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v

As a special class of noncoding RNAs, microRNAs (miRNAs or miRs for short) have been 
reported to perform important roles in various biological and pathological processes by 
regulating respective target genes. To completely understand and fully delineate miR func-
tions, besides performing biological experiments and querying PubMed and TarBase for 
biologically validated miR targets, biologists can also query various miR target prediction 
databases/websites for computationally predicted targets. More often than not, biologists 
need to extract additional information for each and every miR target, either validated or 
putative, with regard to its related information such as protein functions and affiliated sig-
naling pathways. In short, biologists are facing significant barriers in fully delineating miR 
functions and the following effective bio-curation. Therefore, there is an urgent need for a 
comprehensive book focusing on miR target genes, miR regulation mechanisms, miR func-
tions performed in various human diseases, and miR databases/knowledge bases.

This book is intended to give an in-depth introduction to and discussion of miRs and 
their targets, miR functions, and computational techniques applied in miR research. The 
primary audience includes, but is not limited to, computational biologists, computer scien-
tists, bioinformaticians, bench biologists, and clinical investigators. No prior knowledge of 
computer science, databases, semantic technologies, or molecular biology is assumed. But we 
do assume that readers have some biology background knowledge at the high-school level.

A brief overview of the book structure is as follows. Chapter 1 introduces the concepts of 
miRs and long noncoding RNAs (lncRNAs) as well as some recent advances in miR/lncRNA 
biology. Chapters 2, 3, and 4 discuss protein participants in miR regulation; viral microRNAs, 
host miRs regulating viruses, and bacterial miR-like RNAs; and biomarkers, diagnostics, and 
therapeutics aspects of miRs, respectively. Chapter 5 introduces basic concepts of relational 
databases and biomedical big data. Chapter 6 provides an overview of semantic technologies 
and bio-ontologies. Chapter 7 discusses genome-wide analysis of miR-regulated transcripts. 
Chapters 8 and 9 describe in detail computational prediction of miR target genes, regulatory 
interactions between miRs and their targets, as well as an introduction of various miR target 
prediction databases and relevant Web resources. Chapter 10 discusses some limitations of 
existing approaches that aim to improve miR target prediction accuracy. Chapters 11 and 12 
introduce genomic regulation of miR expression in disease development and next generation 
sequencing for miR expression profile. Chapters 13 through 16 discuss advanced topics in 
computational/bioinformatics approaches in miR research, including the handling of high-
dimension data, identification and removal of noisy data, logical reasoning, and machine 
learning techniques. Finally, Chapters 17–19 introduce some advances of miR research in 
three human diseases: diabetes, obesity, and thyroid carcinoma.
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Chapter 1

MicroRNAs, Long Noncoding RNAs, and Their Functions 
in Human Disease

Min Xue, Ying Zhuo, and Bin Shan

Abstract

Majority of the human genome is transcribed into RNAs with absent or limited protein-coding potential. 
microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two major families of the non-protein- 
coding transcripts. miRNAs and lncRNAs can regulate fundamental cellular processes via diverse mecha-
nisms. The expression and function of miRNAs and lncRNAs are tightly regulated in development and 
physiological homeostasis. Dysregulation of miRNAs and lncRNAs is critical to pathogenesis of human 
disease. Moreover, recent evidence indicates a cross talk between miRNAs and lncRNAs. Herein we 
review recent advances in the biology of miRNAs and lncRNAs with respect to the above aspects. We 
focus on their roles in cancer, respiratory disease, and neurodegenerative disease. The complexity, flexibil-
ity, and versatility of the structures and functions of miRNAs and lncRNAs demand integration of experi-
mental and bioinformatics tools to acquire sufficient knowledge for applications of these noncoding 
RNAs in clinical care.

Key words MicroRNA, Long noncoding RNA

1 Introduction

Majority of the human genome is transcribed although only ~2% 
of the human genome encodes proteins [1]. The transcribed 
RNAs with absent or limited protein-coding potential are named 
noncoding RNAs and operationally divided into small RNAs and 
long noncoding RNAs (lncRNA) with a boundary set at 200 
nucleotides in length. The small RNA family includes microR-
NAs (miRNA), small nuclear RNAs, and piwi-interacting RNAs. 
miRNAs and lncRNAs are critical regulators of development, 
physiology, and disease. Herein we review recent advances in the 
biology of miRNAs and lncRNAs and their functions in human 
disease.
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2 Functions of miRNAs and Human Disease

miRNAs are ~22-nucleotide long single stranded RNAs that regu-
late gene expression via diverse mechanisms [2]. Since discovery of 
the first miRNA lin-4 in Caenorhabditis elegans in 1993, 35,828 
mature miRNAs have been catalogued in 223 species in the latest 
release of miRBase (www.mirbase.org) [3, 4]. Biogenesis of miR-
NAs starts with transcription from a miRNA-hosting gene, which 
yields a long primary transcript named primary miRNA (pri- 
miRNA) [5]. Then the pri-miRNA is cleaved by the ribonulease 
III-type protein Drosha in the nucleus to produce a ~70- nucleotide 
long hairpin structure named precursor miRNA (pre-miRNA) [6]. 
The pre-miRNA is exported to the cytoplasm by exportin-5 and 
subsequently cleaved by another ribonulease III-type protein Dicer 
to generate a miRNA:miRNA* duplex of ~22 nucleodtides [7]. 
The miRNA:miRNA* duplex binds to an argonaute (AGO) pro-
tein to form an effector RNA-induced silencing complex (RISC) 
complex. A mature miRNA is produced when miRNA* is peeled 
off from the duplex. It is noteworthy that a miRNA* is not simply 
a nonfunctional byproduct of miRNA biogenesis but rather a func-
tional miRNA on many occasions [8].

Besides their canonical destination in the cytoplasm miRNAs 
exist and function in the nucleus and secretary microvesicles called 
exosomes [9, 10]. Exosomes are small extracellular membrane ves-
icles with sizes of 30–100 nm in diameter and secreted by various 
types of cells in the body [11–14]. miRNAs packaged in exosomes 
can be taken up by neighboring cells or distant recipient cells via 
transportation in body fluids and function in their recipient cells, 
which serve as an important tool for proximal and distant intercel-
lular communications [15–18].

Biogenesis of miRNAs can be regulated at every step of their 
production by physiological and pathological signals. For instance 
the miRNA-200 family is transcriptionally suppressed by ZEB1 
during epithelial–mesenchymal transition (EMT) [19]. In another 
example type I collagen posttranscriptionally upregulates the 
expression of miR-21 by promoting maturation of pre-miR-21 to 
miR-21 without alteration in the amount of pri-miRNA-21 and 
pre-miR-21 [20].

The classic mode of a miRNA’s action is to inhibit gene expression 
via binding to its complementary sequences (6–8 nucleotides) 
within the 3′ untranslated region (3′ UTR) of its target mRNAs. 
This partial complementarity causes inhibition of expression of a 
miRNA’s target via degradation or repression of translation of the 
bound mRNAs [21]. Because of the need of only a 6–8 nucleotide 
complementarity a miRNA can potentially targets hundreds of 
mRNAs and most mammalian mRNAs are conserved targets of 

2.1 Biogenesis 
of miRNAs

2.2 Functions 
of miRNA

Min Xue et al.

http://www.mirbase.org
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miRNAs [22]. Bioinformatic tools such as TargetScan have been 
widely used to guide prediction and validation of a miRNA’s target 
mRNAs [23].

The cytoplasmic miRNAs inhibit their target genes expression 
via degradation of mRNAs or inhibition of translation at initiation 
and post-initiation steps [21, 24–31]. miRNA-mediated decrease 
of their target mRNA levels is proposed as a major mechanism of 
miRNA-mediated repression of a target gene expression [32]. This 
action can be achieved through miRNA-induced rapid deadenyl-
ation of target mRNA as exemplified by the actions of miR-125b, 
a miRNA that is linked to chemoresistance in breast cancer [31, 
33, 34]. miRNA-mediated suppression of translation initiation is 
exemplified in let-7-mediated repression of its target mRNAs as 
let-7-bound AGO2 represses the translation initiation by binding 
to the m7G cap of the mRNA targets and thereby prevents the 
recruitment of eIF4E, an essential translation initiation factor [35]. 
The post-initiation inhibition of translation by miRNAs is accom-
plished through rapid degradation of the peptide product encoded 
by the targeted mRNA, which is mediated by high rate of ribo-
some drop-off during translation elongation [36].

In addition to their canonical actions in the cytoplasm miR-
NAs are expressed in abundance in the nucleus and regulate vari-
ous nuclear events such as transcription and RNA splicing via 
diverse mechanisms. For instance miR-320 recruits AGO1 and 
EZH2 to the POLR3D locus through complete complementary 
binding, which results in heterochromatinization and silencing of 
the POLR3D promoter [37]. miRNA-mediated silencing of the 
gene promoters harboring their target sites controls a variety of 
fundamental cellular processes, such as cellular senescence and 
neuroregeneration [38–40]. On the other hand, a few nuclear 
miRNAs have been reported to activate gene expression via epi-
genetic mechanisms. For instance miR-373 activates the expres-
sion of CDH1 and CSDC2 via AGO-miRNA complexes-mediated 
recruitment of positive epigenetic regulators to the target promot-
ers [41]. Lastly nuclear miRNAs can regulate splicing of the com-
plement pre-mRNA. In miR-122-mediated repression of splicing 
of the hepatitis C viral RNA a ternary complex formed between the 
target transcript, miRNA, and RISC masks splicing recognition 
motifs and thereby prevents binding of the splicing factors [42].

miRNAs govern fundamental biological processes, such as cell pro-
liferation, death, differentiation, and development [43]. As a 
 feedback tool with profound effects on gene expression miRNAs 
are the main tool to fine-tune gene expression and biological 
homeostasis. Dysregulation of miRNAs contributes to pathogen-
esis of a wide variety of human disease. In this section we review 
actions of miRNAs in cancer, respiratory disease, and neurodegen-
erative disease.

2.3 miRNAs 
and Human Disease

MicroRNAs, Long Noncoding RNAs, and Their Functions in Human Disease
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The first documented association between miRNAs and cancer is 
frequent deletion and downregulation of miR-15 and miR-16 at 
13q14 in chronic lymphocytic leukemia [44]. Since then, thou-
sands of miRNAs have been reported to act as either oncogenes or 
tumor suppressors depending on a miRNA’s targets in a particular 
biological context. miRNAs have been linked to each hallmark of 
cancer that is established by Hanahan and Weinberg [45]. 
Representative miRNAs associated with each hallmark of cancer 
are listed in Table 1 [46–62].

Genetic alterations are a common cause of dysregulation of 
miRNAs in cancer. More than 50% of miRNA genes are located in 
cancer associated genomic regions or in fragile sites [63]. One 
prime example is amplification of the oncogenic miR-17~92 clus-
ter and its consequent overexpression in small cell lung cancer 
[47]. Deletion and loss of expression of miRNAs in cancer are 
exemplified in frequent deletion of the miR-15a and miR-16a 

2.3.1 miRNAs in Cancer

Table 1 
Association between miRNA and hallmarks of cancer

Hallmarks of cancer Representative miRNAs

Sustaining proliferative signaling miR-17~92-mediated suppression of PTEN in lung cancer and 
B-cell lymphoma [46, 47]; Loss of let-7- mediated suppression of 
Ras by in lung cancer [48, 49]

Evading growth suppressors Interference of cell cycle arrest by miR-675-mediated suppression 
of pRB in colorectal cancer [50]

Avoiding immune destruction Enhancement of resistance to cytotoxic T-lymphocytes by 
miR-222 mediated suppression of ICAM-1 [51]

Enabling replicative immortality Loss of miR-34a-mediated senescence in colon cancer [52]

Tumor promoting inflammation miR-155-mediated inflammation in the tumor microenvironment 
[53, 54]

Activating invasion and metastasis miR-10b-mediated migration, invasion, and metastasis in breast 
cancer [62]; Loss of miR-200-mediated suppression of EMT 
[55, 56]

Inducing angiogenesis Enhanced angiogenesis by miR-296-mediated suppression of 
HGS in tumor associated endothelial cells in gliomas [57]

Genome instability and mutation Impairment of DNA repair by miR-21-mediated suppression of 
H2AX, a histone variant essential to repair [58, 59]

Resisting cell death Inhibition of caspase activation by miR-21- mediated suppression 
of PDCD4 in glioblastoma [60]

Deregulating cellular energetics Loss of miR-99a/100- mediated suppression of mTOR in 
childhood adrenocortical tumors [61]

A summary of representative miRNAs associated with the hallmarks of cancer. PTEN phosphatase and tensin homolog, 
pRB retinoblastoma protein, EMT epithelial–mesenchymal transition, HGS hepatocyte growth factor-regulated tyrosine 
kinase substrate, PDCD4 programmed cell death protein 4, mTOR mechanistic target of rapamycin

Min Xue et al.
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hosting locus in chronic lymphocytic leukemia [44]. Single nucle-
otide polymorphism (SNP) is another common cause of dysregula-
tion of miRNAs in cancer. In a common G/C polymorphism 
(rs2910164) within the pre-miR-146a coding region the C allele 
results in a decrease of mature miR-146a and less efficient inhibi-
tion of the miR-146a targets, which increases risk of papillary thy-
roid carcinoma [64]. Variation within the miRNA target site of a 
miRNA-targeted 3′UTR is another important source of genetic 
predisposition in cancer risk. In the oncogenic HMGA2 locus the 
open reading frame and the 3′UTR harboring the let-7 target sites 
are separated by chromosomal rearrangements in cancer, which 
leads to escape of HMGA2 from let-7-mediated repression [65, 66]. 
SNP in a miRNA target site can result in loss of miRNA- mediated 
repression in cancer. In the let-7 target site within the 3′UTR of 
the KRAS oncogene SNP causes elevated KRAS expression and 
increased risk of non-small cell lung cancer [67].

Transcriptional dysregulation of miRNA expression is another 
critical mechanism in tumorigenesis. The oncogenic miRNAs are 
often transcriptionally activated in cancer [68]. For instance the 
oncogenic miR-17~92 cluster is transcriptionally activated by the 
MYC oncogene via a MYC binding site in the promoter of the 
miR-17~92 cluster [69]. In contrast the tumor suppressive miR-
NAs are often transcriptionally repressed in cancer [70]. The pro-
moter of the miR-200 cluster that encodes miR-200a, miR-200b, 
and miR-429 is transcriptionally repressed by ZEB1 and SIP1 dur-
ing EMT, a process through which cancer cells acquire invasive 
and metastatic competency [19, 55]. More importantly the miR- 
200 cluster members repress the expression of ZEB1 and SIP1 via 
the miR-200 target sites in their 3′ UTR and this reciprocal repres-
sion between the miR-200 cluster and ZEB1/SIP1 establishes a 
double-negative feedback loop in regulation of EMT [19, 55]. 
miRNA expression can also be regulated by the signals from the 
tumor microenvironment, such as extracellular matrix, and in turn 
mediates cancer cell’s responses to the tumor microenvironment 
[20, 56, 71, 72].

Because of the critical roles of miRNAs in cancer biology miR-
NAs have emerged as a family of promising targets in diagnosis and 
treatment of cancer. Because miRNAs are more stable than mRNAs 
and released by a solid tumor into the body fluids via exosomes 
miRNAs have emerged as promising biomarkers in tissue biopsies, 
blood, urine, etc. [73–75]. For instance a host of circulating miR-
NAs including miR-141, miR-21, and miR-92a have been tested 
as diagnostic biomarkers of colorectal cancer in whole plasma or 
serum [76–81]. miRNAs have also been developed as molecular 
signatures of subtypes of breast cancer and thus guide the treat-
ment that is tailored for each molecular subtype. The miRNA sig-
natures of ER+ and HER+ can guide anti-ER and anti-HER2 
therapies, respectively [82–84]. miRNAs can potentially predict 

MicroRNAs, Long Noncoding RNAs, and Their Functions in Human Disease



6

responses to chemotherapy and thus guide the choice of treat-
ments as illustrated in the miRNA signatures that can predict 
response to tamoxifen and anti-HER2 monoclonal antibody 
Herceptin in breast cancer [85–87].

Current development of miRNA-based therapies mainly 
employs antagonist and oligonucleotide mimics of a miRNA of 
interest. miRNA mimics are used to restore tumor suppressive 
miRNAs that are deficient in cancer. On the contrary antagomiRs 
are single-stranded oligonucleotides that complement and inhibit 
the oncogenic miRNAs in cancer. To increase efficiency of a 
miRNA antagonist, miRNA sponge technology has been  developed 
to synthesize a single stranded RNA containing multiple binding 
sites of a targeted miRNA to efficiently neutralize a miRNA [88]. 
miRNA sponges have been validated in xenograft mouse model of 
human breast cancer cell lines in that inhibition of miRNA-9 and 
miR-150 using a synthetic RNA containing several miR-9 or miR-
150 binding sites reduced lung metastases [89, 90]. The miRNA 
targeting therapies have entered clinical trials as exemplified by a 
miR-34a mimics in phase I study (http://clinicaltrials.gov/ct2/
show/NCT01829971). Preliminary results from the translational 
studies of miRNA-based therapies against cancer suggest that 
miRNA mimics or antagomiRs can be easily administered through 
local or parenteral injection routes with sufficient uptake of the 
agents to achieve sustained and desired effects in the targeted tis-
sues and organs.

miRNAs have emerged as critical regulators in the control of nervous 
system-specific gene expression during development, aging, and dis-
ease. We review the role of miRNAs in two devastating neurodegen-
erative diseases, Parkinson’s disease and Alzheimer’s disease.

Parkinson’s disease is a chronic and progressive movement dis-
order that is caused by a gradual loss of midbrain dopaminergic 
neurons [91]. Investigation of miRNAs has shed light on patho-
genesis of Parkinson’s disease. miR-133b is specifically expressed in 
the midbrain dopaminergic neurons and regulates maturation and 
function of the midbrain dopaminergic neurons as a node of a neg-
ative feedback circuit by targeting the paired-like homeodomain 
transcription factor Pitx3 [92]. Importantly, miR-133b is deficient 
in the midbrain tissues from patients with Parkinson’s disease [92]. 
Gain-of-function mutations in leucine-rich repeat kinase-2 
(LRRK2) cause familial and sporadic Parkinson’s disease. The 
pathogenic LRRK2 associate with RISC to interfere the miRNA 
pathway and such interference leads to overproduction of E2F1/DP, 
a target of let-7 and miR-184* [93]. Moreover, antagomiR- 
mediated blockage of let-7 or miR-184* can recapitulate the toxic 
effects of the pathogenic LRRK2 and conversely forced expression 
of let-7 or miR-184* can attenuate the toxic effects of the patho-
genic LRRK2 [93].

2.3.2 miRNAs 
in Neurodegenerative 
Disease

Min Xue et al.
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Alzheimer’s disease is the most common cause of dementia in 
the aging population. The pathologic hallmarks of the disease are 
plaques composed of amyloid β and tangles composed of hyper-
phosphorylated tau [94]. Several miRNA profiling studies have 
identified dozens of miRNAs that are significantly differentially 
expressed between cortex from patients with Alzheimer’s disease 
and the matching controls [95–97]. The differentially expressed 
miRNAs appear to be more robust and reproducible than the dif-
ferentially expressed mRNAs [98]. Moreover, a joint profiling of 
miRNA and mRNA expression in brain cortex from Alzheimer’s 
disease and age-matched control subjects reveals strong inverse 
correlations between the amount of miRNAs and their corre-
sponding predicted mRNA targets, which suggests active 
microRNA functions in Alzheimer’s disease [99]. Indeed the 
expression of miR-29a, miR-29b-1, and miR-9 is significantly 
decreased in Alzheimer’s disease and their decrease causes aberrant 
increase of their target β-secretase-1 (BACE1), a protein account-
able for accumulation of Aβ in Alzheimer’s disease [100]. Besides 
BACE1, the expression of amyloid precursor protein is repressed 
by the members of the miR-20a family (miR-20a, miR-17-5p, and 
miR-106b) and this miRNA pathway appears to be compromised 
in Alzheimer’s disease because miR-106b is substantially reduced 
in sporadic Alzheimer’s disease [101].

As in many other tissues miRNAs mediate cell differentiation and 
maintain homeostasis in differentiated cells in the respiratory sys-
tem [102]. miRNA expression undergoes profound changes dur-
ing lung development and the Dicer null mice are not viable due 
to impaired lung growth that is caused by deficiency in production 
of mature miRNAs globally due to deletion of Dicer [103, 104]. 
Moreover, expression of the miR-17~92 cluster progressively 
declines during lung development and forced expression of the 
cluster results in abnormal lung development that was character-
ized by continued proliferation and impaired differentiation of epi-
thelial cells [105].

Profound alteration in miRNA expression profile has been 
observed in asthma and asthma undergoing steroid therapy [106, 
107]. More importantly the altered miRNA expression profile 
observed in asthma appears to be largely driven by IL-13, a key 
pathogenic cytokine in asthma because the miRNA profile in 
asthma can be recapitulated by exposing lung epithelial cells to 
IL-13 [107]. T cells are important orchestrators of the chronic 
inflammatory response in asthma. In the circulating CD4+ and 
CD8+ T cells collected from the patients with severe asthma the 
expression of miR-146a and miR-146b are substantially downreg-
ulated and such downregulation potentially contributes to greater 
T-cell activation in severe asthma because these two miRNAs 
inhibit the immune response [108, 109].

2.3.3 miRNAs 
in Respiratory Disease

MicroRNAs, Long Noncoding RNAs, and Their Functions in Human Disease
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Idiopathic pulmonary fibrosis is a deadly lung disease featuring 
excessive production and deposition of extracellular matrix com-
ponents by fibroblasts and myofibroblasts in the lung interstitium. 
miRNA expression profiling of human lung samples, isolated lung 
cells, and mouse models of idiopathic pulmonary fibrosis have 
revealed profound dysregulation of miRNA that includes let-7d, 
miR-21, and miR-29 [110–114]. More importantly reversing the 
expression pattern of let-7d and miR-21 observed in pulmonary 
fibrosis can attenuate pulmonary fibrosis in mice, suggesting that 
these miRNAs mediate fibrosis in the lung [110–114]. It is note-
worthy that miR-29 represses expression of a host of extracellular 
matrix proteins and has been implicated as a key regulator in 
fibrotic diseases in other organs as well [115].

Chronic obstructive pulmonary disease (COPD) is caused pre-
dominantly by long-term exposure to cigarette smoke and charac-
teristic of destruction of the lung parenchyma (emphysema) and 
reduced lung function. A miRNA expression profiling of lung tis-
sues collected from smokers with and without COPD has revealed 
a panel of 70 miRNAs that are differentially expressed between 
smokers with and without COPD [116]. This panel is enriched 
with the miRNAs linked to the pathways that underlie the patho-
genesis of COPD, such as the TGF-β, Wnt, and focal adhesion 
pathways [116]. For instance upregulated expression of miR-15b 
is observed only in the smoker with COPD and correlated with a 
decrease of its validated target SMAD7, a well-established inhibitor 
of the TGF-β pathway [116]. In two other in-depth studies 
reduced miR-146a expression is linked to increased expression of 
PGE2 due to loss of miR-146a-mediated repression of COX-2 and 
reduced expression of miR-1 is linked to the muscle weakness 
observed in COPD [117, 118].

3 Functions of lncRNAs and Human Disease

lncRNA is a heterogenous family that is represented by long inter-
genic RNAs (defined by position), circular RNAs (circRNA, 
defined by structure), competing endogenous RNA (ceRNA, 
defined as functions), antisense RNAs (defined by orientation of 
transcription), etc. According to the Ensembl human genome 
annotation (GRch38, version 23) 27,817 lncRNAs are transcribed 
from 15,931 gene loci [119]. lncRNAs are of absent or limited 
protein coding potential. However, increasing number of genes 
can dually produce peptides/proteins and lncRNAs. For example, 
the RNA and proteins products of the steroid receptor RNA acti-
vator gene are simultaneously produced and the RNA product 
function as a scaffold for formation of several ribonucleoprotein 
complexes [120]. Similar to mRNA, most lncRNAs are transcribed 
by RNA polymerase II, 5′-capped, 3′-polyadenylated, and spliced 
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into various isoforms although they tend to have fewer exons than 
mRNAs [1].

The importance of lncRNA genes are revealed by their prox-
imity to developmental regulators in the genome, enrichment of 
tissue-specific and developmental stage-specific expression pat-
terns, and frequent association with genetic traits [121]. lncRNAs 
regulate a myriad of molecular and cellular processes, such as 
 chromatin remodeling and RNA splicing [122–126]. In the fol-
lowing sections we discuss the functions of lncRNAs and their role 
in human disease.

A large number of lncRNAs can recruit chromatin remodeling 
complexes to a specific set of genes to activate or repress gene 
expression [127–133]. As many as 20% of lncRNAs expressed in a 
given cell associate with chromatin remodeling complexes and 
lncRNAs are commonly bound by multiple chromatin remodeling 
proteins [134]. One of the best-characterized interactions between 
lncRNAs and chromatin remodeling complexes is lncRNA- 
mediated recruitment of polycomb repressive complex 2 (PRC2) 
that catalyzes trimethylation of histone H3 lysine 27 (H3K27me3), 
a histone code for transcriptional repression [135].

lncRNAs can act in cis to recruit chromatin remodeling com-
plexes to regulate gene expression, which is well-characterized in 
X-chromosome inactivation by the lncRNA X-inactive-specific 
transcript (XIST) [136, 137]. In mammalian females, the majority 
of genes on one of the two X-chromosomes in each cell are silenced. 
During female development, XIST is transcribed from the 
X-chromosome that is destined to become inactivated in each cell. 
XIST then coats the regions of the chromosome that is to be 
silenced, which results in formation of “XIST clouds” and recruit-
ment of PRC2 to the XIST-coated region for gene silencing [138].

On the other hand, lncRNAs can act in trans to recruit PRC2 
to repress gene expression. As a paradigm of such mechanism, the 
lncRNA HOX antisense intergenic RNA (HOTAIR) is transcribed 
from the locus between HOXC11 and HOXC12 on chromosome 
12 and repress the HOXD gene cluster on chromosome 2 via 
recruitment of PRC2 [129]. As demonstrated by chromatin isola-
tion by RNA purification HOTAIR preferentially occupies a 
GA-rich DNA motif to recruit PRC2 and nucleate broad domains 
of H3K27me3 [139].

lncRNAs can regulate another important epigenetic code, 
DNA methylation, a dynamic and reversible process that governs 
gene expression during development and disease. In general cyto-
sine methylation in a CpG island located in a gene promoter marks 
a gene for repression. An antisense lncRNA named TCF21 anti-
sense RNA inducing demethylation (TARID) activates TCF21 
expression by inducing promoter demethylation [140]. TARID 
recruits growth arrest and DNA-damage-inducible-α (GADD45A) 

3.1 Functions of 
lncRNAs

3.1.1 Regulation of 
Epigenetic Modifications
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to the TCF21 promoter. GADD45A, a regulator of DNA demeth-
ylation, in turn recruits thymine-DNA glycosylase for base excision 
repair-mediated demethylation in the TCF21 promoter [140]. In 
summary lncRNA can regulate the epigenetic codes through phys-
ical interaction with chromatin or nucleotide modifiers.

Besides regulation of epigenetic codes a large number of lncRNAs 
regulate RNA splicing. For instance the lncRNA metastasis- 
associated lung adenocarcinoma transcript 1 (MALAT1) regulates 
alternative splicing through its interaction with the serine/arginine- 
rich (SR) family of nuclear phosphoproteins, a key component of 
the splicing machinery [141, 142]. MALAT1 is required for appro-
priate splicing because depletion of MALAT1 results in increase of 
mislocalized and unphosphorylated SR proteins as well as increase 
of exon inclusion events [142]. It is proposed that MALAT1 serves 
as a structural docking site for accumulation and assembly of spe-
cific splicing factors, such as phosphorylated SR proteins and this 
process is essential for efficient splicing [141].

Another step of a RNA life cycle regulated by lncRNAs is mRNA 
decay as illustrated in staufen-1-mediated mRNA degradation 
[143]. Staufen-1 binds to translationally active mRNAs via imper-
fect base-pairing between one Alu element in the 3′ UTR of a 
staufen-1 target and another Alu element in a cytoplasmic, polyad-
enylated long noncoding RNA (lncRNA) [143]. Formation of the 
mRNA-lncRNA-staufen-1 hetero triplex leads to degradation of 
the staufen-1-targeted mRNAs [143]. It is noteworthy that this 
process assigns a novel function to Alu, an ancient DNA repetitive 
element, which is echoed in a novel function of another repetitive 
element SINEB2 as discussed below.

lncRNAs can regulate the final step of an mRNA life cycle, transla-
tion, through base-pairing with the targeted mRNAs and forma-
tion of this RNA-RNA duplex that in turn modulates the interaction 
between the translated mRNAs and ribosomes [144, 145]. The 
antisense lncRNAs that complement the targeted mRNAs at the 5′ 
end promote association of polysomes with the targeted mRNAs. 
A nuclear-enriched lncRNA antisense to mouse ubiquitin carboxy- 
terminal hydrolase L1 (Uchl1) can increase UCHL1 mRNA trans-
lation, which requires the presence of a 5′ overlapping sequence 
and an embedded inverted SINEB2 element [145]. On the con-
trary, lincRNA-p21 can associate with JUNB mRNA and selec-
tively reduce its translation when lincRNA-p21 is released from 
HuR, a RNA-binding protein that binds to and limits the avail-
ability of lincRNA-p21 for targeting JUNB [144].

lncRNAs can serve as molecular scaffolds for assembly and posi-
tioning of structural or functional complexes so that the lncRNA 
containing complexes can function in an appropriate spatial and 

3.1.2 Regulation of RNA 
Splicing

3.1.3 Regulation 
of mRNA Decay

3.1.4 Regulation 
of mRNA Translation

3.1.5 Molecular Scaffold 
for Structural/Functional 
Complexes
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temporal manner [134, 146, 147]. HOTAIR provides a paradigm 
of how lncRNAs act as a modular scaffold. HOTAIR interacts with 
PRC2 and lysine-specific demethylase 1 (LSD1) corepressor com-
plex to silence the HOXD locus in trans [148]. Assembly and posi-
tioning of a transcriptional corepressor complex containing PRC2 
and LSD1 on a HOTAIR bound gene promoter can efficiently 
coordinate histone codes for gene silencing via PCR2-mediated 
addition of repression code H3K27me3 and LSD1-mediated 
removal of activation code H3K4me3. Such coordination is 
achieved through scaffolding by HOTAIR in that HOTAIR binds 
to PRC2 via its 5′ terminus and to LSD1 via its 3′ terminus [148].

lncRNAs dictates fundamental cellular and developmental pro-
cesses and thereby underlie pathogenesis of a broad range of 
human diseases. Aside from their well-established roles in cancer, 
lncRNAs are central to fragile X syndrome, neurodegenerative dis-
ease, respiratory disease, etc. [149–154]. In this section we review 
recent advances on the role of lncRNAs in cancer, neurodegenera-
tive disease, and respiratory disease.

lncRNAs have emerged as novel master regulators of initiation, 
progression, and response to therapy in a wide variety of solid 
tumors and hematological malignancies [155]. Hundreds of 
IncRNAs are differentially expressed between tumor tissues and 
paired adjacent nontumor tissues in various types of cancer [156–
164]. lncRNAs can act as oncogenes or tumor suppressors to regu-
late cancer biology via diverse molecular mechanisms [141, 158, 
159, 165–167].

One of the classical and versatile cancer-associated lncRNAs is 
MALAT1. Elevated expression of MALAT1 has been reported in a 
broad range of cancers, including lung cancer and breast cancer 
[168–184]. Moreover, genetic alterations in MALAT1, such as 
multiple mutations and deletions within the SRSF1-binding sites 
are associated with poor patient outcome in breast cancer [185]. 
In colorectal cancer and osteosarcoma, MALAT1 promotes tumor 
growth and metastasis by binding to a multifunctional RNA- 
binding protein, PSF via a motif in its 3′region [186, 187]. 
Depletion of MALAT1 results in defective alternative splicing of a 
subset of transcripts that are involved in cancer such as tissue factor 
and endoglin [188]. Besides regulation of splicing of the cancer- 
associated genes MALAT1 regulates expression of the cancer asso-
ciated genes via epigenetic mechanisms. For example, MALAT1 
binds to polycomb group proteins to facilitate assembly of multiple 
corepressors/coactivators and thereby mediates activation of the 
growth-control gene program for proliferation [189]. MALAT1 
also associates with PRC2 and alters the expression of N-cadherin 
and E-cadherin to promote EMT in bladder cancer cells [175]. 
Besides its potential as a biomarker, MALAT1 is an appealing 

3.2 lncRNAs 
and Human Disease
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therapeutic target for cancer metastasis because deletion or inhibi-
tion of MALAT1 reduces tumor growth and metastasis of human 
lung cancer cells in xenografted mice [187].

Another prime example of oncogenic lncRNAs is HOTAIR 
[190, 191]. HOTAIR is elevated in various cancers including 
breast cancer, lung cancer, colorectal cancer, and prostate cancer 
[159, 192–194]. Elevated HOTAIR expression is a powerful pre-
dictor of metastasis and poor survival [159]. The paradigm of 
HOTAIR’s functions in cancer is that increased amount of 
HOTAIR reprograms global gene occupancy of PRC2, which 
results in de novo repression of hundreds of new target genes to 
promote invasion and metastasis [159]. HOTAIR mediates cancer 
cells’ resistance to chemotherapy because elevated expression of 
HOTAIR is correlated with tamoxifen resistance in breast cancer 
and its overexpression promotes ligand-independent proliferative 
activities of estrogen receptor [195].

Similar to miRNAs lncRNAs can regulate the hallmarks of can-
cer via diverse mechanisms as illustrated in regulation of apoptosis 
and proliferation by the lncRNA growth arrest-specific transcript 5 
(GAS5). GAS5 is induced upon growth arrest due to lack of nutri-
ents or growth factors and overexpression of GAS5 induces growth 
arrest and apoptosis in cancer cells [196]. Acting as molecular 
decoy through its binding to the DNA-binding domain of gluco-
corticoid receptor GAS5 sequesters glucocorticoid receptor and 
thereby suppresses glucocorticoid-activated genes, particularly the 
inhibitors of apoptosis [196]. Another example of lncRNA- 
mediated control of cell cycle control is lincRNA-p21 whose 
expression is induced by p53 upon DNA damage [166]. Upon 
induction by p53 lincRNA-p21 interacts with ribonucleoprotein K 
and act in trans to recruit ribonucleoprotein K to repress a host of 
p53 targeted genes, particularly the genes that interfere with the 
apoptotic response to DNA damage. On the other hand, lincRNA-
 p21 can function in cis to activate expression of its neighboring 
gene, particularly p21, an essential mediator of p53-dependent 
growth arrest response to DNA damage [197].

Given their pivotal role in cancer biology lncRNAs have 
emerged as promising targets for diagnosis and therapy of cancer. 
Some lncRNAs are potential biomarkers of a broad range of can-
cer, such as HOTAIR that is upregulated in the majority of can-
cers investigated so far [191]. More importantly elevated 
expression of HOTAIR and MALAT1 is valuable in prognosis 
because their aberrant expression correlates significantly with 
metastasis and poor overall survival in breast, lung, and colorectal 
cancers [160, 191, 198, 199]. On the other hand, some lncRNAs 
are dysregulated in cancer in a tissue type-specific manner. For 
instance the lncRNA prostate cancer antigen 3 (PCA3) is upregu-
lated  specifically in prostate tumor tissue over normal/nonmalig-
nant tissue [200, 201].
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Similar to miRNAs altered expression of lncRNAs in various 
body fluids is often congruent to their dysregulated expression in 
the tumor tissues. Thus acquisition of lncRNA based biomarkers in 
body fluids is convenient, minimally invasive, and cost-effective 
relative to conventional tissue biopsies. Particularly the circulating 
lncRNAs exist in exosomes released by cancer cells because the 
lncRNAs packaged into exosomes appear to be tightly controlled 
and thus provide pivotal information of their parental cancer cells 
that otherwise requires conventional biopsies to obtain [202, 203].

One of the most explored methods to inhibit upregulated 
oncogenic lncRNAs is RNA interference. siRNAs targeting 
lncRNAs via base-pairing have yielded promising efficiency in 
reducing lncRNA expression and cancer growth/metastasis as 
observed in targeting HOTAIR in breast cancer cells [159, 204]. 
Another base-pairing approach is using longer antisense oligonucle-
otides to promote degradation of the targeted lncRNA by RNase H 
that was successfully applied to target MALAT1 in lung cancer cells 
[168]. On the other hand, the expression of the tumor suppressive 
lncRNAs may be enforced/introduced by delivery of an lncRNA 
transgene. Because lncRNAs function through physical interactions 
with protein partners in normal and cancer contexts one ideal 
approach to specifically interfere the lncRNAs’ functions in cancer 
is to disrupt the cancer-specific interaction between lncRNAs and 
their protein partners. This approach has been attempted in a feasi-
bility test that successfully identified the compounds that can dis-
rupt the interaction between HOTAIR and PRC2 [205].

lncRNAs have emerged as orchestrators of gene regulatory net-
works in the nervous system. Hundreds of lncRNAs exhibit tempo-
ral and spatial patterns of expression in the nervous system, which 
suggest that they play key roles in development and normal func-
tions of the nervous system [206]. As validated by a profiling and 
functional analysis of lncRNAs in human embryonic stem cells effi-
cient neuronal differentiation of embryonic stem cells requires sev-
eral lncRNAs, such as lncRNA_N1 (AK124684) and lncRNA_N2 
(AK091713) [207]. We review the role of lncRNAs in two neuro-
degenerative diseases, Alzheimer’s disease and Parkinson’s disease.

One salient example of lncRNAs linked to pathogenesis of 
Alzheimer’s disease is the lncRNA named antisense transcript of 
β-secretase-1 (BACE1-AS). BACE1 is believed to be the culprit of 
accumulation of β-amyloid and the consequent formation of amy-
loid plaques that are pathological hallmarks of Alzheimer’s dis-
ease. BACE1-AS can increase the mRNA levels of BACE1 by 
duplexing with and stabilizing the BACE1 mRNA [149]. More 
importantly BACE1-AS is elevated in the brains of patients with 
Alzheimer’s disease, suggesting that BACE1-AS mediates upregu-
lated expression of BACE1 in Alzheimer’s disease [208]. The 
amount of BACE-1AS in the brains of patients with Alzheimer’s 
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is proportional to the severity of dementia [149]. Another lncRNA 
linked to Alzheimer’s disease belongs to a family of the brain cyto-
plasmic (BC) lncRNAs. The lncRNA BC200 is transported to 
dendritic processes via ribonucleoprotein particles and regulate 
gene expression at the translational level [209]. BC200 declines in 
the frontal cortex of normal aging brain, but increases in 
Alzheimer’s disease, and its increase is congruent to the severity of 
dementia [210].

In Parkinson’s disease, aberrant expression of PTEN induced 
kinase 1 (PINK1) leads to abnormal mitochondrial morphology, 
impaired dopamine release, and motor deficits [211]. The lncRNA 
natural antisense RNA of PINK1 (naPINK1) is transcribed as an 
antisense transcript from the PINK1 locus and stabilizes the expres-
sion of a PINK1 splice variant (svPINK1) containing a domain 
homologous to the C-terminus regulatory domain of PINK1 
[212]. Silencing of naPINK1 results in decrease of svPINK1 in 
neurons, which suggests that naPINK1 and svPINK1 are concor-
dantly regulated during impairment of mitochondrial biogenesis 
related to Parkinson’s disease [212].

Hundreds of lncRNAs are expressed in a developmental stage- 
specific and cell type-specific manner in the mouse lung [213]. 
Moreover, the lncRNA expressing genomic loci are enriched with 
the binding sites for the established master transcriptional regula-
tors of lung development, such as serum response factor, forkhead 
box, and SP1. In particular, two lncRNAs, NANCI and LL34, 
regulate expression of the genes that govern the key steps in dif-
ferentiation and development of airway epithelial cells [213]. 
These findings implicate a critical role of lncRNAs in lung develop-
ment, function, and disease.

The importance of lncRNAs in respiratory disease is high-
lighted in characterization of the deletion of the locus harboring 
several lncRNAs in a rare lethal neonatal lung disorder alveolar 
capillary dysplasia with misalignment of pulmonary veins (ACD/
MPV) [214]. The lung-abundant 16q24.1 lncRNAs transcribed 
from the deleted locus of ACD/MPV may contribute to long- 
range regulation of FOXF1 by GLI2 and other transcription fac-
tors via chromatin looping [214]. Loss of those lncRNAs due to 
deletion results in loss of FOXF1 expression as well as consequent 
vascular pathology observed in ACD/MPV. It is conceivable that 
similarly dysregulated lncRNA expression and function occur in 
pulmonary vascular remodeling in pulmonary arterial hyperten-
sion and asthma. Indeed in asthma and COPD inhibition of 
MALAT1 appears to be a promising approach to attenuate occlu-
sive lesions in pulmonary arterial hypertension, inhibit airway epi-
thelial cell proliferation, and reduce obstructive remodeling of the 
airways [215].

3.2.3 lncRNAs 
in Respiratory Disease
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4 Regulation of miRNAs by lncRNAs

A new frontier in the noncoding RNA world is the cross talk 
between miRNAs and lncRNAs [216]. Recent studies have dis-
covered and characterized naturally occurring microRNA sponges, 
termed competing endogenous RNAs (ceRNAs) [217]. These 
ceRNAs consist of a variety of RNA species that include protein- 
coding mRNAs, pseudogenes, and lncRNAs (including cir-
cRNAs). We focus on regulation of miRNAs by lncRNAs.

One of the well-charaterized ceRNAs is linc-RoR that is abun-
dantly expressed in human embryonic stem cells [218]. linc-RoR 
sequesters miR-145 and thus protects OCT4, SOX2, and NANOG 
from miR-145-mediated repression [218]. The linc-ROR- 
mediated interference of miR-145 is essential to renewal of embry-
onic stem cells [218]. In a similar fashion HOTAIR antagonizes 
several tumor suppressive miRNAs. In gastric cancer cells, 
HOTAIR acts as a ceRNA to trap miR-331-3p through a comple-
mentary target site in its sixth exon and consequently increases the 
expression of the miR-331-3p-targeted oncogene HER2 [219]. 
In gall bladder cancer, HOTAIR’s oncogenic activity requires its 
binding to and titration of miR-130a through a target site in its 
sixth exon [220]. Interestingly the interaction between HOTAIR 
and miR-130a is reciprocal because miR-130a represses the 
expression of HOTAIR in a target site-dependent manner [220]. 
The oncogenic lncRNA H19 acts as a ceRNA of two tumor sup-
pressive miRNAs, miR-141 and let-7 and thus promotes the pro-
liferative and invasive phenotypes of cancer cells [221, 222]. 
Besides cancer ceRNAs play a critical role in normal physiology. 
For instance linc-MD1 is a ceRNA that mediates skeletal muscle 
differentiation by titrating away miR-133 and miR-135 from their 
targets MAML1 and MEF2C mRNAs [223]. Decreased expres-
sion of linc-MD1 is believed to mediate pathogenesis of Duchenne 
muscular dystrophy, a devastating muscle degenerative disease due 
to uncontrolled repression of MAML1 and MEF2C by miR-133 
and miR-135 [223].

circRNAs are structurally distinct in that they form a cova-
lently closed continuous loop in which the 3′ and 5′ ends that are 
normally exposed in an linear RNA molecule are joined together 
in circRNAs. Several circRNAs containing multiple target sites of 
an individual microRNA have been characterized, which indicate 
that circRNAs can efficiently sequester microRNAs [224]. For 
instance, the circRNA sponge for miR-7, ciRS-7, contains dozens 
of miR-7 target sites and is enriched in the human and mouse 
brain [225]. More importantly, ciRS-7 regulates brain develop-
ment by titrating miR-7 [225].
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5 Conclusions

miRNAs and lncRNAs have emerged as central players in funda-
mental cellular processes, development, and pathogenesis of 
human disease. The complexity, flexibility, and versatility of the 
structures and functions of miRNAs and lncRNAs demand inte-
gration of experimental and bioinformatic tools to acquire suffi-
cient knowledge for applications of these noncoding RNAs in 
clinical care.
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Chapter 2

MicroRNA Expression: Protein Participants in MicroRNA 
Regulation

Valeria M. King and Glen M. Borchert

Abstract

MiRNAs are ~20 nt small RNAs that regulate networks of proteins using a seed region of nucleotides 2–8 
to complement the 3′ UTR of target mRNAs. The biogenesis and function of miRNAs as translational 
repressors is facilitated by protein counterparts that process primary and precursor miRNAs to maturity 
(Drosha/DCGR8 and Dicer/TRBP respectively) and incorporate miRNAs into the protein complex 
RISC to recognize and repress target mRNAs (RISC proteins: Ago/TRBP1/TRBP2/DICER). Similarly, 
siRNAs through comparable mechanisms are loaded into the protein complex RITS to heterochromatin 
formation of DNA and suppress transcription of particular genes. MiRNAs are also regulated themselves 
through many different pathways including transcriptional regulation, post-transcriptional RNA editing, 
and RNA tailing. Dysregulation of miRNAs and the protein participants that mature them are implicated 
in the development of a number of diseases, tumorigenesis, and arrested development of embryonic cells. 
In this chapter, we will explore the biosynthesis, function, and regulation of miRNAs.

Key words Dicer, Drosha, miRNA, mRNA, Protein, RISC, Regulation

1 MicroRNA Production and Activity

MicroRNAs are small noncoding RNAs around 22 nucleotides in 
length that are involved in the regulation of mRNAs in the cyto-
plasm via inducing translational repression or message degradation 
[1]. MiRNAs constitute a broad regulatory network with one 
miRNA potentially regulating dozens of distinct mRNAs. These 
regulatory networks control levels of specific proteins and other 
RNAs like long noncoding RNAs (lncRNAs) in cells. MiRNA mis-
regulation is implicated in cancer, a myriad of other illnesses, and 
abnormal development [2–4]. The first miRNA was described in 
1993 and was initially thought to be a novel molecular species 
unique to Caenorhabditis elegans [5]. In 2001, however, nearly 10 
years after their initial discovery, miRNAs were found to occur in 
several different species including humans [6]. Since that time, 
novel miRNA discovery has proceeded at a marked rate, and by 
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2015, MiRBase.org [7] has detailed significant evidence support-
ing the expressions of over 2500 unique human miRNAs and well 
over 28,000 unique miRNAs across species.

MiRNAs are transcribed from the genome by RNA Polymerase II 
(Pol II) or Pol III [1]. Transcription results in an initial transcript 
(called a primary miRNA or pri-miRNA) of variable length con-
taining an unprocessed hairpin [8]. The pri-miRNA is next pro-
cessed by a ribonuclease protein complex including DROSHA, 
which targets and cleaves the flanking ends of the hairpin, and 
DCGR8 that stabilizes the complex on the pri-miRNA. DROSHA 
processing yields an ~70–100 nt long stem loop called a precursor 
miRNA or pre-miRNA [9].

Following excision, the pre-miRNA stem loop is transported 
out of the nucleus and into the cytoplasm via the transport protein 
exportin-5 using an active transport mechanism with GTP. Once 
in the cytoplasm, the pre-miRNA is targeted by another ribonucle-
ase, DICER, which cleaves the molecule further by removing the 
loop portion of the hairpin and leaving an intermediate duplex 
which consists of the mature miRNA and a semi-complementary 
sequence referred to as the passenger strand. The intermediate 
duplex, which is ~22 base pairs in length, is then loaded into an 
Argonaute (Ago) protein, and the passenger strand discarded [1] 
(see Fig. 1).

MiRNAs can be separated into two broad categories depending on 
their position in the genome: canonical and noncanonical [1]. 
Canonical miRNAs are those that are found in intergenic regions 
and are cleaved by Drosha/DCGR1 to form the precursor miRNA 
(pre-miRNA) [1, 2]. Noncanonical miRNAs are mitrons or pre- 
miRNAs that are cleaved from intron sequences using splicing 
instead of Drosha.

While the evolutionary origin of miRNAs is still largely 
unknown, significant evidence suggests that miRNAs and their 
regulatory networks arose from the insertion of transposable ele-
ments in the genome [10]. Importantly, the ability of miRNAs to 
regulate multiple distinct genes may have directly arisen as a conse-
quence of transposons inserting themselves into the UTRs of pro-
tein coding genes. Since miRNAs target mRNAs through sequence 
complementarity, the ability of a miRNA to identify and target a 
specific mRNA may well be due to a common molecular origin 
shared by a miRNA locus and its mRNA target sites [10–12] (see 
Fig. 2).

The mature miRNA in conjunction with the Ago protein is called 
an RNA-induced silencing complex or RISC. MiRNAs function as 
protein level regulators by binding target mRNAs and inducing 
transcriptional repression and in some instances complete signal 

1.1 MiRNA 
Processing

1.2 Genomic Loci

1.3 Translational 
Repression and Signal 
Degradation
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degradation. Included in a mature miRNA is a ~7 nt sequence (nts 
2–8) called the miRNA seed that perfectly complements a specific 
region of a mRNA called a seed match usually found in the 3′ 
UTR. A miRNA seed binds a corresponding seed match in a 
mRNA, and RISC inhibits its translation. RISC localizes mRNAs 
that are under transcriptional repression to p-bodies where the 
mRNA is eventually degraded or released back into the cytoplasm 
for translation [4]. If the seed is highly complementary to the seed 
match, the Ago2 protein associated in RISC cleaves the mRNA 
and results in signal degradation (see Fig. 3).

The regulation of mRNAs by miRNAs is accomplished by the 
RNA-induced silencing complex, or RISC. RISC consists of sev-
eral different proteins, is between 200 and 500 kDa and exhibits 

1.4 RISC

Fig. 1 Canonical and noncanonical miRNA maturation pathways. Cartoon illustrating the transcription of a 
canonical miRNA, Drosha/DGCR8 processing of the primary hairpin, and the export of the resulting hairpin to 
the cytoplasm mediated by exportin-5 and GTP. Once in the cytoplasm, the hairpin is recognized and bound by 
DICER which cleaves the loop off of the stem loop and leaves a double-stranded intermediate duplex. The 
mature strand bound to the passenger strand is then loaded into an Ago protein complex called RISC. RISC 
transports the miRNA to a prospective mRNA target which the miRNA recognizes and binds. Once the RISC 
complex is bound to an mRNA, translation of the mRNA cannot occur and is repressed

MicroRNA Expression: Protein Participants in MicroRNA Regulation
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ribonuclease activity [13]. MRNAs are incorporated into the RISC 
complex when targeted by miRNAs. AGO proteins in RISC cleave 
mRNAs that are highly complementary to the incorporated 
miRNA, whereas mRNAs that are mostly imperfectly bound to the 
miRNA are silenced by translation inhibition. The best described 
protein subunits of RISC are the RNases Dicer, Ago 1 and 2. Ago 
1 and 2 serve as the central components of RISC and are respon-
sible for translational repression and cleavage/degradation [14]. 
Also included in RISC are TAR RNA binding proteins, or TARBPs, 
which comes in two isoforms, TARBP1 and 2. TARBP proteins 
contain domains that bind double-stranded RNA [15]. TARBP1 
functions as a methyltransferase that recruits an Ago protein into 
RISC [16]. Additionally, TARBP2 loads the miRNA into RISC 
and exhibits a double-stranded RNA (dsRNA) binding site, which 
holds the miRNA inside RISC [17, 18].

In addition to loading RNAs into RISC, TRBPs also stabilize 
Dicer during pre-miRNA processing. After an incorporated miRNA 
binds to an mRNA, the Ago protein either cleaves the mRNA for 
degradation, which is usually associated with Ago 2, or the protein 

Fig. 2 MiRNA regulatory networks arising from transposable elements. Cartoon depicting transposable line 
elements being transcribed and inserted into the genome in multiple locations including in the untranslated 
region of a protein-coding gene. To produce a miRNA hairpin, two line elements are inserted in the genome 
juxtaposed to each other on different strands. MiRNAs are able to recognize target mRNA seed matches 
because they each share part of a line element sequence

Valeria M. King and Glen M. Borchert
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in conjunction with RISC prevents translation from occurring until 
the message is degraded or the message is released by RISC through 
stress-induced pathways and is recycled [19] (see Fig. 3).

SiRNAs, or small interfering RNAs, are noncoding RNAs with 
comparable size and function to miRNAs. SiRNAs differ from 
miRNAs in several aspects including the pathways from transcrip-
tion to maturity, and in that while miRNAs generally regulate 
mRNA networks, siRNAs typically regulate a specific target gene 
[17]. RITS, or RNA-induced initiation of transcriptional silencing, 
is a complex of proteins in conjunction with a mature siRNA that 
inhibits the transcription of specific genes by triggering hetero-
chromatin assembly in centromeric regions.

SiRNA and RITS complexes have been experimentally charac-
terized in fission yeast. In fission yeast the RITS complex consists 
of Ago1; Chp1, which is a hetero-chromatin-associated protein; 
and Tas3, a novel protein that is necessary for H3-K9 methylation 
[20]. This protein complex, in conjunction with a mature siRNA, 
targets specific regions of DNA and silences them using methyla-
tion and heterochromatin biogenesis [21]. Upon being loaded 

1.5 SiRNAs and RITS

Fig. 3 Translational regulation through seed matching. Cartoon showing the seed region of a mature miRNA 
incorporated into RISC recognizing and binding to the seed match region of an mRNA. RISC takes the mRNA to 
the p-body region where it represses translation or cleaves the mRNA for degradation

MicroRNA Expression: Protein Participants in MicroRNA Regulation
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into Ago1, a siRNA will bind a complementary centromeric region 
of DNA in complex with the RITS proteins. Then K9 methylation 
of the H3 histone is initiated by Clr4 protein, a histone H3 meth-
yltransferase [22]. In response to this methylation, targeted DNA 
coils tightly around its associated histones thereby preventing tran-
scription of the region (see Fig. 4).

2 MiRNA Regulation

Importantly, miRNAs are themselves regulated through several 
different mechanisms such as transcriptional regulations, single 
nucleotide polymorphisms (SNPs), RNA editing, miRNA tailing, 
and miRNA degradation [23]. MiRNA regulation can alter miRNA 
expressions and protein targets, affect miRNA dosing and miRNA 
proliferation, and induce miRNA degradation.

Transcriptional regulation of miRNAs is perhaps the most well- 
understood mechanism by which to regulate miRNA biogenesis 
[24]. MiRNA locus methylation is the untemplated addition of 

2.1 Regulation 
of MicroRNA 
Transcription

Fig. 4 DNA methylation facilitated by RITS and siRNA is a cartoon depicting dsRNA or double-stranded RNA 
being cleaved by Dicer and matured into an siRNA or small interfering RNA. RITS is composed of at least three 
protein components including Ago1, Chp1, and Tas3. The RITS protein complex, in conjunction with the siRNA, 
binds to a centromeric region of DNA specified by the siRNA and enables methylation of the H3 histone by Clr4, 
an H3 methyltransferase
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methyl groups to a region of DNA in order to encourage tight 
heterochromatin folding of DNA that prevents transcription. 
MiRNAs can be down regulated when regions in the DNA that 
code for the miRNA and regions that allow the miRNA to be tran-
scribed such as a promoter or transcription factor are silenced by 
gene inaccessibility [25]. Hypomethylation plays a role in up- 
regulated levels of miRNAs in the cell.

Regions that are normally inaccessible to transcription can be 
“opened up” by mechanisms that are as yet not fully understood. 
Hepatocellular carcinoma (HCC) is associated with the dysregula-
tion of miRNAs by hypermethylating regions of the DNA which 
include tumor-suppressing miRNAs and hypomethylating regions 
that are normally constitutively transcribed and causes the up- 
regulation of miRNAs that can promote tumor growth [26].

Additionally, transcription can also be affected by levels of par-
ticular proteins (typically transcription factors) in the cell. For 
instance, mir-145 has been shown to produce an apoptotic effect 
in cells following an activation of TP53, a tumor suppressor. The 
production of TP53 also stimulates the transcription of miRNA-
 145 creating an apoptosis-promoting loop. Conversely, miRNA-
 145 under-expression is observed in a variety of cancers including 
breast, colon, and lung cancers [27].

Further, transcriptional regulation of miRNAs has been shown 
to play a major role in embryonic stem cell (ES cell) differentiation 
[28]. Four transcription factors have been implicated in regulating 
miRNA levels in the cell to induce differentiation in mice: Oct4, 
Sox2, Nanog, and Tcf3. Using CHIP-seq data and intensive 
miRNA promoter mapping, Marson et al. were able to show that 
the transcription factors bind to promoter regions that are respon-
sible for the transcription of at least 81 miRNA genes and inhibit 
particular miRNAs from being transcribed [29]. This process 
results in the shift of ES cells from pluripotency to specificity [30]. 
The transcription factors bind to the promoter regions of miRNA 
genes and prevent the gene from being polymerized which in turn 
results in increased expression of proteins that the targeted miRNA 
regulates.

Single nucleotide polymorphisms or SNPs are areas in the genome 
where a single nucleotide can differ between individuals due to 
typically benign mutations in the DNA sequence [31]. That said, 
SNPs can drastically alter miRNA activity in the cell. A SNP in the 
seed sequence of a miRNA can significantly alter its targets and 
allow a certain protein to go uninhibited while another protein 
becomes more stringently regulated. This can cause issues when 
oncogenes, for example, are no longer being targeted to be a par-
ticular miRNA, or if tumor suppressor proteins are severely 
repressed following the introduction of an SNP in a miRNA that 
does not normally regulate the tumor suppressor gene [23]. SNPs 

2.2 Single Nucleotide 
Polymorphisms
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can also lead to miRNA regulation when it is not localized in the 
seed region. SNPs in the passenger strand or pri-miRNA stem loop 
can interfere with Drosha and DICER processing and inhibit the 
production of a mature miRNA [32].

MiRNAs can also be regulated through RNA editing. A protein 
called ADAR1 can convert adenosine molecules into inosines that 
preferentially form base pairs with cytosines [33]. RNA editing may 
affect pri-miRNAs, pre-miRNAs, and mature miRNA sequences, 
and like SNPs, these edits can alter gene targets or decrease the 
affinity for Drosha or DICER affecting miRNA processing [34].

Importantly, it is estimated that 16% of human pri-miRNAs are 
edited by ADAR1 [23], suggesting that ADAR editing may well 
provide a largely underappreciated layer of complexity in miRNA 
biogenesis. Although miRNA editing can allow the production of 
several unique miRNAs with differing targets to be produced from 
a single genomic locus, the effects of miRNA editing remain largely 
unexplored.

RNA tailing is the post-transcriptional addition of nucleotides to 
the 3′ end of RNA. Uridylation mainly occurs in pre- and pri- 
miRNAs. For example, during embryonic stages, members of the 
let-7 family are suppressed after transcription by LIN28A and its 
paralogue LIN28B. These proteins bind to the terminal loop of pri-
let7 and pre-let-7 respectively, and prevent Drosha and Dicer pro-
cessing. LIN28 proteins then employ terminal uridylyl transferases 
TUT4 and TUT7 to signal pre-let-7 for decay by inducing oliguri-
dylation [35, 36]. Next, DIS3L2 exonuclease targets the oligo-U 
tail and degrades the miRNA. Conversely, when LIN28 is down 
regulated in cells, TUT7, TUT4, and TUT2 stimulate monouri-
dylation of pre-let-7, which increases let-7 proliferation [37].

Another type of RNA tailing is adenylation, which primarily 
occurs in mature miRNAs. Adenylation can result in either miRNA 
stabilization or miRNA decay [38]. As examples, miRNA-122, a 
hepatic miRNA, is frequently stabilized by adenylation, whereas 
poxvirus polyadenylation polymerase targets host miRNAs and 
adenylates them causing their degradation. It remains unclear 
what causes the difference in response following miRNA polyad-
enylation [39].

Mature miRNA degradation has been observed in several different 
systems. Though it is unclear how nucleases specify targets, numer-
ous nucleases are suspected of actively degrading miRNAs in 
humans [18], C. elegans [40], and mice [41]. The first reported 
instance in which miRNAs were rapidly degraded was observed in 
Arabidopsis thaliana, in which mature miRNAs were cleaved and 
removed by an association of 3′–5′ exonucleases called small-RNA- 
degrading nuclease [42].

2.3 RNA Editing

2.4 MiRNA Tailing

2.5 MiRNA 
Degradation
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Similarly, it has been shown that viruses destabilize specific 
miRNAs by using their own RNA that contains a perfectly comple-
mentary sequence [43]. For example, T cells that are infected with 
herpes virus experience a rapid decrease in miRNA-27 due to viral 
noncoding RNA specifically binding and destabilizing miRNA-27 
[44]. Also, mouse cytomegalovirus contains RNA that specifically 
binds miRNA-27 and facilitates its degradation [45].

3 Concluding Remarks

Though miRNAs genes were almost entirely overlooked until the 
turn of the millennium, miRNAs have now been shown to play an 
integral part in the post-transcriptional regulation of many (if not 
a majority of) protein genes. What is more, our understanding of 
miRNAs and their functions as regulators continues to broaden 
with significant new insights continuing to be described. For 
example, miRNAs were recently shown to target not only mRNAs, 
but also other noncoding RNAs such as long noncoding RNAs or 
lncRNAs. Linc-MD1 is a lncRNA that is expressed during myo-
blast differentiation in muscle cells. MiRNA-133 and -135 down 
regulate two transcription factors that stimulate muscle-specific 
gene expression, MAML1 and MEF2C respectively. Linc-MD1 
competes with these transcription factors to bind the miRNAs and 
allow the transcription factors to initiate cell differentiation [46]. 
As another example, other small RNAs have now been shown to 
behave like mature miRNAs. For example, many snoRNAs, or 
small nucleolar RNAs, classically thought to simply chemically 
modify other RNAs, have now been reported to undergo  alternative 
processing and behave like mature miRNAs. In a recent study, spe-
cific snoRNAs were found to be processed into miRNA-like frag-
ments and direct translational repression of target genes [47].

In conclusion, while we have learned a lot about miRNA pro-
duction and regulation in a very short time, our understanding of 
these molecules is still in its infancy, and exciting new revelations 
undoubtedly await.
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Chapter 3

Viral MicroRNAs, Host MicroRNAs Regulating Viruses, 
and Bacterial MicroRNA-Like RNAs

Sara-Elizabeth Cardin and Glen M. Borchert

Abstract

As masters of genome-wide regulation, miRNAs represent a key component in the complex architecture 
of cellular processes. Over the last decade, it has become increasingly apparent that miRNAs have many 
important roles in the development of disease and cancer. Recently, however, their role in viral and bacte-
rial gene regulation as well as host gene regulation during disease progression has become a field of inter-
est. Due to their small size, miRNAs are the ideal mechanism for bacteria and viruses that have limited 
room in their genomes, as a single miRNA can target up to ~30 genes. Currently, only a limited number 
of miRNA and miRNA-like RNAs have been found in bacteria and viruses, a number that is sure to 
increase rapidly in the future. The interactions of these small noncoding RNAs in such primitive species 
have wide-reaching effects, from increasing viral and bacterial proliferation, better responses to stress, 
increased virulence, to manipulation of host immune responses to provide a more ideal environment for 
these pathogens to thrive. Here, we explore those roles to obtain a better grasp of just how complicated 
disease truly is.

Key words Bacteria, CRISPR, miRNA, Regulation, sRNA, Virus

1 Viral MicroRNAs

Viruses are non-living parasites that are masters in terms of survival 
and continued replication of their genomes. They can be thought 
of as glorified transposons that move from host to host, constantly 
evolving. These invasive mobile genetic elements also represent 
one of the most abundant entities found on this planet [1, 2]. 
Several themes are universal among viral structure and function, 
one such commonality being that they all have one of four types of 
genomes: ssDNA, ssRNA, dsDNA, or dsRNA. Furthermore, all 
viral genomes contain genes that serve two functions: genes for 
replication and genes for viral proteins. Typically, viruses follow the 
same general scheme for infection and replication. Following initial 
attachment and penetration, viruses express early viral genes, repli-
cate their nucleic acid (NA), synthesize structural components, 
then package and assemble new complete virions before exiting the 

1.1 Viral Life Cycle
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host [2]. However, in the emerging world of bioinformatics and 
viroinformatics, new information is rapidly becoming available 
regarding viral genes, namely, the existence of viral microRNAs. As 
a result, the “life cycle” of viruses has recently become vastly more 
complicated.

MicroRNAs (miRNAs) have a long history with viruses and many 
are thought to have been introduced into the human genome via 
retroviruses early in human evolution. With roles in viral infectiv-
ity, replication, latency, and immune avoidance, miRNAs are 
becoming increasingly important to researchers. There are cur-
rently 502 known viral miRNAs (Table 1), belonging to several 
viral families, including herpesviruses, retroviruses, adenoviruses, 
and polyomaviruses [4]. The function of such miRNAs seems to be 
quite subtle, acting on numerous host genes to contribute to a 
prime environment for invasion and persistence within the host. 
Furthermore, not only do viruses succeed in hijacking host miR-
NAs to promote their own proliferation, they can also utilize parts 
of host miRNA pathways to increase levels of those miRNAs. Some 
viruses are also capable of modulating host miRNAs to combat 
immune response by downregulating viral defenses, such as inter-
feron [5]. Thus, between promoting their own proliferation and 
downregulating host response, viral miRNAs may yet prove to be 
a vital component of the viral replicative machinery.

Unfortunately, viruses are best studied in their natural hosts, 
but obviously such studies are not ideal for human viruses and 
investigations of human:viral microRNA interactions are exception-
ally challenging. The lack of model systems represents a particu-
larly difficult challenge to overcome with some viruses, such as 
hepatitis B virus (HBV) [6]. However, some viruses, such as her-
pes viruses (HSV), already have established effective model systems 
that can be used for now [4]. Another problem encountered is the 
extremely rapid evolution of viruses due to constant exchange of 
nucleic acids, as well as imprecise excision from the genome when 
coming out of a latent state [7].

Currently, the most well-known miRNA contribution to the 
persistent nature of viral infections is the miRNA role in the estab-
lishment and maintenance of latency (Table 2) [4]. In herpes viruses, 
there have been a multitude of studies linking viral miRNAs to the 
persistent nature of those infections. Alpha and gamma her-
pes viruses, in particular, have been shown to utilize viral miRNAs 
to establish latency via silencing of trans-activator proteins that are 
responsible for switching from latent to active infections [7, 8]. 
Some viruses, such as hepatitis C virus (HCV), also act to stabilize 
latency by turning off apoptotic genes, thus interfering with 
apoptosis pathways by upregulating miR-320c and miR-483-5p 
[9]. Human cytomegalovirus (HCMV) is also known for establish-
ing lifelong latent infections and can cause a number of serious 

1.2 MicroRNAs and 
Viral Diseases
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Table 1 
Number of precursor and mature miRNAs made by 29 different viruses [3]

Virus miR abbreviation Precursors Mature

Bandicoot papillopmatosis  
carcinomatosis virus 1

bpcv1  1  1

Bandicoot papillopmatosis  
carcinomatosis virus 2

bpcv2  1  1

BK polyomavirus bkv  1  2

Bovine foamy virus bfv  2  4

Bovine herpesvirus 1 bhv1 10  12

Bovine herpesvirus2 bhv2  5  5

Bovine leukemia virus blv  5  10

Duck enteritis virus dev 24  33

Epstein-Barr virus ebv 25  44

Herpes B virus hbv 12  15

Herpes simplex virus 1 hsv1 18  27

Herpes simplex virus 2 hsv2 18  24

Herpesvirus of turkeys hvt 17  28

Herpesvirus saimiri strain A11 hsva  3  6

Human cytomegalovirus hcmv 15  26

Human herpesvirus 6B hhv6b  4  8

Human immunodeficiency virus 1 hiv1  3  4

Infectious laryngotracheitis virus iltv  7  10

JC polyomavirus jcv  1  2

Kaposi sarcoma-associated herpesvirus kshv 13  25

Mareks disease virus 1 mdv1 14  26

Mareks disease virus 2 mdv2 18  36

Merkel cell polyomavirus mcv  1  2

Mouse cytomegalovirus mcmv 18  29

Mouse gammaherpesvirus 68 mghv 15  28

Pseudorabies virus prv 13  13

Rhesus lymphocryptovirus rlcv 36  68

Rhesus monkey rhadinovirus rrv  7  11

Simian virus sv  1  2

Total 502
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Table 2 
Cellular and viral microRNAs with their putative roles in latency

Role in latency
Type of 
miRNA Virus miRNA Target PMID

Latency 
establishment  
and reactivation

Cellular 
miRNAs

EBV miR-429 ZEB1 and 2 20668090

20484493
HCMV miR-92a GATA2 21471310

miR-200b IE86 24599990
HIV miR-155 TRIM32 25873391
HIV-1 miR-196b Unknown 26469550

miR-1290 Unknown 26469550
HSV miR-138 ICP0 24721573

Viral 
miRNAs

EBV miR-BART-18-5p BRLF1 and 
BZLF1

25012295

miR-BART-20-5p MAP3K2 24899173
HCMV miR-UL112-1 IE72 17983268

18378902
HSV-1 miR-H2-3p ICP0 and ICP4 19656888

miR-H6 ICP0 and ICP4 19656888
HSV-2 miR-H2 ICP0 and 

ICP34.5
19019961

21325410
miR-H3 ICP0 and 

ICP34.5
19019961

21325410
miR-H4 ICP0 and 

ICP34.5
19019961

21325410
KSHV miR-K12-1 IκBα 20081837

miR-K12-3 NFIB 20847741
miR-K12-4-5p Rbl2 20071580
miR-K12-5 BCLAF1 19098914
miR-K12-7 NFIB 20847741
miR-K12-7-5p RTA 21283761
miR-K12-9* RTA 20006845
miR-K12-9 BCLAF1 19098914
miR-K12-10a BCLAF1 19098914
miR-K12-10b BCLAF1 19098914
miR-K12-11 NFIB 20847741

Survival during  
and maintenance 
of latency

Cellular 
miRNA

EBV miR-155 Multiple 20844043

18753206
18367535
20427544

Viral 
miRNAs

EBV miR-BHRF1 Multiple 21379335

23468485
20808852

(continued)
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Role in latency
Type of 
miRNA Virus miRNA Target PMID

Survival during  
and maintanence 
of latency

Viral 
miRNAs

EBV miR-BHRF2 Multiple 21379335

23468485
20808852

miR-BHRF3 Multiple 21379335
23468485
20808852

miR-BARTs Multiple 23503461
miR-BART5 PUMA 18838543

KSHV miR-K12-1 IκBα 24385912
miR-K12-1 CASP3 22174674
miR-K12-3 CASP3 22174674
miR-K12-4 IκBα 24385912
miR-K12-4-3p CASP3 22174674
miR-K12-10a TWEAKR 20844036
miR-K12-11 IκBα 24385912
miR-K12-11 

(miR-155 
orthologue)

Multiple 21813606
18075594

23966392
17881434

MDV miR-M4 Multiple 21383974

Immune evasion Cellular 
miRNAs

HIV-1 miR-15a Pur-α 22835829

miR-15b Pur-α 22835829
miR-16 Pur-α 22835829
miR-28 CD4+ T cells 17906637
miR-125b CD4+ T cells 17906637
miR-150 CD4+ T cells 17906637
miR-198 Cyclin T1 19148268
miR-223 CD4+ T cells 17906637
miR-382 CD4+ T cells 17906637

Viral 
miRNAs

EBV miR-BART2-5P MICB 19380116

HCMV miR-UL112-1 MICB 17641203
miR-UL112-1 Multiple 24629342
miR-UL148D-1 RANTES 22412377
miR-US5-1 Multiple 24629342
miR-US5-2 Multiple 24629342

KSHV miR-K12-7 MICB 19380116
miR-K12-9 IRAK1 and 

MyD88
22896623

Table 2
(continued)
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illnesses [10]. This is in part due to its ability to infect a very wide 
range of cells, including smooth muscle cells, hepatocytes, endothelial 
cells, epithelial cells, neuronal cells, stromal cells, monocytes/mac-
rophages, and neutrophils [11]. Currently, there are 26 mature 
miRNAs encoded by HCMV according to miRbase [3], many of 
which have roles in the establishment of latency, such as miR-
UL112-1, as well as roles in immune evasion, including miR-
UL112-1, miR-UL148D-1, miR-US5-1, and miR-US5-2.

Some human miRNAs also are capable of positively regulating 
viral infections. Interestingly, this was found to be the case in HCV 
infection with miR-122, a liver-specific miRNA. MiR-122 directly 
interacts with the ssRNA genome of HCV and facilitates its accu-
mulation and translation [12–14]. Furthermore, HCV hijacks 
miRNA processing machinery, using Dicer and TRBP to activate 
HCV replication [15], and also requiring Ago2 for miR-122 regu-
lation of HCV RNA accumulation and translation [16]. Other 
miRNAs are also reported as having direct interaction with HCV 
RNA. Murakami et al. reported that miR-199a overexpression 
inhibits the replication of HCV’s genome in HCV 1b or 2a cell 
lines by binding to the stem-loop II region of HCV 5′ UTR [17]. 
As miR-199a expression in liver tissue is low, it appears to be 
another contributing factor for the liver tropism of HCV [18]. 
Let-7b also results in decrease of HCV replication by targeting the 
5′ untranslated region (UTR) and NS5B coding region of the 
HCV genome, thus downregulating HCV accumulation and 
reducing its infectivity [19]. Additionally, two more miRNAs, 
miR-196 and miR-448, target the NS5A coding region and core 
of the HCV genome, respectively. As a result, overexpression of 
those two miRNAs significantly reduces HCV replication [20].

Some viruses have long been known to contribute to carcinogen-
esis in humans, such as human immunodeficiency virus (HIV), 
human papillomavirus (HPV), Epstein-Barr virus (EBV), and 
 hepatitis B virus (HBV) [6, 21]. However, recently, it has become 
apparent that virally encoded miRs also play a role in cancer and 
are thus termed oncomiRs. These viral miRs are thought to con-
tribute to carcinogenesis by silencing tumor suppressor genes 
within the host genome, allowing proto-oncogenes to become 
active [22]. MiR-124 is thought to be a tumor suppressor, and so 
its reduced expression following HCV infection has been  attributed 
to involvement in hepatocellular carcinoma (HCC) [23]. Changes 
in miRNA levels can also contribute to other progressive virus-
associated diseases. HCV infection induces modulation of miRNAs 
that can lead to related diseases such as cirrhosis, fibrosis, and 
HCC. Increased levels of miR-155 in particular have been linked 
to the promotion of the proliferation and progression to HCC by 
altering Wnt signaling [24].

1.3 Viral miRNAs 
and Cancer
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MiRNAs have also been shown to have roles in cervical 
carcinoma (CC) caused by HPV. It has long been accepted that 
high- risk HPV acts to target and inactivate p53 and pRB proteins 
within the host [22]. One study showed significant overexpression 
of miR-21, miR-135b, miR-223, and miR-301 in CC tissues com-
pared to normal tissue, with potential to be used to distinguish 
normal cervical tissue from cervical cancers [25]. MiR-21 was also 
found to modulate resistance of HPV CC to radiation via its tar-
geting of large tumor suppressor kinase 1 (LATS1) [26]. Another 
study found that reduced expression of miR-100 aids the develop-
ment of CC, possibly due to the loss of its target gene Polo-like 
Kinase1 (PLK1) [27]. HPV16 E7 was also discovered to have a 
role in CC by elevating miR-27b, thus inhibiting PPARγ expres-
sion to promote CC proliferation and invasion [28].

MiRNAs are furthermore implicated in cancers associated with 
EBV, a major oncogenic virus that is associated with ~10% of gastric 
carcinomas [29]. One particular EBV-miRNA cluster (miR- BART2, 
miR-BART4, miR-BART5, miR-BART18, and miR-BART22) was 
discovered to be linked to the expression of cytokines that hinder 
host response to cancer [30]. EBV miRNAs are additionally found to 
be associated with nasopharyngeal carcinoma, including miR-BART3 
and miR-BART5 that target genes in TGF-β, Wnt signaling, and p53 
pathways [31]. EBV is also capable of inducing expression of host 
oncogenic miRNAs. Bazot et al. found that EBV proteins together 
do just that, inducing miR- 221/22 cluster, thus diminishing the 
expression of its target gene p57KIP2, a cyclin-dependent kinase 
inhibitor [32]. Another study showed that EBV is also capable of 
inducing miR-21 in malignant B cells. A well-known oncomiR, miR-
21, is induced in multiple myeloma, resulting in downregulated p21 
and increased cyclin D3 expression [33].

MiRNAs have numerous applications in research, including, but 
not limited to, genome editing, delivery of miRNAs using viral 
vectors, and possible treatment of viral disease and cancers. Viruses 
have long been used to transform cell lines, contributing to their 
immortality and allowing them to be continually cultured. Some 
are also commonly used to introduce specific miRNAs into cell 
lines, especially cell lines and animal models that otherwise prove 
difficult to transfect [4].

While some viral miRNAs are able to contribute to carcino-
genesis, some viruses can also potentially be used to manipulate 
miRNA levels in tumors [34]. Such oncolytic viruses show much 
promise. Viral vectors can be used for exogenous gene expression, 
including adenovirus, adeno-associated virus, and baculovirus, due 
to their ability to be controlled therapeutically to enhance treat-
ments by including miRNA response elements (MREs) [35]. 
Recently, MREs have been employed to control expression of 
TNF-related apoptosis-inducing ligand (TRAIL), which is a 

1.4 Research 
Applications
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cytokine that selectively activates apoptosis. In preclinical studies, 
TRAIL has demonstrated robust anticancer activity, and MREs aid 
in reducing toxicity of TRAIL therapy against prostate, glioma, 
uveal melanoma, and osteosarcoma models [36, 37]. MiRNA tar-
geting can also be employed in regulating oncolytic viral tropism, 
enhancing tumor specificity and reducing or eliminating toxicities 
[38]. Overall, this form of miRNA targeting is incredibly versatile 
as both DNA and RNA viruses can be used. Thus far, most miRNA- 
targeted viruses are single-stranded, positive-sense RNA viruses, 
which have proven highly receptive to this targeting strategy. In 
contrast, only a few negative-sense RNA viruses, such as influenza 
A virus (IAV), measles virus (MV), and vesicular stomatitis virus 
(VSV) have been used as targets for MREs. It is thought to be 
more difficult due to the viral genome being encapsulated in the 
capsid as transcription and replication occurs, hindering the acces-
sibility of MREs [34].

2 Host MicroRNAs Regulating Viruses

Having numerous roles in human regulatory networks, known 
miRNA involvements in almost every pathway also extend to 
responses to viral infection. In the “genome wars” that occur during 
viral infection, cellular miRNAs offer a line of defense, acting to 
mediate host responses to inhibit or elicit the appropriate immune 
response.

The immune system consists of two basic branches: innate and 
adaptive. Human miRNAs have roles in both branches in regards 
to response to viral infection. MiRNAs interact with innate 
responses, which are the body’s first line of defense against foreign 
invaders, in order to both induce and maintain levels of  appropriate 
cells and biochemical mediators, such as cytokines and interferon 
(IFN) [4]. Though some have suggested that cellular miRNAs 
directly target viral mRNAs as an antiviral mechanism, the reality is 
that such a mechanism is highly unlikely due to viruses’ ability to 
rapidly escape through mutation [39]. However, some human 
miRNAs have been shown to potentially limit viral replication. 
Bondanese et al. found that miR-128 and miR-155 can decrease 
the replication of human rhinovirus by binding to viral RNA [40]. 
Another group also found that eight miRNAs (miR- 135b, miR-155, 
miR-190, miR-422a, miR-489, miR-590, miR- 601, and miR-1290) 
were strongly induced in human enterovirus cardiomyopathy with 
viral persistence and continuing clinical decline. Those eight 
miRNAs are predicted to target several immune response genes, 
thus providing possible clinical application [41]. Furthermore, 
miR-21 actively reduces HCMV replication by targeting Cdc25a, 
a cell cycle regulator, in neural cells [42].

2.1 MicroRNA 
Response to Viral 
Infection

2.2 Role in Immunity
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Natural killer (NK) cells and interferon are major innate 
defenses for the human antiviral response against a variety of viral 
invaders that include HIV, HSV, HCV, HCMV, influenza, and 
EBV [5, 10]. Interactions between viruses and miRNA regulations 
have been reported to occur in these defenses. For example, type I 
IFN acts as a defense against invading viral pathogens [43]. To 
beat type I IFN’s antiviral activity, HCV modifies several miRNAs 
capable of regulating those signaling pathways. However, some 
interactions result in a battle for supremacy. IFN enhances miR- 
196 expression [44, 45], reducing HCV replication, while infec-
tion with HCV acts to repress miR-196 expression, thus allowing 
replication to occur.

Some viruses are also able to avoid the adaptive response. 
Again, HCMV not only avoids innate immunity, but has also been 
shown to evade adaptive immunity via regulation of the major his-
tocompatibility complex (MHC) molecule known as HLA- 
E. Increased surface levels of HLA-E result in higher concentrations 
of an inhibitory ligand for NK receptor CD94/NKG2A [46]. One 
group has shown that RNA editing of cellular miR-376a via 
ADAR1-p110 activity actually downregulates HLA-E, thus avoid-
ing HLA-E-mediated inhibitory action on NK cells [47].

Due to the compact nature of viral genomes, it is remarkable that 
they are capable of producing not only miRNAs that contribute to 
their own proliferation, but also miRNAs that interfere with host 
miRNA responses [48]. What is more, viruses are capable of 
degrading human miRNAs to manipulate the host immune 
response. MiR-27 is degraded in this was by herpesvirus saimiri 
(HVS) and murine cytomegalovirus (MCMV) [48]. As an onco-
genic gamma-herpesvirus, HVS is capable of transforming primate 
and human T cells [49]. In latently infected marmoset T cells, the 
most plentiful viral transcripts are small U-rich ncRNAs called 
Herpesvirus saimiri U RNAs (HSURs) [50]. HSUR-1 base-pairs 
with the marmoset’s host miR-27, ultimately resulting in miRNA 
degradation [51]. Though the exact mechanism is unknown, high- 
throughput RNA sequencing following cross-linking immunopre-
cipitation (HITS-CLIP) analysis [52] showed that miR-27 acts on 
mRNAs that encode parts of the T-cell receptor (TCR) signaling 
pathways as well as downstream effectors in T cells infected with 
HVS [53]. MCMV, a beta-herpesvirus, is also capable of degrading 
host miR-27 by employing an antisense mechanism similarly to 
HVS [54]. However, the viral agent is an MCMV mRNA instead 
of a noncoding RNA (ncRNA) in this instance. This mRNA, 
m169, encompasses a miR-27 target site in its 3′ UTR resulting in 
rapid degradation of miR-27 [55]. The levels of viral m169 tran-
script are also reciprocally regulated by miR-27 [56].

2.3 Downregulation 
and Destruction 
of Host MicroRNAs 
by Viruses
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3 Bacterial MicroRNA-like RNAs

Though bacteria do not possess miRNAs per se, many species do 
produce small RNAs (sRNAs) that are similar to miRNAs in their 
ability to regulate gene expression through antisense basepairing. 
These RNAs generally play roles in a bacterium’s metabolism and 
general housekeeping, regulation of outer membrane proteins, 
stress response, virulence, quorum sensing, biofilm formation, iron 
homeostasis, host-cell contact, amino acid metabolism, and also 
possibly contribute to a bacteria’s ability to cause cancer [57, 58]. 
Such sRNAs are typically highly structured, containing multiple 
stemloops [59, 60], and behave similarly to miRNAs in that they 
are able to bind to mRNA targets to regulate gene expression. 
However, some are also capable of modifying the function of 
bound proteins by imitating the secondary structures of other 
nucleic acids [61]. SRNAs also differ from miRNAs in that their 
size varies from ~50 to 450 nucleotides (nts), whereas miRNAs are 
roughly 22–25 nts long [62].

Small RNAs are a relatively novel class of RNAs that contribute 
to several regulatory pathways in bacteria. There are four main groups 
of regulating sRNAs: cis-encoded base-pairing NAs, trans- encoded 
base-pairing RNAs, RNAs modulating protein activity, and CRISPRs 
[63]. Cis-encoded sRNAs are located on the DNA strand opposite of 
the target and typically share ~75 nt complementarity with their 
mRNA targets [64]. Trans-encoded sRNAs, however, have limited 
complementarity with their targets and have different chromosomal 
locations (Fig. 1a). Trans-encoded sRNAs are one of the most 
studied of the four groups, with roles as both repressors and activa-
tors. SRNA activators of gene expression, such as DsrA, GlmZ, 
RNAIII, RprA, RyhB, and Qrr, can act as direct translational acti-
vators via an antisense mechanism, binding to the 5′ mRNA UTR 
[65]. Cis-encoded sRNAs, however, are the true antisense sRNAs, 
with their most prevalent role in bacteria being repressors of genes 
encoding potentially toxic proteins [66]. Furthermore, these anti-
sense sRNAs are also located on both plasmids and bacterial chromo-
somes, repressing synthesis of a variety of proteins such as Hok 
protein on E. coli R1, R100, and F plasmids, as well as the Fst 
protein of Enterococcus faecalis plasmid pAD1 [61].

Interestingly, in bacteria that cause sepsis, several sRNAs act to 
downregulate adhesion molecules and granulocyte-macrophage- 
stimulating factors, as well as regulate the expression of nuclear trans-
port shuttles involved in sepsis [67]. Similarly, extracellular miR-223’s 
action in the sepsis machinery reduces the expression of cellular adhe-
sion molecule 1 and granulocyte-macrophage colony stimulating fac-
tor 2 in endothelial cells [68]. Other miRNAs have also been linked 
to regulation of expression in sepsis, such as miR- 181b, which regu-
lates nuclear transport shuttles such as importin α3 [69].

3.1 sRNAs
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Viral nucleic acid

Novel spacer with 
viral NA 
complementarity

CRISPR

Transcription

Processed crRNAs

CAS crRNA 
complex

STAGE 3: crRNA-
directed targeting of 
viral NA

Viral NA 
deactivation

STAGE 1:  Novel spacer 
incorporation

STAGE 2:  Processing 
of crRNAs

CAS III

CAS III

CAS

Fig. 2 Mechanism of CRISPR/Cas targeting of viral nucleic acids. Invading NAs are integrated into the CRISPR 
as novel spacers. Next, they are processed into mature crRNAs, which then associate with Cas proteins. 
Finally, the crRNA-guided Cas proteins target viral NAs and inactivate them

Clustered regularly interspaced short palindromic repeats 
(CRISPRs) are portions of bacterial DNA that have short repeti-
tions of base sequences, with small segments of nonidentical 
“spacer DNA” from previous interaction with a bacteriophage or 
bacterial plasmid [70]. As such, some subsets of spacer sequences 
are identical to plasmid DNA and phage sequences [71]. They 
were first discovered upon sequencing of an E. coli chromosomal 
fragment in 1987 [72], with many other such CRISPRs since 
found in other prokaryotes. They are also accompanied by 
CRISPR-associated genes (cas genes). The action mechanism 
(Fig. 2) of CRISPR/Cas can be broken down into three main 
stages. Stage 1 is the integration of fragments of nucleic acid of 
invading viruses or other mobile genetic elements as spacers into a 
CRISPR’s locus. In Stage 2, CRISPR gets transcribed as a precur-
sor (pre-crRNA) that is then cleaved by an endoribonuclease and 
results in mature CRISPR RNAS (crRNAs) that remain associated 
with a Cas protein complex. Finally, during Stage 3, the crRNA 
acts as a guide for the Cas complex, directing it to cleave invading 
nucleic acids [2].

3.2 CRISPR/
Cas System
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Because phage infections can ultimately result in host cell lysis, 
bacteria and some archaea have needed to develop sophisticated 
tools such as CRISPR to avoid such destruction [61].  CRISPRs/
Cas9 systems, therefore, act as a defense mechanism against the 
disruption of bacterial genes when bacteria are infected by mobile 
genetic elements, i.e., phages, a mechanism strikingly similar to the 
proposed function of a significant percentage of miRNAs [73–76]. 
CRISPRs and their cas genes act by incorporating viral nucleic acid 
fragments into the CRISPR locus, thereby giving protection to the 
bacterial cell. Those crRNAs then specifically direct the Cas protein 
machinery to the crRNAs’ complementary targets: viral DNA or 
RNA or plasmids. As a result, the CRISPR/Cas system redirects 
the virus’ NA to act against itself, providing the host with acquired 
and hereditary resistance (reviewed in [70, 77]).

CRISPRs are also quickly becoming popular for use in genetic 
research. Complete gene knockout is usually the ultimate goal to 
elucidate transcript functions and their roles in biological pathways 
and processes. While some have had success on a small scale, such 
as with yeast, total knockout of genes on a larger or genome-scale 
has proven a daunting obstacle. Fortunately, CRISPRs offer a 
potential remedy by deleting target genes from a particular 
genome. A quickly advancing field, the CRISPR/Cas9 system, has 
been shown to be more effective than RNAi in both gain-of- 
function and loss-of-function screening, targeting both regulatory 
elements and protein-coding sequences. Some possible targets of 
this system include long noncoding RNAs (lncRNAs), elements 
that transcribe miRNAs, promoters, and enhancers [78]. As such, 
much knowledge is to be gained as researchers continue to delve 
further into the possibilities offered using CRISPR knockouts.

Strikingly, both the biogenesis and function of crRNAs and 
their mode of target interference is very similar to that of eukary-
otic small regulatory RNAs, such as miRNAs that silence host gene 
expression and small interfering RNAs (siRNAs) which get involved 
in viral RNA silencing [2]. All three are derived from larger RNA 
precursors, form complexes with RISC, and bind to a target via 
basepairing to degrade it. Furthermore, all three have roles in 
immune systems, with CRISPRs forming a primitive prokaryotic 
immunity and miRNAs/siRNAs functioning in human immunity. 
However, a key difference between the two is that CRISPRs, unlike 
their RNAi counterparts, prefer to target invading DNA, rather 
than targeting RNA [79]. Furthermore, crRNAs act as an adaptive 
immunity, whereas antiviral siRNAs are part of innate immunity in 
eukaryotes. Still, crRNAs, miRNAs, and siRNAs all arose to com-
bat viral invasion, with miRNAs also continuing on to target 
endogenous viral retrotransposons [75]. Thus, the running theme 
among all of these small, noncoding RNAs is a battle against invad-
ing mobile genetic elements.
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4 Concluding Remarks

As demonstrated, miRNAs and similar miRNA-like regulations are 
present among not only eukaryotes, but also in bacteria and viruses. 
Such interactions have far reaching implications, affecting numer-
ous pathways from metabolism to stress response and contributing 
to virulence and immune responses. Of note, there is now even 
evidence for interspecies miRNA regulations. For example, Jiang 
et al. [80] recently demonstrated that rice-rich diets result in rice 
miRNA presence in human serum, and these miRNAs are capable 
of regulating human gene expression. Thus, miRNAs across the 
spectrum of living and even non-living entities reveal that viral and 
bacterial diseases may be significantly more complicated than cur-
rently appreciated. However, characterizing novel microbial 
microRNAs and similar noncoding regulatory RNAs may well aid 
in better understanding just how these organisms affect us and 
ultimately lead to new therapeutic targets.

Currently, studies have revealed only a handful of viral miR-
NAs and virus-host miRNA interactions. However, that number 
will likely increase dramatically in the future as new small RNAs are 
discovered and as our ability to accurately identify their target mol-
ecules improves. That said, while only a handful of viruses have so 
far been shown to encode microRNAs, this will undoubtedly 
increase as the considerably restricted genome size of viruses makes 
miRNAs the perfect addition to their arsenals providing unprece-
dented regulatory capacities corresponding to markedly short 
genomic sequences. While interspecies RNA:RNA interactions are 
only beginning to be identified, it is tempting to speculate that the 
importance of nucleotide interplay between symbiotic species will 
ultimately prove critical for fully understanding mutualistic and 
parasitic relationships.
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Chapter 4

MicroRNAs: Biomarkers, Diagnostics, and Therapeutics

Weili Huang

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs (21–23 nucleotides in length) that regulate gene 
expression at translational or posttranslational levels. The major regulatory mechanisms include transla-
tional repression or mRNA degradation (Filipowicz et al., Curr Opin Struct Biol 15:331–341, 2005).

Aberrant expression of miRNAs has been found to be associated with a variety of human diseases such 
as cancers/tumors, diabetes, viral infections, cardiovascular diseases, neurodegenerative diseases, and other 
diseases (Wang et al., J Cell Physiol 23:25–30, 2016; Lawrie, MicroRNAs in medicine, 2013). The expres-
sion of miRNAs is tissue specific and can be used to identify tumor type and its origin (Mishra and Merlino, 
J Clin Invest 119:2119–2123, 2009). Many investigations suggest that the miRNA-expression profiles are 
novel diagnostic and prognostic biomarkers for multiple human diseases. Manipulating relevant miRNA 
expression or function may serve as potential therapeutic strategies for different diseases.

Key words Biomarkers, Diagnostics, miRNA, Prognostics, Regulation, Therapeutics

1 MicroRNAs

MicroRNAs (miRNAs) are small noncoding, single-stranded, 
21–23-nucleotide RNAs. MiRNAs regulate expression of many genes 
by base pairing to complementary sequences of the 3′-untranslated 
region (3′-UTR), which lead to translation repression. MiRNAs can 
also regulate gene expressions at transcriptional levels through deade-
nylation, degradation, and/or destabilization of target mRNAs [1, 2].

MiRNAs are expressed in various tissues and cell types. As bio-
logical regulators, miRNAs play important roles in physiological 
processes such as cell growth, proliferation, differentiation, apop-
tosis, metabolism, and homeostasis [3–6].

2 MicroRNAs: Disease Biomarkers

MiRNAs are stable and can be detected in plasma, blood, urine, 
saliva, and other body fluids. Circulating miRNAs secreted from 
tumor tissues are protected from endogenous RNase activity [7]. 
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Previous studies have indicated that the dysregulated expression 
levels of circulating miRNAs are associated with cancer/tumors 
including prostate, breast, cervical, lung, gastric, colorectal cancer 
as well as leukemia, lymphoma, melanoma, and hepatocellular car-
cinoma [3, 8]. Besides cancer, the abnormal expression levels of 
circulating miRNAs are associated with other diseases such as dia-
betes, ectopic pregnancy, hepatitis C, kidney injury, liver injury, 
pulmonary tuberculosis, sepsis, systemic lupus, systemic sclerosis, 
and myocardial disease [3, 8]. Thus, circulating microRNAs are 
proposed as potential diagnostic and prognostic biomarkers in 
human diseases.

MiRNAs are also contained in microvesicles (i.e., exosomes), 
which are 30–120 nm membrane-derived vesicles. The exosomes 
medicate cellular cross-talk and miRNA secretion. For example, 
miRNAs in exosomes, secreted from cancer cells, can be engulfed 
by their surrounding or distant cells, and regulate physiological 
and immune response of those cells [9]. The regulatory mecha-
nism of miRNA may lead to the development of new personalized 
treatments for cancer patients. Exosomal miRNAs exosomes are 
released into body fluids such as blood and urine, and could be 
used as potential diagnostic biomarkers for diseases.

Cancers are diseases caused by uncontrolled growth of abnormal 
cells which invade healthy cells and tissues. MiRNAs control 
important cellular processes such as proliferation, differentiation, 
adhesion, apoptosis, and angiogenesis. Deregulation of the expres-
sion of miRNAs may play primary roles in the onset, progression, 
and metastasis of cancer [3, 10].

Previous studies have demonstrated that the expression of 
miRNAs is tissue-specific, and plays an important role in maintain-
ing tissue-specific functions and cellular differentiation [11]. 
MiRNAs are expressed in cancer or tumor tissues from patients 
with colorectal cancer, breast cancer, hepatocellular carcinoma, 
melanoma, glioblastomas, lung cancer, pancreatic cancer, papillary 
thyroid carcinoma, and renal tumor [3, 12].

MiRNA down-regulation and gene deletion in cancer was first 
reported in 2002. The study showed that microRNA genes (miR- 
15 and miR-16) are located within a 30 kb region of chromosome 
13q14, which is frequently deleted in chronic lymphocytic leuke-
mia (CLL) [13]. The expression profiles of miRNA are altered  
in a various of cancer types, such as breast cancer [14], leukemia 
[15, 16], lung adenocarcinoma [17], hepatocellular carcinoma 
[18, 19], ovarian cancer [20], pancreatic cancer [21, 22], papillary 
thyroid carcinoma [23, 24], glioblastoma [25], and prostate 
 cancer [26]. MicroRNA expression signatures are reported to 
reflect developmental origin of the tumor type [11, 27]. Therefore, 
tumor types and subtypes could be classified by miRNAs accord-
ing to the origin of tissues and cells [28, 29]. In addition, the 

2.1 MiRNAs 
as Biomarkers 
for Cancers/ Tumors
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genetic alterations in miRNA biogenesis machinery, such as 
DROSHA, DGCR8, DICER, TARBP2, AGO2, Dicer, and 
Exportin-5 (XPO5), were reported to be involved in the cellular 
transformation and carcinogenesis process in different tumor and 
cancer types [30–32].

MiRNAs can act as oncogenes, and facilitate tumorigenesis 
including proliferation, angiogenesis, invasion, and migration. 
MiR-17~92 Cluster, miR-10b, miR-21, miR-103, miR-107, miR- 
141, miR-155, miR-221, miR-222, miR-372, miR-373, and miR- 
520c are overexpressed or dysregulated in multiple or different 
types of malignancies, including lymphomas, leukemia, neuroblas-
toma, glioblastoma, thyroid carcinoma, testicular tumors, and 
breast, lung, colon, stomach, colorectal, liver and pancreatic can-
cers [3, 8, 33]. On the other hand, miRNAs act as tumor suppres-
sors, such as the let-7 family, miR-15a, miRNA-16-1, miR-27b, 
miR-29, miR-31, miR-34, miR-96, miR-101, miR-125a, miR- 
125b, miR-126, miR-145, miR-200c, miR-203, and miR-335 [3, 
8, 33]. Tumor suppressors regulate the cell cycle, apoptosis, dif-
ferentiation, DNA repair, angiogenesis, and metastasis. They are 
silenced or down-expressed in many different types of cancer. 
Overexpression or reintroduction of those miRNAs as tumor sup-
pressors can inhibit tumor growth, by the control of cancer cell 
survival, proliferation, invasion, and migration.

MiRNAs can be detected in blood, plasma, serum, urine, 
saliva, cystic fluid, pancreatic juice, and sputum [3]. An early study 
showed that serum miRNAs can be used as biomarkers for diffuse 
large B cell lymphoma (DLBCL), which is an aggressive malig-
nancy that accounts for nearly 40% of all lymphoid tumors [34]. 
Later, various miRNAs in serum, plasma, urine, and saliva samples 
have been proposed as diagnostic biomarkers of different types of 
cancer [35]. For example, serum levels of miR-141 can distinguish 
patients with prostate cancer from healthy individuals [7], the ratio 
of miR-126:miR-182 in urine samples can be used to identify uro-
thelial bladder cancer [36], and saliva levels of miR-125a and miR- 
200a can be used for oral cancer detection [37].

Diabetes is a condition with high blood glucose levels. Chronically 
exposed to the high concentration of glucose, organs suffer dys-
function and failure due to micro-and macrovascular damage. 
MiRNAs are critical regulators of the development and physiologi-
cal state of metabolically active tissues, including insulin release and 
resistance. In pre-diabetic and diabetic conditions, miRNAs expres-
sion profiles in both organs and serum are altered,  consequently 
impairing insulin signaling, glucose, and lipid homeostasis [8].

The expression of serum miRNAs has been investigated in type 
1 diabetes patients (T1D). For example, miR-25 was found to be 
associated with residual beta-cell function and glycemic control 
during T1D progression [38]. Also, miR-152, miR-30a-5p, 
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miR-181a, miR-24, miR-148a, miR-210, miR-27a, miR-29a, 
miR-26a, miR-27b, miR-25, and miR-200a were upregulated in 
T1D patients [38]. With regard to type 2 diabetes (T2D), serum 
miR-126 was proposed to be used as a biomarker for pre-diabetes 
and T2D [39]. Also, another study revealed that serum miR-23a 
was a valuable biomarker for the early detection of T2D and pre- 
diabetes with normal glucose tolerance [40]. Furthermore, serum 
miRNAs such as miR-29a, miR-222, and miR-132 were reported 
to be differentially expressed between gestational diabetes mellitus 
(GDM) women and controls, and they were suggested as candi-
date biomarkers for predicting GDM [41].

When host is infected by virus, host gene expression including host 
miRNAs is altered. It was reported that some viruses could reduce 
host miRNA accumulation, shut down the miRNA machinery, and 
mediate degradation of cellular miRNAs [8]. Generally, viral miR-
NAs targets host and viral genes, playing regulatory roles in both 
cell cycle and viral cycle, including development, growth, homeo-
stasis, immune response, and apoptosis to augment their replica-
tion potential [8, 42].

On the contrary, the host miRNAs could control viral infec-
tion and replication [3]. For example, miR-199a-3p and miR-210 
suppressed hepatitis B virus (HBV) replication [43], miR-199a 
reduced hepatitis C virus (HCV) RNA replication activity [44], 
and miR-32 restricted the accumulation of the retrovirus primate 
foamy virus type 1 (PFV-1) in the human host cells [45]. 
Additionally, miRNAs can inhibit human immunodeficiency type I 
virus (HIV-1) production by a novel mechanism, which involves 
binding to the viral Gag protein and preventing the HIV RNA- 
mediated assembly into viral particles [46]. These miRNAs may 
serve as novel targets for antiviral therapy. A recent study reported 
that circulating miR-122, miR-22, and miR-34a were correlated 
with the etiology of liver injury in HIV patients, and may serve as 
biomarkers for liver injury in HIV patients [47].

According to the World Health Organization (WHO), cardiovas-
cular diseases (CVDs) are the number one cause of death in the 
world. About 17.5 million people died from CVDs in 2012, repre-
senting 31% of all global deaths. MiRNAs are key regulators of 
biological processes related to cardiac development and mainte-
nance, as well as multiple cardiovascular diseases. Altered gene 
expressions result in pathological changes of the heart. MiRNAs 
are up or downregulated in the following diseases, such as cardiac 
hypertrophy, myocardial ischemia, myocardial infarction (MI), 
arrhythmia, angiogenesis, atherosclerosis, coronary artery disease, 
vascular disease, heart failure, atrial fibrillation, lipid metabolism, 
and cardiac fibrosis [3, 8, 48]. MiRNAs in the systemic circulation 
may reflect tissue damage, and circulating miRNAs such as miR-1, 
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miR-126, miR-197, miR-208a, and miR-223 have been suggested 
as novel and potential biomarkers for the diagnosis of acute myo-
cardial infarction (AMI) [49–51]. In addition, a panel of four miR-
NAs (miR-16, miR-27a, miR-101, miR-150) was reported to aid 
in prognostication of outcome after AMI [52]. Moreover, miR-29, 
miR-92a, and miR-328 MI are indicated as potential targets for 
treatment of MI, ischemic disease, and atrial fibrillation, respec-
tively [8].

Neurodegenerative diseases occur when neurons lose structure or 
function progressively. MiRNAs regulate gene expression in cell- 
fate decisions and play critical roles during the development of the 
nervous system [53]. Aberrant miRNA regulation is involved in 
neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s 
disease, and amyotrophic lateral sclerosis (ALS) [3, 8, 54]. For 
example, miRNA binding sites were identified in amyloid precur-
sor protein (APP) which may be related to Alzheimer’s disease [8]. 
In addition, miRNAs regulate Aβ biogenesis and the alterations in 
miRNA population are associated with the disease progression [8]. 
Furthermore, miR-107 is expressed at a low level in the cortex of 
Alzheimer’s disease patients, and it may accelerate disease progres-
sion through regulation of beta-site amyloid precursor protein- 
cleaving enzyme [3, 55].

With regard to Parkinson’s disease, miRNAs regulate 
α-synuclein gene expression that was related to the disease. A 
mutation in the miRNA-433 binding site of fibroblast growth fac-
tor 20 (FGF20) increased risks for Parkinson’s disease by overex-
pression of α-synuclein [8, 56]. In addition, miR-1, miR-22*, and 
miR-29 expression levels can be used to distinguish nontreated 
patients with Parkinson’s disease from healthy subjects. It suggests 
that those miRNAs are potential novel and effective biomarkers for 
Parkinson’s disease [57].

MiRNA expression profiles provide evidence for progression 
of neurodegenerative diseases, and the control of miRNA expres-
sion may serve as a novel tool for therapeutic purposes.

Altered expression of miRNAs is found to be associated with 
abnormal pregnancy, immune disease, bowel diseases, as well 
as liver and kidney diseases. MiRNA expression levels may be used 
as biomarkers for the diagnosis of those diseases. For example, cir-
culating miR-323-3p (with hCG and progesterone) was suggested 
as a biomarker for the diagnosis of ectopic pregnancy [58]. The 
expression levels of miR-155 and miR-146a were increased in 
rheumatoid arthritis [3, 59]. Multiple miRNAs including miR-16, 
miR-23a, miR-29a, miR-106a, miR-107, miR-126, miR-191, 
miR-199a-5p, miR-200c, miR-362-3p, and miR-532-3p were 
expressed at significantly higher levels in the blood from patients 
with Crohn’s disease, compared with the healthy controls [60]. 
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Plasma miR-122 was proposed as a biomarker for viral-, alcohol-, 
and chemical-related hepatic diseases [61]. In addition, serum lev-
els of miR-34a and miR-122 may be used as novel and noninvasive 
biomarkers of diagnosis and histological disease severity in patients 
with hepatitis C infection (CHC) or non-alcoholic fatty-liver dis-
ease (NAFLD) [62]. Urinary miRNAs such as miR-1, miR-133, 
miR-223, and miR-199 were found to be dysregulated in patients 
with autosomal-dominant polycystic kidney disease, and miRNA 
profiles can be used as potential biomarkers of disease progression 
[63]. In addition, circulating miRNAs such as miR-210 was dereg-
ulated in critically ill patients with acute kidney injury (AKI) and it 
predicted mortality in this patient cohort. Thus, it may serve as a 
novel biomarker for AKI reflecting pathophysiological changes on 
a cellular level [64].

3 MiRNA-Based Therapeutic Intervention

MiRNAs are important regulators in physiological processes such 
as cellular development and homeostasis. Because abnormal 
miRNA expression is associated with many diseases, miRNAs 
become potential therapeutic targets and manipulation of their 
expression is used as new clinical treatment strategies. In cancer 
patients, some tumor suppressor miRNAs are often low expressed 
in cancer/tumors, whereas oncogene miRNAs are overexpressed 
in cancer/tumors. Many studies have been conducted to deliver 
miRNA (i.e., miRNA replacement) to increase miRNA levels to 
suppress oncogenes; or deliver miRNA inhibitors to decrease 
miRNA levels for upregulation of tumor suppressor genes [8].

For miRNA replacement, the miRNAs were delivered into ani-
mal/xenografts models to block or inhibit tumor growth, such as 
let-7, miR-26a, miR-34a, miR-29b, miR-143, miR-101, miR-33a, 
miR-145, miR-15a, miR-16, miR-196a, and miR-502 [3, 8]. On 
the other hand, designed miRNA inhibitors were delivered in vivo 
to inhibit target miRNAs including let-7, miR-122, miR-16, miR-
194, miR-10b, miR-134, and miR-192 [3, 8]. The miRNA inhibi-
tors include anti-miRs, antagomirs, anti-miRNA oligonucleotides 
(AMOs), decoys, or sponges.

The miRNA delivery methods include viral and non-viral- 
based systems. Viral systems use virus such as retrovirus, lentivirus, 
adenovirus, or adeno-associated virus to transduce cells and tissues 
with miRNA genes. The non-viral systems include lipid-based sys-
tems, polymer-based systems, and inorganic carriers [8, 65, 66].

Fomivirsen (Vitravene) is the first antisense drug approved by 
US FDA for the treatment of AIDS-related cytomegalovirus 
(CMV) retinitis. It is a phosphorothioate oligonucleotide that 
inhibits human CMV replication by pairing to the CMV mRNA 
[67]. Ipomersen (Kynamro) is another antisense oligonucleotide 
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drug targeted to mRNA for apo B-100. The drug was approved to 
reduce low-density lipoprotein-cholesterol (LDL-C), apolipopro-
tein- B (apo B), total cholesterol (TC), and non-high-density lipo-
protein–cholesterol in patients with homozygous familial 
hypercholesterolemia (HoFH) [67].

4 MiRNA Detection Methods

There are several approaches that have been used for miRNA detec-
tion and quantitation, including quantitative real-time PCR (qPCR), 
northern blots analysis, RNase protection assays, in situ hybridiza-
tion analysis, miRNA microarray, next-generation sequencing 
(NGS), and the nanotechnology-based assay [3, 68, 69].

5 Conclusion

MiRNAs are expressed in a variety of tissues and associated with 
different diseases such as cancer, diabetes, viral infections, neuro-
degenerative diseases, cardiovascular disorders, and other diseases. 
MiRNAs have been detected and measured in biological fluids, 
including blood, plasma, serum, urine, and saliva. MiRNAs may 
serve as novel and noninvasive biomarkers of diseases. In addition, 
miRNAs can be potential and promising therapeutic targets for 
disease treatment.
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Chapter 5

Relational Databases and Biomedical Big Data

N.H. Nisansa D. de Silva

Abstract

In various biomedical applications that collect, handle, and manipulate data, the amounts of data tend to 
build up and venture into the range identified as bigdata. In such occurrences, a design decision has to be 
taken as to what type of database would be used to handle this data. More often than not, the default and 
classical solution to this in the biomedical domain according to past research is relational databases. While 
this used to be the norm for a long while, it is evident that there is a trend to move away from relational 
databases in favor of other types and paradigms of databases. However, it still has paramount importance 
to understand the interrelation that exists between biomedical big data and relational databases. This chap-
ter will review the pros and cons of using relational databases to store biomedical big data that previous 
researches have discussed and used.

Key words Relational databases, Big data, Biomedical big data, Data mining

1 Introduction

Since the beginning of the practice of handling biomedical data by 
computers, it was just a matter of time till biomedical big data 
would become a hot topic. This is due to the inherent nature of 
data volume that is associated with biomedical data. It should be 
noted that there are a very high number of applications that ven-
ture into the realm of data velocity as well. With this setting, it is 
no wonder a discussion about biomedical big data on relational 
databases is needed. With this setting, it is needed to have a discus-
sion about biomedical big data on relational databases, especially 
given the widespread usage and simple nature of relational data-
bases in not only biomedical but also other numerous fields. This 
chapter will give a brief introduction to all the concepts in ques-
tion; relational databases, big data, and finally biomedical big data. 
We will be discussing the pros and cons of using relational data-
bases for biomedical big data applications. The discussion will hap-
pen exclusively as a series of evidence for the argument and counter 
argument with rationales extracted from the respective researchers 
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themselves. We present the evidence in this was so that the reader 
may evaluate the evidence impartially and adopt a system that the 
reader may seem fit.

2 Rational Databases

Out of the ways that humans have devised to store digital data, 
relational databases arguably are a very popular choice. Relational 
databases are organized on the concept of relational model of data 
first introduced by E. F. Codd in 1970 [1]. The initial objective 
was to come up with a tool to help with accounting. But since 
then, relational databases have transcended that initial objective 
and have become useful in many avenues in data storage. The rela-
tional model is built on first-order predicate logic. In this model, 
all data is represented in terms of tuples. Tuples are grouped as 
relations, hence the name relational databases. A tuple in layman’s 
words would be equal to a row of a table and a relation would be 
akin to the table that is made up by such rows of data. An attribute 
is a column in the table. In fact, the most popular way to show data 
from relational databases to humans is in this table form.

There are many software systems that are used to handle and 
mange relational database systems. They are called Relational 
Database Management Systems (RDBMS). The method to get 
information stored in a relational database is to query it. Almost all 
relational database systems use SQL (Structured Query Language) 
for both querying and maintaining the database. Microsoft SQL 
Server, Oracle Database, MySQL, and IBM DB2 are examples for 
popular Relational Database Management Systems. Out of these, 
MySQL is popular as a part of the LAMP stack (Linux, Apache, 
MySQL, PHP) which is widely used for web applications. Others are 
generally used for large enterprise applications more often than not.

The relational model gives users a declarative method to spec-
ify data and queries. In other words, the users directly mention 
what kind of data the database has and what they want from it. The 
underlying data structures and data storing/retrieving systems are 
handled by the Database Management System and are fully trans-
parent to the user. Given below is a sample MySQL query.

SELECT firstName FROM Students WHERE Country = 'USA';

Even a person completely unaware of programming would be 
able to understand that this query is trying to get the first names of 
the students who are from USA. This is because of the declarative 
nature of the Structured Query Languages.

As mentioned earlier, most of the relational databases use a 
type of SQL for data definition and querying. A table in an SQL 
database contains a relation, the table name itself maps to a predi-
cate variable in the relational model. Key and other constraints 
along with the aforementioned queries are mapped to predicates.

N.H. Nisansa D. de Silva



71

“Keys” that were mentioned in the previous paragraph are an 
integral part of relational databases. Each row of a table must have at 
least one unique key. A key may contain one or more attributes. For 
example, in a hospital data management system, the patient id num-
ber can be a key. The patient’s social security number can also be a key. 
The combination of full name and address can also be a cumbersome 
but a mostly valid key. All these keys are valid because they are unique. 
In the very rare case of two patients with the same name living at the 
same address, the latter scheme breaks. But logically it is impossible 
for two people to have the same patient id number because it is gener-
ated by the database itself to be unique, so it is a very safe key.

Almost all of the processing done on tables depends on the 
ability to modify one and only one row at a time. This does not 
mean that queries that affect multiple rows are impossible. On the 
contrary, in fact, most practical applications extensively use multi-
ple row manipulation or retrieval. What is discussed here is the 
inner workings of the database where even the queries that are 
applied on multiple rows are broken down to the single row level 
and then applied in batch or in parallel. This requirement of acting 
on a single row is what demands the usage of keys. Unlike in the 
case of the patient example given above where we conveniently 
have a unique id for each individual in the form of the patient id, 
most tables will not have such pre-existing unique ids. In this sce-
nario, most physical implementations resort to a system-assigned, 
unique primary key (PK). When new data is added to the table, the 
system generates a unique value and enters that with the given data 
as the new row of the table. The system then uses this key to pri-
marily access the table, hence the name. Most systems are perfor-
mance enhanced for PKs. As mentioned earlier, a table may have 
other unique keys as single or combinations of attributes. These 
are called alternate keys (AK). Any primary key or alternate key can 
and should be able to uniquely identify a row within the table.

Rows in tables are linked to rows in other tables by adding a 
column of a unique key of the linked row of the linked table to the 
linking row of the linking table. For example, assume we are mod-
eling a university, we have a professors table and a subjects table. 
We want to show which professor teaches each subject. The way to 
do this is to put the professor id from the professors table in a col-
umn of the subjects table. Such columns are called foreign keys. It 
has been proved by Codd that it is possible to represent data rela-
tionships of arbitrary complexity using this set of simple concepts.

One thing you may have noted in the previous example of the 
university modeling is that, while a single subject will be taught by 
a single professor, there is no restriction to prevent a single profes-
sor from teaching multiple subjects. Therefore, the foreign key 
professor id in the subject table would not necessarily have a unique 
value. This is an example of a One-to-Many relationship in a rela-
tional database. Similarly, there can be other relationships of the 
types; one-to-one and many-to-many. The person table and the car 
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table might have a one-to-one relationship which shows the own-
ership of the car. A doctor table and the patient table might have a 
many-to-many relationship given that many doctors may treat the 
same patient and each doctor will have more than one patient.

As one might have identified by now, the method of adding a 
column as a foreign key might work as well for one-to-one as it did 
for one-to-many but we would be in a conundrum when it comes 
to many-to-many. Take the doctors and patients examples given 
above, putting the list of doctor ids for each patient or putting the 
list of patient ids for each doctor is a cumbersome way to solve the 
problem. In fact, most relational databases are created and designed 
in such a way that each column in each row holds only a single 
value. (This is called values being atomic.) The solution to this 
problem is to introduce a new link table in between the two tables. 
This link table will contain primary keys from both tables. Thus, 
each row of this link table will represent a unique relationship 
between a doctor and a patient. If we only consider the doctor 
table and the link table, it is as if we have a one-to-many relation-
ship from doctor table to the link table. If we only consider the 
patient table and the link table, it is as if we have a one-to-many 
relationship from patient table to the link table. Therefore no data-
base property is abridged. We have achieved portraying a many-to- 
many relationship between the doctor table and the patient table.

For the database management systems to operate accurately 
and safely, four properties are maintained in all transactions. These 
transactions are called ACID transactions. The A stands for 
Atomicity. It makes sure that each transaction happens in entirety 
or not at all. If one part of the transaction fails, no matter how 
much of the transaction has already executed, the entire transac-
tion is considered failed. If that happens, the database is left 
unchanged. The database management system must guarantee 
atomicity under any and all situations, including but not limited to 
power failures, software or hardware errors, and crashes. An atomic 
transaction, to the outside world, appears to be an atomic unit. 
Further, in the case of an aborted transaction, none of its parts 
should happen. The C in ACID stands for Consistency. This prop-
erty makes sure that each transaction will convert the database 
from one valid state to another. Any data written or altered by the 
said transaction must be valid under the defined rules of the data-
base. One important thing to note here is the fact that this does 
not guarantee correctness in the way the application programmer 
might have wished it to be. That responsibility lies beyond data-
base management and in the domain of application level code. 
What this property guarantees is the fact that programming errors 
will not result in database violating any of the defined rules. The I 
in the ACID stands for Isolation. This ensures that in a scenario 
where multiple transactions happen in parallel (concurrently), at 
the end, the database ends up in a state that is exactly the same as 
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the state which it will be if the said transactions were executed seri-
ally (one after the other). Ensuring this property is the main objec-
tive of concurrency control. In concurrency control methods with 
strict serializability, the effects of incomplete transactions are com-
pletely invisible to the other transactions. This is not so in control 
methods with relaxed serializability. But both methods ensure that 
the Isolation property is preserved. Finally, the D in the ACID 
stands for Durability. This means if a transaction is committed, it 
will remain as committed despite power loss, crashes, or errors. To 
ensure that Durability is preserved against power loss, transactions 
or their effects are recorded in non-volatile memory.

3 Big Data

Big data is a blanket term for any data set too large or complex (or 
both) so much so that traditional data processing applications are 
proven to be inadequate. These challenges might arise within the 
realms of; analysis, capture, search, data curation, sharing, storage, 
transfer, visualization, and information privacy. However, in gen-
eral usage, the term big data is often used to mean doing predictive 
analytics or other methods to obtain valuable knowledge from data 
regardless of the size of the data set. But in correct terminology, 
that process is data mining. It is possible to do data mining on big 
data but big data is not just about data mining. The importance of 
big data is the fact that accuracy in big data can lead to increased 
confidence in future decision making and thereby grater opera-
tional efficiency with reduced cost and risk.

Big data analysis can result in new correlations that help “spot 
business trends, prevent diseases, combat crime and so on” accord-
ing to The Economist [2]. Various groups of people have to meet 
the challenge of big data. This includes governments, advertises, 
media agencies, business executives, and most importantly, scien-
tists. Scientists encounter problems with large amounts of data in 
fields such as connectomics, complex physics simulations, genom-
ics, meteorology, biological and environmental research. On the 
other side, governments, corporations, and political campaigns use 
big data to take informed decisions about their constituents, cus-
tomers, and investors. These informed decisions are used to alter 
or enhance the course of their strategies.

A good example of this is how the 2012 Obama campaign 
used big data-based analytics done on the fused data from census, 
voter lists, active outreach, and social media such as Facebook to 
identify swing voters and ultimately approach and influence them 
[3]. As it was making waves recently, the National Security Agency 
(NSA) collects massive amounts of data from phone and Internet 
service providers and then runs various algorithms on the said 
data to find patterns that would tag potential terrorists or people 
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of interest. It is mayhap controversial to the same extent and as 
well known that Google uses the data collected from a user’s web 
history and geographical context to personalize search results. All 
the above cases have gone beyond just collecting data to the level 
of linking information to individual human beings. It might be 
useful to know what percentage of voters have a potential to be 
swayed. But knowing who they are exactly, can result in a more 
efficient campaign [4].

The growth of data size can be attributed to the rapid reduction 
of the price of sensory devices resulting in more numerous deploy-
ment of such devices, increased availability of various mobile devices, 
availability of drones and other aerial remote sensing equipment, 
radio-frequency identification readers, wireless sensor networks. The 
widespread use of equipment such as cameras and microphones that 
are attached to smartphones does a significant contribution as well. 
One very common, but not so obvious, source of big data for the 
average person is software logs of various systems; web servers, bank-
ing systems, flight reservations, hotel bookings. Almost all well-
structured enterprise-level software systems generate logs for security 
and record-keeping purposes. With the advent of more novel tech-
nology, these logs have become both more numerous and more 
descriptive. According to Hilbert and López the world’s technologi-
cal per-capita capacity to store information has roughly doubled 
every 40 months since the 1980s [5]. IBM claims that, as of 2012, 
every day 2.5 exabytes (2.5 × 1018) of data were created [6]. Given 
that information is power, the question who has access to the com-
pany-related big data can disrupt the traditional company power 
hierarchies. Therefore, large enterprises often face a challenge as to 
who should own the big data or the associated initiative that straddle 
the entire organization [7].

It is generally accepted that relational database management 
systems and desktop-based statistics and visualization packages 
usually are not competent enough to handle big data. The consen-
sus is that it needs "massively parallel software running on tens, 
hundreds, or even thousands of servers" [8]. However, it is worthy 
to note that what one would consider to be big data often varies on 
the capabilities and capacities of the users and the tools that they 
are using. Expanding capabilities makes what was considered to be 
big before, to be considered small or mediocre now. From the 
perspective of some organizations, hundreds of gigabytes of data 
can be considered big data; but for some technology giants, even 
hundreds of terabytes of data are a mundane and negligible load.

4 Biomedical Big Data

It has long been in the wind that big data will bring about an era 
of efficiency, accountability, and better services in the health care 
sector [9, 10]. This has not entirely been realized so far. In fact, 
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there are other industries that have reaped better and more abun-
dant benefits from the advent of big data than the biomedical sec-
tor. They have been quite successful in integrating their large-scale 
systems and analyzing heterogeneous data sources to obtain 
knowledge and value. Figuring out the inherent nature of big data, 
which makes it transformative once various disparate data sets are 
linked at individual personal level, has helped these industries to 
obtain this status. In contrast to this, big biomedical data are 
divided among institutions and are kept guarded and isolated to 
honor the patient privacy (which unquestionably is sacred to the 
medical profession) [4]. The common practice is to anonymize any 
and every bit of information that leaves the confines of the institu-
tion. This results in a situation where linking data from multiple 
sources becomes impossible. Sharing the anonymization scheme 
between institutions is not a valid solution because, even though it 
might prevent other parties from discovering information about 
individual patents, it will not prevent one institution from reverse 
engineering data presented by another institution to get to pre 
anonymized information to which they should not have access. 
This is akin to having two secure vaults with the same key combi-
nation with two people knowing the key combination of one vault. 
Trivially, both would now have access to both vaults even though 
initially and by law they should only have access to their own. 
Technical challenges such as this and other sociopolitical challenges 
will have to be addressed before we can see good strides in bio-
medical big data having significant influences on health care. 
Despite this, medical decision-making is becoming more and more 
dependent on data analysis, rather than conventional experience 
and intuition [11].

Linking big data will give access to a plethora of new infor-
mation that can be used to build and test new hypotheses and 
ultimately take preventive or supportive action that might have 
not been possible had the data had still been unlinked and existed 
behind several layers of secrecy. Some potentially interesting 
questions would be; what is the correlation between health issues 
such as high cholesterol, obesity, type 2 diabetes in public health 
databases to the local patterns of grocery shopping obtained from 
stores or gym membership information in various areas? How 
well does the consumption of cholesterol-lowering drugs, corre-
late with level of exercise done by an individual where the drug 
details are obtained from the refills at the pharmacy while the 
level of exercise is obtained from home and individual monitor-
ing devices? How much of an influence does the physical distance 
from the homes of patients have to hospitals and pharmacies 
exert on health care facility utilization and claims? How much of 
an influence do friends of an individual on social media platforms 
such as Facebook have on lifestyle choices or the willingness to 
engage in medical treatments by the said individual? It is duly 
noted that correlation does not apply causality. However, even to 
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begin exploring these questions the ability to link data at the 
patient level is a prerequisite [12]. It is worthy to note that only 
then will we be able to gauge whether this type of correlative 
inferences is possible to be found in big data and how well physi-
cians would be able to use those information.

The first question to answer is identifying the potential sources 
of health care information that are valuable to link together. This is 
expected to be done along the different dimensions of “bigness” of 
data [4]. Some types of big data such as electronic health records 
(EHRs) can be used to provide depth by including different types 
of data that may include images and notes in addition to the tradi-
tional simple text data. These additional information might most 
probably be about individual patient encounters. Other types of 
data such as claims data will provide what is known as longitudinal-
ity which is a view of a patient’s medical history over an extended 
period for a narrow range of categories. It is worthy of note that 
linking data adds value when one fills the gaps present in the other. 
Biomedical data that are outside the traditional health care system 
such as social media, credit card purchase information, census 
records, and other types of data help create a more holistic view of 
a patient. However, it should not be ignored the fact that these 
sources have varying degrees of quality. Regardless, the said holis-
tic view can bring to the front the social and environmental factors 
that might influence the individual’s health which might have 
escaped the notice of individual physicians who are traditionally 
confined to a small portion of the whole image due to inaccessibil-
ity of the rest of the data.

As implied above, one major obstacle in linking data sources to 
obtain workable big data is the non-existence of a system that 
would provide a nationwide unique patient identifier (UPI). This 
is a very valid concern in the United States of America where dif-
ferent healthcare providers use different methods and conventions 
to store patient information. This has motivated the hospitals and 
clinics to come up with rather advanced probabilistic linkage algo-
rithms based on other information that are not private such as 
demographics [10]. It acknowledges that it is probable for two 
different patients to have the same name, age, zip code, or other 
characteristics. However, it further reasons that given enough of 
these variables, it is possible to reduce the risk of erroneous links to 
an acceptable percentage. These probabilistic linkage methods 
employed to match different electronic health records of patients 
can be extended to data sources that are external to health care [4]. 
Some data sources might not have some variables or might not 
divulge them due to various policies. This might increase the likeli-
hood of errors. However, the probability of these errors decreases 
when the number of patients increases to the range of millions [4].

As mentioned in the beginning of this section, privacy and 
security concerns are ever so present in the case of biomedical big 
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data. More holistic the profile of patients becomes, easier it 
becomes to identify [13, 14]. Regardless, the reality is the fact 
that big data is making strides in other industries and it is obvi-
ously an important asset to have in the future of the healthcare 
industry on the perspectives of delivery, monitoring, and market-
ing. Thus, it can be argued that it is of best interests of the medical 
establishments to guide social and legislative steps toward this 
goal. The prudent way forward is to identify and regulate what is 
legal and ethical, proceed when benefits outweigh the potential 
risks, and most importantly, include the patients in question in the 
decision- making process [15]. An easy way out of this legal and 
ethical maze is to give patients control over their own data. 
However, the advent of social media has proved that some indi-
viduals share private information publicly only to regret it later 
and in some cases shift the blame to the facility providers that 
enabled them to share the said data [4].

5 Using Relational Databases for Biomedical Big Data

As explained in the above section on big data, it is generally 
accepted that relational database management systems usually are 
not competent enough to handle big data. However, the vague 
definition of the term big data itself, as explained in the same sec-
tion, has kept it open for some biomedical big data applications to 
employ relational database management systems. However, given 
the easiness of handling, which is inherent to relational database 
management systems, some biomedical big data applications on 
relational database management systems do exist.

Most of the clinical data are stored in the Entity-Attribute- 
Value (EAV) format [16]. In the most common setting, entity col-
umn carries a clinical event. It can be taken as a patient ID and 
date/time stamp pair [17]. The attribute column carries a clinical 
parameter. The value column carries the clinical parameter’s value 
[18]. These are converted to relational table format by pivoting. 
For example, the MLBCD [18] system then transforms raw clinical 
parameters into features. Then one or more predictive models are 
built on the set of clinical parameters and evaluated. The clinical 
parameter extraction calls for another famous big data technology, 
MapReduce framework [19], which in turn paves the way for the 
biomedical database to be queried by Spark SQL [20].

Multiparameter Intelligent Monitoring in Intensive Care II 
(MIMIC-II) [21] is a public-access intensive care unit database that 
contains information of 25,328 intensive care unit stays. This infor-
mation includes laboratory data, therapeutic intervention profiles 
such as vasoactive medication drip rates and ventilator settings, 
nursing progress notes, discharge summaries, radiology reports, 
provider order entry data, International Classification of Diseases, 
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9th Revision codes, and, for a subset of patients, high- resolution 
vital sign trends, and waveforms.

A study done by Wang et al. used a publicly available 
 transcriptomic data set taken from NCBI GEO concerning 
Multiple Myeloma to do a comparison between relational database 
management systems against no-SQL databases [22]. The rela-
tional database used was tranSMART [23] which holds over 70 
million gene expression records. They observed that even database 
partitioning could not improve the data retrieval performance 
issues of tranSMART which were inherited from the relational 
database model. First, they ported one of tranSMART’s microarray 
data tables to MongoDB to store as key-value pairs to compare 
performance against the original relational database. Further 
experiments were done on HBase [24]. From their experiments 
they concluded that the new key-value data model, in particular its 
implementation in HBase, outperforms the relational model cur-
rently implemented in tranSMART.

Ježek and Mouček discuss a Semantic framework for mapping 
object-oriented model to semantic web languages [25] in which 
they discuss the problems with existing relational database solutions 
such as the EEG/ERP Portal (EEGBase) [26] in terms of lack of 
semantic expressivity. Further, they pointed out that the inflexibility 
of relational databases restricts the usages that one can obtain from 
relational databases in the sphere of biomedical big data.

Despite the above few examples of naysayers of the usage of 
relational databases in biomedical big data, historically, there have 
been a number of successful implementations. Next, few para-
graphs discuss a few of these successful cases and the arguments of 
the researchers that presented those cases.

Erich J. Baker, discussing the usage of databases in bioinformat-
ics, argues that Traditional relational databases can effectively man-
age data. However, he points out that relational database model 
requires in-depth domain knowledge and strong database expertise 
to produce schemas robust enough to handle scope and integration. 
Further, he notes that the emergence of NoSQL databases “has 
caused researchers to reexamine how data is structured and explore 
flexible alternatives for viewing relationships among differing data 
types typically encountered in behavioral neuroscience” [27].

Next-generation sequencing (NGS) is a big contributor to 
biomedical big data in terms of generated data that should be 
stored and analyzed in various ways. Alexandre G. de Brevern 
et al., discussing the trends in IT Innovation to manage and ana-
lyze next-generation sequencing, argue that given that in biology, 
concepts and technologies evolve very quickly, and new data for-
mats appear frequently, scientists are forced to reconsider the 
structure of their data regularly. This, they claim, to go against the 
very definition of relational database systems because relational 
database systems need data structuring where an a priori model of 
the data is required, which effectively freezes the model. Further, 
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Alexandre G. de Brevern et al. point out the following reasons for 
relational databases to be unsuitable for biomedical big data; the 
database cannot adapt to large traffic at an acceptable cost, the 
number of tables required to maintain the relational model rises 
too quickly for the corresponding amount of stored data, the rela-
tional model no longer meets the performance criteria because the 
model is no longer adapted to how the system has evolved, the 
database is subjected to a large number of temporary tables that 
store intermediate results [28].

Cloudwave is a project that utilizes Hadoop to use distrib-
uted processing on Electrophysiological Recordings collected 
from Epilepsy Clinical Research. This is a very important 
endeavor given that Epilepsy is the most common serious neuro-
logical disorder worldwide. It is currently affecting 50–60 mil-
lion persons across the globe. European Data Format (EDF) is 
the de-facto standard based on eXtensible Markup Language 
(XML) for recording EEG data in commercial equipment and 
facilitating data interoperability in multi-center research proj-
ects. Cloudwave processes and stores EDF data files in a rela-
tional database [29].

For pre-surgical evaluation for epilepsy, high-frequency (kHz) 
and long-duration intracranial monitoring from multiple elec-
trodes is used. The duration extends to days. Thus, the produced 
data can easily be categorized as big data. Bower et al. discuss using 
the Multi-scale Annotation Format (MAF) and storing them in 
relational databases for the benefits given by the relational database 
model in the realms of data integrity rules and strict schema [30].

e!DAL framework [31] is used to store, share, and publish 
research data. It used H2 relational database system [32] and con-
cluded that for the data considered for the given use case, rela-
tional database systems were able to help in the field of life sciences 
where there is a big gap between the rate of data collection and the 
rate of data publication.

Both the Extensible Neuroimaging Archive Toolkit (XNAT) 
which is a software platform designed to facilitate common man-
agement and productivity tasks for neuroimaging and associated 
data and the mind research network (MRN) rely on open-source, 
relational database PostgreSQL. COINS is an Innovative 
Informatics and Neuroimaging Tool Suite built to interface with 
these implementations [33].

Database-Centric Molecular Simulation (DCMS), a data 
analytics and management system for molecular simulation, uses 
relational database management system (DBMS). In a broad 
definition, Molecular Simulation (MS) is a powerful tool for 
studying physical/chemical features of large systems. In this 
case, Molecular Simulation data are stored in a relational data-
base management system (DBMS) to take advantage of the 
declarative query interface (i.e., SQL), data access methods, 
query processing, and optimization mechanisms [34].
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6 Conclusions

In conclusion, we can claim that biomedical big data is a novel and 
very useful field to venture into. However, whether or not rela-
tional databases should be used in doing so is an open question 
that should be answered in a case-by-case basis depending on the 
exact requirements of the user application.
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Chapter 6

Semantic Technologies and Bio-Ontologies

Fernando Gutierrez

Abstract

As information available through data repositories constantly grows, the need for automated mechanisms 
for linking, querying, and sharing data has become a relevant factor both in research and industry. This situ-
ation is more evident in research fields such as the life sciences, where new experiments by different research 
groups are constantly generating new information regarding a wide variety of related study objects. 
However, current methods for representing information and knowledge are not suited for machine process-
ing. The Semantic Technologies are a set of standards and protocols that intend to provide methods for 
representing and handling data that encourages reusability of information and is machine-readable. In this 
chapter, we will provide a brief introduction to Semantic Technologies, and how these protocols and stan-
dards have been incorporated into the life sciences to facilitate dissemination and access to information.

Key words Semantic Web, Resources, Ontology, Bio-ontology

1 Semantic Web

Created by Berners-Lee and standardized through the World Wide 
Web Consortium (W3C),1 the World Wide Web (WWW) is a col-
lection of linked Web resources (e.g., documents) that can be 
accessed through the Internet. These Web resources mostly consist 
of documents formatted and annotated in the Hypertext Markup 
Language (HTML), a language that allows the visualization of 
content, such as text and images. An important element in HTML 
is the hyperlink, which is a reference to data (or another HTML 
document) that allows to a user to access it directly. Through the 
hyperlinks (or simply links), the documents of WWW are con-
nected. Because it is rather simple to publish information, WWW 
has grown into a very large web of connected documents. The 
growth in content has led to the situation where it is not possible 
to review all the available information of any given topic.

1
 https://www.w3.org/.

https://www.w3.org/


84

Such explosive growth of information available in WWW has 
led to the need of automatic processing methods for interchange 
and discovery of data. Automation in processing Web information 
is neither easy nor scalable, however. This limitation has two 
sources: HTML provides structure to visualize content in a human- 
readable form and there is not unified format to present informa-
tion in WWW. Capturing the semantics from plain text and images 
is far from a trivial process. Both of these media are complex to 
analyze and, most of the time, they are related to contextual infor-
mation that is not explicitly expressed within the Web document. 
The second problem is the lack of a unified structure or representa-
tion of information in WWW. Even in the case where we can iden-
tify relevant elements based on heuristic mechanisms, such as 
patterns over the text, the lack of a common structure or format 
across multiple Web pages limits the capability and efficacy of this 
approach. Because the same content can be expressed in multiple 
forms, identifying one piece of information across multiple WWW 
resources becomes a rather difficult task.

The Semantic Web extends WWW by offering a framework for 
publishing data on the Web. It establishes standards and protocols 
(i.e., Semantic Technologies) for representing and handling data 
that integrates meaning and is machine-readable. The Semantic 
Web intends to encourage the reuse and exchange of information 
as well as the use of sophisticated processing methods such as 
deductive reasoning and inference. These activities should lead to 
more meaningful results.

2 Semantic Technologies

The W3C has created a set of standards and protocols to describe 
and exchange data on the Web that extends the Web of documents 
to a Web of data (i.e., Linked Data) (W3C). These standards and 
protocols permit storage of data, the creation of vocabularies and 
knowledge representation models, and the definition of mecha-
nisms to handle data (e.g., query) on the Web. The Semantic Web, 
through these technologies, will allow the design of more complex 
software agents that can autonomously navigate this web.

The protocols and standards used in the Semantic Web design 
are part of W3C’s Semantic Web Stack. Some of the elements of 
the Stack are inherited from the WWW as essential components, 
such as the Internationalized Resource Identifier (IRI) which pro-
vides a unique identifier for Web resources, the eXtended Markup 
Language (XML) which allows the creation of structured docu-
ments, XML Namespaces for the managing of multiple sources, 
and Unicode for character representation. On top of these basic 
elements is the Resource Description Framework (RDF) which 
provides a language to model data as objects with properties. The 
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following layer in the Stack corresponds to knowledge representa-
tion languages while rules and query languages form the next layer. 
The last layers correspond to technologies that have not been stan-
dardized, such as user interfaces.

Resource Description Framework (RDF)2 is a family of specifica-
tions for modeling metadata and designed to provide a standard 
form for data interchange. RDF describes information as state-
ments of resources. These statements are expressed as triples of the 
form subject–predicate–object. For example, the statement “the 
car is red” in RDF has as subject “the car,” as predicate “is,” and 
as object “red.”

RDF was developed as a core component for the Semantic 
Web, with many standards being syntactic and semantic extensions 
of it. While syntax extensions are mostly expansions to the vocabu-
lary in the form of notations, semantic extensions refer to entail-
ment of the statements. This means that if a statement is valid in 
RDF it should be also valid in the extension. However, in most 
cases the extensions of RDF incorporate new constraints, such as 
OWL languages that we will review later. These new constraints 
are considered entailment regimes. That is, if a statement is valid in 
RDF, it is valid in the extension unless the extension does not allow 
the statement. By allowing entailment regimes, RDF permits the 
specialization of the extension without losing compatibility.

Because of its structure, a set of RDF statements can be repre-
sented as a labeled directed graph (i.e., RDF Graph). In the graph, 
both subject and object can represent vertices while the predicate 
corresponds to the edge. The direction of the edge is from the 
subject to the object. Considering a set of RDF statements as a 
graph permits a more manageable approach for algorithms that 
process RDF data since it indicates how to connect the different 
parts of the data set.

An ontology is an explicit specification of a shared conceptualiza-
tion [1] that, through concepts, relationships (properties), and 
individuals, provides both a vocabulary and a model of the domain 
it represents. An ontology can formally describe the structure of 
knowledge by providing a hierarchical classification (categoriza-
tion) of concepts of a domain, with their corresponding properties. 
In the simplest case, an ontology might be a vocabulary of the 
domain, while in other cases, it can model hierarchy and properties 
of concepts and relations. Ontologies are incorporated into the 
Semantic Web by two standards: RDF Schema (RDFS) and Web 
Ontology Language (OWL).

2
 https://www.w3.org/RDF/.
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RDFS3 is an extension to RDF that provides basic constructs 
for describing ontologies. In RDFS, it is possible to define a group 
of similar resources as classes (rdfs:Class) and subclasses 
(rdfs:subClassOf). It is also possible to define both domain and 
range for properties (predicates). The domain of a property cor-
responds to the class of resources that can be the property’s sub-
ject, while range corresponds to the class of resources that can be 
the property’s object. With these elements (class, domain, and 
range), it is possible to describe vocabularies and simple ontologies 
(taxonomies) in RDFS.

Web Ontology Language (OWL)4 is a family of languages for 
knowledge representation (i.e., ontologies). Like RDFS, they also 
are a semantic extension of RDF, but OWL languages are more 
expressive than RDFS, allowing a more complex representation of 
a domain. While OWL is a semantic extension of RDF (and RDFS), 
its formal semantics are defined (entailment regime) by Description 
Logic (DL), a mostly decidable fragment of First-Order Logic. 
Defining OWL’s semantics with DL allows the use of DL reason-
ers, which are sound and complete [2, 3], with OWL ontologies.

Initially, OWL was comprised of three different languages 
(OWL Full, OWL DL, and OWL Lite) which each had different 
levels of expressivity. The current OWL specification (OWL2) has 
three profiles which have been designed to suite different types of 
real-world applications. OWL2 benefits from significant improve-
ments in description logic which has led to practical reasoners of 
highly expressive ontologies [3], and to description logic languages 
that can handle larger sets of instances [4].

While OWL2 was designed for authoring expressive ontolo-
gies, OWL2 profiles are designed to offer efficient computing per-
formance in logic reasoning (OWL2-DL) and efficient performance 
in query-answering (OWL2-EL).

Similar to data description and knowledge representation, W3C 
has considered a few recommendations for handling semantic data. 
These recommendations intend to offer methods for accessing, 
sorting, and modifying information stored in RDF and its 
extensions.

SPARQL Protocol and RDF Query Language (SPARQL) is a 
semantic query language for retrieving and manipulating RDF 
data. Inspired by Structured Query Language (SQL), a language 
for querying databases, SPARQL offers a SQL-like approach to 
accessing semantic information. Its syntax resembles SQL, offering 
operations such as JOIN, SORT, and AGGREGATE, but the que-
ries are based on patterns over triples. We can make the analogy of 
RDF subject as a primary key, with each object value that is related 

3
 https://www.w3.org/TR/rdf-schema/.

4
 http://www.w3.org/2004/OWL/.
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to the subject being a column entrance. However, RDF offers the 
possibility of multiple values in the column entrees (through sub-
class relations). Currently there are multiple implementations that 
can process SPARQL queries [5], or transform them into other 
languages [6].

Rule Interchange Format (RIF) is an exchange language between 
rule systems for the Semantic Web. Instead of offering a single and 
unified language rule to use over knowledge representation and busi-
ness modeling, RIF offers a set of translation dialects that share syn-
tactic and semantic features available in popular paradigms, integrating 
them with RDF. RIF Basic Logic Dialect (RIF- BLD) is one of the 
major dialects and it corresponds to Horn logic with extensions, such 
as frames (as in F-logic), and other Semantic Web elements (e.g., 
XML Schema). RIF Production Rule Dialect (RIF-PRD) is another 
major dialect that shares elements with well know production rules 
such as Jess [7] and Jboss [8]. In contrast, RIF-BLD, RIF-PRD is 
not based on logic; instead, it uses a more ad hoc approach. RIF Core 
(RIF-Core) is the subset dialect that results from the intersection of 
RIF-BLD and RIF-PRD, allowing some exchange between logic-
based and production-based rules. There are other RIF dialects that 
intend to provide specific capabilities, like compatibility with OWL 
(RIF–RDF+OWL) or XML (RIF+XML–Data).

3 Biomedical Research

The Biomedical Informatics focus is on the optimal use of informa-
tion through technology for improving health, health care, and 
research. Researchers study both the development and the use of 
computer-based methods for knowledge acquisition, data manage-
ment, and decision-making in clinical context. In the case of bio-
medical research, biomedical informatics assists researchers in 
managing the storage and access of data as well as analyzing the 
large volume of data generated from experiments and trials.

Data management and data access have become a critical chal-
lenge for biomedical informatics, especially when considering emerg-
ing multidisciplinary research fields that need to exchange 
experimental data and models. These challenges have led to a strong 
push by the community to incorporate semantic technologies for 
representation, storage, and interchange of biomedical information.

Data interchange and data accessibility are an issue when validating 
results with similar studies and with the emergence of multidisci-
plinary studies that require cross-domain or interdomain analysis. 
Although the large volume of data generated by biomedical 
research is problematic, the nature of the data imposes the larger 
challenges to biomedical informatics. Biomedical data is character-
ized by its complexity and heterogeneity [9].

3.1 Challenges 
in Biomedical 
Research

Semantic Technologies and Bio-Ontologies
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The complexity comes from the multiple dimensions that 
describe the objects of study in life science fields. In biology, organ-
isms can be categorized by their function, their structure, or how 
they can be affected by malfunction. In the case of pharmacology, 
the element of analysis can be categorized by its composition, its 
properties, and its origin. Data representation and categorization 
cannot always be met with traditional representation models.

Biomedical data heterogeneity is caused by the constant change 
(and improvement) of experimental setups and the use of different 
approaches (i.e., themes) in the experiments. Biomedical research 
has strong tradition of making research data available with many 
public repositories consisting of data generation [10], observations 
[11], experimental results [12], and publications [13]. In most 
cases, each of these repositories will have a different representation 
of the data based on the theme, methodology, and technology 
used to perform the experiments. This results in little compatibility 
between repositories for data exchange, merger, or cross source 
(schema) data analysis.

Now, when considering complexity and heterogeneity, the vol-
ume of biomedical data becomes a challenge. The heterogeneity of 
data can be tackled by mappings and transformation rules. 
Mappings can indicate matching attributes across different data-
bases while rules can indicate the type of transformation (e.g., 
mathematical) necessary to pass data instances from one schema to 
another one. The creation of mappings and transformation rules 
requires deep understanding of what the data represents and how 
the data is structured. This requirement means that both mappings 
and rules must be manually created with limited automation. As 
the data and data sources increase in size, handcrafted mappings 
and transformation rules become more difficult to implement.

Additionally, when addressing complexity in traditional sys-
tems, it is very easy to duplicate information to represent the mul-
tidimensionality of the data. This factor in combination with both 
the volume and the heterogeneity of data creates a serious road-
block for the interchange of information.

The challenges in biomedical informatics has led biomedical 
researchers to become early adopters of Semantic Technologies 
[14]. The Semantic Web Applications and Tools for Life Sciences 
(SWAT4LS)5 Workshop has sparked critical discussions about 
integrating Semantic Web technologies into the life science 
domains [15]. It has addressed varied topics from semantic anno-
tation of medical information [16] and analysis of heterogeneous 
data sources for drug safety risks [17], to modeling drug-drug 
interactions [18].

5
 http://www.swat4ls.org/.
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The approach to Semantic Web used by biomedical informat-
ics that has become best known is the use of ontologies. The 
National Center for Biomedical Ontologies (NCBO)6 offers online 
tools for the access, review, and integration of biomedical and clini-
cal ontologies. The most well-known tool offered by NCBO is 
BioPortal, a repository for biomedical ontologies. Through 
BioPortal, it is possible to access more than 400 ontologies. 
Integrated with BioPortal is the semantic annotation tool: NCBO 
Annotator. Semantic annotation is the task of labeling or linking 
data (e.g., terms in a document) with ontological terms. NCBO 
Annotator can annotate with terms of any of the ontologies avail-
able in BioPortal.

Similar to BioPortal, Open Biomedical Ontologies (OBO)7 
Foundry initiative also hosts a large collection of biomedical ontol-
ogies. OBO’s Basic Formal Ontology (BFO) offers an upper-level 
ontology on which OBO Foundry is built [19]. OBO’s Relations 
Ontology (RO) offers a collection of ontological relations. RO 
offers a standardized set of relations across the ontologies in OBO 
Foundry. Through BFO and RO, OBO promotes integration by 
reusing knowledge representation and creating a common vocabu-
lary of terms. In OBO Foundry we can find Gene Ontology (GO) 
and Protein Ontology (PRO), and many others.

With so many available ontologies, specialized semantic search 
engines have been developed to take advantage of ontologies and 
annotated data. BioTCM-SE offers information retrieval across 
Western Medicine and Traditional Chinese Medicine [20]. This 
engine offers an accurate method to discover implicit knowledge 
connections across these two approaches to health care. Another 
semantic search engine is GeneView, which uses a semantically 
annotated version of PubMed to permit searches based on onto-
logical entities [21]. By relying on the semantic annotation and 
small ontology, it can retrieve and rank documents based on their 
relations and the mention of specific concepts. Finally, we have 
Quertle’s commercial biomedical semantic search engine Quetzal.8 
Quetzal searches across a wide range of document repositories, 
including PubMed, the NIH grants database, and other biomedi-
cal related collections. The search is semantic (driven by  identifying 
concepts and relations) and integrates their proprietary linguistic 
analysis tool, Quantum Logic Linguistic, to produce accurate and 
meaningful results.

6
 http://bioportal.bioontology.org/.

7
 http://www.obofoundry.org/.

8
 https://www.quetzal-search.info/.
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4 Conclusions

The Semantic Web is a framework of publishing data, which intends 
to facilitate the sharing and the linking of information. Based on a 
set of standards and protocols, the Semantic Web includes lan-
guages to represent data and knowledge as well as protocols to 
query and manipulate them. By incorporating meaning and mak-
ing the protocols and standards machine-readable, the Semantic 
Web encourages the reuse of data and introduces sophisticated 
processing mechanisms such as logic reasoning.

The researchers in life sciences were early adopters of the 
Semantic Technologies. Because of the challenges of the object of 
study and the volume of data they generate, the life sciences require 
the representation of complex entities and the sharing of large vol-
umes of information all while providing mechanisms to link differ-
ent data sets. Currently, research from the life sciences presents 
new challenges while improving different aspects of Semantic 
Technologies.
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Chapter 7

Genome-Wide Analysis of MicroRNA-Regulated Transcripts

David Chevalier and Glen M. Borchert

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by either degrading 
transcripts or repressing translation. Over the past decade the significance of miRNAs has been unraveled 
by the characterization of their involvement in crucial cellular functions and the development of disease. 
However, continued progress in understanding the endogenous importance of miRNAs, as well as their 
potential uses as therapeutic tools, has been hindered by the difficulty of positively identifying miRNA 
targets. To face this challenge algorithmic approaches have primarily been utilized to date, but strictly 
mathematical models have thus far failed to produce a generally accurate, widely accepted methodology for 
accurate miRNA target determination. As such, several laboratory-based, comprehensive strategies for 
experimentally identifying all cellular miRNA regulations simultaneously have recently been developed. 
This chapter discusses the advantages and limitations of both classic and comprehensive strategies for 
miRNA target prediction.

Key words CLIP, Genome-wide analysis, miRNA, miRNA target prediction, RNA immunoprecipitation

1 Introduction

As we have seen in the previous chapters of this book, microRNAs 
(miRNAs) are involved in all cellular processes, and their misex-
pressions or misregulations are linked to many human diseases. 
While the different steps of synthesis, mechanism of action, and 
functions of miRNAs are relatively well understood, one aspect of 
miRNA biology remains largely unresolved: accurate identification 
of miRNA targets.

Since the discovery of the lin-4 gene in Caenorhabditis elegans 
and its mechanism of action [1], one of the main focuses of miRNA 
research is to identify targets—the link between miRNAs and the 
functions that they regulate. Only the comprehensive identification 
of a miRNA’s targets can fully determine the process(es) regulated 
by a specific miRNA. That said, the identification of a miRNA’s tar-
gets remains extremely challenging for several reasons. For example, 
firstly, the short miRNA nucleotide sequence (seven nucleotides) 
involved in the recognition of a target mRNA does not provide 
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enough sequence specificity to limit the number of potential targets. 
Secondly, partial complementarity between a miRNA and its targets 
leads to conflicting models of target interaction. Thirdly, definitively 
identifying all of a miRNA’s targets is complicated by each miRNA 
regulating the expressions of unique set of multiple genes. Despite 
these (and other) challenges, the identification of miRNA targets has 
significantly improved over the past 15 years, and many unique 
miRNA–mRNAregulations have now been defined. That said, how-
ever, while the study of the interaction between a miRNA and one 
target can bring crucial information about the function of that 
miRNA, it can also undermine fully understanding a miRNA’s 
broader cellular role as a single miRNA typically regulates multiple 
target genes simultaneously. As such, genome-wide approaches have 
now begun to be developed to facilitate the identification of all of 
the targets of a specific miRNA in parallel.

2 Computational Prediction of miRNA Targets

The in silico prediction of miRNA targets was first developed based 
on early experiments characterizing the binding of miRNAs to 
miRNA targets. These first experiments showed that partial 
sequence complementarity between miRNAs and their targets was 
sufficient to induce the repression of gene expression [1–4]. 
However, while the search for long stretches of nucleotides with 
near perfect matches to known miRNAs was largely successful for 
identifying miRNA targets in plants, this same strategy did not 
work well in animals [5], and it was soon found that largely imper-
fect pairing between miRNAs and their targets predominates in 
animals [6]. As such, several significantly more complex algorithms 
based on a multitude of strategies have since been developed to 
identify miRNA targets in animals. A noncomprehensive list of 
these algorithms is summarized in Tables 1, 2, and 3. These differ-
ent algorithms can be classified into the following three groups: 
first generation, ab initio, based on computational models; sec-
ond generation, learning-based approaches; and third generation, 
based on a combination of both machine learning and ab initio 
approaches. The main caveat when evaluating these different 
methods is that there has been little experimental validation of any 
of the putative miRNA–mRNA interactions predicted by these 
methods. As such, the lack of laboratory verification coupled with 
the ease of computational predictions has resulted in vastly distinct 
sets of putative targets and general confusion as to the best method 
for predicting miRNA targets in the field.

The first algorithms to identify miRNA targets were based on ab 
initio approaches (Table 1). The predictions from these algorithms 
were based on several characteristics of the interactions between 

2.1 Ab Initio 
Algorithms

David Chevalier and Glen M. Borchert
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miRNAs and their targets. The most widely utilized of these char-
acteristics included: the 5′ seed of the miRNA (nucleotide positions 
2–8 of the miRNA) being complementary to the 3′UTR of a 
mRNA target, the binding sites of a miRNA being highly conserved 
between species, and the miRNA–mRNA duplex having a higher 
negative folding energy than the single RNAs themselves. 
Importantly, algorithms strictly based on these characteristics do 
not directly require any experimental data to predict miRNA tar-
gets. Consequently, the main pitfall of the algorithms based on ab 
initio approaches is the high number of false positives typically iden-
tified for a given miRNA [7, 8]. To limit the number of false 

Table 2 
Machine learning algorithms for miRNA target prediction

Algorithm Species Web server Reference

GenMir ++ Homo sapiens http://www.psi.toronto.edu/genmir [81]

MBSTAR Any species http://www.isical.ac.in/~bioinfo_miu/MBStar30.htm [82]

microTar Any species http://tiger.dbs.nus.edu.sg/microtar/ [83]

miTarget Animals http://cbit.snu.ac.kr/~miTarget [83]

mirTarget2 Animals http://mirdb.org [84]

mirWIP Caenorhabditis 
elegans

http://146.189.76.171/query.php [85]

miRror and 
mirror Suite

Animals http://www.proto.cs.huji.ac.il/mirror/ [86, 87]

MiRTif Any species http://mirtif.bii.a-star.edu.sg/ [88]

NBmirRTar Any species http://wotan.wistar.upenn.edu/NBmiRTar [89]

Piranha Any species http://smithlabresearch.org/software/piranha/ [90]

Sylamer Any species http://www.ebi.ac.uk/enright/sylamer/ [91]

Table 3 
List of the hybrid algorithms used for the prediction of miRNA targets

Algorithm Species Web server Reference

ComiR Animals http://www.benoslab.pitt.edu/comir/ [92]

mirSVR Animals http://www.microrna.org/microrna/home.do [93]

miREE Any species http://omictools.com/miree-s7507.html [14]

TargetMiner Any species http://www.isical.ac.in/~bioinfo_miu/targetminer20.htm [94]

MTar Any species None [95]

RegRNA 2.0 Any species http://regrna2.mbc.nctu.edu.tw/ [96]

David Chevalier and Glen M. Borchert
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positives, accessory restrictions were often included. For example, 
when the conservation of a predicted miRNA binding site between 
species is utilized, the algorithm parameters can be restricted to 
require more evolutionarily distant relationships [6]. Notably, while 
employing these restrictions help to decrease the number of false 
positives, they can also lead to the elimination of true targets.

Clearly, as additional algorithms for identifying miRNA targets 
based on ab initio approaches continue to be developed, it becomes 
increasingly more difficult to select the best target prediction strat-
egy to utilize. To address this issue, several reports have now per-
formed comparisons of these algorithms based on sensitivity and 
precision. Of note, Sethupathy et al. were one of the first groups to 
compare the five leading algorithms and propose integrating them 
[9]. These authors suggest that the intersections of the results 
obtained from the five algorithms result in a much higher specific-
ity than any single strategy in isolation. That said, their work actu-
ally suggested that the best compromise between sensitivity and 
specificity was obtained through identifying the common results 
from TargetScan and PicTar. Also of note, Alexiou et al. [10] simi-
larly reported a comparison of eight algorithms using a data set 
obtained from a previous study [11] and similarly found that iden-
tifying the intersections of the targets obtained from distinct algo-
rithms resulted in a higher frequency of actual target identification. 
Finally, more recently, Kumar et al. compared four algorithms 
using CLIP-seq datasets [12] and found the miRanda algorithm 
had the best sensitivity whereas TargetScan and PicTar had the 
lowest sensitivity.

Machine learning algorithms were developed more recently than 
algorithms based on ab initio approaches (Table 2). These algo-
rithms are directly based on experimental data and require signifi-
cant laboratory characterizations of the interactions between 
miRNAs and their targets for their development. These data are 
used to train a classifier that facilitates the identification of miRNA 
targets based on similarity with the training data. The classifier of 
these algorithms uses experimentally characterized miRNA–mRNA 
interactions to differentiate between positive and negative interac-
tions between miRNAs and mRNAs. That said, few published neg-
ative interaction reports are available largely due to the fact that 
disproven experimental interactions are usually deemed not useful 
and discarded. As such, the experimental data set of negative inter-
actions to train the classifiers of these algorithms is strikingly limited 
as compared to the experimental data set of positive interactions. 
The main pitfall of machine learning algorithms is therefore simply 
a lack of negative interaction data sets to fully train algorithm clas-
sifiers. That said, a report by Baek et al. [13] comparing the machine 
learning based algorithm mirWIP with five existing ab initio algo-
rithms previously found that mirWIP had significantly lower rates 
of false positives and higher sensitivity than ab initio algorithms.

2.2 Machine 
Learning Algorithms

Genome-Wide Analysis of MicroRNA-Regulated Transcripts
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Machine learning algorithms, however, are still prone to high 
numbers of false positives. Recently, Reyes-Herrera et al. [14] 
compared five machine based algorithms using datasets with strong 
experimental evidence obtained from public databases and found 
that each of these algorithms carried various unbalanced results for 
sensitivity and specificity. In light of this, as well as other problems 
of the algorithms based on ab initio and computer based approaches, 
hybrid algorithms employing elements of both strategies have now 
also been developed (Table 3). These hybrid algorithms integrate 
the strong features of each of these two approaches avoiding many 
of their principle pitfalls.

3 Experimental Identification of miRNA Targets

While algorithms such as those described above have been success-
ful in identifying many miRNA targets, they also carry significant 
limitations. First, there is little overlap in the identified target data 
sets between algorithms. Second, these predictions do not include 
the biological context and are therefore not cell specific. To avoid 
limitations such as these, in vivo and in vitro approaches have been 
developed to identify legitimate miRNA regulations. These tech-
niques include transcriptome, proteome, and biochemical 
approaches. Transcriptome and proteome approaches are indirect 
methods as transcriptome approaches involve the identification of 
altered RNA expressions while proteome approaches use altered 
protein levels as a means to identify miRNA targets. In contrast, 
many biochemical approaches attempt to directly characterize spe-
cific interactions between miRNAs and their targets.

Microarray-based techniques were the first to allow the study of 
changes in gene expression for a high number of genes at the same 
time as a consequence of miRNA regulation in order to deduce 
the targets of miRNAs. More recently, high-throughput RNA 
sequencing (RNA-Seq) has allowed a much more thorough exam-
ination of cellular transcriptomes. That said, one strategy for iden-
tifying miRNA regulations using transcriptomic analyses involves 
the overexpression of a specific miRNA [15–18] followed by the 
determination of significant changes in gene expression to identify 
targets of a specific microRNA. The overexpression of miRNAs in 
this manner has several major pitfalls. First, a gene could be mis-
takenly identified as a target due to the high nonphysiological 
expression levels of a miRNA saturating the RISC complex pre-
venting the incorporation of other miRNAs into RISC [19]. 
Secondly, cells used for overexpression analyses are generally not 
the cell types where a miRNA regulation is endogenously relevant. 
For example, Hela cells have been employed to study brain- specific 
miRNAs [18]. As a result, targets can be missed because the 

3.1 Transcriptome 
Approaches

David Chevalier and Glen M. Borchert
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genes of interest are not transcribed in the cell type used for the 
overexpression. Further, some genes that are not normally 
expressed in the cell type from which the miRNAs originate may 
be expressed in the cell used for the overexpression leading again 
to the false identification of a target. A second transcriptomic 
strategy includes the use of mutant Dicer. Without functional 
Dicer proteins, pre-miRNAs cannot be processed into functional 
miRNAs, and miRNAs can therefore not regulate the expression 
of their targets [20–23]. Finally, another transcriptomic strategy 
of note includes the isolation of a mutant in a specific miRNA or 
the knock down of a specific miRNA [24–27]. Techniques to 
knock down miRNAs include small interfering RNAs (siRNAs) 
[24], antisense oligonucleotides such as locked nucleic acids 
(LNA) [28] and antagomirs [26], miRNA sponges [29], and 
small molecular inhibitors [30, 31].

Transcriptome approaches have thus far proven quite success-
ful in identifying miRNA targets and have helped confirm many 
early ideas about miRNA functions such as tissue specific gene 
regulations, the importance of seed sequences in defining miRNA 
targets, the broad effects of miRNAs on RNA stability, and in 
agreeing that miRNAs have a large number of targets. That said, 
however, transcriptome approaches cannot directly characterize 
miRNA translational repressions. As such, the greatest pitfall asso-
ciated with examining the expressions of particular mRNAs by 
microarray or RNA-Seq is unquestionably that many microRNAs 
regulate their targets through translational repression.

As with transcriptome approaches, proteome approaches also repre-
sent indirect methods to identify miRNA targets. In contrast, how-
ever, these approaches allow for the identification of miRNA targets 
regulated at the translation level. The first proteome approaches 
involved translation profiles which do not directly measure protein 
levels but instead estimate translation rates. Two different methods 
can be utilized for translation profiling: polyribosome profiling and 
ribosome profiling. The first report employing these methods iden-
tified translational changes due to miRNAs through characterizing 
transcripts that were released from translational repression after 
knock down of a specific miRNA via polyribosome profiling [24]. 
That said, similar to computational strategies, this approach has 
been found to generate a high rate of false positives. As an example, 
this strategy led Hendrickson et al. [32] to report the identification 
of around 600 potential targets of miR-124. The second method of 
translation profiling is ribosome profiling or ribosome foot print-
ing. This method involves the treatment of samples with RNAse I 
after the addition of cyclohexamide and cell lysis [33]. RNAase I 
degrades all mRNAs not protected by ribosomes after which the 
surviving mRNAs are sequenced. Highly similar to polyribosome 
profiling, ribosome profiling also produces a large numbers of false 

3.2 Proteome 
Approaches

Genome-Wide Analysis of MicroRNA-Regulated Transcripts
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positives and still only represents an indirect method of miRNA 
target identification.

In contrast to these strategies, other approaches have now 
been developed to directly measure the changes in proteins levels 
in response to miRNAs. For example, stable isotope labeling by 
amino acids in cell culture (SILAC) has been successfully used to 
identify changes in proteins in response to miRNAs [11, 13, 18, 
34, 35]. Another approach directly examining changes in proteins 
levels involves two-dimensional differentiation in-gel electropho-
resis (2D-DIGE). This approach includes the electrophoresis of 
two different sets of proteins labeled with different dyes on a single 
gel. Differentially expressed proteins between two data sets are 
determined by identifying differences in gel migrations followed 
by mass spectrometry. This approach can successfully identify 
miRNA targets by comparing proteomes with or without treat-
ment with miRNA inhibitors [36, 37].

Importantly, proteome approaches such as these can success-
fully facilitate genome-wide identifications of regulations of transla-
tion by miRNAs. As many miRNA targets are only regulated at the 
translation level, proteome analyses are instrumental to describing 
these relationships. That said a combinatorial transcriptome and 
proteome analysis is perhaps the best currently available method for 
the genome-wide identification of microRNA targets. Also, by ana-
lyzing the mRNA sequences of targets regulated at the translational 
level, the rules for miRNA targeting derived from both algorithms 
and transcriptome approaches can be better examined [13].

Neither transcriptome nor proteome approaches can identify 
miRNA targets directly as these strategies instead use the levels of 
transcripts or proteins as a read out of miRNA activity. Therefore, 
in order to directly ascertain miRNA targets, researchers have now 
developed several biochemical approaches to characterize miRNA–
target interactions directly.

RNA immunoprecipitation (RIP) approaches are based on the 
immunoprecipitation of proteins that bind miRNAs followed by 
the sequencing of bound RNAs. This approach was originally suc-
cessfully used to identify mRNAs bound to specific RNA-binding 
proteins [38]. That said, for the identification of miRNA targets, a 
protein component of the RISC complex is typically used to 
 immunoprecipitate a miRNA directly in complex with a target [25, 
39–43]. While the overall approach remains the same, researchers 
have customized the immunoprecipitation techniques to specifi-
cally identify miRNA targets. Firstly, the protein that is immuno-
precipitated varies: different Argonaute proteins or TNRC6 can be 
used. Secondly, various methods of tagging the RISC complex 
proteins including HA-tagged, c-myc, and FLAG can be employed. 
Finally, the determination of the sequence of the miRNA target is 
now commonly performed using RNA-Seq.

3.3 RNA 
Immunoprecipitation 
(RIP) Approaches

David Chevalier and Glen M. Borchert
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Importantly, RIP has now been successfully employed in iden-
tifying known and new miRNA targets and has proven significantly 
more effective at identifying legitimate miRNA targets than any 
combination of classic algorithmic or transcriptomic approaches 
[40–42]. That said, RIP is not without problems. The RIP 
approach requires cells to be lysed before RIP and therefore dis-
turbs cellular compartmentalizations. As a result, RNAs and pro-
teins initially in different cellular compartments can potentially 
interact and produce false positives [44]. In addition, the RIP 
approach requires a sufficient level of interaction between a miRNA 
and its targets to maintain their association. It is unknown whether 
some weak interactions between miRNAs and targets are lost dur-
ing the immunoprecipitation process.

To address the potential drawbacks of the RIP approach and to 
ensure that immunoprecipitation results really reflect true cellular 
interactions an additional step can be added to RIP. This modified 
approach called cross-linking immunoprecipitation (CLIP) was 
originally developed to identify RNA–protein interactions [45]. In 
this strategy, a UV cross-linking step is used to induce the forma-
tion of covalent bonds between a RNA and its targets prior to 
immunoprecipitation [7, 46, 47]. More recently, the combination 
of CLIP with RNA-Seq has resulted in the development of a new 
approach: high-throughput sequencing of RNA isolated by cross-
linking immunoprecipitation (HITS-CLIP) or cross-linking 
immunoprecipitation sequencing (CLIP-Seq). Importantly, HITS- 
CLIP enables the identification of miRNA targets and the location 
of miRNA binding sites both within the 3′UTR and the coding 
sequence of target mRNAs [7]. However, despite being a powerful 
approach, HITS-CLIP too is not without limitations. Of note, the 
crosslinking efficiency between proteins and RNAs is fairly low 
potentially resulting in a loss of potential targets [48]. In addition, 
this approach only identifies a target region of around 100 base 
pairs on an mRNA instead of a specific target site [48].

In an attempt to improve the cross-linking between RNA and pro-
teins, a modification of the CLIP approach has recently been devel-
oped. This method, photoactivatable-ribonucleoside-enhanced 
cross-linking and immunoprecipitation (PAR-CLIP), has now 
proven to be significantly more efficient at crosslinking proteins 
and RNAs than CLIP [48, 49]. In this method, cells are incubated 
with a photoactivatable nucleoside such as the 4-thiouridine, 
resulting in a higher frequency of transitions from thymidine to 
cytidine in the cross-linked sites as compared to the non-cross- 
linked regions. When compared to CLIP, this change improves the 
amount of RNA recovered after immunoprecipitation by 100- to 
1000-fold and allows for the identification of specific interaction 
sites between miRNAs and their mRNA targets [50].

3.3.1 CLIP, HITS-CLIP

3.3.2 PAR-CLIP

Genome-Wide Analysis of MicroRNA-Regulated Transcripts
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While CLIP and related approaches provide powerful data, each of 
these strategies is significantly hindered by the inefficiency of 
cDNA library production from immunoprecipitated RNAs. The 
cDNA libraries generated from these techniques are often of low 
complexity due to low amounts of recovered RNAs. In addition, 
the inefficiency of two RNA ligation steps in the preparation of the 
cDNA libraries as well as the formation of truncated cDNAs (which 
are usually lost during the formation of the cDNA libraries) also 
contribute to the low complexity of these cDNA libraries. To 
address this, a new technique called individual-nucleotide resolu-
tion CLIP (iCLIP) has now been developed [51]. In iCLIP, one of 
the RNA ligation steps with low efficiency is replaced by a more 
efficient intramolecular cDNA circularization and truncated 
cDNAs are also sequenced [52].

The cross-linking, immunoprecipitation, and sequencing of hybrids 
(CLASH) approach is also a recent modification of the traditional 
CLIP approach [53, 54]. The CLASH approach includes an addi-
tional step that ensures the capture of both miRNAs and their tar-
gets: the miRNAs and targets are ligated together with the RISC 
complex. After immunoprecipitation, the miRNA–target complex 
is sequenced. This approach is unique in that it leaves little doubt 
as to which mRNA a miRNA is regulating.

One final strategy of note is the parallel analysis of RNA ends 
(PARE) (also called degradome-seq or genome-wide mapping of 
uncapped transcripts (GMUCT)). PARE has recently been used to 
identify the mRNA degradation products produced by miRNA 
regulations at a genome-wide scale. Using a modified 5′ RNA 
ligase mediated-rapid amplification of cDNA ends, the cleavage 
products of miRNAs are specifically reversed transcribed, amplified 
and sequenced after addition of adaptors [55, 56]. Importantly, 
while this approach has proven successful in identifying numerous 
cleavage sites in plants [57–59], it has proven less successful in 
animals in animals [60–62]. Importantly, miRNA-directed  cleavage 
of mRNAs requires extensive base pairing between miRNAs and 
their targets, and while extensive base pairing and degradation of 
miRNA targets frequently occurs in plants, this is much less preva-
lent in animals. As such, PARE analysis is generally only suited for 
studies of plant species [63].

4 Conclusion

As outlined in this chapter, numerous strategies for identifying 
microRNA-regulated transcripts on a genome-wide scale have now 
been developed. Importantly, while each strategy boasts significant 
advantages, each also carries specific limitations. As such the best 

3.3.3 iCLIP

3.3.4 CLASH

3.4 PARE
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possible strategy for the genome-wide identification of microRNA 
targets has likely yet to be developed but will most likely consist of 
a combinatorial computational approach partnered with compre-
hensive transcriptomic, proteomic, and/or immunoprecipitation- 
based approaches.
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Chapter 8

Computational Prediction of MicroRNA Target Genes, 
Target Prediction Databases, and Web Resources

Justin T. Roberts and Glen M. Borchert

Abstract

MicroRNA (miRNA) mediated silencing and repression of mRNA molecules requires complementary 
base pairing between the “seed” region of the miRNA and the “seed match” region of target mRNAs. 
While this mechanism is fairly well understood, accurate prediction of valid miRNA targets remains chal-
lenging due to factors such as imperfect sequence specificity, target site availability, and the thermodynamic 
stability of the mRNA structure itself. As knowledge of what genes are being targeted by each miRNA is 
arguably the most important facet of miRNA biology, many approaches have been developed to address 
the need for reliable prediction and ranking of putative targets, with most using a combination of various 
strategies such as evolutionary conservation, statistical inference, and distinct features of the target 
sequences themselves. This chapter reviews the pros and cons of a number of different prediction algo-
rithms, showcases some databases that store experimentally validated miRNA targets, and also provides a 
case study that profiles some of the potential microRNA–mRNA interactions predicted by each methodol-
ogy for various human genes.

Key words MicroRNA, mRNA, Target prediction, Algorithms, Databases, Resources

1 Introduction

Since the initial discovery of these small regulatory molecules in 
the early 1990s [1], the number of reported microRNAs has 
increased exponentially. MiRBase [2], the chief data repository for 
microRNAs, currently contains over 28,000 sequences, with 
approximately 2600 in humans alone. However, despite the fact 
that new miRNA and microRNA-like molecules are identified 
every year, the vast majority of annotated miRNAs have no accu-
rately characterized targets. This is primarily due to three factors: 
(1) the high difficulty and expense of experimentally validating 
miRNA mediated gene regulation, (2) the ability for multiple 
microRNAs to regulate the same mRNA target [3] (and conversely 
a single miRNA’s ability to regulate multiple mRNAs [4]), and 
arguably most importantly, (3) the lack of a proven, widely accepted 
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prediction algorithm that can overcome the sheer computational 
complexity required to generate reliable targets [5]. Despite these 
challenges, however, the need for accurate miRNA target predic-
tion remains high as increasingly more cellular processes and 
pathologies are being reported to have some degree of microRNA 
mediated regulation [6].

The induction of gene silencing and repression via microR-
NAs typically requires complementary base pairing between spe-
cific regions of the miRNA and its target mRNA. Known as the 
“seed” region within the microRNA, nucleotides 2–7 are the 
canonical positions that must match to complementary sites 
within the mRNA in order to be regulated [7] (Fig. 1a). However, 
while this specific pairing is necessary in most cases, there are 
reported examples of other types shown to be sufficient for func-
tional regulation [8]. For instance some studies have found that 
non Watson–Crick pairing with G–U wobbles or mismatches may 
be acceptable [9], and very extensive pairing to the 3′ region of 
the miRNA can also compensate for a wobble or mismatch to 
some of the seed positions [10] (Fig. 1b). Nevertheless, these 
non-canonical binding sites are extremely rare, and the vast major-
ity of reports [4, 11, 12] show that strict seed pairing is the most 
reliable predicator for functional target repression, and therefore, 
most prediction strategies require seed complementary in their 
algorithms. That said, because the seed only spans six or seven 
nucleotides, many putative target matches will occur over a given 
mRNA just by chance giving rise to hundreds of possible targets 
for most miRNAs. Indeed, some estimates report that as much as 
90% of all human genes are regulated by miRNAs [13], with some 
targets being regulated by a number of different miRNAs [3]. 
Given that the impetus for undertaking miRNA target prediction 
is often the need to generate a reliable yet concise list of targets for 
experimental validation, biologically meaningful ranking of the 
high number of possible targets is highly desired. Therefore, when 

Fig. 1 Mechanism of microRNA mediated gene regulation. (a) MicroRNA induced gene silencing and repres-
sion generally requires base pairing between a specific region within the miRNA (referred to as the “seed”) and 
a complementary “seed match” area within the mRNA. These regions are shown in red in the figure above, 
with base pairing indicated by bold vertical lines. (b) In rare cases, noncanonical pairings such as G–U wobbles 
(shown in green) may still be acceptable for functional regulation if they occur along with very extensive base 
pairing to the 3′ region of the miRNA

Justin T. Roberts and Glen M. Borchert
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evaluating the various target prediction algorithms the ability not 
only to predict microRNA–mRNA interactions but also to accu-
rately compare and rank them should be considered as well.

2 Target Prediction

While there are many different factors that affect a miRNA’s ability 
to bind to its target, in terms of prediction strategies, the features 
can broadly be categorized into four groups: attributes of the 
mRNA sequence itself, thermodynamic stability of the microRNA–
mRNA duplex, evolutionary conservation, and statistical inference 
based machine learning. Most target prediction algorithms typi-
cally utilize a combination of these strategies, with some relying 
more heavily on certain groups and others being more balanced. It 
should be noted that there is not a one size fits all approach; for 
instance, if the microRNA in question is highly conserved among 
species, then a prediction strategy that favors that facet should be 
considered, whereas more recently discovered miRNAs might 
require a different methodology. Below, each major strategy is dis-
cussed along with a brief profile of a relevant tool that utilizes that 
approach. A comprehensive table of many other target prediction 
algorithms (Table 1) is also provided with the specific strategies 
they incorporate indicated.

Detailed analysis of conserved microRNA–mRNA interactions has 
shown that sequence features within the seed region as well the 
immediate surrounding area have a distinct effect on the efficacy of 
miRNA induced gene repression, and thus these features have 
been incorporated into target prediction strategies to increase their 
accuracy. Specifically, several classes of targets sites have been iden-
tified [7], with the most effective canonical sites (listed in order of 
decreasing preferential conservation and regulatory efficiency) 
being the 8mer Watson–Crick match to miRNA positions 2–8 with 
an “A” opposite position 1, followed by the 7mer site (position 
2–8 match without the “A” opposite position 1), and the 7mer A1 
site (position 2–7 match with an A opposite position 1) [33]. 
Multiple experiments have shown that the preference for an ade-
nosine opposite position 1 is due to the specific recognition of the 
target adenosine within the Argonaute protein [34] and is inde-
pendent of the nucleotide identity within the miRNA [11, 12, 35]. 
Two other site types, each associated with lower conservation and 
efficacy [36], are the 6mer site (position 2–7 match) [33] and the 
offset 6mer site (position 3–8 match) [36] (Fig. 2).

Further, while the type of the target site (as discussed above) 
does strongly influence the strength of gene repression, the  number 
of sites and their relative location has also been shown to be an 
important factor in miRNA induced silencing. Multiple target sites 

2.1 Sequence 
Features
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within 10–50 nucleotides of each other have been shown to induce 
enhanced repression, whereas sites too close to one another (less 
than 8 nt) tend to act competitively [11, 35]. Other site context 
sequence features of note include the positioning of the site out-
side of the path of the ribosome [11], the positioning of the site 
within more accessible 3′ UTR segments [35], high AU content 
along the length of the 3′ UTR [37], shorter overall 3′ UTR length 
[38], and shorter distance from a 3′ UTR terminus [39]. These 
sequence features help explain why a given site is more effective in 
one target mRNA than in another and are thus very informative 
when utilized to build quantitative models within target prediction 
algorithms.

One such algorithm, TargetScan [32] (v7.0; targetscan.org), 
does exactly this by incorporating many of the attributes men-
tioned above into its prediction strategy. Its scoring model consid-
ers over 14 different sequence features and ranks the most 
effectively targeted mRNAs accordingly. In addition, it also allows 
for the incorporation of other prediction approaches mentioned 
later in the chapter including evolutionary conservation, structural 

Fig. 2 Types of miRNA target sites. (a–c) Canonical target sites are between 7 and 8 nucleotides with many 
having a preference for an “A” opposite position 1 (shown in blue). (d, e) Atypical sites are shorter (6mer) 
and generally have reduced efficacy and conservation. Vertical dashes depict complementary Watson–Crick 
pairing, and the numbers above the microRNA sequences indicate positions from the 5′ end

Computational Prediction of MicroRNA Target Genes, Target Prediction Databases…
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stability, and statistical modeling, and it can be implemented on a 
number of different model organisms including human, mouse, 
zebrafish, D. melanogaster, and C. elegans. That said, although the 
algorithm is very comprehensive, its usability is hindered by choos-
ing to default to only displaying those sites that are conserved 
among species. This gives the initial impression that only a limited 
number of miRNAs are targeting a given mRNA and might tempt 
the user to disregard less conserved miRNAs even though they 
have higher scores.

While sequence features such as the ones discussed above are obvi-
ously very informative in terms of predicting microRNA–mRNA 
interactions, the secondary structure, or folding, of the mRNA also 
contributes to target recognition as there is an energetic cost to the 
free base pairing interactions within the mRNA molecule ulti-
mately necessary to make the target accessible for microRNA bind-
ing. That said, many target prediction algorithms incorporate 
thermodynamic stability assessments into their analysis, most com-
monly by comparing minimum free energy states of the predicted 
miRNA–mRNA duplexes, using tools such as Mfold [40], and 
then determining the most energetically favorable hybridization 
sites between the miRNA and the target mRNA. While some algo-
rithms only incorporate these stability measures to confirm initial 
sequence based predictions, others rely on them completely for 
their initial considerations.

One such algorithm, RNAhybrid [31] (http://bibiserv.tech-
fak.uni-bielefeld.de/rnahybrid/), utilizes thermodynamic stability 
as its primary means of microRNA target prediction. The method 
itself is an extension of a classical secondary structure prediction 
algorithm [41] that used known structural energy data to com-
pute minimum free energies of single RNA conformations. 
RNAhybrid builds on this approach by applying the same meth-
odology to two sequences and essentially calculating the mini-
mum free energy of all possible hybridizations between a miRNA 
and its target mRNA. By coupling these results with robust statis-
tical analysis the program provides meaningful predictions of 
microRNA targets based on the thermodynamic stability of 
miRNA–mRNA association. Advantages to this strategy include 
that it can be used to predict noncanonical binding sites and does 
not require conservation of target sites across species (an extremely 
important consideration for species-specific miRNAs). However, 
one potential drawback of this strategy is that the algorithm itself 
relies on free energy calculations based on computational models 
of nucleotide association. Further, in terms of usability, the pro-
gram does not rank the targets by default and thus requires man-
ual manipulation of the output file in order to effectively identify 
the top predictions.

2.2 Thermodynamic 
Stability

Justin T. Roberts and Glen M. Borchert
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Due to the sheer number of possible targets for each microRNA 
(as previously described), prediction strategies often incorporate 
methodologies that attempt to minimize the number of false posi-
tives reported by the algorithm. One such approach is to use 
sequence conservation between different species to limit the num-
ber of predicted miRNA–mRNA interactions to those based on 
homology. This idea is based on the notion that miRNA regula-
tions with advantageous biological functions are selected for and 
maintained over the course of evolution [42]. Typically these types 
of algorithms use comparative sequence analysis to predict miRNA 
targets conserved across multiple genomes. Given a conserved 
miRNA and a set of orthologous 3’UTR sequences, these strate-
gies search for targets that exhibit perfect complementarity with 
the miRNA seed region. However, while this approach does reduce 
the number of predicted false positives, it is also limiting in the fact 
that it can only search for targets of evolutionary conserved miR-
NAs. What’s more, previous studies [43] show that at least 30% of 
experimentally validated microRNA targets are NOT conserved, 
strongly suggesting that homology alone is not a sufficient strategy 
for miRNA target prediction.

That said, in contrast to specifically requiring target site con-
servation, alternative prediction methodologies that utilize other 
sequence homologies and relationships have now also been devel-
oped. One such algorithm, OrBId [26] (http://borchertlab.com/
orbid) contrasts itself to other evolution based approaches by 
attempting to predict targets through identifying the molecular 
origins of individual microRNAs. This algorithm was developed in 
light of recent evidence characterizing the parallel formation of 
both microRNAs and their target sites from the insertions of 
related transposable elements (TEs) [44, 45]. Through limiting 
target searches to mRNA transcripts that contain the TE from 
which a microRNA arose, when compared to other algorithms, 
this strategy predicts significantly fewer false positives greatly 
increasing the overall confidence that predicted targets are real. 
That said, in stark contrast to other conservation based algorithms 
which are typically more effective at predicting targets for older 
miRNAs, OrBId is instead ideally suited for predicting targets of 
“younger,” often taxon-specific, miRNAs that were formed more 
recently. Likely due to degeneration of nonessential sequences over 
time, OrBId is poorly suited for examining older, more conserved 
miRNAs. As such, employing a combination of strategies that 
 considers both target site conservation and evolutionarily origins 
of recently formed miRNAs can be advantageous to studies exam-
ining multiple miRNAs.

Machine learning approaches attempt to identify miRNA targets 
by comparing them to miRNA–mRNA interactions with known 
biological relevance instead of making “de novo” predictions based 

2.3 Evolutionary 
Conservation

2.4 Machine 
Learning
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on sequence data or secondary structure stability. Machine learning 
in general is a specialty within computer science that strives to 
develop algorithms that can “learn” from given datasets and use 
that knowledge to make predictions on similarly unseen data. 
These strategies are typically based on pattern recognition and uti-
lize computationally based statistical inferences to distinguish 
between positive and negative datasets [46]. By training algorithms 
on experimentally verified microRNA–mRNA interactions and 
artificially generated negative examples, machine learning software 
attempts to identify patterns that distinguish actual targets from 
false ones. Thus when presented with a new previously unseen 
dataset, a machine learning algorithm can use these patterns to 
categorize whether or not a target is “real.” This approach is useful 
in that like conservation based methods it similarly limits the num-
ber of false positives but is not limited to older conserved microR-
NAs. Importantly, machine learning also allows for the identification 
of noncanonical binding sites such as those within coding regions 
since it is not preprogrammed to require strict seed matches within 
3′ UTRs. That said, the primary limitation of machine learning is 
that it learns by example so only results similar to those examples 
can be found.

MBStar [19] (http://www.isical.ac.in/~bioinfo_miu/MBStar30. 
htm) is a recently developed machine learning based target predic-
tion algorithm that implements the basic strategy outlined above. 
MBStar is trained on over 9000 biologically validated interacting 
miRNA–mRNA pairs (and roughly 1000 non interacting pairs) 
confirmed by RISC associated immunoprecipitation data. After 
extracting 40 features that identified positive miRNA–target inter-
actions, the developers of MBStar built a classifier model achieving 
the highest accuracy rate (as compared to other popular prediction 
strategies) when employed to predict targets in validated experi-
mental data sets. However, while the machine learning approach 
does convey some advantages in terms of target predictability, this 
specific tool’s usability is again limited in that it requires manual 
manipulation of input files which can become very time consuming 
and tedious if multiple interactions are analyzed.

3 MiRNA Databases

The need for centralized and easy to access databases containing 
predicted and validated microRNA targets is clearly evidenced by 
the sheer number of microRNA target prediction algorithms that 
have been deployed over the last several years (Table 1). Indeed, 
several relevant repositories have emerged to address this with 
many of them containing advanced search and filtering capabilities 
that allow researchers to rapidly retrieve info on genes of interest. 
Some deploy artificial data mining algorithms on miRNA literature 
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and datasets while others manually curate experimentally validated 
regulations. High throughput analysis of CLIP-seq experiments 
has also been used to provide archives of known interactions 
between microRNAs and RISC proteins such as AGO. Given that 
new discoveries involving microRNAs are made with ever increas-
ing frequency this data is only going to increase, and with it so too 
does the need for reliable and maintainable databases to store it. 
Some of the largest and most widely accessed of these repositories 
are briefly profiled below.

MiRDB (http://mirdb.org/miRDB/) [47] is an online database for 
miRNA target prediction and functional annotations. All MiRDB 
targets were predicted by the bioinformatics tool, MirTarget [48], 
which was developed by analyzing thousands of miRNA–target 
interactions from high-throughput sequencing experiments. 
MiRDB hosts predicted miRNA targets in five species: human, 
mouse, rat, dog, and chicken. That said, a recent update has now 
additionally provided an interface for users to upload their own 
sequences for customized target prediction.

Consisting of more than 360,000 potential miRNA–target interac-
tions (MTIs), regulations described in miRTarBase (http://mir-
tarbase.mbc.nctu.edu.tw/) [49] were collected by data mining 
research articles and manually surveying pertinent literature related 
to functional studies of miRNAs. For inclusion in miRTarBase, 
MTIs had to have been reported as being validated experimentally 
by reporter assay, western blot, microarray, and/or next- generation 
sequencing experiments.

TarBase (http://www.microrna.gr/tarbase) [50] claims to house 
the largest manually curated collection of experimentally tested 
miRNA targets available, having indexed more than half a million 
miRNA–gene interactions from published experiments on 356 
 different cell types from 24 species. TarBase target regulations 
were typically derived from analyses of high throughput experi-
ments such as microarrays and proteomics with specific attention 
paid to those from NGS sequencing. Each interaction is described 
with respect to the regulating miRNA, the gene in which it occurs, 
the nature of the experiments that were conducted to test it, the 
sufficiency of the site to induce translational repression and/or 
cleavage, and the paper from which all these data were extracted.

4 Case Study

In order to illustrate the differences between the various target pre-
diction algorithms and databases discussed in this chapter, a small 
case study was performed whereby four unrelated human genes 

3.1 MiRDB
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3.3 TarBase
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were used as input in order to identify potential microRNA–mRNA 
interactions. By limiting the possible target sites to these genes (as 
opposed to searching for genome wide targets of specific microR-
NAs), the individual advantages and limitations of each strategy are 
highlighted. Wherever possible the actual transcript identifier was 
used as opposed to the gene name as some genes have a multitude 
of transcripts (though many of these algorithms do not consider 
this possibility which likely contributes to the perceived discrepan-
cies between them). Results are depicted in Table 2, with the top 
five predicted miRNA regulators listed for each gene as derived 
from the four prediction algorithms and three databases previously 
mentioned. What should be particularly obvious is the lack of over-
lap between the strategies. With the first gene, DFFA, for instance, 
there is not a single miRNA that is predicted by more than one 
algorithm; though it should be reiterated that only the top miRNAs 
are listed and that more overlap would occur if less ideal predictions 
were also compared. That said, given the particular criteria that 
each of these different strategies favor, when multiple algorithms do 
agree it should warrant increased attention, as is the case with the 
SOX9 and SNAI2 genes.

When taken as a whole, it becomes clear based off of these lim-
ited results that there is not one strategy that is capable of accurately 
predicting targets for all possible circumstances. Rather, a more 
robust approach would be to utilize each algorithm according to 
the individualized needs of the experiment at hand. For instance, if 
the microRNA in question is relatively less conserved then strate-
gies based primarily on homology across species should not be con-
sidered. Secondary structure centered algorithms should also be 
limited to feasibility tests and confirmations rather than a means of 
de novo prediction, as evidenced by the fact that none of the miR-
NAs predicted by RNAhybrid are immediately listed in the experi-
mentally validated databases. Indeed, algorithms that  incorporate as 
much information as possible, whether from the sequence itself or 
from thermostability or from actual validation, are the ones seem-
ingly most primed to generate accurate predictions.

5 Conclusions

With increasing evidence indicating that most human genes are 
regulated by microRNAs [13], the need for precise and reliable 
prediction of targets is strikingly evident. Current approaches for 
target discovery however tend to produce a significant number of 
false positives due to the high probability of having complementar-
ity between mRNAs and the short seed regions of miRNAs. Further 
complicating the matter, other genetic events such as RNA editing 
and alternative splicing can fundamentally alter the target site and 
dramatically affect potential miRNA binding and regulation [51, 52]. 
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Given that validating mRNA targets experimentally is difficult, 
time-consuming, and expensive, accurate and concise target predic-
tions are extremely valuable in terms of experimental design. That 
said, each one of the prediction strategies discussed in this chapter 
has its own benefits and limitations that should be taken into 
account when deciding on a specific tool. For instance, energetically 
favorable interactions are meaningless if the target site is not acces-
sible by RISC. Context is key in these situations, and given that in 
the end all the methods are computational algorithms that still ulti-
mately require experimental validation, the best results will likely 
come from initially utilizing a combination of tools to identify tar-
gets that are agreed upon by multiple approaches.

As we continue to gain better insight into miRNA regulatory 
pathways, there is no doubt that novel prediction strategies will be 
devised to more accurately understand these small molecules and 
the genes they target. Even now, new technologies such as next 
generation sequencing coupled with immunoprecipitation like 
CLIP-seq are giving researchers increased ability to see what spe-
cific microRNAs are bound to RISC and what specific mRNAs 
they are regulating across entire transcriptomes [14, 53]. Such 
technologies allow for much quicker experimental validation and 
may be the way of the future as they allow unprecedented views 
into what is actually present in the cell at a given time. What’s 
more, new prediction strategies will also likely need to incorporate 
the recent evidence pointing to microRNA binding and regulating 
of noncanonical regions such as ORFs and 5′ UTR [54] as well as 
new evidence suggesting some miRNAs actually target lncRNAs 
instead of mRNAs [55].
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Chapter 9

Exploring MicroRNA::Target Regulatory Interactions 
by Computing Technologies

Yue Hu, Wenjun Lan, and Daniel Miller

Abstract

MiRNA genes (miRNA precursor genes) share some common structural elements with protein genes.  
As with protein genes, the promoters of miRNA genes are necessary to regulate the expression of 
miRNA. The computation methods used to find the promoter regions of the protein genes have been 
applied to miRNA genes and some methods have been designed specifically to find the promoter regions of 
miRNA genes. The transcription factors (TFs), miRNA, and the targeted genes can form complex regula-
tory networks in the cells that can be divided into circuits. The miRNA-mediated feed-forward loop (FFL) 
is the most commonly encountered circuit. The miRNAs can also regulate targeted genes in a collaborative 
way. Some tools to study these circuits are discussed in this chapter as are some examples of their use.

Key words Transcription factor, miRNA, Promoter, Circuit, Feed forward loop, Synergistic

1 Introduction

In the microRNA (miRNA) research, bioinformatics has played a 
critical role in the prediction of the target of microRNAs [1, 2] and 
in the prediction of precursor of microRNAs [3, 4]. There are 
many other aspects of microRNA research that computational 
technologies can impact. The first aspect is the study of miRNA 
expression and decay regulation. The number and, to some extent, 
content of miRNAs control the level of gene expression. miRNAs 
with abnormal content may lead to serious diseases and develop-
mental deformities, so it is useful to study the expression and decay 
of miRNAs. In this aspect, some important transcription factors 
(TFs) [5] have played a critical role in the expression of the miRNA 
and the regulation region of the miRNAs gene. Bioinformatics has 
several tools to study those aspects. The control of miRNA decay 
is also significant as it determines the time during which the miR-
NAs can function. In this chapter, we focus on the definition of the 
promoter regions of miRNA genes.
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The second aspect is the interactions between miRNAs. 
miRNAs do not necessarily function alone: groups of miRNAs 
can play synergistic roles in regulating gene expression [6]. They 
can also interact with other gene regulation elements such as 
transcription factors (TFs). These regulatory elements together 
can function as a local network that can play a global role in the 
transcription process. The local network can be viewed as a cir-
cuit. The type of circuit can control the robustness of the gene’s 
expression. In this chapter, we will focus on those aspects.

2 The Promoter Region of miRNA Genes

Promoter prediction can help with finding genes and delineating 
other important gene structures. The promoter region typically con-
sists of a few thousand base pairs immediately upstream of the tran-
scription start site (TSS) and it contains enhancers or silencers. A 
small section of the promoter region, often called the core promoter 
region, consists of the ~35 base pairs leading up to the TSS. The 
promoter region has unique features, such as the CG islands near the 
TSS. Machine learning methods, such as Hidden Markov Models 
(HMM) and the Discriminate Analysis method, have been used to 
identify the promoter region based on these features. These meth-
ods often use the sequence information and need a training dataset, 
but both the sequence information and the training dataset have 
their limitations. Sequence information just reflects the local features 
and the training datasets can vary across species.

To address these shortcomings, Thomas Abeel [7] developed 
an algorithm that can predict the gene’s promoter region by the 
features of its structure. Using the GC content and other DNA 
structural properties, Abeel developed the Easy Promoter 
Prediction Program (E3P) to find the promoter region in a 
whole- genome background. It does not need any training data, 
adapts to many different species, and performs well compared to 
other programs using strict validation criteria (500 bp maximum 
distance). Each point of the DNA base pairs is transformed into 
number profiles by the GC content and structural properties. 
From those numerical patterns, the features can be used to define 
the promoter region. The test dataset contains protein-coding 
genes: small nuclear RNA (snRNA), ribosomal RNA (rRNA), 
microRNA (miRNA), small nucleolar RNA (snoRNA), and trans-
fer RNA (tRNA). While EP3 does overcome some of the limita-
tions of HMM and Discriminate Analysis, it demonstrates lower 
performance when identifying the core promoter region of 
miRNA. For miRNA and tRNA promoters, better results are 
achieved by using tools specifically designed and trained for these 
RNA types. Zhou et al. perform a comparison of such tools in 
their proposal of CoVote [8].

Yue Hu et al.
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The promoter regions of miRNA genes can be found in 
 different areas relative to the gene. The miRNA genes and miRNA 
precursors can either be located outside of, or within, a protein 
gene (a miRNA-targeted gene). In the first instance, the promoter 
region is the (−900/+100) nontranscribed spacers (nts) upstream 
of the TSS of the miRNA gene, which is the same as the protein- 
coding gene (the miRNA-targeted gene). In the second instance, 
the miRNA gene is inside the protein-coding gene. miRNA genes 
can also be transcribed both with, and against, the direction of the 
protein-coding gene. If the miRNA gene transcription direction is 
opposite to that of the protein-coding gene, those two classes of 
genes are in a different DNA strand and the promoter region of 
the miRNA gene is located upstream of the miRNA gene TSS, 
placing the promoter region of protein-coding gene and the 
miRNA gene in separate locations. If the direction of the miRNA 
gene transcription is the same as that of the protein-coding gene, 
the promoter region will be shared by those two genes. In this 
case, those two classes of genes can be regulated by the same TFs. 
The promoters of miRNAs are mostly of type POLII as opposed to 
type POLI, which synthesizes rRNA, and type POL III, which 
synthesizes tRNAs, rRNA, and other small RNAs.

3 Interactions Between miRNAs and TFs

The regulatory interactions that govern a gene’s expression are 
very complex. miRNA is a type of small noncoding RNA, which 
can act as a negative regulator in the expression of genes. The 
products of a gene’s expression are often proteins. TFs can regulate 
genes with miRNA in pairs. Viewed simply, the TFs only play a role 
in the progress of the transcription of genes expression and the 
miRNA only play a part in the progress of the translation (or post- 
transcription) of a gene’s expression from mRNAs to proteins. 
However, those pairs (TF and miRNA) can form a complicated 
network that regulates a gene’s expression.

We can model these regulatory interactions as a network, albeit a 
complex one. Many efforts have been made to research these com-
plex networks. Shai S. Shen-Orr et al. [9] in 2002 analyzed the tran-
scription regulation network of Escherichia coli. They discovered 
some basic common structures, which they called network motifs, 
that could represent the local topology of the transcription regulation 
network. To identify these motifs, they looked for the occurrence of 
the motifs in sequence data as compared to the random networks 
under the assumption that the frequency of occurrences of the net-
work motifs should be much higher in the biological networks than 
in random networks. In the transcription regulation network of E. 
coil, they found three frequently occurring motifs. The first motif is 
the Feed Forward Loop (FFL) that contains a master TF, a medial 

Exploring MicroRNA::Target Regulatory Interactions by Computing Technologies
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TF, and the target gene. The master TF can regulate the targeted 
gene directly or through a medial TF. The second motif, the Single 
Input Module (SIM), has one common TF that can regulate many 
targeted genes. The third motif, Dense Overlapping Regulations 
(DORs), has many TFs that regulate many genes in a collaborative 
approach. Consequently, they posit that these complex biological 
networks can be decomposed into network motifs or circuits that can 
simplify the analysis of these complex networks.

Matteo Osella et al. used numerical simulation methods to 
compare three miRNAs-TFs-gene circuits [10]. Those three ele-
ments form a complex network to control the expression of pro-
teins. The translation and transcription of the genes are not 
isolated; The TFs and microRNAs form special motifs that can 
regulate the expression of proteins efficiently. The complex net-
work is very robust which keeps the cell in a stable state and is 
tolerant to fluctuations in the concentrations of participants in the 
regulatory networks. The gene’s expression is fine-tuned by these 
complex networks. The authors demonstrated via their simulation 
that the microRNA-mediated feed forward loop was the best in 
reducing noise of the three motifs.

There are many programs and web-based applications that use net-
work motifs to study miRNAs. Zhenyu Yan et al. [11] proposed 
the dChip-GemiNI1 method that can integrate the miRNA and 
gene expression information and give clues regarding the interac-
tions among TFs, miRNAs, and targeted genes. It ranks the related 
FFLs by their ability to explain the differential gene expressions 
between normal tissue and cancer tissue. In the examples of six 
cancers (liver, kidney, prostate, lung, and germ cell), the top-rank 
FFLs explain a significant amount of change. This method gives a 
new means to find the tumor markers.

Mohamed Hamed et al. in their paper, "TFmiR: a web server 
for constructing and analyzing disease-specific transcription factor 
and miRNA co-regulatory networks," created a web-based appli-
cation called TFmiR2 to analyze TF and miRNA gene regulation of 
gene expressions both individually and collectively [12]. It checks 
for four different types of regulation against several databases: TF 
regulation of a gene (TRANSFAC database, OregAnno database, 
and TRED database), miRNA regulation of a gene (miRTarBase 
database, TarBase database, miRecords database, and starBase 
database), TF regulation of miRNA (TransmiR database, 
PMID20584335 database, and ChipBase database), and miRNA 
regulation of miRNA (PmmR database). These databases store 
results from experimental and computational methods. With this 
tool, the authors integrate the databases incorporating the four 
interaction types to define synergistic regulatory networks.

1
 http://www.canevolve.org/dChip-GemiNi.

2
 http://service.bioinformatik.uni-saarland.de/tfmir.

3.1 Tools 
for Studying 
the Network Motifs 
Related to miRNAs

Yue Hu et al.
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In all, the TFmiR collects 10,000 genes, 1856 miRNAs, 
approximately 3000 diseases, and 111,000 interactions. Its analysis 
relays many results: the disease-specific network disorder in those 
types of regulation, the disease-related genes and miRNAs, TFs- 
miRNA regulatory circuit, an overrepresentation analysis (ORA) 
like the GO analysis, the KEGG pathway enrichment analysis, and 
so on. As the FFL is an important motif, they also emphasized on 
this type circuit. They define four types of FFLs:

 1. The co-regulation FFL: the TF promotes the gene expression,    
while the miRNA represses it, but there is no interaction 
between the TF and miRNA.

 2. The TF-FFL: the TF promotes the gene and miRNA expres-
sion while the miRNA represses the gene expression. The TF 
plays the primary role in regulation.

 3. The miRNA-FFL: the TF promotes the gene expression, while 
the miRNA represses the gene expression; the TF promotes 
the miRNA expression, while the repress the TF expression. 
The miRNA plays the main role.

 4. The composite-FFL: the TF promotes the gene expression, 
while the miRNA represses the gene expression; the TF pro-
motes the miRNA expression, while the repress the TF expres-
sion. The TF and miRNA struggle for the dominance.

In the case study of breast cancer research, they found 53 FFL 
circuits: 42 co-regulation FFLs, 2 TF-FFLs, 6 miRNA-FFLs, and 
3 composite-FFLs. To test the significance of their results, they 
compared their results to a random network with the same node 
degrees.

Olivier Friard et al. presented CircuitsDB3: a web application 
devoted to identifying and analyzing interactions of TFs and miR-
NAs in humans and mice [13]. The regulatory network is studied 
within the context of local network motifs or circuits. Mixed 
miRNA/TF FFLs are one of the key circuits that are discussed. 
The total number of promoters of pre-miRNA genes is relatively 
small when compared to the total number of promoters of protein- 
coding genes (130 vs. 21,316 in human, 130 vs. 21,814 in mice). 
The dataset for CircuitsDB was constructed from a combination of 
the TF-regulated transcription networks and miRNA-regulated 
post-transcription networks. TFs regulate the promoter of the 
protein- coding gene and pre-miRNA genes, so finding the pro-
moters of the protein-coding genes is the first step. miRNA recog-
nizes the 3′ UTR of the protein-coding genes, so the initial step of 
identifying the post-transcription network is finding the 3′ UTR. 
Those two networks are then compared between human and 
mouse by oligo analysis to get the conserved-overrepresentation, 

3
 http://biocluster.di.unito.it/circuits/.
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then integrated. The raw FFLs were finally functionally annotated 
by their relevance to cancer and other diseases according to the 
GO database, Cancer Gene Census catalog, OMIM catalog, and 
HMDD miRNA-disease database.

The TF-miRNA circuit has been used in many fields. Three exam-
ples are given below to show the importance of TF-miRNA net-
works: their roles in mouse lung development; their roles in the 
root development of two species of plants; their roles in skeletal 
myogenesis in mice.

Juan Liu et al. researched the regulation mechanisms for lung 
development in mice and analyzed the related miRNA-TF-mRNA 
circuits active during tumor production [14]. They generated lists 
of genes and TFs from study GSE20954 and used the miRNA list 
from study GSE201152. These lists were processed to remove 
those elements that demonstrated little variance during lung devel-
opment yielding 8299 genes, 50 TFs, and 118 miRNAs. These 
lists were submitted pairwise to look for known regulatory rela-
tionships: TF-gene pairs from Tred, KEGG, and CircuitDB, 
miRNA-gene pairs from TargetScan, miRanda, and CircuitDB, 
and miRNA-TF pairs from CircuitDB. The results from these 
searches were combined which yielded 64,760 candidates circuits 
that were then checked for significant activity during lung develop-
ment. Based on these results, they divided the development pro-
cess of the lung into stages as defined by the active regulation 
circuits. They also found that some of the genes controlled by 
these circuits were incorrectly expressed in lung tumor samples, 
which could explain their formation. They concluded that these 
circuits may provide additional targets for drug development that 
could lead to more effective treatments for lung cancer.

Yijun Meng et al. review the miRNAs that participate in the 
root development of two model plants: rice (Oryza sativa) and 
Arabidopsis (Arabidopsis thaliana) [15, 16]. Several signaling 
pathways involved in the growth and development of the roots are 
mediated by miRNAs. This review focuses on the auxin signaling, 
nutrition metabolism, and stress response. In Arabidopsis, miR160, 
miR164, miR167, miR390, and miR393 mediated the Auxin sig-
naling pathway and miR395, miR398, miR399 mediated the 
nutrition metabolism pathway. In Rice, miR160, miR164, miR167, 
and miR390 mediated the auxin signaling, miR399 takes a part in 
the nutrition metabolism pathway, and miR1169 takes a part in the 
stress response pathway. The miRNA can be categorized into con-
servative families that exist in the same signaling pathways across 
species. Signaling pathways can interact with each other through 
miRNAs. The miRNAs participating in several signaling pathways 
could be regarded as the hub. miR167 was shown to mediate both 
auxin signaling and nitrogen availability showing that miRNA have 
many targets. Feedback circuits were also identified: miRNA 167 

3.2 Applications of 
TF-miRNA Network

Yue Hu et al.
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and auxin response factor (ARF) form a feedback circuit control-
ling the auxin signaling pathway in rice.

Leina Lu et al. performed a study on skeletal myogenesis in 
mice. Yin Yang 1 and miRNAs can form circuits to regulate the 
development and differentiation of the skeletal myoblasts [17]. 
YY1 targets the promotor region of several miRNAs, with miR-1 
and miR-133 being of particular interest. miR-1 was shown to 
downregulate YY1 forming a negative feedback loop. The feed-
back loop was shown to regulate the corresponding genes with 
precision. YY1 was also shown to have stronger regulatory effects 
on miR-133 than on miR-1. The authors proposed two possible 
explanations: (1) there are three YY1 targeted sites on the pro-
moter region of miR133, while there are two YY1 targeted sites on 
the promoter region of miR1, and (2) YY1 may exert its regulatory 
effect at different stages in the transcription process resulting in 
varying amounts of influence.

4 miRNA Synergistic Interactions

One miRNA can regulate many genes and one gene can be regu-
lated by many miRNAs in a synergistic way [18]. Complex dis-
eases, such as cancer and diabetes, can be caused by the dysfunction 
of these synergistic miRNAs regulations; thus, it is meaningful to 
research these regulatory mechanisms. Juan Xu et al. [19] give 
three criteria to determine if two miRNAs have a synergistic rela-
tionship. First, the two miRNA must target the same gene. Second, 
two miRNAs must have the same functional enrichment as deter-
mined by GO analysis: the two miRNAs must perform similar 
functions. Third, genes in the co-regulated gene set should be 
located in relative proximity to each other. In their paper, they give 
two applications of this synergistic function. In the Alzheimer’s 
disease, hsa-miR-101 and hsa-miR-511 compose a synergistic net-
work regulating an enzyme linked to the receptor protein signaling 
pathway, protein kinase cascade, JAK-STAT cascade, and trans-
member receptor protein tyrosine kinase signaling pathways. In 
cardiac hypertrophy, hsa-miR-1, hsa-miR-30b, and hsa-miR-30c 
regulated vesicle-mediated transport.

In another example, Ming Lu et al. collected the human 
microRNA-disease association data from 3511 papers to find the 
Human microRNA Disease Database (HMDD)4 [20, 21]. In the 
June 14, 2014 update, this database stores the important associa-
tions between 378 miRNA-related diseases and 572 miRNA genes. 
They suggest that the upregulation and downregulation actions of 
miRNA have same pattern in similar diseases. Cancers show this 
pattern in miRNA expression level. For example, the miR-21 has 

4
 http://cmbi.bjmu.edu.cn/hmdd.
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an upregulation function in most cancers, while the miR-125a 
serves as a downregulation role. Most miRNAs can be actors in 
many diseases, but there are some miRNAs that have tissue and 
disease specificity. They also found that the probability of single 
nucleotide polymorphisms (SNP) of miRNAs is low (0.0847) illus-
trating a conservation of diseases-related miRNAs which the 
authors suggest is related to disease susceptibility.

5 Conclusion

As demonstrated in the examples of the TF and miRNA networks 
above, there is evidence of circuits in the regulatory interactions of 
miRNA. Examination of miRNA regulators can be conducted with 
different focuses. One method is to examine the interactions 
between TFs and miRNA via predicted or empirical data sets. 
Another method focuses on the direct regulatory action by locat-
ing the promoter region for the targeted miRNA or predicting the 
TF based on expression. It has also been shown that multiple 
miRNA can synergistically regulate a target gene. miRNAs can 
serve as the hub of the synergistic regulatory network with some 
miRNAs enhancing the regulation. Using a systematic biological 
view of miRNA could lead to more efficient research efforts.
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Chapter 10

The Limitations of Existing Approaches in Improving 
MicroRNA Target Prediction Accuracy

Rasiah Loganantharaj and Thomas A. Randall

Abstract

MicroRNAs (miRNAs) are small (18–24 nt) endogenous RNAs found across diverse phyla involved in post-
transcriptional regulation, primarily downregulation of mRNAs. Experimentally determining miRNA–mRNA 
interactions can be expensive and time-consuming, making the accurate computational prediction of miRNA 
targets a high priority. Since miRNA–mRNA base pairing in mammals is not perfectly complementary and 
only a fraction of the identified motifs are real binding sites, accurately predicting miRNA targets remains chal-
lenging. The limitations and bottlenecks of existing algorithms and approaches are discussed in this chapter.

A new miRNA–mRNA interaction algorithm was implemented in Python (TargetFind) to capture 
three different modes of association and to maximize detection sensitivity to around 95% for mouse (mm9) 
and human (hg19) reference data. For human (hg19) data, the prediction accuracy with any one feature 
among evolutionarily conserved score, multiple targets in a UTR or changes in free energy varied within a 
close range from 63.5% to 66%. When the results of these features are combined with majority voting, the 
expected prediction accuracy increases to 69.5%. When all three features are used together, the average 
best prediction accuracy with tenfold cross validation from the classifiers naïve Bayes, support vector 
machine, artificial neural network, and decision tree were, respectively, 66.5%, 67.1%, 69%, and 68.4%. The 
results reveal the advantages and limitations of these approaches.

When comparing different sets of features on their strength in predicting true hg19 targets, evolu-
tionarily conserved score slightly outperformed all other features based on thermostability, and target 
multiplicity. The sophisticated supervised learning algorithms did not improve the prediction accuracy 
significantly compared to a simple threshold based approach on conservation score or combining the 
results of each feature with majority agreements. The targets from randomly generated UTRs behaved 
similar to that of noninteracting pairs with respect to changes in free energy. Availability of additional 
experimental data describing noninteracting pairs will advance our understanding of the characteristics and 
the factors positively and negatively influencing these interactions.

Key words MicroRNA, Transcript regulation, Interacting miRNA–target genes, Pattern matching, 
Hybridization energy, Thermostability, UTR binding sites

Abbreviations

ANN Artificial neural network
PWM Position weighted matrix
ROC Receiver operating characteristic
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SOM Self-organizing map
SVM Support vector machine
UTR Untranslated region

1 Introduction

MicroRNAs (miRNAs) are nearly ubiquitous in eukaryotes, acting 
as an important component of posttranscriptional regulation. 
Determining miRNA–mRNA interactions with a high degree of 
specificity remains challenging despite the effort that the computa-
tional community has devoted to this task. A major bottleneck of 
existing algorithms and methodology is the high rate of false posi-
tive prediction rates. Herein we have developed a new miRNA pre-
diction tool and use it to examine the importance of the various 
features that need consideration during miRNA prediction and 
highlight the limitations of current approaches.

Identification of experimentally verified miRNAs across diverse 
species is steadily increasing and the recently released version of 
miRBase [1] (June 2013 version 20) has 24,521 entries including 
2578 and 1908 verified human and mouse miRNA sequences, 
respectively. Additional experimentally verified targets are main-
tained in Tarbase [2, 3] and miRecords [4]. The latest release of 
miRecords on April 2013 has 1814 and 427 interactions in human 
and mouse genomes. Tarbase 6.0 integrates entries from miRe-
cords, miRTarBase [5], and miR2Disease [6] in addition to main-
taining entries using text mining assisted literature curation.

The accurate computational prediction of miRNA targets 
remains a high priority. Many prediction algorithms are based on 
base pairing of the seed region of a miRNA with the mRNA 3′ 
untranslated region (UTR). The core seed region of a miRNA 
consists of nucleotides 2–7 of the miRNA 5′ end; the rest of the 
sequence is considered to be non-seed region (see Subheading 2 
for formal description). The majority of published computational 
prediction algorithms can be viewed as consisting of two phases: 
motif findings followed by refinements of targets to minimize the 
false positive rates. The motif finding algorithms in the context of 
miRNA target finding are broadly classified into the following 
groups: (1) structure based prediction, (2) supervised learning, (3) 
unsupervised learning, and (4) rule-based pattern matching (com-
plementary pairing). Kertesz et al. [7] have shown that the predic-
tion of StarMir [8], which is of the first group and based on 
secondary structure of mRNA, had poor correlation with experi-
mental results. A supervised learning algorithm for motif predic-
tion starts with a positive training set derived from known binding 
sites and a negative training set from noninteracting miRNA UTR 
pairs. Hidden Markov model and profile hidden Markov models 
are examples of supervised learning models. While an unsupervised 
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learning approach such as a self-organizing map (SOM) is quite 
appealing to target prediction in the presence of few or no negative 
examples, it has practical computational challenges in training a 
large number of mature miRNA and UTRs. For small genomes 
such as C. elegans, mirSOM [9] which was based on SOM has been 
successful. During the training phase of mirSOM [9] the base pair-
ing score of the seed region was taken into consideration when 
positioning the target miRNA pair into the underlying grid of the 
SOM. The results of the potential targets are then refined by 
changes of free energy in the second phase.

A large number of tools for miRNA target prediction find 
plausible targets by base pairing. These plausible targets are subse-
quently refined to reduce the false positive rates. Liu et al. [10] 
have used a support vector machine (SVM) to refine the plausible 
targets to reduce the false positive rates. Among the large number 
of features they have used, the most successful at reducing the false 
positive rates includes conservation score, number of matches, 
accessibility energy, and hybridization energy. The targets gener-
ated by miRanda [11] are refined by machine learning algorithms 
such as naïve Bayes [12] and random forest [13] using experimen-
tally determined interacting and noninteracting miRNA–mRNA 
pairs. Table 1 shows representative features and approaches of the 
tools for finding miRNA targets.

Table 1 
Comparison of representative miRNA target prediction tools

Software or method

Base pairing Thermostability

Conser
vation Comment

Seed 
region

Non 
seed ∆Gduplex ∆Gopen ∆∆G

PicTar [14] × × × Pattern matching

PITA [7] × × × Pattern matching

MirTarget2 [15] × × Supervised learning

Target Scan [16, 17] × × × Pattern matching

miRanda [18] × × × Pattern matching

RNAhybrid [16, 19] × × Pattern matching

SVMicro [10] × × × × Supervised learning (SVM)

miRmap [20] × × × × × Probabilistic matching

RFMirTarget [13] × × × Supervised learning  
(random forest)

MREdictor [21] × × × × × Basic seed match and PWM

Our approach × × × × × × Pattern matching

The Limitations of Existing Approaches in Improving MicroRNA Target Prediction Accuracy
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Some approaches have combined target finding and refine-
ment phases together. Wang et al. [15] have used SVM with 131 
training features to predict miRNA targets in animals.

In this study, we examine the influence of each of the follow-
ing features in reducing the false positive rate and maximizing the 
true prediction rate: accessibility energy, hybridization energy, 
changes in potential energy, conservation score, and multiplicity 
of targets. Further, we examine the paradigm of using a machine 
learning approach with all these features to understand the effec-
tiveness and the limitations of machine learning approaches in 
reducing the false positive rate while improving the overall pre-
diction accuracy.

2 Methods

miRNA target prediction tools such as PicTar [22], TargetScan 
[16], and MiRanda [18] have focused on perfect seed base pairing 
and its variations. The core seed region is defined as miRNA nucle-
otide positions 2–7. The definition of seed region defined in 
[10, 17, 23] and elsewhere is reproduced here for convenience.

Seed match type Description

6mer If p2 through p7 is W-C complement

7mer-A1 If p2 through p7 is W-C complement and p1 is A

7mer-m1 If p1 through p7 is W-C complement

7mer-m8 If p2 through p8 is W-C complement

8mer-A1 If p2 through p8 is W-C complement and p1 is A

8mer-m8 If p1 through p8 is W-C complement

where W-C stands for Watson–Crick base pairing. Note these defi-
nitions of these terms are not disjoint, for example, all the 8mers 
and 7mers contain the same 6mer.

Brennecke et al. [24] have shown with in vivo experiments in 
C. elegans that perfect base pairing in the seed region is neither 
necessary nor sufficient for miRNA and UTR interaction. They 
reveal two other modes of base pairing, namely 5′ dominant and 3′ 
compensatory. In the canonical mode, strong base pairing taking 
place in both the seed and non-seed regions. In the 3′ compensa-
tory mode, strong 3′ base pairing compensates for weak 5′ base 
pairing, while in 5′ dominant mode a strong base pairing in the 
seed region is associated with a weak base pairing in the non-seed 
region. For the purpose of the prediction of miRNA targets, we 
consider all three variations of base pairing. To increase the 

2.1 Improving 
Sensitivity
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sensitivity, we allow G–U pairing in both the seed region and the 
3′ non-seed regions of the miRNA. The definition of base pairing 
as used in this work is shown below.

Canonical site Strong base pairing at the 5′ seed region (at least six 
nucleotide base pairing including at most one G–U 
pairing in the seed region) and at the 3′ non-seed 
region of the miRNA

5′ dominant Strong base pairing at the 5′ seed region with a weak 
base pairing at the 3′ non-seed region of the miRNA

3′ compensatory Weak base pairing at the 5′ seed region with a strong 
base pairing at the 3′ end of the miRNA (at least ten 
contiguous nucleotide base pairing in the 3′ non-seed 
region including at most a single G–U pairing, and at 
least five contiguous base pairing in the 5′ seed region 
of the miRNA including at most one G–U pairing)

The objective of our approach is to maximize sensitivity while min-
imizing the false positive error rate. We define all the relevant nota-
tions and terms such as sensitivity, specificity, and prediction 
accuracy.

Notations

TP Predicted true instance is called true positive

TN Predicted true negative is called true negative

P Total number of positive

N Total number of negative instances

FP False positive (the ones falsely found to be positive), which is equal to N-TN

Terms

Sensitivity or true 
positive rate

= TP/P Specificity or true 
negative rate

= TN/N

Prediction accuracy = (TP + TN)/(P + N) False discovery rate = FP/(FP + TP)

As the sensitivity increases with broadening of a decision 
boundary, the false positive rate increases. The threshold that max-
imizes the true positive rate while minimizing the false positive rate 
is called the optimal threshold and it occurs at the intersection of 
true positive rate and the true negative rate in a single feature space 
scenario. The prediction accuracy, another metric in target predic-
tion, is not necessarily maximized at the optimal threshold.

As the sensitivity is increased with our flexible base pairing 
strategy, the false positive rate may also be increased. To refine the 
potential targets so as to achieve the increased selectivity, some 
combination of the following methods has been used in the litera-
ture: variations of thermostability measures, multiple targets, and 
targets in evolutionarily conserved regions.

2.2 Improving 
Selectivity or 
Minimizing False- 
Positive Error Rate
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To visually illustrate and to quantify the impacts of a feature in 
predicting targets, true positive rate is plotted against false positive 
rate, and the area under the curve is computed to quantify the 
impact of the chosen feature on predicting true targets. When the 
area under the Receiver Operating Characteristic (ROC) curve is 
closer to 1, the feature creates a decision boundary enclosing most 
of the positive instances and least of the negative instances, while 
the area 0.5 indicates about 50% of the positive and negative 
instances are within the decision boundary.

Interactions within a miRNA–target duplex are at least partially gov-
erned by the thermodynamic considerations. The stable miRNA–
target duplex is expected to have a very low free energy compared to 
an unstable pair. The hybridizing or the binding energy of the 
miRNA–target duplex is indirectly measured by the free energy of 
the bound structure, which is denoted by ∆Ghybrid. Kertesz et al. [7] 
have shown that the hybridization energy of a miRNA–target duplex 
has a poor correlation with observed degree of repression in their 
experiment. These observations clearly indicate that other binding 
factors such as the energy required to open the folded structure sur-
rounding the target must also be considered, and such energy is 
denoted by ∆Gopen. The thermodynamic affinity score for the bind-
ing of a miRNA–target duplex is denoted by ∆∆G.

 
DDG G Ghybrid open= -

 
(1)

Lekprasert et al. [25] have successfully used thermal energy 
based features alone to predict miRNA targets accurately. A strong 
correlation between ∆∆G and the observed degree of depression 
was demonstrated, thus providing evidence for ∆∆G as a factor in 
reducing the false positive error rate. In PITA [7] the energy asso-
ciated with multiple targets in a UTR for a miRNA was computed 
by combining the ∆∆G of all the sites as defined by –log(Σe−∆∆Gk) 
to represent the statistical weight of all potential targets in which 
exactly one site will bind with the miRNA. ∆∆Gk represents the 
changes in free energy of site k. The combined ∆∆G of all the 
potential binding sites of a UTR for a miRNA closely follow the 
lowest ∆∆G among the potential binding sites. We compare the 
effectiveness of target prediction using the minimum ∆∆G with 
combined ∆∆G among the targets in a UTR. The ∆Ghybrid is com-
puted by the cofold module of the Vienna RNA package [26, 27]. 
When considering the opening energy of the surrounding target, a 
decision must be made on the length of the flanking region. We 
limit the longest flank to 70 nt and the shortest flank to 15 nt to 
model secondary structure. The opening energy of the secondary 
structure surrounding the target can be computed by the RNAup 
module of the Vienna RNA package [28]. In addition to finding 
the opening energy of a context, RNAup also finds the best hybrid-
ization energy of a target within the context with a given miRNA.

2.2.1 Thermostability

Rasiah Loganantharaj and Thomas A. Randall



139

Since the seed region of a mature miRNA family is conserved 
among related species, the binding sites of the corresponding UTR 
are also likely conserved in orthologous genes [17]. Such an 
assumption leads miRNA target prediction tools including PicTar 
[14], PITA [7], miRmap [20], and miRanda [18] to use evolu-
tionarily conserved regions to refine targets so as to decrease the 
false positive rate. In these tools, multiple sequence alignments of 
UTRs of selected species have been used as a proxy for conserved 
regions. Quantitative measures on the extent that this feature 
improves the overall performance have not been undertaken for 
complex datasets such as human and mouse.

Unique 3′ UTRs from mouse and human were downloaded using 
Biomart [29] keeping only the longest UTR if more than one tran-
script associated for a gene was available. Additionally, UTRs shorter 
than 80 nt were excluded. Mature miRNA sequences were down-
loaded from miRBase (Release 17, April 2011) and interacting 
miRNA–gene pairs were downloaded from miRecords [4] (Release 
November 25, 2010). The set of 250 interacting miRNA–gene pairs 
for the mouse genome consists of 98 miRNAs and 180 genes. One 
hundred and sixty-two pairs were recovered using these filters. One 
thousand five hundred and eleven human interacting miRNA–gene 
pairs consisting of 193 miRNAs and 1035 genes yielded 1070 post 
filter pairs. While databases such as Tarbase [3] and miRecords [4] 
maintain interacting miRNA–gene pairs, they contain no informative 
noninteracting miRNA–gene pairs. Without such information, it is 
very difficult to evaluate prediction strategies. In the absence of an 
experimental strategy for determining noninteracting pairs, they can 
be inferred or UTRs can be randomly simulated and be assumed to 
have no targets for miRNAs. We have randomly generated 500 
UTRs for each genome having a nucleotide composition similar to 
known 3′ UTRs of mouse and human. The length distribution of the 
simulated UTRs matches with that of real 3′ UTRs of both genomes.

Alternatively, noninteracting miRNA–target pairs can be 
derived from miRNA overexpressed microarray data. Those 
mRNAs overexpressed even in the presence of an overexpressed 
miRNA can be considered to be noninteracting pairs. Based on 
this notion Liu et al. [10] have created a dataset of 3542 noninter-
acting miRNA–gene pairs from 20 different miRNA overexpres-
sion microarray datasets. This dataset was also examined.

For consistency and reproducibility, the precomputed multiple 
sequence alignment tables phastCons46wayPrimates and phastCon-
s30way from the UCSC Genome Browser were used in deriving 
conservation scores in target locations in human (hg19) and mouse 
(mm9) genomes respectively.

Commonly used motif finding algorithms include position weight 
matrices, hidden Markov models, profile hidden Markov models, and 
base pairing. To compute the position weighted matrix, or to train 

2.3 Evolutionarily 
Conserved Region

2.4 Data

2.5 Algorithm
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the hidden Markov model or to compute the transition weight in a 
profile hidden Markov model, a large number of training examples of 
the binding sites and non-binding sites are required. Unfortunately 
only a limited number of experimentally verified sites are available. All 
the plausible binding sites of a miRNA with a UTR were generated 
using a base pairing method by aligning the miRNA reverse comple-
ment with the UTR. The algorithm named TargetFind in Table 2 
takes two parameters, UTR sequence, say utr, and miRNA sequence, 
say mirna, as inputs and finds all potential binding sites (all three 
modes) in the UTR sequence for the miRNA. Each 21 mer of the utr 
is aligned with the reverse complement of the mirna with position 
specific weights on alignment score and gap penalty. The alignment 
is first done at the seed regions and continued to the rest of the 
regions as described in the pseudo code in Table 2.

Once the potential targets in a given UTR for a miRNA are 
obtained by TargetFind, the hybridization energy of each target 
with the miRNA, the accessibility energy of the context of the tar-
gets, and the evolutionarily conservation score of the targets are 
computed by TargetFind as shown in Table 3. The algorithm runs 

Table 2 
The pseudo code of the TargetFind algorithm

Procedure TargetFind (utr, miRna)

    For each 21mer of utr

        Find the 6mer of seed region with at least 5 perfect pairing

        If successful find 7mer and 8mers

            Check for all 3 base pairing modes

            Collect the pairing location, scores

  Return results

Table 3 
The pseudo code of the target find algorithm

Procedure TargetFind (UTR_set, miRNA_set)

    For utr ∈ UTR_set

        For miRna ∈ miRNA_set

            feasiblePairs ← TargetFind(utr,miRna)

        For each feasible pair

            Find the context surrounding the target and the corresponding ΔΔG

            Collect multiple target information

            Obtain intersection of the seed region with conserved region

  Return results
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with two options: with or without finding conservation scores in the 
binding sites of UTRs. To run the algorithm for finding the conser-
vation score, the genomic coordinates of UTRs must be provided in 
bed format. With bed format, the corresponding UTRs are extracted 
from the reference genomic sequences such as mm9 or hg19. In the 
absence of mature miRNA sequences as input to the program, the 
set of mature miRNA sequences that are known to interact with 
UTRs of the given genome are taken as the set of miRNAs.

The ΔΔG in the algorithm TargetFind is computed by the 
Vienna RNA package [26, 27] as shown in Equation 1. The hybrid-
ization energy from both cofold and RNAup were determined for 
comparison. The intersection of the interval seed region with the 
conserved region is efficiently computed by bedtools [30].

Alternatively, some variation of dynamic programming similar 
to the one used for local alignment can be used to implement all 
three different modes of base pairing efficiently. The efficiency of 
finding plausible targets will not affect the limitations of existing 
approaches in maximizing sensitivity while minimizing the false 
positive rate.

The algorithm produces all the necessary features such as 
ΔΔG, information on multiple targets, and the conservation score 
for the seed region. When multiple features are used simultane-
ously, the decision boundary will become complex and may not 
even be linearly separable. To understand the effectiveness of com-
bined features in improving the overall prediction accuracy, we 
have used supervised learning algorithms such as Naïve Bayes, 
multilayer perceptrons (artificial neural networks), decision tree, 
and support vector machine from the Weka package [31, 32]. 
Note that these learning algorithms are capable of learning a com-
plex decision boundary that maximizes the prediction accuracy 
with a representative training set. Some reviews and details of these 
machine learning algorithms and others are available in [33–35]. 
Linear regression has also been used to combine features to make 
prediction in a package such as mirMap [20] to combine multiple 
features.

When the target prediction accuracy, p, of each feature in a set 
is greater than 50%, the predicted results of these features can be 
combined with majority agreement to increase overall prediction 
accuracy. The features, conservation score of a target, multiple 
 targets in a UTR, and changes in free energy are independent and 
thus can be modeled as binomial distribution with the probability 
of each making correct decision p. Using a binomial distribution, 
the probability of the majority out of three features making correct 
prediction is given by the following formula:
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3 Results

In the absence of direct experimental validation of noninteracting 
miRNA–gene pairs, such information can be derived from miRNA 
overexpressed microarray datasets. We use the Liu dataset 
(described above) as a set of noninteracting pairs to (1) validate 
our assumption that a randomly generated set of UTRs behave 
similar to UTRs of noninteracting targets, and (2) test the effec-
tiveness of the selected features in predicting targets. To highlight 
any possible differences between the information content between 
the real UTRs and the randomly generated set, 6mer counts mul-
tiple sequence alignment tables of the real and simulated data were 
plotted as shown in Figs. 1 and 2. In contrast to the 6mer occur-
rences in real UTRs, appearance of 6mer counts in the randomly 
generated UTRs resembles wide noise.

Considering the three different types of base pairing taking place in 
the experimental findings reported in [7], the proposed algorithm 
encodes some variations of these three different modes of base 
pairing for finding potential targets in the UTRs. The details are 
provided in a section on improving sensitivity. The tool takes all 
possible combinations of information related to miRNAs and tar-
get genes as shown in below:

The input format for the tool:

miRNA sequence file in fasta UTR sequence in fasta

Or Or

Name of the genome × BED file of the UTRs and the 
genome

Or Or

Names of miRNA and the 
genome

Names of genes and the genome

3.1 miRNA Targets

1.00E-05

1.00E-04

1.00E-03
Plot Area

3UTR Randomly generated

Fig. 1 Comparing 6mer frequency counts in 3′ UTRs of human genome (hg19) with that of simulated UTR. The 
log scale 6mer frequency counts in 3′ UTR of hg19 (shown in red ) is compared with that of in simulated UTR 
(shown in blue)
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The targets for the given set of mature miRNAs were searched 
among the human and mouse 3′ UTRs and known interactions were 
downloaded from miRecords [4]. Predicted results and sensitivity 
are shown in Table 4. Out of 1070 human miRNA–mRNA pairs, the 
algorithm TargetFind found 1018. The sensitivity for target predic-
tion in human genome is 95.14%. The algorithm found 153 miRNA–
mRNA pairs from 162 plausible pairs 94.44% in the mouse data.

To examine specificity, the algorithm was tested on the nonin-
teracting miRNA–target pairs [10]. Out of the 3452 plausible 
noninteracting human pairs, the algorithm predicted 2361, and 
thus returned a false positive error rate of 68.4%, emphasizing the 
need to minimize false positive rates with increased sensitivity.

In order to minimize the false positive rate or to maximize the 
selectivity, one or more of the following strategies and their varia-
tions was applied by target prediction algorithms: thermodynamic 
equilibrium, targets in conserved regions, and multiple targets.

To investigate the effectiveness of each feature in predicting 
the real target, we normalize the data such that the sensitivity as 
well as selectivity varies from 0 to 100% in opposite directions as 
the selected feature value changes.

The stability of the interaction between a miRNA and its target is 
partially, if not fully, influenced by the thermodynamic equilib-
rium. The binding energy or the hybridization energy of the inter-
acting duplex denoted by ∆Ghybrid is indirectly measured by the free 
energy of the folded structure (the lower the energy, the higher the 
stability). Hybridization energy has been used directly or indirectly 

3.2 Thermodynamic 
Equilibrium

1.00E-05

1.00E-04

1.00E-03

1.00E-02
Chart Area

3UTR Randomly generated

Fig. 2 Comparing 6mer frequency counts in 3′ UTRs of mouse genome (mm9) with that of simulated UTR. The 
log scale 6mer frequency counts in 3′ UTR of mm9 (shown in red ) is compared with that of in simulated UTR 
(shown in blue)

Table 4 
UTR target prediction results

Genome
Known  
interaction

Plausible 
interaction

Predicted 
interaction Sensitivity, %

Human (hg19) 1511 1070 1018 95.14

Mouse (mm9) 250 162 153 94.44
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in tools such as PicTar, TargetScan, and miRanda to rank the tar-
gets and to reduce the false positive rates. When a miRNA has 
many potential targets in a UTR, the lowest hybridization energy 
as well as the combined hybridization energy in all targets of a 
UTR are kept for each miRNA–mRNA pair. We also find the tar-
gets from randomly generated UTRs which could be used as a 
proxy for noninteracting miRNA–mRNA pairs. Figure 3a shows 

Fig. 3 Examination of hg19 data for thermodynamic features. (a) Density of minimum hybridizing energy of 
interacting, noninteracting, and randomly generated UTR target pairs in hg19. (b) Variation of true positive and 
true negative rates with the hybridization energy in hg19. (c) The ROC curves for comparing minimum hybrid-
ization energy from cofold and RNAup with the opening energy in hg19. The area under the curves of hybrid-
MinE, hybridMinEfromRnaUp, and minOpenE are, respectively, 0.516, 0.626, and 0.583. (d) ROC curves for 
comparing of changes in free energy (hybridization energy from cofold and RNAup) in hg19. The area under 
the curves of changeInFreeMinE, combinedChangeInFreeMinE, changesInFreeMinEfromRnaUp, and com-
binedChangesInFreeMinEfromRnaUp are respectively 0.615, 0.623, 0.672, and 0.683
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the density distribution of minimum hybridization energy for the 
known interacting, noninteracting, and randomly generated UTR 
target pairs in the human genome (hg19). The prediction accuracy 
at the optimal threshold for the hybridization energy is 0.58 (see 
Fig. 3b). Note that the true negative rate from randomly gener-
ated pairs is closely following the true negative rates of noninter-
acting pairs.

Before a miRNA can interact with the target, the folded struc-
ture surrounding the target has to be opened and it is denoted by 
∆Gopen and is computed by RNAup of Vienna RNA package. To 
compare the predictive power of opening energy and hybridization 
energy from either cofold or RNAup, ROC curves are created as 
shown in Fig. 3c. The area under the curve for minimum hybrid-
ization energy from cofold, RNAup, and opening energy are, 
respectively, 0.516, 0.626 and 0.583. The opening energy by itself 
is not a better predictor than hybridization energy from RNAup. 
Some variations of changes in free energy, denoted by ∆∆G, have 
been used in target prediction tools so as to minimize the false 
positive rate. In our approach we use the definition shown in 
Equation 1 in the section on thermostability for potential energy 
change. Based on these data, we will use the hybridization energy 
value obtained from RNAup instead of from cofold due to its 
higher effectiveness in discriminating true positives from false posi-
tives. When there are multiple targets in a UTR for a miRNA, 
there are two different ways of handling changes in free energy in 
all the putative binding sites: (1) to maintain the lowest changes in 
free energy or (2) to combine them as shown in the section on 
thermostability to represent statistical weight of all potential 
 targets. The ROC curves from these two options for the changes 
in free energy are shown in Fig. 3d and the area under the ROC 
curves are demonstrated in Table 5.

Combining the changes of free energy in all the targets has a 
minor advantage over maintaining the minimum energy out of all 

Table 5 
The area under the ROC curves in thermodynamic equilibrium

Area under the curve

Minimum value of 
changes in free energy

Combined value of changes in 
free energy in all the targets

Changes in free energy (hybridization 
energy is from RNAup)

0.672 0.683

Changes in free energy (hybridization 
energy is from cofold)

0.615 0.623
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the sites. In either option of calculating the changes in free energy, 
the hybridization energy from RNAup has a better impact on tar-
get prediction.

The feature “changes in free energy” discriminates the inter-
acting and noninteracting pairs better than the feature “hybridiza-
tion energy.” The true positive rate at the optimal threshold for the 
feature changes in free energy is 63.5% as shown in Fig. 4a 

Fig. 4 Comparing different features for their ability of predicting true targets. (a) The variation of true positive 
and true negative rates with the combined changes in free energy in all the miRNA targets in a UTR in hg19. The 
optimal true prediction rate is 63.5%. (b) The variation of true positive and true negative rates with the number 
of miRNA targets in a UTR that are associated with less than 0 changes in free energy. (c) True positive and 
negative rates with the changes in minimum conservation score of the seed region of the targets in all UTRs in 
hg19. (d) The important three features, changes in free energy, multiple targets, and conservation scores are 
compared with ROC curves. The area under the cures of these features in the order listed at the legend is 0.683, 
0.675, and 0.701
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compared to 58% for the feature hybridization energy (Fig. 3b). 
Thus using changes in free energy as a feature may help to separate 
false positives from the true positives.

Multiple potential targets in a UTR are expected to increase the 
affinity of a miRNA to bind a UTR and many tools provide an 
option to use this as a parameter for refining the potential targets. 
With the known interacting and noninteracting miRNA–target pairs 
in human genome, we calculate the number of targets in a UTR for 
each miRNA from the interacting or noninteracting pairs. All those 
targets that have negative changes in free energy are considered to 
be potential targets. When the number of targets in a UTR for a 
miRNA is greater or equal to the threshold, it is considered to be a 
real target. The variation of true positive rates and true negative rates 
with the number of targets are shown in Fig. 4b. At the optimal 
threshold of four targets, the true prediction rate is 65.8% (the pre-
diction accuracy is also 65.8% assuming that the number of positive 
and negative instances are the same). Note that the targets found in 
randomly generated UTRs behave slightly different with the optimal 
threshold of 5 and has lower prediction accuracy.

It has been shown that the core seed region (p2 through p7) and 
the close neighborhood around the region (p1 and p8) is evolution-
arily conserved [17]. It is conceivable that the base pairing regions 
in 3′ UTR may also be conserved. To study the extent to which the 
base pairing regions in UTR is conserved, we have downloaded 
appropriate multiple sequence alignments of related species from 
the UCSC Genome Browser (phastCons46wayPrimates and phast-
Cons30way) for human and mouse. We preprocess the conserved 
scores in these alignments (0 through 1) into 10 overlapping bins 
having minimum conserved scores of 0.05–0.95.

Among the 1070 known interacting miRNA–target pairs in the 
human genome, 1018 are predicted, while among the 3452 nonin-
teracting miRNA–target pairs only 2361 (false positive) are predicted. 
The Fig. 4c shows true positive and negative rates with the distribu-
tion of targets in bins with different conservation scores. The derived 
prediction accuracy assuming the balanced training set is also shown. 
At optimum threshold (the conservation score of 0.8 or better), the 
true positive rate and the prediction accuracy is 66.1%. Additionally, 
Table 6 includes extra information regarding targets from interacting 
and noninteracting sets found in conserved region.

We have looked at individual features and their impact on reducing 
false positive rate separately. At the optimal threshold, the prediction 
accuracy of the features changes in free energy, multiple targets, and 
conservation scores are respectively 63.5%, 65.8%, and 66.1%. The 
ROC curves for these features are shown in Fig. 4d and the areas 

3.3 Multiple Targets

3.4 Targets 
in Conserved Region

3.5 Comparison 
of Features
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Table 6 
Targets from interacting and noninteracting sets found in conserved region

Interacting pairs  
(out of 1018 predicted pairs)

Noninteracting pairs  
(out of 2361 predicted pairs)

Minimum conserved 
score

Number of targets 
found

True positive rate 
in %

Number of targets 
found

False positive 
rate in %

0.05 748 73.48 761 32.23

0.15 701 68.86 648 27.45

0.25 674 66.21 593 25.12

0.35 652 64.05 544 23.04

0.45 625 61.39 499 21.14

0.55 603 59.23 470 19.91

0.65 580 56.97 413 17.49

0.75 547 53.73 368 15.59

0.85 504 49.51 323 13.68

0.95 411 40.37 217  9.19

under the curves of these features changes in free energy, multiple 
targets, and conservation scores are, respectively, 0.682, 0.675, and 
0.701. The individual prediction accuracy and as well as the area under 
the ROC curves of these features vary within a very small range.

Since these features are independent predictors of true positive 
and the best prediction accuracy is at least better than 63.5%, the 
results of the prediction of each feature can be combined in a 
majority agreement basis as outlined in the section on algorithm. 
The lowest prediction accuracy among the features is 0.635 (p) 
and the number of features is 3 (n). The result of majority 
 agreement will be 69.7%, which is better than the outcome of any 
one of these features.

The interacting and noninteracting UTRs are mapped onto 
the reference genome (hg19) using BLAT [36] to get the coordi-
nates so as to find the conservation scores on the seed target 
regions. We kept only the unique mapping onto the reference 
genome, which reduced the plausible miRNA–mRNA pairs. The 
algorithm found 827 miRNA–mRNA pairs out of the 871 plausi-
ble interacting pairs, and 1089 miRNA–mRNA pairs out of 1592 
plausible noninteracting pairs. The sensitivity is 94.95%, while the 
false positive rate is 68.4%.

We set the thresholds for the features changes in hybridization 
energy, multiple targets, and conservation scores to their respective 
optimal values, which are −11, 4. and 0.75, respectively, and tested 
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for majority agreements. When the predicted results of each fea-
ture are combined, 578 interacting miRNA–mRNA pairs have the 
majority agreement out of 827 predicted pairs (871 plausible). On 
the other hand, out of 1089 predicted noninteracting pairs (1592 
plausible), 378 were claimed to be true targets, which are false 
positives. The false positive rate was reduced to 23.74% from 
68.4%, while the true positive rate was reduced to 66.36%. In the 
normalized scale, that is, without factoring into the plausible pairs, 
the positive rate will become 69.89%, while the false positive rate 
will become 34.71%. The overall prediction accuracy was 67.6% for 
the normalized data set and 70.3% for the non-normalized data 
set, which is better than the results using any one of the features 
alone. Here the prediction accuracy was computed as the average 
of true positive and true negative rates with the assumption that 
positive instances are the same as that of negative instances.

The prediction metrics with changes in free energy and multi-
ple targets without any normalization is shown in Fig. 5a, b. The 
prediction accuracy at the optimal threshold is about 68.7% for 
either combined changes in free energy or multiple targets.

We have examined the following factors and their influence in 
reducing the false positive rate: hybridization energy, opening 
energy, changes in free energy (ΔΔG), multiple targets of a miRNA 
in a UTR, and presence of a target’s seed region within a con-
served region. These factors can be used as features in a supervised 
learning algorithm to improve the overall prediction accuracy. A 
learned model must be flexible enough to classify new instances 
(never been used in training) correctly. We use tenfold cross valida-
tion to assess the utility of the learned model, and the effectiveness 
of features for classification. In tenfold cross validation, this dataset 
is divided into ten equal subsets and nine subsets are used to train 
and the other subset is tested; this is repeated ten times and the 
average scores are taken over all the runs. To minimize bias, we 
have created a dataset with equal number of positive and negative 
instances. Since we have large numbers of noninteracting miRNA–
mRNA pairs in human genome, we have created five different neg-
ative subsets randomly extracted from the whole set to match the 
number of positive instances, and for each subset we ran machine 
learning algorithm with tenfold cross validation. We have used the 
machine learning algorithms such as support vector machine 
(SVM), multilayer perceptrons (ANN), and decision tree. For a 
baseline comparison, we have used naïve Bayes.

For the purpose of comparing the effectiveness of features 
under supervised learning, we have created two sets, namely s1 and 
s2. The set s1 has all the features except the conservation score, 
while s2 has all the features. The prediction accuracy of each of 
these feature combinations was tested with each of the abovemen-
tioned machine learning algorithms. We also have created five 

3.6 Application 
of Supervised 
Learning
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Fig. 5 Comparing thermal energy features and multiple targets in mm9 data. (a) The variation of true positive 
and true negative rates with the combined changes in free energy in all the miRNA targets in all UTRs in hg19 
without normalizing. The optimal true prediction rate is 68.7%. (b) The variation of true positive and true nega-
tive rates with the number of miRNA targets in a UTR in hg19 without normalization. The optimal true predic-
tion rate is 68.7%. (c) The variation of true positive and true negative rates with the combined changes in free 
energy in all the miRNA targets in a UTR for in mm9. The true positive rate is 61.4% at −11.2 kcal/mol. (d) 
Variation of true positive and true negative rates with the number of miRNA targets in a UTR associated with 
negative changes in free energy in mm9. The prediction accuracy optimal threshold 4 is 55%

different data sets for each feature combination as outlined in 
Subheading 2. The average of prediction accuracy of each set with 
tenfold cross validation for each classifier is shown in Fig. 6. The 
dataset is comparable to the normalized data set used in single 
feature space. The details are provided in Table 7. The average best 
prediction accuracy was 69% from ANN followed by the results 
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Fig. 6 Comparing prediction accuracy of machine learning algorithms. Average 
prediction accuracy (measured with tenfold cross validation) of the targets in hg19 
3′UTR with different combinations of features using the following supervised learn-
ing algorithms: naïve Bayes, SVM, ANN, and decision tree. The ANN algorithm out-
performed others when all the three features are used. The data in set S1 has four 
features: hybridization energy, opening energy, changes in free energy, and target 
counts, while the data in set S2 has the features of the data in S1 and conservation 
score. The data in set S3 has conservation score as the only feature

Table 7 
The prediction accuracy of tenfold cross validation with feature sets S1 and S2

Naïve SVM ANN Decision tree

S1 S2 S1 S2 S1 S2 S1 S2

1 62.7 65.84 64.57 66.2 63.72 68.74 62.09 68.4

2 63.42 66.32 65.05 67.41 64.09 68.5 62.57 68.08

3 64.02 66.44 66.02 67.47 65.54 69.23 62.94 68.56

4 64.33 66.99 65.84 67.17 66.02 69.04 63.6 68.74

5 63.66 66.93 64.69 67.41 65.29 69.71 63.54 67.96

Mean 63.66 66.5 65.23 67.13 64.93 69.04 62.95 68.35

Std  0.622  0.47  0.66  0.53  0.98  0.47  0.64  0.33

The feature set S1 has hybridization energy, open energy, ΔΔG, and multiple targets. The set S2 has the features of S1 
and the conservation score
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from decision tree at 68.35%. The results from the sophisticated 
machine learning algorithms with all the features are not signifi-
cantly better than the prediction accuracy of 67.6%, which is 
obtained by simply combining threshold based outcome from each 
feature with majority agreement.

We do not expect to find any real targets in randomly generated 
UTRs and therefore the targets found in these generated UTRs are 
considered to be true negative as are those in the noninteracting 
pairs. When hybridization energy from RNAup is used as a dis-
criminating parameter, the features of randomly generated UTR 
behave very similar to that of noninteracting pairs as illustrated in 
the density plot of Fig. 3a (the changes in true negative rate with 
hybridization energy). A similar observation can be made from the 
plot in Fig. 4a showing the true negative rates with changes in free 
energy. The true negative rates at the optimal threshold as shown 
in Fig. 4a are 63.5% and 60.7% respectively for noninteracting 
pairs, and for the targets from randomly generated UTRs. The 
behavior of the targets on randomly generated UTRs with respect 
to the feature “number of targets” is way off from the behavior of 
noninteracting targets as shown in Fig. 4b. The true negative rates 
at the optimal threshold as shown in Fig. 4b are 65.8% and 54.3%, 
respectively, for noninteracting pairs and for the targets from ran-
domly generated UTRs. When applying multiple targets as a fea-
ture it is possible to get error when using targets from randomly 
generated UTRs as a proxy for noninteracting pairs.

As has been described in the section on data, UTRs of the mouse 
genomes were simulated to mimic of a nucleotide composition 
similar to known 3′ UTRs. The length distribution of the simu-
lated UTRs matches with that of real 3′ UTRs. In the human 
genome, the predicted targets from the simulated UTRs behaves 
similar to that of noninteracting data set of Liu et al. [10] with 
respect to energy features, we may conclude that the targets from 
randomly generated UTRs for house are indeed a good proxy for 
noninteracting targets.

Figure 5a shows the variation of true positive and true negative 
(targets from randomly generated UTRs as proxy) with the com-
bined changes in free energy as a feature. At the optimal threshold 
of −11.2 kcal/mol, the prediction accuracy is 61.4%, which is some-
what closer to the optimal prediction accuracy of 63.5% in human 
genome using the known noninteracting pairs. The variation of true 
positive and true negatives against the number of targets in a UTR 
was shown in Fig. 5b. The optimal prediction accuracy is 55% which 
is also very close to what we have obtained in human genome with 
the targets from randomly generated UTRs (54.3%).

3.7 Plausibility of 
Using Targets from 
Randomly Generated 
UTRs as a Proxy for 
Noninteracting Pairs

3.8 Target Prediction 
in the Mouse Genome
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4 Discussion

Accurately predicting miRNA targets is still very challenging due 
to the fact that mature miRNAs are quite small (18–24 nt) and 
base pairing with the target UTRs is not perfect. The core seed 
region of a miRNA (positions 2 through 7) and its close neighbor-
hood (position 1 and 8) has been shown to be evolutionarily con-
served among related species [17]. The p-value in finding a match 
to a seed region of length of 6 nt in an average UTR is quite high 
and is open to high rate of false positives. The objective of our 
approach is to maximize the sensitivity while minimizing the false 
positive error rate. Perfect base pairing in the seed region alone is 
not sufficient to reach high sensitivity in mammalian genomes. 
Brennecke et al. [24] have shown with in vivo experiments in C. 
elegans the existence of other types of base pairing. To increase the 
sensitivity of our algorithm, TargetFind, we have adapted their 
experimental findings by recognizing weak 3′ compensatory base 
pairing in the seed region as a potential target. Further, the con-
straints on perfect seed region base pairing were relaxed as out-
lined in the Methods. Our target prediction algorithm identified 
95% of the known interaction pairs reported in miRBase [1] in 
human and mouse genomes.

In order to quantify the false positive rate or to assess the overall 
prediction accuracy of an algorithm, it is necessary to have a set of 
validated or derived noninteracting miRNA–target pairs. We vali-
dated predicted targets with a derived noninteracting miRNA–target 
set for human genome from Liu et al. [10]. Additionally, randomly 
generated UTR sequences mimicking the nucleotide composition 
and length distribution of real 3′ UTRs of the human and mouse 
genomes were examined as a proxy for noninteracting pairs.

Many target prediction tools have used one or more of the fol-
lowing strategies to reduce the false positive error rate: thermal 
energy equilibrium, multiple targets, and targets in the conserved 
region. Having noninteracting data sets will help to quantify the 
role of each feature in reducing the false positive rate. Thermodynamic 
features such as hybridization, opening and changes in free energy 
are computed by the Vienna Package [27]. When there are multiple 
targets in a UTR for a miRNA, either the minimum value of the 
changes in free energy among multiple targets, or the combination 
of the value of the changes in free energy of all the targets can be 
used as outlined in the section on the algorithm. The ROC curves 
of Fig. 3d show the minor advantage of combining the value of free 
energy over the entire targets as opposed to maintaining the mini-
mum value of the changes in free energy among all the targets in a 
UTR. For TargetFind, the combined value of changes in free energy 
in all the targets in a UTR for a miRNA was used. At the optimal 
threshold, the true positive rate as well as the prediction accuracy 
is 63.5% when combined values of changes in free energy is used as 
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Table 8 
Summary of the true prediction rate at the optimal threshold and the best prediction accuracy in the 
human genome (hg19) using interaction and noninteracting pairs, and targets from randomly 
generated UTRs

True prediction rate at 
optimal threshold with 
noninteracting targets, %

True prediction rate at optimal 
threshold with targets from generated 
UTRs, %

Target counts 65.8 54.3

Hybridization Energy from 
RNAup

58 59

Change in free Energy 63.5 60.7

Conservation score 66.1 NA

a feature as shown in Fig. 4a. The prediction accuracy or the true 
positive rate at the optimal threshold for each of these features in 
the human genome is given in Table 8. Using hybridization energy 
as a predictor for true targets resulted in prediction accuracy of 58%, 
while using changes in free energy as a predictor has better sensitiv-
ity of 63.5% at the optimal threshold. Thus the feature “changes in 
free energy” is a viable predictor for real targets. The experimental 
evidence in [7] also shows that hybridization energy alone is not the 
best predictor of real targets.

The seed region of a mature miRNA is conserved across mul-
tiple species and hence the binding seed region of the correspond-
ing targets in a UTR is expected to be conserved. Confounding 
prediction, targets do not always fall into conserved regions and 
not all the seed regions have a perfect seed pairing. This favors base 
pairing on multiple sites within a UTR and we may expect such 
multiplicity may have a positive impact on reducing the false posi-
tive rate. As expected, the feature “multiple targets” has a predic-
tion accuracy of 65.8% at the optimal threshold as shown in Fig. 4b, 
and it also plays a role as an individual predictor of real targets.

The conservation score of a binding site was derived from the 
tables phastCons46wayPrimates and phastCons30way for human 
(hg19) and mouse (mm9) respectively. Figure 4c shows the metric 
of true positive and negative rates with the changes in minimum 
conservation score of the seed region of the targets in 3′UTRs in the 
human genome (hg19). At the optimal threshold of an 80% conser-
vation score, the true positive rate and the prediction accuracy is 
66.1%. The individual prediction accuracy at the optimal threshold 
for these three features changes in free energy, multiple targets, and 
conservation energy varies within a narrow range from 63.5% to 
66.1%. Using majority agreement as outlined in Methods, the results 
of these individual predictors were combined to improve the overall 
prediction accuracy. When the threshold of each feature was set to 
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the optimal values, the overall prediction accuracy was 67.6% which 
is better than any the results from any one the feature alone.

Supervised learning algorithms can take multiple features of 
interacting and noninteracting targets and learn a flexible model to 
discriminate true targets from false ones. We have used the classi-
fiers of support vector machine, multilayer perceptrons, decision 
tree and Naïve Bayes on different combinations of features with 
data sets in s1, s2 and s3. The best average prediction accuracy 
with the feature combination of s1 (hybridization energy, opening 
energy, changes in free energy, and target counts) is 65.23%, which 
was not more predictive than conservation score alone, which was 
about 66.1%. When all the features are combined together in s2, 
the multilayer perceptrons achieved the best average prediction 
accuracy of 69.04%, followed by the decision tree at 68.35%. The 
data in set s3 has conservation score as the only feature and achieved 
prediction accuracy 66.1% with the multilayer perceptrons.

SVMicro [10] implemented a three-stage approach to maximize 
the prediction accuracy while minimizing the false positive rate. It is 
a two-phase process in which a flexible base pairing strategy in the 
seed region to maximize the sensitivity is followed by two different 
filtering processes based on a support vector machine learning algo-
rithm to reduce the false positive rates. A large number of features 
from binding sites as well as from the entire UTRs were extracted for 
training. Their top performing features include matching in the seed 
region (1), accessibility energy (8), number of targets (11), hybrid-
ization energy (12), and conservation score (13). The value in the 
brackets denotes the priority of the respective feature. In our discus-
sion, the value of changes in free energy is the summation of acces-
sibility energy and hybridization energy thus capturing these highly 
ranked features of SVMicro. Our findings are consistent with theirs. 
We conclude the ranking order of features in predicting the true 
targets is (1) conservation score, (2) targets counts in a UTR, and 
(3) changes in free energy. While SVMicro has outperformed other 
target prediction system such as PicTar, miRanda, mirTarget, PITA, 
and TargetScan, their overall prediction accuracy is still not high as 
expected due to the same limiting factors as we have pointed out.

Figures 3a, b and 4a show that targets from randomly gener-
ated UTRs have similar characteristics to noninteracting pairs in 
terms of hybridization energy and changes in free energy. Tables 8 
and 9 show the true prediction rate at the optimal threshold for the 
human genome and the mouse genome, respectively. Notice that 
the sensitivity at the optimal threshold for noninteracting targets 
and that targets from randomly generated UTRs differ as high as 
11.5% for the target count feature and by 2.8% for changes in free 
energy. Therefore, appropriate error correction has to be done 
when using randomly generated UTRs as a proxy for noninteract-
ing pairs in other genomes for the feature targets counts. Without 
validated noninteracting targets in the mouse genome, it is very 
difficult to perform correction using simulated UTRs.

The Limitations of Existing Approaches in Improving MicroRNA Target Prediction Accuracy
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5 Conclusions

We have designed and implemented an algorithm (TargetFind) in 
Python incorporating some recent experimental findings in miRNA 
target binding site prediction. As limiting the target search to the 
seed region is not sufficient in mammalian genomes, finding poten-
tial targets is based on a combination of base pairing in the seed 
region as well as compensatory pairing in the 3′ region of the 
miRNA. This is outlined in the Methods. We find that searching 
for multiple targets in a UTR will reduce the false positive rate of 
finding motifs. Beyond simply finding motifs, it is imperative to 
reduce the false positive error rate in predicting targets. 
Combinations of the following parameters have been used to 
reduce the false positive rate: thermostability, multiple targets in a 
UTR, and seeking targets in evolutionarily conserved regions. The 
optimal prediction accuracy for each of these features varies within 
a narrow range from 55.8 to 66.1%. Since combining the outcome 
of these features with majority agreement improves the overall pre-
diction accuracy, TargetFind will do this as default. The optimal 
threshold values for these features are set as defaults; however, a 
user can set their own parameters.

The ANN reached the highest prediction accuracy of 69.4% 
among the set of classifiers that were studied with different com-
bination of features. This result was not significantly higher than 
majority agreement based aggregation of the results of threshold 
based decision. An interesting alternative to looking at single 
miRNA or a gene for their corresponding binding partners, 
ensembles of miRNAs or genes are used as input in MiRror [37] 
and the results are refined using hypergeometrical distribution 
with a cutoff p-value. MiRror gets putative targets for a miRNA 
from ensembles of targets prediction algorithms or programs such 
as TargetScan, PicTar, DIANA-MicroT, PITA, EIMMO-MirZ, 
and miRanda.

In order to achieve significant progress in accurate target 
prediction, we need to have a better understanding of the 
 biological process in a specific miRNA–mRNA interaction. 

Table 9 
Summary of the true prediction rate at the optimal threshold in the mouse 
genome (mm9) using interaction and the targets from randomly 
generated UTRs

Features
True prediction rate at 
optimal threshold

Target counts 55

Change in free Energy 61.4

Rasiah Loganantharaj and Thomas A. Randall
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Some recent advances in miRNA mediated gene expression high-
throughput experiments [22, 38, 39] and software tools such as 
PARma [40] and miRNAmRNA [41] to identify targets from 
the experimental data accurately will help us in the future to 
study and understand the miRNA–mRNA interaction 
computationally.
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Chapter 11

Genomic Regulation of MicroRNA Expression  
in Disease Development

Feng Liu

Abstract

MiroRNAs (miRNAs) are an abundant class of regulators of gene expression. Through base paring with 
messenger RNAs, miRNAs repress the expression levels of other genes, including those encoding tran-
scription factors. On the other hand, the spatial and temporal patterns of miRNAs transcription are subject 
to regulation by transcription factors. The inter-regulation between miRNAs and TFs integrates two gene 
regulatory networks—at transcriptional level and post-transcriptional level to fine-tune the gene expression 
pattern in the development of multicellular organisms. Aberrant regulation at either of these two levels of 
gene regulation can lead to developmental disorder and disease.

Key words MicroRNA, Transcription factor, Promoter, Gene regulatory network

1 Introduction

MicroRNAs (miRNA) are one of three major types of regulatory 
noncoding RNAs in metazoans (the other two are lincRNA and 
piRNA) [1]. Through base pairing with messenger RNAs 
(mRNAs), each miRNA acts as a guide to recruit the Argonaute 
(AGO) family proteins and their associated factors to induce 
mRNA deadenylation, mRNA decay, and translational repression 
[2]. It is estimated that more than 60% of human protein-coding 
genes contain at least one conserved miRNA-target site, placing 
miRNAs as a major class of intracellular regulators of gene expres-
sion in the cell [3]. Currently, an intense area of the study of sys-
tems biology is to comprehensively characterize miRNA-mediated 
gene regulatory network to achieve a panoramic view of the molec-
ular mechanisms governing cellular phenotypes.

While mature functional miRNAs are relatively short (~22 
nucleotides), initial primary miRNAs transcripts (pri-miRNAs) are 
several hundreds to thousands of nucleotides long [2]. The con-
version of pri-miRNAs to mature miRNAs is carried out by multi-
ple endonucleases, including Drosha and Pasha in the nucleus, and 
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Dicer in the cytoplasm [2]. Since their discovery, the biogenesis of 
miRNAs is largely focused on these post-transcriptional RNA pro-
cessing steps. Nevertheless, the tissue and stage-specific expression 
patterns of individual miRNAs are subject to control by discrete 
cis-regulatory elements (e.g., promoters and enhancers) in the 
genome. Indeed, transcriptional regulation miRNAs is an integra-
tive part of the molecular interaction networks governing proper 
cell fate in development. Conversely, aberrant miRNA transcrip-
tion is associated with a variety of human diseases, including con-
genital developmental defect, heart disease, and cancer.

2 The Structure of miRNA Genes

Based on their relative locations to protein-coding sequences (i.e., 
genes), miRNAs can be broadly classified into two groups. The first 
group includes those encoded by untranslated sequences of other 
genes—introns and 5′- and 3′-end untranslated regions (UTR). 
These miRNAs and their “host” genes are initially transcribed as a 
single transcript; only later do they separate by RNA splicing events. 
By contrast, the second group of miRNAs are located in intergenic 
regions. Some miRNAs of this group have their own coding 
sequences, thus producing stand-alone transcripts, whereas others 
belonging to the same family (i.e., those with identical sequences at 
nucleotides 2–8 of the mature miRNA) are clustered in the same 
genomic loci, presumably due to gene duplication during evolution 
[4]. Clustered miRNAs are often co- transcribed in a long poly-cis-
tronic transcript unit, from which individual miRNAs are subse-
quently spliced out by post- transcriptional mechanisms [2].

Regardless of their respective structural features, the vast 
majority of miRNAs genes are associated with canonical gene pro-
moters and are transcribed RNA polymerase II [5, 6], with only a 
few exceptions of viral miRNAs transcribed by RNA Pol III [7]. A 
canonical promoter is empirically defined as DNA fragments of 
about 100 bp (−50, +50) in length centering on transcriptional 
start sites (TSS) (Fig. 1). Within this region, three types of short 
DNA sequence motifs are often present, which serve as binding 
sites for different transcription factors: (1) general transcription 
factor binding sites, such as the TFIIB recognition element (BRE) 
and the TATA-box at the 5′ end TATA binding boxes, (2) the ini-
tiator (Inr) sequences at around the TSS, and (3) downstream pro-
moter element (DPE) 3′ to the TSS. Upon binding with these 
sequence motifs, multiple general transcription factors form the 
preinitiation complex (PIC), including the RNA Pol II, at the core 
promoter to start transcription [8].

In eukaryotic cells, DNA is wrapped by histones, proteins capa-
ble of condensing the DNA polymer into chromatins and chromo-
somes. The tight association between histones and DNA presents a 
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significant barrier for transcription regulators. As a result, certain 
 distal cis-regulatory elements, called enhancers, are usually required 
to activate detectable gene expression in vivo [9]. Like promoters, 
enhancers also harbor many short DNA sequence motifs (6–20 bp) 
that serve as specific binding sites of TFs. Most enhancers and their 
associated TFs are active at restricted cell types at different stages of 
development; together, they determine the spatial and temporal spe-
cific gene expression patterns in multicellular organisms [10].

3 Transcriptional Control of miRNAs

A paradigm of transcriptional regulation of miRNA is illustrated by 
the study of the lethal-7 (let-7) expression in the model organism C. 
elegans (Fig. 2). Let-7 was one of the first microRNAs discovered in 
the early 1990s [11]. During development, the let-7 locus produces 
two distinct transcripts (~1730 bp and ~890 bp, respectively) [12, 13]. 
Fine mapping of the cis-regulatory activity of let-7 promoter revealed 
two promoter-proximal elements that are critical for the expression 
of let-7 in different tissue types. One element, called TRE, activates 
let-7 expression in the hypoderm, whereas the other element, LTE, 
activates expression in the intestine. In many other tissues, such as in 
the neuronal system and the muscle, both TRE and LTE are required 
for the expression of let-7 [13].

Enhancer 

TF GTF 

Gene Promoter 

RNA
Pol II 

miRNA
(21-22 nt) 

pri-miRNA
( ~100-1,000 nt) 

Fig. 1 Schematic illustration of miRNA biosynthesis. Coding sequences of miR-
NAs are transcribed by RNA polymerase II (RNA Pol II), which recognizes the 
promoter sequence at the transcription start site. The spatial and temporal speci-
ficity (time, level, and cell type) of miRNA transcription is dependent on distal 
cis-regulatory elements, called enhancers. Promoter and enhancer contain DNA 
sequence motifs that serve as binding sites for transcription factors. The initial 
transcripts of miRNAs are several hundreds to thousands long, which are gradu-
ally trimmed down to 21–22 nucleotides by multiple RNA endonucleases to form 
the mature miRNA. TF transcription factor. GTF general transcription factor

Genomic Regulation of MicroRNA Expression in Disease Development
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As mentioned earlier, spatial and temporal-specific activities of 
cis-regulatory elements (i.e., promoters and enhancers) are depen-
dent on sequence-specific DNA binding transcription factors. In an 
RNAi screen of TFs regulating let-7 promoters’ activities in C. ele-
gans, ~35 genes were found to let-7 promoter’s activity expression 
in development, including both positive and negative  transcriptional 
regulators [13]. Complex regulation of miRNAs by TFs is not 
unique to C. elegans. Other notable TFs such as p53, MYC, and 
MYOD1 have been found to control the transcription from the 
miR-34, miR-17, and miR-1 clusters, respectively [2, 14].

4 Cross-Regulation Between miRNA and Transcription Factors

That miRNAs are controlled by transcription factors indicates a 
cross-talk between these two families of gene regulators. Notably, 
this cross-talk is reciprocal, because miRNAs can target TFs’ tran-
scripts as well. For example, for the aforementioned miRNA- 
regulating TFs, such as p53 and Myc, each is subject to repression 
by miRNAs in various cell types and experimental conditions [2].

In multicellular organisms, microRNAs and transcription fac-
tors are the two largest families of trans-acting factors of gene regu-
lation (~600 TFs and ~2600 miRNAs in humans). Given such large 
numbers, cross-regulations of TFs and miRNAs consist of a com-
plex molecular interaction network. It has been shown that certain 
recurrent, molecular interaction patterns, called network motifs, are 
inherit to networks composed of a large number of nodes (e.g., TFs 
and miRNAs in the gene regulatory network) [15]. Common 

Mature let-7 TRE LTE 

Hypoderm Intestine Neurons,  
muscles,  

etc

Pro A Pro B 

~ 35 TF 

Fig. 2 A paradigm of transcriptional regulation of miRNA. The let-7 miRNA is 
transcriptionally regulated during development of C. elegans. The let-7 locus 
contains two promoters (Pro A and Pro B). Near these two promoters are two 
cis-regulatory elements TRE and LTE, control let-7 transcription in different tis-
sues. In the hypoderm and the intestine, let-7 is respectively regulated by TRE 
and LTE. In other tissues such as the nervous system and muscles, let-7 tran-
scription depends on both TRE and LTE
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network motifs include negative/positive feed- back loops and feed-
forward loops, each of which mediates distinct dynamical patterns 
of gene expression. For example, negative feedback loops act as a 
homeostasis controller to maintain the target gene expression level 
in the presence of variations of the upstream regulator. By contrast, 
positive feedback loop and feed-forward loops can start long-term 
gene expression pattern after a brief expression of the upstream fac-
tor [15].

The involvement of network motifs in TF-miRNA-mediated 
gene regulatory networks was elegantly studied in the diversification 
of neuronal subtype specifications in C. elegans [16] (Fig. 3). For 
example, two functionally distinct gustatory neurons—ASE left 
(ASEL) and ASE right (ASER)—express different sets of taste recep-
tor genes. This molecular distinction is dependent on antagonist 
action of lsy-6, a miRNA, and cog-1, a transcription factor. Specifically, 
lsy-6 is preferentially expressed in ASEL, where it prevents cog-1 
from being activated in that cell. On the other hand, the absence of 
lsy-6 in ASER allows for high levels of cog-1 therein [17]. The antag-
onistic regulation of a TF and miRNA molecular switch thus forms 
a negative feedback loop that controls distinct cell types [16].

One theme that has emerged from the study of transcriptional 
regulations is the pervasive use of combinatorial control—that is, 
multiple transcription factors converge on the regulation of one 
target gene. In some cases, these TFs play a largely redundant role, 
whereby no one factor is absolutely required for the regulation of 
the target; in other cases, however, multiple factors work together 
to regulate the target. Interestingly, combinatorial control is also a 
common strategy deployed by miRNA-mediated gene regulation. 
That is, target transcripts often harbor a number of seed sequences 
capable of paring with different miRNA species [18].

Cog-1 
(TF) 

lsy-6 
(miRNA) 

ASER 

Cog-1 
(TF)

lsy-6 
(miRNA) 

Cog-1 
(TF) 

lsy-6 
(miRNA) 

ASEL

Cell type  
specific TF

Fig. 3 Reciprocal regulation between TF and miRNA controls cell fate specifica-
tion. In the nervous system of C. elegans, two gustatory neurons (ASEL and 
ASER) are systemically located in the anterior part of the body. Yet, they express 
different sets of taste receptor genes. This is molecular distinction that is regu-
lated by an miRNA, lsy-6. Lsy-6 is specifically expressed in ASEL, where it 
represses a TF named cog-1. In the ASER, the absence of lsy-6 allows for high-
level expression of Cog-1, which activates ASER-specific taste receptor genes. In 
ASEL, non-Cog-1 TFs activate ASEL-specific taste receptor genes

Genomic Regulation of MicroRNA Expression in Disease Development
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5 miRNA-Mediated Gene Regulatory Networks in Development and Disease

Thus far, the importance of miRNAs in gene regulation is well 
accepted. Nevertheless, in large loss-of-function studies, only 10% 
of miRNA mutants/knockdowns led to noticeable change of cel-
lular morphology, function, or cell death [2]. The seemingly 
minor effect on cellular phenotype masks a hidden role of miR-
NAs controlling the robustness of genomic activities. Interestingly, 
this role can be studied in situations where the animal is subject to 
stresses induced by environmental perturbation [19]. For exam-
ple, in Drosophila, loss of the miR-27 gene has a negligible effect 
on the differentiation of sensory neurons in uniform temperature 
conditions. But when miR-27 mutant flies were subject to even 
moderate temperature fluctuations in the laboratory, significant 
defect in sensory neuron differentiation ensued, suggesting that 
miR-9 plays a critical role in normal gene expression and robust 
neuronal differentiation [20]. In a similar vein, miR-8 mutation 
flies exhibit more severe pigmentation defect when cultured in 
elevated temperatures [21]. These studies suggested that miRNAs 
usually create thresholds of gene expressing and thus suppress 
“noisy” gene expressions during environmental changes. When 
such a buffering role is abolished, the gene expression profiles in 
the cell are more vulnerable to random changes of the base level 
of certain genes, such as those targeted by miRNAs. One implica-
tion from these studies is that individuals carrying mutations in 
miRNAs or their target sequences are inherently less resilient 
against environmental changes. Consequently, they carry a higher 
risk to develop common diseases, such as developmental disor-
ders, heart disease, and cancer [22–24].

6 Genome-Wide Characterization of miRNA-Mediated Gene Regulatory Network

Because each miRNA interacts with its target transcript via base 
pairing, the nucleotide sequence of each miRNA can be used to 
predict its target transcripts with high confidence [1]. Indeed, a 
number of algorithms have been developed to perform such 
genome-wide analysis of the target transcriptome of miRNAs [25]. 
These tools are useful for globally analyzing miRNA-regulated 
gene expression network.

On the other hand, recent years have seen tremendous growth 
of high-throughput sequencing technologies, which have allowed 
for genome-wide identification of the promoters and enhancers of 
every gene/transcript, including those coding miRNAs [26]. 
These technologies take advantage of the discovery that the chro-
matin of active CREs (e.g., promoters and enhancers) is in a 
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relatively “open” configuration and the histones at these loci are 
chemically modified in special ways (e.g., acetylation and methyla-
tion at specific lysines in the Histone 3) [27]. By preferentially 
targeting these open chromatins using DNase I (DNase-seq), 
transposase (ATAC-seq), or histone modification-specific anti-
bodies (ChIP-seq), high-throughput sequencing analysis can 
globally identify CREs active in a particular tissue or cell type. 
When such information is aligned with the coding sequences in 
the genome, the promoters and enhancers near individual genes 
(protein- coding genes and noncoding genes such as miRNA 
genes) can be deduced and subsequently be used to identify the 
cohort of transcription factor binding sites [27]. These analyses 
provide valuable information regarding the classes of TFs capable 
of interacting with the CREs of miRNAs. This transcription fac-
tor-centered analysis, when combined with miRNA-centered 
analysis, will provide a comprehensive view of the gene regulatory 
network in the cell (Fig. 4).

High throughput  
sequencing 

(ChIP-seq, ATAC-seq,  
DNase-seq

cis-regulatory elements 
(enhancer, promoter) 

TF binding sites 

TFs 

miRNA gene 

TF site 
database 

miRBase

miR
Bas

e

Fig. 4 Integrative analysis of gene regulatory networks involving both TFs and 
miRNAs. High-throughput sequencing-based techniques, including ChIP-seq, 
ATAC-seq, and DNase-seq, allow for genome-wide identification of cis-regulatory 
elements, such as promoters and enhancers. Bioinformatics analysis of the 
sequences of these elements can lead to the discovery of TFs interacting with 
these elements. Genes and miRNAs regulated by these TFs can be determined by 
transcriptome analysis through RNA-seq. Gene regulatory networks further down-
stream of these miRNAs can be computationally inferred using miRNA-target 
databases, such as miRBase

Genomic Regulation of MicroRNA Expression in Disease Development
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7 Conclusion

Since their discovery in the early 1990s, miRNAs have been firmly 
established as a major class of cellular regulators in the cell. One par-
ticular insight from these studies is that miRNAs, like TFs, interact 
with specific cis-regulatory elements associated with their targets 
(DNA sequence motifs for TFs and RNA seed sequences for miR-
NAs) [16]. Moreover, due to cross-regulation between miRNAs and 
TFs, the miRNA-mediated gene regulatory network is intimately 
weaved into the large molecular interaction networks in the cell. In 
this context, a significant challenge for the researchers of miRNA 
biology today is to define the role of individual miRNAs and miRNA 
families play in this large molecular interaction network.
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Chapter 12

Next-Generation Sequencing for MicroRNA  
Expression Profile

Yue Hu, Wenjun Lan, and Daniel Miller

Abstract

Sequencing technologies have made considerable advancements. From the Sanger sequencing method to 
the next-generation sequencing (NGS) methods, and from the NGS methods to the third-generation 
sequencing methods, we can see the development thread of the sequencing technology. Currently, NGS is 
the main contender in the sequencing market. NGS technologies provide an opportunity to research the 
microRNA (miRNA) expression profiles in detail. The NGS platforms have their own special characteris-
tics, but share some main ideas. DNA sequencing via NGS is fundamental for RNA sequencing and 
miRNA sequencing. MiRNA sequencing has special characteristics. The pipeline of miRNA sequencing by 
NGS is explained in detail from the wet experiment to the dry experiment.

Key words Next-generation sequencing, MicroRNA expression profile, 454, Illumina, Ion Torrent, 
SOLiD

1 Introduction

The microRNA expression profile can be detected by reverse 
transcription qualitative PCR (RT-qPCR), microarray 
(hybridization- based detection), and next-generation sequencing 
(NGS) technologies. In 2009, Hanni Willenbrock et al. com-
pared microarrays with NGS techniques in the paper of 
“Quantitative miRNA expression analysis: comparing microar-
rays with next-generation sequencing.” [1]. They found that 
microarray expression profiling was highly sensitive and per-
formed comparably to NGS technologies. Performance compari-
sons were relative to quantification and reproducibility. They also 
suggested the NGS technologies had advantages such as finding 
variants in the miRNA sequence. In 2010, Anna Git, et al. com-
pared three methods of miRNA expression profiling in the paper 
of “Systematic comparison of microarray profiling, real-time 
PCR, and next-generation sequencing technologies for measur-
ing differential microRNA expression.” [2]. They examined the 
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utility of microarrays and NGS to research differential miRNA 
expression profiles. They also examined real-time RT-PCR and 
challenged its status as a benchmark for studying miRNA expres-
sion profiling. They pronounced that they were the first to com-
pare the relative performance of those methods. In 2014, Pieter 
Mestdagh et al. compared 12 different commercial platforms for 
microRNA expression profiling in the paper of “Evaluation of 
quantitative miRNA expression platforms in the microRNA qual-
ity control (miRQC) study” [3] in the journal of Nature Methods. 
They found that each method has its advantages and disadvan-
tages and that the choice of method should depend on the aims 
of the study. In this chapter, we will not compare the various 
methods of miRNA expression profiling, we will focus on the 
details of miRNA expression profiling by next-generation 
sequencing methods.

Next-generation sequencing [4–8] is the second-generation 
sequencing relative to the Sanger sequencing method [9] which 
can be referred to as the first-generation sequencing method. The 
Sanger sequencing method is the classical method that reaches 
almost 100% accuracy. It was the pioneering work by which human-
kind began to discover the genes of all creatures, including our-
selves. It was a low-throughput and high-cost method. Limited to 
the use of this classical method, the Human Genome Project cost 
almost three billion U.S. dollars to fund the human genome draft 
map. However, everyone has a unique genome. The differences 
can be the allele combinations or even single nucleotide point 
mutations that are called the single nucleotide polymorphisms 
(SNP). New sequencing technologies were badly needed at that 
time and the NGS time was coming. The NGS or the second- 
generation sequencing is characterized by high throughput and 
low cost and is now the most used method in sequencing. The 
DNA from the original sample or the RNA reverse transcription is 
amplified (replicated) in many times in parallel. The amplified 
DNA is sequenced multiple times simultaneously and the signal 
can also be amplified. The amplified signal ensures the accuracy of 
the reads. Different nucleotides or dinucleotides can be added to 
give characteristic signals that can be detected and interpreted to 
determine the sequence. There are several widely used sequencing 
systems for NGS: 454 [10–12], Illumina [13], Ion Torrent [14–16], 
SOLiD. Ion Torrent and SOLiD are produced by the same com-
pany: Life Technologies. We give a detailed introduction in the 
following sections.

Third-generation sequencing is single molecular sequencing 
without the DNA amplification. It is not widely used, but has a 
promising future. Third-generation sequencing techniques include 
SMRT (single molecule Real-Time) [17] sequencing, tSMS (true 
single molecule sequencing) [18], Nanopore [19], and so on. 
SMRT (single molecule Real-Time) sequencing uses a single 
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molecular fluorescent technology. This system uses four fluorescent 
dyes, marked dNTP, and a nanostructure called a zero-mode wave-
guide (ZMW). The ZMW is a nanoscale hole much smaller than 
the fluoresced light wavelength. Only fluorescent signals generated 
at the bottom of the hole are detected outside the ZMW. The DNA 
polymerases are anchored at the bottom of this hole and the fluo-
rescent dye marked dNTP that are added to the sequence will react 
on the DNA polymerases there. This fluorescent signal of the react-
ing dNTP is detected and the fluorescent signals of the free dissoci-
ated dNTP that are not near the bottom of the hole will not be 
detected. The nucleotide type is determined from the light emitted 
by different fluorescent dyes. The method is limited by the low 
intensity of single molecular fluorescence, but as the depth of the 
sequence increases, the accuracy of the sequencing increases. The 
other advantages of the SMRT sequencing are that it gives the lon-
gest read of all the sequencing methods (about 30Kb). This makes 
this technique well suited for assembling genomes.

The tSMS (true single molecule sequencing) method also uses 
single molecular fluorescent technology. This method is much like 
the Illumina sequencing system, but it does not have a PCR amplifi-
cation step. The reverse terminated dNTPs are added in the system. 
There are four types of fluorescent dyes of the dNTP. At the begin-
ning of the elongation, one nucleotide is added, and a fluorescent 
signal is captured. But as a chemical terminator is linked to the nucle-
otide, the next nucleotide will not be added. Thus, the fluorescent 
signal detected is only produced by attached nucleotide. After the 
chemical terminator is removed, another reversible terminated dNTP 
can be added and detected. By repeating the process, the sequence 
can be determined. This method is also limited by the weak fluores-
cent signal and is more expensive. The company that first sought to 
develop this method into a commercially viable product is bankrupt.

Compared with those two fluorescent methods of the single 
molecular sequencing method, the Nanopore sequencing method 
takes another route to determine the sequence information. The 
strand of the DNA (the double strands should be open) or RNA is 
passed through a nanopore. Each nucleotide that passes through 
the nanopore induces a different change in voltage. Those changes 
can be used to determine the sequence information.

2 The Major Second-Generation Sequencing Technology Platforms (a.k.a. NGS)

In this section, we will describe the processes in several widely NGS 
sequencing platforms: 454, Illumina, Ion Torrent, and SOLiD.

The 454 Life Sciences company first unveiled the 454 sequencing 
platform. It is also the first commercial second-generation sequenc-
ing method. The 454 sequencing system utilizes the four fluorescent 

2.1 454 Platform

Next-Generation Sequencing for MicroRNA Expression Profile

https://en.wikipedia.org/wiki/Nucleotide


172

dyes of dNTP to detect the sequence order. The DNA fragments are 
amplified to enhance the fluorescent signals. The main procedures of 
the second-generation sequencing methods have many of the same 
aspects. In this section, we outline 454 sequencing to illustrate the 
main processes of this second- generation sequencing method.

The DNA that will be sequenced is extracted from the cell or tissue 
and then broken into fragments. In this process, different methods 
can be used (enzyme degradation, ultrasound, and so on) to break 
the DNA into fragments of the desired length. The length of the 
pieces of the DNA should be limited. In sequencing terms, a frag-
ment or piece of the DNA is called a “read.” The 454 sequencing 
system has the longest read of all the second-generation sequenc-
ing methods (about 1 kb).

The fragments or pieces of the DNA are then linked with the adap-
tors. The adaptors are short single strand DNAs that have special 
sequences designed to promote PCR amplification. The adaptors 
are different, so each read has special adaptors.

The DNA fragments are then amplified with the help of the adap-
tors by PCR. As the adaptors are different from each other, the 
same adaptor will be linked with the same DNA fragments. Small 
beads are mixed into the system. The beads that have primer 
sequences mapped onto them that are complementary with the 
special adaptors. By doing so, the fragments of the DNA (or read) 
are anchored to the beads. Beads that do not have attached DNA 
are filtered from the mix. The anchored double-stranded DNA are 
then denatured to a single strand form.

One bead is put into each well of the microarray. The DNA poly-
merases, buffers, and PCR primers are also added into those wells. 
As the read or DNA fragments are in the single strand form, the 
sequencing is determined by synthesizing the other strand. One 
type of the four fluorescent dyes of dNTPs is added once in the 
sequencing and then those dNTPs are washed out. Four fluores-
cent dyes of dNTPs are added in order (T, A, G, and C for exam-
ple) and cycles. If the dNTPs are synthesizing in the read, their 
signals are noted. Before the end of the synthesizing, there always 
fluorescent signals could be detected in one cycle (T, A, G, and C 
added in order). The multiple nucleotide additions can also 
detected as the intensity of the fluorescence is linearly scaled with 
that of a single nucleotide.

The sequencing result of the wet experiments of the 454 sequencing 
system is the sequencing of reads. The reads are assembled to recover 
the original DNA sequence. Generally, the sequence of a DNA is 
covered several times to enhance the accuracy of the sequencing. 

2.1.1 DNA Preparation 
and Fragmentation

2.1.2 DNA Fragments 
Are Linked with Adaptor

2.1.3 Amplification and 
Anchor the DNA to Beads

2.1.4 One Bead One Well 
and Sequencing

2.1.5 Analyzing the 
Sequencing Data
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The number of times is referred to as the sequencing depth. 
Sequencing depth is the total number of bases that are sequenced in 
the NGS (the total length of all the reads) divided by the length of 
the sequence which we want to measure. Sequencing coverage is the 
percentage of the sequence that has been measured by NGS.

The Illumina sequencing system sees worldwide application due to 
its lower cost and high accuracy. The read length is about 100 bp, 
which is much shorter than the 454 platform. The fragments of the 
DNA that linked with the adaptors anchor to a slide. The function 
of this slide is similar to the bead in 454 platform. Those fragments 
are amplified by PCR with DNA polymerase and other materials. 
As in the 454 platform, the copies of a fragment will enhance the 
fluorescent signals. The double-stranded DNA are denatured into 
the single strand form. The sequencing is achieved in the process 
of synthesizing the other DNA strand, which is called “sequencing 
by synthesis.” The nucleotides used in the Illumina platform are 
different from that used on the 454 platform. Those nucleotides 
are reverse terminators. A chemical unit is added to the nucleotides 
that are used to stop elongation. So when one type of dNTP is 
added to the sequence, only one nucleotide is actually added. After 
the added base is recorded, the chemical unit on the nucleotide is 
removed, so the new nucleotide could link other nucleotides.

The Ion Torrent is also a “sequencing by synthesis” method like 
454 platform and Illumina platform. However, unlike fluorescent 
signals used in the two methods above, Ion Torrent sequencing 
detects the proton (H+) change. When a dNTP is added to the 
DNA sequence by a polymerase, a H+ ion will be released. When 
one type of dNTP is added into the sequence, the number of H+ 
could be used to define the number of dNTPs that is added. This 
situation is like that in the 454 platform but not like that in the 
Illumina platform. The read length for Ion Torrent sequencing is 
about 200 bp, which is between the length of read in the 454 plat-
form and the Illumina platform.

SOLiD sequencing technology is different than the three methods 
introduced above. It is a “sequencing by ligation” approach. The 
main reactant used in the SOLiD sequencing is using the DNA 
ligase, not the DNA polymerase. In every ligation reaction, 8-mer 
oligonucleotides are added in the sequence. Bases six to eight are 
cleaved from the sequence. The first two bases make up one of 16 
nucleotide combinations, which can be detected by their fluores-
cent signal. The fluorescent labels linked with the bases three to 
five are not known. The 16 combinations of dinucleotides are 
labeled by four fluorescent dyes, thus the dinucleotide type is not 
defined in one ligation progress. After five rounds of ligation, every 
base is read twice in the retained five bases. In principal, if one base 
is defined the other bases could be defined.

2.2 Illumina Platform

2.3 Ion Torrent

2.4 SOLiD

Next-Generation Sequencing for MicroRNA Expression Profile
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3 MicroRNA Sequencing by NGS Methods

The basic process of sequencing RNA [20–23] is the same as with 
the sequencing described above but, there are several additional 
procedures that should be done to sequence RNA. First, the RNA 
should be extracted from cells or tissues. For certain types of RNA, 
the enrichment method may be different. Then the single stranded 
RNAs are transformed into the double-stranded cDNA by the pro-
cess of reverse transcription. From the point of the cDNA, the 
procedure is the same with DNA sequencing. The main platforms 
introduced above (Illumina, SOLiD, and Ion Torrent) have a com-
mercial RNA sequencing application.

The reads are the raw data which were gotten from the sequencing 
equipment. The main procedure of microRNA sequencing [24–26] is 
similar to the messenger RNA (mRNA) sequencing, but the details of 
the library preparation for microRNA sample are different from that 
for mRNA sample. MicroRNAs normally require an enrichment by 
gel electrophoresis. Through the classical size of the microRNAs, the 
right segments of the gel are cut for sequencing in the next steps. 
Details regarding that process have already been described.

The RNA or microRNA are extracted from cells or tissues to 
make a library. 3′ Adapter Ligation and 5′ Adapter Ligation can be 
performed simultaneously or in series. By reverse transcription, the 
cDNA is acquired. The cDNA are then amplified by PCR. As the 
microRNA has a particular length, the microRNA could be easily 
acquired by gel purification. Generally, the libraries are sent to the 
sequencing company.

After acquiring the raw data from the NGS sequencing process, the 
data must be analyzed. Here, we will give an introduction in the 
bioinformatics analysis process.

The reads are the raw data which were gotten from the sequencing 
equipment. Depending on the platform used in the sequencing, 
the length of the reads differs. Longer reads may be preferable if 
the goal of the analysis is to assemble a genome.

There are several quantities that we can measure to ascertain the 
quality of sequencing. The most often used metric is the quality 
score. Every base is given a quality score by the sequencing plat-
form during the process of base calling (base recognition). The 
quality score is computed from the error rate of base calling: 
Q = −10logE, where Q is the quality score and E is the error rate. 
Q10, Q20, and Q30 represent the percentage of bases that their 
quality scores are equal to or greater than 10, 20, and 30 respec-
tively. For example, the Q20 represents that error rate of base call-
ing is 1% or the rate of correct base calling is 99%.

3.1 Wet Experiment 
for miRNA Sequencing 
by NGS Method

3.2 Data Analysis 
(Dry Experiment) 
of miRNA Sequencing 
by NGS Method

3.2.1 Raw Data

3.2.2 Quality Control
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First, the low quantity reads (having more than five bases with 
quality scores below 20) and adaptors that were added for sequenc-
ing and PCR are removed. In miRNA sequencing, the adaptors are 
often much longer to address the short lengths of miRNAs. As 
NGS sequencing methods are able to capture many reads at the 
same time, many samples may be sequenced at the same time 
(mixed sequencing). The variable region of the adaptors can be 
used to define the sources of each sample. The statistical sequence 
length distribution is then checked to ensure it is close to the clas-
sical length of the mature miRNA: 20–25 nt.

The sequence data are given annotations by aligning them with the 
known miRNA databases. The most famous miRNA annotation 
database is the miRBase [27] (http://www.mirbase.org/). It con-
tains the known miRNA of human, mouse, and several other spe-
cies. PMRD [28] is a miRNA database that is designed particularly 
for plants. It contains the most species of model plants (http://
bioinformatics.cau.edu.cn/PMRD).

The process is different when the miRNA is not found in a 
known database. First, the miRNA is compared with the other small 
RNA databases, piRNA for example. Rfam [29, 30] is often used in 
this procedure. Rfam is a database of the noncoding RNAs (http://
www.sanger.ac.uk/Software/Rfam/ and http://rfam.wustl.edu/). 
The data that cannot be aligned will be put into the de novo miRNA 
discovery procedure. The miRDeep2 [31] is often used software to 
discover new miRNA. miRcat is a tool in the sRNA toolkit [32] to 
perform the same function. The reads are mapped to the genome of 
the sequenced species and the precursor sequence of miRNA can be 
extracted from the mapped region. The folding model can help to 
define new miRNA. The new miRNA candidates are often on the 
stem of the stem-loop structure.

High resolution: SNP in genes can be detected by the NGS 
method. The differences in a single base of miRNA also can be 
detected by the NGS method.

High throughout: It is the main characteristic of the NGS 
method. NGS is also called high-throughput sequencing. Ordinarily, 
as the throughout is so high, the sample that we send to the sequenc-
ing company would sequence at the same time as other samples that 
are sent from other groups (mixed sequencing). The sequencing 
company gives an index to mark the sources of the samples.

De novo miRNA discovery: hybridization methods such as 
microarray can only detect miRNA known by the designed probe. By 
comparing known miRNA database and incorporating prediction 
methods, de novo miRNA can be discovered by the NGS method.

High accuracy: the high-depth sequencing guarantees that 
every base is sequenced many times. This characteristic enhances 
the accuracy of the sequencing.

3.2.3 Data Filter or Clean

3.2.4 Analysis 
of the Clean Data

3.3 Advantages 
of miRNA Sequencing 
Using NGS
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4 Conclusion

New sequencing methods have sprung up in the last decade. The 
NGS methods and third-generation sequencing methods consti-
tute the majority of sequencing done today. Third-generation (sin-
gle molecular) sequencing technologies have their technological 
advantages, but their cost is high. In commercial sequencing, NGS 
methods are the mainstream. In this chapter, several NGS plat-
forms have been introduced and their main processes have been 
described. Additional steps required for miRNA expression profil-
ing by NGS have also been described.
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Chapter 13

Handling High-Dimension (High-Feature) MicroRNA Data

Yue Hu, Wenjun Lan, and Daniel Miller

Abstract

High-dimensional data, or high-feature variables, are often used to describe the characteristics of microRNA 
sequence and microarray data. As a consequence, the curse of high dimension often becomes a problem. 
High-dimension variables lead to many difficulties in processing and can be hard to understand. On the 
other aspect, as the sample size rather limited, the more variables, the more statistical error would be pro-
duced in the data processing. For the purpose of decreasing the dimension of variables, a degenerated k-
mer method was suggested. To enhance the statistical robustness, the gapped k-mer method was 
introduced. In the last part of this chapter, some traditional supervised and unsupervised mathematical 
methods that used to decrease the dimensionality of the data are also described.

Key words High-dimension, miRNA, Degenerated k-mer, Gapped k-mer, Dimension decreasing

1 Introduction

The microRNA or the miRNA plays a significant role in gene expres-
sion by negatively regulating transcription [1–4]. The original 
miRNA precursor will form the mature miRNA through processing. 
The mature state of the miRNA is a single short sequence, which 
usually contains 20 ~ 25 nucleotides. Compared with messenger 
RNA, it is a type of small noncoding RNA. The mature miRNA 
combines with its target genes by binding with complementary 
sequences, thereby reducing those genes’ expression. Combinations 
of different miRNA regulation pathways in the cell can form net-
works. Many complex diseases, like cancers [5] or diabetes [6–8], 
are caused by improper expression of miRNA. Consequently, 
miRNA is an attractive research subject for many groups.

The cornerstone of researching an entity is extracting its fea-
tures. MiRNA and its precursors can be described in many ways, 
nucleotide compositions for example. While nucleotide composi-
tion is an intuitive way of representing miRNA, it is often not suf-
ficient. K-tuple or Kmer [9] is a more general means to define 
features of miRNAs and other biological sequences [10, 11]. It is 
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a sequential string of letters from an alphabet k. If the alphabet 
table represents the four types of nucleotides (adenine, cytosine, 
guanine, and uracil), there will be four letters, {A, C, G, U}. Note 
that the alphabet table is not confined to the four types of nucleo-
tides. It is an unbiased systematical method to represent miRNAs. 
Nevertheless, as the cardinality of k is limited what can be repre-
sented by single character, K-tuples or Kmers only represent the 
local sequence arrangement. A parallel type of Pseudo-dinucleotide 
composition (pPseDNC) and a series type of pseudo-dinucleotide 
composition (sPseDNC) consider the dinucleotide correlations of 
22 physiochemical properties [12–15]. By using different sequence 
distances, the long-range interaction could be taken into account 
via a hierarchical pattern (called tiers). Other methods such as 
Triplet [16] and Pseudo-structure status composition (PseSSC) 
describe the properties of a miRNA by its structure information, 
which also considers the long-range sequence information [17]. In 
this chapter, we focus on the Kmer and variant Kmer. First, we will 
give a brief introduction of those basic Kmer systems that were 
used to represent miRNAs.

The more features (dimensions) extracted from miRNA, the 
more useful the results of the analysis. There is, however, redun-
dant information into those features (dimensions). And the dimen-
sion disaster is often like a ghost in the era of information. The 
curse of dimensionality becomes more serious in big data problems 
than in classical computing challenges. Handing high-dimensional 
big data often requires large amounts of memory and calculation. 
The resource demands of some calculations are impossible to meet 
with current technology. Developments in high-throughput biol-
ogy experiments, like the second-generation sequencing [18, 19], 
mean that biological big data is easy to acquire in using inexpensive 
techniques. High-dimension and big microRNA data poses an 
open problem for researchers.

To overcome the curse of dimensionality, we should analyze 
the high-dimension data itself. The dimensions (features) of the 
miRNA are not independent, thus we could use important, but 
smaller, number of dimensions to represent the full data set by 
space transformation. There are many methods that can be used 
for dimension reduction. Those methods are pure mathematical 
technologies. In the last part of this chapter, we will discuss those 
mathematical technologies. The application of those mathematical 
technologies is not only being used in miRNA, but also the other 
biological big data processing. While analysis of the reduced fea-
ture space of miRNA can yield meaningful results, explanation of 
those results should reference the original feature space to explain 
the relevant properties of the miRNA and there is often not a direct 
and easy way of reverting to the old feature space. Another 
 technique would be to combine important features that describe 
the miRNA in a biological view. In the first part of this chapter, we 
first recommend a degenerate Kmer method using this idea.

Yue Hu et al.
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The other serious problem when we are handing the 
 high- dimension miRNA data is the statistical errors. When confin-
ing the research to some specific field, it is often the case that the 
training data set is small. As the number of the features is increas-
ing, the counts of every feature are decreasing. Therefore, it is 
error-prone to estimate the frequencies of every feature. Micheal 
A. Beer et al. proposed a gapped k-mer method to give a much 
robust estimation of the frequencies of the features. We will cover 
this method in Subheading 3.2.

2 Features Related to miRNAs (Basic K-Tuple or Kmer)

K-tuples or Kmers are subsequences of a full sequence (miRNA, 
mRNA, DNA for example), which contain k tandem nucleotides. 
There are four types of nucleotides in a miRNA from which we can 
generate an alphabet table (U, G, C, A) to construct the Kmer. For 
this alphabet, there are 4k different arrangements for a Kmer.

Given a miRNA sequence R with the length of L.

 R r rr r r r r r L= 1 2 3 4 5 6 7 ...  

With the sequence “CCGUUGCAAGG” and k set to 2, the 
frequencies of the 2-mer are:

 f UU f UG f UC f UA( ) = ( ) = ( ) = ( ) =0 1 0 1 0 0. , . , , ,  

 f GU f GG f GC f GA( ) = ( ) = ( ) = ( ) =0 1 0 1 0 1 0. , . , . , ,  

 f CU f CG f CC f CA( ) = ( ) = ( ) = ( ) =0 0 1 0 1 0 1, . , . , . ,  

 f AU f AG f AC f AA( ) = ( ) = ( ) = ( ) =0 0 1 0 0 1, . , , . .  

Note that the alphabet table is not confined to four types of 
nucleotides. Therefore, using Kmers to describe a miRNA, the 
number of k is limited. Under most conditions, the occurrences 
frequencies of Kmers only reflect the local sequence information 
of a miRNA. In the next section, long-range information is 
considered.

As the limitation of the length of Kmers, the Kmers usu-
ally reflect the local sequences arrangements of miRNA. The 
local sequences of a miRNA form higher rank structures and the 
broader interaction is very important to the structure of a miRNA. 
The stem-loop structure of a miRNA is very important to its func-
tion, so missing the long range information will lead to problems 
when we process a miRNA. The correlations between the local 
sequences could be used to reflect the long-range information. 
Auto- correlation and cross-correlation of the physicochemical 
properties of two dinucleotides are often considered. The dinu-
cleotides correlations are considered in tiers. Use the sequence 
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“CCGUUGCAAGG” as an example. For first-tier correlation, 
we will consider those dinucleotides  correlation functions: cor 
(CC,CG),cor(CG,GU),cor(GU,UU),cor(UU,UG),cor(UG,GC), 
cor(GC,CA),cor(CA,AA),cor(AA,AG),cor(AG,GG). For second-
tier correlation, we will consider those dinucleotides correlation 
functions: cor(CC,GU),cor(CG,UU),cor(GU,UG),cor(UU,GC), 
cor(UG,CA),cor(GC,AA),cor(CA,AG),cor(AA,GG). The higher 
rank tier correlation can be considered similarly. pPseDNC and 
sPseDNC consider those dinucleotide correlations in parallel or 
series respectively [12–15].

3 Decreasing the Number of Features

The Kmer is the most popular feature system used to represent 
miRNA and other sequences. As mentioned previously, the length 
of Kmers is generally limited to several nucleobases as longer Kmers 
will lead to the exponential increases in complexity. The classical 
lengths of miRNAs range from 20 to 25 nucleobases and the miR-
NAs precursors are even longer. By the application of Kmers, the 
side effect misses the long-range information. When finding miR-
NAs precursors, this situation is even worse as the precursor would 
form a stem-loop structure. The long-range information has an 
important role in predicting those precursors. Therefore, there is 
an urgent need to use longer Kmers that could represent miRNA. 
To break through the limitation of the length of Kmers, several 
groups have carried out research in this field. Gaining inspiration 
from quantum mechanics, Liu et al. have proposed a Kmer variant, 
the degenerate Kmer, which is similar to “degenerate energy lev-
els” [9]. Per their definition, two Kmers can be considered equiva-
lent if they each have identical subsequences that contain at least 
two base pairs. By using that notation, the length of k-mers can 
decrease dramatically. Assuming four types of nucleotides as the 
basis for the alphabet table, the dimension of the deKmer composi-
tion vector is reduced from 4k dimensions to:

W = =
-( )

4 4
2 2

2 2 2C
k

kk

!

! !
.

Another fundamental limitation of using Kmers to describe features 
of a miRNA is that as the length of Kmers is increased, the small 
training data may not give a statistically significant frequency count. 
The possibility of over-fitting of the training data increases as the 
number of features increases, thus is prone to an inaccurate distri-
bution estimate. By using gapped Kmers, Micheal et al. have made 
a meaningful attempt to define the features of genes [20–22]. The 
prospects of using this method in miRNA research are good, par-
ticularly for tasks such as finding miRNA precursors.

3.1 Degenerate Kmer

3.2 Gapped Kmer

Yue Hu et al.
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They use the observed gapped k-mer counts profile to estimate 
the ungapped l-mer frequencies. This method is more robust when 
utilizing smaller training data. Here, k and l are different numbers 
and, in most cases, k is less than l. The optimal function maximizes 
the entropy of l-mer frequencies, but this requires prohibitive 
numerical computation. As a good choice, the optimal function 
could be the minimum L2-norm estimate of l-mer frequencies. 
Giving an observed set of gapped k-mer frequencies, they derive an 
equation for the estimate. They prove that the method gives a 
more accurate estimate of the l-mer frequencies in benchmarks and 
real biological applications.

4 Ordinary Dimension Reduction Technologies

While the degenerate and gapped k-mer methods reduce the 
dimension of the miRNA data by biological reasoning, the prob-
lem can also be handled mathematically. Dimension reduction 
[23–30] is an interesting issue that bridges mathematics and infor-
mation science. Those methods have been used to reduce the 
dimensionality of biological microarray data such as microarray 
expression data [31–33]. MiRNA microarray profiling has been 
used to detect many cancers [34].

There are many methods that have been developed that use 
multivariate statistical analysis to reduce the dimensionality. 
Methods can be divided into two categories: supervised methods 
and unsupervised methods. The differentiating factor between the 
two categories is whether or not a response vector is used. In the 
case of a binary classification problem, such as predicting the 
miRNA precursor, if we have a training data set and training data 
is classified, we can create a vector that contains zero and one 
(whether or not) to represent the classification result. This vector 
is called response vector. In the supervised dimension reduction 
methods, the response vector will “supervise” the dimension 
reduction process. It is a standard against which to judge the 
importance of the input variables in this process. Classified training 
sets do not always exist, however, so unsupervised dimension 
reduction techniques are widely used. In this section, we will give 
a short introduction to those dimension reduction technologies.

Sliced inverse regression or SIR [26, 28–30] is complex but useful 
method to achieve dimension reduction. It utilizes the response 
variable X = [x1, x2, x3, ..., xn]T that are the old variables, and 
Y = [y1, y2, y3, ..., yn]T are the new variables. U = [u1, u2, u3, ..., 
un]T is the orthonormalized transition matrix (u u u ui

T
i i

T
j= =1 0,  , 

i ≠ j). The z (p × 1) are response vectors. Under some conditions, 
the information in X = [x1, x2, x3, ..., xn]T about z could be 
retained. If those conditions could be represented as a 

4.1 Supervised 
Methods
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transformation matrix η = (η1, η2, …, ηq) (p × q), and if q ≤ p, with 
this progress, we could implement dimension reduction. The new 
feature vectors can be represented as ηTX. The space spanned by η 
could be called a dimension reduction subspace, and the center of 
all those spaces is the central subspace denoted as Sz|X. Li et al. have 
proven that the space SE(X|z) ⊆ Sz|X, thus by using the conditional 
expectation E(X|z), Sz|X could be determined easily. The condi-
tional expectation E(X|z) is the expectation of the inverse regres-
sion. It could be computed as follows: slicing the response vector 
z, computing the expectation of X on every slice, and computed 
the mean of the X of all the slices as E(X|z).

Partial Least Squares or PLS is a supervised method to dimen-
sion reduction [23, 27]. Partial Least Squares need the response 
variable when training the data. Partial Least Squares produces sev-
eral new vectors that are linear combinations of the old vectors. 
And those new vectors will most likely to produce the response 
variable. X = [x1, x2, x3, …, xn]T, Y = [y1, y2, y3, ..., yn]T, U = [u1, 
u2, u3, ..., un]T are defined as before. The z is noted as the response 
vector. The yi and ui are obtained step by step like the progress in 
PCA (more details in the next section), but the optimized function 
is max(cov(Xui,z)).

Principal component analysis (PCA) is a commonly used method 
of dimension reduction [35–37]. The key idea of PCA is trans-
forming the space of variables into a new space; in this new space 
the first few variables will retain a large part of the variation of the 
original variables. Viewed mathematically, those new variables are 
the linear combination of the old variables. As those first few vari-
ables represent most of the variation present in the data, those 
variables could be regarded as the principal components of the 
features of the data set, thus contributing the most to the changes 
in the data. X, Y, and U are defined as above. The yi and ui are 
obtained step by step where y1 = Xu1 and it optimizes max(var(Xu1 )), 
which means it has the largest variation. The resulting u2 should 
be orthogonal to u1, and satisfies the optimization of max 
(var(Xu2 )), which means that it has the second largest variation. 
The other transition vectors are obtained in the same manner. 
This transition matrix can be calculated by the eigen-decomposi-
tion of the covariance matrix of X.

Factor analysis supposes the observed variables are primarily 
defined by few unobserved variables and error [38]. Those unob-
served variables are called factors. The observed variables were 
equal to the linear combinations of those factors and plus random 
errors. The factor analysis is looking for those common factors. 
PCA is often used to find those factors, but other methods like 
maximum likelihood can be used as well.

4.2 Unsupervised 
Methods

Yue Hu et al.
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5 Conclusion

In this chapter, we have described some approaches to handle the 
high dimensionality of microRNA data. By using degenerated 
k-mers to describe the microRNA precursor, the length of the k- 
mer is dramatically decreased. By using gapped k-mer, the statisti-
cal error is decreased in the processing of high-dimension data. 
Some ordinary mathematical methods are also covered here. Those 
methods can be used to handle the microarray data of miRNA, the 
prediction of the miRNA precursor, and so on. Sliced inverse 
regression and Partial Least Squares are supervised dimensionality 
reduction methods, which need response vectors. Principal com-
ponent analysis and factor analysis are unsupervised methods that 
can be applied in a much broader field.
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Chapter 14

Effective Removal of Noisy Data Via Batch Effect Processing

Ryan G. Benton

Abstract

In order to have faith in the analysis of data, a key factor is to have confidence that the data is reliable. In the 
case of microRNA, reliability includes understanding the collection methods, ensuring that the analysis is 
appropriate, and ensuring that the data itself is accurate. A key element in ensuring data accuracy is the removal 
of noise. While there can be several sources of noise, a common source of noise is the batch effect, which can 
be defined as systematic variability in the data caused by non-biological factors. This chapter will present various 
techniques designed to remove variability caused by batch effects and the potential effectiveness.

Key words MicroRNA, Batch effects, Normalization, Knowledge Discovery in Databases, Noise Removal

1 Introduction

Knowledge Discovery in Databases (KDD) is the process of collect-
ing, cleaning, processing, and analyzing data for the purpose of 
obtaining nontrivial and usable knowledge and information [1]. The 
KDD process is loosely composed of five major steps: Selection, 
Preprocessing (Data Cleaning and Preparation), Transformation, 
Data Mining, and Interpretation/Evaluation. Of those five steps, 
one study indicated that 89% of 189 data miners spent 41% or more 
of their efforts on data cleaning/preparation part; 64% claimed they 
spent more than 60% of their time on data cleaning and preprocess-
ing [2]. Other sources quote that preprocessing takes approximately 
80% of the effort [3, 4]. Given the amount of time typically spent on 
preprocessing, it follows that this step has a great impact upon the 
trustworthiness of outcome of the KDD process; namely, that the 
knowledge obtained is truly reliable and useful. In addition, it also 
follows that ensuring that the preprocessing is done in an efficient 
manner will have a direct and disproportionate impact on the time 
required to obtain useable information.

A key component within the preprocessing stage is the removal of 
noise [5]. While the sources of the noise can vary, each cause of the 
noise can be viewed as a shift away from the actual value. This, in turn, 



188

can lead to a loss of information and a distortion within the analysis. 
Hence, it is desirable to remove the noise artifacts. In this chapter, we 
will be concentrating on how to handle a major type of noise typically 
encountered when utilizing microRNA: the batch effect.

2 Batch Effect

Batch effects have been defined as technical sources of variation 
obtained due to sampling [6], as the systematic non-biological 
variability that results from the sample processing and design of 
microarray experiments [7], or as additive-independent confound-
ing factors [8]. The key concept is that the batch effects are caused 
by non-biological source and, assuming the factors/causes of it can 
be isolated, the data can be adjusted accordingly. Hence, the pri-
mary trick is how to effectively estimate the noise generated by the 
batch effects. In this section, we will introduce several methods 
used to treat batch effects; this list is not exhaustive but should 
provide an overview of many of the popular techniques. After dis-
cussing the batch effect removal techniques, we will detail several 
studies that compare the effectiveness of the approaches.

One straightforward approach is to conduct mean-centering, which 
is the simplest type of Location and Scale (L/S) family of methods 
to remove batch effects. This calculates, for each batch, the mean of 
each feature. After the means are calculated, the values in each sam-
ple are then reduced by the mean [7]; this is shown in Eq. 1.
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where i is the batch number, N is the number of examples in the 
batch, ni is the number of samples in the batch, j is the jth feature, 
Yijr

0  is the value for the rth sample of the ith batch for the jth feature, 
and Yij is the mean value of the jth feature for the ith batch. 
Technically, this is a zero-centering approach, as described in [9]. To 
approach a global mean-centered, the global mean across all batches 
would be calculated before the zero-centering occurred; one would 
then add the global mean to each zero- centered value [9]. It is pos-
sible to formally normalize the data by dividing by the standard 
deviation for each batch [10]; however, this appears to be optional. 
A variation of this approach is median- centering, in which the 
median value is used in place of mean [6]. The median-centering 
approach, in turn, has yet another variation [11], in which a median 
is calculated from a vector composed of the Yij values; this value is 
Y . At that point, the Yijr

0  values are calculated via Eq. 3.

2.1 Batch Effects 
Techniques

2.1.1 Mean-Centering
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Another approach is to create a ratio between a feature value and 
the feature mean, as seen in Eq. 4, where the mean could be either 
the arithmetic and geometric mean, as shown in Eq. 5. A study 
[12] generally indicated that using the ratio method using the geo-
metric mean was generally preferable. Another study [7] generally 
indicated a preference for geometric mean, but did indicate prefer-
ence for using the arithmetic mean whenever a number of values 
tended to be zero.
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In mean-centering, the goal was to adjust each variable such that 
the mean of each variable is zero and the standard deviation is 
between −1 and 1. For quantile normalization, the idea is to ensure 
each variable has the same distribution [13]. It is inspired by a 
quantile-quantile plot, where two different features have the same 
distribution if the plot shows a straight, diagonal line. The authors 
of [13] reasoned that, if one had J features, also called dimensions, 
each with the same distribution, the resulting plot would have a 

straight, diagonal line with a unit vector of 
1 1
J J
,, ,,

æ

è
çç

ö

ø
÷÷ ; this 

unit vector is labeled as d. This, in turn, suggested that a set of data 
(examples) could be transformed to ensure that they have the same 
distribution if the J features could be projected onto the same 
diagonal line represented by the unit vector d. To accomplish this, 
a four-step process is required.

The first step is to create a matrix X, which has J rows and N 
columns, where each row is a feature and each column is an exam-
ple. The second step is to create a new matrix, Xsort. Xsort is created 
by sorting each column such that the lowest value is in the first 
row, the second lowest is in the second row, and so forth. The third 
step calculates the mean across each row of Xsort; the values in each 
row are then replaced by that row’s mean. The fourth step is to 
form Xnormalized by reordering each column of Xsort sort back to the 
original ordering of X. The matrix Xnormalized is then utilized for any 
analysis or learning rather than the original matrix X.

Some enhancements to the quantile normalization have been 
proposed over the years. Enhanced Quantile Normalization [14] 
presents the case that quantile normalization can be viewed as the 
decomposition of the original data into a normalized matrix 

2.1.2 Ratio-Based

2.1.3 Quantile 
Normalization
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(Xnormalized) and a residual matrix (Xresidual). The contention is that 
(a) the residual matrix may still contain some relevant information 
and (b) the normalization matrix may still contain noise. To resolve 
this, the residual matrix is also decomposed using quantile normal-
ization again, resulting in a pure noise matrix (residual matrix of 
Xresidual) and the matrix Xrn, which may contain potentially useful 
information. At this point, through the judicious use of SVD, a 
final matrix Xc is generated, which keeps the relevant substructure 
of Xnormalized while incorporating selected useful information from 
Xrn. Experiments in [14] indicated that the resulting matrix Xc was 
generally smaller than the Xnormalized while enhancing the subse-
quent analytical results.

Two other enhancements to the quantile normalization pro-
cess are Subset Quantile Normalization [15] and Conditional 
Quantile Normalization [16]. Both start with the premise that, 
unlike Quantile Normalization, only subsets of the data should be 
used to determine the quantile information. In the case of Subset 
Quantile Normalization, once the negative samples were selected, 
the values were calculated as a weighted average of a parametric 
cumulative distribution function (CDF) and an empirical CDF. 
Conditional Quantile Normalization utilizes Subset Quantile 
Normalization but also has the ability to explicitly incorporate out-
side factors that cause systematic errors.

Surrogate variable analysis (SVA) [17] was developed initially for 
gene expression analysis, where it was assumed that many factors, 
including those unknown and/or unmeasured, could have a strong 
detrimental impact. SVA is effectively a combination of a linear 
model with singular value decomposition, where the linear model 
is designed to incorporate both the known (primary) variables and 
the estimated (surrogate variables) to create a predictive model 
that estimates the target variable (dependent variable).

To construct the surrogate variables, a two-step process is 
required. In the first step, one must first calculate a basic model, as 
shown in Eq. 6; the residuals from that model are then calculated, 
which are used to create a residual matrix R.

 
x f y eij i i ij= + ( ) +m

 
(6)

where xij is the jth value for output prediction i, μi is the expected 
baseline value, f(yi) is the mapping between the yi, the variable of 
interest, and the output, and eij is random noise (typically with a 
mean of 0). Singular value decomposition is then performed on 
the residual matrix. At this point, a set of steps, based upon work 
in parallel analysis [18], are executed to determine which eigenval-
ues are a significant signature of the residuals. The end result is a 
set of K eigenvalues, which are then feed into step two, which 
constructs the surrogate variables. In step two, each eigenvalue is 

2.1.4 Surrogate Variable 
Analysis
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subject to regression to determine how associated it is with respect 
to the final prediction. A statistical test [19] is performed to deter-
mine which eigenvalues are sufficiently associated with the final 
predictions. At this point, using the eigenvalues that survived the 
testing, along with the information about the final targets, another 
round of transformations is done to construct the final surrogate 
variables. The final model then becomes Eq. 7,

 
x f y h eij i i

k

K

ki kj ij= + ( ) + ( ) +
=
åm l

1  
(7)

where λki is the weight with hkj surrogate variable. It should be 
noted, SVA, unlike the previous approaches, assumes that the user 
knows what the final predictions are to be. Hence, SVA is not 
applicable for unsupervised techniques.

Combating Batch Effects when Combing Batches of Gene 
Expression Microarray Data (ComBat) [20] is an empirical Bayes 
method that is able to remove both additive and multiplicative 
batch effects. ComBat can be considered a type of the Location 
and Scale family of methods, abet using a slightly more compli-
cated framework than that discussed in Subheading 2.1.1. For 
ComBat, the base equation is assumed to be

 
Y Xijg g g ig ig ijg= + + +a b g d e

 
(8)

where Yijg represents the gth output for sample j from batch i, αg is 
the overall base value for the gth output, X is a design matrix for 
the sample conditions, and βg is the vector of the regression coef-
ficients for X. The additive and multiplicative batch effects are rep-
resented by γg and δig respectively, and the random noise by εijg 
which is assumed to be centered at zero and has a variance of σg2. 
Hence, in theory, to obtain the batch-corrected values Yijg

* , Eq. 9 
could be utilized.
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where a b g d







g g ig igX, , , and  are the estimators of the respective 
parameters.

To find the estimators, three phases are required. The first 
phase seeks to standardize the data, which is composed of three 
steps. First, the parameters a b g





g g ig, , and  are estimated using an 
ordinary least-squares approach. Next, the s g

2
 is estimated using 

Eq. 10, where N is the total number of samples. Finally, the stan-
dardized data is then calculated as Eq. 11.

2.1.5 Combating Batch 
Effects When Combing 
Batches of Gene 
Expression Microarray Data
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The second phase seeks to determine the batch effect parame-
ter estimates using the standardized data. A key assumption is that 
the standard data follows a normal distribution, as seen in Eq. 12.

 
Z N vijg ig ig~ ,d2( )

 
(12)

At this point, two options exist for estimating the v andig igd
2 . 

The first option assumes that the parameters follow known distri-
butions, which are v N v Inverse Gammaig i i ig i i~ ~,  ,t d l q2 2( ) ( )and
. Estimating the parameters uses a combination of estimators and a 
method of moments. The second option is to utilize a nonpara-
metric prior method; this is necessary when data does not fit the 
assumptions of a normal distribution for vig and an inverse gamma 
distribution for dig

2 . Whether the parametric approach is utilized or 
the nonparametric approach is utilized, the estimated parameters 
vig ig
* *and d2  are then utilized in the third phase.

The third phase is the simplest of the three as it adjusts the 
standardized data for the batch effects. However, instead of using 
Eq. 9, Eq. 13 is utilized instead to incorporate the Empirical Bayes 
estimated batch effects.
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While Cyclic Loess [21] was initially utilized to normalize cDNA 
microarray data, it has become a standard tool for normalization 
for  microarray data, including microRNA. The basis of the method 
is based upon M and A plots, where Mk = log2(xki/xkj), 
A x xk ki kj= ( )1

2 2log , k is the kth feature out of J features, and i and 
j indicate examples, where i ≠ j. A normalization curve is then fit-
ted to the M versus A plot, using a local regression technique 
called Loess [22]. Once the normalization curve is calculated, the 
fits, Mk



, can be obtained from the curve, which allows the Mk 
value to be undergone a normalization adjustment, as seen in 
Eq. 14. From there, xki and xkj can then be adjusted, using Eqs. 15 
and 16 respectively.

 M M Mk k k
¢ = - 

 (14)

2.1.6 Cyclic Loess
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As can be seen, the adjustments are based on two examples. To 
deal with multiple examples (arrays), as explained in [13], normal-
izations are carried out for all pair combinations, where the adjust-
ments are recorded for each pair. After each iteration, the adjustments 
for each example are weighted equally and applied. According to 
[13], typically only a couple of iterations were required before any 
adjustments became small; it was acknowledged that the process for 
multiple examples could be time-consuming.

A number of methods have been proposed for handling batch 
effects. Hence, a natural question would be which method should 
be utilized? Ideally, the answer would depend on the problem and 
ideally be guided by domain expertise. In practice, however, there 
may not be enough information to guide the selection. Hence, a 
number of studies have been conducted to determine the effective-
ness of different techniques for removing batch effects. This sec-
tion will present some of those studies and their conclusions.

In a recent thesis [7], a comparative study of different batch 
effect removal strategies was conducted on three datasets. The five 
strategies evaluated include mean-centering, both the parametric 
and nonparametric ComBat methods, SVA and ratio-based meth-
ods. The datasets were (a) a head and neck data, (b) melanoma 
methylation data, and (c) lung cancer microRNA data. The head 
and neck data was extracted from 29 head and neck cell lines, 
which was divided into two groups, namely normal cell fibroblast 
and tumor cell-associated fibroblast. Two batches of data were 
processed; the first batch contained 17 tumor samples and 10 
 normal samples while the second contained 12 tumor samples. 
With respect to the melanoma data, all 84 samples were tumor 
samples; the cause of the batch effects was the tissue-processing 
methods. Sixty-five were formalin fixed and paraffin embedded 
while 19 were frozen. Finally, the lung cancer data was composed 
of 85 normal tissue samples and 120 tumor samples, created from 
two batches of processing; this was the only dataset that was 
microRNA based. All 206 were used in the batch removal effort, 
but only a subset was used for the differential expression analysis. 
To determine the impact of batch removal, principal variance com-
ponent analysis [23] was used to determine the amount of vari-
ability due to batch effect.

The analysis of the head and neck data, the melanoma data, 
and the lunch cancer data indicated that the batch effect and the 
interaction between batch and group effects accounted for 51.4%, 

2.2 Effectiveness
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41.1%, and 26.8% of the overall variation of the data; conversely, 
the main group effect is 2.2%, 2.1%, and 9.3% of the variation. For 
the lung data, after the batch removal methods were employed, the 
variation due to batch effects was reduced to less than 2%; both 
variations of ComBat removed it completely. The variation to 
group effect was increased from 2.2% to 3.2% for mean-centering, 
15.3% for the parametric ComBat, 14.6% for nonparametric 
ComBat, and 4.4% for SVA. Ratio-based methods were not used, 
as the second batch lacked a reference group. For the melanoma 
data, the mean-centering reduced the batch effect (and interaction 
term) to 1.2%; the other methods were generally less effective and 
either increased the interaction variation or left much of the batch 
effect present. For the lung cancer data, both versions of ComBat 
greatly increased the variability due to interaction, which offset 
their ability to reduce the batch effect. Mean-centering and SVA 
were both effective for this dataset. The ratio-methods were inef-
fective on all three datasets.

A second study [6] looked at impact on batch effect reduction 
in microRNAseq data. This study had liver samples from 24 patients; 
the samples were then divided into four groups. These were normal 
(six samples), steatosis (eight samples), steatohepatitis (seven sam-
ples), and cirrhosis (three samples). A library was constructed on the 
total RNA and microRNASeq was performed twice on the same 
library, using the same machine, but with the processing of the sec-
ond batch occurring 10 days later. There were significant differences 
in the read counts and read alignments between pairs in batches A 
and B; ideally, the results between pairs should be perfectly matched. 
Hence, the goal was to test if batch effect removal would improve 
the matches. The study examined several different strategies includ-
ing quantile normalization, conditional quantile normalization, and 
median-centering. To determine agreement, the study performed 
cluster analysis, to measure the distance between two samples. 
Subtyping accuracy was calculated as the number of correct pair 
agreements divided by the total number of pairs, which was 24. 
Before utilizing batch effect removal, the subtype accuracy was 8.3%. 
Quantile normalization had no impact on the task; the subtype accu-
racy remained at 8.3%. Conditional quantile normalization improved 
the accuracy to 29%. Interestingly, median-centering had the best 
impact, resulting in a subtype accuracy of 54.2%.

In [24], the impact on differential expression analysis of median 
quantization, quantile normalization, and cyclic loess normaliza-
tion was investigated, along with other methods. In addition, the 
effect of combining ComBat with normalization was also explored; 
the study did not indicate whether the parametric or nonparametric 
version was utilized. The microRNA expression data was composed 
of 96 serous ovarian cancer cells and 96 endometrioid endometrial 
cancer cells. The results indicated that, without normalization, the 
true positive rate, false positive rate, and false discovery rate were 
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53%, 55%, and 90%. When median normalization was applied, rates 
of 85%, 11%, and 54% were achieved and when quantile normaliza-
tion was utilized, rates of 93%, 12%, and 54% were obtained. Cyclic 
loess had rates of 96%, 12%, and 54%. When ComBat was utilized 
on the non-normalized data, the true positive rate, false positive 
rate, and false discovery rate were 66%, 1%, and 16%. When ComBat 
was applied first, followed by median normalization, the rates 
achieved were 84%, 4%, and 32%. When ComBat was applied first, 
followed by quantile normalized, the rates became 93%, 9%, and 
48%; when cyclic loess was applied after ComBat, the rates were 
91%, 7%, and 42%. It was concluded that the choice of normaliza-
tion methods largely depended on the tradeoff desired between the 
true positive rate and false positive rate.

Another study [11] compared the effectiveness of three nor-
malization techniques: Median normalization (of the global 
median variation), quantile normalization, and cyclic loess when 
applied to a single-color microRNA microarray dataset. To deter-
mine if the methods created a bias within the data, MA plots and 
loess curves were calculated on the adjusted data; the quantile nor-
malization removed the most bias, whereas the other methods 
were not as effective. Similarly, when examining the removal of 
error variance, quantile normalization was again deemed the best 
at removing variance with respect to expression values. Quantile 
normalization also reduced the overall mean-squared error with 
respect to expression values.

3 Discussion

As can be seen in the previous section, there is still debate about 
which batch effect removal method results in the best perfor-
mance; this is partly due to the fact that each study mentioned 
above, as well as other in the literature, are all dealing with differ-
ent types of data, different types of problems, and different for-
mulations for determining success. Moreover, in [9], it was 
determined that the use of study group or other forms of out-
comes, when used as a covariate in removing batch effects, could 
lead to misleading results. Hence, the best advice in selecting and 
using batch removal techniques is two-fold. First, it would be 
advisable to test and evaluate multiple batch effect removal meth-
ods for a problem to ascertain the “best” for a given problem. 
Second, it is important to understand the potential biases that may 
be introduced by the removal; blind use of the procedures may 
result in unreliable outcomes. This, along with the fact that batch 
effects removal techniques are not sufficient for many problems, 
indicates that there are multiple opportunities to create better 
generic and problem- specific removal methods.

Effective Removal of Noisy Data Via Batch Effect Processing
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Chapter 15

Logical Reasoning (Inferencing) on MicroRNA Data

Jingsong Wang

Abstract

Logical reasoning played an important role in artificial intelligence. Applying logical reasoning on 
microRNA data brings intelligence into data analysis. Here, we provide basic introduction about logic 
(especially propositional logic) and automated reasoning based on knowledge described in the form of 
logic rules. We also introduce tools that could be used for building automated reasoning systems with 
microRNA data.

Key words Logical reasoning, Propositional logic, Inference rule

1 Introduction of Knowledge-Based Systems and Inference

Logics are formal languages that focus on knowledge representa-
tion and inference. They investigate fundamental problems such as 
truth and axiomatizable theories. In computer science, logics have 
been used for solving many problems, such as program verification, 
automated theory proving, and logic programming. Logics have 
played an important role especially in the area of artificial intelli-
gence to build expert systems, where people use logics as a tool to 
describe their knowledge and understanding of the world, and use 
logical reasoning to draw new conclusions.

McCarthy’s proposal [1] defines a system with two compo-
nents: “a knowledge base, which encodes what we know about 
the world, and a reasoner (inference engine), which acts on the 
knowledge base to answer queries of interest...This aspect of the 
proposal became the basis for a class of reasoning systems known 
as knowledge- based or model-based systems, which have domi-
nated the area of automated reasoning since then” [2]. Systems 
built in such a way separate our knowledge description from the 
actual reasoning process. Due to the express power of logics, 
especially first-order logic (FOL), logic rules are widely used to 
build the knowledge base. Meanwhile, logical deduction is used 
as the reasoning engine.
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Computer science studies the problem of automated  reasoning, 
i.e., it focuses on how to make reasoning programmable. Logic 
provides us with formal languages with which we can describe our 
knowledge and define the reasoning process formally. Such a kind 
of languages makes automated reasoning possible through the use 
of computers.

A reasoning algorithm, or an inference algorithm, is a proce-
dure for deriving a sentence from the knowledge base (KB). The 
basic problem of inference can be expressed in the following way:

●● We have a KB (which consists of a set of sentences).
●● We have a query Q (which is a sentence).
●● We want to determine whether KB entails Q, denoted by 

KB |= Q.1

Note that an inference algorithm is sound if it derives only 
sentences that are entailed by the knowledge base, and an inference 
algorithm is complete if it can derive any sentence that is entailed 
by the knowledge base.

An inference engine is normally a software program that imple-
ments some inference algorithms. Thus, it can be used to auto-
matically generate new facts or answer queries from a given 
knowledge base.

By definition, KB |= Q means every model of KB will be a 
model of Q. So a naive approach for inference is to do model 
checking, i.e., we iterate all the possible settings of the symbols. 
This approach is sound and complete. However, it is 2n complexity. 
In practice, we mostly resort to other approaches, such as resolu-
tion and chaining (which includes forward chaining and backward 
chaining2). We will introduce these approaches in the following 
sections, using the language of propositional logic.

2 Propositional Logic and Inference

We give basic introduction of propositional logic in this section 
and also briefly cover concepts of first-order logic. A logic needs to 
provide its definition of syntax (how legal sentences are defined), 
semantics (what does a sentence mean), and inference procedure 
(what sentence can we conclude based on existing knowledge). So 
the introduction comes with a set of definitions first, which are the 
building blocks for propositional logic. We borrow most defini-
tions from [3] and follow its way of naming.

1
 Informally speaking, we want to prove Q based on KB.

2
 Here we focus on logic deduction, even though there are also other approaches regarding the inference 

process, such as abduction and induction.

Jingsong Wang
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Propositional logic studies propositions and relationships among 
them. These propositions are the simplest atomic sentences. For 
example, below are a set of atomic sentences:

Biologists study living organisms.
Bacteria are single-celled organisms.
DNA is a molecule.

Atomic sentences such as above normally could have a value, 
which we called truth value, indicating the relation of correspond-
ing proposition to truth. The truth value can be either true or false 
in classical logic.3 The subjective of propositional logic is to for-
mally define truth values of more complex propositions based on 
the truth value of atomic propositions that compose them.

Definition 1
Syntax:

An atomic formula has the form Ai, where i ≥ 1. Then we can 
define formulas:

 1. Atomic formulas are formulas.
 2. If A is a formula, then ¬A is a formula.
 3. If both A and B are formulas, then both A ∧ B and A ∨ B are formulas.

Definition 2
Semantics:
We use set {0, 1} to represent truth values. Function Ʋ: Ψ → {0, 1}, 

where Ψ is any subset of the atomic formulas, is called an assign-
ment. For a function Ʋ′: Ψ′→{0, 1}, where Ψ′ is the set of formulas 
that are composed only by atomic formulas from Ψ, i.e., Ψ ⊆ Ψ′, 
then we can define:

 1. For atomic formula Ai ∈ Ψ, Ʋ′(Ai) = Ʋ(Ai).
 2. Ʋ′(¬A) = 1, when Ʋ′(A) = 0. Otherwise, Ʋ′(¬A) = 0.
 3. Ʋ′(A ∧ B) = 1, when Ʋ′(A) = 1 and Ʋ′(B) = 1. Otherwise, Ʋ′(A ∧ 

B) = 0.
 4. Ʋ′(A ∨B) = 1, when Ʋ′(A) = 1 or Ʋ′(B) = 1. Otherwise, Ʋ′(A ∨ 

B) = 0.

From the above definitions, we can see that the truth value of 
a formula can be determined given an assignment over atomic for-
mulas occurring in it.

3
 Multi-valued logics (such as fuzzy logic) allow for more than two truth values, which can be interpreted 

as degrees of truth. This however is not the topic of this chapter. Here, we only use true or false for truth 
value.

2.1 Propositional 
Logic

Logical Reasoning (Inferencing) on MicroRNA Data
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Definition 3
Suitable Assignment:

If an assignment Ʋ: Ψ → {0, 1} is defined over all atomic formulas 
contained by a formula A, i.e., Ψ = {atomic formulas of A}, then Ʋ is 
suitable for A.

Definition 4
Model:

If an assignment Ʋ is suitable for a formula A and Ʋ(A) = 1, 
then Ʋ is a model of A, denoted by Ʋ/ = A.

Definition 5
Satisfiable and Unsatisfiable:

If a formula A has at least one model, then it is satisfiable. 
Otherwise, formula A is unsatisfiable.

Based on the above definitions, we can see that we can test all 
possible assignments over atomic formulas occurring in a formula to 
determine whether it is satisfiable. This is called the truth table 
method. Even though this approach is sound and complete, and it is 
programmable, it does not have good performance, which is expo-
nential regarding the number of atomic formulas. For a formula 
containing n atomic formulas, we will have to evaluate 2n assign-
ments. The satisfiability problem (SAT) is actually NP-complete. 
Thus, in practice, we often resort to other more efficient approaches.

Definition 6
Consequence (Entailment):

For a set of formulas ∆ = {F1, ..., Fn} (n ≥ 1) and a formula A, 
in case that, given any assignment Ʋ that is suitable for each of A, F1, 
..., and Fn, if Ʋ is a model of formula F1 ∧ F2 ∧ ... ∧ Fn, then it is also 
a model of A, we say that A is a logical consequence (entailment) of 
∆. We can denote this by ∆ |= A.

It is easy to prove that if A is a consequence of ∆, then formula 
F1 ∧ F2 ∧ ... ∧ Fn ∧ ¬A is unsatisfiable. Actually, we can even prove 
that the reverse is also true. This relationship between logical con-
sequence and satisfiability is described in the following theorem:

Theorem 7
For a set of formulas ∆ = {F1, ..., Fn} (n ≥ 1) and a formula A, 
∆ |= A if and only if F1 ∧ F2 ∧ ... ∧ Fn ∧ ¬A is unsatisfiable.

Theorem 7 is important in logical proof methods because it 
allows us to reduce the problem of determining logical conse-
quence to checking satisfiability.

Above are basic definitions and theorems that are foundations of 
propositional logic. For more complete information, please see [3].

Inference rules in logic are patterns that we can use to apply on 
existing sentences to derive new conclusions. The patterns can be 
expressed in a form like

2.2 Inference Rules

Jingsong Wang
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P P P
C

n1 2, ,...,

 

where Pn is premise and C is conclusion.
Figure 1 shows a list of major rules for inference that were sum-

marized in [4]. With these rules, we can draw logically sound con-
clusions given a knowledge base that consists of a set of sentences. 
With inference rules, an inference engine (a software program) can 
automate the process of adding new facts into the knowledge base 
through pattern searching and matching.

Fig. 1 Inference Rules

Logical Reasoning (Inferencing) on MicroRNA Data
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We will start to introduce resolution first, which is a sound and 
complete proof strategy. We will also introduce the chaining-based 
approaches, whose inference procedure however is not complete, or is 
complete only for a KB that is in some restricted forms, such as Horn 
form (a conjunction of Horn clauses, which will be defined in the next 
section). The chaining inference approaches based on inference rules 
with the use of modus ponens can be categorized into two sets: for-
ward chaining and backward chaining, which will be explained sepa-
rately. More detailed introduction about chaining can be found in [5].

Note that all these inference approaches work with both propo-
sitional logic and first-order logic. However, we only describe the 
propositional logic version for ease of understanding and discussion.

Resolution is a powerful inference rule for propositional logic (also 
for first-order logic). Basically, there is only a single rule that can be 
repeatedly used. However with the help of resolution, we are able 
to build an inference engine that is sound and complete.

Resolution was invented by Robinson [6]. The goal of resolu-
tion is to prove unsatisfiability of a formula. Note that many prob-
lems can be reduced to unsatisfiability problem.

In order to apply resolution, we require that the set of formu-
las are in conjunctive normal form (CNF) defined below. Note that 
we can always convert a formula into its CNF.

Definition 8
Conjunctive Normal Form:

If a formula is in a form of a conjunction of disjunctions of liter-
als, we say that the formula is in conjunctive normal form. Note that 
a literal is either an atomic formula, or negation of an atomic for-
mula. The set of literals appearing in a disjunction is called a clause. 
Thus a formula in CNF can be represented as a set of clauses.

Note that a clause that contains at most one positive literal is 
called Horn clause, and a formula in CNF whose clauses are all 
Horn clauses is a Horn formula.

Horn clauses can be written in a form of implication, where 
the premise is the conjunction of a set of positive literals and the 
conclusion can be a positive literal. Also note that a Horn clause 
with exactly one positive literal is called definite clause. A definite 
clause consisting of one literal, which is positive, is a fact. Horn 
clauses are widely used in inference as deciding entailment with 
Horn clauses can be done in time linear in the size of KB.

Definition 9
Resolvent:

If C1 and C2 are clauses that contain literals L1 and L2 sepa-
rately, i.e., L1 ∈ C1 and L2 ∈ C2, where L1 and L2 are complementary 
literals, then (C1 − {L1}) ∪ (C2 − {L2}) is a clause that is called resol-
vent of C1 and C2. Note that atomic formula and its negation make 
a pair of complementary literals.

2.2.1 Resolution

Jingsong Wang
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Note that any resolvent of C1 and C2 (of Definition 9) is a 
 consequence of {C1, C2}. Also a resolvent can be an empty clause. 
This happens when both L1 and L2 are the only literals of C1 and C2 
separately (Remember that L1 and L2 are complementary literals). We 
denote the empty clause by □. Note that empty clause is unsatisfi-
able, and a set of clauses that contain empty clause is unsatisfiable.

Also, if we use R to represent one of such resolvents, and then 
for a formula A in CNF that is represented by a set of clauses, 
denoted by ℂ, where C1 ∈ ℂ and C2 ∈ ℂ, and a formula B that is 
represented by the set of clauses ℂ ∪ {R}, then we can prove that 
A and B are equivalent, i.e., any assignment that is suitable for A 
and B, it evaluates A and B the same truth value. The detailed 
proof can be found in [3].

So we can extend a set of clauses ℂ by adding a resolvent of any 
two clauses from ℂ to form a new set ℂ′. We can repeat the same 
step on the new set ℂ′. If we keep repeating such a process, it can 
be proved that, after a finite step, we will get a stable set of clauses 
that will not change, i.e., we cannot produce new resolvent from 
the set. We denote such a final set as ℂ*.

Theorem 10
A set of clauses ℂ is unsatisfiable if and only if □ ∈ ℂ*.

We skip the proof for Theorem 10. Please check [3] for a 
detailed proof.

Based on Theorem 10, we can determine a set of clauses ℂ is 
unsatisfiable once we find an empty clause from ℂ*. The process of 
finding empty clause is called derivation, with which we can prove 
unsatisfiability of the original set of clauses.

Therefore, given a knowledge base KB and a query Q, with 
resolution we can use proof by refutation to prove KB |= Q. The 
basic process is shown in Fig. 2 (Algorithm 1). Note that resolu-
tion is sound and complete for proof by refutation.

Forward chaining approach is data driven. We start from facts, and 
use available facts to match premises of available rules to derive new 
facts. The new facts will be added to KB for inference until the query 
is found, which is normally represented by a conjunction of goals.

The basic idea of forward chaining can be described in the fol-
lowing steps:

Step 1: Create a fact base that is initialized with available facts in 
the KB.

Step 2: Fire all rules whose premises are satisfied by facts from cur-
rent fact base.

Step 3: Add all the conclusions to the fact base.
Step 4: Stop if all goals are in the fact base or no new facts are 

added to the fact base. Otherwise, we repeat step 2.

2.2.2 Forward Chaining
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Figure 3 (Algorithm 2) shows the basic procedure of forward 
chaining in a form of function.

We can see that forward chaining is an approach that we tend 
to generate everything based on existing facts. It may not be effi-
cient in some cases as we might generate much more irrelevant 
conclusions before all goals are included.

There are some algorithms proposed to address the efficiency 
problem, such as Rete [7], developed by Charles Forgy.

Backward chaining approach is goal driven. Unlike forward chain-
ing, which starts from facts, backward chaining starts from the 
query, which is normally represented by a conjunction of goals. We 
try to prove all premises of rules that conclude the query.

The basic idea of backward chaining can be described in the 
following steps:

Step 1: Create a fact base that is initialized with available facts in 
the KB.

Step 2: Create a hypothesis set that is initialized with goals.
Step 3: If the hypothesis set is not empty, choose one goal from it 

to validate.

2.2.3 Backward Chaining

Fig. 2 Algorithm 1: Propositional Resolution
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●● If the goal is in fact base, then we eliminate it from the 
hypothesis set.

●● Otherwise, we find a rule that concludes the goal. We add 
all premises of the rule that are not in fact base into the 
hypothesis set.

Step 4: Stop if hypothesis set is empty. Otherwise, we repeat step 3.

Figure 4 (Algorithm 3) shows the basic procedure of backward 
chaining in a form of function.

Propositional logic alone is not expressive enough for practical 
knowledge representation and reasoning. On the one hand, for 
many real-world problems, we need to represent more general 
objects and properties, and the functions and relationship among 
objects. In addition, even the rules of inference need to be more 
general. Therefore, we need more expressive and powerful lan-
guages. On the other hand, the knowledge we have in the real 
world always comes with uncertainty. For example, we are not 
sure, or not accurately certain about the data quality, or the rules 
we can use are not 100% appropriate. Thus, we have to handle the 
problem of reasoning under uncertainty.

First-order logic (or predicate logic) extends and generalizes prop-
ositional logic by introducing new concepts such as constants, 
 variables, functions, predicates, and quantifiers. These new con-
cepts make building more complex sentences possible.

2.3 First-Order Logic 
and Reasoning Under 
Uncertainty

2.3.1 First-Order Logic

Fig. 3 Algorithm 2: Forward Chaining

Logical Reasoning (Inferencing) on MicroRNA Data
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For example, below are examples of knowledge that we want 
to describe, which, however, could not be represented by proposi-
tional logic:

There are some organisms that are single-celled.
All organisms have RNA.

Using first-order logic, we can describe the above sentences in 
the following form:

∃x(Organism(x) ∧ SingleCelled(x))
∀x(Organism(x) → Has(RNA))

In the above examples, we have used the existential quantifier 
(“∃”) and universal quantifier (“∀”). We have also used variable 
(“x”), constant (“RNA”), and predicate (“Organism,” 
“SingleCelled,” and “Has”). Here “x” and “RNA” are terms. 
“Organism(x),” “SingleCelled(x),” and “Has(RNA)” are formu-
las, which are actually atomic formulas. “∃x(Organism(x) ∧ 
SingleCelled(x))” and “∀x(Organism(x) → Has(RNA))” are also 
formulas, which have “x” as bound variable and no free variables. 
Thus they are called closed formulas.

Compared with propositional logic, first-order logic brings 
many new features to logic language family, and thus has highly 
increased the expressive power to help people handle real-world 

Fig. 4 Algorithm 3: Backward Chaining
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problems. However, the better express power also means more 
complex procedure when doing reasoning.

For example, even though resolution still works with first- order 
logic, a few extra steps that we do not need to consider with propo-
sitional logic are now necessary. One problem is that we need to 
extend propositional resolution to handle variables and quantifiers. 
Therefore, given a formula, we need first to standardize variables so 
that one variable will be quantified only once in the formula. Then, 
we need to eliminate existential quantifier and universal quantifier 
sequentially. This process is called Skolemization, which will convert 
a first-order formula while maintaining its satisfiability. After that, 
we can work on transforming the formula into its CNF form.

For the first-order logic version of resolution, each resolution step 
comes with a substitution of variables, which will make two clauses 
resolvable. Such a substitution is called unifier. There might be mul-
tiple unifiers for a set of unifiable literals. However, we will only look 
for the most general unifier (MGU) that makes the least substitutions 
needed. The way of producing MGU is a very important process dur-
ing FOL resolution. The original algorithm was introduced by 
Robinson [6, 8] and people have been working on finding more effi-
cient algorithms as its pattern matching nature is important also for 
many other applications. The unification is also useful when doing 
answer extraction. However, for the problem of answer extraction, we 
do not have to terminate until empty clause is found.

Another problem in the real world we have to handle is reasoning 
under uncertainty. For example, in many cases, the knowledge we 
have may look like the following sentence:

DNA is almost the same for cells of the same organism.

Describing such knowledge requires more powerful languages 
that traditional first-order logic cannot fit, as it only handles true 
and false values, which are not always applicable for modern expert 
systems. Besides knowledge representation, we also need to be able 
to do reasoning with such a kind of languages.

There have been many works targeting such a problem from 
difference perspectives. From logic perspective, there have been 
fuzzy logic and multivalued logic. From the reasoning approach 
perspective, there has been work of combining first-order logic 
with probabilistic models, such as Bayesian networks. More discus-
sions about uncertainty handling can be found in [9].

3 MicroRNA Data and Reasoning Tools

It has been found that microRNA (miRNA) plays important roles 
in both living organism development and genetic diseases. To dis-
cover functions of miRNA, researchers have been focusing on 

2.3.2 Reasoning 
Under Uncertainty
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identifying miRNAs and their target genes as well as relationships 
between them at the post-transcriptional level of the gene regula-
tory network [10]. Many public databases have been used to help 
researchers to validate or build models to predict the most effec-
tively targeted messenger RNA (mRNA). These databases include 
PubMed, miRDB, TargetScan, miRanda, and so on. However, as a 
fact that different research communities may have been using dif-
ferent methodologies and describing experiments in different for-
mats, common features from different sources may be presented in 
totally different ways. Complexities from data create difficulties for 
researchers and make miRNA knowledge discovery a time- 
consuming and error-prone task.

Ontology has been used in bioinformatics to annotate data-
base records and support data consistency. Researchers have been 
motivated to develop open ontologies that use Web Ontology 
Language (OWL), a semantic web language, to standardize repre-
sentations of samples, assays, and data analysis methods [11], 
including domain-specific ontologies, such as the miRNA domain- 
specific application ontology [12].

The formal basis of OWL is description logic (DL), a decidable 
fragment of first-order logic. Description logic [13, 14] is a logic 
language family that can formally represent the terminological 
knowledge of an application domain in a structured way. It defines 
concepts, roles, and individuals and thus makes knowledge easy to 
read and understand, while, unlike FOL, having effective proce-
dures for deciding the inference problems. Informally speaking, we 
can map DL terms into corresponding FOL ones. For example, 
individual names correspond to constants of FOL, while concept 
names and role names correspond to unary predicates and binary 
predicates of FOL separately. Thus, all the DL reasoning problems 
can be translated to equivalent reasoning problems of FOL.

There have been various tools that can be used to build knowl-
edge base for knowledge representation and knowledge-based rea-
soning. One of the most widely used programming languages in 
the logic programming paradigm is Prolog [15]. Prolog is based 
on first-order logic over Horn clauses, and its inference uses first- 
order resolution (SLD-resolution [16]) and backward chaining. 
The frequently used rule engine for Java platform is Drool [17], 
which is based on forward and backward chaining methods. Jess 
[18] is also used to build expert systems based on rules, which sup-
ports declarative approach. Jess supports forward and backward 
chaining and working memory queries. Both Drool and Jess’s 
inference engines use Rete pattern matching algorithm [7] to opti-
mize inference speed.

Regarding building more robust inference engines that sup-
port semantic-based reasoning, besides general-purpose logical 
reasoning, ontology languages (especially description logic lan-
guages) are commonly used to specify rules in knowledge base. 
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Apache Jena [19], an open-source semantic web framework for 
Java, provides rich APIs to interact with RDF and OWL languages. 
We can use Protégé [20], an open-source ontology editor, to load, 
edit, and save OWL and RDF ontologies. Its ontology visualiza-
tion allows researchers to navigate ontology relationships in an 
interactive and powerful way.
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Chapter 16

Machine Learning Techniques in Exploring MicroRNA Gene 
Discovery, Targets, and Functions

Sumi Singh, Ryan G. Benton, Anurag Singh, and Anshuman Singh

Abstract

In recent years, the role of miRNAs in post-transcriptional gene regulation has provided new insights into 
the understanding of several types of cancers and neurological disorders. Although miRNA research has 
gathered great momentum since its discovery, traditional biological methods for finding miRNA genes and 
targets continue to remain a huge challenge due to the laborious tasks and extensive time involved. 
Fortunately, advances in computational methods have yielded considerable improvements in miRNA stud-
ies. This literature review briefly discusses recent machine learning-based techniques applied in the discov-
ery of miRNAs, prediction of miRNA targets, and inference of miRNA functions. We also discuss the 
limitations of how these approaches have been elucidated in previous studies.

Key words MicroRNA, mRNA, Target prediction, Machine learning, Data mining, miRNA target 
prediction, miRNA gene identification, miRNA regulatory network modules, MRMs, Functional 
miRNA-mRNA regulatory modules, MRMs, miRNA functional annotation

1 Introduction

miRNAs are short RNA molecules of around 22 nucleotides that 
are found in plants, animals, and some DNA viruses. miRNAs are 
identified within noncoding regions of genes, within introns of 
protein-coding regions, and within intergenic regions. They are 
known to have been highly conserved across evolution. miRNAs 
bind to a specific mRNA region post transcription. By targeting 
the specific mRNA regions, miRNAs can repress mRNA expres-
sion by either degrading or inhibiting translation.

Biogenesis of miRNAs begins in the nucleus with the transcription of 
the miRNA gene by RNA Polymerase II. The long primary miRNA 
transcripts (pri-miRNAs) produced exhibit a characteristic folding 
pattern that forms hairpin structures. Subsequently,  pri- miRNAs 
undergo a cleavage process by a nuclear microprocessor complex, 
consisting of Drosha, an RNase III enzyme, and a protein called 

1.1 miRNA 
Biogenesis and Pairing 
between 
miRNA- Target mRNA
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DGCR8 (DiGeorge critical region 8). The resultant hairpin precur-
sor miRNA (pre-miRNA) is then exported to the cytoplasm where it 
is further acted upon by another RNase III enzyme called Dicer; a 
double-stranded, mature miRNAs of about 22 base pairs (bp) is 
formed. In order for mature miRNAs to function, the double helix 
needs to bind to a ribonucleoprotein called the RNA-induced silenc-
ing complex (RISC), which allows the helix to unwind to unveil the 
single-stranded, functioning miRNA [1]. In animals, it is known that 
the 5′ end of miRNA pairs with the 3’UTR of target mRNAs. 
However, the pairing can either follow a perfect complementarity 
base pairing pattern between target mRNA to the 5′ end of miRNAs 
at second to seventh nucleotides of miRNA, which is called the 
“seed” region. It may also follow an imperfect complementarity base 
pairing pattern, creating a partial sequence complementation [2].

In the last few decades, significant developments have been 
made in the discovery of miRNAs, the identification of their tar-
gets, and the inferencing of their functions. This includes the 
ascertainment of several physical and functional characteristics of 
miRNA that are indicative of the miRNA functions and targets; 
these characteristics include information such as folding patterns, 
thermodynamic properties, and sequence conservation. With the 
advancement in computational learning techniques, these charac-
teristics can be used to develop models to identify novel miRNA 
genes and their targets and to predict their functions. The follow-
ing sections will provide an overview of machine learning methods 
that have been utilized in the literature with respect to miRNA 
genes identification (discovery), targets, and functions.

2 Machine Learning and miRNA Genes Identification

Over the years, large numbers of miRNAs have been identified for 
a number of species. According to a recent release, the miRBase 
[3], the collective database of miRNAs, has exceeded approxi-
mately 35,000 mature miRNAs in around 223 species [3]. The 
identification of miRNA genes, however, is not a straightforward 
task. Several methods, using a variety of approaches, have been 
meticulously strategized. One complication is that the miRNA 
genes are often expressed independently, although some studies 
show clusters of two to seven genes co-expressing [4].

The first miRNA in C. elegans was discovered using classic for-
ward genetics, based on sequence conservation. It involved identi-
fying sequences conserved between closely related species, 
validating pre-miRNA features, and ruling out hairpins that did 
not fall within the conservation pattern. Despite development of 
high-throughput sequencing techniques, computational tools have 
become imperative in complementing experimental validation in 
miRNA discovery [2].

Sumi Singh et al.
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Computational methods predominantly utilize miRNA 
 characteristics such as phylogenetic sequence conservation, sec-
ondary structure information like hairpin structure and minimal 
folding free energy [5]. Both MiRscan, miRSeeker, and Srnaloop 
[6] identify conserved hairpin sequences similar to known miR-
NAs. While miRseeker, in addition, matches specific miRNA pat-
terns like diverged loop sequence, Srnaloop uses shorter base pair 
lengths of 140–300. However, a major drawback with conservation- 
based approaches is the failure to detect non-conserved miRNAs 
and species-specific mRNAs.

Unlike biological and conservation-based computational 
methods, machine-learning models are not entirely dependent on 
sequence conservation patterns. These methods can utilize other 
miRNA sequence and structural characteristics like folding energy, 
to state one. The most popular machine learning-based approach 
for identifying miRNA genes is classification [5], for which there 
are a number of potential approaches and methods.

The following sections detail some of the popular classification 
techniques used in miRNA genes identification; Table 1 summa-
rizes the methods discussed.

SVM is a well-known classifier that has shown to be efficient in 
dealing with classification problems. The Triplet-SVM method 
[7] makes use of triple elements to decode local contiguous 
structure- sequence properties of miRNAs. A triple element refers 
to a set of features that indicates the pairing state of every three 
adjacent nucleotides, which, ideally, will allow true miRNAs that 
are separated from false hairpins. This method is known to be 
accurate in animals though its performance in other species is 
comparatively lower [8]. miR-abela [9] predicts mammalian 
miRNAs, largely, those clustered around known miRNAs with 
high specificity based on 40 pre-miRNAs characteristics including 
stem length, folding free energy, and hairpin loop length. 
However, its low sensitivity can pose a limitation [8]. RNAmicro 
[10] is based on RNA structure prediction and sequence analysis 
and uses tools such as RNAz [11]. RNAz identifies candidates in 
accordance with sequence conservation, structural properties, 
and thermodynamic stability. RNAz is known for its high sensi-
tivity, although it is not free of false positives [12]. miPred [13] 
emerged as a successful SVM classifier with high performance. It 
included 29 features of miRNAs including hairpin folding, dinu-
cleotide frequencies, and thermodynamics. Its dependence on 
intrinsic properties instead of the common conservation patterns 
led to its notable accuracy and sensitivity. microPred [14] extends 
miPred by adding 19 more features; the inclusion resulted in 
higher sensitivity and specificity. In addition, there have been 
efforts to address the common class imbalance problems [15]; 
however, this is yet not a solved issue.

2.1 Support Vector 
Machine (SVM)

Machine Learning Techniques in Exploring MicroRNA Gene Discovery, Targets…
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Hidden Markov Models [15], which are based on probability dis-
tribution, have been applied in some miRNA genes identification 
methods like in ProMiR [16]. ProMir is based on a probabilistic 
co-learning method using structure and sequence properties of 
human pre-miRNAs. MiRRim [17] is a sequence and structure- 
based HMM algorithm that is found to perform efficiently in 
detecting candidates clustered with known miRNAs. HHMMiR 
[18] implements a Hierarchical Hidden Markov Model (HHMM) 
in which minimum free energy is used to get secondary structures 
through RNAFold which is then classified. This method is known 
for its high sensitivity and specificity and for defining functional 
roles of the miRNAs [8].

BayesMirFind [19] is a classic example of a Naive Bayes Classifier 
which is based on independence in prediction factors, that is, the 
presence of a particular feature in a class is independent of or unre-
lated to that of any other feature. It performs classification based 
on structure and sequence information from several species. 
Despite having a low number of false positives in the tests con-
ducted by [19], its overall performance level was lower when com-
pared to other classification methods. Other machine learning-based 
methods for identifying miRNA include miR-KDE. miR-KDE 
[20] is based on a relaxed variable kernel density estimator 
(RVKDE). This method has proven to be efficient in finding miR-
NAs from species largely distant from humans.

3 Machine Learning in Predicting miRNA Targets

The techniques discussed in the previous section were concerned 
with identifying miRNA genes. In this section, we will discuss how 
to identify miRNA targets. To begin with, the complexities involved 
with the partial sequence complementation and the lack of well- 
defined 3’UTR boundaries, in addition to the small size of miR-
NAs, pose constant challenges in target prediction. Adding to the 
complexity is the fact that a single miRNA can bind to several tar-
get sites on the mRNA; moreover, a single mRNA transcript can 
contain target sites for several miRNAs. One solution to this prob-
lem, as described by Kleftogiannis et al. [15], is to predict miRNA 
targets based on a filtering approach. The filtering approach is to 
create a pool of possible targets by sifting sequences based on their 
thermodynamics characteristics and complementarily; these pools 
are called seed pools. The Stark method [21] uses HMMer [22], 
a tool that searches for complementary sequences and creates a 
database of 3’UTRs that are further filtered by conservation and 
thermodynamics properties. miRanda [23] first identifies binding 
sequences with added emphasis on seed complementarity. The 
sequences are then filtered based on free energy and conservation. 

2.2 Hidden Markov 
Model (HMM)

2.3 Naive Bayes 
Classifier
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TargetScan [24] is based on exact base pairing to the seed region 
in miRNA, followed by filtering by estimating the thermodynamic 
free energy of the pairing; however, it does not function well when 
the targets are loosely conserved [25]. A 38-nucleotide window is 
used in the DIANA-microT method [26, 27], which scans for 
binding sites and predicting conserved targets based on thermody-
namic stability. PicTar [28] is based on an algorithm that works by 
aligning 3’URTs and then filtering based upon their thermody-
namic stability [27].

Despite new developments in computational algorithms, filter-
ing approaches fail in predicting targets that are not conserved; they 
also have issues with mismatch seeds. Furthermore, although the 
interpretability is high with the filtering approaches, their overall 
prediction performance remains low. To resolve this, many research-
ers have begun exploring the use of machine learning methods.

Recent developments in machine learning techniques for predict-
ing miRNA targets include support vector machines, statistical 
methods, including Bayesian classifiers, along with non-statistical, 
such as artificial neural networks and support vector machines. In 
addition, methods that combing multiple machine learning meth-
ods or methods that combine filtering with machine learning have 
also been proposed. A brief overview of these approaches will be 
presented in the next two sections; Table 2 provides a compact 
summarization of the approaches.

MicroTar [29] picks sequences of miRNA and its potential mRNA 
targets, predicts their hybridization energy and minimum free 
energy to identify seed sites, and finally uses a statistical analysis to 
predict targets. This method successfully predicts non-conserved 
targets though the prediction performance is only moderate. MirZ 
[30] is a web server of functional target miRNAs predicted using a 
novel Bayesian model in which phylogenetic distribution of target 
sequences is studied for individual miRNAs. Apart from good pre-
dicting performance, this method is known for retrieving func-
tional interactions between miRNAs and their targets. GenMIR++ 
[31] is another Bayesian model that uses Gene Ontology annota-
tions to predict mRNA targets.

MTar [32] is an Artificial Neural Network verifier that locates 
miRNA targets based on 16 parameters including position, thermo-
dynamics, and structure. Although this method is found to be com-
prehensive, the optimization of parameters remains a difficulty. 
miTarget [33] avoids the parameter optimization problem by using 
an SVM classifier in their miTarget. miTarget uses 41 positional, 
thermodynamic, and structural features; it also exploits Gene 
Ontology as part of the process for target prediction. A major prob-
lem in this method is the lack of a standardization of negative 

3.1 Machine 
Learning Approaches

3.1.1 Statistical Methods

3.1.2 Non-Statistical 
Methods

Sumi Singh et al.
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samples. With the development of the SVM classifier, TargetMiner 
[34], several of previous limitations were addressed. For instance, 
negative samples were methodologically identified, resolving the 
lack of negative samples encountered by miTarget. A richer set of 
features were also selected, in this case, set of 90 target features. 
Using a radial basis function (RBF) as the kernel, which mirrors 
miTarget, TargetMiner achieves a high predictive performance. 
However, a drawback found with this method is the interpretability 
of the classification model. MultiMiTar [35] methodology also 
addresses the drawback with the negative sampling set by incorpo-
rating high-quality negative samples and biologically relevant target 
sites. This is achieved by integrating a SVM classifier with Archived 
Multi-objective Simulated Annealing (AMOSA) technique. The 
limitation posed by this method is the small size of sample sets; the 
generalizability of the resulting models is difficult to establish.

A study [36] tested several machine learning methods and con-
cluded that the SVM classifier is the most efficient in miRNA target 
prediction. As a result, using SVM classifier as the base, an ensem-
ble classifier was developed with the help of a meta-algorithm 
Adaboost [37, 38]; the ensemble integrates ten SVM classifiers. In 
addition, the ensemble method also incorporates feature selection 
to select and utilize only those features that are highly informative. 
TargetSpy [39] is another ensemble method designed to remove 
the need for seed matching and conservation properties. Using 43 
features, TargetSpy uses MultiBoost [40], which uses decision 
stumps [41] as the base learner; the performance of the model was 
equivalent with a number of state-of-the-art methods. In addition 
to methods that used the same underlying base classification tech-
nique, models that use a combination of two or more miRNA tar-
get predicting methods have been tested. For instance, NBmiRTar 
[42] utilizes a Bayesian algorithm and a filtering method based on 
miRanda score [43] while DIANA-microT-ANN [42] does the 
filtering of potential targets and then applies an Artificial Neural 
Network classifier to predict final targets.

4 Machine Learning in Inferring miRNA Functions

By this point, we have provided overviews of machine-learning 
techniques to identify miRNA genes and targets. However, one 
last problem needs to be addressed, which is how to predict their 
function. Functional knowledge can provide insights into the biol-
ogy of miRNA-regulated diseases. However, not all miRNAs being 
discovered carry defined functions in the regulation of gene expres-
sion. Hence, it is imperative to identify miRNAs with functional 
roles and also infer their specific functions in the gene regulatory 
network [44]. Liu et al. (2014) [2] categorize the functional 

3.1.3 Ensemble 
and Hybrid Methods

Sumi Singh et al.
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analysis of miRNAs into functional annotation and regulatory 
module. Regulatory modules can be subdivided into miRNA regu-
latory network modules (MRMs) or functional miRNA-mRNA 
regulatory modules (FMRMs), where FMRMs are a network of 
miRNAs and their target mRNAs. A graphical representation of 
the inference process can be seen in Fig. 1.

Functional annotation of miRNA is based on the assumption that 
miRNAs and their targets carry closely related functions. 
Therefore, by studying the functions of target genes from reliable 
sources such as DAVID [45] and WebGestalt [46], functions of 
related miRNAs can be annotated [2]. For example, MAGIA 
[47] and Functional Assignment of miRNAS via Enrichment 
(FAME) [48] use statistical methods to infer miRNA functions. 
On the other hand, miRDB [49] uses a wiki editing interface 
that permits the public to directly update miRNA functional 
annotations. Regardless of the approach, the major limitation of 
miRNA functional annotation methods is their sole dependence 
on target prediction. These annotation methods typically fail to 
predict the functions of miRNAs that bind to targets mRNAs 
outside the 3’UTR. Thus, methods that infer miRNA functions 
beyond target base pairing became inevitable.

4.1 miRNA 
Functional Annotation

Fig. 1 miRNA functional inference process
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Further studies showed that miRNA functions can be inferred by 
integrating information from target prediction sources with expres-
sion profiles of miRNAs and mRNAs obtained by microarray or NGS 
techniques (referred to as predicting MRMs). The principle of miR-
NAs negatively regulating their target mRNAs is commonly used in 
predicting MRMs. For instance, Huang et al. (2007) [31] construct 
a Bayesian network that represents the relationship between miRNA 
and mRNA and then applies the miRNA-mRNA downregulation 
principle at the expression level. This method can detect potential 
miRNAs and mRNAs that are co-functional. A probabilistic method 
proposed by Joung et al. (2007) [50] integrates information from 
two sources, namely, the expression profiles of groups of miRNA-
mRNAs, which have similar biological functions, and the miRNA 
target prediction. While the method is effective, it does require the 
setting of several parameters, which is a nontrivial task.

One potential issue with the above methods is they utilize at 
most two sources of data; arguably, it would be better to incorpo-
rate three or more sources. One example of incorporating more 
than two sources can be found in the study conducted by Zhang 
et al. (2011) [51]. In their study, they integrate three different 
sources using a multiplicative updating algorithm that integrates 
data from three sources: (a) target predictions, (b) expression pro-
files of miRNAs and their targets, and (c) the gene-gene interac-
tion network and effectively identified miRNA-gene regulatory 
modules. Another method that incorporates multiple sources is 
reported by Tran et al. (2008) [52]. Their method is a rule-based 
method, which seeks to find interactions between the human can-
cer miRNAs and mRNAs. The rule is based upon decision tree, 
association rule mining, and separate-and-conquer methods; the 
results indicate that the MMRs discovered have high confidence.

Methods of predicting MRMs could only identify co- expressing 
miRNA-mRNA groups. However, their roles in specific biological 
conditions or diseases were not addressed. In order to further 
probe into the functional roles of MRMs, understanding their bio-
logical implications is important.

The third category of inferring functions of miRNAs is by integrat-
ing information from target prediction sources with biological 
knowledge of miRNAs, related to a specific disease or condition 
(inferring FMRMs). Several algorithms have been proposed to aid 
in the discovery of FMRMs; several of the algorithms for discover-
ing MRMs and FMRMS are summarized in Table 3. For instance, 
a learning structure based on Bayesian network called Splitting and 
Averaging of Bayesian networks (SA-BNs) is proposed by Liu 
et al. (2009) [53, 54]. This method integrates target predictions 
and expression profiles of miRNAs and mRNAs. The SA-BN is 
then applied on the miRNA samples to characterize their FMRMs. 
Nunez-Iglesias et al. (2010) [55] use a permutation method to 

4.2 Predicting 
miRNA Regulatory 
Module (MRM) Using 
Machine Learning 
Techniques

4.3 Machine 
Learning 
for Inferring FMRMs

Sumi Singh et al.



221

Table 3 
Methods for Inferring FMRMs

Name
Number of 
samples Species Features Performance

miRNA function prediction—MRM

Tran et al. (Rule 
Based)

121human 
miRNA, 801 
mRNA

Human miRNAs Confidence > 0.75
Coverage > 3

Joung et al. 
(Probabilistic 
learning)

99 human 
miRNA, 2012 
mRNA

Human Parametric adjusted 
population size, 
minimum subset 
size

Maximum reported fitness 
score = 0.75

Zhang et al. 
(Multiplicative 
Updating 
Algorithm)

559 miRNAs, 
12,456 genes

Human

Houng et al. 
(Bayesian)

104 human 
miRNAs

Human GO FPR- 3.5%

miRNA function prediction—FMRM

Lui et al. (2010)
(Probabilistic 

Graphical Model)

1112 probe of 
miRNA,

19,223 probes of 
mRNA

Mouse Minimum coverage of 22% 
on validation sets.

Train training set, Test test set, Va validation, Se sensitivity, Sp specificity, ACC accuracy, Sl selectivity, Avg average, FPR 
false positive rate, FE free energy, MFE minimum free energy, FFE folding free energy, HpL hairpin loop, TD thermo-
dynamic, SS secondary structure, GO gene ontology, SeqF sequence based features, StrF structure based features, Norm 
normalized, bp base pair

determine the correlation between expression levels of miRNAs 
and mRNAs of test and control samples. Statistical  techniques then 
identify the FMRMs from the miRNA-mRNA pairs. Liu et al. 
(2010) [56] frame a probabilistic method for FMRM discovery 
which integrates expression profiles of miRNAs and mRNAs with 
or without using target prediction information. In this graphical 
model, FMRMs are defined as latent variables that control the 
miRNA and mRNA expression values that are again linked wide to 
biological functions.

5 Discussion

miRNAs, since their discovery in the early 1990s, have been of 
interest to several research groups across the world. There has been 
an exponential development in the computational methods applied 
to the identification of miRNA genes, their targets and regulatory 
mechanisms. Machine learning algorithms have overcome not only 
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the difficulties of experimental procedures involved in miRNA dis-
covery and target predictions but also the limitation of conservation- 
based computational approaches. Among such methods developed 
recently, SVM classifiers have shown to be efficient in the identifi-
cation of novel miRNA genes in spite of a few drawbacks such as 
low sensitivity and occurrence of false positives. Also, SVM classi-
fiers were found to be the most efficient of the miRNA target pre-
diction methods [36]. Inferring miRNA functions as well has 
gained rapid attention with the discovery of a large number of 
miRNA genes and targets.

The fact that a single miRNA can have multiple targets and 
multiple regulatory pathways creates huge potential in improve-
ments in miRNA studies. Therefore, future developments in 
machine learning methods to identify miRNA genes to predict 
their targets and to infer their functions are expected to continue 
to be dynamic.
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Chapter 17

Involvement of MicroRNAs in Diabetes and Its Complications

Bin Wu and Daniel Miller

Abstract

Diabetes is a severe condition worldwide. It is characterized by chronic hyperglycemia and is caused by defects 
in insulin production, secretion, and action. Both genetic and environmental factors contribute to the develop-
ment of type 1 and type 2 diabetes. The pathogenesis of diabetes is complex and the underlying molecular 
mechanisms are only partially understood. MicroRNAs (miRNAs) play a fundamental role in diabetes and its 
complications. This chapter focuses on the dysregulation of miRNAs involved in the regulation of pancreatic 
islet insulin production and secretion as well as action and signaling in peripheral tissues. The roles of miRNAs 
in the development of diabetic complications are also discussed. Modulating miRNA expression, by either 
upregulation or inhibition, holds a promise as a strategy for treating this metabolic disease.

Key words MicroRNA, Diabetes, Insulin, Insulin resistance, Glucose homeostasis, Diabetic 
complications

1 Introduction

Diabetes mellitus is a metabolic disorder characterized by chronic 
hyperglycemia and the late development of micro- and macro- 
vascular complications, including diabetic nephropathy, cardiomy-
opathy, neuropathy, and retinopathy [1]. It is garnering attention 
as a public health concern and, due to its prevalence, a significant 
economic burden. According to a World Health Organization 
(WHO) report, there were 171 million cases of diabetes world-
wide in the 2000 and it was estimated that the number of cases will 
rise to 366 million by 2030 [2]. Mokdad et al. estimated that costs 
incurred in the treatment of myocardial infarction, stroke, end- 
stage renal disease, retinopathy, and foot ulcers secondary to diabe-
tes account for almost 14 percent of health care expenditures in the 
United States [3].

Clinical diabetes is divided into two classifications: type 1 dia-
betes (T1D) and type 2 diabetes (T2D). T1D is generally the result 
of autoimmune pancreatic β-cell destruction that causes an abso-
lute insulin deficiency. T2D is caused by insulin resistance (impaired 
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insulin action) leading to a relative insulin deficiency [4]. Insulin 
deficiency plays a major role in the development of diabetic hyper-
glycemia and metabolic disorders such as dyslipidemia. 
Hyperglycemia and dyslipidemia, in turn, play important roles in 
diabetes-related complications [5]. It is well established that 
genetic factors are closely associated with the development of both 
T1D and T2D. Kolfschoten et al. reported on the potential usage 
of microRNA for treating this genetic disorder [6]. MicroRNA are 
small, single-stranded, noncoding RNAs that repress the expres-
sion of targeted mRNAs. They perform alongside transcription 
factors in a complementary role to regulate gene expression. 
MiRNAs function by partially binding to sequences in the 
3′-untranslated region (3′-UTR) of target, interfering with the 
translation but not disrupting the mRNA. In the human genome, 
approximately 30% of all protein-coding genes are regulated by 
miRNA which indicates that they play a substantial role in the con-
trol of biological functions [7]. MiRNAs may play an active role in 
regulating glucose hemostasis via modulating insulin-producing 
β-cell function and insulin signaling in the peripheral tissues such 
as liver, muscle, and adipose tissue [8]. This chapter will describe 
the potential roles that microRNA play in the pathogenesis of dia-
betes and its secondary complications, their possible diagnostic rel-
evance, and possible therapeutic applications.

2 MiRNAs and Insulin Secretion, Pancreatic β Cell Development

Proper insulin secretion from pancreatic β-cells with normal func-
tion in peripheral tissues is crucial for glucose homeostasis. The 
expression of MiRNAs is highly tissue-specific with multi-faceted 
effects. It was determined that there are several MiRNAs selectively 
expressed in insulin-producing β-cells. In murine insulinoma the 
pancreatic β-cell line (MIN6 cells), mir-375, was identified as the 
most abundant, evolutionarily conserved, islet-specific miRNA 
[9]. The miR-375 gene is located in an intergenic region between 
the bA2-crystallin (cryba2) and coiled-coil domain-containing pro-
tein 108 (Ccdc108). The pri-miR-375 gene is controlled at the 
transcriptional level in the pancreas [10]. MiR-375 is expressed in 
islet β-cells and non-β-cells where it influences glucose homeostasis 
by inhibiting insulin secretion as well as pancreatic α- and β-cell 
mass [11, 12]. This was corroborated by Poy et al. who noted that 
insulin secretion was increased when they used antogomirs to sup-
press miR-375 expression [9]. The regulatory mechanism by which 
miR-375 regulates insulin secretion is not well understood, but 
Kolfschoten et al. posited that downregulation of myotrophin 
(Mtpn) by miR-375 was the method of action as reduction of 
myotrophin expression by RNA interference produced similar 
effects [6]. MiR-375 also enhances β-cell lipoapoptosis by 
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downregulating Mtpn expressions in NIT-1 cells, a pancreatic 
β-cell line established from spontaneous β-cell adenoma develop-
ing mice [13]. El Ouaamari et al. found that miR-375 may regu-
late the expression of 31-phosphoinositide-dependent protein 
kinase-1 (PDK1), a link in the PI3 kinase signaling pathway and 
regulator of β-cell functions [14]. The reduced expression of PDK1 
mediated by miR-375 causes a decrease in insulin secretion stimu-
lated by glucose, as well as a decreased insulin DNA synthesis [14]. 
In agreeance with this finding, both Guay et al. and Poy et al. 
noted hyperglycemia in miR-375 knockout [8, 12]. A role in pan-
creatic islet development was also suggested by major defects 
caused by targeted inhibition of miR-375 in zebrafish [15].

Besides miR-375, the expression of 107 other miRNAs have 
been identified during murine pancreas development [16] includ-
ing four miRNAs specific to islets (miR-7, miR-9, miR-375, and 
miR-376) prevalent during human pancreas islet development 
[11]. MiR-124a2, miR-195, miR-15a, miR-15b, and miR-16 
inhibited the expression of transcription factors also playing a role 
in pancreatic development [17, 18]. MiR-124a is also prevalent in 
the pancreatic β-cells [19, 20]. β-cell line MIN6 upexpression of 
miR-124a suppressed Rab GTPase family 27A (Rab27A) as well as 
Noc2 expression and enhanced SNAP25, Rab3A, and Synapsin-1A 
production [21]. Rab27A is a target of miR-124a and other regula-
tory effects are perpetrated through indirect means [21]. Alterations 
to Rab27A levels have been associated with increased basal insulin 
secretion and reduced insulin secretion in the presence of glucose 
stimulation [21]. Overexpression of miR-124 also repressed Mtpn 
production inhibiting insulin secretion via the same mechanism as 
mir-375 [22]. Baroukh et al. also demonstrated that miR-124a tar-
gets both forkhead box protein A2 (FoxA2) and cAMP-responsive 
element binding protein (Creb), transcription factors involved in 
β-cell differentiation, glucose metabolism, and insulin secretion 
[17]. Overexpression of miR- 124a in insulin-secreting cell lines 
(MIN6 and INS-1) increased basal-free intracellular Ca2+ and 
caused defects in glucose- stimulated Ca2+ response [17].

It was reported that miR-9 may affect insulin secretion both 
in vitro [23] and in vivo [24]. Plaisance et al. showed in cell line 
INS-1E that elevation of miR-9 suppresses the expression of the one 
cut homeobox 2 (Onecut-2) which downregulates granuphilin/
Slp4 [23]. Silencing Onecut-2 decreased glucose and potassium 
induced insulin exocytosis by increasing granuphilin expression 
[23]. Ramachandran et al. showed that miR-9 affects SIRT1 (silent 
mating type information regulation 2 homolog 1) expression in 
insulin-secreting cells during glucose-induced insulin secretion 
[24]. These results suggest that β-cells insulin secretory capacity is 
influenced by miR-9. MiR-96 has also been shown to enhance 
Granuphilin expression, thereby indirectly controlling insulin. 
Noc2, a Rab effector protein involved in secretion, was also shown 
to be downregulated by miR-96 [21].

Involvement of MicroRNAs in Diabetes and Its Complications
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MiR-195, miR-15a, miR-15b, and miR-16 inhibit the 
 expression of important transcription factors during pancreatic 
development [18]. Downregulation of mir-15a in MIN6 cells was 
observed during prolonged exposure to high glucose levels [25]. 
Sun et al. found that changes in mir-15a expression were posi-
tively correlated with insulin biosynthesis in MIN6 cells and that 
uncoupling protein-2 (UCP-2) served as the intermediary in the 
regulation [25]. MiR-15a was shown to be significantly underex-
pressed in the plasma of T2DM patients, suggesting an association 
between miR- 15a and β-cell dysregulation in T2DM [25].

Roggli et al. examined miRNA involvement in proinflamma-
tory cytokine-mediated β-cell cytotoxicity. They reported reduced 
insulin secretion and sensitization to cytokine-triggered cell death 
in MIN6 cells and human pancreatic islets after prolonged expo-
sure to proinflammatory cytokines interleukin-1 β (IL-1b) and 
tumor necrosis factor alpha (TNF-α) [26]. They observed signifi-
cant upregulation of miR-21, miR-34a, and miR-146 after expo-
sure to the cytokines. They also observed increased expression of 
miR-34a and miR-146a during the onset of prediabetic insulitis in 
the islets of nonobese diabetic mice [26]. Lovis et al. observed the 
same result in MIN6 cells and pancreatic islets isolated from dia-
betic db/db mice after prolonged exposure to saturated fatty acids 
[27], which is associated upregulation of miR-34a and enhanced 
activation of p53 which resulted in an increase in cellular apoptosis 
and impaired glucose-induced insulin secretion. They also observed 
that enhanced expression of miR-34a in MIN6 cells suppressed 
vesicle-associated membrane protein 2 (VAMP2) [27]. Lovis et al. 
also found miR-34a was upregulated during adipogenesis and its 
expression levels were positively correlated with the body mass 
index (BMI) [28]. Taken together, these results indicate that miR- 
34a and miR-146 might be a mediator linking cytoplasmic inflam-
mation and islet β-cell dysfunction.

3 MiRNAs and Insulin Action on Peripheral Tissue

Besides its involvement in islet β-cell insulin production, miRNAs 
also influence insulin action in peripheral tissue. Insulin resistance 
(IR) or insulin sensitivity is termed to reflect the hypoglycemic 
ability of insulin on peripheral tissues such as muscle, liver, and 
adipose tissue. Skeletal muscle contributes to approximately 75% of 
total body glucose consumption [29]. The roles of miRNAs in 
muscle metabolism were explored with both diabetic animal mod-
els and human patients. The expression profiles of miRNAs in skel-
etal muscle after a 3 h euglycemic-hyperinsulinemic clamp showed 
decreased levels of miR-1, miR-133a, miR-206, and miR-29a/c 
[30]. Expression of miR-29a and miR-29b was upregulated in 

3.1 MiRNAs 
Regulating Insulin 
Action in Muscle
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skeletal muscles of Goto–Kakizaki (GK) rat, which is used as a 
model of nonobese T2D [31]. Insulin-mediated downexpression 
of miR-1 and miR-133a was found to involve transcription factors 
such as sterol regulatory element binding protein-1c (SREBP-1c) 
and myocyte enhancer factor 2C (MEF-2C) [30]. In addition, 
T2D patients were found to exhibit reduced skeletal muscle miR-
133a expression, which was associated with higher fasting glucose 
levels [32]. Yu et al. investigated the role of miR-1 and miR-133 in 
glucose homeostasis using cardiomyocytes and found that glucose 
exposure increased miR-1 expression levels which suppressed 
insulin- like growth factor-1 (IGF-1) [33]. IGF-1 and IGF-1 recep-
tor were validated targets of miR-1 [34] and both IGF-1 and IGF-
receptor were found to be important determinants of insulin 
sensitivity in muscle [35]. Horie et al. demonstrated that increased 
levels of MiR-133a/b lead to a decreased expression of Kruppel-
like transcription factor 15 (KLF15), a known regulator of insulin- 
regulated glucose transporter 4 (GLUT4), which resulted in 
decreased insulin- stimulated glucose uptake [36]. These findings 
suggest that dysregulation of miR-1 and miR-133 may contribute 
to insulin resistance in muscle [36].

MiR-24 and miR-144 also have reported involvement in mus-
cle insulin sensitivity. The plasma of diabetic patients and the skel-
etal muscle tissue of both GK and Wistar rats exhibited decreased 
levels of miR-24 [37]. MiRNA profile comparisons between GK 
rats and Wistar rats showed miR-24 and miR-126 to be underex-
pressed in the muscle of GK rats [38]. Huang et al. demonstrated 
that p38 mitogen-activated protein kinase (MAPK) is a target of 
miR-24 in humans and mice [39]. Since p38 MAPK increases 
insulin- responsive GLUT4 translocation to the plasma membrane 
[40], miR-24 may regulate glucose hemostasis via p38 MAPK 
pathway in muscle. Upregulation of miR-144 was also found in 
insulin-responsive skeletal muscle of diabetic animals. Moreover, 
insulin resistance was also found to be promoted by inhibiting the 
expression of insulin receptor substrate-1 (IRS-1) which plays a 
vital role in the insulin-signaling cascade and IRS-1 is a direct tar-
get of miR-144 [41].

Over-production of adipokines, free fatty acids, and inflamma-
tory mediators in adipose tissue are key contributing factors in 
systemic insulin resistance [42]. Ectopic accumulation of specific 
lipid metabolites (diacylglycerols or ceramides) outside of adi-
pose tissue may be a common pathway leading to impaired insu-
lin signaling [42]. There is emerging evidence indicating that 
miRNAs are involved in lipid metabolism and adipogenesis. 
Regulation of the biosynthesis of cholesterol, fatty acids, and 
phospholipids is regulated by transcription factors such as Sterol 
Regulatory Element- Binding Proteins (SREBPs), Carbohydrate 
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Response Element-Binding Protein (ChREBP), CCAAT-Enhancer-
Binding Protein (C/EBP), Forkhead box protein O1 (FoxO1) to 
maintain proper homeostasis [43]. Sacco and Adeli found that 
miR-33, miR-122, miR-370, and miR-378 are regulators of lipid 
metabolism [44]. Human SREBP-encoding genes were also 
recently found to host highly conserved miRNAs, including miR-
33a and -b on chromosomes 22 and 17, respectively [45]. MiR-
33a functions in concert with the SREBP-2 cholesterogenic 
transcription factor to boost intracellular cholesterol levels [45, 
46]. MiR-33a and -b were found to downregulate the expression 
of ATP-binding cassette transporter (subfamily A, member 1) 
ABCA1. ABCA1 promotes the transformation of free cholesterol 
from within the cell to ApoA1 which is involved in the creation 
of high-density lipoproteins (HDL) [46, 47]. In murine models, 
suppression or knockout ablation of miR-33a caused increased 
hepatic and macrophage ABCA1 expression as well as circulating 
HDL levels [47]. In addition to SREBP, it was shown that miR-
33a and miR-33b regulate fatty acid β-oxidation, the process by 
which fatty acids are converted to Acetyl-CoA used in the citric 
acid cycle and ATP/energy generation, through the control of 
several intermediary proteins [46]. Manipulation of miR-33a in 
islets produced negative correlation between changes in ABCA1 
expression and glucose- stimulated insulin secretion and positive 
correlation with changes in cholesterol levels [48]. These results 
indicate a complex network of regulatory functions between 
SREBPs and their intronic miRNA that regulates cholesterol and 
lipid homeostasis as well as islet β-cell function.

Fat cell development (adipogenesis) and differentiation are 
major contributing factors to obesity and T2D [49]. MiR-143 has 
been shown to regulate adipocyte differentiation and its expression 
is upregulated during adipogenesis [50]. Experiments by Esau et al. 
also suggest that miR-143 has a similar involvement pattern in adi-
pocyte differentiation and that extracellular signal-regulated kinase 5 
(ERK5) is the relevant target [51]. A total of 65 miRNAs, including 
miR-143, were detected by Kajimoto et al. during pre- adipocyte dif-
ferentiation, and the expression of 21 of those miRNAs was up- or 
downregulated [52]. In Drosophila, Xu et al. found that miR-14 
regulated triacylglycerol levels [53] and Teleman and Cohen 
observed reduced insulin sensitivity in miR- 278 mutants [54], but 
so far no homologues have been uncovered in mammals.

4 MiRNAs and Diabetic Complications

Diabetic nephropathy (DN) is one of the important microvascular 
complications of diabetes. DN is the leading cause of end-stage 
renal disease (ESRD) in the United States. It is characterized 
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histologically by glomerular basement membrane thickening, 
mesangial expansion, podocyte effacement, and glomerular sclerosis 
[55]. The miRNA expression profile of renal biopsies from patients 
with DN indicated that miR-192 expression was related to 
DN-associated chronic kidney failure (eGFR <15 ml/min/1.73 m2 
at time of biopsy) [56]. Reduced expression of miR-192 was noted 
in patients with tubulointerstitial fibrosis and low estimated GFR. 
In vitro, treatment of proximal tubular epithelial cells with trans-
forming growth factor β (TGF-β) decreased miR-192 expression 
[56]. Kato et al. noted that TGF-β, smad-interacting protein 1 
(SIP1), δ-crystallin enhancer binding protein (δEF1), collagen type 
I alpha 2 (Col1a2), and miR-192 form a regulatory loop controlling 
kidney function [57]. TGF-β upregulates miR-192 and miR-192 
downregulates SIP1 via translational repression. SIP1 and δEF1 
both work to suppress the E-box elements located on the Col1a2 
promoter, so increased expression of miR-192 results in an increase 
of Col1a2. They also noted enhanced expression of TGF-β and miR-
192 in glomeruli isolated from streptozotocin(STZ)-induced and 
diabetic db/db mice when compared to non-diabetic controls [57]. 
Putta et al. demonstrated that TGF-β, fibronectin, and collagen 
gene expression were inhibited and Zeb1/2 expression was enhanced 
in STZ-induced diabetic mice following antagomiR- induced silenc-
ing of miR-192 in vivo which resulted in remission of DN [58]. 
MiR-192 was observed to be elevated in animal models of renal 
fibrosis. In vitro, overexpression of Smad7 in tubular epithelial cells 
countered the miR-192-enhancing effects of TGF-β and knock-
down of Smad7 enhanced miR-192 expression [59]. Smad3 was 
found to bind to the miR-192 promoter region whereby it mediated 
TGF-β-induced expression [59]. These results show that miR-192 
plays a role in DN pathogenesis.

Du et al. noted that miR-29a expression was depressed in 
human proximal tubular epithelial cells cultured with high levels of 
glucose and TGF-β. The reduced levels of miR-29a present in dia-
betes may promote excessive collagen deposition, suggesting a role 
in the development of DN [60]. In cultured glomerular mesangial 
cells, Wang et al. found that miR-377 targets serine/threonine- 
protein kinase PAK1 and leads to reduced expression of superoxide 
dismutase (SOD) thereby promoting fibronectin production [61]. 
As increased levels of fibronectin may contribute to glomerular 
basement membrane thickening and mesangial expansion, miR- 
377- mediated reductions in SOD expression may contribute to 
DN pathogenesis [62].

Diabetic cardiomyopathy is another severe complication resulting 
from both micro- and macro-vascular damage. Pathologic changes 
of diabetic cardiomyopathy may include fibrosis, capillary base-
ment membrane thickening, periodic acid-Schiff (PAS)-positive 
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material infiltration into the interstitium, and microaneurysm 
formation [63].

MiR-133 was the first miRNA shown to be dysregulated in dia-
betic hearts [64]. Clinical manifestations associated with the dys-
regulation of miR-133 include long QT syndrome (LQTS) [65] 
and cardiac hypertrophy [66]. LQTS is a disorder of the heart’s 
conduction system which can create a predisposition for secondary 
ventricular arrhythmias which can result in syncope, cardiac arrest, 
and sudden death [67, 68]. Paulussen et al. identified studies link-
ing the creation of the potassium channel involved in rapid delayed 
rectifier K+ current (IKr) responsible for controlling repolarization 
to human ether-a-go-go-related gene (hERG) [69]. MiR-133 
repression of hERG expression has been noted in arsenic- induced 
cardiac remodeling [70], but research into this relationship in a 
diabetic context has been largely based on findings retracted in 
2011 [71, 72]. In the hearts of diabetic rabbits, serum response 
factor (SRF) was shown to upregulate miR-133, which was present 
at high levels [65]. Therefore, it is likely (pending confirmation in a 
diabetic context) that overexpression of SRF leads to mir-133-me-
diated suppression of hERG which depresses IKr, consequently pro-
longing the QT interval that is clinically associated with LQTS.

MiR-133 is also involved in the pathogenesis of cardiac hyper-
trophy [66]. Cardiac hypertrophy is a thickening of the  myocardium 
that can decrease the volume of the heart chambers, and as a stress 
response to hypertension, heart valve stenosis, and aberrant con-
duction [66]. In vitro experiments showed a negative correlation 
between miR-133 expression and the presentation of cardiac 
hypertrophy [61]. Marked hypertrophy was noted in mice after the 
administration of miR-133 blocking oligonucleotides [66].

The involvement of miRNAs in the regulation of diabetic car-
diomyopathy was investigated in vitro and in vivo by Shen et al. By 
examining the cardiac tissue of STZ-induced mice with diabetic car-
diomyopathy, they identified 10 miRNAs (miR-195, miR-199a-3p, 
miR-700, miR-142-3p, miR-24, miR-21, miR- 221,miR-499-3p, 
miR-208a, and miR-705) to be overexpressed and 6 miRNAs 
(miR-29, miR-1, miR-373, miR-143, miR-20a, and miR-220b) 
underexpressed when compared to their control [73]. They identi-
fied overexpression of miR-373 was associated with a concurrent 
reduction of MEF2C, which they concluded MEF2C was its target 
gene, in neonatal rat cardiomyocytes. They also noted that the p38 
MAP kinase inhibitor SB203580 reduced the expression of miR- 
373 [73]. Lu et al. used a microarray-based approach to identify the 
role played by miR-223 in the diabetic heart [74]. They assessed 
ventricular biopsies from routine cardiac patients which revealed an 
increased expression of miR-223 in patients with T2D when com-
pared to non-T2D patients. They also infected cultured neonatal 
rat ventricular myocytes (NRVM) with adenoviral expression vec-
tors for miR-223 (Ad-miR-223) and noted that increased glucose 
uptake may have been due to the targeting of GLUT4 [74].
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5 MiRNA as Potential Biomarkers in Diabetes

Diabetes is generally not detectable until well into the disease’s 
progression. There has been some success with using miRNAs as 
biomarkers present in blood for detection of some diseases [6]. 
Chen et al. attempted to compare serum miRNA expression 
between T2DM patients and controls and found that the serum 
profile of diabetic patients contained three miRNAs which were 
not found in other disorders [75]. This study did not disclose the 
identities of the miRNAs that were differentially expressed. 
Zampetaki et al. also investigated the miRNA profiles of diabetic 
patients and found 13 miRNAs (miR-24, miR-21, miR-20b, miR- 
15a, miR-126, miR-191, miR-197, miR-223, miR-320, miR-486, 
miR-150, miR-29b, and miR-28-3p) to be differentially expressed 
in diabetic subjects [37]. They also identified miR-126 as a pro-
spective predictor for DM with associated secondary peripheral 
artery disease. Fichtlscherer et al. performed a study in a cohort of 
patients with coronary artery disease (CAD) and noted that 
 miR- 17 and miR-145 expressions were generally suppressed, but 
that miR-145 was further decreased in patients with diabetes [76]. 
Wang et al. identified a five-miRNA panel (miR-661, miR-571, 
miR-770-5p, miR-892b, and miR-1303) were differentially 
expressed in T2DM patients [77]. Chen et al. expanded their 
search for markers into other tissues and fluids, in which they iden-
tified differential expression profiles including increased expression 
of miR-146a and miR-126 in plasma [78]. Finally, Pescador et al. 
found a three-miRNA panel (miR-15b, miR-138, and miR-376a) 
that they found to be significant for predicting diabetes and obesity 
[79]. These studies indicate that there is a substantial amount of 
ongoing research to find biomarkers for diabetes, not only as an 
independent disease, but in a variety of comorbid situations.

6 MiRNAs as Potential Therapeutic Targets

As the dysregulation of miRNA is implicated in the pathology of 
diabetes and its complications, alteration of miRNA expression is 
being investigated as a possible therapeutic vector. There are sev-
eral techniques used to suppress miRNA expression and effect. 
Antisense nucleic acid derivatives bind to the targeted miRNA, 
thereby preventing it from interacting with its targets. Hutvágner 
et al. demonstrated the use of 2′-O-methyl oligonucleotides to 
silence let-7 expression in C. elegans larvae [80]. Stoffel et al. 
showed that derivatives of these oligonucleotides, termed 
antagomirs, are effective in mammalian systems by targeting miR-
122 in mice [81]. Lanford et al. used locked nucleic acid (LNA) 
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antimiRs to decrease the levels of miR-122 in primates with chronic 
hepatitis C virus to upregulate a set of miRNA predicted to reduce 
the effects of the infection [82]. In a diabetic context, Frost et al. 
demonstrated that an antimiR-induced knockdown of let-7 can 
enhance insulin sensitivity in hepatic and muscle tissues [83]. Putta 
et al. showed that LNA-modified inhibitor of miR-192 (LNA-anti-
miR-192) reduced miR-192 levels in STZ-induced mouse models 
of diabetic nephropathy which improved proteinuria and renal 
fibrosis symptoms [58]. The diabetic- and diabetic complication-
related miRNAs as well as their roles in regulating glucose metabo-
lism are summarized in Table 1. These efforts show that specific 
alteration of miRNA expression is possible and potentially of thera-
peutic benefit in the context of diabetes.

7 Perspectives and Conclusions

This chapter has highlighted some of the roles played by miRNA 
in the pathology of diabetes and its associated complications. Its 
involvement is part of a complex network of regulatory interac-
tions involving tissues from many distinct areas of the body, includ-
ing those of the pancreas, heart, skeletal muscles, and kidneys. 
Further research should continue to establish the regulatory 
changes involved in this disease as well as to establish effective and 
efficient methods for clinical diagnosis and treatment. Effort 
should be invested in refining the miRNA profiles that have been 
discovered for potential application in screening tests. Similarly, 
further exploration of miRNA manipulation should be pursued to 
develop practical treatments. Better knowledge of the effects of 
miRNA will allow us to increase quality of life not only for indi-
viduals with diabetes, but for patients with other diseases with sig-
nificant genetic involvement.
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Chapter 18

MicroRNA Regulatory Networks as Biomarkers  
in Obesity: The Emerging Role

Lihua Zhang, Daniel Miller, Qiuping Yang, and Bin Wu

Abstract

Even though it is a pandemic health problem worldwide, the pathogenesis of obesity is poorly understood. 
Recently, emerging studies verified that microRNAs (miRNAs) are involved in complicated metabolic 
processes including adipocyte differentiation, fat cell formation (adipogenesis), obesity-related insulin 
resistance and inflammation. Many regulatory networks have been identified in murine adipose tissue, but 
those in human adipose tissue are not as well known. In addition, miRNAs have been detected in circula-
tion, and thus may be usable as diagnostic indicators. MiRNAs may play an important part in regulating 
metabolic functions in adipose tissues and, by extension, obesity and its associated disorders. Consequently, 
they may be potential candidates for therapeutic targets and biomarkers.

Key words Obesity, Adipogenesis, Regulatory networks, Insulin resistance, Biomarkers, miRNAs

1 Introduction

Obesity (body mass index, BMI ≥30 kg/m2) and obesity-related 
disease have reached pandemic proportion in developing and devel-
oped countries and now pose a tremendous threat to global public 
health. Not only obesity, but also overweight (BMI 25–30 kg/m2), 
is highly associated with some chronic non- communicable diseases 
(NCDs), increases the likelihood of diabetes, hypertension, cardio-
vascular disease, stroke, and certain types of cancer, which has 
become a problem of epidemic scale [1]. According to the World 
Health Organization (WHO) 2014 Global Status Report of NCDs, 
the incidence of obesity has nearly doubled between 1980 and 2014 
with estimates for 2014 of 11% of adult males and 15% of adult 
females [2]. Obesity has detrimental effects on public health, leading 
to decreased life expectancies and increased health care costs which 
make it a significant public health challenge [3], but it can be con-
trolled by programs promoting physical activity and a healthy diet 
[1]. Therapeutic targets may be an option to supplement the 
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behavioral programs, but  development of such will require better 
understanding of the underlying mechanisms involved in adipose 
tissue dysfunction and obesity pathology.

MicroRNAs are a class of short, single-stranded, noncoding 
RNAs of approximately 20–23 nucleotides which are involved in 
the regulation of many biological processes [4].They influence 
biological and molecular processes in different tissues and cells, 
including adipose tissue and adipocytes [5, 6]. The negatively reg-
ulated genes are inhibited by specific, partial, or complete binding 
of sites complementary to the miRNA seed sequence (2–8 bp) in 
the 3′-Un-translated Regions (UTR) of mRNA. This action either 
blocks the translation or targets the transcript for destabilization or 
degradation which diminishes the protein output [7]. The nature 
of these binding attributes means that miRNA can regulate multi-
ple genes and act across an entire genome. MiRNAs regulate com-
plicated metabolic processes including adipocyte differentiation, 
adipogenesis, obesity-related insulin resistance (IR), and inflam-
mation. Adipocyte MiRNAs have been observed in general circula-
tion, and thus may provide a readily accessible means of detecting 
disturbed adipose tissue function [8]. As regulators of function in 
adipose tissues, miRNA may be viable targets for therapeutic inter-
ventions. Identification of the targets and the development of 
effective therapies should be the subject of further research.

The remainder of this chapter is organized as follows: 
Subheading 1 briefly summarizes state-of-the-art research in bio-
genesis and molecular functions of miRNAs in adipocyte develop-
ment and adipogenesis; Subheading 2 introduces miRNAs and 
obesity-related insulin resistance; Subheading 3 describes greater 
details of miRNAs and obesity; and finally, Subheading 4 concludes 
that miRNAs can potentially act as early biomarkers for obesity- 
related disorders.

2 Biogenesis and Molecular Function of MiRNAs in Adipocyte Development 
and Adipogenesis

MiRNAs can promote or preclude adipocyte differentiation by 
regulating signal pathways associated with adipogenesis, suppress-
ing transcription factors, or inhibiting the clonal expansion stage of 
mitosis [1]. Several miRNAs have been verified by different studies 
that play pivotal roles in the regulation of adipocyte differentiation, 
development, and adipogenesis (Table 1).

The adipocyte differentiation has two primary phases: determina-
tion and terminal differentiation [9]. The first step involves 
 embryonic stem cells (ESCs) or multipotent mesenchymal stem 
cells (MSCs) that are subjected to 3-isobutyl-1-methylxanthine, 
insulin dexamethasone, and bone morphogenetic proteins (BMPs) 

2.1 MicroRNAs 
in Adipocyte 
Differentiation  
and Development
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Table 1 
MicroRNAs associated with adipogenesis and adipocyte function

miRNAs Experiment Model Target gene Function Ref. Target

miR-519d Adipose tissue, 
preadipocyte

PPARa Lipid accumulation 
(up)

[11] Transcription factors

miR-138 MSC EID-1 Anti-adipogenic 
(down)

[12] Transcription factors

let-7 3T3-L1 HMGA2 Anti-adipogenesic 
(down)

[13] Mitotic clonal 
expansion

miR-17-92 3T3-L1 RB2/P130 Pro-adipogenic (up) [14] Mitotic clonal 
expansion

miR-30a/d Adipose tissue cell RUNX2 Pro-adipogenic (up) [15] –

miR-375 3T3-L1 Erk1/2 Pro-adipogenic (up) [16] MAPK signaling 
pathway

miR- 
27a/27b

3T3-L1, MSC,OP9 PPARγ Anti-adipogenic 
(down)

[17–19] Transcription factors

miR-21 hASC TGFBR2 Pro-adipogenic (up) [20] TGF signaling 
pathway

miR-31, 
-326

MSC C/EBPα Anti-adipogenic 
(down)

[21] Transcription factors

miR-155 Macrophage C/EBPβ Anti-adipogenic 
(down)

[12] Transcription factors

miR-143 3T3-L1,adipose 
tissue

Erk5 Pro-adipogenic (up) [22, 38] MAPK signaling 
pathway

miR-103,-
107

3T3-L1 Acetyl CoA Anti-adipogenesic 
(down)

[23, 24] –

miR-8 MSC TCF Pro-adipogenic (up) [25] Wnt/b-catenin 
signaling pathway

miR-210 3T3-L1 TCF7L2 Pro-adipogenic (up) [26] Wnt/b-catenin 
signaling pathway

miR-146b 3T3-L1 SIRT1 Pro-adipogenic (up) [27]

miR-130 Adipose tissue PPARγ Anti-adipogenic 
(down)

[28]

miR-30c Adipose tissue cell PAI-1, ALK2 Pro-adipogenic (up) [29, 30] –

miR- 
204/211

C3H10T1/2, 
BMSC

RUNX2 Pro-adipogenic (up) [31] –

miR-448 3T3-L1 KLF5 Pro-adipogenic (up) [18]

miR-145 DFAT cell IRS1 Anti-adipogenic 
(down)

[32]

(continued)
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that cause the adipocyte precursor cells differentiate into preadipo-
cytes. The second stage is the differentiation of preadipocytes into 
mature adipocytes, during which cells express many adipocyte-spe-
cific traits including increased glucose uptake and fat accumula-
tion. It has been demonstrated that miRNAs can be responsible for 
regulating the adipogenic lineage commitment in pluripotent stem 
cells and mature fat cells, by controlling the expression of mature 
adipocyte markers, such as fatty acid binding protein 4 (FABP4) 
and insulin-sensitive glucose transporter-4 (GLUT4) [9].

According to research outcome from a preponderance of evi-
dence, it was established that miRNAs were indispensable for ter-
minal adipocyte differentiation and function, and it revealed that 
miRNAs play a vital role in adipogenesis in vitro [10]. Homozygous 
ablation of Dicer obviously destroyed adipogenesis and downregu-
lated several adipocyte markers such as FAs (fatty acids), Peroxisome 
Proliferator-Activated Receptor-γ (PPARγ), FABP4, and GLUT4 
before induction in preadipocytes.

Martinelli et al. [11] noted that MiR-519d suppressed the 
PPARa protein translation and enhanced lipid accumulation dur-
ing preadipocyte differentiation, involved in adipocyte  development. 
They also found that the amount of suppression was directly related 
to the levels of miR-519d.

A pertinent study by Yang et al. [12] showed that miR-138 
partially targets EP300 interacting inhibitor of differentiation 1 
(EID-1), which is an inhibitor of cell differentiation.

A well-known miRNA, let-7, when overexpressed inhibits 
3T3-L1 differentiation during the clonal expansion stage of mito-
sis and, when upregulated later in the differentiation process, 
represses high mobility group AT-hook 2 (HMGA2), a structure 
altering transcription factor for chromatin [13].

miRNAs Experiment Model Target gene Function Ref. Target

miR-224 3T3-L1 EGR2 Anti-adipogenic 
(down)

[33]

miR-14 Drosophila P38 MAPK Anti-adipogenic 
(down)

[34] MAPK signaling 
pathway

miR-278 Drosophila – Regulators of 
adipose tissue

[35]

Note: PPARγ peroxisome proliferator-activated receptor-γ, 3T3-L1 murine preadipocyte cell line, OP9 cells murine bone 
marrow stromal cell lines, C/EBP CCAAT-enhancer-binding protein, ESCs embryonic stem cells, MSCs multipotent 
mesenchymal stem cells, Erk extracellular regulated MAP kinase, EID-1 EP300 interacting inhibitor of differentiation 1, 
hASCs human adipose tissue-derived mesenchymal stem cells, HMGA2 high mobility group AT-hook 2, DFAT dedif-
ferentiated fat cells, KLF5 kruppel-like factor 5, RUNX2 runt-related transcription factor 2, SIRT1 sirtuin1, MAPK 
mitogen-activated protein kinases, TGFβR2 transforming growth factor beta receptor II, TCF7L2 transcription factor 
7-like 2, EGR2 early growth response, PAI-1 phosphoribosylanthranilate isomerase, ALK2 aurora-like kinase2

Table 1
(continued)
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Wang et al. found that upregulation of miR-17-92 during the 
clonal expansion stage accelerates adipocyte differentiation and, 
when transfected into 3T3L1 cells, can accelerate differentiation 
and increased triglyceride accumulation [14]. They determined via 
luciferase reporter assay that RB2/P130, a cell cycle repressor, was 
a target of miR-17-92.

In adipose tissue-derived stem cells, the miR-30 family (miR- 
30a/d/c) was found to play a role in promoting adipocyte differ-
entiation [15].

Ling et al. [16] demonstrated that miR-375 promotes 3T3-L1 
adipocyte differentiation by influencing the ERK1/2 pathway. 
This study verified that miR-375 expression increased in 3T3-L1 
cells after differentiation was induced in preadipocytes and that the 
overexpression of miR-375 accelerates the process. MiR-375 levels 
were found to have a negative correlation with phosphorylation 
levels of Erk1/2 which was mediated by the extracellular mitogen- 
activated protein kinases (MAPK) signaling pathway.

It has been demonstrated that miR-27a and miR-27b are anti- 
adipogenic and have been shown to directly target PPARγ and 
CCAAT-enhancer-binding protein (C/EBP) [17–19]. Both miR-
NAs are downregulated upon hormonal induction of adipogenesis 
in vitro. Murine adipose tissue exhibited higher levels of MiR-27a 
in the stromal vascular fraction than in mature adipocytes [18]. 
Transfection of miRNAs in 3T3-L1 (murine preadipocyte cell line) 
or OP9 cells (Murine bone marrow stromal cell lines) inhibited 
adipocyte formation by blocking the expression of adipogenic 
markers after the same adipogenic stimulant treatment as 3T3-L1 
cells. Therefore, the miR-27 gene family (miR-27a, miR-27b) is a 
significant negative regulator of adipogenesis and potential anti- 
adipogenic target [17–19].

Overexpression miR-138 can downregulate hormonal induc-
tion of adipogenesis in hASCs, reduced lipid droplet accumulation, 
and inhibited the expression of adipogenic transcription factors C/
EBPα and PPARγ2 (one of PPARγ isoforms found in humans and 
mice) [12].

MiR-21 expression was found to be temporarily elevated after 
adipogenesis was induced in human adipose tissue-derived MSCs 
(hASCs) [20]. TGF-β signaling pathway inhibition by miR-21- 
induced repression of transforming growth factor beta receptor II 
(TGFβR2) was found to promote adipogenesis.

It has been demonstrated that expression of miR-31 and miR- 
326 was underexpressed during the adipogenesis process of hASCs 
by assessment via microarray with Quantitative real-time poly-
merase chain reaction (QRT-PCR) verification, and that it directly 
targets C/EBPα [21]. In the context of macrophage studies, miR- 
155 inhibits C/EBPβ, a transcription factor involved early in adi-
pogenesis [12]. According to the data from 3T3-L1 cells, miR-143 

2.2 MicroRNAs 
and Adipogenesis
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targets Erk5 (extracellular regulated MAP kinase) and accelerates 
adipogenesis, presumably that prevents the phosphorylation and 
inactivation of C/EBPβ [22].

Recently, a computational study estimated that miR-103 and 
-107 human miRNA paralogs provide a regulatory mechanism for 
several metabolic pathways, including Acetyl CoA and lipid metab-
olism, in vertebrates [23]. Another study showed that miR-103 
exhibits a nine-fold upregulation in early 3T3-L1 adipogenesis and 
experimentally confirmed as pro-adipogenic [24], but the possible 
role of miR-103 in adipogenesis still needs to be experimentally 
validated.

The genetic researchers revealed that miR-8 is a conserved 
negative regulator of Wnt signaling in mammalian ST2 cells by 
repressing TCF protein levels. It can directly target the mRNAs 
encoding two pathway elements, the wntless and CG32767 genes 
in Drosophila [25].

MiR-210 was demonstrated to target the TCF7L2 via a lucif-
erase reporter assay, which can activate Wnt signaling in association 
with β-catenin. In addition, overexpression of miR-210 can accen-
tuate an adipogenic phenotype hypertrophy and lipid droplet for-
mation in 3T3-L1cells [26].

MiR-146b expression increases in 3T3-L1 cells during adipo-
genesis. Overexpression of miR-146b subsequently decreased sir-
tuin1 (SIRT1) mRNA both in the adipose tissues of diet-induced 
and genetically obese mice [27].

Another miRNA, miR-130, impaired adipogenesis by potently 
repressing and targeting to PPARγmRNA coding and 3′ UTR, and 
decreasing PPARγ. These perturbations have been linked to human 
obesity. It has been estimated that, compared with nonobese 
women, obese women had underexpression of PPARγ mRNA and 
overexpression of miR-130 in adipose tissues [28].

It has been demonstrated that overexpression of miR-30a and 
miR-30d promotes adipogenesis, and miR-30a/d positively mod-
ulated runt-related transcription factor 2 (RUNX2) [15, 29]. 
Promotion of adipogenesis in hASCs was effected by the targeting 
of two genes: PAI-1 (phosphoribosylanthranilate isomerase) and 
aurora-like kinase 2 (ALK2) [29, 30]. It was reported that miR- 
204 and its homologue miR-211can be upregulated in the adipo-
cyte differentiation from human bone marrow stem cells. 
Overexpression of miR-204 promoted adipogenesis to directly tar-
geting RUNX2 [31]. MiR-448 has been proposed to negatively 
regulate adipogenesis by activating serotonin (5-HT) receptors 
5-HT2AR and 5-HT2CR, and suppressing Kruppel-like factor 5 
(KLF5) [18]. KLF5 is a transcription factor that, when induced by 
C/EBPβ and C/EBPδ, promotes adipogenesis by contributing to 
the induction of PPARγ.

According to cell differentiation data, miR-145 is signifi-
cantly upregulated in porcine dedifferentiated fat (DFAT) cells. 
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Adipogenesis was suppressed in subjects with high levels of 
miR- 145 by targeting IRS1 and decreasing triglyceride accu-
mulation [32].

Peng et al. [33] found that miR-224 impairs adipocyte early 
differentiation and regulates fatty acid metabolism. They found 
that this action was mediated by early growth response (EGR2) 
and that overexpression of miR-224 hampered adipocyte 
differentiation.

MiR-14 can repress lipid metabolism by modulating the p38 
MAPK signaling pathway in Drosophila [34]. MiR-278 regulates 
energy homeostasis and insulin sensitivity, which has also been 
characterized in Drosophila microRNA samples.

MiR-278 targets the expanded transcript, and miR-278- 
deficient knockout flies display a large reduction in total body tri-
glyceride content and fat body mass. Intriguingly, miR-278 
mutants were insulin-resistant and had higher levels of insulin and 
circulating sugar mobilized from adipose tissue stores [35]. 
Although miR-278 has been identified in Drosophila as crucial 
regulators of adipose tissue, their mammalian homologues need 
further investigation.

Finally, Fig. 1 summarizes the regulation of adipogenesis of 
miRNAs in different stages mammalian adipogenesis. MiRNAs can 
perform as pro-adipogenic factors or anti-adipogenic factors in the 
adipogenesis process [36].

3 MicroRNAs: Emerging Role in Obesity

Recently, several miRNAs have been identified by different studies 
that could be used as feasible therapeutic targets for obesity and its 
consequent pathologies. These emerging roles of miRNAs in obe-
sity are summarized in Table 2 and will be discussed in the follow-
ing sections.

Notably, miR-122 displayed target and downregulated hepatic 
lipogenic genes and was implicated in cholesterol biosynthesis by 
the analysis of the functional annotation. Anti-sense oligonucle-
otide inhibition of miR-122 and silencing miRNA expression in 
antagomir-122-treated obese mice decreased plasma cholesterol 
levels in vivo by targeting hepatic lipogenic genes. The study [37] 
showed that antagomirs can silence specific miRNAs in vivo, and 
thus may be a tool for therapeutic applications. miR-122 tar-
get genes were specifically predicted that affect cholesterol biosyn-
thesis genes and plasma cholesterol reduced.

A study involving leptin-deficient ob/ob and diet-induced obe-
sity (DIO) mouse models demonstrated that miRNAs associated 
with adipogenesis were markedly and conversely profiled 
 dysregulation of 3T3-L1 in preadipocytes and adipocytes [24]. 
Similar miRNAs were discriminately modulated between in vitro 
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and in vivo during adipogenesis. MiR-422b, miR-148a, miR-103, 
miR-107, miR-30c, miR-30a-5p, and miR-143 were overexpressed 
during 3T3-L1 differentiation but generally underexpressed in cells 
isolated from ob/ob mice. The downregulation was  speculated to 
be due to an inflammatory pathway response. The same study veri-
fied that the expression of miR-221 and 222 was decreased during 
adipogenesis and upregulated in obesity mouse models [24].

Another study focused on miR-143 expression in visceral adi-
pose tissue isolated from obese mice, in which increased expression 
was noted. MiR-143 is implicated in alterations to PPARγ and aP2 
expression [38].

MiR-335 was found to be upregulated in adipose tissue of 
three murine models of obesity, including leptin-deficient ob/ob 
mice, leptin-receptor-deficient db/db mice, and KKAy44 mice, 
and it may play a role in adipose hyperplasia [39].

Fig. 1 Mammalian miRNAs regulate target genes during adipogenesis. Part of figure refers to the paper of Peng 
et al. [36]. The miRNAs in rectangular blue boxes have an anti-adipogenic role, obstructing adipogenesis by 
repressing their targets. MiRNAs in oval blue boxes are pro-adipogenic, promoting adipocyte differentiation
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A study demonstrated that miRNA isolated from multiple fat 
deposits taken from overweight and obese individuals, 16 miRNAs 
out of 106 miRNAs expressed had an expression pattern depen-
dent on the adipose tissue. A significant correlation was identified 
between the expression of miRNA-17-5p, miRNA-132, miRNA- 
99a, miRNA-134, miRNA-181a, miRNA-145, miRNA-197, adi-
pose tissue morphology, and key metabolic indexes related to 
obesity and glucose metabolism. The indexes investigated were 
visceral fat area, HbA1c, fasting plasma glucose (FPG), and leptin, 
adiponectin, interleukin-6 (IL-6) concentration. Negative correla-
tions between miR-99a, miR-325, and IL-6 concentrations as well 
as between miR-181a and adiponectin level were determined [40].

A study of microarrayexpression profile analysis in subcutane-
ous adipose tissue (SAT) shows that out of 42 differently expressed 
microRNAs, overexpression of miR-519d was confirmed by QRT- 
PCR to accompany decreased protein levels of PPARAα (a pre-
dicted miR-519d target) in severely obese subjects. These studies 
also showed that miR-519d repressed translation of the PPARA 
protein which leads to increased lipid accumulation during preadi-
pocyte differentiation [11].

It was found that miR-34a and miR-205 expressions were sig-
nificantly increased in the obese murine liver, but expressions of 
miR-151, miR-133a, miR-329, miR-201, miR-330, miR-17-3p, 
miR-298, miR-328, and miR-380-5p were decreased [41].

Through microinjection technology in mice, the results indi-
cate that a diet high in fat and sugar may induce trait inheritance 
via RNA signaling [42]. MiR-19b was used to induce metabolic 
alterations, such as obesity, to produce a diet-induced phenotype 
in the resulting progeny.

Based on these data, miRNA expression profiles are sensitive to 
obesity and miRNA are involved in the regulation of key proteins 
involved in adipogenesis and lipid homeostasis. Investigation into 
similar changes in miRNA biogenesis, transcription, and degrada-
tion may be warranted to determine their roles in dysregulation. 
Such investigation should uncover potential therapeutic targets 
that may be effective in combating obesity.

4 MicroRNAs and Obesity-Related Insulin Resistance

The inverse regulatory pattern for many miRNAs has significant 
implications for adipose tissue dysfunction in obese mice and 
humans during adipogenesis and obesity, and the interaction link 
between miRNAs and insulin resistance of obesity was summarized 
in Table 3 as the following section.

The study found that both miR-221 and the RNA-binding 
protein polypyrimidine tract-binding protein (PTB) bind 
Adiponectin receptor 1 (AdipoR1) 3′UTR inhibiting its produc-
tion during muscle differentiation and in obesity. AdipoR1 
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mediates adiponectin’s pleiotropic effects and is involved in control 
of insulin resistance as well as being a receptor for adiponectin [43].

Meerson et al. [44] conducted a population study validated 
using QRT-PCR, immunoblots, and luciferase assays. They noted 
that miR-221 was overexpressed in obese patients and found that 
it affected fat metabolism downstream of leptin and tumor necrosis 
factor α (TNF-α). They observed that miR-221 directly targets 
and downregulates adiponectin receptor 1 (ADIPOR1) and 
Erythroblastosis virus E26 oncogene homologue 1 (ETS1). ETS1 
associated with insulin resistance in primary human adipocytes 
plays a role in metabolic homeostasis.

Table 3 
MicroRNAs involved in insulin resistance

miRNAs Experiment model Target gene Ref.

miR-143 3T3-L1 ,adipocytes – [25]

miR-221 HepG2 ADIPOR1 [43]

miR-221 Primary human adipocytes ADIPOR1, ETS1 [44]

miR-93 Human subcutaneous 
adipose tissue,3T3-L1

GLUT4 [45]

miR-130a-3p Primary hepatocytes, 
mouse model ,HepG2

GRB10 [46]

miR-190b Huh7 IGF1 [47]

miR-802 Hepa1-6, mouse model Hnf1b [48]

miR-122 HepG2 PTP1B [49]

miR-181a HepG2, primary 
hepatocytes

Sirt1 [50]

miR-99a HepG2, HL77002 mTOR [51]

miR-320 3T3-L1 adipocyte PI3-K-AKT [52]

miR-103,-107 Adipocytes in obese mice caveolin-1 [53]

miR-29a/b/c 3T3-L1 adipocytes – [54]

miR-33a/b Hepatic cell lines IRS2 [55]

miR-126 SK-Hep1 hepatocytes IRS-1 [57]

miR-24 Rats’ skeletal muscle p38 MAPK [58]

Note: ADIPOR1 diponectin receptor 1, ETS1 v-ets Erythroblastosis virus E26 onco-
gene homologue 1, GRB10 the growth factor receptor-bound protein 10, IGF-1 
insulin- like growth factor, HNF1B hepatocyte nuclear factor 1beta, PTP1B protein 
tyrosine phosphatase 1B, HNF4a hepatocyte nuclear factor 4a, JNK1 c-Jun N-terminal 
kinase1, SIRT1 sirtuin 1, PKM2 pyruvate kinase M2, PI3-K phosphatidylinositol 
3-kinase, IRS2 insulin receptor substrate 2, ABCA1 adenosine triphosphate-binding 
cassette transporter A1, SREBPs sterol regulatory element-binding proteins, GLUT4 
glucose transporter-4, mitogen-activated protein kinases (MAPK), mTOR mechanistic 
target of rapamycin
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Overexpression of miR-93 was seen in patients with insulin resis-
tance. Further analysis validated that GLUT4 was a target of miR-93 
which may explain its contribution to insulin resistance [45].

Xiao et al. [46] reported in mouse models that miR-130a-3p 
targets growth factor receptor-bound protein 10 (GRB10) in 
hepatic cells. GRB10 regulates the tyrosine kinase signaling cas-
cade. They found that overexpression of miR-130a-3p in mice 
improved glucose clearance, but subsequent overexpression of 
GRB10 contributed to insulin resistance.

MiR-190b regulates cellular differentiation, proliferation, and 
the suppression of apoptosis. It takes part in controlling glucose 
homeostasis and enhances insulin sensitivity in hepatocellular carci-
noma samples by targeting insulin-like growth factor (IGF-1). 
Therefore, changes in miR-190b expression may serve as a diagnos-
tic marker hepatocellular dysfunction induced insulin resistance [47].

Kornfeld et al. [48] observed glucose intolerance and insulin 
resistance in obese mouse models coincident with overexpression 
of miR-802 and that liver function improved when miR-802 levels 
were reduced in obese patients. They also found that miR-802 
suppresses the hepatocyte nuclear factor 1beta (Hnf1b) gene, and 
validated the finding by QRT-PCR and luciferase assays in vitro 
and in vivo. It provided strong evidence that therapeutic adjust-
ment of miR-802 may reverse insulin resistance.

Yang et al. [49] found that miR-122 was underexpressed in 
mice fed a high fat diet. They found that it regulates the Protein 
tyrosine phosphatase 1B (PTP1B) expression by binding to its 
3′-UTR and is associated with insulin resistance in liver cells. C-Jun 
N-terminal kinase 1 (JNK1) suppresses the expression of  hepatocyte 
nuclear factor 4a (HNF4a) which promotes the expression of miR-
122. JNK1 may provide a target for insulin resistance treatment by 
this regulatory path.

Zhou et al. [50] found that miR-181a targets sirtuin 1 (SIRT1) 
in liver cells. They found that overexpression of miR-181a resulted 
in leading to insulin resistance and suppression of the same 
improved insulin sensitivity.

Li et al. [51] found that hepatic cell lines treated with insulin 
can induce miR-99a expression and negatively regulate the mecha-
nistic target of rapamycin (mTOR) and thereby modulate Pyruvate 
kinase M2 (PKM2) and glucose metabolism. Ling et al. [52] 
examined miRNA expression profile differences between insulin- 
sensitive and insulin-resistant 3T30L1 adipocytes. Out of the 79 
dysregulated miRNAs, miR-320 expression was noted to show a 
50-fold increase in insulin-resistant (IR) adipocytes. They estab-
lished through bioinformatic techniques that miR-320 targeted 
the p85 subunit of phosphatidylinositol 3-kinase (PI3-K). In addi-
tion, they transfected adipocytes with antisense oligonucleotides 
against miR-320 (anti-miR-320 oligo) and noted an improvement 
in insulin sensitivity in previously resistant adipocytes. Enhancement 
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of p85 expression, phosphorylation of Akt, and the protein expres-
sion of the glucose transporter GLUT-4, as well as insulin- 
stimulated glucose uptake was demonstrated and attributed to the 
improvement of IR in the same study. They concluded that the 
alleviation of insulin resistance in adipocytes may be associated 
with insulin–PI3-K signaling pathways.

It was demonstrated that the expression of miR-103 and miR- 
107 was upregulated in adipocytes of obese mice. Silencing of 
miR-103/107 can improve glucose homeostasis and insulin sensi-
tivity and directly upregulate target gene- caveolin-1, a critical 
regulator of the insulin receptor. This was concomitant with stabi-
lization of the insulin receptor, increased insulin signaling, and 
insulin-stimulated glucose uptake which decreased adipocyte size. 
These findings demonstrate that miR-103/107 may be a new tar-
get for the potential treatment for obesity [53].

Xie et al. [24] profiled the expression of more than 370 miR-
NAs during adipogenesis of preadipocyte 3T3-L1 cells and adipo-
cytes from leptin-deficient ob/ob and diet-induced obese mice by 
using miRNA microarrays. Changes in key miRNAs were validated 
by RT-PCR. They found miR-103 and miR-143 to be overex-
pressed during adipogenesis and underexpressed in obese adipo-
cyte samples.

He et al. found [54] three members of the miR-29 family, 
miR-29a, miR-29b, and miR-29c, demonstrated increased expres-
sion in the muscle, fat, and liver of diabetic rats. They used an 
adenovirus to induce overexpression of miR-29a/b/c in 3T3-L1 
adipocytes which resulted in insulin resistance. They showed that 
miR-29 does not target Akt directly and proposed other unknown 
intermediaries to be involved in the signaling pathway.

MiR-33a/b embedded within introns of the sterol regulatory 
element-binding proteins (SREBPs) genes target the adenosine 
triphosphate-binding cassette transporter A1 (ABCA1) for post- 
transcriptional repression. ABCA1 was an important regulator of 
high-density lipoprotein (HDL) synthesis and reverse cholesterol 
transport [55].

Dávalos et al. [56] found that miR-33a and miR-33b were 
involved in regulating cholesterol homeostasis. They found that 
both were in the regulatory pathways of a number of enzymes 
involved in the process including carnitine O-octaniltransferase, car-
nitine palmitoyltransferase 1A, hydroxyacyl-CoA- dehydrogenase, 
Sirtuin 6 (SIRT6), AMP kinase subunit-α, and insulin receptor sub-
strate 2 (IRS2). They observed that IRS2 was involved in the liver 
insulin-signaling pathway. They found an inverse response in fatty 
acid oxidation and insulin signaling to modulation of mir- 33a and 
-b. They concluded that miR-33a and -b may be useful therapeutic 
targets.

Ryu et al. [57] confirmed that miR-126 directly targeted to 
IRS-1 3′UTR using reporter gene assay. They also demonstrated 
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that miR-126 was actively involved in the development of insulin 
resistance induced by mitochondrial dysfunction via a reduction in 
the expression of IRS-1 protein.

It was found that miR-24 showed the most prominent expres-
sion difference in all miRNAs. P38 MAPK, which is a direct target 
of miR-24, also showed subsequent change. All the data showed 
that miR-24 might be associated with diabetes and insulin resistant 
through downregulation of p38 MAPK [58].

5 MicroRNAs as Early and Potential Biomarkers in Obesity and Related 
Metabolic and Cardiovascular Diseases

The worldwide increase in the incidence of obesity has implications 
for public healthcare. It is a major risk factor for type 2 diabetes and 
other metabolic diseases, cardiovascular disease, and a general 
increase in population mortality [1]. It is, however, difficult to eval-
uate every obese patient with different risks for developing future 
metabolic and cardiovascular complications. Therefore, biomarkers 
for early identification and verification of obese patients, especially 
those with high risk of diverse complications, are urgently needed.

MicroRNAs, as highly conserved noncoding RNA molecules, 
express with the characteristic of tissue and cell specific manner, 
and exert post-transcriptional effects on gene expression. They 
play important roles in many biological and pathological processes 
including diabetes, obesity, and metabolic disease [6]. They can 
also be released into the peripheral circulation where they remain 
stable and can be easily detected [5]. Thus, it is expected that 
miRNA found in tissue, plasma, or serum could be used for per-
sonalized putative diagnosis and early screening contributing to 
more timely and targeted treatment (Table 4).

Compared with healthy control subjects, the expression of let-
 7e and miR-296-5p was significantly elevated in plasma of obese 
patients with hypertension [59]. In addition, the expression of 
miR-1, miR-133, and miR-499-5p (cardiac-specific miRNAs) was 
found to be consistently increased in the plasma of patients and 
mice models with acute myocardial infarction (AMI) within hours 
after the onset. These miRNAs represent novel biomarkers of car-
diac damage and obese-related cardiovascular diseases [60, 61].

Wang et al. [62] found that miR-208a was detected in all 
patients with AMI within 4 h of the onset of symptoms, but it 
remained undetectable in plasma of non-AMI patients. They 
reported that niR-208a was detected in 100% AMI patients within 
4 h of the onset of symptoms and remained detectable in 90.9% 
AMI patients thereafter. They proposed that it could be used as a 
biomarker for detecting myocardial injury. Corsten et al. [63] 
found that miR-208b and miR-499 were highly elevated in the 
plasma from acute myocardial infarction patients.
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Notably, compared with healthy controls, circulating expres-
sion levels of miR-126, miR-17, miR-92a, and the inflammation- 
associated miR-155 were greatly decreased in patients with 
coronary artery disease (CAD), which were validated in a second 
cohort of patients with documented CAD and controls. This 
research showed that circulating levels of four vascular and 
inflammation- associated miRNAs were significantly downregu-
lated in patients with CAD [64].

Coming from a cohort study sampling morbidly obese, high- 
risk obese, and nonobese patients, the expression of miR-181a was 
also found downregulated in monocytes of obese patients. Even 
after adjustment for traditional confounding risk factors, the 
expression of miR-181a was associated both with a higher number 
of metabolic syndrome components and with CAD [65]. Indeed, 
compared with patients of stable CAD, miR-146a was significantly 
increased in patients with ACS in human PBMCs. It was confirmed 

Table 4 
MicroRNAs as candidate biomarkers in obesity, obesity-related metabolic, and cardiovascular 
diseases in the circulation

miRNAs Species Biological system Expression

Obesity and 
related 
diseases Ref.

let-7e, 
miR- 296- 5p

Human Plasma Elevated HT vs. control [59]

miR-1,-133a/
b,-495b

Human/mice Plasma Elevated STEMI vs. 
control

[60, 61]

miR-208a Human Plasma Elevated STEMI vs. 
non-AMI vs. 
control

[62]

miR- 
208b,-499

Human Plasma Elevated AMI vs. control [63]

miR-17/92,-
126,-155

Human Plasma Decreased CAD vs. 
control

[64]

miR-181a/b/c Human Monocyte Decreased Obese and 
non-obese 
patients

[65]

miR-146a Human/in vitro PBMCs Elevated ACS vs. stable 
CAD

[66]

miR-146b-5p Human Monocytes Decreased Obesity vs. 
control

[67]

Note: PBMCs peripheral blood mononuclear cells, HT hypertension, STEMI acute ST-segment elevation MI, ACS 
acute coronary syndrome, CAD coronary artery disease
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in vitro that overexpression of miR-146a in PBMCs significantly 
upregulated the function of type 1 helper T cells and induced pro-
tein expression of NF-kB p65, TNF-α, and mast cell proteinase-1 
(MCP1) [66].

Hulsmans et al. [67] found that MiR-146b-5p inhibits NFkB- 
mediated inflammation by targeted repression of interleukin-1 
receptor-associated kinase (IRAK) 1 and TNF receptor-associated 
factor-6 (TRAF6). They also reported that in morbidly obese 
patients miR-146b-5p expression was significantly decreased in 
blood monocytes. They noted that while the anti-inflammatory 
action of adiponectin was reduced, but not its insulin signaling 
potential. After using an antisense inhibitor to silence miR- 
146b- 5p, the result was increased expression of IRAK1 and 
TRAF6, which can lead to more NF-kB p65 DNA binding activity 
and TNF-α.

The miRNA presented here are aberrantly expressed in the 
peripheral circulation. Easy access to samples and the ease of detec-
tion make them potential candidates for use as biomarkers for 
obesity- related diseases.

6 Conclusions

MicroRNA are involved with the regulation of many biological 
processes, including proliferation, differentiation, apoptosis, and 
metabolic functions in adipose tissues. Obesity causes changes to 
these processes that are ultimately reflected in the miRNA expres-
sion profiles of the affected tissues which are detectable both in 
tissue itself and possibly in the peripheral circulation. Use of these 
differential profiles could be useful to the medical community for 
early detection and diagnosis of obesity as well as associated dis-
eases and conditions which could aid in improving the level of care 
and quality of life as well as help combat this prevalent metabolic 
disorder.
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Chapter 19

Expression of MicroRNAs in Thyroid Carcinoma

Gaohong Zhu, Lijun Xie, and Daniel Miller

Abstract

MicroRNA (miRNA) are negative regulators of gene expression and subsequent protein production. This 
method of action translates into regulatory control over cellular processes, including development, signal-
ing, metabolism, and apoptosis. A broad range of miRNA are shown to have abnormal expressions in 
thyroid cancers which could explain the pathology of tumor oncogenesis and disease progression. A review 
is conducted of the current research on miRNA dysregulation in thyroid cancers, including papillary thy-
roid carcinoma (PTC), follicular thyroid carcinoma (FTC), anaplastic thyroid cancer (ATC), and medul-
lary thyroid carcinoma (MTC). Dysregulated miRNA and their associated regulatory pathways are 
identified and their oncogenic and pathological significance are discussed.
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1 Introduction

Follicular cell-derived carcinomas are divided by histological and 
clinical features. Histological classifications include well- 
differentiated thyroid carcinomas (WDTCs), poorly differentiated 
thyroid carcinomas (PDTCs), and undifferentiated thyroid carci-
nomas [1]. WDTCs are less aggressive cancers which include papil-
lary thyroid carcinomas (PTCs) and follicular thyroid carcinomas 
(FTCs). PDTCs are moderately aggressive carcinomas. Anaplastic 
thyroid cancers (ATCs) are highly undifferentiated and extremely 
aggressive [2]. Clinical classifications include medullary thyroid 
carcinoma (MTC). MTC is a malignant tumor of the parafollicular 
cells (C-cells) constituting approximately 5% of thyroidal malig-
nancies having both hereditary (25%) and sporadic (75%) onco-
genic origins [3].

MicroRNA (miRNA) suppress protein-coding gene expression 
and may play significant roles in all cellular processes implicated in 
carcinogenesis, cell differentiation, and proliferation. MicroRNA 
expression is dysregulated in many human thyroid cancers, includ-
ing PTCs, FTCs, ATCs, and MTCs. Studies have shown that many 
miRNA are upregulated in human thyroid carcinomas: miR-146, 



262

miR-221, miR-222, miR-155, and miR-181a in human PTC [4, 
5], miR-192, miR-197, miR-328 and miR-346 in FTC, and the 
MiR-17-92 cluster in ATC when compared with normal tissues and 
follicular carcinoma cell lines [6]. Among these dysregulated miR-
NAs, some were related to the thyroid tumor invasion and metasta-
sis. Additionally, peripheral blood and serum miRNA expression in 
thyroid tumors have been studied recently and the somatic muta-
tions have been related to deregulated miRNA expression in thy-
roid tumors. For example, miR-146b was overexpressed significantly 
in the BRAF-positive PTC and miR-146 was significantly overex-
pressed in RAS-positive PTCs [7, 8]. The expression profile of 
MTC was characterized by an overexpression miR-21, miR-127, 
miR-154, miR-224, miR-323, miR-370, miR- 9*, miR-183, and 
miR-375 [9]. There is now a substantial amount of research con-
cerning miRNA alterations occurring in thyroid tumors. This 
knowledge has enhanced our understanding of thyroid cancer and 
offered diagnostic and prognostic markers for thyroid tumors.

2 MicroRNAs and Thyroid Carcinoma

MicroRNA is a kind of noncoding small molecule RNA, which is 
composed of between 19 and 25 nucleotides [10]. It is believed 
that miRNA mediates mRNA degradation and inhibits translation. 
In mammals, the second through eighth nucleotides (the seed 
sequence) in microRNA are complementary to the 5′terminal and 
3′UTR of the mRNA target gene and, by binding at these sites, 
regulate the target gene expression in the post-transcriptional 
phase. Dysregulation miRNA may be closely related to the patho-
genesis and pathology of many diseases [11].

In recent years, the correlations between microRNA-mediated 
post-transcriptional gene silencing (PTGS) and tumor formation 
have become a hot topic. First, microRNA is involved in the pro-
cesses of cell differentiation, division, proliferation, metabolism, 
and apoptosis. Second, more than half of microRNA were located 
in or near the tumor-related genomic regions and fragile sites, the 
amplification region, or the broken point region [12]. Third, 
microRNA expressed abnormally in a variety of tumor cells. Finally, 
mutations or polymorphisms in the microRNA precursor affected 
the processing of microRNA maturing and cancer susceptibility 
[13]. These all suggest that microRNA are closely related to 
tumorigenesis. The expression of some microRNA in tumor for-
mation was downregulated and selective upregulation of these 
microRNAs could inhibit tumor occurrence [14]. Now many 
scholars believed that a variety of microRNA are related to the 
incidence of thyroid carcinoma and its development, metastasis, 
and prognosis and that altering the expression of these miRNA 
may be of therapeutic benefit.

Gaohong Zhu et al.
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Thyroid carcinoma is a malignant tumor that develops from 
the epithelial cells of the thyroid. It is the most common malignant 
tumor in the endocrine system and the rate of incidence has 
increased in recent years. Most thyroid carcinomas have their ori-
gins in the follicular epithelium. Over 90% of thyroid cancers are 
classified as differentiated thyroid carcinomas (DTC), which 
includes thyroid carcinoma papillary (PTC) and follicular thyroid 
carcinoma (FTC) [15]. In some studies of thyroid carcinomas, 
FTC and PTC were closely related to microRNA, which was a kind 
of “carcinogenic” and played a role in regulating transcription. 
These microRNAs primarily functioned as a regulator of prolifera-
tion and apoptosis. Recent studies reported that the expression of 
microRNA in thyroid carcinoma was disordered. Overexpression 
of microRNA in PTC or FTC and low expression in thyroid carci-
noma played an important role in the development of thyroid car-
cinoma [16].

3 Expression of MicroRNAs in PTC

The analysis of miRNA in PTC is generally performed via miRNA 
chip analysis. Some miRNAs such as miR146b-5p, miR-221, miR- 
222, miR-210, miR-214, miR-1244, miR-134, miR-127-3p, miR- 
130b, miR-17, miR-199a-5p, miR-342, miR-768-3p, and 
miR-720 were upregulated in aggressive PTCs whereas some, 
including miR-1278, miR-16-1, miR-613, miR-1225-5p, miR- 
1268, miR-1826, miR-637, miR-1231, miR-1302, and miR- 
486- 5p, were downregulated relative to nonaggressive PTC tissues 
[17]. Compared with normal thyroid tissues, some miRNAs, 
including miR-1, miR-191, miR-486, and miR-451, had reduced 
expression rates in PTC.

Labbaye et al. [18] reported MiR-146a as a regulator for 
CXCR4, which is a known fusion protein and chemokine receptor, 
and can act on stromal cell-derived factor-1 (SDF-1, CXCLI2). 
They identified a regulatory pathway where promyelocytic leuke-
mia zinc-finger (PLZF) protein, a transcription factor, inhibited 
miR-146a production, which in turn suppressed CXCR4 transla-
tion. They found that CXCR4 was highly expressed in K562-PLZF 
cells and played a major role in the mechanism of primary tumor 
lymph node metastasis. Therefore, miR-146a downregulated in 
PTC cells played a key role in the process of tumor lymph node 
metastasis. However, Pallante et al. [19] found seven of eight spec-
imens were detected with increased miR-221, miR-222, and miR- 
181b expression in thyroid needle biopsy. And the expression levels 
of miR-222 and miR-221 were not increased in thyroid adenoma 
and benign thyroid nodules. Thus, if miR-221 was detected in 
normal thyroid tissues, it suggested that the normal thyroid tissue 
might be cancerous [20]. MiR-222 could regulate the expression 
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of cellular matrix metal protein I and superoxide dismutase 2, 
which might affect the migration and invasion of cancer cells. 
Visone et al. found that forced expression of miR-221 and miR- 
222 could reduce the levels of p27Kip1 protein in thyroid cancer 
cells, but the level of p27Kip1 mRNA was not significantly changed 
[4, 5]. Mutation of BRAF gene and RET/PTC gene rearrange-
ment were common genetic changes in PTC. It was found that 
miR-146 was upregulated in the PTC-1 cell line, which might play 
a role in tumor formation and development, but miR-221, miR- 
222, and miR-181b expression did not increase significantly. It was 
also found miR-222 expression was downregulated in the BRAF 
mutant cell lines, but miR-146 and miR-221 were not significantly 
upregulated [21].

Chou et al. [5] found that the expressions of miR-146b, miR- 
222, and miR-221 were significantly higher in PTC and even more 
after metastasis. MiR-146b in PTC patients whose BRAF gene 
mutated was significantly higher than those in PTC patients whose 
BRAF gene was not mutated. It was found that miR-146, miR- 
222, and miR-221 were overexpressed in PTC tissues and thyroid 
cell lines and the expression of KIT protein was significantly 
decreased or not detected [22]. Maybe, miR-146, miR-222, and 
miR-221 combined to the key region of KIT 3′-UTR and appeared 
single-nucleotide polymorphism, leading to KIT transcription and 
protein level decrease. The upregulated expression of miR-146, 
miR-222, and miR-221 were identified as characteristics of human 
PTC. The expression level of miRNA in thyroid tissues could be 
used to differentiate the benign and malignant thyroid. It could be 
helpful for tumor classification and the identification of poorly dif-
ferentiated tumors and tumor tissues.

RT-qPCR and Western blotting analysis of miRNA in PTC 
conducted by Lv et al. [23] found a significant negative correlation 
between miR-26a and CKS2 expression in human PTC cell lines 
TPC-1 and CGTH W3 as well as resected PTC specimens. Their 
analysis also showed that miR-26a suppresses CKS2 expression 
which inhibited growth. Peng et al. [24] suggested that miR- 
199b- 5p may be helpful in evaluating PTC invasiveness and could 
be used as a reference for setting up a scientific treatment schedule. 
They found miR-1996b-5p was highly expressed among patients 
with extrathyroidal invasion and cervical lymph node metastasis 
and this showed statistical significance (p = 0.047, 0.01) in their 
research.

Hardin et al. [25] discovered through RT-qPCR, Western 
blotting, and siRNA experiments that cell proliferation and  invasion 
increased when the expression of miR-146b-5p in papillary thyroid 
carcinoma cell line BCPAP was inhibited. They concluded that 
miR-146-5p played an important role in regulating PTC cell pro-
liferation and invasion. A study conducted by Cantara et al. [26] 
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reported the search for miRNA in the blood of samples of each 
patient (12 PTCs and 12 NGs) in a Caucasian population. They 
found miR-190 was upregulated whereas miR-95, miR-579, and 
miR-29b were downregulated by RT-qPCR. The miRNAs identi-
fied in their study were different from those of a similar Chinese 
report and they posited that the differing genetic background of 
the patients may have been responsible. Igci et al. [27] found ele-
vated levels of miR-30a-5p in serum as well as HC-PTC and non-
HC-PTC fine needle aspiration biopsy (FNAB) samples by pre- and 
postoperative pathological diagnosis and RT-qPCR. They sug-
gested that miR-30a-5p could be used as a biomarker for PTC.

Thyroid carcinoma coincides with large numbers of genetic events. 
The occurrence of PTC was related to the oncogene fusion of 
chromosome recombination (RET/PTC1 and RET/PTC3) as 
well as RAS and BRAF gene mutation. These gene changes were 
related to the activation of MAPK signaling pathway. The activa-
tion of MAPK signaling pathway was closely related to the forma-
tion, growth, and metastasis of tumors [28]. Geraldo et al. [29] 
found miR-146b-5p was highly overexpressed in a case report of a 
young male patient with an aggressive, BRAF-T1799A-positive 
papillary thyroid carcinoma. They also found that activation of 
MAPK pathway in normal thyroid cells increased miR-146b-5p 
levels in vitro. It means that the overexpression of miR-146b-5p 
could be related to a thyroid-specific oncogenic activation, which 
may include the MAPK pathway. Yu et al. [30] found that serum 
levels of let-7e, miR-151-5p, and miR-222 were significantly over-
expressed in PTC patients versus patients with benign nodules by 
RT-qPCR and microarrays and suggested their potential as tools 
for long-term observation.

Huang et al. [31] found that the mutation rate of BRAF(V600E) 
was 47.8% between 69 cases of PTC patients and normal thyroid 
tissues and that BRAF gene mutation caused the overexpression of 
miR-203 and miR-21. BRAF mutation and miR-21 overexpres-
sion were closely related to the invasion and metastasis of PTC 
as well as tumor recurrence. Another study group found 
BRAF(V600E) gene mutated in PTC and the expression of miRNA 
was disordered. The expression levels of miR-21 and miR-203 
were closely related to BRAF mutation and the high expression of 
miR-21 was significantly associated with tumor lymph node metas-
tasis. In addition, it was found that the expression level of miR- 
151- 5p and miR-222 in tumor tissues and serum of PTC were 
closely related to tumor lymph node metastasis, tumor size, and 
clinical stage [32]. These miRNAs could be used as an index to 
judge treatment effectiveness.

Deng et al. [33] collected tumor specimens and tumor- adjacent 
tissues from 60 PTC patients and two human papillary thyroid 

3.1 The Relationship 
Between Genes 
and MicroRNAs in PTC
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carcinoma cell lines: TPC-1 and K1. They found miR-146b-5p 
induced epithelial-to-mesenchymal transition (EMT) and might 
promote PTC metastasis through the regulation of Wnt/β-catenin 
signaling by performing a computational search, luciferase assay, 
RT-qPCR, and Western blotting. The results suggested novel 
potential therapeutic targets for the treatment of PTC. Geraldo 
et al. [34] analyzed nonhuman thyroid models, cancer cell lines, 
tumor tissue with benign lesions, and FNAB samples by microarray 
and RT-qPCR and reported a number of results. Their findings 
suggested that miR-146b-5p, miR-221/222, miR-181a/b, and 
miR-155 could regulate ACVR1B, BMPR1A, and BMP8A, which 
are the members of the TGF-β pathway. They also found that 
SFRP1, an inhibitor of the TGF-β pathway, may be regulated by 
miR-146b-5p and miR-221. They suggested that GAS1, a 
Hedgehog pathway inhibitor, may be regulated by miR-34a-5p. 
Additionally, they found insulin receptor substrate-1 (IRS1) to be 
a target of miR-146b-5p and PRKCQ to be a target of both miR- 
224 and miR-31. Finally, CCND3 (cyclin D3) was found to be 
regulated by miR-138 in the PTC datasets. Lee et al. [35] also 
found the mean levels of miR-146b and miR-155 expression were 
higher in the PTC group than in the benign group in 89 patients 
by RT-qPCR and Western blotting. Yang et al. [17] found overex-
pression of miR-221/222 and miR-146b-5p suppressed the 
expression of TIMP3 and ZNFR3. They also found underexpres-
sion of miR-613 and miR-16 permitted upexpression of FN1 and 
ITGA2 in aggressive PTC.

Wang et al. [36] found that expression of miR-101 was down-
regulated in PTC tissues and cell lines. RT-qPCR and Western 
blotting revealed that it negatively regulated Rac1 gene expression 
in 16 paired PTC tissue specimens. Zhu et al. [37] found miR-182 
suppressed the expression of CHL1, a promotor of cell prolifera-
tion and invasion, in both human cell lines and PTC tissues. They 
proposed this result demonstrates that miR-182 could be thera-
peutic target for treating PTC. Liu et al. [38] reported that miR- 
204- 5p regulated IGFBP5 expression and potentially be used as a 
tumor suppressant for PTC. Li et al. [39] discovered that miR-29a 
was generally underexpressed in PTC tissues, and its levels were 
negatively correlated with tumor size, TNM stage, and lymph 
node metastasis. They found that AKT3 expression was suppressed 
by miR-29a, mitigating phosphatidylinositol 3-kinase (PI3K)/
AKT pathway activation. Minna et al. [40] have demonstrated that 
miR-199a-3p was underexpressed in human PTC specimens and in 
PTC-derived cell lines by RT-qPCR and displayed tumor suppres-
sor functions in PTC.

The miRNA expressions for PTC are summarized in Tables 1, 
2, 3, and 4.

Gaohong Zhu et al.
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4 Expression of MicroRNAs in FTCs

FTC is a type of WDTC and is more aggressive than PTC and a 
number of research efforts have been made to identify miRNA 
dysregulation in the histotype. Recently, the abnormal regulation 
of FTC in miRNA was studied. Results of these studies indicate 
that miRNAs may become valuable markers to distinguish these 
tumors. The different miRNA expressions in FTCs are shown in 
Tables 5, 6, 7.

Weber et al. [6] found that miR-192, miR197, miR328, and 
miR346 in FTC are expressed highly by analyzing FTC and fol-
licular adenoma. They found that overexpression of miR-346 or 
miR-197 could induce cell proliferation in vitro. FTC-133, K5 cell 
line, and papillary thyroid carcinoma cell line NPA87 were trans-
fected with antisense oligo nucleotide of miR-197 and miR-346, 
and they found cell growth was inhibited in FTC-133 and K5 cell 
lines, but the cell growth in NPA87 cell line was not affected 
because of lacking miR197 and miR-346. They also found that 
overexpression of miR-346 and miR-197 could inhibit the expres-
sion of target genes in vivo and in vitro. They further confirmed 
the two target genes of miR197 (ACVR1 and TSPAN3) and the 

Table 2 
MicroRNA (upregulated) and Potential function in PTC

Reference Sample sources Method MicroRNA (up)
Potential  
target genes

Potential  
function

[20] PTC-1 cell line/
BRAF mutant 
cell lines

microRNA 
chip analysis

miR-146 c-myc tumor formation 
and development

[21] PTC with 
metastasis/PTC 
tissues/cell lines

microRNA 
chip analysis

miR-146b/
miR- 222/ 
miR- 221/
miR-181b

RET/TRK/B- 
raf/ras /Kit

cell differentiation 
and growth

Table 3 
MicroRNA (upregulated) and Potential target genes in PTC

Reference Sample sources Method MicroRNA (up) Potential target genes

[22] Specimens informalin 
fixed paraffin 
embedded/thyroid fine 
needle aspiration biopsy

microRNA chip 
analysis

miR-221/
miR- 
222/miR- 
146b

CK19, CITED1, 
galectin 3, deiodinase 
1, thyroglobulin, 
pendrin

[33] Tumor specimens/tumor 
adjacent tissues/PTC 
cell lines TPC-1/PTC 
cell lines K1

Computational 
search, luciferase 
assay, RT-qPCR, 
Western blotting

miR-146b-5p β-catenin, Slug, 
N-cadherin, 
vimentin, EMT, 
ZNRF3

Gaohong Zhu et al.



269

Ta
bl

e 
4 

M
ic

ro
RN

A 
(d

ow
nr

eg
ul

at
ed

) a
nd

 c
lin

ic
al

 s
ig

ni
fic

an
ce

 in
 P

TC

Re
fe

re
nc

e
Sa

m
pl

e 
so

ur
ce

s
M

et
ho

d
M

ic
ro

RN
A 

(d
ow

n)
Po

te
nt

ia
l t

ar
ge

t 
ge

ne
s

Po
te

nt
ia

l f
un

ct
io

n
Cl

in
ic

al
 

si
gn

ifi
ca

nc
e

[4
1]

PT
C

 s
am

pl
es

m
ic

ro
R

N
A

 c
hi

p 
an

al
ys

is
m

iR
-1

, m
iR

-1
91

, 
m

iR
-4

86
, 

m
iR

-4
51

C
X

C
R

4
A

 c
as

ca
de

 p
at

hw
ay

Pr
im

ar
y 

tu
m

or
 

ly
m

ph
 n

od
e 

m
et

as
ta

si
s

[2
3]

PT
C

 s
pe

ci
m

en
s/

no
rm

al
 

th
yr

oi
d 

tis
su

es
/

PT
C

 c
el

l 
lin

es
 T

PC
-1

/
PT

C
 c

el
l 

lin
es

 C
G

T
H

 W
3

R
T

-q
PC

R
/

W
es

te
rn

 
bl

ot
tin

g
m

iR
-2

6a
C

yc
lin

B
1,

 c
dk

1,
 

bc
l-

xl
, A

K
T

C
el

lu
la

r 
pr

ol
ife

ra
tio

n
L

ym
ph

 n
od

e 
m

et
as

ta
si

s

[3
6]

T
PC

 -
1/

H
T

H
83

 c
el

ls
/

16
 

pa
ir

ed
 P

T
C

 t
is

su
e 

sp
ec

im
en

s 
w

ith
 ly

m
ph

 
no

de
 m

et
as

ta
si

s

R
T

-q
PC

R
/

W
es

te
rn

 
bl

ot
tin

g/
m

ig
ra

tio
n 

an
d 

in
va

si
on

 a
ss

ay

m
iR

-1
01

R
ac

1
m

ed
ia

te
s 

ce
ll 

m
ig

ra
tio

n 
an

d 
in

va
si

on

ly
m

ph
 n

od
e 

m
et

as
ta

si
s

Expression of MicroRNAs in Thyroid Carcinoma



270

Ta
bl

e 
5 

M
ic

ro
RN

A 
(u

pr
eg

ul
at

ed
) a

nd
 c

lin
ic

al
 s

ig
ni

fic
an

ce
 in

 F
TC

Re
fe

re
nc

e
Sa

m
pl

e 
so

ur
ce

s
M

et
ho

d
M

ic
ro

RN
A 

(u
p)

Po
te

nt
ia

l t
ar

ge
t g

en
es

Po
te

nt
ia

l 
fu

nc
tio

n
Cl

in
ic

al
 s

ig
ni

fic
an

ce

[6
]

FT
C

/
fo

lli
cu

la
r 

ad
en

om
a/

FT
C

-1
33

/
N

PA
87

R
T

-q
PC

R
/

W
es

te
rn

 
bl

ot
tin

g
m

iR
- 1

92
/

m
iR

-
19

7/
m

iR
-3

28
/

 
m

iR
-3

46

A
C

V
R

1/
T

SP
A

N
3/

A
C

V
R

1/
E

FE
M

P2
C

el
l pr
ol

ife
ra

tio
n

T
ra

ns
fo

rm
at

io
n 

of
 

be
ni

gn
 t

o 
m

al
ig

na
nt

 
tu

m
or

s

[8
]

T
hy

ro
id

 n
eo

pl
as

tic
 

sa
m

pl
es

/
no

n-
ne

op
la

st
ic

 s
am

pl
es

/
FN

A
 s

am
pl

es

R
T

-q
PC

R
m

iR
- 

18
7/

m
iR

-2
21

/
m

iR
-2

22
/

m
iR

-
14

6b
/

m
iR

-1
55

/
m

iR
-2

2/
m

iR
-1

97

R
E

T
/

PT
C

1/
R

E
T

/
PT

C
3/

PA
X

8/
PP

A
R
γ

M
A

PK
 

pa
th

w
ay

In
di

vi
du

al
 t

um
or

 t
yp

es

[4
1]

Pa
tie

nt
s 

w
ith

 a
 s

ol
ita

ry
 

or
 p

ro
m

in
en

t 
sc

in
tig

ra
ph

ic
al

ly
 c

ol
d 

th
yr

oi
d 

no
du

le
 F

A
/

FC

R
T

-q
PC

R
/

m
iR

N
A

 
ex

pr
es

si
on

 a
na

ly
se

s
m

iR
-2

21
/

m
iR

-9
6/

m
iR

-1
82

V
PS

26
A

/
A

B
C

C
1

C
el

l-
gr

ow
th

T
um

or
 m

al
ig

na
nt

[4
2]

Pa
tie

nt
s 

w
ith

 m
et

as
ta

tic
 

m
in

im
al

ly
 in

va
si

ve
 

fo
lli

cu
la

r 
th

yr
oi

d 
ca

rc
in

om
a

C
om

pr
eh

en
si

ve
 

qu
an

tit
at

iv
e 

an
al

ys
is

 
of

 m
iR

N
A

 
ex

pr
es

si
on

/
R

T
-q

PC
R

m
iR

- 1
0b

/
m

iR
-

92
a/

m
iR

-2
21

/
m

iR
-2

22
/

m
iR

-
22

2*
/

m
iR

-3
75

C
D

K
N

1B
/

C
D

K
N

1C
ce

ll 
gr

ow
th

/
ce

ll 
cy

cl
e 

pr
og

re
ss

io
n

T
hy

ro
id

 c
ar

ci
no

ge
ne

si
s 

/
tu

m
or

ig
en

es
is

Gaohong Zhu et al.



271

target gene of miR-346 (EFEMP2) by RT-PCR and Western blot-
ting. They found that ACVR1, TSPAN3, and EFEMP2 expression 
were decreased in the presence of elevated expressions of miR-197 
and miR-346 in FTC. The abnormal expression of the three target 
genes could promote the proliferation and invasion of thyroid can-
cer together. MiR-197 and miR-346 were associated with the 
occurrence of FTC. It shows that a small portion of miRNA expres-
sion in FTC might be involved in the development of benign and 
malignant tumors.

Nikiforova et al. [8] found the most upregulated miRNAs in 
FTC were miR-187, miR-224, miR-155, miR-222, and miR-221 
and that there were no miRNA overexpressed in hyperplastic nod-
ules. They also found that the expression of miRNA varied based 

Table 6 
MicroRNA (upregulated) and clinical significance in FTC

Reference Sample sources Method
MicroRNA 
(up) Potential target genes

Clinical 
significance

[43] Patients undergoing 
thyroid resection/
primary cell lines

RT-qPCR miR-371-3 C19MC Distant metastasis

[44] Cold thyroid nodule RT-qPCR miR-142–3p RAP2A/S1PR1/ 
SMAD2/TGFBR1/ 
VEGFA

Tumor suppressive 
function

Table 7 
MicroRNA (downregulated) and clinical significance in FTC

Reference Sample sources Method
MicroRNA 
(down)

Potential  
target genes

Clinical 
significance

[45] Follicular adenoma/
follicular variant 
of PTC/cold 
thyroid nodule/
FA/FC

qRT-PCR, 
miRNA 
expression 
analyses

miR-199b- 
5-p, 
miR-144

VPS26A, ABCC1 Thyroid 
carcinogenesis, 
tumorigenesis

[46] Human neoplastic 
thyroid tissues/
normal adjacent 
tissue/the 
contralateral 
normal thyroid 
lobe

qRT-PCR, 
Western 
blotting

miR-191 CDK6 Benign or 
malignant

[47] Patients with a 
solitary

miRNA 
expression 
analyses

miR-106b ETS, FN1, LIFR, 
PPARGC1A, 
PTPN4, RAP2A, 
S1PR1, SMAD2, 
TGFBR1, VEGFA

The development 
and progression 
of thyroid 
cancer
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on the degree of differentiation degree in the thyroid carcinoma 
tissues. MiR-187, miR-221, miR-222, and miR-181b showed at 
least threefold increase in expression in all kinds of cancer tissues, 
and the expression level was different in different tissues. Among 
them, the expression of miR-221 in FTC was at least 27.8-fold 
higher than that in PTC [43]. Colamaio et al. [46] collected 
human neoplastic thyroid tissues and either normal adjacent tissue 
or the contralateral normal thyroid lobe with follicular adenoma 
(n = 24), FTC (n = 24), PTC (n = 15), ATC (n = 8), and FVPTC 
(n = 6) and confirmed miR-191 downregulation played a role in 
follicular adenoma, FTC, and follicular variant of PTC by quantita-
tive RT-PCR and Western blotting. They concluded that CDK6 
was a target for miR-191. Takizawa [42] found the miR-221/222 
cluster, miR-10b, and miR-92a were significantly upregulated in 
34 patients with metastatic minimally invasive follicular thyroid 
carcinoma selected from 200 patients between 1991 and 2009 by 
comprehensive quantitative analysis of miRNA expression.

Rossing et al. [45] discovered many miRNAs were downregu-
lated, especially miR-199b-5p and miR-144, which were essentially 
not expressed in FTC by RT-qPCR and miRNA and mRNA expres-
sion analyses. They also found that MiR-199b-5p reduced cell-
growth and that almost 30% of the computational predicted targets 
were downregulated by pre-miR-199b in cultured thyroid cells and 
correspondingly upregulated in thyroid carcinoma lacking the 
miRNA. Carvalheira et al. [47] reported that the restoration of miR-
106b expression in WRO and TPC1 thyroid carcinoma cell lines 
inhibited C1orf24 expression at both mRNA and protein levels by 
RT-qPCR and Western blotting. This indicated that the decreased 
miR-106b expression and increased C1orf24 expression might have 
a synergistic effect during the development and progression of thy-
roid cancer. Colamaio et al. [44] found that FTCs and FTC cell lines 
expressed tumor specific, shorter forms of ASH1L and MLL1 pro-
teins. They found miR-142–3p modulated the levels of these tumor-
associated forms and reactivated thyroid- specific Hox gene 
expression, likely contributed to its tumor suppressive function.

Finally, overexpression of miRNAs significantly affected migra-
tion. Wojtas et al. [48] presented data that suggested that miR- 
146b and miR-183 inhibit apoptosis and promote migration in 
FTS. Roncati et al. [49] found that pre-miR-146a was underex-
pressed in neoplastic tissues from 39 FTC cases and that the G allele 
was observed in neoplastic tissues. They concluded that the GG and 
GC alleles appear to be associated with an increased risk for FTC.

5 MiRNA Expression in Anaplastic Thyroid Cancers (ATCs)

Anaplastic thyroid cancer (ATC) is the most lethal histotype of 
thyroid cancer, responsible for more than one-third of thyroid 
cancer- related deaths. The most striking difference between ATCs 
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and other thyroid carcinomas derived from follicular cells is that 
they displayed a significantly decreased expression of various miR-
NAs [16, 50] and increased expression of several miRNAs [8, 51]. 
The deregulation in miRNAs has been implicated in tumor genesis 
and cancer progression. Molecular interference to restore the 
expression of tumor suppressor miRNAs, or to blunt overexpressed 
oncogenic miRNAs, has therefore been suggested as a promising 
therapeutic approach to ameliorate the treatment of ATC.

Contrary to the expression in PTCs, miR-138 was found to be 
severely decreased in ATC samples and ATC-derived cell lines [52, 
53]. MiR-125b, which we found to be downregulated, is report-
edly upregulated in PTC compared with normal thyroid tissue, but 
is downregulated in ATC. Braun et al. [50] found that miR-30 and 
miR-200 were underexpressed in ATC and could serve as markers 
to distinguish ATC from PTC and FTC. The most significantly 
decreased miRNAs in expression were miR-30d, miR-125b, and 
miR-26a [51]. Zhang et al. [54] showed in vitro and in vivo that 
ATC cells could be sensitized to cisplatin by inhibiting beclin 
1-mediated autophagy with a miR-30d mimic. These findings are 
summarized in Table 8.

Specific miRNAs are exclusively downregulated in ATC, which 
can acquire more aggressive tumor characteristics (i.e., enhanced 
cell invasion and migration). Besides an important transcriptional 
activator of miR-200 is p53, knockdown EGFR in ATC cells 
restores miR-200 expression and represses the expression of mes-
enchymal markers via EGF signaling pathway [59]. The miR-200 
family is also an important regulator of the EMT process by regu-
lating ZEB1 and ZEB2 protein levels. Downregulation of miR-
200 in ATC would potentiate the TGF-mediated EMT switch and 
enhance aggressiveness. EZH2 is overexpressed in ATC, which 
enhances cell proliferation, migration, and invasion via repressing 
the expression of thyroid transcription factor PAX8 [60]. Another 
important cellular process is autophagy through targeting the key 
autophagy-promoting protein, Beclin1 (gene BECN1), which 
sensitizes cancer cells to cisplatin treatment by repressing Beclin1. 
A marked decrease in the expression of let-7 is observed in ATC 
[16, 50, 61]. let-7 enhances the expression of thyroid transcrip-
tion factor- 1 (TTF1/NKX2–1), a key factor in maintaining the 
expression of iodine metabolizing genes and thyroid differentia-
tion which is usually lost in ATC. Loss of let-7 is associated with 
refractory response to chemotherapy and radiotherapy treatments 
(resulting in a poorer prognosis), and represses the EMT process 
in ATC [62, 63]. The miRNA gene targets and functions are sum-
marized in Table 9.

5.1 Downregulated 
MiRNAs in ATC

5.1.1 Potential Target 
Genes and Function 
of Down-MiRNAs in ATC
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Table 8 
MiRNA expression in ATC

References miRNA Specimen type Detection technique

Downregulated miRNA

[19] miR-30-d, miR- 125b- 1/2, 
miR-25, miR-30a-5p, 
miR- 224, miR-92-2, 
miR-138-1, miR-26a, 
miR-125a/b

Tissue, cell Microarray, northern 
blots, situ 
hybridization, 
qRT-PCR

[52] miR-138 Tissue, cell lines

[50] miR-200a/b/c, miR-30a/
b/c/d/e, miR-30a-3p, 
miR −141, miR -26a/b, 
miR-99a/b, miR-138, 
miR-19b, miR-29b/c, 
miR-125a/b, miR- 130a, 
let-7a/c/d/f/g/I, 
miR-7, miR-331-3p

Tissue RT-PCR

[51] let-7c, miR-30d, 26a, 
miR-304-5p, miR-125d

Paraffin-embedded 
tissue

RT-PCR

Upregulated miRNA

[19] miR-222, miR-198, let-7f-1, 
let-7a-2

Tissue, cell Microarray, qRT-PCR

[55–57] miR-146b

[19, 51] miR-221, miR-30d Paraffin-embedded 
tissue

Northern blots, 
Situhybridization, 
RT-PCR

[19, 51, 56] miR-222

[51] miR-181b, miR−21

[8] miR-302c, miR-214, 
miR-205, miR-137, 
miR-187, miR-221, 
miR-155, miR-224,  
miR-222,

Tissue RT-PCR, RT-qPCR

[8, 53] miR-21, miR-146b, 
miR-221, miR-222

[53, 58] miR-106a/b, miR- 19a/b, 
miR-17-5p, miR-92–1, 
miR-18a, miR-20a

ARO cells Northern blot, 
microarrays

[53] miR-17-3p, miR-17-5p, 
miR-92–1, miR-18a, 
miR-19a/b

ATC cell lines Northern blot, 
microarrays

[58] miR−20a Tissue, cell lines qRT-PCR
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Hebrant [73] reported that in 11 ATC samples p53 mutation was 
found in 4 (36.4%), BRAF mutation in 2 (18%), PIK3CA muta-
tion in 1(10%). One sample showed both BRAF and p53 muta-
tions (ATC1). They noted that ATC frequently exhibits genetic 
alteration of T1799A in the BRAF coding sequence and this altera-
tion also frequently presents in PTC. They suggested that this find-
ing indicates WDTCs could give rise to undifferentiated carcinomas 
[8]. They continued to examine the miRNA expression profiles of 
11 ATC samples by microarrays and noted 17 downregulated and 
1 upregulated miRNA. They suggested these dysregulations were 
responsibly for dysfunction in the EMT process and that the LOX 
gene is a key player in the transition. They also suggested that 

5.1.2 Downregulated 
MiRNAs in ATC

Table 9 
MiRNA targets gene and function in ATC

miRNAs Validated targets Cellular processes References

Downregulated miRNA

miR-200 family ZEB1, ZEB2, 𝛽-Catenin EMT and proliferation [22, 50]

miR-30 family Beclin1, EZH2, VIM Autophagy gene, 
condensation, and EMT

[54, 55, 64]

let-7 family RAS HMGA2 LIN28 Proliferation, histone 
modification, stemness

[55]

miR-25 EZH2, BIM, KLF4 Chromatin condensation, 
apoptosis

[55, 65]

miR-125 MMP1, HMGA2, LIN28A Invasion, histone modification [19, 55, 66]

miR-138 hTERT Metastatic, invasive 
phenotypes and stemness

[52]

miR-26a Cyclins D2 and E2 Cell cycle arrest [67]

miR-25, miR-30d EZH2 Oncogenic activity [55]

miR-30a Beclin 1, lox Proliferation, invasion, 
metastasis

[68, 69]

miR-4295 CDKN1A Proliferation and invasion [70]

Upregulated miRNA

miR-221/−222 p27, RECK, PTEN Cell cycle, growth, and 
invasion

[19, 56]

miR-17-92 cluster p21, TIMP3, PTEN Cell growth and invasion [53, 56]

miR-146a/−146b NF𝜅B, THRB, SMAD4 Cell differentiation, 
proliferation, invasion

[55–57, 71]

miR-17 family STAT3, MAPK14 Modulate epithelial [72]

miR-20a LIMK1 Proliferation, Invasion [58]

Expression of MicroRNAs in Thyroid Carcinoma
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tumor-associated macrophages (TAM) amplified tumor aggression 
and showed that they constitute approximately 50% of the ATC 
tissue [73].

ATC has characteristics suggestive of a tumor enriched in can-
cer stem cells (CSC) originating from thyroid stem cells. Specific 
microRNA signatures have been identified in many CSCs that 
seem to play a role in the EMT [74, 75]. The enriched pathways 
are related to aggressive behaviors such as extra-cellular matrix 
(ECM) receptor interaction, focal adhesion (MAPK), and regula-
tion of actin cytoskeleton (Cell Cycle) and cytokine receptors [34].

Common miRNAs such as miR-146, miR-221, miR-222, and the 
miR-17-92 cluster are upregulated in aggressive ATC. High levels 
of the miR-17-92 cluster are detected in ATC, associated with 
poor clinical-pathological features of cancer such as extrathyroidal 
invasion, short time recurrence, and distant metastases. ARO and 
FRO cells caused complete growth arrest via transfection with the 
miR-17-92 cluster inhibitors, which could be a novel target for 
ATC treatment [8, 53]. In fact, miR-221 and miR-222 are highly 
upregulated in PTCs but were not upregulated in ATC [34]. Only 
the miR-222 shows an increase in ATC, but at a lower proportion. 
This would apparently preclude the development of ATC from 
PTC through cancer progression. These findings are summarized 
in Table 8.

6 MiRNA Expression in MTC

A number of researchers have investigated miRNA expressions in 
MTC. Hudson et al. [76] identified overexpression of miR-375 
and miR-10a and underexpression of miR-455 in 15 MTC sam-
ples. They noted that the expression of YAP1, a growth inhibitor, 
was mediated by miR-375 and they concluded that this regulatory 
pathway was important in MTC progression. Duan et al. [77] 
demonstrated that miR-129-5p was underexpressed in MTC sam-
ples and that it suppresses tumor growth and development by sup-
pressing AKT. They propose that treatments that supplement 
miR-129-5p levels may be effective in the treatment of MTC. 
Abraham et al. [78] examined differential expression profiles in 
MTC of hereditary and sporadic origins in resected tissues. They 
found that the levels of miR-183 and miR-375 were higher in spo-
radic samples and were predictive of metastasis to the lateral lymph 
nodes. Finally, Mian et al. [9] examined the aberrant expression of 
nine miRNA. They noted marked overexpression of miR-21, miR- 
127, miR-154, miR-224, miR-323, miR-370, miR-9*, miR-183, 
and miR-375. They noted that miR-127 levels were lower in spo-
radic MTC samples with somatic RET mutations and that 

5.2 Upregulated 
MiRNAs in ATC
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upexpression of miR-224 was noted in earlier stages of the disease, 
in cases without metastasis, and after treatment resulting in termi-
nation of the cancer. They concluded that of all the miRNA stud-
ied, miR-224 held the most promise as a prognostic biomarker.

7 Conclusion

This chapter has reviewed the variety of miRNA dysregulations 
presented in a number of thyroid cancers.
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