Principles of Mathematics in Operations Research

Recent titles in the INTERNATIONAL SERIES IN OPERATIONS RESEARCH \& MANAGEMENT SCIENCE Frederick S. Hillier, Series Editor, Stanford University

Talluri \& van Ryzin/ THE THEORY AND PRACTICE OF REVENUE MANAGEMENT
Kavadias \& Loch/PROJECT SELECTION UNDER UNCERTAINTY: Dynamically Allocating Resources to Maximize Value
Brandeau, Sainfort \& Pierskalla/ OPERATIONS RESEARCH AND HEALTH CARE: A Handbook of Methods and Applications
Cooper, Seiford \& Zhu/ HANDBOOK OF DATA ENVELOPMENT ANALYSIS; Models and Methods
Luenberger/ LINEAR AND NONLINEAR PROGRAMMING, $2^{\text {nd }}$ Ed.
Sherbrooke/ OPTIMAL INVENTORY MODELING OF SYSTEMS: Multi-Echelon Techniques, Second Edition
Chu, Leung, Hui \& Cheung/ 4th PARTY CYBER LOGISTICS FOR AIR CARGO
Simchi-Levi, Wu \& Shen/ HANDBOOK OF QUANTITATIVE SUPPLY CHAIN ANALYSIS: Modeling in the E-Business Era
Gass \& Assad/ AN ANNOTATED TIMELINE OF OPERATIONS RESEARCH; An Informal History
Greenberg/ TUTORIALS ON EMERGING METHODOLOGIES AND APPLICATIONS IN OPERATIONS RESEARCH
Weber/ UNCERTAINTY IN THE ELECTRIC POWER INDUSTRY: Methods and Models for Decision Support
Figueira, Greco \& Ehrgott/ MULTIPLE CRITERIA DECISION ANALYSIS: State of the Art Surveys
Reveliotis/ REAL-TIME MANAGEMENT OF RESOURCE ALLOCATIONS SYSTEMS: A Discrete Event Systems Approach
Kall \& Mayer/ STOCHASTIC LINEAR PROGRAMMING: Models, Theory, and Computation
Sethi, Yan \& Zhang/ INVENTORY AND SUPPLY Chain MANAGEMENT WITH FORECAST UPDATES
Cox/ QUANTITATIVE HEALTH RISK ANALYSIS METHODS: Modeling the Human Health Impacts of Antibiotics Used in Food Animals
Ching \& Ng/ MARKOV CHAINS: Models, Algorithms and Applications
Li \& Sun NONLINEAR INTEGER PROGRAMMING
Kaliszewski/ SOFT COMPUTING FOR COMPLEX MULTIPLE CRITERIA DECISION MAKING
Bouyssou et al/ EVALUATION AND DECISION MODELS WITH MULTIPLE CRITERIA: Stepping stones for the analyst
Blecker \& Friedrich/ MASS CUSTOMIZATION: Challenges and Solutions
Appa, Pitsoulis \& Williams/ HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION
Herrmand/ HANDBOOK OF PRODUCTION SCHEDULING
Axsäter/ INVENTORY CONTROL, $2^{\text {nd }}$ Ed.
Hall/ PATIENT FLOW: Reducing Delay in Healthcare Delivery
Józefowska \& Węglarz/ PERSPECTIVES IN MODERN PROJECT SCHEDULING
Tian \& Zhang/ VACATION QUEUEING MODELS: Theory and Applications
Yan, Yin \& Zhang/ STOCHASTIC PROCESSES, OPTIMIZATION, AND CONTROL THEORY APPLICATIONS IN FINANCIAL ENGINEERING, QUEUEING NETWORKS, AND MANUFACTURING SYSTEMS
Saaty \& Vargas/ DECISION MAKING WITH THE ANALYTIC NETWORK PROCESS: Economic, Political, Social \& Technological Applications w. Benefits, Opportunities, Costs \& Risks
Yu/ TECHNOLOGY PORTFOLIO PLANNING AND MANAGEMENT: Practical Concepts and Tools

* A list of the early publications in the series is at the end of the book*

Levent Kandiller

Principles of Mathematics in Operations Research

Levent Kandiller
Middle East Technical University
Ankara, Turkey

Library of Congress Control Number:
ISBN-10: 0-387-37734-4 (HB) ISBN-10: 0-387-37735-2 (e-book)
ISBN-13: 978-0387-37734-6 (HB) ISBN-13: 978-0387-37735-3 (e-book)
Printed on acid-free paper.
© 2007 by Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science + Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321
springer.com

To my daughter, Deniz

Preface

The aim of this book is to provide an overview of mathematical concepts and their relationships not only for graduate students in the fields of Operations Research, Management Science and Industrial Engineering but also for practitioners and academicians who seek to refresh their mathematical skills.

The contents, which could broadly be divided into two as linear algebra and real analysis, may also be more specifically categorized as linear algebra, convex analysis, linear programming, real and functional analysis. The book has been designed to include fourteen chapters so that it might assist a 14 week graduate course, one chapter to be covered each week.

The introductory chapter aims to introduce or review the relationship between Operations Research and mathematics, to offer a view of mathematics as a language and to expose the reader to the art of proof-making. The chapters in Part 1, linear algebra, aim to provide input on preliminary linear algebra, orthogonality, eigen values and vectors, positive definiteness, condition numbers, convex sets and functions, linear programming and duality theory. The chapters in Part 2, real analysis, aim to raise awareness of number systems, basic topology, continuity, differentiation, power series and special functions, and Laplace and z-transforms.

The book has been written with an approach that aims to create a snowball effect. To this end, each chapter has been designed so that it adds to what the reader has gained insight into in previous chapters, and thus leads the reader to the broader picture while helping establish connections between concepts.

The chapters have been designed in a reference book style to offer a concise review of related mathematical concepts embedded in small examples. The remarks in each section aim to set and establish the relationship between concepts, to highlight the importance of previously discussed ones or those currently under discussion, and to occasionally help relate the concepts under scrutiny to Operations Research and engineering applications. The problems at the end of each chapter have been designed not merely as simple exercises requiring little time and effort for solving but rather as in-depth problem solving tasks requiring thorough mastery of almost all of the concepts pro-
vided within that chapter. Various Operations Research applications from deterministic (continuous, discrete, static, dynamic) modeling, combinatorics, regression, optimization, graph theory, solution of equation systems as well as geometric and conceptual visualization of abstract mathematical concepts have been included.

As opposed to supplying the readers with a reference list or bibliography at the end of the book, active web resources have been provided at the end of each chapter. The rationale behind this is that despite the volatility of Internet sources, which has recently proven to be less so with the necessary solid maintenance being ensured, the availability of web references will enable the ambitious reader to access materials for further study without delay at the end of each chapter. It will also enable the author to keep this list of web materials updated to exclude those that can no longer be accessed and to include new ones after screening relevant web sites periodically.

I would like to acknowledge all those who have contributed to the completion and publication of this book. Firstly, I would like to extend my gratitude to Prof. Fred Hillier for agreeing to add this book to his series. I am also indebted to Gary Folven, Senior Editor at Springer, for his speedy processing and encouragement.

I owe a great deal to my professors at Bilkent University, Mefharet Kocatepe, Erol Sezer and my Ph.D. advisor Mustafa Akgül, for their contributions to my development. Without their impact, this book could never have materialized. I would also like to extend my heartfelt thanks to Prof. Çağlar Güven and Prof. Halim Doğrusöz from Middle East Technical University for the insight that they provided as regards OR methodology, to Prof. Murat Köksalan for his encouragement and guidance, and to Prof. Nur Evin Ozdemirel for her mentoring and friendship.

The contributions of my graduate students over the years it took to complete this book are undeniable. I thank them for their continuous feedback, invaluable comments and endless support. My special thanks go to Dr. Tevhide Altekin, former student current colleague, for sharing with me her view of the course content and conduct as well as for her suggestions as to the presentation of the material within the book.

Last but not least, I am grateful to my family, my parents in particular, for their continuous encouragement and support. My final words of appreciation go to my local editor, my wife Sibel, for her faith in what started out as a far-fetched project, and most importantly, for her faith in me.

Ankara, Turkey,

Contents

1 Introduction 1
1.1 Mathematics and OR 1
1.2 Mathematics as a language 2
1.3 The art of making proofs 5
1.3.1 Forward-Backward method 5
1.3.2 Induction Method 7
1.3.3 Contradiction Method 8
1.3.4 Theorem of alternatives 9
Problems 9
Web material 10
2 Preliminary Linear Algebra 13
2.1 Vector Spaces 13
2.1.1 Fields and linear spaces 13
2.1.2 Subspaces 14
2.1.3 Bases 16
2.2 Linear transformations, matrices and change of basis 17
2.2.1 Matrix multiplication 17
2.2.2 Linear transformation 18
2.3 Systems of Linear Equations 20
2.3.1 Gaussian elimination. 20
2.3.2 Gauss-Jordan method for inverses 23
2.3.3 The most general case 24
2.4 The four fundamental subspaces 25
2.4.1 The row space of A 25
2.4.2 The column space of A 26
2.4.3 The null space (kernel) of A 26
2.4.4 The left null space of A 27
2.4.5 The Fundamental Theorem of Linear Algebra 27
Problems 28
Web material 29
3 Orthogonality 33
3.1 Inner Products 33
3.1.1 Norms 33
3.1.2 Orthogonal Spaces 35
3.1.3 Angle between two vectors 36
3.1.4 Projection 37
3.1.5 Symmetric Matrices 37
3.2 Projections and Least Squares Approximations 38
3.2.1 Orthogonal bases 39
3.2.2 Gram-Schmidt Orthogonalization 40
3.2.3 Pseudo (Moore-Penrose) Inverse 42
3.2.4 Singular Value Decomposition 43
3.3 Summary for $A x=b$ 44
Problems 47
Web material 47
4 Eigen Values and Vectors 51
4.1 Determinants 51
4.1.1 Preliminaries 51
4.1.2 Properties 52
4.2 Eigen Values and Eigen Vectors 54
4.3 Diagonal Form of a Matrix 55
4.3.1 All Distinct Eigen Values 55
4.3.2 Repeated Eigen Values with Full Kernels 57
4.3.3 Block Diagonal Form 58
4.4 Powers of A 60
4.4.1 Difference equations 61
4.4.2 Differential Equations 62
4.5 The Complex case 63
Problems 65
Web material 66
5 Positive Definiteness 71
5.1 Minima, Maxima, Saddle points 71
5.1.1 Scalar Functions 71
5.1.2 Quadratic forms 73
5.2 Detecting Positive-Definiteness 74
5.3 Semidefinite Matrices 75
5.4 Positive Definite Quadratic Forms 76
Problems 77
Web material 77
6 Computational Aspects 81
6.1 Solution of $A x=b$ 81
6.1.1 Symmetric and positive definite 81
6.1.2 Symmetric and not positive definite 83
6.1.3 Asymmetric 83
6.2 Computation of eigen values 86
Problems 89
Web material 90
7 Convex Sets 93
7.1 Preliminaries 93
7.2 Hyperplanes and Polytopes 95
7.3 Separating and Supporting Hyperplanes 97
7.4 Extreme Points 98
Problems 99
Web material 100
8 Linear Programming 103
8.1 The Simplex Method 103
8.2 Simplex Tableau 107
8.3 Revised Simplex Method 110
8.4 Duality Theory 111
8.5 Farkas' Lemma 113
Problems 115
Web material 117
9 Number Systems 121
9.1 Ordered Sets 121
9.2 Fields 123
9.3 The Real Field 125
9.4 The Complex Field 127
9.5 Euclidean Space 128
9.6 Countable and Uncountable Sets 129
Problems 133
Web material 134
10 Basic Topology 137
10.1 Metric Spaces 137
10.2 Compact Sets 146
10.3 The Cantor Set 150
10.4 Connected Sets 151
Problems 152
Web material 154
11 Continuity 157
11.1 Introduction 157
11.2 Continuity and Compactness 159
11.3 Uniform Continuity 160
11.4 Continuity and Connectedness 161
11.5 Monotonic Functions 164
Problems 166
Web material 166
12 Differentiation 169
12.1 Derivatives 169
12.2 Mean Value Theorems 170
12.3 Higher Order Derivatives 172
Problems 173
Web material 173
13 Power Series and Special Functions 175
13.1 Series 175
13.1.1 Notion of Series 175
13.1.2 Operations on Series 177
13.1.3 Tests for positive series 177
13.2 Sequence of Functions 178
13.3 Power Series 179
13.4 Exponential and Logarithmic Functions 180
13.5 Trigonometric Functions 182
13.6 Fourier Series 184
13.7 Gamma Function 185
Problems 186
Web material 188
14 Special Transformations 191
14.1 Differential Equations 191
14.2 Laplace Transforms 192
14.3 Difference Equations 197
14.4 Z Transforms 199
Problems 201
Web material 202
Solutions 205
Index 293

1

Introduction

Operations Research, in a narrow sense, is the application of scientific models, especially mathematical and statistical ones, to decision making problems. The present course material is devoted to parts of mathematics that are used in Operations Research.

1.1 Mathematics and OR

In order to clarify the understanding of the relation between two disciplines, let us examine Figure 1.1. The scientific inquiry has two aims:

- cognitive: knowing for the sake of knowing
- instrumental: knowing for the sake of doing

If A is B is a proposition, and if B belongs to A, the proposition is analytic. It can be validated logically. All analytic propositions are a priori. They are tautologies like "all husbands are married". If B is outside of A, the proposition is synthetic and cannot be validated logically. It can be a posteriori like "all African-Americans have dark skin" and can be validated empirically, but there are difficulties in establishing necessity and generalizability like "Fenerbahçe beats Galatasaray".

Mathematics is purely analytical and serves cognitive inquiry. Operations Research is (should be) instrumental, hence closely related to engineering, management sciences and social sciences. However, like scientific theories, Operations Research

- refers to idealized models of the world,
- employs theoretical concepts,
- provides explanations and predictions using empirical knowledge.

The purpose of this material is to review the related mathematical knowledge that will be used in graduate courses and research as well as to equip the student with the above three tools of Operations Research.

Fig. 1.1. The scientific inquiry.

1.2 Mathematics as a language

The main objective of mathematics is to state certainty. Hence, the main role of a mathematician is to communicate truths but usually in its own language. One example is

$$
\forall i \in S, \exists j \in T \ni i \perp j \Rightarrow \forall j \in T, \exists i \in S \ni i \perp j \Longleftrightarrow S \perp T
$$

That is, if for all i in S there exists an element j of T such that i is orthogonal to j then for all elements j of T there is an element j of S such that j is orthogonal to i; if and only if, S is orthogonal to T.

To help the reader appreciate the expressive power of modern mathematical language, and as a tribute to those who achieved so much without it, a few samples of (original but translated) formulation of theorems and their equivalents have been collected below.

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b
$$

If a straight line be cut at random, the square on the whole is equal to the squares on the segments and twice the rectangle contained by the segments (Euclid, Elements, II.4, 300B.C.).

$$
1+2+\cdots+2^{n} \text { is prime } \Rightarrow 2^{n}\left(1+2+\cdots+2^{n}\right) \text { is perfect }
$$

If as many numbers as we please beginning from a unit be set out continuously in double proportion, until the sum of all becomes prime, and if the sum multiplied into the last make some number, the product will be perfect (Euclid, Elements, IX.36, 300B.C.).

$$
A=\frac{2 \pi r \cdot r}{2}=\pi r^{2}
$$

The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference, of the circle (Archimedes, Measurement of a Circle, 225B.C.).

$$
S=4 \pi r^{2}
$$

The surface of any sphere is equal four times the greatest circle in it (Archimedes, On the Sphere and the Cylinder, 220B.C.).

$$
x=\sqrt[3]{\frac{n}{2}+\sqrt{\frac{n^{2}}{4}+\frac{m^{3}}{27}}}-\sqrt[3]{-\frac{n}{2}+\sqrt{\frac{n^{2}}{4}+\frac{m^{3}}{27}}}
$$

Rule to solve $x^{3}+m x=n$: Cube one-third the coefficient of x; add to it the square of one-half the constant of the equation; and take the square root of the whole. You will duplicate this, and to one of the two you add one-half the number you have already squared and from the other you subtract one-half the same... Then, subtracting the cube root of the first from the cube root of the second, the remainder which is left is the value of x (Gerolamo Cardano, Ars Magna, 1545).

However, the language of mathematics does not consist of formulas alone. The definitions and terms are verbalized often acquiring a meaning different from the customary one. In this section, the basic grammar of mathematical language is presented.

Definition 1.2.1 Definition is a statement that is agreed on by all parties concerned. They exist because of mathematical concepts that occur repeatedly.

Example 1.2.2 A prime number is a natural integer which can only be (integer) divided by itself and one without any remainder.

Proposition 1.2.3 A Proposition or Fact is a true statement of interest that is being attempted to be proven.

Here are some examples:
Always true Two different lines in a plane are either parallel or they intersect at exactly one point.
Always false $-1=0$.
Sometimes true $2 x=1,5 y \leq 1, z \geq 0$ and $x, y, z \in \mathbb{R}$.

Needs proof! There is an angle t such that $\cos t=t$.
Proof. Proofs should not contain ambiguity. However, one needs creativity, intuition, experience and luck. The basic guidelines of proof making is tutored in the next section. Proofs end either with Q.E.D. ("Quod Erat Demonstrandum"), means "which was to be demonstrated" or a square such as the one here.

Theorem 1.2.4 Theorems are important propositions.
Lemma 1.2.5 Lemma is used for preliminary propositions that are to be used in the proof of a theorem.

Corollary 1.2.6 Corollary is a proposition that follows almost immediately as a result of knowing that the most recent theorem is true.

Axiom 1.2.7 Axioms are certain propositions that are accepted without formal proof.

Example 1.2.8 The shortest distance between two points is a straight line.

Conjecture 1.2.9 Conjectures are propositions that are to date neither proven nor disproved.

Remark 1.2.10 A remark is an important observation.
There are also quantifiers:
\exists there is/are, exists/exist
\forall for all, for each, for every
\in in, element of, member of, choose
\ni such that, that is
: member definition
An example to the use of these delimiters is

$$
\forall y \in S=\left\{x \in \mathbb{Z}^{+}: x \text { is odd }\right\}, y^{2} \in S
$$

that is the square of every positive odd number is also odd.
Let us concentrate on $A \Rightarrow B$, i.e. if A is true, then B is true. This statement is the main structure of every element of a proposition family which is to be proven. Here, statement A is known as a hypothesis whereas B is termed as a conclusion. The operation table for this logical statement is given in Table 1.1. This statement is incorrect if A is true and B is false. Hence, the main aim of making proofs is to detect this case or to show that this case cannot happen.

Table 1.1. Operation table for $A \Rightarrow B$

A	B	$A \Rightarrow B$
True	True	True
True	False	False
False	True	True
False	False	True

Formally speaking, $A \Rightarrow B$ means

1. whenever A is true, B must also be true.
2. B follows from A.
3. B is a necessary consequence of A.
4. A is sufficient for B.
5. A only if B.

There are related statements to our primal assertion $A \Rightarrow B$:
$B \Rightarrow A$: converse
$\bar{A} \Rightarrow \bar{B}$: inverse
$\bar{B} \Rightarrow \bar{A}$; contrapositive
where \bar{A} is negation (complement) of A .

1.3 The art of making proofs

This section is based on guidelines of how to read and make proofs. Our pattern here is once again $A \Rightarrow B$. We are going to start with the forwardbackward method. After discussing the special cases defined in A or B in terms of quantifiers, we will see proof by Contradiction, in particular contraposition. Finally, we will investigate uniqueness proofs and theorem of alternatives.

1.3.1 Forward-Backward method

If the statement $A \Rightarrow B$ is proven by showing that B is true after assuming A is true $(A \rightarrow B)$, the method is called full forward technique. Conversely, if we first assume that B is true and try to prove that A is true $(A \leftarrow B)$, this is the full backward method.

Proposition 1.3.1 If the right triangle $X Y Z$ with sides x, y and hypotenuse of length z has an area of $\frac{z^{2}}{4}(\boldsymbol{A})$, then the triangle $X Y Z$ is isosceles (\boldsymbol{B}). See Figure 1.2.

Fig. 1.2. Proposition 1.3.1

Proof. Backward:

B: $x=y(x-y=0) \Leftrightarrow \widehat{Y X Z} \equiv \widehat{X Y Z}$ (triangle is equilateral)
Forward:
A-(i) Area: $\frac{1}{2} x y=\frac{z^{2}}{4}$
A-(ii) Pythagorean Theorem: $x^{2}+y^{2}=z^{2}$
$\Leftrightarrow \frac{1}{2} x y=\frac{x^{2}+y^{2}}{4} \Leftrightarrow x^{2}-2 x y+y^{2}=0 \Leftrightarrow(x-y)^{2}=0 \Leftrightarrow x-y=0$.
The above proof is a good example of how forward-backward combination can be used. There are special cases defined by the forms of A or B with the use of quantifiers. The first three out of four cases are based on conditions on statement B and the last one arises when A has a special form.

Construction (\exists)

If there is an object $(\exists x \in \mathbb{N})$ with a certain property $(x>2)$ such that something happens $\left(x^{2}-5 x+6=0\right)$, this is a construction. Our objective here is to first construct the object so that it possesses the certain property and then to show that something happens.

Selection (\forall)

If something ($\exists x \in \mathbb{R} \ni 2^{x}=y$) happens for every object $\left(\forall y \in \mathbb{R}_{+}\right)$with a certain property $(y>0)$, this is a selection. Our objective here is to first make a list (set) of all objects in which something happens ($T=\left\{y \in \mathbb{R}_{+}\right.$: $\left.\exists x \in \mathbb{R} \ni 2^{x}=y\right\}$) and show that this set is equivalent to the set whose elements has the property ($S=\mathbb{R}_{+}$). In order to show an equivalence of two sets ($S=T$), one usually has to show ($S \subseteq T$) and ($T \subseteq S$) by choosing a generic element in one set and proving that it is in the other set, and vice versa.

Specialization

If A is of the form "for all objects with a certain property such that something happens", then the method of specialization can be used. Without loss
of generality, we can fix an object with the property. If we can show that something happens for this particular object, we can generalize the result for all the objects with the same property.

Proposition 1.3.2 Let $T \subseteq S \subseteq \mathbb{R}$, and u be an upper bound for S; i.e. $\forall x \in S, x \leq u$. Then, u is an upper bound for T.

Proof. Let u be an upper bound for S, so $\forall x \in S, x \leq u$. Take any element y of $T . T \subseteq S \Rightarrow y \in S \Rightarrow y \leq u$. Thus, $\forall y \in T, y \leq u$. Then, u is an upper bound for T.

Uniqueness

When statement B has the word unique in it, the proposition is more restrictive. We should first show the existence then prove the uniqueness. The standard way of showing uniqueness is to assume two different objects with the property and to conclude that they are the same.

Proposition 1.3.3

$$
\forall r \in \mathbb{R}_{+}, \exists \text { unique } x \in \mathbb{R} \ni x^{3}=r
$$

Proof. Existence: Let $y=r^{\frac{1}{3}}, y \in \mathbb{R}$.
Uniqueness: Let $x, y \in \mathbb{R} \ni x \neq y, x^{3}=r=y^{3} \Rightarrow x^{3}-y^{3}=0 \Rightarrow$ $(x-y)\left(x^{2}+x y+y^{2}\right)=0 \Rightarrow\left(x^{2}+x y+y^{2}\right)=0$, since $x \neq y$. The roots of the last equation (if we take y as parameter and solve for x) are

$$
\frac{-y \pm \sqrt{y^{2}-4 y^{2}}}{2}=\frac{-y \pm \sqrt{-3 y^{2}}}{2}
$$

Hence, $y=0 \Rightarrow y^{3}=0=r \notin \mathbb{R}_{+}$. Contradiction. Thus, $x=y$.

1.3.2 Induction Method

Proofs of the form "for every integer $n \geq 1$, something happens" is made by induction. Formally speaking, induction is used when B is true for each integer beginning with an initial one (n_{0}). If the base case ($n=n_{0}$) is true, it is assumed that something happens for a generic intermediate case ($n=$ n_{k}). Consequently, the following case ($n=n_{k+1}$) is shown, usually using the properties of the induction hypothesis ($n=n_{k}$). In some instances, one may relate any previous case ($n_{l}, 0 \leq l \leq k$). Let us give the following example.

Theorem 1.3.4

$$
1+2+\cdots+n=\sum_{k=1}^{n} k=\frac{n(n+1)}{2}
$$

Proof. Base: $n=1=\frac{1 \cdot 2}{2}$.
Hypothesis: $n=j, \sum_{k=1}^{j} k=\frac{j(j+1)}{2}$.
Conclusion: $n=j+1, \sum_{k=1}^{j+1} k=\frac{(j+1)(j+2)}{2}$.
$\sum_{k=1}^{j+1} k=(j+1)+\sum_{k=1}^{j} k=(j+1)+\frac{j(j+1)}{2}=(j+1)\left[1+\frac{j}{2}\right]=\frac{(j+1)(j+2)}{2}$.
Thus, $1+2+\cdots+n=\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$.

1.3.3 Contradiction Method

When we examine the operation table for $A \Rightarrow B$ in Table 1.2 , we immediately conclude that the only circumstance under which $A \Rightarrow B$ is not correct is when A is true and B is false.

Contradiction

Proof by Contradiction assumes the condition (A is true B is false) and tries to reach a legitimate condition in which this cannot happen. Thus, the only way $A \Rightarrow B$ being incorrect is ruled out. Therefore, $A \Rightarrow B$ is correct. This proof method is quite powerful.

Proposition 1.3.5

$$
n \in \mathbb{N}, n^{2} \text { is even } \Rightarrow n \text { is even } .
$$

Proof. Let us assume that $n \in \mathbb{N}, n^{2}$ is even but n is odd. Let $n=2 k-1, k \in$ \mathbb{N}. Then, $n^{2}=4 k^{2}-4 k+1$ which is definitely odd. Contradiction.

Contraposition

In contraposition, we assume A and \bar{B} and go forward while we assume \bar{A} and come backward in order to reach a Contradiction. In that sense, contraposition is a special case of Contradiction where all the effort is directed towards a specific type of Contradiction (A vs. \bar{A}). The main motivation under contrapositivity is the following:

$$
A \Rightarrow B \equiv \bar{A} \vee B \equiv(\bar{A} \vee B) \vee \bar{A} \equiv(A \wedge \bar{B}) \Rightarrow \bar{A}
$$

One can prove the above fact simply by examining Table 1.2.

Table 1.2. Operation table for some logical operators.

A	\bar{A}	B	\bar{B}	$A \Rightarrow B$	$\bar{A} \vee B$	$A \wedge \bar{B}$
$A \wedge \bar{B} \Rightarrow \bar{A}$						
T	F	T	F	T	T	F
T	F	F	T	F	F	T
F	T	T	F	T	T	
F	T	F	T	T	T	F

Proposition 1.3.6

$$
p, q \in \mathbb{R}_{+} \ni \sqrt{p q} \neq \frac{p+q}{2} \Rightarrow p \neq q
$$

Proof. $A: \sqrt{p q} \neq \frac{p+q}{2}$ and hence $\bar{A}: \sqrt{p q}=\frac{p+q}{2}$. Similarly, $B: p \neq q$ and \bar{B} : $p=q$. Let us assume \bar{B} and go forward $\frac{p+q}{2}=p=\sqrt{p^{2}}=\sqrt{p q}$. However, this is nothing but $\bar{A}: \sqrt{p q}=\frac{p+q}{2}$. Contradiction.

1.3.4 Theorem of alternatives

If the pattern of the proposition is $A \Rightarrow$ either C or (else) D is true (but not both), we have a theorem of alternatives. In order to prove such a proposition, we first assume A and \bar{C} and try to reach D. Then, we should interchange C and D, do the same operation.

Proposition 1.3.7 If $x^{2}-5 x+6 \geq 0$, then either $x \leq 2$ or $x \geq 3$.
Proof. Let $x>2$. Then,

$$
x^{2}-5 x+6 \geq 0 \Rightarrow(x-2)(x-3) \geq 0 \Rightarrow(x-3) \geq 0 \Rightarrow x \geq 3
$$

Let $x<3$. Then,

$$
x^{2}-5 x+6 \geq 0 \Rightarrow(x-2)(x-3) \geq 0 \Rightarrow(x-2) \leq 0 \Rightarrow x \leq 2
$$

Problems

1.1. Prove the following two propositions:
(a) If f and g are two functions that are continuous ${ }^{1}$ at x, then the function $f+g$ is also continuous at x, where $(f+g)(y)=f(y)+g(y)$.
(b) If f is a function of one variable that (at point x) satisfies
$\exists c>0, \delta>0$ such that $\forall y \ni|x-y|<\delta,|f(x)-f(y)| \leq c|x-y|$
then f is continuous at x.
1.2. Assume you have a chocolate bar consisting, as usual, of a number of squares arranged in a rectangular pattern. Your task is to split the bar into small squares (always breaking along the lines between the squares) with a minimum number of breaks. How many will it take? Prove ${ }^{2}$.

[^0]1.3. Prove the following:
(a) $\binom{n}{r}=\binom{n}{n-r}$.
(b) $\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}$.
(c) $\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}$.
(d) $\binom{n}{m}\binom{m}{r}=\binom{n}{r}\binom{n-r}{m-r}$.
(e) $\binom{n}{0}+\binom{n+1}{1}+\cdots+\binom{n+r}{r}=\binom{n+r+1}{r}$.

Web material

http://acept.la.asu.edu/courses/phs110/si/chapter1/main.html
http://cas.umkc.edu/math/MathUGcourses/Math105.htm
http://cresst96.cse.ucla.edu/Reports/TECH429.pdf
http://descmath.com/desc/language.html
http://economictimes.indiatimes.com/articleshow/1024184.cms
http://en.wikipedia.org/wiki/Mathematical_proof
http://en.wikipedia.org/wiki/Mathematics_as_a_language
http://fcis.oise.utoronto.ca/~ghanna/educationabstracts.html
http://fcis.oise.utoronto.ca/ ~ghanna/philosophyabstracts.html
http://germain. umemat.maine.edu/faculty/wohlgemuth/DMAltIntro.pdf
http://interactive-mathvision.com/PaisPortfolio/CKMPerspective/
Constructivism(1998).html
http://mathforum.org/dr.math/faq/faq.proof.html
http://mathforum.org/library/view/5758.html
http://mathforum.org/mathed/mtbib/proof.methods.html
http://mtcs.truman.edu/"thammond/history/Language.html
http://mzone.mweb.co.za/residents/profmd/proof.pdf
http://online.redwoods.cc.ca.us/instruct/mbutler/BUTLER/
mathlanguage.pdf
http://pass.maths.org.uk/issue7/features/proof1/index.html
http://pass.maths.org.uk/issue8/features/proof2/index.html
http://plus.maths.org/issue9/features/proof3/index.html
http://plus.maths.org/issue10/features/proof4/
http://research.microsoft.com/users/lamport/pubs/
lamport-how-to-write.pdf
http://serendip.brynmawr.edu/blog/node/59
http://teacher.nsrl.rochester.edu/phy_labs/AppendixE/
AppendixE.html
http://weblog.fortnow.com/2005/07/understanding-proofs.html http://www-didactique.imag.fr/preuve/ICME9TG12 http://www-didactique.imag.fr/preuve/indexUK.html
http://www-leibniz.imag.fr/DIDACTIQUE/preuve/ICME9TG12
http://www-logic.stanford.edu/proofsurvey.html
http://www-personal.umich.edu/"tappen/Proofstyle.pdf http://www.4to40.com/activities/mathemagic/index.asp?
article=activities_mathemagic_mathematicalssigns http://www.ams.org/bull/pre-1996-data/199430-2/thurston.pdf
http://www.answers.com/topic/mathematics-as-a-language
http://www.bisso.com/ujg_archives/000158.html
http://www.bluemoon.net/~watson/proof.htm
http://www.c3.lanl.gov/mega-math/workbk/map/mptwo.html
http://www.cal.org/ericcll/minibibs/IntMath.htm
http://www.chemistrycoach.com/language.htm
http://www.cis.upenn.edu/~ircs/mol/mol.html
http://www.crystalinks.com/math.html
http://www.culturaleconomics.atfreeweb.com/Anno/Boulding
$\% 20$ Limitations $\% 20$ of $\% 20$ Mathematics $\%$ 201955.htm
http://www.cut-the-knot.com/language/index.shtml
http://www.cut-the-knot.org/ctk/pww.shtml
http://www.cut-the-knot.org/language/index.shtml
http://www.cut-the-knot.org/proofs/index.shtml
http://www.education.txstate.edu/epic/mellwebdocs/
SRSUlitreview.htm
http://ww.ensculptic.com/mpg/fields/webpages/GilaHomepage/
philosophyabstracts.html
http://www.fdavidpeat.com/bibliography/essays/maths.htm
http://www.fiz-karlsruhe.de/fiz/publications/zdm/zdm985r2.pdf
http://www.iigss.net/
http://www.indiana.edu/~mfl/cg.html
http://www.isbe.state.il.us/ils/math/standards.htm
http://www.lettredelapreuve.it/ICME9TG12/index.html
http://www.lettredelapreuve.it/TextesDivers/ICMETGProof96.html
http://www.maa.org/editorial/knot/Mathematics.html
http://www.maa.org/reviews/langmath.html
http://www.math.csusb.edu/notes/proofs/pfnot/node10.html
http://www.math.csusb.edu/notes/proofs/pfnot/pfnot.html
http://www.math.lamar.edu/MELL/index.html
http://www.math.montana.edu/math151/
http://www.math.rochester.edu/people/faculty/rarm/english.html
http://www.math.toronto.edu/barbeau/hannajoint.pdf
http://www.mathcamp.org/proofs.php
http://www.mathematicallycorrect.com/allen4.htm
http://www.mathmlconference.org/2002/presentations/naciri/
http://www.maths.ox.ac.uk/current-students/undergraduates/
study-guide/p2.2.6.html
http://www.mtholyoke.edu/courses/rschwart/mac/writing/language.shtml
http://www.nctm.org/about/position_statements/
position_statement_06.htm
http://www.nwrel.org/msec/science_inq/
http://www.quotedb.com/quotes/3002
http://www.righteducation.org/id28.htm
http://www.sciencemag.org/cgi/content/full/307/5714/1402a
http://www.sciencemag.org/sciext/125th/
http://www.southwestern.edu/~sawyerc/math-proofs.htm
http://www.theproof project.org/bibliography
http://www.uoregon.edu/~moursund/Math/language.htm
http://www.utexas.edu/courses/bio301d/Topics/Scientific.method/ Text.html
http://www.w3.org/Math/
http://www.warwick.ac.uk/staff/David.Tall/themes/proof.html
http://www.wmich.edu/math-stat/people/faculty/chartrand/proofs
http://www2.edc.org/makingmath/handbook/Teacher/Proof/Proof.asp
http://www2.edc.org/makingmath/mathtools/contradiction/
contradiction.asp
http://www2.edc.org/makingmath/mathtools/proof/proof.asp
https://www.theproofproject.org/bibliography/

2

Preliminary Linear Algebra

This chapter includes a rapid review of basic concepts of Linear Algebra. After defining fields and vector spaces, we are going to cover bases, dimension and linear transformations. The theory of simultaneous equations and triangular factorization are going to be discussed as well. The chapter ends with the fundamental theorem of linear algebra.

2.1 Vector Spaces

2.1.1 Fields and linear spaces

Definition 2.1.1 A set \mathbb{F} together with two operations

$$
\left\{\begin{array}{l}
+: \mathbb{F} \times \mathbb{F} \mapsto \mathbb{F} \text { Addition } \\
\cdot: \mathbb{F} \times \mathbb{F} \mapsto \mathbb{F} \text { Multiplication }
\end{array}\right.
$$

is called a field if

1. a) $\alpha+\beta=\beta+\alpha, \forall \alpha, \beta \in \mathbb{F}$ (Commutative)
b) $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma), \forall \alpha, \beta, \gamma \in \mathbb{F}$ (Associative)
c) \exists a distinguished element denoted by $0 \ni \forall \alpha \in \mathbb{F}, \alpha+0=\alpha$ (Additive identity)
d) $\forall \alpha \in \mathbb{F} \exists-\alpha \in \mathbb{F} \ni \alpha+(-\alpha)=0$ (Existence of an inverse)
2. a) $\alpha \cdot \beta=\beta \cdot \alpha, \forall \alpha, \beta \in \mathbb{F}$ (Commutative)
b) $(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma), \forall \alpha, \beta, \gamma \in \mathbb{F}$ (Associative)
c) \exists an element denoted by $1 \ni \forall \alpha \in \mathbb{F}, \alpha \cdot 1=\alpha$ (Multiplicative identity)
d) $\forall \alpha \neq 0 \in \mathbb{F} \exists \alpha^{-1} \in \mathbb{F} \ni \alpha \cdot \alpha^{-1}=1$ (Existence of an inverse)
3. $\alpha \cdot(\beta+\gamma)=(\alpha \cdot \beta)+(\alpha \cdot \gamma), \forall \alpha, \beta, \gamma \in \mathbb{F}$ (Distributive)

Definition 2.1.2 Let \mathbb{F} be a field. A set V with two operations

$$
\left\{\begin{array}{l}
+: V \times V \mapsto V \text { Addition } \\
\cdot: \mathbb{F} \times V \mapsto V \text { Scalar multiplication }
\end{array}\right.
$$

is called a vector space (linear space) over the field \mathbb{F} if the following axioms are satisfied:

1. a) $u+v=u+v, \forall u, v \in V$
b) $(u+v)+w=u+(v+w), \forall u, v, w \in V$
c) \exists a distinguished element denoted by $\theta \ni \forall v \in V, v+\theta=v$
d) $\forall v \in V \exists$ unique $-v \in V \ni v+(-v)=\theta$
2. a) $\alpha \cdot(\beta \cdot u)=(\alpha \cdot \beta) \cdot u, \forall \alpha, \beta \in \mathbb{F}, \forall u \in V$
b) $\alpha \cdot(u+v)=(\alpha \cdot u)+(\alpha \cdot v), \forall \alpha \in \mathbb{F}, \forall u, v \in V$
c) $(\alpha+\beta) \cdot u=(\alpha \cdot u)+(\beta \cdot u), \forall \alpha, \beta \in \mathbb{F}, \forall u \in V$
d) $1 \cdot u=u, \forall u \in V$, where 1 is the multiplicative identity of \mathbb{F}

Example 2.1.3 $\mathbb{R}^{n}=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)^{T}: \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{R}\right\}$ is a vector space over \mathbb{R} with $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)+\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)=\left(\alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2}, \ldots, \alpha_{n}+\right.$ $\left.\beta_{n}\right) ; \boldsymbol{c} \cdot\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\left(c \alpha_{1}, c \alpha_{2}, \ldots, c \alpha_{n}\right) ;$ and $\theta=(0,0, \ldots, 0)^{T}$.

Example 2.1.4 The set of all m by n complex matrices is a vector space over \mathbb{C} with usual addition and multiplication.

Proposition 2.1.5 In a vector space V,
i. θ is unique.
ii. $0 \cdot v=\theta, \forall v \in V$.
iii. $(-1) \cdot v=-v, \forall v \in V$.
iv. $-\theta=\theta$.
v. $\alpha \cdot v=\theta \Leftrightarrow \alpha=0$ or $v=\theta$.

Proof. Exercise.

2.1.2 Subspaces

Definition 2.1.6 Let V be a vector space over \mathbb{F}, and let $W \subset V . W$ is called a subspace of V if W itself is a vector space over \mathbb{F}.

Proposition 2.1.7 W is a subspace of V if and only if it is closed under vector addition and scalar multiplication, that is

$$
w_{1}, w_{2} \in W, \alpha_{1}, \alpha_{2} \in \mathbb{F} \Leftrightarrow \alpha_{1} \cdot w_{1}+\alpha_{2} \cdot w_{2} \in W .
$$

Proof. (Only if: \Rightarrow) Obvious by definition.
(If: \Leftarrow) we have to show that $\theta \in W$ and $\forall w \in W,-w \in W$.
i. Let $\alpha_{1}=1, \alpha_{2}=-1$, and $w_{1}=w_{2}$. Then,

$$
1 \cdot w_{1}+(-1) \cdot w_{1}=w_{1}+\left(-w_{1}\right)=\theta \in W .
$$

ii. Take any w. Let $\alpha_{1}=-1, \alpha_{2}=0$, and $w_{1}=w$. Then,

$$
(-1) \cdot w+(0) \cdot w_{2}=-w \in W
$$

Example 2.1.8 $S \subset \mathbb{R}^{2 \times 3}$, consisting of the matrices of the form $\left[\begin{array}{ccc}0 & \beta & \gamma \\ \alpha & \alpha-\beta & \alpha+2 \gamma\end{array}\right]$ is a subspace of $\mathbb{R}^{2 \times 3}$.
Proposition 2.1.9 If W_{1}, W_{2} are subspaces, then so is $W_{1} \cap W_{2}$.
Proof. Take $w_{1}, w_{2} \in W_{1} \cap W_{2}, \alpha_{1}, \alpha_{2} \in \mathbb{F}$.
i. $w_{1}, w_{2} \in W_{1} \Rightarrow \alpha_{1} \cdot w_{1}+\alpha_{2} \cdot w_{2} \in W_{1}$
ii. $w_{1}, w_{2} \in W_{2} \Rightarrow \alpha_{1} \cdot w_{1}+\alpha_{2} \cdot w_{2} \in W_{2}$

Thus, $\alpha_{1} w_{1}+\alpha_{2} w_{2} \in W_{1} \cap W_{2}$.
Remark 2.1.10 If W_{1}, W_{2} are subspaces, then $W_{1} \cup W_{2}$ is not necessarily a subspace.

Definition 2.1.11 Let V be a vector space over $\mathbb{F}, X \subset V . X$ is said to be linearly dependent if there exists a distinct set of $x_{1}, x_{2}, \ldots, x_{k} \in X$ and scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{F}$ not all zero $\ni \sum_{i=1}^{k} \alpha_{i} x_{i}=\theta$. Otherwise, for any subset of size k,

$$
x_{1}, x_{2}, \ldots, x_{k} \in X, \sum_{i=1}^{k} \alpha_{i} x_{i}=\theta \Rightarrow \alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=0
$$

In this case, X is said to be linearly independent.
We term an expression of the form $\sum_{i=1}^{k} \alpha_{i} x_{i}$ as linear combination. In particular, if $\sum_{i=1}^{k} \alpha_{i}=1$, we call it affine combination. Moreover, if $\sum_{i=1}^{k} \alpha_{i}=1$ and $\alpha_{i} \geq 0, \forall i=1,2, \ldots, k$, it becomes convex combination. On the other hand, if $\alpha_{i} \geq 0, \forall i=1,2, \ldots, k$; then $\sum_{i=1}^{k} \alpha_{i} x_{i}$ is said to be canonical combination.

Example 2.1.12 In \mathbb{R}^{n}, let $E=\left\{e_{i}\right\}_{i=1}^{n}$ where $e_{i}^{T}=(0, \cdots 0,1,0, \cdots, 0)$ is the $i^{\text {th }}$ canonical unit vector that contains 1 in its $i^{\text {th }}$ position and 0s elsewhere. Then, E is an independent set since

$$
\theta=\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right] \Rightarrow \alpha_{i}=0, \forall i
$$

Let $X=\left\{x_{i}\right\}_{i=1}^{n}$ where $x_{i}^{T}=(0, \cdots 0,1,1, \cdots, 1)$ is the vector that contains 0 s sequentially up to position i, and it contains $1 s$ starting from position i onwards. X is also linearly independent since

$$
\theta=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{1}+\alpha_{2} \\
\vdots \\
\alpha_{1}+\cdots+\alpha_{n}
\end{array}\right] \Rightarrow \alpha_{i}=0, \forall i
$$

Let $Y=\left\{y_{i}\right\}_{i=1}^{n}$ where $y_{i}^{T}=(0, \cdots 0,-1,1,0, \cdots, 0)$ is the vector that contains -1 in $i^{\text {th }}$ position, 1 in $(i+1)^{\text {st }}$ position, and Os elsewhere. Y is not linearly independent since $y_{1}+\cdots+y_{n}=\theta$.

Definition 2.1.13 Let $X \subset V$. The set
$\operatorname{Span}(X)=\left\{v=\sum_{i=1}^{k} \alpha_{i} x_{i} \in V: x_{1}, x_{2}, \ldots, x_{k} \in X ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{F} ; k \in \mathbb{N}\right\}$
is called the span of X. If the above linear combination is of the affine combination form, we will have the affine hull of X; if it is a convex combination, we will have the convex hull of X; and finally, if it is a canonical combination, what we will have is the cone of X. See Figure 2.1.

Fig. 2.1. The subspaces defined by $\{x\}$ and $\{p, q\}$.

Proposition 2.1.14 $\operatorname{Span}(X)$ is a subspace of V.
Proof. Exercise.

2.1.3 Bases

Definition 2.1.15 A set X is called a basis for V if it is linearly independent and spans V.

Remark 2.1.16 Since $\operatorname{Span}(X) \subset V$, in order to show that it covers V, we only need to prove that $\forall v \in V, v \in \operatorname{Span}(X)$.
Example 2.1.17 In $\mathbb{R}^{n}, E=\left\{e_{i}\right\}_{i=1}^{n}$ is a basis since E is linearly independent and $\forall \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)^{T} \in \mathbb{R}^{n}, \alpha=\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n} \in \operatorname{Span}(E)$.
$X=\left\{x_{i}\right\}_{i=1}^{n}$ is also a basis for \mathbb{R}^{n} since $\forall \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)^{T} \in \mathbb{R}^{n}$, $\alpha=\alpha_{1} x_{1}+\left(\alpha_{2}-\alpha_{1}\right) x_{2}+\cdots+\left(\alpha_{n}-\alpha_{n-1}\right) x_{n} \in \operatorname{Span}(X)$.
Proposition 2.1.18 Suppose $X=\left\{x_{i}\right\}_{i=1}^{n}$ is a basis for V over \mathbb{F}. Then,
a) $\forall v \in V$ can be expressed as $v=\sum_{i=1}^{n} \alpha_{i} x_{i}$ where α_{i} 's are unique.
b) Any linearly independent set with exactly n elements forms a basis.
c) All bases for V contain n vectors, where n is the dimension of V.

Remark 2.1.19 Any vector space V of dimension n and an n-dimensional field \mathbb{F}^{n} have an isomorphism.
Proof. Suppose $X=\left\{x_{i}\right\}_{i=1}^{n}$ is a basis for V over \mathbb{F}. Then,
a) Suppose v has two different representations: $v=\sum_{i=1}^{n} \alpha_{i} x_{i}=\sum_{i=1}^{n} \beta_{i} x_{i}$. Then, $\theta=v-v=\sum_{i=1}^{N}\left(\alpha_{i}-\beta_{i}\right) x_{i} \Rightarrow \alpha_{i}=\beta_{i}, \forall i=1,2, \ldots, n$. Contradiction, since X is independent.
b) Let $Y=\left\{y_{i}\right\}_{i=1}^{n}$ be linearly independent. Then, $y_{1}=\sum \delta_{i} x_{i}(\boldsymbol{\phi})$, where at least one $\delta_{i} \neq 0$. Without loss of generality, we may assume that $\delta_{1} \neq 0$. Consider $X_{1}=\left\{y_{1}, x_{2}, \ldots, x_{n}\right\} . X_{1}$ is linearly independent since $\theta=$ $\beta_{1} y_{1}+\sum_{i=2}^{n} \beta_{i} x_{i}=\beta_{1}\left(\sum \delta_{i} x_{i}\right)^{(\star)}+\sum_{i=2}^{n} \beta_{i} x_{i}=\beta_{1} \delta_{1} x_{1}+\sum_{i=2}^{n}\left(\beta_{1} \delta_{i}+\right.$ $\left.\beta_{i}\right) x_{i} \Rightarrow \beta_{1} \delta_{1}=0 ; \beta_{1} \delta_{i}+\beta_{i}=0, \forall i=2, \ldots, n \Rightarrow \beta_{1}=0\left(\delta_{1} \neq 0\right)$; and $\beta_{i}=0, \forall i=2, \ldots, n$. Any $v \in V$ can be expressed as $v=\sum_{i=1}^{n} \gamma_{i} x_{i}=$ $\gamma_{1} x_{1}+\sum_{i=2}^{n} \gamma_{i} x_{i}$
$v=\gamma_{1}\left(\delta_{1}^{-\overline{1}} y_{1}-\sum_{i=2}^{n} \delta_{1}^{-1} \delta_{i} x_{i}\right)^{(\phi)}=\left(\gamma_{1} \delta_{1}^{-1}\right) y_{1}+\sum_{i=2}^{n}\left(\gamma_{i}-\gamma_{1} \delta_{1}^{-1} \delta_{i}\right) x_{i}$. Thus, $\operatorname{Span}\left(X_{1}\right)=V$.
Similarly,
$X_{2}=\left\{y_{1}, y_{2}, x_{3}, \ldots, x_{n}\right\}$ is a basis.
\vdots
$X_{n}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}=Y$ is a basis.
c) Obvious from part b).

Remark 2.1.20 Since bases for V are not unique, the same vector may have different representations with respect to different bases. The aim here is to find the best (simplest) representation.

2.2 Linear transformations, matrices and change of basis

2.2.1 Matrix multiplication

Let us examine another operation on matrices, matrix multiplication, with the help of a small example. Let $A \in \mathbb{R}^{3 \times 4}, B \in \mathbb{R}^{4 \times 2}, C \in \mathbb{R}^{3 \times 2}$

$$
\begin{gathered}
{\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]=C=A B=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32} \\
b_{41} & b_{42}
\end{array}\right]} \\
=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31}+a_{14} b_{41} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}+a_{14} b_{42} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31}+a_{24} b_{41} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}+a_{24} b_{42} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31}+a_{34} b_{41} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32}+a_{34} b_{42}
\end{array}\right]
\end{gathered}
$$

Let us list the properties of this operation:
Proposition 2.2.1 Let A, B, C, D be matrices and x be a vector.

1. $(A B) x=A(B x)$.
2. $(A B) C=A(B C)$.
3. $A(B+C)=A B+A C$ and $(B+C) D=B D+C D$.
4. $A B=B A$ does not hold (usually $A B \neq B A$) in general.
5. Let I_{n} be a square n by n matrix that has $1 s$ along the main diagonal and Os everywhere else, called identity matrix. Then, $A I=I A=A$.

2.2.2 Linear transformation

Definition 2.2.2 Let $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n}$. The map $x \mapsto \mathcal{A} x$ describing a transformation $\mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ with property (matrix multiplication)

$$
\forall x, y \in \mathbb{R}^{n} ; \forall a, b \in \mathbb{R}, \mathcal{A}(b x+c y)=b(\mathcal{A} x)+c(\mathcal{A} y)
$$

is called linear.

Remark 2.2.3 Every matrix A leads to a linear transformation \mathcal{A}. Conversely, every linear transformation \mathcal{A} can be represented by a matrix A. Suppose the vector space V has a basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the vector space W has a basis $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$. Then, every linear transformation \mathcal{A} from V to W is represented by an m by n matrix A. Its entries $a_{i j}$ are determined by applying \mathcal{A} to each v_{j}, and expressing the result as a combination of the w 's:

$$
\mathcal{A} v_{j}=\sum_{i=1}^{m} a_{i j} w_{i}, j=1,2, \ldots, n
$$

Example 2.2.4 Suppose \mathcal{A} is the operation of integration of special polynomials if we take $1, t, t^{2}, t^{3}, \cdots$ as a basis where v_{j} and w_{j} are given by t^{j-1}. Then,

$$
\mathcal{A} v_{j}=\int t^{j-1} d t=\frac{t^{j}}{j}=\frac{1}{j} w_{j+1}
$$

For example, if $\operatorname{dim} V=4$ and $\operatorname{dim} W=5$ then $A=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{4}\end{array}\right]$. Let us try to integrate $v(t)=2 t+8 t^{3}=0 v_{1}+2 v_{2}+0 v_{3}+8 v_{4}$:

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & \frac{1}{4}
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
0 \\
8
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
2
\end{array}\right] \Leftrightarrow \int\left(2 t+8 t^{3}\right) d t=t^{2}+2 t^{4}=w_{3}+2 w_{5}
$$

Proposition 2.2.5 If the vector x yields coefficients of v when it is expressed in terms of basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then the vector $y=A x$ gives the coefficients of $\mathcal{A} v$ when it is expressed in terms of the basis $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$. Therefore, the effect of \mathcal{A} on any v is reconstructed by matrix multiplication.

$$
\mathcal{A} v=\sum_{i=1}^{m} y_{i} w_{i}=\sum_{i, j} a_{i j} x_{j} w_{i}
$$

Proof.

$$
v=\sum_{j=1}^{n} x_{j} v_{j} \Rightarrow \mathcal{A} v=\mathcal{A}\left(\sum_{1}^{n} x_{j} v_{j}\right)=\sum_{1}^{n} x_{j} \mathcal{A} v_{j}=\sum_{j} x_{j} \sum_{i} a_{i j} w_{i}
$$

Proposition 2.2.6 If the matrices A and B represent the linear transformations \mathcal{A} and \mathcal{B} with respect to bases $\left\{v_{i}\right\}$ in $V,\left\{w_{i}\right\}$ in W, and $\left\{z_{i}\right\}$ in Z, then the product of these two matrices represents the composite transformation $\mathcal{B A}$.

Proof. $\mathcal{A}: v \mapsto A v \mathcal{B}: A v \mapsto B A v \Rightarrow \mathcal{B A}: v \mapsto B A v$.
Example 2.2.7 Let us construct 3×5 matrix that represents the second derivative $\frac{d^{2}}{d t^{2}}$, taking P_{4} (polynomial of degree four) to P_{2}.

$$
\begin{gathered}
t^{4} \mapsto 4 t^{3}, t^{3} \mapsto 3 t^{2}, t^{2} \mapsto 2 t, t \mapsto 1 \\
\Rightarrow B=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right], A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] \Rightarrow A B=\left[\begin{array}{rrrrr}
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 12
\end{array}\right] .
\end{gathered}
$$

Let $v(t)=2 t+8 t^{3}$, then

$$
\frac{d^{2} v(t)}{d t^{2}}=\left[\begin{array}{rrrrr}
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 12
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
0 \\
8 \\
0
\end{array}\right]=\left[\begin{array}{r}
0 \\
48 \\
0
\end{array}\right]=48 t
$$

Proposition 2.2.8 Suppose $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ are both bases for the vector space V, and let $v \in V, v=\sum_{1}^{n} x_{j} v_{j}=\sum_{1}^{n} y_{j} w_{j}$. If $v_{j}=\sum_{1}^{n} s_{i j} w_{i}$, then $y_{i}=\sum_{1}^{n} s_{i j} x_{j}$.

Proof.

$$
\sum_{j} x_{j} v_{j}=\sum_{j} \sum_{i} x_{j} s_{i j} w_{i} \text { is equal to } \sum_{i} y_{i} w_{i} \sum_{i} \sum_{j} s_{i j} x_{j} w_{i}
$$

Proposition 2.2.9 Let $\mathcal{A}: V \mapsto V$. Let A_{v} be the matrix form of the transformation with respect to basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and A_{w} be the matrix form of the transformation with respect to basis $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Assume that $v_{j}=\sum_{i} s_{i j} w_{j}$. Then,

$$
A_{v}=S^{-1} A_{w} S
$$

Proof. Let $v \in V, v=\sum x_{j} v_{j} . S x$ gives the coefficients with respect to w 's, then $A_{w} S x$ yields the coefficients of $\mathcal{A v}$ with respect to original w 's, and finally $S^{-1} A_{w} S x$ gives the coefficients of $\mathcal{A} v$ with respect to original v 's.

Remark 2.2.10 Suppose that we are solving the system $A x=b$. The most appropriate form of A is I_{n} so that $x=b$. The next simplest form is when A is diagonal, consequently $x_{i}=\frac{b_{i}}{a_{i i}}$. In addition, upper-triangular, lowertriangular and block-diagonal forms for A yield easy ways to solve for x. One of the main aims in applied linear algebra is to find a suitable basis so that the resultant coefficient matrix $A_{v}=S^{-1} A_{w} S$ has such a simple form.

2.3 Systems of Linear Equations

2.3.1 Gaussian elimination

Let us take a system of linear m equations with n unknowns $A x=b$. In particular,

$$
\begin{aligned}
2 u+v+w & =1 \\
4 u+v & =-2 \\
-2 u+2 v+w & =7
\end{aligned} \Leftrightarrow\left[\begin{array}{rrr}
2 & 1 & 1 \\
4 & 1 & 0 \\
-2 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2 \\
7
\end{array}\right] .
$$

Let us apply some elementary row operations:
S1. Subtract 2 times the first equation from the second,
S2. Subtract -1 times the first equation from the third,
S3. Subtract -3 times the second equation from the third.
The result is an equivalent but simpler system, $U x=c$ where U is uppertriangular:

$$
\left[\begin{array}{rrr}
2 & 1 & 1 \\
0 & -1 & -2 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{r}
1 \\
-4 \\
-4
\end{array}\right]
$$

Definition 2.3.1 A matrix $U(L)$ is upper(lower)-triangular if all the entries below (above) the main diagonal are zero. A matrix D is called diagonal if all the entries except the main diagonal are zero.

Remark 2.3.2 If the coefficient matrix of a linear system of equations is either upper or lower triangular, then the solution can be characterized by backward or forward substitution. If it is diagonal, the solution is obtained immediately.

Let us name the matrix that accomplishes $\mathrm{S} 1\left(E_{21}\right)$, subtracting twice the first row from the second to produce zero in entry $(2,1)$ of the new coefficient matrix, which is a modified I_{3} such that its (2,1)st entry is -2 . Similarly, the elimination steps $S 2$ and $S 3$ can be described by means of E_{31} and E_{32}, respectively.

$$
E_{21}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], E_{31}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], E_{32}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right] .
$$

These are called elementary matrices. Consequently,

$$
E_{32} E_{31} E_{21} A=U \text { and } E_{32} E_{31} E_{21} b=c,
$$

where $E_{32} E_{31} E_{21}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ -5 & 3 & 1\end{array}\right]$ is lower triangular. If we undo the steps of Gaussian elimination through which we try to obtain an upper-triangular system $U x=c$ to reach the solution for the system $A x=b$, we have

$$
A=E_{32}^{-1} E_{31}^{-1} E_{21}^{-1} U=L U
$$

where

$$
L=E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -3 & 1
\end{array}\right]
$$

is again lower-triangular. Observe that the entries below the diagonal are exactly the multipliers $2,-1$, and -3 used in the elimination steps. We term L as the matrix form of the Gaussian elimination. Moreover, we have $L c=b$. Hence, we have proven the following proposition that summarizes the Gaussian elimination or triangular factorization.

Proposition 2.3.3 As long as pivots are nonzero, the square matrix A can be written as the product $L U$ of a lower triangular matrix L and an upper triangular matrix U. The entries of L on the main diagonal are 1s; below the main diagonal, there are the multipliers $l_{i j}$ indicating how many times of row j is subtracted from row i during elimination. U is the coefficient matrix, which appears after elimination and before back-substitution; its diagonal entries are the pivots.

In order to solve $x=A^{-1} b=U^{-1} c=U^{-1} L^{-1} b$ we never compute inverses that would take n^{3}-many steps. Instead, we first determine c by forwardsubstitution from $L c=b$, then find x by backward-substitution from $U x=c$. This takes a total of n^{2} operations. Here is our example,

$$
\begin{gathered}
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2 \\
7
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-4 \\
-4
\end{array}\right] \Longrightarrow} \\
{\left[\begin{array}{rrr}
2 & 1 & 1 \\
0 & -1 & -2 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-4 \\
-4
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right] .}
\end{gathered}
$$

Remark 2.3.4 Once factors U and L have been computed, the solution x^{\prime} for any new right hand side b^{\prime} can be found in the similar manner in only n^{2} operations. For instance

$$
b^{\prime}=\left[\begin{array}{r}
8 \\
11 \\
3
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1}^{\prime} \\
c_{2}^{\prime} \\
c_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{r}
8 \\
-5 \\
-4
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right] .
$$

Remark 2.3.5 We can factor out a diagonal matrix D from U that contains pivots, as illustrated below.

$$
U=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right]\left[\begin{array}{cccc}
1 \frac{u_{12}}{d_{1}} & \frac{u_{23}}{d_{1}} & \cdots & \frac{u_{1 n}}{d_{1}} \\
1 & \frac{u_{23}}{d_{2}} & \cdots & \frac{u_{2 n}}{d_{2}} \\
& & 1 & \cdots \\
& & & \vdots \\
& & & \\
& & & \\
& & &
\end{array}\right]
$$

Consequently, we have $A=L D U$, where L is lower triangular with $1 s$ on the main diagonal, U is upper diagonal with $1 s$ on the main diagonal and D is the diagonal matrix of pivots. LDU factorization is uniquely determined.

Remark 2.3.6 What if we come across a zero pivot? We have two possibilities:

Case (i) If there is a nonzero entry below the pivot element in the same column:
We interchange rows. For instance, if we are faced with

$$
\left[\begin{array}{ll}
0 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

we will interchange row 1 and 2. The permutation matrix, $P_{12}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, represents the exchange. A permutation matrix $P_{k l}$ is the modified identity
matrix of the same order whose rows k and l are interchanged. Note that $P_{k l}=P_{l k}^{-1}$ (exercise!). In summary, we have

$$
P A=L D U
$$

Case (ii) If the pivot column is entirely zero below the pivot entry:
The current matrix (so was A) is singular. Thus, the factorization is lost.

2.3.2 Gauss-Jordan method for inverses

Definition 2.3.7 The left (right) inverse B of A exists if $B A=I(A B=I)$.
Proposition 2.3.8 $B A=I$ and $A C=I \Leftrightarrow B=C$.
Proof. $B(A C)=(B A) C \Leftrightarrow B I=I C \Leftrightarrow B=C$.
Proposition 2.3.9 If A and B are invertible, so is $A B$.

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Proof.

$$
\begin{gathered}
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I \\
\left(B^{-1} A^{-1}\right) A B=B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=B^{-1} B=I
\end{gathered}
$$

Remark 2.3.10 Let $A=L D U . A^{-1}=U^{-1} D^{-1} L^{-1}$ is never computed. If we consider $A A^{-1}=I$, one column at a time, we have $A x_{j}=e_{j}, \forall j$. When we carry out elimination in such n equations simultaneously, we will follow the Gauss-Jordan method.

Example 2.3.11 In our example instance,

$$
\begin{aligned}
& {\left[A \mid e_{1} e_{2} e_{3}\right]=\left[\begin{array}{rrr|rrr}
2 & 1 & 1 & 1 & 0 & 0 \\
4 & 1 & 0 & 0 & 1 & 0 \\
-2 & 2 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & -2 & -2 & 1 & 0 \\
0 & 3 & 2 & 1 & 0 & 1
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{rrr|rrr}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & -2 & -2 & 1 & 0 \\
0 & 0 & -4 & -5 & 3 & 1
\end{array}\right]=\left[U \mid L^{-1}\right] \rightarrow\left[\begin{array}{lll|l|l|l}
1 & 0 & 0 & \frac{1}{8} & \frac{1}{8} & -\frac{1}{8} \\
0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 & \frac{5}{4} & -\frac{3}{4} & -\frac{1}{4}
\end{array}\right]=\left[I \mid A^{-1}\right] .
\end{aligned}
$$

2.3.3 The most general case

In this subsection, we are going to concentrate on the equation system, $A x=b$, where we have n unknowns and m equations.

Axiom 2.3.12 The system $A x=b$ is solvable if and only if the vector b can be expressed as the linear combination of the columns of A (lies in Span[columns of A] or geometrically lies in the subspace defined by columns of A).

Definition 2.3.13 The set of non-trivial solutions $x \neq \theta$ to the homogeneous system $A x=\theta$ is itself a vector space called the null space of A, denoted by $\mathcal{N}(A)$.

Remark 2.3.14 All the possible cases in the solution of the simple scalar equation $\alpha x=\beta$ are below:

- $\alpha \neq 0: \forall \beta \in \mathbb{R}, \exists x=\frac{\beta}{\alpha} \in \mathbb{R}$ (nonsingular case),
- $\alpha=\beta=0: \forall x \in \mathbb{R}$ are the solutions (undetermined case),
- $\alpha=0, \beta \neq 0$: there is no solution (inconsistent case).

Let us consider a possible $L U$ decomposition of a given $A \in \mathbb{R}^{m \times n}$ with the help of the following example:

$$
A=\left[\begin{array}{rrrr}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 5 \\
-1 & -3 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 1 \\
0 & 0 & 6 & 2
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]=U
$$

The final form of U is upper-trapezoidal.
Definition 2.3.15 An upper-triangular (lower-triangular) rectangular matrix U is called upper-(lower-)trapezoidal if all the nonzero entries $u_{i j}$ lie on and above (below) the main diagonal, $i \leq j(i \geq j)$. An upper-trapezoidal matrices has the following "echelon" form:

$$
\left[\begin{array}{ccccccccc}
\odot & * & * & * & * & * & * & * & * \\
\hdashline 0 & \odot & * & * & * & * & * & * & *
\end{array}\right]
$$

In order to obtain such an U, we may need row interchanges, which would introduce a permutation matrix P. Thus, we have the following theorem.

Theorem 2.3.16 For any $A \in \mathbb{R}^{m \times n}$, there is a permutation matrix P, a lower-triangular matrix L, and an upper-trapezoidal matrix U such that $P A=$ $L U$.

Definition 2.3.17 In any system $A x=b \Leftrightarrow U x=c$, we can partition the unknowns x_{i} as basic (dependent) variables those that correspond to a column with a nonzero pivot \odot, and free (nonbasic, independent) variables corresponding to columns without pivots.

We can state all the possible cases for $A x=b$ as we did in the previous remark without any proof.
Theorem 2.3.18 Suppose the m by matrix A is reduced by elementary row operations and row exchanges to a matrix U in echelon form. Let there be r nonzero pivots; the last $m-r$ rows of U are zero. Then, there will be r basic variables and $n-r$ free variables as independent parameters. The null space, $\mathcal{N}(A)$, composed of the solutions to $A x=\theta$, has $n-r$ free variables.

If $n=r$, then null space contains only $x=\theta$.
Solutions exist for every b if and only if $r=m$ (U has no zero rows), and $U x=c$ can be solved by back-substitution.

If $r<m, U$ will have $m-r$ zero rows. If one particular solution \hat{x} to the first r equations of $U x=c$ (hence to $A x=b$) exists, then $\hat{x}+\alpha \dot{x}, \forall \dot{x} \in$ $\mathcal{N}(A) \backslash\{\theta\}, \forall \alpha \in \mathbb{R}$ is also a solution.

Definition 2.3.19 The number r is called the rank of A.

2.4 The four fundamental subspaces

Remark 2.4.1 If we rearrange the columns of A so that all basic columns containing pivots are listed first, we will have the following partition of U :

$$
A=[B \mid N] \rightarrow U=\left[\frac{U_{B} \mid U_{N}}{O}\right] \rightarrow V=\left[\frac{I_{r} \mid V_{N}}{O}\right]
$$

where $B \in \mathbb{R}^{m \times r}, N \in \mathbb{R}^{m \times(n-r)}, U_{B} \in \mathbb{R}^{r \times r}, U_{N} \in \mathbb{R}^{r \times(n-r)}$, O is an $(m-r) \times n$ matrix of zeros, $V_{N} \in \mathbb{R}^{r \times(n-r)}$, and I_{r} is the identity matrix of order $r . U_{B}$ is upper-triangular, thus non-singular.

If we continue from U and use elementary row operations to obtain I_{r} in the U_{B} part, like in the Gauss-Jordan method, we will arrive at the reduced row echelon form V.

2.4.1 The row space of A

Definition 2.4.2 The row space of A is the space spanned by rows of A. It is denoted by $\mathcal{R}\left(A^{T}\right)$.

$$
\begin{aligned}
\mathcal{R}\left(A^{T}\right) & =\operatorname{Span}\left(\left\{a_{i}\right\}_{i=1}^{m}\right)=\left\{y \in \mathbb{R}^{m}: y=\sum_{i=1}^{m} \alpha_{i} a_{i}\right\} \\
& =\left\{d \in \mathbb{R}^{m}: \exists y \in \mathbb{R}^{m} \ni y^{T} A=d^{T}\right\} .
\end{aligned}
$$

Proposition 2.4.3 The row space of A has the same dimension r as the row space of U and the row space of V. They have the same basis, and thus, all the row spaces are the same.

Proof. Each elementary row operation leaves the row space unchanged.

2.4.2 The column space of A

Definition 2.4.4 The column space of A is the space spanned by the columns of A. It is denoted by $\mathcal{R}(A)$.

$$
\begin{gathered}
\mathcal{R}(A)=\operatorname{Span}\left\{a^{j}\right\}_{j=1}^{n}=\left\{y \in \mathbb{R}^{n}: y=\sum_{j=1}^{n} \beta_{j} a^{j}\right\} \\
=\left\{b \in \mathbb{R}^{n}: \exists x \in \mathbb{R}^{n} \ni A x=b\right\}
\end{gathered}
$$

Proposition 2.4.5 The dimension of column space of A equals the rank r, which is also equal to the dimension of the row space of A. The number of independent columns equals the number of independent rows. A basis for $\mathcal{R}(A)$ is formed by the columns of B.
Definition 2.4.6 The rank is the dimension of the row space or the column space.

2.4.3 The null space (kernel) of A

Proposition 2.4.7

$$
\mathcal{N}(A)=\left\{x \in \mathbb{R}^{n}: A x=\theta(U x=\theta, V x=\theta)\right\}=\mathcal{N}(U)=\mathcal{N}(V)
$$

Proposition 2.4.8 The dimension of $\mathcal{N}(A)$ is $n-r$, and a base for $\mathcal{N}(A)$ is the columns of $T=\left[\frac{-V_{N}}{I_{n-r}}\right]$.
Proof.

$$
A x=\theta \Leftrightarrow U x=\theta \Leftrightarrow V x=\theta \Leftrightarrow x_{B}+V_{N} x_{N}=\theta
$$

The columns of $T=\left[\frac{-V_{N}}{I_{n-r}}\right]$ is linearly independent because of the last $(n-r)$ coefficients. Is their span $\mathcal{N}(A)$?
Let $y=\sum_{j} \alpha_{j} T^{j}, A y=\sum_{j} \alpha_{j}\left(-V_{N}^{j}+V_{N}^{j}\right)=\theta$. Thus, $\operatorname{Span}\left(\left\{T^{j}\right\}_{j=1}^{n-r}\right) \subseteq$ $\mathcal{N}(A)$. Is $\operatorname{Span}\left(\left\{T^{j}\right\}_{j=1}^{n-r}\right) \supseteq \mathcal{N}(A)$? Let $x=\left[\frac{x_{B}}{x_{N}}\right] \in \mathcal{N}(A)$. Then,

$$
A x=\theta \Leftrightarrow x_{B}+V_{N} x_{N}=\theta \Leftrightarrow x=\left[\frac{x_{B}}{x_{N}}\right]=\left[\frac{-V_{N}}{I_{n-r}}\right] x_{N} \in \operatorname{Span}\left(\left\{T^{j}\right\}_{j=1}^{n-r}\right)
$$

Thus, $\operatorname{Span}\left(\left\{T^{j}\right\}_{j=1}^{n-r}\right) \supseteq \mathcal{N}(A)$.

2.4.4 The left null space of A

Definition 2.4.9 The subspace of \mathbb{R}^{m} that consists of those vectors y such that $y^{T} A=\theta$ is known as the left null space of A.

$$
\mathcal{N}\left(A^{T}\right)=\left\{y \in \mathbb{R}^{m}: y^{T} A=\theta\right\}
$$

Proposition 2.4.10 The left null space $\mathcal{N}\left(A^{T}\right)$ is of dimension $m-r$, where the basis vectors are the last $m-r$ rows of $L^{-1} P$ of $P A=L U$ or $L^{-1} P A=U$.

Proof.

$$
\bar{A}=\left[A \mid I_{m}\right] \rightarrow \bar{V}=\left[\left.\frac{I_{r} \mid V_{N}}{O} \right\rvert\, L^{-1} P\right]
$$

Then, $\left(L^{-1} P\right)=\left[\frac{S_{I}}{S_{I I}}\right]$, where $S_{I I}$ is the last $m-r$ rows of $L^{-1} P$. Then, $S_{I I} A=\theta$.

Fig. 2.2. The four fundamental subspaces defined by $A \in \mathbb{R}^{m \times n}$.

2.4.5 The Fundamental Theorem of Linear Algebra

Theorem 2.4.11 $\mathcal{R}\left(A^{T}\right)=$ row space of A with dimension r;
$\mathcal{N}(A)=$ null space of A with dimension $n-r$;
$\mathcal{R}(A)=$ column space of A with dimension r;
$\mathcal{N}\left(A^{T}\right)=$ left null space of A with dimension $m-r$;
Remark 2.4.12 From this point onwards, we are going to assume that $n \geq m$ unless otherwise indicated.

Problems

2.1. Graph spaces

Definition 2.4.13 Let $G F(2)$ be the field with + and \times (addition and multiplication modulo 2 on \mathbb{Z}^{2})

Fig. 2.3. The graph in Problem 2.1

Consider the node-edge incident matrix of the given graph $G=(V, E)$ over $G F(2), A \in \mathbb{R}^{\|V\| \times\|E\|}$:

$$
A=\begin{gathered}
a \\
b \\
c \\
d \\
e \\
f \\
g \\
h \\
i
\end{gathered}\left[\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The addition + operator helps to point out the end points of the path formed by the added edges. For instance, if we add the first and ninth columns of A, we will have $[1,0,0,1,0,0,0,0,0]^{T}$, which indicates the end points (nodes a and d) of the path formed by edges one and nine.
(a) Find the reduced row echelon form of A working over $G F(2)$. Interpret
the meaning of the bases.
(b) Let $T=\{1,2,3,4,5,6,7,8\}$ and $T^{\perp}=E \backslash T=\{9,10,11,12,13\}$.

Let $\bar{A}=\left[\begin{array}{cc}I_{8} & N \\ 0 & 0\end{array}\right]$. Let $Z=\left[I_{8} \mid N\right]$. For each row, $z_{i}, i \in T$, color the edges with non-zero entries. Interpret z_{i}
(c) Let $Y=\left[\begin{array}{l}N \\ I_{5}\end{array}\right]$. For each column $y^{j}, j \in T^{\perp}$, color the edges with non-zero entries. Interpret y_{j}.
(d) Find a basis for the four fundamental subspaces related with A.

2.2. Derivative of a polynomial

Let us concentrate on a $(n-k+1) \times(n+1)$ real valued matrix $A(n, k)$ that represents "taking $k^{\text {th }}$ derivative of $n^{\text {th }}$ order polynomial"

$$
P(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}
$$

(a) Let $n=5$ and $k=2$. Characterize bases for the four fundamental subspaces related with $A(5,2)$.
(b) Find bases for and the dimensions of the four fundamental subspaces related with $A(n, k)$.
(c) Find $B(n, k)$, the right inverse of $A(n, k)$. Characterize the meaning of the underlying transformation and the four fundamental subspaces.
2.3. As in Example 2.1.12, let $Y=\left\{y_{i}\right\}_{i=1}^{n}$ be defined as

$$
y_{i}^{T}=(0, \cdots 0,-1,1,0, \cdots, 0)
$$

the vector that contains -1 in $i^{t h}$ position, 1 in $(i+1)^{s t}$ position, and 0s elsewhere. Let $A=\left[y_{1}\left|y_{2}\right| \cdots \mid y_{n}\right]$. Characterize the four fundamental subspaces of A.

Web material

```
http://algebra.math.ust.hk/matrix_linear_trans/02_linear_transform/
    lecture5.shtml
http://algebra.math.ust.hk/vector_space/11_changebase/lecture4.shtml
http://archives.math.utk.edu/topics/linearAlgebra.html
http://calculusplus.cuny.edu/linalg.htm
http://ceee.rice.edu/Books/CS/chapter2/linear43.html
http://ceee.rice.edu/Books/CS/chapter2/linear44.html
http://dictionary.reference.com/search?q=vector%20space
http://distance-ed.math.tamu.edu/Math640/chapter1/node6.html
http://distance-ed.math.tamu.edu/Math640/chapter4/node2.html
http://distance-ed.math.tamu.edu/Math640/chapter4/node4.html
http://distance-ed.math.tamu.edu/Math640/chapter4/node6.html
```

http://en.wikibooks.org/wiki/Algebra/Linear_transformations
http://en.wikibooks.org/wiki/Algebra/Vector_spaces
http://en.wikipedia.org/wiki/Examples_of_vector_spaces
http://en.wikipedia.org/wiki/Fundamental_theorem_of_linear_algebra
http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
http://en.wikipedia.org/wiki/Gaussian_elimination
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Vector_space
http://encyclopedia.laborlawtalk.com/Linear_transformation
http://eom.springer.de/L/1059520.htm
http://eom.springer.de/t/t093180.htm
http://eom.springer.de/v/v096520.htm
http://euler.mcs.utulsa.edu/~class_diaz/cs2503/Spring99/lab7/ node8.html
http://everything2.com/index.pl?node=vector\ space
http://graphics.cs.ucdavis.edu/~okreylos/ResDev/Geometry/ VectorSpaceAlgebra.html
http://kr.cs.ait.ac.th/~radok/math/mat5/algebra12.htm
http://math.postech.ac.kr/~kwony/Math300/chapter2P.pdf
http://math.rice.edu/~hassett/teaching/221fall05/linalg5.pdf
http://mathforum.org/workshops/sum98/participants/sinclair/ outline.html
http://mathonweb.com/help/backgd3e.htm
http://mathworld.wolfram.com/Gauss-JordanElimination.html
http://mathworld.wolfram.com/GaussianElimination.html
http://mathworld.wolfram.com/LinearTransformation.html
http://mathworld.wolfram.com/VectorSpace.html
http://mizar.uwb.edu.pl/JFM/Vol1/vectsp_1.html
http://planetmath.org/encyclopedia/GaussianElimination.html
http://planetmath.org/encyclopedia/
ProofOfMatrixInverseCalculationByGaussianElimination.html
http://planetmath.org/encyclopedia/VectorField.html
http://planetmath.org/encyclopedia/VectorSpace.html
http://rkb.home.cern.ch/rkb/AN16pp/node101.html
http://thesaurus.maths.org/mmkb/entry.html?action=entryById\&id=2243
http://triplebuffer.devmaster.net/file.php?id=5\&page=1
http://tutorial.math.lamar.edu/AllBrowsers/2318/
LinearTransformations.asp
http://uspas.fnal.gov/materials/3_LinearAlgebra.doc
http://vision.unige.ch/~marchand/teaching/linalg/
http://web.mit.edu/18.06/www/Video/video-fall-99.html
http://www-math. cudenver.edu/~wbriggs/5718s01/notes2/notes2.html
http://www-math.mit.edu/~djk/18_022/chapter16/section01.html
http://www.absoluteastronomy.com/v/vector_space
http://www.amath.washington.edu/courses/352-spring-2001/Lectures/
lecture7_print.pdf
http://www.answers.com/topic/linear-transformation
http://www.answers.com/topic/vector-space
http://www.biostat.umn.edu/"sudiptob/pubh8429/

MatureLinearAlgebra.pdf
http://www.bookrags.com/sciences/mathematics/vector-spaces-wom.html http://www.cap-lore.com/MathPhys/Vectors.html
http://www.cartage.org.lb/en/themes/Sciences/Mathematics/Algebra/
foci/topics/transformations/transformations.htm
http://www.cee.umd.edu/menufiles/ence203/fall01/Chapter $\%$ 205c $\% 20$
(Simultaneous\%20Linear\%2http://www.sosmath.com/matrix/system1/ system1.html
http://www.cs.berkeley.edu/~demmel/cs267/lectureSparseLU/
lectureSparseLU1.html
http://www.cs.cityu.edu.hk/~1uoyan/mirror/mit/ocw.mit.edu/18/
$18.013 \mathrm{a} / \mathrm{f} 01 /$ required-readings/chapter04/section02.html
http://www.cs.nthu.edu.tw/~cchen/CS2334/ch4.pdf
http://www.cs.ut.ee/~toomas_l/linalg/lin1/node6.html
http://www.cs.ut.ee/~ toomas_l/linalg/lin1/node7.html
http://www.cse.buffalo.edu/ ${ }^{\text {hungngo/classes/2005/Expanders/notes/ }}$
LA-intro.pdf
http://www.dc.uba.ar/people/materias/ocom/apunte1.doc
http://www.eas.asu.edu/~aar/classes/eee598S98/4vectorSpaces.txt
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/vector.html
http://www.ee.nchu.edu.tw/~minkuanc/courses/2006_01/LA/Lectures/
Lecture $\%$ 205\% 20- $\%$ 202006.pdf
http://www.eng.fsu.edu/~cockburn/courses/eel5173_f01/four.pdf
http://www.everything2.com/index.pl?node_id=579183
http://www.fact-index.com/v/ve/vector_space_1.html
http://www.faqs.org/docs/sp/sp-129.html
http://www.fismat.umich.mx/~htejeda/aa/AS,L24.pdf
http://www.geometrictools.com/Books/GeometricTools/BookSample.pdf
http://www.krellinst.org/UCES/archive/classes/CNA/dir1.6/
uces1.6.html
http://www.lehigh.edu/~brha/m43fall2004notes5_rev.pdf
http://www.library.cornell.edu/nr/bookcpdf/c2-2.pdf
http://www.ltcconline.net/greenl/courses/203/MatrixOnVectors/ kernelRange.htm
http://www.ltcconline.net/greenl/courses/203/MatrixOnVectors/ matrix_of_a_linear_transformatio.htm
http://www.ma.umist.ac.uk/tv/Teaching/Linear\ algebra\ B/ Spring $\%$ 202003/lecture2.pdf
http://www.math.byu.edu/~schow/work/GEnoP.htm
http://www.math.gatech.edu/~bourbaki/math2601/Web-notes/8.pdf
http://www.math.gatech.edu/"mccuan/courses/4305/notes.pdf
http://www.math.grin.edu/~stone/events/scheme-workshop/gaussian.htmI
http://www.math.harvard.edu/~elkies/M55a.99/field.html
http://www.math.hmc.edu/calculus/tutorials/lineartransformations/
http://www.math.hmc.edu/~su/pcmi/topics.pdf
http://www.math.jhu.edu/~yichen/teaching/2006spring/linear/
review2.pdf
http://www.math.niu.edu/~beachy/aaol/fields.html
http://www.math.nps.navy.mil/~art/ma3046/handouts/Mat_Fund_Spa.pdf
http://www.math.poly.edu/courses/ma2012/Notes/GeneralLinearT.pdf
http://www.math.psu.edu/xu/451/HOMEWORK/computer6/node5.html
http://www.math.rutgers.edu/~useminar/basis.pdf
http://www.math.rutgers.edu/~useminar/lintran.pdf
http://www.math.sfu.ca/~lunney/macm316/hw05/node1.html
http://www.math.ubc.ca/~carrell/NB.pdf
http://www.math.uiuc.edu/documenta/vol-01/04.ps.gz
http://www.math.uiuc.edu/Software/magma/text387.html
http://www.math.uiuc.edu/~bergv/coordinates.pdf
http://www.mathcs.emory.edu/~rudolf/math108/summ1-2-3/node19.html
http://www.mathematik.uni-karlsruhe.de/mi2weil/lehre/stogeo2005s/ media/cg.pdf
http://www.mathonweb.com/help/backgd3.htm
http://www.mathonweb.com/help/backgd3e.htm
http://www.mathreference.com/fld,intro.html
http://www.mathreference.com/la,lxmat.html
http://www.mathreference.com/la,xform.html
http://www.mathresource.iitb.ac.in/linear\ algebra/ mainchapter6.2.html
http://www.maths.adelaide.edu.au/people/pscott/linear_algebra/lapf/ 24.html
http://www.maths.adelaide.edu.au/pure/pscott/linear_algebra/lapf/ 21 html
http://www.maths.nottingham.ac.uk/personal/sw/HG2NLA/gau.pdf
http://www.maths.qmul.ac.uk/~pjc/class_gps/ch1.pdf
http://www.mathwords.com/g/gaussian_elimination.htm
http://www.matrixanalysis.com/DownloadChapters.html
http://www.met.rdg.ac.uk/ ~ross/DARC/LinearVectorSpaces.html
http://www.numbertheory.org/courses/MP274/lintrans.pdf
http://www.phy.auckland.ac.nz/Staff/smt/453707/chap2.pdf
http://www.ping.be/~ping1339/lintf.htm
http://www.purplemath.com/modules/systlin5.htm
http://www.reference.com/browse/wiki/Vector_space
http://www.rsasecurity.com/rsalabs/node.asp?id=2370
http://www.sosmath.com/matrix/system1/system1.html
http://www.stanford.edu/class/ee387/handouts/lect07.pdf
http://www.swgc.mun.ca/~richards/M2051/M2051\ -March\ 10\% $20-\%$
20Vector $\%$ 20Spaces $\% 20$ and $\%$ 20Subspaces.doc
http://www.ucd.ie/math-phy/Courses/MAPH3071/nummeth6.pdf
http://www. what-means.com/encyclopedia/Vector
http://www2.parc.com/sp1/members/hhindi/reports/Cvx0ptTutPaper.pdf
http://xmlearning.maths.ed.ac.uk/eLearning/linear_algebra/
binder.php?goTo=4-5-1-1
https://www.cs.tcd.ie/courses/baict/bass/4ict10/Michealmas2002/ Handouts/12_Matrices.pdf

3

Orthogonality

In this chapter, we will analyze distance functions, inner products, projection and orthogonality, the process of finding an orthonormal basis, QR and singular value decompositions and conclude with a final discussion about how to solve the general form of $A x=b$.

3.1 Inner Products

Following a rapid review of norms, an operation between any two vectors in the same space, inner product, is discussed together with the associated geometric implications.

3.1.1 Norms

Norms (distance functions, metrics) are vital in characterizing the type of network optimization problems like the Travelling Salesman Problem (TSP) with the rectilinear distance.

Definition 3.1.1 A norm on a vector space V is a function that assigns to each vector, $v \in V$, a nonnegative real number $\|v\|$ satisfying
i. $\|v\|>0, \forall v \neq \theta$ and $\|\theta\|=0$,
ii. $\|\alpha v\|=|\alpha|\|v\|, \forall \alpha \in \mathbb{R} ; v \in V$.
iii. $\|u+v\| \leq\|u\|+\|v\|, \forall u, v \in V$ (triangle inequality).

Definition 3.1.2 $\forall x \in \mathbb{C}^{n}$, the most commonly used norms, $\|\cdot\|_{1},\|\cdot\|_{2},\|\cdot\|_{\infty}$, are called the l_{1}, l_{2} and l_{∞} norms, respectively. They are defined as below:

1. $\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$,
2. $\|x\|_{2}=\left(\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}\right)^{\frac{1}{2}}$,
3. $\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$.

Furthermore, we know the following relations:

$$
\begin{gathered}
\frac{\|x\|_{2}}{\sqrt{n}} \leq\|x\|_{\infty} \leq\|x\|_{2} \\
\|x\|_{2} \leq\|x\|_{1} \leq\|x\|_{2} \sqrt{n} \\
\frac{\|x\|_{1}}{\sqrt{n}} \leq\|x\|_{\infty} \leq\|x\|_{1}
\end{gathered}
$$

Remark 3.1.3 The good-old Euclidian distance is the l_{2} norm that indicates the bird-fight distance. In Figure 3.1, for instance, a plane's trajectory between two points (given latitude and longitude pairs) projected on earth (assuming that it is flat!) is calculated by using the Pythagoras Formula. The rectilinear distance (l_{1} norm) is also known as the Manhattan distance. It indicates the mere sum of the distances along the canonical unit vectors. It assumes the dependence of the movements along with the coordinate axes. In Figure 3.1, the length of the pathway restricted by blocks, of the car from the entrance of a district to the current location is calculated by adding the horizontal movement to the vertical. The Tchebychev's distance (l_{∞}) simply picks the maximum distance among all movements along the coordinate axes, and thus, assumes total independence. The forklift in Figure 3.1 can move sideways by its main engine, and it can independently raise or lower its fork by another motor. The total time it takes for the forklift to pick up an object 10m. away from a rack lying on the floor and place the object on a rack shelf 3 m . above the floor is simply the maximum of the travel time and the raising time. A detailed formal discussion of metric spaces is located in Section 10.1.

Fig. 3.1. Metric examples: $\|\cdot\|_{2},\|\cdot\|_{1},\|\cdot\|_{\infty}$

Definition 3.1.4 The length $\|x\|_{2}$ of a vector x in \mathbb{R}^{n} is the positive square root of

$$
\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}
$$

Remark 3.1.5 $\|x\|_{2}^{2}$ geometrically amounts to the Pythagoras formula applied (n-1) times.
Definition 3.1.6 The quantity $x^{T} y$ is called inner product of the vectors x and y in \mathbb{R}^{n}

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}
$$

Proposition 3.1.7

$$
x^{T} y=0 \Leftrightarrow x \perp y
$$

Proof. (\Leftarrow) Pythagoras Formula: $\|x\|^{2}+\|y\|^{2}=\|x-y\|^{2}$, $\|x-y\|^{2}=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}=\|x\|^{2}+\|y\|^{2}-2 x^{T} y$. The last two identities yield the conclusion, $x^{T} y=0$.

$$
(\Rightarrow) x^{T} y=0 \Rightarrow\|x\|^{2}+\|y\|^{2}=\|x-y\|^{2} \Rightarrow x \perp y
$$

Theorem 3.1.8 (Schwartz Inequality)

$$
\left|x^{T} y\right| \leq\|x\|_{2}\|y\|_{2}, \quad x, y \in \mathbb{R}^{n}
$$

Proof. The following holds $\forall \alpha \in \mathbb{R}$:
$0 \leq\|x+\alpha y\|_{2}^{2}=x^{T} x+2|\alpha| x^{T} y+\alpha^{2} y^{T} y=\|x\|_{2}^{2}+2|\alpha| x^{T} y+\alpha^{2}\|y\|_{2}^{2}$,
Case $(x \perp y)$: In this case, we have $\Rightarrow x^{T} y=0 \leq\|x\|_{2}\|y\|_{2}$.
Case $(x \npreceq y)$: Let us fix $\alpha=\frac{\|x\|_{2}^{2}}{x^{T} y}$. Then, (災) $0 \leq-\|x\|^{2}+\frac{\|x\|_{2}^{4}\|y\|_{2}^{2}}{\left(x^{T} y\right)^{2}}$.

3.1.2 Orthogonal Spaces

Definition 3.1.9 Two subspaces U and V of the same space \mathbb{R}^{n} are called orthogonal if $\forall u \in U, \forall v \in V, u \perp v$.

Proposition 3.1.10 $\mathcal{N}(A)$ and $\mathcal{R}\left(A^{T}\right)$ are orthogonal subspaces of $\mathbb{R}^{n}, \mathcal{N}\left(A^{T}\right)$ and $\mathcal{R}(A)$ are orthogonal subspaces of \mathbb{R}^{m}.

Proof. Let $w \in \mathcal{N}(A)$ and $v \in \mathcal{R}\left(A^{T}\right)$ such that $A w=\theta$, and $v=A^{T} x$ for some $x \in \mathbb{R}^{n} . w^{T} v=w^{T}\left(A^{T} x\right)=\left(w^{T} A^{T}\right) x=\theta^{T} x=0$.

Definition 3.1.11 Given a subspace V of \mathbb{R}^{n}, the space of all vectors orthogonal to V is called the orthogonal complement of V, denoted by V^{\perp}.

Theorem 3.1.12 (Fundamental Theorem of Linear Algebra, Part 2)

$$
\begin{array}{ll}
\mathcal{N}(A)=\left(\mathcal{R}\left(A^{T}\right)\right)^{\perp}, & \mathcal{R}\left(A^{T}\right)=(\mathcal{N}(A))^{\perp} \\
\mathcal{N}\left(A^{T}\right)=(\mathcal{R}(A))^{\perp}, & \mathcal{R}(A)=\left(\mathcal{N}\left(A^{T}\right)\right)^{\perp}
\end{array}
$$

Remark 3.1.13 The following statements are equivalent.
i. $W=V^{\perp}$.
ii. $V=W^{\perp}$.
iii. $W \perp V$ and $\operatorname{dim} V+\operatorname{dim} W=n$.

Proposition 3.1.14 The following are true:
i. $\mathcal{N}(A B) \supseteq \mathcal{N}(B)$.
ii. $\mathcal{R}(A B) \subseteq \mathcal{R}(A)$.
iii. $\mathcal{N}\left((A B)^{T}\right) \supseteq \mathcal{N}\left(A^{T}\right)$.
iv. $\mathcal{R}\left((A B)^{T}\right) \subseteq \mathcal{R}\left(B^{T}\right)$.

Proof. Consider the following:
i. $B x=0 \Rightarrow A B x=0$. Thus, $\forall x \in \mathcal{N}(B), x \in \mathcal{N}(A B)$.
ii. Let $b \ni A B x=b$ for some x, hence $\exists y=B x \ni A y=b$.
iii. Items (iii) and (iv) are similar, since $(A B)^{T}=B^{T} A^{T}$.

Corollary 3.1.15

$$
\begin{aligned}
& \operatorname{rank}(A B) \leq \operatorname{rank}(A) \\
& \operatorname{rank}(A B) \leq \operatorname{rank}(B)
\end{aligned}
$$

3.1.3 Angle between two vectors

See Figure 3.2 and below to prove the following proposition.

$$
\begin{gathered}
c=b-a \Rightarrow \cos c=\cos (b-a)=\cos b \cos a+\sin b \sin a \\
\cos c=\frac{u_{1}}{\|u\|} \frac{v_{1}}{\|v\|}+\frac{u_{2}}{\|u\|} \frac{v_{2}}{\|v\|}=\frac{u_{1} v_{1}+u_{2} v_{2}}{\|u\|\|v\|} .
\end{gathered}
$$

Fig. 3.2. Angle between vectors

Proposition 3.1.16 The cosine of the angle between any two vectors u and v is

$$
\cos c=\frac{u^{T} v}{\|u\|\|v\|}
$$

Remark 3.1.17 The law of cosines:

$$
\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\|\|v\| \cos c
$$

3.1.4 Projection

Let $p=\bar{x} v$ where $\frac{\|p\|}{\|v\|}=\bar{x} \in \mathbb{R}$ is the scale factor. See Figure 3.3.

$$
(u-p) \perp v \Leftrightarrow v^{T}(u-p)=0 \Leftrightarrow \bar{x}=\frac{v^{T} u}{v^{T} v} .
$$

Fig. 3.3. Projection

Definition 3.1.18 The projection p of the vector u onto the line spanned by the vector v is given by $p=\frac{u^{T} v}{v^{T} v} v$.

The distance from the vector u to the line is (Schwartz inequality) therefore

$$
\left\|u-\frac{v^{T} u}{v^{T} v} v\right\|^{2}=u^{T} u-2 \frac{\left(v^{T} u\right)^{2}}{v^{T} v}+\left(\frac{v^{T} u}{v^{T} v}\right)^{2} v^{T} v=\frac{\left(u^{T} u\right)\left(v^{T} v\right)-\left(v^{T} u\right)^{2}}{v^{T} v}
$$

3.1.5 Symmetric Matrices

Definition 3.1.19 A square matrix A is called symmetric if $A^{T}=A$.
Proposition 3.1.20 Let $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=r$. The product $A^{T} A$ is a symmetric matrix and $\operatorname{rank}\left(A^{T} A\right)=r$.

Proof. $\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$.
Claim: $\mathcal{N}(A)=\mathcal{N}\left(A^{T} A\right)$.
i. $\mathcal{N}(A) \subseteq \mathcal{N}\left(A^{T} A\right): x \in \mathcal{N}(A) \Rightarrow A x=\theta \Rightarrow A^{T} A x=A^{T} \theta=\theta \Rightarrow x \in$ $\mathcal{N}\left(A^{T} A\right)$.
ii. $\mathcal{N}\left(A^{T} A\right) \subseteq \mathcal{N}(A): x \in \mathcal{N}\left(A^{T} A\right) \Rightarrow A^{T} A x=\theta \Rightarrow x^{T} A^{T} A x=\theta \Leftrightarrow$ $\|A x\|^{2}=0 \Leftrightarrow A x=\theta, x \in \mathcal{N}(A)$.

Remark 3.1.21 $A^{T} A$ has n columns, so does A. Since $\mathcal{N}(A)=\mathcal{N}\left(A^{T} A\right)$, $\operatorname{dimN}(A)=n-r \Rightarrow \operatorname{dim} R\left(A^{T} A\right)=n-(n-r)=r$.

Corollary 3.1.22 If $\operatorname{rank}(A)=n \Rightarrow A^{T} A$ is a square, symmetric, and invertible (non-singular) matrix.

3.2 Projections and Least Squares Approximations

$A x=b$ is solvable if $b \in R(A)$. If $b \notin R(A)$, then our problem is choose $\bar{x} \ni\|b-A \bar{x}\|$ is as small as possible.

$$
\begin{aligned}
A \bar{x}-b \perp R(A) \Leftrightarrow(A y)^{T}(A \bar{x}-b) & =0 \Leftrightarrow \\
y^{T}\left[A^{T} A \bar{x}-A^{T} b\right]=0\left(y^{T} \neq \theta\right) \Rightarrow A^{T} A \bar{x}-A^{T} b & =\theta \Rightarrow A^{T} A \bar{x}=A^{T} b .
\end{aligned}
$$

Proposition 3.2.1 The least squares solution to an inconsistent system $A x=b$ of m equations and n unknowns satisfies $A^{T} A \bar{x}=A^{T} b$ (normal equations).
If columns of A are independent, then $A^{T} A$ is invertible, and the solution is

$$
\bar{x}=\left(A^{T} A\right)^{-1} A^{T} b
$$

The projection of b onto the column space is therefore

$$
p=A \bar{x}=A\left(A^{T} A\right)^{-1} A^{T} b=P b
$$

where the matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ that describes this construction is known as projection matrix.

Remark 3.2.2 $(I-P)$ is another projection matrix which projects any vector b onto the orthogonal complement: $(I-P) b=b-P b$.

Proposition 3.2.3 The projection matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ has two basic properties:
a. it is idempotent: $P^{2}=P$.
b. it is symmetric: $P^{T}=P$.

Conversely, any matrix with the above two properties represents a projection onto the column space of A.

Proof. The projection of a projection is itself.

$$
P^{2}=A\left[\left(A^{T} A\right)^{-1} A^{T} A\right]\left(A^{T} A\right)^{-1} A^{T}=A\left(A^{T} A\right)^{-1} A^{T}=P
$$

We know that $\left(B^{-1}\right)^{T}=\left(B^{T}\right)^{-1}$. Let $B=A^{T} A$.

$$
P^{T}=\left(A^{T}\right)^{T}\left[\left(A^{T} A\right)^{-1}\right]^{T} A^{T}=A\left[A^{T}\left(A^{T}\right)^{T}\right]^{-1} A^{T}=A\left(A^{T} A\right)^{-1} A^{T}=P
$$

3.2.1 Orthogonal bases

Definition 3.2.4 A basis $V=\left\{v_{i}\right\}_{i=1}^{n}$ is called orthonormal if

$$
v_{i}^{T} v_{j}=\left\{\begin{array}{l}
0, i \neq j \text { (ortagonality) } \\
1, i=j \text { (normalization) }
\end{array}\right.
$$

Example 3.2.5 $E=\left\{e_{i}\right\}_{i=1}^{n}$ is an orthonormal basis for \mathbb{R}^{n}, whereas $X=$ $\left\{x_{i}\right\}_{i=1}^{n}$ in Example 2.1.12 is not.

Proposition 3.2.6 If A is an m by n matrix whose columns are orthonormal (called an orthogonal matrix), then $A^{T} A=I_{n}$.

$$
P=A A^{T}=a_{1} a_{1}^{T}+\cdots+a_{n} a_{n}^{T} \Rightarrow \bar{x}=A^{T} b
$$

is the least squared solution for $A x=b$.

Corollary 3.2.7 An orthogonal matrix Q has the following properties:

1. $Q^{T} Q=I=Q Q^{T}$,
2. $Q^{T}=Q^{-1}$,
3. Q^{T} is orthogonal.

Example 3.2.8 Suppose we project a point $\alpha^{T}=(a, b, c)$ into \mathbb{R}^{2} plane. Clearly, $p=(a, b, 0)$ as it can be seen in Figure 3.4.

$$
\begin{gathered}
e_{1} e_{1}^{T} \alpha=\left[\begin{array}{l}
a \\
0 \\
0
\end{array}\right], e_{2} e_{2}^{T} \alpha=\left[\begin{array}{l}
0 \\
b \\
0
\end{array}\right] . \\
P=e_{1} e_{1}^{T}+e_{2} e_{2}^{T}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] . \\
P \alpha=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
0
\end{array}\right] .
\end{gathered}
$$

Fig. 3.4. Orthogonal projection

Remark 3.2.9 When we find an orthogonal basis that spans the ground vector space and the coordinates of any vector with respect to this basis is on hand, the projection of this vector into a subspace spanned by any subset of the basis has coordinates 0 in the orthogonal complement and the same coordinates in the projected subspace. That is, the projection operation simply zeroes the positions other than the projected subspace like in the above example. One main aim of using orthogonal bases like $E=\left\{e_{i}\right\}_{i=1}^{n}$ for the Cartesian system, \mathbb{R}^{n}, is to have the advantage of simplifying projections, besides many other advantages like preserving lengths.

Proposition 3.2.10 Multiplication by an orthogonal Q preserves lengths

$$
\|Q x\|=\|x\|, \forall x
$$

and inner products

$$
(Q x)^{T}(Q y)=x^{T} y, \forall x, y
$$

3.2.2 Gram-Schmidt Orthogonalization

Let us take two independent vectors a and b. We want to produce two perpendicular vectors v_{1} and v_{2} :

$$
v_{1}=a, v_{2}=b-p=b-\frac{v_{1}^{T} b}{v_{1}^{T} v_{1}} v_{1} \Rightarrow v_{1}^{T} v_{2}=0 \Rightarrow v_{1} \perp v_{2}
$$

If we have a third independent vector c, then

$$
v_{3}=c-\frac{v_{1}^{T} c}{v_{1}^{T} v_{1}} v_{1}-\frac{v_{2}^{T} c}{v_{2}^{T} v_{2}} v_{2} \Rightarrow v_{3} \perp v_{2}, v_{3} \perp v_{1}
$$

If we scale v_{1}, v_{2}, v_{3}, we will have orthonormal vectors:

$$
q_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}, q_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}, q_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}
$$

Proposition 3.2.11 Any set of independent vectors $a_{1}, a_{2}, \ldots, a_{n}$ can be converted into a set of orthogonal vectors $v_{1}, v_{2}, \ldots, v_{n}$ by the Gram-Schmidt process. First, $v_{1}=a_{1}$, then each v_{i} is orthogonal to the preceding $v_{1}, v_{2}, \ldots, v_{i-1}$:

$$
v_{i}=a_{i}-\frac{v_{1}^{T} a_{i}}{v_{1}^{T} v_{1}} v_{1}-\cdots-\frac{v_{i-1}^{T} a_{i}}{v_{i-1}^{T} v_{i-1}} v_{i-1}
$$

For every choice of i, the subspace spanned by original $a_{1}, a_{2}, \ldots, a_{i}$ is also spanned by $v_{1}, v_{2}, \ldots, v_{i}$. The final vectors

$$
\left\{q_{i}=\frac{v_{i}}{\left\|v_{i}\right\|}\right\}_{i=1}^{n}
$$

are orthonormal.
Example 3.2.12 Let $a_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], a_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], a_{3}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
$v_{1}=a_{1}$, and
$\frac{a_{2}^{T} v_{1}}{v_{1}^{T} v_{1}}=\frac{1}{2} \Rightarrow v_{2}=a_{2}-\frac{1}{2} v_{1}=\left[\begin{array}{r}\frac{1}{2} \\ 1 \\ -\frac{1}{2}\end{array}\right]$.
$\frac{a_{3}^{T} v_{1}}{v_{1}^{T} v_{1}}=\frac{1}{2}, \frac{a_{3}^{T} v_{2}}{v_{2}^{T} v_{2}}=\frac{\frac{1}{2}}{\frac{3}{2}}, \Rightarrow v_{3}=a_{3}-\frac{1}{2} v_{1}-\frac{1}{3} v_{2}=\left[\begin{array}{r}-\frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right]$. Then,
$q_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right], q_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\sqrt{\frac{2}{3}}\left[\begin{array}{r}\frac{1}{2} \\ 1 \\ -\frac{1}{2}\end{array}\right]=\left[\begin{array}{r}\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}}\end{array}\right]$,
and $q_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\sqrt{\frac{9}{12}}\left[\begin{array}{r}-\frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right]=\left[\begin{array}{c}-\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right]$.

$$
\begin{aligned}
& a_{1}=v_{1}=\sqrt{2} q_{1} \\
& a_{2}=\frac{1}{2} v_{1}+v_{2}=\sqrt{\frac{1}{2}} q_{1}+\sqrt{\frac{3}{2}} q_{2} \\
& a_{3}=\frac{1}{2} v_{1}+\frac{1}{3} v_{2}+v_{3}=\sqrt{\frac{1}{2}} q_{1}+\sqrt{\frac{1}{6}} q_{2}+\sqrt{\frac{4}{3}} q_{3} \\
& \Leftrightarrow\left[a_{1}, a_{2}, a_{3}\right]=\left[q_{1}, q_{2}, q_{3}\right]\left[\begin{array}{c}
\sqrt{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \\
0 \sqrt{\frac{3}{2}} \\
\sqrt{\frac{1}{6}} \\
0
\end{array} 0 \begin{array}{c}
\sqrt{\frac{4}{3}}
\end{array}\right] \Leftrightarrow A=Q R .
\end{aligned}
$$

Proposition 3.2.13 $A=Q R$ where the columns of Q are orthonormal vectors, and R is upper-triangular with $\left\|v_{i}\right\|$ on the diagonal, therefore is invertible. If A is square, then so are Q and R.

Definition 3.2.14 $A=Q R$ is known as $Q-R$ decomposition.
Remark 3.2.15 If $A=Q R$, then it is easy to solve $A x=b$:

$$
\begin{gathered}
\bar{x}=\left(A^{T} A\right)^{-1} A^{T} b=\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T} b=\left(R^{T} R\right)^{-1} R^{T} Q^{T} b=R^{-1} Q^{T} b \\
R \bar{x}=Q^{T} b
\end{gathered}
$$

3.2.3 Pseudo (Moore-Penrose) Inverse

$$
A x=b \leftrightarrow A \bar{x}=p=P b \Leftrightarrow \bar{x}=\left(A^{T} A\right)^{-1} A^{T} b
$$

$A \bar{x}=p$ have only one solution \Leftrightarrow The columns of A are linearly independent $\Leftrightarrow \mathcal{N}(A)$ contains only $\theta \Leftrightarrow \operatorname{rank}(A)=n \Leftrightarrow A^{T} A$ is invertible.

Let A^{\dagger} be pseudo inverse of A. If A is invertible, then $A^{\dagger}=A^{-1}$. Otherwise, $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$, if the above conditions hold. Then, $x=A^{\dagger} b$. Otherwise, the optimal solution is the solution of $A \bar{x}=p$ which is the one that has the minimum length.

Let $\overline{x_{0}} \ni A \overline{x_{0}}=p, \overline{x_{0}}=\overline{x_{r}}+w$ where $\overline{x_{r}} \in \mathcal{R}\left(A^{T}\right)$ and $w \in \mathcal{N}(A)$. We have the following properties:
i. $A \overline{x_{r}}=A\left(\overline{x_{r}}+w\right)=A \overline{x_{0}}=p$.
ii. $\forall \bar{x} \ni A \bar{x}=p, \bar{x}=\overline{x_{r}}+w$ with a variation in w part only, where $\overline{x_{r}}$ is fixed.
iii. $\left\|\overline{x_{r}}+w\right\|^{2}=\left\|\overline{x_{r}}\right\|^{2}+\|w\|^{2}$.

Proposition 3.2.16 The optimal least squares solution to $A x=b$ is $\overline{x_{r}}$ (or simply $\bar{x})$, which is determined by two conditions

1. $A \bar{x}=p$, where p is the projection of b onto the column space of A.
2. \bar{x} lies in the row space of A.

Then, $\bar{x}=A^{\dagger} b$.
Example 3.2.17 $A=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \alpha & 0\end{array}\right]$ where $\alpha>0, \beta>0$.
Then, $\mathcal{R}(A)=\mathbb{R}^{2}$ and $p=P b=\left(0, b_{2}, b_{3}\right)^{T}$.

$$
\begin{gathered}
A \bar{x}=p \Leftrightarrow\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \beta & 0 & 0 \\
0 & 0 & \alpha & 0
\end{array}\right]\left[\begin{array}{c}
\overline{x_{1}} \\
\overline{x_{2}} \\
\overline{x_{3}} \\
\overline{x_{4}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
b_{2} \\
b_{3}
\end{array}\right] \\
\overline{x_{2}}=\frac{b_{2}}{\beta}, \overline{x_{3}}=\frac{b_{3}}{\alpha}, \overline{x_{1}}=\overline{x_{4}}=0, \text { with the minimum length! }
\end{gathered}
$$

$\Rightarrow \bar{x}=\left[\begin{array}{c}0 \\ \frac{b_{2}}{\beta} \\ \frac{b_{3}}{\alpha} \\ 0\end{array}\right]=A^{\dagger} b=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & \frac{1}{\beta} & 0 \\ 0 & 0 & \frac{1}{\alpha} \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$. Thus, $A^{\dagger}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & \frac{1}{\beta} & 0 \\ 0 & 0 & \frac{1}{\alpha} \\ 0 & 0 & 0\end{array}\right]$.

3.2.4 Singular Value Decomposition

Definition 3.2.18 $A \in \mathbb{R}^{m \times n}, A=Q_{1} \Sigma Q_{2}^{T}$ is known as singular value decomposition, where $Q_{1} \in \mathbb{R}^{m \times m}$ orthogonal, $Q_{2} \in \mathbb{R}^{m \times m}$ orthogonal, and Σ has a special diagonal form

$$
\Sigma=\left[\begin{array}{llllll}
\alpha & & & & & \\
& \beta & & & & \\
& & \ddots & & & \\
& & & \gamma & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right]
$$

with the nonzero diagonal entries called singular values of A.

Proposition 3.2.19 $A^{\dagger}=Q_{2} \Sigma^{\dagger} Q_{1}^{T}$ where $\Sigma^{\dagger}=$

$$
\left[\begin{array}{llllll}
\frac{1}{\alpha} & & & & & \\
& \frac{1}{\beta} & & & & \\
& & \ddots & & & \\
& & & \frac{1}{\gamma} & & \\
& & & & & \\
& & & & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right]
$$

Proof. $\|A x-b\|=\left\|Q_{1} \Sigma Q_{2}^{T} x-b\right\|=\left\|\Sigma Q_{2}^{T} x-Q_{1}^{T} b\right\|$.
This is multiplied by $Q_{1}^{T} y=Q_{2}^{T} x=Q_{2}^{-1} x$ with $\|y\|=\|x\|$.

$$
\begin{gathered}
\min \left\|\Sigma y-Q_{1}^{T} b\right\| \rightarrow \bar{y}=\Sigma^{\dagger} Q_{1}^{T} b \\
\Rightarrow \bar{x}=Q_{2} \bar{y}=Q_{2} \Sigma^{\dagger} Q_{1}^{T} b \Rightarrow A^{\dagger}=Q_{2} \Sigma^{\dagger} Q_{1}^{T}
\end{gathered}
$$

Remark 3.2.20 A typical approach to the computation of the singular value decomposition is as follows. If the matrix has more rows than columns, a $Q R$ decomposition is first performed. The factor R is then reduced to a bidiagonal matrix. The desired singular values and vectors are then found by performing a bidiagonal QR iteration (see Remarks 6.2.3 and 6.2.8).

3.3 Summary for $A \boldsymbol{x}=b$

Let us start with the simplest case which is illustrated in Figure 3.5. $A \in \mathbb{R}^{n \times n}$ is square, nonsingular (hence invertible), $\operatorname{rank}(A)=n=r$. Thus, A represents a change-of-basis transformation from \mathbb{R}^{n} onto itself. Since $n=r$, we have $\forall b \in \mathcal{R}(A) \equiv \mathbb{R}^{n}$. Therefore, there exists a unique solution $x=A^{-1} b$. If we have a decomposition of $A\left(P A=L U, A=Q R, A=Q_{1} \Sigma Q_{2}^{T}\right)$, we follow an casy way to obtain the solution:
$(A=L U) \Rightarrow L c=b, U x=c$ using forward/backward substitutions as illustrated in the previous chapter;
$(A=Q R) \Rightarrow R x=Q^{T} b$ using backward substitution after multiplying the right hand side with Q^{T};
($\left.A=Q_{1} \Sigma Q_{2}^{T}\right) \Rightarrow x=Q_{2} \Sigma^{-1} Q_{1}^{T} b$ using matrix multiplication operations after we take the inverse of the diagonal matrix Σ simply by inverting the diagonal elements.

Fig. 3.5. Unique solution: $b \in \mathcal{R}(A), A: n \times n$, and $r=n$

If $A \in \mathbb{R}^{m \times n}$ has full rank $r=m<n$, we choose any basis among the columns of $A=[B \mid N]$ to represent $\mathcal{R}(A) \equiv \mathbb{R}^{m}$ that contains b. In this case, we have a $p=n-m$ dimensional kernel $\mathcal{N}(A)$ whose elements, being the solutions to the homogeneous system $A x=\theta$, extend the solution. Thus, we have infinitely many solutions $x_{B}=B^{-1} b-B^{-1} N x_{N}$, given any basis B. One such solution is obtained by $x_{N}=\theta \Rightarrow x_{B}=B^{-1} b$ is called a basic solution. In this case, we may use decompositions of $B(B=L U, B=Q R$, $\left.B=Q_{1} \Sigma Q_{2}^{T}\right)$ to speed up the calculations.

If $A \in \mathbb{R}^{m \times n}$ has rank $r<m \leq n$ as given in Figure 3.6, we have $\operatorname{dim}(\mathcal{N}(A))=p=n-r, \operatorname{dim}\left(\mathcal{N}\left(A^{T}\right)\right)=q=m-r$ and $\mathcal{R}(A) \equiv \mathcal{R}\left(A^{T}\right) \equiv \mathbb{R}^{r}$. The elementary row operations yield $A \rightarrow\left[\frac{B \mid N}{O_{q \times n}}\right]$. There exists solution(s) only if $b \in \mathcal{R}(A)$. Assuming that we are lucky to have $b \in \mathcal{R}(A)$, and if \hat{x} is a solution to the first r equations of $A x=b$ (hence to $[B \mid N] x=b$), then $\hat{x}+\alpha \dot{x}, \forall \dot{x} \in \mathcal{N}(A) \backslash\{\theta\}, \forall \alpha \in \mathbb{R}$ is also a solution. Among all solutions $x_{B}=B^{-1} b-B^{-1} N x_{N}, x_{N}=\theta \Rightarrow x_{B}=B^{-1} b$ is a basic solution. We may use decompositions of B to obtain x_{B} as well.

Fig. 3.6. Parametric solution: $b \in \mathcal{R}(A), A: m \times n$, and $r=\operatorname{rank}(A)$

What if $b \notin \mathcal{R}(A)$? We cannot find a solution. For instance, it is quite hard to fit a regression line passing through all observations. In this case, we are interested in the solutions, x, yielding the least squared error $\|b-A x\|_{2}$. If $b \in \mathcal{N}\left(A^{T}\right)$, the projection of b over $\mathcal{R}(A)$ is the null vector θ. Therefore, $\mathcal{N}(A)$ is the collection of the solutions we seek.

Fig. 3.7. Unique least squares solution: $\left(A^{T} A\right)$ is invertible and $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$

If b is contained totally in neither $\mathcal{R}(A)$ nor $\mathcal{N}\left(A^{T}\right)$, we are faced with the non-trivial least squared error minimization problem. If $A^{T} A$ is invertible, the unique solution is $\bar{x}=\left(A^{T} A\right)^{-1} A^{T} b$ as given in Figure 3.7. The regression line in Problem 3.2 is such a solution. We may use $A=Q R$ or $A=Q_{1} \Sigma Q_{2}^{T}$ decompositions to find this solution easily, in these ways: $R \bar{x}=Q^{T} b$ or $\bar{x}=$ $Q_{2} \Sigma^{\dagger} Q_{1}^{T} b$, respectively.

Otherwise, we have many $x \in \mathbb{R}^{n}$ leading to the least squared solution as in Figure 3.8. Among these solutions, we are interested in the solution with

Fig. 3.8. Least norm squared solution: $\left(A^{T} A\right)$ is not invertible and $A^{\dagger}=Q_{2} \Sigma^{\dagger} Q_{1}^{T}$
Table 3.1. How to solve $A x=b$, where $A \in \mathbb{R}^{m \times n}$

Case	Subcase	Solution	Type	Special Forms	Inverse	
$b \in \mathcal{R}(A)$	$r=n=m$	$x=A^{-1} b$	Exact unique	$\begin{gathered} A=L U \Rightarrow L c=b, U x=c \\ A=Q R \Rightarrow R x=Q^{T} b \\ A=Q_{1} \Sigma Q_{2}^{T} \Rightarrow \\ x=Q_{2} \Sigma^{-1} Q_{1}^{T} b \end{gathered}$	$A^{\dagger}=A^{-1}$	
	$\begin{aligned} & r=m<n \\ & A=[B \mid N] \end{aligned}$		Exact many	$\begin{gathered} B=L U \Rightarrow L c=b, U x_{B}=c \\ B=Q R \Rightarrow R x_{B}=Q^{T} b \\ B=Q_{1} \Sigma Q_{2}^{T} \Rightarrow \\ x_{B}=Q_{2} \Sigma^{-1} Q_{1}^{T} b \\ \hline \end{gathered}$	$A^{\dagger} \approx B^{-1}$	
	$\begin{gathered} r=m<n \\ {[A \\| b] \rightarrow} \\ {\left[\begin{array}{c\|\|\|l\|} B \mid & N \\ \hline O \end{array}\right.} \end{gathered}$	$\begin{gathered} x_{B}= \\ B^{-1} \bar{b}- \\ B^{-1} N x_{n} \end{gathered}$	Exact many	$\begin{gathered} B=L U \Rightarrow L c=\bar{b}, U x_{B}=c \\ B=Q R \Rightarrow R x_{B}=Q^{T} \bar{b} \\ B=Q_{1} \Sigma Q_{2}^{T} \Rightarrow \\ x_{B}=Q_{2} \Sigma^{-1} Q_{1}^{T} \bar{b} \end{gathered}$	$A^{\dagger} \approx B^{-1}$	
$b \in \mathcal{N}\left(A^{T}\right)$	$\begin{gathered} r<m \\ A \rightarrow\left[\frac{I \mid N}{O}\right] \end{gathered}$	many $\forall \bar{x} \in$ $\mathcal{N}(A)$	Trivial Least Squares	$\begin{gathered} \bar{x}=\alpha^{T}\left[\frac{-N}{I}\right], \\ \forall \alpha \in \mathbb{R}^{n-r} \end{gathered}$	none	
$\begin{aligned} & b \notin \mathcal{R}(A) \\ & b \notin \mathcal{N}(A) \end{aligned}$	$\left(A^{T} A\right):$ invertible	$\bar{x}=A^{\dagger} b$	Unique Least Squares	$\begin{gathered} \hline A=Q R \Rightarrow R \bar{x}=Q^{T} b \\ A=Q_{1} \Sigma Q_{2}^{T} \Rightarrow \\ \bar{x}=Q_{2} \Sigma^{-1} Q_{1}^{T} b \end{gathered}$	$\begin{gathered} A^{\dagger}= \\ \left(A^{T} A\right)^{-1} A^{T} \end{gathered}$	
	($A^{T} A$): not invertible	$\begin{gathered} \text { many } \\ \bar{x}=A^{\dagger} b \\ \text { min.norm } \end{gathered}$	Least Norm Squares	$\begin{gathered} A=Q_{1} \Sigma Q_{2}^{T} \Rightarrow \\ \bar{x}=Q_{2} \Sigma^{\dagger} Q_{1}^{T} b \end{gathered}$	$\begin{gathered} A^{\dagger}= \\ Q_{2} \Sigma^{\dagger} Q_{1}^{T} \end{gathered}$	

the smallest magnitude, in some engineering applications. We may use the singular value decomposition in this process.

The summary of the discussions about $A x=b$ is listed in Table 3.1.

Problems

3.1. Q-R Decomposition

Find $Q R$ decomposition of $A=\left[\begin{array}{rrrr}1 & 2 & 0 & -1 \\ 1 & -1 & 3 & 2 \\ 1 & -1 & 3 & 2 \\ -1 & 1 & -3 & 1\end{array}\right]$.

3.2. Least Squares Approximation: Regression

Assume that you have sampled n pairs of data of the form (x, y). Find the regression line that minimizes the squared errors. Give an example for $n=5$.

3.3. $A x=b$

Solve the following $A x=b$ using the special decomposition forms.
(a) Let $A_{1}=\left[\begin{array}{lll}1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1\end{array}\right]$ and $b_{1}=\left[\begin{array}{r}8 \\ 19 \\ 3\end{array}\right]$ using LU decomposition.
(b) $A_{2}=\left[\begin{array}{lllll}2 & 1 & 3 & 1 & 0 \\ 1 & 3 & 2 & 0 & 1 \\ 3 & 2 & 1 & 1 & 0\end{array}\right]$ and $b_{2}=\left[\begin{array}{r}8 \\ 19 \\ 3\end{array}\right]$ using LU decomposition. Find at least two solutions.
(c) $A_{3}=\left[\begin{array}{rr}1 & 2 \\ 4 & 5 \\ 7 & 8 \\ 10 & 11\end{array}\right]$ and $b_{3}=\left[\begin{array}{l}2 \\ 5 \\ 6 \\ 8\end{array}\right]$ using QR decomposition.
(d) $A_{4}=\left[\begin{array}{rrrr}-1 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1\end{array}\right]$ and $b_{4}=\left[\begin{array}{l}2 \\ 4 \\ 3 \\ 3\end{array}\right]$, using singular value decomposition.

Web material

Norm_Induced_Inner_Product.html
http://ccrma-www.stanford.edu/~jos/r320/Inner_Product.html
http://ccrma-www.stanford.edu/~jos/sines/
Geometric_Signal_Theory.html
http://ccrma.stanford.edu/~jos/mdft/Inner_Product.html
http://cnx.org/content/m10561/latest/
http://elsa.berkeley.edu/~ruud/cet/excerpts/PartIOverview.pdf
http://en.wikipedia.org/wiki/Inner_product_space
http://en.wikipedia.org/wiki/Lp_space
http://en.wikipedia.org/wiki/Moore-Penrose_inverse
http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://engr.smu.edu/emis/8371/book/chap2/node8.html
http://eom.springer.de/P/p074290.htm
http://eom.springer.de/R/r130070.htm
http://epoch.uwaterloo.ca/~ponnu/syde312/algebra/page09.htm
http://epubs.siam.org/sam-bin/dbq/article/30478
http://genome-www.stanford.edu/SVD/
http://geosci.uchicago.edu/~gidon/geos31415/genLin/svd.pdf
http://info.wlu.ca/~wwmath/faculty/vaughan/ma255/
ma255orthogproj05.pdf
http://ingrid.ldeo.columbia.edu/dochelp/StatTutorial/SVD/
http://iria.pku.edu.cn/~jiangm/courses/IRIA/node119.html
http://isolatium.uhh.hawaii.edu/linear/lectures.htm
http://kwon3d.com/theory/jkinem/svd.html
http://library.lanl.gov/numerical/bookcpdf/c2-10.pdf
http://linneus20.ethz.ch:8080/2_2_1.html
http://lmb.informatik.uni-freiburg.de/people/dkats/
DigitalImageProcessing/pseudoInvNew.pdf
http://mathnt.mat.jhu.edu/matlab/5-15.html
http://mathnt.mat.jhu.edu/matlab/5-6.html
http://maths.dur.ac.uk/ ${ }^{\text {dma0wmo/teaching/1h-la/LAnotes/node18.html }}$
http://mathworld.wolfram.com/InnerProductSpace.html
http://mathworld.wolfram.com/MatrixInverse.html
http://mathworld.wolfram.com/Moore-PenroseMatrixInverse.html
http://mathworld.wolfram.com/QRDecomposition.html
http://mathworld.wolfram.com/SchwarzsInequality.html
http://mathworld.wolfram.com/SingularValueDecomposition.html http://mcraefamily.com/MathHelp/BasicNumberIneqCauchySchwarz.htm http://mymathlib. webtrellis.net/matrices/vectorspaces.html http://planetmath.org/encyclopedia/CauchySchwarzInequality.html http://planetmath.org/encyclopedia/InnerProduct.html
http://planetmath.org/encyclopedia/InnerProductSpace.html
http://planetmath.org/encyclopedia/
MoorePenroseGeneralizedInverse.html
http://planetmath.org/encyclopedia/NormedVectorSpace.html http://planetmath.org/encyclopedia/OrthogonalityRelations.html
http://planetmath.org/encyclopedia/QRDecomposition.html
http://planetmath.org/encyclopedia/SingularValueDecomposition.html
http://psblade.ucdavis.edu/papers/ginv.pdf
http://public.lanl.gov/mewall/kluwer2002.html
http://rkb.home.cern.ch/rkb/AN16pp/node224.html
http://robotics.caltech.edu/~jwb/courses/ME115/handouts/pseudo.pdf
http://staff.science.uva.nl/~brandts/NW2/DOWNLOADS/hoofdstuk1.pdf
http://tutorial math. lamar.edu/AllBrowsers/2318/
InnerProductSpaces.asp
http://web.mit.edu/be. $400 / \mathrm{www} / \mathrm{SVD} /$ Singular_Value_Decomposition.htm
http://wks7.itlab.tamu.edu/Math640/notes7b.html
http://world.std.com/~sweetser/quaternions/quantum/bracket/
bracket.html
http://www-ccrma.stanford.edu/~jos/mdft/Inner_Product.html
http://www.axler.net/Chapter6.pdf
http://www.ccmr.cornell.edu/~muchomas/8.04/1995/ps5/node17.html
http://www.cco.caltech.edu/~mihai/Ma8-Fall2004/Notes/Notes4/n4.pdf
http://www.cs.brown.edu/research/ai/dynamics/tutorial/Postscript/
SingularValueDecomposition.ps
http://www.cs.hartford.edu/~bpollina/m220/html/7.1/
7.1_InnerProducts.html
http://www.cs.rpi.edu/~flaherje/pdf/lin11.pdf
http://www.cs.unc.edu/ k krishnas/eigen/node6.html
http://www.cs.ut.ee/~toomas_1/linalg/lin1/node10.html
http://www.csit.fsu.edu/~gallivan/courses/NLA2/set9.pdf
http://www.ctcms.nist.gov/~wcraig/variational/node2.html
http://www.ctcms.nist.gov/~wcraig/variational/node3.html
http://www.davidson.edu/math/will/svd/index.html
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/decomp.html
http://www.emis.de/journals/AM/99-1/cruells.ps
http://www.eurofreehost.com/ca/Cauchy-Schwartz_inequality.html
http://www.everything2.com/index.pl?node_id=53160
http://www.fiu.edu/~economic/wp2004/04-08.pdf
http://www.fmrib.ox.ac.uk/~tkincses/jc/SVD.pdf
http://www.fon.hum.uva.nl/praat/manual/
generalized_singular_value_decomposition.html
http://www.free-download-soft.com/info/sdatimer.html
http://www.iro.umontreal.ca/~ducharme/svd/svd/index.html
http://www.library. cornell.edu/nr/bookcpdf/c2-6.pdf
http://www.mast.queensu.ca/~speicher/Section6.pdf
http://www.math.duke.edu/education/ccp/materials/linalg/leastsq/
leas2.html
http://www.math.duke.edu/education/ccp/materials/linalg/orthog/
http://www.math.harvard.edu/~knill/teaching/math21b2002/
10-orthogonal/orthogonal.pdf
http://www.math.ohio-state.edu/~gerlach/math/BVtypset/node6.html
http://www.math.psu.edu/~anovikov/math436/h-out/gram.pdf
http://www.math.sfu.ca/ ${ }^{\text {ralfw/math252/week13.html }}$
http://www.math.ucsd.edu/~gnagy/teaching/06-winter/Math20F/w9-F.pdf
http://www.math.umd.edu/~hck/461/s04/461s04m6.pdf
http://www.mathcs.duq.edu/larget/math496/qr.html
http://www.mathreference.com/top-ms,csi.html
http://www.maths.adelaide.edu.au/people/pscott/linear_algebra/lapf/
32.html
http://www.maths.qmw.ac.uk/~sm/LAII/01ch5.pdf
http://www.mathworks.com/access/helpdesk/help/techdoc/math/ mat_linalg25.html
http://www.matrixanalysis.com/Chapter5.pdf
http://www.mccormick.northwestern.edu/jrbirge/lec31_14nov2000.ppt
http://www.mccormick.northwestern.edu/jrbirge/lec33_17nov2000.ppt
http://www.nada.kth.se/kurser/kth/2D1220/Hsvd.pdf
http://www.nasc.snu.ac.kr/sheen/nla/html/node19.html
http://www.nationmaster.com/encyclopedia/Inner-product
http://www.netlib.org/lapack/lug/node53.html
http://www.public.asu.edu/~sergei/classes/mat242f99/LinAlg4.doc
http://www.reference.com/browse/wiki/Inner_product_space
http://www.sciencedaily.com/encyclopedia/lp_space
http://www.uwlax.edu/faculty/will/svd/
http://www.vias.org/tmdatanaleng/cc_matrix_pseudoinv.html
http://www.wooster.edu/math/linalg/LAFacts04.pdf
www. chu.edu.tw/~ chlee/NA2003/NA2003-1.pdf
www.math.umn.edu/~olver/appl_/ort.pdf
www.math.uwo.ca/~aricha7/courses/283/week10.pdf
www.maths.lse.ac.uk/Personal/martin/fme5a.pdf
www.maths.qmw.ac.uk/~sm/LAII/01ch5.pdf

Eigen Values and Vectors

In this chapter, we will analyze determinant and its properties, definition of eigen values and vectors, different ways how to diagonalize square matrices and finally the complex case with Hermitian, unitary and normal matrices.

4.1 Determinants

4.1.1 Preliminaries

Proposition 4.1.1 $\operatorname{det} A \neq 0 \Rightarrow A$ is nonsingular.
Remark 4.1.2 Is $A-\lambda I$ (where λ is the vector of eigen values) invertible?

$$
\operatorname{det}(A-\lambda I)={ }^{?} 0
$$

where $\operatorname{det}(A-\lambda I)$ is a polynomial of degree n in λ, thus it has n roots.
Proposition 4.1.3 (Cramer's Rule) $A x=b$ where A is nonsingular. Then, the solution for the j th unknown is

$$
x_{j}=\frac{\operatorname{det}(A(j \leftarrow b))}{\operatorname{det} A}
$$

where $A(j \leftarrow b)$ is the matrix obtained from A by interchanging column j with the right hand side b.

Proposition 4.1.4 $\operatorname{det} A= \pm$ [product of pivots].
Proposition 4.1.5 $|\operatorname{det} A|=\operatorname{Vol}(P)$, where $P=\operatorname{conv}\left\{\sum_{i=1}^{n} e_{i} a_{i}, e_{i}\right.$ is the j th unit vector\} is parallelepiped whose edges are from rows of A. See Figure 4.1.

Corollary 4.1.6 $|\operatorname{det} A|=\prod_{i=1}^{n}\left\|a_{i}\right\|$.
Definition 4.1.7 Let $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$.

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Fig. 4.1. $|\operatorname{det} A|=\operatorname{Volume}(P)$.

4.1.2 Properties

1. The determinant of I is 1 .

Example 4.1.8

$$
\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1 .
$$

2. The determinant is a linear function of any row, say the first row.

Example 4.1.9

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-c b . \\
& \left|\begin{array}{ll}
t a & t b \\
c & d
\end{array}\right|=t a d-t c d=t\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
\end{aligned}
$$

3. If A has a zero row, then $\operatorname{det} A=0$.

Example 4.1.10

$$
\left|\begin{array}{ll}
0 & 0 \\
c & d
\end{array}\right|=0 .
$$

4. The determinant changes sign when two rows are exchanged.

Example 4.1.11

$$
\left|\begin{array}{ll}
c & d \\
a & b
\end{array}\right|=c b-a d=-\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

5. The elementary row operations of subtracting a multiple of one row from another leaves the determinant unchanged.

Example 4.1.12

$$
\left|\begin{array}{cc}
a-\alpha c & b-\alpha d \\
c & d
\end{array}\right|=(a d-\alpha c d)-(b c-\alpha c d)=a d-b c=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

6. If two rows are equal (singularity!), then $\operatorname{det} A=0$.

Example 4.1.13

$$
\left|\begin{array}{ll}
a & b \\
a & b
\end{array}\right|=0 .
$$

7. $\operatorname{det} A^{T}=\operatorname{det} A$.

Example 4.1.14

$$
\left|\begin{array}{ll}
a & c \\
b & d
\end{array}\right|=a d-c b=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

8. If A is triangular, then $\operatorname{det} A=\prod_{i=1}^{n} a_{i i}(\operatorname{det} I=1)$.

Example 4.1.15

$$
\left|\begin{array}{ll}
a & b \\
0 & d
\end{array}\right|=a d,\left|\begin{array}{ll}
a & 0 \\
c & d
\end{array}\right|=a d
$$

9. $A, B \in \mathbb{R}^{n \times n}$, nonsingular, $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.

Example 4.1.16

$$
\begin{gathered}
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|\left|\begin{array}{l}
e \\
g
\end{array}\right|=(a d-c b)(e h-g f)=a d e h-a d g f-c b e h+c b g f \\
\left|\begin{array}{l}
a e+b g a f+b h \\
c e+d g c f+d h
\end{array}\right|=(a e+b g)(c f+d h)-(a f+b h)(c e+d g) \\
=a e c f+a e d h+b g c f+b g d h-a f c e-a f d g-b h c e-b h d g \\
=a d e h-a d g f-c b e h+c b g f .
\end{gathered}
$$

10. Let A be nonsingular, $A=P^{-1} L D U$. Then,

$$
\operatorname{det} A=\operatorname{det} P^{-1} \operatorname{det} L \operatorname{det} D \operatorname{det} U= \pm \text { (product of pivots). }
$$

The sign \pm is the determinant of P^{-1} (or P) depending on whether the number of row exchanges is even or odd. We know $\operatorname{det} L=\operatorname{det} U=1$ from property 7.
Example 4.1.17 By one Gaussian elimination step, we have

$$
\begin{gathered}
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
\frac{a}{c} & 1
\end{array}\right|\left|\begin{array}{cc}
a & 0 \\
0 & \frac{a d-b c}{a}
\end{array}\right|\left|\begin{array}{ll}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right|, \text { since }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \rightarrow\left[\begin{array}{ll}
a & b \\
0 & d-\frac{b c}{a}
\end{array}\right] . \text { Thus, } \\
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c=\operatorname{det} D .
\end{gathered}
$$

11. $\operatorname{det} A=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n}$ (property 1!) where $A_{i j}$'s are cofactors

$$
A_{i j}=(-1)^{i+j} \operatorname{det} M_{i j}
$$

where the minor $M_{i j}$ is formed from A by deleting row i and column j.

Example 4.1.18

$$
\begin{aligned}
& \quad\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{lll}
a_{11} & & \\
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+\left|\begin{array}{cc}
a_{12} & \\
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+\left|\begin{array}{cc}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)+a_{12}\left(a_{23} a_{31}-a_{21} a_{33}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31} .
\end{aligned}
$$

4.2 Eigen Values and Eigen Vectors

Definition 4.2.1 The number λ is an eigen value of A, with a corresponding nonzero eigen vector v such that $A v=\lambda v$.

The last equation can be organized as $(\lambda I-A) v=\theta$. In order to have a nontrivial solution $v \neq \theta$, the corresponding null space (kernel) $\mathcal{N}(\lambda I-A)$ should contain vectors other than θ. Thus, the kernel has dimension larger than 0 , which means we get at least one zero row in Gaussian elimination. Therefore, $(\lambda I-A)$ is singular. Hence, λ should be chosen such that $\operatorname{det}(\lambda I-A)=0$. This equation is known as characteristic equation for A.

$$
d(s)=\operatorname{det}(s I-A)=s^{n}+d_{1} s^{n+1}+\cdots+d_{n}=0
$$

Then, the eigen values are the roots.

$$
d(s)=\left(s-\lambda_{1}\right)^{n_{1}}\left(s-\lambda_{2}\right)^{n_{2}} \ldots\left(s-\lambda_{k}\right)^{n_{k}}=\prod_{i=1}^{k}\left(s-\lambda_{i}\right)^{n_{i}} .
$$

The sum of multiplicities should be equal to the dimension, i.e. $\sum_{i} n_{i}=n$.
The sum of n-eigen values equals the sum of n-diagonal entries of A.

$$
\lambda_{1}+\cdots+\lambda_{n}=n_{1} \lambda_{1}+\cdots+n_{k} \lambda_{k}=a_{11}+\cdots+a_{n n}
$$

This sum is known as trace of A. Furthermore, the product of the n-eigen values equals the determinant of A.

$$
\prod_{i=1}^{n} \lambda_{i}=\prod_{j=1}^{k} \lambda_{i}^{n_{j}}=\operatorname{det} A
$$

Remark 4.2.2 If A is triangular, the eigen values $\lambda_{1}, \ldots, \lambda_{n}$ are the diagonal entries $a_{11}, \ldots, a_{n n}$.

Example 4.2.3

$$
A=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
0 & \frac{1}{4} & \frac{3}{4}
\end{array}\right]
$$

$\operatorname{det} A=\frac{1}{2}(1) \frac{3}{4}=\frac{3}{8}$ (property 8).

$$
d(s)=\left|\begin{array}{ccc}
s-\frac{1}{2} & 0 & 0 \\
-\frac{1}{2} & s-1 & 0 \\
0 & -\frac{1}{4} & s-\frac{3}{4}
\end{array}\right|=\left(s-\frac{1}{2}\right)(s-1)\left(s-\frac{3}{4}\right) .
$$

So, $\lambda_{1}=\frac{1}{2}=a_{11}, \lambda_{2}=1=a_{22}, \lambda_{3}=\frac{3}{4}=a_{33}$. Finally,

$$
\operatorname{tr}(A)=\frac{1}{2}+1+\frac{3}{4}=\frac{9}{4}
$$

4.3 Diagonal Form of a Matrix

Proposition 4.3.1 Eigen vectors associated with distinct eigen values form a linearly independent set.
Proof. Let $\lambda_{i} \leftrightarrow v_{i}, i=1, \ldots, k$.
Consider $\sum_{i=1}^{n} \alpha_{i} v_{i}=\theta$. Multiply from the left by $\prod_{i=2}^{k}\left(A-\lambda_{i} I\right)$.
Since $\left(A-\lambda_{i} I\right)=\theta$, we obtain $\left(A-\lambda_{i} I\right) v_{j}=\left(\lambda_{j}-\lambda_{i}\right) v_{j}$, which yields

$$
\alpha_{1}\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right) \cdots\left(\lambda_{1}-\lambda_{k}\right) v_{1}=\theta
$$

$v_{1} \neq \theta, \lambda_{1}-\lambda_{2} \neq 0, \ldots, \lambda_{1}-\lambda_{k} \neq 0 \Rightarrow \alpha_{1}=0$. Then, we have $\sum_{i=2}^{n} \alpha_{i} v_{i}=\theta$. Repeat by multiplying $\prod_{i=3}^{k}\left(A-\lambda_{i} I\right)$ to get $\alpha_{2}=0$, and so on.

4.3.1 All Distinct Eigen Values

$d(s)=\prod_{i=1}^{n}\left(s-\lambda_{i}\right)$. The n eigen vectors v_{1}, \ldots, v_{n} form a linearly independent set. Choose them as a basis: $\left\{v_{i}\right\}_{i=1}^{n}$.

$$
\begin{aligned}
& A v_{1}=\lambda_{1} v_{1}+0 v_{2}+\cdots+0 v_{n} \\
& A v_{2}=0 v_{1}+\lambda_{2} v_{2}+\cdots+0 v_{n}
\end{aligned}
$$

$$
A v_{n}=0 v_{1}+0 v_{2}+\cdots+\lambda_{n} v_{n}
$$

Thus, A has representation $\Lambda=\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$.
Alternatively, let $S=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right]$

$$
\begin{gathered}
A S=\left[A v_{1}\left|A v_{2}\right| \cdots \mid A v_{n}\right]=\left[\lambda_{1} v_{1}\left|\lambda_{2} v_{2}\right| \cdots \mid \lambda_{n} v_{n}\right] \\
A S=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]=S \Lambda .
\end{gathered}
$$

Thus, $S^{-1} A S=\Lambda$ (Change of basis). Hence, we have proven the following theorem.

Theorem 4.3.2 Suppose the n by n matrix A has n linearly independent eigen vectors. If these vectors are columns of a matrix S, then

$$
S^{-1} A S=\Lambda=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]
$$

Example 4.3.3 From the previous example,

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
0 & \frac{1}{4} & \frac{3}{4}
\end{array}\right] \Rightarrow \lambda_{1}=\frac{1}{2}, \lambda_{2}=1, \lambda_{3}=\frac{3}{4} . \\
& A x=\lambda_{1} x \Leftrightarrow\left[\begin{array}{c}
\frac{1}{2} x_{1} \\
\frac{1}{2} x_{1}+x_{2} \\
\frac{1}{4} x_{2}+\frac{3}{4} x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} x_{1} \\
\frac{1}{2} x_{2} \\
\frac{1}{2} x_{3}
\end{array}\right] . \\
& \left.\Leftrightarrow \begin{array}{l}
\frac{1}{2} x_{1}+\frac{1}{2} x_{2}=0 \Leftrightarrow x_{1}+x_{2}=0 . \\
\frac{1}{4} x_{2}+\frac{1}{4} x_{3}=0 \Leftrightarrow x_{2}+x_{3}=0 .
\end{array}\right\} \text { Thus, } v_{1}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \text {. } \\
& A x=\lambda_{2} x \Leftrightarrow\left[\begin{array}{c}
\frac{1}{2} x_{1} \\
\frac{1}{2} x_{1}+x_{2} \\
\frac{1}{4} x_{2}+\frac{3}{4} x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] . \\
& \left.\Leftrightarrow \begin{array}{rl}
x_{1} & =0 . \\
\frac{1}{4} x_{2}-\frac{1}{4} x_{3}=0 \Leftrightarrow x_{2}-x_{3} & =0 .
\end{array}\right\} \text { Thus, } v_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] . \\
& A x=\lambda_{3} x \Leftrightarrow\left[\begin{array}{c}
\frac{1}{2} x_{1} \\
\frac{1}{2} x_{1}+x_{2} \\
\frac{1}{4} x_{2}+\frac{3}{4} x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{4} x_{1} \\
\frac{3}{4} x_{2} \\
\frac{3}{4} x_{3}
\end{array}\right] . \\
& \left.\Leftrightarrow \begin{array}{rl}
x_{1} & =0 . \\
x_{2} & =0 . \\
x_{2} & =0 .
\end{array}\right\} \text { Thus, } v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Therefore, $S=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$.

$$
[S \mid I]=\left[\begin{array}{rr|rrr}
1 & 0 & 0 & 1 & 0
\end{array} 0\right.
$$

Then,

$$
S^{-1} A S=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 0 \\
-2 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
\frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
0 & \frac{1}{4} & \frac{3}{4}
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{3}{4}
\end{array}\right]=\Lambda .
$$

Remark 4.3.4 Any matrix with distinct eigen values can be diagonalized. However, the diagonalization matrix S is not unique; hence neither is the basis $\{v\}_{i=1}^{n}$. If we multiply an eigen vector with a scalar, it will still remain an eigen vector. Not all matrices posses n linearly independent eigen vectors; therefore, some matrices are not dioganalizable.

4.3.2 Repeated Eigen Values with Full Kernels

In this case, (recall that $\left.d(s)=\prod_{i=1}^{k}\left(s-\lambda_{i}\right)^{n_{i}}\right)$, we have $\operatorname{dim} \mathcal{N}\left(\left[A-\lambda_{i} I\right]\right)=$ $n_{i}, \forall i$. Thus, there exists n_{i} linearly independent vectors in $\mathcal{N}\left(\left[A-\lambda_{i} I\right]\right)$, each of which is an eigen vector associated with $\lambda_{i}, \forall i$.

$$
\begin{gathered}
\lambda_{1} \leftrightarrow v_{11}, v_{12}, \ldots, v_{1 n_{1}} \\
\lambda_{2} \leftrightarrow v_{21}, v_{22}, \ldots, v_{2 n_{2}} \\
\vdots \\
\lambda_{k} \leftrightarrow v_{k 1}, v_{k 2}, \ldots, v_{k n_{k}}
\end{gathered}
$$

$\bigcup_{i=1}^{n_{i}}\left\{v_{i j}\right\}_{j=1}^{n_{i}}$ is linearly independent (Exercise). Thus, we have obtained n linearly independent vectors, which constitute a basis. Consequently, we get

$$
S^{-\mathbf{1}} A S=\left[\begin{array}{lllllll}
\lambda_{1} & & & & & & \\
& \ddots & & & & & \\
& & \lambda_{1} & & & & \\
& & & \ddots & & & \\
& & & & \lambda_{k} & & \\
& & & & & \ddots & \\
& & & & & & \lambda_{k}
\end{array}\right]
$$

Example 4.3.5

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
3 & 1 & -1 \\
1 & 3 & -1 \\
0 & 0 & 2
\end{array}\right] \\
d(s)=\operatorname{det}(s I-A)=\left|\begin{array}{ccc}
s-3 & -1 & 1 \\
-1 & s-3 & 1 \\
0 & 0 & s-2
\end{array}\right|=0 \\
=(s-3)^{2}(s-2)-(s-2)=(s-2)\left[(s-3)^{2}-1\right] \\
=(s-2)(s-4)(s-2)=(s-2)^{2}(s-4) .
\end{gathered}
$$

$\Rightarrow \lambda_{1}=2, n_{1}=2$ and $\lambda_{2}=4, n_{2}=1$.

$$
\begin{aligned}
& A-\lambda_{1} I=\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \operatorname{dim}\left(\mathcal{N}\left(\left[A-\lambda_{1} I\right]\right)\right)=2 . \\
& v_{11}=(1,-1,0)^{T}, v_{12}=(0,1,1)^{T} \text {. } \\
& A-\lambda_{2} I=\left[\begin{array}{rrr}
-1 & 1 & -1 \\
1 & -1 & -1 \\
0 & 0 & -2
\end{array}\right] \text {. }
\end{aligned}
$$

$$
\begin{gathered}
v_{2}=(1,1,0)^{T} \\
S=\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right], \quad S^{-1}=\left[\begin{array}{rrr}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right], S^{-1} A S=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right] .
\end{gathered}
$$

4.3.3 Block Diagonal Form

In this case, we have

$$
\exists i \ni n_{i}>1, \operatorname{dim}\left(\mathcal{N}\left[A-\lambda_{i} I\right]\right)<n_{i}
$$

Definition 4.3.6 The least degree monic (the polynomial with leading coefficient one) polynomial $m(s)$ that satisfies $m(A)=0$ is called the minimal polynomial of A.

Proposition 4.3.7 The following are correct for the minimal polynomial.
i. $m(s)$ divides $d(s)$;
ii. $m\left(\lambda_{i}\right)=0, \forall i=1,2, \ldots, k$;
iii. $m(s)$ is unique.

Example 4.3.8

$$
\begin{gathered}
A=\left[\begin{array}{lll}
c & 1 & 0 \\
0 & c & 0 \\
0 & 0 & c
\end{array}\right], d(s)=\operatorname{det}(s I-A)=\left|\begin{array}{ccc}
s-c & -1 & 0 \\
0 & s-c & 0 \\
0 & 0 & s-c
\end{array}\right|=(s-c)^{3}=0 . \\
\lambda_{1}=c, n_{1}=3 . m(s)=^{?}(s-c),(s-c)^{2},(s-c)^{3}: \\
{\left[A-\lambda_{1} I\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \neq O_{3} \Rightarrow m(s) \neq(s-c) .} \\
{\left[A-\lambda_{1} I\right]^{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=O_{3} \Rightarrow m(s)=(s-c)^{2} .}
\end{gathered}
$$

Then, to find the eigen vectors

$$
(A-c I) x=\theta \Leftrightarrow\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] x=\theta \Rightarrow v_{11}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v_{12}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Proposition 4.3.9

$$
\begin{gathered}
d(s)=\Pi_{i=1}^{k}\left(s-\lambda_{i}\right)^{n_{i}}, m(s)=\Pi_{i=1}^{k}\left(s-\lambda_{i}\right)^{m_{i}}, 1 \leq m_{i} \leq n_{i}, i=1,2, \ldots, k \\
\mathcal{N}\left[\left(A-\lambda_{i} I\right)\right] \varsubsetneqq \mathcal{N}\left[\left(A-\lambda_{i} I\right)^{2}\right] \varsubsetneqq \cdots \varsubsetneqq \mathcal{N}\left[\left(A-\lambda_{i} I\right)^{m_{i}}\right] \\
=\mathcal{N}\left[\left(A-\lambda_{i} I\right)^{m_{i}+1}\right]=\cdots=\mathcal{N}\left[\left(A-\lambda_{i} I\right)^{n_{i}}\right]
\end{gathered}
$$

Proposition 4.3.10 $m(s)=\Pi_{i=1}^{k}\left(s-\lambda_{i}\right)^{m_{i}}$, then

$$
\mathbb{C}^{n}=\mathcal{N}\left[\left(A-\lambda_{1}\right)^{m_{1}}\right] \oplus \cdots \oplus \mathcal{N}\left[\left(A-\lambda_{k}\right)^{m_{k}}\right]
$$

where \oplus is the direct sum of vector spaces.
Theorem 4.3.11 $d(s)=\Pi_{i=1}^{k}\left(s-\lambda_{i}\right)^{n_{i}}, m(s)=\Pi_{i=1}^{k}\left(s-\lambda_{i}\right)^{m_{i}}$.
i. $\operatorname{dim}\left(\mathcal{N}\left[\left(A-\lambda_{i}\right)^{m_{i}}\right]\right)=n_{i}$;
ii. If columns of $n \times n_{i}$ matrices B_{i} form bases for $\mathcal{N}\left[\left(A-\lambda_{i}\right)^{m_{i}}\right]$ and $B=$ $\left[B_{1}|\cdots| B_{k}\right]$, then B is nonsingular and

$$
B^{-1} A B=\left[\begin{array}{cccc}
\overline{A_{1}} & & & \\
& \overline{A_{2}} & & \\
& & \ddots & \\
& & & \overline{A_{k}}
\end{array}\right]
$$

where \bar{A}_{i} are $n_{i} \times n_{i}$;
iii. Independent of the bases chosen for $\mathcal{N}\left[\left(A-\lambda_{i}\right)^{m_{i}}\right]$,

$$
\operatorname{det}\left(s I-\bar{A}_{i}\right)=\left(s-\lambda_{i}\right)^{n_{i}}
$$

iv. Minimal polynomial of \bar{A}_{i} is $\left(s-\lambda_{i}\right)^{m_{i}}$.

Example 4.3.12

$$
A=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -5 & 4
\end{array}\right], d(s)=\left|\begin{array}{rrr}
s & -1 & 0 \\
0 & s & -1 \\
-2 & 5 & s-4
\end{array}\right|=(s-1)^{2}(s-2)=0
$$

$\lambda_{1}=1, n_{1}=2 ; \lambda_{2}=2, n_{2}=1$.

$$
\left[A-\lambda_{1} I\right]=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1 \\
2 & -5 & 3
\end{array}\right], \operatorname{dim}\left(\mathcal{N}\left[\left(A-\lambda_{1}\right)\right]\right)=1<2=n_{1}(!)
$$

$m_{1}>1 \Rightarrow m_{1}=2 \Rightarrow m(s)=(s-1)^{2}(s-2)=d(s)$.

$$
\begin{gathered}
{\left[A-\lambda_{1} I\right]^{2}=\left[\begin{array}{lll}
1 & -2 & 1 \\
2 & -4 & 2 \\
4 & -8 & 4
\end{array}\right], \operatorname{dim}\left(\mathcal{N}\left[\left(A-\lambda_{1}\right)^{2}\right]\right)=2} \\
v_{11}=(1,0,-1)^{T}, v_{12}=(0,1,2)^{T}, B_{1}=\left[\begin{array}{rr}
1 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right] . \\
\lambda_{2}=2,\left[A-\lambda_{2} I\right]=\left[\begin{array}{rr}
-2 & 1 \\
0 & -2 \\
2 & -5
\end{array}\right], \operatorname{dim}\left(\mathcal{N}\left[\left(A-\lambda_{2}\right)\right]\right)=1 .
\end{gathered}
$$

$$
\begin{aligned}
& v_{2}=(1,2,4)^{T}, B_{2}=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right] . \text { Therefore, } \\
& \quad B=\left[\begin{array}{rr|r}
1 & 0 & 1 \\
0 & 1 & 2 \\
-1 & 2 & 4
\end{array}\right] \Rightarrow B^{-1}=\left[\begin{array}{rrr}
0 & 2 & -1 \\
-2 & 5 & -2 \\
1 & -2 & 1
\end{array}\right] \Rightarrow B^{-1} A B=\left[\begin{array}{rr|r}
0 & 1 & \\
-1 & 2 & \\
\hline & 2
\end{array}\right],
\end{aligned}
$$

where $\overline{A_{1}}=\left[\begin{array}{rr}0 & 1 \\ -1 & 2\end{array}\right]$ and $\overline{A_{2}}=[2]$.

4.4 Powers of A

Example 4.4.1 (Compound Interest) Let us take an example from engineering economy. Suppose you invest $\$ 500$ for six years at 4% in Citibank. Then,

$$
P_{k+1}=1.04 P_{k}, P_{6}=(1.04)^{6}, P_{0}=(1.04)^{6} 500=\$ 632.66 .
$$

Suppose, the time bucket is reduced to a month:

$$
P_{k+1}=\left(1+\frac{0.04}{12}\right) P_{k}, P_{72}=\left(1+\frac{0.04}{12}\right)^{72}, P_{0}=(1.00 \overline{3})^{72} 500=\$ 635.37
$$

What if we compound the interest daily?

$$
P_{k+1}=\left(1+\frac{0.04}{364}\right) P_{k}, P_{6(364)+1.5}=\left(1+\frac{0.04}{364}\right)^{2185.5}, P_{0}=\$ 635.72
$$

Thus, we have

$$
\frac{P_{k+1}-P_{k}}{\triangle t}=0.04 P_{k} \rightarrow \frac{d P}{d t}=0.04 P \Rightarrow P(t)=e^{0.04 t} P_{0}
$$

In the above simplest case, what we have is a difference/differential equation with one scalar variable. What if we have a matrix representing a set of difference/differential equation systems? What is $e^{-A t}$?

Example 4.4.2 (Fibonacci Sequence)

$$
\begin{gathered}
F_{k+2}=F_{k+1}+F_{k}, F_{1}=0, F_{2}=1 . \\
u_{k}=\left[\begin{array}{c}
F_{k+1} \\
F_{k}
\end{array}\right], u_{k+1}=\left[\begin{array}{l}
F_{k+2} \\
F_{k+1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
F_{k+1} \\
F_{k}
\end{array}\right]=A u_{k} \\
u_{k}=A^{k} u_{0}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{k}\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
\end{gathered}
$$

Hence, we sometimes need powers of a matrix!

4.4.1 Difference equations

Theorem 4.4.3 If A can be diagonalized $\left(A=S \Lambda S^{-1}\right)$, then

$$
u_{k}=A^{k} u_{0}=\left(S \Lambda S^{-1}\right)\left(S \Lambda S^{-1}\right) \cdots\left(S \Lambda S^{-1}\right) u_{0}=S \Lambda^{k} S^{-1} u_{0}
$$

Remark 4.4.4

$$
u_{k}=\left[v_{1}, \cdots, v_{n}\right]\left[\begin{array}{lll}
\lambda_{1}^{k} & & \\
& \ddots & \\
& & \lambda_{n}^{k}
\end{array}\right] S^{-1} u_{0}=\alpha_{1} \lambda_{1}^{k} v_{1}+\cdots+\alpha_{n} \lambda_{n}^{k} v_{n}
$$

The general solution is a combination of special solutions $\lambda_{i}^{k} v_{i}$ and the coefficients α_{i} that match the initial condition u_{0} are $\alpha_{1} \lambda_{1}^{0} v_{1}+\cdots+\alpha_{n} \lambda_{n}^{0} v_{n}=u_{0}$ or $S \alpha=u_{0}$ or $\alpha=S^{-1} u_{0}$. Thus, we have three different forms to the same equation.

Example 4.4.5 (Fibonacci Sequence, continued)

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right], d(s)=\left|\begin{array}{cc}
s-1 & -1 \\
-1 & s
\end{array}\right|=s^{2}-s-1=0 . \\
\lambda_{1}=\frac{1+\sqrt{5}}{2}, \lambda_{2}=\frac{1-\sqrt{5}}{2} \\
A=S \Lambda S^{-1}=\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & \\
& \lambda_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right] \frac{1}{\lambda_{1}-\lambda_{2}} . \\
{\left[\begin{array}{c}
F_{k+1} \\
F_{k}
\end{array}\right]=u_{k}=A^{k} u_{0}=\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1}^{k} & \\
& \lambda_{2}^{k}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \frac{1}{\lambda_{1}-\lambda_{2}}} \\
F_{k}=\frac{\lambda_{1}^{k}}{\lambda_{1}-\lambda_{2}}-\frac{\lambda_{2}^{k}}{\lambda_{1}-\lambda_{2}}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right] .
\end{gathered}
$$

Since $\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{k}<\frac{1}{2}, F_{1000}=$ the nearest integer to $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{1000}$.
Note that the ratio $\frac{F_{k+1}}{F_{k}}=\frac{1+\sqrt{5}}{2} \cong 1.618$ is known as the Golden Ratio, which represents the ratio of the lengths of the sides of the most elegant rectangle.

Example 4.4.6 (Markov Process) Assume that the number of people leaving Istanbul annually is 5% of its population, and the number of people entering is 1% of Turkey's population outside Istanbul. Then,

$$
\begin{gathered}
{\left[\begin{array}{c}
\# \text { inside } \\
\# \text { outside }
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
z_{1}
\end{array}\right]=\left[\begin{array}{cc}
0.95 & 0.01 \\
0.05 & 0.99
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
z_{0}
\end{array}\right] .} \\
A=\left[\begin{array}{cc}
0.95 & 0.01 \\
0.05 & 0.99
\end{array}\right], d(s)=\left|\begin{array}{cc}
s-0.95 & -0.01 \\
-0.05 & s-0.99
\end{array}\right|=(s-1.0)(s-0.94)
\end{gathered}
$$

$$
\begin{gathered}
\lambda_{1}=1.0, \lambda_{2}=0.94 \Rightarrow v_{1}=\left[\begin{array}{l}
\frac{1}{5} \\
1
\end{array}\right], v_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \Rightarrow \\
A=S \Lambda S^{-1}=\left[\begin{array}{rr}
\frac{1}{5} & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
1.00 \\
0.94
\end{array}\right]\left[\begin{array}{rr}
\frac{5}{6} & \frac{5}{6} \\
\frac{5}{6} & -\frac{1}{6}
\end{array}\right] . \\
{\left[\begin{array}{l}
y_{k} \\
z_{k}
\end{array}\right]=\left[\begin{array}{ll}
0.95 & 0.01 \\
0.05 & 0.99
\end{array}\right]^{k}\left[\begin{array}{l}
y_{0} \\
z_{0}
\end{array}\right]=\left[\begin{array}{rr}
\frac{1}{5} & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
1.00^{k} \\
0.94^{k}
\end{array}\right]\left[\begin{array}{rr}
\frac{5}{6} & \frac{5}{6} \\
\frac{5}{6} & -\frac{1}{6}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
z_{0}
\end{array}\right] .} \\
=\left(\frac{5}{6} y_{0}+\frac{5}{6} z_{0}\right)\left[\begin{array}{l}
\frac{1}{5} \\
1
\end{array}\right]+\left(\frac{5}{6} y_{0}-\frac{1}{6} z_{0}\right) 0.94^{k}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
\end{gathered}
$$

Since $0.94^{k} \rightarrow 0$ as $k \rightarrow \infty$,

$$
\left[\begin{array}{l}
y_{\infty} \\
z_{\infty}
\end{array}\right]=\left(\frac{5}{6} y_{0}+\frac{5}{6} z_{0}\right)\left[\begin{array}{l}
\frac{1}{5} \\
1
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{6} & \frac{5}{6}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
z_{0}
\end{array}\right] .
$$

The steady-state probabilities are computed as in the classical way, $A u_{\infty}=$ $1 \cdot u_{\infty}$, corresponding to the eigen value of one. Thus, the steady-state vector is the eigen vector of A corresponding to $\lambda=1$, after normalization to have legitimate probabilities (see Remark 4.3.4):

$$
u_{\infty}=\alpha v_{1}=\frac{5}{6}\left[\begin{array}{l}
\frac{1}{5} \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{6} \\
\frac{5}{6}
\end{array}\right] .
$$

4.4.2 Differential Equations

Example 4.4.7

$$
\begin{gathered}
\frac{d u}{d t}=A u=\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right] u \Leftrightarrow u(t)=e^{A t} u_{0} . \\
\lambda_{1}=5, v_{1}=(1,1)^{T}, \lambda_{2}=1, v_{2}=(-3,1)^{T}, \\
u(t)=\alpha_{1} e^{\lambda_{1} t} v_{1}+\alpha_{2} e^{\lambda_{2} t} v_{2}=\alpha_{1} e^{5 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\alpha_{2} e^{t}\left[\begin{array}{r}
-3 \\
1
\end{array}\right] . \\
u_{0}=\alpha_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\alpha_{2}\left[\begin{array}{r}
-3 \\
1
\end{array}\right]=\left[\begin{array}{rr}
1 & -3 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right] . \\
u(t)=\left[\begin{array}{rr}
1 & -3 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
e^{5 t} \\
e^{t}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=S\left[\begin{array}{c}
e^{5 t} \\
\\
e^{t}
\end{array}\right] S^{-1} u_{0} .
\end{gathered}
$$

The power series expansion of the exponentiation of one scalar is

$$
e^{x}=1+x+\frac{x^{2}}{2!}++\frac{x^{3}}{3!}+\cdots
$$

and if we generalize to the matrices

$$
e^{A t}=I+A t+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\cdots
$$

If we take the derivative of both sides, we have

$$
\begin{aligned}
& \frac{d e^{A t}}{d t}=I+A+\frac{A^{2}(2 t)}{2!}++\frac{A^{3}\left(3 t^{2}\right)}{3!}+\cdots \\
= & A\left[I+A t+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\cdots\right]=A e^{A t}
\end{aligned}
$$

If $A=S \Lambda S^{-1}$,

$$
\begin{aligned}
& e^{A t}=I+S \Lambda S^{-1}+\frac{S \Lambda^{2} S^{-1} t^{2}}{2!}+\frac{S \Lambda^{3} S^{-1} t^{3}}{3!}+\cdots \\
= & S\left[I+\Lambda t+\frac{(\Lambda t)^{2}}{2!}+\frac{(\Lambda t)^{3}}{3!}+\cdots\right] S^{-1}=S e^{\Lambda t} S^{-1}
\end{aligned}
$$

Thus, we have the following theorem.
Theorem 4.4.8 If A can be diagonalized as $\left(A=S \Lambda S^{-1}\right)$, then $\frac{d u}{d t}=A u$ has the solution $u(t)=e^{A t} u_{0}=S e^{\Lambda t} S^{-1} u_{0}$, or equivalently $u(t)=\alpha_{1} e^{\lambda_{1} t} v_{1}+$ $\cdots+\alpha_{n} e^{\lambda_{n} t} v_{n}$, where $\alpha=S^{-1} u_{0}$.

4.5 The Complex case

In this section, we will investigate Hermitian and unitary matrices. The complex field \mathbb{C} is defined over complex numbers (of the form $x+i y$ where $x, y \in \mathbb{R}$ and $i^{2}=-1$) with the following operations:
$(a+i b)+(c+i d)=((a+c)+i(b+d))(a+i b)(c+i d)=((a c-b d)+i(c b+a d))$.
Definition 4.5.1 The complex conjugate of $a+i b \in \mathbb{C}$ is $\overline{a+i b}=a-i b$. See Figure 4.2.

Properties:

i. $\overline{(a+i b)(c+i d)}=\overline{(a+i b)(c+i d)}$,
ii. $\overline{(a+i b)+(c+i d)}=\overline{(a+i b)}+\overline{(c+i d)}$,
iii. $(a+i b) \overline{a+i b}=a^{2}+b^{2}=r^{2}$ where r is called modulus of $a+i b$.

We have $a=\sqrt{a^{2}+b^{2}} \cos \theta$ and $b=\sqrt{a^{2}+b^{2}} \sin \theta$ and

$$
a+i b=\sqrt{a^{2}+b^{2}}(\cos \theta+i \sin \theta)=r e^{i \theta} \text { (Polar Coordinates) },
$$

where $r e^{i \theta}=\cos \theta+i \sin \theta$.

Fig. 4.2. Complex conjugate

Definition 4.5.2 $\bar{A}^{T}=A^{H}$ with entries $\left(A^{H}\right)_{i j}=(\bar{A})_{i j}$ is known as conjugate transpose (Hermitian transpose).

Properties:
i. $\langle x, y\rangle=x^{H} y, x \perp y \Leftrightarrow x^{H} y=0$,
ii. $\|x\|=\left(x^{H} x\right)^{\frac{1}{2}}$,
iii. $(A B)^{H}=B^{H} A^{H}$.

Definition 4.5.3 A is Hermitian if $A^{H}=A$.

Properties:

i. $A^{H}=A, \forall x \in \mathbb{C}^{n}, x^{H} A x \in \mathbb{R}^{n}$.
ii. Every eigen value of a Hermitian matrix is real.
iii. The eigen vectors of a Hermitian matrix, if they correspond to different eigen values, are orthogonal to each other.
iv. (Spectral Theorem)
$A=A^{H}$, there exists a diagonalizing unitary (complex matrix of orthonormal vectors as columns) U such that

$$
U^{-1} A U=U^{H} A U=\Lambda
$$

Therefore, any Hermitian matrix can be decomposed into

$$
A=U \Sigma U^{H}=\lambda_{1} v_{1} v_{1}^{H}+\cdots+\lambda_{n} v_{n} v_{n}^{H} .
$$

Definition 4.5.4 If $B=M^{-1} A M$ (change of variables), then A and B have the same eigen values with the same multiplicities, termed as A is similar to B.

Properties:
i. $A \in \mathbb{C}^{m \times n}, \exists$ unitary $M=U \ni U^{-1} A U=T$ is upper-triangular. The eigen values of A must be shared by the similar matrix T and appear along the main diagonal.
ii. Any Hermitian matrix A can be diagonalized by a suitable U.

Definition 4.5.5 The matrix N is called normal if $N N^{H}=N^{H} N$. Only for normal matrices, $T=U^{-1} N U=\Lambda$ where Λ is diagonal.

Problems

4.1. Determinant

Prove property 11 in Section 4.1.2.

4.2. Jordan form

$$
\text { Let } A=\left[\begin{array}{rrrrr}
1 & 1 & -1 & -1 & -1 \\
2 & 1 & 1 & 2 & 1 \\
0 & 1 & 1 & 0 & -1 \\
1 & -1 & 1 & 3 & 1 \\
2 & -2 & 2 & 2 & 4
\end{array}\right] \text {. Find } S \text { such that } S^{-1} A S=\left[\begin{array}{rrrr}
2 & 1 & & \\
2 & & \\
\hline & 2 & 1 \\
& 2 & 2 \\
\hline & & 2
\end{array}\right] \text {. }
$$

Hint:
Choose $v_{2} \in \mathcal{N}\left[(A-\lambda I)^{2}\right], v_{1}=[A-\lambda I] v_{2}$. Similarly, choose v_{4} and v_{3}. Finally, choose $v_{5} \in \mathcal{N}[(A-\lambda I)]$.

4.3. Using Jordan Decomposition

Let $A=\left[\begin{array}{ccc}\frac{1}{10} & \frac{1}{10} & 0 \\ 0 & \frac{1}{10} & \frac{1}{10} \\ 0 & 0 & \frac{1}{10}\end{array}\right]$. Find A^{10}.

4.4. Differential Equation System

Let the Blue (allied) forces be in a combat situation with the Red (enemy) forces. There are two Blue units (X_{1}, X_{2}) and two Red military units (Y_{1}, Y_{2}). At the start of the combat, the first Blue unit has $100\left(X_{1}^{0}=100\right)$ combatants, the second Blue unit has $60\left(X_{2}^{0}=60\right)$ combatants. The initial conditions for the Red force are $Y_{1}^{0}=40$ and $Y_{2}^{0}=30$. Since the start of the battle ($t=0$), the number of surviving combatants (less than the initial values due to attrition) decrease monotonically and the values are denoted by X_{1}^{t}, X_{2}^{t}, Y_{1}^{t}, and Y_{2}^{t}.

The first Blue unit is subjected to directed fire from all the Red forces, with an attrition rate coefficient of 0.03 Blue 1 targets/Red 1 firer per unit time and 0.02 Blue 1 targets/Red 2 firer per unit time. The second Blue unit is also subjected to directed fire from all the Red forces, with an attrition rate
coefficient of 0.04 Blue 2 targets/Red 1 firer per unit time and 0.01 Blue 2 targets/Red 2 firer per unit time. The first Red unit is under directed fire from both Blue units, with an attrition rate coefficient of 0.05 Red 1 targets/Blue 1 firer per unit time and 0.02 Red 1 targets/Blue 2 firer per unit time. The second Red unit is subjected to directed fire from only Blue 1 , with an attrition rate coefficient of 0.03 Red 2 targets/Blue 1 firer per unit time.
(a) Write down the differential equation system to represent the combat dynamics.
(b) Find the closed form values as a function of time t for $X_{1}^{t}, X_{2}^{t}, Y_{1}^{t}, Y_{2}^{t}$.
(c) Calculate $X_{1}^{t}, X_{2}^{t}, Y_{1}^{t}, Y_{2}^{t}, t=0,1,2,3,4,5$.

Web material

http://149.170.199.144/multivar/eigen.htm
http://algebra.math.ust.hk/determinant/03_properties/lecture1.shtml
http://algebra.math.ust.hk/eigen/01_definition/lecture2.shtml
http://bass.gmu.edu/ececourses/ece521/lecturenote/chap1/node3.html
http://c2.com/cgi/wiki?EigenValue
http://ceee.rice.edu/Books/LA/eigen/
http://cepa.newschool.edu/het/essays/math/eigen.htm
http://cio.nist.gov/esd/emaildir/lists/opsftalk/msg00017.html
http://cnx.org/content/m2116/latest/
http://cnx.rice.edu/content/m10742/latest/
http://college.hmco.com/mathematics/larson/elementary_linear/4e/ shared/downloads/c08s5.pdf
http://college.hmco.com/mathematics/larson/elementary_linear/5e/ students/ch08-10/chap_8_5.pdf
http://ece.gmu.edu/ececourses/ece521/lecturenote/chap1/node3.html http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Eigenvalue
http://en.wikipedia.org/wiki/Hermitian_matrix
http://en.wikipedia.org/wiki/Jordan_normal_form
http://en.wikipedia.org/wiki/Skew-Hermitian_matrix
http://encyclopedia.laborlawtalk.com/Unitary_matrix
http://eom.springer.de/C/c023840.htm
http://eom.springer.de/E/e035150.htm
http://eom.springer.de/H/h047070.htm
http://eom.springer.de/J/j054340.htm
http://eom.springer.de/L/1059520.htm http://everything2.com/index.pl?node=determinant http://fourier.eng.hmc.edu/e161/lectures/algebra/node3.html http://fourier.eng.hmc.edu/e161/lectures/algebra/node4.html http://gershwin.ens.fr/vdaniel/Doc-Locale/Cours-Mirrored/

Methodes-Maths/white/math/s3/s3spm/s3spm.html
http://home.iitk.ac.in/~arlal/book/nptel/mth102/node57.html http://homepage.univie.ac.at/Franz.Vesely/cp0102/dx/node28.html http://hyperphysics.phy-astr.gsu.edu/hbase/deter.html
http://kr.cs.ait.ac.th/ ${ }^{\text {radok/math/mat/51.htm }}$
http://kr.cs.ait.ac.th/ ${ }^{\text {radok/math/mat3/m132.htm }}$
http://kr.cs.ait.ac.th/~radok/math/mat3/m133.htm
http://kr.cs.ait.ac.th/~radok/math/mat3/m146.htm
http://kr.cs.ait.ac.th/ ${ }^{\text {radok/math/mat7/step17.htm }}$
http://linneus20.ethz.ch:8080/2_2_1.html
http://math.carleton.ca:16080/~daniel/teaching/114W01/117_EigVal.ps
http://math.fullerton.edu/mathews/n2003/JordanFormBib.html
http://mathworld.wolfram.com/Determinant.html
http://mathworld.wolfram.com/DeterminantExpansionbyMinors.html
http://mathworld.wolfram.com/Eigenvalue.html
http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/HermitianMatrix.html
http://mathworld.wolfram.com/JordanCanonicalForm.html
http://mathworld.wolfram.com/UnitaryMatrix.html
http://meru.rnet.missouri.edu/people/hai/research/jacobi.c
http://mpec.sc.mahidol.ac.th/radok/numer/STEP17.HTM
http://mysoftwear.com/go/0110/10406671133e894d172cd42.html
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-
Science/6-241Fall2003/A685C9EE-6FF0-4E1A-81AC-04A8981C4FD9/0/ rec5.pdf
http://oonumerics.org/MailArchives/oon-list/2000/06/0486.php
http://oonumerics.org/MailArchives/oon-list/2000/06/0499.php
http://orion.math.iastate.edu/hentzel/class.510/May. 23
http://ourworld.compuserve.com/homepages/fcfung/mlaseven.htm
http://planetmath.org/encyclopedia/Determinant2.html
http://planetmath.org/encyclopedia/
DeterminantIonTermsOfTracesOfPowers.html
http://planetmath.org/encyclopedia/Eigenvalue.html
http://planetmath.org/encyclopedia/JordanCanonicalForm.html
http://planetmath.org/encyclopedia/
Proof0fJordanCanonicalFormTheorem.html
http://psroc.phys.ntu.edu.tw/cjp/v41/221.pdf
http://rakaposhi.eas.asu.edu/cse494/f02-hw1-qn1.txt
http://rkb.home.cern.ch/rkb/AN16pp/node68.html
http://schwehr.org/software/density/html/Eigs_8C.html
http://sherry.ifi.unizh.ch/mehrmann99structured.html
http://sumantsumant.blogspot.com/2004/12/one-of-beauty-of-matrix-
operation-is.html
http://www-gap.dcs.st-and.ac.uk/"history/Search/historysearch.cgi?
SUGGESTION=Determinant\&CONTEXT=1
http://www-history.mcs.st-andrews.ac.uk/history/Biographies/
Jordan.html
http://www-history.mcs.st-andrews.ac.uk/history/HistTopics/
Matrices_and_determinants.html
http://www-math.mit.edu/18.013A/HTML/chapter04/section01.html\#
DeterminantVectorProducts
http://www.bath.ac.uk/mech-eng/units/xx10118/eigen.pdf
http://www.caam.rice.edu/software/ARPACK/UG/node46.html
http://www.cap-lore.com/MathPhys/Implicit/eigen.html
http://www.cs.berkeley.edu/~wkahan/MathH110/jordan.pdf
http://www.cs.ucf.edu/courses/cap6411/cot6505/Lecture-2.PDF
http://www.cs.ucf.edu/courses/cap6411/cot6505/spring03/Lecture-2.pdf
http://www.cs.uleth.ca/~holzmann/notes/eigen.pdf
http://www.cs.ut.ee/~toomas_1/linalg/lin1/node14.html
http://www.cs.ut.ee/~toomas_1/linalg/lin1/node16.html
http://www.cs.ut.ee/~toomas_l/linalg/lin2/node18.html
http://www.cs.ut.ee/~ toomas_l/linalg/lin2/node20.html
http://www.cs.utk.edu/~dongarra/etemplates/
http://www.dpmms.cam.ac.uk/site2002/Teaching/IB/LinearAlgebra/ jordan.pdf
http://www.ece.tamu.edu/~chmbrlnd/Courses/ELEN601/ELEN601-Chap7.pdf
http://www.ece.uah.edu/courses/ee448/appen4_2.pdf
http://www.ee.bilkent.edu.tr/~sezer/EEE501/Chapter8.pdf
http://www.ee.ic.ac.uk/hp/staff/www/matrix/decomp.html
http://www.emunix.emich.edu/~phoward/f03/416f3fh.pdf
http://www.freetrialsoft.com/free-download-1378.html
http://www.gold-software.com/MatrixTCL-review1378.htm
http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc532.htm
http://www.mat.univie.ac.at/~kratt/artikel/detsurv.html
http://www.math.colostate.edu/~achter/369/help/jordan.pdf
http://www.math.ku.dk/ma/kurser/symbolskdynamik/konjug/node14.html
http://www.math.lsu.edu/~verrill/teaching/linearalgebra/linalg/ linalg8.html
http://www.math.missouri.edu/courses/math4140/331eigenvalues.pdf
http://www.math.missouri.edu/~hema/331eigenvalues.pdf
http://www.math.poly.edu/courses/ma2012/Notes/Eigenvalues.pdf
http://www.math.sdu.edu.cn/mathency/math/u/u062.htm
http://www.math.tamu.edu/~dallen/m640_03c/lectures/chapter8.pdf
http://www.math.uah.edu/mathclub/talks/11-9-2001.html
http://www.math.ucdavis.edu/~daddel/linear_algebra_appl/
Applications/Determinant/Determinant/Determinant.html
http://www.math.ucdavis.edu/~daddel/linear_algebra_appl/ Applications/Determinant/Determinant/node3.html
http://www.math.ucdavis.edu/~daddel/Math22al_S02/LABS/LAB9/lab9_w00/ node15.html
http://www.math.umd.edu/~hck/Normal.pdf
http://www.mathreference.com/la-det, eigen.html
http://www.mathreference.com/la-jf, canon.html
http://www.maths.gla.ac.uk/~tl/minimal.pdf
http://www.maths.lancs.ac.uk/~gilbert/m306c/node16.html
http://www.maths.liv.ac.uk/~vadim/M298/l08.pdf
http://www.maths.lse.ac.uk/Personal/james/old_ma201/lect11.pdf
http://www.maths.mq.edu.au/~wchen/lnlafolder/la12.pdf
http://www.maths.surrey.ac.uk/interactivemaths/emmaspages/ option3.html
http://www.mathwords.com/d/determinant.htm
http://www.mines.edu/~rtankele/cs348/LA\%/207.doc
http://www.nova.edu/~zhang/01CommAlgJordanForm.pdf http://www.numbertheory.org/courses/MP274/realjord.pdf http://www.numbertheory.org/courses/MP274/uniq.pdf
http://www.oonumerics.org/MailArchives/oon-list/2000/05/0481.php
http://www.oonumerics.org/oon/oon-list/archive/0502.html
http://www.perfectdownloads.com/audio-mp3/other/ download-matrix-tcl.htm
http://www.ping.be/~ping1339/determ.htm
http://www.ppsw.rug.nl/~gladwin/eigsvd.html
http://www.reference.com/browse/wiki/Hermitian_matrix
http://www.reference.com/browse/wiki/Unitary_matrix
http://www.riskglossary.com/link/eigenvalue.htm
http://www.sosmath.com/matrix/determ0/determ0.html
http://www.sosmath.com/matrix/determ2/determ2.html
http://www.sosmath.com/matrix/inverse/inverse.html
http://www.stanford.edu/class/ee263/jcf.pdf
http://www.stanford.edu/class/ee263/jcf2.pdf
http://www.techsoftpl.com/matrix/doc/eigeñ.htm
http://www.tversoft.com/computer/eigen.html
http://www.wikipedia.org/wiki/Determinant
http://www.wikipedia.org/wiki/Unitary_matrix
http://www.yotor.com/wiki/en/de/Determinant.htm
http://www.zdv.uni-tuebingen.de/static/hard/zrsinfo/x86_64/nag/
mark20/NAGdoc/fl/html/indexes/kwic/determinant.html
http://www1.mengr.tamu.edu/aparlos/MEEN651/
EigenvaluesEigenvectors.pdf
http://www2.maths.unsw.edu.au/ForStudents/courses/math2509/ch9.pdf

Positive Definiteness

Positive definite matrices are of both theoretical and computational importance in a wide variety of applications. They are used, for example, in optimization algorithms and in the construction of various linear regression models. As an initiation of our discussion in this chapter, we investigate first the properties for maxima, minima and saddle points when we have scalar functions with two variables. After introducing the quadratic forms, various tests for positive (semi) definiteness are presented.

5.1 Minima, Maxima, Saddle points

5.1.1 Scalar Functions

Let us remember the properties for maxima, minima and saddle points when we have scalar functions with two variables with the help the following examples.

Fig. 5.1. Plot of $f(x, y)=x^{2}+y^{2}$

Example 5.1.1 Let $f(x, y)=x^{2}+y^{2}$. Find the extreme points of $f(x, y)$:

$$
\frac{\partial f(x, y)}{\partial x}=2 x \doteq 0 \Rightarrow x=0, \frac{\partial f(x, y)}{\partial y}=2 y \doteq 0 \Rightarrow y=0
$$

Since we have only one critical point, it is either the maximum or the minimum. We observe that $f(x, y)$ takes only nonnegative values. Thus, we see that the origin is the minimum point.

Fig. 5.2. Plot of $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$

Example 5.1.2 Find the extreme points of $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$. The function is differentiable and has no boundary points.

$$
f_{x}=\frac{\partial f(x, y)}{\partial x}=y-2 x-2, f_{y}=\frac{\partial f(x, y)}{\partial y}=x-2 y-2 .
$$

Thus, $x=y=-2$ is the critical point.

$$
f_{x x}=\frac{\partial^{2} f(x, y)}{\partial x^{2}}=-2=\frac{\partial^{2} f(x, y)}{\partial y^{2}}=f_{y y}, f_{x y}=\frac{\partial^{2} f(x, y)}{\partial x \partial y}=1
$$

The discriminant (Jacobian) of f at $(a, b)=(-2,-2)$ is

$$
\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|=f_{x x} f_{y y}-f_{x y}^{2}=4-1=3
$$

Since $f_{x x}<0, f_{x x} f_{y y}-f_{x y}^{2}>0 \Rightarrow f$ has a local maximum at $(-2,-2)$.

Theorem 5.1.3 The extreme values for $f(x, y)$ can occur only at
i. Boundary points of the domain of f.
ii. Critical points (interior points where $f_{x}=f_{y}=0$, or points where f_{x} or f_{y} fails to exist).
If the first and second order partial derivatives of f are continuous throughout an open region containing a point (a, b) and $f_{x}(a, b)=f_{y}(a, b)=0$, you may be able to classify (a, b) with the second derivative test:
i. $f_{x x}<0, f_{x x} f_{y y}-f_{x y}^{2}>0$ at $(a, b) \Rightarrow$ local maximum;
ii. $f_{x x}>0, f_{x x} f_{y y}-f_{x y}^{2}>0$ at $(a, b) \Rightarrow$ local minimum;
iii. $f_{x x} f_{y y}-f_{x y}^{2}<0$ at $(a, b) \Rightarrow$ saddle point;
iv. $f_{x x} f_{y y}-f_{x y}^{2}=0$ at $(a, b) \Rightarrow$ test is inconclusive (f is singular).

5.1.2 Quadratic forms

Definition 5.1.4 The quadratic term $f(x, y)=a x^{2}+2 b x y+c y^{2}$ is positive definite (negative definite) if and only if $a>0(a<0)$ and ac $-b^{2}>0 . f$ has a minimum (maximum) at $x=y=0$ if and only if $f_{x x}(0,0)>0\left(f_{x x}(0,0)<\right.$ $0)$ and $f_{x x}(0,0) f_{y y}(0,0)>f_{x y}^{2}(0,0)$. If $f(0,0)=0$, we term f as positive (negative) semi-definite provided the above conditions hold.

Now, we are able to introduce matrices to the quadratic forms:

$$
a x^{2}+2 b x y+c y^{2}=[x, y]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Thus, for any symmetric A, the product $f=x^{T} A x$ is a pure quadratic form: it has a stationary point at the origin and no higher terms.

$$
\begin{aligned}
& x A^{T} x=\left[x_{1}, x_{2}, \cdots, x_{n}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+\cdots+a_{n n} x_{n}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j} .
\end{aligned}
$$

Definition 5.1.5 If A is such that $a_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ (hence symmetric), it is called the Hessian matrix. If A is positive definite ($x^{T} A x>0, \forall x \neq \theta$) and if f has a stationary point at the origin (all first derivatives at the origin are zero), then f has a minimum.

Remark 5.1.6 Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ and $x^{*} \in \mathbb{R}^{n}$ be the local minimum, $\nabla f\left(x^{*}\right)=$ θ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite. We are able to explore the neighborhood of x^{*} by means of $x^{*}+\Delta x$, where $\|\Delta x\|$ is sufficiently small (such that the second order Taylor's approximation is pretty good) and positive. Then,

$$
f\left(x^{*}+\Delta x\right) \cong f\left(x^{*}\right)+\Delta x^{T} \nabla f\left(x^{*}\right)+\frac{1}{2} \Delta x^{T} \nabla^{2} f\left(x^{*}\right) \Delta x
$$

The second term is zero since x^{*} is a critical point and the third term is positive since the Hessian evaluated at x^{*} is positive definite. Thus, the left hand side is always strictly greater than the right hand side, indicating the local minimality of x^{*}.

5.2 Detecting Positive-Definiteness

Theorem 5.2.1 A real symmetric matrix A is positive definite if and only if one of the following holds:
i. $x^{T} A x>0, \forall x \neq \theta$;
ii. All the eigen values of A satisfy $\lambda_{i}>0$;
iii. All the submatrices A_{k} have positive determinants;
iv. All the pivots (without row exchanges) satisfy $d_{i}>0$;
v. ヨa nonsingular matrix $W \ni A=W^{T} W$ (called Cholesky Decomposition);

Proof. A is positive definite.

1. $(i) \Leftrightarrow(i i)$
$(i) \Rightarrow(i i)$: Let x_{i} be the unit eigen vector corresponding to eigen value λ_{i}.

$$
A x_{i}=\lambda_{i} x_{i} \Leftrightarrow x_{i}^{T} A x_{i}=x_{i}^{T} \lambda_{i} x_{i}=\lambda_{i} .
$$

Then, $\lambda_{i}>0$ since A is positive definite.
$(i) \Leftarrow(i i)$: Since symmetric matrices have a full set of orthonormal eigen vectors
(Exercise!).

$$
x=\sum \alpha_{i} x_{i} \Rightarrow A x=\sum \alpha_{i} A x_{i} \Rightarrow x^{T} A x=\left(\sum \alpha_{i} x_{i}^{T}\right)\left(\sum \alpha_{i} \lambda_{i} x_{i}\right)
$$

Because of orthonormality $x^{T} A x=\sum \alpha_{i}^{2} \lambda_{i}>0$.
2. $(i) \Leftrightarrow(i i i) \Leftrightarrow(i v) \Leftrightarrow(v)$
$(i) \Rightarrow(i i i): \operatorname{det} A=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}$, since $(i) \Leftrightarrow(i i)$,
Claim: If A is positive definite, so is every A_{k}.
Proof: If $x=\left[\begin{array}{c}x_{k} \\ 0\end{array}\right]$, then

$$
x^{T} A x=\left[x_{k}, 0\right]\left[\begin{array}{c}
A_{k} * \\
*
\end{array}\right]\left[\begin{array}{c}
x_{k} \\
0
\end{array}\right]=x_{k}^{T} A_{k} x_{k}>0
$$

If we apply $(i) \Leftrightarrow$ (ii) for A_{k} (its eigen values are different, but all are positive), then its determinant is the product of its eigen values yielding a positive result.
$(i i i) \Rightarrow(i v)$: Claim: If $A=L D U$, then the upper left corner satisfy $A_{k}=$ $L_{k} D_{k} U_{k}$.
Proof: $A=\left[\begin{array}{cc}L_{k} & 0 \\ B & C\end{array}\right]\left[\begin{array}{cc}D_{k} & 0 \\ 0 & E\end{array}\right]\left[\begin{array}{cc}U_{k} & F \\ 0 & G\end{array}\right]=\left[\begin{array}{cc}L_{k} D_{k} U_{k} & L_{k} D_{k} F \\ B D_{k} U_{k} & B D_{k} F+C E G\end{array}\right]$.

$$
\operatorname{det} A_{k}=\operatorname{det} L_{k} \operatorname{det} D_{k} \operatorname{det} U_{k}=\operatorname{det} D_{k}=d_{1} \cdot d_{2} \cdots d_{k} \Rightarrow
$$

$d_{k}=\frac{\operatorname{det} A_{k}}{\operatorname{det} A_{k-1}}$ (Pivot=Ratio of determinants). If all determinants are positive, then all pivots are positive.
$(i v) \Rightarrow(v)$: In a Gaussian elimination of a symmetric matrix $U=L^{T}$, then $A=L D L^{T}$. One can take the square root of positive pivots $d_{i}>0$. Then,

$$
A=L \sqrt{D} \sqrt{D} L^{T}=W^{T} W
$$

$(v) \Rightarrow(i):$

$$
x^{T} A x=x^{T} W^{T} W x=\|W x\|^{2} \geq 0
$$

$W x=\theta \Rightarrow x=\theta$ since W is nonsingular.
Therefore, $x^{T} A x>0, \forall x \neq \theta$.
Remark 5.2.2 The above theorem would be exactly the same in the complex case, for Hermitian matrices $A=A^{H}$.

5.3 Semidefinite Matrices

Theorem 5.3.1 A real symmetric matrix A is positive semidefinite if and only if one of the following holds:
i. $x^{T} A x \geq 0, \forall x \neq \theta$;
ii. All the eigen values of A satisfy $\lambda_{i} \geq 0$;
iii. All the submatrices A_{k} have nonnegative determinants;
$i v$. All the pivots (without row exchanges) satisfy $d_{i} \geq 0$;
v. \exists a possibly singular matrix $W \ni A=W^{T} W$;

Remark 5.3.2 $x^{T} A x \geq 0 \Leftrightarrow \lambda_{i} \geq 0$ is important.

$$
A=Q \Lambda Q^{T} \Rightarrow x^{T} A x=x^{T} Q \Lambda Q^{T} x=y^{T} \Lambda y=\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

and it is nonnegative when Λ_{i} 's are nonnegative. If A has rank r, there are r nonzero eigen values and r perfect squares.

Remark 5.3.3 (Indefinite matrices) Change of Variables: $y=C x$. The quadratic form becomes $y^{T} C^{T} A C y$. Then, we have congruence transformation: $A \mapsto C^{T} A C$ for some nonsingular C. The matrix $C^{T} A C$ has the same number of positive (negative) eigen values of A, and the same number of zero eigen values. If we let $A=I, C^{T} A C=C^{T} C$. Thus, for any symmetric matrix A, the signs of pivots agree with the signs of eigen values. Λ and D have the same number of positive (negative) entries, and zero entries.

5.4 Positive Definite Quadratic Forms

Proposition 5.4.1 If A is symmetric positive definite, then

$$
P(x)=\frac{1}{2} x^{T} A x-x^{T} b
$$

assumes its minimum at the point $A x=b$.
Proof. Let $x \ni A x=b$. Then, $\forall y \in \mathbb{R}^{n}$,

$$
\begin{aligned}
P(y)-P(x) & =\left(\frac{1}{2} y^{T} A y-y^{T} b\right)-\left(\frac{1}{2} x^{T} A x-x^{T} b\right) \\
& =\frac{1}{2} y^{T} A y-y^{T} A x+\frac{1}{2} x^{T} A x \\
& =\frac{1}{2}(y-x)^{T} A(y-x) \\
& \geq 0 .
\end{aligned}
$$

Hence, $\forall y \neq x, P(y) \geq P(x) \Rightarrow x$ is the minimum.
Theorem 5.4.2 (Rayleigh's principle) Without loss of generality, we may assume that

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

The quotient, $R(x)=\frac{x^{T} A x}{x^{T} x}$, is minimized by the first eigen vector v_{1} and its minimum value is the smallest eigen value λ_{1} :

$$
R\left(v_{1}\right)=\frac{v_{1}^{T} A v_{1}}{v_{1}^{T} v_{1}}=\frac{v_{1}^{T} \lambda_{1} v_{1}}{v_{1}^{T} v_{1}}=\lambda_{1}
$$

Remark 5.4.3 $\forall x, R(x)$ is an upper bound for $\lambda_{\mathbf{1}}$.
Remark 5.4.4 Rayleigh's principle is the basis for the principle component analysis, which has many engineering applications like factor analysis of the variance covariance matrix (symmetric) in multivariate data analysis.

Corollary 5.4.5 If x is orthogonal to the eigen vectors v_{1}, \ldots, v_{j-1}, then $R(x)$ will be minimized by the next eigen vector v_{j}.

Remark 5.4.6 $\lambda_{j}=\min _{x \in \mathbb{R}^{n}} R(x)$ s.t.

$$
x^{T} v_{1}=0
$$

$$
x^{T} v_{j-1}=0
$$

$\lambda_{j}=\max _{x \in \mathbb{R}^{n}} R(x)$
s.t.

$$
\begin{gathered}
x^{T} v_{j+1}=0 \\
\vdots \\
x^{T} v_{n}=0
\end{gathered}
$$

Problems

5.1. Prove the following theorem.

Theorem 5.4.7 (Rayleigh-Ritz) Let A be symmetric, $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$.

$$
\lambda_{1}=\min _{\|x\|=1} x^{T} A x, \lambda_{n}=\max _{\|x\|=1} x^{T} A x
$$

5.2. Use

$$
A=\frac{1}{100}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

to show Theorem 5.3.1.
5.3. Let

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{3} x_{1}^{3}+\frac{1}{2} x_{1}^{2}+2 x_{1} x_{2}+\frac{1}{2} x_{2}^{2}-x_{2}+19 .
$$

Find the stationary and boundary points, then find the minimizer and the maximizer over $-4 \leq x_{2} \leq 0 \leq x_{1} \leq 3$.

Web material

http://bmbiris.bmb.uga.edu/wampler/8200/using-ff/sld027.htm http://delta.cs.cinvestav.mx/"mcintosh/comun/contours/node8.html http://delta.cs.cinvestav.mx/"mcintosh/oldweb/lcau/node98.html http://dft.rutgers.edu/~etsiper/rrosc.html http://econ.lse.ac.uk/courses/ec319/M/lecture5.pdf http://employees.oneonta.edu/GoutziCJ/fall_2003/math276/maple/ Lesson_141.html
http://en.wikipedia.org/wiki/Cholesky_decomposition
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Positive-semidefinite_matrix
http://en.wikipedia.org/wiki/Quadratic_form
http://eom.springer.de/b/b016370.htm
http://eom.springer.de/C/c120160.htm
http://eom.springer.de/N/n130030.htm
http://eom.springer.de/q/q076080.htm
http://epubs.siam.org/sam-bin/dbq/article/38133
http://esperia.iesl.forth.gr/~amo/nr/bookfpdf/f2-9.pdf
http://gaia.ecs.csus.edu/~hellerm/EEE242/chapter\% 201/pd.htm
http;//homepage.tinet.ie/~phabfys/maxim.htm
http://iridia.ulb.ac.be/~fvandenb/mythesis/node72.html
http://kr.cs.ait.ac.th/~radok/math/mat3/m131.htm
http://kr.cs.ait.ac.th/~radok/math/mat5/algebra62.htm
http://kr.cs.ait.ac.th/ ${ }^{\text {radok/math/mat9/03c.htm }}$
http://mat.gsia.cmu.edu/QUANT/NOTES/chap1/node8.html
http://mathworld.wolfram.com/CholeskyDecomposition.html
http://mathworld.wolfram.com/Maximum.html
http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html
http://mathworld.wolfram.com/QuadraticForm.html
http://mathworld.wolfram.com/topics/MaximaandMinima.html
http://modular.fas.harvard.edu/docs/magma/htmlhelp/text654.htm
http://ocw.mit.edu/NR/rdonlyres/Chemical-Engineering/10-34Fall-2005/
695E79DF-11F7-4FB7-AD7E-FEDA74B9BFEF/0/lecturenotes142.pdf
http://omega.albany.edu:8008/calc3/extrema-dir/define-m2h.html
http://oregonstate.edu/instruct/mth254h/garity/Fall2005/Notes/ 10_15_8.pdf
http://people.hofstra.edu/faculty/Stefan_Waner/realworld/ Calcsumm8.html
http://planetmath.org/encyclopedia/CholeskyDecomposition.html http://planetmath.org/encyclopedia/

DiagonalizationOfQuadraticForm.html
http://planetmath.org/encyclopedia/PositiveDefinite.html
http://planetmath.org/encyclopedia/QuadraticForm.html
http://pruffle.mit.edu/3.016/collected_lectures/node39.html
http://pruffle.mit.edu/3.016/Lecture_10_web/node2.html
http://random.mat.sbg.ac.at/~ste/diss/node25.html
http://rkb.home.cern.ch/rkb/AN16pp/node33.html
http://scienceandreason.blogspot.com/2006/03/quadratic-forms.html
http://sepwww.stanford.edu/sep/prof/gem/hlx/paper_html/node11.html
http://slpl.cse.nsysu.edu.tw/chiaping/la/chap6.pdf
http://taylorandfrancis.metapress.com/media/59dam5dwuj2xwl8rvvtk/ contributions/d/3/y/y/d3yy93fbcqpvu69n.pdf
http://tutorial.math.lamar.edu/AllBrowsers/1314/
ReducibleToQuadratic.asp
http://web.mit.edu/18.06/www/Video/video-fall-99.html
http://web.mit.edu/wwmath/vectorc/minmax/hessian.html
http://www-math.mit.edu/~djk/18_022/chapter04/section02.html
http://www.analyzemath.com/Equations/Quadratic_Form_Tutorial.html
http://www.answers.com/topic/quadratic-form
http://www.artsci.wustl.edu/~e503jn/files/math/DefiniteMatrics.pdf
http://www.astro.cf.ac.uk/undergrad/module/PX3104/tp1/node12.html
http://www.chass.utoronto.ca/~osborne/MathTutorial/QF2F.HTM
http://www. chass.utoronto.ca/~osborne/MathTutorial/QFF.HTM http://www.chass.utoronto.ca/~osborne/MathTutorial/QFS.HTM http://www.chass.utoronto.ca/~osborne/MathTutorial/QUF.HTM http://www.cs.ut.ee/~toomas_l/linalg/lin2/node25.html http://www.csie.ncu.edu.tw/~chia/Course/LinearAlgebra/sec8-2.pdf http://www.ece.mcmaster.ca/~kiruba/3sk3/lecture7.pdf http://www, ece.uwaterloo.ca/~ece104/TheBook/04LinearAlgebra/ cholesky/
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/property.html http://www.es.ucl.ac.uk/undergrad/geomaths/pdilink6.htm http://www.iam.ubc.ca/~norris/research/quadapp.pdf http://www.ics.mq.edu.au/~chris/math123/chap05.pdf http://www.imada.sdu.dk/~swann/MM02/QuadraticForms.pdf http://www.imsc.res.in/~kapil/crypto/notes/node37.html http://www.matf.bg.ac.yu/r3nm/NumericalMethods/LAESolve/ Cholesky.html
http://www.math.niu.edu/~rusin/known-math/99/posdef http://www.math. oregonstate.edu/home/programs/undergrad/

CalculusQuestStudyGuides/vcalc/min_max/min_max.html
http://www.math.rutgers.edu/courses/251/s01bumby/slide011.ps2.pdf
http://www.math.tamu.edu/~bollingr/Notes/bzb83.pdf
http://www.math.ucla.edu/~xinweiyu/164.1.05f/1102.pdf
http://www.math.uga.edu/~chadm/quadratic.pdf
http://www.math.uic.edu/math210/labs/lab5.html
http://www.math.uic.edu/~math210/newlabs/critpts/critpts.html
http://www.math.uiuc.edu/documenta/lsu/vol-lsu-eng.html
http://www.math.umn.edu/~nykamp/multivar/Fall2003/lecture26.pdf
http://www.math.vt.edu/people/javance1/Section_10.1.pdf
http://www.math.wm.edu/~hugo/compl3.html
http://www.mathematics.jhu.edu/matlab/8-4.html
http://www.mathreference.com/ca-mv,local.html
http://www.mathreference.com/la-qf, intro.html
http://www.maths.abdn.ac.uk/~igc/tch/ma2001/notes/node70.html
http://www.maths.abdn.ac.uk/~igc/tch/mx3503/notes/node79.html
http://www.maths.lse.ac.uk/Courses/MA207/fqmso.pdf
http://www.mpri.lsu.edu/textbook/Chapter2.htm
http://www.numericalmathematics.com/maxima_and_minima1.htm
http://www.psi.toronto.edu/matrix/special.html
http://www.quantlet.com/mdstat/scripts/mva/htmlbook/ mvahtmlnode16.html
http://www.reference.com/browse/wiki/Maxima_and_minima
http://www.reference.com/browse/wiki/Quadratic_form
http://www.riskglossary.com/link/positive_definite_matrix.htm http://www.sciencenews.org/articles/20060311/bob9.asp
http://www.stanford.edu/class/ee263/symm.pdf
http://www.ucl.ac.uk/Mathematics/geomath/level2/pdiff/pd7.html
http://www.ucl.ac.uk/Mathematics/geomath/level2/pdiff/pd8.html
http://www.vision.caltech.edu/mweber/research/CNS248/node22.html

Computational Aspects

For square matrices, we can measure the sensitivity of the solution of the linear algebraic system $A x=b$ with respect to changes in vector b and in matrix A by using the notion of the condition number of matrix A. If the condition number is large, then the matrix is said to be ill-conditioned. Practically, such a matrix is almost singular, and the computation of its inverse or solution of a linear system of equations is prone to large numerical errors. In this chapter, we will investigate computational methods for solving $A x=b$, and obtaining eigen values/vectors of A.

6.1 Solution of $A \boldsymbol{A}=\boldsymbol{b}$

Let us investigate small changes in the right hand side of $A x=b$ as if we are making a sensitivity analysis:

$$
\begin{gathered}
b \mapsto b+\Delta_{b} \Rightarrow x \mapsto x+\Delta_{x} \\
A\left(x+\Delta_{x}\right)=b+\Delta_{b} \Leftrightarrow A\left(\Delta_{x}\right)=\Delta_{b}
\end{gathered}
$$

Similarly, one can investigate the effect of perturbing the coefficient matrix A :

$$
A \mapsto A+\Delta_{A} \Rightarrow x \mapsto x+\Delta_{x}
$$

We will consider these cases with respect to the form of the coefficient matrix A in the following subsections.

6.1.1 Symmetric and positive definite

Let A be symmetric. Without loss of generality, we may assume that we ordered the nonnegative eigen values: $0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$. Since Δ_{b} is a vector itself, it could be represented in terms of the basis formed by the associated eigen vectors $v_{1}, v_{2}, \ldots, v_{n}$. Moreover, we can express Δ_{b} as a convex combination because its norm is sufficiently small.

$$
\Delta_{b}=\sum_{i=1}^{n} \alpha_{i} v_{i} \text { where } v_{i} \leftrightarrow \lambda_{i}, \sum \alpha_{i}=1, \alpha_{i} \geq 0, \forall i
$$

If Δ_{b} is along v_{1}, i.e. $\Delta_{b}=\epsilon v_{1}$, then $\Delta_{x}=\frac{\Delta_{b}}{\lambda_{1}}$ since $\Delta_{x}=A^{-1} \Delta_{b}$. That is, the error of size $\left\|\Delta_{b}\right\|$ is amplified by the factor $\frac{1}{\lambda_{1}}$, which is just the largest eigen value of A^{-1}. On the other hand, if $b=v_{n}$, then $x=A^{-1} b=\frac{b}{\lambda_{n}}$, which makes the relative error

$$
\frac{\left\|\Delta_{x}\right\|}{\|x\|}=\frac{\frac{\left\|\Delta_{b}\right\|}{\lambda_{1}}}{\frac{\|b\|}{\lambda_{n}}}=\frac{\lambda_{n}}{\lambda_{1}} \frac{\left\|\Delta_{b}\right\|}{\|b\|}
$$

as much as possible.
Proposition 6.1.1 For a positive definite matrix, the solution $x=A^{-1} b$ and the error $\Delta_{x}=A^{-1} \Delta_{b}$ always satisfy

$$
\|x\| \geq \frac{\|b\|}{\lambda_{n}} \text { and }\left\|\Delta_{x}\right\| \leq \frac{\left\|\Delta_{b}\right\|}{\lambda_{1}}
$$

Therefore, the relative error is bounded by

$$
\frac{\left\|\Delta_{x}\right\|}{\|x\|} \leq \frac{\lambda_{n}}{\lambda_{1}} \frac{\left\|\Delta_{b}\right\|}{\|b\|} .
$$

Definition 6.1.2 The quantity $c=\frac{\lambda_{n}}{\lambda_{1}}=\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}$ is known as condition number of A.

Remark 6.1.3 Notice that c is not affected by the size of a matrix. If $A=I$ or $A^{\prime}=\frac{I}{10}$ then $c_{A}=1=c_{A^{\prime}}=\frac{\lambda_{\max }}{\lambda_{\text {min }}}$. However, $\operatorname{det} A=1$, $\operatorname{det} A^{\prime}=10^{-n}$. Thus, determinant is a terrible measure of ill conditioning.

Example 6.1.4

$$
A=\left[\begin{array}{ll}
2.00002 & 2 \\
2 & 2.00002
\end{array}\right] \Rightarrow \lambda_{1}=2 \times 10^{-5}, \lambda_{2}=4.00002 \Rightarrow c \approx 2 \times 10^{5}
$$

In particular,

$$
b=b_{1}=\left[\begin{array}{l}
2.00001 \\
2.00001
\end{array}\right] \Rightarrow x=x_{1}=\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right] \text { and } b_{2}=\left[\begin{array}{l}
2.00002 \\
2
\end{array}\right] \Rightarrow x_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Then, we have

$$
\|b\|=2.00001 \sqrt{2}, \Delta_{b}=b_{2}-b_{1}=10^{-5}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \Rightarrow\left\|\Delta_{b}\right\|=\sqrt{2} \times 10^{-5}
$$

$$
\begin{gathered}
\|x\|=\frac{\sqrt{2}}{2}, \Delta_{x}=x_{2}-x_{1}=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \Rightarrow\left\|\Delta_{x}\right\|=\frac{\sqrt{2}}{2} \\
\Rightarrow \frac{\left\|\Delta_{x}\right\|}{\|x\|}=1 \text { and } \frac{\left\|\Delta_{b}\right\|}{\|b\|} \approx 5 \times 10^{-6}
\end{gathered}
$$

The relative amplification in this particular instance, $\frac{\left\|\Delta_{x}\right\|}{\|x\|} \approx \frac{10^{5}}{2} \frac{\left\|\Delta_{b}\right\|}{\|b\|}$, is approximately $\frac{10^{5}}{2}$, which is a lower bound for the condition number $c \approx 2 \times$ 10^{5}.

Remark 6.1.5 As a rule of thumb (experimentally verified), a computer can loose $\log c$ decimal places to the round-off errors in Gaussian elimination.

6.1.2 Symmetric and not positive definite

Let us now drop the positivity assumption while we keep A still symmetric. Then, nothing is changed except

$$
c=\frac{\left|\lambda_{\max }\right|}{\left|\lambda_{\min }\right|}
$$

6.1.3 Asymmetric

In this case, the ratio of eigen values cannot represent the relative amplification.

Example 6.1.6 Let the parameter $\kappa \gg 0$ be large enough.

$$
A=\left[\begin{array}{ll}
1 & \kappa \\
0 & 1
\end{array}\right] \Leftrightarrow A^{-1}=\left[\begin{array}{cc}
1 & -\kappa \\
0 & 1
\end{array}\right], \lambda_{1}=\lambda_{2}=1 .
$$

In particular,

$$
b=b_{1}=\left[\begin{array}{c}
\kappa \\
1
\end{array}\right] \Rightarrow x=x_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { and } b_{2}=\left[\begin{array}{c}
\kappa \\
0
\end{array}\right] \Rightarrow x_{2}=\left[\begin{array}{c}
\kappa \\
0
\end{array}\right] .
$$

Then, we have

$$
\begin{aligned}
\|b\| & =\sqrt{1+\kappa^{2}}, \Delta_{b}=b_{2}-b_{1}=\left[\begin{array}{r}
0 \\
-1
\end{array}\right] \Rightarrow\left\|\Delta_{b}\right\|=1 \\
\|x\| & =1, \Delta_{x}=x_{2}-x_{1}=\left[\begin{array}{r}
\kappa \\
-1
\end{array}\right] \Rightarrow\left\|\Delta_{x}\right\|=\sqrt{1+\kappa^{2}} \\
& \Rightarrow \frac{\left\|\Delta_{x}\right\|}{\|x\|}=\sqrt{1+\kappa^{2}} \text { and } \frac{\left\|\Delta_{b}\right\|}{\|b\|}=\frac{1}{\sqrt{1+\kappa^{2}}}
\end{aligned}
$$

The relative amplification in this particular instance is $1+\kappa^{2}$. Hence, we should have $1 \ll 1+\kappa^{2} \leq c(A)$. The condition number $c(A)$ is not just the ratio of eigen values, which is 1; but it should have a considerably larger value in this example, since A is not symmetric.

Definition 6.1.7 The norm of A is the number defined $\|A\|=\max _{x \neq \theta} \frac{\|A x\|}{\|x\|}$.
Remark 6.1.8 $\|A\|$ bounds the "amplifying power" of the matrix.

$$
\|A x\| \leq\|A\|\|x\|, \forall x
$$

and equality holds for at least one nonzero x. It measures the largest amount by which any vector (eigen vector or not) is amplified by matrix multiplication.

Proposition 6.1.9 For a square nonsingular matrix, the solution $x=A^{-1} b$ and the error $\Delta_{x}=A^{-1} \Delta_{b}$ satisfy

$$
\frac{\left\|\Delta_{x}\right\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\left\|\Delta_{b}\right\|}{\|b\|} .
$$

Proof. Since
$b=A x \Rightarrow\|b\| \leq\|A\|\|x\|$ and
$\Delta_{x}=A^{-1} \Delta_{b} \Rightarrow\left\|\Delta_{x}=\right\| \leq\left\|A^{-1}\right\|\left\|\Delta_{b}\right\|$, we have

$$
\|b\| \leq\|A\|\|x\| \text { and }\left\|\Delta_{x}\right\| \leq\left\|A^{-1}\right\|\left\|\Delta_{b}\right\|
$$

Remark 6.1.10 When A is symmetric,

$$
\|A\|=\left|\lambda_{n}\right|, \quad\left\|A^{-1}\right\|=\frac{1}{\left|\lambda_{1}\right|} \Rightarrow c=\|A\|\left\|A^{-1}\right\|=\frac{\left|\lambda_{n}\right|}{\left|\lambda_{1}\right|}
$$

and the relative error satisfies

$$
\frac{\left\|\Delta_{x}\right\|}{\|x\|} \leq c \frac{\left\|\Delta_{b}\right\|}{\|b\|} .
$$

Example 6.1.11 Let us continue the previous example, where

$$
A=\left[\begin{array}{ll}
1 & \kappa \\
0 & 1
\end{array}\right], b=\left[\begin{array}{c}
\kappa \\
1
\end{array}\right], \Delta_{b}=\left[\begin{array}{r}
0 \\
-1
\end{array}\right]
$$

Since we have

$$
\kappa \leq\|A\| \leq \kappa+1, \text { and } \kappa \leq\left\|A^{-1}\right\| \leq \kappa+1,
$$

then the relative amplification is approximately $\kappa^{2} \approx\|A\|\left\|A^{-1}\right\|$.

Remark 6.1.12

$$
\|A\|^{2}=\max \frac{\|A x\|^{2}}{\|x\|^{2}}=\max \frac{x^{T} A^{T} A x}{x^{T} x}: \text { Rayleigh quotient! }
$$

Proposition 6.1.13 The norm of A is the square root of the largest eigen value of $A^{T} A$. The vector that is amplified the most is the corresponding eigen vector of $A^{T} A$.

$$
\frac{x^{T} A^{T} A x}{x^{T} x}=\frac{x^{T} \lambda_{\max } x}{x^{T} x}=\lambda_{\max }=\|A\|
$$

Example 6.1.14 Let us further continue the previous example:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 & \kappa \\
0 & 1
\end{array}\right] \text { and } A^{-1}=\left[\begin{array}{cc}
1 & -\kappa \\
0 & 1
\end{array}\right] \\
A^{T} A=\left[\begin{array}{cc}
1 & \kappa \\
\kappa & \kappa^{2}+1
\end{array}\right] \Rightarrow\left|\begin{array}{cc}
s-1 & \kappa \\
-\kappa & s-\kappa^{2}-1
\end{array}\right| \doteq 0 \Rightarrow s^{2}-\left(\kappa^{2}+2\right) s+1=0 \\
\Delta^{2}=\left(\kappa^{2}+2\right)^{2}-4(1) 1=\kappa^{2}\left(\kappa^{2}+4\right) \Rightarrow \\
\lambda_{\max }=\frac{-\left(-\kappa^{2}-2\right)+\sqrt{\kappa^{2}\left(\kappa^{2}+4\right)}}{2(1)} \approx \kappa^{2} \Rightarrow\|A\|=\sqrt{\lambda_{\max }} \approx \kappa
\end{gathered}
$$

Similarly, $\left\|A^{-1}\right\|=\sqrt{\lambda_{\max }\left[\left(A^{-1}\right)^{T} A^{-1}\right]} \approx \kappa$. Thus, the relative amplification is controlled by $\|A\|\left\|A^{-1}\right\| \approx \kappa^{2}$.

Remark 6.1.15 If A is symmetric, then $A^{T} A=A^{2}$ and $\|A\|=\max \left|\lambda_{i}\right|$.
Let us consider now the changes in the coefficient matrix.
Proposition 6.1.16 If we perturb A, then

$$
\frac{\left\|\Delta_{x}\right\|}{\left\|x+\Delta_{x}\right\|} \leq c \frac{\left\|\Delta_{A}\right\|}{\|A\|} \text { where } c=\|A\|\left\|A^{-1}\right\| .
$$

Proof.

$$
\left.\left.\begin{array}{c}
A x=b \\
\left(A+\Delta_{A}\right)\left(x+\Delta_{x}\right)=b
\end{array}\right\} \Rightarrow \text {. } n=-A_{x}=-\Delta_{A}\right)\left(x+\Delta_{x}\right) .
$$

Example 6.1.17

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & 10 & 100 \\
10 & \frac{1}{10} & 1 \\
1 & \frac{1}{10} & \frac{1}{100}
\end{array}\right], b=\left[\begin{array}{c}
111 \\
\frac{111}{10} \\
\frac{111}{100}
\end{array}\right] \Rightarrow x=x_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] . \\
\Rightarrow\|A\| & =\sqrt{\lambda_{\max }\left[A^{T} A\right]}=\sqrt{\frac{131329}{13}}=100.5099,\|x\|=\sqrt{3},
\end{aligned}
$$

$$
\begin{gathered}
A^{-1}=\left[\begin{array}{rrr}
-\frac{1}{999} & \frac{100}{999} & 0 \\
\frac{10}{10989} & -\frac{1010}{999} & \frac{1000}{99} \\
\frac{100}{10989} & \frac{100}{999} & -\frac{100}{99}
\end{array}\right] \\
\Rightarrow\left\|A^{-1}\right\|=\sqrt{\lambda_{\max }\left[\left(A^{-1}\right)^{T} A\right]}=\sqrt{\frac{28831}{277}}=10.2021 . \\
\Delta_{A}=\left[\begin{array}{rrr}
-1 & -10 & 0 \\
-10 & \frac{9}{10} & -1 \\
0-\frac{1}{10} & -\frac{1}{100}
\end{array}\right] \Rightarrow A+\Delta_{A}=\left[\begin{array}{cc}
0 & 0 \\
0 & 100 \\
1 & 0 \\
10 & 0
\end{array}\right] \Rightarrow x_{2}=\left[\begin{array}{c}
\frac{111}{100} \\
\frac{111}{10} \\
\frac{111}{100}
\end{array}\right] \\
\Rightarrow \Delta_{x}=x_{2}-x_{1}=\left[\begin{array}{r}
\frac{11}{100} \\
\frac{101}{10} \\
\frac{11}{100}
\end{array}\right] \Rightarrow\left\|\Delta_{x}\right\|=\frac{\sqrt{1020342}}{100}=10.1012, \text { and } \\
\left\|\Delta_{A}\right\|=\sqrt{\lambda_{\max }\left[\Delta_{A}^{T} \Delta_{A}\right]}=\sqrt{\frac{14963}{146}}=10.1236 . \\
\frac{\left\|\Delta_{x}\right\|}{\left\|x+\Delta_{x}\right\|}=\frac{10.1012}{\sqrt{3}} \leq \frac{10.1236}{100.5099} c=c \frac{\left\|\Delta_{A}\right\|}{\|A\|} \\
\Rightarrow \frac{\frac{10.1012}{\sqrt{3}}}{\frac{10.1236}{100.5099}}=57.9 \leq c=\|A\|\left\|A^{-1}\right\|=100.5099(10.2021)=1025.412 .
\end{gathered}
$$

The relative amplification in this instance is 57.9 whereas the theoretic upper bound is 1025.412.

Remark 6.1.18 The following are the main guidelines in practise:

1. c and $\|A\|$ are never computed but estimated.
2. c explains why $A^{T} A x=A^{T} b$ are so hard to solve in least squares problems: $c\left(A^{T} A\right)=[c(A)]^{2}$ where $c($.$) is the condition number. The remedy is to$ use Gram-Schmidt or singular value decomposition, $A=Q_{1} \Sigma Q_{2}^{T}$. The entries σ_{i} in Σ are singular values of A, and σ_{i}^{2} are the eigen values of A^{T} A. Thus, $\|A\|=\sigma_{\text {max }}$. Recall that $\|A x\|=\left\|Q_{1} \Sigma Q_{2}^{T} x\right\|=\|\Sigma x\|$.

6.2 Computation of eigen values

There is no best way to compute eigen values of a matrix. But there are some terrible ways. In this section, a method recommended for large-sparse matrices, the power method, will be introduced.

Let u_{0} be initial guess. Then, $u_{k+1}=A u_{k}=A^{k+1} u_{0}$. Assume A has full set of eigen vectors $x_{1}, x_{2}, \ldots, x_{n}$, then $u_{k}=\alpha_{1} \lambda_{1}^{k} x_{1}+\cdots+\alpha_{n} \lambda_{n}^{k} x_{n}$. Assume further that $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n-1}<\lambda_{n}$; that is, the last eigen value is not repeated.

$$
\frac{u_{k}}{\lambda_{n}^{k}}=\alpha_{1}\left(\frac{\lambda_{1}}{\lambda_{n}}\right)^{k} x_{1}+\cdots+\alpha_{n}\left(\frac{\lambda_{n-1}}{\lambda_{n}}\right)^{k} x_{n-1}+\alpha_{n} x_{n}
$$

The vectors u_{k} point more and more accurately towards the direction of x_{n}, and the convergence factor is $r=\frac{\left|\lambda_{n-1}\right|}{\left|\lambda_{n}\right|}$.

Example 6.2.1 (Markov Process, continued) Recall Example 4.4.6:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
0.95 & 0.01 \\
0.05 & 0.99
\end{array}\right] \Rightarrow \lambda_{1}=1 \leftrightarrow\left[\begin{array}{l}
\frac{1}{5} \\
1
\end{array}\right]=v_{1}, \lambda_{2}=0.94 \\
u_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], u_{1}=\left[\begin{array}{l}
0.95 \\
0.05
\end{array}\right], u_{2}=\left[\begin{array}{c}
0.903 \\
0.097
\end{array}\right], u_{3}=\left[\begin{array}{l}
0.85882 \\
0.14118
\end{array}\right] \\
u_{4}=\left[\begin{array}{l}
0.817291 \\
0.182709
\end{array}\right], \cdots, u_{210}=\left[\begin{array}{l}
0.166667 \\
0.833333
\end{array}\right] \approx u_{\infty}=\left[\begin{array}{c}
\frac{1}{6} \\
\frac{5}{6}
\end{array}\right]=\alpha v_{1} .
\end{gathered}
$$

The convergence rate is quite low $r=0.94=\frac{0.94}{1}=\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$. Since the power method is designed especially for large sparse matrices, it converges after 210 iterations if the significance level is six digits after the decimal point.

Remark 6.2.2 (How to increase r) If $r \approx 1$, the convergence is slow. If $\left|\lambda_{n-1}\right|=\left|\lambda_{n}\right|$, no convergence at all. There are some methods to increase the convergence rate:
i. Block power method: Work with several vectors at once. Start with p orthonormal vectors, multiply by A, then apply Gram-Schmidt to orthogonalize again. Then, we have $r^{\prime}=\frac{\left|\lambda_{n-p}\right|}{\left|\lambda_{n}\right|}$.
ii. Inverse power method: Operate with A^{-1} instead of A. $v_{k+1}=A^{-1} v_{k} \Rightarrow$ $A v_{k+1}=v_{k}$ (save L and $U!$). The convergence rate is $r^{\prime \prime}=\frac{\left|\lambda_{1}\right|}{\left|\lambda_{2}\right|}$, provided that $r^{\prime \prime}<1$. This method guarantees convergence to the smallest eigen vector.
iii. Shifted inverse power method: The best method. Let A be replaced by $A-$ βI. All of the eigen values are shifted by β. Consequently, $r^{\prime \prime \prime}=\frac{\left|\lambda_{1}-\beta\right|}{\left|\lambda_{2}-\beta\right|}$. If we choose β as a good approximation to λ_{1}, the convergence will be accelerated.

$$
(A-\beta I) w_{k+1}=w_{k}=\frac{\alpha_{1} x_{1}}{\left(\lambda_{1}-\beta\right)^{k}}+\frac{\alpha_{2} x_{2}}{\left(\lambda_{2}-\beta\right)^{k}}+\cdots+\frac{\alpha_{n} x_{n}}{\left(\lambda_{n}-\beta\right)^{k}}
$$

If we know β, then we may use $A-\beta I=L U$ and solve $U x_{1}=$ $(1,1, \cdots, 1)^{T}$ by back substitution. We can choose $\beta=\beta_{k}$ at each step $\ni\left(A-\beta_{k} I\right) w_{k+1}=w_{k}$. If $A=A^{T}, \beta_{k}=R\left(u_{k}\right)=\frac{u_{k}^{T} A u_{k}}{u_{k}^{T} u_{k}}$, then we will get the cubic convergence.

Remark 6.2.3 (QR Algorithm) Start with A_{0}. Factor it using the GramSchmidt process into $Q_{0} R_{0}$, then reverse factors $A_{1}=R_{0} Q_{0} . A_{1}$ is similar to $A_{0}: Q_{0}^{-1} A_{0} Q_{0}=Q_{0}^{-1}\left(Q_{0} R_{0}\right) Q_{0}=A_{1}$. So, $A_{k}=Q_{k} R_{k} \Rightarrow A_{k+1}=R_{k} Q_{k} . A_{k}$ approaches to a triangular form in which we can read the eigen values from the main diagonal. There are some modifications to speed up this procedure as well.

Definition 6.2.4 If a matrix is less than a triangular form, one nonzero diagonal below the main diagonal, it is called in Hessenberg form. Furthermore, if it is symmetric then it is said to be in tridiagonal form.

Definition 6.2.5 A Houscholder transformation (or an elementary reflector) is a matrix of the form

$$
H=I-2 \frac{v v^{T}}{\|c\|^{2}}
$$

Remark 6.2.6 Often v is normalized to become a unit vector $u=\frac{v}{\|v\|}$, then $H=I-2 u u^{T}$. In either case, H is symmetric and orthogonal:

$$
H^{T} H=\left(I-2 u u^{T}\right)^{T}\left(I-2 u u^{T}\right)=I-4 u u^{T}+4 u u^{T} u u^{T}=I
$$

In the complex case, H is both Hermitian and unitary.
H is sometimes called elementary reflector since
Proposition 6.2.7 Let $z=e_{1}=(1,0, \cdots, 0)^{T}$, and $\sigma=\|x\|$, and $v=x+\sigma z$. Then, $H x=-\sigma z=(-\sigma, 0, \cdots, 0)^{T}$.

Proof.

$$
\begin{gathered}
H x=x-2 \frac{v v^{T} x}{\|v\|^{2}}=x-(x+\sigma z) \frac{2(x+\sigma z)^{T} x}{(x+\sigma z)^{T}(x+\sigma z)} \\
H x=x-(x+\sigma z)=-\sigma z
\end{gathered}
$$

Remark 6.2.8 Assume that we are going to transform A into a tridiagonal or Hessenberg form $U^{-1} A U$. Let

$$
\begin{gathered}
x=\left[\begin{array}{c}
a_{21} \\
a_{31} \\
\vdots \\
a_{n 1}
\end{array}\right], z=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], H x=\left[\begin{array}{c}
-\sigma \\
0 \\
\vdots \\
0
\end{array}\right] . \\
U_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & & \\
0 & H & \\
0 &
\end{array}\right]=U_{1}^{-1}, \text { and } U^{-1} A U_{1}=\left[\begin{array}{cc}
a_{11} * * * * \\
-\sigma * * * * \\
0 & * * * * \\
0 & * * * * \\
0 & * * * *
\end{array}\right] .
\end{gathered}
$$

The second stage is similar: x consists of the last $n-2$ entries in the second column, z is the first unit coordinate vector of matching length, and H_{2} is of order $n-2$:

$$
U_{2}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & & \\
0 & 0 & H_{2} \\
0 & 0 & &
\end{array}\right]=U_{2}^{-1}, \text { and } U_{2}^{-1}\left(U^{-1} A U_{1}\right) U_{2}=\left[\begin{array}{c}
* * * * * \\
* * * * * \\
0 * * * * \\
0 \\
0 * * * * \\
0
\end{array}\right]
$$

Following a similar approach, one may operate on the upper right corner of A simultaneously to generate a tridiagonal matrix at the end. This process is the main motivation of the $Q R$ algorithm.

Problems

6.1. Show that for orthogonal matrices $\|Q\|=c(Q)=1$. Orthogonal matrices and their multipliers (αQ) are only perfect condition matrices.
6.2. Apply the $Q R$ algorithm for

$$
A=\left[\begin{array}{rrrrrr}
0.5000 & -1.1180 & 0 & 0 & 0 & 0 \\
-1.1180 & 91.2000 & -80.0697 & 0 & 0 & 0 \\
0 & -80.0697 & 81.0789 & 4.1906 & 0 & 0 \\
0 & 0 & 4.1906 & 2.5913 & 0.2242 & 0 \\
0 & 0 & 0 & 0.2242 & 0.1257 & -0.0100 \\
0 & 0 & 0 & 0 & -0.0100 & 0.0041
\end{array}\right]
$$

6.3. Let $A(n) \in \mathbb{R}^{n \times n}, A(n)=\left(a_{i j}\right)$, where $a_{i j}=\frac{1}{i+j-1}$.
(a) Take $A(2)$.

1. Let $b_{I}=\left[\begin{array}{l}1.0 \\ 0.5\end{array}\right]$ and $b_{I I}=\left[\begin{array}{l}1.5 \\ 1.0\end{array}\right]$. Calculate the relative error.
2. Find a good upper bound for the relative error obtained after perturbing the right hand side.
3. Find the relative error of perturbing $A(2)$ by $\Delta_{A(2)}=\left[\begin{array}{rr}0 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{2}{3}\end{array}\right]$. Take $b_{I}=\left[\begin{array}{l}1.0 \\ 0.5\end{array}\right]$ as the right hand side.
4. Find a good upper bound for the relative error obtained after perturbing $A(2)$.
(b) Take $A(3)^{T} A(3)$ and find its condition number and compare with the condition number of $A(3)$.
(c) Take $A(4)$ and calculate its condition number after finding the eigen values using the $Q R$ algorithm.

Web material

http://202.41.85.103/manuals/planetmath/entries/65/
MatrixConditionNumber/MatrixConditionNumber.html
http://bass.gmu.edu/ececourses/ece499/notes/note4.html
http://beige.ucs.indiana.edu/B673/node30.html
http://beige.ucs.indiana.edu/B673/node35.html
http://csdl. computer.org/comp/mags/cs/2000/01/c1038abs.htm
http://csdl2. computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/
$\mathrm{mags} / \mathrm{cs} / \& \mathrm{toc}^{\mathrm{c}}=\mathrm{comp} / \mathrm{mags} / \mathrm{cs} / 2000 / 01 / \mathrm{c} 1 \mathrm{toc} . \mathrm{xml} \mathrm{\& DOI}=10.1109 /$
5992.814656
http://efgh.com/math/invcond.htm
http://en. powerwissen.com/G1+DpIQ8h2QSmPsQTtN08Q==
_QR_algorithm.html
http://en.wikipedia.org/wiki/Condition_number
http://en.wikipedia.org/wiki/Matrix_norm
http://en.wikipedia.org/wiki/QR_algorithm
http://en.wikipedia.org/wiki/Tridiagonal_matrix
http://epubs.siam.org/sam-bin/dbq/article/23653
http://esperia.iesl.forth.gr/~amo/nr/bookfpdf/f11-5.pdf
http://fish.cims.nyu.edu/educational/num_meth_I_2005/lectures/
lec_11_qr_algorithm.pdf
http://gosset.wharton.upenn.edu/~foster/teaching/540/
class_s_plus_1/Notes/node1.html
http://mate.dm.uba.ar/~matiasg/papers/condi-arxiv.pdf
http://math.arizona.edu/~restrepo/475A/Notes/sourcea/node53.html
http://math.fullerton.edu/mathews/n2003/hessenberg/HessenbergBib/
Links/HessenbergBib_lnk_2.html
http://math.fullerton.edu/mathews/n2003/qrmethod/QRMethodBib/Links/
QRMethodBib_lnk_2.html
http://mathworld.wolfram.com/ConditionNumber.html
http://mpec.sc.mahidol.ac.th/numer/STEP16.HTM
http://olab.is.s.u-tokyo.ac.jp/~nishida/la7/sld009.htm
http://planetmath.org/encyclopedia/ConditionNumber.html
http://planetmath.org/encyclopedia/MatrixConditionNumber.html
http://w3.cs.huji.ac.il/course/2005/csip/condition.pdf
http://web.ics.purdue.edu/ ${ }^{\text {nowack/geos657/lecture8-dir/lecture8.htm }}$
http://www-math.mit.edu/~persson/18.335/lec14handout6pp.pdf
http://www-math.mit.edu/~persson/18.335/lec15handout6pp.pdf
http://www-math.mit.edu/~persson/18.335/lec16.pdf
http://www.absoluteastronomy.com/encyclopedia/q/qr/
qr_algorithm1.htm
http://www.acm.caltech.edu/~mlatini/research/
presentation-qr-feb04.pdf
http://www.acm.caltech.edu/~mlatini/research/qr_alg-feb04.pdf
http://www. caam.rice.edu/~timwar/MA375F03/Lecture22.ppt
http://www.cas.memaster.ca/~qiao/publications/nm-2005.pdf
http://www.cs.colorado.edu/~mcbryan/3656.04/mail/54.htm
http://www.cs.unc.edu/~krishnas/eigen/node4.html
http://www.cs.unc.edu/~krishnas/eigen/node6.html
http://www.cs.ut.ee/~toomas_l/linalg/lin1/node18.html
http://www.cs.utk.edu/~ dongarra/etemplates/node95.html
http://www.csc.uvic.ca/~dolesky/csc449-540/5.5.pdf
http://www.ee.ucla.edu/~vandenbe/103/lineqsb.pdf
http://www.efgh.com/math/invcond.htm
http://www.ims.cuhk.edu.hk/~cis/2004.4/04.pdf
http://www.krellinst.org/UCES/archive/classes/CNA/dir1.7/ uces1.7.html
http://www.library. cornell.edu/nr/bookcpdf/c11-3.pdf
http://www.library. cornell.edu/nr/bookcpdf/c11-6.pdf
http://www.ma.man.ac.uk/~higham/pap-le.html
http://www.ma.man.ac.uk/~nareports/narep447.pdf
http://www.math.vt.edu/people/renardym/class_home/nova/bifs/ node52.html
http://www.math.wsu.edu/faculty/watkins/slides/qr03.pdf
http://www.maths.lancs.ac.uk/~gilbert/m306c/node22.html
http://www.maths.nuigalway.ie/MA385/nov14.pdf
http://www.mathworks.com/company/newsletters/news_notes/pdf/ sum95cleve.pdf
http://www.nasc.snu.ac.kr/sheen/nla/html/node13.html
http://www.nasc.snu.ac.kr/sheen/nla/html/node23.html
http://www.netlib.org/scalapack/tutorial/tsld191.htm
http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea/ node53.html
http://www.sci.wsu.edu/math/faculty/watkins/slides/qr03.pdf http://www.ugrad.cs.ubc.ca/~cs402/handouts/handout12.pdf http://www.ugrad.cs.ubc.ca/~cs402/handouts/handout26.pdf http://www.ugrad.cs.ubc.ca/~cs402/handouts/handout28.pdf http://www.uwlax.edu/faculty/will/svd/condition/index.html http://www.uwlax.edu/faculty/will/svd/norm/index.html http://www2.msstate.edu/~pearson/num-anal/num-anal-notes/ qr-algorithm.pdf
http://www4.ncsu.edu/eos/users/w/white/www/white/dir1.7/ sec1.7.6.html

Convex Sets

This chapter is compiled to present a brief summary of the most important concepts related to convex sets. Following the basic definitions, we will concentrate on supporting and separating hyperplanes, extreme points and polytopes.

7.1 Preliminaries

Definition 7.1.1 A set X in \mathbb{R}^{n} is said to be convex if

$$
\forall x_{1}, x_{2} \in X \text { and } \forall \alpha \in \mathbb{R}_{+}, 0<\alpha<1 \text {, the point } \alpha x_{1}+(1-\alpha) x_{2} \in X
$$

Fig. 7.1. Convexity

Remark 7.1.2 Geometrically speaking, X is convex if for any points $x_{1}, x_{2} \in$ X, the line segment joining these two points is also in the set. This is illustrated in Figure 7.1.

Definition 7.1.3 A point $x \in X$ is an extreme point of the convex set X if and only if

$$
\nexists x_{1}, x_{2}\left(x_{1} \neq x_{2}\right) \in X \ni x=(1-\alpha) x_{1}+\alpha x_{2}, 0<\alpha<1
$$

Proposition 7.1.4 Any extreme point is on boundary of the set.
Proof. Let x_{0} be any interior point of X. Then $\exists \epsilon>0 \ni$ every point in this ϵ neighborhood of x_{0} is in this set. Let $x_{1} \neq x_{0}$ be a point in this ϵ neighborhood. Consider

$$
x_{2}=-x_{1}+2 x_{0},\left|x_{2}-x_{0}\right|=\left|x_{1}-x_{0}\right|
$$

then x_{2} is in ϵ neighborhood. Furthermore, $x_{0}=\frac{1}{2}\left(x_{1}+x_{2}\right)$; hence, x_{0} is not an extreme point.

Remark 7.1.5 Not all boundary points of a convex set are necessarily extreme points. Some boundary points may lie between two other boundary points.

Proposition 7.1.6 Convex sets in \mathbb{R}^{n} satisfy the following relations.
i. If X is a convex set and $\beta \in \mathbb{R}$, the set $\beta X=\{y: y=\beta x, x \in X\}$ is convex.
ii. If X and Y are convex sets, then the set $X+Y=\{z: z=x+y, x \in$ $X, y \in Y\}$ is convex.
iii. The intersection of any collection of convex sets is convex.

Fig. 7.2. Proof of Proposition 7.1.6

Proof. Obvious from Figure 7.2.
Another important concept is to form the smallest convex set containing a given set.

Definition 7.1.7 Let $S \subset \mathbb{R}^{n}$. The convex hull of S is the set which is the intersection of all convex sets containing S.

Definition 7.1.8 A cone C is a set such that if $x \in C$, then $\alpha x \in C, \forall \alpha \in$ \mathbb{R}_{+}. A cone which is also convex is known as convex cone. See Figure 7.3.

NON-CONVEX

Fig. 7.3. Cones

7.2 Hyperplanes and Polytopes

The most important type of convex set (aside from single points) is the hyperplane.

Remark 7.2.1 Hyperplanes dominate the entire theory of optimization; appearing in Lagrange multipliers, duality theory, gradient calculations, etc. The most natural definition for a hyperplane is the generalization of a plane in \mathbb{R}^{3}.

Definition 7.2.2 A set V in \mathbb{R}^{n} is said to be linear variety, if, given any $x_{1}, x_{2} \in V$, we have $\alpha x_{1}+(1-\alpha) x_{2} \in V, \forall \alpha \in \mathbb{R}$.

Remark 7.2.3 The only difference between a linear variety and a convex set is that a linear variety is the entire line passing through any two points, rather than a simple line segment.

Definition 7.2.4 A hyperplane in \mathbb{R}^{n} is an (n-1)-dimensional linear variety. It can be regarded as the largest linear variety in a space other than the entire space itself.

Proposition 7.2.5 Let $a \in \mathbb{R}^{n}, a \neq \theta$ and $b \in \mathbb{R}$. The set

$$
H=\left\{x \in \mathbb{R}^{n}: a^{T} x=b\right\}
$$

is a hyperplane in \mathbb{R}^{n}.
Proof. Let $x_{1} \in H$. Translate H by $-x_{1}$, we then obtain the set

$$
M=H-x_{1}=\left\{y \in \mathbb{R}^{n}: \exists x \in H \ni y=x-x_{1}\right\}
$$

which is a linear subspace of $\mathbb{R}^{n} . M=\left\{y \in \mathbb{R}^{n}: a^{T} y=0\right\}$ is also the set of all orthogonal vectors to $a \in \mathbb{R}^{n}$, which is clearly ($n-1$) dimensional.

Proposition 7.2.6 Let H be an hyperplane in \mathbb{R}^{n}. Then,

$$
\exists a \in \mathbb{R}^{n} \ni H=\left\{x \in \mathbb{R}: a^{T} x=b\right\} .
$$

Proof. Let $x_{1} \in H$, and translate by $-x_{1}$ obtaining $M=H-x_{1}$. Since H is a hyperplane, M is an ($n-1$)-dimensional space. Let a be any orthogonal to M, i.e. $a \in M^{\perp}$. Thus, $M=\left\{y \in \mathbb{R}^{n}: a^{T} y=0\right\}$. Let $b=a^{T} x_{1}$ we see that if $x_{2} \in H, x_{2}-x_{1} \in M$ and therefore $a^{T} x_{2}-a^{T} x_{1}=0 \Rightarrow a^{T} x_{2}=b$. Hence, $H \subset\left\{x \in \mathbb{R}: a^{T} x=b\right\}$. Since H is, by definition, of $(n-1)$ dimension, and $\left\{x \in \mathbb{R}: a^{T} x=b\right\}$ is of dimension $(n-1)$ by the above proposition, these two sets must be equal (see Figure 7.4).

Fig. 7.4. Proof of Proposition 7.2.6

Definition 7.2.7 Let $a \in \mathbb{R}^{n}, b \in \mathbb{R}$. Corresponding to the hyperplane $H=$ $\left\{x: a^{T} x=b\right\}$, there are positive and negative closed half spaces:

$$
H_{+}=\left\{x: a^{T} x \geq b\right\}, H_{-}=\left\{x: a^{T} x \leq b\right\}
$$

and

$$
\dot{H}_{+}=\left\{x: a^{T} x>b\right\}, \dot{H}_{-}=\left\{x: a^{T} x<b\right\}
$$

Half spaces are convex sets and $H_{+} \cup H_{-}=\mathbb{R}^{n}$.
Definition 7.2.8 A set which can be expressed as the intersection of a finite number of closed half spaces is said to be a convex polyhedron.

Convex polyhedra are the sets obtained as the family of solutions to a set of linear inequalities of the form

$$
\begin{gathered}
a_{1}^{T} x \leq b_{1} \\
a_{2}^{T} x \leq b_{2} \\
\vdots \\
a_{m}^{T} x \leq b_{m}
\end{gathered}
$$

Since each individual entry defines a half space and the solution family is the intersection of these half spaces.
Definition 7.2.9 A nonempty bounded polyhedron is called a polytope.

7.3 Separating and Supporting Hyperplanes

Theorem 7.3.1 (Separating Hyperplane) Let X be a convex set and y be a point exterior to the closure of X. Then, there exists a vector $a \in \mathbb{R}^{n} \ni$ $a^{T} y<\inf _{x \in X} a^{T} x$. (Geometrically, a given point y outside X, a separating hyperplane can be passed through the point y that does not touch X. Refer to Figure 7.5)

Fig. 7.5. Separating Hyperplane

Proof. Let $\delta=\inf _{x \in X}|x-y|>0$ Then, there is an x_{0} on the boundary of X such that $\left|x_{0}-y\right|=\delta$. Let $z \in X$. Then,

$$
\forall \alpha, 0 \leq \alpha \leq 1, \quad x_{0}+\alpha\left(z-x_{0}\right)
$$

is the line segment between x_{0} and z. Thus, by definition of x_{0},

$$
\begin{gathered}
\left|x_{0}+\alpha\left(z-x_{0}\right)-y\right|^{2} \geq\left|x_{0}-y\right|^{2} \\
\Leftrightarrow\left(x_{0}-y\right)^{T}\left(x_{0}-y\right)+2 \alpha\left(x_{0}-y\right)^{T}\left(z-x_{0}\right)+\alpha^{2}\left(z-x_{0}\right)^{T}\left(z-x_{0}\right) \geq\left(x_{0}-y\right)^{T}\left(x_{0}-y\right) \\
\Leftrightarrow 2 \alpha\left(x_{0}-y\right)^{T}\left(z-x_{0}\right)+\alpha^{2}\left|z-x_{0}\right|^{2} \geq 0
\end{gathered}
$$

Let $\alpha \rightarrow 0^{+}$, then α^{2} tends to 0 more rapidly than 2α. Thus,

$$
\begin{gathered}
\left(x_{0}-y\right)^{T}\left(z-x_{0}\right) \geq 0 \Leftrightarrow\left(x_{0}-y\right)^{T} z-\left(x_{0}-y\right)^{T} x_{0} \geq 0 \\
\Leftrightarrow\left(x_{0}-y\right)^{T} z \geq\left(x_{0}-y\right)^{T} x_{0}=\left(x_{0}-y\right)^{T} y+\left(x_{0}+y\right)^{T}\left(x_{0}-y\right)=\left(x_{0}-y\right)^{T} y+\delta^{2} \\
\Leftrightarrow\left(x_{0}-y\right)^{T} y<\left(x_{0}-y\right)^{T} x_{0} \leq\left(x_{0}-y\right)^{T} z, \forall z \in X(\text { Since } \delta>0) .
\end{gathered}
$$

Let $a=\left(x_{0}-y\right)$, then $a^{T} y<a^{T} x_{0}=\inf _{z \in X} a^{T} z$.

Theorem 7.3.2 (Supporting Hyperplane) Let X be a convex set, and let y be a boundary point of X. Then, there is a hyperplane containing y and containing X in one of its closed half spaces.

Proof. Let $\left\{y_{k}\right\}$ be sequence of vectors, exterior to the closure of X, converging to y. Let $\left\{a_{k}\right\}$ be a sequence of corresponding vectors constructed according to the previous theorem, normalized so that $\left|a_{k}\right|=1$, such that $a_{k}^{T} y_{k}<\inf _{x \in X}$. Since $\left\{a_{k}\right\}$ is a boundary sequence, it converges to a. For this vector, we have $a^{T} y=\lim a_{k}^{T} y_{k} \leq a x$.

Definition 7.3.3 A hyperplane containing a convex set X in one of its closed half spaces and containing a boundary point of X is said to be supporting hyperplane of X.

7.4 Extreme Points

Remark 7.4.1 We have already defined extreme points. For example, the extreme points of a square are its corners in \mathbb{R}^{2} whereas the extreme points of a circular disk are all (infinitely many!) the points on the boundary circle. Note that, a linear variety consisting of more than one point has no extreme points.

Lemma 7.4.2 Let X be a convex set, H be a supporting hyperplane of X and $T=X \cap H$. Every extreme point of T is an extreme point of X.

Proof. Suppose $x_{0} \in T$ is not an extreme point of X. Then,

$$
x_{0}=\alpha x_{1}+(1-\alpha) x_{2} \text { for some } x_{1}, x_{2} \in X, 0<\alpha<1
$$

Let $H=\left\{x: a^{T} x=c\right\}$ with X contained in its closed positive half space. Then, $a^{T} x_{1} \geq c, a^{T} x_{2} \geq c$. However, since $x_{0} \in H$,

$$
c=a^{T} x_{0}=\alpha a^{T} x_{1}+(1-\alpha) a^{T} x_{2}
$$

Thus, $x_{1}, x_{2} \in H$. Hence, $x_{1}, x_{2} \in T$ and x_{0} is not an extreme point of T.
Theorem 7.4.3 A closed bounded convex set in \mathbb{R}^{n} is equal to the closed convex hull of its extreme points.

Proof. This proof is by induction on n.
For $n=1$, the statement is true for a line segment:

$$
[a, b]=\{x \in \mathbb{R}: x=\alpha+(1-\alpha) b, 0 \leq \alpha \leq 1\}
$$

Suppose that the theorem is true for $(n-1)$. Let X be a closed bounded convex set in \mathbb{R}^{n}, and let K be the convex hull of the extreme points of X.

We will show that $X=K$.
Assume that $\exists y \in X \ni y \notin K$. Then, by Theorem 7.3.1, there is a hyperplane separating y and K;

$$
\exists a \neq 0 \ni a^{T} y<\inf _{x \in K} a^{T} x
$$

Let $x_{0}=\inf _{x \in X}\left(a^{T} x\right) . x_{0}$ is finite and $\exists x_{0} \in X \ni a^{T} x_{0}=b_{0}$ (because by Weierstrass' Theorem: The continuous function $a^{T} x$ achieve its minimum over any closed bounded set).
Hence, the hyperplane $H=\left\{x: a^{T} x=b_{0}\right\}$ is a supporting hyperplane to X. Since $b_{0} \leq a^{T} y \leq \inf _{x \in K} a^{T} x, H$ is disjoint from K. Let $T=H \cap X$. Then, T is a bounded closed convex set of H, which can be regarded as a space in $\mathbb{R}^{n-1} . T \neq \emptyset$, since $x_{0} \in T$. Hence, by induction hypothesis, T contains extreme points; and by the previous Lemma, these are the extreme points of X. Thus, we have found extreme points of X not in K, Contradiction. Therefore, $X \subseteq K$, and hence $X=K$ (since $K \subseteq X$, i.e. K is closed and bounded).

Remark 7.4.4 Let us investigate the implications of this theorem for convex polytopes. A convex polytope is a bounded polyhedron. Being the intersection of closed halfspaces, a convex polytope is closed. Thus, any convex polyhedron is the closed convex hull of its extreme points. It can be shown that any polytope has at most a finite number of extreme points, and hence a convex polytope is equal to the convex hull of a finite number of points. The converse can also be established, yielding the following two equivalent characterizations.

Theorem 7.4.5 A convex polytope can be described either as a bounded intersection of a finite number of closed half spaces, or as the convex hull of a finite number of points.

Problems

7.1. Characterize (draw, give an example, list extreme points and half spaces) the following polytopes:
a) zero dimensional polytopes.
b) one dimensional polytopes.
c) two dimensional polytopes.

7.2. d-simplex

d-simplex is the convex hull of any $d+1$ independent points in $\mathbb{R}^{n}(n \geq d)$. Standard d - simplex with $d+1$ vertices in \mathbb{R}^{d+1} is

$$
\Delta_{d}=\left\{x \in \mathbb{R}^{d+1}: \sum_{i=1}^{d+1} x_{i}=1 ; x_{i} \geq 0, i=1, \ldots, d+1\right\}
$$

Characterize Δ_{2} in \mathbb{R}^{3}.

7.3. Cube and Octahedron

Characterize cubes and octahedrons with the help of three dimensional cube C_{3}, and octahedron C_{3}^{Δ}.

7.4. Pyramid

Let $P_{n+1}=\operatorname{conv}\left(C_{n}, x_{0}\right)$ be a $(\mathrm{n}+1)$-dimensional pyramid, where $x_{0} \notin C_{n}$. Draw

$$
P_{3}=\operatorname{conv}\left(C_{2}: \alpha=1,(1 / 2,1 / 2,1)^{T}\right)
$$

and write down all describing inequalities.

7.5. Tetrahedron

The vertices of a tetrahedron of side length $\sqrt{2}$ can be given by a particularly simple form when the vertices are taken as corners of the unit cube. Such a tetrahedron inside a cube of side length 1 has side length $\sqrt{2}$ with vertices $(0,0,0)^{T},(0,1,1)^{T},(1,0,1)^{T},(1,1,0)^{T}$. Draw and find a set of describing inequalities. Is it possible to express P_{n+1} as a union / intersection / direct sum of a cone and a polytope?

7.6. Dodecahedron

Find the vertices of a dodecahedron (see Figure 7.6) of side length $a=\sqrt{5}-1$.

Fig. 7.6. A dodecahedron

Web material

http://dimax.rutgers.edu/~sjaslar/
http://dogfeathers.com/java/hyperslice.html
http://en.wikipedia.org/wiki/Polytope
http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Mathematics/
PlanetMath_Exchange/52-XX_Convex_and_discrete_geometry
http://eom.springer.de/c/c026340.htm
http://grace.speakeasy.net/~dattorro/EDMAbstract.pdf
http://grace.speakeasy.net/~dattorro/Meboo.html
http://learningtheory.org/colt2004/colt04_boyd.pdf
http://math.sfsu.edu/beck/teach/870/lecture5.pdf
http://mathworld.wolfram.com/Convex.html
http://mathworld.wolfram.com/Polytope.html
http://mizar.uwb.edu.pl/JFM/pdf/convex3.pdf
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-
Science/6-253Spring2004/14DD65AE-0A43-4353-AE09-7B107CC4AAD7/0/
lec_11.pdf
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-253Spring2004/81D31E98-C26B-4375-B089-FB5FAE4E99CF/0/ lec_7.pdf
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-253Spring2004/96203668-B98C-4F3C-A65D-4646F942EF71/0/ lec_3.pdf
http://staff.polito.it/giuseppe.calafiore/cvx-opt/secure/
02_cvx-sets_gc.pdf
http://www-math.mit.edu/~vempala/18.433/L4.pdf
http://www-personal.umich.edu/~mepelman/teaching/IOE611/Handouts/ 611Sets.pdf
http://www. cas.mcmaster.ca/~cs4te3/notes/convexopt.pdf
http://www.cas.mcmaster.ca/~ deza/CombOptim_Ch7.ppt
http://www.cis.upenn.edu/~cis610/polytope.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/16741-s06/www/
Lecture13.pdf
http://www.cs.wustl.edu/~pless/506/12.html
http://www.cse.unsw.edu.au/~1ambert/java/3d/ConvexHull.html
http://www.eecs.berkeley.edu/~ wainwrig/ee227a/Scribe/ lecture12_final_verB.pdf
http://www.eleves.ens.fr/home/trung/supporting_hyperplane.html
http://www.geom.uiuc.edu/graphics/pix/Special_Topics/
Computational_Geometry/cone.html
http://www.geom.uiuc.edu/graphics/pix/Special_Topics/ Computational_Geometry/half.html
http://www.hss.caltech.edu/~kcb/Ec101/index.shtml\#Notes
http://www.ics.uci.edu/~eppstein/junkyard/polytope.html
http://www.irisa.fr/polylib/DOC/node16.html
http://www.isye.gatech.edu/~spyros/LP/node15.html
http://www.jstor.org/view/00029939/di970732/97p0127h/0
http://www.mafox.com/articles/Polytope
http://www.math.rutgers.edu/pub/sontag/pla.txt
http://www.maths.lse.ac.uk/Personal/martin/fme9a.pdf
http://www.mizar.org/JFM/Vol15/convex3.html http://www.ms.uky.edu/~sills/webprelim/sec013.html http://www.mtholyoke.edu/~jsidman/wolbachPres.pdf http://www.princeton.edu/~chiangm/ele53912.pdf http://www.stanford.edu/class/ee364/lectures/sets.pdf http://www.stanford.edu/class/ee364/reviews/review1.pdf http://www.stanford.edu/class/msande310/lecture03.pdf
http://www.stanford.edu/~dattorro/mybook.html
http://www.stat.psu.edu/~jiali/course/stat597e/notes2/percept.pdf
http://www.uni-bayreuth.de/departments/wirtschaftsmathematik/rambau/
Diss/diss_MASTER/node35.html
http://www.wisdom.weizmann.ac.il/~feige/lp/lecture2.ps
http://www2.isye.gatech.edu/~spyros/LP/node15.html
http://www2.sjsu.edu/faculty/watkins/convex.htm

8

Linear Programming

A Linear Programming problem, or LP, is a problem of optimizing a given linear objective function over some polyhedron. We will present the forms of LPs in this chapter. Consequently, we will focus on the simplex method of G. B. Dantzig, which is the algorithm most commonly used to solve LPs; in practice it runs in polynomial time, but the worst-case running time is exponential. Following the various variants of the simplex method, the duality theory will be introduced. We will concentrate on the study of duality as a means of gaining insight into the LP solution. Finally, the series of Farkas' Lemmas, the most important theorems of alternatives, will be stated.

8.1 The Simplex Method

This section is about linear programming: optimization of a linear objective function subject to finite number (m) of linear constraints with n unknown and nonnegative decision variables.
Example 8.1.1 The following is an LP:

$$
\begin{aligned}
\text { Min } z & =2 x+3 y \\
& \text { s.t. } \\
& 2 x+y \geq 6 \\
& x+2 y \geq 6 \\
& x, y \geq 0 .
\end{aligned}
$$

Standard Form:

$$
\begin{aligned}
\text { Min } z= & c^{T} x \\
\text { s.t. } & \\
& A x \geq b \\
& x \geq \theta
\end{aligned}
$$

Canonical form:

$$
\begin{array}{cl}
\text { Min } z= & c^{T} x+\theta^{T} y \\
\text { s.t. } & \Leftrightarrow \\
& A x-y=b \\
& \\
& \\
& \\
& \\
& {[A \mid-I]\left[\begin{array}{l}
x \\
y \\
y
\end{array}\right] \geq \theta .}
\end{array}
$$

$$
\operatorname{Min} z=\left[c^{T} \mid \theta^{T}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Example 8.1.2

$$
\begin{aligned}
\operatorname{Min} z= & 2 x+3 y \\
\text { s.t. } & \\
\quad & 2 x+y \geq 6 \\
& x+2 y \geq 6 \\
& x, y \geq 0 .
\end{aligned}
$$

Fig. 8.1. The feasible solution region in Example 8.1.2

See Figure 8.1.

$$
A=\left[\begin{array}{rr|rr}
1 & 2 & -1 & 0 \\
2 & 1 & 0 & -1
\end{array}\right], b=\left[\begin{array}{l}
6 \\
6
\end{array}\right], c=\left[\begin{array}{l}
2 \\
\frac{3}{0} \\
0
\end{array}\right] .
$$

Definition 8.1.3 The extreme points of the feasible set are exactly the basic feasible solutions of $A x=b$. A solution is basic when n of its $m+n$ components are zero, and is feasible when it satisfies $x \geq \theta$. Phase I of the simplex method finds one basic feasible solution, and Phase II moves step by step to the optimal one.

If we are already at a basic feasible solution x, and for convenience we reorder its components so that the n zeros correspond to free variables.

$$
\begin{gathered}
x=\left[\begin{array}{c}
x_{B} \\
x_{N}=\theta
\end{array}\right], A=[B, N], c^{T}=\left(c_{B}^{T}, c_{N}^{T}\right) \\
\text { Min } z=\left(c_{B}^{T}, c_{N}^{T}\right)\left[\begin{array}{c}
x_{B} \\
x_{N}=\theta
\end{array}\right] \\
\text { s.t. } \\
\\
{[B \mid N]\left[\begin{array}{c}
x_{B} \\
x_{N}=\theta
\end{array}\right]=b}
\end{gathered} \begin{gathered}
\text { Min } z=c_{B}^{T} x_{B}+c_{N}^{T} x_{N} \\
\\
{\left[\begin{array}{c}
x_{B} \\
x_{N}=\theta
\end{array}\right] \geq \theta .}
\end{gathered}
$$

Let us take the constraints
$B x_{B}+N x_{N}=b \Leftrightarrow B x_{b}=b-N x_{N} \Leftrightarrow x_{B}=B^{-1}\left[b-N x_{N}\right]=B^{-1} b-B^{-1} N x_{N}$.
Now plug x_{B} in the objective function

$$
\begin{gathered}
z=c_{B}^{T} x_{B}+c_{N}^{T} x_{N}=c_{B}^{T}\left[B^{-1} b-B^{-1} N x_{N}\right]+c_{N}^{T} x_{N} \\
=c_{B}^{T} B^{-1} b+\left(c_{N}^{T}-c_{B} B^{-1} N\right) x_{N}
\end{gathered}
$$

If we let $x_{N}=\theta$, then $x_{B}=B^{-1} b \geq \theta \Rightarrow z=c_{B}^{T} B^{-1} b$.
Proposition 8.1.4 (Optimality Condition) If the vector $\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right)$ is nonnegative, then no reduction in z can be achieved. The current extreme point ($x_{B}=B^{-1} b, x_{N}=\theta$) is optimal and the minimum objective function value is $c_{B} B^{-1} b$.

Assume that the optimality condition fails, the usual greedy strategy is to choose the most negative component of $c_{N}-c_{B} B^{-1} N$, known as Dantzig's rule. Thus, we have determined which component will move from free to basic, called as entering variable x_{e}. We have to decide which basic component is to become free, called as leaving variable, x_{l}. Let N^{e} be the column of N corresponding to $x_{e} . x_{B}=B^{-1} b-B^{-1} N^{e} x_{e}$. If we increase x_{e} from 0 , some entries of x_{B} may begin to decrease, and we reach a a neighboring extreme point when a component of x_{B} reaches 0 . It is the component corresponding to x_{l}. At this extreme point, we have reached a new x which is both feasible
and basic: it is feasible because $x \geq \theta$, it is basic since we again have n zero components. x_{e} is gone from zero to α, replaces x_{l} which is dropped to zero. The other components of x_{B} might have changed their values, but remain positive.

Proposition 8.1.5 (Min Ratio) Suppose $u=N^{e}$, then the value of x_{e} will be:

$$
\alpha=\min _{x_{j}: b a s i c} \frac{\left(B^{-1} b\right)_{j}}{\left(B^{-1} u\right)_{j}}=\frac{\left(B^{-1} b\right)_{l}}{\left(B^{-1} u\right)_{l}}
$$

and the objective function will decrease to $c_{B}^{T} B^{-1} b-\alpha B^{-1} u$.
Remark 8.1.6 (Unboundedness) The minimum is taken only over positive components of $B^{-1} u$, since negative entries will increase x_{B} and zero entries keeps x_{B} as their previous values. If there are no positive components, then the next extreme point is infinitely far away, then the cost can be reduced forever; $z=-\infty$! In this case we term the optimization problem as unbounded.

Remark 8.1.7 (Degeneracy) Suppose that more than n of the variables are zero or two different components if the minimum ratio formula give the same minimum ratio. We can choose either one of them to be made free, but the other will still be in the basis at zero level. Thus, the new extreme point will have $(n+1)$ zero components. Geometrically, there is an extra supporting plane at the extreme point. In degeneracy, there is the possibility of cycling forever around the same set of extreme points without moving toward x^{*}, the optimal solution. In general, one may assume nondegeneracy hypothesis $\left(x_{B}=B^{-1} b>\theta\right)$.

Example 8.1.8 Assume that we are at the extreme point \mathcal{P} in Figure 8.1, corresponding to the following basic feasible solution:

$$
\left.\begin{array}{c}
x=\left[\begin{array}{c}
x_{B} \\
x_{N}
\end{array}\right]=\left[\begin{array}{l}
6 \\
6 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
z_{1} \\
y \\
\frac{x}{x} \\
z_{2}
\end{array}\right], \\
A=[B \mid N]=\left[\begin{array}{rr|rr}
z_{1} & y & x & z_{2} \\
\hline-1 & 2 & 1 & 0 \\
0 & 1 & 2 & -1
\end{array}\right], c^{T}=\left(c_{B}^{T} \mid c_{N}^{T}\right)=\left(\left.\begin{array}{ll}
z_{1} & y \mid x \\
\hline & 3
\end{array} \right\rvert\, \frac{z_{2}}{}\right. \\
\hline
\end{array}\right) .
$$

$$
\left.\begin{array}{c}
c_{N}^{T}-c_{B}^{T} B^{-1} N=\left[\begin{array}{ll}
2 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 3
\end{array}\right]\left[\begin{array}{rr}
-1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
2 & -1
\end{array}\right] \\
c_{N}^{T}-c_{B}^{T} B^{-1} N=\left[\begin{array}{ll}
2 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right]=\left(\frac{x}{2} z_{2}\right. \\
-4
\end{array}\right) .
$$

Since the first component is negative, P is not optimal; x should enter the basis, i.e.

$$
\left.\begin{array}{c}
x_{e}=x, N^{e}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \Rightarrow B^{-1} N^{e}=\left[\begin{array}{l}
3 \\
2
\end{array}\right], B^{-1} b=\left[\begin{array}{l}
6 \\
6
\end{array}\right]=\left[\begin{array}{c}
z_{1} \\
y
\end{array}\right], \\
x_{B}=B^{-1} b-B^{-1} N^{e} x_{e}=\left[\begin{array}{l}
z_{1} \\
y
\end{array}\right]=\left[\begin{array}{l}
6 \\
6
\end{array}\right]-\left[\begin{array}{l}
3 \\
2
\end{array}\right] x \geq\left[\begin{array}{l}
0 \\
0
\end{array}\right] . \\
\Rightarrow \alpha=\operatorname{Min}\left\{\frac{6}{3}=2, \frac{6}{2}=3\right\}=2 . \text { Thus, } x_{l}=z_{1}, x_{e}=2, y=6-2 \alpha=2 . \\
x=\left[\frac{x_{B}}{x_{N}}\right]=\left[\begin{array}{l}
2 \\
\frac{2}{0} \\
0
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
\frac{y}{z_{1}} \\
z_{2}
\end{array}\right], A=[B \mid N]=\left[\left.\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array} \right\rvert\,-1 \quad 0-1\right. \\
0
\end{array}\right] .
$$

Thus, extreme point Q in Figure 8.1 is optimal, $c_{B}^{T} B^{-1} b=10$ is the optimal value of the objective function.

8.2 Simplex Tableau

We have achieved a transition from the geometry of the simplex method to algebra so far. In this section, we are going to analyze a simplex step which can be organized in different ways.

The Gauss-Jordan method gives rise to the simplex tableau.

$$
[A \| b]=[B \mid N \| b] \longrightarrow\left[I \mid B^{-1} N \| B^{-1} b\right] .
$$

Adding the cost row

$$
\left[\begin{array}{c|c|c}
I \mid B^{-1} N \| B^{-1} b \\
\hline c_{B}^{T} \mid & c_{N}^{T} & 0
\end{array}\right] \rightarrow\left[\begin{array}{c}
I \left\lvert\, \frac{B^{-1} N}{\|} B^{-1} b\right. \\
\hline 0 \mid c_{N}^{T}-c_{B}^{T} B^{-1} N \|-c_{B}^{T} B^{-1} b
\end{array}\right]
$$

The last result is the complete tableau. It contains the solution $B^{-1} b$, the crucial vector $c_{N}^{T}-c_{B}^{T} B^{-1} N$ and the current objective function value $c_{B}{ }^{T} B^{-1} b$ with a superfluous minus sign indicating that our problem is minimization. The simplex tableau also contains reduced coefficient matrix $B^{-1} N$ that is used in the minimum ratio. After determining the entering variable x_{e}, we examine the positive entries in the corresponding column of $B^{-1} N$, $\left(v=B^{-1} u=B^{-1} N^{e}\right)$ and α is determined by taking the ratio of $\frac{\left(B^{-1} b\right)_{j}}{\left(B^{-1} N^{e}\right)_{j}}$ for all positive v_{j} 's.

If the smallest ratio occurs in $l^{\text {th }}$ component, then the $l^{\text {th }}$ column of B should be replaced by u. The $l^{\text {th }}$ element of $\left(B^{-1} N^{e}\right)_{l}=v_{l}$ is distinguished as pivot element.

It is not necessary to return the starting tableau, exchange two columns and start again. Instead we can continue with the current tableau. Without loss of generality, we may assume that the first row corresponds to the leaving variable, that is the pivot element is v_{1}.

The first step in the pivot operation is to divide the leaving variable's row by the pivot element to create 1 in the pivot entry. Then, we have

For all the rows except the objective function row, do the following operation. For row i, multiply $v_{1}{ }^{*}$ (the updated first row) and subtract from row i. For the objective function row, multiply the first row by $\left(c_{e}-c_{B}^{T} v\right)$ and subtract from the objective function row.

What we have at the end is another simplex tableau.

Example 8.2.1 The starting tableau at point P is

$$
\left[\frac{A \| b}{\left[c^{T} \| 0\right.}\right]=\left[\begin{array}{l|l|l}
B|N| \mid b \\
\hline c_{B}^{T} \mid c_{N}^{T} \| 0
\end{array}\right]=\left[\left.\begin{array}{rr|r|r}
-1 & 2 & 1 & 0 \\
0 & 6 & 6 \\
0 & 1 & -1 & 6 \\
\hline 0 & 3 & 2 & 0
\end{array} \right\rvert\, 0\right]
$$

The final tableau after Gauss-Jordan iterations is

$$
\left[\begin{array}{c|rr|rr||r}
& z_{1} & y & x & z_{2} & R H S \\
\hline z_{1} & 1 & 0 & 3 & -2 & 6 \\
y & 0 & 1 & 2 & -1 & 6 \\
\hline z & 0 & 0 & -4 & 3 & -18
\end{array}\right]=\left[\begin{array}{c||}
I \mid \\
\hline 0 \mid c_{N}^{T}-c_{B}^{T} B^{-1} N \|-\operatorname{cost}
\end{array}\right]
$$

Since the reduced cost for x is $-4<0, x$ should enter the basis. The minimum ratio $\alpha=\operatorname{Min}\left\{\frac{6}{2}, \frac{6}{3}\right\}=2$ due to z_{1}, thus z_{1} should leave the basis.

$$
\left[\begin{array}{rr|rr|r}
1 & 0 & 3 & -2 & 6 \\
0 & 1 & 2 & -1 & 6 \\
\hline 0 & 0 & -4 & 3 & -18
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
& z_{1} y \mid x & z_{2} \| R H S \\
\hline x \mid & \frac{1}{3} & 0 \mid 1 & -\frac{2}{3} \| \\
\hline & \left|-\frac{2}{3} 1\right| 0 & \frac{1}{3} \| & 2 \\
\hline-z \mid & \left.\frac{4}{3} 0 \right\rvert\, 0 & \frac{1}{3} \| & -10
\end{array}\right]
$$

Thus, $x^{*}=2=y^{*} \Rightarrow z^{*}=10$.
Remark 8.2.2 All the pivot operation can be handled by multiplying the inverse of the following elementary matrix.

Thus, the pivot operation is

$$
\left[I \mid B^{-1} N \| B^{-1} b\right] \longrightarrow\left[E^{-1} I \mid E^{-1} B^{-1} N \| E^{-1} B^{-1} b\right] .
$$

New basis is $B E$ (B except the lth column is replaced by $u=N^{e}$) and basis inverse is $(B E)^{-1}=E^{-1} B^{-1}$. This is called product form of the inverse. Thus, if we store E^{-1} 's then we can implement the simplex method on a simplex tableau.

8.3 Revised Simplex Method

Let us investigate what calculations are really necessary in the simplex method. Each iteration exchanges a column of N with a column of B, and one has to decide which columns to choose, beginning with a basis matrix B and the current solution $x_{B}=B^{-1} b$.

S1. Compute row vector $\lambda=c_{B}^{T} B^{-1}$ and then $c_{N}^{T}-\lambda N$.

S2. If $c_{N}^{T}-\lambda N \geq \theta$, stop; the current solution is optimal. Otherwise, if the most negative component is $e^{t h}$ component, choose $e^{t h}$ column of N to enter the basis. Denote it by u.
S3. Compute $v=B^{-1} u$.
S4. Calculate ratios of $B^{-1} b$ to $v=B^{-1} u$, admitting only positive components of v. If there are no positive components, the minimal cost is $-\infty$; if the smallest ratio occurs at component l, then $l^{\text {th }}$ column of current B will be replaced with u.
S5. Update B (or B^{-1}) and the solution is $x_{B}=B^{-1} b$. Return to $S 1$.
Remark 8.3.1 We need to compute $\lambda=c_{B}^{-1} B^{-1}, v=B^{-1} u$, and $x_{B}=$ $B^{-1} b$. Thus, the most popular way is to work only on B^{-1}. With the help of previous remark, we can update B^{-1} 's by premultiplying E^{-1} 's.

The excessive computing (multiplying with E^{-1} 's) could be avoided by directly reinverting the current B at a time and deleting the current E^{-1},s that contain the history.

Remark 8.3.2 The alternative way of computing λ, v and x_{B} is $\lambda B=$ $c_{B}^{T}, B v=u$, and $B x_{B}=b$. Then, the standard decompositions ($B=Q R$ or $P B=L U$) lead directly to these solutions.

Remark 8.3.3 How many simplex iterations do we have to take?
There are at most $\binom{n}{m}$ extreme points. In the worst case, the simplex method may travel almost all of the vertices. Thus, the complexity of the simplex method is exponential. However, experience supports the following average behavior. The simplex method travels about m extreme points, which means an operation count of about $m^{2} n$, which is comparable to ordinary elimination to solve $A x=b$, and that is the reason of its success.

8.4 Duality Theory

The standard primal problem is: Minimize $c^{T} x$ subject to $A x \geq b$ and $x \geq \theta$. The dual problem starts from the same A, b, and c and reverses everything: Maximize $y^{T} b$ subject to $A^{T} y \leq c$ and $y \geq \theta$.

There is a complete symmetry between the two. The dual of the dual is the primal problem. Both problems are solved at once. However, one must recognize that the feasible sets of the two problems are completely different. The primal polyhedron is a subset of \mathbb{R}^{n}, marked out by matrix A and the right hand side b. The dual polyhedron is a subset of \mathbb{R}^{m}, determined by A^{T} and the cost vector c.

The whole theory of linear programming hinges on the relation between them.

Theorem 8.4.1 (Duality Theorem) If either the primal problem or the dual has an optimal vector, then so does the other, and their values are the
same: The minimum of $c^{T} x$ equals the maximum of $y^{T} b$. Otherwise, if optimal vectors do not exist, either both feasible sets are empty or else one is empty and the other problem is unbounded.

Theorem 8.4.2 (Weak Duality) If x and y are feasible vectors in the minimum and maximum problems, then $y^{T} b \leq c^{T} x$.

Proof. Since they are feasible, $A x \geq b$ and $A^{T} y \leq c\left(\Leftrightarrow y^{T} A \leq c^{T}\right)$. They should be nonnegative as well: $x \geq \theta, y \geq \theta$. Therefore, we can take inner products without ruining the inequalities: $y^{T} A x \geq y^{T} b$ and $y^{T} A x \leq c^{T} x$. Thus, $y^{T} b \leq c^{T} x$ since left-hand-sides are identical.

Corollary 8.4.3 If the vectors x and y are feasible, and if $c^{T} x=y^{T} b$, then these vectors must be optimal.

Proof. No feasible y can make $y^{T} b$ larger than $c^{T} x$. Since our particular y achieves this value it should be optimal. Similarly, x should be optimal.

Theorem 8.4.4 (Complementary Slackness) Suppose the feasible vectors x and y satisfy the following complementary slackness conditions:

$$
\text { if }(A x)_{i}>b_{i}, \text { then } y_{i}=0 \text { and if }\left(A^{T} y\right)_{j}<c_{j}, \text { then } x_{j}=0 .
$$

Then, x and y are optimal. Conversely, optimal vectors must satisfy complementary slackness.

Proof. At optimality we have

$$
y^{T} b=y^{T}(A x)=\left(y^{T} A\right) x=c^{T} x
$$

If $y \geq 0$ and $A x \geq b \Rightarrow y^{T} b \leq y^{T}(A x)$. When $y^{T} b=y^{T}(A x)$ holds, if $b_{i}<(A x)_{i}$, the corresponding factor y_{i} should be zero. The same is true for $y^{T} A x \leq c^{T} x$. If $c_{j}>\left(A^{T} y\right)_{j}$ then $x_{j}=0$ to have $y^{T} A x=c^{T} x$. Thus, complementary slackness guarantees (and is guaranteed by) optimality.

Proof (Strong Duality). We have to show that $y^{T} b=c^{T} x$ is really possible.

$$
\begin{gathered}
\operatorname{Max} c^{T} x, A x \geq b, x \geq \theta \\
\Leftrightarrow \operatorname{Max}\left[c^{T} \mid \theta^{T}\right]\left[\frac{x}{z}\right],[A \mid-I]\left[\frac{x}{z}\right]=b,\left[\begin{array}{l}
x \\
z
\end{array}\right] \geq \theta \\
{[A \mid-I] \rightarrow[B \mid N],\left[\frac{x}{z}\right] \rightarrow\left[\frac{x_{B}}{x_{N}}\right]=\left[\frac{B^{-1} b}{0}\right],\left[c^{T} \mid \theta^{T}\right] \rightarrow\left[c_{B}^{T} \mid c_{N}^{T}\right] .}
\end{gathered}
$$

Optimality condition: $N^{T}\left(B^{T}\right)^{-1} c_{B} \leq c_{N}$.
Since we have finite number of extreme points, the optimality condition is eventually met. At that moment, the minimum cost is $c^{T} x=c_{B}^{T} B^{-1} x_{B}$.

$$
\operatorname{Max} b^{T} y \text { subject to }\left[\begin{array}{c}
A^{T} \\
-I
\end{array}\right] y \leq\left[\begin{array}{c}
c \\
0
\end{array}\right] \rightarrow\left[\begin{array}{c}
B^{T} \\
N^{T}
\end{array}\right] y \leq\left[\begin{array}{c}
c_{B} \\
c_{N}
\end{array}\right] \Leftrightarrow B^{T} y=c_{B}
$$

$$
\Leftrightarrow y^{T} B=c_{B}^{T} \Leftrightarrow y^{T}=c_{B}^{T} B^{-1} \Leftrightarrow y^{T} b=c_{B}^{T} B^{-1} b=c^{T} x!
$$

Furthermore, this choice of y is optimal, and the strong duality theorem has been proven. This is a constructive proof, x^{*} and y^{*} were actually computed, which is convenient since we know that the simplex method finds the optimal values.

8.5 Farkas' Lemma

(i) $\mathbf{A x}=\mathrm{b}$ has a nonnegative solution

(ii) Else

Fig. 8.2. Farkas' Lemma

By the fundamental theorem of Linear Algebra, either $b \in \mathcal{R}(A)$ or $\exists y \in \mathcal{N}\left(A^{T}\right) \ni y \not \perp b$,
that is, there is a component of b in the left null space. Here, we immediately have the following theorem of alternatives.

Proposition 8.5.1 Either $A x=b$ has a solution, or else there is a $y \ni$ $A^{T} y=\theta, y^{T} b \neq 0$.

If $b \in \operatorname{Cone}\left(a^{1}, a^{2}, a^{3}, \ldots\right)$ then $A x=b$ is solvable. If $b \notin$ Cone(columns of A), then there is a separating hyperplane which goes through the origin defined by y that has b on the negative side. The inner product of y and b is negative ($y^{T} b<0$) since they make a wide angle ($>90^{\circ}$) whereas the inner product of y and every column of A is positive $\left(A^{T} y \geq \theta\right)$. Thus, we have the following theorem.

Proposition 8.5.2 Either $A x=b, x \geq \theta$ has a solution, or else there is a y such that $A^{T} y \geq \theta, y^{T} b<0$.

Corollary 8.5.3 Either $A x \geq b, x \geq \theta$ has a solution, or else there is a y such that $A^{T} y \geq \theta, y^{T} b<0, y \leq \theta$.

Proof. $A x \geq b, x \geq \theta \rightarrow A x-I z=b, z \geq \theta$.
Either $[A-I]\left[\begin{array}{l}x \\ z\end{array}\right]$ has a nonnegative solution or $\exists y \ni\left[\begin{array}{c}A^{T} \\ -I\end{array}\right] y \geq \theta, y^{T} b<0$.
$\Rightarrow A^{T} y \geq \theta, y^{T} b<0, y \leq \theta$.
Remark 8.5.4 The propositions in this section can also be shown using the primal dual pair of linear programming problems: If the dual is unbounded, the primal is infeasible.

1. Either $A x=b$ has a solution, or else there is a $y \ni A^{T} y=\theta, y^{T} b \neq 0$;

$$
\begin{array}{cc}
(P 1): M a x \theta^{T} x & (D 1): M i n b^{T} y \\
\text { s.t. } & \text { s.t. } \\
A x=b & A^{T} y=\theta \\
x: U R E & y: U R E \\
(P 2): M i n ~ \theta^{T} x & (D 2): M a x b^{T} y \\
\text { s.t. } & \text { s.t. } \\
A x=b & A^{T} y=\theta \\
x: U R E & y: U R E
\end{array}
$$

Either P1 (or P2) is feasible, or D1 (or D2) is unbounded. For D1 (D2) to be unbounded, we must have $b^{T} y<0\left(b^{T} y>0\right)$. Thus, either $A x=b$ or $\exists y \ni A^{T} y=\theta, y^{T} b \neq 0$.
2. Either $A x=b, x \geq \theta$ has a solution, or else there is a y such that $A^{T} y \geq \theta, y^{T} b<0$:

$$
\begin{array}{cc}
(P 3): \operatorname{Max} \theta^{T} x & (D 3): \text { Min } b^{T} y \\
\text { s.t. } & \text { s.t. } \\
A x=b & A^{T} y \geq \theta \\
x \geq \theta & y: U R E
\end{array}
$$

Either P3 is feasible, or D3 is unbounded. For D3 to be unbounded, we must have $b^{T} y<0$. Thus, either $A x=b, x \geq \theta$ has a solution, or else $\exists y \ni A^{T} y \geq \theta, y^{T} b<0$.
3. Either $A x \geq b, x \geq \theta$ has a solution, or else there is a y such that $A^{T} y \geq \theta, y^{T} b<0, y \leq \theta:$

$$
\begin{array}{cc}
(P 4): \operatorname{Max} \theta^{T} x & (D 4): \text { Min } b^{T} y \\
\text { s.t. } & \text { s.t. } \\
A x \geq b & A^{T} y \geq \theta \\
x \geq \theta & y \leq \theta
\end{array}
$$

Either P4 is feasible, or D4 is unbounded. For D4 to be unbounded, we must have $b^{T} y<0$. Thus, either $A x \geq b, x \geq \theta$ has a solution, or else $\exists y \ni A^{T} y \geq \theta, y^{T} b<0, y \leq \theta$.

Problems

8.1. (P):

$$
\begin{aligned}
\text { Max } z= & x_{1}+2 x_{2}+2 x_{3} \\
\text { s.t. } & \\
& 2 x_{1}+x_{2} \leq 8 \\
& x_{3} \leq 10 \\
& x_{2} \geq 2 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Let the slack/surplus variables be s_{1}, s_{2}, s_{3}.
a)Draw the polytope defined by the constraints in \mathbb{R}^{3}, identify its extreme points and the minimum set of supporting hyperplanes.
b) Solve (P) using

1. matrix form,
2. simplex tableau,
3. revised simplex with product form of the inverse,
4. revised simplex with $B=L U$ decomposition,
5. revised simplex with $B=Q R$ decomposition.
c) Write the dual problem, draw its polytope.
8.2. Let $P=\left\{\left(x_{1}, x_{2}, x_{3}\right) \geq 0\right.$ and

$$
\begin{gathered}
2 x_{1}-x_{2}-x_{3} \geq 3 \\
x_{1}-x_{2}+x_{3} \geq 2 \\
\left.x_{1}-2 x_{2}+2 x_{3} \geq 4\right\}
\end{gathered}
$$

Let s_{1}, s_{2}, s_{3} be the corresponding slack/surplus variables.
a) Find all the extreme points of P.
b) Find the extreme rays of P (if any).
c) Considering the extreme rays of P (if any) check whether we have a finite solution $x \in P$ if we maximize

1. $x_{1}+x_{2}+x_{3}$,
2. $-2 x_{1}-x_{2}-3 x_{3}$,
3. $-x_{1}-2 x_{2}+2 x_{3}$.
d) Let $x_{1}=6, x_{2}=1, x_{3}=\frac{1}{2}$. Express this solution with the convex
combination of extreme points plus the canonical combination of extreme rays (if any) of P.
e) Let the problem be

$$
\min x_{1}+2 x_{2}+2 x_{3} \text { subject to }\left(x_{1}, x_{2}, x_{3}\right) \in P
$$

1. Solve.
2. What if we reduce the right hand side of (1) by 3 and (3) by 1.
3. Consider the solution found above. What if we add a new constraint

$$
2 x_{1}+5 x_{2}+x_{3} \leq 3
$$

8.3. Upper bounded simplex

Modify the simplex algorithm without treating the bounds as specific constraints but modifying the optimality, entering and leaving variable selection conditions to solve the following LP problem:

$$
\begin{gathered}
\max 2 x_{1}+3 x_{2}+x_{3}+4 x_{4} \\
\text { s.t. } \\
x_{1}+2 x_{2}+3 x_{3}+5 x_{4} \leq 30 \quad \text { (1) } \\
x_{1}+x_{2} \\
\leq 13 \quad(2) \\
3 x_{3}+x_{4} \leq 20 \quad(3) \\
1 \leq x_{1} \leq 6, \quad 0 \leq x_{2} \leq 10, \quad 3 \leq x_{3} \leq 9, \quad 0 \leq x_{4} \leq 5
\end{gathered}
$$

a) Start with the initial basis as $\left\{s_{1}, s_{2}, s_{3}\right\}$ where s_{1}, s_{2}, s_{3} are the corresponding slack variables at their lower bounds. Use Bland's (lexicographically ordering) rule in determining the entering variables. Find the optimal solution.
b) Take the dual after expressing the nonzero lower/upper bounds as specific constraints. Find the optimal dual values by considering only the optimal primal solution.

8.4. Decomposition

Let $a \in A$ be an arc of a network $N=(V, A)$, where $\|V\|=n,\|A\|=m$. Given a node $i \in V$, let $T(i)$ be the set of arcs entering to i and $H(i)$ be the set of arcs leaving from i. Let there be $k=1, \ldots, K$ commodities to be distributed; $c_{k a}$ denotes the unit cost of sending a commodity through an arc, $u_{k a}$ denotes the corresponding arc capacity, $d_{k i}$ denotes the supply/demand at node i, and U_{a} is the total carrying capacity of arc a.
a) Let $x_{k a}$ be the decision variable representing the flow of commodity k across arc a. Give the classical Node-Arc formulation of the minimum cost multi-commodity flow problem, where commodities share capacity. Discuss the size of the formulation.

Fig. 8.3. Starting bfs solution for our multi-commodity flow instance
b) Let \mathcal{P}^{k} be the set of paths from source node s_{k} to sink node t_{k} for commodity k. For $P \in \mathcal{P}$, let f_{P} : flow on path P (decision variable),

$$
\begin{aligned}
& I_{a P} \doteq\left\{\begin{array}{l}
1, \text { if } a \text { is in } P \\
0, \text { otherwise }
\end{array}\right. \\
& C_{k P}: \text { unit cost of flow } \doteq \sum_{a} I_{a P} c_{k a} \\
& D_{k}: \text { demand for the circulation } \\
& \mu_{P}: \text { upper bound on flow } \doteq \min \left\{u_{k a}: I_{a P}=1\right\}
\end{aligned}
$$

Give the Path-Cycle formulation, relate to the Node-Arc formulation, and discuss the size.
c) Take the path cycle formulation. Let w_{a} be the dual variable of the capacity constraint and π_{k} the dual variable of the demand constraint. What will be the reduced cost of path P ? What will the reduced cost of path P at the optimality? Write down a subproblem (column generation) that seeks a path with lower cost to displace the current flow. Discuss the properties.
d) Solve the example instance using column generation starting from the solution given in Figure 8.3. Let us fix all capacities at 10 and all positive supplies/demands at 10 with unit carrying costs.
e) Sketch briefly the row generation, which is equivalent to the DantzigWolfe/Bender's decompositions' viewpoint.

Web material

http://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/new04.pdf
http://archives.math.utk.edu/topics/linearProg.html
http://catt.bus.okstate.edu/itorms/volumes/vol1/papers/murphy/
http://cepa.newschool.edu/het/essays/math/convex.htm\#minkowski
http://cgm.cs.mcgill.ca/~beezer/Publications/avis-kaluzny.pdf
http://cis.poly.edu/rvslyke/simplex.pdf
http://citeseer.ist.psu.edu/62898.html
http://en.wikipedia.org/wiki/Farkas's_lemma
http://en.wikipedia.org/wiki/Linear_programming
http://mathworld.wolfram.com/FarkassLemma.html
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-
Science/6-253Spring2004/A609002F-E9DF-47F0-8DAF-7F05F16920F7/0/ lec_19.pdf
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-253Spring2004/E9B02139-0C6E-4AC6-A8B7-5BA22D281DBF/0/ lec_12.pdf
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-854JAdvanced-AlgorithmsFall1999/8C3707F7-2831-4984-83FB-BD7BF754A11E/0/notes18.pdf
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-854JFal12001/FB552487-8E11-4D14-A064-B521724DCE65/0/ notes_lp.pdf
http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-310Fall-2004/32478C79-6843-4775-B925-068489AD0774/0/liner_prog_3_dua.pdf
http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-310Fall-2004/ACD5267C-OB38-4DDF-97AC-C4B32E20B4EE/0/linear_prog_ii.pdf
http://ocw.mit.edu/OcwWeb/Sloan-School-of-Management/15-066JSystem-Optimization-and-Analysis-for-ManufacturingSummer2003/ LectureNotes/index.htm
http://opim.wharton.upenn.edu/~guignard/321/handouts/duality_OK.pdf http://planetmath.org/encyclopedia/FarkasLemma.html
http://planetmath.org/encyclopedia/LinearProgrammingProblem.html
http://shannon.math.gatech.edu/ ${ }^{\text {bourbaki/2602/lp/lp.pdf }}$
http://web.mit.edu/15.053/www/AMP-Appendix-B.pdf
http://www-math.mit.edu/18.310/28.pdf
http://www-personal.umich.edu/"mepelman/teaching/IOE610/lecture5.pdf
http://www.comp.leeds.ac.uk/or21/OVERHEADS/sect5.pdf
http://www.cs.berkeley.edu/~vazirani/s99cs170/notes/linear3.pdf
http://www.cs.helsinki.fi/u/gionis/farkas.pdf
http://www.cs.nyu.edu/cs/faculty/overton/g22_lp/encyc/ article_web.html
http://www.cs.toronto.edu/~avner/teaching/2411/index.html
http://www.cs.toronto.edu/~avner/teaching/2411/ln/lecture6.pdf
http://www.cs.uiuc.edu/class/fa05/cs473g/lectures/17-lp.pdf
http://www.cs.uiuc.edu/class/fa05/cs473g/lectures/18-simplex.pdf
http://www.cs.uleth.ca/ ${ }^{\text {holzmann/notes/lpdual.pdf }}$
http://www.cs.wisc.edu/~swright/525/handouts/dualexample.pdf
http://www.cse.ucsd.edu/~dasgupta/mcgrawhill/chap7.pdf
http://www.e-optimization.com/directory/trailblazers/hoffman/
linear_programming.cfm
http://www.eecs.harvard.edu/~parkes/cs286r/spring02/lectures/ class8.pdf
http://www.hss.caltech.edu/~kcb/Notes/LP.pdf
http://www.ici.ro/camo/books/rbb.htm
http://www.ie.boun.edu.tr/course_pages/ie501/Ch81.pdf
http://www.imada.sdu.dk/~jbj/DM85/lec4b.pdf
http://www.math.chalmers.se/Math/Grundutb/CTH/tma947/0506/
lecture9.pdf
http://www.math.kth.se/optsyst/research/5B5749/13.pdf
http://www.math.mtu.edu/ ${ }^{\text {msgocken/ma5630spring2003/lectures/ineq/ }}$ ineq/node8.html
http://www.math.mun.ca/~sharene/cs3753_F05/BookPartII.pdf
http://www.math.niu.edu/~rusin/known-math/index/90-XX.html
http://www.math.washington.edu/~burke/crs/408f/notes/lpnotes/
http://www.maths.lse.ac.uk/Courses/MA208/notes6.pdf
http://www.me.utexas.edu/~jensen/ORMM/frontpage/tours/tour_lp.html
http://www.me.utexas.edu/~jensen/ORMM/supplements/methods/lpmethod/ S3_dual.pdf
http://www.mosek.com/homepages/e.d.andersen/papers/linopt.ps
http://www.mpi-sb.mpg.de/~mehlhorn/Optimization/Linprog.ps
http://www.optimization-online.org/DB_FILE/2003/04/646.pdf
http://www.optimization-online.org/DB_HTML/2004/10/969.html
http://www.personal.psu.edu/tmc7/tmclinks.html
http://www.princeton.edu/~rvdb/542/lectures.html
http://www.princeton.edu/~rvdb/LPbook/onlinebook.pdf
http://www.scs.leeds.ac.uk/or21/OVERHEADS/sect5.pdf\#
search='linear\%20programming\%20duality\%20theory'
http://www.stanford.edu/class/msande310/lecture03.pdf
http://www.stanford.edu/class/msande310/lecture06.pdf
http://www.stanford.edu/class/msande314/lecture02.pdf
http://www.stats.ox.ac.uk/~yu/
http://www.statslab.cam.ac.uk/~rrw1/opt/index98.html
http://www.tutor.ms.unimelb.edu.au/duality/duality.html
http://www.twocw.net/mit/NR/rdonlyres/Electrical-Engineering-and-
Computer-Science/6-854JAdvanced-AlgorithmsFall1999/
8C3707F7-2831-4984-83FB-BD7BF754A11E/0/notes18.pdf
http://www.utdallas.edu/~ chandra/documents/6310.htm
http://www.wisdom.weizmann.ac.il/~feige/algs04.html
http://www.wisdom.weizmann.ac.il/~feige/lp02.html
http://www2.imm.dtu.dk/courses/02711/DualLP.pdf
http://www2.maths.unsw.edu.au/applied/reports/1999/amr99_2.pdf

Number Systems

In this chapter, we will review the basic concepts in real analysis: order relations, ordered sets and fields, construction and properties of the real and the complex fields, and finally the theory of countable and uncountable sets together with the cardinal numbers. The known sets of numbers that we will use in this chapter are

- \mathbb{N} : Natural
- \mathbb{Z} : Integer
- \mathbb{Q} : Rational
- \mathbb{R} : Real
- \mathbb{C} : Complex

9.1 Ordered Sets

Definition 9.1.1 Let S be a set. An order on S is a relation \prec such that
i) If x, y are any two elements of S, then one and only one of the following is true:

$$
x \prec y, x=y, y \prec x .
$$

ii) If $x, y, z \in S$ and $x \prec y$ and $y \prec z$, then $x \prec z$.
$x \prec y \nsim y \prec x$.
$x \preceq y$ means $x \prec y$ or $x=y$ without specifying one.
Example 9.1.2 $S=\mathbb{Q}$ has an order; define $x \prec y$ if $y-x$ is positive.
Definition 9.1.3 An ordered set is a set S on which there is an order.

Definition 9.1.4 Let S be an ordered set and $\emptyset \neq E \subset S$. E is

- bounded above if $\exists b \in S \ni \forall x \in E, x \preceq b$ where b is an upper bound of E.
- bounded below if $\exists a \in S \ni \forall x \in E, a \preceq x$ where a is a lower bound of E.
- bounded if E is both bounded above and below.

Example 9.1.5 $A=\left\{p \in \mathbb{Q}: p \succ 0, p^{2} \prec 2\right\}$ is

- bounded above, $b=3 / 2,2, \ldots$ are upper bounds.
- bounded below, $a=0,-1 / 2, \ldots$ are lower bounds.

Definition 9.1.6 Let S be an ordered set and $\emptyset \neq E \subset S$ be bounded above. Suppose $\exists b \in S \ni$:

1. b is an upper bound of E.
2. if $b^{\prime} \in S$ and $b^{\prime} \prec b$ then b^{\prime} is not an upper bound of E. Equivalently, if $b^{\prime \prime}$ is any upper bound of E if $b^{\prime \prime} \succ b$.

Then, b is called least upper bound (lub) or supremum (sup) of E and denoted by

$$
b=\sup E=l u b E
$$

Greatest lower bound (glb) or infimum (inf) of E is defined analogously.
Example 9.1.7 $S=\mathbb{Q}, E=\left\{p \in \mathbb{Q}: p \succ 0, p^{2} \prec 2\right\} \inf E=0$, but E has no supremum in $S=\mathbb{Q}$. Suppose $p_{0}=\sup E$ exists in \mathbb{Q}. Then, either $p_{0} \in E$ or $p_{0} \notin E$.
If $p_{0} \in E, \exists q \in E \ni p_{0} \prec q$ because E has no largest element; therefore, p is not an upper bound of E.
If $p_{0} \notin E$, then $p_{0} \succ 0$ because it is an upper bound and $p_{0}^{2} \succeq 2$ because $p_{0} \notin E$. Then, either $p_{0}^{2}=2$ (not true because $p_{0} \in \mathbb{Q}$) or $p_{0}^{2} \succ 2$ (true), then $p_{0} \in$ $B=\left\{p \in \mathbb{Q}: p \succ 0, p^{2} \succ 2\right\}$. Then, $\exists q_{0} \in B \ni q_{0} \prec p_{0}(*)$ because B has no smallest element. $\forall p \in E, p^{2} \prec 2 \prec q_{0}^{2} \Rightarrow q_{0}$ is an upper bound of E. Moreover, $p_{0} \prec q_{0}$ because lub Contradiction to (*).

Definition 9.1.8 Let S be an ordered set. We say that S has the least upper bound property if every'nonempty subset of S which is bounded above has lub in S.

Example 9.1.9 $S=\mathbb{Q}$ does not have lub-property.
Theorem 9.1.10 Let S be an ordered set with lub-property. Then, every nonempty subset of S which is bounded below has inf in S.

Proof. Let $B \neq \emptyset, B \subset S$ be bounded below, L be the set of all lower bounds of B. Then, $L \neq \emptyset$ (because B is bounded below), $y \in B$ be arbitrary, then for any $x \in L$ we have $x \preceq y$. So, y is an upper bound of L; i.e. all elements of B are upper bounds of $L \Rightarrow L$ is bounded above. $\alpha=\sup L, \alpha \in S$ (because S has lub property).
Claim (i): $\alpha=\inf B$
Proof (i): Show α is lower bound of B; i.e. show $\forall x \in B, \alpha \preceq x$. Assume that it is not true; i.e. $\exists x_{0} \in B \ni \alpha \succ x_{0}$. Then, x_{0} is not an upper bound of α (because $\alpha=\sup L) \Rightarrow x_{0} \notin B$ (because all elements of B are upper bounds of L). Contradiction! $\left(x_{0} \in B\right)$. Therefore, α is a lower bound of B.

Claim (ii): α is the greatest of the lower bounds.
Proof (ii): Show if $\alpha \prec \beta, \beta \in S \Rightarrow \beta$ is not a lower bound of B.

Therefore, $\alpha=\inf B$.

9.2 Fields

Let us repeat Definition 2.1.1 for the sake of completeness.
Definition 9.2.1 A field is a set $F \neq \emptyset$ with two operations, addition(+) and multiplication(.), which satisfy the following axioms:
(A) Addition Axioms:
(A1) $\forall x, y \in \bar{F}, x+y \in F$ (closed under +)
(A2) $\forall x, y \in F, x+y=y+x$ (commutative)
(A3) $\forall x, y, z \in F,(x+y)+z=x+(y+z)$ (associative)
(A4) $\exists 0 \in F \ni \forall x \in F x+0=x$ (existence of ZERO element)
(A5) $\forall x \in F, \exists$ an element $-x \in F \ni x+(-x)=0$ (existence of INVERSE element)
(M) Multiplication Axioms:
(M1) $\forall x, y \in F, x \cdot y \in F$ (closed under.)
(M2) $\forall x, y \in F, x \cdot y=y \cdot x$ (commutative)
(M3) $\forall x, y, z \in F,(x \cdot y) \cdot z=x \cdot(y \cdot z)$ (associative)
(M4) $\exists 1 \neq 0 \ni \forall x \in F, 1 \cdot x=x$ (existence of UNIT element)
(M5) $\forall x \neq 0 \exists$ an element $\frac{1}{x} \in F \ni x \frac{1}{x}=1$ (existence of INVERSE element)

$$
\forall x, \frac{\text { (D) Distributive Law: }}{y, z \in F, x \cdot(y+z)=} x y+x z
$$

Notation:

$$
\begin{gathered}
x+(-y)=x-y ; x\left(\frac{1}{y}\right)=\frac{x}{y} ; x+(y+z)=(x+y)+z \\
x \cdot x=x^{2} ; x+x=2 x ; x(y z)=x y z, \cdots
\end{gathered}
$$

Example 9.2.2 $F=\mathbb{Q}$ with usual + and \cdot is a field.
Example 9.2.3 Let $F=\{a, b, c\}$ where $a \neq b, a \neq c, b \neq c$.
Define

$$
\left.\begin{array}{c|ccc}
+ & a & b & c \\
\hline a & a & b & c \\
b & b & c & a \\
c & a & a & b
\end{array}\right)
$$

F is a field with $0=a, 1=b$.

Proposition 9.2.4 In a field F, the following properties hold:
(a) $x+y=x+z \Rightarrow y=z$ (cancelation law for addition).
(b) $x+y=x \Rightarrow y=0$.
(c) $x+y=0 \Rightarrow y=-x$.
(d) $-(-x)=x$.
(e) $x \neq 0$ and $x y=x z \Rightarrow y=z$ (cancelation law for multiplication).
(f) $x \neq 0$ and $x y=x \Rightarrow y=1$.
(g) $x \neq 0$ and $x y=1 \Rightarrow y=\frac{1}{x}$.
(h) $x \neq 0, \frac{1}{(1 / x)}=x$.
(i) $\forall x \in F, 0 x=0$.
(j) $x \neq 0$ and $y \neq 0$, then $x y \neq 0$ (no zero divisors).
(k) $\forall x, y \in F,(-x)(-y)=x y$.

Definition 9.2.5 Let F be an ordered set and a field of F is an ordered field if
i) $x, y, z \in F$ and $x \prec y \Rightarrow x+z \prec y+z$,
ii) $x \succ 0, y \succ 0 \Rightarrow x y \succ 0$.

If $x \succ 0$, call x as positive, If $x \prec 0$, call x as negative.
Example 9.2.6 $S=\mathbb{Q}$ is an ordered field.
Proposition 9.2.7 Let F be an ordered field. Then,
(a) $x \succ 0 \Leftrightarrow-x \prec 0$.
(b) $x \succ 0$ and $y \prec z \Rightarrow x y \prec x z$.
(c) $x \prec 0$ and $y \prec z \Rightarrow x y \succ x z$.
(d) $x \neq 0 \Rightarrow x^{2} \succ 0$. In particular $1 \succ 0$.
(e) $0 \prec x \prec y \Rightarrow 0 \prec \frac{1}{y} \prec \frac{1}{x}$.

Proof. F is an ordered field.
(a) Assume $x \succ 0 \Rightarrow x+(-x) \succ 0+(-x) \Rightarrow 0 \succ-x$.

$$
-x \prec 0 \Rightarrow-x+x \prec 0+x \Rightarrow 0 \prec x .
$$

(b) Let $x \succ 0$ and $y \prec z \Rightarrow 0 \prec z-y \Rightarrow 0 \prec x(z-y)=x z-x y \Rightarrow x y \prec x z$.
(c) $x \prec 0$ and $y \prec z \Rightarrow-x \succ 0$ and $z-y \succ 0 \Rightarrow-x(z-y) \succ 0 \Rightarrow x(z-y) \prec$ $0 \Rightarrow x z \prec x y$.
(d) $x \neq 0 \Rightarrow x \succ 0 \Rightarrow\left(y=x\right.$ in (b)) $x^{2} \succ 0$ or $x \prec 0 \Rightarrow-x \succ 0(y=-x) \Rightarrow(-x)(-x)=x^{2} \succ 0$.
(e) Let $x \succ 0$. Show $\frac{1}{x} \succ 0$. If not, $\frac{1}{x} \preceq 0 \Rightarrow(x \succ 0), x \frac{1}{x}=1 \preceq 0$, Contradiction!
Assume $0 \prec x \prec y \Rightarrow \frac{1}{y} \succ 0, \frac{1}{x} \succ 0$, therefore (by (b))

$$
\left.\begin{array}{c}
\frac{1}{x} \frac{1}{y} \succ 0 \\
x \prec y
\end{array}\right\} \Rightarrow \frac{1}{y} \prec \frac{1}{x}
$$

Remark 9.2.8 \mathbb{C} with usual + and \cdot is a field. But it is not an ordered field. If $x=i$ then $i^{2}=-1 \succ 0$, hence property (d) does not hold.

Definition 9.2.9 Let $F($ with,$+ \cdot)$ and $F^{\prime}($ with $\oplus, \odot)$ be two fields. We say F is a subfield of F^{\prime} if $F \subset F^{\prime}$ and two operations \oplus and \odot when restricted to F are + and \cdot, respectively. That is, if $x, y \in F \Rightarrow x \oplus y=x+y, x \odot y=x \cdot y$. Then, we have $0_{F}=0_{F^{\prime}}$, and $1_{F}=1_{F^{\prime}}$.
Moreover, if F (with \prec) and F^{\prime} with (with \prec^{\prime}) are ordered fields, then we say F is an ordered subfield of F^{\prime} if F is a subfield of F^{\prime} and for $\forall x \in F$ with $0_{F} \prec x \Rightarrow 0_{F^{\prime}} \prec^{\prime} x$.

9.3 The Real Field

Theorem 9.3.1 (Existence \& Uniqueness) There is an ordered field \mathbb{R} with lub property $\ni \mathbb{Q}$ is an ordered subfield of \mathbb{R}. Moreover if \mathbb{R}^{\prime} is another such ordered field, then \mathbb{R} and \mathbb{R}^{\prime} are "isomorphic": \exists a function $\phi: \mathbb{R} \mapsto \mathbb{R}^{\prime} \ni$
i) ϕ is 1-1 and onto,
ii) $\forall x, y \in \mathbb{R}, \phi(x+y)=\phi(x)+\phi(y)$ and $\phi(x y)=\phi(x) \phi(y)$,
iii) $\forall x, \in \mathbb{R}$ with $x \succ 0$, we have $\phi(x) \succ 0$).

Theorem 9.3.2 (ARCHIMEDEAN PROPERTY)

$$
x, y \in \mathbb{R} \text { and } x \succ 0 \Rightarrow \exists n \in N \text { (depending on } x \text { and } y) \ni n x \succ y .
$$

Proof. Suppose $\exists x, y \in \mathbb{R}$ with $x \succ 0$ for which claim is not true. Then, $\forall n \in N, n x \preceq y$. Let $A=\{n x: n \in N\}$. A is bounded above (by y). $\alpha=\sup A \in \mathbb{R}$, since \mathbb{R} has lub property. $x \succ 0 \Rightarrow \alpha-x \prec \alpha$, so $\alpha-x$ is not an upper bound for A.
Therefore, $\exists m \in N \Rightarrow(\alpha-x) \prec m x \Rightarrow \alpha \prec(m+1) x$. Contradiction $(\alpha=\sup A)$.

Theorem 9.3.3 (\mathbb{Q} is dense in \mathbb{R})

$$
\forall x, y \in \mathbb{R} \text { with } x \prec y, \exists p \in \mathbb{Q} \ni x \prec p \prec y
$$

Proof. $x, y \in \mathbb{R}, x \prec y \Rightarrow y-x \succ 0$
(By Theorem 9.3.2) $\exists n \in \mathbb{N} \ni n(y-x) \succ 1 \Rightarrow n y \succ 1+n x$.

$$
\exists m_{1} \in \mathbb{N} \ni m_{1} \succ n x \leftarrow(y=n x, x=1) \text { in Theorem 9.3.2. }
$$

Let $A=\{m \in Z: n x \prec m\}$. $A \neq \emptyset$, because $m_{1} \in A$. A is bounded below. So A has a smallest element m_{0}, then $n x \prec m_{0} \Rightarrow\left(m_{0}-1\right) \preceq n x$.
If not, $n x \prec m_{0}-1$, but m_{0} is the smallest element: Contradiction.
$\Rightarrow\left(m_{0}-1\right) \preceq n x \preceq m_{0} \Rightarrow n x \prec m_{0} \preceq n x+1 \prec n y \Rightarrow x \prec \frac{m_{0}}{n} \prec y$. Let $p=\frac{m_{0}}{n} \in \mathbb{Q}$.

Theorem 9.3.4

$\forall x \in \mathbb{R}, x \succeq 0, \forall n \in \mathbb{N} \exists$ a unique $y \in \mathbb{R}, y \succ 0 \ni y^{n}=x$.
Proof. [Existence]:
Given $x \succ 0, n \in N$. Let $E=\left\{t \in \mathbb{R}: t \succ 0\right.$ and $\left.t^{n} \prec x\right\}$.
Claim 1: $E \neq \emptyset$
Let $t=\frac{x}{x+1} \succ 0, t \prec 1, t \prec x ; 0 \prec t \prec 1 \Rightarrow t^{n} \prec t$
$\left(0 \prec t \prec 1 \Rightarrow 0 \prec t^{2} \prec t \prec 1 \Rightarrow \ldots \Rightarrow 0 \prec t^{n} \prec t \prec 1\right)$.
Also we have, $t \prec x \Rightarrow t^{n} \prec x$; therefore, $t=\frac{x}{x+1} \in E$.
Claim 2: E is bounded above
If $1+x$ is an upper bound of E.
If not, $\exists t \in E \ni t \succ 1+x$. In particular, $t \succ 1$ (because $x \succ 0$) \Rightarrow $t^{n} \succ t \succ 1+x \succ x$; therefore, $t \notin E$: Contradiction!
$y=\sup E \in \mathbb{R}$ because \mathbb{R} has lub property.
$y \succ 0$, because $(x \succ 0)$.
$\frac{\text { Claim 3: } y^{n}=x}{\text { not, then either } y^{n}} \prec x$ or $x \prec y^{n}$.
We know the following:
Let $0 \prec a \prec b$. Then, $b^{n}-a^{n}=(b-a)\left(b^{n-1}+b^{n-2} a+\cdots+a^{n-1}\right) \Rightarrow$ $(*): b^{n}-a^{n} \prec(b-a) n b^{n-1}$.
i) $y^{n} \prec x \Rightarrow \frac{x-y^{n}}{n(y+1)^{n-1}} \succ 0$. Find $n \in \mathbb{R} \supset 0 \prec h \prec 1$ and $0 \prec \frac{h n(y+1)^{n-1}}{h n(y+h)^{n}}$.
$\left(^{*}\right):(y+h)^{n}-(y)^{n} \prec h n(y+h)^{n} \prec h n(y+1)^{n-1} \prec x-y^{n}$
Therefore, $(y+h)^{n} \prec x \Rightarrow y+h \in E$. But $y+h \succ y \Rightarrow y$ is not an upper bound of E, Contradiction!
ii) $x \prec y^{n}$. Let $k=\frac{y^{n}-x}{n y^{n-1}} \succ 0$ and $x \prec y$ [because $y^{n}-x \prec n y^{n-1}$].

Claim: $y-k$ is an upper bound of E.
Suppose not, $\exists t \in E \ni t \succ y-k \succ 0$.
Then, $t^{n} \succ(y-k)^{n} \Rightarrow-t^{n} \prec-(y-k)^{n} \Rightarrow y^{n}-t^{n} \prec y^{n}-(y-k)^{n}$
$\left(^{*}\right): y^{n}-(y-k)^{n} \prec k n y^{n-1}=y^{n}-x \Rightarrow y^{n}-t^{n} \prec y^{n}-x \Rightarrow t^{n} \succ x \Rightarrow t \notin E$, Contradiction!
Therefore, $y-k$ is an upper bound of E.
However, y is lub of E, Contradiction!
[Uniqueness]:
Suppose $y \succ 0, y^{\prime} \succ 0$ are two positive roots $\exists y \neq y^{\prime}$ and $y^{n}=x=\left(y^{\prime}\right)^{n}$. Without loss of generality, we may assume that , $y^{\prime} \succ y \succ 0$, (because $y \neq$ $\left.y^{\prime}\right) \Rightarrow y^{n} \prec\left(y^{\prime}\right)^{n}$, Contradiction! Thus, y is unique.

Definition 9.3.5 Real numbers which are not rational are called irrational numbers.

Example 9.3.6 $\sqrt{2}$ is an irrational number.
Corollary 9.3.7 Let $a \succ 0, b \succ 0$ and $n \in N$. Then, $(a b)^{1 / n}=a^{1 / n} b^{1 / n}$.

Proof. Let $\alpha=a^{1 / n}, \beta=b^{1 / n} \Rightarrow \alpha^{n}=a, \beta^{n}=b \Rightarrow(\alpha \beta)^{n}=\alpha^{n} \beta^{n}=a b \succ 0$ and $n^{\text {th }}$ root is unique $\Rightarrow(a b)^{1 / n}=\alpha \beta$.

Definition 9.3.8 (Extended real numbers) $\mathbb{R} \cup\{+\infty,-\infty\} \ni$ preserve the order in \mathbb{R} and $\forall x \in \mathbb{R},-\infty \prec x \prec \infty$. $\mathbb{R} \cup\{+\infty,-\infty\}$ is an ordered set and every non-empty subset has supremum/infimum in $\mathbb{R} \cup\{+\infty,-\infty\}$.

In $\mathbb{R} \cup\{+\infty,-\infty\}$, we make the following conventions:
i) For $x \in \mathbb{R}, x+\infty=+\infty, x-\infty=-\infty$,
ii) If $x \prec 0$, we have $x \cdot(+\infty)=-\infty, x \cdot(-\infty)=+\infty$,
iii) $0 \cdot(+\infty), 0 \cdot(-\infty)$ are undefined.

9.4 The Complex Field

Let \mathbb{C} be the set of all ordered pairs (a, b) of real numbers. We say

$$
(a, b)=(c, d) \text { if and only if } a=c \text { and } b=d
$$

Let $x=(a, b), y=(c, d)$. Define

$$
x+y=(a+c, b+d), x y=[a c-b d, a d+b c]
$$

Under these operations \mathbb{C} is a field with $(0,0)$ being the zero element, and $(1,0)$ being the multiplicative unit.
Define $\phi: \mathbb{R} \mapsto \mathbb{C}$ by $\phi(a)=(a, 0)$, then ϕ is $1-1$.

$$
\begin{gathered}
\phi(a+b)=(a+b, 0)=(a, 0)+(b, 0)=\phi(a)+\phi(b) . \\
\phi(a b)=(a b, 0)=(a, 0)(b, 0)=\phi(a) \phi(b) .
\end{gathered}
$$

Therefore, \mathbb{R} can be identified by means of ϕ with a subset of \mathbb{C} in such a way that addition and multiplication are preserved. This identification gives us the real field as a subfield of the complex field.
Let $i=(0,1) \Rightarrow i^{2}=(0,1)(0,1)=(-1,0)=\phi(-1)$, i.e. i^{2} corresponds to the real -1 .

Let us introduce some notation.
$\phi(a)=(a, 0)=a \Rightarrow i^{2}=\phi(-1)=-1$, also if $(a, b) \in \mathbb{C}, a+i b=(a, b)$. Hence,

$$
\mathbb{C}=\{a+i b: a, b \in \mathbb{R}\}
$$

If $z=a+i b \in \mathbb{C}$, we define $\bar{z}=a-i b$ (conjugate of z),

$$
a=\operatorname{Re}(z)=\frac{z+\bar{z}}{2}, \quad b=\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i} .
$$

If $z, w \in \mathbb{C} \Rightarrow \overline{z+w}=\bar{z}+\bar{w}, \overline{z w}=\bar{z} \bar{w}$.
If $z \in \mathbb{C} \Rightarrow z \bar{z}=a^{2}+b^{2} \succeq 0$, we define $|z|=\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}}$.

Proposition 9.4.1 Let $z, w \in \mathbb{C}$. Then,
(a) $z \neq 0 \Rightarrow|z| \succ 0$ and $|0|=0$.
(b) $|\vec{z}|=|z|$.
(c) $|z w|=|z||w|$.
(d) $|\operatorname{Re}(z)| \preceq|z|,|\operatorname{Im}(z)| \preceq|z|$.
(e) $|z+w| \preceq|z|+|w|$, [Triangle inequality].

Proof. The first three is trivial. Then,
(d) Let $z=a+i b \quad|\operatorname{Im}(z)|=|b|=\sqrt{b^{2}} \preceq \sqrt{a^{2}+b^{2}}=|z|$.
(e) $|z+w|^{2}=(z+w)(\bar{z}+\bar{w})=|z|^{2}+z \bar{w}+\bar{z} w+|w|^{2} \preceq(|z|+|w|)^{2}$
$\bar{z} w+z \bar{w}=2 \operatorname{Re}(z \bar{w}) \preceq|2 \operatorname{Re}(z \bar{w})| \preceq 2|z \bar{w}| \Rightarrow|z+w| \preceq|z|+|w|$.
Take positive square roots of both sides, i.e. if $a \succeq 0, b \succeq 0$ and $a^{2} \preceq$ $b^{2} \Rightarrow a \preceq b$. If not, $b \preceq a \Rightarrow b^{2} \preceq a b, b a \preceq a^{2} \Rightarrow b^{2} \preceq a^{2}$. Contradiction!

Theorem 9.4.2 (Schwartz Inequality) Let $a_{j}, b_{j} \in \mathbb{C}, j=1, \ldots, n$. Then,

$$
|\underbrace{\sum_{j=1}^{n} a_{j} \overline{b_{j}}}_{C}|^{2} \preceq(\underbrace{\sum_{j=1}^{n}\left|a_{j}\right|^{2}}_{A})(\underbrace{\sum_{j=1}^{n}\left|b_{j}\right|^{2}}_{B}) .
$$

Proof. $B \succeq 0$. If $B=0$ then $b_{j}=0 \forall j \Rightarrow L H S=0$; therefore, $0 \preceq 0$.
Assume $B \succ 0 \Rightarrow$

$$
\begin{aligned}
& 0 \preceq \sum_{j=1}^{n}\left|B a_{j}-C b_{j}\right|^{2}=\sum_{j=1}^{n}\left(B a_{j}-C b_{j}\right)\left(B \overline{a_{j}}-\overline{C b_{j}}\right) \\
& =\sum_{j=1}^{n} B^{2}|a j|^{2}-\sum_{j=1}^{n} B \bar{C} a_{j} \overline{b_{j}}-\sum_{j=1}^{n} C B b_{j} \overline{a_{j}}+\sum_{j=1}^{n}|C|^{2}\left|b_{j}\right|^{2} \\
& \quad=B^{2} A-B|C|^{2}-C B \bar{C}+|C|^{2} B=B\left(A B-|C|^{2}\right) .
\end{aligned}
$$

Thus, $A B \succeq|C|^{2}$, since $B \succeq 0$.

9.5 Euclidean Space

Definition 9.5.1 Let $k \in \mathbb{N}$, we define \mathbb{R}^{k} as the set of all ordered k tuples $x=\left(x_{1}, \ldots, x_{k}\right)$ of real numbers x_{1}, \ldots, x_{k}. We define $(x+y)=$ $\left(x_{1}+y_{1}, \ldots, x_{k}+y_{k}\right)$. If $\alpha \in \mathbb{R}, \quad \alpha x=\left(\alpha x_{1}, \ldots, \alpha x_{k}\right)$. This way \mathbb{R}^{k} becomes a vector space over \mathbb{R}.
We define an inner product in \mathbb{R}^{k} by $x \cdot y=\sum_{i=1}^{k} x_{i} y_{i}$. And $\forall x \in \mathbb{R}^{k}, x \cdot x \succeq 0$.
We define the norm of $x \in \mathbb{R}^{k}$ by $\|x\|=\sqrt{x \cdot x}=\sqrt{\sum_{n=1}^{k} x_{n}^{2}}$.

Definition 9.5.2 An equivalence relation in X is a binary relation (where \sim means equivalent) with the following properties:
(a) $\forall x \in X, x \sim x$ (reflexibility).
(b) $x \sim y \Rightarrow y \sim x$ (symmetry).
(c) $x \sim y, y \sim z \Rightarrow x \sim z$ (transitivity).

Definition 9.5.3 If \sim is an equivalence relation in X, we define the equivalence class of any $x \in X$ as the following set:

$$
[x]=\{y \in X: x \sim y\}
$$

Remark 9.5.4 If \sim is an equivalence relation in X, then the collection of all equivalence classes forms a partition of X; and conversely, given any partition of X there is an equivalence relation in X such that equivalence classes are the sets in the partition.

Remark 9.5.5 Let C be any collection of nonempty sets. For $X, Y \in C$, define $X \sim Y$ (X and Y are numerically equivalent) if there exists a oneto one and onto function $f: X \mapsto Y\left(o r f^{-1}: Y \mapsto X\right)$. Then, \sim is an equivalence relation in C.

9.6 Countable and Uncountable Sets

Definition 9.6.1 Let $J_{n}=\{1,2, \ldots, n\}, n=1,2, \ldots$ Let $X \neq 0$. We say
i) X is finite if $\exists n \in \mathbb{N}, X \sim J_{n}$.
ii) X is infinite if X is not finite.
iii) X is countable if $X \sim \mathbb{N}$
(i.e. $\exists f: \mathbb{N} \mapsto X, 1-1$ onto, or $\exists g: X \mapsto \mathbb{N}, 1-1$ onto).
iv) X is uncountable if X is not finite and not countable.
v) X is at most countable if X is finite or countable.

Example 9.6.2 $X=\mathbb{N}$ is countable. Let $f: \mathbb{N} \mapsto \mathbb{N}$ be the identity function.

Example 9.6.3 $X=\mathbb{Z}$ is countable. Define $f: \mathbb{N} \mapsto \mathbb{Z}$ as

$$
f(n)=\left\{\begin{array}{r}
\frac{n}{2}, \text { if } n \text { is even } \\
-\frac{n-1}{2}, \text { if } n \text { is odd }
\end{array}\right.
$$

Example 9.6.4 \mathbb{Q}^{+}is countable. Let $r \in \mathbb{Q}^{+}$, then $r=\frac{m}{n}$ where $m, n \in \mathbb{N}$. List elements of \mathbb{Q}^{+}in this order as in Table 9.1. If we apply the counting schema given in Figure 9.1, we get the sequence

$$
1, \frac{1}{2}, 2, \frac{1}{3}, 3, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, 4, \ldots
$$

Define $f: \mathbb{N} \mapsto \mathbb{Q}^{+}$,

$$
f(1)=1, f(2)=\frac{1}{2}, f(3)=2, f(4)=\frac{1}{3}, \cdots
$$

Fig. 9.1. Counting schema for rational's

Table 9.1. List of rational numbers

m	1	2	3	4	5
1	1/1	1/2	1/3		$1 / 5$
2	2/1	2/2	2/3		2/5
3	3/1	$3 / 2$	3/3	3/4	3/5
4	4/1	4/2	4/3	4/4	4/5
5	$5 / 1$	5/2			5/5
:					

Example 9.6.5 \mathbb{Q} is countable. Since \mathbb{Q}^{+}is countable, the elements of \mathbb{Q}^{+} can be listed as a sequence $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. Then, $\mathbb{Q}^{-}=\{q: q \prec 0\}$ can be listed as $\left\{-x_{1},-x_{2},-x_{3}, \ldots\right\}$.
$\mathbb{Q}=0 x_{1}-x_{1} x_{2}-x_{2} x_{3}-x_{3} \ldots$
$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \ldots$
$\mathbb{N}=1 \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array} \ldots$
$f: \mathbb{N} \mapsto \mathbb{Q}$ can be defined in this way.

$$
f(n)=\left\{\begin{aligned}
x_{\frac{n}{2}}, & \text { if } n \text { is even } \\
-x_{\frac{n-1}{2},}, & \text { if } n \text { is odd } \\
0, & \text { if } n=1
\end{aligned}\right.
$$

Proposition 9.6.6 If $\varepsilon=\left\{x_{i}, i \in I\right\}$ is a countable class of countable sets, then $\cup_{i \in I} x_{i}$ is also countable. That is, countable union of countable sets are countable.

Proof. We have $f: \mathbb{N} \mapsto I, 1-1$, onto. Let $Y_{n}=X_{f(n)}$. The elements of Y_{n} can be listed as a sequence. $Y_{n}=\left\{X_{1}^{n}, X_{2}^{n}, \ldots\right\} \forall n$. Use the Cantor's counting scheme for the union. Another counting schema is given in Figure 9.1.

Example 9.6.7 $X=[0,1)$ is not countable.
Every $x \in[0,1)$ has a binary expansion $x=0 . a_{1} a_{2} a_{3} \ldots$ where $a_{n}=\left\{\begin{array}{c}0 \\ 1\end{array}\right.$
Suppose $[0,1)$ is countable. Then, its elements can be listed as a sequence $\left\{X^{1}, X^{2}, X^{3}, \ldots\right\}$. Consider their binary expansions

$$
\begin{aligned}
X^{1} & =0 . a_{1}^{1} a_{2}^{1} a_{3}^{1} \ldots \\
X^{2} & =0 . a_{1}^{2} a_{2}^{2} a_{3}^{2} \ldots \\
X^{3} & =0 . a_{1}^{3} a_{2}^{3} a_{3}^{3} \ldots
\end{aligned}
$$

Let $a_{1}=\left\{\begin{array}{l}0, \text { if } a_{1}^{1}=1 \\ 1, \text { if } a_{1}^{1}=0\end{array}, a_{2}=\left\{\begin{array}{l}0, \text { if } a_{2}^{2}=1 \\ 1, \text { if } a_{2}^{2}=0\end{array}, a_{3}=\left\{\begin{array}{l}0, \text { if } a_{3}^{3}=1 \\ 1, \text { if } a_{3}^{3}=0\end{array}, \ldots\right.\right.\right.$
Let

$$
x=0 . a_{1} a_{2} a_{3} \ldots \in[0,1) .
$$

But this number is not contained in the list $\left\{X^{1}, X^{2}, X^{3}, \ldots\right\}$
x is different from X^{1} by the first digit after 0 ;
x is different from X^{2} by the second digit after 0;
x is different from X^{3} by the third digit after 0 ;
引
Therefore, $x \neq X^{n}, \forall n$; since x and X^{n} differ in the $n^{\text {th }}$ digit after zero. So, $X=[0,1)$ is not countable.

Example 9.6.8 $X=(0,1)$ is not countable. Since $X=[0,1)$ is not countable, excluding a countable number of elements (just zero) does not change uncountability. Thus, $X=(0,1)$ is uncountable.

Example 9.6.9 For any open interval (a, b) we have

$$
(a, b) \sim(0,1) f:(a, b) \mapsto(0,1)
$$

Refer to Figure 9.2.
Example 9.6.10 $X=\mathbb{R}$ is not countable. Since $\mathbb{R} \sim(-1,1)$, by projection \mathbb{R} is not countable [because (0,1) is not countable]. One way of showing 1-1 correspondence between any open interval and (0,1) is illustrated in Figure 9.3.

Fig. 9.2. Uncountability equivalence of (a, b) and (0,1)

Fig. 9.3. The correspondence between $(-1,1)$ and \mathbb{R}.

Example 9.6.11 $f: \mathbb{R} \mapsto\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), f(x)=\arctan (x)$ is a $1-1$ correspondence, i.e. $f(x)$ is 1-1 and onto. Refer to Figure 9.4.

Fig. 9.4. The correspondence between $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and \mathbb{R}

Proposition 9.6.12 If (a, b) is any open interval, then

$$
(0,1) \sim(a, b) \sim \mathbb{R} \sim[0,1)
$$

Proof.

$$
\exists f:(0,1) \mapsto[0,1) \text { is } 1-1(f(x)=x)
$$

$\exists g:[0,1) \mapsto \mathbb{R}$ is 1-1 $(g(x)=x)$.
$\exists h: \mathbb{R} \mapsto(0,1)$ is $1-1$ and onto $(f(x)=x)$.

$$
[0,1) \mapsto \mathbb{R} \mapsto(0,1) \text { is } 1-1 .
$$

By Cantor-Schruder-Bernstein Theorem $[0,1) \sim(0,1)$.

Definition 9.6.13 Roughly speaking, the cardinality of a set (or cardinal number of a set) is the number of elements in this set.
If $X=\emptyset, \operatorname{Card}(X)=0$,
If $X \sim J_{n}=\{1,2, \ldots, n\}, \operatorname{Card}(X)=n$,
If $X \sim \mathbb{N}$ (i.e. countable), $\operatorname{Card}(X)=\aleph_{0}$ (aleph zero),
If $X \sim \mathbb{R}, \operatorname{Card}(X)=\aleph_{1}$ (aleph one).
Definition 9.6.14 Let m and n be two cardinal numbers $W e$ say $m \prec n$ if there are two sets X and $Y \ni \operatorname{Card}(X)=m, \operatorname{Card}(Y)=n$.

Remark 9.6.15 The list of cardinal numbers:

$$
0 \prec 1 \prec 2 \prec \cdots \prec n \prec \cdots \prec \aleph_{0} \prec \aleph_{1}=c .
$$

Remark 9.6.16 Question: \exists ? a cardinal number between \aleph_{0} and \aleph_{1} ?
The answer is still not known. Conjecture: The answer is no!
Question: Is there a cardinal number bigger than \aleph_{1} ?
The answer is yes. Consider $P(\mathbb{R})$: the set of all subsets of \mathbb{R} (power set of $\mathbb{R}) . \aleph_{1}=\operatorname{Card}(\mathbb{R}) \prec \operatorname{Card}(P(\mathbb{R}))$. We know if $\operatorname{Card}(X)=n$, then $\operatorname{Card}(P(X))=2^{n}$. Analogously $\operatorname{Card}(P(\mathbb{N}))=2^{\aleph_{0}}=\aleph_{1}$. Then, we can say that $\operatorname{Card}(P(\mathbb{R}))=2^{\aleph_{1}}=\aleph_{2}$.

Problems

9.1. Let A be a non-empty subset of \mathbb{R} which is bounded below. Define $-A=$ $\{-x: x \in A\}$. Show that $\inf A=-\sup (-A)$.
9.2. Let $b \succ 1$. Prove the following:
a) $\forall m, n \in \mathbb{Z}$ with $n \succ 0,\left(b^{m}\right)^{1 / n}=\left(b^{1 / n}\right)^{m}$.
b) $\forall m, n \in \mathbb{Z}$ with $n \succ 0,\left(b^{m}\right)^{n}=b^{m n}=\left(b^{n}\right)^{m}$.
c) $\forall n \in \mathbb{Z}$ with $n \succ 0,1^{1 / n}=1$.
d) $\forall n, q \in \mathbb{Z}$ with $n, q \succ 0, b^{1 / n q}=\left(b^{1 / n}\right)^{1 / q}=\left(b^{1 / q}\right)^{1 / n}$.
e) $\forall p, q \in \mathbb{Z} b^{p+q}=b^{p} b^{q}$.
9.3. Do the following:
a) Let $m, n, p, q \in \mathbb{Z}$ with $n \prec 0, q \succ 0$ and $r=\frac{m}{n}=\frac{p}{q}$. Show that $\left(b^{m}\right)^{1 / n}=$ $\left(b^{p}\right)^{1 / q}$ using the above properties.
b) Prove that $b^{r+s}=b^{r} b^{s}$ if r and s are rational.
c) Let $x \in \mathbb{R}$. Define $B(x)=\left\{b^{t}: t \in \mathbb{Q}, t \preceq x\right\}$. Show that if $r \in \mathbb{Q}, b^{r}=$ $\sup B(r)$.
d) Show that $b^{x+y}=b^{x} b^{y} \forall x, y \in \mathbb{R}$.
9.4. Fix $b \succ 1$ and $y \succ 0$. Show the following:
a) $\forall n \in \mathbb{N}, b^{n}-1 \succeq n(b-1)$.
b) $(b-1) \succeq n\left(b^{1 / n}-1\right)$. Hint: $\forall n \in \mathbb{N}, b^{1 / n} \succ 1$ holds. So replace $(b \succ 1)$
above by $b^{\mathrm{L} / n} \succ 1$.
c) If $t \succ 1$ and $n \succ \frac{b-1}{t-1}$, then $b^{1 / n} \prec t$.
d) If $w \ni b^{w} \prec y$, then $b^{w+1 / n} \prec y$ for sufficiently large n.
e) If $b^{w} \succ y$, then $b^{w-1 / n} \succ y$ for sufficiently large n.
f) Let $A=\left\{w \in \mathbb{R}: b^{w} \prec y\right\}$. Show that $x=\sup A$ satisfies $b^{x}=y$.
g) Prove that x above is unique.
9.5. Let F be an ordered field. Prove the following:
a) $x, y \in F$ and $x^{2}+y^{2}=0 \Rightarrow x=0$ and $y=0$.
b) $x_{1}, x_{2}, \ldots, x_{n} \in F$ and $x_{1}^{2}+\cdots+x_{n}^{2}=0 \Rightarrow x_{1}=x_{2}=\cdots=x_{n}=0$.
9.6. Let m be a fixed integer. For $a, b \in \mathbb{Z}$, define $a \sim b$ if $a-b$ is divisible by m, i.e. there is an integer k such that $a-b=m k$.
a) Show that \sim is an equivalence relation in \mathbb{Z}.
b) Describe the equivalence classes and state the number of distinct equivalence classes.
9.7. Do the following:
a) Let $X=\mathbb{R}$, and $x \sim y$ if $x \in[0,1]$ and $y \in[0,1]$. Show that \sim is symmetric and transitive, but not reflexive.
b) Let $X \neq \emptyset$ and \sim is a relation in X. The following seems to be a proof of the statement that if this relation is symmetric and transitive, then it is necessarily reflexive:

$$
x \sim y \Rightarrow y \sim x, \quad x \sim y \text { and } y \sim x \Rightarrow x \sim x
$$

therefore, $x \sim x, \forall x \in X$. In view of part a), this cannot be a valid proof. What is the flaw in the reasoning?
9.8. Prove the following:
a) If $X_{1}, X_{2}, \ldots, X_{n}$ are countable sets, then $X=\Pi_{i=1}^{n} X_{i}$ is also countable.
b) Every countable set is numerically equivalent to a proper subset of itself.
c) Let X and Y be non-empty sets and $f: X \mapsto Y$ be an onto function. Prove that if X is countable then Y is at most countable.

Web material

```
http://129.118.33.1/~ pearce/courses/5364/notes_2003-03-31.pdf
http://alpha.fdu.edu/~mayans/core/real_numbers.html
http://comet.lehman.cuny.edu/keenl/realnosnotes.pdf
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Countable
http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/Numeral_system
http://en.wikipedia.org/wiki/Real_number
```

http://en.wikipedia.org/wiki/Real_numbers
http://en.wikipedia.org/wiki/Uncountable_set
http://eom.springer.de/f/f040090.htm
http://eom.springer.de/U/u095130.htm
http://kr.cs.ait.ac.th/~radok/math/mat5/algebra21.htm
http://math.berkeley.edu/~benjamin/74lecture38s05.pdf
http://mathforum.org/alejandre/numerals.html
http://mathworld.wolfram. com/Countably Infinite.html
http://numbersorg, com/Algebra/
http://pirate.shu.edu/projects/reals/infinity/uncntble.html
http://planetmath.org/encyclopedia/MathbbR.html
http://planetmath.org/encyclopedia/Real.html
http://planetmath.org/encyclopedia/Uncountable.html
http://plato.stanford.edu/entries/set-theory/
http://www-db.stanford.edu/pub/cstr/reports/cs/tr/67/75/ CS-TR-67-75.pdf
http://www.absoluteastronomy.com/c/countable_set
http://www. answers.com/topic/complex-number
http://www.cse.cuhk.edu.hk/~csc3640/tutonotes/tuto3.ppt
http://www.csie.nctu.edu.tw/~myuhsieh/dmath/Module-4.5Countability ppt
http://www.cut-the-knot.org/do_you_know/few_words.shtml
http://www.dpmms.cam.ac.uk/~wtg10/countability.html
http://www.eecs.umich.edu/~aey/eecs501/lectures/count.pdf
http://www.faqs.org/docs/sp/sp-121.html
http://www.faqs.org/docs/sp/sp-122.html
http://www.introducingmathematics.com/settheoryone/01.html
http://www.jcu.edu/math/vignettes/infinity.htm
http://www.math.brown.edu/~sjmiller/1/CountableAlgTran.pdf
http://www.math.niu.edu/~beachy/aaol/contents.html
http://www.math.niu.edu/~rusin/known-math/index/11-XX.html
http://www.math.niu.edu/~rusin/known-math/index/12-XX.html
http://www.math.toronto.edu/murnaghan/courses/mat240/field.pdf
http://www.math.ucdavis.edu/~emsilvia/math127/chapter1.pdf
http://www.math.ucdavis.edu/~emsilvia/math127/chapter2.pdf
http://www.math.uic.edu/~lewis/las 100/uncount.html
http://www.math.uiuc.edu/~r-ash/Algebra/Chapter3.pdf
http://www.math.umn.edu/~garrett/m/intro_algebra/notes.pdf
http://www.math.unl.edu/~webnotes/classes/classAppA/classAppA.htm
http://www.math.uvic.ca/faculty/gmacgill/guide/cardinality.pdf
http://www.math.uvic.ca/faculty/gmacgill/M222F03/Countable.pdf
http://www.math.vanderbilt.edu/~schectex/courses/thereals/
http://www.math.wisc.edu/~ram/math541/
http://www.mathreference.com/set-card, cable.html
http://www.mcs.vuw.ac.nz/courses/MATH114/2006FY/Notes/11.pdf
http://www.msc.uky.edu/ken/ma109/lectures/real.htm
http://www.swarthmore.edu/NatSci/wstromq1/stat53/CountableSets.doc
http://www.topology.org/tex/conc/dgchaps.html
http://www.trillia.com/zakon-analysisI-index.html

Basic Topology

In this chapter, basic notions in general topology will be defined and the related theorems will be stated. This includes the following: metric spaces, open and closed sets, interior and closure, neighborhood and closeness, compactness and connectedness.

10.1 Metric Spaces

In \mathbb{R}^{k}, we have the notion of distance:
If $p=\left(x_{1}, x_{2}, \ldots, x_{k}\right)^{T}, q=\left(y_{1}, y_{2}, \ldots, y_{k}\right)^{T}, p, q \in \mathbb{R}^{k}$, then

$$
d_{2}(p, q)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{k}-y_{k}\right)^{2}}
$$

Definition 10.1.1 Let $X \neq \emptyset$ be a set. Suppose there is a function $d: X \times X \Rightarrow \mathbb{R}_{+}=[0, \infty)$ with the following properties:
i) $d(p, q)=0 \Leftrightarrow p=q$;
ii) $d(p, q)=d(q, p), \forall p, q$;
iii) $d(p, q) \leq d(p, r)+d(r, q), \forall p, q, r$ [triangle inequality].

Then, d is called a metric (or distance function) and the pair (X, d) is called a metric space.

Example 10.1.2 Let $X \neq \emptyset$ be any set. For $p, q \in X$ define

$$
d(p, q)= \begin{cases}1, & \text { if } p \neq q \\ 0, & \text { if } p=q\end{cases}
$$

is called the discrete metric.

Definition 10.1.3 Let S be any fixed nonempty set. A function $f: S \mapsto \mathbb{R}$ is called bounded if $f(S)$ is a bounded subset of \mathbb{R}.

Example 10.1.4 Is $f: \mathbb{R} \mapsto \mathbb{R}, f(s)=s^{2}$ bounded? (Exercise!).
$f: \mathbb{R} \mapsto \mathbb{R}, f(s)=\arctan (s)=\tan ^{-1}(s)$ is bounded. See Figure 9.4.
Definition 10.1.5 Let $X=B(S)=$ all bounded functions $f: S \mapsto \mathbb{R}$.
For $f, g \in B(S)$, we define the distance as $d(f, g)=\sup \{|f(s)-g(s)|: s \in S\}$.
Proposition 10.1.6 $d(f, g) \geq 0$ is a metric, $\forall f, g \in X=B(S)$.
Proof. by proving axioms of a metric:
(i) (\Rightarrow)
if $d(f, g)=0 \Rightarrow|f(s)-g(s)|=0, \forall s \in S \Rightarrow f(s)=g(s), \forall s \in S \Rightarrow f=g$. (\Leftarrow)
if $f=g \Rightarrow d(f, g)=0$.
(ii) trivial.
(iii) Proposition 10.1.7 Let $A \neq \emptyset, B \neq \emptyset$ be subsets of \mathbb{R}. Define

$$
A+B=\{a+b: a \in A, b \in B\}
$$

If A and B are bounded above then $A+B$ is bounded above and

$$
\sup (A+B) \leq \sup A+\sup B
$$

Proof. Let $x=\sup A, y=\sup B$.
Given $c \in A+B$, then $\exists a \in A, b \in B \ni c=a+b$. Then, $c=a+b \leq x+y$. Moreover, $\sup (A+B) \leq x+y$.

Proposition 10.1.8 Let C, D be nonempty subsets of \mathbb{R}, let D be bounded above. Suppose $\forall c \in C, \exists d \in D \ni c \leq d$. Then, C is also bounded above and $\sup C \leq \sup D$.

Proof. Given $c \in C, \exists d \in D \ni c \leq d$. So, $\forall c \in C, c \leq y=\sup D$. Hence, y is an upper bound for C. Therefore, $\sup C \leq \sup D$.

Triangular Inequality: Let $f, g, h \in B(S)$.
$C=\{|f(s)-g(s)|: s \in S\}$, then $d(f, g)=\sup C$.
$A=\{|f(s)-h(s)|: s \in S\}$, then $d(f, h)=\sup A$.
$B=\{|h(s)-g(s)|: s \in S\}$, then $d(h, g)=\sup B$.
Given $x \in C$, then $\exists s \in S \ni x=|f(s)-g(s)|$

$$
\begin{gathered}
x=|f(s)-g(s)|=|f(s)-h(s)+h(s)-g(s)| \leq|f(s)-h(s)|+|h(s)-g(s)| \\
\Rightarrow \sup C \leq \sup (A+B) \leq \sup A+\sup B .
\end{gathered}
$$

Example 10.1.9 Let $X=\mathbb{R}^{k}, P=\left(x_{1}, \ldots, x_{k}\right)^{T}$ and $Q=\left(y_{1}, \ldots, y_{k}\right)^{T} \in$ \mathbb{R}^{k}.
$d_{1}(p, q)=\left|x_{1}-y_{1}\right|+\cdots+\left|x_{k}-y_{k}\right|: l_{1}$ metric.
$d_{2}(p, q)=\left[\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{k}-y_{k}\right)^{2}\right]^{1 / 2}: l_{2}$ metric.
$d_{\infty}(p, q)=\max \left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{k}-y_{k}\right|\right\}: l_{\infty}$ metric.
See Figure 10.1.

Fig. 10.1. Example 10.1.9

Definition 10.1.10 Let (X, d) be a metric space, $p \in X, r>0$.
$B_{r}(p)=\{q \in X: d(p, q)<r\}$ open ball centered at p of radius r. $B_{r}[p]=\{q \in X: d(p, q) \leq r\}$ closed ball centered at p of radius r.

Example 10.1.11 $X=\mathbb{R}^{2}, d=d_{2}$. See Figure 10.2.

CLOSED BALL

OPEN BALL

Fig. 10.2. Example 10.1.11

Example 10.1.12 Let us have $X \neq \emptyset$, and the discrete metric.

$$
B_{r}(p)=\left\{\begin{array}{cc}
\{p\}, & \text { if } r<1 \\
\{p\}, & \text { if } r=1 \\
X, & \text { if } r>1
\end{array} \quad B_{r}[p]=\left\{\begin{array}{cc}
\{p\}, & \text { if } r<1 \\
X, & \text { if } r=1 \\
X, & \text { if } r>1
\end{array}\right.\right.
$$

Example 10.1.13 $X=B \subset(a, b)=\{f:(a, b) \mapsto \mathbb{R}: f$ is bounded $\}$

$$
f, g \in X \Rightarrow d(f, g)=\sup \{|f(s)-g(s)|: s \in(a, b)\}
$$

Let $f \in X, r>0, B_{r}(f)$ is the set of all functions g whose graph lie within the dashed envelope in Figure 10.3.

Example 10.1.14 $X=\mathbb{R}^{2}$ with d_{1} metric:

$$
d_{1}(p, q)=\left|y_{1}-x_{1}\right|+\left|y_{2}-x_{2}\right|
$$

See Figure 10.4.

Fig. 10.3. Example 10.1.13

Example 10.1.15 $X=\mathbb{R}^{2}$ with d_{∞} metric:

$$
d_{\infty}(p, q)=\max \left\{\left|y_{1}-x_{1}\right|,\left|y_{2}-x_{2}\right|\right\}
$$

Definition 10.1.16 A subset $E \neq \emptyset$ of a vector space V is convex if $t p+(1-t) q \in E$ whenever $p, q \in E$ and $t \in[0,1]$.

Proposition 10.1.17 $X=\mathbb{R}^{k}$ with d_{2}, d_{1} or d_{∞} metric. Then, every (open) ball $B_{r}(p)$ is convex.

Proof. Using d_{∞} metric:
Fix $B_{r}(p)$. Let $u, v \in B_{r}(p), 0 \leq t \leq 1$. Show that $t u+(1-t) v \in B_{r}(p)$:
Let $p=\left(p_{1}, \ldots, p_{k}\right), u=\left(u_{1}, \ldots, u_{k}\right), v=\left(v_{1}, \ldots, v_{k}\right)$. Then, $d_{\infty}(t u+(1-t) v, p)=d_{\infty}(t u+(1-t) v, t p+(1-t) p)$
$=\max \left\{\left|t u_{i}+(1-t) v_{i}-t p_{i}-(1-t) p_{i}\right|\right\}_{i=1}^{k}$
$=\left|t u_{j}+(1-t) v_{j}-t p_{j}-(1-t) p_{j}\right|=\left|t\left(u_{j}-p_{j}\right)+(1-t)\left(v_{j}-p_{j}\right)\right|$
$\leq|t|\left|u_{j}-p_{j}\right|+|1-t|\left|v_{j}-p_{j}\right|=t d_{\infty}(u, p)+(1-t) d_{\infty}(u, p) \leq t r+(1-t) r=r$.

Definition 10.1.18 Let (X, d) be a metric space, $E \subset X$. A point $p \in E$ is called an interior point of E if $\exists r>0 \Rightarrow B_{r}(p) \subset E$. The set of all interior points of E is denoted by int E or E° and is called the interior of E $(i n t E \subset E)$.

Fig. 10.4. Example 10.1.14

Example 10.1.19 See Figure 10.5. $q \in \operatorname{int} E$ but $p \notin \operatorname{int} E$.

Fig. 10.5. Example 10.1.19

Example 10.1.20 Let X be any set with at least two elements, with the discrete metric:

$$
d(p, q)=\left\{\begin{array}{l}
1, p \neq q \\
0, \text { otherwise }
\end{array}\right.
$$

Let $p \in X, E=\{p\}$. Then,

$$
i n t E=E, r<1 \Rightarrow B_{r}(p)=p \subset E \Rightarrow p \in \operatorname{int} E
$$

Example 10.1.21 Let $X=\mathbb{R}^{2}$ with d_{2} metric. See Figure 10.6.

Fig. 10.6. Example 10.1.21

$$
\begin{aligned}
& E=\left\{p=(x, y) \in \mathbb{R}^{2}: 1<x^{2}+y^{2} \leq 4\right\} \Rightarrow \\
& \operatorname{int} E=\left\{p=(x, y) \in \mathbb{R}^{2}: 1<x^{2}+y^{2}<4\right\}
\end{aligned}
$$

Definition 10.1.22 E is said to be open set if int $E=E$, i.e.

$$
\forall p \in E, \exists r>0 \ni B_{r}(p) \subset E .
$$

Example 10.1.23 In $\mathbb{R}^{2}, E=\left\{p=(x, y) \in \mathbb{R}^{2}: 1<x^{2}+y^{2}<4\right\}$ is open.
Remark 10.1.24 By convention, $E=\emptyset, E=X$ are open sets.
Definition 10.1.25 Let $p \in X$. A subset N of X is called a neighborhood of p if $p \in \operatorname{int} N$.

Fig. 10.7. Example 10.1.26

Example 10.1.26 N is a neighborhood of P but it is not neighborhood of Q. See Figure 10.7.

Definition 10.1.27 A point $p \in X$ is called a limit point (or accumulation point) (or cluster point) of the set $E \subset X$ if every neighborhood N of p contains q of $E \ni q \neq p$. i.e. \forall neighborhood N of $p, \exists q \in E \cap N, q \neq p$. Equivalently, $\forall r>0, \exists q \in E \cap B_{r}(p) \ni q \neq p$.

Example 10.1.28 $E=\left\{p=(x, y) \in \mathbb{R}^{2}: 1<x^{2}+y^{2} \leq 4\right\} \cup\{(3,0)\}$. Limit points of E are all points $p=(x, y) \ni 1 \leq x^{2}+y^{2} \leq 4$. See Figure 10.8.

Fig. 10.8. Example 10.1.28

Definition 10.1.29 A point $p \in E$ is called an isolated point of E if p is not a limit point of E; i.e. $\exists r>0 \ni B_{r}(p) \cap E=p$.

Example 10.1.30 $X=\mathbb{R}, d=d_{1}$:

$$
E=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}
$$

0 is the only limit point of $E . \forall p \in E$ are all isolated points.
Definition 10.1.31 E is closed if every limit point of E belongs to E.
Example 10.1.32 See Figure 10.9.

Fig. 10.9. Example 10.1.32

Definition 10.1.33 E is perfect if it is closed and every point of E is a limit point of E; i.e. if E is closed and has no isolated points. E is bounded if $\exists M>0 \ni \forall p, q \in E d[p, q] \leq M . E$ is dense in X if every point of X is either a point of E or a limit point of E.

Example 10.1.34 $X=\mathbb{R}, E=\mathbb{N}$ is unbounded. Suppose it is bounded. Then, $\exists M>0 \ni \forall x, y \in \mathbb{N},|x-y| \leq M$. Let $n \in \mathbb{N}$ be $\ni n>M+1 \Rightarrow$ $|1-n|=n-1 \leq M \rightarrow n \leq M+1$. Contradiction!

Example 10.1.35 $X=\mathbb{R}, E=\mathbb{Q}(\mathbb{Q}$ is dense in \mathbb{R}; i.e. given $x \in \mathbb{R}$ either $x \in \mathbb{Q}$ or x is a limit point of \mathbb{Q}). Let $x \in \mathbb{R}$, if $x \in \mathbb{Q}$, we are done. If $x \notin \mathbb{Q}$, we will show that x is a limit point of \mathbb{Q} :
Given $r>0, B_{r}(x)=(x-r, x+r)$. Then, $\exists y \in \mathbb{Q} \ni x-r<y<x+r \Rightarrow$ $y \in B_{r}(x) \cap \mathbb{Q}$ and $y \neq x \Rightarrow x \in \mathbb{R}, y \in \mathbb{Q}$.

Let us introduce the following notation:
E^{\prime} : set of all limit points of E.
$\bar{E}=E \cup E^{\prime}, \bar{E}$ is called the closure of E.

$$
p \in \bar{E} \Leftrightarrow \forall r>0, B_{r}(p) \cap E \neq \emptyset
$$

Proposition 10.1.36 Every open ball $B_{r}(p)$ is an open set.

Proof. Let $q \in B_{r}(p)$, we will show that $\exists s>0 \ni B_{s}(q) \subset B_{r}(p)$: $q \in B_{r}(p) \Rightarrow d(q, p)<r$, let $s=r-d(q, p)>0$. Let $z \in B_{s}(q)$,

$$
d(z, p) \leq d(z, q)+d(q, p)<s+d(q, p)=r \Rightarrow z \in B_{r}(p)
$$

Theorem 10.1.37 p is a limit point of E if and only if every neighborhood N of p contains infinitely many points of E.

Proof. (\Leftarrow) : trivial.
(\Rightarrow) : Let p be the limit point of E. Let N be an arbitrary neighborhood of p. Then, $\exists r>0 \ni B_{r}(p) \subset N$. Since $B_{r}(p)$ is a neighborhood of p

$$
\begin{gathered}
\exists q_{1} \in B_{r}(p) \cap E \ni q_{1} \neq p \Rightarrow d(q, p)=r_{1}>0 . \\
\exists q_{2} \in B_{r}(p) \cap E \ni q_{2} \neq p
\end{gathered}
$$

Then, $q_{2} \neq q_{1}$. Since $q_{2} \neq p, r_{2}=d\left(q_{2}, p\right)>0$.

$$
\exists q_{3} \in B_{r_{2}}(p) \cap E \ni q_{3} \neq p \neq q_{2} \neq q_{1} ; \cdots
$$

Corollary 10.1.38 If E is a finite set, $E^{\prime}=\emptyset$.
Theorem 10.1.39 E is open if and only if E^{c} is closed.

Proof. (\Rightarrow) : Let E be open, Let p be a limit point of E^{c}. Show $p \in E^{c}$. Suppose not:

$$
p \in E \Rightarrow \exists r>0 \ni B_{r}(p) \subset E \quad\left[\text { because } E \text { is open] }\left(^{*}\right)\right.
$$

Since p is a limit point of E^{c}, for every neighborhood N of $p, N \cap E^{c} \neq \emptyset$. In particular (by taking $\left.N=B_{r}(p)\right), B_{r}(p) \cap E^{c} \neq \emptyset$, Contradiction to (${ }^{*}$).
(\Leftarrow) : Assume E^{c} is closed. Show E is open; i.e. $\forall p \in E, \exists r>0 \ni B_{r}(p) \subset$ E. Let $p \in E \Rightarrow p \notin E^{c} \Rightarrow p$ is not a limit point of E^{c}. So $\exists r>0 \ni B_{r}(p) \cap E^{c}$ does not contain any $q \neq p$ (p either). $\Rightarrow B_{r}(p) \cap E^{c}=\emptyset \Rightarrow B_{r}(p) \subset E$.

Theorem 10.1.40 Let $E \subset X$, then
(a) \bar{E} is closed.
(b) $E=\bar{E} \Leftrightarrow E$ is closed.
(c) \bar{E} is the smallest closed set which contains E; i.e. if F is closed and $E \subset F \Rightarrow \bar{E} \subset F$.

Proof. $E \subset X$.
(a): $(\bar{E})^{c}$ is open.

Let $p \in(\bar{E})^{c} \Rightarrow p \notin \bar{E} \Rightarrow \exists r>0 \ni B_{r}(p) \cap E=\emptyset \Rightarrow B_{r}(p) \subset(\bar{E})^{c}$.
Show that $B_{r}(p) \subset(\bar{E})^{c}$:
If it is not true $\exists q \in B_{r}(p)$ and $q \notin(\bar{E})^{c} \Rightarrow q \in E^{c}$.
Find $s>0 \ni B_{s}(q) \subset B_{r}(p)$. Then $B_{s}(q) \cap E \neq \emptyset \Rightarrow B_{r}(q) \cap E \neq \emptyset$. Contradiction.
(b): (\Rightarrow) : Immediate from (a).
$(\Leftarrow): E$ is closed. Show $E=\bar{E}$, i.e. $\bar{E} \subset E$. Let $p \in \bar{E}=E \cup E^{\prime}$, if $p \in E$, we are done.
If $p \in E^{\prime} \Rightarrow p \in E$ (because E is closed).
(c): Let F be closed, $E \subset F$. Show that $\bar{E} \subset F$. Let $p \in \bar{E}=E \cup E^{\prime}$, if $p \in E \Rightarrow p \in F$. If $p \in E^{\prime}$ we have to show that $p \in F^{\prime}$:
Given $r>0$, show $B_{r}(p) \cap F$ contains a point $q \neq p$. Since $p \in E^{\prime}$, $B_{r}(p) \cap E$ contains a point $q \neq p$. Then, $q \in B_{r}(p) \cap F$ (because $E \subset F$). So, $p \in F^{\prime} \Rightarrow p \in F$ (because F is closed).

Let (X, d) be a metric space, then

1. The union of a finite collection of open sets is open.
2. The intersection of a finite collection of open sets is open (not true for infinite).
3. The intersection of any collection of closed sets is closed.
4. The union of a finite collection of closed sets is closed (not necessarily true for infinite).
5. E is open $\Leftrightarrow E^{c}$ is closed.
6. E is closed $\Leftrightarrow E=\bar{E}$.
7. \bar{E} is the smallest closed set containing E.
8. int E is the largest open set contained in E (i.e. if $A \subset E$ and A is open then $A \subseteq$ int E).

Example 10.1.41 Intersection of infinitely many open sets needs not to be open, $X=\mathbb{R}, d(x, y)=|x-y|:$ Let $A_{n}=\left(-\frac{1}{n}, \frac{n+1}{n}\right), n=1,2, \ldots$ Then, $\bigcap_{n=1}^{\infty} A_{n}=[0,1]$. If $0 \leq x \leq 1$ then $x \in\left(-\frac{1}{n}, \frac{n+1}{n}\right)=A_{n}, \forall n \Rightarrow x \in \bigcap_{n=1}^{\infty} A_{n}$. Let $x \in \bigcap_{n=1}^{\infty} A_{n}$, show that $0 \leq x \leq 1$:
If not, $x<0$ or $x>1$. If $x>1, \exists n \in \mathbb{N} \ni 1<\frac{n+1}{n}<x, x \notin A_{n}$. Case $x<0$ is similar.

Proposition 10.1.42 Let $\emptyset \neq E \subset \mathbb{R}$ be bounded above. Then, $\sup E \in \bar{E}$.
Proof. $y=\sup E$, show that $\forall r>0, B_{r}(y) \cap E \neq \emptyset$: Since $y-r<y \Rightarrow y-r$ is not upper bound of $E . \exists x \in E \ni y \geq x>y-r \Rightarrow x \in(y-r, y+r) \cap E \Rightarrow$ $B_{r}(y) \cap E \neq \emptyset$.

Let (X, d) be a metric space and $\emptyset \neq Y \subset X$, then Y is a metric space in its own right with the same distance function d. In this case, (Y, d) is a subspace of (X, d).

If $E \subset Y, E$ may be open in (Y, d) but not open in (X, d).
Example 10.1.43 $X=\mathbb{R}^{2}, Y=\mathbb{R}, E=(a, b)$: When considered in \mathbb{R}, E is open whereas E is not open in \mathbb{R}^{2}, as seen in Figure 10.10.

Fig. 10.10. Example 10.1.43

Definition 10.1.44 Let $E \subset Y \subset X$. We say E is open (respectively closed) relative to Y if E is open (respectively closed) as a subset of the metric space (Y, d).
E is open relative to $Y \Leftrightarrow \forall p \in E \exists r>0 \ni B_{r}(p) \cap Y \subset E$.
E is closed relative to $Y \Leftrightarrow Y \backslash E=Y \cap E^{c}$ is open relative to Y.
Theorem 10.1.45 Let $X \subset Y \subset E$. Then,
(a) E is open relative to $Y \Leftrightarrow \exists$ an open set F in $X \ni E=F \cap Y$.
(b) E is closed relative to $Y \Leftrightarrow \exists$ a closed set F in $X \ni E=F \cap Y$.

Proof. $X \subset Y \subset E$.
(a) (\Rightarrow) :

Let E be open relative to Y. Then,

$$
\forall p \in E \exists r_{p}>0 \ni B_{r_{p}}(p) \cap Y \subset E
$$

Let $F=\bigcup_{p \in E} B_{r_{p}}(p) . F$ is open in X.

$$
\bigcup_{p \in E}\left[B_{r_{p}}(p) \cap Y\right] \subset E \quad F \cap Y \subset E
$$

Conversely, $q \in E$, then

$$
q \in B_{r_{q}}(q) \subset F, q \in E \subset Y \Rightarrow q \in F \cap Y \Rightarrow E \subset F \cap Y
$$

(\Leftarrow) :
$E=F \cap Y$ where F is open in X. Given $p \in E \Rightarrow p \in F$. Since F is open, $\exists r>0 \ni B_{r}(p) \subset F$.

$$
B_{r}(p) \cap Y \subset F \cap Y=E
$$

(b) (\Rightarrow) :
E is closed relative to $Y \Rightarrow Y \backslash E$ is open relative to Y. Then, $\exists F \in X$ open in $\mathrm{X} \ni Y \backslash E=F \cap Y$.
$E=Y \backslash(Y \backslash E)=Y \backslash(F \cap Y)=Y \cap(F \cap Y)^{c}=Y \cap F^{c} \cup \emptyset=Y \cap F^{c}$.
F^{c} closed in X.
$(\Leftarrow):$
$E=F \cap Y$ where F is closed in X.
$Y \backslash E=Y \cap(F \cap Y)^{c}=Y \cap F^{c}\left(F^{c}\right.$ open in $\left.X\right) \Longrightarrow Y \backslash E$ is open relative to Y.
$\Rightarrow E$ is closed relative to Y.

10.2 Compact Sets

Definition 10.2.1 Let (X, d) be a metric space, $E \subset X$ be a nonempty subset of X. An open cover of E is a collection of open sets $\left\{G_{i}: i \in I\right\}$ in $X \ni E \subset$ $\bigcup_{i} G_{i}$.

Example 10.2.2 $X=\mathbb{R}^{k}$ with d_{2} metric:
$E=B_{1}(0)$, for $n \in \mathbb{N}, G_{n}=B_{\frac{n}{n+1}}(0) \Rightarrow E \subset \bigcup_{n=1}^{\infty} G_{n}$.
Example 10.2.3 $X=\mathbb{R}, E=(0,1)$:
$\forall x \in(0,1), G_{x}=(-1, x) \Rightarrow E \subset \bigcup_{x \in(0,1)} G_{x}$.
Definition 10.2.4 E is said to be compact if for every open cover $\left\{G_{i}: i \in I\right\}$ of E, we can find

$$
G_{i_{1}}, \ldots, G_{i_{n}} \ni E \subset\left[G_{i_{1}} \cup G_{i_{2}} \cup \cdots \cup G_{i_{n}}\right] .
$$

Example 10.2.5 In $X=\mathbb{R}, E=(0,1)$ is not compact:
Consider $\left\{G_{x}: x \in(0,1)\right\}$ where $G_{x}=(-1, x)$. Suppose $\exists x_{1}, \ldots, x_{n} \in(0,1) \ni$ $(0,1) \subset \bigcup_{i=1}^{n}\left(-1, x_{i}\right)$ Let $Y=\max \left\{x_{1}, \ldots, x_{n}\right\} \Rightarrow 0<y<1 \Rightarrow(0,1) \subset$ $(-1, y)$. Let $x=\frac{y+1}{2} \Rightarrow 0<x<1, x \notin(-1, y)$ Contradiction! Thus, $(0,1)$ is not compact.

Remark 10.2.6 In the Euclidean space, open sets are not compact.
Theorem 10.2.7 Let $K \subset Y \subset X$. Then, K is compact relative to Y if and only if K is compact relative to X.

Proof. (\Rightarrow) : Suppose K is compact relative to Y. Let $\left\{G_{i}, i \in I\right\}$ be an open cover of K in X. Then, $K \subset \bigcup_{i \in I} G_{i}$, so $K=K \cap Y \subset\left(\bigcup_{i \in I} G_{i}\right) \cap Y=$ $\bigcup_{i \in I}\left(G_{i} \cap Y\right)$: open relative to Y. Since K is open relative to $Y, \exists i_{1}, \ldots, i_{n} \ni$ $K \subset\left(G i_{1} \cap Y\right) \cup\left(G i_{2} \cap Y\right) \cup \cdots \cup\left(G i_{n} \cap Y\right) \Rightarrow K \subset \bigcup_{i=1}^{n} G_{i}$.
(\Leftarrow) : Suppose K is compact relative to X. Let $\left\{E_{i}, i \in I\right\}$ be any open cover of K in Y. Then, $\forall i \in I \exists$ an open set $G_{i} \in X \ni E_{i}=G_{i} \cap Y . K \subset\left(\bigcup_{i \in I} E_{i}\right) \subset\left(\bigcup_{i \in I} G_{i}\right)$.
So, $\left\{G_{i}, i \in I\right\}$ is an open cover in X. Then, $\exists i_{1}, \ldots, i_{n} \ni$
$K \subset G_{i_{1}} \cup G_{i_{2}} \cup \cdots \cup G_{i_{n}} \Rightarrow K=K \cap Y \subset\left(G_{i_{1}} \cap Y\right) \cup \cdots \cup\left(G_{i_{n}} \cap Y\right)=$ $E_{i_{1}} \cup . . \cup E_{i_{n}}$.

Theorem 10.2.8 Let (X, d) be a metric space and $K \subset X$ be compact. Then, K is closed.

Proof. We will show that K^{c} is open.
Let $p \in K^{c}$ be an arbitrary fixed point. $\forall q \in K \Rightarrow d(p, q)>0$. Let $r_{q}=$ $\frac{1}{2} d(p, q)>0$.
$V_{q}=B_{r}(p), W_{q}=B_{r}(q) . K \subset \bigcup_{q \in K} W_{q}$ (because K is compact)

$$
\Rightarrow \exists q_{1}, \ldots, q_{n} \in K \ni K \subset W_{q_{1}} \cup \cdots \cup W_{q_{n}}=W
$$

Let $V=V_{q_{1}} \cap V_{q_{2}} \cap \cdots \cap V_{q_{n}}$. If $r=\operatorname{Min}\left\{r_{q_{1}}, \ldots, r_{q_{n}}\right\}>0$, then $V=B_{r}(p)$. Let us show that $W \cap V=\emptyset$: If not, $\exists z \in W \cap V \Rightarrow z \in W \Rightarrow z \in W q_{i}$ for some $i=1, \ldots, n$. Hence, $d\left(z, q_{i}\right)<r_{q_{i}}=\frac{1}{2} d\left(p, q_{i}\right) . z \in V \Rightarrow z \in V_{q_{i}}$ for the same i. Thus, $d(z, p)<r_{q_{i}}=\frac{1}{2} d\left(p, q_{i}\right)$.

$$
\Rightarrow d\left(p, q_{i}\right)<d(p, z)+d\left(z, q_{i}\right)<d\left(p, q_{i}\right) .
$$

Contradiction! Therefore, $W \cap V=\emptyset$.
Thus, $V=B_{r}(p) \subset X^{c} \subset K^{c} \Rightarrow K^{c}$ is open $\Rightarrow \mathrm{K}$ is closed.
Theorem 10.2.9 Closed subsets of compact sets are compact.

Corollary 10.2.10 If F is closed and K is compact, then $F \cap K$ is compact.
Theorem 10.2.11 Let $\left\{K_{i} ; i \in I\right\}$ be a collection of compact subsets of a metric space such that the intersection of every finite subcollection of K_{i} is nonempty. Then,

$$
\bigcap_{i \in I} K_{i} \neq \emptyset
$$

Proof. Assume $\bigcap_{i \in I} K_{i}=\emptyset$.
Fix a member of $\left\{K_{i}, i \in I\right\}$ and call it \mathcal{K}. Then,

$$
\mathcal{K} \cap\left[\bigcap_{K_{i} \neq \mathcal{K}} K_{i}\right]=\emptyset \Rightarrow \mathcal{K} \subset\left[\bigcup_{K_{i} \neq \mathcal{K}} K_{i}^{c}\right]
$$

Since \mathcal{K} is compact, $\exists K_{1}, \ldots, K_{n} \ni \mathcal{K} \subset\left[K_{1}^{c} \cup \cdots \cup K_{n}^{c}\right] \Rightarrow \mathcal{K} \cap K_{1} \cap \cdots \cap$ $K_{n}=\emptyset$, since we intersect a finite subcollection, we have a contraposition (Contradiction).

Corollary 10.2.12 If $\left(K_{n}\right)$ is a sequence of nonempty compact sets $\ni K_{1} \supset$ $K_{2} \supset \cdots$, then $\bigcap_{n=1}^{\infty} K_{n} \neq \emptyset$.

Theorem 10.2.13 (Nested Intervals) Let $\left(I_{n}\right)$ be a sequence of non-empty, closed and bounded intervals in $\mathbb{R} \ni I_{1} \subset I_{2} \subset \cdots$, then

$$
\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset .
$$

Proof. Let $I_{n}=\left[a_{n}, b_{n}\right] \ni a_{n} \leq b_{n}$. Then,

$$
I_{1} \subset I_{2} \subset \cdots \Rightarrow a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq \cdots \leq b_{n} \leq \cdots b_{2} \leq b_{1}
$$

Moreover, if $k \leq n \Rightarrow I_{k} \subset I_{n}$ and $a_{k} \leq a_{n} \leq b_{n} \leq b_{k}$.
Let $E=a_{1}, a_{2}, \ldots$ is bounded above by b_{1}. Let $x=\sup E$, then $\forall n, a_{n} \leq x$. Let us show that $\forall n, x \leq b_{n}$: If not, $\exists n \ni b_{n} \leq x \Rightarrow \exists a_{k} \in E \ni b_{n}<a_{k}$.
case 1: $k \leq n \Rightarrow a_{k} \leq a_{n} \leq b_{n} \leq a_{k}$, Contradiction!
case 2: $k>n \Rightarrow a_{n} \leq a_{k} \leq b_{k} \leq b_{n} \leq a_{k}$, Contradiction!
Thus, $\forall n, x \leq b_{n} \Rightarrow x \in I_{n}, \forall n \Rightarrow x \in \bigcap_{n=1}^{\infty} I_{n} \Rightarrow \bigcap_{n=1}^{\infty} I_{n} \neq \emptyset$.

Remark 10.2.14 Here are some remarks:

1. If $\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=\lim _{n \rightarrow \infty}$ length $\left(I_{n}\right)=0, \Rightarrow \bigcap_{n=1}^{\infty} I_{n}$ consists of one point.
2. If I_{n} 's are not closed, conclusion is false, e.g. $I_{n}=\left(0, \frac{1}{n}\right)$.
3. If I_{n} 's are not bounded, conclusion is false, e.g. $I_{n}=[n, \infty]$.

Definition 10.2.15 Let $a_{1} \leq b_{1}, \ldots, a_{k} \leq b_{k}$ be real numbers, then the set of all points $p \in \mathbb{R}^{k} \ni p=\left(x_{1}, \ldots, x_{k}\right), a_{i} \leq x_{i} \leq b_{i}, i=1, \ldots, k$ is called a k-cell. So a k-cell is

$$
\left[a_{i}, b_{i}\right] \times \cdots \times\left[a_{k}, b_{k}\right]
$$

Theorem 10.2.16 Let $k \in \mathbb{N}$ be fixed. Let I_{n} be a sequence of k-cells in $\mathbb{R}^{k} \ni$ $I_{1} \supset I_{2} \supset \cdots$. Then,
$\bigcap_{i=1}^{\infty} I_{n} \neq \emptyset$.
Theorem 10.2.17 Every k-cells is compact (with d_{2} metric).

Proof. Let $I=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{k}, b_{k}\right] \subset \mathbb{R}^{k}$ be a k-cell. If $a_{1}=b_{1}, \ldots, a_{k}=b_{k}$, then I consists of one point. Then, I is compact. So assume for at least one $j, a_{j}<b_{j}, j \in\{1, \ldots k\}$. Let $\delta=\left[\sum_{i=1}^{k}\left(b_{i}-a_{i}\right)^{2}\right]^{\frac{1}{2}}>0$. Suppose I is not compact. So, there is an open cover $\left\{G_{\alpha}, \alpha \in A\right\}$ of $I \ni\left\{G_{\alpha}\right\}$ does not have any finite subcollection the union of whose elements covers I.
Let $c_{i}=\frac{a_{i}+b_{i}}{2}$. Then, $\left[a_{i}, b_{i}\right]=\left[a_{i}, c_{i}\right] \cap\left[c_{i}, b_{i}\right]$.
This way I can be divided into $2^{k} \mathrm{k}$-cells $Q_{j} \ni \bigcup_{j=1}^{2^{k}} Q_{c}=I$.
Also, $\forall j$ we have $p, q \in Q_{j}, d(p, q) \leq \frac{1}{2} \delta$.
Since I cannot be covered by a finite number of G_{α} 's, at least one of the Q_{j} 's, say I_{1} cannot be covered by a finite number of G_{α} 's. Subdivide I_{1} into 2^{k} cells by halving each side. Continue this way ... We eventually get a sequence $\left\{I_{n}\right\}$ of k-cells such that
a) $I_{1} \subset I_{2} \subset \cdots$;
b) I_{n} cannot be covered by any finite subcollection of $\left\{G_{\alpha}, x \in A\right\}, \forall n$;
c) $p, q \in I_{n} \Rightarrow d(p, q) \leq \frac{1}{2^{n}} \delta, \forall n$.

By a) $\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset$. Let $p^{*} \in \bigcap_{n=1}^{\infty} I_{n} \subset I$, then $\exists \alpha_{0} \in A \ni p^{*} \in G_{\alpha_{0}}$. Since $G_{\alpha_{0}}$ is open, $\exists r>0 \ni B_{r}\left(p^{*}\right) \subset G_{\alpha_{0}}$. Find $n_{0} \in \mathbb{N} \ni \frac{\delta}{r}<2^{n_{0}}$ [i.e. $\frac{\delta}{2^{n_{0}}}<r$]. Show $I_{n_{0}} \subset G_{\alpha_{0}}: p^{*} G \bigcap_{i=1}^{n} I_{n} \subset I_{n_{0}}$. Let $p \in I_{n_{0}}$, by c) $d\left(p, p^{*}\right) \leq \frac{1}{2^{n_{0}}} \delta<r$. $\Rightarrow p \in B_{r}\left(p^{*}\right) \subset G_{\alpha_{0}} \Rightarrow I_{n_{0}} \subset G_{\alpha_{0}}$ and this contradicts to b). Thus, I is compact.

Theorem 10.2.18 Consider \mathbb{R}^{k} with d_{2} metric, let $E \subset \mathbb{R}^{k}$. Then, the following are equivalent:
(a) E is closed and bounded.
(b) E is compact.
(c) Every infinite subset of E has a limit point which is contained in E.

Remark 10.2.19 Consider the following remarks on Theorem 10.2.18:

1. The equivalence of (a) and (b) is known as Heine-Barel Theorem:

A subset E of \mathbb{R}^{k} is compact if and only if it is closed and bounded.
2. $(b) \Leftrightarrow(c)$ holds in every metric space.
3. $(c) \Rightarrow(a),(b) \Rightarrow(a)$ hold in every metric space.
4. $(a) \Rightarrow(c),(a) \Rightarrow(b)$ are not true in general.

Theorem 10.2.20 (Balzano-Weierstrass) Every bounded infinite subset of \mathbb{R}^{k} has a limit point in \mathbb{R}^{k}.

Proof. Let $E \subset \mathbb{R}^{k}$ be infinite and bounded. Since E is bounded \exists a k-cell $I \ni E \subset I$. Since I is compact, E has a limit point $p \in I \subset \mathbb{R}^{k}$.

Theorem 10.2.21 Let $P \neq \emptyset$ be a perfect set in \mathbb{R}^{k}. Then, P is countable.

10.3 The Cantor Set

Definition 10.3.1 Let
$E_{0}=[0,1]$,
$E_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$,
$E_{2}=\left[0, \frac{1}{3^{2}}\right] \cup\left[\frac{2}{3^{2}}, \frac{3}{3^{2}}\right] \cup\left[\frac{6}{3^{2}}, \frac{7}{3^{2}}\right] \cup\left[\frac{8}{3^{2}}, 1\right]$,
\vdots
continue this way. Then, Cantor set C is defined as

$$
C=\bigcap_{n=1}^{\infty} E_{n}
$$

Some properties are listed below:

1. C is compact.
2. $C \neq \emptyset$.
3. C contains no segment (α, β).
4. C is perfect.
5. C is countable.

Proof (Property 3). In the first step, $\left(\frac{1}{3}, \frac{2}{3}\right)$ has been removed; in the second step $\left(\frac{1}{3^{2}}, \frac{2}{3^{2}}\right),\left(\frac{7}{3^{2}}, \frac{8}{3^{2}}\right)$ have been removed; and so on. C contains no open interval of the form $\left(\frac{3 k+1}{3^{n}}, \frac{3 k+2}{3^{n}}\right)$, since all such intervals have been removed in the $1^{s} t, \ldots,(n-1)^{s t}$ steps.
Now, suppose C contains an interval (α, β) where $\alpha<\beta$. Let $\alpha>0$ be a constant which will be determined later. Choose $n \in \mathbb{N} \ni 3^{-n}<\frac{\beta-\alpha}{a}$. Let k be the smallest integer $\ni \alpha<\frac{3 k+1}{3^{n}}$, i.e. $\frac{\alpha 3^{n}-1}{3}<k$, then $k-1 \leq \frac{\alpha 3^{n}-1}{3}$. Show $\frac{3 k R}{3^{n}}<\beta$, i.e. $k<\frac{\beta 3^{\prime \prime}-2}{3} k \leq 1+\frac{\alpha 3^{n}-1}{3}$; so show $1+\frac{3^{n}-1}{3}<\frac{\beta 3^{n}-2}{3}$, i.e.

$$
1<\frac{1}{3}\left[\beta 3^{n}-2-\alpha 3^{n}+1\right]=\frac{(\beta-\alpha) 3^{n}-1}{3}>\frac{a 3^{-n} 3^{n}-1}{3}>\frac{\alpha-1}{3}>1
$$

is what we want. So, $a>4$. Then, $\left(\frac{3 k+1}{3^{n}}, \frac{3 k+2}{3^{n}}\right) \subset(\alpha, \beta) \subset C$, Contradiction!

Proof (Property 4). Let $x \in C$ be an arbitrary point of C. Let $B_{r}(x)=$ $(x-r, x+r)$ be any open ball centered at x. Find $n \in \mathbb{N} \ni \frac{1}{3^{n}}<$ $r, x \in C=\bigcap_{m=1}^{\infty} E_{m} \Rightarrow x \in E_{n}=I_{1}^{n} \cup \cdots \cup I_{2^{n}}^{n}$, (disjoint intervals). So $x \in I_{j}^{n}$ for some $j=1,2, \ldots, 2^{n}$. Then, $x \in(x-r, x+r) \cap I_{j}^{n}$ and length $\left(I_{j}^{n}\right)=\frac{1}{j^{n}}<r \Rightarrow I_{j}^{n} \subset(x-r, x+r)$.

Let y be the end point of $I_{j}^{n} \ni y \neq x$. Then, $y \in C \cap(x-r, x+r) \Rightarrow x$ is a limit point of C.

10.4 Connected Sets

Definition 10.4.1 Let (X, d) be a metric space and $A, B \subset X$. We say A and B are separated if $\bar{A} \cap B=\emptyset$ and $A \cap \bar{B}=\emptyset$. A subset E of X is said to be disconnected if \exists two nonempty separated sets $A, B \ni E=A \cup B, E \subset X$ is called connected if it is not a union of two nonempty separated sets, i.e. \exists no nonempty separated subsets $A, B \ni E=A \cup B(\forall A, B$ pairs $)$.

Example 10.4.2 $X=\mathbb{R}^{2}$, with d_{2}, d_{1} or d_{∞} metric.
Let $E=\left\{(x, y): x^{2}<y^{2}\right\}=\{(x, y):|x|<|y|\}$. See Figure 10.11.

Fig. 10.11. Example 10.4.2

Theorem 10.4.3 A subset $E \neq \emptyset$ of \mathbb{R} is connected if and only if E is an interval (E is an interval if and only if $z, x \in E$ and $x<z \Rightarrow \forall y$ with $x<$ $y<z \Rightarrow y \in E)$.

Proof. Let us mark the statement

$$
z, x \in E \text { and } x<z \Rightarrow \forall y \text { with } x<y<z \Rightarrow y \in E(*) .
$$

$$
(\Rightarrow):
$$

Let $E \neq \emptyset$ be connected. If E is not an interval $\Rightarrow\left(^{*}\right)$ does not hold. i.e. $\exists x, z \in E \ni x<z$ and $\exists y \ni x<y<z$ and $y \notin E$. Let $A_{y}=(-\infty, y) \cap$ $E, B_{y}=(y,+\infty) \cap E . A_{y} \neq \emptyset$ (because $x \in A_{y}$) and $B_{y} \neq \emptyset$ (because $z \in B_{y}$). $A_{y} \cup B_{y}=[(-\infty, y) \cup(y, \infty)] \cap E=E . A_{y} \subset(-\infty, y) \Rightarrow \bar{A}_{y} \subset(-\infty, y]$ and $B_{y} \subset(y, \infty) \Rightarrow \bar{A}_{y} \cap B_{y} \subset(-\infty, y] \cap(y,+\infty)=\emptyset \Rightarrow \bar{A}_{y} \cap B_{y}=\emptyset$.
Similarly, $A_{y} \cap \bar{B}_{y}=\emptyset \Rightarrow E$ is disconnected, Contradiction!
$(\Leftarrow):$
Suppose E is disconnected. Then \exists nonempty separated sets $A, B \ni A \cup B=$ E. Let $x \in A, y \in B$. Assume without loss of generality $x<y$ (because $A \cap B=\emptyset, x \neq y)$. Let $z=\sup (A \cap[x, y])$, then $z \in \overline{A \cap[x, y]} \subset \bar{A}$ (because $A \subset B \Rightarrow \bar{A} \subset \bar{B}), z \notin B$. Since $x \in A \cap[x, y]$, we have $x \leq z . z \in \overline{A \cap[x, y]} \subset$ $\overline{[x, y]}=[x, y] \Rightarrow z \leq y \Rightarrow x \leq z \leq y$.
If $\left.\begin{array}{r}z=y \in \bar{A} \\ y \in B\end{array}\right\} \Rightarrow y \in \bar{A} \cap B=\emptyset$, Contradiction; hence, $z<y$.
So, $x \leq z<y$, and $z \in \bar{A}$.
If $z \notin A \Rightarrow x<z<y$. So $x, y \in E \ni x<y$ and $z \ni x<z<y$. $z \notin E$ because $z \notin B, z \notin A$. So (*) does not hold.
If $z \in A \Rightarrow z \notin \bar{B}$ (because sets are separated).
Claim: $(z, y) \not \subset B$. If not, $(z, y) \subset B \Rightarrow \overline{(z, y)} \subset \bar{B} \Rightarrow[z, y] \subset \bar{B} \Rightarrow z \in \bar{B}$, Contradiction.
Therefore, $\exists z_{1} \in(z, y) \ni z_{1} \in B \Rightarrow x \leq z<z_{1}<y \Rightarrow z_{1} \in[x, y]$.
If $z_{1} \in A$, then $z_{1}<z \Rightarrow z_{1} \notin A, z_{1} \notin E . \Rightarrow x, y \in E \ni x<y$ and $z_{1} \ni x<z_{1}<y$, Contradiction to $\left(^{*}\right)!\square$

Problems

10.1. Let $X \neq \emptyset$ be any set. Let d, g be two metrics on X. We say the metrics d and g are equivalent if there are two constants:

$$
A, B>0 \supset A g(p, q) \leq d(p, q) \leq B g(p, q), \forall p, q \in X
$$

Show that the metrics d_{1}, d_{2}, d_{∞} for \mathbb{R}^{k} are all equivalent, i.e. find A, B.
10.2. Let (X, d) be a metric space, $p \in X, r>0$. One is inclined to believe that $\overline{B_{r}(p)}=B_{r}[p]$; i.e. the closure of the open ball is the closed ball. Give an example to show that this is not necessarily true.
10.3. Show that a metric space (X, d) is disconnected if and only if X has a nonempty proper subset which is both open and closed.
10.4. Consider the Printed Circuit Board (PCB) given in Figure 10.12 having 36 legs separated uniformly along the sides of the wafer. Suppose that a CNC

Fig. 10.12. The PCB example
machine with a robot arm makes vias (a kind of drill operation) at points A, B, \ldots, L. A high volume of PCB's are processed one after another.
a) Suppose that the robot arm moves in horizontal as well as vertical direction using a single motor. It switches its direction in an infinitesimal time unit. The CNC programmer uses the following logic to find the sequence of vias to be processed: Start from A, go to the closest neighbor if it has not been processed yet. Break the ties in terms of ascending lexicographical order of locations. Once the initial sequence (Hamiltoncan tour) is obtained, examine the nonconsecutive pair of edges of the tour if it is possible to delete these edges and construct another tour (which is uniquely determined by the four locations) that yields smaller tour in length. In order to check whether there exist such an opportunity, the programmer calculates the gains associated with all possible pairs once. Suppose that the connections between (α, β) and (γ, δ) is broken in the current tour. Then, new connections (α, γ) and (β, δ) is constructed in such a way that some portion of the tour is reversed and a new tour spanning all locations is obtained. Once all the gains are calculated, all the independent switches is made. This improvement procedure is executed only once.

1. Find the initial tour after deciding on the appropriate metric.
2. Improve the tour.
b) What if the robot arm moves in any direction using its motor?
c) What if the robot arm moves in horizontal as well as vertical direction using two independent but identical motors?
d) Suppose that we have $N \mathrm{PCBs}$ to process. All the operation times are identical, each taking p time units. The robot arm moves at a speed of one leg distance per unit time along each direction. Let C_{1} be the cost of making the robot arm to move along any direction using the single motor and C_{2} be the cost of adding a second motor. Using the improved solutions found, which
robot configuration is to be selected when the opportunity cost of keeping the system busy is C_{o} per unit time?

Web material

http://br.endernet.org/~loner/settheory/reals2/reals2.html
http://community.middlebury.edu/~schar/Courses/fs023.F02/paper1/
bahls.txt
http://en.wikibooks.org/wiki/Metric_Spaces
http://en.wikipedia.org/wiki/Closure_(topology)
http://en.wikipedia.org/wiki/Compact_set
http://en.wikipedia.org/wiki/Compact_space
http://en.wikipedia.org/wiki/Discrete_space
http://en.wikipedia.org/wiki/Limit_point
http://en.wikipedia.org/wiki/Metric_space
http://eom.springer.de/c/c023470.htm
http://eom.springer.de/c/c023530.htm
http://eom.springer.de/C/c025350.htm
http://eom.springer.de/m/m063680.htm
http://homepages.cwi.nl/~bens/1metric.htm
http://homepages.nyu.edu/~eo1/Book-PDF/chapterC.pdf
http://kr.cs.ait.ac.th/ ${ }^{\sim}$ radok/math/mat6/calc13.htm
http://math.bu.edu/DYSYS/FRACGEOM/node5.html.
http://mathstat.carleton.ca/~ckfong/ba4.pdf
http://mathworld.wolfram.com/ClosedSet.html
http://mathworld.wolfram.com/CompactSet.html
http://mathworld.wolfram.com/CompleteMetricSpace.html
http://mathworld.wolfram.com/MetricSpace.html
http://mathworld.wolfram.com/Topology.html
http://msl.cs.uiuc.edu/planning/node196.html
http://msl.cs.uiuc.edu/planning/node200.html
http://oregonstate, edu/~peterseb/mth614/docs/40-metric-spaces.pdf
http://pirate.shu.edu/projects/reals/topo/open.html
http://pirate.shu.edu/~wachsmut/ira/topo
http://planetmath.org/encyclopedia/
ANonemptyPerfectSubset0fMathbbRThatContainsNoRationalNumber.html
http://planetmath.org/encyclopedia/
ClosedSubsetsOf ACompactSetAreCompact.html
http://planetmath.org/encyclopedia/Compact.html
http://planetmath.org/encyclopedia/MetricSpace.html
http://planetmath.org/encyclopedia/NormedVectorSpace.html
http://planning.cs.uiuc.edu/node184.html
http://staff.um.edu.mt/jmus1/metrics.pdf
http://uob-community.ballarat.edu.au/~smorris/topbookchap92001.pdf
http://web01.shu.edu/projects/reals/topo/compact.html
http://web01.shu.edu/projects/reals/topo/connect.html
http://web01.shu.edu/projects/reals/topo/open.html
http://www-db.stanford.edu/~sergey/near.html
http://www-history.mcs.st-andrews.ac.uk/Extras/Kuratowski_ Topology.html
http://www.absoluteastronomy.com/c/compact_space
http://www.absoluteastronomy.com/c/connected_space
http://www.absoluteastronomy. com/m/metric_space
http://www.all-science-fair-projects.com/science_fair_projects_ encyclopedia/Limit_point
http://www.answers.com/topic/limit-point-1
http://www.bbc.co.uk/dna/h2g2/A1061353
http://www.cs.colorado.edu/~1izb/topology-defs.html
http://www.cs.colorado.edu/~lizb/topology.html
http://www.cs.mcgill.ca/~chundt/354review.pdf
http://www.di.ens.fr/side/slides/vermorel04metricspace.pdf
http://www.dpmms.cam.ac.uk/~tkc/Further_Analysis/Notes.pdf
http://www.fact-index.com/t/to/topology_glossary.html
http://www.hss.caltech.edu/~kcb/Notes/MetricSpaces.pdf
http://www, mast. queensu.ca/~speicher/Section8.pdf
http://www.math.buffalo.edu/~sww/Opapers/COMPACT.pdf
http://www.math.ksu.edu/~nagy/real-an/
http://www.math.louisville.edu/~1ee/05Spring501/chapter4.pdf
http://www math.miami.edu/~larsa/MTH551/Notes/notes.pdf
http://www.math.niu.edu/~rusin/known-math/index/54EXX.html
http://www.math.nus.edu.sg/~matwyl/d.pdf
http://www.math.ohio-state.edu/~gerlach/math/BVtypset/node7.html
http://www.math.okstate.edu/mathdept/dynamics/lecnotes/node33.html
http://www.math.sc.edu/~sharpley/math555/Lectures/
MetricSpaceTopol.html
http://www.math.ucdavis.edu/~emsilvia/math127/chapter3.pdf
http://www.math.unl.edu/~webnotes/classes/class34/class34.htm
http://www.mathacademy.com/pr/prime/articles/cantset/
http://www.mathreference.com/top-ms, intro.html
http://www.maths.mq.edu. au/~wchen/lnlfafolder/lfa02-ccc.pdf
http://www.maths.nott.ac.uk/personal/jff/G13MTS/
http://www.ms.unimelb.edu.au/~rubin/math127/summary2.pdf
http://www.msc.uky.edu/ken/ma570/lectures/lecture2/html/compact.htm
http://www unomaha. edu/wwwmath/MAM/2002/Poster02/Fractals.pdf
http://www22.pair.com/csdc/car/carfre64.htm
http://wwwrsphysse.anu.edu.au/~vbr110/thesis/ch2-connected.pdf

11

Continuity

In this chapter, we will define the fundamental notions of limits and continuity of functions and study the properties of continuous functions. We will discuss these properties in more general context of a metric space. The concept of compactness will be introduced. Next, we will focus on connectedness and investigate the relationships between continuity and connectedness. Finally, we will introduce concepts of monotone and inverse functions and prove a set of Intermediate Value Theorems.

11.1 Introduction

Definition 11.1.1 Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be two metric spaces; $E \neq \emptyset, E \subset X$. Let $f: E \mapsto Y, p \in E, q \in Y$. We say $\lim _{n \rightarrow p} f(x)=q$ or $f(x) \rightarrow q$ as $x \rightarrow p$ if $\forall \varepsilon>0, \exists \delta>0 \ni \forall x \in E$ with $d_{X}(x, p)<\delta$ we have $d_{Y}(f(x), q)<\varepsilon$ (i.e. $\left.\forall \varepsilon>0, \exists \delta>0 \ni f\left(E \cap B_{\delta}^{x}(p)\right) \subset B_{\varepsilon}^{y}(q)\right)$.

Fig. 11.1. Limit and continuity

Definition 11.1.2 Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces; $\emptyset \neq E \subset X$, and $f: X \mapsto Y, p \in E . f$ is said to be continuous at p if
$\forall \varepsilon>0, \exists \delta>0 \ni \forall x \in E$ with $d_{x}(x, p)<\delta$ we have $d_{y}(f(x), f(p))<\varepsilon$.

Remark 11.1.3 The following characteristics are noted:

- f has to be defined at p, but p does not need to be a limit point of E.
- If p is an isolated point of E, then f is continuous at p. That is, given $\varepsilon>0$ (no matter what ε is), find $\delta \ni E \cap B_{\delta}^{X}(p)=\{p\}$. Then, $x \in E, d(p, x)<$ $\delta \Rightarrow x=p$. Hence, $d_{y}(f(x), f(p))=0<\varepsilon$.
- If p is a limit point of E, then f is continuous at $p \Leftrightarrow \lim _{x \rightarrow p} f(x)=f(p)$.

Definition 11.1.4 If f is continuous at every point of E, we say f is continuous on E.

Proposition 11.1.5 Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right),\left(Z, d_{Z}\right)$ be metric spaces and $\emptyset \neq$ $E \subset X, f: E \mapsto Y, g: f(E) \mapsto Z$. If f is continuous at $p \in E$ and g is continuous at $f(p)$, then $g \circ f$ is continuous at p.

Proof. Let $q=f(p)$. Let $\varepsilon>0$ be given. Since g is continuous at $q, \exists \eta>0 \ni$ $\forall y \in f(E)$ with $d_{Y}(y, q)<\eta$ we have $d_{2}(g(y), g(q))<\varepsilon$. Since f is continuous at $p, \exists \delta>0 \ni \forall x \in E$ with $d_{X}(x, p)<\delta \Rightarrow$ we have $d_{Y}(f(x), f(p))<\eta$. Let $x \in E$ be $\ni d_{X}(x, p)<\delta$. Then, $y=f(x) \in f(E)$ and $d_{Y}(y, q)=$ $d_{Y}(f(x), f(p))<\eta$. Hence, $d_{Z}(g(f(x)), g(f(p)))=d_{Z}(g(y), g(q))<\varepsilon$.

Theorem 11.1.6 Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces, and let $f: X \mapsto Y$. Then, f is continuous on X if and only if \forall open set V in $Y, f^{-1}(V)=\{p \in$ $X: f(p) \in V\}$ is open in X.

Proof. (\Rightarrow) :
Let V be open in Y. If $f^{-1}(V) \neq \emptyset$, let $p \in f^{-1}(V)$ be arbitrary. Show $\exists r>0 \ni B_{r}^{X}(p) \subset f^{-1}(V): p \in f^{-1}(V)$ implies $f(p) \in V$. Since V is open, $\exists s>0 \ni B_{s}^{Y}(f(p)) \subset V$. Since f is continuous at p, for $\varepsilon=s, \exists r>0 \ni \forall x \in$ X with $d_{x}(x, p)<r \Rightarrow d_{y}(f(x), f(p))<s \Rightarrow f(x) \in B_{s}^{Y}(f(p)) \Rightarrow x \in f^{-1}(V)$. $(\Leftarrow):$
Let $p \in X$ be arbitrary. Given $\varepsilon>0$, let $V=B_{\varepsilon}^{V}(f(p))$ be open. Then, $f^{-1}(V)$ is open and $p \in f^{-1}(V)$. Hence, $\exists \delta \ni B_{\delta}(p) \subset f^{-1}(V)$. If $d_{x}(x, p)<$ $\delta \Rightarrow x \in B_{\delta}^{X}(p) \subset f^{-1}(V)$, then $f(x) \in V \Rightarrow d_{y}(f(x), f(p))<\varepsilon$.

Corollary 11.1.7 $f: X \rightarrow Y$ is continuous on X if and only if \forall closed set C in $Y, f^{-1}(C)$ is closed in X.

Proof. $f^{-1}\left(E^{C}\right)=\left(f^{-1}(E)\right)^{C}$.
Definition 11.1.8 Let (X, d) be a metric space and $f_{1}, \ldots, f_{k}: X \mapsto \mathbb{R}$. Define $f: X \mapsto \mathbb{R}^{k}$ by $f(x)=\left(f_{1}(x), \ldots, f_{k}(x)\right)^{T}$, then f_{1}, \ldots, f_{k} are called components of f.

Proposition 11.1.9 f is continuous if and only if every component is continuous.

Proof. (\Rightarrow) : Fix j. Show that f_{j} is continuous: Fix $p \in X$. Show that f_{j} is continuous at p. Given $\varepsilon>0 \exists \delta>0 \Rightarrow \forall x$ with $d_{2}(x, p)<\delta$, then $\left|f_{j}(x)-f_{j}(p)\right|=d_{1}\left(f_{j}(x), f_{j}(p)\right) \leq d_{2}(f(x), f(p))<\varepsilon$.
(\Leftarrow) : Assume that $\forall j, f_{j}$ is continuous at $p \in X$. Show that f is continuous at p. Let $\varepsilon>0$ be given.
f_{1} is continuous at $p \Rightarrow \exists \delta_{1}>0 \ni d_{2}(x, p)<\delta_{1} \Rightarrow\left|f_{1}(x)-f_{1}(p)\right|<\frac{\varepsilon}{\sqrt{k}}$.
f_{2} is continuous at $p \Rightarrow \exists \delta_{2}>0 \ni d_{2}(x, p)<\delta_{2} \Rightarrow\left|f_{2}(x)-f_{2}(p)\right|<\frac{\varepsilon}{\sqrt{k}}$.
f_{k} is continuous at $p \Rightarrow \exists \delta_{k}>0 \ni d_{2}(x, p)<\delta_{k} \Rightarrow\left|f_{k}(x)-f_{k}(p)\right|<\frac{\varepsilon}{\sqrt{k}}$.
Let $\delta=\min \left\{\delta_{1}, \ldots, \delta_{k}\right\}>0$. Let X be $\ni d(x, p)<\delta$. Then,

$$
d_{2}(f(x), f(p))=\left[\sum_{j=1}^{k}\left|f_{j}(x)-f_{j}(p)\right|^{2}\right]^{1 / 2}<\left[\sum_{j=1}^{k}\left(\frac{\varepsilon}{\sqrt{k}}\right)^{2}\right]^{1 / 2}=\varepsilon
$$

11.2 Continuity and Compactness

Theorem 11.2.1 The continuous image of a compact space is compact, i.e. if $f: X \mapsto Y$ is continuous and (X, d) is compact, then $f(X)$ is a compact subspace of $\left(Y, d_{Y}\right)$.

Proof. Let $\left\{V_{\alpha}: \alpha \in A\right\}$ be any open cover of $f(X)$. Since f is continuous, $f^{-1}\left(V_{\alpha}\right)$ is open in $X . f(x) \subset \bigcup_{\alpha \in A} V_{\alpha} \Rightarrow X \subset f^{-1}(f(x)) \subset \bigcup_{\alpha \in A} f^{-1}\left(V_{\alpha}\right)$. Since X is compact, $\exists \alpha_{1}, \ldots, \alpha_{n} \ni X \subset\left[f^{-1}\left(V_{\alpha_{1}}\right) \cup \cdots \bigcup f^{-1}\left(V_{\alpha_{n}}\right)\right] \Rightarrow$ $f(x) \subset f\left[f^{-1}\left(V_{\alpha_{1}}\right) \bigcup \cdots \bigcup f^{-1}\left(V_{\alpha_{n}}\right)\right]=V_{\alpha_{1}} \bigcup \cdots \bigcup V_{\alpha_{n}}$, since for $A \subset$ $f^{-1} f(A), f^{-1} f(B) \subset B$ we have

$$
f\left(\bigcup_{\alpha} A_{\alpha}\right)=\bigcup f\left(A_{\alpha}\right) \text { and } f^{-1}\left(\bigcup_{\alpha} B_{\alpha}\right)=\bigcup f^{-1}\left(B_{\alpha}\right)
$$

Corollary 11.2.2 A continuous real valued function on a compact metric space attains its maximum and minimum.

Proof. $f(X)$ is a compact subset of $\mathbb{R} \Rightarrow f(X)$ is bounded. Let $m=$ $\inf f(x), \quad M=\sup f(x)$. Then, $m, M \in \mathbb{R}$; since $f(X)$ is bounded. Also, $m, M \in \overline{f(X)}$. Furthermore, $\overline{f(x)}=f(x)$, since $f(X)$ is compact. Thus, $\exists p \in X \ni m=f(p)$ and $\exists q \in X \ni M=f(q)$. Finally, $m=f(p) \leq f(x) \leq$ $f(q)=M, \forall x \in X$.

Theorem 11.2.3 Let $\left(X, d_{X}\right)$ be a compact metric space, $\left(Y, d_{Y}\right)$ be a metric space, $f: X \mapsto Y$ be continuous, one-to-one and onto. Then, $f^{-1}: Y \mapsto X$ is continuous.

Proof. Let $g=f^{-1}: Y \rightarrow X$. Show that \forall closed set C in $X, g^{-1}(C)$ is a closed set in $Y: g^{-1}(C)=\left(f^{-1}\right)^{-1}(C)=f(C)$, since X is compact. Hence, $f(C)$ is closed, thus $g^{-1}(C)$ is closed.

Remark 11.2.4 If compactness is relaxed, the theorem is not true. For example, take $X=[0,2 \pi)$ with d_{1} metric. $Y=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ with d_{2} metric.

$$
f: X \mapsto Y, f(t)=(\cos t, \sin t)
$$

f is one-to-one, onto, continuous. However f^{-1} is not continuous at $P=$ $(0,1)=f(0)$. If we let $\varepsilon=\pi$, suppose there is a $\delta>0 \ni \forall(x, y) \in Y$ with $d_{2}((x, y),(1,0))<\delta$, then we have

$$
\left|f^{-1}(x, y)-f^{-1}(1,0)\right|<\varepsilon .
$$

However, for $(x, y) \ni \frac{3 \pi}{2}<f^{-1}(x, y)<2 \pi(\delta=\sqrt{2})$, we have

$$
\left|f^{-1}(x, y)-f^{-1}(1,0)\right|>\frac{3 \pi}{2}>\pi
$$

Thus, we do not have

$$
\left|f^{-1}(x, y)-f^{-1}(1,0)\right|<\varepsilon=\pi \quad \forall(x, y) \in Y \ni d_{2}[(x, y),(1,0)]<\delta
$$

11.3 Uniform Continuity

Definition 11.3.1 Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be two metric spaces, $f: X \mapsto Y$. We say f is uniformly continuous on X if

$$
\forall \varepsilon>0, \exists \delta>0 \ni \forall p, q \in X \text { with } d_{X}(p, q)<\delta, \text { we have } d_{Y}(f(p), f(q))<\varepsilon
$$

Remark 11.3.2 Uniform continuity is a property of a function on a set, whereas continuity can be defined at a single point. If f is uniformly continuous on X, it is possible for each $\varepsilon>0$ to find one number $\delta>0$ which will do for all points p of X. Clearly, every uniform continuous function is continuous.

Example 11.3.3

$$
f(x, y)=2 x+\frac{1}{y^{2}}, E=\left\{(x, y) \in \mathbb{R}^{2}: 1 \leq y \leq 2\right\}
$$

Let us show that f is uniformly continuous on E. Let $\varepsilon>0$ be given. Suppose we have found $\delta>0$ whose value will be determined later. Let $p=(x, y), q=$ $(u, v) \in E$ be such that $d_{2}(p, q)<\delta$, Show $|f(x, y)-f(u, v)|<\varepsilon: d_{2}(p, q)<$ $\delta \Rightarrow|x-u|<\delta$ and $|y-v|<\delta \Rightarrow|f(x, y)-f(u, v)|=\left|2 x+\frac{1}{y^{2}}-2 u-\frac{1}{v^{2}}\right| \leq$ $2|x-u|+\left(\frac{1}{y^{2}}-\frac{1}{v^{2}}\right)<2 \delta+\left|\frac{(v-y)(v+y)}{(v y)^{2}}\right|=2 \delta+\frac{|v-y \| v+y|}{v^{2} y^{2}}$. Since $\frac{|v-y \| v+y|}{v^{2} y^{2}}<4 \delta$, we have $|f(x, y)-f(u, v)|<6 \delta=\varepsilon$. Hence, one can safely choose $\delta=\frac{\varepsilon}{6}>0$.

Example 11.3.4 $f(x)=\frac{1}{x}, E=(0,1) \subset \mathbb{R}$. Let us show that f is not uniformly continuous on E but continuous on E : given $\varepsilon>0$, let $\delta>0$ be chosen. Let $x \in E$ and $\left|x-x_{0}\right|<\delta$.

$$
\text { If } x_{0}-\delta>0, \text { then }\left|x-x_{0}\right|<\delta \Leftrightarrow x_{0}-\delta<x<x_{0}+\delta
$$

$$
\left|\frac{1}{x}-\frac{1}{x_{0}}\right| \leq \frac{\left|x_{0}-x\right|}{x x_{0}} \leq \frac{\delta}{x x_{0}}<\frac{\delta}{\left(x_{0}-\delta\right) x_{0}} \leq \varepsilon \Rightarrow \delta \leq \frac{\varepsilon x_{0}^{2}}{1+\varepsilon x_{0}}
$$

Hence, f is continuous at x_{0} and δ depends on ε and x_{0}. However, dependence on x_{0} does not imply that f is not uniformly continuous, because some other calculation may yield another δ which is independent of x_{0}. So, we must show that the negation of uniform continuity to hold:

$$
\exists \varepsilon>0 \ni \forall \delta>0 \exists x_{1}, x_{2} \in E \ni\left|x_{1}-x_{2}\right|<\delta \text { but }\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \geq \varepsilon
$$

Let $\varepsilon=1$. Let δ be given. If $\delta \leq \frac{1}{3}$, one can find $k \ni \delta \leq \frac{1}{k+1}$ i.e. $k=\left\lceil\frac{1}{\delta}-1\right\rceil$. Thus, $k \geq 2$. Let $x_{1}=\delta, x_{2}=\delta+\frac{\delta}{k} \Rightarrow 0<x_{1} \leq \frac{1}{3}, 0<x_{2}<2 \delta \leq \frac{2}{3}<1 \Rightarrow$ $x_{1}, x_{2} \in E .\left|x_{1}-x_{2}\right|=\frac{\delta}{k} \leq \frac{\delta}{2}<\delta,\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|=\left|\frac{1}{\delta}-\frac{1}{\delta+\frac{\delta}{k}}\right|=\frac{(\delta / k)}{\delta\left(\delta+\frac{\delta}{k}\right)}=$ $\frac{1}{\delta(k+1)}>1$. If $\delta>\frac{1}{3} \Rightarrow$ Let $\delta^{\prime}=\frac{1}{3}$. Find $x_{1}, x_{2} \ni\left|x_{1}-x_{2}\right|<\delta^{\prime}<\delta$ and $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\varepsilon$.

Theorem 11.3.5 Let $\left(X, d_{X}\right)$ be a compact metric space, $\left(Y, d_{Y}\right)$ be a metric space, and $f: X \mapsto Y$ be continuous on X. Then, f is uniformly continuous.

Remark 11.3.6 Let $\emptyset \neq E \subset \mathbb{R}$ be non-compact. Then,
(a) \exists a continuous $f: E \rightarrow \mathbb{R}$ which is not bounded. If E is noncompact then either E is not closed or not bounded. If E is bounded and not closed, then E has a limit point $x_{0} \ni x_{0} \notin E$. Let $f(x)=\frac{1}{x-x_{0}}, \forall x \in E$. If E is unbounded then let $f(x)=x, \forall x \in E$.
(b) \exists a continuous bounded function $f: E \rightarrow \mathbb{R}$ which has no maximum. If E is bounded let x_{0} be as in (a). Then, $f(x)=\frac{1}{1+\left(x-x_{0}\right)^{2}}, \forall x \in E$. $\sup f(x)=1$ but \exists no $x \in E \ni f(x)=1$.
(c) If E is bounded, \exists a continuous function $f: E \rightarrow \mathbb{R}$ which is not uniformly continuous. Let x_{0} be as in (a). Let $f(x)=\frac{1}{x-x_{0}}, \forall x \in E$ which is not uniformly continuous.

11.4 Continuity and Connectedness

Theorem 11.4.1 Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces, $\emptyset \neq E \in X$ be connected and let $f: X \mapsto Y$ be continuous on X. Then, $f(E)$ is connected.

Proof. Assume that $f(E)$ is not connected, i.e.
\exists nonempty $A, B \subset Y \ni \bar{A} \cap B=\emptyset, A \cap \bar{B}=\emptyset, f(E)=A \cup B$.
Let $G=E \cap f^{-1}(A), H=E \cap f^{-1}(B), A \neq \emptyset \Rightarrow \exists q \in A \subset f(E) \Rightarrow q=f(p)$ for some $p \in E \Rightarrow p \in f^{-1}(A) \Rightarrow p \in G \Rightarrow G \neq \emptyset$.
Assume $\bar{G} \cap H \neq \emptyset$. Let $p \in \bar{G} \cap H \Rightarrow p \in H=E \cap f^{-1}(B) \Rightarrow$

$$
f(p) \in B, p \in G=E \cap f^{-1}(A) \subset f^{-1}(A)(*)
$$

$A \subset \bar{A} \Rightarrow f^{-1}(A):$ closed $\Rightarrow \overline{f^{-1}(A)} \subset f^{-1}(\bar{A}) \Rightarrow p \in f^{-1}(\bar{A}) \Rightarrow$

$$
f(p) \in \bar{A}(* *)
$$

$\left(^{*}\right)+\left(^{* *}\right) \Rightarrow f(p) \in \bar{A} \cap B \neq \emptyset$, Contradiction. Thus, $\bar{G} \cap H=\emptyset$. Similarly, $G \cap \bar{H}=\emptyset$.

$$
\begin{gathered}
E \subset f^{-1}(f(E))=f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B) \\
E=E \cap\left[f^{-1}(A) \cup f^{-1}(B)\right]=\left[E \cap f^{-1}(A)\right] \cup\left[E \cap f^{-1}(B)\right]=G \cup H,
\end{gathered}
$$

meaning that E is not connected. Contradiction! \square
Corollary 11.4.2 (Intermediate Value Theorem) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and assume $f(a)<f(b)$. Let $c \in \mathbb{R}$ be such that

$$
f(a)<c<f(b) \Rightarrow c \in f([a, b]), \text { i.e. } \exists x \in(a, b) \ni f(x)=c .
$$

Proof. $[a, b]$ is connected, so $f([a, b])$ is connected; thus $f([a, b])$ is an interval $[\alpha, \beta] . f(a), f(b) \in[\alpha, \beta] \Rightarrow c \in f([a, b])$,

$$
\exists x \in[a, b] \ni f(x)=c, f(a)<c \Rightarrow x \neq a \text { and } f(b)>c \Rightarrow x \neq b
$$

Thus, $x \in(a, b)$.
Example 11.4.3 Let $I=[0,1], f: I \rightarrow I$ be continuous. Let us show that $\exists x \in I \ni f(x)=x$. Let $g(x)=f(x)-x$ be continuous. Show $\exists x \in I \ni g(x)=$ 0 . If \ddagger such $x \Rightarrow \forall x \in I$ we have $g(x)>0$ or $g(x)<0$.
(i) $g(x)>0, \forall x \in I \Rightarrow f(x)>x, \forall x \in I$. Then, $f(1)>1$; a Contradiction.
(ii) $g(x)<0, \forall x \in I \Rightarrow f(x)<x, \forall x \in I$. Then, $f(0)<0 ;$ a Contradiction.

Definition 11.4.4 (Discontinuities) Let $f:(a, b) \rightarrow X$ where (X, d) is a metric space. Let x be $\ni a \leq x<b$ and $q \in X$. We say, $f(x+)=q$ or $\lim _{t \rightarrow x+} f(t)=q$ if $\forall \varepsilon>0 \exists \delta>0 \quad \ni \forall t$ with $x<t<x+\delta$ we have $d(f(t), f(x))<\varepsilon . f(x+)=q \Leftrightarrow \forall$ subsequence $\left\{t_{n}\right\}$ with $x<t_{n}<b, \forall n$ and $\lim _{n \rightarrow \infty} b_{n}=x$ we have $\lim _{n \rightarrow \infty} f(t)=q . f(x-)=\lim _{x \rightarrow x-} f(t)$ is defined analogously. Let $x \in(a, b) \Rightarrow \lim _{t \rightarrow x} f(t)$ exists $\Leftrightarrow f(x+)=f(x-)=$ $\lim _{t \rightarrow x} f(t)$. Suppose f is discontinuous at some $x \in(a, b)$.

Fig. 11.2. Example 11.4.3
(i) If $f(x+)$ or $f(x-)$ does not exist, we say the discontinuity at x is of the second kind.
(ii) If $f(x+)$ and $f(x-)$ both exist, we say the discontinuity at x is of the first kind or simple discontinuity.
(iii) If $f(x+)=f(x-)$, but f is discontinuous at x, then the discontinuity at x is said to be removable.

Fig. 11.3. Example 11.4.5

Example 11.4.5

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)= \begin{cases}x, & x \in \mathbb{Q} \\ 1-x, & x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

f is continuous (only) at $x=\frac{1}{2}$:
Let $\varepsilon>0$ be given. Let $\delta=\varepsilon$. Let $t \in \mathbb{R} \ni|t-x|<\delta$ where $x=\frac{1}{2}$.
$t \in \mathbb{Q} \Rightarrow|f(t)-f(x)|=|t-x|=\left|t-\frac{1}{2}\right|<\delta=\varepsilon$.
$t \in \mathbb{R} \backslash \mathbb{Q} \Rightarrow|f(t)-f(x)|=|1-t-x|=\left|\frac{1}{2}-x\right|=|1-x|<\delta=\varepsilon$.
Hence, f is continuous at $x=\frac{1}{2}$.
CLAIM: f is discontinuous every other point than $x=\frac{1}{2}$
(without loss of generality, we may assume that $x>\frac{1}{2}$):
Let $x \neq \frac{1}{2}$. Show $f(x+)$ does not exist. Let $\varepsilon=\frac{|2 x-1|}{2}$. Assume $f(x+)$ exists,
then for this specific $\varepsilon>0, \exists \delta>0 \ni \forall t$ with $x<t<x+\delta$, we have $|f(t)-f(x)|<\varepsilon$.
CASE 1: $X \in \mathbb{Q}$.
Find $t \in \mathbb{R} \backslash Q \ni x<t<x+\delta|f(t)-f(x)|<\varepsilon=\frac{|2 x-1|}{2}$.
But $4|f(t)-f(x)|=|1-t-x|=|2 x-1+t-x|=|(2 x-1)-(x-t)|$.
Since $|a-b| \geq||a|-|b||$,

$$
|f(t)-f(x)| \geq||2 x-1|-|x-1|| \geq|2 x-1|-|x-t|>|2 x-1|-\delta
$$

Then, we have

$$
|2 x-1|-\delta<|f(t)-f(x)|<\frac{|2 x-1|}{2}
$$

$\Rightarrow \delta>\frac{|2 x-1|}{2}$, Contradiction since $\delta>0$ can be taken as small as we want. CASE 2: $X \in \mathbb{R} \backslash \mathbb{Q}$. Proceed in similar way, but choose t as rational.

11.5 Monotonic Functions

Definition 11.5.1 Let $f:(a, b) \mapsto \mathbb{R}$. f is said to be monotonically increasing (decreasing) on (a, b) if and only if

$$
a<x_{1}<x_{2}<b \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right) \quad\left(f\left(x_{1}\right) \geq f\left(x_{2}\right)\right) .
$$

Proposition 11.5.2 Let $f:(a, b) \mapsto \mathbb{R}$ be monotonically increasing on (a, b). Then, $\forall x \in(a, b), f(x+)$ and $f(x-)$ exist and

$$
\sup _{a<t<x} f(t)=f(x-) \leq f(x) \leq f(x+)=\inf _{x<t<b} f(t)
$$

Furthermore, $a<x_{1}<x_{2}<b \Rightarrow f\left(x_{1}+\right) \leq f\left(x_{2}-\right)$.
Theorem 11.5.3 Let $f:(a, b) \mapsto \mathbb{R}$ be monotonically decreasing on (a, b), then $\forall x \in(a, b), f(x+)$ and $f(x-)$ exist and

$$
\inf _{a<t<x} f(t)=f(x-) \geq f(x) \geq f(x+)=\sup _{x<t<b} f(t)
$$

Furthermore, $a<x_{1}<x_{2}<b \Rightarrow f\left(x_{1}+\right) \geq f\left(x_{2}-\right)$.
Proof. Let $x \in(a, b)$ be arbitrary. $\forall t$ with $0<t<x$, we have $f(t) \geq f(x)$. So, $\{f(t): a<t<x\}$ is bounded below by $f(x)$. Let $A=\inf \{f(t): a<t<x\}$. We will show $A=f\left(x_{1}-\right)$:
Let $\varepsilon>0$ be given. Then, $A+\varepsilon$ is no longer lower bound of $\{f(t): a<t<x\}$. Hence, $\exists t_{0} \in(a, x) \ni f\left(t_{0}\right)<A+\varepsilon$. Let $\delta=x-t_{0} \quad \forall t \ni x-\delta=t_{0}<t<$ $x \Rightarrow f(x) \leq f\left(t_{0}\right)<A+\varepsilon$ and $f(t)>A>A-\varepsilon$. Hence, $\forall t \in(x-\delta, x)$ we have $A-\varepsilon<f(t)<A+\varepsilon \Rightarrow|f(t)-A|<\varepsilon$. Thus, $A=f(x-)$. Therefore, $\inf _{a<t<x} f(t)=A=f(x-) \geq f(x)$. Similarly, $\sup _{x<t<b} f(x)=f(x+) \leq f(x)$. Let $a<x_{1}<x_{2}<b$, apply first part $b \leftarrow x_{2}$ and $x \leftarrow x_{1} . f\left(x_{1}+\right)=$ $\sup _{x_{1}<t<x_{2}} f(t) \geq \inf _{x_{1}<t<x_{2}} f(t)=f\left(x_{2}+\right)$.

Fig. 11.4. Proof of Theorem 11.5.3

Corollary 11.5.4 Monotonic functions have no discontinuities of the second type.

Theorem 11.5.5 Let $f:(a, b) \mapsto \mathbb{R}$ be monotonic. Let A be the set of discontinuous points of f, then A is at most countable.

Proof. Assume f is decreasing, then $A=\{x \in\{a, b\}: f(x+)<f(x-)\} . \forall x \in$ A, find $f(x) \in \mathbb{Q} \ni f(x+)<r(x)<f(x-)$ and fix $r(x)$. Define $g: A \mapsto \mathbb{Q}$ by $g(x)=r(x)$. We will show that g is one-to-one: Let $x_{1} \neq x_{2} \in A, x_{1}<x_{2} \Rightarrow$ $r\left(x_{1}\right)>f\left(x_{1}+\right) \geq f\left(x_{2}-\right)>r\left(x_{2}\right) \Rightarrow r\left(x_{1}\right) \neq r\left(x_{2}\right)$. Thus, g is one-to-one, and A is numerically equivalent to \mathbb{Q} by $g(x)=r(x)$. Therefore, A is at most countable.

Remark 11.5.6 The points in A may not be isolated. In fact, given any countable subset E of (a, b) (E may even be dense), there is a monotonic function $f:(a, b) \mapsto \mathbb{R} \ni f$ is discontinuous at every $x \in E$ and continuous at every other point. The elements of E as a sequence $\left\{x_{1}, x_{2}, \ldots\right\}$. Let $c_{n}>$ $0 \ni \sum c_{n}$ is convergent. Then, every rearrangement $\sum c_{\phi(n)}$ also converges and has the same sum. Given $x \in(a, b)$ let $N_{x}=\left\{n: x_{n}<x\right\}$. This set may be empty or not. Define $f(x)$ as follows

$$
f(x)= \begin{cases}0, & N_{x}=\emptyset \\ \sum_{n \in N_{x}} c_{n}, & \text { otherwise }\end{cases}
$$

This function is called saltus function or pure jump function.
(a) f is monotonically increasing on (a, b) :

Let $a<x<y<b$. If $N_{x}=\emptyset, f(x)=0$ and $f(y) \geq 0$.
If $N_{x} \neq \emptyset, x<y \Rightarrow f(x)=\sum_{n \in N_{x}} c_{n} \leq \sum_{n \in N_{y}} c_{n}=f(y)$.
(b) f is discontinuous at every $x_{m} \in E$:

Let $x_{m} \in E$ be fixed. $f\left(x_{m}+\right)=\inf _{x_{m}<t<b} f(t), f\left(x_{m}-\right)=\sup _{a<s<x_{m}} f(s)$. Let $x_{m}<t<b, a<s<x_{m}$ be arbitrary $\Rightarrow a<s<x_{m}<t<b$. Then, $N_{s} \subset N_{t}, m \in N_{t}, m \notin N_{s} \Rightarrow m \in N_{t} \backslash N_{s}$.
$f(t)-f(s)=\sum_{n \in N_{t}} c_{n}-\sum_{n \in N_{s}} c_{n}=\sum_{n \in N_{s} \backslash N_{t}} c_{n} \geq c_{m} \Rightarrow$
$f(t) \geq c_{m}+f(s)$. Fix $f(s) \Rightarrow c_{m}+f(s)$ is a bound for all $f(t)^{\prime} s$. So, take the infimum over t's. $f\left(x_{m}+\right) \geq f(s)+c_{m} \Leftrightarrow f\left(x_{m}+\right)-c_{m} \geq$ $f(s)$. If we take supremum over s 's, we will have $f\left(x_{m}+\right)-c_{m} \geq$ $f\left(x_{m}-\right) \Rightarrow f\left(x_{m}+\right)-f\left(x_{m}-\right) \geq c_{m}$. Therefore, $f\left(x_{m}+\right) \neq f\left(x_{m}-\right)$ (In fact, $\left.f\left(x_{m}+\right)-f\left(x_{m}-\right)=c_{m}\right)$.
(c) f is continuous at every $x \in(a, b) \backslash E$:

Let $x \in(a, b) \backslash E$ be fixed. We will show that f is continuous at x. Let $\varepsilon>0$ be given, since $\sum c_{n}$ converges, $\exists N \ni \sum_{n=N+1}^{\infty} c_{n}<\infty c_{N+1}+s_{N}=s \Rightarrow$ $r_{N+1}=s-s_{N} . \operatorname{Let} \delta^{\prime}=\operatorname{Min}\left\{\left|x-x_{1}\right|, \ldots,\left|x-x_{N}\right|, x-a, b-x\right\}$. Let $\delta=\frac{\delta^{\prime}}{2}$.
Claim (i) If $x \leq x_{n}<x+\delta$ then $n \geq N+1$. If $n<N+1$, then $\left|x-x_{N}\right| \geq \delta^{\prime}=2 \delta$, Contradiction.
Claim (ii) If $x-\delta<x_{n}<x$, then $n \geq N+1$. $f(x)-\varepsilon<f(x-$ $\delta), f(x+\delta)<f(x)+\varepsilon, f(x)-f(x-\delta)=\sum_{n \in N_{x}} c_{n}-\sum_{n \in N_{x-\delta}} c_{n}=$ $\sum_{n \in N_{x} \backslash N_{x-\delta}} c_{n} \leq \sum_{n=N+1}^{\infty} c_{n}<\varepsilon$. For the second claim, $f(x+\delta)-$ $f(x)=\sum_{n \in N_{x+\delta}} c_{n}-\sum_{n \in N_{x}} c_{n}=\sum_{n \in N_{x+\delta} \backslash N_{x}} c_{n} \leq \sum_{n=N+1}^{\infty} c_{n}<\varepsilon$. Let t be $\ni|t-x|<\delta$, i.e. $x-\delta<t<x+\delta \Rightarrow f(x-\delta) \leq f(t) \leq F(x+\delta)$. Hence, $f(x)-\varepsilon<f(t)<f(x)+\varepsilon, \quad|f(t)-f(x)|<\varepsilon$.

Problems

11.1. Let (X, d) be a metric space. A function $f: X \mapsto \mathbb{R}$ is called lower semi-continuous ($l s c$) if $\forall b \in \mathbb{R}$ the set $\{x \in X: f(x)>b\}$ is open in X; upper semi-continuous (usc) if $\forall b \in \mathbb{R}$ the set $\{x \in X: f(x)<b\}$ is open in X. Show that
a) f is $l s c \Leftrightarrow \forall \varepsilon>0, \forall x_{0} ; \exists \delta>0 \ni x \in B_{\delta}\left(x_{0}\right) \Rightarrow f(x)>f\left(x_{0}\right)-\varepsilon$.
b) f is $u s c \Leftrightarrow \forall \varepsilon>0, \forall x_{0} ; \exists \delta>0 \ni x \in B_{\delta}\left(x_{0}\right) \Rightarrow f(x)<f\left(x_{0}\right)+\varepsilon$.
11.2. Let $\left(X, d_{X}\right)$ be a compact metric space, $\left(Y, d_{Y}\right)$ be a metric space and let $f: X \mapsto Y$ be continuous and one-to-one. Assume for some sequence $\left\{p_{n}\right\}$ in X and for some $q \in Y, \lim _{x \rightarrow \infty} f\left(p_{n}\right)=q$. Show that

$$
\exists p \in X \ni \lim _{x \rightarrow \infty} p_{n}=p \text { and } f(p)=q
$$

11.3. Give a mathematical argument to show that a heated wire in the shape of a circle (see Figure 11.5) must always have two diametrically opposite points with the same temperature.

Web material

Fig. 11.5. A heated wire

[^1]Theorem.ppt
http://whyslopes.com/Calculus-Introduction/Theorem-
One_Sided_Range.html
http://www-history.mcs.st-and.ac.uk/~john/analysis/Lectures/L20.html
http://www.absoluteastronomy.com/i/intermediate_value_theorem
http://www.answers.com/topic/continuous-function-topology
http://www.bostoncoop.net/~tpryor/wiki/index.php?title=Monotonic
http://www.calculus-help.com/funstuff/tutorials/limits/limit06.html
http://www. cut-the-knot.org/Generalization/ivt.shtml
http://www.danceage.com/biography/sdmc_Monotonic
http://www.econ.umn.edu/~mclennan/Classes/Ec5113/
ec5113-1ec05-1.16.99.pdf
http://www.fastload.org/mo/Monotonic.html
http://www.geocities.com/Athens/Delphi/5136/Continuity/ continuity.html
http://www.karlscalculus.org/ivtproof.html
http://www.math.ksu.edu/~mkb9154/chapter3/ivt.html
http://www.math.ku.dk/~moller/e03/3gt/3gt.html
http://www.math.louisville.edu/~lee/RealAnalysis/realanalysis.html
http://www.math.mcgill.ca/drury/rootm.pdf
http://www.math.sc.edu/~sharpley/math554/Lectures/math554_
Lectures.html
http://www.math.ucdavis.edu/~emsilvia/math127/chapter5.pdf
http://www.math.ucsb.edu/~gizem/teaching/S117/S117.html
http://www.math.unl.edu/~webnotes/classes/class28/class28.htm
http://www.math.unl.edu/~webnotes/contents/chapters.htm
http://www.math.uu.se/~oleg/topoman.ps
http://www.mathreference.com/top-ms,ivt.html
http://www.mathreference.com/top-ms, unif.html
http://www.maths.abdn.ac.uk/~igc/tch/ma2001/notes/node38.html
http://www.maths.mq.edu.au/~wchen/lnlfafolder/lfa02-ccc.pdf
http://www.maths.nott.ac.uk/personal/jff/G12RAN/pdf/Uniform.pdf
http://www.maths.ox.ac.uk/current-students/undergraduates/handbooks-
synopses/2001/html/mods-01/node10.html
http://www.maths.ox.ac.uk/current-students/undergraduates/lecture-
material/Mods/analysis2/pdf/analysis2-notes.pdf
http://www.maths.qmul.ac.uk/~reza/MAS101/MV-WEB.pdf
http://www.maths.tcd.ie/pub/coursework/424/GpReps-II.pdf
http://www.nuprl.org/documents/real-analysis/node6.html
http://www.people.vcu.edu/~mikuleck/courses/limits/tsld028.htm http://www.recipeland.com/facts/Monotonic
http://www.sccs.swarthmore.edu/users/02/rebecca/pdf/Math47.pdf
http://www.sosmath. com/calculus/limcon/limcon06/limcon06.html
http://www.termsdefined.net/mo/monotone-decreasing.html
http://www.thebestlinks.com/Connected_space.html
http://zeus.uwindsor.ca/math/traynor/analysis/analbook.pdf
www.isid.ac.in/~arup/courses/topology.ps

Differentiation

In physical terms, differentiation expresses the rate at which a quantity, y, changes with respect to the change in another quantity, x, on which it has a functional relationship. This small chapter will start with the discussion of the derivative, which is one of the two central concepts of calculus (the other is the integral). We will discuss the Mean Value Theorem and look at some applications that include the relationship of the derivative of a function with whether the function is increasing or decreasing. We will expose Taylor's theorem as a generalization of the Mean Value Theorem. In calculus, Taylor's theorem gives the approximation of a differentiable function near a point by a polynomial whose coefficients depend only on the derivatives of the function at that point. There are many OR applications of Taylor's approximation, especially in linear and non-linear optimization.

12.1 Derivatives

Definition 12.1.1 Let $f:[a, b] \mapsto \mathbb{R} . \forall x \in[a, b]$, let $\phi(t)=\frac{f(t)-f(x)}{t-x}, a<$ $t<b, t \neq x . f^{\prime}(x)=\lim _{t \rightarrow x} \phi(t)$ provided that the limit exists. f^{\prime} is called the derivative of f. If f^{\prime} is defined at x, we say f is differentiable at x. If f^{\prime} is defined at $\forall x \in E \subset[a, b]$, we say f is differentiable on E. Moreover, lefthand (right-hand) limits give rise to the definition of left-hand (right-hand) derivatives.

Remark 12.1.2 If f is defined on (a, b) and if $a<x<b$, then f^{\prime} can be defined as above. However, $f^{\prime}(a)$ and $f^{\prime}(b)$ are not defined in general.

Theorem 12.1.3 Let f be defined on $[a, b], f$ is differentiable at $x \in[a, b]$ then f is continuous at x.

Proof. As $t \rightarrow x, f(t)-f(x)=\frac{f(t)-f(x)}{t-x}(t-x) \rightarrow f^{\prime}(x) \cdot 0=0$.

Remark 12.1.4 The converse is not true. One can construct continuous functions which fail to be differentiable at isolated points.

Let us state some properties: Suppose f and g are defined on $[a, b]$ and are differentiable at $x \in[a, b]$. Then, $f+g, f \cdot g$ and f / g are differentiable at x, and
(a) $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$.
(b) $(f \cdot g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.
(c) $(f / g)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}, g(x) \neq 0$.
(d) Chain Rule: If $h(t)=(g \circ f)(t)=g(f(t)), a \leq t \leq b$, and if f is continuous at $[a, b], f^{\prime}$ exists at $x \in[a, b], g$ is defined over range of f and g is differentiable at $f(x)$. Then, h is differentiable at x and

$$
h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)
$$

Example 12.1.5 (Property (c)) The derivative of a constant is zero. If $f(x)=x$ then $f^{\prime}(x)=1$. If $f(x)=x \cdot x=x^{2}$ then $f^{\prime}(x)=x+x=2 x$ by property (b). In general, if $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}, n \in \mathbb{N}$. If $f(x)=$ $\frac{1}{x}=x^{-1}$ then $f^{\prime}(x)=\frac{0-1}{x^{2}}=-x^{-2}$. In this case, $x \neq 0$. if $f(x)=x^{-n}, n \in \mathbb{N}$ then $f^{\prime}(x)=-n x^{-(n+1)}$. Thus, every polynomial is differentiable, and every rational function is differentiable except at the points where denominator is zero.

Example 12.1.6 (Property (d)) Let

$$
f(x)\left\{\begin{array}{r}
x \sin \frac{1}{x}, x \neq 0 \\
0, x=0
\end{array}\right.
$$

Then, $f^{\prime}(x)=\sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x}, x \neq 0$. At $x=0, \frac{1}{x}$ is not defined $\frac{f(t)-f(0)}{t-0}=$ $\sin \frac{1}{t}$. As $t \rightarrow 0$, the limit does not exist, thus $f^{\prime}(0)$ does not exist.

12.2 Mean Value Theorems

Definition 12.2.1 Let $f:[a, b] \mapsto \mathbb{R}$. We say f has a local maximum at $p \in X$ if $\exists \delta>0 \ni f(q) \leq f(p), \forall q \in X$ with $d(p, q)<\delta$. Local minimum is defined similarly.

Theorem 12.2.2 Let $f:[a, b] \mapsto \mathbb{R}$. If f has a local maximum (minimum) at $x \in(a, b)$ and if $f^{\prime}(x)$ exists, then $f^{\prime}(x)=0$.

Proof. We will prove the maximum case:
Choose δ as in the definition: $a<x-\delta<x<x+\delta<b$.
If $x-\delta<t<x$, then $\frac{f(t)-f(x)}{t-x} \geq 0$. Let $t \rightarrow x \Rightarrow f^{\prime}(x) \geq 0$.
If $x<t<x+\delta$, then $\frac{f(t)-f(x)}{t-x} \leq 0$. Let $t \rightarrow \infty \Rightarrow f^{\prime}(x) \leq 0$.
Thus, $f^{\prime}(x)=0$.

Theorem 12.2.3 Suppose $f:[a, b] \mapsto \mathbb{R}$ is differentiable and $f^{\prime}(a)<\lambda<$ $f^{\prime}(b)\left[f^{\prime}(a)>\lambda>f^{\prime}(b)\right]$. Then, $\exists x \in(a, b) \ni f^{\prime}(x)=\lambda$.

Proof. Let $g(t)=f(t)-\lambda t$. Then, $g^{\prime}(a)<0\left[g^{\prime}(a)>0\right]$ so that $g\left(t_{1}\right)<$ $g(a)\left[g\left(t_{1}\right)>g(a)\right]$ for some $t_{1} \in(a, b)$, so that $g\left(t_{2}\right)<g(b)\left[g\left(t_{2}\right)>g(a)\right]$ for some $t_{2} \in(a, b)$. Hence, g attains its minimum [maximum] on $[a, b]$ at some points $x \in(a, b)$. By the first mean value theorem, $g^{\prime}(x)=0$. Hence, $f^{\prime}(x)=\lambda$.

Corollary 12.2.4 If f is differentiable on $[a, b]$, then f^{\prime} cannot have any simple discontinuities on $[a, b]$.

Remark 12.2.5 But f^{\prime} may have discontinuities of the second kind.
Theorem 12.2.6 (L‘Hospital's Rule) Suppose f and g are real and differentiable in (a, b) and $g^{\prime}(x) \neq 0, \forall x \in(a, b)$ where $\infty \leq a<b \leq+\infty$. Suppose

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)} \rightarrow A \text { as } x \rightarrow a(\diamond)
$$

If $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow$ a or if $f(x) \rightarrow+\infty$ and $g(x) \rightarrow+\infty$ as $x \rightarrow a$, then

$$
\frac{f(x)}{g(x)} \rightarrow A \text { as } x \rightarrow a .
$$

Proof. Let us consider the case $-\infty \leq A<+\infty$: Choose $q \in \mathbb{R} \ni A<q$, and choose $r \ni A<r<q$. By (\diamond),

$$
\exists c \in(a, b) \ni a<x<c \Rightarrow \frac{f^{\prime}(x)}{g^{\prime}(x)}<r
$$

If $a<x<y<c$, then by the second mean value theorem,

$$
\exists y \in(x, y) \ni \frac{f(x)-f(y)}{g(x)-g(y)}=\frac{f^{\prime}(t)}{g^{\prime}(y)}<r .
$$

Suppose $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$. Then, ($\boldsymbol{(}) \frac{f(y)}{g(y)} \leq r<q, a<y<c$. Suppose $g(x) \rightarrow+\infty$ as $x \rightarrow a$. Keeping y fixed, we can choose $c_{1} \in(a, y) \ni$ $g(x)>g(y)$ and $g(x)>0$ if $a<x<c_{1}$. Multiplying ($\left.\mathbf{~}\right)$ by $[g(x)-g(y)] / g(x)$, we have $\frac{f(x)}{g(x)}<r-r \frac{g(x)}{g(y)}+\frac{f(y)}{g(x)}, a<x<c_{1}$. If $x \rightarrow a \exists c_{2} \in\left(a, c_{1}\right) \ni \frac{f(x)}{g(x)}<$ $q, a<x<c_{2}$. Summing with (\%) $\forall q \ni A<q$ yields

$$
\exists c_{2} \ni \frac{f(x)}{g(x)}<q \text { if } a<x<c_{2}
$$

Similarly, if $-\infty<A \leq+\infty$ and $p \ni p<A, \exists c_{3} \ni p<\frac{f(x)}{g(x)}, a<x<c_{3}$.

12.3 Higher Order Derivatives

Definition 12.3.1 If f has a derivative f^{\prime} on an interval and if f^{\prime} is itself differentiable, we denote derivative of f^{\prime} as $f^{\prime \prime}$, and call the second derivative of f. Higher order derivatives are denoted by $f^{\prime}, f^{\prime \prime}, f^{(3)}, \ldots, f^{(n)}$, each of which is the derivative of the previous one.

Theorem 12.3.2 (Taylor's Theorem) Let $f:[a, b] \mapsto \mathbb{R}, n \in \mathbb{N}, f^{(n-1)}$ be continuous on $[a, b]$, and $f^{(n)}(t)$ exists $\forall t \in[a, b]$. Let $\alpha \neq \beta \in[a, b]$ and define

$$
p(t)=\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^{k}
$$

Then, $\exists x \in(\alpha, \beta) \ni f(\beta)=p(\beta)+\frac{f^{(n)}(\alpha)}{n!}(\beta-\alpha)^{n}$.

Remark 12.3.3 For $n=1$, the above theorem is just the mean value theorem.
Proof. Let $M \ni f(\beta)=p(\beta)+M(\beta-\alpha)^{n}$.
Let $g(t)=f(t)-p(t)-M(t-\alpha)^{n}, a \leq t \leq b$, the error function. We will show that $n!M=f^{(n)}(x)$ for some $x \in(a, b)$. We have $g^{(n)}(t)=f^{(n)}(t)-n!M, a<$ $t<b$. If $\exists x \in(a, b) \ni g^{(n)}(x)=0$, we are done.

$$
\begin{gathered}
p^{(k)}(\alpha)=f^{(k)}(\alpha), k=0, \ldots, n-1 \Rightarrow \\
g(\alpha)=g^{\prime}(\alpha)=g^{\prime \prime}(\alpha)=\cdots=g^{(n-1)}(\alpha)=0 .
\end{gathered}
$$

Our choice of M yields $g(\beta)=0$, thus $g^{\prime}\left(x_{1}\right)=0$ for some $x_{1} \in(\alpha, \beta)$ by the Mean Value Theorem. This is for $g "(\cdot)$, one may continue in this manner. Thus, $g^{(n)}\left(x_{n}\right)=0$, for some $x_{n} \in\left(\alpha, x_{n-1}\right) \subset(\alpha, \beta)$.

Definition 12.3.4 A function is said to be of class C^{r} if the firstr derivatives exist and continuous. A function is said to be smooth or of class C^{∞} if it is of class $C^{r}, \forall r \in \mathbb{N}$.

Theorem 12.3.5 (Taylor's Theorem) Let $f: A \mapsto \mathbb{R}$, be of class C^{r} for $A \subset \mathbb{R}^{n}$, an open set. Let $x, y \in A$ and suppose that the segment joining x and y lies in A. Then, $\exists c$ in that segment \ni

$$
f(y)-f(x)=\sum_{k=1}^{r-1} \frac{1}{k!} f^{(k)}(y-x, \ldots, y-x)+\frac{1}{r!}(c) f^{(r)}(y-x, \ldots, y-x)
$$

where $f^{(k)}(y-x, \ldots, y-x)=\sum_{i_{1}, \ldots, i_{k}}\left[\left(\frac{\partial^{k} f}{\partial_{i_{1}} \cdots \partial_{i_{k}}}\right)\left(y_{i_{1}}-x_{i_{1}}\right) \cdots\left(y_{i_{n}}-x_{i_{n}}\right)\right]$. Setting $y=x+h$, we can write Taylor's formula as
$f(x+h)=f(x)+f^{\prime}(x) \cdot h+\cdots+\frac{1}{(r-1)!} f^{(r-1)}(x) \cdot(h, \ldots, h)+R_{r-1}(x, h)$,
where $R_{r-1}(x, h)$ is the remainder. Furthermore,

$$
\frac{R_{r-1}(x, h)}{\|h\|^{r-1}} \rightarrow 0 \text { as } h \rightarrow 0
$$

Problems

12.1. Suppose $f:[0, \infty) \mapsto \mathbb{R}$ is continuous, $f(0)=0, f$ is differentiable on $(0, \infty)$ and f^{\prime} is nondecreasing. Prove that $g(x)=\frac{f(x)}{x}$ is nondecreasing for $x>0$.
12.2. Let $A \subset \mathbb{R}^{n}$ be an open convex set and $f: A \mapsto \mathbb{R}^{m}$ be differentiable. If $f^{\prime}(t)=0, \forall t$ then show that f is constant.
12.3. Compute the second order Taylor's formula for $f(x, y)=\sin (x+2 y)$ around the origin.
12.4. Let $f \in \mathcal{C}^{2}$ and $x^{*} \in \mathbb{R}^{n}$ be local minimizer.
a) Prove the first order necessary condition (x^{*} is a local minimizer then $\nabla f\left(x^{*}\right)=\theta$) using Taylor's approximation.
b) Prove the second order necessary condition (x^{*} is a local minimizer then $\nabla^{2} f\left(x^{*}\right)$ is positive semi-definite) using Taylor's approximation.
c) Design an iterative procedure to find $\nabla f(x)=\theta$ in such a way that it starts from an initial point and updates as $x_{k}=x_{k-1}+p_{k}$. The problem at each iteration is to find a direction p_{k} that makes $\nabla f\left(x_{k-1}\right)$ closer to the null vector. Use the second order Taylor's approximation to find the best p_{k} at any iteration.
d) Use the above results to find a local solution to

$$
\min f\left(x_{1}, x_{2}\right)=x_{1}^{4}+2 x_{1}^{3}+24 x_{1}^{2}+x_{2}^{4}+12 x_{2}^{2}
$$

Start from $[1,1]^{T}$.

Web material

```
http://archives.math.utk.edu/visual.calculus/3/index.html
http://calclab.math.tamu.edu/~}belmonte/m151/L/c5/L53.pdf
http://ccrma-www.stanford.edu/~ jos/mdft/Formal_Statement_Taylor_s_
    Theorem.html
http://courses.math.nus.edu.sg/ma1104/lecture_notes/Notes_1.pdf
http://d.faculty.umkc.edu/delawarer/RDvsiCalcList.htm
http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/L'Hopital's_rule
```

http://en.wikipedia.org/wiki/Mean_value_theorem
http://en.wikipedia.org/wiki/Taylor's_theorem
http://grus.berkeley.edu/~jrg/ay202/node191.html
http://hilltop.bradley.edu/~jhahn/Note3.pdf
http://home.uchicago.edu/~lfmedina/MathRev3.pdf
http://kr.cs.ait.ac.th/~radok/math/mat11/chap7.htm
http://kr.cs.ait.ac.th/~radok/math/mat6/calc2.htm
http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/LHospitalsRule.html
http://mathworld.wolfram.com/Mean-ValueTheorem.htm1
http://ocw.mit.edu/ans7870/textbooks/Strang/strangtext.htm
http://ocw.mit.edu/OcwWeb/Mathematics/18-100BAnalysis-IFall2002/ LectureNotes/
http://people.hofstra.edu/faculty/stefan_waner/RealWorld/ math19index.html
http://pirate.shu.edu/projects/reals/cont/derivat.html
http://saxonhomeschool.harcourtachieve.com/en-US/Products/ sh_calculustoc.htm
http://web.mit.edu/wwmath/calculus/differentiation/
http://www-math.mit.edu/~djk/18_01/chapter26/section01.html
http://www.absoluteastronomy.com/l/lh\%/C3\�pitals_rule1
http://www.analyzemath.com/calculus.html
http://www.jtaylor1142001.net/
http://www.ma.utexas.edu/cgi-pub/kawasaki/plain/derivatives/1.html
http://www.math.dartmouth.edu/ ${ }^{\text {m }}$ 3 3 cod/textbooksections.htm
http://www.math.harvard.edu/computing/math/tutorial/taylor.html
http://www.math.hmc.edu/calculus/tutorials/
http://www.math.scar.utoronto.ca/calculus/Redbook/goldch7.pdf
http://www.math.tamu.edu/~fulling/coalweb/lhop.htm
http://www.math.tamu.edu/~fulling/coalweb/taylor.htm
http://www.math.tamu.edu/~tom.vogel/gallery/node12.html
http://www.math.uconn.edu/~corluy/calculus/lecturenotes/node15.html
http://www.mathdaily.com/lessons/Category:Calculus
http://www.mathreference.com/ca,tfn.html
http://www.maths.abdn.ac.uk/ igc/tch/eg1006/notes/node136.html
http://www.maths.abdn.ac.uk/~igc/tch/ma1002/appl/node54.html
http://www.maths.abdn.ac.uk/~igc/tch/ma1002/diff/node39.html
http://www.maths.abdn.ac.uk/~igc/tch/ma2001/notes/node46.html
http://www.maths.1se.ac.uk/Courses/MA203/sec4a.pdf
http://www.maths.manchester.ac.uk/~mdc/old/211/notes4.pdf
http://www.mathwords.com/index_calculus.htm
http://www.npac.syr.edu/REU/reu94/williams/ch3/chap3.html
http://www.physics.nau.edu/~hart/matlab/node52.html
http://www.sosmath.com/calculus/diff/der11/der11.html
http://www.sosmath.com/tables/derivative/derivative.html
http://www.toshare.info/en/Mean_value_theorem.htm
http://www.univie.ac.at/future.media/moe/galerie/diff1/diff1.html
http://www.wellington.org/nandor/Calculus/notes/notes.html
http://www.wikipedia.org/wiki/Mean_value_theorem

Power Series and Special Functions

In mathematics, power series are devices that make it possible to employ much of the analytical machinery in settings that do not have natural notions of "convergence". They are also useful, especially in combinatorics, for providing compact representations of sequences and for finding closed formulas for recursively defined sequences, known as the method of generating functions. We will discuss first the notion of series, succeeded by operations on series and tests for convergence/divergence. After power series is formally defined, we will generate exponential, logarithmic and trigonometric functions in this chapter. Fourier series, gamma and beta functions will be discussed as well.

13.1 Series

13.1.1 Notion of Series

Definition 13.1.1 An expression

$$
\sum_{k=0}^{\infty} u_{k}=\sum_{0}^{\infty} u_{k}=u_{0}+u_{1}+u_{2}+\cdots
$$

where the numbers u_{k} (terms of the series) depend on the index $k=0,1,2, \ldots$ is called a (number) series. The number

$$
S_{n}=u_{0}+u_{1}+\cdots+u_{n}, n=0,1, \ldots
$$

is called the $n^{\text {th }}$ partial sum of the above series.
We say that the series is convergent if the limit, $\lim _{n \rightarrow \infty} S_{n}=S$, exists. In this case, we write

$$
S=u_{0}+u_{1}+u_{2}+\cdots=\sum_{k=0}^{\infty} u_{k}
$$

and call S the sum of the series; we also say that the series converges to S.

Proposition 13.1.2 (Cauchy's criterion) The series

$$
\sum_{k=0}^{\infty} u_{k}
$$

is convergent if and only if

$$
\forall \epsilon>0, \exists N \ni \forall n, p \in \mathbb{N}, n>N, \quad\left|u_{n+1}+\cdots+u_{n+p}\right|=\left|S_{n+p}-S_{n}\right|<\epsilon
$$

Remark 13.1.3 In particular, putting $p=1$ we see that if $\sum_{k=0}^{\infty} u_{k}$ is convergent its general term u_{k} tends to zero. This condition is necessary but not sufficient!

Definition 13.1.4 The series are called the remainder series of the series $\sum_{k=0}^{\infty} u_{k}$:

$$
u_{n+1}+u_{n+2}+\cdots=\sum_{k=1}^{\infty} u_{n+k} .
$$

Since the conditions of Cauchy's criterion are the same for the series and its remainder series, they are simultaneously convergent or divergent. If they are convergent, the remainder series is

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{m} u_{n+k}=\lim _{n \rightarrow \infty}\left(S_{n+m}-S_{n}\right)=S-S_{n}
$$

If the series are real and nonnegative, its partial sums form a nondecreasing sequence $S_{1} \leq S_{2} \leq S_{3} \leq \cdots$ and if this sequence is bounded (i.e. $\left.S_{n} \leq M, n=1,2, \ldots\right)$, then the series is convergent and its sum satisfies the inequality

$$
\lim _{n \rightarrow \infty} S_{n}=S \leq M
$$

If this sequence is unbounded the series is divergent $\lim _{n \rightarrow \infty} S_{n}=\infty$. In this case, we write $\sum_{k=0}^{\infty} u_{k}=\infty$ and say that the series with nonnegative terms is divergent to ∞ or properly divergent.
Example 13.1.5 The $n^{\text {th }}$ partial sum of the series $1+z+z^{2}+\cdots$ is

$$
S_{n}(z)=\frac{1-z^{n+1}}{1-z} \text { for } z \neq 1
$$

If $|z|<1$ then $\left|z^{n+1}\right|=|z|^{n+1} \rightarrow 0$, that is $z^{n+1} \rightarrow 0$ as $n \rightarrow \infty$.
If $|z|>1$ then $\left|z^{n+1}\right| \rightarrow \infty$.
Finally, if $|z|=1$ then $z^{n+1}=\cos (n+1) \theta+i \sin (n+1) \theta$, where θ is the argument of z, and we see that the variable z^{n+1} has no limit as $n \rightarrow \infty$ because its real or imaginary part (or both) has no limit as $n \rightarrow \infty$. For $z=1$, the divergence of the series is quite obvious.

We see that the series is convergent and has a sum equal to $(1-z)^{-1}$ in the open circle $|z|<1$ of the complex plane and is divergent all other points z.

13.1.2 Operations on Series

Proposition 13.1.6 If $\sum_{k=0}^{\infty} u_{k}$ and $\sum_{k=0}^{\infty} v_{k}$ are convergent series and $\alpha \in$ \mathbb{C}, then the series $\sum_{k=0}^{\infty} \alpha u_{k}$ and $\sum_{k=0}^{\infty}\left(u_{k} \pm v_{k}\right)$ are also convergent and we have

$$
\sum_{k=0}^{\infty} \alpha u_{k}=\alpha \sum_{k=0}^{\infty} u_{k} \text { and } \sum_{k=0}^{\infty}\left(u_{k} \pm v_{k}\right)=\sum_{k=0}^{\infty} u_{k} \pm \sum_{k=0}^{\infty} v_{k} .
$$

Proof. Indeed, $\sum_{0}^{\infty} \alpha u_{k}=\lim _{n \rightarrow \infty} \sum_{0}^{n} \alpha u_{k}=\alpha \lim _{n \rightarrow \infty} \sum_{0}^{n} u_{k}=\alpha \sum_{0}^{\infty} u_{k}$, and $\sum_{\sum_{\infty}^{\infty}}^{\infty}\left(u_{k} \pm v_{k}\right)=\lim _{n \rightarrow \infty} \sum_{0}^{n}\left(u_{k} \pm v_{k}\right)=\lim _{n \leftrightarrow \infty} \sum_{0}^{n} u_{k} \pm \lim _{n \rightarrow \infty} \sum_{0}^{n} v_{k}=$ $\sum_{0}^{\infty} u_{k} \pm \sum_{0}^{\infty} v_{k}$.

Remark 13.1.7 It should be stressed that, generally speaking, the convergence of $\sum_{0}^{\infty} u_{k} \pm \sum_{0}^{\infty} v_{k}$ does not imply the convergence of each of the series $\sum_{k=0}^{\infty} u_{k}$ and $\sum_{k=0}^{\infty} v_{k}$, which can be confirmed by the example below:

$$
(\alpha-\alpha)+(\alpha-\alpha)+\cdots, \forall \alpha \in \mathbb{C}
$$

13.1.3 Tests for positive series

Theorem 13.1.8 (Comparison Tests) Let there be given two series

$$
\text { (i) } \sum_{0}^{\infty} u_{k} \text { and }(i i) \sum_{0}^{\infty} v_{k}
$$

with nonnegative terms.
(a) If $u_{k} \leq v_{k}, \forall k$, the convergence of series (ii) implies the convergence of series (i) and the divergence of series (i) implies the divergence of series (ii).
(b) If $\lim _{k \rightarrow \infty} \frac{u_{k}}{v_{k}}=A>0$, then series (i) and (ii) are simultaneously convergent and divergent.

Proof. Exercise!
Theorem 13.1.9 (D'Alembert's Test) Let there be a positive series

$$
\sum_{0}^{\infty} u_{k} \ni u_{k}>0, \forall k=0,1, \ldots
$$

(a) If $\frac{u_{k+1}}{u_{k}} \leq q<1, \forall k$, then the series $\sum_{0}^{\infty} u_{k}$ is convergent. If $\frac{u_{k+1}}{u_{k}} \geq 1$, then the series $\sum_{0}^{\infty} u_{k}$ is divergent.
(b) If $\lim _{k \rightarrow \infty} \frac{u_{k+1}}{u_{k}}=q$ then the series $\sum_{0}^{\infty} u_{k}$ is convergent for $q<1$ and divergent for $q>1$.

Proof. We treat the cases individually.
(a) We have

$$
u_{n}=u_{0} \frac{u_{1}}{u_{0}} \frac{u_{2}}{u_{1}} \cdots \frac{u_{n}}{u_{n-1}}, \forall n=0,1,2, \ldots
$$

and therefore

$$
\frac{u_{k+1}}{u_{k}} \leq q<1 \Rightarrow u_{n} \leq u_{0} q^{n}, q<1, \forall n .
$$

Since the series $\sum_{1}^{\infty} u_{0} q^{n}$ is convergent, the series $\sum_{0}^{\infty} u_{k}$ is convergent.

$$
\frac{u_{k+1}}{u_{k}} \geq 1 \Rightarrow u_{n} \geq u_{0}, \forall n
$$

Since the series $u_{0}+u_{0}+\cdots$ is divergent, so is $\sum_{0}^{\infty} u_{k}$.
(b) $\lim _{k \rightarrow \infty} \frac{u_{k+1}}{u_{k}}=q<1 \Rightarrow \forall \epsilon>0 \ni q+\epsilon<1$; we have $\frac{u_{k+1}}{u_{k}}<q+$ $\epsilon<1, k \geq N$, where N is sufficiently large. Then, the series $\sum_{N}^{\infty} u_{k}$ is convergent and hence so is $\sum_{0}^{\infty} u_{k}$. On the other hand,

$$
\lim _{k \rightarrow \infty} \frac{u_{k+1}}{u_{k}}=q>1 \Rightarrow \frac{u_{k+1}}{u_{k}}>1, \forall k \geq N
$$

for sufficiently large N, and therefore $\sum_{0}^{\infty} u_{k}$ is divergent.
Theorem 13.1.10 (Cauchy's Test) Let $\sum_{0}^{\infty} u_{k}$ be a series with positive terms,
(a)

$$
\begin{gathered}
\left(u_{k}\right)^{\frac{1}{k}}<q<1, \forall k \Rightarrow \text { the series } \sum_{0}^{\infty} u_{k} \text { is convergent. } \\
\left(u_{k}\right)^{\frac{1}{k}} \geq 1, \forall k \Rightarrow \text { the series } \sum_{0}^{\infty} u_{k} \text { is divergent. }
\end{gathered}
$$

(b) If $\lim _{k \rightarrow \infty}\left(u_{k}\right)^{\frac{1}{k}}=q$, then the series $\sum_{0}^{\infty} u_{k}$ is convergent for $q<1$ and divergent for $q>1$.

Remark 13.1.11 Let a series be convergent to a sum S. Then, the series obtained from this series by rearranging and renumbering its terms in an arbitrary way is also convergent and has the same sum S.

13.2 Sequence of Functions

Definition 13.2.1 A sequence of functions $\left\langle f_{n}\right\rangle, n=1,2,3, \ldots$ converges uniformly on E to a function f if

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \ni n \geq N \Rightarrow\left|f_{n}(x)-f(x)\right| \leq \epsilon, \forall x \in E
$$

Similarly, we say that the series $\sum f_{n}(x)$ converges uniformly on E if the sequence $\left\langle S_{n}\right\rangle$ of partial sums converges uniformly on E.

Remark 13.2.2 Every uniformly convergent sequence is pointwise convergent. If $\left\langle f_{n}\right\rangle$ converges pointwise on E, then there exist a function f such that, for every $\epsilon>0$ and for every $x \in E$, there is an integer N, depending on ϵ and x, such that $\left|f_{n}(x)-f(x)\right| \leq \epsilon$ holds if $n \geq N$; if $\left\langle f_{n}\right\rangle$ converges uniformly on E, it is possible, for each $\epsilon>0$, to find one integer N which will do for all $x \in E$.
Proposition 13.2.3 (Cauchy's uniform convergence) A sequence of functions, $\left\langle f_{n}\right\rangle$, defined on E, converges uniformly on E if and only if

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \ni m \geq N, n \geq N, x \in E \Rightarrow\left|f_{m}(x)-f_{n}(x)\right| \leq \epsilon
$$

Corollary 13.2.4 Suppose $\lim _{n \rightarrow \infty} f_{n}(x)=f(x), x \in E$. Put

$$
M_{n}=\sup _{x \in E}\left|f_{n}(x)-f(x)\right|
$$

Then, $f_{n} \rightarrow f$ uniformly on E if and only if $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Proposition 13.2.5 (Weierstrass) Suppose $\left\langle f_{n}\right\rangle$ is a sequence of functions defined on E, and $|f(x)| \leq M_{n}, x \in E, n=1,2,3, \ldots$ Then, $\sum f_{n}$ converges uniformly on E if $\sum M_{n}$ converges.

Proposition 13.2.6

$$
\lim _{t \rightarrow x} \lim _{n \rightarrow \infty} f_{n}(t)=\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} f_{n}(t)
$$

Remark 13.2.7 The above assertion means the following: Suppose $f_{n} \rightarrow f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim _{t \rightarrow x} f_{n}(t) \rightarrow A_{n}, n=1,2,3 \ldots$ Then, $\left\langle A_{n}\right\rangle$ converges, and $\lim _{t \rightarrow x} f(t)=\lim _{n \rightarrow \infty} A_{n}$.

Corollary 13.2.8 If $\left\langle f_{n}\right\rangle$ is a sequence of continuous functions on E, and if $f_{n} \rightarrow f$ uniformly on E, then f is continuous on E.

Remark 13.2.9 The converse is not true. A sequence of continuous functions may converge to a continuous function, although the convergence is not uniform.

13.3 Power Series

Definition 13.3.1 The functions of the form

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

or more generally,

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

are called analytic functions.

Theorem 13.3.2 Suppose the series $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges for $|x|<R$, and define

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n},|x|<R
$$

which converges uniformly on $[-R+\epsilon, R-\epsilon]$, no matter which $\epsilon>0$ is chosen. The function f is continuous and differentiable in $(-R, R)$, and

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1},|x|<R
$$

Corollary 13.3.3 f has derivatives of all orders in $(-R, R)$, which are given by

$$
f^{(k)}(x)=\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) c_{n}(x-a)^{n-k} .
$$

In particular,

$$
f^{(k)}(0)=k!c_{k}, k=0,1,2, \ldots
$$

Remark 13.3.4 The above formula is very interesting. On one hand, it shows how we can determine the coefficients of the power series representation of f. On the other hand, if the coefficients are given, the values of derivatives of f at the center of the interval $(-R, R)$ can be read off immediately.

A function f may have derivatives of all order, but the power series need not to converge to $f(x)$ for any $x \neq 0$. In this case, f cannot be expressed as a power series about the origin.
Theorem 13.3.5 (Taylor's) Suppose, $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$, the series converging in $|x|<R$. If $-R<a<R$, then f can be expanded in a power series about the point $x=a$ which converges in $|x-a|<R-|a|$, and

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

Remark 13.3.6 If two power series converge to the same function in $(-R, R)$, then the two series must be identical.

13.4 Exponential and Logarithmic Functions

We can define

$$
E(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \forall z \in \mathbb{C} .
$$

It is one of the exercise questions to show that this series is convergent $\forall z \in \mathbb{C}$. If we have an absolutely convergent (if $\left|u_{0}\right|+\left|u_{1}\right|+\cdots$ is convergent) series, we can multiply the series element by element. We can safely do it for $E(z)$:

$$
\begin{aligned}
& E(z) E(w)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{m=0}^{\infty} \frac{w^{m}}{m!}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z^{k} w^{n-k}}{k!(n-k!)} \\
= & \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n}\binom{n}{k} z^{k} w^{n-k}=\sum_{n=0}^{\infty} \frac{(z+w)^{n}}{n!}=E(z+w) .
\end{aligned}
$$

This yields

- $E(z) E(-z)=E(z-z)=E(0)=1, \forall z \in \mathbb{C}$.
- $E(z) \neq 0, \forall z \in \mathbb{C} . E(x)>0, \forall x \in \mathbb{R}$.
$E(x) \rightarrow+\infty$ as $x \rightarrow+\infty$.
$0<x<y \Rightarrow E(x)<E(y), E(-y)<E(-x)$.
Hence, $E(x)$ is strictly increasing on the real axis.
- $\lim _{h \rightarrow 0} \frac{E(z+h)-E(z)}{h}=E(z)$.
- $E\left(z_{1}+\cdots+z_{n}\right)=E\left(z_{1}\right) \cdots E\left(z_{n}\right)$. Let us take $z_{1}=\cdots=z_{n}=1$. Since $E(1)=e$, we obtain $E(n)=e^{n}, n=1,2,3, \ldots$ Furthermore, if $p=n \mid m$, where $n, m \in \mathbb{N}$, then $[E(p)]^{m}=E(m p)=E(n)=e^{n}$ so that $E(p)=$ $e^{p}, p \in \mathbb{Q}_{+}$. Since $E(-p)=e^{-p}, p \in \mathbb{Q}_{+}$, the above equality holds for all rational p.
- Since $x^{y}=\sup _{p \in \mathbb{Q} \ni p<y} x^{p}, \forall x, y \in \mathbb{R}, x>1$, we define $e^{x}=\sup _{p \in \mathbb{Q} \ni p<x} e^{p}$. The continuity and monotonicity properties of E show that

$$
E(x)=e^{x}=\exp (x) .
$$

Thus, as a summary, we have the following proposition:
Proposition 13.4.1 The following are true:
(a) e^{x} is continuous and differentiable for all x,
(b) $\left(e^{x}\right)^{\prime}=e^{x}$,
(c) e^{x} is a strictly increasing function of x, and $e^{x}>0$,
(d) $e^{x+y}=e^{x} e^{y}$,
(e) $e^{x} \rightarrow+\infty$ as $x \rightarrow+\infty, e^{x} \rightarrow 0$ as $x \rightarrow-\infty$,
(f) $\lim _{x \rightarrow+\infty} x^{n} e^{-x}=0, \forall n$.

Proof. We have already proved (a) to (e). Since $e^{x}>\frac{x^{n+1}}{(n+1)!}$, for $x>0$, then $x^{n} e^{-x}<\frac{(n+1)!}{x}$ and (f) follows.

Since E is strictly increasing and differentiable on \mathbb{R}, it has an inverse function L which is also strictly increasing and differentiable whose domain is $E(\mathbb{R})=\mathbb{R}_{+}$.

$$
E(L(y))=y, y>0 \Leftrightarrow L(E(x))=x, x \in \mathbb{R} .
$$

Differentiation yields

$$
L^{\prime}(E(x)) \cdot E(x)=1=L^{\prime}(y) \cdot y \Leftrightarrow L^{\prime}(y)=\frac{1}{y}, y>0 .
$$

$x=0 \Rightarrow L(1)=0$. Thus, we have

$$
L(y)=\int_{1}^{y} \frac{d x}{x}=\log y
$$

Let $u=E(x), v=E(y) ;$

$$
L(u v)=L(E(x) E(y))=L(E(x+y))=x+y=L(u)+L(v)
$$

We also have $\log x \rightarrow+\infty$ as $x \rightarrow+\infty$ and $\log x \rightarrow-\infty$ as $x \rightarrow 0$. Moreover,

$$
\begin{gathered}
x^{n}=E(n L(x)), x \in \mathbb{R}_{+} ; n, m \in \mathbb{N}, \quad x^{\frac{1}{m}}=E\left(\frac{1}{m} L(x)\right) \\
x^{\alpha}=E(\alpha L(x))=e^{\alpha \log x}, \forall \alpha \in \mathbb{Q}
\end{gathered}
$$

One can define x^{α}, for any real α and any $x>0$ by using continuity and monotonicity of E and L.

$$
\left(x^{\alpha}\right)^{\prime}=E(\alpha L(x)) \frac{\alpha}{x}=\alpha x^{\alpha-1}
$$

One more property of $\log x$ is

$$
\lim _{x \rightarrow+\infty} x^{-\alpha} \log x=0, \forall \alpha>0
$$

13.5 Trigonometric Functions

Let us define

$$
C(x)=\frac{1}{2}[E(i x)+E(-i x)], S(x)=\frac{1}{2 i}[E(i x)-E(-i x)]
$$

By the definition of $E(z)$, we know $E(\bar{z})=\overline{E(z)}$. Then, $C(x), S(x) \in \mathbb{R}, x \in$ \mathbb{R}. Furthermore,

$$
E(i x)=C(x)+i S(x)
$$

Thus, $C(x), S(x)$ are real and imaginary parts of $E(i x)$ if $x \in \mathbb{R}$. We have also

$$
|E(i x)|^{2}=E(i x) \overline{E(i x)}=E(i x) E(-i x)=E(0)=1
$$

so that

$$
|E(i x)|=1, x \in \mathbb{R}
$$

Moreover,

$$
C(0)=1, S(0)=0 ; \text { and } C^{\prime}(x)=-S(x), S^{\prime}(x)=C(x)
$$

We assert that there exists positive numbers x such that $C(x)=0$. Let x_{0} be the smallest among them. We define number π by

$$
\pi=2 x_{0}
$$

Then, $C\left(\frac{\pi}{2}\right)=0$, and $S\left(\frac{\pi}{2}\right)= \pm 1$. Since $C(x)>0$ in $\left(0, \frac{\pi}{2}\right), S$ is increasing in $\left(0, \frac{\pi}{2}\right)$; hence $S\left(\frac{\pi}{2}\right)=1$. Therefore,

$$
E\left(\frac{\pi i}{2}\right)=i
$$

and the addition formula gives

$$
E(\pi i)=-1, E(2 \pi i)=1 ;
$$

hence

$$
E(z+2 \pi i)=E(z), \forall z \in \mathbb{C}
$$

Theorem 13.5.1 The following are true:
(a) The function E is periodic, with period $2 \pi i$.
(b) The functions C and S are periodic, with period 2π.
(c) If $0<t<2 \pi$, then $E(i t) \neq 1$.
(d) If $z \in \mathbb{C} \ni|z|=1, \exists$ unique $t \in[0,2 \pi) \ni E(i t)=z$.

Remark 13.5.2 The curve γ defined by $\gamma(t)=E(i t), 0 \leq t \leq 2 \pi$ is a simple closed curve whose range is the unit circle in the plane. Since $\gamma^{\prime}(t)=$ $i E(i t)$, the length of γ is $\int_{0}^{2 \pi}\left|\gamma^{\prime}(t)\right| d t=2 \pi$. This is the expected result for the circumference of a circle with radius 1 .

The point $\gamma(t)$ describes a circular arc of length t_{0} as t increases from 0 to t_{0}. Consideration of the triangle whose vertices are $z_{1}=0, z_{2}=\gamma\left(t_{0}\right)$, and $z_{3}=C\left(t_{0}\right)$ shows that $C(t)$ and $S(t)$ are indeed identical with $\cos (t)$ and $\sin (t)$ respectively, the latter are defined as ratios of sides of a right triangle.

The saying the complex field is algebraically complete means that every nonconstant polynomial with complex coefficients has a complex root.

Theorem 13.5.3 Suppose $a_{0}, \ldots, a_{n} \in \mathbb{C}, n \in \mathbb{N}, a_{n} \neq 0$,

$$
P(z)=\sum_{0}^{n} a_{k} z^{k}
$$

Then, $P(z)=0$ for some $z \in \mathbb{C}$.
Proof. Without loss of generality, we may assume that $a_{n}=1$.
Put $\mu=\inf _{z \in \mathbb{C}}|P(z)|$. If $|z|=R$ then

$$
|P(z)| \geq R^{n}\left(1-\left|a_{n-1}\right| R^{-1}-\cdots-\left|a_{0}\right| R^{-n}\right)
$$

The right hand side of the above inequality tends to ∞ as $R \rightarrow \infty$. Hence, $\exists R_{0} \ni|P(z)| \geq \mu$ if $|z| \geq R_{0}$. Since $|P|$ is continuous on the closed disc with center at the origin and radius R_{0}, it attains its minimum; i.e. $\exists z_{0} \ni\left|P\left(z_{0}\right)\right|=$ μ.

We claim that $\mu=0$. If not, put $Q(z)=\frac{P\left(z+z_{0}\right)}{P\left(z_{0}\right)}$. Then, Q is nonconstant polynomial, $Q(0)=1$, and $|Q(z)| \geq 1, \forall z$. There is a smallest integer k, $1 \leq k \leq n$ such that

$$
Q(z)=1+b_{k} z^{k}+\cdots+b_{n} z^{n}, b_{k} \neq 0
$$

By Theorem 13.5.1 (d), $\theta \in \mathbb{R} \ni e^{i k \theta} b_{k}=-\left|b_{k}\right|$. If $r>0$ and $r^{k}\left|b_{k}\right|<1$, we have $\left|1+b_{k} r^{k} e^{i k \theta}\right|=1-r^{k}\left|b_{k}\right|$, so that

$$
\left|Q\left(r e^{i \theta}\right)\right| \leq 1-r^{k}\left[\left|b_{k}\right|-r\left|b_{k+1}\right|-\cdots-r^{n-k}\left|b_{n}\right|\right] .
$$

For sufficiently small r, the expression in squared braces is positive; hence $\left|Q\left(r e^{i \theta}\right)\right|<1$, Contradiction. Thus, $\mu=0=P\left(z_{0}\right)$.

13.6 Fourier Series

Definition 13.6.1 A trigonometric polynomial is a finite sum of the form

$$
f(x)=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right), x \in \mathbb{R}
$$

where $a_{0}, a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{N} \in \mathbb{C}$. One can rewrite

$$
f(x)=\sum_{-N}^{N} c_{n} e^{i n x}, x \in \mathbb{R}
$$

which is more convenient. It is clear that, every trigonometric polynomial is periodic, with period 2π.

Remark 13.6.2 If $n \in \mathbb{N}$, $e^{i n x}$ is the derivative of $\frac{e^{i n x}}{i n}$ which also has period 2π. Hence,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n x} d x=\left\{\begin{array}{l}
1, n=0 \\
0, n= \pm 1, \pm 2, \ldots
\end{array}\right.
$$

If we multiply $f(x)$ by $e^{-i m x}$ where $m \in \mathbb{Z}$, then if we integrate, we have

$$
c_{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i m x} d x
$$

for $|m| \leq N$. Otherwise, $|m|>N$, the integral above is zero.
Therefore, the trigonometric polynomial is real if and only if

$$
c_{-n}=\overline{c_{n}}, n=0, \ldots, N
$$

Definition 13.6.3 A trigonometric series is a series of the form

$$
f(x)=\sum_{-\infty}^{\infty} c_{n} e^{i n x}, x \in \mathbb{R}
$$

If f is an integrable function on $[-\pi, \pi]$, the numbers c_{m} are called the Fourier coefficients of f, and the series formed with these coefficients is called the Fourier series of f.

13.7 Gamma Function

Definition 13.7.1 For $0<x<\infty$,

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

is known as the gamma function.
Proposition 13.7.2 Let $\Gamma(x)$ be defined above.
(a) $\Gamma(x+1)=x \Gamma(x), 0<x<\infty$.
(b) $\Gamma(n+1)=n!, n \in \mathbb{N} . \Gamma(1)=1$.
(c) $\log \Gamma$ is convex on $(0, \infty)$.

Proposition 13.7.3 If f is a positive function on $(0, \infty)$ such that
(a) $f(x+1)=x f(x)$,
(b) $f(1)=1$,
(c) $\log f$ is convex.
then $f(x)=\Gamma(x)$.
Proposition 13.7.4 If $x, y \in \mathbb{R}_{+}$,

$$
\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

This integral is so-called beta function $\beta(x, y)$.
Remark 13.7.5 Let $t=\sin \theta$, then

$$
2 \int_{0}^{\frac{\pi}{2}}(\sin \theta)^{2 x-1}(\cos \theta)^{2 y-1} d \theta=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

The special case $x=y=\frac{1}{2}$ gives

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

Remark 13.7.6 Let $t=s^{2}$ in the definition of Γ.

$$
\Gamma(x)=2 \int_{0}^{\infty} s^{2 x-1} e^{-s^{2}} d s, 0<x<\infty
$$

The special case $x=\frac{1}{2}$ gives

$$
\int_{-\infty}^{\infty} e^{-s^{2}} d s=\sqrt{\pi}
$$

This yields

$$
\Gamma(x)=\frac{2^{x-1}}{\sqrt{\pi}} \Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{x+1}{2}\right)
$$

Remark 13.7.7 (Stirling's Formula) This provides a simple approximate expression for $\Gamma(x+1)$ when x is large. The formula is

$$
\lim _{x \rightarrow \infty} \frac{\Gamma(x+1)}{\left(\frac{x}{e}\right)^{x} \sqrt{2 \pi x}}=1
$$

Problems

13.1. Prove Theorem 13.1.8, the comparison tests for nonnegative series.
13.2. Discuss the convergence and divergence of the following series:
a) $\sum_{0}^{\infty} \frac{x^{k}}{k!}$
b) $\sum_{1}^{\infty} \frac{x^{k}}{k^{\alpha}}$, where $\alpha>0$
c) $\sum_{1}^{\infty}\left(e^{\frac{1}{k}}-1\right)$
d) $\sum_{1}^{\infty} \ln \left(1+\frac{1}{k}\right)$
e) $\sum_{1}^{\infty} q^{k+\sqrt{k}}$, where $q>0$
f) $\sum_{1}^{\infty} \frac{1}{n}$
13.3. One can model every combinatorial problem (instance r) as

$$
\sum_{i} x_{i}=r, x_{i} \in S_{i} \subseteq \mathbb{Z}_{+} . \text {Let } A_{i j}=\left\{\begin{array}{l}
1, j \in S_{i} \\
0, j \notin S_{i}
\end{array}\right.
$$

Then, the power series

$$
g(x)=\prod_{i}\left(\sum_{j=0}^{\infty} A_{i j} x^{j}\right)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

is known as the generating function, where the number of distinct solutions to $\sum_{i} x_{i}=r$ is the coefficient a_{r}. We know that, one can write down a generating function for every combinatorial problem in such a way that a_{r} is the number
of solutions in a general instance r.
Use generating functions to
a) Prove the binomial theorem

$$
(1+x)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i}
$$

and extend to the multinomial (you may not use the generating functions) theorem

$$
\left(x_{1}+\cdots x_{k}\right)^{n}=\sum_{\substack{i_{1}, \ldots, i_{k} \in \mathbb{Z}_{+} \\ i_{1}+\cdots+i_{k}=n}}\binom{n}{i_{1}, \ldots, i_{k}} x_{1}^{i_{1}} \cdots x_{k}^{i_{k}}
$$

b) Prove that

$$
\left(1+x+x^{2}+x^{3}+\ldots\right)^{n}=\sum_{i=0}^{\infty}\binom{n-1+i}{i} x^{i}
$$

c) Find the probability of having a sum of 13 if we roll four distinct dice.
d) Solve the following difference equation: $a_{n}=5 a_{n-1}-6 a_{n-2}, \forall n=2,3,4, \ldots$ with $a_{0}=2$ and $a_{1}=5$ as boundary conditions.
13.4. Consider the following air defense situation. There are $i=1, \ldots, I$ enemy air threats each to be engaged to one of the allied $z=1, \ldots, Z$ high value zones with a value of w_{z}. The probability that a threat (i) will destroy its target (z) is $q_{i z}$. More than one threats can engage to a single zone. On the other hand, there are $j=1, \ldots, J$ allied air defense systems that can engage the incoming air threats. The single shot kill probability of an air defense missile fired by system j to a threat i is $p_{j i}$. Let the main integer decision variable be $x_{j i}$ indicating the number of missiles fired from system j to threat i.
a) Write down the nonlinear constraint if there is a threshold value d_{i}, the minimum desired probability for destroying target i. Try to linearize it using one of the functions defined in this chapter.
b) Let our objective function that maximizes the expected total weighted survival of the zones be

$$
\max \sum_{z} w_{z} \alpha_{z}(0), \text { where } \alpha_{z}=\prod_{i}\left[1-q_{i z}\left(\prod_{j}\left(1-p_{j i}\right)^{x_{j i}}\right)\right]=\prod_{i} \beta_{i z}
$$

Then, $\gamma_{z}=\log \left(\alpha_{z}\right)=\sum_{i} \log \left(\beta_{i z}\right)=\sum_{i} \delta_{i z}$ and we have the second objective function: $\max \sum_{z} w_{z} \gamma_{z}\left(0^{\prime}\right)$. Isn't this equivalent to $\max \sum_{z} w_{z} \sum_{i} \delta_{i z}\left(0^{\prime \prime}\right)$, where $\delta_{i z}=\log \left[1-q_{i z}\left(\prod_{j}\left(1-p_{j i}\right)^{x_{j i}}\right)\right]$? Since $\beta_{i z}=1-q_{i z}\left(\prod_{j}\left(1-p_{j i}\right)^{x_{j i}}\right)$ and we have

$$
\max \delta_{i z}=\max \log \left(\beta_{i z}\right) \equiv \max \beta_{i z} \equiv \min \left(1-\beta_{i z}\right) \equiv \min \log \left(1-\beta_{i z}\right)
$$

our fourth objective function (linear!) is $\min \sum_{z} w_{z} \sum_{i} \theta_{i z} \quad\left(0^{\prime \prime \prime}\right)$, where $\theta_{i z}=\log \left(1-\beta_{i z}\right)=\log \left(q_{i z}\right)+\left(\sum_{j}\left[\log \left(1-p_{j i}\right)\right] x_{j i}\right)$. Since we can drop the constants, $\log \left(q_{i z}\right)$, in the objective function, we will have the fifth objective function as $\min \sum_{z} w_{z} \sum_{i}\left(\sum_{j}\left[\log \left(1-p_{j i}\right)\right] x_{j i}\right)\left(0^{i v}\right)$, which is not (clearly) equivalent to the initial objective function in catching the same optimum solution! Where is the flaw?

$$
(0) ? \equiv\left(0^{\prime}\right) ? \equiv\left(0^{\prime \prime}\right) ? \equiv\left(0^{\prime \prime \prime}\right) ? \equiv\left(0^{i v}\right) ?
$$

Web material

http://archives.math.utk.edu/visual.calculus/6/power.1/index.html http://archives.math.utk.edu/visual.calculus/6/series.4/index.html http://arxiv.org/PS_cache/math-ph/pdf/0402/0402037.pdf http://calclab.math.tamu.edu/~belmonte/m152/L/ca/LA4.pdf http://calclab.math.tamu.edu/~belmonte/m152/L/ca/LA5.pdf http://cr.yp.to/2005-261/bender1/IS.pdf http://education.nebrwesleyan.edu/Research/StudentTeachers/ secfall2001/Serinaldi/Chap\%209/tsld009.htm
http://en.wikipedia.org/wiki/Power_series
http://en.wikipedia.org/wiki/Trigonometric_function\# Series_definitions
http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Mathematics/
PlanetMath_Exchange/40-XX_Sequences,_series,_summability
http://eom.springer.de/c/c026150.htm http://eom.springer.de/T/t094210.htm http://faculty.eicc.edu/bwood/ma155supplemental/ supplementalma155.html http://home.att.net/~numericana/answer/analysis.htm http://kr.cs.ait.ac.th/~radok/math/mat11/chap8.htm http://kr.cs.ait.ac.th/~radok/math/mat6/calc8.htm http://kr.cs.ait.ac.th/~radok/math/mat6/calc81.htm http://math.fullerton.edu/mathews/c2003/

ComplexGeometricSeriesMod.html http://math.fullerton.edu/mathews/n2003/ComplexFunTrigMod.html http://math.furman.edu/~dcs/book/c5pdf/sec57.pdf http://math.furman.edu/~dcs/book/c8pdf/sec87.pdf http://mathworld.wolfram.com/ConvergentSeries.html http://mathworld.wolfram.com/HarmonicSeries.html http://mathworld.wolfram.com/PowerSeries.html http://media.pearsoncmg.com/aw/aw_thomas_calculus_11/topics/ sequences.htm
http://motherhen.eng.buffalo.edu/MTH142/spring03/lec11.html http://oregonstate.edu/~peterseb/mth306/docs/306w2005_prob_1.pdf http://persweb.wabash.edu/facstaff/footer/Courses/M111-112/Handouts/
http://planetmath.org/encyclopedia/PowerSeries.html http://planetmath.org/encyclopedia/SlowerDivergentSeries.html http://shekel.jct.ac.il/~math/tutorials/complex/node48.html http://sosmath.com/calculus/series/poseries/poseries.html http://syssci.atu.edu/math/faculty/finan/2924/cal92.pdf http://tutorial.math.lamar.edu/AllBrowsers/2414/

ConvergenceOfSeries.asp
http://web.mat.bham.ac.uk/R.W.Kaye/seqser/intro2series http://www.cs.unc.edu/~dorianm/academics/comp235/fourier http://www.du.edu/~etuttle/math/logs.htm http://www.ercangurvit.com/series/series.htm http://www.math.cmu.edu/~bobpego/21132/seriestools.pdf http://www.math.columbia.edu/~kimball/CalcII/w9.pdf http://www.math.columbia.edu/~rf/precalc/narrative.pdf http://www.math.harvard.edu/~jay/writings/p-adics1.pdf http://www.math.hmc.edu/calculus/tutorials/convergence/ http://www.math.mcgill.ca/labute/courses/255w03/L18.pdf http://www.math.niu.edu/~rusin/known-math/index/40-XX.html http://www.math.princeton.edu/~nelson/104/SequencesSeries.pdf http://www.math.ucla.edu/~elion/ta/33b.1.041/midterm2.pdf http://www.math.unh.edu/~jjp/radius/radius.html
http://www.math.unl.edu/~webnotes/classes/class38/class38.htm http://www.math.uwo.ca/courses/Online_calc_notes/081/unit6/Unit6.pdf http://www.math.wpi.edu/Course_Materials/MA1023B04/seq_ser/ node1.html
http://www.math2.org/math/expansion/tests.htm http://www.math2.org/math/oddsends/complexity/e\^itheta.htm http://www.mathreference.com/lc-ser, intro.html http://www.maths.abdn.ac.uk/~igc/tch/ma2001/notes/node53.html http://www.maths.mq.edu.au/~wchen/lnfycfolder/fyc19-ps.pdf http://www.mecca. org/~halfacre/MATH/series.htm http://www.ms.uky.edu/~carl/ma330/sin/sin1.html http://www.pa.msu.edu/~stump/champ/10.pdf http://www.richland.edu/staff/amoshgi/m230/Fourier.pdf
http://www.sosmath. com/calculus/improper/gamma/gamma.html http://www.sosmath. com/calculus/powser/powser01.html http://www.sosmath.com/calculus/series/poseries/poseries.html http://www.stewartcalculus.com/data/CALCULUS\ Early\% 20Transcendentals/upfiles/FourierSeries5ET.pdf
http://www4.ncsu.edu/~acherto/NCSU/MA241/sections81-5.pdf http://www42.homepage.villanova.edu/frederick.hartmann/Boundaries/

Boundaries.pdf
www.cwru.edu/artsci/math/butler/notes/compar.pdf

14

Special Transformations

In functional analysis, the Laplace transform is a powerful technique for analyzing linear time-invariant systems. In actual, physical systems, the Laplace transform is often interpreted as a transformation from the time-domain point of view, in which inputs and outputs are understood as functions of time, to the frequency-domain point of view, where the same inputs and outputs are seen as functions of complex angular frequency, or radians per unit time. This transformation not only provides a fundamentally different way to understand the behavior of the system, but it also drastically reduces the complexity of the mathematical calculations required to analyze the system. The Laplace transform has many important Operations Research applications as well as applications in control engineering, physics, optics, signal processing and probability theory. The Laplace transform is used to analyze continuoustime systems whereas its discrete-time counterpart is the Z transform. The Z transform among other applications is used frequently in discrete probability theory and stochastic processes, combinatorics and optimization. In this chapter, we will present an overview of these transformations from differential/difference equation systems' viewpoint.

14.1 Differential Equations

Definition 14.1.1 An (ordinary) differential equation is an equation that can be written as:

$$
\Phi\left(t, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

A solution of above is a continuous function $y: I \mapsto \mathbb{R}$ where I is a real interval such that $\Phi\left(t, y, y^{\prime}, \ldots, y^{(n)}\right)=0, \forall t \in I$. A differential equation is a linear differential equation of order n if

$$
y^{(n)}+\alpha_{n-1}(t) y^{(n-1)}+\cdots+\alpha_{1}(t) y^{\prime}+\alpha_{0}(t) y=b(t)
$$

where $\alpha_{n-1}, \cdots, \alpha_{1}, \alpha_{0}, b$ are continuous functions on I to \mathbb{R}. If $\forall \alpha_{i}=c_{i}$, the above has constant coefficients. If $b(t)=0, \forall t \in I$, then the above is called
homogeneous, otherwise it is non-homogeneous. If we assume $0 \in I$, and $y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}, \ldots, y^{(n-1)}(0)=y_{0}^{(n-1)}$ where $y_{0}, y_{0}^{\prime}, \ldots, y_{0}^{(n-1)}$ are n specified real numbers, this is called initial value problems where $y_{0}^{(*)}$,s are the prescribed initial values.

Example 14.1.2 (The $1^{s t}$ and $2^{\text {nd }}$ order linear initial value problems)

$$
y^{\prime}(t)=a(t) y(t)+f(t), \quad y(0)=y_{0}
$$

and for $n=2$, the constant coefficient problem is

$$
y^{\prime \prime}(t)+\alpha_{1} y^{\prime}(t)+\alpha_{0} y(t)=b(t) ; \quad y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}
$$

Remark 14.1.3 Let

$$
\begin{gathered}
\begin{aligned}
y(t)=y_{1}(t) & \begin{array}{c}
y_{1}^{\prime}(t)=y_{2}(t) \\
y^{\prime}(t)=y_{2}(t) \\
\vdots
\end{array}
\end{aligned} \Leftrightarrow \begin{array}{c}
y_{2}^{\prime}(t)=y_{3}(t) \\
\vdots
\end{array} \\
y^{(n-1)}(t)=y_{n}(t) \\
y_{n}^{\prime}(t)=-\alpha_{n-1} y_{n}(t)-\cdots-\alpha_{1} y_{2}(t)-\alpha_{0} y_{1}(t)+b(t) \\
\Leftrightarrow A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-\alpha_{0} & -\alpha_{1}-\alpha_{2} & \cdots & -\alpha_{n-1}
\end{array}\right], y(t)=\left[\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\vdots \\
y_{n-1}(t) \\
y_{n}(t)
\end{array}\right] \\
y_{0}=\left[\begin{array}{c}
y_{0} \\
y_{0}^{\prime} \\
\vdots \\
y_{0}^{(n-2)} \\
y_{0}^{(n-1)}
\end{array}\right], f(t)=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
b(t)
\end{array}\right] .
\end{gathered}
$$

We have linear differential systems problem:

$$
y^{\prime}(t)=A y(t)+f(t) ; \quad y(0)=y_{0}
$$

14.2 Laplace Transforms

Definition 14.2.1 The basic formula for the Laplace transformation y to η is

$$
\eta(s)=\int_{0}^{\infty} e^{-s t} y(t) d t
$$

We call the function, η, the Laplace transform of y if $\exists x_{0} \in \mathbb{R} \ni \eta(s)$ exists, $\forall s>x_{0}$. We call y as the inverse-Laplace transform of η.

$$
\eta(s)=\mathcal{L}\{y(t)\}, \quad y(t)=\mathcal{L}^{-1}\{\eta(s)\} .
$$

Proposition 14.2.2 If $y: \mathbb{R} \mapsto \mathbb{R}$ satisfies
(i) $y(t)=0$ for $t<0$,
(ii) $y(t)$ is piecewise continuous,
(iii) $y(t)=O\left(e^{x_{0} t}\right)$ for some $x_{0} \in \mathbb{R}$,
then $y(t)$ has a Laplace transform.
Tables 14.1 and 14.2 contain Laplace transforms and its properties.

Table 14.1. A Brief Table for Laplace Transforms

	Inverse	Laplace Transform Valid $s>x_{0}$	
	$y(t)$	$\eta(s)$	x_{0}
(1)	1	$\frac{1}{s}$	0
(2)	$e^{a t}$	$\frac{1}{s-a}, a \in \mathbb{C}$	$\Re a$
(3)	$t^{m}, m=1,2, \ldots$	$\frac{m!}{s^{m+1}}$	0
$(4) t^{m} e^{a t}, m=1,2, \ldots$	$\frac{m!^{m+1}}{(s-a)^{m+1}}, a \in \mathbb{C}$	$\Re a$	
(5)	$\sin b t$	$\frac{b}{s^{2}+b^{2}}$	0
(6)	$\cos b t$	$\frac{s^{2}+b^{2}}{s^{2}}$	0
(7)	$e^{c t} \sin d t$	$\frac{d}{(s-c)^{2}+d^{2}}$	c
(8)	$e^{c t} \cos d t$	$\frac{s-c}{(s-c)^{2}+d^{2}}$	c

Table 14.2. Properties of Laplace Transforms

	Inverse	Laplace Transform
(1)	$y(t)$	$\eta(s)$
(2)	$a y(t)+b z(t)$	$a \eta(s)+b \zeta(s)$
(3)	$y^{\prime}(t)$	$s \eta(s)-y(0)$
(4)	$y^{(n)}(t)$	$s^{n} \eta(s)-s^{n-1} y(0)$
		$-\cdots-y^{(n-1)}(0)$
$(5) y_{c}(t)=\left\{\begin{array}{cc}0, t<c \text { where } c>0 & \frac{e^{-c s}}{s} \\ 1, t \geq c & \eta(a s+b) \\ (6) & \frac{1}{a} e^{-\frac{b t}{a}} y\left(\frac{t}{a}\right), a>0 \\ (7) & t^{m} y(t), m=1,2, \ldots\end{array}\right)(-1)^{m} \eta^{(m)}(s)$		
(8)	$t^{-1} y(t)$	$\int_{s}^{\infty} \eta(u) d u$
(9)	$\int_{0}^{t} y(t-u) z(u) d u$	$\eta(s) \zeta(s)$

Remark 14.2.3 If $a=c+i d$ is non-real, $\mathcal{L}\left\{e^{a t}\right\}=\mathcal{L}\left\{e^{c t} \cos d t\right\}+i \mathcal{L}\left\{e^{d t} \sin d t\right\}$ then obtain Laplace transform using (2) in Table 14.1.

Remark 14.2.4 Proceed the following steps to solve an initial value problem:

S1. $y(t) \mapsto \eta(s)$.
S2. Solve the resulting linear algebraic equation, call the solution $\eta(s)$ the formal Laplace transform of $y(t)$.
S3. Find the inverse-Laplace transform $y(t)$.
S4. Verify that $y(t)$ is a solution.
Example 14.2.5 Find the solution to

$$
y^{\prime}(t)=-4 y(t)+f(t) ; \quad y(0)=0
$$

where $f(t)$ is the unit step function

$$
f(t)=\left\{\begin{array}{l}
0, t<1 \\
1, t \geq 1
\end{array}\right.
$$

and $I=[0, \infty)$. Transforming both sides, we have

$$
\begin{gathered}
s \eta(s)-y(0)=-4 \eta(s)+\frac{e^{-s}}{s} \\
s \eta(s)=-4 \eta(s)+\frac{e^{-s}}{s}
\end{gathered}
$$

At the end of S2, we have $\eta(s)=\frac{e^{-s}}{s(s+4)}$.

$$
\frac{1}{s(s+4)}=\frac{1}{4}\left(\frac{1}{s}-\frac{1}{s+4}\right)
$$

Therefore,

$$
\eta(s)=\frac{1}{4} e^{-s}\left(\frac{1}{s}-\frac{1}{s+4}\right)
$$

Thus,

$$
y(t)= \begin{cases}0, & t<1 \\ \frac{1}{4}\left(1-e^{-4(t-1)}\right), & t \geq 1\end{cases}
$$

Example 14.2.6 Let us solve

$$
y^{\prime}(t)=a y(t)+f(t) ; \quad y(0)=0
$$

such that $y^{\prime}(t)=f(t)$.
Let us take $y^{\prime}(t)=f(t)$ then $s \eta(s)-y_{0}=\phi(s)$, where $\phi(s)=\mathcal{L}\{f(t)\}$. Thus,

$$
\eta(s)=y_{0} \frac{1}{s}+\frac{1}{s} \phi(s)
$$

We use formula (9) in Table 14.2.

$$
y(t)=y_{0}+\int_{0}^{t} f(u) d u
$$

If we relax $y^{\prime}(t)=f(t)$, then we have

$$
\eta(s)=y_{0} \frac{1}{s-a}+\frac{1}{s-a} \phi(s)
$$

and

$$
y(t)=e^{a t} y_{0}+\int_{0}^{t} e^{a(t-u)} f(u) d u
$$

where $\phi(s)$ is the Laplace transform of $f(t)$.
Remark 14.2.7 In order to solve the matrix equation,

$$
y^{\prime}(t)=A y(t)+f(t) ; \quad y(0)=y_{0}
$$

we will take the Laplace transform as

$$
\eta(s)(s I-A)=y_{0}+\phi(s)
$$

where $\eta(s)=\left[\eta_{1}(s), \cdots, \eta_{n}(s)\right]^{T}$ is the vector of Laplace transforms of the components of y. If s is not an eigenvalue of A, then the coefficient matrix is nonsingular. Thus, for sufficiently large s

$$
\eta(s)=(s I-A)^{-1} y_{0}+(s I-A)^{-1} \phi(s)
$$

where the matrix $(s I-A)^{-1}$ is called the resolvent matrix of A and

$$
\mathcal{L}\left(e^{t A}\right)=(s I-A)^{-1} \text { for } f(t)=0
$$

Example 14.2.8 Let us take an example problem as Matrix exponentials. The problem of finding $e^{t A}$ for an arbitrary square matrix A of order n can be solved by finding the Jordan form. For $n \geq 3$, one should use a computer. However, we will show that how Cayley-Hamilton Theorem leads to another method for finding $e^{t A}$ when $n=2$. Let us take the following system of equations

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{2}(t)+1 \quad y_{1}(0)=3 \\
& y_{2}^{\prime}(t)=y_{1}(t)+t \quad y_{2}(0)=1
\end{aligned}
$$

Then,

$$
\begin{gathered}
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], f(t)=\left[\begin{array}{l}
1 \\
t
\end{array}\right], y_{0}=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
S^{-1} A S=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \\
e^{t A}=S\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right] \\
S^{-1}=\frac{1}{2}\left[\begin{array}{l}
e^{t}+e^{-t} e^{t}-e^{-t} \\
e^{t}-e^{-t} e^{t}+e^{-t}
\end{array}\right]
\end{gathered}
$$

Then, the unique solution is $y(t)=e^{t A} y_{0}+p(t)$, where

$$
\begin{gathered}
e^{t A} y_{0}=\left[\begin{array}{l}
2 e^{t}+e^{-t} \\
2 e^{t}-e^{-t}
\end{array}\right] \text { and } \\
p(t)=\frac{1}{2}\left[\begin{array}{c}
\int_{0}^{t}\left[e^{t}\left(e^{-u}+u e^{-u}\right)+e^{-t}\left(e^{-u}-u e^{-u}\right)\right] d u \\
\int_{0}^{t}\left[e^{t}\left(e^{-u}+u e^{-u}\right)+e^{-t}\left(e^{-u}+u e^{-u}\right)\right] d u
\end{array}\right] .
\end{gathered}
$$

Then, after integration we have

$$
p(t)=\left[\begin{array}{c}
e^{t}-e^{-t}-t \\
e^{t}+e^{-t}-2
\end{array}\right] \Rightarrow y(t)=\left[\begin{array}{c}
3 e^{t}-t \\
3 e^{t}-2
\end{array}\right] .
$$

One can solve the above differential equation system using Laplace transforms:

$$
\begin{gather*}
y^{\prime}(t)=A y(t)+f(t) \Leftrightarrow s\left[\begin{array}{l}
\eta_{1}(s) \\
\eta_{2}(s)
\end{array}\right]-\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\eta_{1}(s) \\
\eta_{2}(s)
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{s} \\
\frac{1}{s^{2}}
\end{array}\right] \\
\Leftrightarrow\left[\begin{array}{cc}
s & -1 \\
-1 & s
\end{array}\right]\left[\begin{array}{l}
\eta_{1}(s) \\
\eta_{2}(s)
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{s} \\
\frac{1}{s^{2}}
\end{array}\right](\star)
\end{gather*}
$$

Then, the resolvent matrix is

$$
(s I-A)^{-1}=\frac{1}{(s-1)(s+1)}\left[\begin{array}{ll}
s & 1 \\
1 & s
\end{array}\right](\star \star)
$$

If we multiply both sides of (\star) by ($\star \star$), we have

$$
\begin{gathered}
\eta(s)=\frac{1}{(s-1)(s+1)}\left[\begin{array}{c}
3 s+1 \\
s+3
\end{array}\right]+\frac{1}{s^{2}(s-1)(s+1)}\left[\begin{array}{c}
s^{2}+1 \\
2 s
\end{array}\right] \\
\eta(s)=\frac{1}{s-1}\left[\begin{array}{l}
3 \\
3
\end{array}\right]+\frac{1}{s+1}\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\frac{1}{s^{2}}\left[\begin{array}{r}
-1 \\
0
\end{array}\right]+\frac{1}{s}\left[\begin{array}{r}
0 \\
-2
\end{array}\right] \\
\Rightarrow y(t)=\left[\begin{array}{l}
3 e^{t}-t \\
3 e^{t}-2
\end{array}\right]
\end{gathered}
$$

In order to find $e^{t A}$, we expand right hand side of ($(\star \star)$ as

$$
\eta(s)=\frac{1}{s-1}\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]+\frac{1}{s+1}\left[\begin{array}{rr}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

If we invert it, we will have the following

$$
e^{t A}=\frac{1}{2}\left[\begin{array}{l}
e^{t}+e^{-t} e^{t}-e^{-t} \\
e^{t}-e^{-t} e^{t}+e^{-t}
\end{array}\right] .
$$

14.3 Difference Equations

Let us start with first-order difference equations:

$$
\left.\begin{array}{r}
y(k+1)=y(k)+f(k) \\
y(0)=y_{0}
\end{array}\right\} \quad \Delta y(k)=f(k), k=1,2, \ldots
$$

The initial value problem of the above equation can be solved by the following recurrence relation:

$$
y(k)=y(k+1)-f(k), k=-1,-2, \ldots
$$

Therefore, we find

$$
y(k)= \begin{cases}y_{0}+\sum_{u=0}^{k-1} f(u), & k=1,2,3, \ldots \\ y_{0}, & k=0 \\ y_{0}-\sum_{u=k}^{-1} f(u), & k=-1,-2, \ldots\end{cases}
$$

For second-order equations, we will consider first the homogeneous case:

$$
y(k+2)+\alpha_{1} y(k+1)+\alpha_{0} y(k)=0 ; y(0)=y_{0}, y(1)=y_{1} .
$$

We seek constants

$$
\lambda_{1}, \lambda_{2} \ni z(k+1)=\lambda_{2} z(k) ; z(0)=y_{1}-\lambda_{1} y_{0}
$$

which are the roots of

$$
\lambda^{2}+\alpha_{1} \lambda+\alpha_{0}=0
$$

If $\lambda_{1} \neq \lambda_{2}$, then $y(k)=c_{1} \lambda_{1}^{k}+c_{2} \lambda_{2}^{k}$ where c_{1}, c_{2} are the unique solutions of

$$
c_{1}+c_{2}=y_{0}, \quad c_{1} \lambda_{1}+c_{2} \lambda_{2}=y_{1}
$$

If $\lambda_{1}=\lambda_{2}=\lambda$, then $y(k)=c_{1} \lambda^{k}+c_{2} \lambda^{k}$ where c_{1}, c_{2} are the unique solutions of

$$
c_{1}=y_{0}, \quad c_{1} \lambda+c_{2} \lambda=y_{1} .
$$

When the roots are non-real, $\lambda=\rho e^{i \theta}$ and $\bar{\lambda}=\rho e^{-i \theta}$, then

$$
y(k)=c_{1} \rho^{k} \cos k \theta+c_{2} \rho^{k} \sin k \theta
$$

where c_{1} and c_{2} are the unique solutions of

$$
c_{1}=y_{0} ; \quad c_{1} \cos \theta+c_{2} \sin \theta=y_{1} .
$$

If we have systems of equations,

$$
y(k+1)=A y(k), k=0,1,2, \ldots ; y(0)=y_{0}
$$

we, then, have as a recurrence relation

$$
y(k)=A^{k} y_{0} \text { and } A^{0}=I
$$

When A is singular, there does not exist a unique solution $y(-1)$ satisfying $A y(-1)=y_{0}$. When A is non-singular,

$$
y(k)=A^{-1} y(k+1)
$$

Then, $y(-1)=A^{-1} y_{0}, y(-2)=A^{-2} y_{0}, \cdots$ where $A^{-k}=A^{-1} A^{-k+1}=$ $\left(A^{-1}\right)^{k}, k=2,3, \ldots$ Recall that, if $A=S J S^{-1}$ then $A^{k}=S J^{k} S^{-1}$. Then,

$$
y(k)=S J S^{-1} y_{0}, k=0,1, \ldots
$$

For the non-homogeneous case,

$$
y(k+1)=A y(k)+f(k)
$$

If A is nonsingular,

$$
y(k)=A^{k} y_{0}+p(k)
$$

where $p(k+1)=A p(k)+f(k) ; p(0)=0$. This yields

$$
p(k)=-\sum_{v=k}^{-1} A^{k-1-v} f(v)
$$

Example 14.3.1 For $k=0,1, \ldots$,

$$
\begin{gathered}
y_{1}(k+1)=y_{2}(k)+1, \quad y_{1}(0)=3 \\
y_{2}(k+1)=y_{1}(k)+1, \quad y_{2}(0)=1 \\
A^{k}=\frac{1}{2}\left[\begin{array}{c}
1+(-1)^{k} 1-(-1)^{k} \\
1-(-1)^{k} 1+(-1)^{k}
\end{array}\right], A^{k} y_{0}=\left[\begin{array}{l}
2+(-1)^{k} \\
2-(-1)^{k}
\end{array}\right], \\
p(k)=\frac{1}{2} \sum_{u=0}^{k-1}\left[\begin{array}{c}
k-u+(-1)^{u}(2-k+u) \\
k-u-(-1)^{u}(2-k+u)
\end{array}\right] .
\end{gathered}
$$

We know,

$$
\begin{gathered}
\frac{1}{2} \sum_{u=0}^{k-1}(k-u)=\frac{1}{2} \frac{k(k+1)}{2} \text { and } \\
\frac{1}{2}(2-k) \sum_{u=0}^{k-1}(-1)^{u}+\frac{1}{2} \sum_{u=0}^{k-1} u(-1)^{u}=\frac{3}{8}-\frac{3}{8}(-1)^{k}-\frac{k}{2} . \\
p(k)=\frac{1}{8}\left[\begin{array}{c}
2 k^{2}-3(-1)^{k}+3 \\
2 k^{2}+4 k+3(-1)^{k}-3
\end{array}\right] \Rightarrow \\
y(k)=k^{2}\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right]+k\left[\begin{array}{c}
0 \\
\frac{1}{2}
\end{array}\right]+(-1)^{k}\left[\begin{array}{r}
\frac{5}{8} \\
-\frac{5}{8}
\end{array}\right]+\left[\begin{array}{c}
\frac{19}{8} \\
\frac{13}{8}
\end{array}\right] .
\end{gathered}
$$

14.4 Z Transforms

Definition 14.4.1 The Z Transformation y to η is

$$
\eta(z)=\sum_{u=0}^{\infty} \frac{y(u)}{z^{u}}, \text { where } z \in \mathbb{C}
$$

We call the function η the Z transform of y if

$$
\exists r \in \mathbb{R} \ni \eta(z) \text { converges whenever }|z|>r
$$

in such cases y is the inverse Z transform of η.

$$
\eta(z)=\mathcal{Z}\{y(t)\}, \quad y(t)=\mathcal{Z}^{-1}\{\eta(z)\}
$$

Proposition 14.4.2 If y satisfies
(i) $y(k)=0$ for $k=-1,-2, \ldots$,
(ii) $y(k)=O\left(k^{n}\right), n \in \mathbb{Z}_{+}$,
then y has a Z transform.
If $\eta(z)$ is the Z transform for some function $|z|>r$, then that function is

$$
y(k)=\left\{\begin{array}{ll}
\frac{1}{2 \pi i} \int_{C} z^{k-1} \eta(z) d z, & k=0,1,2, \ldots \\
0, & k=-1,-2, \ldots
\end{array},\right.
$$

where C is positively oriented cycle of radius $r^{\prime}>r$ and center at $z=0$.
For Z transform related information, please refer to Tables 14.3 and 14.4.

Remark 14.4.3

$$
\mathcal{Z}\{y(k+1)\}=y(1)+\frac{y(2)}{z}+\frac{y(3)}{z^{2}}+\cdots=z \eta(z)-z y(0) .
$$

The Laplace transform of $y^{\prime}(t)$ is $s \eta(s)-y(0)$.
Remark 14.4.4 The procedure to follow for using Z transforms to solve an initial value problem is as follows:
S1. $y(k) \mapsto \eta(z)$.
S2. Solve the resulting linear algebraic equation $\eta(z)=\mathcal{Z}\{y(k)\}$.
S3. Find the inverse Z transform $y(k)=\mathcal{Z}^{-1}\{\eta(z)\}$.
S4. Verify that $y(k)$ is a solution.

Example 14.4.5

$$
\begin{gathered}
y(k+1)=a y(k)+f(k), k=0,1, \ldots ; y(0)=y_{0}, a \neq 0 \\
z \eta(z)-z y_{0}=a \eta(z)+\phi(z) \Rightarrow \eta(z)=\frac{z}{z-a} y_{0}+\frac{1}{z-a} \phi(z)=\eta_{1}(z)+\eta_{2}(z)
\end{gathered}
$$

Table 14.3. A Brief Table for Z transforms

Table 14.4. Properties of Z transforms

	Inverse	Z transform
(1)	$y(k)$	$\eta(z)$
(2)	$a y_{1}(k)+b y_{2}(k)$	$a \eta_{1}(z)+b \eta_{2}(z)$
(3)	$y(k+1)$	$z \eta(z)-z y(0)$
(4)	$y(k+n)$	$z^{n} \eta(z)-z^{n} y(0)$
(5)	$y(k-c), c \geq 0$	$-z^{n-1} y(1)-\cdots-z y(n-1)$
(6)	$a^{k} y(k)$	$z^{-c} \eta(z)$
(7)	$k y(k)$	$\eta(z)$
(8)	$k^{2} y(k)$	$-z \frac{d \eta(z)}{d z}$
(9)	$k^{m} y(k), m_{1}=0,1,2, \ldots$	$-z \frac{d}{d z}\left[z \eta^{\prime}(z)\right]$
(10)	$\sum_{u=0}^{k} y_{1}(k-u) y_{2}(u)$	$\left(-z \frac{d}{d z}\right)^{m} \eta(z)$
(11)	$y_{1}(k) y_{2}(k)$	$\frac{1}{2 \pi i} \int_{C} \rho^{-1} \eta_{1}(\rho) \eta_{2}\left(\rho^{-1} z\right) d \rho$
(12)	$\sum_{u=0}^{k} y(u)$	$\frac{z}{z-1} \eta(z)$

We know $\frac{1}{z-a} \phi(z)=\frac{z}{z-a} \frac{\phi(z)}{z}$, and $\eta_{2}(z)=\frac{\phi(z)}{z} \Rightarrow y_{2}(k)=f(k-1)$.
Then, by superposition,

$$
y(k)=a^{k} y_{0}+\sum_{u=0}^{k} f(k-1-u) a^{u}
$$

Remark 14.4.6 In order to solve the linear difference system

$$
y(k+1)=A y(k)+f(k) ; \quad y(0)=y_{0}
$$

we will take the Z transform of the components of $y(k)$, then we have

$$
(z I-A) \eta(z)=z y_{0}+\phi(z)
$$

where $\eta(z)=\left[\eta_{1}(z), \cdots, \eta_{n}(z)\right]^{T}$ is the vector of Z transforms of the components of y. If z is not an eigenvalue of A, then the coefficient matrix is nonsingular. Thus, for sufficiently large $|z|$, the unique solution is

$$
\eta(z)=z(z I-A)^{-1} y_{o}+(z I-A)^{-1} \phi(z)
$$

where we have

$$
\mathcal{Z}\left\{A^{k}\right\}=z(z I-A)^{-1}
$$

In order to find a particular solution, we solve $(z I-A)^{-1} p(z)=\phi(z)$ for $p(z)$ and find its inverse Z transform.

Example 14.4.7 Let us take our previous example problem:

$$
\begin{gathered}
y_{1}(k+1)=y_{2}(k)+1, y_{1}(0)=3, \\
y_{2}(k+1)=y_{1}(k)+1, y_{2}(0)=1 . \\
\eta(z)=\frac{z}{(z-1)(z+1)}\left[\begin{array}{ll}
z & 1 \\
1 & z
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]+\frac{1}{(z-1)(z+1)}\left[\begin{array}{cc}
z & 1 \\
1 & z
\end{array}\right]\left[\begin{array}{c}
\frac{z}{z-1} \\
(z-1)^{2}
\end{array}\right] \\
\mathcal{Z}\left\{A^{k} y_{0}\right\}=\frac{z}{z-1}\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\frac{z}{z+1}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
\Pi(z)=\frac{z}{(z-1)^{3}}\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]+\frac{z}{(z-1)^{2}}\left[\begin{array}{l}
\frac{1}{4} \\
\frac{3}{4}
\end{array}\right]+\frac{z}{(z-1)}\left[\begin{array}{r}
\frac{3}{8} \\
-\frac{3}{8}
\end{array}\right]+\frac{z}{(z+1)}\left[\begin{array}{r}
-\frac{3}{8} \\
\frac{3}{8}
\end{array}\right] . \\
\Rightarrow y(k)=k^{2}\left[\begin{array}{l}
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right]+k\left[\begin{array}{l}
0 \\
\frac{1}{2}
\end{array}\right]+(-1)^{k}\left[\begin{array}{r}
\frac{5}{8} \\
-\frac{5}{8}
\end{array}\right]+\left[\begin{array}{r}
\frac{19}{8} \\
\frac{13}{8}
\end{array}\right] .
\end{gathered}
$$

Problems

14.1. Solve $y^{\prime \prime}(t)-y(t)=e^{2 t} ; \quad y(0)=2, y^{\prime}(0)=0$.
14.2. Solve $y(k+1)=y(k)+2 e^{k} ; y(0)=1$.
14.3. Consider a combat situation between Blue (x) and Red (y) forces in which Blue is under a directed fire from Red at a rate of 0.2 Blue-units/unit-time/Red-firer and Red is subjected to directed fire at a rate of 0.3 Red-units/unit-time/Blue-firer plus a non-combat loss (to be treated as self directed fire) at a rate of 0.1 Red-units/unit-time/Red-unit. Suppose that there are 50 Blue and 100 Red units initially. Find the surviving Red units at times $t=0,1,2,3,4$ using the Laplace transformation.
14.4. Find the closed form solution for the Fibonacci sequence $F_{k+2}=F_{k+1}+$ $F_{k}, F_{1}=1, F_{2}=1$ using the Z-transformation and calculate F_{100}.

Web material

http://ccrma.stanford.edu/~jos/filters/Laplace_Transform_ Analysis.html
http://claymore.engineer.gvsu.edu/~jackh/books/model/chapters/
laplace.pdf
http://cnx.org/content/m10110/latest/
http://cnx.org/content/m10549/latest/
http://dea.brunel.ac.uk/cmsp/Home_Saeed_Vaseghi/Chapter04-Z-
Transform.pdf
http://dspcan.homestead.com/files/Ztran/zdiffi.htm
http://dspcan.homestead.com/files/Ztran/zlap.htm
http://en.wikipedia.org/wiki/Laplace_Transform
http://en.wikipedia.org/wiki/Z-transform
http://eom.springer.de/1/1057540.htm
http://eom.springer.de/Z/z130010.htm
http://fourier.eng.hmc.edu/e102/lectures/Z_Transform/
http://home.case.edu/ ${ }^{\sim}$ pjh4/MATH234/zTransform.pdf
http://homepage.newschool.edu/~foleyd/GEC06289/laplace.pdf
http://kwon3d.com/theory/filtering/ztrans.html
http://lanoswww.epfl.ch/studinfo/courses/cours_dynsys/extras/
Smith(2002)_Introduction_to_Laplace_Transform_Analysis.pdf
http://lorien.ncl.ac.uk/ming/dynamics/laplace.pdf
http://math.fullerton.edu/mathews/c2003/ztransform/ZTransformBib/
Links/ZTransformBib_lnk_3.html
http://math.fullerton.edu/mathews/c2003/ZTransformBib.html
http://math.ut.ee/~toomas_l/harmonic_analysis/Fourier/node35.html
http://mathworld.wolfram.com/LaplaceTransform.html
http://mathworld. wolfram.com/Z-Transform.htm
http://mywebpages.comcast.net/pgoodmann/EET357/Lectures/Lecture8.ppt
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-
Science/6-003Fall-2003/LectureNotes/
http://phyastweb.la.asu.edu/phy501-shumway/notes/lec20.pdf
http://planetmath.org/encyclopedia/LaplaceTransform.html
http://umech.mit.edu/weiss/PDFfiles/lectures/lec12wm.pdf
http://umech.mit.edu/weiss/PDFfiles/lectures/lec5wm.pdf
http://web.mit.edu/2.161/www/Handouts/ZLaplace.pdf
http://www.absoluteastronomy.com/z/z-transform
http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node11.html
http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node6.html
http://www.cbu.edu/~rprice/lectures/laplace.html
http://www.cs.huji.ac.il/~control/handouts/laplace_Boyd.pdf
http://www.dspguide.com/ch33.htm
http://www.ece.nmsu.edu/ctrlsys/help/lxprops.pdf
http://www.ece.rochester.edu/courses/ECE $446 /$ The $\% 20$ z-transform.pdf
http://www.ece.utexas.edu/~bevans/courses/ee313/lectures/
15_Z_Transform/index.html
http://www.ece.utexas.edu/~bevans/courses/ee313/lectures/ 18_Z_Laplace/index.html
http://www.ee.columbia.edu/~dpwe/e4810/lectures/L04-ztrans.pdf
http://www.efunda.com/math/laplace_transform/index.cfm
http://www.facstaff.bucknell.edu/mastascu/eControlHTML/Sampled/
Sampled1.html
http://www.faqs.org/docs/sp/sp-142.html
http://www.geo.cornell.edu/geology/classes/brown/eas 434/Notes/
Fourier\%20family.doc
http://www.intmath.com/Laplace/Laplace.php
http://www.just.edu.jo/~hazem-ot/signal1.pdf
http://www.ling.upenn.edu/courses/ling525/z.html
http://www.ma.umist.ac.uk/kd/ma2m1/laplace.pdf
http://www.maths.abdn.ac.uk/~igc/tch/engbook/node59.html
http://www.maths.manchester.ac.uk/~kd/ma2m1/laplace.pdf
http://www.plmsc.psu.edu/~www/matsc597/fourier/laplace/laplace.html
http://www.realtime.net/~drwolf/papers/dissertation/node117.html
http://www.roymech.co.uk/Related/Control/Laplace_Transforms.html
http://www. sosmath.com/diffeq/laplace/basic/basic.html
http://www.swarthmore.edu/NatSci/echeeve1/Ref/Laplace/Table.html
http://www.u-aizu.ac.jp/~qf-zhao/TEACHING/DSP/lec04.pdf
http://www.u-aizu.ac.jp/~qf-zhao/TEACHING/DSP/lec05.pdf
www.brunel.ac.uk/depts/ee/Research_Programme/COM/Home_Saeed_Vaseghi/
Chapter04-Z-Transform.pdf
www.ee.ucr.edu/~yhua/ee141/lecture4.pdf

Solutions

Problems of Chapter 1

1.1

(a) Since, f is continuous at x :

$$
\forall \epsilon_{1}>0 \exists \delta_{1}>0 \ni \forall y \ni|x-y|<\delta_{1} \Rightarrow|f(x)-f(y)|<\epsilon_{1}
$$

g is continuous at x :

$$
\forall \epsilon_{2}>0 \exists \delta_{2}>0 \ni \forall y \ni|x-y|<\delta_{2} \Rightarrow|g(x)-g(y)|<\epsilon_{2} .
$$

Fix ϵ_{1} and ϵ_{2} at $\frac{\epsilon}{2}$.

$$
\begin{aligned}
& \exists \delta_{1}>0 \ni \forall y \ni|x-y|<\delta_{1} \Rightarrow|f(x)-f(y)|<\frac{\epsilon}{2} \\
& \exists \delta_{1}>0 \ni \forall y \ni|x-y|<\delta_{2} \Rightarrow|g(x)-g(y)|<\frac{\epsilon}{2}
\end{aligned}
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}>0$.

$$
\begin{gathered}
\forall y \ni|x-y|<\delta \Rightarrow|f(x)-f(y)|<\frac{\epsilon}{2},|g(x)-g(y)|<\frac{\epsilon}{2} \\
|(f+g)(x)-(f+g)(y)|=|f(x)+g(x)-f(y)-g(y)| \leq \\
|f(x)-f(y)|+|g(x)-g(y)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{gathered}
$$

Thus, $\forall \epsilon>0 \exists \delta>0 \quad \ni \forall y \ni|x-y|<\delta \Rightarrow|(f+g)(x)-(f+g)(y)|<\epsilon$. Therefore, $f+g$ is continuous at x.
(b) f is continuous at x :

$$
\forall \epsilon_{1}>0 \exists \delta>0 \ni \forall y \ni|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon
$$

Fix $\epsilon=\bar{\epsilon}$. Then,

$$
\exists \delta>0(\text { say } \bar{\delta}) \ni \forall y(\text { can fix at } \bar{y}) \ni|x-y|<\delta \Rightarrow|f(x)-f(y)|<\bar{\epsilon}
$$

We have $|x-\bar{y}|<\bar{\delta} \Rightarrow|f(x)-f(\bar{y})|<\bar{\epsilon}$.

$$
\forall y \ni|x-y|<\dot{\delta},|f(x)-f(y)| \leq c|x-y|
$$

Choose $\bar{y} \ni|x-\bar{y}|<\dot{\delta},|f(x)-f(\bar{y})| \leq c|x-\bar{y}| \leq c \dot{\delta}$.
If $\left\{\begin{array}{r}0<\delta<\frac{\bar{\epsilon}}{c} \\ \delta<\delta\end{array}\right\}$, we will reach the desired condition. One can choose $0<\delta<$ $\min \left\{\bar{\delta}, \frac{\bar{\epsilon}}{c}\right\}$.

$$
\forall \bar{y} \ni|x-\bar{y}|<\delta<\delta,|f(x)-f(y)| \leq c|x-\bar{y}| \leq c \delta<\bar{\epsilon}
$$

1.2 Observation: Every time we break a piece, the total number of pieces is increased by one. When there is no pieces to break, each piece is a small square. At the beginning when we had the whole chocolate with n squares after $b=0$ breaks, we had $p=1$ piece. After one break $(b=1)$, we got $p=2$ pieces. Therefore, p is always greater by one than b, i.e. $p=b+1$. In the end,

$$
p=b+1=n
$$

The above argument constitutes a direct proof. Let us use induction to prove that the above observation $b=n-1$ is correct.

1. $n=2 \Rightarrow b=1$, i.e. if there are only two squares, we clearly need one break.
2. Assume that for $2 \leq k \leq n-1$ squares it takes only $k-1$ breaks. In order to break the chocolate bar with n squares, we first split into two with k_{1} and k_{2} squares $\left(k_{1}+k_{2}=n\right)$. By the induction hypothesis, it will take $k_{1}-1$ breaks to split the first bar and $k_{2}-1$ to split the second. Thus, the total is

$$
b=1+\left(k_{1}-1\right)+\left(k_{2}-1\right)=k_{1}+k_{2}-1=n-1
$$

1.3

(a) $\binom{n}{r}=\binom{n}{n-r}$:

Full Forward Method:

$$
\binom{n}{r}=\frac{n!}{(n-r)!r!}=\frac{n!}{r!(n-r)!}=\binom{n}{n-r}
$$

Combinatorial Method:

$\binom{n}{r}$ denotes the number of different ways of selecting r objects out of n objects in an urn. If we look at the same phenomenon from the viewpoint of the objects left in the urn, the number of different ways of selecting $n-r$ objects out of n is $\binom{n}{n-r}$. These two must be equal since we derive them from two viewpoints of the same phenomenon.
(b) $\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}$:

Full Backward Method:

$$
\begin{aligned}
\binom{n-1}{r}+\binom{n-1}{r-1}= & \frac{(n-1)!}{(n-1-r)!r(r-1)!}+\frac{(n-1)!}{(n-r)(n-r-1)!(r-1)!}= \\
& =\frac{(n-1)![n-r+r]}{(n-r)!r!}=\binom{n}{r}
\end{aligned}
$$

Combinatorial Method:
$\binom{n}{r}$ denotes the number of different ways of selecting r balls out of n objects in
an urn. Let us fix a ball, call it super ball. Two mutually exclusive alternatives exist; we either select the super ball or it stays in the urn. Given that the super ball is selected, the number of different ways of choosing $r-1$ balls out of $n-1$ is $\binom{n-1}{r-1}$. In the case that the super ball is not selected, $\binom{n-1}{r}$ denotes the number of ways of choosing r balls out of $n-1$. By the rule of sum, the right hand side is equal to the left hand side.
(c) $\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}$:

We will use the corollary to the following theorem.

Theorem S.1.1 (Binomial Theorem)

$$
(1+x)^{n}=\binom{n}{0} x^{0}+\binom{n}{1} x^{1}+\cdots+\binom{n}{n} x^{n}
$$

Corollary S.1.2 Let $x=1$ in the Binomial Theorem. Then,

$$
(1+1)^{n}=2^{n}=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}
$$

Combinatorial Method:
2^{n} is the number of subsets of a set of size $n .\binom{n}{0}=1$ is for the empty set, $\binom{n}{n}=1$ is for the set itself, and $\binom{n}{r}, r=2, \ldots, n-1$ is the number of proper subsets of size r.
(d) $\binom{n}{m}\binom{m}{r}=\binom{n}{r}\binom{n-r}{m-r}$:

Forward-Backward Method:

$$
\begin{aligned}
\binom{n}{m}\binom{m}{r} & =\frac{n!}{(n-m)!\underbrace{m!}} \frac{\overbrace{m!}^{(m-r)!r!}}{(m-m)!(m-r)!r!} \\
\binom{n}{r}\binom{n-r}{m-r} & =\frac{n!}{r!\underbrace{(n-r)!}} \frac{\overbrace{(n-r)!}^{(n-m)!(m-r)!}}{(n-m!(n-m)!(m-r)!}
\end{aligned}
$$

Combinatorial Method:

$\binom{n}{m}$ denotes the number of different ways of selecting m Industrial Engineering students out of n M.E.T.U. students and $\binom{m}{r}$ denotes the number of different ways of selecting r Industrial Engineering students taking the Mathematics for O.R. course out of m I.E. students. On the other hand, $\binom{n}{r}$ denotes the number of ways of selecting r Industrial Engineering students taking Mathematics for O.R. from among n M.E.T.U. students and $\binom{n-r}{m-r}$ denotes the number of different ways of selecting $m-r$ Industrial Engineering students
not taking Mathematics for O.R. out of $n-r$ M.E.T.U. students not taking Mathematics for O.R. These two are equivalent.
(e) $\binom{n}{0}+\binom{n+1}{1}+\cdots+\binom{n+r}{r}=\binom{n+r+1}{r}$:

Trivial:
Apply item (b) r-times to the right hand side.
Combinatorial Method:
The right hand side, $\binom{n+r+1}{r}$, denotes the number of different ways of selecting r balls out of $m=n+2$ balls with repetition, known as the multi-set problem. Let | be the column separator if we reserve a column for each of m objects, let $\sqrt{ }$ be used as the tally mark if the object in the associated column is selected. Then, we have a string of size $r+(m-1)$ in which there are r tally marks and $m-1$ column separators. For instance, if we have three objects $\{x, y, z\}$, and we sample four times, " $\sqrt{ }|\sqrt{ }| \sqrt{ }$ " means x and z are selected once and y is selected twice. Then, the problem is equivalent to selecting the places of r tally marks in the string of size $r+(m-1)$, which is $\binom{r+m-1}{r}$.

Let us fix the super ball again. The left hand side is the list of the number of times that the super ball is selected in the above multi-set problem instance. That is, $\binom{n}{0}$ refers to the case in which the super ball is not selected, $\binom{n+1}{1}$ refers to the case in which the super ball is selected once, and $\binom{n+r}{r}$ refers to the case in which the super ball is always selected.

These two are equivalent.

Problems of Chapter 2

2.1 (a)

$$
\begin{aligned}
& a+b \rightarrow b ; a+b \rightarrow a ; b+c \rightarrow c ; c+d \rightarrow d ; \\
& d+e \rightarrow e ; e+f \rightarrow f ; f+g \rightarrow g ; g+i \rightarrow i ; h+i \rightarrow i \\
& {\left[A \| I_{9}\right] \longrightarrow\left[\begin{array}{c|c}
I_{8} \mid N & C \\
\hline 0 & D
\end{array}\right]} \\
& \begin{array}{c}
a \\
b \\
c \\
c \\
d \\
d \\
f \\
g \\
h \\
i
\end{array}\left[\left.\begin{array}{lllllllllllll|lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array} \right\rvert\, \begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Fig. S.1. The tree T in Problem2.1

Each basis corresponds to a spanning tree T in $G=(V, E)$, where $T \subset E$ connects every vertex and $\|T\|=\|V\|-1$. Here, we have $T=$
$\{1,2,3,4,5,6,7,8\}$. See Figure S.1.
(b) Each row represents a fundamental cocycle (cut) in the graph. In the tree, we term one node as root (node i), and we can associate an edge of the tree with every node like $1 \rightarrow b, 2 \rightarrow a, 3 \rightarrow c, 4 \rightarrow d, \cdots, 8 \rightarrow h$ as if we hanged the tree to the wall by its root. Then, if the associated edge (say edge 6) in the tree for the node ($s a y f$) in the identity part of z_{i} is removed, we partition the nodes into two sets as $V_{1}=\{a, b, c, d, e, f\}$ and $V_{2}=\{g, h, i\}$. The nonzero entries in z_{f} correspond to edges $10,12,13$, defining the set of edges connecting nodes in different parts of this partition or the cut. The set of such edges are termed as fundamental cocycle. See Figure S.2.

Fig. S.2. The cocycle defined by cutting edge $6 \rightarrow f$ in Problem2.1
(c) Each column represents a fundamental cycle. If we add the edge identified by I_{5} part into T, we will create a cycle defined by the nonzero elements of y^{j}. See Figure S. 3 .
(d) The first 8 columns of A form a basis for column space $\mathcal{R}(A)$. The columns of matrix Y is a basis for the null space $\mathcal{N}(A)$. The rows of C constitute a basis for the row space $\mathcal{R}\left(A^{T}\right)$. Finally, the row(s) of matrix D is (are) the basis vectors for the left-null space $\mathcal{N}\left(A^{T}\right)$.

Remark S.2.1 If our graph $G=(V, E)$ is bipartite, i.e. $V=V_{1} \bigcup V_{2} \ni$ $V_{1} \bigcap V_{2}=\emptyset, \quad V_{1} \neq \emptyset \neq V_{2}$ and $\forall e=\left(v_{1}, v_{2}\right) \in E, \quad v_{1} \in V_{1}, v_{2} \in V_{2}$, and we solve $\max c^{T} x$ s.t. $A x=b, x \geq 0$ using standard simplex algorithm over $G F(2)$, we will have exactly what we know as the transportation simplex method. Furthermore, for general graphs $G=(V, E)$, if we solve $\max c^{T} x$ s.t.

Fig. S.3. The fundamental cycle defined by edge 10 in Problem2.1
$A x=b, x \geq 0$ using a standard simplex algorithm over $G F(2)$, we will get the network simplex method.
2.2 (a)

$$
\begin{gathered}
A(5,2)=\left[\begin{array}{ll|llll}
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 12 & 0 \\
0 & 0 & 0 & 0 & 0 & 20
\end{array}\right]=[N \mid B] \\
{[B \mid N]=\left[U_{B} \mid U_{N}\right] \rightarrow\left[I_{4} \mid V_{N}\right]}
\end{gathered}
$$

where

$$
U_{B}=\left[\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 12 & 0 \\
0 & 0 & 0 & 20
\end{array}\right], U_{N}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]=0_{4 \times 2}, V_{N}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]=0_{4 \times 2}
$$

Then,

$$
\mathcal{R}(A)=\operatorname{Span}\left\{2 e_{1}, 6 e_{2}, 12 e_{3}, 20 e_{4}\right\}=\operatorname{Span}\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}=\mathbb{R}^{4}
$$

The rank of $A(n, k)$ is $r=4$.

$$
\begin{gathered}
\mathcal{R}\left(A^{T}\right)=\operatorname{Span}\left\{2 e_{3}, 6 e_{4}, 12 e_{5}, 20 e_{6}\right\}=\operatorname{Span}\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\}=\mathbb{R}^{4} . \\
\mathcal{N}(A)=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
\frac{0}{0} \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
\frac{1}{0} \\
0 \\
0 \\
0
\end{array}\right)\right\}=\operatorname{Span}\left\{e_{1}, e_{2}\right\}=\mathbb{R}^{2} . \\
\mathcal{N}\left(A^{T}\right)=\{\theta\}, \operatorname{dimN}\left(A^{T}\right)=0 .
\end{gathered}
$$

Thus, $\mathbb{R}^{6}=\mathcal{R}\left(A^{T}\right) \oplus \mathcal{N}(A)=\mathbb{R}^{4} \oplus \mathbb{R}^{2}$ and $\mathbb{R}^{4}=\mathcal{R}(A) \oplus \mathcal{N}\left(A^{T}\right)=\mathbb{R}^{4} \oplus \emptyset=\mathbb{R}^{4}$.
(b) Differentiator:

$$
\begin{gathered}
A(n, k)=\left[\begin{array}{ccc|ccccc}
0 & \cdots & 0 & \prod_{i=1}^{k} i & 0 & 0 & 0 & 0 \\
\vdots & \ddots & \vdots & 0 & \ddots & 0 & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & \prod_{i=j}^{k+j-1} i & 0 & 0 \\
\hline \vdots & \ddots & \vdots & 0 & 0 & 0 & \ddots & 0 \\
0 & \cdots & 0 & 0 & 0 & 0 & 0 & \prod_{i=n-k+1}^{n} i
\end{array}\right]=[N(n, k) \mid B(n, k)] \\
\\
{[B(n, k) \mid N(n, k)] \rightarrow\left[I_{n-k+1} \mid 0\right]}
\end{gathered}
$$

Then,

$$
\begin{aligned}
& \mathcal{R}(A)= \operatorname{Span}\left\{\left(\prod_{i=1}^{k} i\right) e_{1}, \cdots,\left(\prod_{i=n-k+1}^{n} i\right) e_{n-k+1}\right\} \\
&= \operatorname{Span}\left\{e_{1}, \cdots, e_{n-k+1}\right\}=\mathbb{R}^{n-k+1} . \\
& \mathcal{R}\left(A^{T}\right)= \operatorname{Span}\left\{\left(\prod_{i=1}^{k} i\right) e_{k+1}, \cdots,\left(\prod_{i=n-k+1}^{n} i\right) e_{n}\right\} \\
&=\operatorname{Span}\left\{e_{k+1}, \cdots, e_{n}\right\}=\mathbb{R}^{n-k+1} . \\
& \mathcal{N}(A)=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
\frac{0}{0} \\
\vdots \\
0
\end{array}\right), \cdots,\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\frac{1}{0} \\
\vdots \\
0
\end{array}\right)\right\}=\operatorname{Span}\left\{e_{1}, \cdots, e_{k}\right\}=\mathbb{R}^{k} . \\
& \mathcal{N}\left(A^{T}\right)=\{\theta\}, \operatorname{dim\mathcal {N}}\left(A^{T}\right)=0 .
\end{aligned}
$$

(c) Integrator:

$$
B(n, k)=\left[\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 0 \\
\hline \frac{1}{\prod_{i=1}^{k} i} & 0 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\prod_{i=j}^{k+j-1} i} & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\prod_{i=n-k+1}^{n} i}
\end{array}\right]
$$

After permuting some rows, we have

$$
\begin{gathered}
P B(n, k)=\left[\begin{array}{ccccc}
\frac{1}{\prod_{i=1}^{k} i} & 0 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\prod_{i=j}^{k+j-1} i} & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\prod_{i=n-k+1}^{n} i} \\
\hline 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right] . \\
{[P B(n, k)] \rightarrow\left[\frac{U_{B}}{0}\right] \rightarrow\left[\frac{I_{n-k+1}}{0}\right]}
\end{gathered}
$$

where

$$
U_{B}=\left[\begin{array}{ccccc}
\frac{1}{\Pi_{i=1}^{k} i} & 0 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\prod_{i=j}^{k+j-1} i} & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 1 \\
\prod_{i=n-k+1}^{n} i
\end{array}\right] .
$$

Thus,

$$
\mathcal{R}(B)=\mathbb{R}^{n-k+1}=\mathcal{R}\left(B^{T}\right)
$$

Furthermore,

$$
\mathcal{N}\left(B^{T}\right)=\mathbb{R}^{k} \text { and } \mathcal{N}(B)=\{\theta\}
$$

2.3

1. Let $n=4$ and characterize bases for the four fundamental subspaces related to $A=\left[y_{1}\left|y_{2}\right| \cdots \mid y_{n}\right]$.

$$
\begin{aligned}
& {\left[A\left|\mid I_{4}\right]=\left[\begin{array}{rrrr|rrrr}
-1 & 0 & 0 & 1 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & ||r l l|| r r r r
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 \\
0 & 1 & -1 & 0 & -1
\end{array}\right)\right.} \\
& {\left[\begin{array}{rrrr||rrrr}
1 & 0 & 0 & -1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & -1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|l|llll}
1 & 0 & 0 & -1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 & -1 & -1 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{l}
\left.I_{3}\left|V_{N}\right|\left|\frac{S_{I}}{O}\right| \right\rvert\, S_{I I}
\end{array}\right],} \\
& \text { where } V_{N}=\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right], S_{I}=\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 \\
-1 & -1 & -1 & 0
\end{array}\right], S_{I I}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Thus, $\mathcal{R}(A)=\operatorname{Span}\left\{y_{1}, y_{2}, y_{3}\right\} . \mathcal{N}(A)=\operatorname{Span}\{t\}$, where

$$
t=\left[\frac{-V_{N}}{I_{4-3}}\right]=\left[\begin{array}{c}
1 \\
1 \\
\frac{1}{1}
\end{array}\right]
$$

Moreover,

$$
\mathcal{R}\left(A^{T}\right)=\operatorname{Span}\left\{\left[\begin{array}{r}
-1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
1 \\
-1 \\
0
\end{array}\right]\right\}=\operatorname{Span}\left\{-y_{4},-y_{1},-y_{2}\right\}
$$

And finally, $\mathcal{N}\left(A^{T}\right)=\operatorname{Span}\left\{S_{I I}\right\}=\operatorname{Span}\left\{\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}\right\}$.
The case for $n=3$ is illustrated in Figure S.4. y_{1} is on the plane defined by $\operatorname{Span}\left\{e_{1}, e_{2}\right\}, y_{2}$ is on the plane defined by $\operatorname{Span}\left\{e_{2}, e_{3}\right\}$ and y_{3} is on the $\operatorname{Span}\left\{e_{1}, e_{3}\right\}$. Let us take $\left\{y_{1}, y_{2}\right\}$ in the basis for $\mathcal{R}(A)$, which defines the red plane on the right hand side of the figure. The normal to the plane is defined by the basis vector of $\mathcal{N}(A)=\operatorname{Span}\left\{[1,1,1]^{T}\right\}$. We have $\mathcal{N}(A)=(\mathcal{R}(A))^{\perp}$ since $\mathcal{N}(A) \equiv \mathcal{N}\left(A^{T}\right)$ (therefore, $\mathcal{R}\left(A^{T}\right) \equiv \mathcal{R}(A)$ by the Fundamental Theorem of Linear Algebra-Part 2) in this particular exercise.
2. Let us discuss the general case. Let $e=(1, \cdots, 1)^{T}$

$$
\left[A \| I_{n}\right] \rightarrow\left[\frac{I_{n-1} \mid V_{N}}{O}\left|\left\lvert\, \frac{S_{I}}{S_{I I}}\right.\right]\right.
$$

Fig. S.4. The range and null spaces of $A=\left[y_{1}\left|y_{2}\right| y_{3}\right]$
where $V_{N}=\left[\begin{array}{r}-1 \\ \vdots \\ -1\end{array}\right]=-e, S_{I}=\left[\begin{array}{rrr|r}-1 & 0 & 0 & 0 \\ \vdots & \ddots & 0 & \vdots \\ -1 & \cdots & -1 & 0\end{array}\right], S_{I I}=[1, \cdots, 1]=e^{T}$.
Thus, $\mathcal{R}(A)=\operatorname{Span}\left\{y_{1}, \cdots, y_{n-1}\right\} . \mathcal{N}(A)=\operatorname{Span}\{t\}$, where

$$
t=\left[\frac{-V_{N}}{I_{1}}\right]=\left[\begin{array}{c}
1 \\
\vdots \\
\frac{1}{1}
\end{array}\right]=e .
$$

Moreover,

$$
\mathcal{R}\left(A^{T}\right)=\operatorname{Span}\left\{-y_{n},-y_{1}, \cdots,-y_{n-2}\right\} .
$$

And finally, $\mathcal{N}\left(A^{T}\right)=\operatorname{Span}\left\{S_{I I}\right\}=\operatorname{Span}\left\{[1, \cdots, 1]^{T}\right\}=\operatorname{Span}\{e\} . \mathrm{We}$ have $\mathcal{N}(A)=(\mathcal{R}(A))^{\perp}$ since $\mathcal{N}(A) \equiv \mathcal{N}\left(A^{T}\right)$ (therefore, $\mathcal{R}\left(A^{T}\right) \equiv \mathcal{R}(A)$ by the Fundamental Theorem of Linear Algebra-part 2) in this particular exercise.

Problems of Chapter 3

3.1

$$
\left.\begin{array}{c}
A=\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
1 & -1 & 3 & 2 \\
1 & -1 & 3 & 2 \\
-1 & 1-3 & 1
\end{array}\right]=\left[\begin{array}{lll}
a^{1} & a^{2} & a^{3}
\end{array} a^{4}\right.
\end{array}\right] . ~\left(\begin{array}{r}
1 \\
1 \\
1 \\
-1
\end{array}\right] \Rightarrow v_{1}^{T} v_{1}=4, v_{1}^{T} a^{2}=-1, v_{1}^{T} a^{3}=9, v_{1}^{T} a^{4}=2 . ~\left[\begin{array}{r}
\frac{9}{4} \\
v_{1}=a^{1}=\left[\begin{array}{r}
-\frac{3}{4} \\
-\frac{3}{4} \\
\frac{3}{4}
\end{array}\right] \Rightarrow v_{2}^{T} v_{2}=\frac{27}{4}, v_{2}^{T} a^{3}=-9, v_{2}^{T} a^{4}=-\frac{9}{2} . \\
v_{2}=a^{2}-\frac{-1}{4} v_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
\end{array}\right.
$$

This result is acceptable since $a^{3}=2 a^{1}-a^{2}$; hence it is dependent on a^{1} and a^{2} 。

$$
v_{4}=a^{4}-\frac{-\frac{9}{2}}{\frac{27}{4}} v_{2}-\frac{-2}{4} v_{1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right]
$$

Thus,

$$
\begin{aligned}
& q_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right], q_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\left[\begin{array}{r}
\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{6} \\
-\frac{\sqrt{3}}{6} \\
\frac{\sqrt{3}}{6}
\end{array}\right], q_{4}=\frac{v_{4}}{\left\|v_{4}\right\|}=\left[\begin{array}{r}
0 \\
-\frac{\sqrt{6}}{6} \\
-\frac{\sqrt{6}}{6} \\
-\frac{\sqrt{6}}{3}
\end{array}\right] . \\
& a^{1}=2 q_{1} v_{1} \\
& a^{2}=-\frac{1}{2} q_{1}+\frac{3 \sqrt{3}}{2} q_{2}=-\frac{1}{4} v_{1}+v_{2} \\
& a^{3}=2\left(2 q_{1}\right)-\left(-\frac{1}{2} q_{1}+\frac{3 \sqrt{3}}{2}\right) q_{2}=\frac{9}{2} q_{1}+\frac{-3 \sqrt{3}}{2} q_{2}=2 v_{1}-v_{2} \Leftrightarrow \\
& a^{4}=q_{1}-\sqrt{3} q_{2}-\sqrt{6} q_{4}=\frac{1}{2} v_{1}+\frac{-2}{3} v_{2}+v_{4} \\
& Q=\left[\begin{array}{rrr}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{1}{2} & -\frac{\sqrt{3}}{6} & \frac{\sqrt{6}}{6} \\
\frac{1}{2}-\frac{\sqrt{3}}{6} & \frac{\sqrt{6}}{6} \\
-\frac{1}{2} & \frac{\sqrt{3}}{6} & \frac{\sqrt{6}}{3}
\end{array}\right], \quad R=\left[\begin{array}{rrrr}
2 & -\frac{1}{2} & \frac{9}{2} & 1 \\
0 & \frac{3 \sqrt{3}}{2} & -\frac{3 \sqrt{3}}{2} & -\sqrt{3} \\
0 & 0 & 0 & \sqrt{6}
\end{array}\right] .
\end{aligned}
$$

3.2

$$
y=\beta_{0}+\beta_{1} x+\epsilon \Rightarrow E[y]=\beta_{0}+\beta_{1} x
$$

Data:

$$
\left.\begin{array}{c}
y_{1}=\beta_{0}+\beta_{1} x_{1} \\
y_{2}=\beta_{0}+\beta_{1} x_{2} \\
\vdots \\
y_{m}=\beta_{0}+\beta_{1} x_{m}
\end{array}\right\} \Leftrightarrow\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{m}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \Leftrightarrow A \beta=y .
$$

The problem is to minimize $S S E=\|y-A \beta\|^{2}=\sum_{i=1}^{m}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}$. The solution is to choose $\bar{\beta}=\left[\begin{array}{l}\bar{\beta}_{0} \\ \bar{\beta}_{1}\end{array}\right]$ such that $A \bar{\beta}$ is as close as possible to y.

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{m}
\end{array}\right] \Rightarrow A^{T} A=\left[\begin{array}{cc}
m & \sum x_{i} \\
\sum x_{i} & \sum x_{i}^{2}
\end{array}\right], \operatorname{det}\left(A^{T} A\right)=m \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2} \\
\left(A^{T} A\right)^{-1}=\frac{1}{m \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}\left[\begin{array}{cc}
\sum x_{i}^{2} & -\sum x_{i} \\
-\sum x_{i} & m
\end{array}\right] \\
\bar{\beta}=\left(A^{T} A\right)^{-1} A^{T} y \\
\bar{\beta}=\frac{1}{m \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}\left[\begin{array}{c}
\sum x_{i}^{2} \\
-\sum x_{i}
\end{array} \quad \sum_{m} x_{i}\right]\left[\begin{array}{ccc}
1 & 1 & \cdots \\
x_{1} & x_{2} & \cdots \\
x_{m}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \\
\bar{\beta}=\left(A^{T} A\right)^{-1} A^{T} y=\frac{1}{m \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}\left[\begin{array}{cc}
\sum x_{i}^{2} & -\sum x_{i} \\
-\sum x_{i} & m
\end{array}\right]\left[\begin{array}{c}
\sum y_{i} \\
\sum x_{i} y_{i}
\end{array}\right] \\
\bar{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\overline{\beta_{1}}
\end{array}\right]=\left(A^{T} A\right)^{-1} A^{T} y=\frac{1}{m \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}\left[\begin{array}{ll}
\sum x_{i}^{2} \sum y_{i}-\sum x_{i} \sum x_{i} y_{i} \\
-\sum x_{i} y_{i}+m \sum x_{i} y_{i}
\end{array}\right] .
\end{gathered}
$$

We know from statistics that

$$
\overline{\beta_{1}}=\frac{S S_{x y}}{S S_{x x}}, \bar{\beta}_{0}=\bar{y}-\bar{\beta}_{1} \bar{x}
$$

where
$\bar{x}=\frac{\sum x_{i}}{m}, \bar{y}=\frac{\sum y_{i}}{m}, S S_{x y}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right), S S_{x x}=\sum\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)$.
Since

$$
S S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-2 \bar{x} \sum x_{i}+m \bar{x}^{2}
$$

$$
\begin{gathered}
S S_{x x}=\sum x_{i}^{2}-2 m \bar{x}^{2}+m \bar{x}^{2}=\sum x_{i}^{2}-m \bar{x}^{2} \\
\overline{\beta_{1}}=\frac{S S_{x y}}{S S_{x x}}=\frac{-m S S_{x y}}{-m S S_{x x}}=\frac{-\sum x_{i} \sum y_{i}+m \sum x_{i} y_{i}}{m \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}},
\end{gathered}
$$

which is dictated by the matrix equation above.

$$
\begin{gathered}
\overline{\beta_{0}}=\frac{\bar{y} S S_{x x}-\bar{x} S S_{x y}}{S S_{x x}}=\frac{\bar{y} \sum x_{i}^{2}-m \bar{y} \bar{x}^{2}-\bar{x} \sum x_{i} y_{i}+m \bar{y} \bar{x}^{2}}{S S_{x x}} \\
\overline{\beta_{0}}=\frac{\bar{y} \sum x_{i}^{2}-\bar{x} \sum x_{i} y_{i}}{S S_{x x}}=\frac{\sum y_{i} \sum x_{i}^{2}-\sum x_{i} \sum x_{i} y_{i}}{m S S_{x x}} \\
\bar{\beta}_{0}=\frac{\sum x_{i}^{2} \sum y_{i}-\sum x_{i} \sum x_{i} y_{i}}{m \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}
\end{gathered}
$$

which is dictated by the matrix equation above.
We may use calculus to solve $\min S S E$:

$$
\begin{gathered}
S S E=\|y-A \beta\|^{2}=\sum_{i=1}^{m}\left(y_{i}-\left[\beta_{0}+\beta_{1} x_{i}\right]\right)^{2} \\
S S E=\sum y_{i}^{2}-2 \sum y_{i} \beta_{0}-2 \beta_{1} \sum y_{i} x_{i}+m \beta_{0}^{2}+2 \beta_{0} \beta_{1} \sum x_{i}+\beta_{1}^{2} \sum x_{i}^{2} \\
\frac{\partial S S E}{\partial \beta_{0}}=-2 \sum y_{i}+2 m \beta_{0}+2 \beta_{1} \sum x_{i} \doteq 0 \\
\Leftrightarrow \beta_{0}=\frac{\sum y_{i}-\beta_{1} \sum x_{i}}{m}=\bar{y}-\beta_{1} \bar{x} \\
\frac{\partial S S E}{\partial \beta_{1}}=-2 \sum x_{i} y_{i}+2 \beta_{0} \sum x_{i}+2 \beta_{1} \sum x_{i}^{2} \doteq 0 \\
\Leftrightarrow \sum x_{i} y_{i}-\left(\bar{y}-\beta_{1} \bar{x}\right) \sum x_{i}-\beta_{1} \sum x_{i}^{2} \doteq 0 \\
\beta_{1}=\frac{\sum x_{i} y_{i}-\bar{y} \sum x_{i}}{\sum x_{i}^{2}-\bar{x} \sum x_{i}}=\frac{\sum x_{i} y_{i}-m \bar{x} \bar{y}}{\sum x_{i}^{2}-m \bar{x}^{2}}=\frac{S S_{x y}}{S S_{x x}}
\end{gathered}
$$

As it can be observed above, the matrix system and the calculus minimization yield the same solution!

Let the example data be $(1,1),(2,4),(3,4),(4,4),(5,7)$. Then,

$$
\begin{gathered}
A \beta=y \Leftrightarrow\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
4 \\
4 \\
7
\end{array}\right] . \\
A^{T} A=\left[\begin{array}{rr}
5 & 15 \\
15 & 55
\end{array}\right]=5\left[\begin{array}{rr}
1 & 3 \\
3 & 11
\end{array}\right], \operatorname{det}\left(A^{T} A\right)=10 .
\end{gathered}
$$

$$
\begin{gathered}
\bar{\beta}=\left[\begin{array}{l}
\bar{\beta}_{0} \\
\bar{\beta}_{1}
\end{array}\right]=\left(A^{T} A\right)^{-1} A^{T} y=\frac{1}{10}\left[\begin{array}{rr}
11 & -3 \\
-3 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array} 1\right. \\
1
\end{gathered} 2 \text { 3 } 450\left[\begin{array}{l}
1 \\
4 \\
4 \\
4 \\
7
\end{array}\right] .
$$

3.3

(a) Let us interchange the first two equations to get $A_{1}^{\prime}=L U$:

$$
A_{1}^{\prime}=\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 3 & 2 \\
3 & 2 & 1
\end{array}\right]=\left[\begin{array}{rrr}
\frac{2}{3} & -\frac{1}{7} & 1 \\
\frac{1}{3} & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
3 & 2 & 1 \\
0 & \frac{7}{3} & \frac{5}{3} \\
0 & 0 & \frac{18}{7}
\end{array}\right]
$$

Here, the form of L is a bit different, but serves for the purpose. We solve $L U x=b_{1}^{\prime}=[19,8,3]^{T}$ in two stages: $L c=b^{\prime}$, then $U x=c$.

$$
\left.\begin{array}{l}
\left.L c=b_{1}^{\prime} \Leftrightarrow\left[\begin{array}{rrr}
\frac{2}{3} & -\frac{1}{7} & 1 \\
\frac{1}{3} & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
19 \\
8 \\
3
\end{array}\right] \Leftrightarrow\left\{\begin{array}{l}
\quad \Rightarrow c_{2}=7 \\
c_{1}=3
\end{array}\right] \begin{array}{lll}
3
\end{array}\right] \\
U x=c \Leftrightarrow\left[\begin{array}{ll}
3 & 1 \\
0 & \frac{7}{3}
\end{array} \frac{5}{3}\right. \\
0
\end{array} 0 \frac{18}{7}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
7 \\
18
\end{array}\right] \Leftrightarrow\left\{\begin{array}{c}
\Rightarrow x_{1}=0 \\
x_{3}=7
\end{array}\right.
$$

Final check:

$$
A_{1} x=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 1 & 3 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{r}
0 \\
-2 \\
7
\end{array}\right]=\left[\begin{array}{r}
8 \\
19 \\
3
\end{array}\right] \checkmark
$$

(b) Let us take the first three columns of A_{2} as the basis:

$$
B=\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 3 & 2 \\
3 & 2 & 1
\end{array}\right], N=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right], x_{B}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], x_{N}=\left[\begin{array}{l}
x_{4} \\
x_{5}
\end{array}\right] .
$$

Let $x_{N}=\theta$. Then, $B x_{B}=b_{2}$ is solved by $L U$ decomposition as above:

$$
\left.\left.\begin{array}{c}
L c=b_{2} \Leftrightarrow\left[\begin{array}{rrr}
\frac{2}{3} & -\frac{1}{7} & 1 \\
\frac{1}{3} & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
8 \\
19 \\
3
\end{array}\right] \Leftrightarrow\left\{\begin{array}{c}
\Rightarrow c_{3}=\frac{60}{7} \\
c_{1}=3
\end{array} \Rightarrow c_{2}=18\right.
\end{array}\right] \begin{array}{lll}
3 & 2 & 1 \\
0 & \frac{7}{3} & \frac{5}{3} \\
0 & 0 & \frac{18}{7}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
18 \\
\frac{60}{7}
\end{array}\right] \Leftrightarrow\left\{\begin{array}{c}
\quad \Rightarrow x_{2}=\frac{16}{3} \\
x_{3}=\frac{10}{3}
\end{array} \Rightarrow x_{1}=-\frac{11}{3} .\right.
$$

$x_{B}=\left[\frac{-11}{3}, \frac{16}{3}, \frac{10}{3}\right]^{T}$. If $x_{N} \neq \theta$, then $x_{B}=\left[\frac{-11}{3}, \frac{16}{3}, \frac{10}{3}\right]^{T}-B^{-1} N x_{N}$. Let $x_{N}=[1,1]^{T}$. Then,

$$
x_{B}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-\frac{11}{3} \\
\frac{16}{3} \\
\frac{10}{3}
\end{array}\right]-\left[\begin{array}{rr}
\frac{4}{9} & -\frac{5}{18} \\
-\frac{2}{9} & \frac{7}{18} \\
\frac{1}{9} & \frac{1}{18}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{6}\left[\begin{array}{r}
-23 \\
31 \\
19
\end{array}\right]
$$

Final check:

$$
\begin{aligned}
& A_{2} x=\left[\begin{array}{lllll}
2 & 1 & 3 & 1 & 0 \\
1 & 3 & 2 & 0 & 1 \\
3 & 2 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{r}
-\frac{11}{3} \\
\frac{16}{3} \\
\frac{10}{3} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{r}
8 \\
19 \\
3
\end{array}\right] \\
& A_{2} x=\left[\begin{array}{lllll}
2 & 1 & 3 & 1 & 0 \\
1 & 3 & 2 & 0 & 1 \\
3 & 2 & 1 & 1 & 0
\end{array}\right] \frac{1}{6}\left[\begin{array}{r}
-23 \\
31 \\
19 \\
6 \\
6
\end{array}\right]=\left[\begin{array}{r}
8 \\
19 \\
3
\end{array}\right] \checkmark
\end{aligned}
$$

(c)

$$
\left.A_{3}=\left[\begin{array}{rr}
1 & 2 \\
4 & 5 \\
7 & 8 \\
10 & 11
\end{array}\right], A_{3}^{T}=\left[\begin{array}{lll}
1 & 4 & 7 \\
\hline
\end{array}\right] 0 \text { 2 } 5811\right], A_{3}^{T} A_{3}=\left[\begin{array}{lll}
166 & 188 \\
188 & 214
\end{array}\right]
$$

$A_{3}^{T} A_{3}$ is clearly invertible, and $\left(A_{3}^{T} A_{3}\right)^{-1}=\left[\begin{array}{rr}\frac{107}{90} & -\frac{47}{45} \\ -\frac{47}{45} & \frac{83}{90}\end{array}\right]$.

$$
\left.\begin{array}{c}
\left(A_{3}^{T} A_{3}\right)^{-1} A^{T}=\left[\begin{array}{rr}
\frac{107}{90} & -\frac{47}{45} \\
-\frac{47}{45} & \frac{83}{90}
\end{array}\right]\left[\begin{array}{lll}
1 & 4 & 7 \\
\hline
\end{array}\right]=\left[\begin{array}{rrrr}
-\frac{9}{10} & -\frac{7}{15} & -\frac{1}{30} & \frac{2}{5} \\
2 & 5 & 8 & 11
\end{array}\right] \\
\frac{4}{5} \\
\frac{13}{30}
\end{array} \frac{\frac{1}{15}}{-\frac{3}{10}}\right] .
$$

The $A_{3}=Q R$ decomposition is given below:

$$
\begin{gathered}
Q=\left[\begin{array}{rrrr}
-0.07762 & -0.83305 & -0.39205 & -0.38249 \\
-0.31046 & -0.45124 & 0.23763 & 0.80220 \\
-0.54331 & -0.06942 & 0.70087 & -0.45693 \\
-0.77615 & 0.31239 & -0.54646 & 0.03722
\end{array}\right] \\
R=\left[\begin{array}{rr}
-12.8840 & -14.5920 \\
0.0000 & -1.0413 \\
0.0000 & 0.0000 \\
0.0000 & 0.0000
\end{array}\right]
\end{gathered}
$$

The equivalent system $R \bar{x}=Q^{T} b_{3}$ is solved below:

$$
\begin{align*}
& Q^{T} b_{3}=\left[\begin{array}{rrrr}
-0.07762 & -0.31046 & -0.54331 & -0.77615 \\
-0.83305 & -0.45124 & -0.06942 & 0.31239 \\
-0.39205 & 0.23763 & 0.70087 & -0.54646 \\
-0.38249 & 0.80220 & -0.45693 & 0.03722
\end{array}\right]\left[\begin{array}{l}
2 \\
5 \\
6 \\
8
\end{array}\right]=\left[\begin{array}{r}
-11.1770 \\
-1.8397 \\
0.2376 \\
0.8022
\end{array}\right] \\
& R \bar{x}=\left[\begin{array}{rr}
-12.8840 & -14.5920 \\
0.0000 & -1.0413 \\
0.0000 & 0.0000 \\
0.0000 & 0.0000
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
-11.1770 \\
-1.8397 \\
0.2376 \\
0.8022
\end{array}\right] \\
& \Leftrightarrow\left\{\begin{array}{l}
\\
x_{2}=\frac{-1.8397}{-1.0413}=1.7667
\end{array} \Rightarrow x_{1}=\frac{-11.177-1.7667(-\mathbf{1 4 . 5 9 2})}{-12.884}=-1.1333\right.
\end{align*}
$$

The two solutions, (\diamond) and (\diamond), are equivalent.

$$
A_{3} x=\left[\begin{array}{rr}
1 & 2 \\
4 & 5 \\
7 & 8 \\
10 & 11
\end{array}\right]\left[\begin{array}{r}
-1.1333 \\
1.7667
\end{array}\right]=\left[\begin{array}{l}
2.4201 \\
4.3503 \\
6.2805 \\
8.2107
\end{array}\right] \neq\left[\begin{array}{l}
2 \\
5 \\
6 \\
8
\end{array}\right]=b_{3}
$$

$\left\|A_{3} x-b\right\|=\left\|\left[\begin{array}{l}2.4201 \\ 4.3503 \\ 6.2805 \\ 8.2107\end{array}\right]-\left[\begin{array}{l}2 \\ 5 \\ 6 \\ 8\end{array}\right]\right\|=\left\|\left[\begin{array}{r}0.4201 \\ -0.6497 \\ 0.2805 \\ 0.8495\end{array}\right]\right\|=0.8695$ is the minimum error.
(d)
$A_{4}=\left[\begin{array}{rrrr}-1 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1\end{array}\right], A_{4}^{T}=\left[\begin{array}{rrrr}-1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & -1 \\ 1 & 0 & 0 & 1\end{array}\right], A_{4}^{T} A_{4}=\left[\begin{array}{rrrr}2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2\end{array}\right]$.
Clearly, $A_{4}^{T} A_{4}$ is not invertible. Then, we resort to the singular value decomposition $A_{4}=Q_{1} \Sigma Q_{2}^{T}$, where

$$
Q_{1}=\left[\begin{array}{rrrr}
-\frac{1}{2} & -\frac{\sqrt{2}}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{\sqrt{2}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{array}\right], \Sigma=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], Q_{2}^{T}=\left[\begin{array}{rrrr}
-\frac{1}{2} & -\frac{\sqrt{2}}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{\sqrt{2}}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{\sqrt{2}}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{\sqrt{2}}{2} & \frac{1}{2}
\end{array}\right] .
$$

Then, $\bar{x}=Q_{2} \Sigma^{\dagger} Q_{1}^{T} b_{4}$ finds the solution:

$$
\begin{gathered}
\bar{x}=\left[\begin{array}{rrrr}
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0 \\
0 & -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{llll}
\frac{1}{4} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \times \\
\times\left[\begin{array}{rrrr}
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0 \\
0-\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
2 \\
4 \\
3 \\
3
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
0.22855 \\
-0.42678 \\
-0.25000 \\
0.12500
\end{array}\right]
\end{gathered}
$$

Problems of Chapter 4

4.1 In order to prove that

$$
\operatorname{det} A=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n}
$$

(property 11) where $A_{i j}$'s are cofactors $\left(A_{i j}=(-1)^{i+j} \operatorname{det} M_{i j}\right.$, where the minor $M_{i j}$ is formed from A by deleting row i and column j);
without loss of generality, we may assume that $i=1$.
Let us apply some row operations,

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{22} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{22} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
a_{11} & a_{22} & a_{13} & \cdots & a_{1 n} \\
0 & \alpha_{22} & \alpha_{23} & \cdots & \alpha_{2 n} \\
0 & \alpha_{32} & \alpha_{33} & \cdots & \alpha_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \alpha_{n 2} & \alpha_{n 3} & \cdots & \alpha_{n n}
\end{array}\right],
$$

where $\alpha_{i j}=\frac{-a_{1 j} a_{i 1}+a_{i j} a_{11}}{a_{11}}, i, j=2, \ldots, n$. In particular, $\alpha_{22}=\frac{-a_{12} a_{21}+a_{22} a_{11}}{a_{11}}$. Furthermore,

$$
A \rightarrow\left[\begin{array}{ccccc}
a_{11} & a_{22} & a_{13} & \cdots & a_{1 n} \\
0 & \alpha_{22} & \alpha_{23} & \cdots & \alpha_{2 n} \\
0 & \alpha_{22} & \alpha_{33} & \cdots & \alpha_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \alpha_{n 2} & \alpha_{n 3} & \cdots & \alpha_{n n}
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
a_{11} & a_{22} & a_{13} & \cdots & a_{1 n} \\
0 & \alpha_{22} & \alpha_{23} & \cdots & \alpha_{2 n} \\
0 & 0 & \beta_{33} & \cdots & \beta_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \beta_{n 3} & \cdots & \beta_{n n}
\end{array}\right]
$$

where $\beta_{i j}=\frac{-\alpha_{2 j} \alpha_{i 2}+\alpha_{i j} \alpha_{22}}{\alpha_{22}}, i, j=2, \ldots, n$. In particular,

$$
\begin{gathered}
\beta_{33}=\frac{-\alpha_{23} \alpha_{32}+\alpha_{33} \alpha_{22}}{\alpha_{22}}= \\
\frac{\left(a_{12} a_{31}-a_{32} a_{11}\right)\left(a_{23} a_{11}-a_{13} a_{21}\right)+\left(a_{33} a_{11}-a_{13} a_{31}\right)\left(a_{22} a_{11}-a_{12} a_{21}\right)}{a_{11}\left(a_{22} a_{11}-a_{12} a_{21}\right)} .
\end{gathered}
$$

If we open up the parentheses in the numerator, the terms without a_{11} cancel each other, and if we factor a_{11} out and cancel with the same term in the denominator, we will have
$\beta_{33}=\frac{a_{12} a_{23} a_{31}+a_{13} a_{32} a_{21}-a_{11} a_{23} a_{32}-a_{13} a_{31} a_{22}-a_{12} a_{21} a_{33}+a_{11} a_{22} a_{33}}{-a_{12} a_{21}+a_{22} a_{11}}$.
If we further continue the row operations to reach the upper triangular form, we will have

$$
A \rightarrow \cdots \rightarrow\left[\begin{array}{ccccc}
a_{11} & a_{22} & a_{13} & \cdots & a_{1 n} \\
0 & \alpha_{22} & \alpha_{23} & \cdots & \alpha_{2 n} \\
0 & 0 & \beta_{33} & \cdots & \beta_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \zeta_{n n}
\end{array}\right]
$$

Let $\zeta_{n n}=\frac{Z}{Z Z}$. Thus,

$$
\begin{gathered}
\operatorname{det} A=a_{11} \cdot \alpha_{22} \cdot \beta_{33} \cdots \zeta_{n n}=a_{11} \cdot\left[\frac{-a_{12} a_{21}+a_{22} a_{11}}{a_{11}}\right] \\
\cdot\left[\frac{a_{12} a_{23} a_{31}+a_{13} a_{32} a_{21}-a_{11} a_{23} a_{32}-a_{13} a_{31} a_{22}-a_{12} a_{21} a_{33}+a_{11} a_{22} a_{33}}{-a_{12} a_{21}+a_{22} a_{11}}\right] \\
\cdots\left[\frac{Z}{Z Z}\right] .
\end{gathered}
$$

Since the denominator of one term cancels the numerator of the previous term,

$$
\operatorname{det} A=Z=\sum_{p \in P} a_{1 p_{1}} a_{2 p_{2}} \cdots a_{n p_{n}} \operatorname{det}\left[e_{p_{1}}, e_{p_{2}}, \ldots, e_{p_{n}}\right],(\star)
$$

where P has all n ! permutations $\left(p_{1}, \ldots, p_{n}\right)$ of the numbers $\{1,2, \ldots, n\}, e_{p_{i}}$ is the $p_{i}^{t h}$ canonical unit vector and $\operatorname{det} P_{p}=\operatorname{det}\left[e_{p_{1}}, e_{p_{2}}, \ldots, e_{p_{n}}\right]= \pm 1$ such that the sign depends on whether the number of exchanges in the permutation matrix P_{p} is even or odd.

Consider the terms in the above formula for $\operatorname{det} A$ involving a_{11}. They occur when the choice of the first column is $p_{1}=1$ yielding some permutation $\dot{p}=\left(p_{2}, \ldots, p_{n}\right)$ of the remaining numbers $\{2,3, \ldots, n\}$. We collect all these terms as A_{11} where the cofactor for a_{11} is

$$
A_{11}=\sum_{\dot{p} \in \dot{P}} a_{2 p_{2}} \cdots a_{n p_{n}} \operatorname{det} P_{\dot{p}}
$$

Hence, $\operatorname{det} A$ should depend linearly on the row $\left(a_{11}, a_{12}, \ldots, a_{1 n}\right)$:

$$
\operatorname{det} A=a_{11} A_{11}+a_{12} A_{12}+\cdots+a_{1 n} A_{1 n}
$$

Let us prove Property 11 using the induction approach. The base condition was already be shown to be true by the example in the main text. We may use (\star) as the induction hypothesis for $n=k$.
Claim: $\sum_{\dot{p} \in \dot{P}} a_{2 p_{2}} \cdots a_{n p_{n}} \operatorname{det} P_{\dot{p}}=(-1)^{1+1} \operatorname{det} M_{11}$. We will use induction for proving the claim.
$\operatorname{Base}(n=3): A_{11}=a_{22} a_{33}-a_{23} a_{32}=(-1)^{2}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$.
Induction $(n=k+1): \sum_{\dot{p} \in \dot{P}} a_{2, p_{2}} \cdots a_{k+1, p_{k+1}} \operatorname{det} P_{p}=(-1)^{1+1} \operatorname{det} M_{11}$.
Using the induction hypothesis for $n=k$ in (\star) we have:

$$
\operatorname{det} M_{11}=a_{22} \grave{A_{22}}+\cdots+a_{2 n} \grave{A_{2 n}}
$$

in which we may use the induction hypothesis of the claim for the cofactor $\grave{A_{2 j}}$. The rest is almost trivial.

4.2 Let

$$
\begin{gathered}
A=\left[\begin{array}{rrrrr}
1 & 1 & -1 & -1 & -1 \\
2 & 1 & 1 & 2 & 1 \\
0 & 1 & 1 & 0 & -1 \\
1 & -1 & 1 & 3 & 1 \\
2-2 & 2 & 2 & 4
\end{array}\right] \Rightarrow d(s)=(s-2)^{5}, k=1, \lambda_{1}=2, n_{1}=5 . \\
A_{1}=A-2 I=\left[\begin{array}{rrrr}
-1 & 1 & -1 & -1 \\
2 & -1 & 1 & 2 \\
0 & 1 & -1 & 0 \\
1 & -1 & 1 & 1 \\
2 & -2 & 2 & 2
\end{array}\right] \\
\Rightarrow \operatorname{dimN}\left(A_{1}\right)=5-\operatorname{rank}\left(A_{1}\right)=5-3=2 . \\
A_{1}^{2}=0 \Rightarrow \operatorname{dimN}\left(A_{1}^{2}\right)=5 \Rightarrow m_{1}=2, m(s)=(s-2)^{2} .
\end{gathered}
$$

Choose $v_{2} \in \mathcal{N}\left(A_{1}^{2}\right) \ni A_{1} v_{2} \neq \theta$.

$$
v_{2}=e_{1}^{5}=(1,0,0,0,0)^{T} \Rightarrow v_{1}=A_{1} v_{2}=(-1,2,0,1,2)^{T}
$$

Choose $v_{4} \neq \alpha v_{2} \ni \alpha \neq 0, v_{4} \in \mathcal{N}\left(A_{1}^{2}\right) \ni A_{1} v_{2} \neq \theta$.

$$
v_{4}=e_{2}^{5}=(0,1,0,0,0)^{T} \Rightarrow v_{3}=A_{1} v_{4}=(1,-1,1,-1,2)^{T}
$$

Choose $v_{5} \in \mathcal{N}\left(A_{1}\right)$ independent from v_{1} and v_{3}.

$$
v_{5}=(1,0,0,-1,0)^{T}
$$

Thus,

$$
S=\left[\begin{array}{rrrrr}
-1 & 1 & 1 & 0 & 1 \\
2 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & -1 \\
2 & 0 & -2 & 0 & 0
\end{array}\right] \Rightarrow S^{-1} A S=\left[\begin{array}{rr|r|r}
2 & 1 & & \\
2 & & & \\
\hline & 2 & 1 & \\
& & 2 & \\
\hline & & 2
\end{array}\right]
$$

4.3

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
\frac{1}{10} & \frac{1}{10} & 0 \\
0 & \frac{1}{10} & \frac{1}{10} \\
0 & 0 & \frac{1}{10}
\end{array}\right] \Rightarrow d(s)=\left(s-\frac{1}{10}\right)^{3}, k=1, \lambda=\frac{1}{10}, n=3 . \\
A_{1}=A-\frac{1}{10} I=\left[\begin{array}{ccc}
0 & \frac{1}{10} & 0 \\
0 & 0 & \frac{1}{10} \\
0 & 0 & 0
\end{array}\right] \\
\Rightarrow \operatorname{dimN}\left(A_{1}\right)=3-\operatorname{rank}\left(A_{1}\right)=3-2=1 .
\end{gathered}
$$

$$
\begin{gathered}
A_{2}=A_{1}^{2}=\left(A-\frac{1}{10} I\right)^{2}=\left[\begin{array}{ccc}
0 & 0 & \frac{1}{10} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\Rightarrow \operatorname{dimN}\left(A_{1}\right)=3-\operatorname{rank}\left(A_{1}\right)=3-1=2 \\
A_{1}^{3}=0 \Rightarrow \operatorname{dimN}\left(A_{1}^{3}\right)=3 \Rightarrow m=3, m(s)=\left(s-\frac{1}{10}\right)^{3}
\end{gathered}
$$

Choose $v_{3} \in \mathcal{N}\left(A_{1}^{3}\right) \ni v_{2}=A_{1} v_{3} \neq \theta \neq A_{1}^{2} v_{3}=v_{1}$.

$$
v_{3}=e_{3}^{3}=(0,0,1)^{T} \Rightarrow v_{2}=A_{1} v_{3}=\left(0, \frac{1}{10}, 0\right)^{T} \Rightarrow v_{1}=A_{1} v_{2}=\left(\frac{1}{100}, 0,0\right)^{T}
$$

Thus,

$$
\begin{gathered}
S=\left[\begin{array}{rrr}
\frac{1}{100} & 0 & 0 \\
0 & \frac{1}{10} & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow S^{-1} A S=\left[\begin{array}{lll}
\frac{1}{10} & 1 & \\
& \frac{1}{10} & 1 \\
& & \frac{1}{10}
\end{array}\right] \\
\\
A^{10}=\frac{1}{10^{10}}\left[\begin{array}{rrr}
1 & 10 & 45 \\
0 & 1 & 10 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
\frac{1}{100} & 0 & 0 \\
0 & \frac{1}{10} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{10} & 1 & \\
& \frac{1}{10} & 1 \\
& & \frac{1}{10}
\end{array}\right]^{10}\left[\begin{array}{lll}
100 & & \\
& 10 \\
& & 1
\end{array}\right]=S A^{10} S^{-1} .
\end{gathered}
$$

Note that the calculation of Λ^{10} is as hard as that of A^{10} since Λ is not diagonal. However, because (easy to prove by induction)

$$
\left[\begin{array}{ccc}
\lambda & 1 & \\
& \lambda & 1 \\
& \lambda
\end{array}\right]^{n}=\left[\begin{array}{cc}
\lambda^{n} & \binom{n}{1} \lambda^{n-1} \\
& \lambda^{n}
\end{array}\left(\begin{array}{c}
n \\
2 \\
n \\
1
\end{array}\right) \lambda^{n-2} \lambda^{n-1}\right],
$$

we have

$$
\Lambda^{10}=\left[\begin{array}{r}
\left(\frac{1}{10}\right)^{10} 10\left(\frac{1}{10}\right)^{9} 45\left(\frac{1}{10}\right)^{8} \\
\left(\frac{1}{10}\right)^{10} 10\left(\frac{1}{10}\right)^{9} \\
\left(\frac{1}{10}\right)^{9}
\end{array}\right]=\frac{1}{10^{10}}\left[\begin{array}{rrr}
1 & 100 & 4500 \\
0 & 1 & 100 \\
0 & 0 & 1
\end{array}\right]
$$

Hence, it is still useful to have Jordan decomposition.
4.4 (a)

$$
\begin{aligned}
\frac{d X_{1}}{d t} & =-0.03 Y_{1}-0.02 Y_{2} \frac{d X_{2}}{d t}=-0.04 Y_{1}-0.01 Y_{2} \\
\frac{d Y_{1}}{d t} & =-0.05 X_{1}-0.02 X_{2} \frac{d Y_{2}}{d t}=-0.03 X_{1}-0.00 X_{2}
\end{aligned}
$$

Let $W^{T}=\left[X_{1}, X_{2}, Y_{1}, Y_{2}\right]$. Then, the above equation is rewritten as

$$
\frac{d W}{d t}=A W
$$

where

$$
A=\left[\begin{array}{cccc}
0 & 0 & -\frac{3}{100} & -\frac{1}{50} \\
0 & 0 & -\frac{1}{25} & -\frac{1}{100} \\
-\frac{1}{20} & -\frac{1}{50} & 0 & 0 \\
-\frac{3}{100} & 0 & 0 & 0
\end{array}\right]
$$

and the initial condition is $W_{0}=[100,60,40,30]^{T}$.
(b) $A=S \Lambda S^{-1}$, where

$$
S=\left[\begin{array}{rrrr}
0.46791 & -0.46791 & -0.20890 & -0.20890 \\
0.54010 & -0.54010 & 0.69374 & 0.69374 \\
0.64713 & 0.64713 & 0.33092 & -0.33092 \\
0.26563 & 0.26563 & -0.60464 & 0.60464
\end{array}\right]
$$

$$
\Rightarrow S^{-1}=\left[\begin{array}{rrrr}
0.79296 & 0.23878 & 0.63090 & 0.34529 \\
-0.79296 & -0.23878 & 0.63090 & 0.34529 \\
-0.61736 & 0.53484 & 0.27717 & -0.67525 \\
-0.61736 & 0.53484 & -0.27717 & 0.67525
\end{array}\right]
$$

and $\Lambda=\left[\begin{array}{rrrr}-0.052845 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.052845 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & -0.010365 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 0.010365\end{array}\right]$
The solution is $W=S e^{\Lambda t} S^{-1} W_{0}$:

$$
\begin{aligned}
& {\left[\begin{array}{l}
X_{1}(t) \\
X_{2}(t) \\
Y_{1}(t) \\
Y_{2}(t)
\end{array}\right]=\left[\begin{array}{rrrr}
0.46791 & -0.46791 & -0.20890 & -0.20890 \\
0.54010 & -0.54010 & 0.69374 & 0.69374 \\
0.64713 & 0.64713 & 0.33092 & -0.33092 \\
0.26563 & 0.26563 & -0.60464 & 0.60464
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
e^{-0.052845 t} \\
e^{0.052845 t} & e^{-0.010365 t} \\
\text { Since } S^{-1} W_{0}= & {\left[\begin{array}{rrr}
0.79296 & 0.23878 & 0.63090 \\
-0.79296 & -0.23878 & 0.63090 \\
-0.34529 \\
-0.61736 & 0.53484 & 0.27717
\end{array}-0.67525\right.} \\
-0.61736 & 0.53484 & -0.27717 & 0.67525
\end{array}\right]\left[\begin{array}{c}
100 \\
60 \\
40 \\
30
\end{array}\right] } \\
&-\left[\begin{array}{r}
129.220 \\
-58.028 \\
-38.816 \\
-20.475
\end{array}\right], \text { we have }
\end{aligned}
$$

$$
\left[\begin{array}{l}
X_{1}(t) \\
X_{2}(t) \\
Y_{1}(t) \\
Y_{2}(t)
\end{array}\right]=\left[\begin{array}{rrrr}
.46791 & -.46791 & -.20890 & -.20890 \\
.54010 & -.54010 & .69374 & .69374 \\
.64713 & .64713 & .33092 & -.33092 \\
.26563 & .26563 & -.60464 & .60464
\end{array}\right]\left[\begin{array}{c}
(129.22) e^{-0.052845 t} \\
(-58.028) e^{0.052845 t} \\
(-38.816) e^{-0.010365 t} \\
(-20.475) e^{0.010365 t}
\end{array}\right]
$$

(c)

$$
\begin{aligned}
& {\left[\begin{array}{l}
X_{1}(0) \\
X_{2}(0) \\
Y_{1}(0) \\
Y_{2}(0)
\end{array}\right]=\left[\begin{array}{r}
100.0000 \\
60.0000 \\
40.0000 \\
30.0000
\end{array}\right],\left[\begin{array}{l}
X_{1}(1) \\
X_{2}(1) \\
Y_{1}(1) \\
Y_{2}(1)
\end{array}\right]=\left[\begin{array}{l}
98.3222 \\
58.2381 \\
33.8610 \\
27.0258
\end{array}\right],\left[\begin{array}{l}
X_{1}(2) \\
X_{2}(2) \\
Y_{1}(2) \\
Y_{2}(2)
\end{array}\right]=\left[\begin{array}{l}
96.8859 \\
56.7490 \\
27.8324 \\
24.0983
\end{array}\right],} \\
& {\left[\begin{array}{l}
X_{1}(3) \\
X_{2}(3) \\
Y_{1}(3) \\
Y_{2}(3)
\end{array}\right]=\left[\begin{array}{l}
95.6871 \\
55.5282 \\
21.8967 \\
21.2102
\end{array}\right],\left[\begin{array}{l}
X_{1}(4) \\
X_{2}(4) \\
Y_{1}(4) \\
Y_{2}(4)
\end{array}\right]=\left[\begin{array}{l}
94.7227 \\
54.5719 \\
16.0369 \\
18.3547
\end{array}\right],\left[\begin{array}{l}
X_{1}(5) \\
X_{2}(5) \\
Y_{1}(5) \\
Y_{2}(5)
\end{array}\right]=\left[\begin{array}{l}
93.9900 \\
53.8772 \\
10.2360 \\
15.5246
\end{array}\right] .}
\end{aligned}
$$

Problems of Chapter 5

5.1

Proof. Let $Q^{-1} A Q=\Lambda$ and $Q^{-1}=Q^{T}$,

$$
x=Q y \Rightarrow R(x)=\frac{y^{T} \Lambda y}{y^{T} y}=\frac{\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}}{y_{1}^{2}+\cdots+y_{n}^{2}}
$$

$y_{1}=1, y_{2}=\cdots=y_{n}=0 \Rightarrow \lambda_{1} \leq R(x)$ since

$$
\lambda_{1}\left(y_{1}^{2}+\cdots+y_{n}^{2}\right) \leq \lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2} \Leftarrow \lambda_{1}=\min \left\{\lambda_{i}\right\}_{i=1}^{n} .
$$

Similarly, $\lambda_{n}(A)=\max _{\|x\|=1} x^{T} A x$.
5.2
i. $x^{T} A x \geq 0, \quad \forall x \neq \theta$;

$$
\begin{gathered}
x^{T} A x=\left[x_{1} x_{2} x_{3}\right] \frac{1}{100}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
=\frac{1}{100}\left[2 x_{1}^{2}+x_{1} x_{2}+x_{1} x_{2}+2 x_{2}^{2}+x_{2} x_{3}+x_{2} x_{3}+x_{3}^{2}\right] \\
=\frac{1}{100}\left[\left(x_{1}+x_{2}\right)^{2}+\left(x_{2}+x_{3}\right)^{2}+x_{1}^{2}\right]>0, \forall x \neq \theta!
\end{gathered}
$$

ii. All the eigen values of A satisfy $\lambda_{i} \geq 0$;

$$
\begin{gathered}
\operatorname{det}(s I-A)=\frac{1}{100}\left|\begin{array}{ccc}
100 s-2 & -1 & 0 \\
-1 & 100 s-2 & -1 \\
0 & -1 & 100 s-1
\end{array}\right|=0 \Leftrightarrow \\
s^{3}-0.05 s^{2}+0.0006 s-0.000001=(s-0.002)(s-0.01552)(s-0.03248)=0 \\
\Rightarrow \lambda_{1}=0.002>0, \lambda_{2}=0.01552>0, \lambda_{3}=0.03248>0!
\end{gathered}
$$

iii. All the submatrices A_{k} have nonnegative determinants;

Since each entry of A is nonnegative, all 1×1 minors are OK.

$$
\begin{aligned}
& \left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right|=3>0,\left|\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right|=2>0,\left|\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right|=1>0 \\
& \left|\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right|=2>0,\left|\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right|=2>0,\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right|=1>0 \\
& \left|\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right|=1>0,\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1>0,\left|\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right|=2>0
\end{aligned}
$$

All 2×2 minors are OK.

$$
\left|\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right|=1=10^{6} \operatorname{det}(A)>0!
$$

The 3×3 minor, itself, is OK as well.
iv. All the pivots (without row exchanges) satisfy $d_{i} \geq 0$;

$$
\begin{gathered}
{\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right] \hookrightarrow\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & \frac{3}{2} & 1 \\
0 & 1 & 1
\end{array}\right] \hookrightarrow\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & \frac{3}{2} & 1 \\
0 & 0 & \frac{1}{3}
\end{array}\right]} \\
\Rightarrow d_{1}=\frac{2}{100}>0, d_{2}=\frac{3}{200}>0, d_{3}=\frac{1}{300}>0!
\end{gathered}
$$

v. \exists a possibly singular matrix $W \ni A=W^{T} W$;

$$
\begin{aligned}
A & =\frac{1}{100}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]=\left\{\frac{1}{10}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\right\}\left\{\frac{1}{10}\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\right\}=W^{T} W \\
\text { and } W & =\frac{1}{10}\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \text { is nonsingular! }
\end{aligned}
$$

5.3

$$
\begin{gathered}
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{2}+x_{1}+2 x_{2} \\
2 x_{1}+x_{2}-1
\end{array}\right] \doteq\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow\left\{\begin{array}{c}
\left(x_{1}-1\right)\left(x_{1}-2\right)=0 \\
x_{2}=1-2 x_{1}
\end{array}\right.
\end{gathered}
$$

Therefore,

$$
x_{A}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right], x_{B}=\left[\begin{array}{r}
2 \\
-3
\end{array}\right]
$$

are stationary points inside the region defined by $-4 \leq x_{2} \leq 0 \leq x_{1} \leq 3$. Moreover, we have the following boundaries

$$
x_{I}=\left[\begin{array}{c}
0 \\
x_{2}
\end{array}\right], x_{I I}=\left[\begin{array}{c}
3 \\
x_{2}
\end{array}\right] \text { and } x_{I I I}=\left[\begin{array}{c}
x_{1} \\
-4
\end{array}\right], x_{I V}=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right]
$$

defined by

$$
x_{C}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], x_{D}=\left[\begin{array}{r}
0 \\
-4
\end{array}\right], x_{E}=\left[\begin{array}{l}
3 \\
0
\end{array}\right], x_{F}=\left[\begin{array}{r}
3 \\
-4
\end{array}\right] .
$$

Let the Hessian matrix be

$$
\nabla^{2} f(x)=\left[\begin{array}{ll}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
2 x_{1}+1 & 2 \\
2 & 1
\end{array}\right] .
$$

Then, we have

$$
\nabla^{2} f\left(x_{A}\right)=\left[\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right] \text { and } \nabla^{2} f\left(x_{B}\right)=\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right]
$$

Let us check the positive definiteness of $\nabla^{2} f\left(x_{A}\right)$ using the definition:

$$
v^{T} \nabla^{2} f\left(x_{A}\right) v=\left[v_{1}, v_{2}\right]\left[\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=3 v_{1}^{2}+4 v_{1} v_{2}+v_{2}^{2}
$$

If $v_{1}=-0.5$ and $v_{2}=1.0$, we will have $v^{T} \nabla^{2} f\left(x_{A}\right) v<0$. On the other hand, if $v_{1}=1.5$ and $v_{2}=1.0$, we will have $v^{T} \nabla^{2} f\left(x_{A}\right) v>0$. Thus, $\nabla^{2} f\left(x_{A}\right)$ is indefinite. Let us check $\nabla^{2} f\left(x_{B}\right)$:
$v^{T} \nabla^{2} f\left(x_{B}\right) v=\left[v_{1}, v_{2}\right]\left[\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=5 v_{1}^{2}+4 v_{1} v_{2}+v_{2}^{2}=v_{1}^{2}+\left(2 v_{1}+v_{2}\right)^{2}>0$.
Thus, $\nabla^{2} f\left(x_{B}\right)$ is positive definite and $x_{B}=\left[\begin{array}{r}2 \\ -3\end{array}\right]$ is a local minimizer with $f\left(x_{B}\right)=19.166667$.

Fig. S.5. Plot of $f\left(x_{1}, x_{2}\right)=\frac{1}{3} x_{1}^{3}+\frac{1}{2} x_{1}^{2}+2 x_{1} x_{2}+\frac{1}{2} x_{2}^{2}-x_{2}+19$

Let us check the boundary defined by x_{I} :

$$
f\left(0, x_{2}\right)=\frac{1}{2} x_{2}^{2}-x_{2}+19 \Rightarrow \frac{d f\left(0, x_{2}\right)}{d x_{2}}=x_{2}-1 \doteq 0 \Rightarrow x_{2}=1
$$

Since $\frac{d^{2} f\left(0, x_{2}\right)}{d x_{2}^{2}}=1>0, x_{2}=1>0$ is the local minimizer outside the feasible region. As the first derivative is negative for $-4 \leq x_{2} \leq 0$, we will check $x_{2}=0$ for minimizer and $x_{2}=-4$ for maximizer (see Figure S.5).

Let us check the boundary defined by $x_{I I}$:

$$
f\left(3, x_{2}\right)=\frac{1}{2} x_{2}^{2}+5 x_{2}+\frac{65}{2} \Rightarrow \frac{d f\left(3, x_{2}\right)}{d x_{2}}=x_{2}+5 \doteq 0 \Rightarrow x_{2}=-5
$$

Since $\frac{d^{2} f\left(0, x_{2}\right)}{d x_{2}^{2}}=1>0, x_{2}=-5<-4$ is the local minimizer outside the feasible region. As the first derivative is positive for $-4 \leq x_{2} \leq 0$, we will check $x_{2}=-4$ for minimizer and $x_{2}=0$ for maximizer (see Figure S.5).

Let us check the boundary defined by $x_{I I I}$:

$$
f\left(x_{1}, 0\right)=\frac{1}{3} x_{1}^{3}+\frac{1}{2} x_{1}^{2}+19 \Rightarrow \frac{d f\left(x_{1}, 0\right)}{d x_{1}}=x_{1}^{2}+x_{1} \doteq 0 \Rightarrow x_{1}=0,-1
$$

Since $\frac{d^{2} f\left(x_{1}, 0\right)}{d x_{1}^{2}}=2 x_{1}+1, x_{1}=0$ is the local minimizer $\left(\frac{d^{2} f(0,0)}{d x_{1}^{2}}=1>0\right)$ on the boundary, and $x_{1}=-1$ is the local maximizer $\left(\frac{d^{2} f(-1,0)}{d x_{1}^{2}}=-1<0\right)$ outside the feasible region. As the first derivative is positive for $0 \leq x_{2} \leq 3$, we will check $x_{2}=3$ for maximizer (see Figure S.5).

Let us check the boundary defined by $x_{I V}$:

$$
\begin{gathered}
f\left(x_{1},-4\right)=\frac{1}{3} x_{1}^{3}+\frac{1}{2} x_{1}^{2}-8 x_{1}+31 \Rightarrow \frac{d f\left(x_{1},-4\right)}{d x_{1}}=x_{1}^{2}+x_{1}-8 \doteq 0 \\
\Rightarrow x_{1}=\frac{-1 \pm \sqrt{1+32}}{2}
\end{gathered}
$$

Since $\frac{d^{2} f\left(x_{1},-4\right)}{d x_{1}^{2}}=2 x_{1}+1$ again, the positive root $x_{1}=\frac{-1+\sqrt{33}}{2}=2.3723$ is the local minimizer $\left(\frac{d^{2} f(2.3723,0)}{d x_{1}^{2}}>0\right)$, and the negative root is the local maximizer but it is outside the feasible region. As the first derivative is positive for $0 \leq x_{2} \leq 3$, we will check $x_{2}=3$ for maximizer again (see Figure S.5).

To sum up, we have to consider $(2,-3),(0,0)$ and $(2.3723,-4)$ for the minimizer; $(3,0)$ and $(0,-4)$ for the maximizer:

$$
\begin{gathered}
f(2,-3)=19.16667, f(0,0)=19, f(2.3723,-4)=19.28529 \\
\Rightarrow(0,0) \text { is the minimizer! } \\
f(3,0)=32.5, f(0,-4)=31 \Rightarrow(3,0) \text { is the maximizer! }
\end{gathered}
$$

Problems of Chapter 6

6.1 The norm of a matrix A is defined as $\|A\|=\sqrt{\text { largest eigen value of } A^{T} A}$. If Q is orthogonal then $Q^{T}=Q^{-1} \Leftrightarrow Q^{T} Q=I$ and the unique eigen value of $Q^{T} Q$ is 1 . Hence

$$
\|Q\|=\left\|Q^{T}\right\|=1
$$

Furthermore,

$$
c=\|Q\|\left\|Q^{-1}\right\|=\|Q\|^{2}=1
$$

Hence for orthogonal matrices,

$$
c=\|Q\|=1
$$

Let $\mathcal{Q}=\alpha Q$. Then $\mathcal{Q}^{T}=\mathcal{Q}^{-1}=\frac{1}{\alpha} Q^{T}=\frac{1}{\alpha} Q^{-1} \Leftrightarrow \mathcal{Q}^{T} \mathcal{Q}=\alpha Q \frac{1}{\alpha} Q^{T}=I$. Thus,

$$
\|\mathcal{Q}\|=\left\|\mathcal{Q}^{T}\right\|=1
$$

and

$$
c=\|\mathcal{Q}\|\left\|\mathcal{Q}^{-1}\right\|=\alpha\|Q\| \frac{1}{\alpha}\|Q\|=\|Q\|^{2}=1
$$

For orthogonal matrices, $\|Q\|=c(Q)=1$. Orthogonal matrices and their multipliers (αQ) are only perfect condition matrices. It is left as an exercise to prove the only part.
6.2 $A=Q_{0} R_{0}$, where

$$
\begin{gathered}
Q_{0}=\left[\begin{array}{rrrrrr}
-0.4083 & -0.3762 & -0.5443 & 0.5452 & -0.3020 & 0.0843 \\
0.9129 & -0.1882 & -0.2434 & 0.2438 & -0.1351 & 0.0377 \\
0 & 0.9111 & -0.2696 & 0.2701 & -0.1496 & 0.0418 \\
0 & 0 & -0.7562 & -0.5672 & 0.3142 & -0.0877 \\
0 & 0 & 0 & -0.4986 & -0.8349 & 0.2331 \\
0 & 0 & 0 & 0 & 0.2689 & 0.9632
\end{array}\right] \\
R_{0}=\left[\begin{array}{rrrrrr}
-1.2247 & 83.7098 & -73.0929 & 0 & 0 & 0 \\
0 & -87.8778 & 87.3454 & 3.8183 & 0 & 0 \\
0 & 0 & -5.5417 & -3.0895 & -0.1695 & 0 \\
0 & 0 & 0 & -0.4497 & -0.1898 & 0.0050 \\
0 & 0 & 0 & 0 & -0.0372 & 0.0095 \\
0 & 0 & 0 & 0 & 0 & 0.0016
\end{array}\right] \\
A_{1}=R_{0} Q_{0}=\left[\begin{array}{rrrrrr}
-76.9159 & 80.2207 & 0 & 0 & 0 & 0 \\
80.2207 & 94.3687 & -5.0493 & 0 & 0 & 0 \\
0 & -5.0493 & 3.8305 & 0.3400 & 0 & 0 \\
0 & 0 & 0.3400 & 0.3497 & 0.0185 & 0 \\
0 & 0 & 0 & 0.0185 & 0.0336 & 0.0004 \\
0 & 0 & 0 & 0 & 0.0004 & 0.0016
\end{array}\right]
\end{gathered}
$$

$A_{1}=Q_{1} R_{1}$, where

$$
Q_{1}=\left[\begin{array}{rrrrrr}
-0.6921 & -0.5964 & -0.3911 & 0.1109 & -0.0079 & -0.0001 \\
0.7218 & -0.5718 & -0.3750 & 0.1063 & -0.0076 & -0.0001 \\
0 & 0.5633 & -0.7948 & 0.2253 & -0.0161 & -0.0002 \\
0 & 0 & -0.2734 & -0.9595 & 0.0685 & 0.0009 \\
0 & 0 & 0 & -0.0712 & -0.9974 & -0.2331 \\
0 & 0 & 0 & 0 & -0.0135 & 0.9999
\end{array}\right]
$$

$$
R_{1}=\left[\begin{array}{rrrrrr}
-111.1369 & 123.6364 & -3.6447 & 0 & 0 & 0 \\
0 & -8.9636 & 5.0452 & 0.1915 & 0 & 0 \\
0 & 0 & -1.2438 & -3.0895 & -0.0051 & 0 \\
0 & 0 & 0 & -0.4497 & -0.0202 & 0 \\
0 & 0 & 0 & 0 & -0.0322 & -0.0005 \\
0 & 0 & 0 & 0 & 0 & 0.0016
\end{array}\right]
$$

$$
A_{2}=R_{1} Q_{1}=\left[\begin{array}{rrrrrr}
166.1589 & -6.4701 & 0 & 0 & 0 & 0 \\
-6.4701 & 7.9677 & -0.7006 & 0 & 0 & 0 \\
0 & -0.7006 & 1.0885 & 0.0711 & 0 & 0 \\
0 & 0 & 0.0711 & 0.2511 & 0.0023 & 0 \\
0 & 0 & 0 & 0.0023 & 0.0322 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.0016
\end{array}\right]
$$

$$
A_{6}=R_{5} Q_{5}=\left[\begin{array}{rrrrrr}
166.4231 & 0 & 0 & 0 & 0 & 0 \\
0 & 7.7768 & -0.0002 & 0 & 0 & 0 \\
0 & -0.0002 & 1.0218 & 0.0002 & 0 & 0 \\
0 & 0 & 0.0002 & 0.2447 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.0321 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.0016
\end{array}\right]
$$

$A_{6}=Q_{6} R_{6}$, where

$$
\begin{aligned}
Q_{6} & =\left[\begin{array}{rrrrrr}
-1.0000 & 0 & 0 & 0 & 0 & 0 \\
0 & -1.0000 & 0 & 0 & 0 & 0 \\
0 & 0 & -1.0000 & 0.0002 & 0 & 0 \\
0 & 0 & -0.0002 & -1.0000 & 0 & 0 \\
0 & 0 & 0 & 0 & -1.0000 & 0 \\
0 & 0 & 0 & 0 & 0 & 1.0000
\end{array}\right] \\
R_{6} & =\left[\begin{array}{rrrrrr}
-166.4231 & 0 & 0 & 0 & 0 & 0 \\
0 & -7.7768 & 0.0002 & 0 & 0 & 0 \\
0 & 0 & -1.0218 & -0.0003 & 0 & 0 \\
0 & 0 & 0 & -0.2447 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.0321 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.0016
\end{array}\right]
\end{aligned}
$$

$$
A_{7}=R_{6} Q_{6}=\left[\begin{array}{rrrrrr}
166.4231 & 0 & 0 & 0 & 0 & 0 \\
0 & 7.7768 & 0 & 0 & 0 & 0 \\
0 & -0.0002 & 1.0218 & 0.0001 & 0 & 0 \\
0 & 0 & 0.0001 & 0.2447 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.0321 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.0016
\end{array}\right]
$$

$A_{7}=Q_{7} R_{7}$, where

$$
\begin{aligned}
& Q_{7}=\left[\begin{array}{rrrrrr}
-1.0000 & 0 & 0 & 0 & 0 & 0 \\
0 & -1.0000 & 0 & 0 & 0 & 0 \\
0 & 0-1.0000 & 0.0001 & 0 & 0 \\
0 & 0 & -0.0001 & -1.0000 & 0 & 0 \\
0 & 0 & 0 & 0 & -1.0000 & 0 \\
0 & 0 & 0 & 0 & 0 & 1.0000
\end{array}\right] \\
& R_{7}=\left[\begin{array}{rrrrrr}
-166.4231 & 0 & 0 & 0 & 0 & 0 \\
0 & -7.7768 & 0.0002 & 0 & 0 & 0 \\
0 & 0 & -1.0218 & -0.0001 & 0 & 0 \\
0 & 0 & 0 & -0.2447 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.0321 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.0016
\end{array}\right] \\
& A_{8}
\end{aligned}=R_{7} Q_{7}=\left[\begin{array}{rrrrrr}
166.4231 & 0 & 0 & 0 & 0 & 0 \\
0 & 7.7768 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.0218 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.2447 & 0 & 0 \\
0 & 0 & 0 & 0.0321 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.0016
\end{array}\right] .
$$

The diagonal entries are the eigen values of A.
6.3 (a) Take $\boldsymbol{A}(2)$.
1.

$$
\begin{aligned}
& A(2)=\left[\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{3}
\end{array}\right] \\
& {\left[A(2) \mid I_{2}\right]=\left[\begin{array}{lll}
1 & \left.\frac{1}{2} \right\rvert\, & 0 \\
\frac{1}{2} & \left.\frac{1}{3} \right\rvert\, & 0
\end{array}\right] \leftrightarrow\left[\begin{array}{ccccc}
1 & \left.\frac{1}{2} \right\rvert\, & 1 & 0 \\
0 & \left.\frac{1}{12} \right\rvert\,-\frac{1}{2} & 1
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rr|rr}
1 & 0 & 4 & -6 \\
0 & 1 & -6 & 12
\end{array}\right]=\left[I_{2} \mid A(2)^{-1}\right] \text {. } \\
& x_{I}=A(2)^{-1} b_{I}=\left[\begin{array}{rr}
4 & -6 \\
-6 & 12
\end{array}\right]\left[\begin{array}{l}
1.0 \\
0.5
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right],
\end{aligned}
$$

$$
\begin{gathered}
x_{I I}=A(2)^{-1} b_{I I}=\left[\begin{array}{cc}
4 & -6 \\
-6 & 12
\end{array}\right]\left[\begin{array}{l}
1.5 \\
1.0
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \\
\Delta_{b}=b_{I}-b_{I I}=\left[\begin{array}{r}
-0.5 \\
-0.5
\end{array}\right] \Rightarrow\left\|\Delta_{b}\right\|=\sqrt{\frac{1}{2}},\left\|b_{I}\right\|=\sqrt{\frac{5}{4}} \Rightarrow \frac{\left\|\Delta_{b}\right\|}{\left\|b_{I}\right\|}=\sqrt{\frac{4}{10}} \\
\Delta_{x}=x_{I}-x_{I I}=\left[\begin{array}{r}
1 \\
-3
\end{array}\right] \Rightarrow\left\|\Delta_{x}\right\|=\sqrt{10},\left\|x_{I}\right\|=\sqrt{1} \Rightarrow \frac{\left\|\Delta_{x}\right\|}{\left\|x_{I}\right\|}=\sqrt{\frac{10}{1}} .
\end{gathered}
$$

Then, the relative error for this case is $\frac{\sqrt{\frac{10}{1}}}{\sqrt{\frac{4}{10}}}=5.0$.
2. The maximum error is the condition number.

$$
\begin{gathered}
\operatorname{det}(s I-A(2))=\left|\begin{array}{rr}
s-1 & -\frac{1}{2} \\
-\frac{1}{2} s-\frac{1}{3}
\end{array}\right|=(s-1)\left(s-\frac{1}{3}\right)-\frac{1}{4} \doteq 0 \\
\Rightarrow \lambda_{1}=\frac{4-\sqrt{13}}{6}, \lambda_{2}=\frac{4+\sqrt{13}}{6}
\end{gathered}
$$

Therefore, $c[A(2)]=\frac{\lambda_{2}}{\lambda_{1}}=\frac{4+\sqrt{13}}{4-\sqrt{13}}=\frac{7.605551}{0.394449}=19.2815$ is the upper bound.
3.

$$
\begin{gathered}
A(2)+\Delta_{A(2)}=\left[\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{3}
\end{array}\right]+\left[\begin{array}{rr}
0 & -\frac{1}{2} \\
-\frac{1}{2} & \frac{2}{3}
\end{array}\right]=I_{2} \\
I_{2} x_{I I I}=b_{I} \Rightarrow x_{I I I}=b_{I}=\left[\begin{array}{c}
1.0 \\
0.5
\end{array}\right] . \\
\Delta_{x}=x_{I I I}-x_{I}=\left[\begin{array}{c}
2.0 \\
0.5
\end{array}\right] \Rightarrow \frac{\left\|\Delta_{x}\right\|}{\left\|x_{I}+\Delta_{x}\right\|}=\frac{\sqrt{4.25}}{\sqrt{1.25}}=1.84391 \\
\|A(2)\|=\lambda_{2}=\frac{4+\sqrt{13}}{6}=1.26759
\end{gathered}
$$

$\left\|\Delta_{A(2)}\right\|$ is the largest eigenvalue of $\left[\begin{array}{rr}0 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{2}{3}\end{array}\right]$, which is 0.9343 . Then,

$$
\frac{\left\|\Delta_{A(2)}\right\|}{\|A(2)\|}=\frac{0.9343}{1.2676}=0.7371 \Rightarrow \frac{\frac{\left\|\Delta_{x}\right\|}{\left\|x_{I}+\Delta_{x}\right\|}}{\left\|\Delta_{A(2)}\right\|}=\frac{1.84391}{\|A(2)\|}=2.7371 \quad=2017
$$

4. The maximum error is $\|A(2)\|\left\|A(2)^{-1}\right\|$, where $\left\|A(2)^{-1}\right\|$ is the largest eigenvalue of $A(2)^{-1}$ as calculated below:

$$
\operatorname{det}\left(s I-A(2)^{-1}\right)=\left|\begin{array}{cc}
s-4 & 6 \\
6 & s-12
\end{array}\right|=(s-4)(s-12)-36 \doteq 0
$$

$$
\begin{gathered}
\Rightarrow \mu_{1}=\frac{16-\sqrt{208}}{2}, \mu_{2}=\frac{16+\sqrt{208}}{2} \\
\Rightarrow\left\|A(2)^{-1}\right\|=\mu_{2}=\frac{16+\sqrt{208}}{6}=15.2111
\end{gathered}
$$

Then, $\|A(2)\|\left\|A(2)^{-1}\right\|=1.2676(15.2111)=19.2815=c[A(2)]$.
We know, $\mu_{1}=\frac{1}{\lambda_{2}}$ and $\mu_{2}=\frac{1}{\lambda_{1}}$. Consequently,

$$
c\left[A(2)^{-1}\right]=\frac{\mu_{2}}{\mu_{1}}=19.2815=\frac{\frac{1}{\lambda_{1}}}{\frac{1}{\lambda_{2}}}=\frac{\lambda_{2}}{\lambda_{1}}=c[A(2)]
$$

(b) Take $A(3)$.

$$
\begin{aligned}
& A(3)=\left[\begin{array}{lll}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array}\right] \Rightarrow A(3)^{T} A(3)=\left[\begin{array}{ccc}
\frac{49}{36} & \frac{3}{4} & \frac{21}{40} \\
\frac{3}{4} & \frac{61}{144} & \frac{3}{10} \\
\frac{21}{40} & \frac{3}{10} & \frac{769}{3600}
\end{array}\right] \\
& \operatorname{det}\left(s I-A(3)^{T} A(3)\right)=\left|\begin{array}{ccc}
s-\frac{49}{36} & -\frac{3}{4} & -\frac{21}{40} \\
-\frac{3}{4} s-\frac{61}{144} & -\frac{3}{10} \\
-\frac{21}{40} & -\frac{3}{10} & s-\frac{769}{3600}
\end{array}\right| \doteq 0 \\
& \Rightarrow(s-3 / 415409)(s-255 / 17041)(s-1192 / 601) \doteq 0 \Rightarrow \\
& \nu_{1}=\frac{3}{415409}, \nu_{2}=\frac{255}{17041}, \nu_{3}=\frac{1192}{601} \\
& \Rightarrow c\left[A(3)^{T} A(3)\right]=\frac{\nu_{3}}{\nu_{1}}=\frac{\frac{1192}{601}}{\frac{3}{415409}}=274635.3 \\
& \operatorname{det}(s I-A(3))=\left|\begin{array}{lll}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array}\right| \doteq 0 \\
& \Rightarrow(s-26 / 9675)(s-389 / 3180)(s-745 / 529) \doteq 0 \Rightarrow \\
& \lambda_{1}=\frac{26}{9675}, \lambda_{2}=\frac{389}{3180}, \lambda_{3}=\frac{745}{529} \Rightarrow c[A(3)]=\frac{\lambda_{3}}{\lambda_{1}}=\frac{\frac{745}{529}}{\frac{26}{9675}}=524.0566
\end{aligned}
$$

Clearly, $c\left[A(3)^{T} A(3)\right]=(c[A(3)])^{2}$.
(c) Take $A(4)$.

$$
A(4)=\left[\begin{array}{llll}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right]
$$

$$
\begin{aligned}
& A(4)=Q_{0} R_{0}=\left[\begin{array}{rrrr}
-0.83812 & 0.52265 & -0.15397 & -0.02631 \\
-0.41906 & -0.44171 & 0.72775 & 0.31568 \\
-0.27937 & -0.52882 & -0.13951 & -0.78920 \\
-0.20953 & -0.50207 & -0.65361 & 0.52613
\end{array}\right] \\
& {\left[\begin{array}{rrrr}
-1.19320 & -0.67049 & -0.47493 & -0.36984 \\
0.00000 & -0.11853 & -0.12566 & -0.11754 \\
0.00000 & 0.00000 & -0.00622 & -0.00957 \\
0.00000 & 0.00000 & 0.00000 & 0.00019
\end{array}\right]} \\
& A(4)_{1}=R_{0} Q_{0} \\
& =\left[\begin{array}{rrrr}
1.49110 & 0.10941 & 0.0037426 & -3.9372 \times 10^{-5} \\
0.10941 & 0.17782 & 0.0080931 & -9.4342 \times 10^{-5} \\
0.00374 & 0.00809 & 0.0071205 & -0.00012282 \\
-3.9372 \times 10^{-5} & -9.4342 \times 10^{-5} & -0.00012282 & 9.8863 \times 10^{-5}
\end{array}\right] \\
& A(4)_{1}=Q_{1} R_{1}=\left[\begin{array}{rrrr}
-0.997320 & 0.073211 & -0.000868 & 2.1324 \times 10^{-6} \\
-0.073173 & -0.996260 & 0.046000 & -0.0002696 \\
-0.002503 & -0.045938 & -0.998790 & 0.0175510 \\
2.6333 \times 10^{-5} & 0.000538 & 0.017545 & 0.9998500
\end{array}\right] \\
& {\left[\begin{array}{rrrr}
-1.49520 & -0.12214 & -0.0043425 & 4.6479 \times 10^{-5} \\
0.00000 & -0.16952 & -0.0081160 & 9.6801 \times 10^{-5} \\
0.00000 & 0.00000 & -0.0067449 & 0.00012010 \\
0.00000 & 0.00000 & 0.0000000 & 9.6718 \times 10^{-5}
\end{array}\right]} \\
& A(4)_{2}=R_{1} Q_{1}=\left[\begin{array}{rcr}
1.500100 & 0.012424 & 1.6887 \times 10^{-5} \\
0.512424 & 0.169260 & 0.0003099 \\
5.1991 \times 10^{-9} \\
1.6887 \times 10^{-5} & 0.000310 & 0.00673891 .6969 \times 10^{-6} \\
2.5468 \times 10^{-9} & 5.1991 \times 10^{-8} & 1.6969 \times 10^{-6} \\
9.6703 \times 10^{-5}
\end{array}\right] \\
& A(4)_{2}=Q_{2} R_{2} \\
& =\left[\begin{array}{rrrr}
-0.999970 & 0.008282 & -3.9108 \times 10^{-6} & -1.3792 \times 10^{-10} \\
-0.008282 & -0.999960 & 0.0018313 & 1.5392 \times 10^{-7} \\
-1.1257 \times 10^{-5} & -0.001831 & -1.0000000 & -0.00025182 \\
-1.6977 \times 10^{-9} & -3.0723 \times 10^{-7} & -0.0002518 & 1.00000000
\end{array}\right] \\
& {\left[\begin{array}{rrrr}
-1.50010 & -0.01383 & -1.9529 \times 10^{-5} & -2.9966 \times 10^{-9} \\
0.00000 & -0.16915 & -0.0003221 & -5.5105 \times 10^{-8} \\
0.00000 & 0.00000 & -0.0067383 & -1.7212 \times 10^{-6} \\
0.00000 & 0.00000 & 0.0000000 & 9.6702 \times 10^{-5}
\end{array}\right]} \\
& A(4)_{3}=R_{2} Q_{2} \\
& =\left[\begin{array}{rrrr}
1.500200 & 0.001401 & 7.5850 \times 10^{-8} & -1.6405 \times 10^{-13} \\
0.001401 & 0.169140 & 1.2340 \times 10^{-5} & -2.9710 \times 10^{-11} \\
7.5850 \times 10^{-8} & 1.2340 \times 10^{-5} & 0.0067383 & -2.4351 \times 10^{-8} \\
-1.6417 \times 10^{-13} & -2.9710 \times 10^{-11} & -2.4351 \times 10^{-8} & 9.6702 \times 10^{-5}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A(4)_{3}=Q_{3} R_{3} \\
& =\left[\begin{array}{rrrr}
-1.0000000 & 0.0009338 & -1.7566 \times 10^{-8} & 8.8905 \times 10^{-15} \\
-0.0009338 & -1.0000000 & 7.2955 \times 10^{-5} & -8.7996 \times 10^{-11} \\
-5.0559 \times 10^{-8} & -7.2955 \times 10^{-5} & -1.0000 & 3.6138 \times 10^{-6} \\
1.0943 \times 10^{-13} & 1.7565 \times 10^{-10} & 3.6138 \times 10^{-6} & 1.0000
\end{array}\right] \\
& {\left[\begin{array}{rrrr}
-1.50020 & -0.00156 & -8.7713 \times 10^{-8} & 1.9304 \times 10^{-13} \\
0.00000 & -0.16914 & -1.2831 \times 10^{-5} & 3.1503 \times 10^{-11} \\
0.00000 & 0.00000 & -0.006738 & 2.4701 \times 10^{-8} \\
0.00000 & 0.00000 & 0.000000 & 9.6702 \times 10^{-5}
\end{array}\right]} \\
& A(4)_{4}=R_{3} Q_{3} \\
& =\left[\begin{array}{rrrr}
1.500200 & 0.000158 & 3.4068 \times 10^{-10} & -1.0796 \times 10^{-16} \\
0.000158 & 0.169140 & 4.9159 \times 10^{-7} & 1.7074 \times 10^{-14} \\
3.4068 \times 10^{-10} & 4.9159 \times 10^{-7} & 0.0067383 & 3.4947 \times 10^{-10} \\
1.0582 \times 10^{-17} & 1.6986 \times 10^{-14} & 3.4947 \times 10^{-10} & 9.6702 \times 10^{-5}
\end{array}\right] \\
& A(4)_{4}=Q_{4} R_{4} \\
& =\left[\begin{array}{rrrr}
-1.0000 & 0.00010528 & -7.8899 \times 10^{-11} & -5.7307 \times 10^{-19} \\
-0.00010528 & -1.0000 & 2.9064 \times 10^{-6} & 5.0310 \times 10^{-14} \\
-2.2709 \times 10^{-10} & -2.9064 \times 10^{-6} & -1.0000 & -5.1863 \times 10^{-8} \\
-7.0539 \times 10^{-18} & -1.0042 \times 10^{-13} & -5.1863 \times 10^{-8} & 1.0000
\end{array}\right] \\
& {\left[\begin{array}{rrrr}
-1.50020 & -0.00018 & -3.9397 \times 10^{-10} & 1.0608 \times 10^{-16} \\
0.00000 & -0.16914 & -5.1117 \times 10^{-7} & -1.8100 \times 10^{-14} \\
0.00000 & 0.00000 & -0.0067383 & -3.5448 \times 10^{-10} \\
0.00000 & 0.00000 & 0.0000000 & 9.6702 \times 10^{-5}
\end{array}\right]} \\
& A(4)_{5}=R_{4} Q_{4} \\
& =\left[\begin{array}{rrrr}
1.5002 & 1.7808 \times 10^{-5} & 1.5304 \times 10^{-12} & 1.1853 \times 10^{-16} \\
1.7808 \times 10^{-5} & 0.16914 & 1.9584 \times 10^{-8} & -9.8322 \times 10^{-17} \\
1.5302 \times 10^{-12} & 1.9584 \times 10^{-8} & 0.0067383 & -5.0152 \times 10^{-12} \\
-6.8213 \times 10^{-22} & -9.7112 \times 10^{-18} & -5.0153 \times 10^{-12} & 9.6702 \times 10^{-5}
\end{array}\right] \\
& \text { Thus, } \Lambda=\left[\begin{array}{llll}
1.5002 & & & \\
& 0.16914 & & \\
& & 0.0067383 & \\
& & & 0.0000967
\end{array}\right] \text { and } \\
& c[A(4)]=\frac{1.5002}{0.0000967}=15514 .
\end{aligned}
$$

Problems of Chapter 7

7.1

a) A zero dimensional polytope is a point.
b) One dimensional polytopes are line segments.
c) Two dimensional polytopes are n-gons:
triangle (3), rectangle (4), trapezoid (4), pentagon (5), ...
$7.2 \Delta_{2}=\operatorname{conv}\left(e_{1}, e_{2}, e_{3}\right)$. See Figure S.6.

Fig. S.6. Δ_{2} in \mathbb{R}^{3}
$7.3 C_{3}=\operatorname{conv}\left((0,0,0)^{T},(\alpha, 0,0)^{T},(0, \alpha, 0)^{T},(0,0, \alpha)^{T},(\alpha, \alpha, 0)^{T}\right.$, $\left.(\alpha, 0, \alpha)^{T},(0, \alpha, \alpha)^{T},(\alpha, \alpha, \alpha)^{T}\right)$

$$
C_{n}=\left\{x \in \mathbb{R}^{n}: 0 \leq x_{i} \leq \alpha, i=1, \ldots, n ; \alpha \in \mathbb{R}_{+}\right\}
$$

Fig. S.7. Cube and octahedron

$$
\begin{gathered}
C_{3}^{\Delta}=\operatorname{conv}\left((\alpha, 0,0)^{T},(0, \alpha, 0)^{T},(0,0, \alpha)^{T},(-\alpha, 0,0)^{T},(0,-\alpha, 0)^{T},(0,0,-\alpha)^{T}\right) \\
C_{n}^{\Delta}=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left|x_{i}\right| \leq \alpha, \alpha \in \mathbb{R}_{+}\right\}
\end{gathered}
$$

Fig. S.8. 3-dimensional pyramid

7.4

See Figure S. 8 for a drawing of P_{n+1}.
Let a^{i} be the normal to face $F_{i}, \quad i=0,1,2,3,4$. Let $a^{i} x \leq b_{i}$ be the respective defining inequalities.

We know F_{0} is the $x_{1}-x_{2}$ plane. Then, $F_{0}=\left\{x \in \mathbb{R}^{3}: x_{3}=0\right\}$.
We know that a^{2} and a^{4} are perpendicular to $x_{2}-$ axis. Similarly, a^{1} and a^{3} are perpendicular to x_{1} axis. Thus,

$$
a^{1}=(0, *, *)^{T}, a^{2}=(*, 0, *)^{T}, a^{3}=(0, *, *)^{T}, a^{4}=(*, 0, *)^{T}
$$

Since F_{1} contains $(1 / 2,1 / 2,1),(1,0,0),(0,0,0)$, what we have is

$$
F_{1}=\left\{x \in \mathbb{R}^{3}: 0 x_{1}-2 x_{2}+1 x_{3}=0\right\}
$$

Since F_{2} contains $(1 / 2,1 / 2,1),(1,0,0),(1,1,0)$, we have

$$
F_{2}=\left\{x \in \mathbb{R}^{3}: 2 x_{1}+0 x_{2}+1 x_{3}=2\right\} .
$$

Since F_{3} contains $(1 / 2,1 / 2,1),(1,1,0),(0,1,0)$, it is

$$
F_{3}=\left\{x \in \mathbb{R}^{3}: 0 x_{1}+2 x_{2}+1 x_{3}=2\right\} .
$$

And finally, $(1 / 2,1 / 2,1),(0,1,0),(0,0,0)$ are in F_{4},

$$
F_{4}=\left\{x \in \mathbb{R}^{3}:-2 x_{1}+0 x_{2}+1 x_{3}=0\right\} .
$$

Therefore,

$$
\begin{aligned}
P_{3}=\left\{x \in \mathbb{R}^{3}: x_{3} \geq 0,-2 x_{2}+x_{3} \leq 0,2 x_{1}+\right. & x_{3} \leq 2 \\
& \left.2 x_{2}+x_{3} \leq 2,-2 x_{1}+x_{3} \leq 0\right\}
\end{aligned}
$$

P_{n+1} is not a union of a cone at x_{0} and a polytope.
P_{n+1} is a direct sum of a cone at x_{0} and C_{n}.
P_{n+1} is an intersection of a cone at x_{0} and C_{n+1} provided that $x_{0} \in C_{n+1} \backslash C_{n}$.
7.5 See Figure S.9.

Fig. S.9. A tetrahedron

The diagonal ray $(1,1,1)^{T}$ of the cube is orthogonal to facet F_{4}. Thus, $F_{4}=$ $\left\{x \in \mathbb{R}^{3}: x_{1}+x_{2}+x_{3}=\alpha\right\}$. Since this facet contains $(0,1,1)^{T},(1,0,1)^{T}$, $(1,1,0)^{T}$, the value of α is 2 . Therefore,

$$
F_{4}=\left\{x \in \mathbb{R}^{3}: x_{1}+x_{2}+x_{3}=2\right\} .
$$

Since $(0,0,0)^{T}$ is on the tetrahedron, the following halfspace is valid and facet defining

$$
H_{4}=\left\{x \in \mathbb{R}^{3}: x_{1}+x_{2}+x_{3} \leq 2\right\}
$$

Similarly,

$$
\begin{aligned}
F_{1} & =\left\{x \in \mathbb{R}^{3}: x_{1}-x_{2}-x_{3}=0\right\}, \\
F_{2} & =\left\{x \in \mathbb{R}^{3}:-x_{1}+x_{2}-x_{3}=0\right\}, \\
F_{3} & =\left\{x \in \mathbb{R}^{3}:-x_{1}-x_{2}+x_{3}=0\right\} .
\end{aligned}
$$

The following set describes the tetrahedron:

$$
\begin{gathered}
x_{1}+x_{2}+x_{3} \leq 2, \\
x_{1}-x_{2}-x_{3} \leq 0 \\
-x_{1}+x_{2}-x_{3} \leq 0 \\
-x_{1}-x_{2}+x_{3} \leq 0
\end{gathered}
$$

Fig. S.10. The dodecahedron, ϕ : golden ratio

7.6 See Figure S.10.

The polyhedron vertices of a dodecahedron can be given in a simple form for a dodecahedron of side length $a=\sqrt{5}-1$ by

$$
\left(0, \pm \phi^{-1}, \pm \phi\right)^{T},\left(\pm \phi, 0, \pm \phi^{-1}\right)^{T},\left(\pm \phi^{-1}, \pm \phi, 0\right)^{T} \text { and }(\pm 1, \pm 1, \pm 1)^{T} ;
$$

where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio. We know $\phi-1=\frac{1}{\phi}$ and $\phi=2 \cos \frac{\pi}{5}$. See Figure S.11.

Fig. S.11. The extreme points of the dodecahedron, ϕ : golden ratio

Problems of Chapter 8

8.1

a) We have six variables and three constraints, therefore we have $\binom{6}{3}=20$ candidate bases.

$$
A=\left[\begin{array}{rrrrrr}
x_{1} & x_{2} & x_{3} & s_{1} & s_{2} & s_{3} \\
2 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & -1
\end{array}\right]
$$

$B_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, B_{2}=\left\{x_{1}, x_{2}, s_{1}\right\}, B_{3}=\left\{x_{1}, x_{2}, s_{2}\right\}, B_{4}=\left\{x_{1}, x_{2}, s_{3}\right\}$, $B_{5}=\left\{x_{1}, x_{3}, s_{1}\right\}, B_{6}=\left\{x_{1}, x_{3}, s_{2}\right\}, B_{7}=\left\{x_{1}, x_{3}, s_{3}\right\}, B_{8}=\left\{x_{1}, s_{1}, s_{2}\right\}$, $B_{9}=\left\{x_{1}, s_{1}, s_{3}\right\}, B_{10}=\left\{x_{1}, s_{2}, s_{3}\right\}, B_{11}=\left\{x_{2}, x_{3}, s_{1}\right\}, B_{12}=\left\{x_{2}, x_{3}, s_{2}\right\}$, $B_{13}=\left\{x_{2}, x_{3}, s_{3}\right\}, B_{14}=\left\{x_{2}, s_{1}, s_{2}\right\}, B_{15}=\left\{x_{2}, s_{1}, s_{3}\right\}, B_{16}=\left\{x_{2}, s_{2}, s_{3}\right\}$, $B_{17}=\left\{x_{3}, s_{1}, s_{2}\right\}, B_{18}=\left\{x_{3}, s_{1}, s_{3}\right\}, B_{19}=\left\{x_{3}, s_{2}, s_{3}\right\}, B_{20}=\left\{s_{1}, s_{2}, s_{3}\right\}$.
$B_{2}, B_{4}, B_{5}, B_{6}, B_{8}, B_{9}, B_{12}, B_{15}, B_{17}, B_{19}$ are not bases since they form singular matrices. $B_{7}, B_{10}, B_{18}, B_{20}$ are infeasible since they do not satisfy nonnegativity constraints. Thus, what we have is $\left(x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, s_{3}\right)^{T}=(3,2,10,0,0,0)^{T}$ from $B_{1} \hookrightarrow$ point F , $\left(x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, s_{3}\right)^{T}=(3,2,0,0,10,0)^{T}$ from $B_{3} \hookrightarrow$ point C, $\left(x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, s_{3}\right)^{T}=(0,2,10,6,0,0)^{T}$ from $B_{11} \hookrightarrow$ point E, $\left(x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, s_{3}\right)^{T}=(0,8,10,0,0,6)^{T}$ from $B_{13} \hookrightarrow$ point D, $\left(x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, s_{3}\right)^{T}=(0,2,0,6,10,0)^{T}$ from $B_{14} \hookrightarrow$ point B, $\left(x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, s_{3}\right)^{T}=(0,8,0,0,10,6)^{T}$ from $B_{16} \hookrightarrow$ point A.
See Figure S. 12 .
b)

1. matrix form:

Let $x_{B}=\left(s_{1}, x_{3}, x_{2}\right)^{T}, x_{N}=\left(x_{1}, s_{2}, s_{3}\right)^{T}$. Then,

$$
\begin{gathered}
B=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow B^{-1}=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
x_{B}=B^{-1} b=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
8 \\
10 \\
2
\end{array}\right]=\left[\begin{array}{r}
6 \\
10 \\
2
\end{array}\right] .
\end{gathered}
$$

We are on point E .

$$
\begin{gathered}
z=c_{B}^{T} x_{B}=[0,2,2]\left[\begin{array}{r}
6 \\
10 \\
2
\end{array}\right]=24 . \\
c_{N}^{T}-c_{B}^{T} B^{-1} N=[1,0,0]-[0,2,2]\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]=[1,-2,2] .
\end{gathered}
$$

Fig. S.12. Exercise 8.1: Primal and dual polyhedra

Thus, s_{3} enters.

$$
B^{-1} N^{s_{3}}=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] \begin{aligned}
& s_{1} \\
& x_{3} \\
& x_{2}
\end{aligned}
$$

Thus, s_{1} leaves.
New partition is $x_{B}=\left(s_{3}, x_{3}, x_{2}\right)^{T}, x_{N}=\left(x_{1}, s_{2}, s_{1}\right)^{T}$. Then,

$$
B=\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \Rightarrow B^{-1}=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] .
$$

$$
x_{B}=B^{-1} b=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{r}
10 \\
8 \\
2
\end{array}\right]=\left[\begin{array}{r}
6 \\
10 \\
8
\end{array}\right] .
$$

We are on point D.

$$
\begin{gathered}
z=c_{B}^{T} x_{B}=[0,2,2]\left[\begin{array}{r}
6 \\
10 \\
8
\end{array}\right]=36 . \\
c_{N}^{T}-c_{B}^{T} B^{-1} N=[1,0,0]-[0,2,2]\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=[-3,-2,-2] .
\end{gathered}
$$

Thus, D is the optimal point.
2. simplex tableau:

	$x^{x_{1}} x_{2} x_{3} s_{1} s_{2} s_{3} s_{3}\| \| R H S$							$\left[s_{3}\right.$	$x_{1} x_{2} x_{3} s_{1} s_{2} s_{3} \mid$							RHS
s_{1}			0	0	10	0 1	6		s_{3}			0	0	10	1	6
x_{3}			0	1	0	10	10		x_{3}			0	1	01	0	10
x_{2}		0	1	0	0	0-1	2		x_{2}					0		8
$\underline{2}$			0	0	0	-2	24					0	0	2	0	36

3. revised simplex with product form of the inverse:

Let $x_{B}=\left(s_{1}, x_{3}, x_{2}\right)^{T}, x_{N}=\left(x_{1}, s_{2}, s_{3}\right)^{T}$. Then, $B^{-1}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

$$
\begin{gathered}
w=c_{B}^{T} B^{-1}=[0,2,2] \\
r_{x_{1}}=c_{x_{1}}-w N^{x_{1}}=1-[0,2,2]\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=1>0 \\
r_{s_{2}}=c_{s_{2}}-w N^{s_{2}}=0-[0,2,2]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=-2<0 . \\
r_{s_{3}}=c_{s_{3}}-w N^{s_{3}}=0-[0,2,2]\left[\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right]=2>0
\end{gathered}
$$

s_{3} is the entering variable and s_{1} leaves. $E_{1}^{-1}=\left[\begin{array}{rrr}\frac{1}{1} & 0 & 0 \\ -\frac{0}{1} & 1 & 0 \\ -\frac{-1}{1} & 0 & 1\end{array}\right]$.

$$
x_{B}=E_{1}^{-1} \bar{b}=(6,8,10)^{T}
$$

$$
\begin{gathered}
w=[0,2,2] E_{1}^{-1} B^{-1}=[2,2,0] . \\
w=c_{B}^{T} B^{-1}=[0,2,2] \\
r_{x_{1}}=c_{x_{1}}-w N^{x_{1}}=1-[2,2,0]\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=-3<0 . \\
r_{s_{2}}=c_{s_{2}}-w N^{s_{2}}=0-[2,2,0]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=-2<0 . \\
r_{s_{1}}=c_{s_{1}}-w N^{s_{1}}=0-[0,2,2]\left[\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right]=-2<0 .
\end{gathered}
$$

Optimal.
4. revised simplex with $B=L U$ decomposition:

Let $x_{B}=\left(s_{1}, x_{3}, x_{2}\right)^{T}, x_{N}=\left(x_{1}, s_{2}, s_{3}\right)^{T}$. Then, $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is upper triangular, $L=I_{3}$. Solve $B x_{B}=b$ by back substitution.

$$
x_{2}=2, x_{3}=10, s_{1}=8-x_{2}=6
$$

Solve $w B=c_{B}$ by back substitution.

$$
w_{1}=0, w_{2}=2, w_{3}=2-w_{1}=2
$$

The rest is the same, s_{3} enters and s_{1} leaves.
New basis is $B=\left[\begin{array}{rrr}0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$.

$$
P B=L U \Leftrightarrow\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I_{3} U .
$$

Solve $B x_{B}=P b=(2,10,8)^{T}$ by substitution.

$$
x_{2}=2, x_{3}=10, s_{3}=x_{2}-2=6
$$

Solve $w B=P c_{B}=(2,2,0)^{T}$ by substitution.

$$
w_{1}=0, w_{2}=2, w_{3}=2-w_{1}=2
$$

The rest is the same.
5. revised simplex with $B=Q R$ decomposition:

Let $x_{B}=\left(s_{1}, x_{3}, x_{2}\right)^{T}, x_{N}=\left(x_{1}, s_{2}, s_{3}\right)^{T}$. Then, $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is upper triangular, $Q=I_{3}$. The rest is the same as above, s_{3} enters and s_{1} leaves.

$$
B=\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=Q R .
$$

In order to solve $B x_{B}=Q R x_{B}=b=(8,10,2)^{T}=Q\left(R x_{B}\right)=Q b^{\prime}$,

$$
b_{3}^{\prime}=8, b_{2}^{\prime}=10, b_{1}^{\prime}=-2 \Rightarrow x_{2}=8, x_{3}=0, s_{3}=x_{2}-2=6
$$

In order to solve $w B=c_{B}$, first solve $w Q R=c_{B}=w^{\prime} R$.

$$
w_{1}^{\prime}=0, w_{2}^{\prime}=2, w_{3}^{\prime}=2+w_{1}^{\prime}=2
$$

Then, solve $w Q=w^{\prime}$

$$
w_{3}=0, w_{2}=2, w_{1}=2
$$

The rest is the same.
c)
(D):

$$
\begin{aligned}
& \operatorname{Min} w=8 y_{1}+10 y_{2}-2 y_{3} \\
& \text { s.t. } \\
& 2 y_{1} \geq 1 \\
& y_{1}-y_{3} \geq 2 \\
& y_{2} \geq 2 \\
& y_{1}, y_{2}, y_{3} \geq 0 .
\end{aligned}
$$

See Figure S. 12.
8.2 The second constraint is redundant whose twice is exactly the last constraint plus the nonnegativity of x_{1}. Then,

$$
A=\left[\begin{array}{rrrrr}
x_{1} & x_{2} & x_{3} & s_{1} & s_{3} \\
2 & -1 & -1 & -1 & 0 \\
1 & -2 & 2 & 0 & -1
\end{array}\right]
$$

a) The bases are
$B_{1}=\left\{x_{1}, x_{2}\right\}, B_{2}=\left\{x_{1}, x_{3}\right\}, B_{3}=\left\{x_{1}, s_{1}\right\}, B_{4}=\left\{x_{1}, s_{3}\right\}, B_{5}=\left\{x_{2}, x_{3}\right\}$, $B_{6}=\left\{x_{2}, s_{1}\right\}, B_{7}=\left\{x_{2}, s_{3}\right\}, B_{8}=\left\{x_{3}, s_{1}\right\}, B_{9}=\left\{x_{3}, s_{3}\right\}, B_{10}=\left\{s_{1}, s_{3}\right\}$.

All bases except B_{2}, B_{3} yield infeasible solutions since they do not satisfy the nonnegativity constraints. Thus, $\left(x_{1}, x_{2}, x_{3}, s_{1}, s_{3}\right)^{T}=(2,0,1,0,0)^{T}$ from B_{2}, and $\left(x_{1}, x_{2}, x_{3}, s_{1}, s_{3}\right)^{T}=(4,0,0,5,0)^{T}$ from B_{3}.
b)

Method 1:

At $\overline{(2,0,1,0,0)^{T}}$, we have

$$
\left.\begin{array}{rl}
B^{-1} N & =\left[\begin{array}{rrr}
x_{2} & s_{1} & s_{3} \\
-\frac{4}{5} & -\frac{2}{5} & -\frac{1}{5} \\
-\frac{3}{5} & \frac{1}{5} & -\frac{2}{5}
\end{array}\right], B^{-1} b=\left[\begin{array}{l}
2 \\
1
\end{array}\right] . \\
\text { If } x_{2} \text { enters } \begin{array}{l}
x_{1}-\frac{4}{5} x_{2} \\
x_{3}-\frac{3}{5} x_{2}
\end{array}=1 \\
x_{2} \geq 0
\end{array}\right\} \leftrightarrows x_{2}=\theta \Rightarrow r=\left(2+\frac{4}{5} \theta, \theta, 1+\frac{3}{5} \theta, 0,0\right)^{T} \text { is }
$$

feasible for $\theta>0$. Thus, $r^{1}=\left(\frac{4}{5}, 1, \frac{3}{5}, 0,0\right)^{T}$ is an unboundedness direction and hence an extreme ray.

$$
\text { If } \left.s_{3} \text { enters } \begin{array}{rl}
x_{1}-\frac{1}{5} s_{3} & =2 \\
x_{3}-\frac{2}{5} s_{3} & =1 \\
s_{3} \geq 0
\end{array}\right\} \leftrightarrow s_{3}=\theta \Rightarrow r=\left(2+\frac{1}{5} \theta, 0,1+\frac{2}{5} \theta, 0, \theta\right)^{T}
$$

is feasible for $\theta>0$. Thus, $r^{2}=\left(\frac{1}{5}, 0, \frac{2}{5}, 0,1\right)^{T}$ is another unboundedness direction and hence an extreme ray.

At $(4,0,0,5,0)^{T}$, we have

$$
\begin{gathered}
B^{-1} N=\left[\begin{array}{rrr}
x_{2} & x_{3} & s_{3} \\
-3 & 2 & -1 \\
-3 & 5 & -2
\end{array}\right], B^{-1} b=\left[\begin{array}{l}
4 \\
5
\end{array}\right] . \\
\left.\begin{array}{rl}
x_{1}-2 x_{2} & =4 \\
\text { If } x_{2} \text { enters } s_{1}-3 x_{2} & =5 \\
x_{2} & \geq 0
\end{array}\right\} \hookrightarrow x_{2}=\theta \Rightarrow r=(4+2 \theta, \theta, 0,5+3 \theta, 0)^{T} \text { is }
\end{gathered}
$$

feasible for $\theta>0$. Thus, $r^{3}=(2,1,0,3,0)^{T}$ is an unboundedness direction and hence an extrome ray.

$$
\left.\begin{array}{r}
x_{1}-s_{3}=4 \\
s_{1}-2 s_{3}=5 \\
s_{3} \geq 0
\end{array}\right\} \leftrightarrow s_{3}=\theta \Rightarrow r=(4+\theta, 0,0,2 \theta, \theta)^{T} \text { is fcasible }
$$

for $\theta>0$. Thus, $r^{4}=(1,0,0,2,1)^{T}$ is another unboundedness direction and hence an extreme ray.

Method 2:
Try to find some nonnegative vectors in $\mathcal{N}(A)$.

$$
\begin{aligned}
\theta & \leq r^{1}=\left(\frac{4}{5}, 1, \frac{3}{5}, 0,0\right)^{T} \in \mathcal{N}(A) \\
\theta & \leq r^{2}=\left(\frac{1}{5}, 0, \frac{2}{5}, 0,1\right)^{T} \in \mathcal{N}(A) \\
\theta \leq r^{3} & =(2,1,0,3,0)^{T} \in \mathcal{N}(A) \\
\theta \leq r^{4} & =(1,0,0,2,1)^{T} \in \mathcal{N}(A)
\end{aligned}
$$

So, they are rays. Since every pair of the above vectors have zeros in different places, we cannot express one ray as a linear combination of the others, they are extreme rays.
c)

1. $x_{1}+x_{2}+x_{3}$:

$$
\begin{gathered}
c^{1}=(1,1,1,0,0)^{T} \Rightarrow \\
\left\{\begin{array}{l}
\left(c^{1}\right)^{T} r^{1}=\frac{4}{5}+1+\frac{3}{5}+0+0=\frac{12}{5}>0 \hookrightarrow \text { unbounded } \\
\left(c^{1}\right)^{T} r^{2}=\frac{1}{5}+0+\frac{2}{5}+0+0=\frac{3}{5}>0 \hookrightarrow \text { unbounded } \\
\left(c^{1}\right)^{T} r^{3}=2+1+0+0+0=3>0 \hookrightarrow \text { unbounded } \\
\left(c^{1}\right)^{T} r^{4}=1+0+0+0+0=1>0 \hookrightarrow \text { unbounded }
\end{array}\right.
\end{gathered}
$$

Thus, there is no finite solution.
2. $-2 x_{1}-x_{2}-3 x_{3}$:

$$
c^{2}=(-2,-1,-3,0,0)^{T} \Rightarrow
$$

$$
\left\{\begin{array}{l}
\left(c^{2}\right)^{T} r^{1}=-\frac{8}{5}-1-\frac{9}{5}+0+0=-\frac{22}{5} \ngtr 0 \hookrightarrow \text { bounded } \\
\left(c^{2}\right)^{T} r^{2}=-\frac{2}{5}-0-\frac{6}{5}+0+0=-\frac{8}{5} \ngtr 0 \hookrightarrow \text { bounded } \\
\left(c^{2}\right)^{T} r^{3}=-4-1+0+0+0=-5 \ngtr 0 \hookrightarrow \text { bounded } \\
\left(c^{2}\right)^{T} r^{4}=-2+0+0+0+0=-2 \ngtr 0 \hookrightarrow \text { bounded }
\end{array}\right.
$$

Thus, there is finite solution.
3. $-x_{1}-2 x_{2}+2 x_{3}$:

$$
c^{3}=(-1,-2,2,0,0)^{T} \Rightarrow
$$

$$
\left\{\begin{array}{l}
\left(c^{3}\right)^{T} r^{1}=-\frac{4}{5}-2+\frac{6}{5}+0+0=-\frac{8}{5} \ngtr 0 \hookrightarrow \text { bounded } \\
\left(c^{3}\right)^{T} r^{2}=-\frac{1}{5}+0+\frac{4}{5}+0+0=\frac{3}{5}>0 \hookrightarrow \text { unbounded } \\
\left(c^{3}\right)^{T} r^{3}=-2-2+0+0+0=-4 \ngtr 0 \hookrightarrow \text { bounded } \\
\left(c^{3}\right)^{T} r^{4}=-1+0+0+0+0=-1 \ngtr 0 \hookrightarrow \text { unbounded }
\end{array}\right.
$$

Thus, there is no finite solution.
d) $x_{1}=6, x_{2}=1, x_{3}=\frac{1}{2} \Rightarrow s_{1}=\frac{15}{2}, s_{3}=1$

$$
\begin{gathered}
{\left[\begin{array}{c}
6 \\
1 \\
\frac{1}{2} \\
\frac{15}{2} \\
1
\end{array}\right]=\alpha\left[\begin{array}{l}
2 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+(1-\alpha)\left[\begin{array}{l}
4 \\
0 \\
0 \\
5 \\
0
\end{array}\right]+\mu_{1}\left[\begin{array}{c}
\frac{4}{5} \\
1 \\
\frac{3}{5} \\
0 \\
0
\end{array}\right]+\mu_{2}\left[\begin{array}{l}
\frac{1}{5} \\
0 \\
\frac{2}{5} \\
0 \\
1
\end{array}\right]+\mu_{3}\left[\begin{array}{l}
2 \\
1 \\
0 \\
3 \\
0
\end{array}\right]+\mu_{4}\left[\begin{array}{l}
1 \\
0 \\
0 \\
2 \\
1
\end{array}\right] .} \\
\end{gathered}
$$

We have 5 unknowns and 5 equations. The solution is

$$
\left[\begin{array}{c}
6 \\
1 \\
\frac{1}{2} \\
\frac{15}{2} \\
1
\end{array}\right]=\underbrace{\text { extreme points }}_{\text {convex combination of }}<\frac{1}{2}\left[\begin{array}{l}
2 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
4 \\
0 \\
0 \\
5 \\
0
\end{array}\right]+\underbrace{\text { extreme rays }}_{\text {canonical combination of }}<\left[\begin{array}{c}
\frac{4}{5} \\
1 \\
\frac{3}{5} \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
\frac{1}{5} \\
0 \\
\frac{2}{5} \\
0 \\
1
\end{array}\right]+1\left[\begin{array}{l}
2 \\
1 \\
0 \\
3 \\
0
\end{array}\right]+1\left[\begin{array}{l}
1 \\
0 \\
0 \\
2 \\
1
\end{array}\right] .
$$

e)
1.

$$
\left[\begin{array}{c|ccccc|c}
& x_{1} & x_{2} & x_{3} & s_{1} & s_{3} & R H S \\
\hline x_{1} & 1 & -\frac{4}{5} & 0 & -\frac{2}{5} & -\frac{1}{5} \| & 2 \\
\hline x_{3} & 0 & -\frac{3}{5} & 1 & \frac{1}{5} & -\frac{2}{5} \| & 1 \\
\hline \hline-z & 0 & 4 & 0 & 0 & 1 & -4
\end{array}\right]
$$

2.

$$
B^{-1}(b-\Delta b)=\left[\begin{array}{rr}
\frac{2}{5} & \frac{1}{5} \\
-\frac{1}{5} & \frac{2}{5}
\end{array}\right]\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]-\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right]-\left[\begin{array}{r}
\frac{7}{5} \\
-\frac{1}{5}
\end{array}\right]=\left[\begin{array}{l}
\frac{3}{5} \\
\frac{6}{5}
\end{array}\right]
$$

The values of basic variables will change but not the optimal basis.
3. The solution above is $\left(\frac{3}{5}, 0, \frac{6}{5}\right)^{T}$ which satisfies the new constraint, no problem!

8.3 a)

1. $\mathcal{B}=\left\{s_{1}, s_{2}, s_{3}\right\} \Rightarrow B=I, c_{B}=\theta, \mathcal{N}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ at their lower bounds and $c_{N}^{T}=(2,3,1,4)$.

$$
\left.\begin{array}{rl}
x_{B}=B^{-1} b-B^{-1} N x_{N}=\left[\begin{array}{l}
30 \\
13 \\
20
\end{array}\right]-\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 5 & 0 \\
0 & 0 & 3
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
3 \\
0
\end{array}\right] .
$$

$c_{N}^{T}-c_{B}^{T} B^{-1} N=(2,3,1,4)$. Then, Bland's rule (lexicographical order) marks the first variable. Since the reduced cost of x_{1} is positive and x_{1} is at its lower bound; as x_{1} is increased, so is z. Hence, x_{1} enters.

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \leq\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{l}
20 \\
12 \\
11
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \alpha,} \\
\alpha \leq 6-1=5\left(\text { bounds of } x_{1}\right) \\
\Rightarrow \alpha=\min \{20,12,5\}=5
\end{gathered}
$$

x_{1} leaves immediately at its upper bound, $x_{1}=6$.
2. $B=I, c_{B}=\theta, c_{N}^{T}=(2,3,1,4), x_{B}^{T}=(15,7,11) z=12+0+3+0=15$, $c_{N}^{T}-c_{B}^{T} B^{-1} N=(2,3,1,4)$. Then, Bland's rule marks the second variable. Since the reduced cost of x_{2} is positive and x_{2} is at its lower bound; as x_{2} is increased, so is z. Hence, x_{2} enters.

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \leq\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{r}
15 \\
7 \\
11
\end{array}\right]-\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] \alpha} \\
& \alpha \leq 10-0=10 \text { (bounds of } x_{2} \text {) } \\
& \Rightarrow \alpha=\min \left\{\frac{15}{2}, 7,10\right\}=7
\end{aligned}
$$

Thus, s_{2} leaves.
3.

$$
\begin{aligned}
& \mathcal{B}=\left\{s_{1}, x_{2}, s_{3}\right\} \Rightarrow B=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow B^{-1}=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& x_{B}=\left[\begin{array}{l}
s_{1} \\
x_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
30 \\
13 \\
20
\end{array}\right]-\left[\begin{array}{rrr}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 3 & 5 \\
1 & 1 & 0 & 0 \\
0 & 0 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
6 \\
0 \\
3 \\
0
\end{array}\right] \\
& =\left[\begin{array}{r}
4 \\
13 \\
20
\end{array}\right]-\left[\begin{array}{rrrr}
-1 & -2 & 3 & 5 \\
1 & 1 & 0 & 0 \\
0 & 0 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
6 \\
0 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{r}
4 \\
13 \\
20
\end{array}\right]-\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]=\left[\begin{array}{r}
1 \\
7 \\
11
\end{array}\right] \\
& \Rightarrow z=(0,3,0)\left[\begin{array}{r}
1 \\
7 \\
11
\end{array}\right]+(2,0,1,4)\left[\begin{array}{l}
6 \\
0 \\
3 \\
0
\end{array}\right]=21+(12+3)=36 \text {. } \\
& c_{N}^{T}-c_{B}^{T} B^{-1} N=(2,0,1,4)-(0,3,0)\left[\begin{array}{rrrr}
-1 & -2 & 3 & 5 \\
1 & 1 & 0 & 0 \\
0 & 0 & 3 & 4
\end{array}\right] \\
& =(2,0,1,4)-(3,3,0,0)=(-1,-3,1,4) \text {, }
\end{aligned}
$$

where $\mathcal{N}=\left\{x_{1}, s_{1}, x_{3}, x_{4}\right\}$. Then, Bland's rule (lexicographical order) marks the first variable. Since the reduced cost of x_{1} is negative and x_{1} is at its upper bound; as x_{1} is decreased, z is increased. Hence, x_{1} enters.

$$
\left.\begin{array}{c}
{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \leq}
\end{array} \begin{array}{l}
s_{1} \\
x_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
7 \\
11
\end{array}\right]-\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right] \alpha \leq\left[\begin{array}{l}
\infty \\
10 \\
\infty
\end{array}\right], ~ 土 \leq 6-1=5\left(\text { bounds of } x_{1}\right) .
$$

Thus, s_{1} leaves.
4.

$$
\begin{aligned}
& \mathcal{B}=\left\{x_{1}, x_{2}, s_{3}\right\} \Rightarrow B=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow B^{-1}=\left[\begin{array}{rrr}
-1 & 2 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& x_{B}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
30 \\
13 \\
20
\end{array}\right]-\left[\begin{array}{rrr}
-1 & 2 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 3 & 5 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
3 \\
0
\end{array}\right] \\
& =\left[\begin{array}{r}
-4 \\
17 \\
20
\end{array}\right]-\left[\begin{array}{rrrr}
-1 & 2 & -3 & -5 \\
1 & -1 & 3 & 5 \\
0 & 0 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{r}
-4 \\
17 \\
20
\end{array}\right]-\left[\begin{array}{r}
-9 \\
9 \\
9
\end{array}\right]=\left[\begin{array}{r}
5 \\
8 \\
11
\end{array}\right] \\
& \Rightarrow z=(2,3,0)\left[\begin{array}{r}
5 \\
8 \\
11
\end{array}\right]+(0,0,1,4)\left[\begin{array}{l}
0 \\
0 \\
3 \\
0
\end{array}\right]=(10+24)+3=37 \text {. } \\
& c_{N}^{T}-c_{B}^{T} B^{-1} N=(0,0,1,4)-(2,3,0)\left[\begin{array}{rrrr}
-1 & 2 & -3 & -5 \\
1 & -1 & 3 & 5 \\
0 & 0 & 3 & 4
\end{array}\right] \\
& =(0,0,1,4)-(1,1,3,5)=(-1,-1,-2,-1) \text {, }
\end{aligned}
$$

where $\mathcal{N}=\left\{s_{1}, s_{2}, x_{3}, x_{4}\right\}$. All of the reduced costs are negative for all the nonbasic variables that all are at their lower bounds. Hence, $x^{*}=$ $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}=(5,8,3,0)^{T}$ is the optimum solution, where $z^{*}=37$.
b) (P) :

$$
\begin{aligned}
& \max 2 x_{1}+3 x_{2}+x_{3}+4 x_{4} \\
& \text { s.t. } \\
& x_{1}+2 x_{2}+3 x_{3}+5 x_{4} \leq 30 \quad\left(y_{1}\right) \\
& \quad x_{1}+x_{2} \leq 13 \quad\left(y_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
3 x_{3}+x_{4} \leq 20 \quad\left(y_{3}\right) \\
-x_{1} \leq-1 \quad\left(y_{4}\right) \\
x_{1} \leq 6 \quad\left(y_{5}\right) \\
x_{2} \leq 10 \quad\left(y_{6}\right) \\
-x_{3} \leq-3 \quad\left(y_{7}\right) \\
x_{3} \leq 9 \quad\left(y_{8}\right) \\
x_{4} \leq 5 \quad\left(y_{9}\right) \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{gathered}
$$

(D):

$$
\min 30 y_{1}+13 y_{2}+20 y_{3}-y_{4}+6 y_{5}+10 y_{6}-3 y_{7}+9 y_{8}+5 y_{9}
$$

s.t.

$$
\begin{gathered}
y_{1}+y_{2}-y_{4}+y_{5} \geq 2 \quad\left(x_{1}\right) \\
2 y_{1}+y_{2}+y_{6} \geq 3 \quad\left(x_{2}\right) \\
3 y_{1}+3 y_{2}-y_{7}+y_{8} \geq 1 \quad\left(x_{3}\right) \\
5 y_{1}+y_{3}+y_{9} \geq 4 \quad\left(x_{4}\right) \\
y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}, y_{8}, y_{9} \geq 0
\end{gathered}
$$

The optimal primal solution, $x^{*}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}=(5,8,3,0)^{T}$, satisfies constraints (y_{1}, y_{2}, y_{7}) as binding, i.e. the corresponding slacks are zero. By complementary slackness, the dual variables y_{1}, y_{2}, y_{7} might be in the optimal dual basis. The other primal constraints have positive surplus values at the optimality, therefore $y_{3}^{*}=y_{4}^{*}=y_{5}^{*}=y_{6}^{*}=y_{8}^{*}=y_{9}^{*}=0$. Moreover, the reduced costs of the surplus variables at the optimal primal solution are both 1 for s_{1} and s_{2}, which are the optimal values of $y_{1}^{*}=y_{2}^{*}=1$. Since the optimal primal basis contains the nonzero valued x_{1} and x_{2}, the corresponding dual constraints are binding: $1+1-0+0=2 \sqrt{ }$ and $2+1+0=3 \sqrt{ }$. Furthermore, the optimal primal solution has nonbasic variables x_{3} and x_{4}, then the corresponding dual surplus variables may be in the dual basis: 3+3$y_{7}^{*}+0 \geq 1$, and $5+0+0>4 \Rightarrow$ the corresponding surplus, say $t_{4}^{*}=1$ in the dual optimal basis. The optimal primal objective function value is $z^{*}=37$, which is equal to the optimal dual objective function value by the strong duality theorem. Then, $37=30(1)+13(1)+20(0)-(0)+6(0)+10(0)-3 y_{7}^{*}+$ $9(0)+5(0)+0 t_{1}^{*}+0 t_{2}^{*} 0 t_{3}^{*}+0 t_{4}^{*}$, yielding $y_{7}^{*}=2$.

8.4

Fig. S.13. A multi-commodity flow instance

Let us take the instance given in Figure S.13, where $K=3$ and

$$
\begin{gathered}
V=\{1,2,3,4,5,6, A, C, I, K, O P\} \\
A=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p\}
\end{gathered}
$$

Let us fix all capacities at 10 and all positive supplies/demands at 10 with unit carrying costs.
a)

$$
\begin{array}{ll}
\text { Min } & \sum_{k} \sum_{a} c_{k a} x_{k a} \\
\text { s.t. } \\
& \sum_{a \in T(i)} x_{k a}-\sum_{a \in H(i)} x_{k a}=d_{k i} \\
& \sum_{k} x_{k a} \leq U_{a} \\
& x_{k a} \leq u_{k a} \\
& x_{k a} \geq 0 \text { (integer) }
\end{array}
$$

In general, we have $m K$ variables, $m+n K$ constraints and $m K$ simple bounds other than the nonnegativity constraints. In our example instance, we have

$$
\left.\begin{array}{cl}
\text { Min } & \left(x_{1 a}+x_{2 a}+x_{3 a}\right)+\cdots+\left(x_{1 p}+x_{2 p}+x_{3 p}\right) \\
\text { s.t. } & \\
& \left(x_{1 a}+x_{1 g}\right)-\left(x_{1 b}+x_{1 f}\right)=0 \\
& \left(x_{2 a}+x_{2 g}\right)-\left(x_{2 b}+x_{2 f}\right)=0 \\
& \left(x_{3 a}+x_{3 g}\right)-\left(x_{3 b}+x_{3 f}\right)=0
\end{array}\right\} \text { node } 1
$$

b)

$$
\begin{array}{ll}
\operatorname{Min} & \sum_{k} \sum_{P \in \mathcal{P}^{k}} C_{k P} f_{P} \\
\text { s.t. } & \\
& \sum_{P \in \mathcal{P}^{k}} f_{P}=D_{k} \\
& \sum_{k} \sum_{P \in \mathcal{P}^{k}} I_{a P} f_{P} \leq U_{a} \\
& f_{P} \leq \mu_{P} \\
& f_{P} \geq 0 \text { (integer) }
\end{array}
$$

We have (huge number of) $K 2^{m}$ variables, $m+K$ constraints and $K 2^{m}$ simple bounds other than the nonnegativity constraints. The following sets the relation between the decision variables of the two formulations whose constraints are isomorphic:

$$
x_{a k}=\sum_{P \in \mathcal{P}^{k}} I_{a P} f_{P}, f_{P}=\min _{a \in P} \sum_{k} x_{a k} \text { (applied recursively). }
$$

In our example instance, s_{1} is node A and t_{3} is node I. If we enumerate paths (some of them is given in Figure S.14), we have

Comm. Path\# Path

	1	$a \mapsto f \mapsto h \mapsto m \mapsto p$
	2	$a \mapsto b \mapsto d \mapsto m \mapsto p$
1	3	$a \mapsto f \mapsto h \mapsto e \mapsto d \mapsto m \mapsto p$
	4	$a \mapsto f \mapsto g \mapsto b \mapsto d \mapsto m \mapsto p$
	5	$a \mapsto b \mapsto d \mapsto l \mapsto j \mapsto h \mapsto m \mapsto p$
	6	$a \mapsto f \mapsto g \mapsto b \mapsto d \mapsto l \mapsto j \mapsto h \mapsto m \mapsto p$
2	7	$o \mapsto n \mapsto e \mapsto c$
	8	$o \mapsto n \mapsto l \mapsto j \mapsto h \mapsto e \mapsto c$
	9	$o \mapsto n \mapsto l \mapsto j \mapsto g \mapsto b \mapsto c$
	10	$o \mapsto n \mapsto l \mapsto j \mapsto g \mapsto f \mapsto h \mapsto e \mapsto c$
	11	$o \mapsto n \mapsto e \mapsto d \mapsto l \mapsto j \mapsto g \mapsto b \mapsto c$
3	12	$k \mapsto j \mapsto h \mapsto i$
	13	$k \mapsto j \mapsto g \mapsto b \mapsto d \mapsto i$
	14	$k \mapsto j \mapsto h \mapsto e \mapsto d \mapsto i$
	15	$k \mapsto j \mapsto h \mapsto m \mapsto n \mapsto i$
	16	$k \mapsto j \mapsto h \mapsto m \mapsto p \mapsto o \mapsto n \mapsto i$
	17	$k \mapsto j \mapsto h \mapsto e \mapsto d \mapsto m \mapsto n \mapsto i$
	18	$k \mapsto j \mapsto g \mapsto b \mapsto d \mapsto m \mapsto n \mapsto i$
	19	$k \mapsto j \mapsto g \mapsto b \mapsto d \mapsto m \mapsto p \mapsto o \mapsto n \mapsto i$
	20	$k \mapsto j \mapsto h \mapsto e \mapsto d \mapsto m \mapsto p \mapsto o \mapsto n \mapsto i$

Fig. S.14. Some paths in our multi-commodity flow instance
and the formulation will be

$$
\begin{array}{cl}
\text { Min } & 5 f_{1}+\cdots+10 f_{20} \\
\text { s.t. } \\
& f_{1}+\cdots+f_{6}=10 \\
& f_{7}+\cdots+f_{11}=10 \\
& f_{12}+\cdots+f_{20}=10 \\
& f_{1}+f_{2}+f_{3}+f_{4}+f_{5}+f_{6} \leq 10 \\
& \vdots \\
& f_{1}+f_{2}+f_{3}+f_{4}+f_{5}+f_{6}+f_{16}+f_{19}+f_{20} \leq 10 \\
& f_{1}, \cdots, f_{20} \geq 0 \text { (integer) }
\end{array}
$$

The first three constraints make the capacity constraints for arcs a, c, i and k redundant.
c)

$$
\begin{gathered}
w_{a} \leftrightarrow \sum_{k} \sum_{P \in \mathcal{P}^{k}} I_{a P} f_{P} \leq U_{a} \\
\pi_{k} \leftrightarrow \sum_{P \in \mathcal{P}^{k}} f_{P}=D_{k}
\end{gathered}
$$

Then, the reduced cost of a path P will be

$$
\sum_{a \in P}\left(c_{k a}+w_{a}\right)-\pi_{k}
$$

and the current solution is optimal when

$$
\min _{P \in \mathcal{P}^{k}}\left\{\sum_{a \in P}\left(c_{k a}+w_{a}\right)\right\} \geq \pi_{k}, \forall k
$$

The above problem is equivalent to find the shortest path between s_{k} and t_{k} using arc costs $c_{k a}+w_{a}$ for each commodity k. The problem is decomposed into K single commodity shortest path problems with a dynamic objective function that favors paths with arcs that have not appeared many times in current paths.
d)
$x^{T}=$
$\left[f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}, f_{9}, f_{10}, f_{11}, f_{12}, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{20} \mid\right.$ $\left.\mid s_{b}, s_{d}, s_{e}, s_{f}, s_{g}, s_{h}, s_{j}, s_{l}, s_{m}, s_{n}, s_{o}, s_{p}\right]$.

$$
\begin{aligned}
& c=[5577894779946668881010 \mid 000000000000] \\
& A=\left[\begin{array}{llllllllllllllllll|llllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Fig. S.15. Starting bfs solution for our multi-commodity flow instance: repeated

$$
\left.\begin{array}{rl}
B_{1} & =\left[\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] . \\
c_{B_{1}}^{T} & =\left[\begin{array}{c}
5
\end{array} 460000\right.
\end{array}\right]
$$

Then, the lengths of arcs are $c_{k a}+w_{a}=1+0=1, \forall$ arcs .
For commodity one, the minimum shortest path $\left(P_{2}: a \mapsto b \mapsto d \mapsto\right.$ $m \mapsto p$) other than P_{1} has length 5 which is equal to the corresponding dual variable $\pi_{1}=5$. For commodity two, the minimum shortest path has length 6 which is strictly greater than the corresponding dual variable $\pi_{2}=4$. However, $P_{12}: k \mapsto j \mapsto h \mapsto i$ has length $4<6=\pi_{3}$! Thus, f_{12} enters to the basis with the updated column

$$
\left(B_{1}^{-1} A^{12}\right)^{T}=\left[\begin{array}{llllllllllll}
0 & 0 & 1 & -1 & -1 & 0 & 0 & -1 & 1 & 0 & 0 & 0
\end{array} 00000\right]
$$

and the updated RHS is

$$
\begin{gathered}
x_{B_{1}}^{T}=\left(B_{1}^{-1} b\right)^{T}=\left[f_{1} f_{7} f_{13} s_{b} s_{d} s_{e} s_{f} s_{g} s_{h} s_{j} s_{l} s_{m} s_{n} s_{o} s_{p}\right] \\
x_{B_{1}}^{T}=\left(B_{1}^{-1} b\right)^{T}=\left[\begin{array}{llllllllll}
101010000000100000
\end{array}\right]
\end{gathered}
$$

therefore the slack variable corresponding to arc h, s_{h}, leaves.

$$
\begin{aligned}
& B_{2}=\left[\begin{array}{llllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& c_{B_{2}}^{T}=\left[\begin{array}{lllllllllll}
54 & 6 & 0 & 0 & 0 & 0 & 0400000
\end{array}\right] \\
& y_{2}=\left[\begin{array}{lllllllllll}
7 & 4 & 6 \mid 0 & 0 & 0 & 0 & 0-2 & 0 & 0 & 0 & 0
\end{array} 000\right]
\end{aligned}
$$

Then, the lengths of arcs are $c_{k a}+w_{a}=1+0=1, \forall \operatorname{arcs}$ except arc h, whose length is $1-2=-1$.

For commodity one, the minimum shortest path $P_{2}: a \mapsto b \mapsto d \mapsto m \mapsto p$ has length 5 , which is strictly less than the corresponding dual variable $\pi_{1}=7$. Thus, f_{2} enters to the basis with the updated column

$$
\left(B_{2}^{-1} A^{2}\right)^{T}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 & 0-1-1-100000-1
\end{array}\right]
$$

and the updated RHS is

$$
\begin{gathered}
x_{B_{2}}^{T}=\left(B_{2}^{-1} b\right)^{T}=\left[f_{1} f_{7} f_{13} s_{b} s_{d} s_{e} s_{f} s_{g} f_{12} s_{j} s_{l} s_{m} s_{n} s_{o} s_{p}\right] \\
x_{B_{2}}^{T}=\left(B_{2}^{-1} b\right)^{T}=\left[\begin{array}{lllllllll}
101010000000100000
\end{array}\right]
\end{gathered}
$$

therefore, either f_{1} or f_{7} leaves. We choose f_{1} !

$$
\begin{aligned}
& B_{3}=\left[\begin{array}{llllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \\
& c_{B_{3}}^{T}=[546000004000000] \\
& y_{3}=\left[\begin{array}{lllllllll}
54 & 6
\end{array} 00000-2000000\right]
\end{aligned}
$$

Then, the lengths of arcs are $c_{k a}+w_{a}=1+0=1, \forall \operatorname{arcs}$ except arc h, whose length is $1-2=-1$. For all the three commodities, the minimum shortest distances between the source and the sink nodes are greater and equal to the corresponding dual variables. Therefore, the current solution given below is optimal.

$$
\begin{gathered}
x_{B_{3}}^{T}=\left(B_{3}^{-1} b\right)^{T}=\left[f_{2} f_{7} f_{13} s_{b} s_{d} s_{e} s_{f} s_{g} f_{12} s_{j} s_{l} s_{m} s_{n} s_{o} s_{p}\right] \\
x_{B_{3}}^{T}=\left(B_{3}^{-1} b\right)^{T}=\left[\begin{array}{llllllllll}
1010 & 0 & 0 & 0 & 101010 & 010 & 0 & 0 & 10
\end{array}\right]
\end{gathered}
$$

The optimum solution is depicted in Figure S.16.
e) When the number of variables (columns of A) is huge, the following question is asked: Can one generate column A^{j} by some oracle that can answer the question, Does there exist a column with with reduced cost < 0? If so, the oracle returns one. So, the sketch of so called "A Column Generation Algorithm" is given below:
S1. Solve $L P(J)$:

$$
\min \left\{\sum_{j \in J} c_{j} x_{j}: \sum_{j \in J} A^{j} x_{j}=b, x \geq 0\right\}
$$

for some $J \subseteq I=\{1, \ldots, n\}$.
S2. Using dual variables π that are optimal for $L P(J)$, ask the oracle if there exists $j \notin J$ such that $c_{j} \pi A^{j}<0$. If so, add it to J and perform pivot(s) to solve new $L P(J)$; Go back S1. If not, we have the optimal solution to LP over all columns.

Fig. S.16. The optimum solution for our multi-commodity flow instance

In a sense, we partition the optimization problem into two levels: Main / Subproblem, or Master / Slave, or Superior / Inferior; where the subproblem has a structure that can be exploited easily. The main problem generates dual variables and the subproblem generates new primal variables; and the loop stops when primal-dual conditions are satisfied.

The dual to the above column generation approach gives rise to the separation problem, where we are about to solve LP with large number of rows (equations). We first solve over restricted subset of rows (analogous to solving over subset of columns) and ask oracle if other rows are satisfied. If so, we are done; if not, we ask the oracle to return a separating hyperplane that has current rows satisfied in one half space and a violation in the other. This approach leads to Bender's decomposition.

Problems of Chapter 9

9.1 Let $\alpha=\inf A$. Then, $\forall x \in A, \alpha \leq x \Leftrightarrow-x \leq-\alpha$. Hence, $(-A)$ in bounded above. Also, $-\alpha$ is an upper bound of $(-A)$. So,

$$
\sup (-A) \leq-\alpha \Leftrightarrow-\sup (-A) \geq \alpha=\inf A
$$

Conversely, let $\beta=\sup (-A)$. Then, $\forall x \in A,-x \leq \beta \Leftrightarrow x \geq-\beta$. Hence, $-\beta$ is a lower bound of A. So,

$$
\inf A \geq-\beta=-\sup (-A)
$$

Thus, $\inf A=-\sup (-A)$.

9.2

a) If $m=0,\left(b^{m}\right)^{1 / n}=\left(b^{0}\right)^{1 / n}=1^{1 / n}=1$ (see (c)).

If $m>0,\left(b^{m}\right)^{1 / n}=\underbrace{(b \cdots b)^{1 / n}}_{m \text { times }}=\underbrace{b^{1 / n} \cdots b^{1 / n}}_{m \text { times }}=\left(b^{1 / n}\right)^{m}$.
If $m<0$, let $m^{\prime}=-m>0$. Then,
$\left(b^{m}\right)^{1 / n}=\left(b^{-m^{\prime}}\right)^{1 / n}=\left(\frac{1}{b^{m^{\prime}}}\right)^{1 / n}=\frac{1}{\left(b^{m^{\prime}}\right)^{1 / n}}=\frac{1}{\left(b^{1 / n}\right)^{m^{\prime}}}=\frac{1}{\left(b^{1 / n}\right)^{-m}}=\left(b^{1 / n}\right)^{m}$.
b) If $m=0$, all terms are 1 .

If $m>0,\left(b^{m}\right)^{n}=\underbrace{b^{m} \cdots b^{m}}_{n}=\overbrace{\underbrace{b \cdots b}_{m} \cdots \underbrace{b \cdots b}_{m}}^{n}=b^{m n}$.
Similarly, $\left(b^{m}\right)^{n}=b^{m n}$.
If $m<0$, let $m^{\prime}=-m>0$. Then,
$\left(b^{m}\right)^{n}=\left(b^{-m^{\prime}}\right)^{n}=\left(\frac{1}{b^{m^{\prime}}}\right)^{n}=\frac{1}{\left(b^{m^{\prime}}\right)^{n}}=\frac{1}{b^{m^{\prime} n}}=\frac{1}{b^{-(m n)}}=b^{m n}$.
c) Let $1^{1 / n}=x$ where $x \succ 0$. Then, $x^{n}=1$. Also, $1^{1 / n}=1$. Since the positive $n^{t h}$ root of 1 is unique, we get $x=1$.
d) Let $b^{1 / n q}=\alpha$, and $\left(b^{1 / n}\right)^{1 / q}=\beta$ where $\alpha, \beta \succ 0$.

Then, $b=\alpha^{n q}$ and $b^{1 / n}=\beta^{q} \Rightarrow b=\left(\beta^{q}\right)^{n}=\beta^{q n}=\beta^{n q}=\alpha^{n q}$. Since the positive $n q^{t h}$ root of b is unique, we get $\alpha=\beta$, i.e. $b^{1 / n q}=\left(b^{1 / n}\right)^{1 / q}$. Similarly, $b^{1 / n q}=\left(b^{1 / q}\right)^{1 / n}$.
e) If $p=0$, then $b^{p+q}=b^{0+q}=b^{q}=b^{0} b^{q}=b^{p} b^{q}$. Similarly, if $q=0$, $b^{p+q}=b^{p} b^{q}$. So assume $p \neq 0, q \neq 0$.

Case 1:p>0,q>0, $b^{p+q}=\frac{\underbrace{b \cdots b}_{p+q}}{\text { Cas }} \underbrace{b \cdots b}_{p} \underbrace{b \cdots b}_{q}=b^{p} b^{q}$;
Case 2: $p<0, q>0$, Let $p^{\prime}=-p>0$. So, $b^{p+q}=b^{-p^{\prime}+q}$;
$\left\{\begin{array}{l}\text { Case } 2 a: p^{\prime}=q \Rightarrow b^{-p^{\prime}+q}=b^{0}=1=1=\frac{b^{q}}{b^{q}}=\frac{b^{q}}{b^{p^{\prime}}}=b^{p} b^{q} . \\ \text { Case } 2 b: p^{\prime}<q \Rightarrow b^{-p^{\prime}+q}=\underbrace{b \cdots b}_{q-p^{\prime}}=\underbrace{\underbrace{b \cdots b}_{p^{\prime}}}_{q-p^{\prime}} \underbrace{b \cdots b}_{p^{\prime}}=\frac{b^{q}}{b^{p^{\prime}}}=b^{p} b^{q} .\end{array}\right.$
Case $2 c: p^{\prime}>q \Rightarrow b^{-p^{\prime}+q}=b^{-\left(p^{\prime}-q\right)}=\frac{1}{b^{p^{\prime}-q}}=\frac{1}{b^{p^{\prime}} b^{-q}}=\frac{b^{q}}{b^{p^{\prime}}}=b^{p} b^{q}$.
Case 3 : $p>0, q<0$, similar to Case 2;
Case $4: p<0, q<0$, then, $p+q<0 \Rightarrow b^{p+q}=\frac{1}{b^{-(p+q)}}=\frac{1}{b^{-p} b^{-q}}=b^{p} b^{q}$.

9.3

a) Let $\alpha=\left(b^{m}\right)^{1 / n}, \beta=\left(b^{p}\right)^{1 / q}$ where $\alpha, \beta>0$.

$$
\left\{\begin{aligned}
\text { Case } 1: m=0, & \Rightarrow p=0 . \text { So, } \alpha=\beta=1 . \\
\text { Case } 2: m>0, & \left.\Rightarrow p>0 . \alpha=b^{m}\right)^{1 / n} \Rightarrow \alpha^{n}=b^{m} \Rightarrow b=\left(\alpha^{n}\right)^{\frac{1}{m}} \\
& \text { Similarly, } b=\left(\beta^{q}\right)^{\frac{1}{p}} \Rightarrow b^{m p}=\alpha^{n p}=\beta^{q m} . \\
& \text { Thus, } n p=q m \Rightarrow \alpha^{n p}=\beta^{n p} . \\
& \text { Since the positive }(n p)^{t h} \text { root is unique, } \alpha=\beta . \\
\text { Case } 3: m<0, & \Rightarrow p<0 \text {. Let } m^{\prime}=-m, p^{\prime}=-p \Rightarrow m^{\prime}, p^{\prime}>0 . \text { C } \\
& \left(b^{m}\right)^{1 / n}=\left(b^{-m^{\prime}}\right)^{1 / n}=\left(\frac{1}{b^{-m^{\prime}}}\right)^{1 / n}=\frac{1}{\left(b^{-m^{\prime}}\right)^{1 / n}}= \\
& =\frac{1}{\left(b^{-p^{\prime}}\right)^{1 / q}}=\left(b^{p}\right)^{1 / q} .
\end{aligned}\right.
$$

So, $b^{r}, r \in \mathbb{Q}$ are well defined.
b) Let $r=\frac{m}{n}, s=\frac{p}{q}$ where $n, q>0$.

$$
\begin{gathered}
b^{r+s}=\left(b^{m q+n p}\right)^{\frac{1}{n q}}=\left(b^{m q} b^{n p}\right)^{\frac{1}{n q}}=\left(b^{m q}\right)^{\frac{1}{n q}}\left(b^{n p}\right)^{\frac{1}{n q}}= \\
=\left(\left(b^{m}\right)^{q}\right)^{\frac{1}{n q}}\left(\left(b^{p}\right)^{n}\right)^{\frac{1}{n q}}=\left(\left(\left(b^{m}\right)^{q}\right)^{1 / q}\right)^{1 / n}\left(\left(\left(b^{p}\right)^{n}\right)^{1 / n}\right)^{1 / q}= \\
\left(b^{m}\right)^{1 / n}\left(b^{p}\right)^{1 / q}=b^{r} b^{s} .
\end{gathered}
$$

c) Let $b^{t} \in B(r)$. Then, $t \in \mathbb{Q}, t \leq r \Rightarrow r-t \geq 0, r-t \in \mathbb{Q}$. Since $b>1$ and $r-t$ is a nonnegative rational number, we get $b^{r-t} \geq 1$.

Claim: Let $b>1, s \in \mathbb{Q}_{+} \cdot b^{s} \geq 1$.
Proof: If $s=0 \Rightarrow b^{s}=b^{0}=1$. Assume $s>0$. Then, $s=\frac{p}{q}$ where $p, q>0$. $b^{s}=\left(b^{p}\right)^{1 / q} . b>1 \Rightarrow a=b^{p}>1 \Rightarrow b^{s}=a^{1 / q}>1$.

Hence, $1 \geq b^{r-t}=b^{r} b^{-t}=\frac{b^{r}}{b^{t}} \Rightarrow b^{t} \leq b^{r}$. That is $\forall b^{t} \in B(r), b^{t} \leq b^{r}$; i.e. b^{r} is an upper bound for $B(r)$. Then, $\sup (B(r)) \leq b^{r}$. If $r \in \mathbb{Q}, b^{r} \in B(r)$. So, $b^{r} \leq \sup (B(r))$. Thus, $b^{r}=\sup (B(r))$.

Now, we can safely define $b^{x}=\sup (B(x)), \forall x \in \mathbb{R}$.
d) Fix b^{r} arbitrary in $B(x)$ and fix b^{s} arbitrary in $B(y): r, s \in \mathbb{Q}, r \leq x, s \leq y$.

Then, $r+s \in \mathbb{Q}, r+s \leq x+y \Rightarrow b^{r+s}=b^{s} b^{r} \in B(x+y) \Rightarrow b^{r} b^{s} \leq b^{x+y}$. Keep s fixed. $b^{r} \leq \frac{b^{x+y}}{b^{s}}, \forall b^{r} \in B(x)$. Thus, $\frac{b^{x+y}}{b^{s}}$ is an upper bound for $B(x)$. Hence, $b^{x}=\sup (B(x)) \leq \frac{b^{x+y}}{b^{s}} \Leftrightarrow b^{s} \leq \frac{b^{x+y}}{b^{x}}$. Similarly, $b^{r} \leq \frac{b^{x+y}}{b^{y}}$.

Now vary s. $\forall b^{s} \in B(y), b^{s} \leq \frac{b^{x+y}}{b^{x}}$. Thus, $\frac{b^{x+y}}{b^{x}}$ is an upper bound for $B(y)$.

$$
b^{y}=\sup (B(y)) \leq \frac{b^{x+y}}{b^{x}} \Rightarrow b^{x} b^{y} \leq b^{x+y}
$$

Claim: $b^{x} b^{y} \geq b^{x+y}$.
Proof: Suppose not. $b^{x} b^{y}<b^{x+y}$ for some $x, y \in \mathbb{R} . \exists a \in \mathbb{Q} \subset \mathbb{R} \ni b^{x} b^{y}<$ $a<b^{x+y}$, by Archimedean property. $b^{x}, b^{y}>0 \Rightarrow a>0$. Since $a<b^{x+y}$, a is NOT an upper bound of $B(x+y)$. So, $\exists b^{r} \in B(x+y) \ni a>b^{r}$. Let $t=\frac{b^{r}}{a}>1$. If $n>\frac{b-1}{t-1}$ (see problem 9.4-c)) $b^{1 / n}<t=\frac{b^{r}}{a} \Rightarrow a<b^{r} b^{-1 / n}=$ $b^{r-1 / n}$ (true for rationals). Also $r-1 / n<r \leq x+y$. So, $r-\frac{1}{n}-x<y$. $\exists v \in \mathbb{Q} \ni r-\frac{1}{n}-x<v<y$. Then, $v<y$ and $r-\frac{1}{n}-v<x$. Thus, $b^{v} \in B(y)$ and $b^{r-\frac{1}{n}-v} \in B(x)$. That is, $b^{v} \leq b^{y}$ and

$$
b^{r-\frac{1}{n}-v} \leq b^{x} \Leftrightarrow b^{r-\frac{1}{n}}=b^{r-\frac{1}{n}-v} b^{v} \leq b^{x} b^{y}<a<b^{r-\frac{1}{n}} .
$$

We have a contradiction from the first and the last terms of the above relation.
9.4
a) $b^{n}-1=(b-1)\left(b^{n-1}+b^{n-2}+\cdots+b+1\right)>(b-1)(1+\cdots+1) \geq(b-1) n$.
b) Let $t=b^{1 / n}$. Apply part a) for $t: t^{n}-1 \geq n(t-1) \Rightarrow b-1 \geq n\left(b^{1 / n}-1\right)$.
c) $\frac{b-1}{t-1}<n \Rightarrow \frac{b-1}{n}<t-1 \Rightarrow \frac{b-1}{n}+1<t$. We have $\frac{b-1}{n} \geq b^{1 / n}-1$. Thus, $b^{1 / n}<t$.
d) Let $t=\frac{y}{b^{w}}>1$. Use part c), $b^{1 / n}<t=\frac{y}{b^{w}} \Rightarrow b^{w+1 / n}=b^{w} b^{1 / n}<y$ if $n>\frac{b-1}{t-1}$.
e) $y>0 \Rightarrow t=\frac{b^{w}}{y}>1$. If $n>\frac{b-1}{t-1}$, use c), $b^{1 / n}<t=\frac{b^{w}}{y} \Rightarrow y<\frac{b^{w}}{b^{1 / n}}=$ $b^{w-1 / n}$.
f)

Claim: A is bounded above.
Proof: If not, $\forall \beta>0, \exists w \in A \ni w>\beta$. In particular, $\forall n \in \mathbb{N}, \exists w \in$ $A \ni w>n$. Hence, $\forall n \in \mathbb{N}, \exists w \in A \ni b^{n}<b^{w}<y$, i.e. $\forall n \in \mathbb{N}, b^{n}<y$. If $0<y \leq 1$, we have a Contradiction since $b^{n}>1$. Assume $y>1$, use (c) $\forall n \ni n>\frac{y-1}{b-1}, y^{1 / n}<b \Rightarrow y<b^{n}$. Hence, $\forall n \ni n>\frac{y-1}{b-1}$ we have $b^{n}<y<b^{n}$, Contradiction.

Let $x=\sup (A)=\sup \left\{w \in \mathbb{R}: b^{w} \prec y\right\}$.

Claim: $b^{x}=y$.
Proof: If not, $b^{x}<y$ or $b^{x}>y$. If $b^{x}<y$, by (d) $\forall n \in \mathbb{N}, b^{x+1 / n}<$ $y, x+1 / n \in A$. Contradiction to the upper bound $x>x+1 / n$. If $b^{x}>y$, then Claim: if $u<x, u \in A$. Proof: $u<x \Rightarrow u$ is nor an upper bound of A. $\exists w \in A \ni u<w \Rightarrow w-u>0 \Rightarrow b^{w-u}>1 \Rightarrow \frac{b^{w}}{b^{u}}>1 \Rightarrow b^{w}>b^{u}$. So, $u \in A$. $y<b^{x} \Rightarrow$ use (e) $\forall n \in \mathbb{N} \ni y<b^{x-1 / n}$; so $x+1 / n \notin A$. Thus, $x \leq x-1 / n$ ($u<x \Rightarrow u \in A$), Contradiction.

Hence, $b^{x}=y$.
g) Let $b>1, y>0$ be fixed. Suppose $x \neq x^{\prime} \ni b^{x}=y=b^{x^{\prime}}$.

Without loss of generality, we may assume that , $x<x^{\prime} \Rightarrow x^{\prime}-x>0 \Rightarrow$ $b^{x-x^{\prime}} \Rightarrow b^{x}>b^{x^{\prime}}$, Contradiction.

9.5

a) $\forall z \in F, z^{2} \succeq 0$ (if $z=0 \Rightarrow z^{2}=0$. If $z \succ 0 \Rightarrow z^{2} \succ 0$). Assume that $x \neq 0 \Rightarrow x^{2} \succ 0$. If $y^{2} \succeq 0 \Rightarrow x^{2}+y^{2} \succ 0$, Contradiction. So $x=0$, then $x^{2}+y^{2}=0+y^{2}=0 \Rightarrow y=0$.
b) Trivial by induction.
9.6 Note that " $a \sim b$ if $a-b$ is divisible by m " is different from saying " $\frac{a-b}{m}$ is an integer", since the above one is defined for all fixed $m \in \mathbb{Z}$ including $m=0$, but the latter one is defined for all $m \neq 0$.
a) $a \sim a, \forall a \in \mathbb{Z}($ take $k=0)$. Then, \sim is reflexive.
$a \sim b \Rightarrow \exists k \in \mathbb{Z} \ni a-b=m k$. Then, $b-a=m(-k)$ where $-k \in \mathbb{Z}$. Thus, $b \sim a$, yielding that \sim is symmetric.
$a \sim b$ and $b \sim c \Rightarrow \exists k_{1}, k_{2} \in \mathbb{Z} \ni a-b=k_{1} m, b-c=k_{2} m$. Then, $a-c=\left(k_{1}+k_{2}\right) m$ where $k_{1}+k_{2} \in \mathbb{Z}$. Hence, $a \sim c$, meaning that \sim is transitive.

Thus, \sim is an equivalence relation.
b) Case 1: $m=0$. Then, $a \sim b \Leftrightarrow a=b$. So, $[a]=\{a\}$, and the number of equivalence classes is ∞.

Case 2: $m \neq 0$. Then, $a \sim b \Leftrightarrow \exists k \in \mathbb{Z} \ni a=b+m k$. Hence,

$$
[a]=\{a, a+m, a-m, a+2 m, a-2 m, \cdots\},
$$

and the number of distinct equivalence classes is $|m|$.
9.7
a) $x \sim y \Rightarrow x \in[0,1]$ and $y \in[0,1] \Rightarrow y \sim x$ (i.e. symmetric).
$x \sim y$ and $y \sim z \Rightarrow x \in[0,1]$ and $y \in[0,1]$ and $z \in[0,1] \Rightarrow x \sim z$ (i.e. transitive).
If $x \notin[0,1]$, then $x \sim x$ does not hold. For reflexibility we want $x \sim x$ to hold
$\forall x \in \mathbb{R}$. Hence,\sim is not reflexive.
b) The statement

$$
x \sim y \Rightarrow y \sim x, x \sim y \text { and } y \sim x \Rightarrow x \sim x ; \text { therefore, } x \sim x, \forall x \in X
$$

starts with the following assumption: $\forall x \in X, \exists y \in X \ni x \sim y$. If \sim is symmetric and transitive and also has this additional property, then it is necessarily reflexive. But if it does not have this property, then it is not reflexive.

9.8

a) We will make the proof by induction on n. If $n=1, X=X_{1}$ is countable by hypothesis. Assume that the proposition is true for $n=k$, i.e. $X_{1} \times \cdots \times X_{k}$ is countable. We will prove the proposition for $n=k+1$, i.e. prove that $X=X_{1} \times \cdots \times X_{k} \times X_{k+1}$ is countable. Let $Y=X_{1} \times \cdots \times X_{k}$. Then, $X=Y \times X_{k+1}$ and Y is countable by the induction hypothesis. Then, the elements of Y and X_{k+1} can be listed as sequences $Y=\left\{y_{1}, y_{2}, \ldots\right\}, X_{k+1}=$ $\left\{x_{1}, x_{2}, \ldots\right\}$. Now, for $X=Y \times X_{k+1}$, we use Cantor's counting scheme and see that X is countable.
b) Let X be countable. Then, $X=\left\{x_{1}, x_{2}, \ldots\right\}$. Let $A=\left\{x_{2}, x_{3}, \ldots\right\}$. Then, A is a proper subset of X and $f: X \mapsto A$ defined by $f\left(x_{n}\right)=x_{n+1}, n=1,2, \ldots$ is one-to-one and onto. Thus, every countable set is numerically equivalent to a proper subset of itself.
c) If $f: X \mapsto Y$ is onto, then $\exists g: Y \mapsto X \ni f \circ g=i d y$. Moreover, g is one-to-one. Let $A=g(Y)$, then $A \subset X$ and $g: Y \mapsto A$ is one-to-one and onto. So, $A \sim Y$. Since $A \subset X$ and X is countable, A is either finite or countable. To see that A cannot be uncountable, we express $X=\left\{x_{1}, x_{2}, \ldots\right\}$. If A is not finite, then $A=\left\{x_{i_{1}}, x_{i_{2}}, \ldots\right\}$, where i_{n} 's are positive integers and $i_{n} \neq i_{m}$ for $n \neq m$. Now, we define $f: \mathbb{N} \mapsto A$ by $f(n)=x_{i_{n}}$. Then, f is one-to-one and onto. If A is finite, $A \sim Y \Rightarrow Y$ is finite; if A is countable, $A \sim Y \Rightarrow Y$ is countable. Thus, Y is at most countable.

Problems of Chapter 10

10.1 Fix $x, y \in \mathbb{R}^{k}$ arbitrary.

$$
\begin{gathered}
d_{2}(x, y)=\left[\sum_{i=1}^{k}\left(x_{i}-y_{i}\right)^{2}\right]^{1 / 2}, d_{1}(x, y)=\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|, \\
d_{\infty}(x, y)=\max _{i}\left\{\left|x_{i}-y_{i}\right|\right\}=\left|x_{j}-y_{j}\right|
\end{gathered}
$$

$d_{1} \sim d_{\infty}:$

$$
\begin{gathered}
d_{\infty}(x, y)=\left|x_{j}-y_{j}\right| \leq \sum_{i=1}^{k}\left|x_{i}-y_{i}\right|=d_{1}(x, y) \Rightarrow A=1 . \\
d_{\infty}(x, y)=\left|x_{j}-y_{j}\right| \geq\left|x_{i}-y_{i}\right|, \forall i=1,2, \ldots, k \\
\Rightarrow k d_{\infty}(x, y)=k\left|x_{j}-y_{j}\right| \geq \sum_{i=1}^{k}\left|x_{i}-y_{i}\right| \Rightarrow B=k .
\end{gathered}
$$

$d_{2} \sim d_{\infty}:$

$$
\begin{gathered}
{\left[d_{\infty}(x, y)\right]^{2}=\left(x_{j}-y_{j}\right)^{2} \leq \sum_{i=1}^{k}\left(x_{i}-y_{i}\right)^{2} \Rightarrow d_{\infty}(x, y) \leq d_{2}(x, y) \Rightarrow A=1} \\
{\left[d_{\infty}(x, y)\right] 2=\left(x_{j}-y_{j}\right)^{2} \geq\left|x_{i}-y_{i}\right|, \forall i=1,2, \ldots, k} \\
\Rightarrow k\left[d_{\infty}(x, y)\right]^{2} \geq\left[d_{2}(x, y)\right]^{2} \Rightarrow B=\sqrt{k}
\end{gathered}
$$

$d_{1} \sim d_{2}: d_{1} \sim d_{\infty}$ and $d_{2} \sim d_{\infty} \Rightarrow d_{1} \sim d_{2}$.
10.2

Consider the discrete metric $d(p, q)=\left\{\begin{array}{l}0, \text { if } p=q, \\ r, \text { if } p \neq q\end{array}\right.$ on X.

$$
B_{r}(p)=\{p\}, B_{r}[p]=X, \overline{B_{r}(p)}=\{p\} \neq X
$$

10.3

$(\Leftarrow:)$
Let $\emptyset \neq A \varsubsetneqq X . A$ is both open and closed. Let $B=A^{c}, B$ is also both open and closed. $A \cup B=X$. If A is closed then B is open, we have $A \cap \bar{B}=$ $A \cap B=\emptyset$. If B is closed then A is open, we have $B \cap \bar{A}=A \cap B=\emptyset$. Thus X is disconnected.
(\Rightarrow :)
X is disconnected. $\exists A \neq \emptyset, \exists B \neq \emptyset \ni X=A \cup B$ and $(A \cap \bar{B}) \cap(\bar{A} \cap B)=$ $\emptyset \Rightarrow A \cap B=\emptyset$. Thus $A^{c}=B \neq \emptyset \Rightarrow A \varsubsetneqq X$.
$A \cup B=X \Rightarrow A \cup \bar{B}=X, A \cap \bar{B}=\emptyset \Rightarrow A=(\bar{B})^{c}$, i.e. A is open.
$A \cup B=X \Rightarrow \bar{A} \cup B=X, \bar{A} \cap B=\emptyset \Rightarrow B=(\bar{A})^{\mathrm{c}}$, i.e. B is open.
A and B are separated and $A \cup B=X \Rightarrow A=B^{c}$, so A is closed. Similarly, B is closed.
10.4

Let us place the origin at the lower left corner of the PCB. Then,

$$
\begin{aligned}
& A=\left[\begin{array}{l}
1 \\
1
\end{array}\right], B=\left[\begin{array}{l}
1 \\
4
\end{array}\right], C=\left[\begin{array}{l}
2 \\
2
\end{array}\right], \\
& D=\left[\begin{array}{l}
2 \\
6
\end{array}\right], E=\left[\begin{array}{l}
3 \\
7
\end{array}\right], F=\left[\begin{array}{l}
4 \\
4
\end{array}\right], \\
& G=\left[\begin{array}{l}
6 \\
0
\end{array}\right], H=\left[\begin{array}{l}
6 \\
5
\end{array}\right], I=\left[\begin{array}{l}
7 \\
2
\end{array}\right], \\
& J=\left[\begin{array}{l}
8 \\
3
\end{array}\right], K=\left[\begin{array}{l}
9 \\
1
\end{array}\right], L=\left[\begin{array}{l}
9 \\
7
\end{array}\right],
\end{aligned}
$$

a)

Use l_{1} norm:

l_{1}	A	B	C	D	E	F	G	H	I	J	K	L
A	0	3	2	6	8	6	6	9	7	9	8	14
B	3	0	3	3	5	3	9	6	8	8	11	11
C	2	3	0	4	6	4	6	7	5	7	8	12
D	6	3	4	0	2	4	10	5	9	9	12	8
E	8	5	6	2	0	4	10	5	9	9	12	6
F	6	3	4	4	4	0	6	3	5	5	8	8
G	6	9	6	10	10	6	0	5	3	5	4	10
H	9	6	7	5	5	3	5	0	4	4	7	5
I	7	8	5	9	9	5	3	4	0	2	3	7
J	9	8	7	9	9	5	5	4	2	0	3	5
K	8	11	8	12	12	8	4	7	3	3	0	6
L	14	11	12	8	6	8	10	5	7	5	6	0

Nearest neighbor (in l_{1} metric):

$$
\begin{gathered}
A \mapsto C \mapsto B \mapsto D(D \text { or } F) \mapsto E \mapsto F \mapsto H \\
\mapsto I(I \text { or } J) \mapsto J \mapsto K \mapsto G \mapsto L \mapsto A
\end{gathered}
$$

Initial tour length is 54. See Figure S.17.

Fig. S.17. Nearest neighbor (in l_{1} metric): initial solution

Delete $(E, F) \&(L, A)$: gain $=18-12$

Improved Tour: Length is 48

Fig. S.18. Nearest neighbor (in l_{1} metric): first improvement

The gain values are tabulated below. See Figure S.18.

$G A I N \mid(B, D)(D, E)(E, F)(F, H)(H, I)(I, J)(J, K)$	$(K, G)(G, L)(L, A)$									
(A, C)	-2	-8	-6	-8	-8	-10	-12	-8	-6	
(C, B)		-4	-2	-4	-8	-8	-12	-14	-4	2
(B, D)		-2	-2	-8	-12	-14	-14	-4	0	
(D, E)				-4	-8	-14	-16	-16	-4	0
(E, F)					-2	-8	-10	-10	-4	6
(F, H)						-4	-6	-6	2	0
(H, I)							0	-2	2	6
(I, J)								-2	4	0
(J, K)									2	4
(K, G)										

The maximum gain is 6 , due to the deletion of (E, F) and (L, A). The situation after this step is illustrated in Figure S.19.

Delete $(I, J) \&(G, L)$: gain $=12-8$

Improved Tour: Length is 44

Fig. S.19. Nearest neighbor (in l_{1} metric): second improvement
b) Use l_{2} norm:

l_{2}	A	B	C	D	E	F	G	H	I	J	K	L
A	0	3	$\sqrt{2}$	$\sqrt{26}$	$\sqrt{40}$	$\sqrt{18}$	$\sqrt{26}$	$\sqrt{41}$	$\sqrt{37}$	$\sqrt{53}$	8	10
B	3	0	$\sqrt{5}$	$\sqrt{5}$	$\sqrt{13}$	3	$\sqrt{41}$	$\sqrt{26}$	$\sqrt{40}$	$\sqrt{50}$	$\sqrt{73}$	$\sqrt{73}$
C	$\sqrt{2}$	$\sqrt{5}$	0	4	$\sqrt{26}$	$\sqrt{8}$	$\sqrt{20}$	5	5	$\sqrt{37}$	$\sqrt{50}$	$\sqrt{74}$
D	$\sqrt{26}$	$\sqrt{5}$	4	0	$\sqrt{2}$	$\sqrt{8}$	$\sqrt{40}$	$\sqrt{17}$	$\sqrt{41}$	$\sqrt{45}$	$\sqrt{74}$	$\sqrt{50}$
E	$\sqrt{40}$	$\sqrt{13}$	$\sqrt{26}$	$\sqrt{2}$	0	$\sqrt{10}$	$\sqrt{58}$	$\sqrt{13}$	$\sqrt{41}$	$\sqrt{41}$	$\sqrt{72}$	6
F	$\sqrt{18}$	3	$\sqrt{8}$	$\sqrt{8}$	$\sqrt{10}$	0	$\sqrt{20}$	$\sqrt{5}$	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{34}$	$\sqrt{34}$
G	$\sqrt{26}$	$\sqrt{41}$	$\sqrt{20}$	$\sqrt{40}$	$\sqrt{58}$	$\sqrt{20}$	0	5	$\sqrt{5}$	$\sqrt{13}$	$\sqrt{10}$	$\sqrt{58}$
H	$\sqrt{41}$	$\sqrt{26}$	5	$\sqrt{17}$	$\sqrt{13}$	$\sqrt{5}$	5	0	$\sqrt{10}$	$\sqrt{8}$	5	$\sqrt{13}$
I	$\sqrt{37}$	$\sqrt{40}$	5	$\sqrt{41}$	$\sqrt{41}$	$\sqrt{13}$	$\sqrt{5}$	$\sqrt{10}$	0	$\sqrt{2}$	$\sqrt{5}$	$\sqrt{29}$
J	$\sqrt{53}$	$\sqrt{50}$	$\sqrt{37}$	$\sqrt{45}$	$\sqrt{41}$	$\sqrt{17}$	$\sqrt{13}$	$\sqrt{8}$	$\sqrt{2}$	0	$\sqrt{5}$	$\sqrt{17}$
K	8	$\sqrt{73}$	$\sqrt{50}$	$\sqrt{74}$	$\sqrt{72}$	$\sqrt{34}$	$\sqrt{10}$	5	$\sqrt{5}$	$\sqrt{5}$	0	6
L	10	$\sqrt{73}$	$\sqrt{74}$	$\sqrt{50}$	6	$\sqrt{34}$	$\sqrt{58}$	$\sqrt{13}$	$\sqrt{29}$	$\sqrt{17}$	6	$\sqrt{0}$

Nearest neighbor (in l_{2} metric):

$$
\begin{gathered}
A \mapsto C \mapsto B \mapsto D \mapsto E \mapsto F \mapsto H \mapsto J \\
\mapsto I \mapsto G(G \text { or } K) \mapsto K \mapsto L \mapsto A
\end{gathered}
$$

Initial tour length is 38.3399 . See Figure S.20.

Fig. S.20. Nearest neighbor (in l_{2} metric): initial solution

The gain values are tabulated below. See Figure S. 21 for the improvement.

GAIN	(B, D)	(D, E)	(E, F)	(F, H)	($H, I)$	(I, J)	(J, K)	(K, G)	(G, L)	(L, A)
(A,C)	-3.35	-7.37	-4.58	-5.59	9-8.24	-9.45	-6.90	-7.59	-9.19	
(C, B)		-3.96	-2.70	-3.46	6-7.01	-8.76	-6.93	-7.62	-7.38	0.63
(B, D)			-1.04	-2.65	5-6.74	-9.82	-9.06	-9.61	-7.38	-1.41
(D, E)				-2.78	-6.28	-10.28	-10.37	-11.12	-7.19	-1.98
(E, F)					-1.74	-5.43	-5.48	-7.12	-5.15	2.92
(F, H)						-3.64	-4.13	-4.07	-1.20	0.00
(H, I)							-1.70	-1.25	-0.29	1.94
(I, J)								-1.27	-0.21	1.21
(J, K)									-1.62	1.75
(K, G)										-2.45

Delete $(E, F) \&(L, A)$: gain $=2.9196$

Improved Tour: Length is 35.42026

Fig. S.21. Nearest neighbor (in l_{2} metric): improvement
c) Use l_{∞} norm:

l_{∞}	A	B	C	D	E	F	G	H	I	J	K
L											

Nearest neighbor (in l_{∞} metric):

$$
\begin{gathered}
A \mapsto C \mapsto B \mapsto D \mapsto E \mapsto F \mapsto H \mapsto J \\
\mapsto I \mapsto G(G \text { or } K) \mapsto K \mapsto L \mapsto A
\end{gathered}
$$

Initial tour length is 33 . See Figure S. 22 .

Fig. S.22. Nearest neighbor (in l_{∞} metric): initial solution

The gain values are tabulated below. See Figure S. 23 for the improvement.

$G A I N$										
(A, C)	$(B, D)(D, E)(E, F)(F, H)$	$(H, I)(I, J)(J, K)$	(K, G)	$(G, L)(L, A)$						
(C, B)	-4	-8	-4	-4	-8	-10	-7	-8	-8	
(B, D)		-4	-3	-3	-7	-9	-6	-7	-7	0
(D, E)		0	-3	-7	-9	-8	-7	-7	-3	
(E, F)			-2	-6	-9	-9	-8	-6	-4	
(F, H)					-2	-4	-4	-6	-2	2
(H, I)						-4	-6	-6	2	0
(I, J)										
(J, K)							-2	-2	0	0
(K, G)								-1	0	-1

Fig. S.23. Nearest neighbor (in l_{∞} metric): improvement
d)

Case 1: we need to complete the tour for the consecutive PCB's:
Current situation (l_{1} norm): Tour duration is 44 time units.
Proposition 1 (l_{2} norm): Tour duration is 35.42026 time units.
Proposition $2\left(l_{\infty}\right.$ norm): Tour duration is 31 time units.
Proposition 1 is economically feasible if $(44-35.42026) N C_{o} \geq C_{1}$. Similarly, proposition 2 is economically feasible if $(44-31) N C_{o} \geq C_{2}$.

Case 2: we may delete the most costly connection:
For the odd numbered PCBs among $1, \ldots, N$;
l_{1} norm: $L \mapsto J \mapsto K \mapsto G \mapsto I \mapsto H \mapsto F \mapsto A \mapsto C \mapsto B \mapsto D \mapsto E$ with length 38 ;
l_{2} norm: $K \mapsto G \mapsto I \mapsto J \mapsto H \mapsto F \mapsto A \mapsto C \mapsto B \mapsto D \mapsto E \mapsto L$ with length 29.42026;
l_{∞} norm: $K \mapsto G \mapsto I \mapsto J \mapsto H \mapsto F \mapsto A \mapsto C \mapsto B \mapsto D \mapsto E \mapsto L$ with length 25.

For the even numbered PCBs, we reverse the order as
l_{1} norm: $E \mapsto D \mapsto B \mapsto C \mapsto A \mapsto F \mapsto H \mapsto I \mapsto G \mapsto K \mapsto J \mapsto L$;
l_{2} norm: $L \mapsto E \mapsto D \mapsto B \mapsto C \mapsto A \mapsto F \mapsto H \mapsto J \mapsto I \mapsto G \mapsto K$;
l_{∞} norm: $L \mapsto E \mapsto D \mapsto B \mapsto C \mapsto A \mapsto F \mapsto H \mapsto J \mapsto I \mapsto G \mapsto K$.
Current situation (l_{1} norm): Path duration is 38 time units.
Proposition 1 (l_{2} norm): Path duration is 29.42026 time units.
Proposition 2 (l_{∞} norm): Path duration is 25 time units.
Proposition 1 is economically feasible if $(38-29.42026) N C_{o} \geq C_{1}$. Similarly, proposition 2 is economically feasible if $(38-25) N C_{o} \geq C_{2}$.

If $8.57974<\frac{C_{1}}{N C_{o}}$ and $13<\frac{C_{2}}{N C_{o}}$, then we keep the existing robot arm configuration. Otherwise, we select proposition 1 if $0.65998 \geq \frac{C_{1}}{C_{2}}$; select proposition 2 if $0.65998 \leq \frac{C_{1}}{C_{2}}$.

Problems of Chapter 11

11.1

a) (\Rightarrow) : Let $\varepsilon>0$ and x_{0} be given. Let $b=f\left(x_{0}\right)-\varepsilon$. Then, by assumption, the set $B=\left\{x \in X: f(x)>f\left(x_{0}\right)-\varepsilon\right\}$ is open. Moreover, $x_{0} \in B$ since $f\left(x_{0}\right)>f\left(x_{0}\right)-\varepsilon$. So, $\exists \delta>0 \ni B_{\delta}\left(x_{0}\right) \subset B$; that is, $x \in B_{\delta}\left(x_{0}\right) \Rightarrow x \in B \Rightarrow$ $f(x)>f\left(x_{0}\right)-\varepsilon$.
$(\Leftarrow):$ Let $b \in \mathbb{R}$ be given. We will show that the set $A=\{x \in X: f(x)>b\}$ is open. If $A=\emptyset$, then A is open. Assume $A \neq \emptyset$, show that every point of A is an interior point. Let $x_{0} \in A$. Then, $f\left(x_{0}\right)>b$. Let $\varepsilon=f\left(x_{0}\right)-b$. Then, by our assumption, $\exists \delta>0 \ni x \in B_{\delta}\left(x_{0}\right) \Rightarrow f(x)>f\left(x_{0}\right)-\varepsilon=b \Rightarrow x \in A$. Hence, $B_{\delta}\left(x_{0}\right) \subset A$, that is $x_{0} \in \operatorname{int} A$.
b) Similar as above.
$11.2 f$ is continuous and X is compact $\Rightarrow f(X)=B$ is compact in Y. $q \in \overline{f(X)}=\bar{B}=B$ since B is compact, therefore closed. So, by $q \in B=f(X)$, we have $\exists p \in X \ni q=f(p)$. Next, we will show that $p_{n} \rightarrow p . f: X \mapsto B$ is continuous, one-to-one and onto. Since X is compact, $f^{-1}: B \mapsto X$ is continuous. Moreover, $f\left(p_{n}\right), q \in B$ and $f\left(p_{n}\right) \rightarrow q$. Then,

$$
\underbrace{f^{-1}\left(f\left(p_{n}\right)\right)}_{p_{n}} \rightarrow \underbrace{f^{-1}(q)}_{p}
$$

11.3 Let the wire be the circle $C_{r}=\left\{(x, y): x^{2}+y^{2}=r^{2}\right\}$. For $\alpha=(x, y) \in$ C_{r}, let $T(\alpha)$ be the temperature at α and let $f: C_{r} \mapsto \mathbb{R}$ be such that $f(\alpha)=T(\alpha)-T(-\alpha)$. Note that α and $-\alpha$ are diametrically opposite points. Then, T, and hence, f are continuous.
Claim: $\exists \alpha \in C_{r} \ni f(\alpha)=0$.
Proof: Assume not, $\forall \alpha \in C_{r}, T(\alpha) \neq T(-\alpha)$. Define $A=\left\{\alpha \in C_{r}: f(\alpha)>0\right\}$, $B=\left\{\alpha \in C_{r}: f(\alpha)<0\right\}$. Then, A and B are both open in C_{r}. Why? (since they are the inverse images of the open sets $(0,+\infty)$ and $(-\infty, 0)$ under the continuous function f.) $A \cap B \neq \emptyset$, because of the heated wire; $A \cup B=C_{r}$, since we assumed $\forall \alpha \in C_{r}, T(\alpha) \neq T(-\alpha)$; moreover, $A \neq \emptyset$, there is at least one point (the point where heat is applied). Suppose not, then $C_{r}=B$, $\forall \alpha \in C_{r}, f(\alpha)<0 \Leftrightarrow T(\alpha)<T(-\alpha)$. But, then $T(-\alpha)<T(-(-\alpha))=T(\alpha)$, Contradiction. Hence $A \neq \emptyset$. Similarly, with the same argument, $B \neq \emptyset$, think of the opposite point to where heat is applied. So, A is nonempty, proper ($A^{c}=B \neq \emptyset$) subset of C_{r} which is both open and closed (A^{c} is open). Thus, C_{r} is disconnected. Contradiction.

Another way of proving the statement is the following: Let $x \in A$ and $y \in B$, and we know that f is continuous as well as $f(x)>0>f(y)$. Apply the intermediate value theorem (Corollary 11.4.2) to conclude that $\exists \alpha \in C_{r} \ni$ $f(\alpha)=0$.

Problems of Chapter 12

12.1 Use the Mean Value Theorem: $h: \mathbb{R} \mapsto \mathbb{R}$ is nondecreasing if $h^{\prime}(x) \geq 0$.

$$
y \leq x \Rightarrow h(x)-h(y)=h^{\prime}(c)(x-y) \geq 0 \Rightarrow h(x) \geq h(y) .
$$

$g^{\prime}(x)=\frac{x f^{\prime}(x)-f(x)}{x^{2}}, f(x)=f(x)-f(0)=f^{\prime}(c) x \leq x f^{\prime}(x), 0<c<x$.
So $g^{\prime}(x) \geq 0, \forall x \Rightarrow g$ is nondecreasing.
12.2 Use the Mean Value Theorem: $f_{i}(y)-f_{i}(x)=f_{i}^{\prime}\left(c_{i}\right)(y-x) . f^{\prime}=0 \Rightarrow$ $f_{i}^{\prime}=0, \forall i$, thus $f_{i}(y)=f_{i}(x)$ which means f is constant.

$$
\begin{gathered}
12.3 \frac{\partial f}{\partial x}(0,0)=\cos (0+2 \cdot 0)=1, \frac{\partial f}{\partial y}(0,0)=2 \cos (0+2 \cdot 0)=2 \\
\frac{\partial^{2} f}{\partial x^{2}}(0,0)=0, \frac{\partial^{2} f}{\partial y^{2}}(0,0)=0, \frac{\partial^{2} f}{\partial x^{2}}(0,0)=0 \text { and } \frac{\partial^{2} f}{\partial x \partial y}(0,0)=0 \\
f(x, y)=x+2 y+R_{2}(x, y)(0,0)
\end{gathered}
$$

where $\frac{R_{2}(x, y)}{|(x, y)|^{2}}(0,0) \rightarrow 0$ as $(x, y) \rightarrow(0,0)$.

12.4

a) Let us take the first order Taylor's approximation for any nonzero direction h,

$$
f\left(x^{*}+h\right)=f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{T} h+R_{1}\left(x^{*}, h\right), \frac{R_{1}\left(x^{*}, h\right)}{\|h\|^{1}} \rightarrow 0 \text { as } h \rightarrow \theta
$$

Since $\frac{R_{1}\left(x^{*}, h\right)}{\|h\|^{T}} \approx \frac{1}{2} h^{T} \nabla^{2} f(\xi) h$, where $\xi=x^{*}+\alpha h, 0<\alpha<1$, we say that

$$
f\left(x^{*}+h\right) \approx f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{T} h .
$$

Since x^{*} is a local minimizer, $f\left(x^{*}\right) \leq f\left(x^{*}+h\right)$, $\forall h$ small. Therefore, for all feasible directions $\nabla f\left(x^{*}\right)^{T} h \geq 0$, where the left, hand side is known as the directional derivative of the function. Since we have an unconstrained minimization problem, all directions h (and so are inverse directions - h) are feasible,

$$
\nabla f\left(x^{*}\right)^{T} h \geq 0 \geq-\nabla f\left(x^{*}\right)^{T} h=\nabla f\left(x^{*}\right)^{T}(-h) \geq 0, \forall h \neq \theta
$$

Thus, we must have $\nabla f\left(x^{*}\right)=\theta$.
b) Let us take the second order Taylor's approximation for any nonzero (but small in magnitude) direction h,

$$
f\left(x^{*}+h\right) \approx f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{T} h+\frac{1}{2} h^{T} \nabla^{2} f\left(x^{*}\right) h .
$$

Since $\nabla f\left(x^{*}\right)=0$, we have

$$
f\left(x^{*}+h\right) \approx f\left(x^{*}\right)+\frac{1}{2} h^{T} \nabla^{2} f\left(x^{*}\right) h
$$

Suppose that $\nabla^{2} f\left(x^{*}\right)$ is not positive semi-definite. Then,

$$
\exists v \in \mathbb{R}^{n} \ni v^{T} \nabla^{2} f\left(x^{*}\right) v<0
$$

even for the remainder term, $v^{T} \nabla^{2} f(\xi) v<0$ if $\left\|x^{*}-\xi\right\|$ is small enough. If we take h as being along v, we should have $f\left(x^{*}\right)>f\left(x^{*}+h\right)$, Contradiction to the local minimality of $f\left(x^{*}\right)$. Thus, $\nabla^{2} f\left(x^{*}\right)$ is positive semi-definite.

If we combine the first order necessary condition and the second order necessary condition after deleting the term -semi-, we will arrive at the sufficiency condition for x^{*} being the strict local minimizer.
c) At every iteration, we will approximate $f(x)$ by a quadratic function $Q(p)$ using the first three terms of its Taylor series about the point x_{k-1} :

$$
f\left(x_{k-1}+p\right) \approx f\left(x_{k-1}\right)+\nabla f\left(x_{k-1}\right)^{T} p+\frac{1}{2} p^{T} \nabla^{2} f\left(x_{k-1}\right) p \doteq Q(p)
$$

and we will minimize Q as a function of p, then we will finally set $x_{k}=$ $x_{k-1}+p_{k}$.

Let us take the derivative of Q :

$$
\frac{d Q}{d p}=\nabla f\left(x_{k-1}\right)+\nabla^{2} f\left(x_{k-1}\right)^{T} p \approx \nabla f\left(x_{k-1}+p\right)
$$

Since we expect $\theta=\nabla f\left(x_{k-1}+p_{k}\right) \approx \nabla f\left(x_{k-1}\right)+\nabla^{2} f\left(x_{k-1}\right)^{T} p_{k}$,

$$
\nabla^{2} f(k-1)^{T} p_{k}=-\nabla f\left(x_{k-1}\right) \Leftrightarrow p_{k}=-\left[\nabla^{2} f\left(x_{k-1}\right)\right]^{-1} \nabla f\left(x_{k-1}\right)
$$

This method of finding a root of a function is known as Newton's method, which has a quadratic rate of convergence except in some degenerate cases. Newton's method for finding $\nabla f(x)=\theta$ is simply to iterate as $x_{k}=x_{k-1}-$ $\left[\nabla^{2} f\left(x_{k-1}\right)\right]^{-1} \nabla f\left(x_{k-1}\right)$.
d) See Figure S. 24 for the plot of the bivariate function, $f\left(x_{1}, x_{2}\right)=x_{1}^{4}+$ $2 x_{1}^{3}+24 x_{1}^{2}+x_{2}^{4}+12 x_{2}^{2}$, in the question.

$$
\begin{gathered}
\nabla f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
4 x_{1}^{3}+6 x_{1}^{2}+48 x_{1} \\
4 x_{2}^{3}+24 x_{2}
\end{array}\right], \\
\nabla^{2} f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{cc}
12 x_{1}^{2}+12 x_{1}+48 & 0 \\
0 & 12 x_{2}^{2}+24
\end{array}\right] . \\
\text { Let } x_{(0)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow \nabla f\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
58 \\
28
\end{array}\right], \nabla^{2} f\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{cc}
72 & 0 \\
0 & 36
\end{array}\right] . \text { Then, } \\
x_{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{ll}
\frac{1}{72} & \\
& \frac{1}{36}
\end{array}\right]\left[\begin{array}{l}
58 \\
28
\end{array}\right]=\left[\begin{array}{l}
1-\frac{58}{72} \\
1-\frac{28}{36}
\end{array}\right]=\left[\begin{array}{c}
\frac{14}{72} \\
\frac{4}{36}
\end{array}\right] .
\end{gathered}
$$

Fig. S.24. Plot of $f\left(x_{1}, x_{2}\right)=x_{1}^{4}+2 x_{1}^{3}+24 x_{1}^{2}+x_{2}^{4}+12 x_{2}^{2}$

$$
\begin{gathered}
\nabla f\left(\left[\begin{array}{l}
0.194444 \\
0.222222
\end{array}\right]\right)=\left[\begin{array}{l}
9.589592 \\
5.377229
\end{array}\right] \\
\nabla^{2} f\left(\left[\begin{array}{l}
0.194444 \\
0.222222
\end{array}\right]\right)=\left[\begin{array}{cc}
50.78704 & 0 \\
0 & 24.59259
\end{array}\right]
\end{gathered}
$$

Then,

$$
\begin{gathered}
x_{(2)}=\left[\begin{array}{l}
0.194444 \\
0.222222
\end{array}\right]-\left[\begin{array}{cc}
\frac{1}{50.78704} & \\
& \frac{1}{24.59259}
\end{array}\right]\left[\begin{array}{l}
9.589592 \\
5.377229
\end{array}\right]=\left[\begin{array}{l}
0.005625 \\
0.003570
\end{array}\right] . \\
\nabla f\left(\left[\begin{array}{l}
0.005625 \\
0.003570
\end{array}\right]\right)=\left[\begin{array}{l}
0.270179 \\
0.085676
\end{array}\right] \\
\nabla^{2} f\left(\left[\begin{array}{l}
0.005625 \\
0.003570
\end{array}\right]\right)=\left[\begin{array}{cc}
48.06788 & 0 \\
0 & 24.00015
\end{array}\right]
\end{gathered}
$$

Then,

$$
\begin{gathered}
x_{(3)}=\left[\begin{array}{l}
0.005625 \\
0.003570
\end{array}\right]-\left[\begin{array}{ll}
\frac{1}{48.06788} & \\
& \frac{1}{24.00015}
\end{array}\right]\left[\begin{array}{l}
0.270179 \\
0.085676
\end{array}\right]=\left[\begin{array}{l}
0.00000398 \\
0.00000002
\end{array}\right] . \\
\nabla f\left(\left[\begin{array}{l}
0.00000398 \\
0.00000002
\end{array}\right]\right)=\left[\begin{array}{l}
0.000191000 \\
0.000000364
\end{array}\right]
\end{gathered}
$$

$$
\nabla^{2} f\left(\left[\begin{array}{l}
0.00000398 \\
0.00000002
\end{array}\right]\right)=\left[\begin{array}{cc}
48.00005 & 0 \\
0 & 24
\end{array}\right] .
$$

Then,

$$
x_{(4)}=\left[\begin{array}{ll}
0.00000398 \\
0.00000002
\end{array}\right]-\left[\begin{array}{cc}
\frac{1}{48.00005} & \\
& \frac{1}{24}
\end{array}\right]\left[\begin{array}{c}
0.0001910000 \\
0.000000364
\end{array}\right]=\left[\begin{array}{c}
1.98 \times 10^{-12} \\
0
\end{array}\right] .
$$

Finally, $\nabla f\left(\left[\begin{array}{c}1.98 \times 10^{-12} \\ 0\end{array}\right]\right)=\left[\begin{array}{c}9.5 \times 10^{-11} \\ 0\end{array}\right]$, which is close to θ.
Thus, $x^{*}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow \nabla f\left(x^{*}\right)=\theta, \nabla^{2} f\left(x^{*}\right)=\left[\begin{array}{cc}48 & 0 \\ 0 & 24\end{array}\right]$. Since $\nabla^{2} f\left(x^{*}\right)$ is diagonal with positive entries, it is positive definite. Therefore, $x^{*}=\theta$ is a local minimizer with $f\left(x^{*}\right)=0$.

Problems of Chapter 13

13.1

Let there be given two series

$$
A=\sum_{0}^{\infty} u_{k} \text { and } B=\sum_{0}^{\infty} v_{k}
$$

with nonnegative terms.
(a) If $u_{k} \leq v_{k}, \forall k$, the convergence of series B implies the convergence of series A and the divergence of series A implies the divergence of series B. Suppose that B is convergent. Let $S=\sum_{0}^{\infty} v_{k}$ be finite.

$$
\sum_{0}^{n} u_{k} \leq \sum_{0}^{n} v_{k} \leq S, n=0,1, \ldots
$$

thus partial sum of A is bounded, hence it is convergent.
Suppose that A is divergent. Thus its $n^{\text {th }}$ partial sum increases indefinitely together with n.

$$
\sum_{0}^{n} u_{k} \leq \sum_{0}^{n} v_{k}, n=0,1, \ldots
$$

Thus, $n^{\text {th }}$ partial sum of B increases indefinitely together with n, too. That is, B is divergent.
(b) If $\lim _{k \rightarrow \infty} \frac{u_{k}}{v_{k}}=\alpha>0$, then series A and B are simultaneously convergent and divergent.
$\lim _{k \rightarrow \infty} \frac{u_{k}}{v_{k}}=\alpha>0, v_{k} \geq 0, \forall k$. Then,

$$
\forall \epsilon>0 \exists N \ni \alpha-\epsilon<\frac{u_{k}}{v_{k}}<\alpha+\epsilon, \forall k>N .
$$

$\Rightarrow v_{k}(\alpha-\epsilon)<u_{k}<v_{k}(\alpha+\epsilon)$. If B is convergent, so is $\sum_{0}^{\infty} v_{k}(\alpha-\epsilon)$. Thus, A is convergent by (a). If B is divergent, so is $\sum_{0}^{\infty} v_{k}(\alpha-\epsilon)$. Thus, A is divergent by (a).

13.2

a) $\sum_{0}^{\infty} \frac{x^{k}}{k!}$:

It is convergent for $x=0$. Let us assume that $x>0$.

$$
\frac{u_{k+1}}{u_{k}}=\frac{\frac{x^{k+1}}{((+1)!}}{\frac{x^{k}}{k!}}=\frac{x}{k+1} \rightarrow 0 \text { as } k \rightarrow \infty .
$$

Thus, it is convergent.
b) $\sum_{1}^{\infty} \frac{x^{k}}{k^{\alpha}}$, where $\alpha>0$:

It is convergent for $x=0$. Let us assume that $0<x<1$.

$$
\frac{u_{k+1}}{u_{k}}=\frac{\frac{x^{k+1}}{(k+1)^{\alpha}}}{\frac{x^{k}}{k^{\alpha}}}=x\left(\frac{k}{k+1}\right)^{\alpha} \rightarrow x \text { as } k \rightarrow \infty
$$

Thus, it is convergent. If $x>1$, it is divergent since $\frac{u_{k+1}}{u_{k}} \rightarrow x$ as $k \rightarrow \infty$. If $x=1$, we have $\sum_{1}^{\infty} k^{-\alpha}, \alpha>0$. Then,

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\left(\frac{k}{k+1}\right)^{-\alpha} .
$$

The series is convergent when $\alpha>1$ and divergent when $\alpha<1$. In the special case where $\alpha=1$, it is (f), the harmonic series which is divergent.
c) $\sum_{1}^{\infty}\left(e^{\frac{1}{k}}-1\right)$:
$e^{\frac{1}{k}}-1 \approx \frac{1}{k}$ as $k \rightarrow \infty$. Thus, it is divergent (see part f) below).
d) $\sum_{1}^{\infty} \ln \left(1+\frac{1}{k}\right)$:
$\ln \left(1+\frac{1}{k}\right) \approx \frac{1}{k}$ as $k \rightarrow \infty$. Thus, it is divergent (see part f) below).
e) $\sum_{1}^{\infty} q^{k+\sqrt{k}}$, where $q>0$:
$\sqrt[k]{u_{k}}=q^{1+k^{-0.5}} \rightarrow q$ as $k \rightarrow \infty$. Thus, it is convergent for $0 \leq q<1$ and divergent for $q>1$. If $q=1$, then $u_{k}=1$ and $\sum 1$ is divergent.
f) $\sum_{1}^{\infty} \frac{1}{n}$:

$$
\frac{u_{k+1}}{u_{k}}=\frac{\frac{1}{k+1}}{\frac{1}{k}}=\frac{k}{k+1} \rightarrow 1 \text { as } k \rightarrow \infty
$$

The Harmonic series is divergent!

13.3

a) For each object $i=1, \ldots, n$, either it is selected or not; that is $x_{i} \in S_{i}=$ $\{0,1\}$. Then,

$$
g(x)=\prod_{i=1}^{n}\left(x^{0}+x^{1}\right)=(1+x)^{n}
$$

Without loss of generality, we may assume that $r=\sum x_{i}$ objects are selected. We know from Problem 1.3.a) that the number of distinct ways of selecting
$r \leq n$ objects out of n objects is $\binom{n}{r}$. Thus, $a_{r}=\binom{n}{r}$. We cannot choose more than n objects; that is $a_{r}=0, r>n$. Therefore,

$$
g(x)=(1+x)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r}
$$

Let us prove the power expansion as a corollary to the Binomial theorem.

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}
$$

The Binomial theorem states that $(1+z)^{n}=\sum_{i=0}^{n}\binom{n}{i} z^{i}$. Let $z=\frac{x}{y}$. Then,

$$
\begin{gathered}
\left(1+\frac{x}{y}\right)^{n}=\sum_{i=0}^{n}\binom{n}{i}\left(\frac{x}{y}\right)^{i} \Leftrightarrow\left(\frac{x+y}{y}\right)^{n}=\frac{(x+y)^{n}}{y^{n}}=\sum_{i=0}^{n}\binom{n}{i}\left(\frac{x^{i}}{y^{i}}\right) \\
\Leftrightarrow(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i} .
\end{gathered}
$$

Let us prove the multinomial theorem as a corollary to the Binomial theorem by induction on k.

$$
\left(x_{1}+\cdots x_{k}\right)^{n}=\sum_{\substack{i_{1}, \ldots, i_{k} \in \mathbb{Z}_{+} \\ i_{1}+\cdots+i_{k}=n}}\binom{n}{i_{1}, \ldots, i_{k}} x_{1}^{i_{1}} \cdots x_{k}^{i_{k}}
$$

Let $l=2$ and $x_{1}=x, x_{2}=y$. We use the power expansion to state that the induction base ($k=l=2$) is true. Let use assume as induction hypothesis that

$$
\left(x_{1}+\cdots x_{l}\right)^{n}=\sum_{\substack{i_{1}, \ldots, i_{l} \in \mathbb{Z}_{+} \\ i_{1}+\cdots+i_{l}=n}}\binom{n}{i_{1}, \ldots, i_{l}} x_{1}^{i_{1}} \cdots x_{l}^{i_{l}}
$$

holds.

$$
\begin{gathered}
\left(x_{1}+\cdots+x_{l}+x_{l+1}\right)^{n}= \\
\sum_{\substack{ \\
i_{1}, \ldots, i_{l}, i_{l+1} \in \mathbb{Z}_{+} \\
i_{1}+\cdots+i_{l}+i_{l+1}=n}}\binom{n}{i_{1}, \ldots, i_{l}, i_{l+1}} x_{1}^{i_{1}} \cdots x_{l}^{i_{l}} x_{l+1}^{i_{l+1}}
\end{gathered}
$$

needs to be shown.
Let $x=x_{1}+\cdots+x_{l}$ and $y=x_{l+1}$ in the power expansion.

$$
\begin{aligned}
(x+y)^{n}= & \sum_{i=0}^{n}\binom{n}{i}\left(x_{1}+\cdots+x_{l}\right)^{i} x_{l+1}^{n-i} \\
= & \sum_{i=0}^{n}\binom{n}{i} \sum_{\substack{i_{1}, \ldots, i_{l} \in \mathbb{Z}_{+} \\
i_{1}+\cdots+i_{l}=i}}\binom{i}{i_{1}, \ldots, i_{l}} x_{1}^{i_{1}} \cdots x_{l}^{i_{l}} x_{l+1}^{n-i} \\
= & \sum_{\substack{i_{1}, \cdots, i_{l}, i_{l+1} \in \mathbb{Z}_{+}}}\binom{n}{i_{1}+\ldots, i_{l}, i_{l+1}} x_{1}^{i_{1}} \cdots x_{l}^{i_{l}} x_{l+1}^{i_{l+1}} \\
& \left(\cdots+i_{l}+i_{l+1}=n\right.
\end{aligned}
$$

b) For each object $i=1, \ldots, n$, either it is not selected or selected once, twice, thrice, and so on; that is $x_{i} \in S_{i}=\mathbb{Z}_{+}$. Then,

$$
g(x)=\prod_{i=1}^{n}\left(x^{0}+x^{1}+x^{2}+\cdots\right)=\left(1+x+x^{2}+\cdots\right)^{n}
$$

Without loss of generality, we may assume that $r=\sum x_{i}$ objects are selected. We know from 14.4 that the number of distinct ways of selecting r objects out of n objects with replacement is $\binom{n+r-1}{n-1}=\binom{n-1+r}{r}$. Thus, $a_{r}=\binom{n-1+r}{r}$. Therefore,

$$
g(x)=\left(1+x+x^{2}+\cdots\right)^{n}=\sum_{r=0}^{n}\binom{n-1+r}{r} x^{r}
$$

c)

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}=13, x_{i}=1,2,3,4,5,6 \forall i \Rightarrow \\
g(x)=\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)^{4}=x^{4}\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)^{4}
\end{gathered}
$$

We are interested in the coefficient of x^{13} of $g(x)$, which is the coefficient of x^{9} of $h(x)=\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}\right)^{4}$.

$$
\begin{aligned}
p(x) & =1+x+x^{2}+x^{3}+x^{4}+\cdots \\
x p(x) & =\quad x+x^{2}+x^{3}+x^{4}+\cdots \\
\hline(1-x) p(x) & =1 \Rightarrow p(x)=\frac{1}{1-x}
\end{aligned}
$$

$$
\text { Similarly, } \begin{aligned}
& p(x)=1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+\cdots \\
& x^{6} p(x)= \\
& x^{6}+x^{5}+\cdots \\
&\left(1-x^{6}\right) p(x)=1+x+x^{2}+x^{3}+x^{4}+x^{5}=\frac{1-x^{6}}{1-x}
\end{aligned}
$$

Then,

$$
h(x)=\left(1-x^{6}\right)^{4}[p(x)]^{4}=\left(1-x^{6}\right)^{4}\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right)^{4}=k(x) l(x)
$$

by the Binomial theorem

$$
k(x)=\binom{4}{0}-\binom{4}{1} x^{6}+\binom{4}{2} x^{12}-\binom{4}{3} x^{18}\binom{4}{4} x^{24}
$$

and by the multiset problem

$$
l(x)=\binom{3}{0}+\binom{4}{1} x+\binom{5}{2} x^{2}+\binom{6}{3} x^{3}+\binom{7}{4} x^{4}+\cdots+\binom{12}{9} x^{9}+\cdots
$$

The ninth convolution of $k(x) l(x)$ is the answer:

$$
\binom{4}{0}\binom{12}{9}-\binom{4}{1}\binom{6}{3}=220-4(20)=140
$$

Therefore, the probability is

$$
P(\text { having a sum of } 13)=\frac{140}{6^{4}}=0.1080247
$$

d)

$$
\begin{gathered}
a_{n}-5 a_{n-1}+6 a_{n-2}=0, \forall n=2,3,4, \ldots \Leftrightarrow \\
a_{n} x^{n}-5 a_{n-1} x^{n}+6 a_{n-2} x^{n}=0, \forall n=2,3,4, \ldots
\end{gathered}
$$

Summing the above equation for all n, we get

$$
\begin{gathered}
\sum_{n=2}^{\infty} a_{n} x^{n}-5 \sum_{n=2}^{\infty} a_{n-1} x^{n}+6 \sum_{n=2}^{\infty} a_{n-2} x^{n}=0 \\
{\left[g(x)-a_{1} x-a_{0}\right]-5 x\left[g(x)-a_{0}\right]+6 x^{2}[g(x)]=0}
\end{gathered}
$$

Using the boundary conditions ($a_{0}=2$ and $a_{1}=5$) we have

$$
\begin{gathered}
g(x)=\frac{a_{0}+a_{1} x-5 a_{0} x}{6 x^{2}-5 x+1}=\frac{2-5 x}{(3 x-1)(2 x-1)}=\frac{1}{1-2 x}+\frac{1}{1-3 x} \\
g(x)=\left(1+2 x+4 x^{2}+\cdots+2^{i} x^{i}+\cdots\right)+\left(1+3 x+9 x^{2}+\cdots+3^{i} x^{i}+\cdots\right)
\end{gathered}
$$

$$
\Rightarrow a_{n}=2^{n}+3^{n} .
$$

13.4

a) The left hand side of the following constraint represents the complementary survival probability of a threat,

$$
1-\prod_{j}\left(1-p_{j i}\right)^{x_{j i}} \geq d_{i}, \forall i
$$

Then,

$$
1-d_{i} \geq \prod_{j}\left(1-p_{j i}\right)^{x_{j i}} \Leftrightarrow \zeta \log \left(1-d_{j}\right) \geq \sum_{j}\left[\zeta \log \left(1-p_{j i}\right)\right] x_{j i}, \forall \zeta \geq 0
$$

With a suitable choice of ζ, and let $-b_{i}=\zeta \log \left(1-d_{i}\right),-a_{j i}=\zeta \log \left(1-p_{j i}\right)$, we will have

$$
\sum_{j} a_{j i} x_{j i} \geq b_{i}, \forall i
$$

Let $\alpha_{j i}=\left\lfloor a_{j i}\right\rfloor$ and $\beta_{i}=\left\lfloor b_{i}\right\rfloor$ (with a suitable choice of $\zeta \geq 0$), yielding

$$
\sum_{j} \alpha_{j i} x_{j i} \geq \beta_{i}, \forall i
$$

b) The first three objective functions are equivalent to each other, so are the last two. The flaw lies in the equivalence of the third and the fourth objective functions: $\max \beta_{i z} \not \equiv \min \left(1-\beta_{i z}\right)$. In particular,

$$
\max y_{1}+y_{2}+y_{3} \equiv \min \left(1-y_{1}\right)+\left(1-y_{2}\right)+\left(1-y_{3}\right)
$$

is true. However,

$$
\max y_{1} y_{2} y_{3} \equiv \min \left(1-y_{1}\right)\left(1-y_{2}\right)\left(1-y_{3}\right)=1-\cdots-y_{1} y_{2} y_{3}
$$

is false because of the cross terms.

Problems of Chapter 14

14.1

$y^{\prime \prime}(t)-y(t)=e^{2 t} \Leftrightarrow s^{2} \eta(s)-2 s-\eta(s)=\frac{1}{s-2} \Leftrightarrow \eta(s)\left(s^{2}-1\right)=\frac{1}{s-2}+2 s$.

$$
\Rightarrow \eta(s)=\frac{1}{(s-2)\left(s^{2}-1\right)}+\frac{2 s}{s^{2}-1} .
$$

1. If $\eta(s)=\frac{A}{s-2}+\frac{B}{s+1}+\frac{C}{s-1}=\frac{1}{(s-2)\left(s^{2}-1\right)}$. Solve for A, B, C :

$$
\left.\begin{array}{l}
A+B+C=0 \\
3 B+C=0 \\
-A+2 B-2 C=1
\end{array}\right\} \Rightarrow A=\frac{2}{6}, B=\frac{1}{6}, C=\frac{-3}{6}
$$

Thus, $\eta(s)=\frac{2}{6(s-2)}+\frac{1}{6(s+1)}-\frac{3}{6(s-1)}$.
2. If $\eta(s)=\frac{E}{s-1}+\frac{F}{s+1}=\frac{2 s}{(s+1)(s-1)}=\frac{2 s}{s^{2}-1}$. Solve for E, F :

$$
\left.\begin{array}{l}
E+F=2 \\
E-F=0
\end{array}\right\} \Rightarrow E=1, F=1
$$

Thus, $\eta(s)=\frac{1}{s-1}+\frac{1}{s+1}$.
Then, we have

$$
\eta(s)=\frac{1}{3(s-2)}+\frac{7}{6(s+1)}+\frac{1}{2(s-1)} \Leftrightarrow y(t)=\frac{1}{3} e^{2 t}+\frac{7}{6} e^{-t}+\frac{1}{2} e^{t} .
$$

14.2

$$
\begin{aligned}
y(k+1)=y(k)+2 e^{k} & \Leftrightarrow z \eta(z)-z=\eta(z)+2 \frac{z}{z-e^{1}} \Leftrightarrow \eta(z)(z-1)=z+2 \frac{z}{z-e} . \\
& \Rightarrow \eta(z)=\frac{z}{z-1}+2 \frac{z}{(z-1)(z-e)} .
\end{aligned}
$$

If $\eta(z)=\frac{2}{(z-1)(z-e)}=\frac{A}{z-1}+\frac{B}{z-e}$ then $A=\frac{2}{1-e}$ and $B=\frac{2}{e-1}$.
Therefore,

$$
\begin{gathered}
\eta(z)=\frac{z}{z-1}+z\left[\frac{2}{1-e}\left(\frac{1}{z-1}\right)+\frac{2}{e-1}\left(\frac{1}{z-e}\right)\right] \\
\Leftrightarrow y(k)=1+\frac{2}{1-e}\left(1-e^{k}\right)
\end{gathered}
$$

14.3

$$
\frac{d x}{d t}=-0.2 y, \frac{d y}{d t}=-0.3 x-0.1 y, x(0)=50, y(0)=100 .
$$

$$
\begin{equation*}
\frac{d y}{d t}=-0.3 x-0.1 y \Rightarrow \frac{d y^{2}}{d t^{2}}=-0.3 \frac{d x}{d t}-0.1 \frac{d y}{d t} \Rightarrow \frac{d y^{2}}{d t^{2}}-0.06 y+0.1 \frac{d y}{d t}=0 \tag{2}
\end{equation*}
$$

$$
\eta\left[\frac{d y^{2}}{d t^{2}}\right]=s^{2} \eta(s)-s y(0)-y(0)=s^{2} \eta(s)-100 s+25
$$

since $\left.\frac{d y}{d t}\right|_{t=0}=-0.3(50)-0.1(100)=-25$. Moreover,

$$
\eta\left[\frac{d y}{d t}\right]=s \eta(s)-y(0)=s \eta(s)-100
$$

$(\mathbf{W}):\left[s^{2} \eta(s)-100 s+25\right]-0.06 \eta(s)+0.1[s \eta(s)-100]=0$

$$
\Leftrightarrow \eta(s)\left(s^{2}-0.06+0.1 s\right)=100 s-25+10 \Leftrightarrow
$$

$$
\eta(s)=\frac{100 s-15}{(s+0.3)(s-0.2)}=\frac{A}{s+0.3}+\frac{B}{s-0.2}
$$

$$
A+B=100,-0.2 A+0.3 B=-15 \Rightarrow A=90, B=10 \Rightarrow
$$

$$
(\mathbf{W}): \eta(s)=\frac{90}{s+0.3}+\frac{10}{s-0.2} \Rightarrow y(t)=90 e^{-0.3 t}+10 e^{0.2 t}
$$

$$
\left[\begin{array}{l}
y(0) \\
y(1) \\
y(2) \\
y(3) \\
y(4)
\end{array}\right]=\left[\begin{array}{l}
100.0000 \\
78.88767 \\
64.31129 \\
54.81246 \\
49.36289
\end{array}\right]
$$

14.4

Let $x(n)=F_{n+1}$, and the initial conditions are $x(0)=1, x(1)=1$.

$$
\begin{gather*}
x(n+1)=x(n)+x(n-1), n=2,3, \ldots(¥) \tag{¥}\\
\eta[x(n+1)]=z \eta(z)-z x(0)=z \eta(z)-z \text { and } \eta[x(n-1)]=\frac{1}{z} \eta(z) . \\
(¥): x(n+1)=x(n)+x(n-1) \Leftrightarrow z \eta(z)-z-\eta(z)-\frac{1}{z} \eta(z)=0 \\
\Leftrightarrow \eta(z)=\frac{z}{z-1-\frac{1}{z}}=\frac{z}{z\left(1-\frac{1}{z}-\frac{1}{z^{2}}\right)} \Leftrightarrow \\
\eta(z)=\frac{1}{1-\frac{1}{z}-\frac{1}{z^{2}}}=\frac{1}{\left(1-\frac{1-\sqrt{5}}{2 z}\right)\left(1-\frac{1+\sqrt{5}}{2 z}\right)}=\frac{A}{1-\frac{1-\sqrt{5}}{2 z}}+\frac{B}{1-\frac{1+\sqrt{5}}{2 z}} \\
A\left(\frac{1-\sqrt{5}}{2 z}\right)+B\left(\frac{1+\sqrt{5}}{2 z}\right)=0 \Rightarrow A=\frac{5+\sqrt{5}}{10}, B=\frac{5-\sqrt{5}}{10} \Rightarrow \\
(¥): \eta(z)=\frac{5+\sqrt{5}}{10}\left(\frac{1}{1-\frac{1-\sqrt{5}}{2 z}}\right)+\frac{5-\sqrt{5}}{10}\left(\frac{1}{1-\frac{1+\sqrt{5}}{2 z}}\right)
\end{gather*}
$$

Since $\mathcal{Z}^{-1}\left(\frac{1}{1-\frac{a}{z}}\right)=a^{n} y(n)$, we have

$$
x(n)=\frac{5+\sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{5-\sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n}, n=2,3, \ldots
$$

Thus,

$$
F_{n}=x(n-1)=\frac{5+\sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}+\frac{5-\sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}, n=1,2, \ldots
$$

Finally,

$$
F_{100}=x(99)=354224848179261915075
$$

Index

affine
combination, 15
hull, 16
aleph, 133
Archimedean Property, 125
axiom, 4, 123, 138
Balzano-Weierstrass, 150
basis, 16, 29, 211, 212, 246
change, 19,55
orthonormal, 39
representation, 17
Binomial theorem, 187, 208, 286, 288
canonical
combination, $15,116,252$
Cantor, 131, 132, 150-151
cardinal numbers, 132-133
Cauchy, 176, 178, 179
Cayley-Hamilton, 195
combat modelling, $65,202,228,290$
combination, 207-209
affine, 15
canonical, $15,116,252$
convex, $15,116,252$
linear, 15
complex, 63-65, 125, 127-128, 176, 180-186
conjugate, 63
hermitian, 64, 75
unitary, 64
cone, $16,94,100,243$
conjecture, 4
convex, 140
combination, $15,116,252$
cone, 94
hull, 16, 94, 98
polyhedron, 96
polytope, $96,99-100,115,241-244$, 246
set, 93-102
corollary, 4
Cramer's rule, 51
cube, 100, 241

D'Alembert, 177
d-simplex, 99, 241
decomposition
Cholesky, 74, 75, 231
Jordan, 65, 195, 226
LDU, 22, 23, 53
LU, 21, 24, 25, 44, 47, 115, 220, 221, 249
QR, 41, 44, 47, 88, 89, 115, 217, 221, 250
singular value, $43,44,47,75,86,223$
Spectral Theorem, 64
definiteness
indefinite, 76
negative, $73-77,230-233$
positive, $73-77,81,82,230-233,281$
semi, 75, 281
definition, 3
determinants, 51-53, 74, 75, 230
cofactor, $53,65,224$
difference equations, 60-62, 187, 197-202, 288, 290, 291
differential equations, 60, 62-63, 65 , 191-196, 201, 202, 228, 290
dodecahedron, 100, 244
eigen value, 54-65, 74-76, 81, 82, 84-89, 195, 230, 234-240
eigen vector, $54-65,84-89,234-240$
example, 3
Fibonacci, 60, 61, 202, 292
field, 13, 28, 123-129
complex, 125, 127-128, 176, 180-186
dense, 125, 143
ordered, 124-129, 133, 134, 266-269
rational, 122, 124, 130, 133, 143, 267
real, $125-128,131,133,134,143,268$
function
beta, 185
bounded, 137-139, 159, 164
class $C^{r}, 172$
continuous, 157-166, 169, 170, 279
derivative, 169-173, 280-283
differentiable, 169-170, 173
directional derivative, 280
discontinuities, 162-164, 171
exponential, 180-183, 195
gamma, 183, 185-186
generating, 187, 285-289
Intermediate Value Theorem, 162, 279
L'Hospital's Rule, 171
local maximum, 170
local minimum, 170, 173, 281, 283
logarithm, 181-182, 187, 289
Mean Value Theorem, 170-173, 280
metric, 138
monotonic, 164-166, 173
optima, 159, 173, 281
saltus, 165
semi-continuous, 166, 279
sequence, 178-179
Taylor's approximation, 172, 173, 180, 280-281
trigonometric, 182-184
uniform continuity, 160-161
Fundamental Theorem of Linear Algebra, 27, 35, 215

Gaussian elimination, 20,52, 107
graph, 28, 116, 210, 257
Heine-Barel, 150
hull
affine, 16
convex, 16, 94
linear, 16
hyperplane, 95-98, 113
inner product, 35,40
integer, 129, 133, 266-269
irrational, 126
isomorphism, 17, 125
kernel, 24-28, 44, 54, 57, 211-215
Laplace transforms, 192-196, 199, 201, 202, 290
law of cosines, 37
Least Squares Approximation, 38-47, 218
lemma, 4
linear
combination, 15, 95
dependence, 15
equation systems, $20,24,38,42$, 44-47, 81-86, 105, 220, 234-240
hull, 16
independence, 15, 55
transformation, 18
variety, 95
Linear Programming, 103-119, 246-265
bfs, 105, 246, 250
bounded simplex method, 116, 253-255
canonical form, 103
column generation, 116, 262
complementary slackness, 112, 256
decomposition, 116, 257-265
degeneracy, 106
duality, 111-119, 250, 256
Farkas Lemma, 113-115
minimum ratio, 106, 116, 254
optimality, 105, 116, 253, 255
revised simplex method, 110, 115, 248-250
simplex method, 105, 115, 246
simplex tableau, 107, 115, 248
standard form, 103
unboundedness, 106, 251, 252
Markov process, 61, 87
matrix
asymmetric, 83
basis, 39
block diagonal, 58
column space, 26, 28, 44, 211-215
condition number, 82-86, 234-240
determinant, 51
diagonal, 21, 22, 43, 55, 56, 65, 226, 227
elementary, 21, 110
hermitian, 64
Hessenberg, 88
Hessian, 73, 231, 281
idempotent, 38
identity, 52
incidence, 28
Jordan form, 65, 226
left null space, 27, 28, 44, 211-215
minor, 53
multiplication, 17
nonsingular, 74
norm, 84-86, 234-240
normal, 65
null space, $26,28,44,54,57,211-215$
orthogonal, 39, 89, 234
permutation, 24
pivot, 21, 22, 53, 74, 75, 231
powers, 60, 227
projection, 38
pseudo inverse, 42, 47
rank, 25, 26, 38, 44, 75
resolvent, 195
row space, $25,28,44,211-215$
singular, 75
square, 51,81
symmetric, 37, 38, 73-75, 81-84, 230
trace, 54
trapezoidal, 24
triangular, 21, 22, 41, 53, 54
tridiagonal, 88
unitary, 64
metric
$d_{1}, 138,139,152,153,271-274,277$
$d_{2}, 138,141,149,152,153,271$, 274-275, 277
$d_{\infty}, 138,140,152,153,271,276-277$
closed ball, 139, 152, 271
discrete, 137, 139, 141, 271
open, 149
open ball, 139, 143, 152, 271
space, 137, 157-166, 279
metricspaces, 137-154
multi-commodity network flow problem, 116, 257-264
multi-set problem, 209, 287, 288
multinomial theorem, 286
natural, 129
neighborhood, 94
Newton's method, 281
norm, 33-35, 40, 82-89, 137
$l_{1}, 34,138,153,272-274,277$
$l_{2}, 34,138,153,274-275,277$
$l_{\infty}, 34,138,153,276-277$
matrix, 84-86, 234-240
number systems, 121-134, 266-270
octahedron, 100, 241
orthogonality, 35-47
complement, 35
Gram-Schmidt, 40, 87
orthonormality, 39
vector space, 35
pivot, 21, 22, 53, 108, 110
point
basic, 105, 246, 250
bfs, 105, 246, 250
boundary, $71,77,94,231$
extreme, 93, 94, 98-100, 105, 115, 246, 250
interior, 94, 140
isolated, $142,158,165,170$
limit, $142,143,150,158,179$
maximum, 71-73, 77, 233
minimum, 71-73, 76, 77, 233
neighborhood, 142, 143
saddle, 71, 73
stationary, 73, 77, 231
polyhedron, 96
polynomial, 18, 20, 29, 170, 212
characteristic, 51
derivative, 20, 29, 213
integral, 29, 214
minimal, 58
trigonometric, 184
polytope, 96, 99-100, 115, 241-244, 246
projection, 37-43
proof, 4
proof making, 5-9, 206-209
combinatorial method, 207-209
construction, 6
contradiction, 8
contraposition, 8
forward-backward method, 5, 207-208
induction, 7, 98, 225, 227, 269, 270, 286
selection, 6
specialization, 6
theorem of alternatives, 9, 113-115
uniqueness, 7
proposition, 3
pyramid, 100, 242
QR algorithm, 88, 89, 234-236, 238
quadratic form, 76,281
quantifiers, 4
rational, 122, 130, 133, 267
ray, 115, 251, 252
Rayleigh, 76-77, 84, 230
regression, 47, 218
relation
equivalence, 129, 134, 269
order, 121, 134, 269
remark, 4
Schwartz Inequality, 35, 128
scientific inquiry, 1
series, 175-188, 284-289
convergent, 165, 175-180, 186, 284-285
divergent, 176 -180, 186, 284-285
Fourier, 184
partial sum, 175
power, 179-188, 285-289
remainder, 176
tests, 177-179, 186, 284-285
trigonometric, 185
set
at most countable, 129-133, 165
bounded, 121, 143, 150, 161
Cantor, 150-151
closed, $142,144-148,150,153,158$, 161, 271
closed ball, 139, 152, 271
closure, 143, 144, 152, 271
compact, 147-150, 159-161, 166, 279
connected, 151-153, 161-164, 166, 271, 279
continuity, 157-166, 279
convex, 93-102, 173
countable, 129-134, 150, 270
dense, 143
finite, 129-133
glb, 122, 133, 266
infimum, 122, 133, 159, 266
interior, 141, 145
k-cell, 149
lub, 122, 133, 266
neighborhood, 142, 143
nested intervals, 148
open, 141, 143-146, 153, 158, 173, 271
open ball, 139, 143, 152, 271
ordered, 121-123
perfect, 143, 150
seperated, 151, 153, 271
supremum, 122, 133, 145, 159, 266
uncountable, 129-133
span, 16, 24, 95
Stirling, 186
Taylor
approximation, 74, 172, 173, 180, 280-281
theorem, 172
tetrahedron, 100, 243
theorem, 4
TSP, 33, 153, 272-278
variable
basic, 25, 44, 105
dependent, 25, 105
entering, 105, 116, 253
Bland's rule, 116, 253
Dantzig's rule, 105
free, 25
independent, 25,105
leaving, 105, 116, 254
nonbasic, 25, 44, 105, 253
vector space, 13
column space, $26,28,44,211-215$
direct sum, 59
Euclidean, 128, 147
half space, 96
left null space, 27, 28, 44, 211-215
null space, $24-26,28,44,57,211-215$
orthogonal, 35
row space, $25,28,44,211-215$
subspace, 14
Weierstrass, 99, 179

Z-transforms, 199-202, 290, 291

Early Titles in the
 INTERNATIONAL SERIES IN
 OPERATIONS RESEARCH \& MANAGEMENT SCIENCE
 Frederick S. Hillier, Series Editor, Stanford University

Saigal/ A MODERN APPROACH TO LINEAR PROGRAMMING
Nagurney/ PROJECTED DYNAMICAL SYSTEMS \& VARIATIONAL INEQUALITIES WITH APPLICATIONS
Padberg \& Rijal/ LOCATION, SCHEDULING, DESIGN AND INTEGER PROGRAMMING
Vanderbei/ LINEAR PROGRAMMING
Jaiswal/ MILITARY OPERATIONS RESEARCH
Gal \& Greenberg/ ADVANCES IN SENSITIVITY ANALYSIS \& PARAMETRIC PROGRAMMING
Prabhu/ FOUNDATIONS OF QUEUEING THEORY
Fang, Rajasekera \& Tsao/ ENTROPY OPTIMIZATION \& MATHEMATICAL PROGRAMMING
Yu/ OR IN THE AIRLINE INDUSTRY
Ho \& Tang/ PRODUCT VARIETY MANAGEMENT
El-Taha \& Stidham/ SAMPLE-PATH ANALYSIS OF QUEUEING SYSTEMS
Miettinen/ NONLINEAR MULTIOBJECTIVE OPTIMIZATION
Chao \& Huntington/ DESIGNING COMPETITIVE ELECTRICITY MARKETS
Weglarz/ PROJECT SCHEDULING: RECENT TRENDS \& RESULTS
Sahin \& Polatoglu/ QUALITY, WARRANTY AND PREVENTIVE MAINTENANCE
Tavares/ ADVANCES MODELS FOR PROJECT MANAGEMENT
Tayur, Ganeshan \& Magazine/ QUANTITATIVE MODELS FOR SUPPLY CHAIN MANAGEMENT
Weyant, J./ ENERGY and Environmental policy modeling
Shanthikumar, J.G. \& Sumita, U./ APPLIED PROBABILITY AND STOCHASTIC PROCESSES
Liu, B. \& Esogbue, A.O./ DECISION CRITERIA AND OPTIMAL INVENTORY PROCESSES
Gal, T., Stewart, T.J., Hanne, T. / MUlticriteria decision making: Advances in MCDM Models, Algorithms, Theory, and Applications
Fox, B.L. I STRATEGIES FOR QUASI-MONTE CARLO
Hall, R.W. / handbook of transportation science
Grassman, W.K. / COMPUTATIONAL PROBABILITY
Pomerol, J-C. \& Barba-Romero, S./MULTICRITERION DECISION IN MANAGEMENT
Axsäter, S. / INVENTORY CONTROL
Wolkowicz, H., Saigal, R., \& Vandenberghe, L. / HANDBOOK OF SEMI-DEFINITE PROGRAMMING: Theory, Algorithms, and Applications
Hobbs, B.F. \& Meier, P. / ENERGY DECISIONS AND THE ENVIRONMENT: A Guide to the Use of Multicriteria Methods
Dar-El, E. / HUMAN LEARNING: From Learning Curves to Learning Organizations
Armstrong, J.S. / PRINCIPLES OF FORECASTING: A Handbook for Researchers and Practitioners
Balsamo, S., Personé, V., \& Onvural, R./ ANALYSIS of Queueing NETWORKS WITH BLOCKING
Bouyssou, D. et al. / EVALUATION AND DECISION MODELS: A Critical Perspective
Hanne, T. / INTELLIGENT STRATEGIES FOR META MULTIPLE CRITERIA DECISION MAKING
Saaty, T. \& Vargas, L. / MODELS, METHODS, CONCEPTS and APPLICATIONS OF THE ANALYTIC HIERARCHY PROCESS
Chatterjee, K. \& Samuelson, W. / GAME THEORY AND BUSINESS APPLICATIONS
Hobbs, B. et al. / THE NEXT GENERATION OF ELECTRIC POWER UNIT COMMITMENT MODELS
Vanderbei, R.J. / LINEAR PROGRAMMING: Foundations and Extensions, 2nd Ed.
Kimms, A. / MATHEMATICAL PROGRAMMING AND FINANCIAL OBJECTIVES FOR SCHEDULING PROJECTS
Baptiste, P., Le Pape, C. \& Nuijten, W. / CONSTRAINT-BASED SChEDULING
Feinberg, E. \& Shwartz, A. / HANDBOOK OF MARKOV DECISION PROCESSES: Methods and Applications
Ramík, J. \& Vlach, M. / GENERALIZED CONCAVITY IN FUZZY optimization AND DECISION ANALYSIS
Song, J. \& Yao, D. / SUPPLY CHAIN STRUCTURES: Coordination, Information and Optimization
Kozan, E. \& Ohuchi, A. / operations research/ management science at work
Bouyssou et al. / AIDING DECISIONS WITH MULTIPLE CRITERIA: Essays in Honor of Bernard Roy

Early Titles in the
 INTERNATIONAL SERIES IN
 OPERATIONS RESEARCH \& MANAGEMENT SCIENCE

(Continued)

Cox, Louis Anthony, Jr. / RISK ANALYSIS: Foundations, Models and Methods
Dror, M., L'Ecuyer, P. \& Szidarovszky, F. / MODELING UNCERTAINTY: An Examination of Stochastic Theory, Methods, and Applications
Dokuchaev, N. / DYNAMIC PORTFOLIO STRATEGIES: Quantitative Methods and Empirical Rules for Incomplete Information
Sarker, R., Mohammadian, M. \& Yao, X. / Evolutionary optimization
Demeulemeester, R. \& Herroelen, W. / PROJECT SCHEDULING: A Research Handbook
Gazis, D.C. / TRAFFIC THEORY
Zhu/ QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING
Ehrgott \& Gandibleux/ MULTIPLE CRITERIA OPTIMIZATION: State of the Art Annotated Bibliographical Surveys
Bienstock/ Potential Function Methods for Approx. Solving Linear Programming Problems
Matsatsinis \& Siskos/ INTELLIGENT SUPPORT SYSTEMS FOR MARKETING DECISIONS
Alpern \& Gal/ THE THEORY OF SEARCH GAMES AND RENDEZVOUS
Hall/HANDBOOK OF TRANSPORTATION SCIENCE - $2^{\text {nd }}$ Ed.
Glover \& Kochenbergen/ HANDBOOK OF METAHEURISTICS
Graves \& Ringuest/ MODELS AND METHODS FOR PROJECT SELECTION:
Concepts from Management Science, Finance and Information Technology
Hassin \& Haviv/ TO QUEUE OR NOT TO QUEUE: Equilibrium Behavior in Queueing Systems
Gershwin et al analysis \& modeling of manufacturing Systems
Maros/ COMPUTATIONAL TECHNIQUES OF THE SIMPLEX METHOD
Harrison, Lee \& Neale/ THE PRACTICE OF SUPPLY CHAIN MANAGEMENT: Where Theory and Application Converge
Shanthikumar, Yao \& Zijm/ STOCHASTIC MODELING AND OPTIMIZATION OF MANUFACTURING SYSTEMS AND SUPPLY CHAINS
Nabrzyski, Schopf \& Wegglarz/ GRID RESOURCE MANAGEMENT: State of the Art and Future Trends
Thissen \& Herder/ CRITICAL INFRASTRUCTURES: State of the Art in Research and Application
Carlsson, Fedrizzi, \& Fullér/ FUZZY LOGIC IN MANAGEMENT
Soyer, Mazzuchi \& Singpurwalla/ MATHEMATICAL RELIABILITY: An Expository Perspective
Chakravarty \& Eliashberg/ MANAGING BUSINESS INTERFACES: Marketing, Engineering, and Manufacturing Perspectives

[^2]
[^0]: ${ }^{1}$ A function f of one variable is continuous at point x if $\forall \epsilon>0, \exists \delta>0$ such that $\forall y \ni|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon$.
 ${ }^{2}$ www.cut-the-knot.org/proofs/chocolad.shtml

[^1]: index.html
 http://at.yorku.ca/course/atlas2/node7.html
 http://at.yorku.ca/i/a/a/b/23.dir/ch2.htm
 http://bvio.ngic.re.kr/Bvio/index.php/Monotonic_function
 http://cepa.newschool.edu/het/essays/math/contin.htm
 http://clem.mscd.edu/~talmanl/TeachCalculus/Chapter020.pdf
 http://documents.kenyon.edu/math/neilsenj.pdf
 http://en.wikipedia.org/wiki/Intermediate_value_theorem
 http://en.wikipedia.org/wiki/List_of_general_topology_topics
 http://en.wikipedia.org/wiki/Monotonic_function
 http://en.wikipedia.org/wiki/Uniformly_continuous
 http://eom.springer.de/T/t093150.htm
 http://homepages.nyu.edu/~eo1/Book-PDF/ChapterD.pdf
 http://intermediate_value_theorem.iqexpand.com/
 http://math.berkeley.edu/~aclayton/math104/8-10_Final_review.pdf
 http://math.furman.edu/~dcs/book/c2pdf/sec25.pdf
 http://math.furman.edu/~dcs/book/c3pdf/sec37.pdf
 http://math.stanford.edu/~aschultz/w06/math19/
 coursenotes_and_handouts/
 http://mathworld.wolfram.com/IntermediateValueTheorem.html
 http://mcraefamily.com/MathHelp/CalculusTheorem1IntermediateValue.htm http://nostalgia.wikipedia.org/wiki/Connectedness
 http://ocw.mit.edu/OcwWeb/Mathematics/18-100BAnalysis-IFall2002/
 LectureNotes/index.htm
 http://oregonstate.edu/instruct/mth251/cq/Stage4/Lesson/IVT.html
 http://personal.stevens.edu/~nstrigul/Lecture4.pdf
 http://personal.stevens.edu/~nstrigul/Lecture5.pdf
 http://personal.stevens.edu/~nstrigul/Lecture8.pdf
 http://personal.stevens.edu/~nstrigul/Lecture9.pdf
 http://pirate.shu.edu/projects/reals/cont/proofs/ctunifct.html
 http://planetmath.org/encyclopedia/IntermediateValueTheorem.html
 http://planetmath.org/encyclopedia/UniformlyContinuous.html
 http://poncelet.math.nthu.edu.tw/chuan/cal98/uniform.html
 http://toshare.info/en/Monotonic_function.htm http://tutorial.math.lamar.edu/AllBrowsers/2413/Continuity.asp http://web01.shu.edu/projects/reals/cont/contin.html http://webalt.com/Calculus-2006/HowTo/Functions/Intermediate_Value_

[^2]: * A list of the more recent publications in the series is at the front of the book *

