent block codes. The proof of the
next proposition relies on extending some of the ideas on monomial orders
from Subsection 4.2. In particular Proposition 4.14 holds in the case where
the coefficients of the polynomial f are vectors in IB* and coefficients of
the polynomial g are full rank scalar matrices in IF'kxn. That is, a term
product of the form LT(f)LT(g) or TT(f)TT(g) is nonzero and cannot be
cancelled by any other term product(s).

Proposition 4.20 Using the notation immediately preceding Lemma 4.19,
we have dist(C) :2 do + dl + ... + dm.

Proof Let v be any nonzero element of V k . We must show that

wt (v . G) :2 do + d l + ... + dm·

Choose a lexicographic monomial ordering that gives ZI as the greatest
linear monomial. Let VI Zal be the leading term of v with respect to this
order (here VI E IB*, al E l'f1'). Then since ZI GI is the leading term of G
with respect to this ordering, we have, by Proposition 4.14, that VI GIZa l ZI
is an extreme term of the product v·G. The weight of this term is at least dl

because VI GI is a nonzero codeword of CI , and we know that dist(Cd = di .

We can repeat this argument m times, the jth time choosing a lexico
graphic monomial ordering that gives Zj as the greatest linear monomial.
In this manner we find m distinct terms of V . G with weights at least
dl , d2 , ..• ,dm respectively.

Next using any lexicographic monomial ordering, we apply the same
argument to a trailing term. Because the trailing term of G is Go, we find
that there is a term of V • G (distinct from the m terms constructed above)
whose coefficient is a nonzero codeword of Co and hence whose weight is
at least do.

We conclude that wt(v . G) :2 do + dl + ... + dm. It follows that
dist(C) :2 do + dl + ... + dm. 0

We conclude this section with some examples illustrating these ideas.
The next example shows that the inequality in Proposition 4.20 may be
strict.

Example 4.21 In this example we construct a 1-D unit memory code us
ing V = IF'2 [xl. Let

Go = [~ 1
1 ~]

MULTIDIMENSIONAL CONVOLUTIONAL CODES 413

Then do = d l = 1 are the distances of the linear block codes generated by

[l+X 1 l+X] Go and GI . Also G = Go + xG I = 1 1 + x 0 . Let C be

the 1-D convolutional code generated by G. By Proposition 4.20, dist{C) ~
1 + 1 = 2.

In fact we claim that dist{C) = 3. First note that for any v =
[j g] E 1)2 we have vG = [{l+x)f+g f+{l+x)g (l+x)f].
Now if contrary to our claim we have dist{C) < 3, then for some nonzero
v = [j g] E 1)2, wt{vG) ~ 2. Hence at least one of the three components
of vG must be O.

Case 1: {l+x)f+g=O. Theng={l+x)f, andvG=[O x 2 f {1+
x)f]. Since f =I 0 (else v = 0), vG has at least three nonzero terms. That
is wt{ vG) ~ 3.

Case 2: f+{l+x)g = O. Then f = {l+x)g, and so vG = [x 2 g 0 (1+
x 2)g]. Then since 9 =I 0 we have wt{vG) ~ 3.

Case 3: (1 + x)f = O. Then f = O. So vG = [g (1 + x)g 0]. Again
wt(vG) ~ 3.

So in all cases, under the assumption that wt{vG) < 3, we obtain the
contradiction that wt(vG) ~ 3. So we must conclude that dist{C) ~ 3.
Finally since wt([0 l]G) = 3, we have that dist(C) = 3, establishing the
claim.

Recall the block code bound (Proposition 4.6). After Example 4.7 we
promised to give for any r an example of a rate 2/3 code using r different
monomials that has distance 2r, thus meeting the block code bound.

Example 4.22 Fix r and let m = r - 1. Let

G = [1 + ZI + O· .. + Zr-I 1 + ZI + ... + Zr-I 0]
1 + ZI + ... + Zr-I 1 + ZI + ... + Zr-I .

Observe that G is a unit memory encoder and may be written as G = Go +

zIGI+"'+Zr-IGr-1 whereGi = [~ ~ ~] forO~i~r-l. For each

i, dist(im{Gd) = 2. So by Proposition 4.20 we have that dist(im(G)) ~ 2r.
Thus dist(im{G)), which actually has distance equal to 2r, meets the block
code bound by Example 4.7.

Further work on unit memory multidimensional convolutional codes,
including a decoding algorithm, may be found in [12, Chapter 4].

Conclusion. In this paper some of the basics of multidimensional con
volutional codes were considered. These are a nontrivial generalizaion of
one-dimensional convolutional codes, with a more complex algebraic struc
ture. They also have many interesting distance properties.

The subject of multidimensional convolutional codes is largely open,
and much work remains to be done, including finding efficient implementa
tion for encoding and decoding multidimensional convolutional codes. Also

414 PAUL WEINER

it may prove fruitful to consider connections between multidimensional con
volutional codes and algebraic geometry.

As more investigations of multidimensional convolutional codes are
carried out, more interesting questions will come to light.

Acknowledgement. I would like to thank an anonymous referee for
suggesting improvements to this paper and for noticing some typographical
errors.

REFERENCES

[1] W.W. ADAMS AND P. LOUSTAUNAU. An Introduction to Griibner Bases. Volume 3
of Graduate Studies in Mathematics. American Mathematical Society, Rhode
Island, 1994.

[2] D. Cox, J. LITTLE, AND D.O. O'SHEA. Ideals, Varieties and Algorithms. Under
graduate Texts in Mathematics. Springer Verlag, New York, 1992.

[3] E. FORNASINI AND M.E. VALCHER. Algebraic aspects of 2D convolutional codes.
IEEE Trans. Inform. Theory, IT-40(4):1068-1082, 1994.

[4] E. FORNASINI AND M.E. VALCHER. Multidimensional systems with finite support
behaviors: Signal structure, generation, and detection. SIAM J. Control Op
tim., 36(2):760-779, 1998.

[5] H. GLUESING-LuERSSEN, J. ROSENTHAL, AND P.A. WEINER. Duality between mul
tidimensional convolutional codes and systems. Advances in Mathematical
Systems Theory, F. Colonius, U. Helmke, D. Praetzel-Wolters, F. Wirth (eds.),
Birkhii.user, Boston, 135-150, 2000.

[6] L.N. LEE. Short unit-memory byte-oriented binary convolutional codes having
maximal free distance. IEEE Trans. Inform. Theory IT-22(3):349-352, 1976.

[7] U. OBERST. Multidimensional constant linear systems. Acta Appl. Math, 20:1-175,
1990.

[8] PH. PIRET. A convolutional equivalent to Reed-Solomon codes. Philips J. Res.,
43{3-4):441-458, 1988.

[9] J. ROSENTHAL. Connections between linear systems and convolutional codes.
Codes, Systems and Graphical Models, J. Rosenthal and B. Marcus, eds. IMA
Volumes in Mathematics and its Applications, Springer-Verlag, 2000.

[10] C. THOMMESEN AND J. JUSTESEN. Bounds on distances and error exponents of
unit memory codes. IEEE Trans. Inform. Theory, IT-29(5):637-649, 1983.

[11] M.E. VALCHER AND E. FORNASINJ. On 2D finite support convolutional codes: an
algebraic approach. Multidim. Sys. and Sign. Proc., 5:231-243, 1994.

[12] P. WEINER. Multidimensional Convolutional Codes. PhD thesis, University of
Notre Dame, 1998. Available at http://www.nd.edurrosen/preprints.htmi.

[13] E.V. YORK. Algebraic Description and Construction of Convolutional Codes, a
Systems Theory Point of View. PhD thesis, University of Notre Dame, 1997.
Available at http://www.nd.edurrosen/preprints.htmi.

[14] D.C. YOULA AND P.F. PICKEL. The Quillen-Suslin theorem and the structure
of n-dimensional elementary polynomial matrices. IEEE Trans. Circuits and
Systems, 31(6):513-517, 1984.

[15] E. Zerz Primeness of multivariate polynomial matrices. Systems fj Control Letters,
29:139-145, 1996.

Part 5. Symbolic Dynamics
and Automata Theory

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES

FREDERIQUE BASSINO", MARIE-PIERRE BEAL*, AND

DOMINIQUE PERRIN"

Abstract. This paper presents a survey on length distributions of regular languages.
The accent is on problems in coding theory and the relation with symbolic dynamics.

Key words. Regular sequences, finite automata, prefix codes, bifix codes, symbolic
dynamics, zeta functions.

1. Introduction. The notion of a length distribution for a formal
language is a simple one: it is the generating series u{z) = Ln>o unzn of the
number of words of each length. This series carries important information
concerning a formal language since it measures in a sense the size of the
language. It is moreover appropriate in the case of coding. In fact, a
length-preserving encoding defines a one-to-one correspondence between
words. The two sets of words in such a correspondence will have the same
length distribution.

It is a classical result that the length distribution of a formal language
carries also some information concerning the structure of the language,
in the sense that algebraic operations on series correspond to operations
on formal languages. Thus, as we shall see below in more detail, length
distributions which are rational series correspond to regular languages.

This correspondence between operations on series and on sets is the
basis of the method of generating series in enumerative combinatorics. Nu
merous examples of applications can be found in the book of Graham,
Knuth and Pataschnik [23].

We present here a survey on length distributions of formal languages
with emphasis on the problems related to coding and finite automata. We
insist on the following general problem: given a family F of sets of words,
characterize the length distributions of the elements of F. For example,
the length distributions of prefix codes on k-symbols are the sequences
satisfying Kraft's inequality

i.e. u{l/k) ~ l.
Our emphasis is on the property of regularity which is the definability

by a finite automaton. This places our work at the intersection between

"Institut d'lhectronique et d'Informatique Gaspard-Monge, Universite de Marne la
Vallee, 5, Boulevard Descartes, Champs-sur-Marne, 77454 Marne la Vallee Cedex 2,
France. http://www-igm.univ-mlv.fr /

415

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

416 F. BASSINO, M.-P. BEAL, AND D. PERRIN

coding theory and automata theory. For example, one of the main re
sults presented here is a finite-state version of Kraft-McMillan's theorem
characterizing the length distributions of regular prefix codes.

We also make connexions with the field of symbolic dynamics. This is
natural since the basic notion of symbolic dynamics, namely the conjugacy
of subshifts is based on a one-to-one correspondence between paths in finite
graphs, giving rise to an invariance of the length distributions.

Our paper is organized as follows. The first sections (Sections 2,3)
present the basic notions on automata and formal series used in the paper.
In Section 4, we present the finite-state version of Kraft-McMillan theorem
mentioned above. The particular case of bifix codes is studied in Section
5. The last section (Section 6) presents several interconnected notions
concerning sub shifts of finite type and circular codes.

2. Length distributions. We consider the set A * of all words on a
given alphabet A. A subset of A * is often called a formal language. For
sets X, Y c A*, we denote

X+Y=XUY,

XY = {xy I x E X,y E Y},

X* = {XIX2 ···Xn I Xi E X,n ~ O}

We say that the pair (X, Y) is unambiguous if for each z E XY there is at
most one pair (x,y) E X x Y such that z = xy.

We say that a set of nonempty words X is a code if for each x E X*
there is at most one sequence (Xl,X2, ... ,xn) with Xi E X such that x =
XIX2··· Xn (one also says that X is uniquely decipherable). A particular
case of a code is a prefix code. It is a set of words X such that no element
of X is a prefix of another one. It is easy to see that such a set is either
reduced to the empty word or does not contain the empty word and is then
a code.

The length distribution of a set of words X is the sequence Ux =
(un)n2:0 with

We denote by Ux the formal series

ux(z) = L unzn.
n2:0

which is the ordinary generating series of the sequence ux.
For example, the length distribution of X = A* is u(z) = l!kz where

k = Card(A).
The entropy of a formal language X is

h(X) = 10g(l/ p),

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 417

where p is the radius of convergence of the series ux(z). It is well defined
provided X is infinite and thus p is finite. If the alphabet A has k elements,
we have heX) :=:; log k.

The following result relates the basic operations on sets with operations
on series.

PROPOSITION 2.1. The following properties hold for any subsets X, Y
of A*.

(i) If X n Y = 0, then Ux+y = Ux + Uy.
(ii) If the pair (X, Y) is unambiguous, then UXy = UXUy.

(iii) If X is a code, then Ux' = 1/(1- ux).
Proof. The first two formulae are clear. If X is a code, every word in

X* has a unique decomposition as a product of words in X. This implies
that

and thus,

o
uX' = 1 + Ux + ... + Ux n + ... = 1/(1- ux).

EXAMPLE 1. The set X = {b, ab} is a prefix code. The series UX' is

1
ux·(z) = 1-z-z2'

Let (Fn)n~o be the sequence of Fibonacci numbers defined by Fo = 0, Fl =
1, and Fn+2 = Fn+1 + Fn. It follows from the recurrence relation that

1 z 2 = LFnzn.
-z-z

n~O

Consequently, ux. (z) = I:n>o Fn+1zn. It can also be proved by a combi
natorial argument that the number of words of length n in X* is Fn+1 .

There are several variants of the generating series considered above.
One may first define

px(z) = L ~:zn,
n~O

where k = Card(A). The coefficients of zn in px(z) is the probability for
a word of length n to be in the set X. The relation between Ux and Px is
simple since px(z) = ux(z/k). Another variant of the generating series is
the exponential generating series of the sequence (un)n~O defined as

e(z) = '" Un zn.
L...J n!
n~O

We will also use the zeta function of a sequence (Un)n~l defined as

((z) = exp L Un zn.
n~l n

418 F. BASSINO, M.-P. BEAL, AND D. PERRIN

3. Regular distributions. In this section, we describe the connec
tion between the notions of a regular language and a rational series. We
prove the classical result (Theorem 3.4) characterizing the regular sequences
as the length distributions of regular languages. We mention finally the
possible extension to more general classes of formal languages, such as the
context-free languages. These results are well-known in the theory of au
tomata and we include them here for the sake of the reader's convenience.

A word on the terminology used here. We use constantly the term
regular where a richer terminology is often used. In particular, what we
call here a regular sequence is, in Eilenberg's terminology, an N-rational
sequence (see [20], [33] or [16]). A regular set is also called a rational or
recognizable set.

3.1. Regular sequences. A sequence u = (u n)n:2:0 of integers is reg
ular if there exists a finite graph G and two sets of vertices I, T of G such
that for all n 2': 0,

Un = Card(P(n,I, T)),

where P(n, I, T) is the set of paths of length n from a vertex of I to a vertex
of T. The graph G is one in which multiples edges are allowed (sometimes
called a multigraph). We say that the graph G recognizes the sequence u.

An equivalent definition of regular sequences is obtained by considering
nonnegative matrices.

PROPOSITION 3.1. A sequence u = (un)n>O of integers is regular iff
there exists a nonnegative matrix M E f;:!k x k and two vectors l, c E f;:!k such
that

where l is considered as a row vector and c as a column vector.
Proof. Let u be a regular sequence defined by a graph G on the set

{I, ... ,k} of vertices. We choose M to be the adjacency matrix of G, i.e.
for each pair v, w of vertices, Mv,w is the number of edges from v to w. Let
l be the row vector defined by Lv = 1 if v E I and 0 otherwise. Let c be
the column vector defined by Cv = 1 if vET and 0 otherwise. The number
of paths of length n from a vertex of I to a vertex of T is for each n 2': 1
equal to lMnc.

Conversely, let G be the graph with adjacency matrix M. Since the
family of regular sequences is closed under addition, we may suppose that
the vectors l, c have 0,1 coefficients. We can then consider l, c as the char
acteristic vectors of sets I, T of vertices. It is then obvious that the graph
thus constructed recognizes u. 0

EXAMPLE 2. Let G be the graph of Figure 1. The number of paths of
length n from vertex i = 1 to vertex t = 2 is the Fibonacci number Fn.

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 419

FIG. 1. The Fibonacci graph.

Accordingly, let M be the matrix

The same sequence is defined by the equation

We say that a sequence u of integers is rational if u{z} = p{z}/q{z} for
some polynomials p{z}, q{z} with integer coefficients. The following result
is classical.

THEOREM 3.1. Any regular sequence u of nonnegative integers is
rational.

Proof Let (l, M, c) be such that Un = lMnc. We have

n2':O n2':O

The result follows since the coefficients of {1 - M z} -1 are rational fractions.
o

EXAMPLE 3. The generating function of the Fibonacci sequence is

z
F{z} = 2' 1-z-z

The converse of Theorem 3.1 is not true. We have actually the follow
ing result, due to Jean Berstel (see [20] or [16]).

THEOREM 3.2. For any regular sequence u, there is an integer p such
that the set of poles of minimal modulus is the set of complex numbers pc
where p is the radius of convergence of u and cP = 1 for some p ~ 1.

In particular, the radius of convergence is a pole.
The following example (from [20] Example 6.1, Chapter VIII) shows

the existence of rational series with non-negative integer coefficients which
are not regular.

EXAMPLE 4. Let 0 < () < 7r /2 be such that cos () = a/ c with 0 < a < c
and c =I 2a. The sequence

420 F. BASSINO, M.-P. BEAL, AND D. PERRIN

is rational but not regular (poles: 1, e2i8 , e-2i8).

A sequence u is a merge of sequences

u(O), . .. , U(p-l)

if for n ~ 0, 0 ~ i < p,

U . - U(i)
pn+, - n'

We say that a pole of a rational series is dominating if it is strictly less
than the modulus of all other ones. The following result is due to Soittola
(see [33]).

THEOREM 3.3. A sequence of non-negative integers is regular iff it is
an merge of rational sequences with a dominating pole.

EXAMPLE 5. The sequence

1,1,2,1,4,2,8,3,16,5, ...

is the merge of the sequence of powers of 2 and the Fibonacci sequence.
A third equivalent definition of regular sequences is possible. One can

indeed show that a series u(z) is regular iff it can be obtained by a finite
number of operations of sum, product and star with

u*(z) = 1 - ~(z)'
starting from polynomials with nonnegative integer coefficients. An expres
sion of this form is usually called a regular expression.

EXAMPLE 6. The sequence (0,1,3,8,21, ...) formed of the Fibonacci
numbers of even index is regular. Indeed we have

with the triple (l, M, c) of Example 2. We have

M2 = (2 1)
1 1 '

and thus F2n is the number of paths of length n from 1 to 2 in the graph of
Figure 2. The series s(z) = Ln2:o F2n z n can accordingly be written

s(z) = z(2z + Z2 z*)* = _z(.:.-l_-_z-,-)-=-
1 - 3z + Z2

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 421

FIG. 2. One every other Fibonacci number.

3.2. Finite automata. We present here a brief introduction to the
concepts used in automata theory. For a general reference, see [31] or [20].

An automaton over the alphabet A is composed of a set Q of states, a
set E c Q x A x Q of edges or transitions and two sets I, T c Q of initial
and terminal states.

A path in the automaton A is a sequence

of consecutive edges. Its label is the word x = ala2'" an. A path is
successful if it starts in an initial state and ends in a terminal state. The
set recognized by the automaton is the set of labels of its successful paths.

An automaton is deterministic if, for each state p and each letter a,
there is at most one edge which starts at p and is labeled by a. The term
right resolving is also used.

b

FIG. 3. Golden mean automaton.

EXAMPLE 7. Let A be the automaton given in Figure 3 with 1 as
unique initial and terminal state. It recognizes the set X* where X is the
prefix code X = {b, ab}.

A set of words X over A is regular if it can be recognized by a finite
automaton.

It is a classical result that a set of words is regular iff it can be obtained
by a finite number of operations union, product and star, starting form the
finite sets.

The following result is also classical.
PROPOSITION 3.2. Every regular set can be recognized by a finite

deterministic automaton having a unique initial state.
Proof Let A = (Q, E, I, T) be a finite automaton over A recognizing

a set X. Let 13 = (n, F, {I}, 'T) be the automaton defined as follows. Its
states are the subsets

Q(u) = {q E Q I i ~ q for some i E I}

422 F. BASSINO, M.-P. REAL, AND D. PERRIN

for all u in A*. Since Q is finite, there is a finite number of subsets Q(u).
The edges of T3 are all triples

(Q(u), a, Q(ua)) .

The set of terminal states is

T = {U E n I Un T :j:. 0} .

It is easy to verify that T3 is deterministic and recognizes X. 0
THEOREM 3.4. The length distributions of regular sets are the regular

sequences.
Proof Let X be a regular set. By Proposition 3.2, it can be recognized

by a deterministic automaton A. Since A is deterministic, there is at most
one path with given label, origin and end. Thus the number of paths of
length n from the initial state to a terminal state is equal to the number
Un of words of X of length n.

Conversely, let u be a regular sequence enumerating the paths in a
graph G from I to T. We consider the graph G as an automaton with all
edges with distinct labels. Let X be the set of labels of paths from I to T.
The sequence u is the length distribution of the set X. 0

EXAMPLE 8. If X = a*b, then

z
ux(z) = --.

l-z

3.3. Beyond regular sequences. There are several natural classes
of series beyond the rational ones. The algebraic series are those satisfying
an algebraic equation. More generally, the hypergeometric series are those
such that the quotient of two successive terms is given by a rational fraction
(see [23]).

The class of algebraic series is linked with the class of context-free sets
(see [21)). A typical example of a context-free set is the set of words on
the binary alphabet {a, b} having as many a's as b's. We compute below
its length distribution which is an algebraic series.

EXAMPLE 9. The set of words on A = {a, b} having an equal number
of occurrences of a and b is a submonoid of A * generated by a prefix code
D. Since any word of D* of length 2n is obtained by choosing n positions
among 2n, we have

By a simple application of the binomial formula, we obtain

UD'(Z) = (1-4z2)-!.

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 423

This follows indeed, using the simple identity

(_1) 1 (2n)
n2 = (-4)n n .

We have UD(Z) = 1 - l/uD* (z) and thus

UD(Z) = 1- J1- 4z2.

Thus UD (z) is an algebraic series, solution of the equation

4. A finite-state version of the Kraft-McMillan theorem. Let
X be a prefix code on an alphabet with k symbols. It is classical that its
length distribution U = (Un)n~l satisfies Kraft's inequality

or equivalently u(l/k) ::; 1. The number u(l/k) can actually be interpreted
as the probability that a long enough word has a prefix in X.

There is also a connexion with the notion of entropy. Actually, if X is
a prefix code, the entropy of X* is equal to log(l/ p) where p is the solution
of the equation ux(p) = 1. Thus Kraft's inequality expresses the fact that
h(X*) ::; log k.

Conversely, Kraft-McMillan's theorem states that for any such se
quence U = (U n)n2:1' there exists a prefix code X on a k-symbol alphabet
such that U = ux.

Let us briefly describe the proof. We suppose by induction to have
already built a prefix code X formed of words of length at most n - 1 with
length distribution (Ul' U2, ... ,un-d on the alphabet Ak = {O, 1, ... ,k -
I}. We have

and thus

n

L Ui k- i ::; 1,
i=l

n

L Ui kn- i ::; kn.
i=l

This allows us to choose Un words on the alphabet Ak of length n without
a prefix in X. For the sake of a complete description of the construction,
we have to specify the choice made at each step among the words of length

424 F. BASSINO, M.-P. BEAL, AND D. PERRIN

n which do not have already a prefix in X. A possible policy is to choose
the earlier ones in the alphabetic order.

The equality case in Kraft's inequality corresponds to a particular class
of prefix codes often called complete. A prefix code X on the alphabet A is
complete if any word on A has either a prefix in X or is a prefix of a word
of X.

The notion of a prefix code is related to the notion of a tree. A prefix
code on k symbols corresponds to a k-ary tree. The length distribution of
the prefix code is the enumerative sequence of the leaves of the tree. We
call it the length distribution of the tree. Usually, the interest is focused on
finite trees, as in Huffman algorithm for example.

We are interested here in the case of infinite trees and, more especially
of regular trees arising from prefix codes which are regular, in the sense
defined above. The notion of a regular tree can also be defined directly as
an infinite tree with only a finite number of non-isomorphic subtrees.

By Theorem 3.4, if X is regular, then the sequence Ux is also regu
lar. The following result shows that conversely the conjunction of the two
conditions (of being regular and to satisfy Kraft's inequality) is sufficient
to ensure the existence of a regular prefix code on a k-symbol alphabet.

THEOREM 4.1. A sequence u of integers is the length distribution of
a regular prefix code on k symbols iff

(i) it is regular.
(ii) it satisfies Kraft's inequality u{l/k) ::; 1.

The essence of this result is a constructive method allowing one to
build the regular prefix code X given the sequence u.

Two simple methods come to mind at first glance. The first one is
to apply directly the proof of the Kraft's theorem. The following example
shows that the result need not be a regular set, although the sequence u is
itself regular.

EXAMPLE 10. Let u{z) = z2/(1 - 2z2). Since u{1/2) = 1/2, we may
apply the Kraft construction to build a binary tree with length distribution
u. The result is the set

X = U OlnO{O,l}n
n2:0

which is not regular.
The second method takes into account the hypothesis that the se

quence is regular. It will fail in its naive version but the solution is a
refinement of this idea. Let G be a graph such that Un is the number of
paths of length n from I to T. We can normalize the graph G to obtain a
graph such that 1= {i}, T = {t} and that no edge goes out of t. We label
each edge in such a way that edges with a common start have different
labels. The set recognized by the automaton thus constructed is a prefix
code with length distribution equal to u.

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 425

The trouble is that the number of symbols used may well be larger
than k as shown by the following example.

EXAMPLE 11. Let u be the regular sequence given by the graph of
Figure 4 on the left with i = 1 and t = 4. We have also u(z) = 3z2/ (1- z2).
Furthermore u(I/2) = 1 and thus u satisfies Kraft's equality. However there
are four edges going out of vertex 2 and the method described above fails
to build a binary prefix code. A solution on A = {a, b} is the regular prefix
code

x = (aa)*(ab + ba + bb).

The corresponding automaton is given on Figure 4 on the right.

FIG. 4. Graphs recognizing u(z) = 3z2/(1 - z2).

The proof of Theorem 4.1 consists in building a new graph with all
vertices of out degree at most k. It relies on a transformation called the
multiset construction described in [8]. The proof uses the following com
binatorial lemma also used in symbolic dynamics by Adler and Marcus
[28],[2], and quoted in [4] as a nice variant of the pigeon-hole principle.

LEMMA 4.1. Let k1 , k2 , ••• , kn be positive integers. Then there is a
subset S C {I, 2, ... , n} such that I:sEs ks is divisible by n.

(4.1)

The graph obtained is shown in an example below.
EXAMPLE 12. Let

We have u(I/2) = 1. A regular binary tree with length distribution u is
given in Figure 5 (note that, by convention, a vertex labeled v has its sons
represented only once on the figure. Thus, for example the vertex labeled
1 on the right has the same sons as the root. The leaves of the tree are
indicated by a black box).

To check that the length distribution is equal to u, one may compute
from the graph the following regular expression of u and check by an el
ementary computation (possibly with the help of a symbolic computation
system) that it is equal to u.

426 F. BASSINO, M.-P. BEAL, AND D. PERRIN

FIG. 5. Regular binary tree with length distribution u.

{note for a reader unfamiliar with regular expressions: the first factor (z6)*
corresponds to the vertex labeled 1 at level 6 of the tree. The term 2z2 +
z4 + 2z5 + Z6 corresponds to the leaves reached by a path which does not
use a vertex labeled 5. The factor (Z2 + 3z5)(5z3)* corresponds to the paths
from the root to a vertex labeled 5. Finally, the factor 3z3 corresponds to
the direct paths from 5 to a leaf.)

This example (suggested to us by Christophe Reutenauer) shows an
interesting feature of this problem. In fact, from the point of view of regular
expressions, the difficult operation in this problem is the sum. It would be
a simple matter to build a rational tree for each term of the sum in the
expression (12) (see Example 11). The difficulty would then be to merge
these two trees to obtain one corresponding to the sum.

A curious consequence of Theorem 4.1 is the following property of
regular sequences.

COROLLARY 4.1. Let k 2: 2 be an integer and let u be regular sequence
such that u(l/k) :S 1 and u(O) = O. Then there exist k regular sequences
Ul,·.· ,Uk such thatui(l/k):S 1 and

k

u(z) = L ZUi(Z).

i=l

Proof. It is a simple consequence of Theorem 4.1. Indeed, if X is a
regular prefix code on the k element alphabet A, then X = :EaEA aXa
where each Xa is a regular prefix code on the alphabet A. 0

We don't know of a direct proof of this result.

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 427

5. Bifix codes. We investigate here the length distributions of a par
ticular class of prefix codes, called bifix. Several other classes of prefix
codes could give rise to a similar study (for a description to these classes,
see [19]).

The definition of a suffix code is symmetric to the definition of a prefix
code. It is a set of words X such that no element of X is a suffix of another
one. The notion of a complete suffix code is also symmetric. A bifix code
is a set X of words which is both a prefix and a suffix code.

Any set of words of fixed length is obviously a bifix code but there are
more complicated examples.

a

a
b

b

FIG. 6. The bifix code X.

EXAMPLE 13. The set

X = {aaa,aaba,aabb,ab,baa,baba,babb,bba,bbb}

is a complete prefix code pictured in Figure 6. It is also a complete suffix
code as one may check by reading its words backwards.

Surprisingly, it is an open problem to characterize the length distri
butions of bifix codes. The following simple example shows that they are
more constrained than those of prefix codes.

EXAMPLE 14. The sequence u(z) = z + 2Z2 is not realizable as the
length distribution of a bifix code on a binary alphabet although u(1/2) = l.
Indeed, one of the symbols has to be in X, say a. Then bb is the only word
of length 2 that can be added.

The following nice partial result is due to Ahlswede, Balkenhol and
Khachatrian [3]. We state the result for a binary alphabet. It can be
readily generalized to k symbols but it presents less interest.

428 F. BASSINO, M.-P. BEAL, AND D. PERRIN

THEOREM 5.1. For any integer sequence u such that

u{I/2} :::; 1/2,

there is a bijix code X such that u = ux.
Proof. The proof is by induction. We suppose that we have already

built a bifix code X formed of words of length at most n - 1 with length
distribution (Ul' U2,··· ,un-d. We have

and thus

Finally, we obtain

n

LUiTi:::; 1/2,
i=l

n

2 L Ui2n-i :::; 2n.
i=l

n-l

un:::; 2n - 2 L Ui 2n- i .

i=l

The expression of the right handside is at most equal to the number of
elements of the set An - X A * - A * X. Thus, we can choose Un words of
length n which do not have a prefix or a suffix in X. This proves the result
by induction. 0

The authors of [3] formulate the interesting conjecture that Theorem
5.1 is still true if the hypothesis u{1/2) S; 1/2 is replaced by u{I/2) :::; 3/4.

There are known additional conditions imposed on length distributions
of bifix codes. For example, one has the following result, originally due to
Schiitzenberger (see [14]).

THEOREM 5.2. If X is a jinite complete bijix code on k symbols, then
ux{l/k} = 1 and lux {l/k} is an integer.

The number tux(1/k} can be interpreted as the average length of the
words of X. Indeed

ZUx{z} = L Ixlz1xl .
xEX

EXAMPLE 15. For the bijix code of Example 13, we have

ux{z} = Z2 + 4z3 + 4z4

and thus

ux{z} = 2z + 12z2 + 16z3 •

Hence ~ux{I/2) = 3. The conditions of Theorem 5.2 show directly that
the sequence of Example 14 is not realizable. Indeed, it satisfies the first
condition but not the second one. The conditions of Theorem 5.2 are not
sufficient. Indeed, if u{z) = z + 4z3 we have u{I/2) = 1 and u'{1/2} = 4
although it is dearly impossible that u = Ux for a bifix code X.

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 429

6. Zeta functions, subshifts of finite type and circular codes.
In this section, we present a number of results on interrelated objects which
are connected with cyclic permutation of words. We begin with notions
classical in symbolic dynamics (see [25] or [24] for a general reference; see
[13] or [22] for the link with finite automata).

6.1. Subshifts of finite type. A subshift is a set of biinfinite words
on a finite alphabet A which avoids a given set F of forbidden words. It is
a topological space as a closed subset of the space AZ of functions from Z
into the set A. The full shift on A is the set of all biinfinite words on A. It
corresponds to the case F = 0.

A sofic sub shift is the set of biinfinite labels of paths in a finite au
tomaton. A sofic subshift is called irreducible if the automaton can be
chosen strongly connected. A subshift of finite type is the set of biinfinite
words avoiding a finite set of finite words. Any subshift of finite type is
sofic but the converse is not true. The edge shift of a finite graph G is the
set Sa of biinfinite paths in G (viewed as biinfinite sequences of edges). It
is a subshift of finite type.

The shift 17 is the function on a subshift S which maps a point x to
the point y = I7(X) whose ith coordinate is Yi = Xi+l.

A morphism from a sub shift S into a subshift T is a function f : S -+ T
which is continuous and invariant under the shift. A bijective morphism is
called a conjugacy. Any sub shift of finite type is conjugate to some edge
shift.

The entropy h(S) of a sub shift S is the entropy of the formal language
formed by the finite blocks occurring in words of S. It can be shown
that the entropy is a topological invariant, in the sense that two conjugate
sub shifts have the same entropy.

While the entropy is a measure of number of forbidden words, it is
possible to study the number of minimal forbidden words. It gives rise to
another invariant of subshifts [11], [12].

An integer p is a period of a point x = (an)nEz if an+p = an for all
n E Z. Equivalently, p is a period of x if I7P(X) = x. The zeta function of
a subshift S, is defined as the series

((S) = exp L Pn zn
n

n2:1

where Pn is the number of words with period n in S. It is also a topological
invariant, since a point of period n is mapped by a conjugacy on a point
of the same period.

The following result due to Bowen and Lanford [18] is classical (see
[25]) .

PROPOSITION 6.1. Let G be a finite graph and let M be the adjacency
matrix of G. Then

((Sa) = det(I - MZ)-l.

430 F. BASSINO, M.-P. BEAL, AND D. PERRIN

Proof We first have for each n ~ 1

since the coefficient (i,j) of Mn is the number of paths from i to j. Thus

Tr(Mn)
= exp L zn

n
n2':l

= expTr(1og(I - MZ)-l)

= det(I -MZ)-l

since, by the formula of Jacobi, exp Tr = det expo 0
EXAMPLE 16. Let 8 be the edge shift of the graph G of Figure 7. We

have

Consequently

1
((8) = 1 _ z _ z3

FIG. 7. A subshift of finite type.

Let 8 be a subshift of finite type and let Pn be the number of points
with period n. Let qn be the number of points with least period n. Since
qn is a multiple of n, we also denote qn = nln. We have then the formula
expressing the zeta function as an infinite product using the integers In as
exponents.

as one may verify using Pn = I:dln dld and the definition of ((8).

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 431

A classical result, related with what follows, is the following statement,
known as Krieger's embedding theorem.

THEOREM 6.1. Let S, T be two subshifts of finite type. There exists
an injective morphism f : S -+ T with f(S) i- T iff

1. h(S) < h(T)
2. for each n 2 1, qn(S) ::; qn(T) where qn(S) (resp. qn(T)) is the

number of points of S (resp. T) of least period n.
The following result is the basis of many applications of symbolic dy

namics to coding. It is due to Adler, Coppersmith and Hassner [2].
THEOREM 6.2. If S is an irreducible subshift of finite type such that

h(S) 2 log k, it is conjugate to a subshift of finite type SG where the graph
G has outdegree at least k.

The proof is based on a state-splitting algorithm using approximate
eigenvectors and Lemma 4.1. This result is part of a number of construc
tions leading to sliding block codes used in magnetic recording (see [29], [9]
or [25]). It gives at the same time the following result.

THEOREM 6.3. It S is a subshift of finite type such that h(S) ::; log k,
then there is a graph G of outdegree at most k such that S is conjugate to

SG·
There is a connexion between this theorem and Theorem 4.1. Let

indeed u be a regular sequence of integers such that u(l/k) ::; 1. Let G
be a normalized graph recognizing u (in the sense of Section 4). Let G
be the graph obtained by merging the initial and terminal vertex. Then
h(Sa) ::; log k. We can apply Theorem 6.3 to obtain a graph H with
out degree at most k such that SG and SH are conjugate. This gives the
conclusion of Theorem 4.1 provided the initial-terminal vertex did not split
in the construction. The following examples show both cases (for details,
see [6] and [7]).

EXAMPLE 17. Let G be the graph of Figure 4. The splitting of vertex
2 gives a graph of outdegree 2. A normalization gives the automaton on
the right.

EXAMPLE 18. The sequence of Example 12 is recognized by a graph G
such that G has three cycles of length 2. The solution as a binary tree has
only two cycles of length 2 and thus could not be obtained by state-splitting.

6.2. Circular codes. A circular word, or necklace, is the equivalence
class of a word under cyclic permutation. For a word w, we denote by w
the circular word represented by w.

Let X be a set of words and w = X1X2··· Xn with Xi EX. The set of
cyclic permutations of the sequence (Xl, X2, ••• ,xn) is called a factorization
of the circular word w.

A circular code is a set X of words such that the factorization of
circular words is unique.

EXAMPLE 19. The set X = {a, aba} is a circular code. Indeed, the
position of the symbols b determines uniquely the occurrences of aba.

432 F. BASSINO, M.-P. BEAL, AND D. PERRIN

EXAMPLE 20. The set X = {ab, ba} is not a circular code. Indeed,
the circular word ill for w = abab has two factorizations namely (ab, ab)
and (ba, ba).

The following characterization is useful (see [14]).
PROPOSITION 6.2. A set X is a circular code if and only if it is a

code and for all u, v E A*,

uv,vu E X* => u,v E X*

EXAMPLE 21. We obtain another way to prove that the set X =
{ab, ba} is not a circular code. Indeed, otherwise we would have a, b E X*
which is contradictory.

Let X be a finite code. The flower automaton of X, denoted Ax, is
the following automaton. The set of its states is

Q = {(u, v) E A+ X A+ I uv E X} U (1,1)

The transitions are of the form (u, av) ~ (ua, v) or (1, 1) ~ (a, v) or
(u, a) ~ (1,1). The unique initial and final state is (1,1).

EXAMPLE 22. The flower automaton of the circular code {a, aba} is
pictured in Figure 8.

a b

FIG. 8. The flower automaton of {a, aba}.

The following result is easy to prove.
PROPOSITION 6.3. The flower automaton Ax recognizes X*. The

code X is circular iff for each word w, there is at most one cycle with label
w.

We now study the length distributions of circular codes. Let X be a
circular code and let u(z) = (Un)n;:::l be its length distribution. For each
n ~ 1, let Pn be the number of words w of length n such that ill has a
factorization in words of X.

PROPOSITION 6.4. The sequences (Pn)n;:::l and (Un)n;:::l are related by

(6.1)

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 433

Proof. Each (Pn) depends only on the first n terms of the sequence
(un). It is therefore possible to suppose that the sequence (un) is finite,
i.e. that the code X is finite. Let A be the flower automaton of X. Let S
be the subshift of finite type associated with the graph of A. Then Pn is
the number of elements of period n in S. Indeed, each word w such that
W has a factorization is counted exactly once as the label of a cycle in A.
We have also

det(I - Mz) = 1- u(z).

Thus, the result follows from Proposition 6.1. 0
The explicit relation between the numbers Un and Pn is the following.

For each i 2': 1, let u(i) = (U~))n>l be the length distribution of Xi.
(D -

Equivalently, Un is the coefficient of degree n of u(z)i. Then for each
n2':l

n

Pn = L :;u~).
i=l Z

We also have for each n 2': 1

(6.2)
n-l

Pn = nUn + LPiUn-i.
i=l

This formula can be easily deduced from Formula (6.1) by taking the log
arithmic derivative of each side of the formula. It shows directly that for
any sequence (Un)n>l of nonnegative integers, the sequence Pn defined by
Formula (6.1) is for~ed of nonnegative integers.

Formula (6.2) is known as Newton's formula in the field of symmetric
functions. Actually, the numbers Un can be considered, up to the sign, as
elementary symmetric functions and the Pn as the sums of powers (see [26]).
The link between Witt vectors and symmetric functions was established in
[34].

Let Pn = Ldln did· Then in is the number of non-periodic circular
words of length n with a factorization. In terms of generating series, we
have

(6.3)

Putting together Formulae (6.1) and (6.3), we obtain

(6.4)
1
-~ = II(l- zn)-ln.
1 -u(z)

n2:1

For any sequence (Un)n2:1 of nonnegative integers, the sequence i = (In)n2: 1
thus defined is formed of nonnegative integers. This can be proved either

434 F. BASSINO, M.-P. BEAL, AND D. PERRIN

by a direct computation or by a combinatorial argument since any sequence
u of nonnegative integers is the length distribution of a circular code on
a large enough alphabet. We denote l = ¢(u) and we say that l is the
¢-transform of the sequence u.

We denote by <Pn(k) the number of non-periodic circular words of
length n on k symbols. The numbers <Pn(k) are called the Witt numbers.
It is clear that the sequence (<Pn(k))n>l is the ¢-transform of the sequence
(knk~::l' -

The corresponding particular case of Identity (6.4)

1 - kz = II (1 - zn)'Pn{k)
n;:::l

is known as the cyclotomic identity.
The following arrays display a tabulation of the Witt numbers for small

values of nand k.

n <Pn(2) <Pn (3) <Pn(4)
1 2 3 4
2 1 3 6
3 2 8 20
4 3 18 60
5 6 48 204
6 9 116 670
7 18 312 2340
8 30 810 8160
9 56 2184 29120
10 99 5880 104754

The value '1'3(4) = 20 is famous because of the genetic code: there
are precisely 20 amino-acids coded by words of length 3 over a 4-symbol
alphabet A,C,G,U.

For any sequence a = (an) n;:::l, let

"d n/d Pn = L-.J ad .

din

The pair (a,p) is called a Witt vector (see (30)). The numbers Pn are the
ghost components. In terms of generating series, one has

exp 2: Pn zn = II (1 - anzn)-l.
n n;:::l n;:::l

The following result is due to Schiitzenberger (see (14)).

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 435

THEOREM 6.4. Let u = (Un)n~l be a sequence of nonnegative integers
and let l = (In)n>l be the ¢-transform of u. The sequence (Un)n>l is the
length distribution of a circular code on k symbols iff for all (n 2:-1)

In :s ipn(k).

Several complements to Theorem 6.4 appear in [5]. In particular, the
relation with Kraft's inequality is studied. The equality case in Kraft's
inequality is characterized in terms of the sequence of inequalities above.

There is a connexion between Theorem 6.4 and Krieger's embedding
theorem (Theorem 6.1), in the sense that Theorem 6.4 gives a simple proof
of Theorem 6.1 in a particular case. Actually, let us consider the particular
case of subshift of finite type, called a renewal system.

A renewal system S is the edge shift of a graph G made up of cycles
sharing exactly one vertex. Such a graph is determined by the sequence
U = (uih::;i::;n where Ui is the number of loops with length i. Let Tk be
the full shift on k symbols. Suppose that the pair formed by Sand Tk
satisfies the hypotheses of Krieger's theorem. The number qn(S) of points
of least period n is nln where l = (In)n>l is the ¢-transform of the sequence
U and qn(Tk) = nipn(k). Thus, the sequence U satisfies the hypotheses of
Theorem 6.4. Consequently, there is circular code X such that Ux = u.

The flower automaton of X defines an embedding of Sa into the full shift
on k symbols. This gives an alternative proof of Krieger's theorem in this
case.

It would be interesting to have a proof of Krieger's theorem along the
same lines in the general case.

To close this section, we mention the following open problem: If the
sequence U is regular and satisfies the inequalities

(n 2: 1),

where l = ¢(u), does there exist a rational circular code on k symbols such
that U = ux?

6.3. Zeta functions. Theorem 6.1 admits the following generaliza
tion due to Reutenauer [32].

THEOREM 6.5. The zeta function of a sofic subshijt is regular.
We have seen already (Theorem 6.1) that the zeta function of a subshift

of finite type is a rational fraction, and indeed the inverse of a polynomial.
The stronger statement that it is regular follows from the following formula
allowing to compute det(I - M z) when M is the adjacency matrix of a n x n
graph G. One has

det(I - Mz) = (1- Vl(Z))'" (1- vn(z)),

where Vi (z) is the length distribution of the set of first returns to state i
using only states {i,i+l, ... ,n} (see [10]).

436 F. BASSINO, M.-P. BEAL, AND D. PERRIN

The proof that the zeta function of a sofic subshift is rational is a
result of Manning and Bowen [27], [17]. For an exposition, see [25] or [10].
A generalization appears in [15].

Acknowledgments. The authors wish to thank for the help received
during the preparation of this paper. We are indebted to Julia Abrahams
for the reference of the work of Ahlswede et al. and several other recent
references concerning bifix codes (see [1]). The link between length distri
butions of circular codes and symmetric functions was disclosed to us by
Jacques Desarmenien and Jean-Yves Thibon. We also thank Veronique
Bruyere for improving our work.

REFERENCES

[1] J. ABRAHAMS, Code and parse trees for lossless source encoding, in Compression
and Complexity of Sequences 1997, B.C. et aI., ed., IEEE Computer Society,
1998, pp. 145-171.

[2] R.L. ADLER, D. COPPERSMITH, AND M. HASSNER, Algorithms for sliding block
codes, IEEE '!rans. Inform. Theory, IT-29 (1983), pp. 5-22.

[3] R. AHLSWEDE, B. BALKENHOL, AND L. KHACHATRIAN, Some properties of fix-free
codes, Tech. Rep. 039, University Bielefeld, 1997.

[4] M. AIGNER AND G.M. ZIEGLER, Proofs from The Book, Springer-Verlag, 1998.
[5] F. BASSINO, Generating functions of circular codes, Adv. in Appl. Math, 22 (1999),

pp.I-24.
[6] F. BASSINO, M.-P. BEAL, AND D. PERRIN, Enumerative sequences of leaves in

rational trees, in ICALP'97, no. 1256 in Lecture Notes in Computer Science,
Springer-Verlag, 1997, pp. 76-86.

[7] --, Enumerative sequences of leaves and nodes in rational trees, Theoret. Com
put. Sci. (1999), pp. 41-60.

[8] --, A finite state version of version of Kraft-McMillan theorem, SIAM J.
Comput. (2000). To appear.

[9] M.-P. BEAL, Codage Symbolique, Masson, 1993.
[10] --, Puissance exterieure d'un automate deterministe, application au calcul de

la fonction fonction zeta d'un systeme sofique, RAIRO Inform. Theor. Appl.,
29 (1995), pp. 85-103.

[11] M.-P. BEAL, F. MIGNOSI, AND A. RESTIVO, Minimal forbidden words and symbolic
dynamics, in STACS'96, C. Puech and R. Reischuk, eds., Vol. 1046 of Lecture
Notes in Computer Science, Springer-Verlag, 1996, pp. 555-566.

[12] M.-P. BEAL, F. MIGNOSI, A. RESTIVO, AND M. SCIORTINO, Forbidden words in
symbolic dynamics, Tech. Rep. 99-15, I.G.M., Universite de Marne-la-Vallee,
1999. To appear in Adv. in Appl. Math.

[13] M.-P. BEAL AND D. PERRIN, Symbolic dynamics and finite automata, in Handbook
of Formal Languages, G. Rosenberg and A. Salomaa, eds., Vol. 2, Springer
Verlag, 1997, ch. 10.

[14] J. BERSTEL AND D. PERRIN, Theory of Codes, Academic Press, 1985.
[15] J. BERSTEL AND C. REUTENAUER, Zeta functions of formal languages, '!rans.

Amer. Math. Soc., 321 (1990), pp. 533-546.
[16] --, Rational Series and their Languages, Springer-Verlag, 1998.
[17] R. BOWEN, On Axiom A diffeomorphisms, in AMS-CBMS Reg. Conf., Vol. 35,

Providence, 1978.
[18] R. BOWEN AND O.E. LANFORD, Zeta functions of restrictions of the shift trans

formation, in Proc. Symp. Pure Math. AMS, Vol. 14, 1970, pp. 43-50.

LENGTH DISTRIBUTIONS AND REGULAR SEQUENCES 437

[19] V. BRUYERE AND M. LATTEUX, Variable-length maximal codes, in Proc. 23rd Inter
national Colloquium on Automata, Languages and Programming (ICALP'96),
F. Meyer and B. Monien, eds., Vol. 1099, Springer-Verlag, 1996, pp. 24-47.

[20] S. ElLENBERG, Automata,Languages and Machines, Vol. A, Academic Press, 1974.
[21] P. FLAJOLET, Analytic models and ambiguity of context-free languages, Theoret.

Comput. Sci., 49 (1987), pp. 283-309.
[22] G.D. FORNEY, B.H. MARCUS, N.T. SINDHUSHAYANA, AND M. TROTT, A multi

lingual dictionary: System theory, coding theory, symbolic dynamics and au
tomata theory, in Proceedings of Symposia in Applied Mathematics, no. 50,
1995, pp. 109-138.

[23] R.L. GRAHAM, D. KNUTH, AND O. PATASCHNIK, Concrete Mathematics, Addison
Wesley, 1988.

[24] B.P. KITCHENS, Symbolic Dynamics, Springer-Verlag, 1997.
[25] D.A. LIND AND B.H. MARCUS, An Introduction to Symbolic Dynamics and Coding,

Cambridge, 1995.
[26] LG. MACDONALD, Symmetric Functions and Hall Polynomials, Oxford University

Press, 1995.
[27] A. MANNING, Axiom A difeomorphisms hava rational zeta functions, Bull. London

Math. Soc., 3 (1971), pp. 215-220.
[28] B.H. MARCUS, Factors and extensions of full shifts, Monats. Math, 88 (1979),

pp. 239-247.
[29] B.H. MARCUS, R.M. ROTH, AND P .H. SIEGEL, Constrained systems and coding

for recording channels, in Handbook of Coding Theory, V. S. Pless and W. C.
Huffman, eds., Vol. II, North Holland, 1998, ch. 20, pp. 1635-1764.

[30] N. METROPOLIS AND G.-C. ROTA, Witt vectors and the algebra of necklaces, Ad
vances in Math., 50 (1983), pp. 95-125.

[31] D. PERRIN, Finite automata, in Handbook of Theoretical Computer Science, J. van
Leeuwen, ed., Vol. B, Elsevier, 1990, ch. l.

[32] C. REUTENAUER, N-rationality of zeta functions, Adv. in Appl. Math., 29 (1997),
pp.I-17.

[33] A. SALOMAA AND M. SOITTOLA, Automata Theoretic Properties of Formal Power
Series, Springer-Verlag, 1978.

[34] T. SCHARF AND J.-Y. THIBON, On Witt vectors and symmetric functions, Algebra
Colloq., 3 (1996), pp. 231-238.

HANDELMAN'S THEOREM ON POLYNOMIALS WITH
POSITIVE MULTIPLES

VALERIO DE ANGELIS· AND SELIM TUNCELt

Abstract. For a polynomial p in several variables and a face F of its Newton
polytope, let PF denote the polynomial consisting of the terms of P that lie in F, with
the coefficients given by p. Handelman's theorem states that p has a polynomial multiple
with positive coefficients if and only if no P F has a zero with strictly positive coordinates.
We give a short and self-contained account of its proof.

Key words. polynomials, positivity, positive coefficients, ordered groups, states.

AMS(MOS) subject classifications. Primary 06F25, 37A99, 37B10.

1. Introduction. Let R = lR[x~, ... , xt] be the ring of Laurent poly
nomials in the variables Xl, ... , Xk, and let R+ = lR+ [x~, ... , xt] be the
sub-semiring consisting of polynomials with nonnegative coefficients. For
a = (al, ... , ak) E zk, write xa = X~l .•. X~k and denote the coefficient
of x a in pER by Pa. Then p = LaEZk Paxa and Pa are nonzero for only
finitely many a E Zk. Let Log(p) = {a E Zk : Pa :I a}. The Newton
polytope N(p) is the rational convex hull of Log(p). Denote the collection
of nonempty faces of N(p) by F(p). For F E F(p) let PF be the sum of
Paxa over a E F n Log(p), and call PF the F-face of p. Note that in the
case F = N(p) we have PF = p.

Handelman's Theorem [3]. For pER the following are equivalent.
(i) There exists q E R such that qp E R+ \ {a}.

(ii) There exists q E R+ such that I:g:::: :gl qp E R+ \ {a}.
(iii) We have PF(ex) :I 0 for all FE F(p) and ex E (0, oo)k.

Call pER numerically positive if it is the case that p(ex) > 0 for all
ex E (O,oo)k. Clearly, elements of R+ are numerically positive. It is also
easy to see that each of (i), (ii), (iii) implies that either p is numerically
positive or -p is numerically positive. The number p(I, ... , 1)/lp(I, ... ,1)1
in (ii) equals 1 or -1, depending on whether p or -p is numerically positive.

Handelman's theorem has been applied in situations related to sym
bolic dynamics. (See [1, 4] for examples.) Its proof relies on a result from
the theory of partially ordered Abelian groups [2] and takes up a significant
portion of a Memoir [3]. We will give a short and self-contained account.
We emphasize that this is not a new proof but, rather, an economical ac
count of the original proof. It will be clear that similar results are valid
for polynomial rings, as well as Laurent polynomial rings, whether the
coefficients are restricted to lR, Q or Z.

·Department of Mathematics, Xavier University, New Orleans, LA 70125.
tDepartment of Mathematics, University of Washington, Seattle, WA 98195.

439

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

440 VALERIO DE ANGELIS AND SELIM TUNCEL

2. Pure states. Let 1 E R+. Define S to be the sub ring of R[}]
generated by {X,a : a E Log(f)}, and let S+ be the subsemiring generated
by the same set. Then S = S+ - S+. For g, h E S we write 9 :S h
if h - 9 E S+. Every element 9 E S is of the form 9 = r / r, with
n E N, r E Rand Log(r) c Log(r). This expression is not unique
since r / r = r 1m / r+m. An element r / r of S lies in S+ if and only if
r 1m E R+ for some mEN. The constant polynomial 1 = 1/1 belongs to
S+. It has the property that for every In E S there exists KEN such
that In < K1.

An additive group homomorphism ¢ : S -+ lR will be called a state
if ¢(S+) c lR+ and ¢(1) = 1. It is easy to see that states form a convex
subset 8 of lRs . An extreme point of 8 is said to be pure.

We have here examples of objects studied in the theory [2] of partially
ordered Abelian groups: Let G be an (additive) Abelian group endowed
with a translation invariant partial order :S, and put G+ = {g E G : 9 2: O}.
An element u E G+ is called an order unit if for every 9 E G there exists
KEN such that 9 :S Ku. Given an order unit u, let 8(G, u) denote the set
of group homomorphisms ¢ : G -+ lR with ¢(G+) c lR+ and ¢(u) = 1. An
element ¢ E 8(G, u) is a (normalized) state. Note, in particular, that states
are order-preserving. The set 8(G, u) C lRG is convex, and its extreme
points are said to be pure.

In the case we are considering, 1 is an order unit of Sand 8 = 8(S, 1).
Our first lemma is a special case of a general result [2]; we postpone its
proof until section 4. We write 9 > 0 when 9 E S+ and 9 =I- O.

LEMMA 2.1. Let 9 E S. If ¢(g) > 0 for every pure state ¢, then
9 > O.

LEMMA 2.2. Every pure state ¢ E 8 is multiplicative.
Proof Let ¢ be an extreme point of 8. Since S = S+ - S+ and ¢ is

additive, it suffices to check that we have ¢(gh) = ¢(g)¢(h) for g, hE S+.
Fix 9 E S+, and KEN such that 9 :S K1. Then 0 :S ¢(g) :S K. For
any h E S+ there exists LEN with h :S £1. If ¢(g) = 0 we have
O:S ¢(gh) :S ¢(Lg) = L¢(g) = 0, and therefore ¢(gh) = 0 = ¢(g)¢(h). If
¢(g) = K then, since h, K1 - 9 2: 0, we have

O:S ¢((K1 - g)h) :S ¢(£(K1 - g)) = L¢(K1 - g) = 0,

so that

0= ¢((K1 - g)h) = K¢(h) - ¢(gh) = ¢(g)¢(h) - ¢(gh).

Now assume 0 < ¢(g) < K. Define'ljJ E 8 by letting 'ljJ(h) = ¢(gh)/¢(g)
for h E S. For h E S+ the inequality ¢(gh) :S ¢(Kh) implies that, with
o < t == ¢(g)/ K < 1, we have t'ljJ(h) :S ¢(h). This means that ¢ - t'ljJ 2: 0
on S+, so that () = l~t (¢ - t'ljJ) is an element of 8. Since ¢ = t'ljJ + (1 - t)()
and ¢ is extreme, we conclude that 'ljJ = ¢; that is, ¢(gh) = ¢(g)¢(h) for
all h E S. 0

HANDELMAN'S THEOREM ON POLYNOMIALS 441

For pure ¢ E S define L(¢) = {a E Log(f) : ¢('t;) > O}, and let F(¢)
be the rational convex hull of L(¢).

LEMMA 2.3. For pure ¢ E S the set F(¢) is a face of the Newton
polytope N(f), and L(¢) = F(¢) n Log(f).

Proof. Clearly F(¢) C N(f). Suppose w E F(¢), u, v E N(f), t E
(0,1) n Q and w = tu + (1 - t)v. We need to show u, v E F(¢). Write

u = L aaa, v = L f3aa,
aELog(f) aELog(f)

w = L 'Ya a ,
aEL(<I»

with aa, f3a, 'Ya E Q+ and LaELog(f) aa = LaELog(f) f3a = LaEL(<I» 'Ya = l.
Find N E N such that all aa = Ntaa, /3a = N(1 - t)f3a, 1a = N'Ya are
integers. Since ¢ is multiplicative (Lemma 2.2), we then have

The left-hand side is positive by the definition of L(¢). So, the right-hand is
also positive, and we have aa = f3a = 0 unless a E L(¢). Hence u, v E F(¢)
and F(¢) is a face of N(f).

It is clear that L(¢) C F(¢) n Log(f). For the reverse inclusion,
suppose the element w = LaEL(<I» 'Yaa above actually belongs to Log(f).
Then we have

and, since the right-hand side is positive, we conclude that w E L(¢). 0
LEMMA 2.4. Suppose ¢ E S is pure. Considering L(¢), the face F(¢)

of N(f) provided by lemma 2.3, and the F(¢)-face IF("') of I, there exists
jJ, E (O,oo)k such that for all a E L(¢) we have

We postpone the proof of lemma 2.4 until after that of the theorem.
For pER and v E]Rk, let inv(p) be the sum of Paxa over those a E Log(p)
for which the dot product a· v is maximal. Observe that

{inv(p) : v E]Rk} = {PF : F E F(p)}.

Proof of Handelman's Theorem. It is clear that (ii) implies (i). Assume
(i). Consider F E F(p), and pick v E]Rk such that inv(p) = PF. Then
inv(qp) = inv(q)inv(p) = inv(q)PF. Note that inv(qp) E R+ \ {O} since

442 VALERIO DE ANGELIS AND SELIM TUNCEL

qp E R+ \ {O}. It follows that for a E (0, oo)k the product in,,(q)(a)PF(a)
is nonzero. Therefore, PF(a) # 0, and (i) implies (iii).

Now suppose (iii) holds. Taking F = N(P) in (iii), we see that one
of P, -P is numerically positive. First suppose P is numerically positive.
Let F E F(p). Pick v = (VI, ... ,Vk) E]Rk such that in,,(p) = PF, and
put m = max{Log(p)· v}. Consider a = (al, ... ,ak) E (O,oo)k. Since

("it "kt) _ '" a (a·,,)t h pale , ... , ake - L..-aELog(p) Paa e , we ave

. ()() 1· -mt ("it "kt) In,,p a = lme pale , ... ,ake ,
t--+oo

and it follows from the numerical positivity of P that pF(a) = in" (p)(a) ~
O. Using (iii), we conclude that PF(a) > OJ that is, each PF is numerically
positive. Now pick any f E R+ such that Log(f) = Log(p). We will show
that fnp E R+ for large n E N. Consider the ordered ring S associated
above with f and, for a pure state ¢ E 8, let F(¢) be the face of N(f) =
N(p) discussed in lemmas 2.3 and 2.4. Observe that pi f E S and, letting
J.1 E (O,oo)k be as in the conclusion of lemma 2.4, use Lemmas 2.2, 2.3, 2.4
to calculate ¢(7):

(p) (xa) (xa) ¢ - = L Pa ¢ - = L Pa ¢ -
f aELog(p) f aEL(<I» f

Combining this with lemma 2.1, we find that 7 E S+. Thus, in the case P

is numerically positive, fn p E R+ for large n. In the case -P is numerically
positive, apply this argument to -p to see that - fnp E R+ for large n. 0

Note that the proof reveals that ±rp E R+ for any f E R+ with
Log(f) = Log(p) and large enough n. It remains for us to prove lemmas
2.1 and 2.4.

3. Proof of Lemma 2.4. For pure ¢ E 8, list the elements of L(¢)
as aO,al, ... ,am. If m = 0 then F(¢) = L(¢) = {aD} and we take J.1 =
(1, ... ,1) to obtain

J.1ao = _1 = ¢(1) = _1 ¢(L faxalf) = ¢(xao),
fF(<I»(J.1) fao fao fao aELog(f) f

as desired. Now suppose m ~ 1. Put hi = ai - ao for i = 1, ... , m.
Consider the k x m matrix M with hi as its i-th column, i = 1, ... , m. Let
w be the vector in]Rm whose i-th coordinate equals log ¢("';') -log ¢("';0).
Regarding M and w as linear maps M :]Rm -+]Rk and w :]Rm -+ lR,
we show that Ker(M) C Ker(w): Since M has integral entries, Ker(M)

HANDELMAN'S THEOREM ON POLYNOMIALS 443

has a basis consisting of vectors in qn and it suffices to check that qn n
Ker{M) C Ker{w). Suppose t = (tl, ... ,tm) E qn and Mt = o. Then
2::1 tibi = 0 and, putting to = 2::1 ti, we have toao = 2::1 tiai. Find
N E N such that Nti E Z for i = 1, ... ,m. Letting /+ = {I ::; i ::; m : ti ;:::
O}, /- = {I::; i ::; m : ti < O}, t+ = 2:i==I+ ti and t- = 2:i==I- Itil, we find
that

(xao)Nt- II (xai)Nti = (xao)Nt+ II (xai)Nltil

f iEI+ f f iEI- f

Applying </J and taking N -th roots,

That is, 2::1 ti log </J{ "'7) = 2::1 ti log </J{ "';0), which means that wt = O.
This shows Ker{M) C Ker{w). It follows from this inclusion that the map
w : jRm ---+ jR factors through Mj that is, there exists s = (SI, ... ,Sk) E jRk

such that w = sM. Equivalently,

log </J (X;i) -IOg</J(x;o) = s. ai - s· ao.

Exponentiating and setting J1- = (e S1 , ••• ,eSk), we find that

Hence

= [</J(X;O)]-1 L fa</J(~) = [</J(X;O)]-1 </J{I) ,
aELog(J)

and, since </J{I) = 1, we have </J{"';o) = J1-ao j fF(<!»(J1-). We then use (*) again

to see that </J{ "';i) = J1-a i j fF(<!» (J1-) for i = 0,1, ... ,m. This completes the
proof of lemma 2.4.

4. Proof of Lemma 2.1. We now extract from [2] the proof of lemma
2.1. As we mentioned, lemma 2.1 is a special case of a general resultj see
pp. 61-65,81-86,95-96 of [2] for further details and general results.

LEMMA 4.1. Let G be a partially ordered Abelian group with order
unit u and let H be a subgroup of G with u E H. Let 9 E G, 0 E S{H, u),
and set

Q = sup{O{h)jn : hE H, n E N, h ::; ng},

f3 = inf{O{h)jn: h E H,n E N,ng ::; h}.

444 VALERIO DE ANGELIS AND SELIM TUNCEL

(a) We have -00 < Q ::; (3 < 00.

(b) If'lj; E S(H +Zg,u) and'lj; extends 8, then Q::; 'lj;(g)::; (3.
(c) If Q ::; , ::; (3 then there exists 'lj; E S(H + Zg, u) such that 'lj;

extends 8 and 'lj;(g) = ,.
(d) The state 8 E S(H,u) extends to an element ofS(G,u).
Proof. Since u is an order unit, we can find K, LEN with -g ::; Ku

and 9 ::; Lu. Then -Ku ::; 9 ::; Lu, which implies -K ::; Q, (3 ::; L. The
rest of (a) and (b) are easily checked. To establish (c), first use the definition
of Q, (3 to observe that if h E Hand NEZ are such that h + N 9 ~ 0 then
8(h) +N, ~ O. It follows that if hE Hand NEZ satisfy h+Ng = 0 then
both 8(h) + N, ~ 0 and -8(h) - N, ~ 0 and, therefore, 8(h) + N, = O.
This means that 8 extends to a group homomorphism 'lj; : H + Zg -+
IR with 'lj;(g) = ,. The above observation shows that 'lj;(h + Ng) ~ 0
whenever h + N 9 ~ O. Finally, (d) follows from (c) by an application of
Zorn's lemma. D

PROPOSITION 4.1. Let G be a partially ordered group with order unit
u, let 9 E G, and set

Q = sup{mjn: m E Z, n EN, mu ::; ng},

(3 = inf{mjn: m E Z,n E N,ng::; mu}.

(a) We have -00 < Q ::; (3 < 00.

(b) If ¢ E S(G, u) then Q ::; ¢(g) ::; (3.
(c) If Q::;,::; (3 then there exists ¢ E S(G,u) with ¢(g) = ,.
Proof. (a) and (b) are easy to check. For the proof of (c), put H = Zu

and note that S(H, u) consists of a single element, 8. Observing that

Q = sup{8(h)jn : h E H = Zu, n EN, h ::; ng},

(3 = inf{8(h)jn: h E H = ZU,n E N,ng::; h},

apply lemma 4.1(c) to extend 8 to 'lj; E S(Zu + Zg, u) with 'lj;(g) = ,. Then
apply lemma 4.1(d) to extend 'lj; to ¢ E S(G, u). D
Proof of lemma 2.1. First observe that if ¢(g) > 0 for all ¢ E S then
9 > 0: If ¢(g) > 0 for all ¢ E S then, by the above proposition, there exist
m, n E N such that 0 < ml ::; ng. It follows that 9 > O.

Now equip IRs with the product topology, and S C IRs with the in
duced topology. It is easy to see that IRs is then a locally convex topological
vector space. For each 9 E S, find Kg E N such that - Kg 1 ::; 9 ::; Kg l.
Then S C TIgEs[-Kg,Kgj and, using Tychonoff's theorem, we see that S

is a compact convex subset of IRs. In addition, for any 9 E S, the map
¢ f-t ¢(g) : S -+ IR is affine and continuous. It is a well-known corollary of
the Krein-Milman theorem (see pp. 81-86 of [2]) that an affine continuous
map on a compact convex subset S of a locally convex topological vector
space achieves its infimum at an extreme point of S. So, if ¢(g) > 0 for
all pure ¢ E S then the initial observation of the proof applies and shows
9 > O. 0

HANDELMAN'S THEOREM ON POLYNOMIALS 445

REFERENCES

[1) M. EINSIEDLER AND S. TUNCEL, When does a polynomial ideal contain a positive
polynomial? To appear in J. Pure and Appl. Algebra.

[2) K. GOODEARL, Partially Ordered Abelian Croups with Interpolation, Amer. Math.
Soc., Providence, R.I., 1986.

[3) D. HANDELMAN, Positive polynomials and product type actions of compact groups,
Mem. Amer. Math. Soc. 320 (1985).

[4) B. MARCUS AND S. TUNCEL, Matrices of polynomials, positivity, and finite equiv-
alence of Markov chains, J. Amer. Math. Soc. 6 (1993), 131-147.

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA

PETR KURKA"

Abstract. This is an overview of some classical and recent results in topologi
cal dynamics of cellular automata on the space of twosided symbolic sequences. The
concepts studied include surjectivity, transitivity, equicontinuity, closingness, openness,
expansivity, attractors and the shadowing property.

Key words. Equicontinuity, sensitivity, transitity, expansivity.

AMS(MOS) subject classifications. Primary 54H20, 68D20.

1. Introduction. Cellular automata (CA) are dynamical systems
with very rich and diversified behaviour. They are often used in physics
and sciences as models of complicated behaviour. In computer science they
serve as models of parallel processing and yield several complexity classes
of languages.

Cellular automata have been introduced in the fifties by Ulam [28] and
von Neumann [26]. The latter used them as models of self-reproduction
and universal computation. A well-known example of a CA with sur
prising complexity and universal computation is Conway's Game of Life
[14]. Deep mathematical theory of CA has been developed in Hedlund's
pioneering paper [19]. Hedlund studied CA in the context of symbolic
dynamics as homomorphisms of the shift dynamical system. Later, Wol
fram [30, 31] studied computational aspects of CA. He performed exten
sive computer simulations and classified CA informally into four classes
according to their behaviour on finite configurations. There have been sev
eral attempts to formalize Wolfram's classification, using computational,
measure-theoretic and topological properties of CA, see e.g., Culik et al.
[12], Gilman [16], Hurley [20] and Kurka [21]. Simultaneously many results
have been obtained interrelating these properties. While some classes of
CA have been completely understood and some interesting examples have
been thoroughly elucidated, many problems remain still open.

CA have been considered on many symbolic spaces: space of finite
or periodic sequences, space of one sided or twosided infinite sequences,
onesided or twosided mixing subshifts of finite type or configurations in
n-dimensional grids. While these classes have some properties in com
mon, there are also important differences. We concentrate here on one
particular, if most familiar case, the space of twosided infinite symbolic se
quences. With the product topology, this space is compact and metrizable
and CA are continuous, so the concepts of topological dynamics apply. In
the present study we disregard ergodic and computational aspects of CA

"Faculty of Mathematics and Physics, Charles University in Prague, Malostranske
nll.mesti 25, CZ-118 00 Praha 1, CZECHIA.

447

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

448 PETR KlJRKA

and concentrate on topological dynamics. We present both classical and re
cent results and sometimes complete the classification with new theorems.
The concepts studied include surjectivity, transitivity, equicontinuity, clos
ingness, openness, expansivity, attractors and the shadowing property.

2. Topological dynamics. A dynamical system (DS) is a pair
(X, F) where X is a compact metric space and F : X -t X is a continuous
map.

The n-th iteration of F is denoted by Fn, so FO = Id is the identity
map and Fn+1 = F 0 Fn.

A set Y ~ X is invariant, if F(Y) ~ Y and strongly invariant if
F(Y) = Y. If Y is closed and invariant, (Y, F) is a DS which is called a
subsystem of (X, F). The orbit of a point x E X is <9(x) = {Fn(x) :
n > O}. For every x E X, the closure <9(x) of the orbit of x is a subsystem.

A homomorphism <p: (X, F) -t (Y, G) is a continuous map <p : X -t
Y such that <p 0 F = G 0 <po

X_....:::cF_ X

j~
Y_....::cG_ Y

A conjugacy is a bijective homomorphism. The systems (X, F) and
(Y, G) are conjugate if there exists a conjugacy between them. If <p is
injective, (<p(X), G) is a subsystem of (Y, G) as <p(X) ~ Y is a closed
invariant set. If <p is surjective, (Y, G) is a factor of (X, F).

A point x E X is periodic with period n > ° if Fn(x) = x. If
F(x) = x, x is a fixed point. A point x E X is eventually periodic, if
Fm(x) is periodic for some m ::::: 0. If m > 0, x is preperiodic and m is
its preperiod. A point is eventually periodic iff its orbit <9(x) is finite.

A DS is open, if F(U) is open for any open U ~ X.
A point x E X is a transitive point, if it has dense orbit, i.e., if

<9(x) = X.
A DS is transitive, if it has a transitive point. In this case the set of
transitive points is residual, i.e., it contains a countable intersection of
dense open sets. Equivalently, a DS is transitive, if for any non empty open
sets U, V ~ X there exists n > ° with Fn(u) n V :j:. 0.

A DS is mixing, if for any nonempty open sets U, V ~ X, F n (U) n V :j:.
o for all sufficiently large n. Every mixing DS is transitive.

A point x E X is an equicontinuous point, if

"IE> 0,38> 0, 'Vy E BJ(x), "In::::: 0, d(Fn(y), Fn(x)) < E .

Here d is the metric and Bo(x) = {y EX: d(y, x) < 8} is the ball with
center x and radius 8.

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 449

A DS is equicontinuous, if every its point is equicontinuous. In this
case it is uniformly equicontinuous, i.e.,

"IE> 0,315 > O,Vx,y E X,(d(x,y) < 15 :::} "In 2: O,d(Fn(x), Fn(y)) < E).

A DS is almost equicontinuous, if the set of its equicontinuous points is
residual.

A DS is sensitive, if

3E > 0, "Ix E X, Vb> 0, 3y E B8(X), 3n 2: 0, d(Fn(y), Fn(x)) 2: E .

Clearly, a sensitive system has no equicontinuous points. The converse
is not true in general but holds in transitive systems. Every transitive
system is either sensitive or almost equicontinuous (Akin et al. [2]). Every
transitive almost equicontinuous system is uniformly rigid (Glasner and
Weiss [18]). This means

"IE> 0,3n > 0, "Ix E X, d(Fn(x), x) < E .

We shall see that the dichotomy between sensitive and almost equicontin
uous systems holds also for all CA. Moreover, transitive CA are sensitive.

A DS is positively expansive, if

Every positively expansive DS on a perfect space (without isolated points)
is sensitive.

A finite sequence (Xi E X)o::;i::;n is a b-chain from Xo to xn, if

A point x E-shadows a sequence (Xi)O::;i::;n, if d(Fi(x), Xi) < E for all ° ::S i ::S n.
A DS has the shadowing property if for every E > ° there exists

15 > 0, such that every b-chain is E-shadowed by some point. It follows that
every infinite b-chain is E-shadowed by some point.

A DS is chain transitive if for every x, y E X and for every E > 0,
there exists an E-chain from x to y. Every transitive DS is chain transitive.
Every chain transitive system with the shadowing property is transitive.

A point x E X is a nonwandering point, if for every open neigh
bourhood U ~ X of x there exists n > ° with Fn(u) n u =I 0. The set of
nonwandering points is invariant and closed. A DS is nonwandering, if
every its point is nonwandering.

The omega limit set of a closed invariant set V ~ X is

w(V) = n Fn(v) .
n2°

450 PETRKURKA

A set Y ~ X is an attract or iff there exists a nonempty open set V such
that P(V) ~ V and Y = w(V). In a totally disconnected space, attractors
are omega limit sets of elopen invariant sets. The basin of an attractor
Y ~ X is the set

8(Y) = {x E X; lim d(pn(x), Y) = a}.
n-+oo

There exists always the largest attractor w(X). The number of attractors
is at most countable.

A periodic point x E X is attracting if its orbit (')(x) is an attractor.
Any attracting periodic point is equicontinuous.

A set Y ~ X is a minimal attractor, if it is an attractor and no
proper subset of Y is an attractor. An attractor is minimal iff it is chain
transitive. A DS has unique attractor iff w(X) is chain-transitive (Akin
[1]).

A quasi-attract or is a countable intersection of attractors, which is
not an attractor.

3. Subshifts. We call any finite set with at least two elements an
alphabet. We frequently use alphabets 2 = {a, I} and 3 = {a, 1, 2}. The
cardinality of a finite set A is denoted by IAI. A word over A is any finite
sequence U = Uo ... Un-l of elements of A. The length of U is lui = n. The
empty word of length ° is denoted by A. The set of all words of length n
is denoted by An, so AO = {A} and Al = A. The set of all nonzero words
and the set of all words are

n>O n~O

A onesided infinite word over A is a map x : N -+ A, where N = {a, I, ... }
is the set of non-negative integers. A twosided infinite word over A is a
map x : Z -+ A, where Z = { ... , -1,0,1, ... } is the set of all integers. The
position of the zeroth letter is denoted by a period, x = ... X-2X-l.XOXl

If u is a finite or infinite word and I = (i, j) is an interval of integers on
which u is defined, put U(i,j} = Ui ... Uj. Similarly for open or half-open
integer intervals U(i,j) = Ui+l ... Uj-l. We say that v is a subword of U

and write v!; u, if v = UI for some interval I ~ Z.
If U E An, then U OO E A Z is the infinite repetition of u, i.e., (UOOhn+i =

Ui. If v E Am, then x = voo.Uoo E AZ is the word defined by

Xkm+i = Vi for k < 0, ° :s i < m

Xkn+i = Ui for k 2: 0, ° :s i < n .

In ANand A Z we have metrics

N d(x, y) = 2-n where n = min{i 2: 0: Xi:l Yi}, x, yEA

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 451

d(x,y) = 2-n where n = min{i ~ 0: Xi"f Yi V X-i"f Y-i}, X,Y E A'Z .

Both these metrics satisfy a stronger form of the triangle inequality

d(x,z):::; max{d(x,y),d(y,z)}.

Both AN and AZ are compact, perfect (do not contain isolated points) and
totally disconnected, i.e., their clopen (closed and open) sets form a base
of their topology. All compact, perfect and totally disconnected spaces are
homeomorphic.

In AN and AZ the cylinder sets of a word u E An are

[u] = {x E AN : X(O,n) = u}

[U]k = {x E AZ : X(k,k+n) = u}, k E Z.

Cylinder sets are clop en and every clop en set is a finite union of cylinders.
The shift maps (J : AN -t ANand (J : A Z -t A Z are both defined

by (J(X)i = Xi+l and they are continuous. Thus (AZ , (J) and (AN, (J) are
DS which are called twosided and onesided full shifts respectively. While
any two sided full shift is bijective, a onesided full shift is not; every point
has IAI preimages. Full shifts are mixing and have dense sets of periodic
points.

A onesided subshift is any subsystem of a onesided full shift, so any
closed set ~ ~ AN with (J(~) ~ ~. A DS on a totally disconnected space
is conjugate to a onesided sub shift iff it is positively expansive.

A twosided subshift is any closed set ~ ~ AZ with (J(~) = ~. We
require strong invariance here, since the twosided subshift is bijective.

The language of a sub shift ~ is the set of all subwords of points of ~,

.c(~)={uEA*: 3xE~,u~x}.

A sub shift ~ is a subshift of finite type (SFT) if there exists an integer
k ~ 2, called its order, such that for every x E AN, or for every x E A Z,

x E ~ iff "in, X(n,n+k) E .c(~).

A subshift is a SFT iff it has the shadowing property (Walters [29]). A
one sided subshift is a SFT iff it is open (Parry [27]).

A sub shift ~ is sofie, if it is a factor of some SFT.
Topological entropy of a sub shift ~ is

h(~) = lim InP(n)
n-too n

where P(n) = l.c(~) n Ani is the number of its words of length n.

452 PETRKURKA

4. Cellular automata.
DEFINITION 4.1. A cellular automaton (CA) is a dynamical system

(AZ,F), such that F 0 a = a 0 F.

THEOREM 4.1 (Hedlund-Curtis-Lyndon [19]). A dynamical system
(AZ, F) is a CA iff there exist integers m :::; a (memory and anticipation)
and a local rule! : Aa-m+1 --+ A such that for every x E AZ ,

F(X)i = !(X(Hm,Ha)).

Proof Let (AZ, F) be a CA. For e = 1 there exists r ~ 0 such that

d(x,y) < Tr:::} d(F(x),F(y)) < 1

X(-r,r) = Y(-r,r) :::} F(x)o = F(y)o .

Thus there exists! : A2r+1 --+ A such that for every x E AZ , F(x)o =
!(X(-r,r)). Since F commutes with the shift,

F(X)i = ai(F(x))o = F(o-i(x))O = !(ai(x)(_r,r)) = !(X(i-r,Hr)) .

Thus we have a local rule with memory m = -r and anticipation a = r.
Conversely, if F(X)i = !(X(Hm,Ha)) for some m :::; a, put r = max{ -m, a}.
Since -r :::; m :::; a :::; r, for every n ~ 0,

d(x, y) < 2-n- r :::} X(-n-r,n+r) = y(-n-r,n+r)

:::} X(-n+m,n+a) = y(-n+m,n+a)
:::} F(x)(-n,n) = F(y)(-n,n)

:::} d(F(x), F(y)) < Tn

so F is continuous and clearly commutes with the shift. 0
We can assume that the local rule is symmetric, so F(X)i =

!(X(i-r,Hr)), and! : A2r+1 --+ A, where r ~ {-m,a}. Any r with this
property is called a radius of F. Using a larger alphabet, it can be easily
shown that any CA is conjugate to a CA with radius l.

A factor subshift of a CA is anyone-sided subshift which is its
factor. If I = (a, b) is an integer interval, put B = Ab-a+l and define a

map r.p : AZ --+ BN by r.p(X)i = Fi(x)(a,b). The map r.p is continuous and

r.p(F(X))i = FH1(x)(a,b) = r.p(X)Hl = a(r.p(x))i .

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 453

Thus ~I(F) = cp(AZ) ~ BN is a onesided subshift and cp : (AZ , F) -+
(~I(F), a) is a factor map

AZ F. AZ

~j j~
~I(F)~ ~I(F)

Let d : AZ -+ AZ be the homeomorphism defined by d(X)i = X-i.
The dual of a CA (AZ,F) is (AZ,F), where F = do F 0 d. Clearly

d: (AZ, F) -+ (AZ, F) is a conjugacy.
We show some typical examples of CA.

EXAMPLE 1 (P: product). (2Z, P) where P(X)i = Xi-1XiXi+l
(Figure 1). The radius is r = 1 and the local rule f : 23 -+ 2 is de
fined by the table

.....................................
FIG.!. P: the product CA.

The behaviour of the product CA is displayed in the space time diagram
in Figure 1. The n-th row represents a central part of the state at time
n, i.e., the word Fn(x)(_m,m), where 2m + 1 is the width displayed. Ones
are represented by black squares and zeros are left empty. We see that O's
propagate both to the left and to the right. If Xi = 0, then F(X)(i-l,i+1) =
000 and F 2(x)(i_2,i+2) = 00000. This implies that 000 is an attracting
fixed point. If Xo = 0, i.e., if d(x, 0(0

) < 1, then d(Fn(x), 0(0
) < 2-n. The

CA has another fixed point 100 which is not equicontinuous. If d(x, 1(0
) =

2-n < 1, then d(F(x), 1(0) = 2-n+1. The product CA is not surjective:

F(2Z) = {x E 2Z : 1011l X & 10011l x}

Fn(2Z) = {x E 2Z : Vm E (0,2n),lOm11l x}

w(2Z) = {x E 2Z : Vm > 0, lOm11l x}

454 PETRKURKA

EXAMPLE 2 (M: majority). (2Z, M) where

M(X)i = l Xi-l + Xi + Xi+1 J
2

FIG. 2. M: the majority CA.

The space time diagram of the majority CA is shown in Figure 2. We see
that the cellular space is successively homogenized so that no isolated 0 or
1 remain. If X(O,l) = 00, then F(X)(O,I) = 00 no matter what value is in
X_lor x2. Thus the cylinder set [00]0, and every cylinder sets [OO]i and
[l1]i are invariant. On the other hand, if F(X)(-I,l) = 010, then necessarily
X(-2,2) = 01010. Indeed X(-l,l) contains at least two ones, but X(O,l) = 11
would imply F(X)(O,l) = 11. By induction we get

Fn(X)(_l,l) = 010 =} X(-n,n) = 01 ... 10

Fn(X)(_l,l) = 101 =} x(-n,n) = 10 ... 01

The clop en set V = [00]0 u [11]0 is invariant and

X E V =} 'Vi E (-n, n + 1), F n (X)(i_l,i+1) f/. {DID, 101}

so

w(V) = {x E 2Z : 'Vi E Z: X(i-l,i+1) f/. {DID, 101}}

is a 8FT whose every point is fixed. The set w(V) is, however, not the

largest attractor, since w(AZ) contains e.g., periodic points (01)00, (10)00.
There are also many smaller attractors. If U E £(w(V)), i.e., if u does
not contain neither 010 nor 101, then [U]i is an invariant set and W([U]i) =
w(V) n [U]i is an attractor.

EXAMPLE 3 (8: sum). (2 Z ,S), where S(X)i = Xi-I + Xi+l mod 2.

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 455

FIG. 3. S: the sum CA.

There is a formula for the n-th iteration. We regard 2 as a group with
addition modulo 2.

S2(X)i = Xi-2 + 2Xi + Xi+2

sn(X)i =:t (~)Xi-n+2j'
j=O J

Since 2x = 0, we count only odd binomial coefficients. In particular for
n = 2m , all but two binomial coefficients are even, so

2'" S (X)i = Xi-2'" + Xi+2'" .

If the initial state is 000 .1000 (Figure 3 top), then F 2m (x) contains exactly
two 1 's, one at 2-m and another at 2m . If the initial state is random (Figure
3 bottom), we see no pattern in the time development. We show that the
sum CA is conjugate to the full shift on four symbols. In fact ~(O,l) (S) =
BN where B = A2 = {00, 01,10,11} and cp : (2Z, S) --+ (BN, 0") is a

conjugacy. Given a point y E BN, let us search a point x E AZ such that
for every n :2 0, sn(X)(O,l) = Yn' We have

sn(x)o + sn(x)z = sn+1(xh

sn(x)z = sn(x)o + sn+l(xh

so the second column (sn(x)z)n~O can be computed from the zeroth and
the first columns. Similarly we compute the third and also (-1)-st columns.

This shows that the map cp : 2Z --+ BN is bijective. Since the sum CA is
conjugate to a full shift, it is mixing, surjective, positively expansive and
has a dense set of periodic points.

456 PETRKURKA

In general, every CA has a periodic point and the eventually periodic
points are dense in it.

PROPOSITION 4.1. Every (J"-periodic point of a CA (AZ, F) is F
eventually periodic. Hence the set of eventually periodic points is dense.

Proof If (J"n(x) = x, then (J"n(F(x)) = F(x). Since (J"-periodic points
with period n are in one-to-one correspondence with words of An, there is
a finite number of them and for some preperiod m 2: 0 and period p > 0,
Fm+P(x) = Fm(x). 0

5. Equicontinuity. Almost equicontinuous systems are characterized
by the presence of blocking words. In an equicontinuous system, every long
enough word is blocking.

DEFINITION 5.1. Let s > O. A word u E A+ with lui 2: s is an s
blocking word for a CA (All,F), if there exists an offset p E (0, lul- s),
such that

o
t

P p+s
t t

IIIII
FIG. 4. A blocking word.

In the product CA of Example 1, 0 is a I-blocking word (with offset
0), since Xo = 0 implies Fn(x)o = 0 for all n 2: O. In the majority CA of
Example 2, 00 and 11 are 2-blocking words (with offset 0). Since [00]0 is
invariant, X(O,l) = 00 implies Fn(X)(O,l) = 00 for all n 2: O.

THEOREM 5.1 (Kurka [21]). Let (All, F) be a CA with radius r > O.
The following conditions are equivalent.
1. (All,F) is not sensitive.

2. (All, F) has an r-blocking word.
3. (All, F) is almost equicontinuous.

Proof. I:::} 2: Suppose that F is not sensitive. Let m be an integer
with 2m + 1 2: r. For c = 2-m there exists x E All and 8 = 2-m- p, p 2: 0,
such that for all yEA II ,

d(x,y) < 8 :::} Vk 2: 0, d(Fk(X), Fk(y)) < c .

Put u = X(-m-p,m+p) E A2m+2p+l. Then

y, Z E [u]-m-p :::} Vk, Fk(y)(_m,m) = Fk(z)(_m,m)

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 455

FIG. 3. S: the sum CA.

There is a formula for the n-th iteration. We regard 2 as a group with
addition modulo 2.

S2(X)i = Xi-2 + 2Xi + Xi+2

sn(X)i =:t (~)Xi-n+2j'
j=O J

Since 2x = 0, we count only odd binomial coefficients. In particular for
n = 2m , all but two binomial coefficients are even, so

2'" S (X)i = Xi-2'" + Xi+2'" .

If the initial state is 000 .1000 (Figure 3 top), then F 2m (x) contains exactly
two 1 's, one at 2-m and another at 2m . If the initial state is random (Figure
3 bottom), we see no pattern in the time development. We show that the
sum CA is conjugate to the full shift on four symbols. In fact ~(O,l) (S) =
BN where B = A2 = {00, 01,10,11} and cp : (2Z, S) --+ (BN, 0") is a

conjugacy. Given a point y E BN, let us search a point x E AZ such that
for every n :2 0, sn(X)(O,l) = Yn' We have

sn(x)o + sn(x)z = sn+1(xh

sn(x)z = sn(x)o + sn+l(xh

so the second column (sn(x)z)n~O can be computed from the zeroth and
the first columns. Similarly we compute the third and also (-1)-st columns.

This shows that the map cp : 2Z --+ BN is bijective. Since the sum CA is
conjugate to a full shift, it is mixing, surjective, positively expansive and
has a dense set of periodic points.

458

o

PETRKURKA

However, not all equicontinuous CA have radius zero.
EXAMPLE 6 (E: An equicontinuous CA). (2Z ,E), where

~n ~nnl mllTIl II
FIG. 5. E: An eq'Uicontin'Uo'Us CA.

We show first that 01110 is a 3-blocking word with offset 1. Consider
ing all possibilities for the left and right extensions of 01110, we get

0011100
0010100
0011100

0011101
0010111
001110

1011100
1110100
011100

1011101
1110111
01110

Thus F2[0111O] <;;; [01110], so if x E [01110]-2, then F 2n(x)(_1,1) = 111
and F2n+l(x)(_1,1) = 101. By inspection we verify that every word in the
set B = {OO, 1111,01110,0110110,010110,011010, 101O1} is 2- blocking.

00
00
00

1111
00
00

01110
101

01110

0110110
11111
000

010110
1111
00

011010
1111
00

10101
11111
0000

Every word v of length at least 10 contains at least one occurrence of
some word from B, so it is also 2-blocking. It follows that the CA is
equicontinuous.

THEOREM 5.2 (Kurka [21]). A CA (AZ, F) is equicontinuous iff there
exists a preperiod m ~ 0 and a period p > 0, such that Fm+p = Fm.

Proof For E: = 1 there exists 0 = 2-k such that for all x, yEA Z, if
X(-k,k) = Y(-k,k), then Fn(x)o = Fn(y)o for all n > O. Let u E A2k+1 and
let x E [U]-k be the O"-periodic point with period 2k+ 1. Then (Fn(x)o)n~O
is an eventually periodic sequence with some preperiod mu ~ 0 and period
Pu > O. For every Y E [U]-k, (Fn(Y)o)n>O has preperiod mu and period Pu·
Put

m = max{mu : u E A2k+1}, p = lcm{pu: u E A2k+l} .

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 459

Here km is the least common multiple. For every x E AZ , Fm(x)o
Fm+p(x)o, so

Fm(X)i = Fm((Ji(x))o = Fm+p((Ji(x))o = Fm+P(X)i

and therefore Fm+p (x) = Fm (x).
Conversely, suppose that there exist m 2: 0 and p > 0 such that for every x
Fm+p(x) = Fm(x). For EO = 2-k put 0 = 2-k- r(m+p). If d(x, y) < 0, then

d(F(x), F(y)) < Tk-r(m+p-l) < Tk

i ~ m + p => d(Fi(x), Fi(y)) < Tk-r(m+p-i) ~ Tk

Since both Fi(x)(_k,k) and Fi(y)(_k,k) are eventually periodic with prepe
riod m and period p, and since the first m + p their elements are equal, we
get d(Fn(x), Fn(y)) < 2-k for every n 2: o. D

In Example 6, the preperiod and period are m = p = 2.

THEOREM 5.3. Let (AZ,F) be a CA and ~ ~ AZ an F- invariant
subshift. If (~, F) is transitive then it is either sensitive or consists of a
single periodic orbit.

Proof Suppose that (~, F) is transitive and not sensitive. By a the
orem of Glasner and Weiss [18], it is uniformly rigid, so for EO = 1 there
exists n such that for all x E ~, d(Fn(x), x) < 1, i.e., Fn(x)o = Xo. For
y = (Ji(x) we get

Fn(X)i = (Ji(Fn(x))o = Fn((Ji(x))o = (Ji(X)O = Xi .

Thus F n is identity and since (~, F) is transitive, it consists of a single
periodic orbit. D

COROLLARY 5.1 (Kurka [21]). Every transitive CA is sensitive. The
sum CA of Example 3 is transitive, and therefore sensitive.

EXAMPLE 7. (2Z x 2Z,Id x (J) (i.e., F(x, Y)i = (Xi, Yi+dJ is a
surjective and sensitive CA which is not transitive.

6. Surjectivity. Let (AZ, F) be a CA with radius r 2: 0 and a local
rule f : A2r+l -+ A. We extend it to a function f : A* -+ A* by

if 0 ~ i < lui - 2r
if i 2: lui - 2r

Thus If(u)1 = max{O, lul- 2r}. For example the successive images of a
word 01100011 of the sum CA of Example 3 are

01100011 r-+ 111011 r-+ 0101 r-+ 00 r-+ oX r-+ oX •

Observe that for every n 2: 0,

L If-1(u)1 = IAn+2r l = IAl n+2r .
'UEAn

460 PETRKURKA

The mean number of preimages of a word of length n is IAI2r. We show that
a CA is surjective iff every nonempty word has exactly IAI2r preimages.

THEOREM 6.1 (Hedlund [19]). Let (AZ, F) be a CA with local rule J:
A2r+1 --+ A. Then F is surjective iff for every u E A+, IJ- 1 (u)1 = IAI2r.

Proof Let the condition be satisfied and y E AZ. For n ~ 0 put

Xn = {x E AZ : f(x(-n-r,r+n)) = Y(-n,n)} .

By the assumption every Xn is nonempty, closed and X n+1 ~ X n. By
compactness there exists x E nn>O Xn and F(x) = y, so F is surjective.
Conversely, suppose that F is surjective and put

p = min{lf-1 (u)1 : u E A+} .

Since F is surjective, every word has at least one preimage, so p > O.
Indeed, if y E AZ contains u, then every preimage of y contains some
preimage of u. We show

LEMMA 6.1. If If- 1 (u)1 = p, then for every a E A, If-l(ua)1 = p.
Proof By the assumption, for every a E A, f-l(ua) ~ p. Suppose

that for some a E A, If-l(ua)1 > p. We have disjoint unions

U {vb: v E f-l(u)} = U f-l(ua)
bEA aEA

piAl = I U {vb: v E f- 1(U)}1 = I U f- 1 (ua)1 > piAl
bEA aEA

and this is a contradiction. This proves Lemma 6.1. 0
LEMMA 6.2. P = IAI2r.
Proof Let u E An be such that If- 1 (u)1 = p. By Lemma 1, we have

If- 1 (uw)1 = p for every wE A*. We have a disjoint union

{vw: v,w E J-l(u)} = U J-l(UZU)
zEA2~

p2 = I{vw: v,w E J- 1(u)}1 = U J-l(UZU) =plAl2r
zEA2~

v w

u Z u

so p = IAI2r. This proves Lemma 6.2. 0
We finish now the proof of the theorem. Suppose that for some n > 0

and some u E An, IJ- 1 (u)1 > IAI2r. Then

IAl n+2r = U J-l(V) > lAin ·IAI2r
vEAn

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 461

and this is a contradiction. Thus for every u E A*, If-1 (u)1 = IAI2r. 0
The condition If-1 (u)1 = IAI2r may be satisfied for lui = 1 and fail

for longer u. For example in the majority CA of Example 2, the condition
works for lui = 1 but does not work for lui = 2, since there are six preimages
of 00:

f- 1 (00) = {OOOO, 0001, 0010, 0100,1000,1001} .

THEOREM 6.2 (Hedlund [19]). Let (AZ,F) be a CA with radius r > 0
which is not surjective. Then
1. There exists W E A2r and distinct u,v E A+ with lui = Ivl and
f(wuw) = f(wvw).

2. There exists a point x E AZ with an infinite (continuum) number of
preimages.

Proof 1. By Theorem 6.1 there exists a word z E A+ such that
If-1 (z)1 = k > IAI2r. Choose a word w E f- 1 (z), so Iwl = Izl + 2r ~ 2r.
For m > 0 consider sets

W

Z

Mm = {WWOW1 ... Wm-1W: Wi E f- 1(z)},

Nm = {zvoz ... ZVmZ: Vi E A2r}

Wo

Vo Z Z Z

W

Z

We have f(Mm) ~ Nm, IMml = km, INml = IAI 2r(m+1). Since k >
IAI2r, for m large enough, km > IAI2r(m+1), so there exist distinct u', v' E
Mn with feu') = f(v'). Since both u' and v' begin and end with W of
length at least 2r, the statement follows.
2. Let W E A2r, U,V E An be such that u #- v and f(wuw) = f(wvw).

Put M = {wu, wv}Z, i.e., x E M iff for all i E Z, X(i(2r+n),i(2r+n)+2r) = w
and X(i(2r+n)+2r,(i+1)(2r+n» E {u, v}. Then M is uncountable and all its
elements have the same image. 0

A pair of words wuw, wvw with f(wuw) = f(wvw) is called a diamond.

u

=====w=::::::/
~ v

~::==w::::::::::=::=
/

FIG. 6. A diamond.

COROLLARY 6.1. Every injective CA is surjective and hence bijective.

462 PETRKURKA

THEOREM 6.3. Every surjective CA is nonwandering.
Proof. We use the Poincare recurrence theorem: Let (AZ, P) be a CA

with local rule f : A2r+l -+ A. For every clop en set U define its measure
/-l(U) as follows. If u E An and k E Z, then /-l([U]k) = IAI-n. If U =
Vl U· "UVm is a disjoint union of cylinders, put /-leU) = /-l(Vd + .. '+/-l(Vm)'
Clearly /-l(AZ) = 1. If u E An, then f-l(u) ~ An+2r and If-l(u)1 = IAI2r,
so

/-l(p-l([U]k)) = IAI2r ·IA(n-2r = /-l([U]k)

so for every clop en set U, /-l(p-l(U)) = /-leU).
Let U be a clop en set and suppose that all P-i(U) are pairwise disjoint.
Then for every n > 0,

n· /-leU) = /-l(U U··· U p-n+l(u)) :::; /-l(AZ) = 1

and this is a contradiction. Thus for some i < j, p-i(u) n p-j(U) :I 0
and un p-j+i(U) :I 0. 0

THEOREM 6.4 (Blanchard and Tisseur [6]). Any surjective almost
equicontinuous CA has a dense set of periodic points.

Proof. Let u E Am be arbitrary and let v E AP be an r-blocking word
with offset j. Then w = vuv is a q-blocking word with offset j, where
q = p + m + r. Since (AZ, P) is nonwandering, there exists t > 0 and
x E [w]o n p-t([w]o). Put y = (vu)oo. Since x, pt(x), y E [w]o,

pt(Y)(j,j+q) = Ft(x)(j,j+q) = x(j,j+q) = Y(j,j+q) .

Since y and pt(y) are O"-periodic with period p + m :::; q, pt(y) = y and
y E [u]p is P-periodic with period t. 0

I

I

o
t

j j +r p

t t t

v I

v I

U

U

p+m
t

I

I

v

v

j+q
t

I

I

THEOREM 6.5 (Blanchard and Tisseur [6]). If (AZ, P) is a surjec
tive equicontinuous CA, then there exists p > 0 such that pp = rd. In
particular, P is bijective.

Proof. By Theorem 5.2, there exists m ~ 0 and p > 0 such that
pm = pp+m. Since every point is eventually periodic and nonwandering,
it is periodic and m = O. 0

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 463

7. Preimages. We study now the number of preimages of points in
surjective CA's.

THEOREM 7.1 (Hedlund [19]). Let (AZ,P) be a surjective CA with
radius r. Then for every y E AZ, IF-l(y)1 ::s IAI2r.

Proof. Suppose that xo, Xl ... Xn-l are distinct elements in P-l(y)
and n > IAI2r. There exists m > r, such that for all i i:- j, (Xi)(-m,m) i:
(Xj)(-m,m), so Y(-m+r,m-r) has at least n preimages and this is a contra
diction. D

Although every finite word has exactly IAI2r preimages, infinite words
may have strictly fewer preimages.

EXAMPLE 8 (L: A closing CA, Boyle et al. [7]). (3Z ,L), where

L(X)i = { ~i + Xi+! mod 2 if Xi i:- 2
if Xi = 2

is a surjective CA with nonconstant number of preimages .

.. ., ".," . . , ••.•. .t . .. : , : : : • I" • " "" , "t .,
FIG. 7. L: A closing CA.

We will show later that (3 Z ,L) is a closing CA. In Figure 7, two's are
represented by a black square, ones by a dot and zeros by empty space.
While the only preimage of 200 is 200 itself, 100 has two preimages (01)00
and (10)00. We show that L is surjective. The radius is r = 1 so we show
that every v E 2n has exactly IAI2r = 9 preimages. For every U-l, Un E A
put successively for i = n - 1, ... ,0

Ui = { ~i + ui+l mod 2 if Vi i:- 2
if Vi = 2

Then f(u(-l,n)) = V(O,n) , so every pair (U-l' un) E 32 determines a distinct
preimage and If-l(v)1 = IAI2 = 9.

We are going to characterize CA with constant number of preimages.
DEFINITION 7.1. Let X,Y E AZ and s ~ O.

1. X, yare totally s-separated if 'tin E Z, x(n,n+s) i:- Y(n,n+s).

464 PETRKURKA

2. x, yare left (right) s-separated if there exists m E Z, such that x(n,n+s) "I
Y(n,n+s) for all n ~ m (for all n ~ my.
3. x, yare left (right) asymptotic, if there exists m E Z such that Xn = Yn
for all n ~ m (for all n ~ my.
4. A point z E AZ is a-transitive, iff for every open U ~ AZ there exist
n < 0 < m such that an(z), am(z) E U.

LEMMA 7.1. Let (AZ,F) be a surjective CA with radius r, let X,Y E

AZ, x"l y be such that F(x) = F(y) is a a-transitive point. Then exactly
one of the following three statements is true.
1. x and yare left 2r-separated and right asymptotic.
2. x and yare both left and right 2r-separated.
3. x and yare left asymptotic and right 2r-separated.

Proof. Assume that x and yare not right 2r-separated, and that the
statement (1) does not hold. Since x "I y there exists p with xp "I yp.
Since x and yare not right 2r-separated, there exists m > p such that
X(m,m+2r) = Y(m,m+2r)· Since (1) does not hold, there are two possibilities:
a. x and yare not left 2r-separated, so there exists n < p with X(n,n+2r) =
Y(n,n+2r). In this case u = X(n,m+2r), v = y(n,m+2r) form a diamond and
every point in {u, v}Z would have the same image.
b. x and yare not right asymptotic. In this case there exists q > m with
Xq "I yq and since x and yare not right 2r- separated there exists n > q

with X(n,n+2r) = y(n,n+2r)' Again, u = X(m,n+2r) and v = Y(m,n+2r) would
form a diamond and this is not possible. We have proved that if x and y
are not right 2r-separated, then (1) holds. Similarly, if x and yare not left
2r-separated then (3) holds. 0

LEMMA 7.2. Let (AZ , F) be a surjective CA with radius r, z E A Z a
a-transitive point, and Xl, ... Xk E F-l (z) pairwise right (left) 2r-separated
points. Then there exist Yl, ... , Yk E F-l(z) which are pairwise totally 2r-
separated.

P
I

nq - q
I

nq +q
I

Proof By the assumption there exists p E Z such that for all n ~ p and
for every distinct i,j ~ k, (Xi)(n,n+2r) "I (Xj)(n,n+2r). For every q > 0 there
exists nq > p + q such that d(z, anq (z)) < 2-q. Choosing a subsequence if
necessary, we can assume that for every i ~ k, there exist limits

lim a nq (Xi) = Yi
q-too

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 465

Clearly F(Yi) = z. We show that (Yi)i<k are totally 2r-separated. For
m E Z put s = max{ -m, m + 2r}. Ther~ exists q 2': s such that for every
i ~ k, d(anq (Xi), Vi) < 2-8 • Since -s ~ m ~ m + 2r ~ s,

(Yi)(m,m+2r) = a nq (xi)(m,m+2r) i- anq (xj)(m,m+2r) = (Yj)(m,m+2r)

so (Yi)i<k are totally 2r-separated. 0
PR~POSITION 7.1 (Hedlund [19]). Let (AZ, F) be a surjective CA

and z E A Z a a-transitive point. Then its preimages are pairwise totally
2r-separated.

Proof Let ko > 0 be the maximum number such that there exists
points Xl,"" Xko E F-l(z), which are pairwise totally 2r-separated. As
sume that F(y) = z and that Y is different from all Xi. If Y were right
2r-separated from all Xi, by Lemma 7.2 there would exist ko + 1 pairwise
totally 2r-separated preimages of z. Thus there exists j ~ ko such that Y
and Xj are not right 2r-separated and by Lemma 7.1 they are right asymp
totic. Similarly we prove that there exists t ~ ko such that Y and Xl are
left asymptotic. Let Xko+1,"" Xkl be all preimages of z different from
Xl, •.. ,Xko' There exists p > 0 such that

-p

Vi E (ko, kl),::Ij ~ ko, (Xi)(p,oo) = (Xj)(p,oo)

Vi E (ko, kl),::It ~ ko, (Xi)(-oo,-p+2r) = (Xl)(-oo,-p+2r)

-p+2r n
I

n+2r
I

For every q > 0 there exists nq > p+q such that d(a-P(z),anq(z)) <
2-q • By choosing a subsequence if necessary, we can assume that there
exist limits

so F(Yi) = a-P(z). Since F-l(a-p(z)) = {a-P(xi): 1 ~ i ~ kl }, for every
i ~ kl there exists ji ~ kl such that Yi = a-P(Xji)' There exists n > p
such that for all i ~ kl' d(an+r(Xi),Yi) < 2-r, so

466 PETRKURKA

However, both sets {(Xi)(n,n+2r): 1::; i ::; kl } and {(Xj;)(-p,-p+2r) :
1 ::; i ::; kl } contain exactly ko elements and they are equal. Consider a
set of words {Ui = (Xi)(-p,n); 1 ::; i ::; kd and define a binary matrix
M = (Mij h-:;i,j-:;k1 by

Mij = 1 {:} (Xi)(n,n+2r) = (Xj)(-p,-p+2r) .

For every i ::; kl there exists at least one j ::; kl with Mij = 1 and for some
i there exist at least two j with Mij = 1. Dually, for every j there exists

at least one, and sometimes at least two i with Mij = 1. Let L: ~ AZ be a
SFT defined by w E L: iff for every i E Z there exists ji ::; kl such that

W(i(n+p),(i+1)(n+p» = Uji and Mji,ji+l = 1 .

Then for every x,y E L:, F(x) = F(y), but L: is an infinite set and this is
a contradiction. 0

PROPOSITION 7.2 (Hedlund [19]). Let (AZ,F) be a surjective CA and

y,z E AZ. Let z be a-transitive and IF-l(z)1 = m. Then IF-l(y)1 ~ m
and there exist m pairwise totally 2r-separated preimages of y. In particular
every two a-transitive points have the same number of preimages.

Proof. Let F-l(z) = {Xl,"" xm}. By Proposition 7.1, (Xi)i-:;m
are pairwise totally 2r-separated. For every q there exists nq for which
d(anq (z), y) < 2-q • By choosing a subsequence if necessary, we can assume
that anq(xi) converge to some Wi as q -+ 00. Then (Wi)i<m are pairwise
totally 2r-separated and F(Wi) = y. 0 -

COROLLARY 7.1. Let (AZ,F) be a surjective CA and put

m = min{lF-l(x)1 : X E AZ }.

The set {x E AZ: IF-l(x)1 = m} is residual and contains all a-transitive
points.

In the CA (3Z, L) of Example 8, m = 1. Every point which has an
infinite number of two's in (0,00), has only one preimage.

8. Openness. We characterize CA with constant number of preim
ages. Recall that a dynamical system (X, F) is open if for every open set
U ~ X, F(U) is open. Clearly every bijective DS is open. By a theorem
of Parry [27], a one-sided sub shift is open iff it is a SFT. Since the sum
CA of Example 3 is conjugate to the full shift of four symbols, it is open.
Moreover, every its point has exactly four preimages.

THEOREM 8.1 (Hedlund [19]). Let (AZ,F) be a CA. The following
conditions are equivalent.
1. There exists m > 0 such that for all x E AZ , IF-l(x)1 = m.

2. There exist continuous maps Fl; ... , Fm : AZ -+ AZ such that for all
x E AZ , F-l(x) = {Fl(x), ... ,Fm(x)}.
3. F is open.

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 467

Proof. 1 =? 2: By Proposition 7.2, the preimages of every point are
pairwise totally 2r-separated. Assume that F-l(y) = {Xl, ... ,Xm}. We
show

Vc> 0,:38> 0, Vy' E B,s(y),:3i :::; m, :3x' E B,,(Xi), F(x') = y' .

If this were not true, there would exist c > ° such that for every 8 = 2-n

there would exist Yn E B,s(y), and its preimage Zn E F-l(Yn), such that
d(zn' Xi) ~ c for every i. If Z were a limit of a subsequence of (zn)n~O'
then F(z) = y, so y would have at least m + 1 preimages and this is a
contradiction. Moreover, if c :::; 2-r , then the m preimages of y' belong to
distinct B,,(Xi), since they are pairwise totally 2r-separated and therefore
their distance is at least 2-r . Thus we get a stronger condition

Vc > 0,:38> 0, Vy' E B,s(y), Vi:::; m, :3!x~ E B,,(Xi), F(x;} = y' .

Suppose that 8 has this property with c = 2-r . Let V = {Vb: b E B}

be a clop en partition of AZ with diam(V) < 8. Choose from every Vb a
point Yb E Vb and denote its preimages F- l (Yb) = {Xb,l, ... ,Xb,m}. Define
Fi : AZ -+ AZ by

X E Vb =? d(Fi(X), Xb,i) < C, F(Fi(X)) = X .

Then Fi are continuous.
2 =? 3: Assume that U S;; AZ is an open set such that F(U) is not open, so
there exists X E U such that F(U) is not a neighbourhood of F(x). For some
i :::; m, x = Fi(F(x)). There exists a sequence (Yn f/. F(U))n>O converging
to F(x) and Fi(Yn) f/. U. (Fi(Yn))n>O has a subsequence converging to
some Z f/. U and F(z) = F(x). Since the preimages of every Yn are pairwise
totally 2r-separated, z differs from all Fj (F (x)) and this is a contradiction.

3 =? 1: We show first that F is surjective. Suppose that V = F(AZ) I
AZ , Since V is clop en and (AZ, 0") is transitive, there exists n > Osuch
that O"n(V) n (AZ \ V) I- 0 and this is impossible since V is 0"- invariant.
Put m = min{lF-l(x)l: x E AZ} and assume that for some Y E AZ,
F-l(y) = {Xl, ... , Xp}, where p > m. Let Ui 3 Xi be pairwise disjoint
open sets. Then V = F(Ud n ... n F(Up) is an open set containing x, and
every element of V has at least p preimages. However, O"-transitive points
are dense, so V contains a O"-transitive point which has only m preimages.
o

The inverse maps Fi are in general not CA. In the sum CA of Example
3, the four inverse maps may be given by conditions

Only when m = 1, i.e., when F is bijective, the inverse map F- l is a CA.
This is the case of identity and of every almost equicontinuous open map.

468 PETRKURKA

THEOREM 8.2. Every CA which is open and almost equicontinuous is
bijective.

Proof Let u E Am be a 2r-blocking word with offset j. Suppose
that some z E [u]o has two distinct preimages x,y. Then v = X(-r,m+r),

W = Y(-r,m+r) are distinct (since x and yare totally 2r-separated), and
both F([v]_r) and F([w]_r) are contained in [u]o. Moreover, v and w
are 2r-blocking words with offsets j + r. By Proposition 6.3 , (AlE, F) is
nonwandering, so there exist p, q > 0 and x' E [v]-r n F-P([v]-r), Y' E
[w]r n F-q([w]-r). It follows that

, - Fpq(') - Fpq-l() - Fpq(') - , x(j,j+2r) - X (j,j+2r) - Z (j,j+2r) - Y (j,j+2r) - Y(j,j+2r)

, ,
X(j,j+2r) = x(j,j+2r) = Y(j,j+2r) = Y(j,j+2r)

so x and yare not 2r-separated. Thus z has only one preimage, and since
F is open, every point has exactly one preimage. 0

,

,

,

,

v I I w

I u I I u

v I I w

EXAMPLE 9 (B: A bijective almost equicontinuous CA).
(AlE, B) where A = {ODD, 001, 010, 011, 100} = {O, 1,2,3, 4}, and

(the addition is modulo 2).

, , . , , , , ; (
, ,

) ... ~'"
,

, , . : , , , , , , , , ,. , ~,... ~ ..
, , , , .. ,.. ' .. , .- , , · , , " , , , ,

: , , .-, , . , , .-
, , , , .- , , , · , , , , , , , , .. , .. , , , , ... ,... .., , .- ,... .. ", .. , , , , .. , ",. , , , , .. """ , , , , , , : , " : " , . , ... " , , , , , , , . ".." , , , , . : , , ' "" , .. ' .. ", ., , , , · , ' .. "" , , , , , : , , , , : .. "" ... , , , ; , "

.. "... ' ..
.- , .. , , : , , , , , ,

: , , , , , , , , , . , ; , , , , , , , , , , , , , "", , , , , , .- , , " .. ,.. I' . , .. , , , , , , , , ,
" , , , , , , , ,

" ,

FIG. 8. B: A bijective CA.

I
J

I

,
(,

The dynamics is conveniently described as movement of three types of
particles,l = 001, 2 = 010 and 4 = 100. Four is a wall which neither moves

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 469

nor changes. A 1 goes to the left and when it hits a wall (4), it changes to
2. A two goes to the right and when it hits the wall, it changes to a one.
One's and two's may cross, to form three's. Clearly 4 is a I-blocking word,
so the system is almost equicontinuous. It is bijective, as its inverse is

9. Closingness.
DEFINITION 9.1. A CA (AZ, F) is right closing (left closing), if for

every distinct left asymptotic (right asymptotic) x, yEA Z, F (x) i:- F (y).
A CA is closing if it is either left or right closing.

Clearly (AZ, F) is right closing iff its dual (AZ, F) is left closing.

The CA (3Z, L) of Example 8 is left closing. If L(x) = z, then for
every i E Z

Xi = { Xi+1 + Zi mod 2 ~f Zi i:- 2
2 If Zi = 2

Thus if L(x) = L(y) and if x and yare right asymptotic, then x = y. The
CA is, however, not right closing. The points x = 000 .2000 and y = 000 .21 00

are left asymptotic and their images coincide.
EXAMPLE 10 (R: a surjective CA). The CA (3Z x 3Z ,R), where

R = Lx L, is not closing but it is surjective. The points x = (000 .2000 ,000)

and y = (000 .2100 ,000) are left asymptotic but their images coincide. The
points x = (000 ,000 2.000) and y = (000 ,100 2.000) are right asymptotic but
their images coincide.

PROPOSITION 9.1. Every closing CA is surjective.

Proof Let (AZ, F) be a CA with radius r which is not surjective. By
Theorem 6.2 there exists a diamond, i.e., words W E A2r and u i:- v E A+
with lui = Ivl and f(wuw) = f(wvw). Put x = woo.uwoo , y = woo.vwoo .
Then x, yare both left and right asymptotic and F(x) = F(y), so F is
neither right nor left closing. 0

PROPOSITION 9.2. A CA (AZ, F) is right closing iff there exists m > 0
such that

X(-m,O) = Y(-m,O) & F(x)(-m,m) = F(Y)(-m,m) :::} Xo = Yo .

Proof Suppose that F is right closing. For m > 0 let Xm consist of
all pairs (x, y) E AZ x A Z such that

x(-m,O) = Y(-m,O), Xo i:- Yo, F(x)(-m,m) = F(Y)(-m,m) .

Every Xm is closed and X m +1 ~ X m . If all Xm were nonempty, their
intersection would contain a pair (x, y) of distinct left asymptotic words
with F(x) = F(y), so F would not be right closing. Thus for some m,

470 PETRKURKA

Xm =0.
Conversely, suppose that F is not right closing, so there exist distinct left
asymptotic words x, y with F(x) = F(y). Taking the shifts of x and y if
necessary, we can assume X(-00,0) = y(-00,0) and Xo i- Yo. Thus for every
m > 0, the condition is not satisfied. 0

PROPOSITION 9.3. Let (AZ, F) be a right closing CA. There exists
m > 0 such that if U E Am, V E A2m and F([u]_m) n [v]-m i- 0, then

Vb E A, 3!a E A, F([ua]_m) n [vb]-m i- 0.

Proof. By Proposition 9.2, for every b there exists at most one a with
F([ua]_m) n [vb]-m i- 0. Put

B = {(u, v) E Am X A2m: F([u]_m) n [V]-m i- 0} .

-m 0 m

+ + +

I
u la I

V I b I

Consider an oriented graph with vertices B. For every pair of words
u E Am+l, v E A2m+1 such that F([u]-m) n [v]-m i- 0, put an oriented
edge

This graph defines a SFT ~ ~ B Z of order two, and there is a conjugacy

i.p: (AZ , 0") --+ (~,O") defined by i.p(X)i = (X(i,i+m-l),F(x)(i,i+2m-l))' The

topological entropy is h(~, 0") = h(AZ , 0") = In IAI. In the graph of~, from
every vertex (U(O,m-l), V(0,2m-l)) there are at most IAI outgoing edges (for
every V2m at most one). If there are fewer than IAI outgoing edges from
some vertex, then the topological entropy h(~, 0") would be smaller than
In IAI (Lind and Marcus, [22], Corollary 4.4.9.). 0

THEOREM 9.1. If (AZ , F) is a right closing CA, then for some p > 0,
(AZ,O"P 0 F) is a factor of a two-sided full shift.

Proof. Let m > 0 be the number from Proposition 9.3. We can assume
m 2: r, where r is the radius. Put p = 3m + 1 and

B = {(u, v) E A2m+1 X A2m+1 : F-1([u]_m) n [v]o i- 0} .

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 471

-3m-l -m ° m 2m+l 3m+l

t t t t t t

LlU-l

~ ~ Uo

Vo Vl~
If (uo,vo) and (ul,vd belong to B, then there exists y E [ulhm+l n

F-l([VlhmH). We can change y in interval (0,2m) to obtain a point
x E [voullo n F-l([VlhmH). By Proposition 9.3, x has a preimage in
[uol-m, so

Fl([uol_m) n [voudo n F-l([Vlhm+d i- 0 .

If (u,v) E B 'll" then Xl = F l ([V-lUol-3m-dn[vOUllonF-l ([VlU2hm+l) i-
0, and similarly, for every q > 0,

q

Xq = n F-n([VnUnHl(3m+l)n) i- 0 .
n=-q

By compactness, nq>o Xq is nonempty. If x, y E X q, then

X(-q(3mH)+mq,q(3m+l)-mq) = y(-q(3m+l)+mq,q(3m+l)-mq) .

Thus there exists a unique 'P(u,v) E nq>o Xq and'P : (B'll"O") -+ (AZ , O"P 0

F) is a factor map. 0

THEOREM 9.2 (Boyle and Kitchens [8]). Every closing CA (A'll" F)
has a dense set of points which are both F -periodic and O"-periodic.

Proof. We can assume that F is right closing. Since (A'll" O"P 0 F) is
a factor of a two-sided full shift, it has a dense set of periodic points. We
can assume p > m where m is the integer from Proposition 9.3. We show
that if x E A'll, is a (O"P 0 F)-periodic point, then it is both O"-periodic and

F-periodic. Put B = A 2pH and construct a map cp : A'll, -+ BN by

cp(x)0

cp(xh
cp(xh

472 PETR KURKA

Because F is right closing and p > m, cp(a(x)) is uniquely determined

by cp(x), in fact, cp(a(x))i depends only on cp(X)i and CP(X)i+l. If x E All
is (aP 0 F)-periodic, i.e., if (aP 0 F)q(x) = x, then cp(x) is a- periodic since

cp(x)i+q = (aP 0 F)i+q(x)(_p,p) = (aP 0 F)i(x)(_p,p) = CP(X)i .

It follows that cp(a(x)) is a-periodic with period q too. In B N , there are at
most IBlq a-periodic points with period q, so there exist 0 :S k < k + s <
IBlq such that cp(ak+B(x)) = cp(ak(x)) and for all l ~ k, cp(al+B(x)) =
cp(al(x)). Applying this argument to a-i(x) where j = IBlq, we get
cp(al+B(x)) = cp(al(x)) for alll ~ O. In particular, cp(aS(x)) = cp(x), so
a8 (x) = x and

Thus x is both a-periodic and F-periodic. 0
THEOREM 9.3. A CA is open iff it is both left closing and right clos

ing.
Proof If (AIl,F) is open and Z E All, then every two preimages of z

are totally 2r-separated, so they are neither left nor right asymptotic. This
means that F is both right and left closing.
Conversely, Suppose that (AIl,F) is a CA with radius r which is both left
and right closing. Let m > 0 be an integer with property of Proposition 9.3
and U E A2k+1. Then F([U]_k) is open, since it is the union of all cylinders
[vl-k-m such that v E A2k+2m+l and F([U}-k) n [V}-k-m =J. 0. 0

10. Expansivity.
PROPOSITION 10.1. Every positively expansive CA (All, F) with ra

dius r is conjugate to (I:(_r,r)(F),a).
Proof. Suppose that there exist x =J. y such that for all n ~ 0,

Fn(x)(_r,r) = Fn(Y)(_r,r). Let Xk =J. Yk, so Ikl > r. Assume k > 0

and define z E All by z(-oo,O) = X(-oo,O), Z(O,oo) = Y(O,oo). Then x =J. z and
for all n ~ 0, Fn(x)(_oo,r) = Fn(z)(_oo,r). It follows that for every k ~ 0

Fn(a-k(x))(_oo,rH) = Fn(a-k(z)h_oo,rH)

and this is a contradiction. Thus cp : (All, F) -t (I:(-r,r) (F), a) is injective,
hence a conjugacy. 0

THEOREM 10.1 (Kurka [21), Nasu [25]). Every positively expansive
CA is open and conjugate to a onesided SFT.

Proof We show that if (All, F) is positively expansive, then it is both
left and right closing. Let 0 = 2-m be the constant of expansivity, so

x f:. y => 3n ~ 0, Fn(x)(_m,m) =J. Fn(Y)(_m,m) .

Suppose that x, yare distinct left asymptotic points with F(x) = F(y). By
taking a shift of x and y if necessary, we can assume x(-oo,m) = y(-oo,m), so

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 473

d(Fn(x), Fn(y)) < 0 for all n 2 0 and this is a contradiction. By Theorem

9.3, (A-Z, F) is open, so (~(-r,r) (F), cr) is open too. By a Theorem of Parry,
[27], a one sided sub shift is a 8FT iff it is open, so ~(-r,r)(F) is a 8FT. 0

THEOREM 10.2 (Blanchard and Maass [3]). Every positively expansive
CA is mixing.

Proof Let (AZ, F) be a positively expansive CA with radius r, put
B = A 2r+l and let k be the order of 8FT ~(-r,r)(F), so W E ~(-r,r)(F) iff
for all n 2 0, W(n,n+k) E £(~(-r,r)(F)). Let u,v E Anr. There exists p > 0
such that for every x, y,

Vi < p,Fi(x)(_r,r) = Fi(Y)(_r,r) => X(-(k+n)r,(k+n)r) = Y(-(k+n)r,(k+n)r)·

We will show that for all m 2 p, Fm([u]o) n [v]o i 0. Choose any x E AZ,
such that X(kr+l,(k+n)r) = u. 8ince F is surjective, there exists Y E AZ
such that

o

p-l

m

m+k-l

m+p-l

o
t

r kr

t
(k + n)r

t
x

Y

It follows that for m ~ i < m+k, Fi(x)(_r,r) = Fi(Y)(_r,r). Construct
wE Bm+p by

w. = {Fi(X)(_r,r) if 0 ~ i ~ m + k - 1
, F'(Y)(-r,r) if m:S i :s m + p - 1

474 PETRKURKA

Since both W(O,mH) and W(m,m+p) belong to the language of the subshift, W

belongs to this language too and there exists Z E AZ such that for i < m+p,
Fi(z)(_r,r) = Wi. Thus Z(kr+l,(k+n)r) = u and Fm(Z)(kr+l,(k+n)r) = v, so
(Tkr+l(z) = [uJo n F-m([vJo). 0

There is a large class of permutive local rules which yield expansive,
or at least open CA.

DEFINITION 10.1. Let s 2 1 and f : AS -+ A be a local rule.
1. f is left permutive iffVu E AS-l,Vb E A,3!a E A,f(au) = b.
2. f is right permutive iffVu E AS-I, Vb E A, 3!a E A, f(ua) = b.

PROPOSITION 10.2. Let (AZ, F) be a CA and let f : Aa-m+l -+ A be
its local rule. Here m :::; a is the memory and anticipation respectively.
1. If f is left permutive, then F is left closing.
2. If f is right permutive, then F is right closing.
3. If f is both left and right permutive and m < 0 < a, then F is expansive.

The sum CA of Example 3 is both left and right permutive with m =
-1, a = 1. The closing CA of Example 8 is left permutive with m = 0 and
a = 1. It is not right permutive. However, the bijective and hence open
CA of Example 9 is neither left nor right permutive.

11. Shadowing property. If (Xi)i>O is a 2-m-chain in a CA (AZ, F),
then for all i, F(Xi)(-m,m) = (xi+d(-~,m)' so Ui = (Xi)(-m,m) satisfy
F([ud-m) n [Ui+lJ-m :f 0. Conversely, if a sequence (Ui E A2m+l)i>O
satisfies this property and Xi E [UiJ-m, then (Xi)i>O is a 2-m-chain. -

THEOREM 11.1 (Kurka [21]). Let (AZ,F) b; a CA. If for every suffi
ciently large n, ~(-n,n) (F) is a 8FT, then F has the shadowing property.

Proof For a given c = 2-n :::; 2-r , let m + 1 > 1 be the or
der of ~(-n,n)(F), so W E ~(-n,n)(F) iff for every i 2 0, W(i,i+m) E

C(~(-n,n)(F)). Put k = n+rm and 8 = 2-k. We show that every 8-chain
is c-shadowed by some point. Let (xik:::o be a 8-chain, so F(Xi)(-k,k)
(Xi+d(-k,k). We get

F 2(Xi)(_k+r,k_r) = F(xi+d(-k+r,k-r) = (Xi+2)(-k+r,k-r)

and Vj :::; m,Fj(Xi)(-n,n) = (Xi+j)(-n,n). Since ~(-n,n)(F) is a 8FT of
order m+ 1, the sequence ((xi)(-n,n)k::o belongs to C(~(-n,n) (F)), so there

exists a point x E AZ, such that for all i 2 0, Fi(x)(_n,n) = (Xi)(-n,n), so
x c-shadows the sequence (xik::o. 0

-k -n n k

+ + + +
0

~ m

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 475

Every expansive CA has the shadowing property since it is conjugate
to a 8FT. It is easy to see that the factor sub shifts of the product CA and
the majority CA are 8FT, so these CA have the shadowing property.

THEOREM 11.2 (Kurka [21]). If (A71,F) is a CA with the shadowing
property, then every its factor subshift is sofic.

Proof. Let (A 7l , F) be a CA. We show that for every n 2: 0, ~(-n,n) (F)
is a sofie subshift. For t: = 2-n there exists 8 = 2-k such that every 8-
chain is t:-shadowed by some point. We can assume k 2: n. Put B = A2k+l,
C = A2n+1 and define a 8FT ~ ~ BN of order 2 so that for u, v E B,

UV E £(~) ¢:} F([U]-k) n [V]-k -::j:. 0 .

Define a map r.p : ~ ~ CN by r.p(U)i = (Ui) (k-n,k+n). For U E ~ consider

any sequence of points (Xi E A71)i>O with Xi E [Ui]-k. Then (Xi)i>O is a
8-chain so there exists a point X E AN which €-shadows it. We get -

Fi(x)(_n,n) = (Xi)(-n,n) = (Ui)(k-n,k+n)

so r.p(u) E ~(-n,n)(F). Thus r.p(~) ~ ~(-n,n)(F). Conversely, if v E

~(-n,n)(F), then there exists X E A71 with Vi = Fi(x)(_n,n) and v = r.p(u),
where Ui = Fi(x)(_k,k). Thus ~(-n,n)(F) = r.p(~) is sofie. D

PROPOSITION 11.1. Every equicontinuous DB on A 7l has the shadow
ing property.

Proof. By the assumption for every € = 2-n there exists 8 = 2-k such
that if X(-k,k) = Y(-k,k), then Fi(x)(_n,n) = Fi(Y)(_n,n) for all i 2: o. Let

(Xi E A71)i2:0 be a 8- chain. Then F(Xi)(-k,k) = (xHd(-k,k), so for every
m>O,

Fm(xo)(_n,n) = Fm-1(xd(_n,n) = ... F(Xm-l)(-n,n) = (xm)(-n,n) .

Thus Xo €-shadows (Xi)i2:0. D

12. Attractors.
THEOREM 12.1 (Hurley [20]). Let (A71, F) be a CA and X E A71 an

attracting periodic point. Then a(x) = X and F(x) = x.
Proof. Let p be the period of x, so FP(x) = x. By the assumption,

there exists a clop en set U with (')(x) = w(U). There exists a nonempty
open set Uo ~ U such that if Y E Uo, then limn->oo Fnp(y) = x. 8ince
(i~, a) is mixing, for k large enough, both ak(Uo) n Uo and ak+l (Uo) n Uo
are nonempty. For y E ak (Uo) n Uo and z E ak+l (Uo) n Uo we get

ak(x) = lim FnP(y) = x = lim FnP(z) = ak+l(x) .
n->oo n->oo

It follows a(x) = x, so x = aOO for some a E A. Then F(x) = bOO for some
bE A and a OO = limn-> 00 Fnp(aoo.boo) = bOO. Thus a = b and therefore
p = 1. D

476 PETRKURKA

In the product CA of Example 1, 000 is an attracting fixed point.
There is also another larger attractor w(2Z).

THEOREM 12.2 (Hurley [20]). If a CA has two disjoint attractors,
then every its attractor contains two disjoint attractors and a continuum
of quasi-attractors.

Proof Let Yi and Y2 be two disjoint attractors and U1 , U2 clop en
invariant sets with w(Ud = Y1 , w(U2) = Y2. If U1 n U2 were nonempty,
then w(U1 n U2) would be an attractor contained in both Y1 and Y2. Thus
U1 n U2 = 0. Let Y be an attractor and U a clop en invariant set with
w(U) = Y. Since (AZ,(T) is mixing, there exists n > 0 such that Vi
(Tn(Ud n U =1= 0 and V2 = (Tn(U2) n U =1= 0 are clop en invariant sets. It
follows that W(Vl) and w(V2) are disjoint attractors contained in Y. 0

In the majority CA of Example 2, [00]0 and [11]0 are disjoint invariant
sets, so their omega-limits are disjoint attractors. While w(2Z) and Y =
w([OOlo u [11]0) are subshifts, other attractors are not.

THEOREM 12.3 (Hurley [20]). If a CA has a minimal attractor then
it is a subshiJt, it is contained in every other attractor and its basin of
attraction is a dense open set.

Proof Let Y be a minimal attractor and let Z be another attractor. If
YnZ were empty, then Y would contain two disjoint attractors. Since Y is a
minimal attractor, Y ~ Z. Let V be a clop en invariant set with w(V) = Y.
Then (T-l(V) is a clop en invariant set, so Y ~ w(T-l(V)) = (T-l(y). Thus
(T(y) ~ Y and similarly, (T-l(y) ~ Y, so Y is a subshift. The basin 8(Y)
is an open (T-invariant set. Since (AZ, (T) is transitive, for every nonempty
open U ~ A Z there exists n > 0 with

0=1= (Tn(8(Y)) n U = 8(Y) n U

and 8(Y) is dense. 0
Of course an attracting fixed point is an example of a minimal attrac

tor. To see an example of a minimal attractor which is not a fixed point
consider

EXAMPLE 11 (A minimal attractor). (2 Z x 2Z, P x (T), has a minimal

attractor {OOO} x 2Z.
COROLLARY 12.1 (Hurley [20]). For any CA exactly one of the fol

lowing statements holds.
1. There exists two disjoint attractors and a continuum of quasi-attractors.
2. There exists a unique minimal quasi-attractor. It is a subshiJt and it is
contained in every attractor.
3. There exists a unique minimal attractor which is contained in every
other attmctor.

Proof If there do not exist disjoint attractors, then every two attrac
tors are comparable by inclusion. The number of attractors is at most
countable, so the intersection of all attractors is either a quasi-attractor or
an attractor and it is (T-invariant. 0

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 477

EXAMPLE 12 (Q : A quasi-attractor, Hurley [20]). (2Z, Q) where

has a quasi-attractor {OOO}.

,..,...,... ,... ... ,.. .,..
FIG. 9. Q: A quasi-attractor.

The point 000 is equicontinuous but not attracting. As in Example 1,
we have

For every m E Z, [O]m is a clop en invariant set and

is an attractor. For example Yo consists of all points 000 .1 nooo where 0 :S
n:S 00. We have Ym+1 C Ym and nm>o Ym = {OOO} is the unique minimal
quasi-attractor. -

13. Unique attractor. Recall that a DS (X, F) has a unique attrac
tor iff w(X) is chain transitive (Akin [1], p.66).

THEOREM 13.1. An equicontinuous CA has either two disjoint attrac
tors or an attracting fixed point, which is the unique attractor.

Proof Suppose that (AZ, F) is an equicontinuous CA which has not
disjoint attractors. By Theorem 5.2, there exists a preperiod m 2: 0 and a
period p > 0, such that Fm+p = Fm. Assume that there exist two distinct
attractors Z C Y S; AZ. For Yl E Y \ Z construct a sequence (Yn E Y)n>l
with F(YnH) = Yn· This is possible, since F(Y) = Y, and clearly, Yn E Y\
Z. There exists a converging subsequence x = limi~oo Yni E Y. It follows
that x is a nonwandering point. Since it is eventually periodic, it must be
periodic and FP(x) = x. There exists € > 0 such that Bc(Fi(x)) n Z = 0
for all i < p. Since x is equicontinuous, there exists ~ > 0 such that
if d(z, x) < ~, then d(Fn(z), Fn(x)) < € for all n. By Proposition 11.1,

(A Z ,F) has the shadowing property, so there exists 6 > 0 such that every
6-chain which starts in x, is ~-shadowed by some point, so it remains €-close
to the orbit of x. Let c,(x) be the set of points which can be reached by
6-chains from x, and V = C.,(x) be its closure. Then V n Z = 0. We show

478 PETR KURKA

that V is inward, i.e., F(V) ~ VO. There exists 1] > 0 such that for all
v,w E AZ,

d{v,w) < 1] =? d{F{v),F{w)) < 8/2.

Given z E V, there exists w E Co{x) with d{z, w) < 1] and a 8-chain
x = xo, ... , Xn-l, W. If d{v, F{z}} < ~, then

d(F(w}, v} ::; d(F(w}, F(z}} + d(F(z}, v} < 8

so x = xo"",Xn-l,V,W is a 8-chain, and v E V. Thus B~(F(z}} ~ V,
so F(V} ~ VO and w(V) is an attractor disjoint from Z and this is a
contradiction. Thus {AZ, F} has unique attractor Y = w(AZ }. Since Y is
a minimal attractor it is chain transitive. By Proposition 11.1, {Y, F} has
the shadowing property, so it is transitive. By Theorem 5.3, Y consists of
a single periodic orbit, which must be a fixed point by Theorem 12.1. 0

The zero CA of example 5 is equicontinuous and has a unique attractor.
The identity CA of Example 4 is equicontinuous and has disjoint attractors.
There is also an example which is not surjective.

EXAMPLE 13 (J: disjoint attractors). {3Z ,J} where J(X)i = L,,\t- l J,
is equicontinuous, has disjoint attractors and is not surjective.

THEOREM 13.2. If a CA has an attracting fixed point which is a
unique attractor, then it is equicontinuous.

Proof. Let a OO be the attracting fixed point, so w(AZ) = {aOO }. If
bE A, b =I- a, then b rf- £({aOO }), so for some n > 0, b rf- Fn(AZ). Taking
the maximum of these n for all b E A \ {a}, we get Fn{AZ) = {aOO } and
clearly F is equicontinuous. 0

PROPOSITION 13.1. Let (AZ,F) be a surjective CA. IfU ~ AZ is an
invariant clopen set, then F-l(U} = U and F(U) = U.

Proof If F(U) C U, then U ~ F-lF{U} ~ F-l(U}. Suppose that
there exists x E F- l (U) \ U. There exists an open set V :3 x with Vnu = 0
and F(V} ~ U. There exists n > 0 and words uo, ... , Urn-l, Urn E A2n+l
such that

U = [uol-n U ... U [Urn-ll-n, [urnl-n ~ V .

Define an integer matrix of the type (m + I) x m by

M I{ A2n+2r+l. - E f-l(}}I ij = . wE. W(r,r+2n) - Ui, W Uj.

Here r is the radius and f : A2r+l -+ A the local rule. Since F is surjective,
for every j < m, If-l(Uj}1 = IAI2r by Theorem 6.1, so

rn rn rn-l

L Mij ::; IAI2r and L L Mij ::; mlAI2r .
i=O i=O j=O

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 479

Since F(U) s:;: U and F(V) s:;: U, for every i :S m,

m-l m m-l

L Mij = IAI2r and L L Mij = (m + 1)IA12r
j=O i=O j=O

and this is a contradiction. Thus F- 1 (U) = U and F(U) = U. 0
THEOREM 13.3. A surjective CA has either a unique attractor or a

pair of disjoint attractors.

Proof. Suppose that a surjective CA (AZ, F) has at least two at

tractors. There exists a nonempty clop en invariant set U f. AZ and by
Proposition 13.1, V = AZ \ U is a clop en invariant set too. Thus w(U) and
w(V) are disjoint attractors. 0

EXAMPLE 14 (U: A unique attractor, Gilman [15]). (2Z, U) where

.,.,. ..»",. .. ,.,..-,.,..-~,. ;r~.-

FIG. 10. U: A unique attractor.

Similarly as in Example 1 we show

w(2Z) is not transitive. If x E [10)0 n w(2Z), then X(l,oo) = 000 , so for

every n > 0, Fn(x) tJ. [11)0' The following chains show that w(2Z) is chain
transitive

0000
0001
0011
0111
1111

0001
11
11
11

1111
1110
1000
0000

01
o
o

1111
1100
0000

o
o

It follows that the CA does not have the shadowing property and by The
orem 11.2, its factor sub shifts ~(-n,n>(U) are not sofie.

EXAMPLE 15 (C: Coven's CA [9]). (2Z, C) where

480 PETRKURKA

FIG. 11. Coven's CA.

is almost equicontinuous, has a unique attractor and does not have the
shadowing property (Blanchard and Maass [4]). It is left closing but not
open.

The CA is left closing since it is left permutive. It is not right closing,
since it has not constant number of preimages. 000 has the only preimage
itself, while 100 has two preimages (01)00 and (10)00. To show other prop
erties, observe first that for every a, bE 2, f(la1b) = Ie where e = a+b+ 1

(here f is the local rule and the addition is modulo 2). Define a CA (2Z , G)
by G(X)i = Xi + Xi+l + 1 mod 2 and a map cp : 2Z --+ 2Z by

cp(xh; = 1, cp(Xhi+l = Xi .

Then cp : (2Z, G) --+ (2Z , C) is an injective homomorphism, so (2Z, G) is
a transitive subsystem of (2Z, C).

LEMMA 13.1. For every n ~ 0,

X(O,l) = 10 :::} Vi::; n,Ci(x)(O,l) E {1O,11}.

Proof The statement clearly holds for n = O. Assume that it holds
for n and let us prove it for n + 1. Let m > 0 be the first integer for which
Cm(X)(O,l) ::j:. 10, so Cm(X)(O,l) = 11 and C«::3) = 1010. By the induction
hypothesis

Cn (X)(O,3) E {101O, 1011, 1110, 1111}

so Cn+1(X)(O,1) E {10, 11}. 0
LEMMA 13.2. The word 000 is a 2-blocking word with offset O.
Proof Let X(O,2) = 000 and let n > 0 be the first integer with

C n (X)(O,2) ::j:. 000 so Cn (X)(O,2) = 001 and C n - 1 (X)(O,4) = 00010. By
Lemma 13.1, Cm(xh = 1 for all m ~ n, so Ck(X)(O,l) = 00 for all k ~ O. 0

We show now that for every n > 0 there are chains 1 n+l --+ 01 n --+
1 n+!. This follows from the fact that a transitive system (2Z, G) is a

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 481

subsystem of (2Z, C). The chains differ slightly when n is even or odd.

11111 10
11110 0
11010 10
01111

01111 10
01110 0
01010 10
11111

111111 0
111101 11
110101 0
011111

011111 0
011101 11
010101 0
111111

Since (2Z, C) is almost equicontinuous, it is not transitive. Since it is
chain transitive, it does not have the shadowing property. However, its
factor sub shifts are sofic, so the converse of Theorem 11.2 is not true. For
example

L:(O,I) (C) = {1O, l1}N U {11, 01}N U {01, OO}N .

14. Classification. We have seen that many topological properties
of CA are closely interrelated while others are independent. The following
two tables summarize some of the results obtained.

almost equicontinuou sensitive

surj p.ctive

clOS ng

attract open
fixed p

transitive

I--
e uic pnt. bi ective POSIt.

J expans
0 E I IX(j (j S iL(ji R(ji

B ----V
Sxa-p

C Sxlxa-

L Lxa-

M Q R Rxa-

PXa- U

FIG. 12. Equicontinuity classes.

COROLLARY 14.1.
1. Every positively expansive CA is open and transitive (Theorems 10.1,
10.2).
2. Every transitive CA is surjective and sensitive (Corollary 5.1).
3. Every open CA is closing (Theorem 9.3).
4. Every closing CA is surjective (Proposition 9.1).
5. Every open and almost equicontinuous CA is bijective (Theorem 8.2).

482 PETRKURKA

a1i~~JrJrs minimal attractor minimal

unique attractor
quasi-attractor

equicontiI uous att acting f.p.

J 0 P

su jective l I Q
Cham tranSIt

B L R ['''llSij
IxS (J S PX(J

C

M E
U

FIG. 13. Attractor classes.

6. Every surjective equicontinuous CA is bijective (Theorem 6.5).
7. Every CA is either sensitive or almost equicontinuous (Corollary 5.1).
8. Every CA with an attracting fixed point is almost equicontinuous.
9. Every transitive system is chain transitive.
10. Every equicontinuous CA has either two disjoint attractors or an at
tracting fixed point, which is the unique attractor (Theorem 13.1).
11. Every CA whose unique attractor is an attracting fixed point is equicon
tinuous (Theorem 13.2).
12. Every surjective CA has either a unique attractor or a pair of disjoint
attractors (Theorem 13.3).
13. Every CA has either two disjoint attractors or a unique minimal at
tractor or a unique minimal quasi-attractor (Corollary 12.1)
The nonemptiness of various CA classes is shown by following examples:
P: The product CA of Example 1 has an attracting fixed point, it is almost
equicontinuous but not equicontinuous.
M: The majority CA of Example 2 is almost equicontinuous. It is not
equicontinuous and it does not have an attracting fixed point.
S: The sum CA of Example 3 is positively expansive.
I: The identity CA of Example 4 is equicontinuous, bijective and has dis
joint attractors.
0: The zero CA of Example 5 is equicontinuous and has an attracting fixed
point.
E: Example 6 is equicontinuous, not bijective and does not have an attract
ing fixed point.
L: Example 8 is right closing but not left closing, so it is not open.

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 483

B: Example 9 is bijective and almost equicontinuous but not equi
continuous.
R: Example 10 is neither left nor right-closing but it is surjective
J: Example 13 has disjoint attractors, it is equicontinuous and not surjec
tive.
U: Example 14 has a unique attractor, it is not surjective.
C: Coven's CA of Example 15 is almost equicontinuous, has a unique at
tractor, it is surjective but not transitive.
(T: The shift CA is bijective, transitive, surjective and sensitive.
L 0 (Ti: is transitive (for high enough i) and not open.
R 0 (Ti: is transitive (for high enough i) and not closing.
Q: Example 12 has a quasi-attractor.

15. Open problems. The relationships among some CA classes are
still unknown. One interesting class form CA which are chain transitive
without being transitive. Coven's CA of Example 15 belongs to this class
and it is closing. Does there exist an open or even bijective CA which is
chain transitive without being transitive?

A long standing problem is density of periodic points in surjective
CA. For two particular classes this property has been recently established:
almost equicontinuous surjective CA (Theorem 6.4, Blanchard and Tisseur
[6]) and closing CA (Theorem 9.2, Boyle and Kitchens [8]). For general
surjective CA, the problem seems to be still open.

Another hard problem has been considered in Nasu [25] as an analogue
of Theorem 10.1 which says that every positively expansive CA is conjugate
to a onesided SFT. A bijective DS (X, F) is said to be expansive, if

:J€ > 0, \:Ix i= y E X,:Jn E Z, d(Fn(x), Fn(y)) ~ € .

Every bijective expansive DS on AZ is conjugate to a twosided subshift. Is
any bijective expansive CA conjugate to a twosided SFT? Or is it at least
transitive?

Finally there are many particular CA whose topological properties are
unknown. One of the most interesting CA is Coven's CA of Example 15
generalized in Blanchard and Maass [4] to a class of aperiodic Coven CA.
The classification of periodic Coven's automata seems to be even more
difficult. While they are closing, it is unknown whether they are transitive,
sensitive or chain transitive. One particular case is

EXAMPLE 16 (V: Periodic Coven's CA). (2Z, V) where

484 PETRKURKA

FIG. 14. V: Periodic Coven's CA.

REFERENCES

[1] E. AKIN, The General Topology of Dynamical Systems, AMS, 1991.
[2] E. AKIN, J. AUSLANDER, AND K. BERG, When is a transitive map chaotic? Confer

ence in Ergodic Theory and Probability (eds. Bergelson, March & Rosenblatt)
(1996), de Gruyter and Co., pp. 25-40.

[3] F. BLANCHARD AND A. MAASS, Dynamical properties of expansive one-sided cel
lular automata, Israel Journal of Mathematics 99 (1997), pp. 149-174.

[4] F. BLANCHARD AND A. MAASS, Dynamical behaviour of Coven's cellular automata,
Theoret. Computer Sci. 163 (1996), pp. 291-302.

[5] F. BLANCHARD, P. KURKA, AND A. MAASS, Topological and measure-theoretic
properties of one-dimensional cellular automata, Physica D 103 (1997), pp.
86-99.

[6] F. BLANCHARD AND P. TISSEUR, Some properties of cellular automata with
equicontinuous points, to appear in Annalles de I'IHP, serie de Probabilites
et Statistiques.

[7] M. BOYLE, D. FIEBIG, U. FIEBIG, A dimension group for local homeomorphisms
and endomorphisms of one-sided shifts of finite type, J. Reine Angew. Math.
497 (1997), pp. 27-59.

[8] M. BOYLE AND B. KITCHENS, Periodic points for onto cellular automata, Indaga
tiones Math., 1999.

[9] E.M. COVEN AND G.A. HEDLUND, Periods of some non-linear shift registers,
J.Combinatoriai Th. A 27 (1979), pp. 186197.

[10] E.M. COVEN, Topological entropy of block maps, Proc. Amer. Math. Soc. 78
(1980), pp. 590-594.

[11] E.M. COVEN AND M. PAUL, Endomorphisms of irreducible shifts of finite type,
Math. System Th. 8 (1974), pp. 167-175.

[12] K. CULIK 11., L.P. HURD, AND S. Yu, Computation theoretic aspects of cellular
automata, Physic a D 45 (1990), pp. 357-378.

[13] K. CULIK II., J. PACHL, AND S. Yu, On the limit sets of cellular automata, SIAM
J.Comput. 18 (1989), pp. 831-842.

[14] M. GARDNER, Mathematical games, Scientific American, October 1970, February
1971.

[15] R.H. GILMAN, Notes on cellular automata, manuscript 1988.
[16] R.H. GILMAN, Classes of cellular automata, Ergod. Th. & Dynam. Sys. 7 (1987),

pp. 105-118.
[17] R.H. GILMAN, Periodic behavior oflinear automata, in Dynamical Systems, J.C.

Alexander, (ed.), Lecture Notes in Mathematics 1342, Springer-Verlag, Berlin
1988.

TOPOLOGICAL DYNAMICS OF CELLULAR AUTOMATA 485

[18J E. GLASNER AND B. WEISS, Sensitive dependence on initial conditions, Nonlinear
ity 6 (1993), pp. 1067-1075.

[19J G.A. HEDLUND, Endomorphisms and automorphisms of the shift dynamical sys
tem, Math. Sys. Th. 3 (1969), pp. 320-375.

[20J M. HURLEY, Attractors in cellular automata, Ergod. Th. & Dynam. Sys. 10 (1990),
pp. 131-140.

[21 J P. KURKA, Languages, equicontinuity and at tractors in cellular automata, Ergod.
Th. & Dynam. Sys. 17 (1997), pp. 417-433.

[22J D. LIND, B. MARCUS, An Introduction to Symbolic Dynamics and Coding, Cam
bridge University Press, Cambridge, 1995.

[23J D.A. LIND, Applications of ergodic theory and sofic systems on cellular automata,
Physica D 10 (1984), pp. 36-44.

[24J A. MAASS, On the sofic limit sets of cellular automata, Ergod. Th. & Dynam. Syst.
15 (1995), pp. 663-684.

[25J M. NASU, Textile systems for endomorphisms and automorphisms of the shift,
Mem. Amer. Math. Soc. 546, 1995.

[26J J. VON NEUMANN, The general and logical theory of automata, Cerebral Mechanics
of Behaviour, L.A. Jeffress (ed.), Wiley, New York 1951.

[27J W. PARRY, Symbolic dynamics and transformations of the unit interval, Trans.
Amer. Math. Soc. 122 (1966), pp. 368-378.

[28J S. ULAM, Random processes and transformations, Proc. Int. Congress of Math. 2
(1952), pp. 264-275.

[29J P. WALTERS, On the pseudo-orbit tracing property and its relationship to stability,
Lecture Notes in Mathematics 668, pp. 231-244, Springer-Verlag, 1987.

[30J S. WOLFRAM, Computation theory of cellular automata, Comm. Math. Phys. 96
(1984), pp. 15-57.

[31J S. WOLFRAM, Theory and Applications of Cellular Automata, World Scientific,
Singapore 1986.

A SPANNING TREE INVARIANT FOR MARKOV SHIFTS

DOUGLAS LIND* AND SELIM TUNCEL*

Abstract. We introduce a new type of invariant of block isomorphism for Markov
shifts, defined by summing the weights of all spanning trees for a presentation of the
Markov shift. We give two proofs of invariance. The first uses the Matrix-Tree Theorem
to show that this invariant can be computed from a known invariant, the stochastic zeta
function of the shift. The second uses directly the definition to show invariance under
state splitting, from which all block isomorphisms can be built.

Key words. Markov shift, block isomorphism, spanning tree, Matrix-Tree
Theorem.

AMS(MOS) subject classifications. Primary: 37A35, 37A50, 37B10, 60J10.

1. Introduction. Invariants of dynamical systems typically make use
of recurrent or asymptotic behavior. Examples include entropy, mixing,
and periodic points. Here we define a quantity for stochastic Markov shifts
that is invariant under block isomorphism, and which has a different flavor.
For a given presentation of the Markov shift, we add up the weights of all
spanning trees for the graph. Since spanning trees are maximal subgraphs
without loops, this is in some sense an operation that is orthogonal to
recurrent behavior.

We prove invariance of the spanning tree quantity under block iso
morphism in two ways. The first shows that it can be computed from the
stochastic zeta function of the Markov shift, an invariant introduced in [6].
The second is a more "bare-hands" structural approach, using only the defi
nition to show that it is invariant under the elementary block isomorphisms
corresponding to state splittings.

2. The Matrix-Tree Theorem. In this section we give a brief ac
count of the Matrix-Tree Theorem for directed graphs. See [1, II.3] for
more details.

Let G be a (finite, directed) graph. We suppose that the vertex set
of G is V = {I, 2, ... , v}. We sometimes call vertices states. Let e be the
edge set of G. Denote the subset of edges from state i to state j by e{.
Put ei = Uj e{, the set of all edges starting at state i, and ej = Ui e{, the
set of all edges ending at state j.

A tree in G rooted at rEV is a subgraph T of G such that every vertex
in T except r has a unique outgoing edge in T, there is no outgoing edge in
T at r, and from every vertex in T except r there is a unique path ending
at r. See Figure l(a). We abbreviate this by saying that T is a tree in G

*Department of Mathematics, University of Washington, Box 354350, Seattle, WA
98195. The authors were supported in part by NSF Grant DMS-9622866.

487

W. Miller Jr., Codes, Systems, and Graphical Models
© Springer-Verlag New York, Inc. 2001

488 DOUGLAS LIND AND SELIM TUNCEL

at r. A tree is spanning if it contains every state. Let Sr denote the set of
spanning trees at r, and S = Ur Sr be the set of all spanning trees in G.

(a) (b)

FIG. 1. A typical tree at r, and a graph.

Consider the elements of f.. to be commuting abstract variables, and
form the ring Z[f..] of polynomials in the variables from f.. with integer
coefficients. For any subgraph H of G define the weight of H to be
DeER e E Z[f..], where the product is over the edges in H. For a sub
set ~ C f.. put 1;(~) = l:eE:3' e E Z[f..]. The Kirchhoff matrix K of G is the
v x v matrix K = [Kij] defined by

Kij = 1;(f.. i)Oij - 1;(f..{),

where Oij = 1 if i = j and 0 otherwise. Notice that no self-loops occur in K.
Let K(r) denote the rth principal minor of K, that is the determinant of
the matrix formed by removing the rth row and rth column from K. Let
adj K be the adjoint matrix of K, and let tr denote the trace of a matrix.

THEOREM 2.1 (Matrix-Tree Threorem [1, II.3]). Using the notations
above,

L w(S) = K(r), and so L w(S) = tr[adj K] .
SES

EXAMPLE 1. For the graph in Figure 1 (b),

[
b -b 0 1

K = -c c+d -d
-f -e e + f

Then K(1) = ce + cf + df enumerates the spanning trees at 1, and similarly
for K(2) = be + bf and K(3) = bd.

3. Markov shifts. Let P = [Pij] be a v x v stochastic matrix, so
that Pij ~ 0 and l:j Pij = 1 for every i. We assume from now on that Pis
irreducible. Let G(P) be the directed graph with vertex set V = {I, ... ,v},
and with exactly one edge from state i to state j if Pij > 0, and no such
edge if Pij = O. Let f.. denote the resulting edge set for G(P).

A SPANNING TREE INVARIANT FOR MARKOV SHIFTS 489

The shift of finite type determined by G(P) is the subset X GCP) of £z
defined by

XGCP) = { ... e-1eOe1 ... E (l!. : en+1 follows en in G(P) }.

See [2, Chap. 2] for further details.
By the irreducibility assumption, there is a unique Markov probability

measure p'p on X GCP) with transition probabilities Pij. Let IYp denote the
left shift on XGCP), so that p'p is IYp-invariant. The measure-preserving
system (XGCP),P,p,IYP) is the Markov shift determined by P.

Let Q be another stochastic matrix, of possibly different dimension.
We say that the Markov shifts determined by P and by Q are block iso
morphic if there is a shift-commuting measure-preserving homeomorphism
between them. In other words, a block isomorphism from (XGCP), P,p, IYp)

to (XGCQ),P,Q,IYQ) is a homeomorphism 1/;: X GCP) -+ X GCQ) such that
IYQ o1/; = 1/; 0 IYp and p'Q = p'p 01/;-1.

4. The spanning tree invariant. As in the previous section, let P =
(Pij] be an irreducible stochastic matrix and G = G(P) be its associated
directed graph. If e E £ goes from i to j put p(e) = Pij. For any subgraph
H of G define the P-weight (or simply the weight) of H to be wp(H) =
ITeEH p(e).

DEFINITION 4.1. Let P be an irreducible stochastic matrix, and let
S denote the set of spanning trees for G(P). Define the spanning tree
invariant of P to be

T(P) = L wp(S).
BES

REMARK 4.1. Sums of weights of spanning trees arise naturally in
probability theory on graphs and networks, and are an important tool (see
[4] and [3] for example).

EXAMPLE 2. (1) If P = [p 1 - p] then T(P) = 1 - p + q. In
q 1-q

particular, if p = q = 1/2 then T(P) = l.
(2) If

[
0 1/2 1/2]

P = 1/2 0 1/2,
1/2 1/2 0

9
then T(P) = 4.

Note that there is a uniformly three-to-one measure-preserving factor map
from this Markov shift onto the Bernoulli shift in part (1) with P = q = 1/2.
Thus T is not in general preserved by such factor maps.

To justify its name, we will prove that T is invariant under block
isomorphism.

490 DOUGLAS LIND AND SELIM TUNCEL

THEOREM 4.1. If P and Q are irreducible stochastic matrices whose
associated Markov shifts are block isomorphic, then T(P) = T(Q).

We will give two proofs of invariance. The first computes T(P) in
terms of a known invariant, the stochastic zeta function of P. The second
is more "structural," showing proving invariance of T for each of the basic
building blocks of a block isomorphism.

5. First proof of invariance. Define <pp: Z[t:] -+ lR on the vari
ables e by <pp(e) = p(e), and extend it to a ring homomorphism. Applying
<pp to the Matrix-Tree Theorem for G = G(P) gives

T(P) = LWP(S) = L<Pp(w(S)) = <Pp(LW(S))
SES SES SES

= <pp(tr[adjK]) = tr[adj<pp(K)].

Now <pp(K) = 1- P since P is stochastic. Hence T(P) = tr[adj(I - P)].
Let the eigenvalues of P be Al = 1, A2, ... , A", where Aj -=I- 1 and

IAj I :s: 1 for 2 :s: j :s: v. Since formation of the adjoint commutes with
conjugation and trace is invariant under conjugation, conjugating P to its
Jordan form shows that

" (5.1) T(P) = tr[adj(I - P)] = II (1- Aj).
j=2

Recall the stochastic zeta function (p(t) of P, defined in [6] as

where en is the set of all cycles in G(P) of length n. The stochastic zeta
function is invariant under block isomorphism. It can be computed in terms
of Pas

1
(p(t) = det[I - tP]'

Hence

"
(l/(p)(t) = det[I - tP] = II (1 - Akt),

k=l

so that

"
(l/(p)'(t) = L -Ak II (1- Ajt).

k=l j#

A SPANNING TREE INVARIANT FOR MARKOV SHIFTS 491

Thus

v

(l/(p)'(l) = - II (1- Aj) = -T(P).
j=2

This shows that T(P) can be computed from (p, and hence is an
invariant of block isomorphism.

6. Invariance under in-splitting. Every block isomorphism be
tween Markov shifts is a composition of basic block isomorphisms obtained
from state splitting and permuting states. This was a fundamental discov
ery of R. Williams [7). For further background on state splitting and the
decomposition of block isomorphisms, the reader is referred to [6) as well
as §2.4 and Theorem 7.1.2 of [2). Permuting states clearly preserves T, so
we focus on the behavior of T under state splitting.

Let k be a fixed state in G = G(P). There are two types of state
splitting at k: in-splitting from a partition of the incoming edges to k,
and out-splitting from a partition of the outgoing edges from k. These are
handled by separate arguments, in-splitting in this section and out-splitting
in the next. As might be expected from the directional nature of shifts of
finite type, in-splitting is easier to handle that out-splitting.

It is sufficient, as well as notationally simpler, to consider in-splitting
k into just two states. For this we partition £k into the sets :11 and :12 •

Form a new graph G' as follows. Replace state k with two new states k1
and k2. Every edge in G from k to j -::f. k is duplicated as two edges in G',
one from k1 to j and one from k2 to j. An edge f from i to k lies in either
:11 or :12 • If f E :11, then in G' put a corresponding edge from i to k1 and
no edge from i to k2 (if i = k, then in G' there are edges from both k1 and
k2 to k1)j similarly if f E :12 . Figure 2 depicts such an in-splitting.

FIG. 2. In-splitting a state.

Preservation of measure shows that under such an in-splitting the tran
sition matrix P becomes P' on G' defined as follows. For notational conve
nience we use p' (i, j) instead of P~j. If i, j f km (m = 1,2) then p'(i, j) =
p(i, j). If i f k1, k2 and the edge from i to k is in:1m then p'(i, km) = p(i, k).
Finally, if the edge from k to k is in :1m , then p'(kn , km) = p(k, k) for

492 DOUGLAS LIND AND SELIM TUNCEL

n = 1,2. For example, if k = 1, 9"1 = {I, ... ,e}, and 9"2 = {e+ I, ... ,v},
then P' has the form

Pu 0 P12 Plv

Pu 0 P12 Plv

P2l 0 P22 P2v

P'=
0 Pil Pi2 Plv

0 PHl,l PHl,2 Pl+l,v

0 Pvl Pv2 Pvv

We next construct a correspondence between certain sets of spanning
trees in G and similar sets in G'. Consider a triple of the form (T, Tl , T2),

where T is a tree in G at some vertex r, each T m is a tree in G at k using
only edges from 9"m (m = 1,2), the three trees are disjoint except for the
common vertex k, and they span all vertices of G. We specifically allow
the possibility of the empty tree (with no vertices or edges), and also the
tree consisting of a single vertex and no edges. In particular, if k = r then
T is empty.

Each such triple (T, Tl , T2) in G corresponds to a triple (T', T{, TD
in G', where T is copied over to T' verbatim, and T:" is the tree at km

obtained from Tm (m = 1,2). Figure 3 illustrates this correspondence.
This triple has the property that T' is a tree in G' at r, T:" is a tree in G'
at km for m = 1,2, all three trees are disjoint, and they span the vertices
of G'. There is clearly a one-to-one correspondence between the set of such
triples in G and those in G'.

v v
FIG. 3. Correspondence of trees under an in-splitting.

To' 2

Let S(T, Tl , T2) be the set of all spanning trees in G at r containing
T, Tl , and T2 . Similarly define S(T', T{, T~) in G'. Clearly the set S(G) of

A SPANNING TREE INVARIANT FOR MARKOV SHIFTS 493

spanning trees in G is the disjoint union of the S(T, T1 , T2) over all possible
triples, and similarly S(G') is the disjoint union of the S(T', T{, T~). Hence
to prove that T(P) = T(P'), it suffices to show that

(6.1) wp(S) = wp,(S').
S'ES(T',T{,T~)

Fix a triple (T, T1 , T2)' The only way to create a spanning tree in G
at r containing these trees is to add an edge from k to T. Thus if p(k, T)
denotes the sum of the transition probabilities from k to the vertices of T,
it follows that

L wp(S) = wp(T)wp(TI)wp(T2)p(k, T).
SES(T,T1 ,T2)

Consider the corresponding triple (T', T{, T~) in G'. There are now
three ways to form a spanning tree at r in G' containing these trees:
(1) join kl to T~ and k2 to T', (2) join k2 to T{ and kl to T', and (3) join
both kl and k2 to T'. The contribution of adding these two edges to the
total weight is, respectively, p'(k1 , T~)p'(k2' T'), p'(k2, TDp'(k1 , T'), and
p'(k1 , T')p'(k2, T'). Hence

L wp'(S') = wp,(T')wp,(Tnwp,(T~) x [p'(kl,T~)p'(k2,T')
S' ES(T' ,T{ ,T~)

Let us assume that if there is an edge from k to itself in G, then
this edge lies is 9"1. Now wp(T) = WP' (T'), WP(Tl) = WP' (TD, and
wp(T2) = wp,(T~). Furthermore, p'(k1,T') = p'(k2 ,T') = p(k,T), and
p'(k1 , T2) = p(k, T2) - p(k, k), p'(k2 , TI) = p(k, TI)' Hence

p'(k1 , T~)p'(k2' T') + p'(k2, T;)p'(k1, T') + p'(k1 , T')p'(k2, T')

= p(k, T) [p(k, TI) + p(k, T2) - p(k, k) + p(k, T)] = p(k, T)

since Tl and T2 are disjoint except for the common vertex k. This proves
(6.1), and completes the proof that T is invariant under in-splitting.

7. Invariance under out-splitting. To consider out-splittings, fix
a state k in G. Partition the set Ck of outgoing edges from k into two sets
9"1 and 9"2' Form the out-split graph G' as follows. Replace k with two new
states k1 and k2. Each incoming edge from a statei:f; k to k is duplicated
to two edges, one from ito k1 and one from ito k2. An edge f E 9"1 from k
to j induces a corresponding edge from k1 to j in G' (if j = k, then include
edges from k1 to both k1 and k2), and similarly for 9"2' Figure 4 depicts a
typical out-splitting at k.

The matrix P' on G' corresponding to P is defined as follows. Let q =
L:eE3'l p(e), so that 1 - q = L:eE3'2 p(e). If i,j :f; km put p'(i,j) = p(i,j).

494 DOUGLAS LIND AND SELIM TUNCEL

FIG. 4. Out-splitting a state.

If j ¥ km put p'(k1 ,j) = p(k,j)/q and p'(k2 ,j) = p(k,j)/(l- q). If i ¥ km

put p'(i, kd = qp(i, k) and p'(i, k2) = (1 - q)p(i, k). Finally, if there is a
loop at k, assume that it is contained in:11 (the alternative case is similar).
Then put p'(k1 , kd = qp(k, k)/q = p(k, k) and p'(k1 , k2) = (l-q)p(k, k)/q.
For example, if k = 1, :11 = {I, 2, ... , l}, and :12 = {l + 1, ... ,v}, then

q 1-q 1 1
-Pu --Pll -P12 -PH
q q q q
o 0 0 0

(1 - q)P21 P22 pu

o
P1,i+1
1-q

P2,l+l

q Pv1 (1 - q)Pv1 Pv2 Pvt Pv,t+l

P1v
1-q

o

P2v

Pvv

Next, consider pairs (T, U) of subgraphs of G such that T is a tree at
some vertex r, U is a tree at k, and T and U are disjoint and contain all
vertices of G. For each such pair (T, U) let 23 denote the set of immediate
predecessor states of k in U, so that i E 23 if and only if the edge from i to k
is in U. Each subset B c 23 induces two subtrees U1 (B) and U2 (B) rooted
at k and which together span U, where U1 (B) is the subtree of U including
all predecessors in U of states in B, and U2 (B) is defined similarly using
Be = 23 '-.. B.

Each B c 23 then yields a triple (T',U{(B),U~(B») in G', where
T' is copied directly from T, U{ (B) is the tree in G' at k1 using the
edges of U1 (B), and UHB) is the tree in G' at k2 using the edges of
U2 (B). Thus each pair (T, U) corresponds to the collection of triples
{(T', U{ (B), UHB» : B c 23}. Figure 5 illustrates this construction.

Let S(T, U) denote the set of spanning trees in G at r containing T and
U, and S(T', U{(B) , UHB») be the set of spanning trees in G' containing
T', U{(B), and U~(B). Then S(G) is the disjoint union of the S(T,U) and
S(G') is the disjoint union of the S (T', U{(B) , UHB»). Therefore it suffices
to show that for each pair (T, U) we have that

(7.1) L wp(S) = L
SES(T,u) BC'B S'ES(T' ,u; (B),u~(B))

A SPANNING TREE INVARIANT FOR MARKOV SHIFTS 495

v v
FIG. 5. Correspondence of trees under an out-splitting.

Fix a pair (T, U). Let

a1 = P(1'l , T) = 2: {pee) : e E 1'1 and e terminates in T},

and similarly b1 = P(1'l , U), a2 = p(1'2' T), and b2 = p(1'2' U). Then
a1 + b1 = q and a2 + b2 = 1 - q.

The only additional edge needed to form a spanning tree from (T, U)
is an edge from k to T. Hence

2: wp(S) = wp(T)wp(U)p(k, T) = wp(T)wp(U)[a1 + a2J.
SES(T,U)

Next, let Be 13, and form the triple (T', U{(B) , UHB)). There are
now three ways to form a spanning tree in S(TI, UHB), UHB)): (1) join
k1 to UHB) and k2 to T I, (2) join k2 to U{ (B) and k1 to T I, and (3) join
both k1 and k2 to TI. Hence

2: Wp,(SI) = Wp,(TI)Wp,(U{(B))wp,(U~(B))<p(B),

S' ES (T' ,U{ (B),U;(B))

where

<p(B) = pl(1'l' U~(B))pl(k2' TI) + pi (1'2, U{(B))p'(k1' T')

+ p'(kb T')p'(k2, T').

Note that WP' (T') = wp(T). Let n = 1131. Since U{ (B) uses IBI
incoming edges each of whose weight has been multiplied by the factor q,
and U~ (B) uses n -IBI edges each of whose weight is multiplied by a factor
1 - q, we have that

496 DOUGLAS LIND AND SELIM TUNCEL

Cancelling the common term wp(T)wp(U) reduces (7.1) to proving that

(7.2) a1 + a2 = L qIBI(l_ q)n-IBI~(B).
BC'E

Now p'(k1, T') = at/q and p'(k2, T') = a2/(1 - q). Let ::11(U) denote
the set of edges in ::11 ending in U. Then by interchanging the order of
summation see that

L qlBI(l - q)n-1Bl p'(::11, U~(B)) = L p'(e) L qlBI(l _ q)n-1BI
BCB eE:71(U) eEBc

L p(e) I: (n ~ l)qk(l_ q)n-k
eE:71 (U) q k==O

= 1 - q L p(e) = 1 - q b1 .

q eE:71(U) q

Similarly,

"" qlBI(l - q)n- 1Bl p'(::12, U~ (B)) = -q-b2.
~ 1-q

BC'E

Since b1 = 1 - a1 and b2 = 1 - q - a2, we obtain that

"" qIBI(l_ q)n-IBI~(B) = 1- qb1 ~ + -q-b2 a1 + a1 ~ fc; q 1-q 1-q q q 1-q

a2(q-at) a1(1-q-a2) a1a2
= + + -;---:-

q 1 - q q(l- q)

= a1 + a2'

This establishes (7.2), and completes the proof.

8. Concluding remarks. (1) The possibility of using spanning trees
to define an invariant was first observed experimentally using M athematica.

(2) It is possible to obtain finer invariants by use of the matrix of
powers pt = [p~j] as in [5].

(3) If P is vxv, then (5.1) shows that T(P) :::; 2v - 1 . Thus 1+log2 T(P)
is a lower bound on the size of any irreducible Markov shift that is block
isomorphic to P.

(4) Using elementary matrix operations, one can show directly that
T(P) = T(P'), where P' is derived from P using in-splitting or out-splitting
as above. This shows that T is an invariant of block isomorphism without
use of the stochastic zeta function.

(5) Graphs with positive weights can be interpreted as electrical resis
tance networks, and the use of spanning trees to compute total resistance
goes back to Kirchhoff. It may be possible to use ideas from electrical
networks to find other invariants of Markov shifts.

A SPANNING TREE INVARIANT FOR MARKOV SHIFTS 497

REFERENCES

[1] BELA BOLLOBAS, Modern Graph Theory, Springer, New York, 1998.
[2] DOUGLAS LIND AND BRIAN MARCUS, An Introduction to Symbolic Dynamics and

Coding, Cambridge Univ. Press, 1995.
[3] RUSSELL LYONS, AND YUVAL PERES, Probability on Trees and Networks, to appear.
[4] PHILIPPE MARCHAL, Loop erased random walks, spanning trees, and Hamiltonian

cycles, Electronic Communications in Probability, to appear.
[5] WILLIAM PARRY AND SELIM TUNCEL, On the stochastic and topological structure

of Markov Chains, Bull. London Math. Soc. 14 (1982), 16-27.
[6] W. PARRY AND R. WILLIAMS, Block-coding and a zeta function for finite Markov

chains, Proc. London Math. Soc. 35(3) (1977), 483-495.
[7] R. F. WILLIAMS, Classification of subshifts of finite type, Annals of Math. 98

(1973), 120-153; erratum, Annals of Math. 99 (1974), 380-381.

LIST OF WORKSHOP PARTICIPANTS

• Scot Adams, Department of Mathematics, University of Minnesota
• Roy Adler, IBM Watson Research Center
• Dakshi Agrawal, Coordinated Science Laboratory, University of

Illinois at Urbana-Champaign
• Srinivas Aji, Department of Electrical Engineering, Caltech
• Brian Allen, Department of Mathematics, University of Notre

Dame
• Venkat Anantharam, Department of Electrical Engineering and

Computer Science, University of California - Berkeley
• John Anderson, Department ofInformation Technology, University

of Lund
• Dieter Arnold, Laboratory for Signal & Information Processing,

ETH Zurich
• Amir Banihashemi, Systems and Computer Engineering, Carleton

University
• Louay Bazzi, Laboratory for Information & Decision Systems, MIT
• Marie-Pierre Beal, Institut Gaspard Monge, Universite de Marne-

la-Vallee
• Ezio Biglieri, Departimento di Elettronica, Politecnico di Torino
• James Bond, SAIC
• Nigel Boston, Department of Mathematics, University of Illinois

at Urbana-Champaign
• Mike Boyle, Department of Mathematics, University of Maryland
• Roger Brockett, DEAS, Harvard University
• Karen Brucks, Department of Mathematics, University of Wiscon-

sin - Milwaukee
• Randy Bryant, Carnegie Mellon University
• Jorge Campello, IBM Almaden Research Center
• James P. Carr, Department of Mathematical Science, University

of Wisconsin
• Olivier Carton, Institut Gaspard Monge, University de Marne-Ia

Vallee
• Rong-Rong Chen, University of Illinois at Urbana-Champaign
• Pyo Dong Chi, Department of Mathematics, Seoul National Uni

versity
• Zhipei Chi, Electrical and Computer Engineering, University of

Minnesota

499

500 LIST OF WORKSHOP PARTICIPANTS

• Sae-Young Chung, Electrical Engineering & Computer Science,
MIT

• Ethan Coven, Department of Mathematics, Wesleyan University
• Ajay Dholakia, IBM Zurich Research Laboratory
• Changyan Di, Department of Mathematics, University of Notre

Dame
• Rich Echard, Naval Research Laboratory
• Evangelos Eleftheriou, Zurich Research Laboratory, IBM Re

search Division
• Fabio Fagnani, Dip. Matematica Politecnico di Torino
• John Fan, Department of Electrical Engineering, Stanford Univer

sity
• Patrick Fitzpatrick, Department of Mathematics, National Univer

sity of Ireland
• David Forney, Laboratory for Information and Decision Systems,

MIT
• Bill Freeman, Mitsubishi Electric Research Laboratories
• Brendan Frey, Computer Science, University of Waterloo
• Christiane Frougny, LIAFA
• Paul Fuhrmann, Department of Mathematics and Computer Sci

ence, Ben Gurion University
• Lijun Gao, Electrical and Computer Engineering, University of

Minnesota
• Javier Garcia-Frias, Electrical Engineering Department, UCLA
• Paul Garrett, Department of Mathematics, University of Min

nesota
• Elizabeth Gumustop, Department of Mathematics, University of

Wisconsin
• Fernando Guzman, Department of Mathematics, SUNY-Bingham

ton
• Mark Hagen, Western Digital Corporation
• Jonathan 1. Hall, Department of Mathematics, Michigan State Uni

versity
• Masayuki Hattori, Information & Network Technologies Lab Sony

Corporation
• Fred Heller, Department of Mathematical Sciences, University of

Wisconsin at Milwaukee
• Uwe Helmke, Department of Mathematics, University of Wuerz

burg
• Kjell Jorgen Hole, Department of Informatics, University of Bergen

LIST OF WORKSHOP PARTICIPANTS 501

• Gavin Horn, Department of Electrical Engineering, Caltech
• Danrun Huang, Department of Mathematics, St. Cloud State
• Stefen Hui, Mathematical Sciences, San Diego State University
• Tommi Jaakkola, Electrical Engineering and Computer Science,

MIT
• Heera Lal Janwa, Mathematics and Computer Science, University

of Puerto Rico
• Hui Jin, Electrical and Computer Engineering, University of Min

nesota
• Hui Jin, Department of Electrical Engineering, Caltech
• Rolf Johannesson, Department of Information Theory, University

of Lund
• Kimberly Johnson, Department of Mathematics, University of

North Carolina
• Natasha Jonoska, Department of Mathematics, University of South

Florida
• Jorn Justesen, Department of Telecommunication, Denmark Tech-

nical University
• Hiroshi Kamabe, Information Science, Gifu University
• Alex Kavcic, Harvard University
• Aamod Khandekar, Department of Electrical Engineering, Caltech
• Saejoon Kim, Department of Electrical Engineering, Cornell Uni

versity
• Bruce Kitchens, IBM Watson Research Center
• Kevin Kochanek, Department of Applied Mathematics, Brown

University
• Ralf Koetter, University of Illinois
• Frank Kschischang, Department of Electrical & Computer Engi

neering, University of Toronto
• Margreet K uijper, Department of Electrical & Electronic Engineer

ing, University of Melbourne
• John Lafferty, School of Computer Science, Carnegie Mellon Uni

versity
• E.B. Lee, ECE Department, University of Minnesota
• Yu Liao, Electrical and Computer Engineering, University of Min

nesota
• Samuel J. Lightwood, Erwin Schroedinger Institute
• Douglas Lind, Department of Mathematics, University of Wash

ington
• Hans-Andrea Loeliger, Endora Tech AG
• Sergio Lopez-Permouth, Department of Mathematics, Ohio Uni

versity

502 LIST OF WORKSHOP PARTICIPANTS

• Chung-Chin Lu, Department of Electrical Engineering, Princeton
University

• Jun Ma, Electrical and Computer Engineering, University of Min
nesota

• David J.C. MacKay, Department of Physics, University of Cam
bridge

• Yongyi Mao, System and Computer Engineering, Carleton Univer-
sity

• Brian Marcus, IBM Almaden Research Center
• Clyde Martin, Department of Mathematics, Texas Tech University
• Jim Massey, ETH Zurich and Lund University
• Robert McEliece, Department of Electrical Engineering, Caltech
• Jamie McGauhey, Department of Mathmatics, University of South

Florida
• Peyman Meshkat, Deparment of Electrical Engineering, UCLA
• Thomas Mittelholzer, IBM Zurich Research Laboratory
• Sanjoy Mitter, Laboratory for Information & Decision Systems,

MIT
• Dharmendra Modha, IBM Almaden Research Center
• Christopher Monico, Department of Mathematics, University of

Notre Dame
• Mos Kaveh, Electrical and Computer Engineering, University of

Minnesota
• Radford Neal, Department of Statistics, University of Toronto
• Nikolai Nefedov, Communication Laboratory, Helsinki University

of Technology, Nokia
• Mike O'Sullivan, Department of Mathematics, National University

of Ireland
• Travis Oenning, Electrical & Computer Engineering, University of

Minnesota
• Geir Egil Oien, Department of Telecommunications, Norwegian

University of Science & Technology
• Nicholas Ormes, Department of Mathematics, University of Texas

at Austin
• Payam Pakzad, University of California - Berkeley
• Jongseung Park, Department of Electrical & Computer Engineer-

ing, University of Minnesota
• Alan Parks, Department of Mathematics, Lawrence University
• Dominique Perrin, Universite de Marne la Vallee
• Karl Petersen, Department of Mathematics, University of North

Carolina

LIST OF WORKSHOP PARTICIPANTS 503

• Harish Kumar Pillai, Department of Mathematics, University of
Groningen

• Tom Posbergh, AEM, University of Minnesota
• M.S. Ravi, Department of Mathematics, East Carolina University
• Tom Richardson, Lucent, Bell Labs
• Joachim Rosenthal, Department of Mathematics, University of

Notre Dame
• Ronny Roth, Department of Computer Science, Technion Israel

Institute of Technology
• Pierre-Paul Sauve, Communications Research Centre, Industry

Canada
• Klaus Schmidt, Mathematics Institute, University of Vienna
• Amin Shokrollahi, Bell Labs
• Paul H. Siegel, Department of Electrical and Computer Engineer

ing, University of California - San Diego
• Roxana Smarandache, Department of Mathematics, University of

Notre Dame
• Emina Soljanin, Bell Laboratories
• Baldur Steingrimsson, Deparment of Electrical Engineering, Uni

versity of Minnesota
• Jai Narayan Subrahmanyam, Advanced Projects & Staging Lab,

Western Digital Corporation
• Allen Tannenbaum, Department of Electrical Engineering and

Computer Science, University of Minnesota
• Michael Tanner, Department of Computer Science, University of

California - Santa Cruz
• Thomas Taylor, Department of Mathematics, Arizona State Uni

versity
• Jean-Pierre Tillich, Computer Science Department, University

Paris-Sud
• Paul Trow, Department of Mathematical Sciences, University of

Memphis
• Dewey Tucker, Electrical Engineering & Computer Science, MIT
• Selim Tuncel, Department of Mathematics, University of Washing

ton
• Ruediger Urbanke, Bell Laboratories, Lucent Techologies
• Alexander Vardy, Department of Eletrical and Computer Engi

neering, University of California - San Diego
• Peter Vasiliev, VLSI, Seagate Technology
• Petr Vojtechovsky, Department of Mathematics, Iowa State Uni

versity

504 LIST OF WORKSHOP PARTICIPANTS

• Pascal Olivier Vontobel, Laboratory for Signal & Information Pro
cessing, ETH Zurich

• Simon Waddington, NDS Limited
• Martin Wainwright, Electrical Engineering and Computer Science,

Massachusetts Institute of Technology
• Zhe-Xian Wan, Department of Information Technology, Lund Uni

versity
• Peter Webb, School of Mathematics, University of Minnesota
• Paul Weiner, Department of Mathematics, Saint Mary's University

of Minnesota
• Christian Weiss, Institute for Communications Engineering, Mu

nich University of Technology
• Yair Weiss, Computer Science Division, University of California-

Berkeley
• Jan Willems, Mathematics Institute, University of Groningen
• Meina Xu, Department of Electrical Engineering, Caltech
• Byung K. Yi, Orbital Science Co.
• Sandro Zampieri, Dipartimento di Elettronica e Informatica, Uni

versita di Padova
• Gilles Zemor, Departement Reseau, E.N.S.T.
• Jia Zeng, Department of Electrical Engineering, University of Min

nesota

IMA SUMMER PROGRAMS

1987 Robotics
1988 Signal Processing
1989 Robust Statistics and Diagnostics
1990 Radar and Sonar (June 18-29)

New Directions in Time Series Analysis (July 2-27)
1991 Semiconductors
1992 Environmental Studies: Mathematical, Computational, and

Statistical Analysis
1993 Modeling, Mesh Generation, and Adaptive Numerical Methods

for Partial Differential Equations
1994 Molecular Biology
1995 Large Scale Optimizations with Applications to Inverse Problems,

Optimal Control and Design, and Molecular and Structural
Optimization

1996 Emerging Applications of Number Theory (July 15-26)
Theory of Random Sets (August 22-24)

1997 Statistics in the Health Sciences
1998 Coding and Cryptography (July 6-18)

Mathematical Modeling in Industry (July 22-31)
1999 Codes, Systems, and Graphical Models (August 2-13, 1999)
2000 Mathematical Modeling in Industry - A Workshop for Graduate

Students (July 19-28)
2001 Geometric Methods in Inverse Problems and PDE Control

(July 16-27)

IMA "HOT TOPICS" WORKSHOPS

• Challenges and Opportunities in Genomics: Production, Storage,
Mining and Use, April 24-27, 1999

• Decision Making Under Uncertainty: Energy and Environmental
Models, July 20-24, 1999,

• Analysis and Modeling of Optical Devices, September 9-10, 1999
• Decision Making under Uncertainty: Assessment of the Reliability

of Mathematical Models, September 16-17, 1999
• Scaling Phenomena in Communication Networks, October 22-24,

1999
• Text Mining, April 17-18, 2000
• Mathematical Challenges in Global Positioning Systems (GPS),

August 16-18,2000
• Modeling and Analysis of Noise in Integrated Circuits and Systems,

August 29-30, 2000
• Mathematics of the Internet: E-Auction and Markets, December

3-5, 2000
• Analysis and Modeling of Industrial Jetting Processes, January

10-13, 2001

SPRINGER LECTURE NOTES FROM THE IMA:

The Mathematics and Physics of Disordered Media
Editors: Barry Hughes and Barry Ninham
(Lecture Notes in Math., Volume 1035, 1983)

Orienting Polymers
Editor: J.L. Ericksen
(Lecture Notes in Math., Volume 1063, 1984)

New Perspectives in Thermodynamics
Editor: James Serrin
(Springer-Verlag, 1986)

Models of Economic Dynamics
Editor: Hugo Sonnenschein
(Lecture Notes in Econ., Volume 264, 1986)

The IMA Volumes in Mathematics and its Applications

Current Volumes:

1 Homogenization and Effective Moduli of Materials and Media
J. Ericksen, D. Kinderlehrer, R. Kohn, and J.-L. Lions (eds.)

2 Oscillation Theory, Computation, and Methods of Compensated
Compactness C. Dafermos, J. Ericksen, D. Kinderlehrer,
and M. Slernrod (eds.)

3 Metastability and Incompletely Posed Problems
S. Antman, J. Ericksen, D. Kinderlehrer, and I. Muller (eds.)

4 Dynamical Problems in Continuum Physics
J. Bona, C. Dafermos, J. Ericksen, and D. Kinderlehrer (eds.)

5 Theory and Applications of Liquid Crystals
J. Ericksen and D. Kinderlehrer (eds.)

6 Amorphous Polymers and Non-Newtonian Fluids
C. Dafermos, J. Ericksen, and D. Kinderlehrer (eds.)

7 Random Media G. Papanicolaou (ed.)
8 Percolation Theory and Ergodic Theory of Infinite Particle

Systems H. Kesten (ed.)
9 Hydrodynamic Behavior and Interacting Particle Systems

G. Papanicolaou (ed.)
10 Stochastic Differential Systems, Stochastic Control Theory,

and Applications W. Fleming and P.-L. Lions (eds.)
11 Numerical Simulation in Oil Recovery M.F. Wheeler (ed.)
12 Computational Fluid Dynamics and Reacting Gas Flows

B. Engquist, M. Luskin, and A. Majda (eds.)
13 Numerical Algorithms for Parallel Computer Architectures

M.H. Schultz (ed.)
14 Mathematical Aspects of Scientific Software J.R. Rice (ed.)
15 Mathematical Frontiers in Computational Chemical Physics

D. Truhlar (ed.)
16 Mathematics in Industrial Problems A. Friedman
17 Applications of Combinatorics and Graph Theory to the Biological

and Social Sciences F. Roberts (ed.)
18 q-Series and Partitions D. Stanton (ed.)
19 Invariant Theory and Tableaux D. Stanton (ed.)
20 Coding Theory and Design Theory Part I: Coding Theory

D. Ray-Chaudhuri (ed.)
21 Coding Theory and Design Theory Part II: Design Theory

D. Ray-Chaudhuri (ed.)
22 Signal Processing Part I: Signal Processing Theory

L. Auslander, F.A. Griinbaum, J.W. Helton, T. Kailath,
P. Khargonekar, and S. Mitter (eds.)

23 Signal Processing Part IT: Control Theory and Applications
of Signal Processing L. Auslander, F.A. Griinbaurn, J.W. Helton,
T. Kailath, P. Khargone~ar, and S. Mitter (eds.)

24 Mathematics in Industrial Problems, Part 2 A. Friedman
25 Solitons in Physics, Mathematics, and Nonlinear Optics

PJ. Olver and D.H. Sattinger (eds.)
26 Two Phase Flows and Waves

D.D. Joseph and D.G. Schaeffer (eds.)
27 Nonlinear Evolution Equations that Change Type

B.L. Keyfitz and M. Shearer (eds.)
28 Computer Aided Proofs in Analysis

K. Meyer and D. Schmidt (eds.)
29 Multidimensional Hyperbolic Problems and Computations

A. Majda and J. Glimm (eds.)
30 Microlocal Analysis and Nonlinear Waves

M. Beals, R. Melrose, and J. Rauch (eds.)
31 Mathematics in Industrial Problems, Part 3 A. Friedman
32 Radar and Sonar, Part I

R Blahut, W. Miller, Jr., and C. Wilcox
33 Directions in Robust Statistics and Diagnostics: Part I

W.A. Stahel and S. Weisberg (eds.)
34 Directions in Robust Statistics and Diagnostics: Part IT

W.A. Stahel and S. Weisberg (eds.)
35 Dynamical Issues in Combustion Theory

P. Fife, A. Liii<in, and F.A. Williams (eds.)
36 Computing and Graphics in Statistics

A. Buja and P. Tukey (eds.)
37 Patterns and Dynamics in Reactive Media

H. Swinney, G. Aris, and D. Aronson (eds.)
38 Mathematics in Industrial Problems, Part 4 A. Friedman
39 Radar and Sonar, Part IT

F.A. Griinbaurn, M. Bernfeld, and RE. Blahut (eds.)
40 Nonlinear Phenomena in Atmospheric and Oceanic Sciences

G.F. Carnevale and RT. Pierrehumbert (eds.)
41 Chaotic Processes in the Geological Sciences D.A. Yuen (ed.)
42 Partial Differential Equations with Minimal Smoothness

and Applications B. Dahlberg, E. Fabes, R Fefferman, D. Jerison,
C. Kenig, and J. Pipher (eds.)

43 On the Evolution of Phase Boundaries
M.E. Gurtin and G.B. McFadden

44 Twist Mappings and Their Applications
R. McGehee and K.R. Meyer (eds.)

45 New Directions in Time Series Analysis, Part I
D. Brillinger, P. Caines, J. Geweke, E. Parzen, M. Rosenblatt,
and M.S. Taqqu (eds.)

46 New Directions in Time Series Analysis, Part II
D. Brillinger, P. Caines, l Geweke, E. Parzen, M. Rosenblatt,
and M.S. Taqqu (eds.)

47 Degenerate Diffusions
W.-M. Ni, L.A. Peletier, and l-L. Vazquez (eds.)

48 Linear Algebra, Markov Chains, and Queueing Models
CD. Meyer and R.l Plemmons (eds.)

49 Mathematics in Industrial Problems, Part 5 A. Friedman
50 Combinatorial and Graph-Theoretic Problems in Linear Algebra

RA. Brualdi, S. Friedland, and V. Klee (eds.)
51 Statistical Thermodynamics and Differential Geometry

of Microstructured Materials
H.T. Davis and lCC Nitsche (eds.)

52 Shock Induced Transitions and Phase Structures in General
Media lE. Dunn, R Fosdick, and M. Slemrod (eds.)

53 Variational and Free Boundary Problems
A. Friedman and l Spruck (eds.)

54 Microstructure and Phase Transitions
D. Kinderlehrer, R. James, M. Luskin, and lL. Ericksen (eds.)

55 Turbulence in Fluid Flows: A Dynamical Systems Approach
G.R Sell, C Foias, and R. Temam (eds.)

56 Graph Theory and Sparse Matrix Computation
A. George, lR Gilbert, and lW.H. Liu (eds.)

57 Mathematics in Industrial Problems, Part 6 A. Friedman
58 Semiconductors, Part I

W.M. Coughran, Jr., l Cole, P. Lloyd, and l White (eds.)
59 Semiconductors, Part II

W.M. Coughran, Jr., l Cole, P. Lloyd, and l White (eds.)
60 Recent Advances in Iterative Methods

G. Golub, A. Greenbaum, and M. Luskin (eds.)
61 Free Boundaries in Viscous Flows

RA. Brown and S.H. Davis (eds.)
62 Linear Algebra for Control Theory

P. Van Doorenand B. Wyman (eds.)
63 Hamiltonian Dynamical Systems: History, Theory,

and Applications
H.S. Dumas, K.R. Meyer, and D.S. Schmidt (eds.)

64 Systems and Control Theory for Power Systems
lH. Chow, P.V. Kokotovic, Rl Thomas (eds.)

65 Mathematical Finance
M.H.A. Davis, D. Duffie, W.H. Fleming, and S.E. Shreve (eds.)

66 Robust Control Theory B.A. Francis and P.P. Khargonekar (eds.)
67 Mathematics in Industrial Problems, Part 7 A. Friedman
68 Flow Control M.D. Gunzburger (ed.)

69 Linear Algebra for Signal Processing
A. Bojanczyk and G. Cybenko (eds.)

70 Control and Optimal Design of Distributed Parameter Systems
I.E. Lagnese, D.L. Russell, and L.W. White (eds.)

71 Stochastic Networks F.P. Kelly and R.I. Williams (eds.)
72 Discrete Probability and Algorithms

D. Aldous, P. Diaconis, I. Spencer, and I.M. Steele (eds.)
73 Discrete Event Systems, Manufacturing Systems,

and Communication Networks
P.R. Kumar and P.P. Varaiya (eds.)

74 Adaptive Control, Filtering, and Signal Processing
K.I. Astrom, G.c. Goodwin, and P.R. Kumar (eds.)

75 Modeling, Mesh Generation, and Adaptive Numerical Methods
for Partial Differential Equations I. Babuska, I.E. Flaherty,
W.D. Henshaw, I.E. Hopcroft, J.E. Oliger, and T. Tezduyar (eds.)

76 Random Discrete Structures D. Aldous and R. Pemantle (eds.)
77 Nonlinear Stochastic PDEs: Hydrodynamic Limit and Burgers'

Turbulence T. Funaki and W.A. Woyczynski (eds.)
78 Nonsmooth Analysis and Geometric Methods in Deterministic

Optimal Control B.S. Mordukhovich and H.I. Sussmann (eds.)
79 Environmental Studies: Mathematical, Computational,

and Statistical Analysis M.F. Wheeler (ed.)
80 Image Models (and their Speech Model Cousins)

S.E. Levinson and L. Shepp (eds.)
81 Genetic Mapping and DNA Sequencing

T. Speed and M.S. Waterman (eds.)
82 Mathematical Approaches to Biomolecular Structure and Dynamics

I.P. Mesirov, K. Schulten, and D. Sumners (eds.)
83 Mathematics in Industrial Problems, Part 8 A. Friedman
84 Classical and Modern Branching Processes

K.B. Athreya and P. Jagers (eds.)
85 Stochastic Models in Geosystems

S.A. Molchanov and W.A. Woyczynski (eds.)
86 Computational Wave Propagation

B. Engquist and G.A. Kriegsmann (eds.)
87 Progress in Population Genetics and Human Evolution

P. Donnelly and S. Tavare (eds.)
88 Mathematics in Industrial Problems, Part 9 A. Friedman
89 Multiparticle Quantum Scattering With Applications to Nuclear,

Atomic and Molecular Physics D.G. Truhlar and B. Simon (eds.)
90 Inverse Problems in Wave Propagation G. Chavent, G. Papanicolau,

P. Sacks, and W.W. Symes (eds.)
91 Singularities and Oscillations I. Rauch and M. Taylor (eds.)

92 Large-Scale Optimization with Applications, Part I:
Optimization in Inverse Problems and Design
L.T. Biegler, T.F. Coleman, A.R. Conn, and F. Santosa (eds.)

93 Large-Scale Optimization with Applications, Part II:
Optimal Design and Control
L.T. Biegler, T.F. Coleman, A.R Conn, and F. Santosa (eds.)

94 Large-Scale Optimization with Applications, Part ill:
Molecular Structure and Optimization
L.T. Biegler, T.F. Coleman, A.R Conn, and F. Santosa (eds.)

95 QuasicIassical Methods
1 Rauch and B. Simon (eds.)

96 Wave Propagation in Complex Media
G. Papanicolaou (ed.)

97 Random Sets: Theory and Applications
1 Goutsias, RP.S. Mahler, and H.T. Nguyen (eds.)

98 Particulate Flows: Processing and Rheology
D.A. Drew, D.D. Joseph, and S.L. Passman (eds.)

99 Mathematics of Multiscale Materials K.M. Golden, G.R. Grimmett,
RD. James, G.W. Milton, and P.N. Sen (eds.)

100 Mathematics in Industrial Problems, Part 10 A. Friedman
101 Nonlinear Optical Materials lV. Moloney (ed.)
102 Numerical Methods for Polymeric Systems S.G. Whittington (ed.)
103 Topology and Geometry in Polymer Science S.G. Whittington,

D. Sumners, and T. Lodge (eds.)
104 Essays on Mathematical Robotics 1 Baillieul, S.S. Sastry,

and H.l Sussmann (eds.)
105 Algorithms For Parallel Processing M.T. Heath, A. Ranade,

and R.S. Schreiber (eds.)
106 Parallel Processing of Discrete Problems P.M. Pardalos (ed.)
107 The Mathematics of Information Coding, Extraction, and

Distribution G. Cybenko, D.P. O'Leary, and 1 Rissanen (eds.)
108 Rational Drug Design D.G. Truhlar, W. Howe, AJ. Hopfmger,

1 Blaney, and RA. Dammkoehler (eds.)
109 Emerging Applications of Number Theory D.A. Hejhal, 1 Friedman,

M.e. Gutzwiller, and A.M. Odlyzko (eds.)
110 Computational Radiology and Imaging: Therapy and Diagnostics

C. Borgers and F. Natterer (eds.)
111 Evolutionary Algorithms L.D. Davis, K. De Jong, M.D. Vose,

and L.D. Whitley (eds.)
112 Statistics in Genetics M.E. Halloran and S. Geisser (eds.)
113 Grid Generation and Adaptive Algorithms M.W. Bern, lE. Flaherty,

and M. Luskin (eds.)
114 Diagnosis and Prediction S. Geisser (ed.)

115 Pattern Formation in Continuous and Coupled Systems: A Survey Volume
M. Go1ubitsky, D. Luss, and S.H. Strogatz (eds.)

116 Statistical Models in Epidemiology, the Environment, and Clinical Trials
M.E. Halloran and D. Berry (eds.)

117 Structured Adaptive Mesh Refinement (SAMR) Grid Methods
S.B. Baden, N.P. Chrisochoides, D.B. Gannon, and M.L. Norman (eds.)

118 Dynamics of Algorithms
R. de 1a Llave, L.R. Petzold, and 1. Lorenz (eds.)

119 Numerical Methods for Bifurcation Problems and Large-Scale Dynamical
Systems
E. Doede1 and L.S. Tuckerman (eds.)

120 Parallel Solution of Partial Differential Equations
P. Bjerstad and M. Luskin (eds.)

121 Mathematical Models for Biological Pattern Formation
P.K. Maini and H.G. Othmer (eds.)

122 Multiple-Time-Scale Dynamical Systems
C.K.R.T. Jones and A. Khibnik (eds.)

123 Codes, Systems, and Graphical Models
B. Marcus and J. Rosenthal (eds.)

FORTHCOMING VOLUMES

1997-1998: Emerging Applications o/Dynamical Systems
Multiple-Time-Scale Dynamical Systems

1998-1999: Mathematics in Biology
Pattern Formation and Morphogenesis
Endocrinology: Mechanism of Honnone Secretion and Control
Membrane Transport and Renal Physiology
Mathematical Approaches for Emerging and Reemerging Infectious Disease

1999 Summer Program: Codes, Systems, and Graphical Models

1999-2000: Reactive Flow and Transport Phenomena
Fire

