

Algorithms and Computational Methods

FEASIBILITY AND INFEASIBILITY
IN OPTIMIZATION:

Recent titles in the INTERNATIONAL SERIES IN
OPERATIONS RESEARCH & MANAGEMENT SCIENCE
 Frederick S. Hillier, Series Editor, Stanford University

Sethi, Yan & Zhang/ INVENTORY AND SUPPLY CHAIN MANAGEMENT WITH FORECAST

UPDATES
Cox/ QUANTITATIVE HEALTH RISK ANALYSIS METHODS: Modeling the Human Health Impacts of

Antibiotics Used in Food Animals
Ching & Ng/ MARKOV CHAINS: Models, Algorithms and Applications
Li & Sun/ NONLINEAR INTEGER PROGRAMMING
Kaliszewski/ SOFT COMPUTING FOR COMPLEX MULTIPLE CRITERIA DECISION MAKING
Bouyssou et al/ EVALUATION AND DECISION MODELS WITH MULTIPLE CRITERIA: Stepping

stones for the analyst
Blecker & Friedrich/ MASS CUSTOMIZATION: Challenges and Solutions
Appa, Pitsoulis & Williams/ HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION
Herrmann/ HANDBOOK OF PRODUCTION SCHEDULING
Axsäter/ INVENTORY CONTROL, 2nd Ed.
Hall/ PATIENT FLOW: Reducing Delay in Healthcare Delivery
Józefowska & Węglarz/ PERSPECTIVES IN MODERN PROJECT SCHEDULING
Tian & Zhang/ VACATION QUEUEING MODELS: Theory and Applications
Yan, Yin & Zhang/ STOCHASTIC PROCESSES, OPTIMIZATION, AND CONTROL THEORY

APPLICATIONS IN FINANCIAL ENGINEERING, QUEUEING NETWORKS, AND
MANUFACTURING SYSTEMS

Saaty & Vargas/ DECISION MAKING WITH THE ANALYTIC NETWORK PROCESS: Economic,
Political, Social & Technological Applications w. Benefits, Opportunities, Costs & Risks

Yu/ TECHNOLOGY PORTFOLIO PLANNING AND MANAGEMENT: Practical Concepts and Tools
Kandiller/ PRINCIPLES OF MATHEMATICS IN OPERATIONS RESEARCH
Lee & Lee/ BUILDING SUPPLY CHAIN EXCELLENCE IN EMERGING ECONOMIES

Algorithms, and Implementations
Hooker/ INTEGRATED METHODS FOR OPTIMIZATION
Dawande et al/ THROUGHPUT OPTIMIZATION IN ROBOTIC CELLS
Friesz/ NETWORK SCIENCE, NONLINEAR SCIENCE and INFRASTRUCTURE SYSTEMS
Cai, Sha & Wong/ TIME-VARYING NETWORK OPTIMIZATION
Mamon & Elliott/ HIDDEN MARKOV MODELS IN FINANCE
del Castillo/ PROCESS OPTIMIZATION: A Statistical Approach
Józefowska/JUST-IN-TIME SCHEDULING: Models & Algorithms for Computer & Manufacturing

Systems
Yu, Wang & Lai/ FOREIGN-EXCHANGE-RATE FORECASTING WITH ARTIFICIAL NEURAL

NETWORKS
Beyer et al/ MARKOVIAN DEMAND INVENTORY MODELS
Shi & Olafsson/ NESTED PARTITIONS OPTIMIZATION: Methodology And Applications
Samaniego/ SYSTEM SIGNATURES AND THEIR APPLICATIONS IN ENGINEERING RELIABILITY
Kleijnen/ DESIGN AND ANALYSIS OF SIMULATION EXPERIMENTS
Førsund/ HYDROPOWER ECONOMICS
Kogan & Tapiero/ SUPPLY CHAIN GAMES: Operations Management and Risk Valuation
Vanderbei/ LINEAR PROGRAMMING: Foundations & Extensions, 3rd Edition
Chhajed & Lowe/ BUILDING INTUITION: Insights from Basic Operations Mgmt. Models and
Principles
Luenberger & Ye/ LINEAR AND NONLINEAR PROGRAMMING, 3rd Edition
Drew et al/ COMPUTATIONAL PROBABILITY: Algorithms and Applications in the Mathematical

Sciences

* A list of the early publications in the series is at the end of the book *

Weintraub/ MANAGEMENT OF NATURAL RESOURCES: A Handbook of Operations Research Models,

Algorithms and Computational Methods

John W. Chinneck
Systems and Computer Engineering

Carleton University
Ottawa, Canada

FEASIBILITY AND INFEASIBILITY
IN OPTIMIZATION:

John W. Chinneck
Carleton University
Ottawa, ON, Canada

Series Editor:
Fred Hillier
Stanford University
Stanford, CA, USA

Library of Congress Control Number: 2007935595

ISBN-13: 978-0-387-74931-0 (HB) ISBN-13: 978-0-387-74932-7 (e-book)

Printed on acid-free paper.

© 2008 by Springer Science+Business Media, LLC

9 8 7 6 5 4 3 2 1

springer.com

know or hereafter developed is forbidden.

not they are subject to proprietary rights.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now

The use in this publication of trade names, trademarks, service marks and similar terms, even
if the are not identified as such, is not to be taken as an expression of opinion as to whether or

science books, telescopes and chemistry sets, even while I was busily dismantling
useful household items, and for Linda and Annie, who make it all worthwhile.

For my parents, Mac and Shirley Chinneck, who fed that spark of curiosity with

Preface

Most applied optimization problems involve constraints: What is the maximum
profit that a manufacturer can make given a limited number of machines and a
limited labour force? What is the minimum amount of fuel that a fleet of trucks
can consume while making a specified set of deliveries? What is the smallest
amount of silicon needed to etch an electronic circuit while respecting limits on
signal propagation time, inter-wire distance, etc.? Applications of constrained
optimization are everywhere in industry, business, and government.

Of course, the solution returned by an optimization algorithm must also be
feasible: we want the best possible value of the objective function that satisfies all
constraints and variable bounds. Some optimization algorithms are not even able
to proceed towards optimality until a feasible solution is available. In addition, the
optimization question can be converted to a feasibility question, and vice versa.
And what happens when an algorithm is unable to find a feasible solution? How
do we know what went wrong? How do we repair the model? Questions of
optimization, feasibility, and infeasibility are inextricably linked.

There has been a surge of important developments related to feasibility and
infeasibility in optimization in the last two decades, a trend that continues to
accelerate even today. New and more efficient methods for seeking feasibility in
difficult optimization forms such as mixed-integer programs and nonlinear programs
are emerging. The first effective algorithms for analyzing infeasible models have
been discovered and implemented in commercial software. A community of
researchers in constraint programming has begun to integrate their knowledge and
approaches with the optimization community. Unanticipated spin-off applications of
the new algorithms are being found. It’s an exciting time.

The goal of this book is to summarize the state of the art in recent work at the
interface of optimization and feasibility. It should serve as a useful reference for
researchers, graduate students, and software developers working on optimization,
feasibility, infeasibility, and related topics. Readers having a reasonable grounding
in optimization (linear and nonlinear programming, mixed-integer programming,
etc.) should have no difficulty following the material.

Lightweight coverage of topics in constraint programming, with an emphasis
on constraint satisfaction problems, is included to illustrate the extensive overlap
and convergence in the two literatures. An ideal version of the book would cover
topics in constraint programming in the same depth as topics in optimization, but
this is beyond the scope of this project: collecting and organizing the wealth of
new developments relating to feasibility and infeasibility in optimization. I hope
the resulting book is useful to both optimizers and constraint programmers, and

viii Preface

that it helps accelerate the ongoing merger of the two communities merge into a
stronger hybrid.

Acknowledgements

My graduate work was conducted during the late 1970s and early 1980s. Inspired by
the energy crises of those times, I constructed network optimization models to
minimize the use of energy in large industrial plants. Later I found the optimization
modeling more interesting than the energy aspects of this work. I had noticed that
some of the processing network models that I was using in the energy work
suffered from an inability to carry flow in some of the arcs, a pathology later
labeled nonviability (see Sec. 9.2). I developed algorithms to automatically
identify and analyze this problem.

Enter Harvey Greenberg. At that time he was involved in a project to develop
an Intelligent Mathematical Programming System (IMPS) (see e.g. Greenberg
(1996b)), and consequently had an interest in algorithms for analyzing modeling
errors of various types, such as nonviability. Harvey organized an extraordinary
series of meetings on the IMPS topic for an eclectic group of researchers from
academia and industry. Harvey invited me to one of these meetings and, as they
say, the rest is history. Sitting in the bar one night after the IMPS meeting we had
a discussion about whether or not you could isolate the cause of infeasibility in a
linear program to an irreducible subset of the constraints defining the model. At
the time, Harvey didn’t think it could be done, but I did, so I bet him a beer that I
could find a way to do so. As you will see in Part II of the book, I won that bet.

But there is a postscript to this story. I have now known Harvey for around
twenty years, and we have gone on to make numerous one-beer bets on other is-
sues in optimization. I have not won a single one of those subsequent bets, so I am
currently several hundred beers in debt to him. But I have an even bigger debt than
that. Harvey became my unofficial mentor, always ready to provide advice and
suggestions and listen to my ideas. His influence on my work has been profound.

Harvey and Pascal Van Hentenryck both took the time to read an early draft of
the book and provide advice and suggestions that greatly improved it. Both
pointed out topics that should be greatly expanded upon, especially the material on
constraint programming, but time is unfortunately limited, so a full treatment of
that topic remains another project. And as clever as those two fellows are, I’m sure
I’ve managed to hide a few errors in the manuscript that they did not find: those
are mine alone.

Last but not least are the two incredible ladies in my life, my wife Linda and
daughter Annie, who can finally look at this book and see what kept me glued to
the computer for such long hours over the past year. Thanks for being there.

John W. Chinneck

Table of Contents

Preface……………………………………………………………………………vii
Table of Contents……………………………………………………………....…ix
List of Figures…………………………………………………………………...xiii
List of Tables…………………………………………………………………......xv
List of Algorithms……………………………………………………………....xvii

Introduction……………………………………………………………………...xix
1. Preliminaries…………………………………………………………………..1

1.1. The Optimization Model………………………….……………………..1
1.2. Measuring Infeasibility……………………….…………………………2

7
Model Reformulation……………………….……………………….……..…8

 2.

2.3. Phase 1 from Any Basis……………………….……………………….13

2.7. Seeking Feasibility and Optimality Simultaneously………………...…18
2.8. Projection Methods……………………….……………………………19

3.

3.3.1.

4.

2.1. The Phase 1 Algorithm……………………….…………………….…..11

2.4. Crash Start Heuristics……………………….…………………….…....15
2.5. Crossover from an Infeasible Basis……………………….……….…...16
2.6. Advanced Starts: Hot and Warm Starts…………………………….…..17

Seeking Feasibility in Linear Programs………………………………….…..11

23 Seeking Feasibility in Mixed-Integer Linear Programs………....………......

3.3. The Feasibility Pump……………………….………………………… 30

37 3.4. Branching Variable Selection by Active Constraints Methods……......
3.5. Conflict Analysis……………………….……………………………...42

4.1. Branching in the Satisfiability Problem………………………………. 49

The Feasibility Pump for Mixed-Integer Nonlinear Programs. 34

3.6. Market Split Problems……………………….………………………...43

A Brief Tour of Constraint Programming……………………….…………..45

3.1. Pivot-and-Complement and Pivot-and-Shift Heuristics ………......….. 25

2.2. The Big-M Method……………………….……………………….…....13

3.2. The OCTANE Heuristic……………………….……………….…...... 28

Part I: Seeking Feasibility……………………….……………………….………

Dedication………………….………………………………………………………v

x Table of Contents

5.2.2.
5.2.3.

5.6.1. 73
5.6.2.

5.7.1.
5.7.2. 80

 6. 93
94

6.1.1.
6.1.2.
6.1.3.
6.1.4.
6.1.5. 104
6.1.6.

6.1.7.

6.2.1. The Reciprocal Filter…………..…………………………….113
6.2.2.
6.2.3. Pivoting Methods…………..………………………………...116
6.2.4. Interior Point Methods…………..………………………….. .118
6.2.5.
6.2.6.
6.2.7.
6.2.8. Analyzing Infeasible Network LPs………………………..…127
6.2.9.

6.3.1.
6.3.2.
6.3.3.
6.3.4.

Finding Useful Isolations…………..………………………...122
Guiding the Isolation…………..………………………….… 120

The Additive Method…………..……………...………………98

6.1. General Logical Methods…………..…………….…….....……..…….

Speed-ups: Combining Methods…...………….…………..…118

The Sensitivity Filter…….……..………………………… …114

Sampling Methods…….………..…………………………… 110

5.8. Bootstrapping Method of Debrosse and Westerberg……..........………85

60
59

60
63
65

76
77

89

87

Hit-and-Run Methods……….....……………………....…..….
Approximating Nonconvex Feasible Regions…...........………

5.3. Bootstrapping in a Convex Constrained Region……..........…………..
5.4. Initial-Point Placement Heuristics………………..................................
5.5. Constraint Consensus Methods for Approximate Feasibility...…......…

73 5.6. Finding a Good Sampling Box for Multistart…………………….....…
Tightening the Variable Bounds…………………………....…
Best Heuristic Sampling Box…………………………….....…

5.7. Multistart Methods……………………………………………..........…

Multistart Constraint Consensus…………………………....…

5.9. Global Optimization……….…………………………............……......

MSNLP Feasibility Mode……..............………………........... 80

95

Speed-ups: Combining the Additive Method
109

6.3. Methods Specific to Mixed-Integer Linear Programming…………....130

An Additive/Deletion Method for MIPs..……………………137
Using the Information in the Initial Branch

 and Bound Tree.……………………………………………. . 138

Part II: Analyzing Infeasibility……………….…………………..…..…….….

Isolating Infeasibility…………..…………….…………..……………......…

Logical Reduction of Models and Presolving……………...…

The Elastic Filter…………..………………………………..…101
Speed-ups: Treating Constraints in Groups…………..….......

 and the Deletion Filter………………….....…………...…….

Software …...........………..……………………………….… 128

The Deletion Filter…………..………………….......…………97

6.2. Methods Specific to Linear Programs….......………..…..…………...112

A Deletion Filter for MIPs……………………...……………133
Additive Methods for MIPs……………………………….….134

5.

5.2.1.

51

58

5.1. Penalty Methods……………………….……………………………... 52
Seeking Feasibility in Nonlinear Programs……………………….…..……

Convex Sampling Enclosures…………………………....…...
5.2. Determining the Characteristics of an NLP………………………...... 54

Table of Contents xi

6.4.1. Deletion Filtering……………………………………………. 144

6.4.2. IIS Isolation by the method of Debrosse and Westerberg...… 150
6.4.3. Methods for Quadratic Programs……………………………. 151
6.4.4.
6.4.5. Software Survey. …………..………………………………...154

7. Finding the Maximum Feasible Subset of Linear Constraints…………….. 159
7.1. Exact Solutions………………………………………………………. 161

7.1.1. An Exact Solution via MIP………………………………….. 161
7.1.2. An Exact Formulation via Equilibrium Constraints………… 162

7.2. IIS Enumeration and Covering………………………………………. 164
7.3. Phase One Heuristics……………………………………………….... 167
7.4. Chinneck’s SINF-Reduction Heuristics……………………………... 169
7.5. Two-Phase Relaxation-Based Heuristic…………………………...… 179
7.6. Randomized Thermal Relaxation Algorithms………………...……... 181
7.7. An Interior-Point Heuristic………………………….......................… 183
7.8. Working with IIS Covers…………………………...………………... 184

7.8.1. Single Member IIS Covers…………………………..........… 185
7.8.2. Finding Specific IISs Based on IIS Covers…………………. 186

7.9. The Minimum Number of Feasible Partitions Problem……………... 189
7.10. Partial Constraint Satisfaction in Constraint Programming………….. 193

8. Altering Constraints to Achieve Feasibility…………………………......… 197
8.1. Shifting Constraints…………………………..................................… 197

8.1.1. Using the Phase 1 Result………………………….............… 198
8.1.2. Minimizing the l1 Norm…………………………...............… 199
8.1.3. Least-Squares Methods…………………………...…………. 199
8.1.4.
8.1.5.
8.1.6.
8.1.7.
8.1.8.

A Fuzzy Approach to Constraint Shifting…………………... 202
A Goal Programming Approach to Constraint Shifting…….. 202

8.2. Adjusting the Constraint Matrix…………………………...………… 206
8.3. Related Research…………………………...………………………... 208

Methods for Space-Covering Global Optimizers………….....153

6.5. Methods Specific to Constraint Programming………………………..154

Roodman’s Bounds on Minimum Constraint Adjustments…..200

Violating a Limited Number of Constraints by a Limited
205

Constraint Shifting in Sequential Quadratic Programming..... 204

Amount. …………………………...……...........................…

6.4.1.1. Speeding the Isolation by Grouping Constraints ….. 149

6.3.5. Speed-ups…………………………………………………….140
6.3.6.
6.3.7.

Conclusions from Empirical Studies……………...………….140

6.4. Methods Specific to Nonlinear Programming……...…………………143
Software Survey…………….……………...……………...…143

xii Table of Contents

9.3.3.
9.3.4.

12. Epilogue……….. 247

Summary of the Method…………………………………….. 222
224 Example………………….…..

1 0. Data Analysis………………….…...………………….…........................... 227

11. Miscellaneous Applications…………………………………………….…..235

10.1. Classification and Neural Networks….........………...…….…...….... 22 7
10.2. Data Depth………………….….. 231
10.3. Errors in Massive Data Sets... 232

11.1. Radiation Treatment Planning.. 235
11.2. Protein Folding... 236
11.3. Digital Video Broadcasting.. 237
11.4. Automated Test Assembly.. 238
11.5. Buffer Overrun Detection... 239
11.6. Customized Page Ranking.. 239
11.7. Backtracking in Tree-Structured Search... 240
11.8. Piecewise Linear Model Estimation... 242
11.9. Finding Sparse Solutions to Systems of Linear Equations………..... 243
11.10. Various NP-Hard Problems……………………………..........…….. 244

9.3.2.2. Which Objectives Conflict With
 a P articular Objective?... 221

9.3.2.3. Evaluating the Relative Amount
 of Objective Interference………………...………..... 22 1

References…………………………………………………………………….... 249
 Index……………………………………………………………………............. 265

 9. Other Model Analyses…………………………... 213

9.3.1. Interaction Analysis of the Constraints………………….…... 218
9.3.2. Interaction Analysis of the Objectives………………….….... 218

Part III: Applications…………………………...… 211

9.1. Analyzing Unbounded Linear Programs…………………………...... 213

9.3. Analyzing Multiple-Objective Linear Programs………………….…. 216
9.2. Analyzing the Viability of Network Models……………………….... 213

9.3.2.1. Generating Different Interacting Sets of Objectives 220

List of Figures

• Fig. P1.1. Typical easy-hard-easy pattern for determination of feasibility status ...7

• Fig. 3.2. Simplex iterations performance profiles with Cplex internal

• Fig. 2.2. The consensus vector (solid) results from the component-wise

• Fig. 3.3. Simplex iterations performance profiles with all Cplex 9.0

• Fig. 5.4. Example iteration of the Constraint Consensus method

• Fig. 5.5. Nonlinear interval analysis via sampling tightens the bounds on
variable y. (a) inequality constraint. (b) equality constraint (Chinneck 2002) ..74

• Fig. 6.2. Identifying an IIS by sampling ... 110

averaging of the three feasibility vectors (dased) ... 21
• Fig. 3.1. Two-dimensional octagon around unit cube 29

heuristics off (Patel and Chinneck 2006) ... 41

heuristics turned on (Patel and Chinneck 2006) ... 42

• Fig. 5.2. Examples of convex and nonconvex region effects (Chinneck 2002) .. 57
• Fig. 5.3. Hit-and-run sampling in a convex enclosure (Chinneck 2002) 59

• Fig. 5.8. Bin voting .. 82

• Fig. 5.10. Theorem 5.3 ... 86
• Fig. 6.1. Simple linear IIS .. 93

• Fig. 6.4. The sensitivity filter .. 115

(Guieu and Chinneck 1999) .. 131
• Fig. 6.6. An infeasible MIP with feasible LP relaxation

• Fig. 5.1. Function shape is assessed via difference measurements along
the line segment (Chinneck 2002) .. 56

(Chinneck 2004) .. 66

• Fig. 5.6. Range cutting (Chinneck 2002) ... 75
• Fig. 5.7. Constraint Consensus invocations on 2D Branin function

(MacLeod and Chinneck 2007) ... 82

• Fig. 6.5. The branch and bound solution fails to terminate

• Fig. 6.10. Example of method of Debrosse and Westerberg 150
• Fig. 6.9. Sum of absolute constraint violations for NLTEST1 MIS1 149
• Fig. 6.8. Sum of the absolute constraint violations in NLTEST1 148

• Fig. 2.1. Several steps in a cyclic orthogonal projection method 21

• Fig. 5.9. Theorem 5.1 ... 85

• Fig. 6.3. Sampling indicates infeasibility relative to constraint 111

(Guieu and Chinneck 1999) ... 132
• Fig. 6.7. Constraints in NLTEST1 .. 148

xiv List of Figures

• Fig. 9.1. Example processing node with ratio equations 214

• Fig. 9.3. Finding a minimal nonviability in a processing network
• Fig. 9.2. A nonviable pure network .. 214

model (Chinneck 1996b) .. 215
• Fig. 9.4. Examples of nonconflicting and conflicting objectives 219
• Fig. 10.1. Separating hyperplane .. 228

• Fig. 7.1. Example infeasibility ... 169
• Fig. 7.2. A pathological counter-example (Chinneck 1996c) 172

• Fig. 10.2. The grey point has data depth 2 .. 231
• Fig. 11.1. A piecewise linear model consisting of three slabs 242

List of Tables

•
•
•

•

•

•
•
•

Table 7.1. IIS cover cardinality on difficult LPs for two Phase 1
methods (Chinneck 1996c) .. 169
Table 7.2. Comparison of algorithms on difficult infeasible LPs

Table 9.1. Normalized objective interference table 225

•

Table 10.3. More MAX FS algorithms for classification

Table 6.3. Example IIS isolation by method of Debrosse

Table 10.2. Three algorithms for classification (Chinneck 2001a) 229

Table 6.2. Summary of results for IS isolation methods for MIPs 141
Table 6.1. Characteristics of the netlib infeasible LPs 113

Table 10.1. Classification data sets .. 228

(Amaldi et al. 2007) ...230

and Westerberg (1973) .. 151

(Chinneck 2001a) ... 177

List of Algorithms

(Balas and Martin 1980) ... 27

• Alg. 3.1. General steps in the branch and bound method for solving MIPs 24

(Balas et al. 2004) ...28
• Alg. 3.4. Main steps in the OCTANE heuristic (Balas et al. 2001) 29
• Alg. 3.5. Simplified feasibility pump algorithm ... 31

• Alg. 5.1. Bootstrapping procedure to achieve initial feasibility of

(FDnear, FDfar) (Ibrahim and Chinneck 2005) ... 68

(Ibrahim and Chinneck 2005) ... 69

• Alg. 5.7. Bootstrapping method by Debrosse and Westerberg (1973) 88

• Alg. 6.2. The additive method .. 98
• Alg. 6.3. The dynamic reordering additive method .. 100
• Alg. 6.4. The elastic filter ... 102
• Alg. 6.5. The depth first binary search filter ... 105

• Alg. 6.7. The additive/deletion method .. 109
• Alg. 6.8. The sensitivity filter ... 114
• Alg. 6.9. The deletion/sensitivity filter ... 119

• Alg. 6.11. The (IR-LC-BD) deletion filter for MIPs 133

• Alg. 5.2. The basic Constraint Consensus algorithm (Chinneck 2004) 67

(Ibrahim and Chinneck 2005) ... 70

• Alg. 3.6. The feasibility pump for binary MIPs (Fischetti et al. 2005) 32

• Alg. 5.3. Feasibility-distance based Constraint Consensus

• Alg. 5.4 Average direction-based (DBavg) Constraint Consensus

• Alg. 5.5. Maximum direction-based (DBmax) Constraint Consensus

Consensus (Ibrahim and Chinneck 2005) ... 72
• Alg. 5.6 Direction-based and bound-based (DBbnd) Constraint

• Alg. 6.10. The additive/sensitivity method ... 120

• Alg. 3.7. The feasibility pump for general MIPs (Bertacco et al. 2005) 33
• Alg. 3.8. The feasibility pump for convex mixed-integer nonlinear programs .. 35

• Alg. 6.1. The deletion filter ... 97

• Alg. 3.2. The pivot-and-complement heuristic for binary programs

• Alg. 3.3. The pivot-and-shift integer-feasibility seeking search phase

a convex constrained region (Chinneck 2002) .. 62

• Alg. 6.6. The generalized binary search filter .. 107

xviii List of Algorithms

• Alg. 6.12. The basic additive method for MIPs .. 135
• Alg. 6.13. Dynamic reordering additive method for MIPs 136
• Alg. 6.14. Basic additive/deletion method for MIPs 137
• Alg. 6.15. Using information from the original branch and bound tree 139
• Alg. 6.16. The deletion filter for NLPs ... 146
• Alg. 6.17. Using the MIS .. 147
• Alg. 6.18. Finding the set of killing constraints .. 152
• Alg. 6.19. Deletion filtering for inequality-constrained QCQP 153

• Alg. 7.2. The constraint frequency heuristic for the IIS cover

• Alg. 7.4. Heuristic 2 for MIN IIS COVER (Chinneck 2001a) 176
• Alg. 7.3. Heuristic 1 for MIN IIS COVER (Chinneck 1996c) 171

(Tamiz et al. 1995) ... 166

(Amaldi et al. 2007) ... 180
• Alg. 7.5. Overall logic of the two-phase relaxation-based heuristic

• Alg. 7.6. The IIS member labelling scheme .. 185
• Alg. 7.7. Finding one IIS for each member of the IIS set cover 187

(Liffiton and Sakallah 2005) ... 188
• Alg. 7.8. Finding a single IIS given the complete set of IIS covers

• Alg. 7.10. Partition refinement (Bemporad et al. 2005) 194
• Alg. 8.1. Adjusting the α and β conditions (Censor et al. 2006) 206
• Alg. 9.1. Analyzing MOLPs using IIS isolation algorithms 223

• Alg. 7.9. Backtracking greedy algorithm for MIN PFS
(Bemporad et al. 2005) ... 192

• Alg. 7.1. Minimum-weight IIS set covering algorithm
(Parker and Ryan 1996) .. 164

Introduction

To be, or not to be: that is the question…
From Hamlet by William Shakespeare

Shakespeare certainly hit the nail on the head: the most basic question of all is
whether or not something exists: an object, a person or a solution that satisfies a
given set of constraints. For Shakespeare, human existence was a fundamental
question of life; for this book, existence of a feasible solution is a fundamental
question of optimization.

Why such interest in feasibility and infeasibility in the context of optimization?
Surely it is most important to find the best (i.e. optimum) solution, rather than just
any feasible solution? The questions of feasibility and optimality are in fact two
sides of the same coin. First, the existence of a feasible solution is a very
fundamental question: before you can determine which solution is the best, you
must first determine whether or not it is even possible for a feasible solution to
exist at all. Second, it is easy to convert an optimization question to a feasibility
question (and vice-versa), so the two questions are fundamentally the same. For
example, you can pose the feasibility question as to whether or not a solution
exists with an objective function value that is at least as good as a certain stated
aspiration value. Over a series of iterations this aspiration value can be adjusted
until we can definitely answer that no solution exists beyond a certain value. That
last feasible solution is the optimum value of the objective function, found by
answering a series of feasibility questions.

Looking at this the opposite way, it is common practice to pose feasibility
questions as optimization problems. This is the basic idea of any phase 1
technique: create an objective function that measures the degree of violation of the
constraints at any given point, and then minimize this function. If a value of zero
can be found for this phase 1 optimization problem, then a feasible point exists,
otherwise the model may not be feasible.

Third, there are unique and interesting questions associated with feasibility and
infeasibility in optimization. For example, given a set of constraints that a solver
determines to be infeasible, provide a diagnosis of why this is so. This question
has grown in importance in recent years as optimization models have grown larger
and more complex in step with the phenomenal increases in inexpensive
computing power. One approach to this question is to isolate an irreducible
infeasible subset (IIS) of the constraints, i.e. a (small) subset of constraints that is
itself infeasible, but becomes feasible if one or more constraints is removed. This
helps focus the diagnosis and model repair efforts and is especially helpful in very

xx Introduction

large models. This approach is well summarized by Greenberg’s aphorism:
“diagnosis = isolation + explanation” (Greenberg 1993). A related diagnostic
question is this: given an infeasible model, what is the smallest number of
constraints to remove such that the remaining constraints constitute a feasible set?
Another is: what is the best way to repair the infeasible system (e.g. what is the
smallest set of changes that can be made to the constraint right hand sides such that
the set of constraints becomes feasible)?

Many of the algorithms used in answering these diagnostic questions depend on
assessing the feasibility of numerous subsets of the original set of constraints.
Hence those algorithms operate much more efficiently if the feasibility status of an
arbitrary set of constraints can be determined quickly (which is of course a
fundamental feasibility question itself). This is not difficult for sets of linear
constraints, but it can be extremely difficult and time-consuming to determine
feasibility status at all when there are nonlinear constraints or integer restrictions
on some or all of the variables. Hence one focus of this book is algorithms for
improving the speed with which the first feasible solution can be found (if one
exists) for the more difficult cases in optimization.

A fourth major reason for interest in feasibility-related algorithms is the many
applications that have been found for them. Some of these applications are surpris-
ing: data classification, training of neural networks, radiation treatment planning,
analysis of protein folding, automatic test assembly, applications in statistics, etc.
Some of these are briefly reviewed in Part III.

Finally, the question of feasibility or infeasibility is a major overlap between
the field of optimization and the field of constraint programming. Constraint pro-
gramming, arising from computer science, has special strength in seeking a yes/no
answer to the question of whether a solution exists for a stated set of constraints;
this is identical to the feasibility question in optimization. However, because of
their different roots and traditions, constraint programming researchers approach
the question in a different way and with different techniques. The two fields have
begun to merge in recent years, resulting in stronger hybrid techniques. Constraint
programming techniques and their links with optimization are addressed at an ele-
mentary level.

The emphasis in this volume is on algorithms and computational methods, spe-
cifically practical algorithms for solving the feasibility/infeasibility related problems
that are the main subject. The book summarizes the main developments over the last
twenty years or so, a very active period for the field, spurred by improvements in
computing power and an increase in the size and complexity of optimization models.
It should prove useful for academics teaching and conducting research in the field
and their graduate students, as well as practitioners.

As opposed to a mathematical treatment, we take the involvement of a computer
as a given: modern optimization problems are normally of such scale and complex-
ity that they simply cannot be solved without using a computer. The essential ele-
ment in solving a feasibility or optimization problem via computer is an efficient and
effective algorithm. The computer implementation of these algorithms introduces a
number of practical issues and complications, such as tolerances. These are also
dealt with as they arise.

Introduction xxi

A Note on Theorems: There is a significant amount of mathematical develop-

ment underlying the algorithms and computational methods that are the main topic
of this book. To keep the focus on algorithms, proofs are generally included where
a theorem relates to whether an algorithm functions as intended. However, where
theorems relate to mathematical underpinnings, the proof is generally omitted in
favour of a simple reference to the original publication containing the proof.

PART I: SEEKING FEASIBILITY

There are several good reasons for wanting to be able to reach feasibility quickly
in a mathematical program. Some solution methods are unable to proceed to
optimality without first reaching a feasible solution (most commonly for nonlinear
programs). Overall solution speed is increased in some algorithms if a feasible
solution is available, e.g. branch and bound solutions of mixed-integer linear
programs (MIP) models can be much faster if a feasible incumbent solution is
available early to help prune the subsequent tree. For many models, a feasible
solution is all that is required (e.g. in scheduling applications). Finally, many
methods for analyzing infeasibility require the repeated solution of subsets of the
model constraints. Such methods are greatly speeded if the feasibility status of sets
of constraints can be decided quickly; reaching feasibility rapidly is very helpful
in this effort.

As we will see in Chapters 2–5, there is a wide variety of algorithms for seek-
ing feasibility for all model forms. Most recently, there has been a great deal of
progress in algorithms for reaching feasible solutions quickly for nonlinear pro-
grams and for mixed-integer linear programs.

one extreme (in which case a feasible solution is easy to find) to tightly con-

is infeasible). The hardest feasibility problems, on average, are those in the middle
range where the model is neither lightly nor tightly constrained. In the middle range,
a great deal of search effort may be required to arrive at a definite determination of

the feasibility status of the set of
constraints. This pattern holds
for many problems, including
the classic satisfiability problem,

isfaction programs, the connec-
tion subgraph problem, etc.

The transition from mostly
feasible instances of models to
mostly infeasible instances is
generally a rather sharp “phase
transition”. A typical diagram

Fig. P1.1. Typical easy-hard-easy pattern for deter-
mination of feasibility status

lightly tightly
constrained constrained

Effort to
determine
feasibility
status

Probability
of feasible
instance

100

0

Conrad et al. 2007) have noticed that the difficulty of determining feasibility status
is directly related to how tightly the problem is constrained. They have observed a
typical “easy-hard-easy” pattern as the model moves from lightly constrained at

strained at the other extreme (in which case it is easy to determine that the model

graph colouring, constraint sat-

A number of researchers (Mitchell et al. 1992, Mammen and Hogg 1997,

of the phase transition and the average computing effort to solve an instance is
shown in Fig. P1.1. The computational effort to determine the feasibility status
typically peaks in the region of the phase transition.

Surprisingly, Conrad et al. (2007) also observe in their experiments that
proving the infeasibility of infeasible instances can be much harder than proving
optimality in the computationally difficult part of the problem space for their
particular connection subgraph application. This is likely a side effect of the fact
that finding a single feasible solution proves feasibility, but to prove infeasibility
you need to investigate all possible feasible regions. In most combinatorial
problems this usually necessitates some kind of full expansion of the search tree,
e.g. the full expansion of the branch and bound tree for a MIP to show that all leaf
nodes are infeasible. In contrast, a single feasible leaf proves that a feasible
solution exists and also helps to prune the subsequent tree search for the optimum
solution by providing a bound on the optimum solution.

Model Reformulation

It is natural to work directly with the original model as supplied by the modeler.
However this may not be the best form of the model for the purposes of seeking
either feasibility or optimality. A given constraint can sometimes be algebraically
manipulated so that it has the same mathematical properties (in the sense of the
combinations of variable values that satisfy it) but has much better characteristics
for use in algorithms for seeking a feasible or optimal point. This is true for all
model forms, but is especially true for the more difficult NLP and mixed-integer
NLP forms. We assume throughout Part I that the model has been put into the
most suitable form for feasibility-seeking before the listed algorithms are applied.
We next describe some reformulations that render constraints easier to satisfy.

Amarger et al. (1992) developed a system specifically for algebraically refor-
mulating nonlinear models so that they are easier to solve. Their REFORM system
preprocesses models formulated in the GAMS algebraic modeling language
(Rosenthal 2007) to produce reformulated GAMS code that has better solution
properties. The reformulations normally have one of these effects:
• Avoid functions that may be undefined,
• Reduce the degree of nonlinearity,
• Convexify a nonlinear model, or
• Improve scaling of variables and constraints.

Undefined functions caused by division by zero are avoided by multiplying
the constraint through by the denominator. For example, x/(y – 1) ≤ 2 becomes
x – 2 y ≤ – 2, which removes the undefined behaviour at y = 1, and simultane-
ously converts the nonlinear constraint into a simpler linear form.

Undefined functions caused by logarithms and exponential exponents of non-
positive values are avoided by exponential transformations. Amarger et al. (1992)
provide this example: log(x/(y – z)) ≤ d is transformed into x – (y – z) ed ≤ 0. Not

8 PART I: SEEKING FEASIBILITY

only is the undefined behaviour avoided, but the transformed constraint is linear
when d is fixed. The constraint y – z ≥ 0 can also be added to the model if needed.

As seen above, nonlinearity can also be removed or reduced by multiplying
through by the denominator. Consider the frequently-occurring nonlinear ratio of
two functions such as g1(x)/g2(x) ≤ b. This is reformulated as g1(x) – b⋅g2(x) ≤ 0
by this tactic, which is linear if both g1(x) and g1(x) are linear. In addition,
approximations that are less nonlinear are known for various commonly used
functions, and these can be substituted where appropriate. Finally, some nonlinear
terms can be substituted out. For example, if the variable x only ever appears in
the term x3, even if this term appears in several different places, then x3 can be
replaced everywhere by another variable e.g. w. The value of x can be recovered
afterwards, when the value of w has been fixed, by solving the expression x = w1/3.
This idea extends to longer terms as well, especially if they occur frequently.

Convexifying the constraints of a nonlinear model greatly improves the ability
of nonlinear solvers to find a feasible point. Posynomial functions (these have
terms that are products of nonnegative variables with arbitrary exponents and
positive coefficients) are easy to convexify by exponential transformations. For
example, using the transformations x = e X, y = eY, and z = eZ, the nonconvex
posynomial function x0.6/y + 1/z ≤ b is transformed to the convex function e(0.6X–Y)

+ e–Z ≤ b. Using exponential functions can make even non-posynomial functions
convex, for example log(x – a1) + log(y – a2) ≤ b is convexified to X + Y ≤ b using
the transformations (x – a1) = e X and (y – a2) = eY; this forms a convex feasible
region if x and y appear only in this function, but the system is nonconvex if the
transformation equalities must be included in the model because x and y appear
elsewhere. In that case, the system is convex if the transformation equalities can be
relaxed to (x – a1) ≥ e X and (y – a2) ≥ eY (examples from Amarger et al. (1992)).

Amarger et al. (1992) also point out the importance of proper model scaling.
The general idea is to avoid having variable or constraint body values of widely
differing scales (e.g. x1 has a range of 0.00001 to 0.00005 while x2 has a range of
100,000 to 500,000). Keeping the variable and constraint values in the same
general range avoids many numerical problems and improves the ability of solvers
to reach both feasibility and optimality. Scaling is normally accomplished by
multiplying variables and constraints by constant factors so that their ranges are
approximately equalized.

Tightening of the variable bounds is also very helpful, especially for nonlinear
models, a topic we will return to in Secs. 5.6.1. and 6.1.1. Nonlinear solvers are
much more likely to reach a feasible point if started near the feasible region, and
tightening the variable bounds improves the chances of finding a good initial
point.

Special rules are also available to reformulate models containing binary or
integer variables which result in simpler models for which it is faster to find an
integer-feasible point. If there are simple bounds on variables such as x ≤ by where
x is a continuous variable, y is binary, and b is a constant, then b can be reduced as
tighter bounds on x are deduced (Amarger et al. 1992). Reduction rules are
available for constraints composed entirely of binary variables, and of the form

Model Reformulation 9

∑ ∑
+ −

≤−
N N

kkjj byaya

where N + and N − are disjoint sets of variable indices, and all of aj and ak are
strictly positive constants. Crowder et al. (1983) show that the following deduc-
tions can be made:
• If ba

N
k >−∑

−

 then the constraint cannot be satisfied and the model is

infeasible.
• If ba

N
j ≤∑

+

 then the constraint is always satisfied and can be removed from

the model.
• If ∑

−

+>
N

kj aba then yj can never be equal to 1, and hence can be fixed to 0.

• If ∑
−

+>
N

kk aba ' where ak’∈N −, then yk’ must be equal to 1 and can be fixed to

that value.
The bounds on integer variables can also be tightened as a by-product of the

tightening of continuous variables. For example if an integer value has an upper
bound of 7, but treating it as continuous during bound tightening shows a tight-
ened continuous bound of 6.8, then the integer bound can be reset to 6.

Amarger et al. (1992) give several examples of models in which no feasible so-
lution can be found until the model is reformulated.

10 PART I: SEEKING FEASIBILITY

1 Preliminaries

This chapter provides basic definitions and explanations that we need to get
started. Many related terms are defined in the online Mathematical Programming
Glossary (Holder 2006).

1.1 The Optimization Model

A standard optimization model consists of an objective function, a set of con-
straint functions, bounds on the variables, and declaration of variable types, as
shown in in Eq. 1.1:

objective function:

(functional) constraints:
variable bounds:

variable types:

 {min, max} f (x)
subject to:
 gi(x) {≤, =, ≥} bi, i =1…m
 l ≤ x ≤ u
 xj is {real, integer, binary}, j = 1…n

(1.1)

Vectors and arrays are shown in boldface. The objective of the optimization is
to find values for the variables that provide a maximum or minimum value for
f (x), while respecting all of the restrictions on the values that variables can take,
including the constraints, the variable bounds, and the variable types.

There are m functional constraints (often referred to simply as constraints). The
bi constant is often referred to as the right hand side (RHS) of the constraint while
gi(x) is often referred to as the constraint body or left hand side (LHS). The con-
straints may be doubly bounded, e.g.

ii upperilower bgb ≤≤)(x , but this is easily con-
verted to the form in Eq. 1.1 by using a pair of inequalities. It is common to see
the functional constraints expressed in this doubly bounded format, in which case
less-than inequalities are constructed by setting

ilowerb , greater-than ine-
qualities by setting =

iupperb
ii upperlower b= .

There are n variables which may have upper and/or lower bounds. The variable

completely unbounded, or unbounded in one direction only). A frequently-used
variable bound is simple nonnegativity, i.e. xi ≥ 0. The lower and upper bounds
can be omitted for binary variables since they are implied. Binary variables are a

= −∞

special case of integer variables, and hence most statements about integer

∞ , and equality constraints by setting b

bounds are constants, and may be ∞ and ∞ respectively (i.e. a variable may be −

The various classes of optimization models are obtained by suitable choices in
Eq. 1.1. For linear programs (LP), f(x) and the gi
xj are real-valued. Because of the linear format, models are often written as matri-
ces in which the functional constraints form the rows and the variables form the
columns. Because of this, rows is often used as a synonym for functional con-
straints, and columns as a synonym for variables in linear models.

For nonlinear programs (NLP), at least one of f(x) or one of the gi(x) is nonlin-
ear in form, and all xj are real-valued. Mixed-integer linear programs (MIP or
MILP) are linear programs in which at least one xj is integer or binary-valued and
a least one variable is real-valued (for simplicity of reference, we will consider
mixed-integer programs to include all combinations of at least one integer or bi-
nary-valued variable with any number of other real, integer, or binary variables).

This work concentrates on the restrictions placed on the possible variable val-
ues by the constraints, the variable bounds, and the variable types. For ease of ex-
position, we may use “constraints” to mean any of these restrictions, and will
make it clear by context when we intend to refer specifically to functional con-
straints. The objective function is often ignored, but can be important, e.g. when

1.2 Measuring Infeasibility

The most common measure of the infeasibility associated with an individual vio-
lated constraint is the difference between gi(x) and bi, i.e.:

constraint type constraint violation
gi(x) ≥ bi i i
gi(x) ≤ bi i i

i i i i

A similar measure applies to violated variable bounds:

bound type bound violation
xj ≥ lj j j
xj ≤ uj j j

j j j j j

In practice, most solvers do not consider an individual constraint or bound to be
violated unless the constraint or bound violation, as defined above, exceeds some
tolerance ε, frequently on the order of 1×10 . The constraint or bound violation is
defined to be zero for satisfied constraints and bounds.

specific distinction is made.
variables in this book can be taken to apply equally to binary variables unless a

binary nonlinear programs, etc.
Suitable definitions can also be created for mixed-integer nonlinear programs,

objective function.
considering how close the first feasible solution is to the optimum value of the

b – g (x)
g (x) – b

g (x) = b |g (x) – b |

l = x = u | l x |

l x
x u

–
–
–

–6

(x) are all linear in form, and all

 1 Preliminaries 2

A function tolerance test as described above is easy to implement, but is se-
verely impacted by row scaling issues. Consider the following example:

scaling factor constraint constraint violation at x = 3.5
1 x2 ≤ 9 12.25 – 9 = 3.25
10 10x2 ≤ 90 122.5 – 90 = 32.5

1×10 (1×10 2 1.225×10 = 3.25×10

At a scaling factor of 1, the constraint violation is 3.25 at x = 3.5, well above the
standard tolerance of 1×10 , hence the constraint fails the function tolerance test
and is considered violated. If the same constraint is multiplied by a scaling factor
of 10, then the constraint violation also increases by the scaling factor, giving a
constraint violation of 32.5, indicating a severely violated constraint, even though
it is simply a scaled version of the original constraint evaluated at the same point.
But if a scaling factor of 1×10 is applied, then the constraint violation is just

, well below the standard tolerance, so the constraint is considered satis-
fied! This example shows that any constraint can be considered violated, severely
violated, or satisfied, depending on its row scaling.

vent the solver from treating constraints differently. Any solver that uses a
function tolerance test to assess the degree of infeasibility will work harder to sat-
isfy some constraints than others since some will appear to be more violated due
to scaling issues. It may even consider some constraints to be satisfied when they
are in fact violated. Issues such as this underlie the phenomenon of one solver
considering a solution to an optimization model to be feasible while another con-
siders the identical solution to be infeasible.

Greenberg (2003) points out that relative tolerances are also in common use.
For example, if we have a value v compared to some referent value V, then v is

r|V | where εr is the relative tolerance. Absolute toler-
ances as described earlier can be combined with relative tolerances: v is close

r a a
The two most common measures of the infeasibility of a set of constraints in

continuous variables are:

• The sum of the infeasibilities (SINF): the sum of the constraint violations over
all of the constraints and bounds.

• The number of infeasibilities (NINF): the number of constraints or bounds whose
violations exceed the tolerance ε.

It is possible to have SINF > 0 at the same time as NINF = 0 because some of the
constraints are violated, but none by more than ε. Note also that NINF is just as af-
fected by scaling issues as SINF because the scaling may affect whether or not the
constraint violation exceeds ε, as shown in the example.

The row scaling problem is avoided if infeasibility is measured in the variable

distance between the current point and the closest feasible point, which is the
space instead of the function space. Infeasibility can be measured as the Euclidean

enough to V if |v–V|≤ε |V|+ ε where ε is the absolute tolerance.

close enough to V if |v –V|≤ε

3.25×10–7

–6

–6

–7)x ≤ 9×10–7–7 –6 –7 –7 – 9 ×10

coefficients to about the same scale. This alleviates the problem, but does not pre-

For this and other numerical reasons, most solvers scale the model prior to
solution by applying multipliers to the rows and columns to try to bring all of the

1.2 Measuring Infeasibility 3

(1997, chapter 5)), among others. In projection algorithms, the orthogonal projec-
tion of an infeasible point is defined as the closest feasible point (Xiao et al.
2003). As described later, the Euclidean distance from a given point to the closest
feasible point on a linear constraint is easily obtained. However it is much more
difficult to obtain exactly for nonlinear constraints, though approximations are
readily available.

Chinneck (2004) defines the feasibility vector for an individual constraint as the
vector extending from an infeasible point to its orthogonal projection on the con-
straint. The length of the feasibility vector is identical to the Euclidean distance
between an infeasible point and the closest feasible point on a single violated con-
straint. This can be extended to define a measure for the total infeasibility of a set
of constraints: the sum of the lengths of the feasibility vectors (SLVF). As usual for
numerical reasons, a tolerance ε may be applied to determine whether or not the
constraint is violated. In this case, NINF means the number of constraints whose
feasibility vector lengths are longer than ε.

As discussed extensively by Chinneck et al. (Chinneck 2004, Ibrahim and
Chinneck 2005), the feasibility vectors (or their approximations in the case of
nonlinear constraints) for a set of violated constraints can be combined in numer-

sensus vector is normally an approximation only, so the process can be repeated in
a cycle, which has been proved to terminate under certain conditions (Censor and
Zenios 1997). However, the length of the consensus vector can also be used as an
approximate measure of the total infeasibility of a set of constraints.

As measures of infeasibility, the lengths of the feasibility and consensus vectors
and SLVF have the desirable property of being immune to row scaling problems.
However they can be affected by column scaling. Fortunately, good column scal-
ing is usually simpler to achieve than row scaling, and has a more intuitive mean-

about the same impact in every dimension so that the Euclidean distance to feasi-
bility is about as accurate in every dimension. We will return to the use of these
variable-space measures of infeasibility in Sec. 5.5.

tion of infeasibility can be different if some or all of the variables are integer or
binary valued, as in mixed-integer programming. Now we must consider not only
SINF, NINF, SLVF, or consensus vector length, but also how far the integer or binary
variables are from integrality. This integer infeasibility is defined in various ways,
mainly for the purpose of selecting the next node in a branch and bound search
tree (more on this in Chap. 3). One common definition is as follows: define the in-
teger infeasibility of an integer variable as the distance to the closest integer value,
i.e. where xj is an integer variable that does not currently have an integer value, its

j j j j j j

rounded down to the closest integer value, and ⎡xj⎤ is the value of xj rounded up to
the closest integer value.

extensively developed in recent years by Censor et al. (e.g. Censor and Zenios
approach taken by projection algorithms, originated by Cimmino (1938) and

ous ways to create a single consensus vector that can be applied to the current
in feasible point to move it onto the closest feasible point in a single step. The con-

ing. The variables should be scaled so that a given error (e.g. a 1% error) has

Thus far we have considered models in continuous variables only. The defini-

integer infeasibility is the minimum of (x – ⎣x⎦, ⎡x⎤– x), where ⎣x ⎦ is the value of x

 1 Preliminaries 4

The integer infeasibility of the entire model is then taken as the sum of integer

number of integer variables that do not have integer values at the current point.
Note that tolerances also affect the decision as to whether an integer variable is

relative tolerance is often used: 1,000,000.1 is close enough to 1,000,000 to be
rounded to the integer value, but 1.1 is not close enough to 1 for a similar round-
ing. For integer rounding decisions, it is common to consider v close enough to its
integer rounding if ⎣ ⎦ vvv rε5.0 ≤+− .

Other measures of infeasibility are available for specific classes of optimization
models. The duality gap can be calculated for linear programs; this is the differ-
ence between the primal objective function value for a primal feasible solution and
the dual objective function value for any dual feasible solution, and can be used as
a measure of distance from optimality. When applied during a phase 1 solution
this is another measure of the infeasibility of the current point.

Different feasibility-seeking algorithms use different measures of infeasibility.
This will be an important theme in Part I of this book.

infeasibilities over all of the integer variables. Another measure is simply the

considered to have an integer value or not. As Greenberg (2003) points out, a

1.2 Measuring Infeasibility 5

2 Seeking Feasibility in Linear Programs

equal zero) is always a basic feasible solution for an LP in a variation of canonical
form that consists entirely of ≤ inequalities in which every element of b is non-
negative, and all variables are nonnegative. Similarly, network LPs in which the
arc flow lower bounds are all zero admit the origin as a feasible solution.

advanced methods of seeking feasibility are needed. In the simplex method, the
most popular technique for reaching feasibility for general LPs is the two-phase
method for reasons of numerical stability. The Big-M method, commonly pre-
sented in textbooks, is seldom used in implemented solvers.

More recently, infeasible-path interior point methods have been developed that
do not necessarily reach feasibility until they also reach optimality. These tech-
niques are beyond the scope of this book. See Wright (1997).

While reaching feasibility in LPs may seem to be a well-understood problem,
there are a variety of heuristics which can speed the process considerably, such as
crash starts, warm starts, and crossover from an infeasible solution.

2.1 The Phase 1 Algorithm

Given a basic feasible solution, the simplex algorithm is efficient at moving to a
better adjacent basic feasible solution. It simply repeats this operation until recog-
nizing that no further improvement is possible, and returns this final basic feasible
solution as the optimum solution. As mentioned above, the difficulty with general
LPs is that no basic feasible solution is immediately obvious except in very special
cases. The phase 1 method addresses this problem by introducing nonnegative ar-
tificial variables into the problem so that a basic feasible solution is immediately
available at the origin in the artificial space. A phase 1 objective function is also
introduced which reaches its optimum value when the artificial variables are

in this special form, e.g. includes equality or ≥ constraints, or has negative entries

A general linear program has the form {min, max} cx, subject to Ax {≤, ≥, =} b,
l ≤ x ≤ u, where c is a 1× n row vector, x, l, u, and b are n × 1 column vectors, and

feasible solution for certain linear programs. For example, the origin (all variables

It is more difficult to find a first feasible solution when the general LP is not

in b. In these cases, the origin is no longer available as a feasible solution, so more

A is an m × n array, all consisting of real numbers. It is simple to find an immediate

Without loss of generality, let us initially assume an LP in which all variables
are restricted to be nonnegative, and all of the elements of b have nonnegative
values. With these restrictions, the constraints that eliminate the origin as a basic
feasible solution are the equality constraints and ≥ constraints that have strictly
positive entries in b. To permit the origin as a feasible point, we introduce a non-

i

i i i i i i i

i i i i
The origin is a basic feasible solution for this phase 1 LP, hence the simplex
method is able to initialize and iterate towards an optimum solution.

If the phase 1 LP terminates at an optimum solution in which W = 0, then it has
found a point at which the artificial variables can be dropped and all of the origi-

objective function. Ordinary simplex iterations then proceed to the optimum of the

function is normally included in the phase 1 matrix and updated as a nonbinding
row so that it is in proper form when it comes time to solve the phase 2 problem.

On the other hand, if the phase 1 LP terminates at an optimum solution in
which W > 0, then we know that the original LP is infeasible. W represents the
sum of the violations of the equality and ≥ constraints, hence the size of W at the
optimum solution is in some sense a measure of the size of the infeasibility. This
notion can be generalized if the LP is fully elasticized (see Sec. 6.1.4). Other
properties of the phase 1 solution, such as the dual prices of the slack variables,
are useful in analyzing the cause of the infeasibility, as explained in later chapters.

There are some minor potential difficulties if the phase 1 solution terminates

have a value of zero and yet be in the basis. This can happen when the model has
redundancies. However this is easy to recognize and handle. Dantzig and Thapa
(1997, pp. 81– 82) list three ways to handle this problem, the simplest of which is
to simply pivot the artificial variable out of the basis. This is done by choosing a
nonzero element in a column for an original variable in the row for which the arti-
ficial variable is basic, and performing the pivot.

Note that it is possible to formulate a phase 1 that includes only a single artifi-

then we are at feasible solution for the original problem Details follow.
driven to their lowest possible values; if all artifical variables achieve a value of zero,

xthe inequality a x ≥ b is replaced by a
negative artificial variable y
(i) + y ≥ b , and (ii) the equality a x = b

 for each such nonstandard constraint i, as follows

process now initiates phase 2 at the current point by dropping all of the artifi-

is replaced by a x + y = b . The phase 1 objective function is to minimize W =Σ y .

cial variable, however for implementation reasons this variant is not used in practice.

with W = 0 but the solution is degenerate. In this case, an artificial variable may

See Nazareth (1987, pp. 147–149) for details.

nal constraints are satisfied, i.e. a feasible point for the original problem. The solution

cial variables and the phase 1 objective function, and re-introducing the original

original objective function. Note that for efficiency reasons, the original objective

 2 Seeking Feasibility in Linear Programs 12

 2.3 Phase 1 from Any Basis

2.2 The Big-M Method

The Big-M method requires the introduction of the same artificial variables as in
the phase 1 method described above. The difference lies in how the artificial vari-

which is used as a penalty to discourage the inclusion of any artificial variables in
the basis. The method works towards feasibility and optimality simultaneously
within a single phase by using an appropriate form of the objective function:

• for maximization: max Z = cx – My,
• for minimization: min Z = cx + My.

As for the two-phase method described above, feasibility is recognized when
all of the artificial variables are driven to zero. This may not happen until optimal-
ity is also reached.

The practical difficulty with the Big-M approach is that the large multiplier in-
troduces numerical difficulties in the solution by dominating the calculations,
however if the value of M is too small, then the procedure will terminate with an
infeasible optimum solution. See Padberg (1999) for guidelines on choosing a
suitable value for Big-M. Because of the numerical difficulties, the Big-M method
is seldom used in practice.

2.3 Phase 1 from Any Basis

The phase 1 procedure given in Sec. 2.1 must start at the origin. A procedure that
can be invoked from any given starting basis is preferable since it can be invoked
when feasibility is lost (e.g. by accumulated rounding errors, or by changes to the
model after it has been solved). As shown by Nazareth (1987), such a phase 1 pro-
cedure is possible if the upper and lower bounds on the variables are specifically
considered (though this method applies equally well to singly-bounded or un-
bounded variables).

Consider the usual equation format of the LP after any necessary slack and sur-
plus variables have been added: Ax = b. Partitioning the variables into the set of
basic variables 0

Bx and the set of nonbasic variables 0
Nx at a given basis induces a

similar partitioning of the A matrix into B0, the columns associated with the basic
variables, and N , the columns associated with the nonbasic variables. The rewrit-
ten LP equation is then

bxNxB =+ 0000
NB .

Now the following relationship holds at any iteration:
0000
NB xNbxB −= .

either its upper or lower bound.
Given a basis, the values of the nonbasic variables are known (each nonbasic

variable is at one of its bounds), and so all of the constant and variable values on

The following phase 1 procedure considers that a variable can be nonbasic at

ables are driven out of the basis. “Big-M ” refers to a large positive multiplier M,

 0

13

 2 Seeking Feasibility in Linear Programs

the right hand side of 0000
NB xNbxB −= are known. Now we can solve for the

values of the basic variables:
)()(0010

NB xNbBx −= − .
Note that it may be numerically convenient to peg some of the nonbasic variables

may be outside of their bounds during phase 1, i.e. the solution may be infeasible.
The goal of the phase 1 procedure is then to drive all of the basic variables that are
currently outside their bounds to within them.

V as the set of basic variables that violate their lower bounds. Nazareth (1987)
i

and the phase 1 reduced costs reflect the rate of change of the sum of the infeasi-

0

normal manner towards feasibility. The cost component is reset to zero when a
variable that is outside its bounds eventually satisfies them.

When variables can violate their bounds, or can be nonbasic at either the upper
or the lower bound, there are several conditions to consider when choosing the
leaving basic variable during simplex iterations (see Greenberg (1978)):

• A variable may be basic, outside its bounds and moving away from them, and
hence will never be chosen as the leaving basic variable.

• A variable may be basic, outside its bounds and moving towards them, in which
case it may pass through the violated bound and become nonbasic at the
opposite bound.

• A variable may be basic and within its bounds, in which case it may become
nonbasic at the first bound it meets.
These conditions are checked when determining the leaving basic variable, and

the basic variable that most restricts the change in the value of the entering basic
variable is chosen as the leaving basic variable, as usual. Note that an entering ba-
sic variable may be decreasing in value. Any variables that satisfy their bounds are
kept inside their bounds by this procedure, while variables that violate their
bounds are gradually made to satisfy them. In other words, the number of infeasi-
bilities (NINF) is gradually reduced, eventually to zero if the LP is feasible.

While this procedure is effective, the fact that it keeps a variable within its
bounds once it satisfies them can be overly restrictive. In some cases it is prefer-
able to allow an entering basic variable to increase beyond the point at which the
first currently-feasible basic variable encounters a bound because the overall sum
of infeasibilities is still decreasing. When choosing the leaving basic variable,
there are up to two thresholds associated with every basic variable:
• No thresholds if the basic variable is currently outside its bounds and moving

away from them.

(Nazareth 1987)). After solving for the values of the basic variables, some of them

0

at values between their bounds; these variables are called superbasic (see

if i∈V , and c = 0 otherwise, then the sum of the infeasibilities is given correctly

This means that whenever infeasibility is discovered, the cost vector c is replaced
by the vector just described, and the simplex method is able to iterate in the

shows that if the prices and reduced costs (π) are set to c = 1 if i ∈ V , c = –1 i

Let us define V as the set of basic variables that violate their upper bounds, and

bilities when a nonbasic variable is introduced into the infeasible basis B .

14

 2.4 Crash Start Heuristics

threshold, the variable contributes to the sum of the infeasibilities.
• Two threshholds if the basic variable is currently outside its bounds and

moving towards them. The first threshhold moves the basic variable into its
feasible range, but is not blocking; beyond this threshold the variable no longer
contributes to the sum of the infeasibilities. The second threshold is at the
second bound and beyond this point the variable again contributes to the sum of
the infeasibilities.

A more advanced procedure for choosing the leaving basic variable first sorts
all of the thresholds in order from smallest to largest. It then looks at the rate of
change of the sum of the infeasibilities in the zone between each threshold. The

crease in the sum of the infeasibilities at the possible expense of increasing NINF.
It is also possible to combine the two goals by examining the thresholds to reduce
the sum of the infeasibilities as much as possible while not increasing NINF. This
is done by choosing the threshold that is latest in the sorted list that does not in-
crease NINF. Note that while you may pass through a threshold that causes a cur-
rently feasible basic variable to violate its bounds, a later threshold may cause a
variable that currently violates its bounds to satisfy them, hence there is no net
impact on NINF.

Nazareth (1987) describes the practical details of an efficient implementation of
this scheme, including ways to immediately eliminate variables from considera-
tion as the leaving basic variable, and ways to combine the calculations into a sin-
gle pass through the candidate variables.

2.4 Crash Start Heuristics

A crash start in the context of linear programming is a procedure for generating a
high quality initial basis. It may not be feasible, but it should be as close to feasi-
bility as possible and have other helpful characteristics such as providing a nearly
triangular matrix (which speeds the calculations). An LP with m independent rows

where one slack variable is added for each row. The main operation in crashing
the initial basis is selecting m of the variables to be in the initial basis.

Sec. 2.3 and the phase 1 procedure iterates to feasibility.

threshold dividing the last zone that shows a rate of decrease in the sum of the

15

infeasibilities from the first zone that shows a rate of increase in the sum of
the infeasibilities identifies the leaving basic variable. This emphasizes the de-

and n original variables is normally converted to a form having n + m variables,

The FortMP software (Ellison et al. 1999) describes a fairly standard crash
procedure. The unit basis consisting of the slack variables is first set up, and then

culated. Then an appropriate phase 1 cost structure is assigned, as described in
Once the basis is selected, the current values of the basic variables can be cal-

A basic slack variable is a candidate for an exchange with a nonbasic original
nonbasic original variables are gradually exchanged for basic slack variables.

variable if the pivot element at the intersection of the row for the basic slack variable

• One threshold if the basic variable is currently within its bounds. Beyond this

 2 Seeking Feasibility in Linear Programs

selected in previous exchanges have nothing but zeroes on the current pivot row.
If the rows and columns in the revised basis are ordered in the same order as their
selection into the basis, this leads to a triangular basis.

The row selected for an exchange should have as few nonzero elements as pos-
sible in columns that are candidates for exchange into the basis, on the principle
described above. A variable is then selected for exchange into the basis, and all
other candidate nonbasic variables that have a nonzero pivot element in the current

lected, a matrix update would be required).

the selection is based on sparsity as described. According to Ellison et al. (1999),

degree of restriction, from most to least (i.e. basic variables that have a smaller

without bounds). Fixed columns are never selected for exchange into the basis.
The crash procedure can also be adjusted, primarily by changing the tie-breaking
rules, to reduce the amount of degeneracy in the crashed basis.

If the phase 1 procedure uses artificial variables, then the crashing procedure
can be designed to reduce the number of artificial variables in the basis. Only rows
corresponding to basic artificial variables can be selected. The nonbasic variable is
chosen so that the pivot element is of reasonable size; this helps avoid basis singu-
larity. In this same vein, most solvers include a parameter that allows the user to
select a minimum size for any pivot, usually set as a minimum fraction of the larg-
est element in the column.

2.5 Crossover from an Infeasible Basis

Crossover normally refers to the process of moving from a feasible point provided
by an interior point LP algorithm to a nearby feasible basis (the basic solution is
desirable because it gives access to sensitivity analysis, etc.). However, if an ad-
vanced infeasible basis can be provided, e.g. by a crash procedure, then it is some-
times possible to crossover from that basis to a nearby feasible basis. This opens
the possibility of using heuristic methods to generate an initial solution that is rea-
sonably close to feasibility and then crossing over to a nearby feasible basis. The
FortMP software (Ellison et al. 1999) includes techniques for providing a close-to-

There are many ties for the selection of the row corresponding to the basic vari-

16

the way in which ties are broken has a big impact on the feasibility of the final
basis. Ties for the basic variable row are broken in favour of equality constraints
(so that artificial variables are removed from the basis), and after that according to the

range are exchanged first). Rows having free variables are never selected. Ties for
the nonbasic variable column are broken by preferring to exchange variables that

row are marked as unsuitable for exchange into the basis later (because, if se-

have the largest range, with first consideration being given to free variables (those

able and the column corresponding to the nonbasic variable to be exchanged when

feasible initial point and for the subsequent crossover.

and the column for the nonbasic original variable is nonzero. To avoid the work
involved in updating the matrix to check this condition, various heuristics are applied,
using the fact that there has been no update to the pivot element if the variable columns

 2.6 Advanced Starts: Hot and Warm Starts

At a basis provided by a crash start, the solution is likely to include a certain
number of superbasic variables (nonbasic variables that are not equal to one of
their bounds, but instead lie between their bounds). So-called purify or push algo-
rithms are then used to move superbasic variables to either a basic or nonbasic
status, i.e. to arrive at a feasible basis. In FortMP (Ellison et al. 1999) there are
separate push algorithms to remove primal superbasic variables and to remove
dual superbasic variables. Both function in essentially the same way. The main
idea is to examine the effect on the basic variables when the value of a superbasic

of its bounds before any basic variable does, then the superbasic is simply
switched to nonbasic status. If a basic variable reaches one its bounds before the
superbasic does, then a basis change is made, in which the basic variable is made
nonbasic and the superbasic is made basic.

The version of the crash heuristics that tries to eliminate artificial variables is
preferred for use with the push heuristics since it helps reduce the amount of work
during the push phase. In addition, during the push phase, any original variables
that are at their bounds after the crash are temporarily fixed at those values.

improving the output of the crash step before purifying. FortMP uses a successive
overrelaxation (SOR) algorithm (Press et al. 1992), an iterative technique for solv-

dure has three steps: (i) apply the crash heuristic to create an approximately lower
triangular basis, (ii) apply the successive overrelaxation algorithm to improve the
point provided by the crash heuristic, and (iii) apply the push algorithms to cross
over to a feasible basis. With luck the SOR procedure produces a feasible solution
directly, which eases the crossover to a basic solution. If it does not produce a fea-

2.6 Advanced Starts: Hot and Warm Starts

If the LP solution process is stopped for any reason, the current basis and associ-

information provides a hot start which allows the solver to begin where it left off

restarted. This may happen because the conditions being modeled have changed,
but it is an essential part of two important procedures. In solving mixed-integer
programs via branch and bound, numerous LPs are solved in a tree-structured
search for a solution that is both LP-feasible and integer-feasible. Each LP is iden-
tical to a previous LP except that a bound on one variable has been adjusted so

An approximate solution that is even closer to feasibility can be supplied by

sible solution, then the push algorithms may yet do so, though this is not guaranteed.

ing systems of linear equations (see Sec. 2.8), for this purpose. The overall proce-

without repeating the set of iterations, including the phase 1 feasibility-seeking

ated information may be stored. If the solution process is restarted later, this stored

It frequently happens that minor changes are made to the LP model before it is
iterations, which originally generated the stored basis.

17

variable is adjusted (in a manner similar to examining the effect of an entering
basic variable on the existing basic variables). If the superbasic variable reaches one

 2 Seeking Feasibility in Linear Programs

that the previous LP solution is rendered infeasible. In LP infeasibility analysis

differ by the addition or removal of one or several of the constraints or bounds. In
cases such as these where the next LP to be solved is substantially similar (but not
identical) to a previous LP, then a warm start that makes use of the previous solu-
tion and basis may be effective. This usually means that you can arrive at a new
feasible (and optimal) solution in only a few iterations.

In warm-starting, if the changes made to the model have not rendered the
warm-start point infeasible, then the primal simplex iterations just pick up where
they left off and continue iterating to optimality. However, if the changes to the
model have made the warm-start point primal-infeasible (normally by a change to

quickly reach primal feasibility at the dual optimum point, normally in a small
number of iterations.

Warm-starting an interior point method is considerably more difficult, but pro-
gress is being made. See Yildirim and Wright (2002) and John and Yildirim
(2006) for details.

2.7 Seeking Feasibility and Optimality Simultaneously

An option often provided in simplex-based LP solvers is the ability to seek feasi-
bility and optimality simultaneously. This is what happens when using the big-M
feasibility-seeking algorithm, of course, but there are better ways to combine the
two that avoid the numerical difficulties associated with big-M.

The simplest approach is to use a composite objective that weights the objective
function and a measure of infeasibility, normally the sum of the infeasibilities. The
MINOS software (Murtagh and Saunders 1987) uses a composite objective of the
form

specified weight. If the LP solver reaches an optimum solution for that objective
function while the original model remains infeasible, then w is reduced by a factor
of 10, and up to five such reductions are allowed before the algorithm gives up.

Infeasible-path interior point algorithms for linear programming have been the
subject of a great deal of research in the past decade. Also known as primal-dual
interior point methods, these algorithms maintain an interior point that satisfies all
of the inequality constraints, but that do not necessarily satisfy all of the equality
constraints at any point before the optimum is reached. Details are beyond our
scope here, but see e.g. Andersen et al. (1996) or Wright (1997).

(see Sec. 6.2), several algorithms require the solution of sequences of LPs that

minimize σw(cx) + (sum of infeasibilities), where σ = 1 for a minimization

a constraint or bound, or by the addition of one), then the warm-start point
will still be dual feasible. The solver then switches to the dual simplex method and will

objective function and σ = –1 for a maximization objective function and w is a user-

18

 2.8 Projection Methods

2.8 Projection Methods

There is a rich and extensive literature on projection methods for finding feasible
points for sets of constraints that form a convex set, of which sets of linear con-
straints are an important special case. The properties of these methods are well-
studied, including guarantees of convergence for sets of convex inequalities. An
excellent reference on this class of methods is Censor and Zenios (1997). Projec-
tion methods, under the name of constraint consensus methods, are also used as a
heuristic technique for reaching near-feasible points in general sets of nonlinear
constraints for which the convexity properties are not known (see Sec. 5.5); con-

infeasible point, easily given by ai, the ith row of the constraint matrix A in the set

constraint. This closest feasible point is called the orthogonal projection of the
violated point, and is obtained by moving in the gradient or anti-gradient direction,
as appropriate, to the limiting value of the violated constraint (see Sec. 1.2). The
vector showing how to move from the current infeasible point to the orthogonal
projection point onto an individual violated constraint is sometimes called the fea-
sibility vector (Chinneck 2004), and denoted by fvi for the ith constraint ci. As has

i i i i i
2

• ∇ci (x) is the gradient of the constraint, and ||∇ci (x)|| is its length.
• vi is the constraint violation |ci (x) – bi|, or zero for satisfied constraints,
• di is +1 if it is necessary to increase c(x) to satisfy the constraint, and –1 if it is

necessary to decrease ci (x) to satisfy the constraint.

The squared term in the denominator seems unexpected, but is easily explained.
i i i

i i
priate gradient or anti-gradient direction to reach feasibility; the product is

i i i i
2

i
The feasibility vectors for the violated constraints are used in different ways in

the numerous varieties of projection algorithms (Censor and Zenios 1997; Censor,
Elfving and Herman 2001). In all variants, the feasibility vectors must be com-
bined in some way to arrive at an update vector; this final vector is sometimes
called the consensus vector (Chinneck 2004). Some main algorithm variants are:

• Sequential projection algorithms update the current point by finding and
applying the feasibility vector for one violated constraint at each iteration. The
process continues until feasibility is achieved. The simplest version is cyclic
(see below), but other variants are possible, see control sequences below.

d∇c (x) / ||∇c (x)|| is a unit vector in the gradient or anti-gradient direction, as nec-

denoted by || fv ||.

essary to reach feasibility. V / ||∇c (x)|| is the number of units to move in the appro-

All methods in this category employ some form of a projection for each vio-

direction. The main idea is to use the gradient of the violated constraint at the current

19

vergence cannot be guaranteed under these conditions, but the algorithms are
remarkably effective.

lated constraint, most commonly a projection in the gradient or anti-gradient

v d∇c (x) / | |∇c (x)|| . The length of the feasibility vector for the i th constraint is

been shown by Xiao et al. (2003) and others, fv = v d∇c (x) / ||∇c (x)|| where:

of linear constraints Ax{≤, ≥, =}b, to calculate the closest point that satisfies the

 2 Seeking Feasibility in Linear Programs

• Simultaneous projection algorithms calculate the feasibility vector for every

feasibility is achieved.

feasibility vectors for the violated constraints is combined in a weighted
average. Component averaging (Censor, Gordon and Gordon 2001) on the
other hand, realizes that not all of the constraints contain all of the variables.

movement in that dimension is calculated.
• Control sequences may be used to adjust which constraints are assessed at each

iteration. In a cyclic control sequence, a sequential algorithm assesses the con-
straints in a round-robin fashion. The control sequence may also be almost
cyclic (constraints or sets of constraints appear in every cycle, but not
necessarily in the same order) or repetitive (Censor and Zenios 1997). Control
sequences may be applied to individual constraints or to sets of constraints.

The most violated constraint control determines which constraint is
currently most violated and uses that constraint in a sequential update

which determines a set of constraints that is most violated and uses those
constraints in a simultaneous projection algorithm.

 Voting heuristics may be used to determine which subsets of constraints to

for some component xj than negative values, then increase the xj component
by the average value of only the positive xj components in the feasibility
vectors. Several variants of voting methods are described in Sec. 5.5.

either lengthening or shortening it.
• Oblique projections may be used instead of orthogonal projections.

• Relaxation parameters may be used adjust the length of the consensus vector,

the constraints which contain a particular variable are considered when the
The final movement vector is therefore computed component-wise, and only

In the usual simultaneous projection algorithm, the complete set of –

–

–

example, if the feasibility vectors of more constraints have positive values

three orthogonal feasibility vectors.

algorithm. A similar idea applies in the case of the remotest set control

violated constraint and then combine them using some form of weighting
to determine a final update consensus vector. This process if repeated until

A simple example showing several steps in a cyclic orthogonal pro jectionl

shows the consensus vector resulting from the component-wise combination of the

20

combine in a simultaneous algorithm (Ibrahim and Chinneck 2005). For

projection algorithm for three equality constraints is shown in Fig. 2.1 . Fig. 2.2

 2.8 Projection Methods

Versions of these algorithms have been
introduced by many authors. One of the
earlier methods for linear equalities is by
Kaczmarz (1937), a cyclic orthogonal pro-

linear constraints. Another influential early
development was the relaxation method for
linear inequalities due to Agmon (1954),
Motzkin and Schoenberg (1954), which
consisted of a cyclic orthogonal projection
method with relaxation. See Censor and
Zenios (1997) for complete coverage of all
related methods.

While projection methods could poten-
tially be used in a feasibility-seeking phase
1 procedure for general linear programs,
they have not been adopted for this purpose
in commercial LP solvers (though a succes-
sive overrelaxation procedure is optionally
used as part of a phase 1 procedure in at
least one solver: see Sec. 2.5). Instead they
have been applied in special-purpose feasi-

bility seeking applications in radiation therapy planning, image reconstruction,

A variant of projection methods known as randomized thermal relaxation algo-
rithms is used in the context of finding a maximum cardinality feasible subset for
an infeasible set of linear constraints (see Sec. 7.6 for details on the algorithm).
Experiments with feasible models comprised of large numbers of linear inequali-
ties show that the method is capable of reaching feasibility or near-feasibility very
quickly (Amaldi et al. 2005).

Fig. 2.2. The consensus vector (solid)
results from the component-wise aver-
aging of the three feasibility vectors
(dashed)

orthogonal projection method
Fig 2.1. Several steps in a cyclic

21

jection method. Cimmino (1938) first sug-
gested a fully simultaneous method for

etc. many of which are convex nonlinear problems if not linear.

3 Seeking Feasibility in Mixed-Integer Linear
Programs

Mixed-integer linear programs (MIPs or MILPs) are much harder to solve than
linear programs. The requirement that some variables take on integer or binary
values means that simple linear programming cannot be used directly since it
yields fractional values for the integer variables. The initial temptation is to relax
the integrality restrictions, solve as an LP and simply round the solutions for the
integer variables to the closest integer values. This frequently causes constraint
violations or yields non-optimum solutions, and hence is ineffective in general
(though there are a few simple special cases such as assignment problems for
which LP is guaranteed to yield integral solutions).

In general, MIPs are solved by a solution space subdivision strategy, normally
via a branch and bound or branch and cut algorithm. Branch and bound has a long
history, dating to the 1960s (Land and Doig 1960) and has been extensively de-
veloped since then (e.g. Johnson et al. (2000)). The general steps of the method,
summarized in Alg. 3.1, are fairly standard, but there are numerous variations in
the details. Branch and bound generates a tree structure. At each node in the tree
an LP-relaxation of the MIP which ignores the integrality restrictions is solved. If
the LP relaxation solution does not provide integer values for all of the integer
variables, the solution space is subdivided and the process continues.

Two of the most important aspects of branch and bound are the selection of the
next node for expansion (Step 5), and selection of the branching variable (Step 2).
Both can have a significant impact on the speed of the solution. After solving the
LP relaxation associated with the chosen node in Step 6, the list of candidate vari-
ables for branching is known: it consists of the integer variables that have frac-
tional values at the optimum solution of the LP relaxation. In Step 2, one of the
candidate variables is chosen for branching, thereby creating two new child nodes.
Each child node is created by adding a new variable bound to the model in the
parent node. For example, if some variable xj is chosen for branching, then it must
be an integer variable that has a fractional value f in the LP relaxation solution of
the parent LP, i.e. kL ≤ f ≤ kU, where kL is the first integer below f and kU is the first
integer above f. One child node is created by adding the variable bound xj ≤ kL to
the model in the parent node, and the other child node is created by adding the
variable bound xj ≥ kU to the model in the parent node.

depth-first, in which one of the two just-created child nodes is always selected for
expansion next (or failing that, the most recently created node). This has the ad-
vantage of providing an immediate advanced start based on the LP relaxation solution

A common node selection scheme for solving MIPs via branch and bound is

for the parent node, thereby increasing the overall speed of solution. There are
several common ways to choose between the two child nodes: (i) branch down, in
which the child node with the added bound xi ≤ kL is chosen next, (ii) branch up,
in which the child node with the added bound xi ≥ kU is chosen next, and (iii) other
schemes, e.g. based on whether f is closer to kL or kU.

INPUT: Mixed-integer linear program.
0. Incumbent solution = φ. List of unexplored nodes = φ.
1. Root node is the original model. Solve the LP relaxation of the root node.
 1.1 IF LP relaxation is infeasible THEN exit with “infeasible” outcome.
 1.2 IF LP relaxation is integer-feasible THEN exit with relaxation solution as
 optimum.
2. Choose a candidate variable in the current node for branching.
3. Create two child nodes from the current node by branching on the selected
 variable and add these new nodes to the list of unexplored nodes.
4. IF list of unexplored nodes is empty THEN:
 4.1 IF incumbent = φ THEN exit with “infeasible” outcome.
 4.2 Optimum is incumbent solution: exit with “optimal” outcome.
5. Choose a node from the list of unexplored nodes for expansion.
6. Solve the LP relaxation for the chosen node.
 6.1 IF LP relaxation is infeasible THEN discard the node and go to Step 4.
 6.2 IF LP relaxation is feasible and integer-feasible THEN:
 6.2.1 IF LP relaxation objective function value is better than
 incumbent objective function value THEN
 replace incumbent with this solution.
 6.2.2 Go to Step 4.
 6.3 Go to Step 2.
OUTPUT: MIP status (optimal or infeasible) and solution.

Alg. 3.1. General steps in the branch and bound method for solving MIPs

MIP solutions via branch and bound have several important characteristics.
First, it is possible that the solution process will not terminate, as illustrated in
Chap. 6 in Fig. 6.5 (this outcome is omitted from Alg. 3.1 for simplicity). Second,
if the MIP is infeasible, this is proven only by a full expansion of the tree in which
the LP-relaxation at every leaf node is infeasible. Finally, the branch and bound
tree can vary widely depending on the choice of the node selection strategy, the
branching variable selection strategy, and the branching direction. One of the
themes of this chapter is setting these policies in ways that promote reaching fea-
sibility quickly.

Branch and cut is an addition to branch and bound in which new functional
inequality constraints are added to the model. These new constraints have the ef-
fect of eliminating part of the feasible region for the LP relaxation, including the
current LP-relaxation solution, without eliminating any of possible integer solu-
tions. See e.g. Rardin (1998) for details.

24 3 Seeking Feasibility in Mixed-Integer Linear Programs

Reaching MIP feasibility quickly is important for several reasons. In some
cases, a feasible solution is the only goal. When optimality is the goal, very diffi-
cult models may terminate before reaching an optimum, so finding a feasible solu-
tion quickly increases the likelihood that the solver will at least be able to report a
usable solution. Finding a feasible incumbent solution quickly permits early prun-
ing and hence the development of a smaller search tree. Feasible solutions are also
needed so that local search heuristics such as relaxation-induced neighbourhood
search (RINS) (Danna et al. 2005) can be used. Finally, some methods for analyz-
ing infeasibility in MIPs require the repeated solution of variations of the original
MIP in which only the feasibility status of the variant MIP is required (see Sec.
6.3); finding a feasible solution quickly terminates the assessment, thereby speed-
ing the analysis.

This chapter reviews the state of the art in algorithms for seeking feasibility
quickly in MIPs and binary programs. A useful comparison of the performance of
a number of the methods described here is provided by Berthold (2006).

3.1 Pivot-and-Complement and Pivot-and-Shift Heuristics

The pivot-and-complement procedure (Balas and Martin 1980) can be applied to a

the binary type. It has an initial phase that tries to find a “good” binary-feasible

with the additional requirement that all slack variables be basic, other than those in
the upper bounding constraints. The algorithm first solves the LP relaxation of the
binary problem, and then pivots to move all of the relevant slack variables into the
basis. Some details follow.

j

i

nonbasic at either the lower bound (0) or upper bound (1). Forcing the slack vari-
ables to be basic forces all of the binary variables to be nonbasic and hence either
0 or 1. It is assumed that all elements of c are integers.

The simplex tableau at any point is represented as
Iixaax

Jj jijii ∪∈−+= ∑ ∈
}0{,)(0

where I and J are index sets for the basic and nonbasic variables and 0 is the index
of the objective function row.

Five types of operations help achieve binary feasibility:

1. Type 1 pivots maintain primal feasibility of the LP relaxation while ex-
changing a nonbasic slack for a basic binary variable. The pivot occurs in the

i = 1…m}. The two formulations are equivalent because binary variables can be

3.1 Pivot-and-Complement and Pivot-and-Shift Heuristics 25

optimality, but we will restrict our attention to the feasibility-seeking initial phase.
The heuristic relies on the fact that a pure binary program has an equivalent LP

point for an inequality-constrained BIP. The complete algorithm works towards

and c is 1× n is equivalent to max{cx | Ax + y = b, 0 ≤ x ≤ 1, y ≥ 0, y basic for

binary integer linear program (BIP or BILP) in which all integer variables are of

A binary program max{cx | Ax ≤ b, x binary, j∈N}, where A is m × n, b is m× 1,

nonbasic slack column q and a row p for a basic binary variable such that

⎭
⎬
⎫

⎩
⎨
⎧

−=
<∩∈>∈

||/)1(min,/minmin/ 00,00,0 iqiaNIiiqiaIipqp aaaaaa
iqiq

2. Type 2 pivots maintain primal feasibility of the LP relaxation and do not
affect the number of basic binary variables. A slack is exchanged for a slack
or a structural variable is exchanged for a structural variable while reducing
the sum of the integer infeasibilities, defined as ∑

∩∈

−
NIi

ii aa }1,min{ 00 , by a
positive Δ.

3. Type 3 pivots exchange a nonbasic slack for a basic binary variable while
sacrificing primal feasibility. The slack variable must enter the basis with a
positive value.

4. Complements involve flipping the values of a set of 1 or 2 binary variables.
During the feasibility-seeking initial phase, variables are complemented to
reduce a measure of infeasibility defined as ∑

∈

−
Ii

ia },0max{ 0 . A set S of

0,0max},0max{ 00 >Δ≥
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−−− ∑ ∑∑
∈ ∈Ii Sj

ijii aaa .

5. Rounding and truncating solutions.

The initial search phase which tries to achieve a first binary-feasible solution is
summarized in Alg. 3.2. Balas and Martin (1980) report very good results when
the feasibility-seeking initial phase is paired with a standard branch and bound
method.

Pivot-and-shift (Balas and Martin 1986, Balas et al. 2004) is a later extension of
pivot-and-complement that can handle general MIPs. The initial integer-feasibility
seeking search phase is a staged rounding procedure. It runs through a cycle of
rounding and pivot and shift procedures such as pivoting out basic integer vari-
ables, reducing the number of basic integer variables, improving the objective
without increasing integer infeasibility, and reducing integer infeasibility. Small
neighbourhood searches are also used.

Let x be the current solution at any point in the procedure. Initially x is the op-
timum solution of the initial LP relaxation. As before, I and J are sets of basic and
nonbasic variables respectively. I1 and J1 are the sets of basic and nonbasic integer
variables. The integer infeasibility at x is defined as

⎣ ⎦ ⎡ ⎤ },min{
1

ii
Ii

ii xxxxZI −−=∑
∈

.

There are 3 types of pivots analogous to those for pivot-and-complement:

• Type 1 pivots reduce |I1| while leaving the primal solution feasible. A nonbasic
continuous variable is exchanged with a basic integer variable.

• Type 2 pivots improve the objective function and remain primal feasible while
leaving |I1| unchanged. A nonbasic continuous variable is exchanged with a

i∈I

nonbasic binary variables of size 1 or 2 can be considered for complementing

 if

26 3 Seeking Feasibility in Mixed-Integer Linear Programs

basic continuous variable, or a nonbasic integer variable is exchanged with a
basic integer variable.

• Type 3 pivots reduce ZI while leaving |I1| unchanged and maintaining primal
feasibility. Continuous variables are exchanged with continuous variables or
integer variables are exchanged with integer variables.

All three pivots happen in a column chosen by the specific pivot rule, and the
row selected by the minimum ratio rule.

INPUT: inequality-constrained BIP.
1. Solve the LP relaxation for the binary model.
 IF solution is binary THEN exit successfully.
2. IF a type 1 pivot exists THEN perform the type 1 pivot that yields the
 largest objective function value and go to Step 4.
3. IF a type 2 pivot exists THEN perform the first such pivot,
 ELSE go to Step 5.
4. IF current solution is binary THEN exit successfully, ELSE go to Step 2.
5. Try rounding or truncating current basic solution to see if that yields a
 feasible binary solution. IF yes THEN exit successfully.
6. Perform a type 3 pivot that minimizes the value of the infeasibility measure.
7. Search for a single nonbasic binary variable whose complementing reduces
 the value of the infeasibility measure.
 7.1 IF none exists THEN go to Step 9.
 7.2 Complement the variable yielding the largest improvement in the
 measure of infeasibility.
8. IF the current solution is infeasible THEN go to Step 7.
 8.1 Check whether rounding or truncating current solution yields a feasible
 binary solution. IF yes THEN exit successfully, ELSE go to Step 2.
9. IF there is a pair of nonbasic variables whose complementing reduces the
 current value of the infeasibility measure THEN complement the first such
 pair and go to Step 8.
10. Exit with failure message.
OUTPUT: Binary-feasible point or failure message.

Alg. 3.2. The pivot-and-complement heuristic for binary programs (Balas and Martin 1980)

A rounding procedure is carried out at certain times to see whether a nearby in-

strict the search to a local neighbourhood of a feasible solution and running a MIP
solver for this restricted problem (see Fischetti and Lodi (2003)). However since
there is no integer-feasible solution available, Balas et al. (2004) define a
neighbourhood around a close-to-integer-feasible solution, specifically

⎣ ⎦ ⎡ ⎤ α≤−−∈= },min{:{ 1 iiii xxxxIiS
for a small α such as 0.1. xi

* denotes the value obtained from xi by rounding. The
neighbourhood restriction is composed of the pair of constraints

under certain conditions. This is normally done by imposing a linear constraint to re-
teger-feasible solution exists. A small neighbourhood search is also conducted

3.1 Pivot-and-Complement and Pivot-and-Shift Heuristics 27

∑∑∑
∈∈∈

+≤≤−
Sj

j
Sj

j
Sj

j xxx 11 ** .

The logic of the integer-feasibility seeking initial search phase is summarized in
Alg. 3.3. In practice, the feasibility-seeking stage is run for a limited amount of
time. If no solution is found, or if the integer solution is found by rounding and its
value is 40% or more worse than the unrounded solution, then the heuristic is
abandoned in favour of the feasibility-seeking routines in the commercial MIP
solver Xpress (Dash Optimization 2006).

INPUT: MIP model.
0. Solve the LP relaxation of the original MIP.
1. IF rounding is successful, THEN exit successfully.
2. Continue making type 1 pivots as long as they are available.
3. If rounding is successful, THEN exit successfully.
4. Continue making type 3 pivots as long as they are available.
5. IF there was at least one successful type 3 pivot THEN:
 5.1 Continue making type 2 pivots as long as they are available.
 5.2 Go to Step 3.
6. Conduct a small neighbourhood search.
 IF successful THEN exit successfully.
7. Exit unsuccessfully.
OUTPUT: Integer-feasible point or failure message.

Alg. 3.3. The pivot-and-shift integer-feasibility seeking search phase (Balas et al. 2004)

Empirical tests reported by Balas et al. (2004) show that combining the pivot-
and-shift heuristic with Xpress is quite effective in reducing the time to optimality
for general MIP models.

3.2 The OCTANE Heuristic

Balas et al. (2001) developed the OCTAhedral Neighbourhood Enumeration
(OCTANE) heuristic for generating feasible solutions for pure binary programs
(all variables are binary) within a branch-and-cut framework. The heuristic uses an
n-dimensional octagon circumscribing the n-dimensional cube to associate facets
with binary solutions: each facet of the octagon is associated with exactly one
fully binary solution. Given a fractional solution, usually from the current LP-
relaxation solution, directions for improvement from this point (i.e. closer to fea-
sibility in our case) are proposed. Movement in this direction crosses the extended
facets of the octagon, and based on the binary solutions associated with these fac-
ets, heuristic solutions are proposed. The central idea is to explore the binary solu-

report good empirical results.
tions that are in the neighbourhood of the current fractional point. The authors

28 3 Seeking Feasibility in Mixed-Integer Linear Programs

min{cx|Ax ≥ b, xi binary, i = 1…n}.
Given a fractional solution x and a di-
rection from x, the heuristic works by
finding the first k intersections with the
extended facets defining the octagon
around the unit cube. The binary points
associated with the intersected facets
provide a list of possible solutions that
can be checked for binary feasibility.

binary solutions that are generated are
shown by the black dots.

development of the algorithm is actually centred at the origin, with the binary so-
lutions offset by ½:

.
22

:
⎭
⎬
⎫

⎩
⎨
⎧ ≤≤−ℜ∈=

1x1x nK

The regular octagon K* circumscribing this n-dimensional cube is given by

{ } .1,
2
1:*

⎭
⎬
⎫

⎩
⎨
⎧ ±∈∀≤ℜ∈= nn nK δδxx

δδ δδ
The main steps in the heuristic are summarized in Alg. 3.4. Sophisticated pro-

cedures are used to reduce the effort in finding the first k intersected facets, see
Balas et al. (2001) for details. Efficiencies are also introduced by avoiding the
enumeration of facets that lead to infeasible binary solutions.

INPUTS: a fractional point x.
0.
1. Choose a direction vector a and consider the half-line r = x + λa, λ ≥ 0.
2. Find the first k facets of K* intersected by r and their corresponding
 associated binary points.
3. FOR each of the k binary points found in Step 2:
 3.1 IF feasible THEN exit (success).
4. Exit (failure).
OUTPUTS: a binary-feasible point or a failure message.

Alg. 3.4. Main steps in the OCTANE heuristic (Balas et al. 2001)

3.2 The OCTANE Heuristic 29

The OCTANE heuristic applies
to binary programs of the form

Fig. 3.1. Two-dimensional octagon around
unit cube

1st intersection

2nd intersection

x

There is a one-to-one correspondence between the binary points at K + ½·1 and

The unit cube K in the theoretical

sketched in Fig. 3.1. The associated

the facets δδ of K* + ½·1, given by x = ½δδ + ½·1.

x = x – ½·1.

A simple 2-dimensional example is

Some important implementation details:

• Using directions that begin only at the initial LP relaxation optimum is not
particularly effective in reaching feasibility. It is more effective to vary the
initial point as well, hence the OCTANE heuristic is used within a branch-and-
cut framework by running it at different nodes of the enumeration tree. The
starting point is the LP relaxation optimum for the chosen node.

• The best direction a is one that points inside the feasible region. Several
different methods of constructing a are used: (i) the average of the extreme rays
(normalized) of the cone C defined by the optimal basis of the LP relaxation for
the node, (ii) the inward normal to the objective function, and (iii) the weighted
average of the extreme rays of C that correspond to the nonbasic slacks with
positive reduced cost at the current x, where the weights are given by the
inverse of the reduced costs. Berthold (2006) proposes an additional direction,
the average normal ray, that performs well in the tests he carries out.

• A heuristic is used to determine the number k of intersections to investigate. If
there is an inequality that is violated at all of the first 10 binary points returned
by the heuristic, then the enumeration is abandoned. Otherwise at most 100
intersections are enumerated.

• The enumeration takes place in the fractional variable space. In other words,
the binary variables at x are fixed and only the fractional variables are reset to
binary values.

• The OCTANE heuristic is not run at every node of the branch-and-cut tree. It is
run for every node in the first five levels of the tree, and thereafter at every
eighth node.

The empirical results by Balas et al. (2001) show that OCTANE is competitive
with pivot-and-shift, at least in terms of the number of branch-and-cut nodes. CPU
time may be less, however but this could not be directly compared for implemen-
tation-related reasons.

3.3 The Feasibility Pump

Fischetti et al. (2005) developed the Feasibility Pump heuristic as a way of finding
a feasible solution for a MIP problem without branch and bound. The method al-
ternates between LP-relaxations (which satisfy the linear constraints) and
“nearby” integer-feasible roundings of the LP-relaxation solutions (which satisfy
the integrality restrictions). The back-and-forth action gradually “pumps” the in-
termediate solutions towards a final integer-feasible outcome. The authors report
very good results on binary MIP problems.

The feasibility pump assumes a MIP of the form min{cTx | Ax ≥ b, xj integer

j
all j∈I. A rounding x~ of a point x is given by setting jx~ = [xj] if j∈I, otherwise
with the LP relaxation of this MIP. A point x is integer-feasible if x is integer for
∀j∈I} where A is an m × n matrix. P ={x | Ax ≥ b} is the polyhedron associated

30 3 Seeking Feasibility in Mixed-Integer Linear Programs

jx~ = xj, where [·] represents rounding to the nearest integer value. Note that a
point is integer-feasible if x = x~.

The L1 norm is used to measure the distance between a given point x on the
polytope P and an integer point (not necessarily integer-feasible for the original
MIP):

∑
∈

−=Δ
Ij

jj xx |~|)~,(xx .

j j j
definition of the L1 norm is modified as follows:

∑ ∑∑
=∈ <<∈

−+

=∈

++−+−=Δ
jj jjjjj uxIj uxlIj

jjjj
lxIj

jj xxxulx
~: ~:~:

)()()()~,(xx

and additional constraints are added to the MIP model:

jjjjjjjjj uxlIjxxxxxx <<∈∀≥≥−+= −+−+ ~:,0,0,~ .
With this formulation, given a rounded point x~ , the closest point x* on the poly-
tope P can be found by solving the LP

}:)~,(min{ bAxxx ≥Δ .
The feasibility pump heuristic then alternates between points x* that are LP-

feasible (but not integer-feasible) and rounded points x~ that are integer-feasible
(but not LP-feasible) in the hope that the two trajectories of points will converge at

INPUT: MIP model.
0. x* ← solution of the LP-relaxation of the original MIP model.
1. x~←[x*].
2. IF x~ = x* THEN exit with x* as a feasible solution for the MIP.
3. x*← }:)~,(min{arg bAxxx ≥Δ .
4. Go to Step 1.
OUTPUT: an integer-feasible solution to the MIP, x*.

Alg. 3.5. Simplified feasibility pump algorithm

Note that limits on the process such as a maximum number of iterations or a
time limit have been omitted from Alg. 3.5 for simplicity. The algorithm can fail
to converge, so such safeguards are necessary. Stalling can happen when x~ and
x* do not change between iterations, so further safeguards are added to the algo-
rithm as described below.

When all integer variables are binary, Fischetti et al. assume that the functional
j

−+
jj xx and variables and reduces the distance evaluation to

If the MIP includes bounds on the integer variables l ≤ x ≤ u for all j∈I, then the

a point that is both LP-feasible and integer-feasible. The steps in the basic feasibility
pump are summarized in Alg. 3.5.

constraints include the bounds 0 ≤ x ≤1 for all j∈I. This obviates the need for the

3.3 The Feasibility Pump 31

∑ ∑
=∈ =∈

−+=Δ
0~: 1~:

)1()~,(
j jxIj xIj

jj xxxx .

To avoid stalling in this binary case, a certain number of the binary variables are
flipped, as described in Alg. 3.6.

The inputs in Alg. 3.6 include a time limit TimeLimit, a maximum number of
iterations MaxItns, and a parameter to control the number of binary flips in case of
stalling T. In Step 1.4, if stalling is detected when the new rounding is identical to
the old rounding, then in Step 1.5 a random number of variables with the largest
integer infeasibilities are flipped. Not shown in Alg. 3.6 is a further anti-cycling
mechanism: if there is cycling in the most recent R iterations, then a random per-
turbation is applied as follows. For each j∈I generate a uniform random value
ρj∈[−0.3, 0.7] and flip jx~ if 5.0}0,max{|~| * >+− jjj xx ρ .

Fischetti et al. (2005) report very promising results on a variety of binary MIP
models. The feasibility pump compares favourably to the Cplex 8.1 root node heu-
ristics, reaching feasibility more often and with better optimality gaps.

INPUTS: binary MIP, TimeLimit, MaxItns, T.
0. Itn←0.
 x* ← solution of the LP-relaxation of the original binary MIP model.
 IF x* is integer THEN exit with x* as a binary-feasible solution.
 x~←[x*].
1. WHILE time < TimeLimit and Itn < MaxItns DO:
 1.1 Itn←Itn + 1.
 1.2 x*← ~ .
 1.3 IF x* is integer THEN exit with x* as a binary-feasible solution.
 1.4 IF jj xxIj ~][: * ≠∈∃ ~

 j
~ with highest |~| *

jj xx − .
2. Exit with failure message.
OUTPUT: a binary-feasible solution x* or a failure message.

Alg. 3.6. The feasibility pump for binary MIPs (Fischetti et al. 2005)

Bertacco et al. (2005) extend these ideas to better handle general mixed-integer
models. In addition, they use the information provided by the feasibility pump to
drive an enumeration process. Their extended version of the feasibility pump algo-
rithm is given in Alg. 3.7. Note that the system bxA ~~

≥ represents the original
system of inequalities augmented with the additional inequalities required to han-
dle bounds on the integer variables.

The score calculated in Step 1.3.2.1 of Alg. 3.7 measures the likelihood that
jx~ will move from its current value to 1~ +jx if jj xx ~* > or to 1~ −jx if jj xx ~* < . If

cycling is detected in Step 1.3.1 then this score is calculated for each integer vari-
able, and in Step 1.3.2.2 a random number of the variables with the largest scores

1.5 ELSE flip rand (0.5T,1.5T) elements x

arg min{Δ(x, x) : Ax ≥ b}

 THEN x ←[x*].

32 3 Seeking Feasibility in Mixed-Integer Linear Programs

are moved up or down accordingly. The cycling check in Step 1.3.2.3 initiates a
restart in either of two cases: (i) x~ is unchanged from the previous iteration, or
(ii))~*,(xxΔ has decreased by less than 10% over the last KK iterations, where
KK is a prespecified parameter.

The rounding function is also altered as a further anti-cycling measure. Normal
rounding is defined by ⎣ ⎦τ+= jj xx]~[

the range of zero to one.

INPUTS: general MIP, MaxItns, T.
0. Itn←0.

 IF x* is integer THEN exit with x* as an integer-feasible solution.
 x~←[x*].
1. WHILE 0)~,(>Δ xx and Itn < MaxItns DO:
 1.1 Itn←Itn + 1.
 1.2 x*← }~~:)~,(min{arg bxAxx ≥Δ .
 1.3 IF 0)~,(>Δ xx THEN:

 1.3.1 IF jj xxIj ~][: * ≠∈∃ THEN
~

 1.3.2 ELSE
 1.3.2.1 FOR each j∈I define score |~| *

jjj xx −←σ

j j
 1.3.2.3 IF cycling detected THEN perform random restart.
 1.4 ELSE exit with x* as an integer-feasible solution.
2. Exit with failure message.
OUTPUT: an integer-feasible solution x* or a failure message.

Alg. 3.7. The feasibility pump for general MIPs (Bertacco et al. 2005)

Bertacco et al. (2005) execute the feasibility pump in two stages. They deal first
only with the binary variables while ignoring the general integers. When this stage
is complete they then deal with all integer variables (including the binary vari-
ables) simultaneously. Alg. 3.6 is used during the binary stage with minor changes
to the restart operation. The binary stage is exited when either (i) a binary-feasible
solution has been found, or (ii))~*,(xxΔ has not changed in the last KK iterations,

)~*,(xxΔ

that is most likely near 0.5, but also has small probabilities of being elsewhere in

x* ← solution of the LP-relaxation of the original binary MIP model.

 1.3.1.1 x ←[x*].

 1.3.2.2 Move rand (0.5T,1.5T) components x with largest σ .

 where τ = 0.5. A random τ is used instead,

the binary stage is used as the initial point in the second stage.
d uring

3.3 The Feasibility Pump 33

based on ω, a uniformly distributed random variable in (0,1), and defined as τ(ω) =

where KK = 70 in their empirical tests. The point giving the smalles t

2ω (1 – ω) if ω ≤ 0.5 or τ (ω) = 1 − 2ω (1–ω) if ω > 0.5. This gives a value of τ

A third stage applies if no integer-feasible solution has been obtained by the
end of the second stage. This is an enumeration around x~ =[xB] where xB is the
best solution available at end of Stage 2, i.e. the x* associated with the smallest

)~*,(xxΔ . This is carried out using a general-purpose MIP solver applied to the
original MIP, but with the objective function replaced by),(min BxxΔ .

The empirical results reported by Bertacco et al. (2005) for this version of the
feasibility pump are comparable to those for the general purpose MIP solvers
Cplex 9.1 (Ilog 2006) and Xpress Optimizer 16.01.05 (Dash Optimization 2006).
Stage 1 which focuses only on the binary variables is surprisingly effective even
though all tested models include at least one general integer variable. Not only
does stage 1 increase the overall speed, but it frequently finds an integer-feasible
solution for the entire model, including the general integer variables. Alg. 3.6 can
be applied to general MIPs if the integer variables are converted to sums of binary
variables. Experiments comparing Alg. 3.7 to Alg. 3.6 confirm that Alg. 3.7 is
much faster for general MIPs.

Achterberg and Berthold (2005) extend Alg. 3.7 so that it produces feasible so-
lutions that are closer to the optimum. This is accomplished by taking the objec-
tive function into account during the course of the algorithm. The main idea is to
gradually reduce the influence of the original objective function and gradually in-
crease the influence of the)~*,(xxΔ measure as the algorithm proceeds. See
Achterberg and Berthold (2005) for details.

3.3.1 The Feasibility Pump for Mixed-Integer Nonlinear Programs

Bonami et al. (2006) adapt the feasibility pump heuristic for use in finding feasible
solutions for inequality-constrained mixed-integer convex nonlinear programs
(MINLP). Similar in approach to the feasibility pump for MIPs, the nonlinear ver-
sion alternates between solutions that satisfy the constraints in the continuous re-
laxation of the MINLP and points that satisfy the integer restrictions in a linear
approximation of the NLP.

The integer variables are denoted by the set x and the real-valued continuous
variables are denoted by the set y. The starting point is a feasible solution for the
continuous relaxation of the MINLP. A linear approximation to the NLP con-
straints is constructed at this initial point, and a complete MIP is solved to find a
point)ˆ,ˆ(ii yx that satisfies the linear approximation as well as the integer restric-
tions (though it will not satisfy all of the original nonlinear inequalities in general).
Finally another NLP is solved to find a point),(ii yx that satisfies the continuous
relaxation of the MINLP at step i and that is closest to the MIP point. The process
iterates between solving a MIP based on an updated linear approximation at the
current point and solving an NLP to find the closest point to the MIP solution that
satisfies all of the constraints in the continuous relaxation. The process is summa-
rized in Alg. 3.8. Note that it is not necessary to solve the continuous relaxation in
Step 0 to optimality if only a feasible solution is needed.

34 3 Seeking Feasibility in Mixed-Integer Linear Programs

The linear approximation to the NLP that is used in Step 1 uses a technique by
Duran and Grossmann (1986). It is an outer approximation based on the lineariza-
tion of the nonlinear constraints around the points produced by the solutions of the
continuous relaxations. This is a simple truncated Taylor’s series expansion
around each continuous relaxation solution point, i.e.

1,...,0,),(),(−=∀≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎛

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ ikk

k
kk

g
kk b

y
x

y
x

yxJyxg

g
trix for the constraints. Note that the set of linear constraints includes all of the
linearizations around the continuous relaxation solutions from Step 0 through Step
i-1. It is a valid assumption that the constraint linearizations from previous steps
continue to apply if all of the constraint inequalities are convex. In this case, the
continually growing set of linear approximations of the constraints simply makes a
better and better outer approximation of the original nonlinear constraints.

INPUT: MINLP model.
0. Solve the continuous relaxation of the MINLP using an NLP solver to
 obtain),(00 yx . i←1.

1. Solve the MIP with objective function
1

)1(min −− ixx and constraints

 based on the linear approximation of the NLP at the points
),)...(,(00)1()1(yxyx −− ii to obtain)ˆ,ˆ(ii yx .
 IF the MIP is infeasible THEN exit with failure message.
2. IF)ˆ,ˆ(ii yx satisfies all of the original constraints THEN

 exit with)ˆ,ˆ(ii yx as a feasible point for the MINLP.
3. Solve the continuous relaxation of the MINLP solver to minimize

2
ˆ ixx − , obtaining the point),(ii yx .

4. IF),(ii yx satisfies all of the integrality restrictions THEN

 exit with),(ii yx as a feasible point for the MINLP.
5. i←i +1. Go to Step 1.
OUTPUT: an integer-feasible point for the MINLP or a failure message.

Alg. 3.8. The feasibility pump for convex mixed-integer nonlinear programs

Other valid linear inequalities can be added to the MIP approximation when it
is known that all of the constraints are convex. At each iteration we have)ˆ,ˆ(ii yx
which is outside the convex feasible region formed by the convex constraints, and
the associated closest point),(ii yx
Thus the constraint 0)()ˆ(≥−− kTkk xxxx is a valid inequality: it represents the

where g(x,y) ≤ b is the set of inequality constraints and J (x,y) is the Jacobian ma-
⎝

3.3 The Feasibility Pump 35

 which satisfies all of the original constraints.

hyperplane orthogonal to kk xx ˆ− k

ened version of the MINLP feasibility pump that adds this new cut to the lineari-
zation at each iteration.

It is also possible that the set of nonlinear constraints forms a convex set even
though some or all of the individual constraints are not everywhere convex.
Bonami et al. show that the linear approximations to the constraints continue to be
valid for any constraint gj(x,y) that is nonconvex, provided that it is at its limiting

j j
slightly: they use the constraint linearizations derived only from constraints that

),(yx . The additional inequalities added by the strengthened version of the feasi-
bility pump are always valid for every pair of points)ˆ,ˆ(ii yx and),(ii yx : the cut
construction works for any exterior point and its closest feasible point on the
boundary of the convex feasible region.

When the region defined by the constraints is nonconvex, then the feasibility
pump can fail to find an integer-feasible solution even if one exists. This is be-
cause the linear approximations to the constraints may construct an infeasible LP
or MIP. However, if a particular constraint qualification holds, then Bonami et al.
prove that neither the basic nor the enhanced feasibility pump can cycle. The con-
straint qualification concerns those inequalities that hold with equality at the current
point),(ii yx . If the gradient vectors for those constraints are linearly independent
at),(ii yx then the constraint qualification holds. Note that this is different than
for the original feasibility pump for MIPs, which can cycle, but is easily explained
by the fact that a complete MIP is solved in Step 1 of Alg. 3.8. The essential fea-
ture of the feasibility pump for linear MIPs is that it entirely avoids solving the
complete MIP.

The computational results reported by Bonami et al. for a selection of convex
MINLPs are excellent. In most cases the feasibility pump (basic or enhanced)
finds a feasible solution within a second.

The authors also propose an optimizing version of the feasibility pump which
iteratively adds constraints based on the objective function that require the next
solution to be better than the current one. The subproblems that are solved are also
slightly different in that they include the original objective function as well; see
Bonami et al. (2006) for details.

The convexity of the individual constraints and the convexity of their intersec-
tion may be difficult to assess analytically. Techniques for empirical evaluation of
the convexity of both constraints and regions are available however, see Sec. 5.2.

 through x . Bonami et al. propose a strength-

are everywhere convex, or that hold with equality at the linearization around

value, i.e. g (x,y) = b . They use this fact to alter the feasibility pump algorithm

36 3 Seeking Feasibility in Mixed-Integer Linear Programs

3.4 Branching Variable Selection by Active Constraints
Methods

Patel and Chinneck (2006) develop a new approach to selecting the branching
variable that shows significant improvement over existing state of the art methods
in finding the first integer-feasible solution in a MIP quickly. Changing the policy
for branching variable selection can have a dramatic effect on the speed to first
feasible solution. For example, for the MIPLIB2003 (Achterberg et al. 2006) mo-
mentum1 model, Cplex 9.0 with all default heuristics turned on times out after
28,800 seconds, while one of the active constraints methods reaches a feasible
node in just 67 nodes and 74.61 seconds.

Most branching variable selection methods choose the candidate variable that
maximizes the degradation of the objective function value at the optimal solution
of the child node LP relaxation (Benichou et al. 1971, Dakin 1965, Eckstein 1994,
Gauthier and Ribiere 1977, Linderoth and Savelsbergh 1999). This gives a tighter
bound on the unsolved nodes. As pointed out by Linderoth and Savelsbergh
(1999), most branching variable selection methods either estimate degradation in
the objective function value of the LP relaxation or provide bounds on the degra-
dation. Many estimation methods are based on pseudo-costs introduced by
Benichou et al. (1971). None of these methods focus on finding an integer-feasible
solution quickly.

Strong branching (attributed to Bixby by Linderoth and Savelsbergh (1999))
performs a number of dual simplex pivots to get a better lower bound on the deg-
radation in the objective function value at the LP relaxation optimal solution of the
child nodes, prior to selecting a child node for expansion. Branching variable se-
lection can also be based on Special Ordered Sets (Beale and Tomlin 1970).

In contrast to objective-oriented methods, the active-constraints methods rec-
ognize that the solution point in an LP relaxation is determined by the constraints
that are active at the optimum. To move the optima of the child nodes as much as
possible, choose the candidate variable that has the most impact on the active con-
straints in the parent node LP-relaxation optimum solution, instead of choosing the
variable that has the most impact on the objective function. The general idea is
that the child node relaxation optima should be far apart, so that they are as dis-
similar as possible in the hopes that one of the child nodes will never be expanded.

The active constraint methods are related to the concept of surrogate con-
straints due to Glover (1968, 2003). In the most basic form, a surrogate constraint
is any linear combination of a set of linear constraints. When the constraints are all
inequalities, their linear combination yields a single linear knapsack inequality.
This gives a heuristic method for estimating the impact of a variable on the objec-
tive function by calculating the ratio between the objective function coefficient
and the constraint coefficient for each variable in the resulting knapsack constraint
(the “bang for the buck”). Various weightings of the individual constraints can be
used in constructing the linear combination. Numerous sophisticated methods for
selecting the weightings and applying the heuristic have been developed.

3.4 Branching Variable Selection by Active Constraints Methods 37

The set of “active constraints” includes all equality constraints and all inequali-
ties that hold with equality at the current point (Greenberg 1996b). This means
that all tight inequalities are included among the active constraints, both those as-
sociated with nonbasic variables, and those that are tight due to degeneracy. The
point in question is the optimum point for the current LP relaxation.

The active constraints methods estimate the impact that an individual candidate
variable has on the active constraints by looking at two components: (i) how much
influence the variable has within a particular active constraint, and (ii) how much
a particular active constraint can be influenced by a single variable.

Measures of the influence of a variable within an active constraint include (i)
simple presence of a candidate variable in an active constraint, (ii) magnitude of
the coefficient of a candidate variable in an active constraint, and (iii) normaliza-
tions of (ii) e.g. by the sum of the magnitudes of all of the coefficients in the ac-
tive constraint (or the sums of the magnitudes of the coefficients of just the integer
variables, or of just the candidate variables).

Measures of how much an active constraint can be influenced include (i) equal
valuation for each active constraint, (ii) inverse of the sum of the magnitudes of
all of the coefficients in the active constraint (or the sums of the magnitudes of the
coefficients of just the integer variables, or of just the candidate variables), or (iii)
inverse of the number of variables in the active constraint (or the number of inte-
ger variables or the number of candidate variables).

A weight wij is assigned to candidate variable j in active constraint i, based on
some combination of the measures mentioned above. The variable having the
highest total weight over all of the active constraints is chosen as the branching
variable. Variations on the basic schemes include biasing the weights using the
dual costs of the active constraints, looking at the single highest wij instead of the
total weight, and a voting scheme. Ties are broken by selecting the variable with
maximum infeasibility (defined as minimum distance from integrality); if still
tied, the variable with the lowest solver-determined index is chosen.

Patel and Chinneck (2006) developed and tested 20 methods using various
combinations of the measures listed above, but reported on a smaller subset of the
best-performing methods, described below. Several methods not presented here
have comparably good results and some omitted methods have inferior overall re-
sults, but perform spectacularly well on individual models.

The following MIP example is used to illustrate the different schemes:
maximize z = 3y1 – 4x1 + y2 – 2y3
subject to: P: 8y1 + y2 – y3 ≤ 9

 Q: -x1 + 2y2 + y3 ≤ 5
 R: 3y1 + 4x1 + 2y2 ≤ 10
 x1, y1, y2, y3 ≥ 0
 x1 real; y1, y2, y3 integer
The LP relaxation optimal solution at the root node of the branch and bound

tree is z(y1, x1, y2, y3) = z(0.8125, 0, 2.5, 0) = 4.9375. The candidate branching
variables are y1 and y2. P and Q are the active constraints at the LP relaxation op-
timum and their dual costs are 0.375 and 0.3125 respectively.

38 3 Seeking Feasibility in Mixed-Integer Linear Programs

Method A uses a simple count of the number of active constraints in which a
candidate variable occurs. For candidate variable j in active constraint i, wij = 1 if
the candidate variable appears in the active constraint, and wij = 0 if the candidate
variable does not appear in the constraint. The total weight is a simple count of the
number of active constraints that the candidate variable appears in. In the example,
the weights of the candidate variables are found as follows:

Active constraint i wi(y1) wi(y2)
P 1 1
Q 0 1

Total: 1 2
y2 has the highest total weight and is selected as the branching variable.
Method B recognizes that constraints are relatively easier or more difficult to

influence via a single variable. This effect is estimated by noting the sum of the
magnitudes of the coefficients of all of the variables in the active constraint. The
weight associated with a particular active constraint, instead of being 1 as in
Scheme A, is taken as 1 /∑j|aij|, where the coefficient of variable j in constraint i is
aij. Active constraints with many coefficients of large magnitude thus have lower
weights since they are likely less influenced by a single variable. wij = 0 if candi-
date variable j does not appear in active constraint i. In the example, the weights
of the candidate variables are found as follows:

Active constraint i ∑∑∑∑j|aij| wi(y1) wi(y2)
P 10 0.1 0.1
Q 4 0 0.25

Total: 0.1 0.35
y2 has the highest total weight and so is selected as the branching variable.
Method L adjusts the relative weight of each active constraint according to the

number of integer variables in the constraint. The idea is that constraints that have
many variables are less influenced by changes in a single variable because the
other variables may be able to compensate. The weight associated with a particu-
lar active constraint is taken as 1/NI

i where NI
i is the number of integer variables

in constraint i. wij = 1/ NI
i if candidate variable j appears in constraint i and wij = 0

if candidate variable j does not appear in active constraint i. In the example,
method L yields the following weights:

Active constraint i NI
i wi(y1) wi(y2)

P 3 0.333 0.333
Q 2 0 0.5

Total: 0.333 0.833
y2 has the highest total weight and is selected as the branching variable.
Method M is identical to method L except that NI

i is replaced by NF
i, the num-

ber of fractional or candidate variables in constraint i. In the example, method M
yields the following weights:

Active constraint i NF
i wi(y1) wi(y2)

P 2 0.5 0.5
Q 1 0 1

Total: 0.5 1.5
y2 has the highest total weight and is selected as the branching variable.

3.4 Branching Variable Selection by Active Constraints Methods 39

Method O considers both the size of the coefficient associated with a candidate
variable in an active constraint and the number of variables. The idea is that larger
coefficients indicate a greater impact on the active constraint while more variables
indicate a smaller impact. The weight associated with candidate variable j in ac-

ij ij
I
i

I
i

straint i, and wij = 0 if candidate variable j does not appear in active constraint i. In
the example, method O yields the following weights:

Active constraint i NI
i wi(y1) wi(y2)

P 3 2.667 0.333
Q 2 0 1.000

Total: 2.667 1.333
y1 has the highest total weight and is selected as the branching variable.
Method P is identical to method O except that it considers only the candidate

variables in the active constraint. The weight associated with candidate variable j
ij ij

F
i ij

pear in active constraint i. In the example, method P yields the following weights:
Active constraint i NF

i wi(y1) wi(y2)
P 2 4.000 0.500
Q 1 0 2.000

Total: 4.000 2.500
y1 has the highest total weight and is selected as the branching variable.

weight in an individual active constraint is selected as the branching variable.
When applied to scheme M for example, the resulting scheme is designated HM. In
the example results for method P above, the highest individual weight of 4.000 be-
longs to variable y1 in active constraint P, hence y1 is chosen as the branching
variable by method HP. Patel and Chinneck (2006) concentrate on methods HM
and HO in their experiments.

The empirical results for the active constraint methods are very good. Versions
of the algorithms were built into a framework that calls Cplex 9.0 as the MIP
solver except when a branching variable must be selected. In a first experiment, all
of the Cplex internal heuristics are turned off to approximate a basic branch and
bound arrangement. Fig. 3.2 provides a performance profile using the total number
of simplex iterations as the metric for comparison. As shown in the figure, the ac-
tive constraint methods are in general much faster than Cplex 9.0 in reaching fea-
sibility, though some solutions were not completed within the imposed time limits,
mostly for implementation reasons. It is also possible that the active constraints
method is not a good match for the model in some cases.

tive constraint i is w = |a | / N where N is the number of integer variables in con-

in active constraint i is w = |a | /N and w = 0 if candidate variable j does not ap-

40 3 Seeking Feasibility in Mixed-Integer Linear Programs

Method H looks for the maximum impact of a candidate variable on a single
active constraint when using a particular method. The variable having the largest

See Patel and Chinneck (2006) for performance profiles using the number of
branch and bound nodes as the performance metric. The active constraints meth-
ods use far fewer branch and bound nodes than Cplex 9.0.

In a second experiment, all of the many Cplex 9.0 internal heuristics are turned
on. These heuristics sometimes have unpredictable effects; its own internal heuris-
tics cause worse results for Cplex itself in about half of the models not solved by
the root node heuristics. This underscores the need for expert advice in choosing
combinations of heuristics and matching them carefully to the model at hand. Ac-
tive constraints methods B, L, and P give good results in the small study con-
ducted by Patel and Chinneck, and are the best candidates for further integration

P is interesting in that it is very quick on those models that it completes success-
fully, but it has a higher rate of premature termination. This again emphasizes the
need to carefully choose the variable selection scheme based on the characteristics
of the model.

The active constraints methods do not have a negative impact on the quality of
the first feasible solution returned (as measured by the optimality gap) compared
to Cplex 9.0. In fact they return a higher quality first feasible solution more often
than not, sometimes consistently so (method P returns a lower optimality gap than
Cplex 9.0 for 78% of the compared models in the first experiment).

Experiment 1 Iterations Performance Profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ratio to best (simplex iterations)

fr
ac

tio
n

of
 m

od
el

s

Cplex 9.0
A
O
P
HM
HO

Fig. 3.2. Simplex iterations performance profiles with Cplex internal heuris-
tics off (Patel and Chinneck 2006)

3.4 Branching Variable Selection by Active Constraints Methods 41

with the internal Cplex heuristics in order to yield more consistent results. Fig 3.3
provides performance profiles based on the number of simplex iterations. Method

Research on active constraints methods is ongoing. A main goal is to determine
how to match a model to the best active constraints method for its solution. Work
is also ongoing to determine the best active constraints method to apply at a par-
ticular node in the branch and bound tree, based on the characteristics at the node.

3.5 Conflict Analysis

A common technique in constraint programming is constraint learning or nogood
learning in which the cause of infeasibility at a node in the search tree is used to
construct additional constraints that are added to the model to steer the subsequent
development of the tree away from generating the same infeasibility again (see
Chap. 4). This improves the efficiency of the search for a feasible solution.

Achterberg (2007) adapts these ideas for MIP by creating conflict constraints
that are added to the MIP. Conflict constraints can be created for sets of bound
changes that conflict with the original bounds. It is important for efficiency rea-
sons to involve as few bounds as possible. Finding a minimum-cardinality Irre-
ducible Infeasible System (IIS) (see Part II) would be ideal, but Achterberg opts to

Experiment 2 Iterations Performance Profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ratio to best (iterations)

fr
ac

tio
n

of
 m

od
el

s

Cplex 9.0
B
L
P
HM
HO

Fig. 3.3. Simplex iterations performance profiles with all Cplex 9.0 heuris-
tics turned on (Patel and Chinneck 2006)

keep the time requirements low by simply analyzing the available dual solution

42 3 Seeking Feasibility in Mixed-Integer Linear Programs

non-binary variables in the conflict set. After some experimentation, Achterberg
concludes that most improvement is gained by adding only conflict constraints
that include only binary variables. For binary variables, the resulting conflict con-
straint expresses the fact that at least one of the binary variables must have a dif-
ferent value. Adding this constraint prevents the re-occurrence of this infeasible
combination of binary variables in another branch of the search tree.

For feasible MIP instances, the solution time using Achterberg’s method is
generally increased due to the added work for finding and constructing the conflict
constraints, and for assessing them thereafter. However for infeasible MIP in-
stances, the solution time is generally reduced.

Similar ideas are proposed by Davey et al. (2002) in the context of intelligent
backtracking for binary linear programs. This is discussed in detail in Sec. 11.7.
See also related work by Sandholm and Shields (2006).

3.6 Market Split Problems

njxmiab jj iji ...1for}1,0{where,...1for =∈== ∑xa and ai is the ith row of the

stances of the market split problem constructed in a particular way are exception-
ally difficult to solve. The Cornuéjols-Dawande instances are constructed for a

ij
interval [0,99] and the right-hand side coefficients are set as

miad
n

j iji ...1,
12

1 =⎥⎦
⎥

⎢⎣
⎢= ∑ =

.

Aardal et al. (2000) present a generalized version of the market split feasibility
problem: is there a solution x that satisfies Ax = d, l ≤ x ≤ u, where x,d,l,u∈Zn,
A∈Z

i
solve this problem. Briefly, they look for an initial basis such that a solution vector
xd for the basis satisfies Axd

0 0
sis reduction techniques are used to find these in polynomial time. In some cases
the solution xd directly satisfies all of the variable bounds, but otherwise it is

d 0 0

m× n

address the problem of splitting the sales between two divisions of a large company

 x

ducts to n vendors. Vendors can be assigned to either division with the goal

known that A(x

information. He applies a kind of deletion filter (see Sec. 6.1.2) to the dual in an
effort to find a small infeasible subsystem. There is some difficulty in dealing with

such that

Williams (1978) introduced market split integer programming problems that

split fraction b (0 ≤ b≤ 1) for one division, the problem is to find

A matrix defining the constraints. Cornuéjols and Dawande (1998) showed that in-

of achieving a specified market split for every product. Given a market

given m by setting n = 10(m-1). The a coefficients are randomly chosen from the

3.6 Market Split Problems 43

= d, but does not necessarily satisfy the variable

such that a particular market split fraction is achieved. The company sells m pro-

bounds, along with n–m linearly independent vectors x for which Ax = 0. The ba-

row a of A is 1, and A has full row rank. They use a basis reduction approach to

+ λx) = d for an integer multiplier λ and a vector x for which

, and m ≤ n? Further, the greatest common divisor of the elements of any

0 0

0
Empirical testing of the basis reduction algorithm by Aardal et al. (2000) shows

that LP-based branch and bound solvers are able to solve market share problems
much faster using the reformulation described above, which branches on the λ
variables instead of the original x variables. This approach is also able to solve
larger versions of the problem.

Ax = 0. Branching then occurs on integer linear combinations of x vectors that
satisfy Ax = 0. See Aardal et al. (2000) for details.

44 3 Seeking Feasibility in Mixed-Integer Linear Programs

4 A Brief Tour of Constraint Programming

prove that no such solution exists, hence it has a great deal of overlap with the
subject of this book. Indeed, a main thrust of research on the constraint satisfac-
tion problem is achieving a feasible solution as quickly as possible. As will be
seen, a number of the techniques used in constraint programming are related to
methods well known in optimization, yet others are novel. In recent years, con-
straint programming and mathematical programming (i.e. optimization) have be-
gun to cross-fertilize, developing more capable hybrid methods along the way. See
Chinneck (2002a) for example. For an excellent up-to-date summary of how opti-
mization and constraint programming have merged, see the book Integrated
Methods for Optimization by John Hooker (2007). Lustig and Puget (2001) also
provide a concise explanation of the relationship between mathematical program-
ming and constraint programming.

This chapter presents a very brief summary overview of constraint program-
ming based on material by Bartak (1999), Kumar (1992), Dechter and Rossi
(2002), Russell and Norvig (2002) and Miguel (2001), among others. References
to the original publications on the techniques described herein can be found in
those sources. This topic deserves an in-depth treatment in light of the subject of
this book, possibly in a companion volume of about the same size, but that is a
project for another time and an author more versed in the subject matter. The pur-

straint programming literature. The reader is urged to investigate further.
In the most general sense, constraint programming is language allowing the

declaration of a set of constraints defined over a set of variables, and the associ-
ated computational systems that seek to find a feasible solution or to prove that
none exists. More recently (e.g. the OPL language (Van Hentenryck 1999)), con-
straint programming systems also tackle optimization. The earliest general sys-
tems were for logic programming, consisting of Boolean literals that can take on
true/false values and a set of logical statements (i.e. constraints) involving these
literals and their negations. The goal in logic programming is to find a set of truth
values for the literals that proves the goal assertion is true, or to show that no such
assignment of truth values exists. Confusingly, logic programming is sometimes
referred to as LP, which optimizers would of course take to mean “linear pro-
gramming”. Constraint Logic Programming (CLP) extends basic logic program-
ming to include continuous variables and much more general types of constraints,

A main motivation in constraint programming, especially in the constraint
satisfaction problem, is to find a feasible solution to a stated set of constraints, or to

pose of this brief tour is simply to make the reader aware of the rich body of
algorithms relevant to issues of feasibility and infeasibility that is available in the con-

including linear and nonlinear mathematical constraints as well as other forms.
Certain special constraints are particularly useful for capturing common restric-
tions in a graceful, declarative manner, such as the alldiff constraint that specifies
that a set of variables must all have different values.

The fundamental constraint satisfaction problem is defined over a set of vari-
ables, each having a domain of possible values. A variable domain is normally a
discrete set, e.g. binary, integer, or simply members of a set such as various cities,
or a set of letters from the alphabet. A distinction is sometimes made between
constraint satisfaction and constraint solving in which a variable domain can also
be continuous. It would be unusual to find a constraint satisfaction or constraint
solving problem that included no discrete variables: this would amount to a stan-
dard linear or nonlinear programming problem in the optimization literature.

The set of constraints restricts the values that the variables can assume in the
usual way. Constraints are sometimes represented in a graph format, e.g. with a
square representing the constraint being linked by arcs to circles which represent
the variables. Reasoning may be performed on this graph. Constraints may be

solutions are preferred over others; these would normally be dealt with via an ob-
jective function in an optimization formulation.

The major techniques for solving a constraint satisfaction problem are back-
tracking search, propagation, and local search, as well as numerous special-
purpose heuristics. Most of these techniques have a direct counterpart in common
use in optimization.

and bound solution tree: one variable is considered at each node of the solution
tree, and child nodes are created for each value assigned to that variable. A com-
plete solution, feasible or infeasible, is reached only at a leaf node of the tree.
Backtracking search implies a depth-first exploration of the search tree that back-
tracks when an infeasible leaf is reached (normally signaled when none of the val-
ues in the domain of at least one variable are legal, given the assignments made
thus far). As in branch and bound optimization, the efficiency of the backtracking
search is greatly affected by the ordering of the variables and their values, and by
the backtracking method (i.e. node selection in branch and bound terminology).
Propagation of variable values, discussed later, also improves efficiency by reduc-
ing the domains of other variables as a consequence of fixing a particular variable
value at a node.

There are several useful heuristics for improving efficiency when selecting the
branching variable. The minimum remaining values heuristic (sometimes called
the fail-first heuristic) chooses the variable that has the fewest remaining legal
values as the branching variable. This helps prune the search tree at higher levels,
avoiding fruitless exploration of hopeless nodes. The degree heuristic selects the
variable that appears in the largest number of constraints on other variables whose
values have not yet been assigned.

a single variable), binary (a constraint relates two variables), or higher-order
(a constraint relates several variables). Preference constraints indicate that certain

categorized as unary (a possible value is simply excluded from the domain of

variables one at a time. This results in a solution tree that is reminiscent of a branch
Backtracking search builds up a solution gradually by setting the values of

4 A Brief Tour of Constraint Programming 46

fewest values for the other unassigned variables that appear in constraints that the
two variables share. The idea is to retain the greatest chance for a feasible solution
at a descendant node.

Propagation is the use of the constraints to eliminate possible values from the
domains of the variables by logical implication, and is similar to the techniques
used in presolving for optimization (see Sec. 6.1.1). Propagation is typically ap-
plied just after a variable value is fixed, and also, as in optimization, before the
backtracking search even begins. In forward checking each variable that appears
in a constraint with a variable x whose domain has just been reduced (either by
fixing as part of the backtracking search, or as a logical consequence of propaga-
tion) is checked to see whether its domain has been reduced due to the domain re-
duction in x. This process may result in a cascade of variable domain reductions,
and can shorten the backtrack search considerably in some cases.

If all of the constraints are binary (i.e. relate just two variables), then it is easy
to construct a graph in which each node represents a variable and each arc repre-
sents a constraint that relates the two variables that it connects. Given this graph,
constraint implications can be propagated via arc consistency. This is a directional
concept. Given a binary constraint connecting some variable x and some variable
y, the x to y arc is consistent if, for every value in the domain of x there exists
some consistent value in the domain of y. Arc consistency is checked in both di-
rections. If not consistent, an arc can often be made consistent by removing a
value from the domain of the variable at the tail of the arc, or the process may
show that consistency is not possible, in which case infeasibility of this node in
the search tree is proved. MAC (maintaining arc consistency) algorithms check the
arc consistency after each variable assignment, and reduce variable domains as
necessary to achieve consistency for all arcs.

As for the usual propagation processes, checking and maintaining arc consis-
tency can entail a long cascade of variable domain reductions. There are a variety
of arc consistency algorithms known as AC-1 through AC-7 that vary in the de-
tails concerning which arcs are rechecked during the cascade of domain reduc-
tions, and hence in the extent of CPU and memory required.

k-consistency is a generalization of arc consistency. A problem is k-consistent if
for any set of k-1 variables a consistent value can be assigned to a related kth vari-
able. 2-consistency is the same as arc consistency. If the values assigned to any
pair of related variables always allow a consistent value for a related third vari-

tency checking and simply exploring the search tree. A constraint graph is

and path-consistent is the same as strong 3-consistency.
There are several algorithms for backtracking when the search tree arrives at an

inconsistent leaf node. The simplest approach is to backtrack to the preceding

make this choice. This heuristic chooses the variable value that eliminates the

47 4 A Brief Tour of Constraint Programming

When the branching variable is chosen, the next decision is which of its possible
values to branch on first. The least constraining value heuristic can be used to

able, then the problem is 3-consistent. The higher the value of k the greater the
effort in checking consistency, so in practice there is some trade-off between consis-

strongly k-consistent if it is also j-consistent for all j < k. Node-consistent is the
same as strong 1-consistency, arc-consistent is the same as strong 2-consistency,

variable and choose a different value from its domain. In contrast, intelligent back-
tracking focuses on backtracking to the causes of the failure, the so-called conflict
set. A conflict set is defined in various ways, but always includes the idea that it is
a subset of the variables and constraints in the problem that contribute to the in-
consistency at the leaf node in the search tree. Intelligent backtracking realizes
that it is much more efficient to backtrack to the variables involved in the conflict
set rather than simply the last variable instantiated. When conducting a tree search,
it is obvious that the last variable assigned is part of the conflict set. A conflict set
can be constructed in various ways, for example, the conflict set for a given vari-
able, normally the one that just caused the node failure, could consist of all of the
previously-assigned variables that share a constraint with it.

Conflict-directed backtracking takes this idea one step further. It first identifies
a minimal conflict set, and then backtracks on this step. A minimal conflict set is a
set of constraints that is infeasible, but becomes feasible if any single constraint is
removed. This is identical to the concept of an Irreducible Infeasible Subset (IIS)
of constraints that is the main focus of Chap. 6. We will return to methods of find-
ing minimal conflict sets in constraint satisfaction problems in Sec. 6.5.

Constraint learning (sometimes called nogood learning) techniques use the in-
formation in the conflict sets to add constraints to the problem so that the tree
search will not repeat the mistake after backtracking.

dividual problems. If the graph has a tree shape, then the solution process is
greatly simplified since backtracking is not required. One class of methods seeks
to reduce more complex problem structures to constraint trees by eliminating or
collapsing nodes. This can happen at any point during the tree search phase: it
may be simple to reduce the remaining constraint graph after a particular variable
is assigned a value, for example. The overall graph can also be subdivided into
tree-structured parts which are solved independently and then combined.

In backtracking tree search, variables are assigned values one at a time. In con-
trast, local search methods work with complete solutions in which all variables
are assigned values. Of course the complete solution is inconsistent because the
process halts when the first feasible solution is found. The idea is to adjust the
values of some of the variables until a feasible solution is reached. The min-
conflicts heuristic is the most common: given a variable, choose the new value that
results in the fewest conflicts with other variables. This process continues until
feasibility is reached. In hill-climbing the variable value is chosen so that the
number of violated constraints is reduced.

As will be familiar to optimizers, local search methods may be randomized to
avoid becoming trapped at a local minimum. Stochastic local search methods such
as random walks choose a random value from the domain of a variable and also
randomly apply the min-conflicts heuristic. Well-known local search methods
from the optimization literature such as tabu search (e.g. Glover (1990)) or simu-
lated annealing (Kirkpatrick et al. 1983) may also be applied.

process. For example, there may be disconnected components that can be solved as in-

The structure of the constraint satisfaction problem, as represented by its
variable and constraint graph, provides information that helps direct the solution

48 4 A Brief Tour of Constraint Programming

4.1 Branching in the Satisfiability Problem

The satisfiability (SAT) problem is a particular form of constraint satisfaction problem.

Nadel (2002).
As a special type of constraint satisfaction problem, solutions for SAT and

MAXSAT make use of backtracking tree search, notably the Davis-Putnam-
Logemann-Loveland algorithm (Davis and Putnam 1960, Davis et al. 1962). This
operates by choosing a Boolean literal, assigning a truth value to it, and simplify-
ing the formula by propagating the newly-chosen value. If the formula is now true,
then the search exits with success. Otherwise the branch assigning the opposite
value of the chosen literal can be followed. If the formula is not yet true or false,
then another literal can be chosen in a recursive manner. Simplifications include
checking for literals which appear everywhere unnegated or everywhere negated,
in which case the appropriate value can be assigned (set to true if unnegated eve-
rywhere or set to false if negated everywhere). Another simplification identifies
clauses that have just one literal, in which case the true/false value that the literal
must take is known (in the example above, C is the only literal in the fourth
clause, and hence must be false to make the clause true).

A number of interesting rules for the selection of the branching variable have
been developed to improve the speed in finding a feasible solution. Examples of
branching literal selection rules include the following (Lagoudakis and Littman
2001):

• MAXO (maximum occurences) selects the literal that occurs the most often in
the satisfiability formula. The idea is that the literal has a widespread effect.

• MOMS (maximum occurrences of minimum size) selects the literal that
appears the most often in all clauses of minimum size (i.e. all clauses that have
the smallest number of literals). The idea is that the literal has a widespread
effect on the most tightly constrained clauses.

• MAMS combines MAXO and MOMS by adding their scores for each literal
and selects the literal having the highest total.

• Jeroslaw-Wang calculates the weight for each literal l as ∑
∈

−

j

j

Clj

n

:

2 where nj is

the number of literals in clause Cj. This gives small clauses more weight; the
literal with the largest weight is selected.

satisfies the constraint, or to prove that no such assignment exists. For example
gations. The goal is to find an assignment of true/false values to the literals which
junction of clauses in which each clause is a disjunction of literals or their ne-
It is defined over Boolean literals or their negations and consists of the con-

(A∨B)∧(¬A∨C∨D)∧(¬B∨¬D)∧(¬C) true? I n t he m aximu m satisfiability (MAXSAT)
problem, the goal is find a true/false assignment for each literal such that the

is there a true/false setting for each l iteral th at m akes the logic statement

maximum number of clauses is satisfied. Many difficult problems can be trans-
formed to SAT or MAXSAT, hence solution methods for these problems have been
studied intensively. A good survey of solution approaches is available in

494.1 Branching in the Satisfiability Problem

• UP (unit propagation) makes a test assignment for each unassigned literal and
counts the number of unit propagations that are triggered. The literal that
triggers the most unit propagations is selected. This is a computationally
expensive method.

• In GUP (greedy unit propagation), if a test assignment causes feasibility or
infeasibility then it is selected, otherwise the rule is the same as for UP.

• SUP (selective unit propagation) tries to reduce the number of literals that are
tested via the UP rule. It does this by first running all four of MAXO, MOMS,
MAMS and Jeroslaw-Wang to produce a set of up to four candidate literals.
The final selection among the candidate literals is made by the UP rule.

These branching rules are particularly interesting since they show promise for
use in branch and bound for solving MIPs. This is the subject of ongoing research
by the author.

50 4 A Brief Tour of Constraint Programming

5 Seeking Feasibility in Nonlinear Programs

We are concerned here with seeking feasibility in models that include at least one
nonlinear constraint; the form of the objective function is irrelevant. For ease of
reference we will refer to nonlinear programs (NLPs) with this concept in mind.

Finding a feasible point quickly is important because many optimization algo-
rithms require one before they can even initialize (e.g. the Generalized Reduced
Gradient algorithm (Abadie and Carpentier 1969, Lasdon and Waren 1978, Drud
1994), feasible sequential quadratic programming (Lawrence and Tits 2001), or
methods of feasible directions (Lasdon 1970)), and so reaching feasibility is an
important goal in itself. Additionally, a feasible solution is sometimes all that is
required by the modeller, and using an algorithm that treats optimization and fea-
sibility simultaneously may be computationally wasteful.

Finding a feasible point in an NLP can be notoriously difficult. There may be
multiple disconnected feasible regions for example, possibly at extreme distances
from each other. Many feasibility-seeking algorithms rely on optimizing a phase
1 objective that minimizes a penalty function, reaching zero at a feasible point.
This is just as tricky as solving any NLP, and is subject to the same difficulties,
such as the possibility of multiple local optima, including some which trap the
phase 1 solution process, but which are not actually feasible points. It may be dif-
ficult to solve for the intersection of nonlinear constraints, or difficult to get cor-
rect derivatives.

Unless the constraints have specific properties (e.g. form a convex set), there is
no guarantee that a particular algorithm will be able to find a feasible point when
started from an arbitrary initial point. This means that it is very difficult to con-
clude that a given model is infeasible: it may simply mean that you have not
started your solver in the right place. The best approach is to use knowledge about
the problem such as a previous solution to a similar problem or logical reasoning
to provide the solver with a “good” initial point. As the joke goes, the best way to
solve an NLP is to start at the optimum. If that approach fails, the only recourse
may be to start the solver in many different places, i.e. a multi-start or scatter
search approach, hoping that it will be able to reach feasibility from one of those
initial points.

There are a few relatively simple cases however. A feasible point is easily
found if each constraint is everywhere convex or everywhere concave and the col-
lection of constraints forms a convex set, for example. However the general prob-
lem of finding a first feasible point quickly in any given LP is very difficult.

Many NLP solvers use a penalty function approach to guide the search towards
the feasible region. Penalty functions evaluate the constraint violations at the current

penalties forms the objective function in this unconstrained problem (see Sec. 5.1).
The minimum of the penalty function in a feasible model is zero; a point having
this value of the penalty function satisfies all constraints. However, the success of
this, or any other approach, depends heavily on the characteristics of the nonlinear
functions, such as their convexity or concavity. These characteristics can be esti-

likely to be convex and full-dimensional, then simple bootstrapping methods can
be used to find an initial feasible point (Sec. 5.3).

In the more general case, modern NLP local solvers are reasonably effective at
reaching feasibility if given an initial point that is sufficiently close to a feasible
region. A variety of methods now exist for choosing a good starting point, includ-
ing single point heuristics (Sec. 5.4), and methods for improving the initial point
prior to passing it to the NLP solver (Sec. 5.5). When single-start methods fail,

More sophisticated bootstrapping methods are also available for nonlinear models
with special structure (Sec. 5.8). Finally, relatively slow global optimization
methods that fully explore the variable space can be used to find a feasible point
as a last resort (Sec. 5.9).

5.1 Penalty Methods

A very common approach to finding a feasible solution for a set of nonlinear con-
straints is to minimize an unconstrained function that assigns a nonnegative pen-
alty for each constraint violation at a given point. The idea is to work towards the
minimum of the penalty function in the hopes of reaching a point at which the to-

i i

penalty function be monotonic, i.e. if the violation (see Sec. 1.2) of some con-
straint i at point x1 is greater than the violation at point x2, then pi(x1) > pi(x2).

Common choices for the penalty function are the sum or sum of squares of the
constraint violations:

i i i

i i i i i i i i i i i i

i
bi−gi(x)})2 for gi(x)≥ bi , pi(x)= (max{0, i i

2
i i

i i i
2

i i

tal penalty function value is zero, i.e. a feasible point. In general, penalty functions
have the form p (x) = 0 if x satisfies constraint i, and p (x) > 0 if x violates cons-
traint i (see e.g. section 14.5 of (Rardin 1998)). It is also important that the

g (x)≥ b , p (x)= max{0, g (x)−b} for g (x) ≤
• Sum of constraint violations penalty function: p (x)= max{0, b −g (x)} for

 b , and p (x)= |g (x)−b | for g (x)=b .

,
• Sum of squared constraint violations penalty function: p (x)= (max

{0 g (x)−b }) for g (x) ≤ b , and
p (x)= |g (x)− b | for g (x) = b .

mated empirically via methods described in Sec. 5.2. If the feasible region is

point and calculate a penalty based on the degree of violation; the sum of the

multiple starting points must be tried. The first step in a multistart method (Sec. 5.7)
is determining a good region in which to launch trial starting points (Sec. 5.6).

52 5 Seeking Feasibility in Nonlinear Programs

• For inequalities only, ∑∑
∈∈

−+=
Kj

j
Ni

i grg)(/1)(1 xxφ , where N is the set of

indices of all active or violated constraints, K is the set of indices of all of the

throughout the procedure.

• 2

1

2

1
2 |])(|)([5.0])([5.0 xxx i

m

pi
i

p

i
i ggg ++= ∑∑

+==

φ , which has a value of zero for

any individual satisfied constraint.

• ∑ −=
m

rgie
r

1)(
3

1 xφ . This is an exponential penalty function for inequality-

constrained models.

• ∑ −=
m

rg
i

iev
r

1)(
4

1 xφ is identical to φ 3 except that different weights can be

assigned to the different inequalities. These are also updated at each iteration.

• ∑ −=
m

rgie
r

1)(
5 ln1 xφ . This is a logarithmic-exponential variation on φ 3.

Elwakeil and Arora (1995) report that none of these penalty functions domi-
nates on the small and well-behaved models they studied.

A penalty function minimization can be carried out as a phase one procedure
whose sole purpose is to find a feasible point. Alternatively, a penalty function
term with an appropriate sign can be added to the objective function so that the so-
lution works towards feasibility and optimality simultaneously. In this case, the
combined expression has this form:

∑±=
i ipfF)()()(minormax xxx μ

where f (x) is the original objective function. The positive μ parameter is chosen
so that an optimal solution to the combined function F(x) yields a feasible and op-
timal solution to the original constrained problem. Penalty functions that have this
property are called exact. In general the sum of squared violations penalty func-
tions are not exact, but the simple sum of violations penalty functions are.

Solution algorithms for unconstrained nonlinear functions (e.g the penalty func-

but will be found in any standard textbook on nonlinear programming. A sequen-
tial approach is often used in which a sequence of unconstrained problems is
solved with the value of μ increased after each iteration.

Elwakeil and Arora (1995) carry out an empirical evaluation of several penalty
i i

i = p + 1

i = p + 1

i = p+ 1

i = p + 1…m} they evaluate five different penalty functions:

tion by itself or combined with the original f (x)) are beyond the scope of this book,

methods. Given a set of constraints defined as S = {x | g (x)=0, i =1…p; g (x) ≤ 0,

strictly inactive constraints, and r > 0 is a penalty parameter that is decreased

5.1 Penalty Methods 53

5.2 Determining the Characteristics of an NLP

Many algorithms for solving NLPs, including finding an initial feasible point, de-
pend on the model having specific characteristics such as including only quadratic
nonlinear constraints or the feasible region consisting of a convex set defined by
the constraints. While algebraic properties such as quadratic constraints are easy
to check, shape properties such as constraint convexity and concavity and the con-
vexity of the resulting feasible region (if it exists) are much harder to determine
analytically. For a brief review of convexity and concavity properties of func-
tions, see Greenberg (2003a) or Greenberg and Pierskalla (1971).

As pointed out by Pardalos (1994), “there is no known computable procedure to
decide convexity”, let alone the other shape possibilities. It is easy to check the
shape of functions of one or two variables by visual inspection of a plot, but more
sophisticated methods are required for functions of higher dimension.

An airtight conclusion about the convexity/concavity of a nonlinear function
can sometimes be obtained by analytic evaluation of the function statement. This
is the approach taken by the Dr. AMPL tool (Fourer and Orban 2007), which op-
erates on a model written in the AMPL mathematical programming language
(Fourer et al. 2003). AMPL represents the constraints and the objective function
internally as a directed acyclic graph in which the leaf nodes are either constants

etc.). Given the graph and a set of rules that govern the convexity of combinations
of terms, traversing the graph from leaves to root can prove that a given function

• f and g convex implies that f + g is convex,
• fg is convex when both have the same monotonicity and f and g are

nonnegative and convex (or f and g are nonpositive and concave),
• e f is convex if f is convex,

and nonpositive),

• f is nonconvex in general but xe is convex.

Similar rules are included for all of the operators in the AMPL language. If a
complete traversal of the graph for a function encounters only rules that preserve
convexity, then the function is proven to be convex.

If the convexity-proving rules do not apply, then a different tack is taken to try
to disprove convexity by showing negative curvature in the Hessian matrix of the
function. This involves solving at least one, if not several, nonlinear optimization
problems of the form

dxddxd)()(min 2
2
1 ff TT ∇+∇

using a trust-region method. If negative curvature is found, then convexity of the
function is disproved, but if negative curvature is not found, then there is no defi-
nite conclusion at all. However in studies of the shape properties of the objective
functions for a number of NLPs, this approach returned a definite outcome in most

or variables, and the internal nodes are operators (such as +, –, /, exponentiation,

• cosh(f) is convex if f is linear or f is convex and nonnegative (or f is concave

54 5 Seeking Feasibility in Nonlinear Programs

is convex. Examples of convexity proving rules include (Fourer and Orban 2007):

next.
It is possible to gain a good idea of the shape, and the extent of the shape (e.g.

highly concave or just barely concave) via empirical sampling approaches. Early
work on sampling approaches concentrated mostly on the discovery of redun-
dancy. Boneh’s PREDUCE system (Boneh 1983) is mainly for the identification
of redundant constraints, but it also discovers several general characteristics of
NLPs such as boundedness, convexity, and the dimensionality of the feasible re-
gion. Information on the size of the facets of the feasible region and the bounds
on the variables is also provided. Chinneck (2001, 2002) developed extensive
sampling techniques and associated software (MProbe) for estimating the shape
properties of nonlinear functions and assembling this information into conclusions
about the shape of any possible feasible region.

A brief review of the techniques used in MProbe follows. The first step is to
bracket a region of interest (normally the feasible region, if one exists) to create a
sampling enclosure in which samples are taken. The first and simplest way to do
this is to use the upper and lower bounds on the variables in the NLP, creating a
sampling enclosure in the shape of a box. Uniform sampling is simple to conduct
inside a box-shaped enclosure. However the results of the sampling analysis are
more accurate the more closely the sampling enclosure surrounds the region of in-
terest, so for this reason Chinneck develops additional forms of sampling enclo-
sures as described later.

Given a sampling enclosure such as a box, the next step is to estimate the shape
properties of individual constraints (convexity, concavity, etc.) via sampling.
Convexity and concavity of functions are defined as follows. Construct a line
segment by connecting any two points in the variable space. Estimate the value of
the function at any point on the line segment by interpolating the function values
at the two end points. A function is convex if the interpolated values at all points
on every such line segment are greater than or equal to the actual function value at
the same point. A function is concave if the interpolated values at all points on
every such line segment are less than or equal to the actual function value at the
same point.

These basic definitions provide a way of estimating function shape via sam-

point. Defining the difference as (interpolated value) – (actual function value),
convexity will show as a positive difference, concavity as a negative difference,
and linearity as zero difference. Random line segments are constructed by con-

The difference information collected over a large number of random samples is
presented as a histogram, which provides useful information on the extent and
range of convexity and concavity. Different thresholds are used to help identify

5.2 Determining the Characteristics of an NLP 55

cases. If the indeterminate case when convexity can be neither proved nor dispro-
ved, other methods must be applied, such as the sampling methods described

pling. The function’s variable space is sampled in a region of interest by ran-
domly scattering line segments, and then comparing the interpolated value at
various points on the line segment with the actual value of the function at the same

necting two uniformly distributed random points in the sampling enclosure. Dif-
ference calculations are made at a specified number of points arranged at fixed
intervals along the line segment, as illustrated in Fig. 5.1.

candidates for approximation by more convenient functions. As is necessary in
numerical calculations, a small tolerance ε= is needed in any assessment of the
equality of two floating-point numbers. A difference histogram with all entries
within ±ε= indicates a completely linear function. A somewhat larger tolerance
εalmost helps to identify functions that are “almost” concave or “almost” convex.
Functions whose difference histograms include values in these tolerance regions
may be candidates for approximation.

For the purpose of feasibility-seeking we are interested in only the following
shape outcomes, which can be distinguished by the MProbe sampling approach:

• linear: all differences are within ±ε=.
• convex: all differences are above –ε= and at least one is above ε=.
• concave: all differences are below ε=, and at least one is below –εalmost.
• convex and concave: at least one difference is above εalmost, and at least one

difference is below –εalmost.

Other combinations of the tolerances provide outcomes such as convex almost
linear, almost convex, concave almost linear, almost concave, convex and concave
almost linear. These are useful in determining which constraints are candidates
for approximation via a simpler shape and reinsertion in the original model. Strict
definitions can be obtained by setting εalmost equal to ε=. See Chinneck (2002) for
details on how the same samples for testing function shape also provide informa-
tion on function value ranges, multidimensional “slope”, etc.

Once the shapes of the individual constraints are estimated via the sampling
procedure, conclusions can be drawn about how well a simple solver algorithm
such as steepest descent will be able to find a feasible point, and about the shape
of the feasible region, if it exists, i.e. whether it forms a convex set or not. A con-
vex set of points is defined as one in which the straight line connecting any two
points in the set is contained entirely within the set.

concave

x

f(x)

convex

segment
end point

segment
end point

3 equally-spaced evaluation
points

Fig. 5.1. Function shape is assessed via difference measurements along the
line segment (Chinneck 2002)

56 5 Seeking Feasibility in Nonlinear Programs

The constraint re-
gion effect is the effect
that each individual
constraint has on the
possibility of a convex
feasible region, and is
deduced from the em-
pirical function shape
and the constraint type
(≤,≥,=), as follows:

• Convex region effect:
contributes to a
convex constrained
region. This is given
by (i) any linear

• Nonconvex region effect: given by all constraints whose empirical shape is not
“convex” or “almost convex”.

A convex region effect is reported when the function shape combines with the

region for the variables in the constraint (see Fig. 5.2 for some one-dimensional
concave function examples). The individual constraint region effects are now
combined to assess the shape of the overall feasible region, if it exists.

The constrained region refers to the interaction of the constraints within the
sampling enclosure. This is a broader concept than the feasible region, which, if it

ble region itself requires that only feasible points be sampled; however it is virtu-
ally impossible to randomly generate feasible points, especially when there are
equality constraints. Instead, we can draw various conclusions by combining the
independently evaluated region effects of the individual constraints.

the feasible region, if one exists. Assuming that the independent constraint region
effects are evaluated correctly, the three primary conclusions that can be drawn
are:

• If all constraints have convex region effects: a gradient-based phase 1
feasibility seeking algorithm will accurately determine the feasibility of the
constraint set. Further, a feasible region, if one exists, will be a convex set.
The constrained region shape is denoted as “convex”.

Convex Region Effect:
single contiguous
feasible region for
f(x) > b

Nonconvex Region
Effect: two
noncontiguous feasible
regions for f(x) < b

x

f(x)

feasible feasible

feasible

b

b

Fig. 5.2. Examples of convex and nonconvex region ef-
fects (Chinneck 2002)

exists, is a subset of the constrained region. To assess the convexity of the feasi-

sampling enclosure. In some cases, conclusions are also drawn about the shape of

• Almost convex region effect: given by (i) almost linear equality constraints

constraint, (ii) convex
inequalities of ≤ type,

 (iii) concave ineq-
ualities of ≥ type.

The conclusions are based upon how a standard gradient-based phase 1 feasibility-
seeking algorithm is likely to perform if started at an arbitrary point in the

constraint type (≤,≥, =) in a way that results in a single contiguous convex feasible

(ii) almost convex inequalities of ≤ type, (iii) almost concave inequalities of ≥ type.

5.2 Determining the Characteristics of an NLP 57

• If some constraints have convex region effects and some have “almost convex”
region effects, and none have a nonconvex region effect: the constraints having
an “almost convex” region effect are good candidates for approximation to
improve the behavior of a gradient-based phase 1 feasibility-seeking algorithm.
Appropriate approximation also means that a feasible region, if it exists, will be
a convex set. The constrained region shape is denoted as “almost convex”.

• If there is at least one constraint having a nonconvex region effect: a gradient-
based phase 1 feasibility-seeking algorithm may not perform well. No
conclusions can be drawn about the shape of a possible feasible region (the
nonconvexity may occur in a portion of the sampling enclosure that is rendered
infeasible by the action of another constraint, so any feasible region might still
be a convex set). The constrained region shape is denoted as “nonconvex”.

The most significant fact arising from the determination of a convex con-
strained region shape is that a steepest descent algorithm for a phase 1 formulation
is guaranteed to accurately determine the feasibility of the system. This is due to
the fact that for each individual constraint the constraint violation, and hence the
phase 1 measure, grows steadily higher as you move away from the feasible re-
gion for that constraint. Hence, combining the constraints, there is no possibility
of a local minimum in the phase 1 measure. If the set of constraints is feasible,
then the local minima are also the global minima where the phase 1 measure
reaches zero. If the set of constraints is infeasible, any local minimum will have a
nonzero phase 1 measure. Hence finding any local minimum will accurately de-
termine the feasibility status of the set of constraints.

An entirely different approach to identifying the shape properties of a nonlinear
model is to build it in such a way that favourable shape characteristics are guaran-
teed. This is the main idea of disciplined convex optimization (Grant 2004, Grant
et al. 2006) which provides a library of function “atoms” and a set of rules to al-
low a modeler to build up a model that will have a convex feasible region.

5.2.1 Convex Sampling Enclosures

For the most accurate function shape estimates, the sampling enclosure should
tightly bound the region of interest. Boxes defined by bounds on the variables are
easy to construct and to sample uniformly, but they may not bound the region of
interest tightly. A better alternative is to construct a general convex enclosure by
choosing appropriate constraints from the model. There are two disadvantages:
increased complexity of the sampling procedures, and finding an initial point
within the sampling enclosure.

Random sampling procedures of the type described previously require a full-
dimensional convex sampling enclosure. Finding such an enclosure is straight-
forward if box enclosure sampling is already available. First sample in the box
enclosure and identify all inequalities that have a convex region effect in the box.
These constraints, along with the variable bounds forming the box, then form the
convex sampling enclosure. One pitfall in determining a general convex enclosure

58 5 Seeking Feasibility in Nonlinear Programs

in this manner is the possibility that an implied equality may eliminate the full-
dimensionality of the resulting enclosure.

Sampling inside this new convex enclosure may in fact show that other con-
straints that previously showed nonconvex region effects when sampled in the
original box actually have convex region effects when sampled in the smaller con-
vex enclosure. They can then be added to the list of enclosing constraints. A
large cardinality convex sampling enclosure is built up in this manner.

Equality constraints (even if linear) are excluded from the convex sampling en-
closure due to the virtual impossibility of satisfying them during sampling. Con-
straints that have effectiveness of 1.0 (see Sec. 6.1.7) are also not permitted as part
of the sampling enclosure since they are impossible to satisfy. The hit-and-run
methods described below depend on the ability to generate an initial point that is
feasible relative to the enclosure constraints. The convexity of the enclosure is
also essential to ensure uniform sampling via hit-and-run methods.

In the current MProbe implementation a first feasible point inside the convex
enclosure is identified via the bootstrapping method described in Sec. 5.3.

Hit-and-run meth-
ods (Berbee et al.
1987) allow sam-
pling of the inte-
rior and perimeter
of a general full-
dimension convex
enclosure. Starting
at an arbitrary
Point 0 (x0) that is
feasible relative to
the enclosure, a

spanning line segment is created by generating a random ray rooted at x0. Point 1
(x1), the point at which this ray meets the first enclosure constraint, is noted, as is
Point 2 (x2) the point at which the oppositely directed ray meets the first enclosure
constraint. x1 and x2, the two hit points, define a spanning line segment.

There are various options for choosing a new x0 for generating the next span-
ning line segment. It can be chosen at a random point on the last spanning line
segment, or at a fixed point on the last spanning line segment (e.g. the center). In
a stand-and-hit algorithm, x0 is a single fixed point. The ray direction from x0 is
constructed by choosing a random point on the unit hypersphere surrounding x0,
though other choices are also possible.

An illustration of hit-and-run sampling is given in Fig. 5.3. Inequality con-
straints A-D constitute a convex sampling enclosure. Constraint E is not part of

1

2
3

A B

C

D
E

Fig. 5.3. Hit-and-run sampling in a convex enclosure (Chin-
neck 2002)

Methods

5.2 Determining the Characteristics of an NLP 59

5.2.2 Hit-and-Run

the convex sampling enclosure, so the usual data can be collected about it (con-
straint shape, effectiveness, etc.). The dark squares indicate the various x0 points
used to generate hitting rays; the numbers indicate their order of use.

5.2.3 Approximating Nonconvex Feasible Regions

setpoint, i.e. how much flexibility the operating point has for movement within the
feasible region. The general approach is to approximate the convex hull of the
feasible region.

Banerjee and Ierapetritou first sample the feasible region using a genetic algo-
rithm to help guide the sample point placement. An approximation to the feasible
region is then obtained via the α-shape technique, which eliminates space between
feasible sample points using a sphere of radius α. At sufficiently large values of α
this amounts to a convex hull of the feasible region, though in general this is not
achieved. The feasible sample points are joined to create a polygonal outer ap-
proximation of the feasible region, i.e. the resulting nonconvex polygon will likely
contain some infeasible regions.

Now the feasibility of candidate points can be determined by a simple tech-
nique: generate a random ray from the candidate point and determine the number

else it is exterior to it. This simplifies the assessment of the feasibility of points
when the evaluation of the original constraint functions is expensive.

The method proposed by Banerjee and Ierapetritou is suitable only for models
of low dimension having few constraints. See also the paper by Goyal and Iera-
petritou (2003).

5.3 Bootstrapping in a Convex Constrained Region

As defined in Sec. 5.2, a convex constrained region consists entirely of constraints
which have a convex region effect. Finding an initial feasible point x0 in a convex
constrained region consisting entirely of inequalities is important for two reasons.
First, real problems may have a convex constrained region, so reaching feasibility
quickly is important for this class. Second, an initial feasible point is needed to
initiate hit-and-run sampling for assessing the shape and other characteristics of
constraints in the resulting convex sampling enclosure.

Given an initial x0 that is feasible relative to the enclosure constraints; the fea-
sibility of subsequent x0’s is maintained thereafter by the hit-and-run method and
the convexity of the enclosure. Alg. 5.1 uses this property in an efficient boot-

Banerjee and Ierapetritou (2005) address the problem of approximating the
feasible region in the face of constraints that render it nonconvex. The specific
application in this case is the operation of chemical processes, and a main goal is
determining how much flexibility the process has for deviation from an initial

of crossings it has with faces of the approximating polygon. If the ray crosses poly-
gonal faces an odd number of times, then it is interior to the feasibility polygon,

60 5 Seeking Feasibility in Nonlinear Programs

strapping method that adjusts an initial point to satisfy a monotonically increasing
number of the constraints until a feasible point is reached. Random points are
generated and tested against the constraints; when a constraint is satisfied all sub-
sequent random points also satisfy that constraint because the hit-and-run method
is used to generate the later random points. Feasibility relative to all of the enclo-
sure constraints is built up gradually.

The model is deemed infeasible if no generated point satisfies all of the enclo-
sure constraints simultaneously. A reasonably large number of points should be
sampled before this conclusion is reached. Note that the procedure becomes more
and more accurate in its sampling as constraints are moved from the NotSat set to
the Sat set.

The shape of the sampling enclosure can make it difficult to find an initial fea-
sible point. Long and thin sampling enclosures are especially difficult because the
x0 launch point tends to stay in one region of the sampling enclosure and does not
tend to move along the length of the sampling enclosure. This is because the
probability of a random ray being oriented along the length of the thin enclosure is
very small. Hence only one part of the enclosure is sampled, and if the feasible
region is not in that part, then an initial feasible x0 cannot be found.

This difficulty occurs in practice. Many models have tight bounds on some
variables along with variables that are unbounded or have very large bounds. The
initial sampling box is then extremely long and thin, as are the subsequent sam-
pling enclosures built up during the operation of Alg. 5.1. It is possible, however,
to take advantage of the fact that these very common long and thin enclosures are
axis-aligned.

The solution is to bias the ray-generation probabilities so that there is a much
higher probability of generating a ray that points along the length of the long and
thin enclosure. In the case of axis-aligned enclosures this is easy to do by multi-
plying the search direction vector produced by a random hypersphere around x0 by
the lengths of the variable ranges. This converts the hypersphere to an axis-
aligned hyperellipse that has a much larger probability of generating rays that are
oriented along the long axes of the enclosure. Another option is to generate search
directions by simply choosing two points in the variable box (even during Step 2
of Alg. 5.1). The search direction is then set as the difference of the two points.
This also has a much higher probability of generating rays that are oriented along
the long axes of the enclosure. The greater efficiency of both methods as com-
pared to random hypersphere directions has been shown experimentally (Chinneck
2002). The MProbe software described in Section 5.2 uses the random hyperel-
lipse directions method.

There is no such remedy for long thin enclosures that are not axis-aligned. If
an enclosing box that aligns with the long axes of the enclosure can be found, then
similar random hyperellipse or box-direction methods can be applied. However a
technique developed by Chinneck (2002) to approximate the prime analytic centre
(PAC) can be used to at least drive the x0 hit-and-run launch point away from sat-
isfied constraints and towards relatively unexplored areas of the enclosure. This
technique uses the prime analytic centre objective function, also called the loga-
rithmic barrier function:

5.3 Bootstrapping in a Convex Constrained Region 61

INPUTS: NotSat: the set of inequality constraints having convex region ef-
fects.

Step 1 (initialization):

Sat = the set of variable lower and upper bounds.
Do the following a specified number of times:
 Generate a random point x0 satisfying Sat using box sampling.
 IF any constraints in NotSat are satisfied at x0 THEN:
 Move the satisfied constraints from NotSat to Sat; go to Step 2.
Issue an infeasibility message and exit.

Step 2 (satisfy general inequalities):

Do the following a specified number of times:

 Generate a random line segment satisfying Sat from x0 using
 the hit-and-run method.
 Select a random point on the line segment, label this x0.
 IF any constraints in NotSat are satisfied at x0 THEN:
 Move the satisfied constraints from NotSat to Sat.
Issue an infeasibility message and exit.

OUTPUTS: a point satisfying all of the constraints having convex region
 effects or a failure message.

Alg. 5.1. Bootstrapping procedure to achieve initial feasibility of a convex con-
strained region (Chinneck 2002)

0 0
higher values of the PAC objective function over all necessary constraints are
closer to the PAC. At the same time, higher values of this barrier function corre-
spond to points that are farther away from the limiting values of the inequalities.

x0 point can then be assessed by evaluating the PAC objective function us-
ing only the satisfied subset of the constraints. An x0 having a higher value of the
logarithmic barrier function indicates a point that is farther away from any satis-
fied constraints. See Chinneck (2002) for details on how necessary constraints are
identified for use in moving towards the PAC.

This suggests a method of moving away from satisfied constraints and towards
unexplored areas of the sampling enclosure. As x0’s are generated, the highest
value of the PAC objective function associated with any x0 is recorded. If a pro-
posed x0 has a greater value of the PAC objective function than the existing best
value, then the new x0 is accepted and the best value is updated. Otherwise, the

 IF NotSat = φ THEN exit (success).

didate

At an intermediate stage of the bootstrapping process, some subset of the
constraints are satisfied, and these can be used in the PAC objective function. A can-

where Bx < b (Caron et al. 2002) to evaluate x points. Candidate x points with

62 5 Seeking Feasibility in Nonlinear Programs

)ln(
1

xBb i

m

i
i −∑

=

new x0 is rejected, and the old x0 is again used to generate the next hitting rays.
The PAC objective function barrier-like repelling effect on the placement of sub-
sequent x0’s moves the sampling towards unexplored areas of the enclosure. This
method tends to keep the x0 from becoming stuck in “corners” of the sampling en-
closure.

This constitutes a method that is somewhere between hit-and-run and stand-
0

into longer and longer stays at particular points. Satisfaction of an additional con-
straint may cause some movement. Performance is improved when the new x0
candidates are generated by taking the midpoint of the last spanning line segment,
rather than a random point on the last spanning line segment.

In practice, the crux of nonlinear programming is the initial-point placement. As
the joke goes, the best way to solve a nonlinear programming problem is to start at
the optimum. The joke is equally true for the feasibility problem: the best way to
reach feasibility in an NLP is to start at a feasible point. A better result is usually
obtained if information about the nature of the problem, external reasoning, or
previous solutions of similar problems is available to guide the placement of the
initial point. Many nonlinear solvers are able to find a feasible point if given an
initial point that is close to feasibility, but may fail if the initial point is far from
feasibility. If no external information is available to guide the initial-point place-
ment, various heuristics can be used.

Some solvers provide a nonlinear crash heuristic to set the initial point, see e.g.
the procedure used in MINOS (Murtagh and Saunders 1987), but details differ be-
tween implementations and are often confidential. A widely-applied heuristic (re-
ferred to here as the standard heuristic) is as follows:

• if the variable is doubly bounded: set at midpoint,
• if the variable is singly bounded: set on the bound,
• if the variable is unbounded in both directions: set at zero.

There are two main problems with the standard heuristic for initial-point
placement. First, it sets many variables to zero, which can cause numerical errors,
e.g. for a constraint that includes a term such as 1/x. Second, since many variables
are given similar bounds by the modeller (e.g. unbounded or singly bounded),
many of the variables are also given the same initial values. This can also cause
numerical errors, e.g. in constraints that include terms like 1/(x1 2

For these reasons, Ibrahim and Chinneck (2005) developed a simple modification

5.4 Initial-Point Placement Heuristics

–x).

to the standard heuristic that superimposes a random perturbation Δ on the initial
values proposed above. The randomized standard heuristic operates as follows:

and-hit. x usually moves fairly frequently at the beginning, but gradually settles

5.4 Initial-Point Placement Heuristics 63

Δ is a uniformly distributed random number between 0 and 1 (or suitably
smaller if the bounds on the variable define a smaller range). Note that a positive
perturbation is applied when the variable is unbounded in both directions. This
avoids numerical problems caused by some functions (e.g. square root) when the
variable really should have been specified as nonnegative, or even as positive (e.g.
the derivative of the square root blows up at zero). The randomized heuristic
avoids many of the numerical problems associated with the original heuristic
while retaining its main features.

Ibrahim and Chinneck (2005) carried out a study of a number of initial-point
placement heuristics:

• Random placement of initial points within the variable bounds.
• The origin (all variables set at 0.0).
• The standard heuristic.
• The randomized standard heuristic.

The points provided by these heuristics are compared with the initial points
supplied with the models by determining the frequency with which a variety of
nonlinear solvers are able to reach feasibility when launched from these points.
Tests are carried out over a large number of models from the CUTE test set (Bon-
gartz et al. 1995). Initial points are provided for most of these models; unspecified
variables are set to zero.

In these experiments, the origin and the standard heuristic most frequently pro-
vide a point that is immediately feasible, while random points and points provided
by the randomized standard heuristic are the least likely to be immediately feasi-

most frequently permits a nonlinear solver to reach feasibility? The experimental
results show that the randomized standard heuristic is much more effective than
the competing alternatives in providing an initial point from which a variety of
nonlinear solvers are able to reach feasibility, closely approaching the success fre-
quency given when the modeler-supplied initial points in the CUTE set are used.

The ordering of the heuristics, from least to most effective in terms of provid-
ing initial points that allow solvers to reach feasibility, is the same as given in the
list above. The randomized version is significantly more effective than the stan-
dard heuristic. The success rates for reaching feasibility from the provided initial
points vary, depending on the solvers:

64 5 Seeking Feasibility in Nonlinear Programs

• if the variable has a single upper bound: set at bound − Δ,
• if the variable is unbounded in both directions: set at zero + Δ,

• if the variable is doubly bounded: set at midpoint + Δ,
• if the variable has a single lower bound: set at bound + Δ,

models. The much more important question is: which of the initial point heuristics
ble. This simply reflects the fact that the origin is a feasible point for many

5.5 Constraint Consensus Methods for Approximate
Feasibility

The initial point supplied to a nonlinear solver may originate from knowledge of
the model, from a previous solution to a similar model, or may be generated by an
initial point heuristic such as described in Sec. 5.4. It may even be generated ran-
domly by a naïve modeler. It is certainly possible to pass this initial point directly
to the solver, but better results can be obtained if the initial point is instead passed
to an inexpensive point improvement algorithm first. The point output by the
point improvement algorithm is then finally passed to the full-scale, accurate,
computationally expensive solver. The overall process can be more effective and
much faster if the point improvement algorithm is reasonably accurate, and if in-
expensive point improvement computations can be substituted for expensive full-
scale solver iterations.

There are relatively complex feasibility-seeking procedures to be used as part
of a solver phase-one procedure (e.g. Elwakeil and Arora (1995)). However there
are few inexpensive methods for improving a given initial point, not necessarily
all the way to feasibility. Chen and Kostreva (1999) describe a feasible directions
method that is limited to solving nonlinear inequalities, for use prior to optimiza-
tion via the method of feasible directions. Gertz et al. (2004) describe an approach
that computes an affine scaling step by solving a system of linear equations related
to a Newton iteration. Their algorithm is specifically for interior point methods in
that it also provides initial values of other multipliers and parameters used by such
methods.

The Constraint Consensus methods (Chinneck 2004, Ibrahim and Chinneck
2005) are point improvement algorithms that are effective at moving from a point
that is very far away from feasibility to a point that is very near to feasibility.
They are also very cheap, consisting almost entirely of function and gradient
evaluations without line searches, GRG iterations, LP approximations, matrix in-
versions etc. As such they are ideal point improvement algorithms and are in fact
the only algorithms in this class.

5.5 Constraint Consensus Methods for Approximate Feasibility 65

• The standard heuristic: solvers find feasible points for 60.2% to 74.9% of the
models.

• The randomized standard heuristic: solvers find feasible points for 79.2% to
90.0% of the models.
The randomized standard heuristic is clearly the preferred initial-point place-

ment heuristic.

• Random placement: solvers find feasible points for 36.4% to 71.4% of the
models

• The origin: solvers find feasible points for 59.3% to 74.9% of the models.

The Constraint Consensus algorithms are variations of projection algorithms
(Sec. 2.8) that rely on the Euclidean distance to feasibility to gauge the extent of
infeasibility (see Sec. 1.2). The feasibility vector for an individual constraint is
defined as the vector extending from an infeasible point to its orthogonal projec-
tion (closest feasible point) on the constraint (Chinneck 2004). As described in
Sec. 2.8, both the direction and the distance of movement necessary to achieve
feasibility for an individual constraint are captured by the feasibility vector. Add-
ing the feasibility vector to an infeasible point yields the closest point that satisfies
the constraint, i.e. the orthogonal projection. The length of the feasibility vector is
called the feasibility distance. The gradient-projection feasibility vector described
in Sec. 2.8 is exact for linear constraints, but just an estimate for nonlinear con-
straints, and is naturally affected by the curvature of the constraint at the estima-
tion point. However it can be used quite effectively in a heuristic method for
reaching feasibility in NLPs, as shown below.

The individual feasibility vectors for all of the violated constraints are com-
bined to arrive at the consensus vector that is actually used to make the updating
move from the current point. This is done in a component-averaging manner: only
the violated constraints that include a particular variable in c(x) are able to “vote”
on the movement in that dimension. In the original basic version of the algorithm
the movement in each dimension is obtained by averaging the relevant component
of each eligible feasibility vector; the resulting consensus vector specifies both the
direction and distance of movement. The current point is updated by applying the
consensus vector. The process iterates until the stopping conditions are met.

Fig. 5.4 provides an example of the update step in the simplest component-
averaging simultaneous constraint consensus algorithm. The two feasibility vec-
tors are shown as dashed arrows; the consensus vector is the solid arrow. Note that

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5 3 3.5

Feasible region

B

A

Fig. 5.4. Example iteration of the Constraint Consensus method (Chinneck 2004)

66 5 Seeking Feasibility in Nonlinear Programs

the feasibility vector is exact for linear constraint A, but just an estimate for
nonlinear constraint B. Both feasibility vectors contribute to the consensus vector
vertical component, but only the feasibility vector for constraint B contributes to
the consensus vector in the horizontal component. Note that feasibility will be
achieved in the next iteration of the method: only linear constraint A is violated af-
ter the update, and hence the Constraint Consensus method will make an exact
move to satisfy it at the next iteration, thereby reaching the feasible region.

The algorithm terminates successfully if the length of every feasibility vector is
less than the feasibility distance tolerance α, and unsuccessfully if either (i) the
first condition is not met and the length of the consensus vector is less than the
movement tolerance β or (ii) a preset number of iterations μ is exceeded. When
successful, the final point is within an estimated Euclidean distance α of satisfying
every constraint, where α might be quite large (e.g. 100) depending on the pur-
pose at hand (e.g. finding the order of magnitude of a suitable starting point for the
nonlinear solver). The movement tolerance β is used to detect situations in which
the algorithm gets stuck or is proceeding very slowly.

The basic Constraint Consensus method is shown in Alg. 5.2. NINF is the num-
ber of violated constraints (“Number of INFeasibilities”) at the current point, sj is
the sum of the feasibility vector components in the jth dimension, nj is the number
of violated constraints that involve variable j, and t is the consensus vector. For

Inputs:
• a set of I constraints c1…cI, in J variables x1…xJ
• an initial point x,
• a feasibility distance tolerance α,
• a movement tolerance β,
• a maximum number of iterations μ.

1. Repeat μ times:
j j

1.2. For every constraint ci:
1.2.1. If ci is violated then:

1.2.1.1. Calculate feasibility vector fvi and the feasibility dis-
i

i
• NINF = NINF + 1.
• For every variable xj in ci: nj ← nj +1; sj ← sj + fvij

1.3. If NINF = 0, then exit successfully.
1.4. For every variable xj:

1.4.1. If nj ≠ 0 then tj = sj/nj, else tj = 0.
1.5. If ||t|| ≤ β then exit unsuccessfully.
1.6. x ← x + t.
1.7. If any xj exceeds its bounds, reset onto the nearest bound.

2. Exit unsuccessfully.

Alg. 5.2: The basic Constraint Consensus algorithm (Chinneck 2004)

1.1. NINF = 0; for all j : n = 0, s = 0.

tance || fv ||
1.2.1.2. If || fv || > α then:

5.5 Constraint Consensus Methods for Approximate Feasibility 67

simplicity, details of how the basic algorithm tolerates numerical errors are not
shown. Briefly, the algorithm ignores constraints that experience a numerical er-
ror at the current point (e.g. divide by zero) and carries on, hoping that the prob-
lem will not recur at the newly updated point. If the algorithm returns a final point
at which at least one constraint experiences a numerical error, then the termination
is deemed unsuccessful. See Chinneck (2003) for details.

The basic constraint consensus method treats all of the eligible feasibility vec-

or shortest feasibility vector. It may also be valuable to consider the number of
constraints voting for a movement in the positive versus negative direction in a
particular component. This is the basis of the algorithm variations developed by
Ibrahim and Chinneck (2005) and described below.

Inputs:
• a set of I constraints c1…cI, in J variables x1…xJ
• an initial point x
• a feasibility distance tolerance α
• a movement tolerance β
• a maximum number of iterations μ
• mode (near, far)

1. Repeat μ times:
1.1. NINF = 0; k = 0; for all j in x: nj = 0, sj = 0, zj = 0.

1.3. For each constraint ci:
1.3.1. If ci is violated then:

1.3.1.1. Calculate feasibility vector fvi and feasibility dis-
i

1.3.1.2. i
1.3.1.2.1. NINF = NINF + 1
1.3.1.2.2. For each variable j in ci:

• sj = sj + fvij ; nj = nj + 1
• i

i
o k = i
o z ← fvi

1.4. If NINF = 0, exit successfully with final point x.
1.5. For each variable xj:

1.5.1. If xj appears in ck then tj = zj.
1.5.2. Else if nj≠0 then tj = sj / nj, else tj = 0.

1.6. If ||t|| < β, then exit unsuccessfully.
1.7. x ← x + t
1.8. If any xj exceeds its bounds, reset onto nearest bound.

2. Exit unsuccessfully.

Alg. 5.3. Feasibility-distance based Constraint Consensus (FDnear, FDfar) (Ibrahim
and Chinneck 2005)

tance || fv ||.
If || fv || > α then:

and (|| fv || > fd)) then:
If ((mode = near) and (|| fv || < fd)) or ((mode = far)

1.2. If mode = near then fd = , else fd = 0. ∞

68 5 Seeking Feasibility in Nonlinear Programs

tors equally. However there may be value in emphasizing the effect of the longest

The feasibility-distance based variations use the length of the feasibility vector
associated with each violated constraint to determine the consensus vector. In the
“near” mode used in the FDnear algorithm, the consensus vector is set equal to
the shortest feasibility vector on the assumption that it is better to move to satisfy
the smallest violation first because this keeps the point in a region where the gra-
dients are good approximations of the functions. In the “far” mode used in the
FDfar algorithm, the opposite assumption is made and the consensus vector is set
equal to the longest feasibility vector because this is likely to provide the most
rapid movement towards feasibility. In both cases, dimensions that do not appear
in the selected shortest or longest feasibility vector are set by averaging as in the
basic constraint consensus scheme. Details are shown in Alg. 5.3, where fd is the
maximum or minimum feasibility distance, and z is the shortest or longest feasibil-
ity vector. The FDfar approach is related to the “remotest set control” class of
projection algorithms (Censor and Zenios 1997, p. 80).

Inputs:
• a set of I constraints c1…cI, and J variables x1…xJ
• an initial point x
• a feasibility distance tolerance α
• a movement tolerance β
• maximum number of iterations μ

1. Repeat μ times:
1.1. NINF = 0; for all j: s+

j = 0, s−j = 0, n+
j = 0, n−j = 0.

1.2. For each constraint ci:
1.2.1. If ci is violated then:

1.2.1.1. Calculate feasibility vector fvi and feasibility distance
|| fvi||.

1.2.1.2. If || fvi|| > α then
1.2.1.2.1. NINF = NINF + 1
1.2.1.2.2. For each variable j in ci:

• If fvij > 0 then s+
j = s+

j + fvij and n+
j ← n+

j + 1
• If fvij < 0 then s−j = s−j + fvij and n−j ← n−j + 1

1.3. If NINF = 0 then return successfully with final point x.
1.4. For each variable xj:

1.4.1. If n+
j = n−j and (n+

j + n−j) > 0 then tj = (s+
j + s−j) / (n+

j + n−j)
1.4.2. Elseif n+

j > n−j then tj = s+
j / n+

j
1.4.3. Else tj = s− / n−j

1.5. If ||t|| < β, then exit unsuccessfully.
1.6. x ← x + t
1.7. If any xj exceeds its bounds, reset onto nearest bound.

2. Exit unsuccessfully.

Alg. 5.4 Average direction-based (DBavg) Constraint Consensus (Ibrahim and Chin-
neck 2005)

j

5.5 Constraint Consensus Methods for Approximate Feasibility 69

The direction-based algorithms conduct a “vote” on whether to move in the
positive or the negative direction for each dimension prior to deciding how far to
move. In some variants, the direction vote is the simple count of how many vio-
lated constraints would prefer an increase in a dimension versus how many would
prefer a decrease in that dimension. In other variants, the vote is settled by the
size of the largest proposed movement in the positive versus negative direction:
whichever direction has the largest proposed movement wins the vote. Once this
vote settles the question of whether to increase or to decrease in the dimension,
there are several ways to decide how far to move.

The DBavg method decides the direction of movement in a dimension by a
simple count of the number of votes for positive or negative movement, and the
magnitude of the movement is decided by averaging the projections in the winning

Inputs:
• a set of I constraints c1…cI, and J variables x1…xJ
• an initial point x
• a feasibility distance tolerance α
• a movement tolerance β
• maximum number of iterations μ

1. Repeat μ times:
1.1. NINF = 0; for all j: s+

j = 0, s−j = 0, n+
j = 0, n−j = 0.

1.2. For each constraint ci:
1.2.1. If ci is violated then:

1.2.1.1. Calculate feasibility vector fvi and feasibility distance
i

1.2.1.2. i
1.2.1.2.1. NINF = NINF + 1
1.2.1.2.2. For each variable j in ci:

• If fvij > 0 then
o n+

j ← n+
j + 1

o If fvij > s+
j then s+

j ←fvij
• Else if fvij < 0

o n−j ← n−j + 1
o If fvij < s−j then s−j ←fvij

1.3. If NINF = 0 then return successfully with final point x.
1.4. For each variable xj:

1.4.1. If n+
j = n−j then tj = (s+

j + s−j) / 2
1.4.2. +

j > n−j then tj = s+
j

1.4.3. Else tj = s−j
1.5. If ||t|| < β, then exit unsuccessfully.
1.6. x ← x + t
1.7. If any xj exceeds its bounds, reset onto nearest bound.

2. Exit unsuccessfully.

Alg. 5.5. Maximum direction-based (DBmax) Constraint Consensus (Ibrahim and
Chinneck 2005)

|| fv ||.
If || fv || > α then

Else if n

70 5 Seeking Feasibility in Nonlinear Programs

direction, as shown in Alg. 5.4. s+
j and s−j are the sums of the feasibility vector

components in the positive and negative directions for variable j and n+
j and n−j are

the number of violated constraints that vote for movement in the positive and
negative directions for variable j.

In the DBmax variant, the direction vote is decided by the size of the largest
proposed movement in each of the positive and negative directions: the largest
proposed movement determines both the direction and the size of the component
in the consensus vector. See Alg. 5.5. This is again related to the “remotest set
control” projection algorithm but is applied in a component-wise manner.

In the bound-type direction-based variant DBbnd, the direction vote is settled
by a simple count of the number of votes for an increase or a decrease in the com-
ponent. The size of the movement in each component depends on the types of
constraints that include that variable. Movements in the selected direction sug-
gested by equality constraints are totaled; for inequalities only the largest move-
ment in the selected direction is added because the largest movement will satisfy

=+
j and n=−

j
rections for the jth variable recorded by violated equality constraints and max+

j
and max−j represent the largest positive and negative feasibility vector components
for the jth variable in violated inequality constraints.

While all of the constraint consensus methods deal well with constraint scaling,
they are vulnerable to discrepancies in variable scaling. The effect of uneven
variable scaling could be more pronounced in the DBmax and DBbnd variants, so
care should be taken with variable scaling prior to application of these heuristics.

Ibrahim and Chinneck (2005) carry out a very large empirical study of the Con-
straint Consensus variants. The DBmax variant exits successfully the most often
at all values of α (with FDfar a close second), while FDnear is consistently the
worst. It’s clear that focusing on the larger violations gives the best performance.

The real test is whether the points returned by a Constraint Consensus algo-
rithm, whether the algorithm concludes successfully or not, provides a useful start-
ing point for a full-scale nonlinear solver. Here the results of empirical tests by
Ibrahim and Chinneck (2005) are unequivocal. Applying a Constraint Consensus
method prior to launching a nonlinear solver has two effects: (i) it significantly in-
creases the probability that a nonlinear solver will reach a feasible point, and (ii) it
dramatically reduces the number of nonlinear solver iterations required to reach
feasibility. In fact, combining the randomized standard initial point heuristic with
the FDfar Constraint Consensus variant gives success rates that are close to and in
some cases better than the success rates obtained when very good modeler-
supplied points are used to launch the solver. Obtaining an improved point by ap-
plying a Constraint Consensus algorithm is always a good thing to do prior to
launching a nonlinear solver.

n
all of the inequalities. The resulting total is then reduced to an average. See Alg . 5.6.

 represent the number of votes for the positive and negative di-

5.5 Constraint Consensus Methods for Approximate Feasibility 71

Inputs:
• a set of I constraints c1…cI, and J variables x1…xJ
• an initial point x
• a feasibility distance tolerance α
• a movement tolerance β
• maximum number of iterations μ

1. Repeat μ times:
1.1. NINF = 0; for all j: s+

j =0, s−j =0, n+
j =0, n−j =0, n=+

j =0, n=−
j =0,

max+
j = 0, max−j =0.

1.2. For each constraint ci:
1.2.1. If ci is violated then:

1.2.1.1. Calculate feasibility vector fvi and feasibility distance
i

i
1.2.1.2.1. NINF = NINF + 1
1.2.1.2.2. For each variable j in ci:

• If fvij > 0 then
o n+

j ← n+
j +1

o If cj is an equality constraint then s+
j ← s+

j + fvij
and n=+

j ← n=+
j +1

o Else if fvij > max+
j then max+

j ← fvij
• If fvij < 0 then

o n−j ← n−j +1
o If cj is an equality constraint then s−j ← s−j + fvij

and n=−
j ← n=−

j +1
o Else if fvij < max−j then max−j← fvij

1.3. If NINF = 0 then return successfully with final point x.
1.4. For each variable xj:

1.4.1. If max+
j ≠ 0 then

1.4.1.1. s+
j ← s+

j + max+
j

1.4.1.2. n=+
j ← n=+

j +1
1.4.2. If max−j ≠ 0 then

1.4.2.1. s−j ← s−j + max−j
1.4.2.2. n=−

j ← n=−
j + 1

1.4.3. If n+
j = n−j then

1.4.3.1. tj = (s+
j + s−j

=+
j + n=−

j)
1.4.4. Else if n+

j > n−j then tj = s+
j/n=+

j
1.4.5. Else tj = s−j/n=−

j
1.5. If ||t|| < β, then exit unsuccessfully.
1.6. x ← x + t
1.7. If any xj exceeds its bounds, reset onto nearest bound.

2. Exit unsuccessfully.

Alg. 5.6 Direction-based and bound-based (DBbnd) Constraint Consensus (Ibrahim
and Chinneck 2005)

|| fv ||.
1.2.1.2. If || fv || > α then

)/(n

72 5 Seeking Feasibility in Nonlinear Programs

One caveat is in order. Most of the Constraint Consensus variants tend to pro-
duce output points that are on or very close to the limiting values of inequality
constraints. This can be a problem for solvers that use barrier methods. A small
adjustment of the output point to move it away from the limiting values of the
constraints should be applied prior to submitting the point to a barrier-method
solver.

5.6 Finding a Good Sampling Box for Multistart

If single-start methods are unsuccessful in providing the solver with an initial
point from which it can reach feasibility, then multistart methods must be tried.
Multistart methods typically provide the solver with random starting points within
the hyperbox defined by the variable bounds. The efficiency of the multistart
method can be greatly increased if it is given a sampling box that is highly likely
to include a feasible point, i.e. a smaller and more focused hyperbox within the
variable bounds. This section addresses the issue of finding a good sampling box
that is likely to include a feasible point.

The first step in finding a good sampling box is to apply logical presolving
methods to tighten the variable bounds prior to solving the model (see Sec 6.1.1).
Following that, there are two other ways to provide a more focused sampling box;
these are the subject of this section. First, random sampling methods can be used
to heuristically tighten the variable bounds (Sec. 5.6.1), then a heuristically-
effective sampling box within those bounds can be used initially (Sec. 5.6.2)

5.6.1 Tightening the Variable Bounds

The variable bounds provided by the modeler may define a box that is far larger
than the feasible region(s) for the NLP. The first step in defining a good sampling
box for multistart methods is to tighten the bounds as much as possible. Sampling
can also be used for this purpose. Chinneck (2002) describes several techniques
of this type, which have been implemented in the MProbe software. Consider
nonlinear inequality constraints first. At random points inside the initial sampling
enclosure, the feasibility of the nonlinear inequality is evaluated. The values of
the constraint variables are noted at any points that satisfy the inequality. Over
numerous feasible sample points, the minimum and maximum value pair is re-
corded for each variable. On exit, each minimum/maximum pair provides an
overtightening of the bounds on the variable. It is an overtightening because the
probability of attaining the true maximum and true minimum of each variable in
this way is small. The probability of serious error is greatest when the variable
bounds are unduly large or unbounded. The process is illustrated in Fig. 5.5a.

Each constraint determines a range for the variables that appear in it. The inter-
section set of the ranges for each variable, as determined by the constraints that it
appears in, forms the tightened set of bounds on that variable. Since the variable

5.6 Finding a Good Sampling Box for Multistart 73

ranges are (over)tightened, it may happen that the range returned for a variable by
one constraint does not overlap with the range returned for the same variable by a
different constraint. Because of the overtightening, it is possible that a feasible
value for the variable exists in the gap between the two non-overlapping intervals.
For this reason, when two intervals do not overlap, the interval that is returned
consists of the gap between those intervals. Infeasibility is not assumed.

Nonlinear equality constraints can also be handled this way. The equality is
first treated as a ≤ constraint and appropriate variable ranges are constructed, then
it is treated as a ≥ constraint and a second set of variable ranges is constructed.
The intersection of the two ranges is returned as the final tightened range after
sampling the equality constraint. Fig. 5.5b illustrates this process.

Unbounded variables can cause difficulties for nonlinear interval analysis via
sampling. This is because the feasible region for the constraint may comprise only
a tiny portion of the variable box when the constituent variables are unconstrained,

20

pling then turns up no feasible points for the constraint, so that the variable ranges
cannot be tightened.

When the range tightening methods described above are unsuccessful, the op-
posite approach may work: expanding boxes instead of shrinking them. The main
idea is to start with a very small sampling box and to expand the bounds in several
stages, looking for the approximate scale of the variables. The initial small box is
centered on the origin. If the variable is unbounded in both directions, then the
initial range extends from –1 to +1. If the variable is nonnegative unbounded,
then the initial range extends from 0 to +1. This temporary sampling box is called
a nucleus box.

For each nonlinear constraint for which no feasible points have been found,
various nucleus boxes are sampled, usually at the scale of 1 as above, then increas-
ing powers of 10 (101, 102, …105). The largest box that registers any feasible

x

y

x

y

(a) (b)

Fig. 5.5. Nonlinear interval analysis via sampling tightens the bounds on variable y.
(a) inequality constraint. (b) equality constraint (Chinneck 2002)

even when “unbounded” is numerically defined as ±1× 10 , for example. Sam-

74 5 Seeking Feasibility in Nonlinear Programs

sample points for the constraint is used to reset the bounds on the variables in the
constraint. In the case of equality constraints, the nucleus box is accepted if it reg-
isters at least one point at which the functional value is less than the constant, and
at least one point at which the functional value is greater than the constant (or the
low probability event that the point satisfies the equality constraint).

It is possible that the bounds will be overtightened by this procedure, but they
could also be undertightened. Some manual adjustment may be desirable.

Nonlinear range cutting is another sampling heuristic that works by examining
possible cuts on the edges of the variable range. For a given variable, a cut is pro-
posed (as large as 90% of the total variable range if the range is very large, more
commonly 30% of the variable range). The cut is accepted if, after sufficient
samples, at least one of the constraints that use the variable has not been satisfied
at any of the sample points. This method is similar to the range analysis described
above, but operates on the infeasible zone of the constraint rather than the feasible
zone. Equality constraints are considered satisfied in the test cut zone if they regis-
ter at least one point at which the functional value is greater than the constant and
at least one point at which the functional value is less than the constant, or the low

probability event that a sam-
ple point satisfies the equality
constraint. See Fig. 5.6 for
an illustration.

Thus far, the sampling
methods operate by examin-

Accuracy is improved by using the end points of the spanning line segments
since these are at the extreme edges of the enclosure-feasible region. Overtighten-
ing of the variable bounds remains a possibility, but it is much less likely because
of the use of the spanning line segment endpoints. All of the sample points used
in resetting the maximum and minimum values are on the boundary of the enclo-
sure-feasible region.

The MProbe software combines the various sampling techniques as follows:
1. One pass of presolving-style range tightening
2. Range sampling, one constraint at a time.
3. For those constraints which registered no feasible points during nonlinear

range sampling, find a nucleus box.

test constraints
in candidate cut
zone

Fig. 5.6. Range cutting (Chinneck 2002)

4. Nonlinear range cutting.

5.6 Finding a Good Sampling Box for Multistart 75

ing a single constraint at a
time. Bound tightening is more
effective when the feasibility
of all of the conastraints is
considered simultaneously at
a given poin t . This idea is dif-

ficult to incorporate in a random sampling approach given the presence of equality
constraints. However, when a general convex sampling enclosure (see Sec. 5.2) is
in use, the hit-and-run method guarantees that all of the sampling enclosure inequ-
alities are simultaneously feasible. It is then simple to record the minimum and
maximum values of the variables over all of the points sampled by the hit-and-run
method.

MProbe also permits the use of three other techniques under user control: man-
ual adjustment of variable bounds, the classic presolving techniques available in
AMPL (Fourer et al. 2003), and convex enclosure sampling (Sec. 5.2).

Amarger et al. (1992) describe a method for tightening the variable bounds that
makes use of the algebra defining the constraint functions. Each constraint is first
analyzed for monotonicity in each variable it contains by inspection of the expres-
sion tree for the constraint. A variable is monotonic in the constraint if the con-
straint body is monotonically increasing or decreasing as the variable increases in
value. The expression tree is a graph with variables and constants at the leaves

analysis of the variable interactions within the constraint.
The analysis then concentrates on the subset of constraints that contain only

variables that are monotonic in the constraint, called monotonic constraints.
Monotonic equality constraints are converted to a pair of oppositely-oriented ine-
qualities. The procedure then finds the points that minimize and maximize the
value of each constraint body. For example, if increasing x causes a monotonic

bound. However it is usual that many variables have only one bound (e.g. are
nonnegative). If the variables are simply nonnegative but not bounded above in

A series of bound-tightening iterations follows next. For each monotonic ine-
quality, inspect each variable xj it contains. If some other variable is unbounded at

j j

j j
set at the value that minimizes the constraint. This will result in a new upper or
lower bound on xj, possibly tighter than the existing bound. If it is a new upper
bound and is less than the value of xj that maximizes the constraint, then reset the
upper bound on xj and the value of xj that maximizes the constraint. If it is a new
lower bound and is greater than the value of xj that maximizes the constraint, then
reset the lower bound on xj and the value of xj that maximizes the constraint. A
small epsilon is used to ignore bound updates that are too small.

If at least one bound is updated by this procedure, then the process is repeated.

5.6.2 Best Heuristic Sampling Box

Even when tightened as much as possible, the variable bounds may still be quite
large, so it is reasonable to look for an even smaller sampling box. As for heuris-
tic initial-point placement, there are certain regions that are more likely to yield a

and mathematical operators (+, –, /, ≤, etc.) at the nodes; this permits a systematic

able for which N = 0, solve the constraint for the value of x with all other variables
the minimum point for the constraint, then set N =1, else set N = 0. F or every vari-

mum value of g(x, y) occurs when x is at its lower bound and y is at its upper

our example g(x, y), then the minimum value of g(x, y) occurs at (x, y) = (0,∞).

Sec. 6.1.1); the major difference is the pre-selection of the subset of monotonic
the usual cascade of bound tightening that takes place during presolving (see
The set of bounds is gradually tightened in this way. This process is similar to

constraints on which to operate due to their favourable properties for this operation.

feasible point than others. For example, Lasdon and Plummer (2006) showed

76 5 Seeking Feasibility in Nonlinear Programs

increase in g(x, y) while increasing y causes a monotonic decrease, then the mini-

2 4

raised solver success rates.
The success of the randomized standard initial point heuristic shows that the

small random region around the point supplied by the standard initial-point
placement heuristic (Sec. 5.4) often provides a good starting point. Hence it is
reasonable to expect that a larger box around that point will give good results for
multistart. MacLeod and Chinneck (2007) investigated the size of the smallest box
around the standard heuristic point that frequently includes the closest feasible
point. Over a wide selection of models from the CUTE set, they determined that
the average distance from the standard heuristic point to the closest feasible point
was less than 1×104 per dimension for 98.3% of the models, and a maximum dis-
tance to the closest feasible point of less than 1×104 was recorded over all the di-
mensions for 97.4% of the models. Increasing the box beyond a distance of 1×104
from the standard heuristic initial point in each dimension showed very slow im-
provement per order of magnitude.

Given these results, the following initial multistart sampling box is recom-
mended:

• If a variable is not bounded, bounds are ±1×104,
4

4

• If there are two bounds:
4 4

C +1×104)
If separated by less than 2×104, bounds are (L, U).

MacLeod and Chinneck (2007) use this initial set of bounds in a multistart
sampling procedure described in Sec. 5.7. The full procedure includes a method
for expanding and shifting the sampling box as conditions warrant.

5.7 Multistart Methods

Single-start methods select a single initial point to submit directly to a nonlinear
solver, or to a Constraint Consensus method whose output is then passed along to
the nonlinear solver. For very difficult NLPs, the feasibility-seeking process may
fail when started at any given initial point, hence another one must be chosen, per-
haps several more, before feasibility can be attained. This is the premise of
multistart methods. In naïve multistart, the nonlinear solver is launched at random
starting points within the variable bounds. For difficult problems, the solver ter-
minates unsuccessfully when started at most points in space, so this is inefficient
and time-consuming. Newer multistart methods, in contrast, try to estimate which
areas are most likely to contain a feasible point, and launch points there. As de-
scribed in Sec. 5.6, one approach is to try sampling within a known promising

• If there is a single lower bound L, bounds are (L, L + 2 ×10),
• If there is a single upper bound U, bounds are (U− 2 ×10 , U),

If separated by more than 2 ×10 with centre C, bounds are (C −1×10 ,

empirically that limiting the sampling box to ±1×10 or ±1×10 around the origin

5.7 Multistart Methods 77

–

–

sampling box; another approach is to learn where the promising launch areas are
as the multistart process proceeds.

There are a variety of multistart methods for NLPs, but few that focus specifi-
cally on finding a feasible solution quickly. Most multistart methods focus on
finding an optimum solution to the NLP, though this can be useful for finding a
feasible solution when a phase-one type objective function is substituted in place
of the original objective. A brief summary of optimum-seeking multistart NLP
methods follows.

Variations on genetic algorithms (Michalewicz et al. 1994, Michalewicz and
Nazhiyath 1995) are available, but can only reliably handle nonlinear constraints if
the feasible region is known to be convex; this cannot be guaranteed in practice.
In fact, the most difficult NLPs are likely to be nonconvex. Further, genetic algo-
rithms can handle only very small models.

 Scatter Search (Glover et al. 2000, 2003) uses an initial set of reference solu-
tions, often generated randomly. Members of the reference set are combined in
various nonconvex ways to create new solutions, which may be heuristically im-
proved before being considered for inclusion in the updated reference set. Scatter

linking (Glover et al. 2000, 2003) adds the exploration of trajectories between
good solutions, on the theory that even better solutions may be located in between.
Elements of one solution are progressively added to the other, with optional local
improvement searches every few steps.

Glover, Laguna and Martí (2004) describe OptQuest, a commercial implemen-
tation of scatter search and path relinking that can handle nonlinear inequalities in
conjunction with a local nonlinear solver. Ugray et al. (2006) provide the results
of empirical tests of OptQuest for global optimization problems of moderate size.

The Greedy Randomized Adaptive Search Procedure (GRASP) (Resende and
Ribeiro 2003a) keeps a restricted list of the best known candidate solution compo-
nents, and then randomly selects among them to build a possible solution. Local
searches are generally performed around candidate solutions. GRASP can also be
combined with path relinking (Resende and Ribeiro 2003b). Meneses et al. (2005)
apply GRASP to box-constrained nonlinear objective functions with good results.

The Efficient Global Optimization (EGO) method (Jones et al. 1998) samples a
select few points of an expensive function and fits a surface to them. Successive
samples are biased towards two kinds of areas: those that are strongly predicted to
have better function values and those where the uncertainty of the function is so
large that a better function value is quite possible, regardless of the predicted
value. One of the key insights is the use of an initial Latin hypercube sample in
order to start with a minimal amount of uncertainty. An initial sample of around
10 times as many points as the number of dimensions is recommended, which may
be impractical to evaluate for truly expensive functions or very large models.

(ideally) only used once per local optimum. Clusters of points believed to be in the
same region of attraction (i.e. near the same optimum) are identified, and only one

78 5 Seeking Feasibility in Nonlinear Programs

search has been empirically tested on bound-constrained multimodal NLPs
(Laguna and Martí 2005) with good results, but only for very small models. Path re-

Some ideas from global optimization are useful in a multistart approach. Elwakeil
and Arora (1996) define a clustering method as one in which local search is

point per cluster is used to initialize an expensive local search. Results show that
the local search performance tends to depend heavily on dimension. Many global
optimization methods (e.g. (Tu and Mayne 2002a, 2002b)) solve a series of quad-
ratic sub-problems at each step to identify these clusters, which can be quite ex-
pensive, and is not practical for very large models. Tu and Mayne (2002a) report
that multistart with clustering outperforms non-clustering multistart in terms of the
number of local searches conducted, the number of minima found, the identifica-
tion of the global minimum and the number of the function evaluations required.

Invoking a local solver is expensive, so it is important for multistart methods to
avoid unnecessary invocations by filtering points before they are passed to the
solver. An acceptance-rejection technique can be used to launch a local solver
only when the initial point is thought to be promising. In general, the filtering be-
comes more severe as the algorithm progresses. Extensions of this general ap-
proach are used in the Zooming and Domain Elimination method of Elwakeil and
Arora (1996) and the “multistart nonlinear programming” (MSNLP) software
(Lasdon et al. 2004).

In addition to using acceptance-rejection filters, MSNLP incorporates a method
of spherical approximation of the regions of attraction of the local minima. The
distance filter compares each generated trial point to the set of best known solu-
tions, and rejects it if it is within a solution’s estimated basin of attraction (analo-

the basin of attraction by using the distance from the starting point for each re-

this solution has rejected too many trial points. Further extensions initialize the ra-
dius to be slightly smaller than the calculated radius, and dynamically adjust the
basins so they do not overlap. The general idea is similar to the repulsion algo-
rithm (Sepulveda and Epstein 1996), except that with repulsion every new point is
made use of by ‘pushing it away’ from the previously solved points in whose ba-
sins it lies. This is perhaps more computationally intensive than outright rejecting
a point and moving on, depending on the problem characteristics.

The MSNLP merit filter, similar to the classic acceptance-rejection technique,
compares the penalty function value of a candidate launch point to a certain
threshold. Whenever a point with the new lowest value of the penalty function is
discovered, the threshold is set to this value. If the threshold has rejected too many
points in a row (the default value is 20) it is relaxed by a certain fraction. After a
stage 1 in which n1 points are generated and their penalty function values evalu-
ated, stage 2 begins with the best point found in stage 1. This point is passed to the
local solver, and the filters initialized with the result. In this stage n2 points are
generated one by one. If any point passes the two filters, the local solver is
launched from it. The filters are updated based on the result and the next iteration
begins. Note that the point returned by the local solver may not actually be locally
optimal (or even feasible). Iterations are halted when a certain target value of the
objective function is obtained, or when progress has slowed.

We now turn our attention to two multistart methods designed specifically for
finding feasible points quickly in NLPs.

5.7 Multistart Methods 79

gous to the clusters in clustering methods). It obtains an estimate of the radius of

turned solution. This radius is dynamically increased if another starting point
returns the same solution from a greater distance, and decreased if the radius around

5.7.1 MSNLP Feasibility Mode

Lasdon and Plummer (2006) adapt the MSNLP concepts for the specific task of

of MSNLP uses the L1 exact penalty function as a quality metric for evaluating
candidate starting points, i.e.

))(()(),(
1
∑
=

+=
m

i
ii gviolwfP xxwx

where f(x) is the original objective function, viol(gi(x)) is defined as the absolute
violation of the ith constraint, and wi is a positive penalty weights for the ith con-
straint. Variable bounds are never violated.

The main adaptation in the new feasibility mode is the replacement of the L1
exact penalty function by a new measure of infeasibility that is designed to be
nearly invariant under changes in scaling of the constraint functions. Constraints
have the form li≤gi(x)≤ui. The new measure is the sum of the constraint violations
over all of the constraints, sinf(x), where the violation of an individual constraint
viol(gi(x)) is defined as follows:

i i i i i

i i i i i i
 0 otherwise

The feasibility mode of MSNLP bases all of its merit evaluations on this new
sinf (x), keeps the points with the best values of sinf(x) in the list of local solutions,
and terminates when the first feasible solution is found. Lasdon and Plummer
(2006) report good results using MSNLP modified in this way to seek feasible so-
lutions to a number of difficult NLPs. They also empirically evaluate a number of
methods for generating initial points; a uniform sampling within the variable
bounds does very well on most problems, in fact better than more advanced sam-
pling techniques. Of course the point filtering algorithms severely restrict the
number of starting points from which a full-scale nonlinear solver is launched.

5.7.2 Multistart Constraint Consensus

Constraint Consensus methods (Sec. 5.5) are ideal for use in a multistart algo-
rithm. They are inexpensive and relatively quick at returning a point that is ap-
proximately feasible, hence they are well suited for the space exploration portion
of a multistart algorithm. MacLeod and Chinneck (2007) develop this idea in their
Multistart Constraint Consensus (MCC) algorithm.

 (l g (x))/(1+ abs(l)) if g (x) < l
viol(g (x)) = (g (x)-u)/(1+ abs(u)) if g (x) > u

reaching a feasible point in a nonlinear program. The original optimization form

−

80 5 Seeking Feasibility in Nonlinear Programs

2. Latin hypercube sampling in the heuristic initial sampling box defined in
Sec. 5.6.2.

3. Weighted random multistart.

Given its high rate of success in previous testing (Ibrahim and Chinneck 2005),
the randomized standard initial point heuristic (Sec. 5.4) is a natural choice to
generate the first initial point during phase 1. If that is not successful, then the
second phase uses Latin hypercube sampling in the heuristic box defined around
the standard heuristic point (see Sec. 5.6.2). If that is also unsuccessful, then Con-
straint Consensus is used in a phase 3 scheme which samples the variable space to
continually update weights that control where subsequent samples will be placed.

The main innovation is in the phase 3 system for sampling within the solution
space and updating the probability map for the placement of the next initial trial
point. A Constraint Consensus algorithm is started at each new sample point. The
final consensus vector in a particular solution sequence is not used to update the
current point, but is instead used just to indicate the quadrant that the updating
process wishes to move into. The overlap of the quadrants indicated by several
different final consensus vectors provides the weighted probability map to guide
the placement of the next initial point. Fig. 5.7 illustrates this process. There are
three discontiguous feasible regions in Fig. 5.7, shown by the elliptical shapes.
The last two consensus vectors for 5 different Constraint Consensus invocations
are shown. The tail of the last consensus vector is called a marker point, which is
used to divide the plane into quadrants; the last consensus vector in each Con-
straint Consensus sequence, called the pointer (shown as an arrow in the figure),
indicates the quadrant which is most likely to contain a feasible point. In Fig. 5.7,
all of the final consensus vectors indicate quadrants that contain a feasible point.

For k marker points there will be k+1 zones (or bins) in each dimension, and if
there are n dimensions, then there will be (k+1)n boxes. It is obviously impractical
to assign a probability to each individual box due to the combinatorial explosion
as the number of dimensions increases, so the MCC algorithm takes a different
tack: it assigns probabilities to each bin along each axis. In this way there are just
n(k+1) probabilities to assign. A new sampling point is built up by determining
the new value in the x1 dimension using the weighted probabilities for the bins
along the x1 axis, then the new value in the x2 dimension using the weighted prob-
abilities for the bins along the x2 axis, etc.

5.7 Multistart Methods 81

improved via the application of a Constraint Consensus method. If the point out-
put by the Constraint Consensus method meets certain criteria, then a local solver
is launched. If the local solver reaches a feasible solution, then the process is
halted successfully. The ordered phases are:

1. The randomized standard initial point.

MCC uses a phased approach to generating initial points for the local solver. In
each phase a particular method is used to generate initial points which are then

The weight of each bin in each dimension is based on the number of pointers
that cross that bin. This is illustrated in Fig. 5.8 which depicts the bins, marker
points (thick dots) and pointers (thick arrows on the axis) for a single dimension.
Each pointer indicates either a positive or a negative direction. A pointer adds a
vote to every bin in the direction it indicates, until it encounters an oppositely-
oriented marker. The long arrows above the axis line in Fig. 5.8 indicate the extent
of the votes made by each pointer, and the numbers beneath the axis line indicate
the vote totals for each bin.

The votes can be used to establish the weights for the bins in several ways. The
simplest approach is to set the weight wi for bin i as wi=vi/V, where vi is the num-
ber of votes for bin i and V=Σvi over all i. Once the bins and weights are known,
the next point is chosen using the weighted probabilities. For each axis, choose
bin i with probability wi, then choose a uniformly distributed random point in the
chosen bin. As implemented (MacLeod and Chinneck 2007), MCC uses a rela-

82 5 Seeking Feasibility in Nonlinear Programs

tively small number of marker points and hence a small number of votes and bins.
To compensate, exaggerating the differences between the weights in different bins
gives generally better results. This is done by setting vi to the square of the num-
ber of votes in the bin, but otherwise following the procedure above.

There are two special cases. First, it may happen that the pointer indicates nei-
ther the negative nor the positive direction in a certain dimension. In this case, a
vote is placed in each of the two bins immediately bordering the marker point on
either side. The rationale is that a zero pointer indicates that the immediate area
around the marker point meets the criteria for feasibility for the current dimension,
so sampling nearby is to be encouraged. Pointers voting towards the marker point
extend their votes only to the marker point and not past it.

The second special case is when Constraint Consensus fails, or the local solver
has been launched and fails. It is obviously desirable to promote less sampling in
this region, so a negative vote is placed in each of the two bins immediately bor-
dering the marker point on either side. This raises the possibility of a negative
vote total for a bin. If the largest negative vote total is –d in some bin i, then the
vote total in every bin is adjusted upward by d. This sets the vote total in bin i to
zero, meaning that it will not be chosen for sampling in the next iteration. It is
also possible to adjust the vote totals so the minimum number of votes in any bin
is 1 in order to retain a small possibility of sampling in low-probability spaces.

Note the contrast between the MCC weighted sampling scheme and that used
by MSNLP (Lasdon and Plummer 2006). MSNLP concentrates on excluding ar-
eas that have already been searched, while MCC concentrates on identifying at-
tractive areas for sampling that are likely to contain a feasible point. MSNLP uses
hyperspheres for subdividing space, which assumes that all dimensions can be
treated equally, which is not appropriate for models whose dimensions have dif-
ferent scales or different size intervals between upper and lower bounds. Hyper-
spheres are also unable to cover space completely without overlapping, an issue
that becomes more pronounced at higher dimensions. The rectangular areas used
in MCC do not have this problem.

MCC maintains a list of exactly N marker points at all times; a new point may
replace an existing point if it meets these criteria: (i) fewer constraints evaluated at
that point result in errors (e.g. overflow), and (ii) if two points have the same num-
ber of errors, the point whose longest feasibility vector is the shortest is better.
The second criterion is equivalent to the smallest α that this point satisfies (the
magnitude of all feasibility vectors will be less than or equal to this value). When
a new point is better than an existing marker point, then it replaces the worst
marker point and the bins and vote totals are recalculated. If the new point has the
same longest feasibility length as the current worst point, it replaces it to avoid
stagnation of the point set. MacLeod (2006) concluded that N=5 works well after
a small study.

Sampling actually takes place inside the sampling box which is normally
smaller than the box defined by the variable bounds. It is initially set to the box
around the standard heuristic point as defined in Sec. 5.6.2. The sampling box is
adjusted as evidence accumulates that it may be useful to sample outside the cur-
rent box. The initial heuristic sampling box is unlikely to be the best choice for

5.7 Multistart Methods 83

the sampling activities over the entire running time of the algorithm: it may be too
big for some models while for others it may not actually encompass a feasible
point.

The core region in the sampling box extends from the lowest marker point to
the highest marker point in each dimension, but the sampling box should extend
above and below these boundaries to some extent to handle the case where point-
ers indicate votes beyond the extreme upper or lower marker point. The sampling
box is extended out from the core region by a fixed amount below the lowest
marker point and above the highest marker point in each dimension. The fixed
size assigned to the bin at each extreme edge in each dimension is found as fol-
lows. Mag is defined as the magnitude of the initial starting box (normally 104).

mension x extends from d1−edgewidth to d1 and the highest bin extends from dN to
dN+edgewidth, where d1 and dN are the lowest and highest marker values in that
dimension.

If a newly generated and accepted point constitutes a new extreme marker in
any dimension, the sample box expands accordingly in that dimension. Similarly,
if the highest or lowest marker value in a dimension is eliminated when its point is
replaced, the sample box will shrink in that dimension. The sample box is appro-
priately reduced if necessary to avoid sampling outside the variable bounds, but
otherwise edgewidth remains a constant size to mitigate focusing too tightly on
one area. This helps to avoid getting trapped in infeasible local minima.

An adaptive procedure is also used to dynamically adjust the feasibility dis-
tance tolerance α if the Constraint Consensus invocations frequently fail using the
existing tolerance. If there are more than ρ consecutive Constraint Consensus in-
vocations that do not trigger a local solver launch, then α is increased. The new
value of α is set to the length of the longest feasibility vector in the best of the N
marker points. Recall that the best marker point is the one whose longest feasibil-
ity vector is the shortest, hence this is equivalent to the smallest α that would trig-
ger any of the current marker points to launch the local solver. There is no
mechanism for reducing α.

An empirical study (MacLeod and Chinneck 2007) shows that Multistart Con-
straint Consensus is very effective in reaching feasibility for very difficult models.
It is far more effective than naïve multistart. Simply adding a Constraint Consen-
sus improvement phase to the points selected by a naïve multistart greatly im-
proves its success rate, as expected (see Sec. 5.5). However Multistart Constraint
Consensus is needed for the most difficult models. In a sample of 151 models,
phase 1 of MCC solves 70.6% of the models, phase 2 solves 21.0%, and phase 3
solves the remaining 8.4%. As expected, the more complex phase 3 is needed
only for the more complex models.

Edgewidth is defined as 2× mag/N. At any given iteration, the lowest bin in di-

84 5 Seeking Feasibility in Nonlinear Programs

5.8 Bootstrapping Method of Debrosse and Westerberg

Bootstrapping methods (see Sec. 5.3) find a feasible point by generating an initial
point that satisfies some subset of the constraints, and then adjusting the current
point such that additional constraints are satisfied. Once a constraint has been sat-
isfied, it is not violated in any subsequent step. In an ideal algorithm, the number
of satisfied constraints increases monotonically until all are satisfied.

Debrosse and Westerberg (1973) provide some useful theorems concerning the
feasibility of nonlinear systems of constraints and describe a bootstrapping method
which produces one of two possible outcomes: (i) a feasible point or (ii) a minimal
infeasible set of constraints (later termed an IIS: see Chap. 6). The method they
propose is suitable for highly structured models in which each constraint involves
only a few variables, which makes the set of constraints easily ordered by prece-

i

j
The Debrosse and Westerberg bootstrapping method relies on identifying

points at the intersection of subsets of the constraints. When dealing with ine-
qualities, this means points at the intersection of the limiting values of the ine-

Theorem 5.1: Intersecting surfaces (Debrosse and

quality constraints, each proper subset Pi of constraints
whose limiting surfaces intersect simultaneously deter-
mines a surface. Find a point on each such surface such

i
(such a surface is called a surface of maximal intersec-
tion). The system is infeasible if and only if none of the
points satisfies all p constraints.■

Note that there is the possibility of multiple intersections of a given subset of
constraints, in which case more than one surface is determined. In an n-
dimensional system, some of these surfaces may be redundant (dimensionality is

The general idea of Theorem 5.1 is illustrated in Fig. 5.9, which depicts an in-
feasible system of 3 inequalities. In the absence of multiple intersections due to
curving and recrossing of the constraints, each of the dots represents a point on a
surface of maximal intersection. Each of those points is defined by the intersec-
tion of two of the inequalities, but does not intersect the third. In addition, each of
the points violates that third inequality. Hence the system is infeasible.

Consider the opposite case, in which one of the inequalities has the opposite
sense. We would have the same points on the surfaces of maximal intersection,
but now not all of the points will violate the third inequality. Hence the system is
feasible.

Fig. 5.9. Theorem 5.1

quality constraints g (x) ≤ 0 in multiple dimensions.

−

Westerberg 1973, Theorem 1). For a set P of p≥ 2 ine-

(x) = 0 and ine-dence. They consider a system consisting of equality constraints f

not intersect with any other constraints. Some of their important theorems follow.
qualities. A main technique is finding intersections of subsets of constraints that do

5.8 Bootstrapping Method of Debrosse and Westerberg 85

greater than n–m) or degenerate (dimensionality is less than n m).

that the surface intersects none of the constraints in P \P

nected and intersects none of the constraints in M\P, then either M is feasible, or
there exists at least one constraint i ∈ M\P such that P ∪ i is infeasible.■

A multiple constraint is a constraint that has multiple intersections and thereby
creates more than one limiting surface.

Theorem 5.3: IIS along a line (Debrosse and
Westerberg 1973, Lemma 2). Given a line, if a

tiple constraints on the line.■
Debrosse and Westerberg consider a “line” to

include a curve. If you are restricted to staying
on the line, and there are no multiple constraints,
then it should require just two intersecting con-
straints in addition to the line itself to cause

infeasibility, one with a feasible region to the “left” and another with a feasible re-
gion to the “right”, with no overlap of the two feasible regions. If an IIS has more
than two constraints in addition to the line, then it implies that there are constraints
that have multiple intersections with the line, creating discontiguous feasible re-
gions. See Fig. 5.10 for an example of a line plus 4 inequalities that constitutes an
IIS. By inspection, removing any one of the 4 inequalities creates a feasible re-
gion on the darker line. As required by the theorem, two of the constraints have
multiple intersections with the line.

Theorem 5.4: IIS in n dimensions (Debrosse and Westerberg 1973, Lemma 3).
Given a set of constraints P having p members and no multiple intersections or
multiple constraints, and that constitutes an IIS, then (a) there is at least one set
Pj j j
(b) the feasible region of Pj is connected, and (c) the feasible region of Pj is not in-
tersected by constraint j.■

The various restrictions on P mean that a linear system qualifies, and the theo-
rem is easily understood for a linear system.

Theorem 5.5: IIS cardinality in n dimensions (Debrosse and Westerberg 1973,
Theorem 2). In an n-dimensional space, if a set of n+p constraints forms an IIS
where p>1, then there is at least one multiple intersection or multiple constraints
in the set.■

This is a close cousin of Thm. 6.14 which states that the maximum cardinality

be multiple intersections or multiple constraints to form the “extra” feasible re-
gions, which is possible only with nonlinear constraints.

Theorem 5.6: Number of point evaluations to establish infeasibility (Debrosse
and Westerberg 1973, Theorem 3). We are given a set P of p constraints and wish
to determine whether P is infeasible. Consider a proper subset M of P which has
m members, and which defines a surface S by the intersection of all m members.

Fig. 5.10. Theorem 5.3

−

of an IIS in a linear system is n + 1. For more constraints to be involved there must

Theorem 5.2: Nonlinear turnabout (Debrosse and Westerberg 1973, Lemma 1).

straints. If every constraint p forms some part of the boundary of P, and P is con-
Consider a set M of m constraints and a feasible proper subset P of p con-

set of p > 2 inequalities creates an IIS in conjunc-
tion with the line, then there are at least p 2 mul-

 = P-{ j} such that the feasible region of P is bounded by all p – 1 constraints in P ,

86 5 Seeking Feasibility in Nonlinear Programs

one constraint from P \M have no simultaneous intersections.■
The point of this theorem is simply to reduce the number of simultaneous equa-

tion solutions that must be carried out. It follows from Thm. 5.1.
The authors also define structural infeasibility of a set of equations. This occurs

when some subset of the equations has fewer variables than equations, and none of
the equations are redundant.

Debrosse and Westerberg construct an algorithm based on these theorems. A
simplified version for inequality constraints only that ignores multiple intersec-
tions and constraints (and the cycles they can cause) is shown in Alg. 5.7. The
bootstrapping characteristic is apparent in Step 2 in which further constraints are
added to the set of constraints already satisfied. The algorithm then attempts to
satisfy the added constraints or to identify an IIS from among the constraints in the
current hypothesis set H.

No instructions are given as to the best way to construct the initial point in Step
0, or which subset of violated constraints to incorporate into the hypothesis set in
Step 2. A further difficulty is that an enumeration of subsets is required in Steps 8
and 11, of which there are potentially very many.

The algorithm can be modified to handle equality constraints. The main differ-
ence is that all of the equality constraints are included in the hypothesis set at all
times. This affects the results in that the set of constraints output in Step 14.1 of
Alg. 5.7 may not be an IIS.

5.9 Global Optimization

Global optimization methods are designed to reliably reach the proven global op-
timum of a nonlinear function. Such methods generally use some form of branch
and bound, which subdivides the solution space in an exhaustive search (Pintér
1998). Areas of the solution space that cannot contain a feasible solution are
gradually eliminated, while more promising areas are subdivided further for closer
examination. This is a time-consuming process, though provably correct, hence
not especially suited for speedy identification of feasible points in NLPs. It is
generally practical only for relatively small models. A widely available imple-
mentation is the BARON solver (Sahinidis 1996, 2000).

Global optimization methods are particularly useful when other methods, in-
cluding extensive application of multistart methods, are unable to locate a feasible
point. Global optimization can then be applied to make a definite determination as
to whether the model is feasible or infeasible.

−We must evaluate a point on S if and only if all p m subsets determined by M plus

5.9 Global Optimization 87

H is a set of constraints called the hypothesis.
GIVEN: a set of inequality constraints, some or all of which may be nonlinear
0. Generate an initial point x.
1. Determine the set V of constraints violated at x, and the set S of constraints
 satisfied at x.
2. H ← S ∪ {subset of V}.

 3.1 Try to find a new point x that satisfies all constraints in H.
 3.2 IF there is no feasible point x THEN go to Step 4.
 3.3 Determine the set V of constraints violated at x, and the set S of constraints
 satisfied at x.
 3.4 IF V = ∅ THEN exit with x as a feasible solution.
 3.5 Go to Step 2.
4. IF there exists a proper subset H’ of H that is structurally infeasible THEN:
 4.1 H← H’; go to Step 4.
5. Find n, the number of dimensions in H.

l

l r
9. FOR each Er(k) on list Ll:
 9.1 IF Er(k) feasible at some point x THEN:
 9.1.1 Delete Er(k) from Ll.
 9.1.2 IF x satisfies all constraints in H\Er(k) THEN:
 9.1.2.1 H is disproved; go to Step 15.

l

l
 possible for entries on list L
 l

13. Form a list T of infeasible subsets of H in the order found in the last list Lq,
 then L , L etc., plus H itself.
14. For each set Ti on the list T:
 14.1 Test feasibility of Ti by testing it against all of the points evaluated
 during Step 9. IF infeasible, THEN exit with Ti as an IIS.
15. IF all constraints satisfied at point x, THEN exit with x as a feasible solution.
16. Go to Step 1.

Alg. 5.7. Bootstrapping method by Debrosse and Westerberg (1973)

3. IF |H| ≠ n + 1 THEN:

8. L = {all subsets of H of size r}; label subsets E (k), k = 1,2,… |H|! /r!(|H| r)! −

l – 1 taken |H| – r +1 at a time. Place each resulting set

q–1 q–2

6. IF |H| > n THEN r = n ELSE r = |H| − 1.
7. Let l = 1 and establish empty list L .

11. Let l l+1 and establish new list L by filling it with all set intersections
10. IF |L | < |H| – r +1 THEN H is proved so go to Step 13.

12. r r – 1; go to Step 9.
intersection containing exactly r – 1 constraints into list L .

88 5 Seeking Feasibility in Nonlinear Programs

←

←

PART II: ANALYZING INFEASIBILITY

As mathematical models grow larger and more complex, infeasibility happens
more often during the process of model formulation, and is harder to diagnose
than ever before. A linear program may have hundreds of thousands or even
millions of constraints: which of these are causing the infeasibility and how should
the problem be repaired? In nonlinear programs the issue is even more vexed: the
model may be truly infeasible, or the solver may just have been given a poor
starting point from which it is unable to reach feasibility.

Some form of automated or semi-automated assistance in diagnosing and
repairing infeasibility is necessary in the face of the scale and complexity of
modern optimization models. Fortunately, algorithmic tools have been developed
in recent years. There are three main approaches. The first is the identification of
an Irreducible Infeasible Subset (IIS) of constraints within the larger set of
constraints defining the model. An IIS has the property that it is infeasible, but
becomes feasible if any one or more of its constraints are removed; it is irreducible
in that sense. Identifying an IIS allows the modeler to focus attention on a small
set of conflicts within the larger model. Further refinements of the base algorithms
try to return IISs that are of small cardinality, or that are easier for humans to
understand. Other issues include trade-offs between the speed of identifying an IIS
and the cardinality of the IIS that is returned.

The second main approach to analyzing infeasibility is to identify a Maximum
Feasible Subset (MAX FS) of constraints within the larger set of constraints
defining the model. This naturally focuses the analysis on the constraints that do
not appear in this subset, i.e. the minimum cardinality set of constraints that
must be removed so that the remainder constitutes a feasible set. Identifying a
maximum feasible subset is an NP-hard problem, so the methods for doing so
are clever heuristics.

Both of these approaches to analyzing infeasibility focus attention on a small
part of a large model so that the modeler can determine how to repair it using hu-
man understanding of the meanings of the constraints. However the third approach
seeks to suggest the best repair for the model, where “best” can be defined in vari-
ous ways that can be handled algorithmically, e.g. the fewest changes to constraint
right hand side values. The suggested repair can of course be accepted, modified,
or rejected by the human modeler.

Many of the methods for analyzing infeasibility that are described in Part II
depend on the ability of a solver to determine the feasibility status (feasible or
infeasible) of an arbitrary set of constraints with very high accuracy. This ability is
by and large available for linear programs, but it is much more problematic for

nonlinear programs and for mixed-integer programs. In those cases, we may have
to settle for the identification of an infeasible subset that is not irreducible (but is
significantly smaller than the original set of constraints one hopes), or a minimal
intractable subset (MIS) which is a minimal subset of constraints that causes a
solver to report infeasibility under stated solver parameter settings (initial point,
tolerances, etc.). For this reason, there are differing expectations for the success of
the general analysis algorithms depending on the type of optimization model.
However there are methods that are special to each type of model.

As you will see in Part II, effective algorithms for the analysis of infeasibility in
linear programs and linear networks exist, and have been implemented in most
commercial LP solvers. The situation is not yet so positive for nonlinear and
mixed-integer programs, but research in this area is active and ongoing, with fre-
quent new developments. Significant breakthroughs are likely in the relatively
near future, especially as improved algorithms for reaching feasibility quickly
reach maturity (see Part I).

Some of the algorithmic tools are best integrated directly into the solvers rather
than into separate analysis software. This is the case for many of the infeasibility
analysis algorithms since they make use of data that is available during the solution
or re-solution of the problem. This is certainly the case for several of the algorithms
for analyzing infeasible linear programs that use information from the final phase 1
basis, and thereafter from bases produced by repeated solutions of slightly differing
versions of the model. Algorithms in this class benefit from the use of hot-starts
based on the immediately previous solution.

Infeasibility analysis is part of larger efforts in computer-assisted analysis of
complex optimization models originated by Greenberg (1981a, 1981b, 1983). He
developed software such as ANALYZE (Greenberg 1983) which provides tools
for the manipulation and analysis of linear programs. PERUSE (Kurator and
O’Neill 1980) was another early system which permitted interactive query of the
LP matrix and solution. MProbe (Chinneck 2001) is a more recent system that
provides various tools for general probing of optimization models, particularly
nonlinear programs. Practical approaches to infeasibility analysis in particular date
to the 1970s, notably in the Refinery and Petrochemical Modeling System by Bon-
ner & Moore (1979). Other model-specific approaches for infeasibility analysis
were developed by Harvey Greenberg as part of his Intelligent Mathematical Pro-
gramming System (IMPS) project originating in the early 1980s (see Greenberg
(1987c, 1991) for a description of the IMPS project and Greenberg (1996b) for a
summary of relevant literature). In contrast, the IIS isolation approach developed
in Chap. 6 is independent of the particular model and has been developed for gen-
eral solvers applicable to any LP.

The eventual goal in computer-assisted analysis is the development of a

 PART II: ANALYZING INFEASIBILITY 90

complete environment supporting optimization modeling, similar to the environ-
ments enjoyed by general software developers that include debuggers, profilers
and other useful tools. This is an essential part of the verification and validation
of optimization models. There has been significant progress in the development
of techniques and tools supporting the debugging of complex optimization
models. Most modern LP solvers now include routines for isolating IISs for

 91 PART II: ANALYZING INFEASIBILITY

instance, and model debugging is now included as a topic in modern textbooks
on optimization. For example, see the textbook by Pannell (1997) for an excellent
discussion of how to debug a linear program, including infeasibility analysis.

6 Isolating Infeasibility

When faced with infeasibility in a very large optimization model, such as a linear
program containing thousands of constraints, it is immensely helpful to be able to
narrow the focus of the diagnostic effort. The focus is narrowed as much as possi-
ble if you are able to isolate an irreducible infeasible set (IIS) of constraints from
among the larger set defining the model. An IIS has this property: it is itself infea-
sible, but any proper subset is feasible. It is irreducible in the sense that every
member contributes to the infeasibility. IISs are also known as irreducible incon-
sistent sets or minimal infeasible subsystems. Where the subset is infeasible, but is
reducible, it is simply called an infeasible subset (IS) of constraints. A simple IIS
consisting of three linear inequalities is shown in Fig. 6.1.

Greenberg (1992) performed an empirical com-
parison of three methods of LP infeasibility analysis
and concluded that the isolation of IISs “performed
consistently above midrange, and it never failed to
provide useful information. It frequently gave an im-
mediate diagnostic.” See also Greenberg (1993) for
further study of the value of isolating IISs during the
diagnostic process.

After isolating an IIS, it can then be examined to
see whether the model really is infeasible, or to determine which of the IIS mem-
bers must be repaired. Human understanding of the model is necessary to make
this decision. It may be that there are multiple infeasibilities in a model, hence IIS
isolation is typically used in a cyclic manner: (1) isolate an IIS, (2) determine a re-
pair for this IIS, (3) if the model is still infeasible, go to step (1).

Practical methods for isolating IISs in linear programs were developed during
the 1990s and are now included in most commercial LP solvers. However it is still
difficult to reliably isolate IISs in MIPs, NLPs, and other optimization model
forms, mainly due to the difficulty in ascertaining the feasibility status of a set of
constraints with perfect accuracy.

There are several practical issues related to IIS isolation. Many isolation meth-
ods require multiple solutions of slight variations of the original model, so speed
can be an issue. For linear programs, basis re-use alleviates this problem to a great
extent, fortunately, but it continues as a problem in other model forms. A second
practical issue is how easy it is for the human modeler to understand the IIS that is
isolated. The same infeasibility can sometimes be reflected in multiple different
IISs, some of which are easier to understand than others. Heuristic methods are

Fig. 6.1. Simple linear IIS

 6 Isolating Infeasibility

available to return IISs that are generally easier to understand, e.g. that have fewer
complex row constraints and more column bounds.

IISs may also overlap, i.e. share at least one common constraint, or be organ-
ized into distinct clusters (Chinneck and Dravnieks 1991), i.e. maximal sets of
IISs such that each IIS overlaps at least one IIS of the cluster. Where there are
many overlapping IISs and clusters, it may prove useful to identify a minimal car-
dinality IIS set cover (i.e. the smallest set of constraints to remove such that the
remainder constitute a feasible set), as described in Sec. 7.

The concept of infeasibility isolation is relatively old, though it was not devel-
oped to any extent until recently. Carver (1921) first mentions irreducibly incon-
sistent systems of linear constraints, but the first theorem on infeasible systems of
linear constraints dates to Fourier (1827). Motzkin (1936) and Fan (1956) devel-
oped additional useful theorems for linear systems. Debrosse and Westerberg
(1973) describe a procedure that can find minimal sets of infeasible constraints for
nonlinear constraint sets under specific conditions. Van Loon (1981) describes a
way to recognize minimal infeasible sets of linear constraints, but does not pro-

dressed the idea of searching for minimal substructures in infeasible LPs, but
noted that how to find them was unclear.

Practical methods for isolating infeasibilities in linear programs were first de-
veloped by Chinneck and Dravnieks (1991). It is these algorithms and their vari-
ants that appear in modern LP solvers. Research continues at present on adapting
these methods, and developing entirely different approaches, for isolating infeasi-
bilities in other optimization forms such as MIPs and NLPs.

6.1 General Logical Methods

For this reason, many of the general logical algorithms described in this Section
are currently applicable only to linear systems. However there is hope that they
will eventually be applicable to other classes of optimization models as better al-
gorithms for accurately determining feasibility status in those other classes appear.

94

A number of the basic methods for isolating IISs do not depend on any properties

mine the feasibility status of an arbitrary set of constraints in some model forms.

vide a method for finding them in an efficient manner. Greenberg (1987a) ad-

In practice, we can rely on this ability only for sets of linear constraints.

set of constraints is feasible or infeasible. It is quite difficult to accurately deter-

Numerical difficulties, usually related to the feasibility tolerances, can arise even
for linear constraints, but this is fortunately relatively rare. Accurate assessment of

of the optimization model itself. Instead they are purely logical, requiring nothing

the feasibility status for nonlinear programs can be quite difficult, and can even be

more than the ability to evaluate constraints or to determine whether a set or sub-

problematic for mixed-integer programs.

6.1.1 Logical Reduction of Models and Presolving

The usual goal of presolving or pre-processing an optimization model is to sim-
plify it prior to applying a solution algorithm (Holder 2006). In the process of
simplification, infeasibility may be discovered; hence this technique is of interest
here. Standard presolving techniques include the removal of null constraints or
variables, and the conversion of constraints containing a single variable into vari-
able bounds that are possibly tighter than those currently in effect. This is usually
followed by a series of bound tightening actions and simple tests to detect infeasi-
bility.

The main idea in bound tightening is the detection and propagation of simple
reductions, such as replacing a fixed variable with its value everywhere in the

tightening procedures are based on work by Brearly, Mitra, and Williams (1975).
Consider the following simple example:

 constraint row: x1 + x2 ≤ 10
 variable bounds: 4 ≤ x1 ≤ 12, 7 ≤ x2 ≤ 20
The row bound is first tightened by substituting the variable bounds into it: the

lower limit on the constraint row left-hand side is obtained when both of the vari-
ables are at their lower bounds: (4 + 7) = 11. This contradicts the constraint row
right-hand side, so the conclusion is that the LP is infeasible. In general, the logi-
cal reduction can also work in the other direction, i.e. the tightening of the bound.
Consider the upper bound on x2 implied by the constraint row and the bounds on
x1: an upper bound on x2 is obtained when x1 is at its lower bound in the constraint
row, implying an upper bound on x2 of 6 (i.e. 4 + x2 ≤ 10 ⇒ x2 ≤ 6). In general,
this tightened bound might then propagate to other constraints, causing a sequence
of further bound reductions.

Andersen and Andersen (1995) formalize bounds reduction by defining the up-

∑ ∑
∈ ∈

+=
i iPj Mj

jijjiji ualag

and

∑ ∑
∈ ∈

+=
i iMj Pj

jijjiji ualah

where Pi = {j|aij>0} (i.e. “plus” signs on the coefficients) and Mi = {j|aij < 0} (i.e.
“minus” signs on the coefficients). Given these definitions, we have

∑ ≤≤
j ijiji hxag

for every constraint i.

95

per and lower bounds on constraints as follows:

model, which may give rise to a cascade of further simplifications. Most bound

 6.1 General Logical Methods

Bound tightening is not specifically designed for the analysis of infeasibility, so
it can detect infeasibility only some of the time. Chinneck (1996a) shows that the
presolver in a leading commercial LP solver is able to detect infeasibility in only 3
of 19 infeasible models tested. A similar conclusion about presolve procedures for
analyzing infeasibility is reached by Andersen and Andersen (1995). When
presolving does detect infeasibility, but provides a poor explanation of its cause, it
is often a good idea to re-run the solution with the presolver turned off so that one
of the more advanced IIS isolation routines described later in this chapter can run
instead.

If infeasibility is detected during presolving, diagnosis may not be easy because
a very long chain of reductions leading to the infeasibility may be reported. At a
minimum, the rows and columns mentioned in the trace of the reductions can be
used to provide an infeasible isolation, but it is often too large to be useful. How-
ever, bound reduction is available in many commercial solvers and modeling sys-
tems and may occasionally provide a useful analysis of infeasibility.

Here are the presolving inspections that can detect infeasibility in linear pro-
grams outlined by Andersen and Andersen (1995):

• If a row is empty (i.e. aij = 0 for j = 1...n for some consraint i) but bi is nonzero,
then the row cannot be satisfied.

• If the bounds on a variable conflict (i.e. lj > uj) then these bounds cannot be
satisfied.

• As described above, the bounds on the variables in a constraint may imply
bounds on the constraint that conflict with the specified constraint bounds, in
which case the constraint cannot be satisfied. As the model is reduced by
various logical presolve operations, these revised bounds are checked for
conflicts with the original bounds. The constraint cannot be satisfied if hi < bi
and the constraint is of the form ai x ≥ bi or ai x = bi, or if b i < gi and the
constraint is of the form ai x ≤ bi or ai x = bi.

A number of researchers have developed presolving techniques that can detect
dual infeasibility (e.g. Andersen and Andersen (1995), Mészáros and Suhl (2003)).
This is equivalent to primal unboundedness and hence is not considered further
here.

As shown in Chap. 4, logical reduction is a main theme in constraint program-
ming, under the name constraint propagation. The detection and analysis of infea-

96 6 Isolating Infeasibility

sibility is also an important theme in constraint programming, a topic we will revisit
in Sec. 6.5.

The logical reduction of the model by such techniques is not limited to linear
constraints: it can be used on nonlinear constraints as well. For example, the
AMPL modeling system (Fourer et al. 2003) has a presolver that it applies to all
model forms. Presolving can be especially effective in MIP models, in which case

further tightening.
the bounds on integer variables can be rounded to integer values, introducing

INPUT: an infeasible set of constraints.
FOR each constraint in the set:
1. Temporarily drop the constraint from the set.
2. Test the feasibility of the reduced set:
 IF feasible THEN return dropped constraint to the set.
 ELSE (infeasible) drop the constraint permanently.
OUTPUT: constraints constituting a single IIS.

Alg. 6.1. The deletion filter

Theorem 6.1: Deletion filter functionality (Chinneck 1997a). The deletion filter
returns exactly one IIS.

Proof: The initial set of constraints input to the deletion filter is infeasible, and
constraints are removed only when the reduced set of constraints remains infeasi-
ble without them. The only constraints retained in the set are those whose removal
renders the set feasible. Hence these must be members of an IIS, by definition.
There is only a single IIS because if there were two or more IISs, you would be
able to remove at least one constraint from the set and it would remain infeasible.
■

The main idea of the deletion filter is to remove constraints from the set one at
a time. If a constraint is removed, and the remainder of the model is still infeasi-
ble, then the constraint is not necessary to the infeasibility and can be removed
permanently. On the other hand, if a constraint is removed and the model becomes
feasible, then that constraint is necessary to the infeasibility and is replaced. A
simple example illustrates the action of the algorithm: consider a set of constraints
{A,B,C,D,E,F,G} which contains the embedded IIS consisting of the constraints
{B,D,F}. The members of the IIS are shown in boldface below. The deletion filter
considers the effect of dropping each constraint:

1. Remove A: {B,C,D,E,F,G} infeasible. A deleted permanently.
2. Remove B: {C,D,E,F,G} feasible. B reinstated.
3. Remove C: {B,D,E,F,G} infeasible. C deleted permanently.
4. Remove D: {B,E,F,G} feasible. D reinstated.
5. Remove E: {B,D,F,G} infeasible. E deleted permanently.
6. Remove F: {B,D,G} feasible. F reinstated.
7. Remove G: {B,D,F} infeasible. G deleted permanently.
8. Output: the IIS {B,D,F}

97 6.1 General Logical Methods

6.1.2 The Deletion Filter

Chinneck and Dravnieks (1991) introduced the deletion filter, shown in Algorithm
6.1. If the solver is able to accurately determine the feasibility status of an arbi-
trary set of constraints, then the deletion filter guarantees the identification of ex-
actly one IIS after a single pass through the set of constraints. This is an essential
property possessed by very few of the IIS isolation methods.

Where there are several IISs in the model, exactly one is returned because the
testing set will remain infeasible when elements of any other IISs are removed.

 6 Isolating Infeasibility

several IISs in the model, then the IIS whose first member is tested last remains
intact while members of the other IISs are tested. Since the set remains infeasible
while constraints from other IISs are tested, those constraints are eliminated. Thus
the IIS whose first member is tested last is isolated. ■

6.1.3 The Additive Method

The additive method is the opposite of the deletion filter: starting with an empty
set of constraints, constraints are added until infeasibility is triggered, which

of constraints is then primed by emptying it of all constraints except those that
have been implicated in this manner and the process repeats.

Tamiz et al. (1995, 1996) introduced the additive method to the optimization
community, though it was discovered earlier in the constraint programming

“deviational variables” (equivalent to elastic variables, see Sec. 6.1.4) and an
elastic objective function to decide feasibility status of the intermediate test sets of

C: ordered set of constraints in the infeasible model.
T: the current test set of constraints.
I: the set of IIS members identified so far.

INPUT: an infeasible set of constraints C.
0. T←∅, I←∅.
1. T←I.
 FOR each constraint ci in C:
 T←T ∪ ci.
 IF T infeasible THEN
 I←I ∪ ci.
 Go to Step 2.
2. IF I feasible THEN go to Step 1.
 Exit.
OUTPUT: I is an IIS.

Alg. 6.2. The additive method

98

it based on methods from LP goal programming. Their development uses
community (see Sec. 6.5). Tamiz et al. named it GPIIS because they conceived

shows that the last added constraint is involved in the infeasibility. The testing set

Which IIS is returned depends on the order in which the constraints are tested. The
deletion filter always returns the IIS whose first member is tested last (because the
testing set remains infeasible to this point).

Theorem 6.2: Deletion filter IIS selection (Chinneck 1997a). The deletion filter
returns the IIS whose first member is tested last.

Proof: As long as one IIS remains intact in the set of constraints, then test con-
straints are dropped permanently because the set remains infeasible. If there are

constraints. This apparatus is not necessary, though, because the main feature of
the method is the adding in of constraints as the algorithm proceeds and the testing
of the feasibility of the resulting set. Alg. 6.2 shows the simpler version of the
algorithm without the elastic variables and elastic objective function.

2. {A,B,C,D,E,F} infeasible: I = {F} is feasible.
3. {F,A}, {F,A,B}, {F,A,B,C} all feasible.
4. {F,A,B,C,D} infeasible: I = {F,D} is feasible.
5. {F,D,A} feasible.
6. {F,D,A,B} infeasible: I = {F,D,B} is infeasible. Stop.
7. Output: the IIS {F,B,D}

The additive method also guarantees the identification of a single IIS, even
when several are present in the original infeasible set.

turns a single IIS.
Proof: Constraints are added to I only when their addition to T changes its

status from feasible to infeasible (i.e. at least one complete IIS is in T), thus each
constraint added to I must be part of all of the IISs just created in T. Assume ck has
just been added to I. Because T is “primed” with I at the beginning of Step 1, the
FOR loop in Step 1 will not proceed beyond ck –1 because at that point T would be
identical to the previous T and hence infeasible, causing exit from the loop (and
the addition of ck –1 to I). Thus the maximum number of iterations of the FOR
loop decreases by 1 each time it is entered. In fact, the FOR loop in Step 1 is ex-
ited as soon as a complete IIS is in T, which may happen well before ck –1.

When there is a single IIS in T, each subsequent constraint added to I is a mem-
ber of the same IIS, hence Step 2 will eventually cause the algorithm to exit with I
containing a single IIS. When there is more than one IIS in the current T, the sub-
sequent pass through Step 1 will either (a) identify another element common to all
of the multiple IISs in T, or (b) complete one of the IISs before the others, elimi-
nating some of the elements of the other IISs from further consideration because
they are past the current ci in the list, thereby also eliminating the other IISs them-
selves from eventual output. Thus T eventually contains only a single IIS, which
will be recognized and output by Step 2. ■

Theorem 6.4: Additive method IIS selection (Chinneck 1997a). The additive
method isolates the IIS whose last member is tested first.

Proof: The loop in Step 1 of Alg. 6.2 is exited the first time that T becomes in-
feasible or equivalently, the first time that a complete IIS is in T. Thus, while parts
of various IISs may be added to T as it builds up, the process exits only when the
last member of any IIS is added to T. Therefore the IIS whose last member is
tested first is isolated. ■

Theorem 6.4 shows that, as for the deletion filter, which IIS is isolated by the
additive method is affected by the ordering of the constraints. The advantage of
the additive method is that it may require fewer tests of feasibility, and tests of
smaller sets of constraints, especially when the IIS that is isolated is small com-
pared to the cardinality of C.

99 6.1 General Logical Methods

Theorem 6.3: Additive algorithm (Chinneck 1997a). The additive algorithm re-

A simple example will illustrate the workings of the algorithm. Consider an IIS
{B,D,F} embedded in {A,B,C,D,E,F,G}. The members of the IIS are shown in
boldface:

1. {A}, {A,B}, {A,B,C}, {A,B,C,D}, {A,B,C,D,E} all feasible.

analysis of infeasible MIPs. A generalized and improved version of the algorithm
appears in Alg. 6.3.

First note that the main effect of the algorithm is nothing more than a dynamic
reordering of the constraints. If the constraints had been ordered originally as they
are after the dynamic reordering (i.e. if the constraints had been ordered as …ci,
temp…, then obviously all of the sets tested from ci through the last constraint in
temp would have been feasible (we know this because the current point is feasible
for all of the constraints in temp). Thus Theorem 6.3 continues to hold.

There are two main efficiency improvements in Alg. 6.3. First, the dynamic re-
ordering eliminates some feasibility tests, and makes it much more probable that a
given feasibility test will result in infeasibility. This is good because every infea-
sible outcome identifies another member of the IIS. The second efficiency im-

C: ordered set of constraints in the infeasible model.
T: the current test set of constraints.
I: the set of IIS members identified so far.

INPUT: an infeasible set of constraints C.
0. T←∅, I←∅.
1. T←I.
 FOR each constraint ci in C:
 T←T ∪ ci.
 IF T infeasible THEN
 I←I ∪ ci.
 C ← C \{ck | k > i}
 Go to Step 2.
 ELSE
 temp ← {ck | k > i, ck satisfied at current point}
 Reorder C by inserting temp just after ck.
 T←T ∪ temp.

2. IF I feasible THEN go to Step 1.
 Exit.
OUTPUT: I is an IIS.

Alg. 6.3. The dynamic reordering additive method

provement comes from the truncation of the set C that occurs after an infeasible

100

 i←i + |temp|+1

 6 Isolating Infeasibility

Guieu and Chinneck (1999) introduced an improved variant of the basic addi-
tive method, called the dynamic reordering additive method. The main insight is
that some of the feasibility tests can be avoided as follows: if an intermediate test
subproblem is feasible, then scan all of the constraints past the current constraint
just added, and add to T all constraints that are satisfied by the current solution
point. The original version by Guieu and Chinneck (1999) was specific to the

While there is some cost associated with checking whether constraints farther
along in the list are satisfied at the current solution point, this is usually negligible
compared to the cost of conducting another feasibility test.

Finally, there is one additional small efficiency improvement that is omitted
from the algorithm statements for clarity. Under most circumstances, the first fea-
sibility test is only conducted when two constraints have been added since at least
two are needed to cause infeasibility. However this may not be true for certain
nonlinear constraints.

6.1.4 The Elastic Filter

Useful information about an infeasible model can be obtained if the constraints
can be violated in a graceful manner. For example, in the familiar linear pro-
gramming Phase 1 procedure, nonnegative artificial variables (ai) are added to all
equality and ≥ constraints (see e.g. Winston and Venkataramanan 2003), which al-
lows those constraints to be violated so that an initial basic “feasible” solution can
be established. This initial solution is feasible in the space consisting of the origi-
nal plus artificial variables, but not in the space consisting of just the original vari-
ables. The LP Phase 1 objective is to minimize the sum of the artificial variables,
i.e. minimize W = ∑ai, via standard linear programming (see Sec. 2.1).

If W reaches a minimum value of zero, then all of the artificial variables are
themselves zero, hence a feasible solution has been found for the original model,
and the LP solution now proceeds to Phase 2, the solution of that original model.
If the minimum value of W is not zero, then at least one of the artificial variables
cannot be forced to zero, so the corresponding constraint remains violated in the
original variable space, and the LP as a whole is determined to be infeasible.

Viewed in the space of the original variables, the linear equality and ≥ con-
straints are able to stretch, or violate their original bounds: the value of the associ-
ated artificial variable corresponds directly to the size of the adjustment of the
right hand side needed to provide a feasible solution in the original variable space.

This idea can be extended to allow all forms of constraints to adjust in all direc-
tions, as originally described by Brown and Graves (1975). A fully elastic pro-
gram adds a nonnegative elastic variable (or variables) si (or si’ and si”) to every
constraint. This allows a solver to find a “feasible” solution for the original infea-
sible model. The rules for adding elastic variables are as follows:

101 6.1 General Logical Methods

outcome of a feasibility test. The truncation means that the algorithm does not
have to check constraints for satisfaction beyond the constraint that just triggered
feasibility. Constraints beyond the ci that triggered infeasibility are obviously not
part of the IIS: it is completely contained in the current infeasible T, hence those
later constraints can be safely ignored. Note that the truncation is not necessary in
the basic additive method in Alg. 6.2 because no constraints beyond the ci that
triggered infeasibility are ever added to T.

integer restrictions cannot be elasticized, so elastic filtering can be applied only to
LPs, NLPs, and the linear part of MIPs. In this sense it is slightly less general than

programming. All constraints are initially elasticized, but since the original model
is infeasible, at least one constraint must stretch to achieve a feasible solution for
the elastic program. The elastic variables are removed from any constraints that
stretch; this enforces the constraint in the next round. The cycle repeats until
enough elastic variables have been removed that the partly-elastic model becomes
infeasible. At this point the de-elasticized constraints constitute a small infeasible
set that is not necessarily an IIS, but that has some very desirable properties. The
details of the algorithm are shown in Alg. 6.4.

INPUT: an infeasible set of constraints.
1. Make all constraints elastic by incorporating nonnegative elastic variables si.

3. IF feasible THEN
 Enforce the constraints in which any si > 0 by permanently removing

 Go to step 2.
 ELSE (infeasible)
 Exit.
OUTPUT: the set of de-elasticized enforced constraints contains at least one

 IIS.

Alg. 6.4. The elastic filter

As described in Alg. 6.4, the elastic filter identifies constraints which must be
part of some IIS because they have stretched. Because these stretched constraints
are then de-elasticized, some other member of the IIS must stretch in the next it-
eration. The process halts when all of the members of at least one IIS have been
enforced, which renders the partly-elastic model infeasible. The deletion filter or
additive method can then be applied to the output set to identify a single IIS. We
assume that the solver is perfectly accurate in minimizing the elastic objective
function. In practice this currently limits the application of the elastic filter to lin-
ear programs since we cannot guarantee to find the global minimum of an NLP
and we cannot elasticize the integer restrictions in a MIP.

The elastic filter (Chinneck and Dravnieks 1991) makes extensive use of elastic

102

the deletion filter and the additive method.

 their elastic variable(s).

2. Solve the model using the elastic objective function.

 6 Isolating Infeasibility

nonelastic constraint elastic version
Σjaijxj ≥ bi Σjaijxj + si ≥ bi
Σjaijxj ≤ bi j ij j i i
Σjaijxj = bi j ij j i i i

An elastic constraint “stretches” (violates its original bounds) when one of its
elastic variables takes on a positive value. Stretching is resisted by the elastic
objective function (minimize Σisi) which replaces the original objective function.
This is similar to a textbook phase 1, except that elastic variables are added to all
constraints, and equality constraints are elasticized in both directions. Note that

Σ a x – s ≤ b
Σ a x + s ’ – s ” = b

Note that the output is not necessarily an IIS; a single IIS must be identified by
applying the deletion filter or the additive method to the output.

Lemma 6.5: Elastic stretching 1 (Chinneck 1997a). Each elastic program (or
partly elastic program) in Alg. 6.4 stretches only elastic constraints which belong
to an IIS.

Proof: The cost of stretching a constraint is strictly positive when the elastic
objective function is used, and only IIS constraints need to be stretched to achieve
a feasible solution for any elastic (or partly elastic) program, hence only con-
straints belonging to an IIS will stretch. ■

Lemma 6.6: Elastic stretching 2 (Chinneck 1997a). The elastic filter will
stretch at least one previously unstretched elastic constraint from each IIS in the
current constraint set at each iteration of Step 2 of Alg. 6.4.

Proof: In Step 2 of Alg. 6.4, the solver must stretch at least one elastic member
of each IIS to achieve a feasible solution, otherwise the algorithm exits during
Step 3. By Lemma 6.5, any stretched constraint will be a member of an IIS, and
because any stretched constraints are enforced during Step 3, the stretched con-
straint will not have stretched previously. ■

Theorem 6.7: Elastic filter termination (Chinneck 1997a). The output set of
Alg. 6.4 will contain at least one IIS.

Proof: By Lemma 6.6, Alg. 6.4 will not terminate prematurely and will add at
least one constraint to the output set at each iteration. Since each IIS is composed
of a finite number of members, Alg. 6.4 will terminate in a finite number of steps,
when all of the members of at least one IIS have been enforced, creating an infea-
sible LP which will be detected during Step 3, causing exit. Because this output
set is infeasible, it must contain at least one IIS. ■

Note that the output set may contain more than one IIS, and may also contain
partial IISs. The deletion filter or the additive method must be applied to the out-
put set to guarantee the isolation of a single IIS.

Theorem 6.8: Elastic filter iterations (Chinneck 1997a). The number of elastic
filter iterations (i.e. elastic programs solved in Step 2 in Alg. 6.4) is at most equal
to the cardinality of the smallest-cardinality IIS in the input set.

Proof: By Lemma 6.6, at least one constraint from each IIS is stretched at each
iteration of Step 2 of Alg. 6.4. Let k be the cardinality of the smallest-cardinality
IIS in the input set. Then in at most k iterations of Step 2, all members of the
smallest-cardinality IIS will have been enforced, rendering the partly-elastic
model infeasible and causing exit during Step 3. ■

103 6.1 General Logical Methods

Consider again the small example in which the IIS {B,D,F} appears in the set
of constraints {A,B,C,D,E,F,G}. Let us assume that our hypothetical solver
stretches just one constraint in the IIS at each iteration. The members of the IIS are
shown in boldface for clarity, and elasticized constraints are underscored:

1. {A,B,C,D,E,F,G} is feasible, B stretches, so is de-elasticized.
2. {A,B,C,D,E,F,G} is feasible, F stretches, so is de-elasticized.
3. {A,B,C,D,E,F,G} is feasible, D stretches, so is de-elasticized.
4. {A,B,C,D,E,F,G} is infeasible.
5. Output: the set {B,F,D}.

6.1.5 Speed-ups: Treating Constraints in Groups

The basic versions of both the deletion filter and the additive method treat the con-
straints in the model one by one. However Chinneck (1995) suggested that the
speeds of both algorithms can be improved by considering constraints in groups
and this idea was implemented for the analysis of infeasible MIPs by Guieu and
Chinneck (1999). For example, during deletion filtering, constraints could be
dropped in groups of size k. If the reduced model remains infeasible, then there is
a savings of k – 1 feasibility tests. If dropping the group causes feasibility, then re-
instate all k constraints and repeat the deletion filter over that set of k constraints
dropping individual constraints one by one; this results in 1 extra feasibility test
compared to the basic method. The efficiency of the method depends on how often
the model remains infeasible after dropping a group vs. how often dropping a
group results in feasibility. The choice of group size is obviously important.

A similar idea applies in the case of the additive method, except that the trigger
for repeating the analysis with a group size of 1 is that the addition of a group
causes infeasibility.

Guieu and Chinneck (1999) looked at several variations of grouping, as listed
below for the case of deletion filtering of MIPs. In all cases below, when the test
subset is feasible, the algorithm backtracks and re-tests the individual constraints
in the group. The group size is then reset as shown for the next group test. k is the
group size.

• Fixed Group Size. k is fixed by user.
• Additive Adaptive Grouping A.

Set k = 2.
IF test subset is infeasible THEN k ← k + 2.
ELSE k = maximum[k – 2, 1]

• Additive Adaptive Grouping B.
Set k = 2.
IF test subset is infeasible THEN k ← k + 2.
ELSE k = 2.

Set k = 1.
IF test subset is infeasible THEN k ← k × 2.
ELSE k = maximum[integer(k /2),1].

104

• Multiplicative Adaptive Grouping A.

 6 Isolating Infeasibility

–
–
–

–
–
–

–
–
–

The practical significance of the elastic filter derives from Theorem 6.8, which
provides a lower bound on the size of the smallest IIS in the input set. Assuming
that exactly one member of each IIS is stretched during each iteration of the elastic
filter, its output set will contain a smallest-cardinality IIS. This is a very desirable
property because small cardinality IISs are much easier for humans to diagnose.
While this assumption does not hold in general, it does hold quite often in
practice, so the elastic filter provides a very good heuristic for isolating small-
cardinality IISs. We will return to the use of the elastic filter to find useful
infeasibility isolations in a later chapter.

As suggested by Guieu and Chinneck (1999), Atlihan and Schrage (2006) use
binary search to generalize the grouping idea. M is the original set of inconsistent
constraints. As the algorithms proceed, the constraints are divided into several
subsets:

• I : set of constraints already shown to be in the IIS.
• D : set of constraints that contains at least one IIS member.
• S : set of constraints that is likely to contain an IIS member (though S may

contain no IIS members).
• R : set of removed constraints. The constraints in R are definitely not in the IIS.

Elastic programming is used extensively to assign the constraints to the differ-
ent subsets. For example, the set of stretched constraints after an elastic solution
helps identify constraints that are definitely or likely to be part of the IIS that is
eventually isolated.

INPUT: an infeasible set of constraints M.
0. T = M; I = R = S = ∅.
1. IF |T | ≤ 1 THEN:
 1.1. I ← I + T.
 1.2. IF I is infeasible THEN exit.
 1.3. T ← S; S ← ∅.
 1.4. IF |T | ≥ 2 THEN go to Step 1.
 1.5. T2 ← T; T1 ← ∅.
 ELSE
 1.6. Split T into T1 and T2.
2. IF {I + S + T1} is feasible THEN:
 2.1. S ← S + T1
 2.2. T ← T2
 ELSE
 2.3. R ← R + T2
 2.4. T ← T1
3. Go to Step 1.
OUTPUT: I is an IIS.

Alg. 6.5. The depth first binary search filter

105 6.1 General Logical Methods

• Multiplicative Adaptive Grouping B.
Set k = 1.
IF test subset is infeasible THEN k ← k × 2.
ELSE k = 1.

For the specific MIP experiments in (Guieu and Chinneck 1999), the most effi-
cient grouping algorithm proved to be a fixed group size of k = 4. Further experi-
mentation is needed to determine whether this choice is a good general choice, or

optimization types or with specific characteristics.
whether other grouping algorithms or sizes are better for models of other

–
–
–

IIS {B,D,F} appears in the set of constraints {A,B,C,D,E,F,G,H}. The members of
the IIS are shown in boldface:

• T = {A,B,C,D,E,F,G,H}; I = R = S = ∅.

1 2

• {I + S + T1 } = {A,B,C,D} is feasible, so S←{A,B,C,D}, and T←{E,F,G,H}.
• Split T into T1 = {E,F} and T2 = {G,H}.
• { I + S + T1 } = {A,B,C,D,E,F} is infeasible, so R←{G,H}, and T←{E,F}.
• Split T into T1 = {E} and T2 = {F}.
• { I + S + T1 } = {A,B,C,D,E} is feasible, so S←{A,B,C,D,E}, and T←{F}.
• |T | ≤ 1, so I←{F}.
• I feasible, so T←{A,B,C,D,E}; S← ∅.
• Split T into T1 = {A,B,C} and T2 = {D,E}.
• { I + S + T1 }={F,A,B,C} is feasible, so S←{A,B,C}, and T←{D,E}.
• Split T into T1 = {D} and T2 = {E}.
• { I + S + T1 }={F,A,B,C,D} is infeasible, so R←{G,H,E}, and T←{D}.
• |T | ≤ 1, so I←{F,D}.
• I feasible, so T←{A,B,C}; S← ∅.
• Split T into T1 = {A,B} and T2 = {C}.
• { I + S + T1 }={F,D,A,B} is infeasible, so R←{G,H,E,C}, and T←{A,B}.
• Split T into T1 = {A} and T2 = {B}.
• { I + S + T1 } = {F,D,A} is feasible, so S←{A}, and T←{B}.
• |T | ≤ 1, so I←{F,D,B}.
• I is infeasible, so exit with I = {F,D,B} as the output IIS.

As this example shows, the DFBS algorithm has characteristics of both the de-
letion filter and the additive method, both with grouping. If the subset { I + S+ T1 }
tested in Step 2 is feasible, then constraints are added to the testing set S in Step
2.1, but if { I + S + T1 } is infeasible, then constraints are permanently deleted in
Step 2.3. In both cases, half of the constraints in the testing set T are either added
or deleted.

• Split T into T = {A,B,C,D} and T = {E,F,G,H}.

106 6 Isolating Infeasibility

The crux of the algorithm is Step 1.6 where the testing set is subdivided. The
simplest subdivision algorithm is to divide the set in half. We will illustrate
the working of the algorithm using binary subdivision (where the set cannot be
equally subdivided we make T1 the larger set), and a small example in which the

Atlihan and Schrage’s Depth First Binary Search Filter (DFBS) uses a dynamic
group size, the simplest form of which drops half of the constraints remaining in
the set that is known to contain at least one constraint belonging to the IIS that is

Note that the IIS isolation via the DFBS algorithm requires 10 feasibility tests
in this small example vs. the 8 that would be required by a straight deletion filter
or the 15 required by a straight additive method. This is because the IIS constitutes

being isolated. The general DFBS algorithm is given in Alg. 6.5.

that the stretched constraints after an elastic solution are known to be involved in
some IIS, hence it is better to focus attention on those stretched constraints while
deleting other constraints if possible. A subset of constraints that includes a
stretched constraint then becomes the focus of a binary search. The details are
shown in Alg. 6.6.

Di: set that contains at least one IIS member.

INPUT : an infeasible set of constraints M.
0. k = 0; S = M; R = ∅; Di = ∅; for all i ≤ k.
1. IF S = ∅ and | Di| = 1 for all i ≤ k THEN
 1.1. I = D1 ∪ D2 ∪ … Dk; exit.
2. IF |S| = 1 and |Di| = 1 for all i ≤ k THEN
 2.1. T←S; T2←T; T1← ∅.
 ELSE

i 1 k
 2.3. Split T into T1 and T2.
3.
 the constraints in T2 are elasticized.
4. IF feasible THEN
 4.1. Form the set T3 as a subset of the set of stretched constraints.
 4.2. IF T = S THEN
 4.2.1. k←k + 1; Dk ← T3; S←S \ T3.
 ELSE
 4.2.2. Dk←T3; S←S∪T \ T3.
 ELSE
 4.3 IF T = S THEN
 4.3.1. R←R∪T2; S←S \ T2.
 ELSE
 4.3.2 Dk←T1; R←R∪T2.
5. Go to Step 1.
OUTPUT: I is an IIS.

Alg. 6.6. The generalized binary search filter

 2.2. T←S or T←D ∈ {D , …, D } such that |T | ≥ 2.

107 6.1 General Logical Methods

a large portion of the model and is well distributed within the list of constraints. In
a larger model where the proportion of IIS members is smaller and the members
closer together in the list, the DFBS algorithm can be much more efficient. Atli-
han and Schrage (2006) show that if there are k constraints in the IIS that is iso-
lated, then DFBS requires fewer feasibility tests than a deletion filter if

2 2
in advance. They also introduce a few simple modifications to the splitting rules

Atlihan and Schrage (2006) also introduce another constraint grouping algo-
rithm called the Generalized Binary Search Filter (GBF). The main idea here is

based on the relative size of |I | and |M | to improve this value somewhat.

k·log (|M |) < |M |, or k < |M | / log (| M |), though of course k cannot be known

Solve elastic program consisting of the constraints M \ R in which

• T3 = {F}.
• T = S so k=1; D1 = {F}; S = {A,B,C,D,E,G,H}.
• T = {A,B,C,D,E,G,H}; T1 = {A,B,C,D}; T2 = {E,G,H}.
• Solve elastic program {A,B,C,D,E,F,G,H}: infeasible.
• T = S so R = {E,G,H}; S = {A,B,C,D}.
• T = {A,B,C,D}; T1 = {A,B}; T2 = {C,D}.
• Solve elastic program {A,B,C,D,F}: feasible, D stretches.
• T3 = {D}.
• T = S so k = 2; D2 = {D}; S = {A,B,C}.
• T = {A,B,C}; T1 = {A,B}; T2 = {C}.
• Solve elastic program {A,B,C,D,F}: infeasible.
• T = S so R = {C,E,G,H}; S = {A,B}.
• T = {A,B}; T1 = {A}; T2 = {B}.
• Solve elastic program {A,B,D,F}: feasible, B stretches.
• T3 = {B}.
• T = S so k = 3; D3 = {B}; S = {A}.
• |S| = |D1| = |D2| = |D3| = 1 so T = {A}; T2 = {A}; T1 = ∅.
• Solve elastic program {A,B,D,F}: infeasible.
• T = S so R = {A,C,E,G,H}; S = ∅.
• S = ∅ and |D1| = |D2| = |D3| = 1 so I = {F,D,B} and exit.

The GBS algorithm solves 6 elastic programs en route to finding the IIS, as
compared to a maximum of 3 elastic programs and 3 deletion filter iterations for
the usual elastic filter followed by deletion filter. Again, the relative efficiency
depends on the size and placement of the IIS in the set of constraints.

To better understand how the GBS algorithm operates, look at the sequence of
elastic programs solved in the small example. This shows how the binary search
gradually identifies elements that must be part of the IIS.

There are various possibilities for selecting T in step 2.2. T could be selected as
the subset of largest cardinality, which leads to many subsets Di. Because the

this gives a more accurate (i.e. higher) lower bound earlier.

108 6 Isolating Infeasibility

To illustrate the workings of the algorithm, consider the IIS {B,D,F} that ap-
pears in the set of constraints {A,B,C,D,E,F,G,H}. As before, when called to split
the set T into two subsets T1 and T2, we do so equally, or give T1 the extra member
in case |T | is odd. The members of the IIS are shown in boldface and elasticized
constraints are underlined:

• M = {A,B,C,D,E,F,G,H}.
• k = 0; S = {A,B,C,D,E,F,G,H}; R = ∅; Di = ∅ for all i ≤ k.
• T = {A,B,C,D,E,F,G,H}; T1 = {A,B,C,D}; T2 = {E,F,G,H}.
• Solve elastic program {A,B,C,D,E,F,G,H}: feasible, F stretches.

number of subsets k is a lower bound on the cardinality of the IIS being isolated,

sufficiently different from the last one that the previous basis is not very useful in
providing an advanced start.

6.1.6 Speed-ups: Combining the Additive Method and the Deletion
Filter

The three basic methods described so far can be combined in several ways to pro-
duce faster and more effective isolation methods. We have already seen how all
three can be combined in the Generalized Binary Search algorithm (Alg. 6.6). The
same principle will hold later when we introduce methods specialized for different
classes of mathematical programs such as LPs.

As suggested by Guieu and Chinneck (1999), the additive and deletion methods
are very easily combined: simply run the additive method until feasibility is first
detected and then change to the deletion filter for the final IIS isolation. Details of
the additive/deletion algorithm are given in Alg. 6.7.

C: ordered set of constraints in the infeasible model.
T: test set of constraints.

INPUT: an infeasible set of constraints C.
0. Set T = ∅.
1. FOR each constraint ci in C:
 Set T = T∪ ci.
 IF T infeasible THEN go to Step 2.
2. FOR each constraint ti to t in T:
 Temporarily drop the constraint ti:
 Test the feasibility of the reduced set:
 IF feasible THEN return dropped constraint to T.
 ELSE (infeasible) T←T \ ti.
OUTPUT: T is an IIS.

Alg. 6.7. The additive/deletion method

|T |–1

109 6.1 General Logical Methods

In both the DFBS and GBS algorithms there are also various ways to subdivide
T into T1 and T2 where required. This can be done in a straightforward binary
manner as in the worked examples, or randomly. In GBS it can also be done based
on criteria such as the number of times a constraint has been previously stretched
(e.g. if a constraint has stretched relatively frequently, then we may assign it to T2
to encourage an infeasible result and the augmentation of the set R of removed
constraints).

Atlihan and Schrage (2006) show empirically that the DFBS and especially the
GBS grouping strategies can be very effective, particularly for nonlinear and
mixed-integer programs. They are less advantageous for linear programming
where basis re-use is more of a factor in overall speed; in general they require
fewer feasibility tests, but they take longer because the next feasibility test is

Feng (1999) describes a method for isolating IISs based on sampling the solution
space randomly. A simple example in Fig. 6.2 illustrates the concept. There are 4

tuples associated with the sample points.

Fig. 6.2. Identifying an IIS by sampling

An IIS is found by solving the associated set covering problem: find the small-
est cardinality set of constraints (columns in the set covering matrix) such that all
of the tuples are covered. The solution to this set covering problem yields the

D

C
B

A

a
b

c
d e

f g h

i

j

Set covering matrix
over (A,B,C,D):
a (0,1,0,1)
b (0,0,1,1)
c (1,0,1,1)
d (0,1,1,0)
e (0,0,1,0)
f (0,1,0,0)
g (1,1,1,0)
h (1,0,1,0)
i (1,1,0,0)
j (1,0,0,0)

value that indicates whether the associated constraint is satisfied (value is 0) or

110

4-tuple is associated with each sample point. Each entry in the 4-tuple is a binary

6.1.7 Sampling Methods

violated (value is 1). A set covering matrix is constructed from the complete set of

 6 Isolating Infeasibility

Note that the deletion filter in Step 2 of Alg. 6.7 does not test the final

constraint in T. It is already known that this constraint is part of the IIS being
isolated since it triggered infeasibility during the additive method hence there is no
need to test it. The worst-case time complexity of the additive/deletion method
occurs when C itself constitutes an IIS. In this case there will be m additive

can be significantly more efficient than either the deletion filter or the additive
method by itself.

last IIS constraint in C: if it occurs early in C then the additive/deletion method

method feasibility tests followed by m–1 deletion filter feasibility tests for a total
of 2m –1 feasibility tests. In practice, efficiency is affected by the location of the

linear inequalities A through D, and a set of 10 sample points a through j. A

solve. For this reason, the method
has not been used in practice,
though it is of theoretical interest.

MProbe software (Chinneck 2001,
2002) samples the functions defin-
ing an optimization model within ei-

the constraints that defines a convex
envelope. One of the measures returned for each constraint is its
fined as the fraction of sample points that violate the constraint. If an inequality
constraint reports an effectiveness of 1.0 then no sample points satisfied the con-
straint, and the model is most likely infeasible; see Fig. 6.3. For equality con-
straints, a constraint effectiveness of 1.0 is returned in either of two cases: (i) if the
function value is greater than the right-hand side constant at all sample points, or
(ii) the function value is less than the right-hand side constant at all sample points.

Note that an IIS is not isolated by this sampling method. However, the con-
straint reporting an effectiveness of 1.0 is isolated as a constraint that cannot be
satisfied relative to the bounds and constraints that define the sampling enclosure,
and hence is a good candidate for further analysis.

sampling
enclosure

Fig. 6.3. Sampling indicates infeasibility rela-
tive to constraint

effectiveness, de-

difficult to verify in practice. Third,

As described in Sec. 5.2, the

the resulting set covering matrix may

ther a box enclosure, or a subset of

be very large, and hence difficult to

111 6.2 Methods Specific to Linear Programs

of them is violated at every point in the solution space? The effectiveness of the
method is of course very dependent on how well the sample points cover the solu-
tion space.

Sampling methods have a number of major limitations that restrict their use in
practice. First, the result returned very much depends on whether a suitable subset
of the relevant subspaces was sampled. For instance, if the sample point j were
missed in the example, then the smallest cardinality set cover returned would
be {B,C}, which is clearly not an IIS. This implies that a great number of sample
points are needed, though steps can be taken to reduce the number. Second,
the method is restricted to models composed entirely of inequalities and cannot
handle equality constraints, or even implied equalities generated by inequalities.
Third, the method is restricted to convex constraints, a condition that may be

smallest cardinality IIS under certain conditions. It is easy to verify by inspection
in this small example that (i) the smallest cardinality set cover is {A,B,C}, and
that (ii) this is the only IIS in the model. If the sampling points provide good cov-
erage of the sample space, then the associated set covering problem is really an-
swering this question: what is the smallest set of constraints such that at least one

tial phase 1 itself. The ratios seen in practice are generally consistent with theo-
retical analyses presented by Chinneck and Dravnieks (1991). Of course the a / b
ratio achieved for a particular model depend on factors such as the relative cardi-
nality of the IIS vs. the entire set of constraints in the LP and the combination of
IIS isolation algorithms applied.

There are a number of IIS isolation methods that are specific to linear programs
in that they take advantage of the properties of linear systems. Some of these
methods provide a very significant improvement in the speed of IIS isolation.
Such methods are the subject of this section.

We will refer several times to a handy collection of infeasible linear programs
that is available online in the netlib collection (Chinneck 1993). The basic charac-
teristics of these models are shown in Table 6.1. The models cover a range of
sizes, characteristics, origins, and difficulty (both to solve and to analyze). The
infeasibility is original in a number of the cases, but is introduced in many of the
models by adjusting a constraint in a feasible model to cause infeasibility. Some

 details are available in the online readme file.

112 6 Isolating Infeasibility

provided both by pivoting and interior point methods. All of these elements have a
role to play in the development of efficient and effective methods for the analysis
of infeasible LPs.

All of the methods described in Sec. 6.1 are also effective for linear programs.
On first glance it may seem that these methods are relatively slow, given that they
may require the solution of a significant number of LPs. However they can be sur-
prisingly fast due to the advanced start that each LP solution provides for the next.

Chinneck (1994) compares (a) the computer time needed to find an IIS (after
phase 1 has completed) to (b) the computer time needed to identify infeasibility in
the first place (i.e. the phase 1 time) for his modified version of the MINOS LP
solver. For the combination of methods used in his study (sensitivity filter, elastic
filter, deletion filter), the ratio a / b is frequently very small. In other words, it is

6.2 Methods Specific to Linear Programs

Analysis of infeasibility is easiest when the constraints are restricted to linear
forms and associated variable bounds in real-valued variables, i.e. linear programs.
For one thing, it is known that the maximum cardinality of any IIS is n + 1 when
there are n variables in the linear model (Chvátal 1983, p. 146). We are also able
to make use of sensitivity analysis, alternative forms of the LP, and information

often much faster to isolate an IIS after phase 1 has ended than to complete the

Table 6.1. Characteristics of the netlib infeasible LPs

Model

Rows

Columns

Nonzeroes
bgdbg1 349 407 1485
bgetam 401 688 2489
bgindy 2672 10116 75019
bgprtr 21 34 90
box1 232 261 912
ceria3d 3577 824 17604
chemcom 289 720 2190
cplex1 3006 3221 10664
cplex2 225 221 1059
ex72a 198 215 682
ex73a 194 211 668
forest6 67 95 270
galenet 9 8 16
gosh 3793 10733 97257
gran 2569 2520 20151
greenbea 2505 5405 35159
itest2 10 4 17
itest6 12 8 23
klein1 55 54 696
klein2 478 54 4585
klein3 995 88 12107
mondou2 313 604 1623
pang 362 460 2666
pilot4i 411 1000 5145
qual 324 464 1714
reactor 319 637 2995
refinery 324 464 1694
vol1 324 464 1714
woodinfe 36 89 209

6.2.1 The Reciprocal Filter

Chinneck (1997b) defines the reciprocal filter, which applies when a variable or a
row constraint has a pair of distinct upper and lower bounds.

Theorem 6.9: The reciprocal filter (Chinneck 1997b). In the absence of simple
upper and lower bound reversal, if a variable or row constraint has distinct upper
and lower bounds and one of the bounds is involved in an IIS, then the other
bound cannot be involved in the same IIS.

Proof: An IIS can be rendered feasible by stretching one of its members until a
feasible point is reached. The constraint stretching creates at least one point that
satisfies the stretched version of the constraint and all of the other members of the
IIS, thereby rendering the IIS feasible. Since this new point already satisfies the

113 6.2 Methods Specific to Linear Programs

other bound on the constraint, there is no need to stretch the other bound in order
to satisfy the other members of the IIS, hence it cannot be a member of the IIS.

The reciprocal filter depends on the fact that bound constraints are linear and
parallel. It can be used to eliminate the second bound on a constraint as soon as
the first bound is identified as being part of the IIS being isolated. This may re-
duce the number of feasibility tests in the deletion filter and the additive method.

6.2.2 The Sensitivity Filter

Chinneck and Dravnieks (1991) presented the sensitivity filter as a way of quickly
eliminating many constraints that are not involved in the infeasibility detected by
the phase 1 LP solution. It uses the fact that a phase 1 solution of an infeasible LP
is a partially elastic program, and will of necessity stretch a constraint by assign-
ing nonzero values to one or more of the artificial variables, in the same way that
an elastic program stretches a constraint by assigning nonzero values to one or
more elastic variables. A phase 1 (or elastic) solution of an infeasible LP will thus
be sensitive to an infinitesimal adjustment of the RHSs of the stretched constraints
or the constraints that oppose them to cause the stretching. But the phase 1 objec-
tive function will never be sensitive to an infinitesimal adjustment of the RHS of a
constraint that is not in the IIS(s) detected by the phase 1 solution. The sensitivity
filter is summarized in Alg. 6.8.

C: ordered set of constraints in the infeasible model (includes both
 functional constraints and variable bounds.

INPUT: an infeasible set of constraints C.
1. Solve the phase 1 LP.
2. For every ci in C:
 2.1 If the reduced cost of ci is 0, then C = C \ ci.
OUTPUT: C contains at least one IIS.

Alg. 6.8. The sensitivity filter

Theorem 6.10: Functional constraints found by sensitivity filter (Murty 1983).
The set of functional constraints having nonzero shadow prices in the optimal tab-
leau of a phase 1 LP which reports infeasibility contains all of the functional con-
straints in a least one IIS. ■

Roodman (1979) provides a similar argument and is listed as a reference by
Murty.

Theorem 6.11: Nonnegativity constraints in IISs (Murty 1983). Original vari-
ables having nonzero reduced costs in the optimal tableau of a phase 1 LP solution

The important fact resulting from Theorems 6.10 and 6.11 is that the output set
of constraints following a sensitivity filter is still infeasible because it still contains

114 6 Isolating Infeasibility

for an infeasible LP identify nonnegativity constraints that are involved in IISs. ■

■

one or more IISs. Further it is usually of much reduced size since all of the con-
straints that are not involved in the detected infeasibility will have been removed.
However the output is not guaranteed to include a single IIS: it must be further
processed by the deletion filter or the additive method to guarantee this.

The sensitivity filter has several important properties. First, it is very inexpen-
sive, involving only the inspection of the results of a phase 1 LP solution. Very
large numbers of constraints are immediately eliminated from further considera-
tion. Second, the output set is not guaranteed to include all of the constraints in all
of the IISs in the model (Chinneck and Dravnieks 1991, Observation 7). This hap-
pens because the phase 1 LP is partly elastic, and stretches constraints to reach the
optimum phase 1 solution in the expanded space created by adding artificial vari-
ables. See the example in Fig. 6.4, in which constraint B stretches from its original
position in the left diagram to its final position at B’ after the phase 1 solution as
shown in the right diagram. Constraint A, which is in the IIS {A,B}, has a reduced
cost of zero after the phase 1 solution and so is removed by the sensitivity filter.

Fig. 6.4. The sensitivity filter

It is possible to identify more constraints that are part of some IIS by using an

extension of the sensitivity filter. Additional implicated constraints can be found
by examining the LP basis inverse matrix B . The nonzero elements in a row of
B corresponding to a basic artificial/elastic variable index the constraints whose

of the constraints so indexed may not have been identified by the sensitivity filter,
and hence can be added to the output set. Constraints may be in this situation be-
cause the effect of increasing a certain elastic variable is exactly counterbalanced
by a decreasing effect on another elastic variable, hence the net reduced cost is
zero.

Where there is degeneracy in the solution of the phase 1 elastic LP, as indicated
by a basic variable with a value of zero, there may be additional constraints that
are tight, and which form part of an IIS, but which are not included in the output
set produced by the sensitivity filter. These constraints are indexed by the nonzero
elements in the row of B belonging to the basic variable with value zero. These

A B

C

D

B' A

C

D

Original. Two IISs:
{A,B}, {B,C,D}

After phase 1.
One IIS: {B’,C,D}

–1

–1

–1

RHSs affect the final value of the corresponding artificial or elastic variable. Some

115 6.2 Methods Specific to Linear Programs

constraints can also be added to the output set of the sensitivity filter (Chinneck
and Dravnieks 1991).

The sensitivity filter is easily combined with other IIS isolation procedures to
produce faster hybrid methods, as we will see later in this chapter. Further, it has
the property that it tends to isolate larger IISs when applied immediately following
the initial phase 1 that recognizes infeasibility. Fig. 6.4 is an example of this phe-
nomenon: the smallest cardinality IIS is {A,B}, and yet the larger IIS {B,C,D} ap-
pears in the output set and will be positively identified after further analysis. This
probably happens because the overlapped constraints in a cluster are the cheapest
to stretch because they eliminate more than one IIS at a time, and the larger IISs
require a larger stretch on average, so the smaller IISs are bypassed. We return to
this characteristic in Sec. 6.2.7 when we are concerned with finding IISs that are
easiest to understand.

6.2.3 Pivoting Methods

Pivoting methods rely on a series of theorems that permit the use of simple pivot-
ing to identify the constraints in an IIS. Van Loon (1981) developed the first such
pivoting method. His method relies on two main theorems about infeasibility in
systems of linear inequalities:

Theorem 6.12: IIS matrix rank (Motzkin 1936). Where there are p rows in an
IIS, the coefficient matrix of the IIS has rank p – 1. ■

Van Loon presents a stronger version of this theorem based on an earlier theo-
rem by Fan (1956):

p × n matrix (nonnegativity constraints included in Ax ≤ b), is irreducibly incon-

exist numbers λi > 0 such that ∑ =
=

p

i ijia1
0λ and ∑ =

p

i iib1
λ < 0. ■

Van Loon also notes the following result derived from these theorems (Chvátal
(1983) subsequently provides a proof). This simplifies the search for a set of con-
straints that meet the conditions described in the previous two theorems.

Theorem 6.14: IIS dimension (Chvátal 1983, p. 146). Every unsolvable system
of linear inequalities in n variables contains an unsolvable subsystem of at most
n + 1 inequalities. ■

Van Loon (1981) introduces a further theorem that establishes conditions under
which the tableau developed by various simplex variants will recognize the condi-
tions described in Theorem 6.13. For the system Ax + y = b with y ≥ 0, solve the
system in terms of a single slack variable y1, thus treating the corresponding row
as if it were the objective function of an LP. We use this notation in the following

1
1 B N

1

trix of A after the removal of row 1 (the row for which s1 is the slack variable), b1
is the vector b without b1, B is the columns of A1 corresponding to the basic vari-
ables, and N is the columns of A1 corresponding to the nonbasic variables.

sistent if and only if (i) there exist p – 1 linearly independent rows, and (ii) there

theorem: y is the vector y without y , x is the vector of m–1 basic variables, x is

116 6 Isolating Infeasibility

Theorem 6.13: IIS conditions (Fan 1956). The system Ax ≤ b, x,b ≥ 0, A is a

the vector of n – m + 1 nonbasic variables, A is the remaining (m – 1)×n subma-

Theorem 6.15: Recognizing an IIS (Van Loon 1981). The system Ax + y= b,
y ≥ 0 is an IIS if and only if there is a slack variable, say y1, such that the sys-
tem can be solved with respect to y1 and a set xB of basic variables as follows: (1)
y1 = u – (w1)Ty1, (2) xB = B b1− B NxN − B y1, with u < 0 and w1 > 0. ■

Thm 6.15 allows an LP solver to recognize an IIS. Van Loon’s search for tab-
leaux that meet these conditions is undirected, and will in general enumerate many
bases that do not provide any information about the cause of the infeasibility.
Greenberg and Murphy (1991) point out that his method could be extended to find
IISs more efficiently by pivoting through alternative bases.

Gleeson and Ryan (1990) improve on Van Loon’s approach by developing a
method that avoids uninformative bases and enumerates only those bases that cor-
respond to IISs (in the absence of degeneracy). Their method rests on Thm. 6.16, a
variant of Farkas’ Theorem of the Alternative, and polyhedral theory.

Theorem 6.16: Efficient IIS pivoting (Gleeson and Ryan 1990). Let A be a ra-
tional m×n matrix and let b be a rational m-vector. Then the indices of the IISs of
the system Ax ≤ b are exactly the supports of the vertices of the polyhe-
dron P = {y∈Rm | yTA = 0, yTb ≤ –1, y ≥ 0}. ■

Gleeson and Ryan apply Dyer’s method (Dyer 1983) to efficiently enumerate
all of the bases of the system established in Thm. 6.16, and an IIS is identified at
each basis (though the same IIS may be identified multiple times if there is degen-
eracy). All of the IISs in a model are identified in this manner. A very similar re-
sult is reported by De Backer and Beringer (1991) based on Fourier’s theorem
(Fourier 1827).

While Gleeson and Ryan’s method is much more efficient than van Loon’s,
theoretical comparisons (Chinneck and Dravnieks 1991) show that it is likely to be
much slower than the filtering methods when only the first IIS is desired. Much of
the speed disadvantage is due to the necessity of converting equality constraints to
oppositely signed pairs of inequalities, which causes a blow-up in model size. In
comparison to the filtering methods, Gleeson and Ryan’s method operates at a
disadvantage in any system that has numerous nonnegativity constraints and
equality constraints. This is true of many general LPs, and especially true for net-
work LPs.

 Parker and Ryan (1996) modify Gleeson and Ryan’s method slightly by
showing that you can construct a cone instead of a polyhedron and identify IISs
based on the extreme rays of the cone:

Theorem 6.17: IIS cone (Parker and Ryan 1996). Let Ax ≤ b denote an incon-
sistent set of inequalities. Then the IISs are in 1 – 1 correspondence with the ex-

m T T

nonzero components of any extreme ray of P’ index an IIS. ■
The motivation for the work by Gleeson and Ryan (1990) and Parker and Ryan

(1996) is not to identify a first IIS quickly: it is instead to identify a minimum-
weight cover of the set of IISs. When the weights are all identical, this is the same
as the minimum-cardinality IIS set cover, i.e. the smallest set of constraints to re-
move from the LP such all of the remaining constraints constitute a feasible set.

–1 1– –1

117 6.2 Methods Specific to Linear Programs

treme rays of the cone P’ = { y ∈R | y A = 0, y b < 0, y ≥ 0}. In particular, the

This is an important question that we will return to in Chapter 7. Still, the pivoting
methods can be used to isolate individual IISs.

6.2.4 Interior Point Methods

Greenberg (1996a) shows how to use an interior point method solution of an
infeasible LP as a filter that separates constraints into two sets: (i) those that
might be part of some IIS, and (ii) those that cannot be part of any IIS. This is an
improvement over the sensitivity filter which cannot always identify all of the
constraints that are part of some IIS.

Ai x ≥ bi for i∈ I}. X (S) = {x| x is feasible in S}.The dual system
d

i
d

i ∈ d

slackness, i.e. Ai x = bi for all i∈σ(π). The solutions are strictly complementary if
i i

Theorem 6.18: Strictly complementary partition (Greenberg 1996a). If S is
d

Further, the support partition is the same for all strictly complementary solutions.■

0 0
i i

some IIS of S \S(I)}. S\S(I) is the set of violated constraints at the interior point
solution, and it is separated into two parts by the strictly complementary solution:
those that might be part of some IIS, and those that are not part of any IIS. This
partition can be used to eliminate the inequalities that are not part of any IIS.

6.2.5 Speed-ups: Combining Methods

As we saw in Section 6.1.6, the deletion filter and the additive method can be
combined to create a hybrid method that may be faster than either method by it-
self. The opportunity for combining methods is even greater when the IIS isolation
methods that are specific to LP are considered.

Combining the deletion and sensitivity filters results in the deletion/sensitivity

be used in a backtracking scheme to find other IISs.

support set σ (π) = {i| π > 0}. If x∈X(S) and π S then we have complementary

, is S = {π ≥ 0, πA = 0, πb ≥ 0}. Define LP: max πb subject to πA = 0, π ≥ 0

the set of indices for which the coordinate is positive. A solution in X(S) has the

If the optimal solution to LP is obtained by an interior point method, then the
optimal partition, say π , is strictly complementary. Now σ(π) = {i| A x ≥ b is in

consistent, there exists a strictly complementary solution, (x, π) ∈ X(S) × X(S).

A x > b for all i∉σ (π). A strictly complementary solution induces a support parti-

Following Greenberg (1996a), let S ={

πb ≤ 1, π = 0 for i ∈ I. The support set σ(v) of a nonnegative vector v is

filter, one of the quickest ways to isolate an IIS. As shown in Alg. 6.9, the sensitiv-

118 6 Isolating Infeasibility

Ax ≥ b} be a finite collection of inequali-

ity filter is applied whenever an intermediate deletion filter test proves infeasible.
The deletion/sensitivity filter has the useful property given in Thm. 6.19 that can

ties. S(I) = {

tion, σ (π)∪ σ(Ax − b) on the indices of the inequalities.

INPUT: an infeasible set of linear constraints.
1. Solve the phase 1 LP.
2. Sensitivity filter the phase 1 result.
3. FOR each constraint in the set:
 3.1 Temporarily drop the constraint from the set.
 3.2 Test the feasibility of the reduced set:
 3.2.1 IF feasible THEN return dropped constraint to the set.
 3.2.2 ELSE (infeasible)
 3.2.2.1 Drop the constraint permanently.
 3.2.2.2 Apply the sensitivity filter.
OUTPUT: constraints constituting a single IIS.

Alg. 6.9. The deletion/sensitivity filter

Theorem 6.19: Deletion/sensitivity filter (Chinneck 1994). Assume a sensitivity

filter is applied to the phase 1 final basis which originally signals infeasibility.
During a subsequent deletion/sensitivity filtering, any constraint removed by the
deletion filter, along with any constraints removed by the sensitivity filter in the
same iteration, are part of a different IIS than the output IIS.

Proof: The initial sensitivity filter following the phase 1 solution which signals
model infeasibility retains only constraints which are part of some complete IIS in
the sensitivity filter output. If a constraint is subsequently removed by the deletion
filter, then it must be part of a different IIS than the final IIS eventually isolated by
the deletion/sensitivity filter. Any constraint removed by the sensitivity filter in
the same iteration must be part of an IIS with the deletion filtered constraint, oth-
erwise the phase 1 objective function would continue to be sensitive to it. ■

The sensitivity filter can also be combined with the additive method to yield the
additive/sensitivity method. This has a very beneficial effect on the speed of the
algorithm. The sensitivity filter is simply applied each time the additive method
discovers an infeasible set, and is applied to the current test set T. Any constraints
that can be eliminated from T are also eliminated from C, and hence are not in-
cluded in the additive testing on the next round. This is especially effective the
first time that the additive method detects infeasibility in T because numerous non-
IIS constraints may have been added to T prior to the infeasible outcome. See Alg.
6.10 for details.

The sensitivity filtering step continues to be useful even after the first infeasible
outcome in the additive method. The final constraint that triggered the original
infeasibility may be a member of several overlapped IISs, all of which appear in T.
If infeasibility is encountered a second or subsequent time, the algorithm may be
homing in on a particular IIS in the IIS cluster, meaning that there now exist
members of partial IISs in T, which will then be eliminated by the sensitivity filter.
After the first sensitivity filter, a result similar to Thm. 6.19 is also available for
the additive/sensitivity method.

119 6.2 Methods Specific to Linear Programs

C: ordered set of constraints in the infeasible model.
T: the current test set of constraints.
I: the set of IIS members identified so far.

INPUT: an infeasible set of constraints C.
0. Set T = I = ∅.
1. Set T = I.
2. FOR each constraint ci in C:
 Set T = T ∪ ci.
 IF T infeasible THEN
 Apply the sensitivity filter to T. Constraints dropped from T are
 likewise dropped from C.
 Set I = I ∪ ci.
 Go to Step 2.
3. IF I feasible THEN go to Step 1.
 Exit.
OUTPUT: I is an IIS.

Alg. 6.10. The additive/sensitivity method

The various independent methods can be combined in a variety of ways to im-
prove overall speed, or to provide improved characteristics such as the identifica-
tion of smaller IISs. Some possible combinations, including those mentioned so
far, are:

• Additive/deletion method
• Deletion/sensitivity filter
• Additive/sensitivity method
• Combine reciprocal filter with any method suitable for LP
• Elastic filter followed by deletion or deletion/sensitivity filter
• Elastic filter followed by additive or additive/sensitivity method
• Etc.

6.2.6 Guiding the Isolation

The modeler normally brings additional knowledge to the task of identifying the
cause of infeasibility. He may know, for example, that one part of the LP has been
well-tested and running reliably for a long time and hence is a very unlikely
source of difficulties, and hence would like to steer the IIS isolation away from
that part of the model. Or he may know that a complex new portion has been re-
cently added and so is the most likely source of infeasibility, and so would like to
steer the IIS isolation towards that part of the model.

120 6 Isolating Infeasibility

is treated during a deletion or deletion/sensitivity filter. Codes include (i) eliminate
immediately, before the IIS search begins, (ii) encourage elimination from IIS,
(iii) discourage elimination from IIS, and (iv) never eliminate. The “encourage”
and “discourage” codes are most useful in guiding the IIS search away from reli-
able portions of the model and towards suspect portions. Name masking can be
used to apply guide codes to many similarly named constraints simultaneously.
This is useful, e.g. in protecting large well-trusted portions of the model.

The guide codes influence the deletion or deletion/sensitivity filter as follows:

1.
comes feasible, issue a message and exit.

2.

courage elimination” or not specially coded.
3.

tion” or not specially coded.
4.

not apply the sensitivity filter.
5.

these.

Note that the output may not be an IIS under two conditions, both of which are
brought to the user’s attention. In Step 1, constraints that are essential to the IIS
may be removed immediately, rendering the model feasible. In Step 5, constraints
that should be dropped may be protected from doing so, so the output is not an IIS.
The sensitivity filter in Step 5 is only a partial solution to this difficulty. If there is
a single IIS in the constraints remaining after Step 4, then it will reliably indicate
which protected constraints could be dropped to yield that IIS. On the other hand,
the protected constraints could contain additional complete IISs which will not be
identified as candidates for elimination by the final sensitivity filter. It is for this
reason that the “never eliminate” code should normally only be applied to well-
tested parts of the model.

As we will see in the next section, there is an important distinction between the
functional constraints (or rows) and variable (or column) bounds in isolating IISs
in LPs. It is usually much easier to understand an IIS that has few rows, regardless
of the number of column bounds involved. For this reason, MINOS(IIS) allows
special guidance for the treatment of the column bounds via the IIS PROTECTION
parameter. In the first mode, column bounds are protected as much as possible;
they can be eliminated only by a deletion test. In the second mode, column bounds

121 6.2 Methods Specific to Linear Programs

Fortunately it is straightforward to guide the model in various ways. The ex-
perimental code MINOS(IIS) (Chinneck 1990, 1996a) demonstrates this: it allows
the user to tag individual constraints with codes that influence how the constraint

Remove all constraints coded for immediate removal. If the model be-

Deletion filter all constraints coded as “encourage elimination”. If the
sensitivity filter is applied, removed only the constraints coded as “en-

Deletion filter all constraints not specially coded. If the sensitivity fil-
ter is applied, remove only constraints coded as “encourage elimina-

Deletion filter all constraints coded as “discourage elimination”. Do

Do not deletion filter the constraints coded as “never eliminate”. In-
stead, run a sensitivity filter on these constraints simply to identify the
constraints that could possibly be removed; alert the modeler about

2. Elastic filtering.
3. Column protection options.
4. General guide codes.

Methods nearer the top of the list take precedence over those lower in the list.
For example, the column protection options operate by making wholesale settings
of guide codes on all of the constraints in the model to encourage the removal of
row constraints and discourage the removal of column bounds. Implementation
details make it difficult for the elastic filter to follow the guide codes, though
guiding the elastic filter is certainly possible to some extent.

Guiding the elastic filter would use the fact that a constraint that is never de-
elasticized will definitely not appear in the output IIS; constraints that are de-
elasticized may appear in the output IIS, though this depends on the final filtering
by the deletion filter or the additive method. This implies a rank-ordering of
the stretched constraints to de-elasticize after each elastic program solution:
(1) constraints coded “discourage removal”, (2) constraints not specially
coded, (3) constraints coded “encourage removal”. At each opportunity to
de-elasticize constraints, choose all of those from the non-empty group that is
highest in this list. Constraints coded “never remove” will of course simply be in-
cluded in the output of the elastic filter.

Weighting approaches can also be used to guide the isolation in various ways.
For example, the usual elastic objective of minimizing the sum of the elastic vari-
ables can be replaced by the objective of minimizing a weighted sum of the elastic
variables. The elastic variables associated with constraints that should be hon-
oured as much as possible can be given higher weights. In the same way, weights
ci can be applied to an objective function introduced in the alternative system in
Thm. 6.16 as suggested by Bruni (2005). The new objective to minimize Σcjyj in-
fluences which set of constraints is returned as the initial IIS.

6.2.7 Finding Useful Isolations

A modeling error resulting in infeasibility is often reflected in several different al-
ternative IISs, not all of which are equally easy for humans to understand. Which
of the several IISs is reported to the user can have a major impact on the speed of
diagnosis. Experiments with users show clearly that the IIS having the fewest row
constraints is the easiest to understand, and hence the most useful. For example,
one model generated two IISs: one involving 12 rows (of 2393 bounded rows) and

122 6 Isolating Infeasibility

are protected until all of the rows have been deletion filtered, then the columns are
deletion/sensitivity filtered (even if sensitivity filtering was not initially enabled).

In MINOS(IIS), the use of guide codes conflicts with some of the other IIS iso-
lation approaches, such as the elastic filter. Hence there is a strict hierarchy of
methods as follows:

1. IIS set covering (see Chapter 7).

model or a class of constraints for further analysis, e.g. the blending units, or per-
haps the crude oil supply limits in a refinery model. Variable bounds are rapidly
verified and are therefore of less consequence to the analysis process. The analyst
would rather accept more variable bounds in the IIS in return for fewer rows. In
general, minimizing the number of rows in an IIS also tends to reduce the number
of variable bounds involved because the smaller number of rows interacts with
fewer variables. A side effect of minimizing the number of rows is usually a re-
duction in the total size of the IIS.

Chinneck (1996a, 1997b) raised the issue of finding IISs that have few rows in
infeasible LPs, and discovered that combining and controlling the IIS isolation al-
gorithms can result in methods that usually return IISs that have few rows. One in-
teresting result of the analysis was the observation that the sensitivity filter, which
greatly increases the speed of IIS isolation, tends to return IISs of larger cardinality.

One way to find the minimum row-cardinality IIS is to enumerate all of the IISs
in the model, and then choose the one having the fewest rows. Unfortunately,
Chakravarti (1994) showed that the number of IISs in an infeasible LP could be
exponential in the worst case. This means that, in general, the minimum row-
cardinality IIS cannot be found in polynomial time by enumeration methods.
However Parker and Ryan show that their method of generating IISs while solving
the IIS set covering problem (see Sec. 7.2) can indeed identify small cardinality
IISs in reasonable amounts of time, and hence that this approach has some value
in practice. However, their empirical results show that their enumeration method
finds a smallest IIS that is larger than the IIS found by the heuristic methods de-
veloped below in about two-thirds of the cases studied, and never returns an IIS
having fewer rows than the heuristic methods. Further, it requires more time.

Mindful of the difficulties in enumerating IISs, Chinneck (1997b) instead takes
a heuristic approach which does not guarantee to find the minimum row-
cardinality IIS, but often finds IISs with a small row-cardinality. The heuristic
method makes use of the filtering algorithms described earlier. Their inherent
characteristics affect their ability to isolate IISs having few rows. We will review
the relevant characteristics of each method next.

As shown in Thm. 6.2, the deletion filter returns the IIS whose first member is
tested last. Obviously, it is not possible to predict in advance the ordering of the
constraints that will return the IIS having the fewest rows. However, a general
heuristic can be formulated based on this behaviour: order the constraints so that

123 6.2 Methods Specific to Linear Programs

68 columns, and another involving 1 row and 93 columns. Although the first IIS is
smaller in terms of the total number of constraints involved, the second is much
easier to interpret and to diagnose. In another model, one IIS involved all 323 of
the bounded rows, while another involved only 76, effectively confining further
analysis to about one quarter of the original model.

It is not surprising that analysts prefer IISs having few rows. Column bounds
are easy to understand, but rows tie together both variables and other rows in
complicated ways. Limiting the number of rows reduces the complexity of the
subsequent human analysis. A small number of rows helps to pinpoint part of the

deletion filter returns IISs having the most rows on average, while the reverse
deletion filter returns IISs having the fewest rows on average.

Similar thinking applies to the additive method. To make sure that few rows are
included in any output result, include all of the variable bounds in the testing set at
all times, while rows are added one by one as usual. The algorithm will eventually
terminate with the output of a minimal set of row constraints plus all of the col-
umn bounds. We will see how to deal with the excess column bounds presently.

As shown in Thm. 6.4, the additive method isolates the IIS whose last member
is tested first. Hence, as for the deletion filter, exactly which IIS is returned de-
pends on the ordering of the constraints. For both algorithms, assuming a random

IIS is unlikely to be returned. For the deletion filter, this is because some members
of the largest IIS are likely to be eliminated before the first member of a smaller
IIS is encountered. For the additive method, this is because an entire small IIS is

these methods will have reasonably good average case ability to identify IISs hav-
ing few members (or having few rows when the algorithm is modified as de-
scribed above).

The sensitivity filter greatly increases the speed of IIS isolation, but it has the
unfortunate side effect of tending to find IISs that have larger numbers of rows.
Why does this happen? It is mainly due to the operation of the phase 1 objective
function, which normally attempts to minimize the sum of the artificial variables.
The effect is to “stretch” some constraints by setting their artificial variables to
positive values, in effect moving the constraints as shown in Fig. 6.4. The final
positions of all of the constraints determine which ones the phase 1 objective is
sensitive to, and hence which ones are retained by the sensitivity filter for further
analysis: the phase 1 objective will always be sensitive to any stretched constraints
(as it will be to all of the active constraints).

The important fact is that the phase 1 process tends to stretch the constraints
that give the greatest reduction in the overall phase 1 objective function value per
unit of stretch, i.e. the constraints that are involved in the most IISs. Consider two
IISs that overlap on a single constraint: is it cheaper to stretch two constraints, one
from each IIS, or just the single overlapped constraint? Fig. 6.4 illustrates this

forward deletion filtering empirically: over 14 tested IIS isolation procedures, the
demonstrates the superiority of reverse deletion filtering over the normal

distribution of the members of the IISs through the list of constraints, the largest

likely to appear in the testing set before an entire large IIS. Hence we expect that

124 6 Isolating Infeasibility

rows as possible. In the MINOS linear programming code (Murtagh and Saunders
1987) that underlies Chinneck’s MINOS(IIS) code (Chinneck 1994), variables are
ordered as follows: (i) the original model variables, then (ii) the slack/surplus
variables for the rows. Deletion testing proceeds by removing and reinstating the
bounds on these variables as appropriate. Hence proceeding in the natural order of
the variables is detrimental to isolating IISs that have few rows. It is better to
proceed by first deletion testing the bounds on the slack/surplus variables for the
rows, followed by the bounds on the original variables. Since this is the reverse of

rows are eliminated before column bounds in an attempt to eliminate as many

the natural ordering of the variables found in many LP solver codes (such
as MINOS), it is referred to as reverse deletion filtering. Chinneck (1997b)

The elastic filter has the especially useful property described in Thm. 6.8: the
number of elastic filter iterations (i.e. elastic programs solved) is at most equal to
the cardinality of the smallest-cardinality IIS in the input set. Assuming that ex-
actly one member of each IIS is stretched during each iteration of the elastic filter,
its output set will contain a smallest-cardinality IIS, plus parts of all of the larger
IISs. The smallest cardinality IIS will be found when the elastic filter output set is
subjected to the deletion filter or additive method for positive identification of a
single IIS. There is no guarantee that exactly one member of each IIS is stretched
during each elastic solution, but experimentation shows that this does happen very
frequently.

If the goal is to find IISs having few rows, then a simple modification of the
elastic filter can assist. Since enforced constraints appear in the output set, enforce
only the variable bounds that stretch in each elastic program solution. Row con-
straints are enforced only when there are no stretched variable bounds in the elas-
tic solution. This process can be speeded considerably simply by starting the entire
elastic filter process with all of the variable bounds already enforced. This then
produces an output set that has a small number of row constraints, plus all of the
variable bounds. We now deletion filter just the row constraints in the output set.

At this point, the output set has a minimal set of row constraints, plus the full
complement of variable bounds, exactly the same situation as in a reverse deletion
filter before the variable bounds are tested or in the modified additive method.
From here forward, no further row constraints will be removed since all are defi-
nitely part of the IIS being isolated. This is the usual outcome of the strategy of
column protection (Chinneck 1997b), i.e. preserving all of the variable bounds un-
til a minimal set of row constraints has been identified. Column protection is very
helpful in identifying IISs that have few rows. Further, once a minimal set of row
constraints has been identified, sensitivity filtering can be safely used to remove
large numbers of variable bounds quickly, greatly speeding the overall process.

The modified elastic filter described above performs very well in empirical
tests (Chinneck 1996a, 1997b), giving results about as good as those for the re-
verse deletion filter and the modified additive method. The modified elastic filter
has a significant speed advantage over the other two methods for larger models,
but is slower on the smaller models.

125 6.2 Methods Specific to Linear Programs

effect. The smallest value of the phase 1 objective is achieved at the point defined
by the intersection of constraints B’ (the stretched version of constraint B), C, and
D: these are the constraints that will be retained by the sensitivity filter. Since the
phase 1 process tends to stretch as few constraints as possible (since this is
cheaper), this means that more members of the larger IISs tend to stay in place,
with the overlapped constraints tending to move. The side effect is that the smaller
IISs are bypassed as in Fig. 6.4. This effect is demonstrated empirically by
Chinneck (1997b): while the reverse deletion filter is among the best methods for
finding IISs having few rows, the reverse deletion/sensitivity filter is among the
worst. The inclusion of the sensitivity filter has negative consequences.

Another approach to reducing the number of rows in an IIS is to aggregate the
rows by simply summing them to yield a single row (Chinneck 1996b). This can
be especially effective in network LPs where the large number of row constraints
obscures a very simple diagnosis: incompatible input and output restrictions linked
by many flow conservation equations. Aggregation of the row constraints con-
denses the “bridge” of equations connecting the conflicting input and output re-
strictions. Consider the following network example (Chinneck 1996b):

Rows in the IIS:
c125: – x50 + x379 – x380 = –1825
c126: – x379 + x380 – x382 = –2535
c127: – x381 + x382 + x383 – x384 = –1658
c128: – x30 – x383 + x384 + x387 – x459 = –15466
c147: – x69 + x435 – x437 = –338
c148: - x435 + x437 + x438 x439 = –1037
c149: – x438 + x439 + x440

–

c151: – x443 + x444 + x446 – x448 = –1954
c153: – x446 + x448 + x449 – x450 = – 4255
c154: - x449 + x450 + x451 – x453 = – 5155
c155: – x451 + x453 + x454 – x455 = –1274
c156: – x454 + x455 + x456 + x457 – x458 – x463 = –1454
c157: – x387 – x456 + x458 + x459 = –6401
c158: – x457 + x463 + x464 – x491 = –14
c165: – x475 + x477 + x478 – x479 = –246
c166: – x478 + x479 + x480 – x482 = –232
c167: – x480 + x482 + x483 – x484 = –61
c168: – x483 + x484 + x485 – x486 = –1536
c169: – x485 + x486 + x487 – x488 = –3648
c170: – x487 + x488 + x489 – x490 = –3676
c171: – x464 – x489 + x490 + x491 = –1848

126

c150: – x440 + x442 + x443 – x444 = –16
– x442 = –5713

 6 Isolating Infeasibility

identified. It can be applied thereafter.
The best methods for finding IISs that have few rows are: (a) reverse deletion

fied additive method (with sensitivity filter enable after a minimal set of rows is
returned), and (c) modified elastic filter, followed by the reverse deletion filter
(with sensitivity filter enabled after the rows are deletion filtered). The modified
elastic filter is best for large models, the other two are best for smaller models.

(ii) Do not use the sensitivity filter until a minimal set of row constraints has been
deletion filter, the modified additive method, and the modified elastic filter.

filter (with sensitivity filter enabled after the rows are deletion filtered), (b) modi-

To summarize, the following two general principles assist in finding IISs that
have few rows: (i) Protect the variable bounds from elimination until a minimal
set of row constraints has been identified. This is the main principle in the reverse

Aggregation has been used for some time to analyze infeasibility in general LPs
(e.g. (Murty 1983)), but it is especially useful for the pure portion of network
models.

6.2.8 Analyzing Infeasible Network LPs

The most straightforward approach to analyzing an infeasible network LP is to
simply treat it as you would an infeasible general LP, applying the various IIS iso-
lation techniques described previously (Chinneck 1996b). Aggregation can be ap-
plied to the resulting IIS to improve ease of understanding. However a number of
more specialized methods are also available for ordinary flow-conserving net-
works. These rely almost exclusively on the supply and demand balancing proce-
dures by Gale (1957), Fulkerson (1959), Hoffman (1960), and Ford and Fulkerson
(1962).

As an example, the main theorem by Gale states that the total demand over a
network is feasible if and only if for every subset S of nodes, the total demand
over the complement of S is less than the total capacity of the arcs that cross from
S to its complement. The proof depends mostly on the minimum cut theorem.
Note that it applies to individual nodes as well as any larger collection of nodes.
These balancing rules are used to construct more sophisticated analysis procedures
such as those by Greenberg (1987b, 1988) and by Aggarwal et al. (1988).

As Greenberg and Murphy (1991) point out, the guidance provided directly by
the Gale-Fulkerson-Hoffman flow balancing algorithms is often insufficient to
clearly identify the cause of the infeasibility. More exact localization is needed.
Greenberg (1987a, 1988) combines the flow balancing results with logic about
network behaviour to yield heuristics that give better localization of infeasibility.
New specific tests such as path and cycle generation are combined with methods
akin to bound reduction and similar techniques described in Sec. 6.1.1. These heu-
ristics improve the usefulness of the base flow balancing techniques, but there is
no guarantee that an IIS will be isolated, or that the resulting reductions will be
helpful in understanding the infeasibility, as for all logical reduction/presolving
methods. These techniques are available in the ANALYZE software (Greenberg
1993a).

127 6.2 Methods Specific to Linear Programs

Column Bounds in the IIS:
x30 <= 12509
x50 <= 12509
x69 <= 14434
x475 <= 14434
x477 >= 0
Aggregated IIS Rows:
– x30 – x50 – x69 – x475 + x477 = – 60342

While diagnosis of the infeasibility is difficult in the full IIS, it is straightfor-

ward using the aggregated row and the column bounds: the column bounds con-
flict with the aggregate effect of the rows.

A related modeling error for networks is nonviability (Chinneck 1990a, 1990b,
1992), a structural condition in which the only feasible flow for some of the arcs is

method is the best approach for analyzing networks (Chinneck 1996b).

6.2.9 Software

and commercial LP solvers after their introduction in the early 1990s. A brief sur-
vey of some of the noteworthy software follows below. See also the earlier survey
by Chinneck (1997a). Note that presolving (which may occasionally detect infea-
sibility, but does not provide a useful analysis of the cause) is universally available
in commercial LP solvers.

CLAUDIA is a proprietary LP solver produced by BP Oil International (Main
1993a, 1993b). Earlier versions performed various analyses of infeasible LPs, and
IIS isolation was added in the mid-1990s. CLAUDIA uses a nonstandard phase 1
procedure in which an infeasible row called the control row is selected as the
objective function and pivoting is carried out to induce feasibility in the control
row subject to the other nonviolated constraints. Infeasibility is recognized when
the control row cannot be rendered feasible. This is similar to the elastic filter
except that any row constraints that are initially satisfied are immediately
enforced, whereas in the elastic filter constraints are enforced only after they have
been violated once.

128

zero. This condition can also be diagnosed using IIS isolation, as described in Sec. 9.2.
Detecting and analyzing nonviability as well as infeasibility in an integrated

Infeasibility isolation routines were rapidly adopted in both academic prototypes

 6 Isolating Infeasibility

Aggarwal et al. (1988) apply the Gale-Fulkerson-Hoffman theorems in a
maximum flow algorithm to develop a method for identifying a witness set of
nodes for which the net supply and the total outflow capacities conflict. They re-
fine the procedure so that it is able to identify a minimal witness set. Note that this
isolation is not as precise as an IIS since the LP constructed from the witness set
of nodes and incident arcs will in general include constraints that do not appear in
the associated IIS. Conversely, a minimal witness is easily obtained from an IIS
simply by listing the nodes whose equations appear in the IIS.

Straightforward flow balancing is not effective for more advanced network
forms such as generalized or processing networks in which flow conservation is
not guaranteed. These are still LPs however, so the general IIS isolation tech-
niques described earlier can be used.

MINOS(IIS) (Chinneck 1994, 1996a; Chinneck and Saunders 1995) is Chinneck’s
research code that incorporates all of the IIS isolation filtering algorithms for

nations. It also includes routines for finding the minimum cardinality IIS set cover
(see Chap. 7). It includes routines to guide the isolation as described in Sec. 6.2.6
and for finding IISs that have few rows as described in Sec. 6.2.7, and for producing
output IIS files that can be read by the ANALYZE software described below. The
The earliest version of MINOS(IIS) was produced around 1989.

LPs: the deletion, sensitivity, elastic and reciprocal filters, and their various combi-

balancing constraints, recognized by the naming convention, can be treated
differently during the analysis than constraints in other classes.

LINDO is a commercial LP solver. Its debug command applies a deletion filter
to infeasible LPs, though variable bounds are not tested, so the output is not a true
IIS. It further tests each member of the output “IIS” to determine how much effect
it has on removing all of the infeasibility in the entire model via the procedure out-
lined in Sec. 7.8.1. This results in a labeling of each IIS member as being “neces-
sary” (i.e. necessary to that particular IIS) or “sufficient” (i.e. sufficient to remove
all infeasibility in the model). The IIS isolation routines in LINDO date to about
1993, but binary search grouping strategies (see Sec. 6.1.5) have recently been
added. Primal unboundedness is also analyzed in LINDO using IIS isolation ap-
plied to the dual. See Sec. 9.1 for further information.

CPLEX is a commercial LP solver that offers a choice of two methods of isolat-
ing IISs: (i) a deletion/sensitivity filter applied to the rows and then the columns,
and (ii) an elastic filter followed by the first method. Method (i) is preferred if an
IIS is needed quickly, and method (ii) is preferred if an IIS having fewer rows is
needed. An aggregation of the rows can also be produced. These IIS isolation rou-
tines date to version 3.0, released in 1993. Cplex version 10.0 (released 2006) in-
cludes a conflict refiner that uses groups and preferences to allow some guidance
of the IIS isolation process, similar to the guide codes described in Sec. 6.2.6.

IBM’s OSL LP solver incorporated the IIS filtering routines in 1995, but is no
longer available.

Tamiz et al. (1995, 1996) built additive method routines into the FortLP LP
solver (Mitra and Tamiz 1988). There are several versions of the basic additive al-
gorithm, differing mainly in implementation details.

PROFLOW (Chinneck 1996b) is a computer tool for formulating, analyzing,
and solving network LPs of many forms, including processing networks.
MINOS(IIS) is used as the solver, hence IISs can be isolated if the network is in-
feasible. PROFLOW uses infeasibility analysis to isolate the cause in the case of
nonviability (see Sec. 9.2).

Xpress-Optimizer (Dash Optimization 2006) has included the ability to isolate
IISs in LPs since 1997. It uses a combination of the filtering algorithms to isolate
IISs and will also try to find IISs having a small number of rows. In addition, it
can search for several IISs at once.

129 6.2 Methods Specific to Linear Programs

A sensitivity filter is applied to the final infeasible control row to yield a set of
mutually incompatible constraints (MIC), but note that this is not necessarily an
IIS. Variable lower bounds of zero are ignored during processing and are not re-
ported by CLAUDIA. A straight deletion filter can be applied to the MIC to iso-
late an “IIS”. However, since the “IIS” may omit needed variable nonnegativity
constraints, it may not be a true IIS.

Another routine examines the effect on the total infeasibility of dropping indi-
vidual constraints. Constraints are then rank-ordered in terms of their impact on
the total infeasibility and presented to the analyst. This idea is a precursor of
Chinneck’s minimum cardinality IIS set covering heuristic (see Chap. 7).

Some analysis of the MIC members can be done using agreed-upon naming
conventions, providing added diagnostic power. For example, material flow

6.3 Methods Specific to Mixed-Integer Linear
Programming

The sole work on methods for isolating IISs in mixed-integer linear programs is
by Guieu and Chinneck (1999), hence this is the main subject of this section. We
will use the term MIP to refer to mixed-integer linear programs as well as fully in-
teger or binary programs, and any combinations thereof. The model must include
at least one integer or binary variable, along with linear constraints and variable
bounds.

Of course, the biggest difference between MIP and LP is the addition of the in-
teger (or binary) restrictions on some or all of the variables. This has far-reaching
effects, not only on the analysis of infeasibility, but on the very algorithms used to
optimize the model. As shown in Chap. 3, MIP models are typically solved by a
branch and bound procedure which has characteristics that make infeasibility
analysis difficult. First, infeasibility is not detected until the branch and bound tree
is fully expanded, with every leaf node reporting infeasibility. Little useful infor-
mation is available when infeasibility is detected. There is no single overall LP so-
lution that can be subjected to a sensitivity filter for example; instead there is a
large set of infeasible LPs, one at each leaf. Second, if the model is insufficiently
constrained, the branch and bound solution may not terminate. An example of
nontermination is given in Fig. 6.5. These characteristics have a severe negative
impact on the ability to isolate an IIS.

Note that these characteristics also exist if a branch and cut solution method is
applied.

130 6 Isolating Infeasibility

The Frontline Systems solvers, available as Microsoft Excel add-ins, have in-
cluded the ability to find IISs in infeasible LPs via the filtering methods since
1997. See Fylstra et al. (1998).

The XA solver from Sunset Technologies finds IISs using the filtering methods;
see e.g. Holmström et al. (2006).

ANALYZE (Greenberg 1993a) is a general purpose tool for manipulating and
analyzing linear programs. It includes a number of routines that are helpful in
analyzing infeasible LPs, including bound tightening, path and cycle tracing for
infeasible networks, row aggregation, a form of sensitivity filtering, and tools for
syntax-based explanation. While it is not able to isolate IISs directly, it can read
IIS output files produced by MINOS(IIS) and apply the tools mentioned above to
provide a deeper analysis of the infeasibility.

Another consequence of nontermination is that the branch and bound tree may
grow very large, possibly exceeding the available memory. It may also happen
that a model will eventually terminate, but requires an excessive number of itera-
tions to do so. For example, imagine that the two parallel constraints in Fig. 6.5
are angled very slightly towards one another so that they eventually cross at a
great distance from the origin. It may take a great number of iterations before

There is one degenerate case in which it is simple to identify an IIS: when the
initial LP relaxation is itself infeasible, an IIS can be isolated simply by using the
techniques for analyzing an infeasible LP. In the rest of this section we assume
that the initial LP relaxation is feasible, but the entire MIP is not. An example of
an infeasible MIP whose LP relaxation is feasible is shown in Fig. 6.6.

Few useful tools for analyzing infeasible MIPs are currently available.
Savelsbergh (1994) describes a bound-tightening presolve procedure for MIPs
(implemented in the MINTO solver (Nemhauser et al. 1994)) that may detect
infeasibility as a side effect of the reformulation. Backtracking the complete set of
reformulation operations may then isolate a set of constraints and integer
restrictions that cause the infeasibility. However, there is no guarantee that the
presolver will detect infeasibility, or that the backtrack of the reformulation
operations will provide any useful information. Greenberg also uses related
bound-tightening methods for dealing with binary variables in the reduce
command of his ANALYZE software (Greenberg 1993a). These methods all fall

 131

into the class of general logical methods for model reduction discussed in Sec.6.1.1
and have the same drawbacks for diagnosing infeasibility.

all-integer point
LP-relaxation

x
1

2

3

4

5

6

solution point

y

minimize x+y
x,y are integers
x,y nonnegative

Fig. 6.5. The branch and bound solution fails to terminate (Guieu and Chinneck
1999)

infeasibility can be determined. If the constraints are angled very slightly away
from each other, it may likewise require a great number of iterations before a
MIP-feasible point is reached.

6.3 Methods Specific to Mixed-Integer Linear Programming

IIS. Guieu and Chinneck (1999) develop methods for isolating small ISs in MIPs
while hoping to identify IISs as often as possible.

A MIP consists of constraints divided into three sets:

• LC: the set of linear constraints (or rows),
• BD: the set of variable bounds (upper and lower bounds, if any),
• IR: the set of integer restrictions. Variables in IR are restricted to taking on

integer values while variables not in IR are real-valued. Some integer variables
may be binary, having a solution restricted to the set {0,1}.

We denote the presence of an integer restriction on a variable xi by [xi]. Binary
variables are treated as integer variables with a lower bound of 0 and an upper
bound of 1. An IIS for a MIP consists of a subset of the constraints in LC, BD, and

The entire MIP consists of a linear objective function plus the complete set of
constraints {LC,BD,IR}. In an ordinary linear program, the set IR is empty. In an
integer linear program, all of the variables are in IR. In a mixed integer program,
at least one variable is in IR, and at least one variable is not in IR. The LP-

subset of constraints {LC,BD}. Since the LP-relaxation has fewer restrictions, its
feasible region is larger.

IR. In the non-degenerate case the IIS must include at least one member of IR.

132 6 Isolating Infeasibility

methods are the only ones that are appli-
cable to MIP, but they assume that the
solver is able to decide the feasibility
status of a set of constraints with perfect
accuracy (see Sec. 6.1). Given that the
branch and bound solution of a MIP may
not terminate, this assumption is not ful-
filled.

To avoid nontermination, an upper
limit can be imposed on the computa-
tional resources expended on a particular
model variant (e.g. an upper limit on the
number of branch and bound nodes de-
veloped, or the amount of memory con-
sumed). This limits the deletion filter and
the additive method to the identification
of an Infeasible Subset (IS), rather than an

feasible
region

all integer point

LP

A

B

C

x

y

Fig. 6.6. An infeasible MIP with feasible
LP relaxation (Guieu and Chinneck
1999)

Guieu and Chinneck (1999) investigate the application of the deletion filter and
the additive method to the problem of isolating IISs in infeasible MIPs, along with
their various combinations and speed-ups such as grouping. These general purpose

relaxation of a MIP is created by considering only the objective function plus the

LC0, BD0, IR0 are the original sets of constraints.

INPUT: an infeasible MIP.
0. status←“IIS”.
 0 0
 IF T is infeasible, go to Step 2.
 T←T∪IR0.
1. FOR each irk∈IR0:
 IF T \{irk} is infeasible, T←T\{irk}.
 ELSE IF T \{irk} exceeds computation limit THEN
 status←“IS”, label irk dubious.
2. FOR each lck∈LC0:
 IF T \{lck} infeasible, T←T \{lck}.
 ELSE IF T \{lck} exceeds computation limit THEN
 status←“IS”, label lck dubious.
3. BD1←BD0\{BDs on variables not in lc∈T}.
 T←(T \BD0)∪BD1.
 FOR each bdk∈BD1:
 IF T \{bdk} is infeasible, T←T \{bdk}.
 ELSE IF T \{bdk} exceeds computation limit THEN
 status←“IS”, label bdk dubious.

Alg. 6.11. The (IR-LC-BD) deletion filter for MIPs

133

 T =LC ∪BD .

OUTPUT: If status =“IIS”, T is an IIS, else T is an IS.

To avoid dubious constraints as much as possible it is preferred that all vari-
ables be both upper and lower bounded. For the same reason it is also preferred
that the variable bounds stay in place as long as possible during deletion filtering.
Because the size of the branch and bound tree tends to increase with the number of
integer restrictions it is preferable to try to eliminate IRs before LCs or BDs. This
helps in generating smaller branch and bound trees as the deletion filter proceeds.

but it is not known whether it is also an IIS. It may be possible to apply post-
processing tests to the output IS to see whether the dubious constraints can be
eliminated to yield a true IIS, but appropriate tests are not known at this time
(other than increasing the computation limits and re-running the deletion tests on
just the dubious constraints).

that does exceed a computation limit, that particular constraint is labeled dubious
and is retained in the output set. This guarantees that the output set is infeasible. If
there is at least one dubious constraint in the output set, then it is definitely an IS,

6.3.1 A Deletion Filter for MIPs

Applying a straightforward deletion filter to an infeasible MIP necessitates the
solution of |LC| + |BD| + |IR| MIPs, which is very time consuming, but guarantees
the identification of a single IIS if no subproblem is aborted because it exceeds a
time or memory limit. When the removal of a constraint generates a subproblem

6.3 Methods Specific to Mixed-Integer Linear Programming

indeterminate state until sufficient constraints are added to render the test set
infeasible. If no indeterminate subproblems are encountered in the course of the
isolation, then it is known that the output set is an IIS, but if at least one
subproblem exceeds a computation limit, then the output set is an IS (it may also
be an IIS, but this is not known).

original problem is an IIS. In this case, the method solves n+1 MIPs during the
first iteration, one for every constraint in the model plus one MIP for the test of I.
During the next iteration, n MIPs are solved, etc. The overall worst case time

2

model in stages as in Alg. 6.12, the worst-case time complexity is reduced to
2 2

in Alg. 6.13. Note that the reordering applies only within the class of constraints
currently being tested.

complexity is then ½(|IR| + |LC| + |BD|) MIP solutions. However, by considering the

A dynamic reordering version of the additive method is also possible, as shown
2 ½(|IR| + |LC| + |BD|) MIP solutions.

The worst case time complexity of the additive method occurs when the entire

134 6 Isolating Infeasibility

6.3.2 Additive Methods for MIPs

In adapting the additive method for MIPs, there is again a choice of the order in
which the classes of constraints are added. Given our assumption that the initial
LP relaxation is feasible, it makes sense to proceed as though the sets LC and BD
have already been added without causing infeasibility. This leaves only the mem-
bers of IR to be tested. Hence the additive method for MIPs, shown in Alg. 6.12,
begins by testing the addition of members of IR to LC∪BD.

Unlike the deletion filter, the additive method is not able to directly identify
dubious constraints. This is because the test set is maintained in a feasible or

A similar algorithm can be constructed for the LC-IR-BD ordering during dele-
tion filtering. Since linear constraints are removed first with this ordering, some
variables will no longer be represented in the reduced set of linear constraints after
they are deletion tested, and hence the bounds and integer restrictions on those
variables can be removed before they are deletion tested.

Step 3 avoids testing any bounds on variables that are not present in the set of LCs
remaining after Step 2.

Given the preferences to eliminate IRs early and BDs late, this suggests that the
deletion filter should operate on the constraint sets in the order IR-LC-BD. A dele-
tion filter that uses this ordering of the constraints is shown in Alg. 6.11. Note that

C: ordered set of constraints in the original infeasible MIP (IR0∪LC0∪BD0).
T: the current test set of constraints.
I: the set of IS members identified so far.

INPUT: an infeasible MIP.
0. status←“IIS”, I←φ.
 IF LC0 ∪BD0 is infeasible, go to Step 2b.
1. T←I ∪LC0 ∪BD0.
 FOR each irk∈IR0:
 T←T ∪{irk}.
 IF T exceeds computation limit THEN status←“IS”.
 ELSE IF T infeasible THEN:
 I←I ∪{irk}.
 IF I ∪LC0 ∪BD0 exceeds computation limit THEN status←“IS”.
 ELSE IF I∪LC0∪BD0 infeasible, go to Step 2.
 Go to Step 1.
2. a. IF I ∪BD0 exceeds computation limit THEN status←“IS”.
 ELSE IF I∪BD0 infeasible, go to Step 3.
 b. T←I ∪BD0.
 c. FOR each lck∈LC0:
 T←T ∪{lck}.
 IF T exceeds computation limit THEN status←“IS”.
 ELSE IF T infeasible THEN:
 I←I ∪{lck}.
 IF I ∪BD0 exceeds computation limit THEN status←“IS”.
 ELSE IF I ∪BD0 infeasible, go to Step 3.
 Go to Step 2b.
3. a. IF I exceeds computation limit, status←“IS”.
 ELSE IF I inconsistent, exit.
 b. BD1←BD0\{BDs on variables not in lc∈I}.
 c. T ←I.
 d. FOR each bdk∈BD1:
 T←T∪{bdk}.
 IF T exceeds computation limit THEN status←“IS”.
 ELSE IF T infeasible THEN:
 I←I ∪{bdk}.
 IF I exceeds computation limit THEN status←“IS”.
 ELSE IF I infeasible, exit.
 Go to Step 3c.

Alg. 6.12. The basic additive method for MIPs

135

OUTPUT: If status =“IIS”, I is an IIS, else I is an IS.

 6.3 Methods Specific to Mixed-Integer Linear Programming

C: ordered set of constraints in the original infeasible MIP (IR0∪LC0∪BD0).
T: the current test set of constraints. I: the set of IS members identified so far.
INPUT: an infeasible MIP.
0. status ←“IIS”; I ← ∅.
 IF LC0 ∪BD0 infeasible, go to Step 2b.
1. T←I ∪LC0∪BD0.
 FOR each irk∈C:
 IF ir k unmarked, T←T ∪{irk}, ELSE skip to next iteration.
 IF T exceeds computation limit THEN status ← “IS”.
 ELSE IF T infeasible THEN:
 I ← I ∪{irk}; C ← C\{irj| j > k}.
 IF I ∪LC0 ∪BD0 exceeds computation limit THEN status ←“IS”.
 ELSE IF I ∪LC0 ∪BD0 infeasible, go to Step 2.
 Go to Step 1.
 ELSE temp ←{irj | j > k, irj∈C, irj satisfied}.
 T←T ∪temp; mark all members of temp.
2. a. IF I ∪BD0 exceeds computation limit THEN status ←“IS”.
 0
 b. T ← I ∪BD0.
 c. FOR each lck∈C:
 IF lck unmarked, T←T ∪{lck}, ELSE skip to next iteration.
 IF T exceeds computation limit THEN status ←“IS”.
 ELSE IF T infeasible THEN:

k j
 IF I ∪BD0 exceeds computation limit THEN status ←“IS”.
 ELSE IF I ∪BD0 infeasible, go to Step 3.
 Go to Step 2b.

j j j
 T←T∪temp; mark all members of temp.
3. a. IF I exceeds computation limit, status ←“IS”.

 b. BD1 ←BD0\{BDs on variables not in lc∈I}.
 c. T←I.
 d. FOR each bdk∈BD1:
 IF bdk unmarked, T←T ∪{bdk}.
 IF T exceeds computation limit THEN status ←“IS”.
 ELSE IF T infeasible THEN:
 I←I ∪{bdk}; BD1 ←BD1 \ {bdj | j > k}.
 IF I exceeds computation limit THEN status ←“IS”.
 ELSE IF I infeasible, exit.
 Go to Step 3c.
 ELSE temp ←{bdj | j > k, bdj∈BD1, bdj satisfied}.
 T←T ∪temp; mark all members of temp.
OUTPUT: If status =“IIS”, I is an IIS, else I is an IS.

Alg. 6.13. Dynamic reordering additive method for MIPs

136 6 Isolating Infeasibility

 I ← I ∪{lc }; C←C \{lc | j> k}.

 ELSE temp ←{l c | j > k, lc ∈C, lc satisfied}.

ELSE IF I ∪BD infeasible, go to Step 3.

ELSE IF I inconsistent, exit.

6.3.3 An Additive/Deletion Method for MIPs

An additive/deletion method is also available for MIPs, as shown in Alg. 6.14.
The basic additive/deletion method proceeds by adding IRs to LC0∪BD0 until
infeasibility is triggered, and then switches to the deletion filter to complete the
isolation of the infeasibility. The status of the output set as an IS or IIS is deter-
mined only during the deletion filtering portion of the algorithm, which is able to
identify dubious constraints. During the additive portion of the algorithm, inde-
terminate subproblems are treated in the same manner as feasible subproblems.
Alg. 6.14 is easily modified to incorporate the dynamic reordering version of the
additive method in Step 1.

The time complexity of the additive/deletion method derives partly from the
time complexity of the additive method as applied to the IRs, and to the time com-
plexity of the deletion filter as applied to the LCs and BDs. The worst case time
complexity is O(|IR|2+|LC|+|BD|) MIP solutions.

T: the current test set of constraints.
I: the set of IS members identified so far.

INPUT: an infeasible MIP.
0. status←“IIS”; I←∅.
 IF LC0 ∪BD0 infeasible THEN go to Step 2a.
1. T←I ∪LC0∪BD0.
 FOR each irk∈IR0:
 T←T∪{irk}.
 IF T infeasible THEN:
 I←I ∪{irk}.
 IF I ∪LC0∪BD0 infeasible THEN go to Step 2.
 Go to Step 1.
2. a. T←I∪LC0 ∪BD0.
 b. FOR each lck∈LC0:
 IF T \{lck} infeasible THEN T←T \{lck}.
 ELSE IF T \{lck} exceeds computation limit THEN
 status←“IS”, label lck dubious.
3. BD1←BD0\{BDs on variables not in lc∈T}.
 T←(T \ BD0)∪BD1.
 FOR each bdk∈BD1:
 IF T \{bdk} infeasible THEN T←T \{bdk}.
 ELSE IF T \{bdk} exceeds computation limit THEN
 status←“IS”, label bdk dubious.
OUTPUT: If status=“IIS”, T is an IIS, else T is an IS.

Alg. 6.14. Basic additive/deletion method for MIPs

137 6.3 Methods Specific to Mixed-Integer Linear Programming

6.3.4 Using the Information in the Initial Branch and Bound Tree

A great deal of information is contained in the original branch and bound tree that

the subsequent IIS isolation. We develop three theorems in this regard.
Some initial definitions are needed. A leaf node of a branch and bound tree is

either a node in which all of the IRs are satisfied (i.e. it is an integer-feasible solu-
tion), or one in which the LP-relaxation is infeasible. An intermediate node is a
node that is not a leaf node. For an intermediate node K, IRK is the set of all IRs
satisfied by the LP-relaxation at that node. BBBDK is the set of BDs added by the
branch and bound procedure at some node K (intermediate or final).

Theorem 6.20: IRs at intermediate nodes (Guieu and Chinneck 1994). An in-
feasible MIP does not have any IISs whose integer part is identical to the IRK at
any intermediate node.

Proof: At an intermediate node K, the current set of constraints is
LC∪BD∪IR∪BBBDK. Since the node is intermediate, the LP-relaxation is feasi-
ble, or equivalently, LC∪BD∪IRK∪BBBDK is MIP feasible. An IIS having IRK as
its complete integer part must have as its linear part either LC∪BD∪BBBDK or
some subset of it, but no such IIS can exist because it is already known that
LC∪BD∪IRK∪BBBDK is MIP feasible.

Theorem 6.21: Sensitivity filtering leaf nodes (Guieu and Chinneck 1999). If a
sensitivity filter is applied to every leaf node, and all original LCs and BDs having
nonzero reduced costs are marked, then the set IR∪{marked LCs}∪{marked
BDs} is infeasible.

Proof: The unmarked LCs and BDs are not marked because they are not tight
in any of the leaf nodes. Hence those unmarked LCs and BDs could have been re-
laxed in the original MILP and the same branch and bound tree would still have
proven infeasibility of the modified MILP.

Some further definitions are needed. A path in a branch and bound tree is a set
of branches leading from the root to a leaf in which each branch is labeled with the
name of the integer variable that was branched on. The set of active IRs (AT) is the
union of all of the IRs for the branched variables in any of the paths in a branch
and bound tree.

Theorem 6.22: Branched variables (Guieu and Chinneck 1999). For an infea-
sible MIP, the set LC∪BD∪AT is infeasible.

Proof: Given the MIP LC∪BD∪AT, a branch and bound tree identical to the
original branch and bound tree can be generated, arriving at the conclusion that
LC∪BD∪AT is infeasible.

Notice also that each path provides an interesting candidate for an IS: the con-
straint set LC∪BD∪{IRs on variables in the path}. This candidate for an IS is
more likely to prove infeasible because the set of branches in the path terminates
at an infeasible node. There is no guarantee that the candidate IS is actually infea-
sible, however, since the path may consist partly or entirely of one-sided branches
(i.e. a particular variable is branched upon only in the higher-valued direction or
only in the lower-valued direction).

initially discovers that the MIP is infeasible. Some of this information is useful in

138 6 Isolating Infeasibility

 Where the MIP has multiple IISs, it may be possible to develop a different
branch and bound tree for the same model (perhaps by varying parameters such as
the bounding rule or branching variable selection rule) in which different sets of
LCs, BDs and IRs can be eliminated using these three theorems. This happens
when a different IIS drives the development of the branch and bound tree.

Thms. 6.20 – 6.22 suggest a preprocessing of the MIP after it has been found in-
feasible but before the infeasibility isolation algorithms are applied. Thm. 6.21 al-
lows the initial elimination of any unmarked LCs or BDs. Thm. 6.22 allows the
initial elimination of any IRs that do not appear in AT.

Each path in the original branch and bound tree provides a candidate for the set
of IRs in an IS. This set can be pruned by comparing the sets of IRs associated
with the paths with the sets of IRs associated with the nodes. Any IR set associ-
ated with a node (and any subset of such a set) cannot be the entire IR set in an IS
in conjunction with LC∪BD by Thm. 6.20.

These ideas can be combined as shown in Alg. 6.15. For efficiency, as new
IRPi are discovered during the initial branch and bound solution, they can be
checked against the current IRN*. Similarly, as new IRNi are discovered, the cur-
rent members of IRP can be checked against it and its subsets. This would, how-
ever, slow the solution in the case of a feasible MIP.

IRP: IRPi is the set of IRs defined by the variables in path i.
 IRP = {IRPi|i = 1 to (number of paths)}.
IRN: IRNi is the set of IRs defined by the satisfied IRs at an intermediate node i.
 IRN = {IRNi|i = 1 to (number of intermediate nodes)}.
 IRN* = IRN ∪{all proper subsets of members of IRN}.
LCM: the set of marked LCs.
BDM: the set of marked BDs.

INPUT: a MIP, feasibility status unknown.
1. Solve the MIP. Compile the sets AT, IRP, IRN, LCM, BDM while solving.
 If feasible, exit.
2. IRP←IRP\(IRP∩IRN*).
 Order IRP from smallest to largest cardinality.
3. FOR each IRPi∈IRP:
 IF LCM∪BDM∪IRPi is infeasible THEN
 IRP’←IRPi.
 Go to Step 4.
 IRP’←AT.
4. Isolate an IIS or IS in LCM∪BDM∪IRP’ using any algorithm.
OUTPUT: an IIS or IS.

Alg. 6.15. Using information from the original branch and bound tree

139 6.3 Methods Specific to Mixed-Integer Linear Programming

6.3.5 Speed-ups

tion needs for the deletion filter, the additive method and the additive/deletion
method. This is an effective strategy in this case, as shown in Sec. 6.3.6.

The settings of the MIP solver have a great influence on the speed of the solu-
tion. Since the IIS isolation algorithms require the solution of numerous test MIPs,
it is worthwhile determining the MIP solver settings that provide quick solutions
for the intermediate test MIPs. Two solver settings have the most influence on the
speed of the MIP solution: the method of node selection and the method of
branching variable selection.

The two most common methods of node selection are best-bound and depth-
first. Since determining that a MIP is infeasible requires a complete expansion of
the branch and bound tree, neither method is likely to be faster for infeasible
MIPs. However, when the MIP is feasible, it is likely that a depth-first node selec-
tion will reach feasibility faster. In addition, depth-first node selection allows re-
use of the final LP basis from the parent node, which will be near-feasible for the
child nodes. Since we need only to determine feasibility status when examining
the test MIPs, depth-first node selection may be preferred.

A number of branching variable selection schemes are possible, including use
of estimates of the branching variable impact on the objective function, a simple
list ordering, user-defined priority weighted ordering, and the variable that is most
infeasible. See Chap. 3 for details.

The original objective function does not play a useful role during infeasibility
analysis. It may even slow the infeasibility isolation by the way in which it guides
the development of the branch and bound tree. Speed improvement may be possi-
ble by replacing the original MIP objective by one that tends to decide feasibility
status more rapidly.

When a subproblem is MIP-infeasible (but LP-relaxation feasible), two child
nodes are generated, each having a new bound added based on the branching vari-
able xk, whose non-integer value in the parent node is α. The typical form of the

k k k

k k

speed the decision of feasibility status in the test subproblems.

6.3.6 Conclusions from Empirical Studies

Guieu and Chinneck (1999) carried out an extensive study of the methods de-
scribed above. Atlihan and Schrage (2006) studied their binary grouping strategies
applied to the deletion filter (see Sec. 6.1.5) for infeasible MIPs. The conclusions
arising from these studies are summarized here.

The test set collected by Guieu and Chinneck consists of 20 infeasible MIPs;
Atlihan and Schrage used the same models. The infeasibility in two of the models

k

Grouping of constraints is a useful strategy for reducing the number of MIP solu-

140 6 Isolating Infeasibility

x –s = ⎡α⎤. A new objective function can then be introduced: minimize Σs over all
of the slack variables introduced during branching. The effect is to drive the MIP
towards feasibility in a manner analogous to an ordinary LP phase 1, which should

added constraint (with nonnegative slack variable s included) is: x +s = ⎣α⎦ or

is original, with unknown cause. The remaining 18 models were taken from the

MIPLIB 3.0 set (Bixby et al. 1996) and altered to be MIP-infeasible with a feasi-
ble initial LP relaxation. This was done by adding a constraint constructed from
the objective function that requires it to take a value midway between the objec-
tive function value of the initial LP relaxation and the final MIP-feasible objective
function value. Further details about the experimental setup are available in Gueiu
and Chinneck (1999).

The results of the experiments by Guieu and Chinneck are summarized in
Table 6.2. Methods in the Table are sorted by decreasing number of average
LP iterations for the IS isolation process to run. Numbers are averages over the 20
test models. The column #dubious LC|BD (#IISs) reports the average number of
dubious constraints in each category along with the number of cases having no
dubious constraints (i.e. an IIS is reported); this is omitted in favour of comments
on the results in the case of the additive methods which cannot detect dubious
constraints. The columns #IR, #LC and #BD report the average number of each
class of constraint in the output IS.

Some very general conclusions can be drawn from these small experiments.
First, notice that the deletion filtering methods always complete: there are no cases
that time out whereas the two additive-only methods time out on 3 models. Note
that the much smaller numbers of LP iterations and nodes reported for the two ad-
ditive-only methods results from the fact that the timed-out models are omitted
from the averages. Second, the IR-LC-BD deletion filter is faster than the LC-IR-
BD deletion filter, as expected: LP iterations are reduced by 44%. Third, grouping
improves speed: LP iterations are reduced by 35% for the IR-LC-BD filter when a
standard group size of 4 is used. Fourth, the dynamic reordering additive/deletion
method is quick: LP iterations are reduced by 22% compared to the IR-LC-BD de-
letion filter. Based on these results, a grouped version of the dynamic reordering
additive/deletion method should be tested.

Table 6.2. Summary of results for IS isolation methods for MIPs

Method #dubious LC|BD
(#IISs)

#IR #LC #BD #B&B
nodes

#LP iterations

LC-IR-BD
deletion filter

17|181.9
(5)

16.1 131.8 289.6 499153.8 3401931.4

IR-LC-BD
deletion filter

16.4|185.3
(5)

11.5 153.8 321.4 344796.8 1913248.4

dynamic reorder-
ing additive/
deletion method

0.3|8.1
(3)

7.9 135.4 308.6 124512.4 1487990.6

IR-LC-BD dele-
tion filter with
group size 4

16.4|186.1
(5)

11.5 153.4 311.6 189561.1 1246078.1

basic
additive method

4 IISs, 3 models
timed out

8.9 49.7 142.0 172687.8 982255.4

dynamic
reordering
additive method

4 IISs, 3 models
timed out

7.6 40.5 145.2 130067.6 396176.2

 141 6.3 Methods Specific to Mixed-Integer Linear Programming

Atlihan and Schrage (2006) tested a binary grouping deletion filter (see Sec. 6.1.5)

ods. This amounts to an LC-IR-BD deletion filter with binary grouping on the lin-
ear constraints, but halted after the linear constraints have been deletion tested.
Their results show that the generalized binary search deletion filter (Alg. 6.6) and
the basic deletion filter perform similarly in terms of CPU time, though the basic
deletion filter requires fewer MIP solutions for 70% of the models. The depth-first
binary search deletion filter performed relatively poorly.

While using different machines and solvers, the Atlihan and Schrage results can
be roughly compared with those in Table 6.2 by looking at the average number of
simplex iterations. Because Atlihan and Schrage deletion test only the linear
constraints, their average simplex iterations for the basic deletion filter are lower
(218644.5) than for the full LC-IR-BD deletion filter in Table 6.2 (3401931.4), as
expected. The average iterations for their best method, the generalized binary
search deletion filter, applied to only the linear constraints (1714413.9) is
surprisingly worse than two methods in Table 6.2: the dynamic reordering
additive/deletion method (1487990.6) and the IR-LC-BD deletion filter with group
size 4 (1246078.1). This is likely due to the fact that both of these faster methods
are geared to eliminating IRs early, which greatly speeds the subsequent MIP
solutions.

Note that IISs are found only relatively rarely in Table 6.2, generally for only

nificantly in the size or composition of the ISs returned, which are relatively large.
This may be an artifact of the way in which the infeasibilities were constructed for
these test models. Atlihan and Schrage report that all of their tested algorithms
(basic deletion filter, DFBS and GBS) report an irreducible set of linear con-
straints in 18 of the 20 test cases (note that this is not the same as an IIS which
would include irreducible numbers of BDs and IRs as well). The average number

that the original models have the following average statistics: 79.5 IRs, 237.6 LCs,
and 518.0 BDs.

The use of the information in the branch and bound tree (as per Sec. 6.3.4) was
also investigated. Results were mixed, with this approach proving extremely help-
ful for some models, but also worsening the results significantly for some other
models. However the techniques can probably be implemented in a manner that
will be significantly faster in practice.

Perhaps the most important conclusion is that these IS isolation techniques are
extremely slow. Consider that the average number of simplex iterations needed for
the initial solution of the models is just 1718.7 and the average number of branch
and bound nodes is 436.5. The repeated solution of MIPs is very time consuming:
there is as yet no hot start technique as there is in linear programming. Certainly

3–5 of the 20 models. Most often the result is an IS. The methods do not vary sig-

of LCs in their output sets is lower than in the four top rows of Table 6.2. Note

142 6 Isolating Infeasibility

applied to the same 20 models, but with the significant difference that they do not
attempt to remove IRs or BDs. Only linear constraints are removed by their meth-

infeasible MIP can run overnight and provide a suitable reduction in the size of the
problem that the analyst must deal with.

Given that the deletion filter based methods are the most robust, and that they
produce IS isolations of about the same size, the best method for use in practice is
simply the fastest one, in this case the IR-LC-BD deletion filter with group size 4.
The dynamic reordering additive/deletion method with grouping may prove faster,
but has not been tested.

The isolation of IISs in MIPs is fertile ground for further research with
immense practical pay-offs.

6.3.7 Software Survey

As described in Sec. 6.3.6, Guieu and Chinneck (1999) built academic prototype
software to carry out various combinations of the deletion filter and the additive
method with several types of grouping. Their software used the Cplex 3.0 callable
library to carry out the MIP solutions.

Two commercial solver systems claim infeasibility analysis systems for MIPs.
The “conflict refiner” in Cplex 10.1 (Ilog 2006) apparently uses variations on the
deletion filter to identify small conflict sets, and is described as a generalization
and extension of the IIS finder. It includes some features for guiding the isolation
(see Sec. 6.2.6) such as treating constraints in groups, assigning weights etc.
which can be applied to LP models as well. The LINGO modeling system (Lindo
Systems Inc. 2007) also claims the ability to isolate small infeasible subsets in
MIPs, again using the deletion filter and additive method. See Atlihan and Schrage
(2006) for further information.

We are interested here in isolating infeasibility in models that include one or more
nonlinear constraints, and consisting entirely of continuous variables, generically
termed nonlinear programs or NLPs for ease of reference. Note that we are spe-
cifically excluding nonlinear systems in which only the objective function is
nonlinear while all of the constraints are linear; infeasibility in such systems is
easily isolated using the methods for linear systems.

Isolating infeasibility in nonlinear programs is significantly harder than for
linear systems simply because it can be extremely difficult to determine the
feasibility status of an arbitrary set of nonlinear constraints. A particular solver

143 6.4 Methods Specific to Nonlinear Programming

6.4 Methods Specific to Nonlinear Programming

the recent development of faster methods for reaching MIP feasibility (See Chap.
3) will help, but overall speed will continue to be a major stumbling block. Still, it
is often useful to substitute machine time for human time: an IS analysis of an

There exist some special classes of nonlinear programs for which the feasibility
status is frequently determined correctly (though this cannot be guaranteed due to
the possibility of numerical difficulties). A quadratically-constrained quadratic
program (QCP) is a nonlinear convex generalization of an LP and hence the de-
termination of feasibility status is less difficult. This makes the subsets isolated by
the deletion filter and the additive method more likely to be true IISs. Since an

proximations, this improved ability to isolate IISs is especially welcome.
We will concentrate here on local NLP solvers applied to general sets of con-

straints that include at least one nonlinear constraint. Feasibility status is more
definitely determined by global optimizers, which normally use a space-covering
strategy similar to branch and bound. The deletion filter and the additive method
can be used with good success in conjunction with global optimizers; their use and
related issues will be similar to their application to MIPs (see Sec. 6.4.4). How-
ever global optimizers are very slow and the state of the art in practice is still the
use of local solvers. As we will see below the state of the art consists mostly of
adapting the deletion filter from LP for use with local solvers for NLPs. Variations
on the additive method are also used for Quadratically Constrained Quadratic pro-
grams. Curiously, the pure elastic filter has not yet been adapted for use with
NLPs, though this would be straightforward development.

Debrosse and Westerberg (1973) develop a number of relevant theorems relat-
ing to IISs in systems of nonlinear constraints. These are given in Sec. 5.8 in the
context of their bootstrapping method for reaching feasibility quickly.

6.4.1 Deletion Filtering

Chinneck (1995) studied the use of the deletion filter to isolate IISs in NLPs.
Many factors affect the ability of a solver to decide feasibility status correctly, in-
cluding the NLP algorithm and its implementation, the tolerances chosen, the ini-
tial point selected, the termination criteria, method of approximating derivatives,
etc. The main difficulty in using the deletion filter for NLPs is the inability of lo-
cal solvers to accurately determine the feasibility status of the NLP in all cases.
However the decision error happens in one way only: a solver may declare that a
feasible model is infeasible, but it will never declare that an infeasible model is
feasible, issues of tolerance aside. The incorrect declaration of infeasibility gener-
ally happens when the solution process becomes trapped at an infeasible local

important class of solvers for general NLPs make use of successive quadratic ap-

144 6 Isolating Infeasibility

may determine that an NLP is infeasible when it is in fact feasible: the solver is
just unable to find a feasible point. For local NLP solvers, the determination of
infeasibility is always indefinite: you can only become more confident by trying
different starting points or solver settings, but you can never be completely
confident that the status is truly infeasible. Note, however, that if a feasible point
is found, the status is definite.

reason, the deletion filtering algorithm can only guarantee the identification of a
Minimal Intractable Subsystem (MIS), rather than an IIS.

An MIS is formally defined as follows. A Minimal Intractable Subsystem
(MIS) of constraints in an NLP is a minimal set of constraints causing a given
NLP solver to report infeasibility under a given set of parameter settings (includ-
ing initial point, tolerances, termination conditions, etc.).

A further complication is that the removal of one or more constraints can result
in a mathematical error, e.g. taking the square root of a negative number, or divid-
ing by zero. This is especially serious as constraints are dropped during deletion
filtering. Consider this infeasible set of constraints: 1,0,0 −≤≥=− yxxy . When
the bound on x is dropped during deletion filtering, a mathematical error occurs.
Strictly speaking, this is simply a special kind of infeasibility, but it does cause
practical difficulties. Operational definitions are given below.

A model is judged infeasible in the ordinary sense when the solver decides that
it is infeasible without encountering a mathematical error. A model is judged in-
feasible due to mathematical error when the solver decides that it is infeasible be-
cause it is requested to perform an illegal mathematical operation such as dividing
by zero. Modern compilers are able to detect and recover from illegal operations
without difficulty.

When a constraint is temporarily removed during deletion filtering, the solver
will decide that the reduced model is in one of three states: (1) feasible, (2) infea-
sible in the ordinary sense, or (3) infeasible due to mathematical error. The dele-
tion filter tries to keep the model in state (2) as constraints are removed one by
one, always reinstating a constraint whose temporary removal causes the reduced
model to enter states (1) or (3). Constraints whose removal places the reduced
model in state (3) are called guards and are specially identified on output.

The modified deletion filter for NLPs is given in Alg. 6.16. In general, whether
the isolated MIS is also an IIS is not known. However, if the constraints in the
MIS are all linear, then it is easily shown that the MIS is also an IIS.

Elastic filtering is also easily adapted to the nonlinear case, but the reduced set
of constraints that is output must still be deletion filtered to guarantee the identifi-
cation of a single MIS. There is at present no nonlinear analog of sensitivity filter-
ing. For these reasons, only the nonlinear deletion filter has been implemented.

145 6.4 Methods Specific to Nonlinear Programming

not happen because every candidate feasible point is checked against the con-
straints and feasibility is declared only if all constraints are satisfied.

 The one-way error in deciding feasibility status has a particular effect on the
deletion filter. The solver may decide that the reduced model remains infeasible
when a certain constraint is temporarily removed, when in fact the model has be-
come feasible but the solver is unable to detect this. The deletion filter will then
incorrectly drop the constraint permanently when it should be reinstated. For this

minimum of a phase 1 penalty function. Incorrect declaration of feasibility does

INPUT: an infeasible set of constraints, at least one of which is nonlinear.
FOR each constraint in the set:
 1. Reset the initial point and solver parameters.
 2. Temporarily drop the constraint from the set.
 3. DO CASE:
 i. Solver reports feasibility:
 Return dropped constraint to the set.
 ii. Solver reports infeasibility in the ordinary sense:
 Drop the constraint permanently.
 iii. Solver reports infeasibility due to mathematical error:
 a. Mark dropped constraint as a guard.
 b. Return dropped constraint to the set.
OUTPUT: constraints constituting a single MIS (including guards).

Alg. 6.16. The deletion filter for NLPs

There are four possible cases when Alg. 6.16 is applied:

1. The model is feasible and this is correctly detected by the solver.
Infeasibility analysis is not needed.

2. The model is feasible, but is reported infeasible by the solver and an MIS is
isolated.

3. The model is infeasible, and an MIS is isolated which is also an IIS.
4. The model is infeasible, and an MIS is isolated which is not an IIS.

Case 1 is straightforward. The difficulty lies in distinguishing between cases
2–4. Knowledge of the physical meaning of the model is required to make a

a subset of the model that is intractable to the solver in use with the current initial
point and parameter settings. Assuming the modeller will continue using the same
solver, the isolation provides a smaller subset of the model for further experimen-
tation with other initial points, parameter settings, etc. Sometimes the problem is
easily diagnosed by inspection, once the MIS shows where to look.

When the MIS contains at least one nonlinear constraint it is important to im-
prove confidence about whether the model is really infeasible (cases 3 and 4), or is
actually feasible (case 2). One simple approach is to submit several new initial
points to the solver operating on the reduced problem formed by the MIS, as de-
scribed in Alg. 6.17. This is faster than trying new initial points on the perhaps
much larger original problem.

definite diagnosis, but the isolation provided in cases 2–4 is still very helpful. It is

146 6 Isolating Infeasibility

INPUT: An MIS from an infeasible NLP.
Make the MIS the current constraint set.
DO until satisfied:
 Postulate and record a new initial point.
 Apply solver to test feasibility of current constraint set using
 the new initial point; record final point.
 IF final point feasible THEN
 Apply solver to test feasibility of complete original constraint set
 using the feasible point as initial point.
 IF complete original constraint set feasible THEN
 Record the final feasible point and exit with appropriate message.
 ELSE (complete original constraint set infeasible)
 Find MIS in complete original constraint set and record it.
 Make current constraint set the union of the current constraint
 set and the new MIS.
OUTPUT: Either (1) a feasible point for the original problem, or
 (2) one or more MISs and a list of infeasible initial and final point pairs.

Alg. 6.17. Using the MIS

New initial points can be postulated in a number of ways, either by inspection
of the current constraint set (note that the dimensionality is likely to be lower than
in the original problem), or randomly. If output (2) of Alg. 6.17 is returned, then
the sets of initial and final points can be used to form an idea of the regions of
attraction of the MIS(s) in the model. The algorithm can then be restarted with
initial points placed more appropriately. Human insight and knowledge of the
physical meaning of the model are needed here.

If sufficient initial points are used, with the solver reporting infeasibility each
time, then confidence is increased that the model really is infeasible. For further
confidence, it may be appropriate to adjust the other solver parameters (e.g. toler-
ances, methods of approximating derivatives, etc.), or even to change solvers alto-
gether and repeat the process.

Chinneck (1995) developed prototype software to implement Alg. 6.16 based
on the local solvers MINOS (Murtagh and Saunders 1987) and LSGRG (Smith
and Lasdon 1992). The modified version of LSGRG, named LSGRG(MIS), was
used to analyze some small examples. It is instructive to consider the infeasible
NLTEST1 model:

120:
64:

25:3
1510:2

2510:1

22

11

21

21
2
1

21
2
1

≤≤
≤≤

≤+
≤−+−

≤++−

xboundsx
xboundsx

xxrow
xxxrow

xxxrow

NLTEST1 is sketched in Fig. 6.7. Applying LSGRG(MIS) directly to
NLTEST1 using the initial point (5.5,5.5) and the default settings of all parameters

147 6.4 Methods Specific to Nonlinear Programming

isolates MIS1:{row1, row2, x1 ≤ 6}. This is an example of case 4 in which the MIS
is not an IIS. Fig. 6.8 shows the surface formed by the absolute sum of the con-
straint violations and explains why this happens: NLTEST1 has an infeasible local
minimum at (7.236,5) which traps the phase 1 solution. The absolute sum of the
constraint violations plotted for the MIS alone, shown in Fig. 6.9 shows a similar
infeasible local minimum. From the given initial point, the MIS is a minimal set of
constraints creating an infeasible local minimum which traps the solver.

Fig. 6.7. Constraints in NLTEST1

Fig. 6.8. Sum of the absolute constraint violations in NLTEST1

148 6 Isolating Infeasibility

Fig. 6.9. Sum of absolute constraint violations for NLTEST1 MIS1

Using an initial point of (0,4) leads LSGRG(MIS) to isolate a different
1

to the above. By inspection of Fig. 6.8, it is obvious that any initial point having
1 1

sult in the isolation of MIS1. The symmetry of NLTEST1 places the ”saddle
1

A related feasible problem is created by eliminating the lower bound on x1.
Using the initial point (5.5,5.5) again leads LSGRG(MIS) to isolate MIS1 (an
example of case 2), but using the initial point (0,4) leads to the correct conclusion
that the model is feasible (an example of case 1). Analysis of the MIS found when

point such that it satisfies all of the constraints in the MIS; this should help
achieve feasibility.

This example illustrates the difficulty of correctly deciding feasibility when
constraints have multiple intersections, as predicted by Debrosse and Westerberg
(1973).

6.4.1.1 Speeding the Isolation by Grouping Constraints

Nonlinear solvers are not able to make use of advanced starts in the same way that
LP solvers can. However, in the context of the deletion filter or the additive
method, it is possible to re-use the final point from one solution as the initial point
for the next solution. Unfortunately, this “point-chaining” can lead the isolation

x

MIS2:{row1, row2, x ≥ 4} due to the symmetry of the IIS. The reasoning is similar

< 5 will result in the isolation of MIS2, and any initial point having x > 5 will re-

of the two zones of attractions of the infeasible local minima created by the MISs.
ridges” in Figs. 6.8 and 6.9 along x = 5, with the saddle ridge demarking the border

(5.5,5.5) is used as the initial point may lead to a new placement of the initial

149 6.4 Methods Specific to Nonlinear Programming

process astray. This happens, for example, when the final point of a feasible sub-
problem is outside the zone of attraction of the original MIS.

Speed-ups via the binary search grouping methods were studied by Atlihan and
Schrage (2006) for various classes of NLPs, including QCPs, second order cone
programs (generalizations of QCPs), and general NLPs. The constraints in second-
order cone programs (SOCPs) are defined as

midxcbxA i
T
iii K10 =∀≤−++

where ci, bi, and x are real vectors, the Ai are real matrices of appropriate dimen-
sions, and di are scalars. LPs and QCPs are special cases of SOCPs. For convex
QCQPs and SOCPs, the sensitivity filter may apply but it often fails because op-
timal dual prices are usually in the interior of the dual space. This means that the
deletion/sensitivity filter can also be applied to these model forms.

Atlihan and Schrage show that the generalized binary search algorithm gives
the best overall results in terms of isolating IISs more frequently than MISs when
compared to the depth-first binary search and the simple deletion filter. For the
QCP models, IISs are isolated in 22 of 30 models tested, for the second order cone
programs, IISs are isolated for 37 of 46 models tested. Only MISs are isolated for
the 11 general NLPs tested. The sensitivity filter can also be applied in the case of
QCPs and SOCPs, and this speeds the solution process as well as identifying
slightly more IISs. The generalized binary search is also usually the fastest of the
methods. Other grouping approaches, such as fixed sizes, or adaptive methods can
also be applied. Empirical studies to identify the best approach should be done.

One obvious speed-up is the use of the much faster linear IIS isolation methods
if it should happen that an infeasible set of constraints consists entirely of linear
constraints.

6.4.2 IIS Isolation by the Method of Debrosse and Westerberg

The algorithm by Debrosse and Westerberg (1973) for finding a feasible initial
point for a set of general nonlinear con-
straints is described in Alg. 5.7 of Sec.
5.8. If the algorithm is not able to find a
feasible point, then it outputs an IIS,
providing that it is able to correctly solve
for the intersections of arbitrary subsets
of the constraints. To illustrate the appli-
cation of Alg. 5.7 to an infeasible set of
constraints, we repeat here Example 3
from Debrosse and Westerberg (1983),
which is shown in Fig. 6.10.

There are four constraints A, B, C,
and D, of which constraint B is nonlinear. The numbers in Fig. 6.10 indicate the
various constraint intersections that are solved in the course of the algorithm.
Table 6.3 shows the steps that Alg. 5.7 carries out.

Fig. 6.10. Example of method of Debrosse
and Westerberg

A

B

C

D

7

6
4

5

3
2

1

150 6 Isolating Infeasibility

As shown in the table, several of the intersection points are found more than
once. In addition, the enumeration of subsets is shown. The number of subsets
enumerated grows substantially with the cardinality of H.

Table 6.3. Example IIS isolation by method of Debrosse and Westerberg (1973)

As described in Sec. 5.8, this algorithm is suited only for models that are highly

structured such that each constraint involves only a few variables. By inspection
of Fig. 6.10 and Table 6.3 you can see the difficulty that is caused by the inability
to find all of the intersections of a set of constraints. If the solver does not find the
second intersection of constraints B and C, then it will eventually wrongly identify
{A,B,C} as an IIS. This difficulty is even more pronounced for very complex con-
straints that have multiple intersections that are difficult to enumerate.

Note that if an MIS is first isolated by some other method, it is possible to ap-
ply the method of Debrosse and Westerberg directly to it. The algorithm should
run much more quickly on the small portion of the model isolated by the MIS. The
difficulties of structure, equality constraints, and multiple intersections remain
however.

6.4.3 Methods for Quadratic Programs

Obuchowska (1998, 1999) developed an adaptation of the deletion filter for the
specific case of systems of convex quadratic inequalities. She considers the case
of quadratically constrained quadratic programs (QCQP), whose constraints are
defined as

}},1{,:)(|{ 2
1 mIibxBxxaxQxR ii

TT
ii

n K=∈≤+=ℜ∈=

151 6.4 Methods Specific to Nonlinear Programming

0,1 A,B 1 C
2 A,B,C
9.1 A,B 1 (again) C
9.1 A,C 2 B
9.1 B,C 3 A
2nd pt B,C 4 D (H disproved)
1,2 B,C,D
9.1 B,C 3 (again) A (H disproved)
1,2 A,B,C: cycle detected. No alternative standard H. New H is A,B,C,D.

(Cycle recovery routine not shown in Alg. 5.7)
9.1 as before:

(A,B), (A,C),
(B,C)

1,2,3,4 C,B,A,D

9.1 A,D 5 C
9.1 B,D 6 C
9.1 C,D 7 B
14.1 Exit with {A,B,C,D} as an IIS.

hypothesis
set H

constraints
being solved

resulting
point x

steps constraints violated
 xat

i
and the n-vectors ai are real-valued.

Obuchowska’s algorithm is a straightforward deletion filter, except that a set of
candidate members of the IIS is found in advance, and these are tested and re-
moved if their deletion does not render the set of constraints feasible. This initial
set of candidate IIS members is the set of so-called killing constraints, defined as
“a maximal subset of constraints that may have an impact on the feasibility status
of the system after some perturbation of the right-hand sides”. An algorithm for
finding the set of killing constraints in O(mn min(m,n)) operations is given
(Obuchowska 1998).

More formally, the killing constraints are defined as follows (Obuchowska
1998): the kth inequality belongs to the set K of killing constraints if there exist
values

b ik
'''

such that the system
IibxQ ii ∈≤ ,)('

is infeasible and the system
''' };{\,)(kkii bQkIibxQ ≤∈≤

is feasible, or conversely.
It turns out that the set of killing constraints is the same as the set of implicit

equalities, defined as follows: an inequality 0≤saT
i in the system

IisaIisB T
ii ∈∀≤∈∀= ,0;,0

is an implicit equality if 0=saT
i for all s satisfying the system. A related theorem

shows that if the system has no implicit equalities, then it is feasible and there are
no killing constraints. This sets up Alg. 6.18 for identifying the set E of implied
equalities.

INPUT: a set of quadratic inequality constraints as defined above.
1. k = 1; E0 = I.
2. Find the set Ek of all implied equalities in the system
 11 ,0;,0 −− ∈∀≤∈∀= k

T
iki EisaEisB

3. IF |Ek| = 0 THEN the system is feasible and K = ∅; exit.
4. IF Ek = E THEN K=Ek; exit.
5. k = k +1; go to Step 2.
OUTPUT: the set K of killing constraints (implied equalities).

Alg. 6.18. Finding the set of killing constraints

Obuchowska (1998) elucidates some properties of implied equalities, killing
constraints and IISs in Thm. 6.23.

where the matrices B are n × n, real-valued, symmetric and positive semidefinite,

2

k–1

152 6 Isolating Infeasibility

> −∞ and b > −∞, i ∈ I

Theorem 6.23: Implied equalities, killing constraints, and IISs (Obuchowska
1998, Lemma 3.1). Where T is an IIS: (a) Every inequality in the system

TisaTisB T
ii ∈∀≤∈∀= ,0;,0 is an implicit equality. (b) For every

T
ii

is

α
αIIS

that the set of constraints is first reduced by running Alg. 6.18 to identify the kill-
ing constraints.

INPUT: an infeasible set of quadratic inequality constraints as defined above.
1. Run Alg. 6.18 to find the set of killing constraints K.
2. FOR every constraint j in K:
 3.1 IF the system Qi(x) ≤ bi, i∈K\{ j} is infeasible THEN:
 3.1.1 K←K\{ j}
OUTPUT: the set K is an IIS.

Alg. 6.19. Deletion filtering for inequality-constrained QCQP

Obuchowska has tested Alg. 6.18 on a few small problems, but does not report
any test results for Alg. 6.19. Neither of the algorithms has been implemented or
tested on a commercial scale.

As mentioned in Sec. 6.4.1.1, Atlihan and Schrage (2006) apply various con-
straint grouping algorithms for isolating IISs in Quadratically Constrained Quad-
ratic programs using the deletion filter and a combined deletion filter and additive
method. They report good results for these methods.

6.4.4 Methods for Space-Covering Global Optimizers

Dravnieks and Chinneck (1997) considered how to isolate an IIS within a global
optimization system. The underlying global optimizer is a space-covering branch
and bound system in which the variable space is iteratively subdivided into
smaller and smaller multidimensional boxes. A given box may have one of the fol-
lowing statuses: (i) infeasible if it can be proven that every point in the box vio-
lates at least one constraint, (ii) feasible if it can be proven that every point in the
box satisfies all of the constraints, (iii) indeterminate if the box is not known to be
feasible or infeasible. Proofs of feasibility or infeasibility of a box make use of in-
terval calculations of the maximum and minimum values of the constraint func-
tions over the box, which are then compared to the constraint limits. Infeasibility
of the entire model is proven when all boxes are infeasible.

When infeasibility of the entire model is proven, the global optimizer outputs a
list of the constraints that were used to prove infeasibility of each individual box
along with the original variable bounds. This list is then submitted to a deletion

k∈T the

⊂ K .■

in QCQP (Obuchowska 1998). The distinction from an ordinary deletion filter is

U

s ≤ 0, ∀i ∈T \{k} contains inequalities that are

Thm. 6.23 sets up Alg. 6.19, a variation on deletion filtering for isolating IISs

 not implicit inequalities in the system. (c) Any IIS belongs to K, that
 system B s = 0, ∀i ∈T \{k}; a

153 6.4 Methods Specific to Nonlinear Programming

filter. Because the global optimizer is able to determine the feasibility status of an
arbitrary set of constraints with perfect accuracy, the deletion filter will function
correctly, and an IIS will be produced. However the process is very slow since it
requires the solution of numerous global optimization problems, and hence is suit-
able only for small models. The limit applies mainly to the number of dimensions
since this has the biggest impact on how many boxes will be generated.

In one small example described in the paper, an alternative objective function
that is more oriented to the feasibility problem proves helpful. The inclusion of a
local optimizer to search for feasible points in boxes is also recommended.

6.4.5 Software Survey

Chinneck (1995) developed academic prototype software implementing the
deletion filter for NLPs which used LSGRG to carry out the NLP solutions. Two
commercial solver systems claim to have infeasibility analysis systems for NLPs.
The LINGO modeling system (Lindo Systems Inc. 2007) claims the ability to
isolate small infeasible subsets in NLPs, mentioning quadratic systems in
particular, and uses combinations of the deletion filter and the additive method.
See Atlihan and Schrage (2006) for further information. Frontline Systems Inc.
(2007) makes similar claims for their solver platform.

6.5 Methods Specific to Constraint Programming

Bruni (2005) considers the problem of finding a minimally unsatisfiable subfor-
mula (MUS) in the clauses defining a conjunctive normal form (CNF) formula. A
CNF formula is conjunction of clauses Cj in which each clause is a disjunction of
Boolean variables. Each variable can take a true or false value (αj) or can be ne-
gated (¬αj). For a set of i = 1…n variables over j = 1…m clauses, and with Ij the
set of variables in Cj, a CNF statement has the form)][(

...1 jIimj j

α¬∨∧
∈=

. When the

CNF formula has no solution (i.e. there is no set of true/false values for the vari-
ables that will make the statement true), then it can be valuable to find an MUS.
This is a subset of the clauses in the original formula that has the property of being
unsatisfiable while any proper subset is satisfiable. There is a direct analogy to the
concept of an IIS.

Bruni uses Thm. 6.16 (see Sec. 6.2.3) to identify an MUS in specific cases in
which the structure of the polytope defined by the linear relaxation of the CNF
satisfiability problem has certain properties. The conversion of the CNF to a linear
system proceeds as follows. A disjunctive clause has a set of positive (i.e. not
negated) variables π and a set of negative (i.e. negated) variables ν. For the clause
to be true, we require:

154 6 Isolating Infeasibility

∑ ∑∈ ∈
≥−+

π νi i ii xx 1)1(, xi are binary (6.1)

Where |ν| is the number of negated literals, this can be rewritten as:

1|| −≤− ∑∑ ∈∈
ν

πν i ii i xx , xi are binary (6.2)

form, and ν(B) is the m-vector of the negated literals, then the CNF formula can

linear relaxation of this system is then:

i (6.3)

Thm. 6.16, hence the alternative form can be constructed, and IISs identified from
the supports of the alternative system.

Note, though, that the original system is binary, while Thm. 6.16 applies only
to the continuous linear system. Hence an IIS discovered in this manner may not
necessarily correspond to a MUS. This leads to the following theorem.

Theorem 6.24: Non-equivalence of IIS and MUS via Farkas’ Theorem (Bruni
2005). Consider the two systems of linear inequalities Eqn. 6.2 and the alternative
version of Eqn. 6.3 (not shown). If the alternative version of Eqn. 6.3 is feasible,
then Eqn. 6.2 is infeasible, and the supports of the alternative version of Eqn. 6.3
(when restricted to clausal inequalities) identify MUSs of Eqn. 6.2. However if the
alternative version of Eqn. 6.3 is infeasible, then Eqn. 6.3 is feasible, but it is un-
known whether Eqn. 6.2 is feasible or not.■

Bruni further defines the integral-point property as a class of polyhedra which,
if non-empty, contain at least one integral point. This strengthens Thm 6.24 into
the new Thm. 6.25.

Theorem 6.25: Farkas’ Theorem for polytopes having the integral-point prop-
erty (Bruni 2005). If the polyhedron for Eqn. 6.3 has the integral-point property,
then the following hold. If the alternative version of Eqn. 6.3 is infeasible, then
Eqn. 6.2 is feasible. If the alternative version of Eqn. 6.3 is feasible, then Eqn. 6.3
is infeasible, and each IIS given by the supports of the alternative version of Eqn.
6.3 (when restricted to clausal inequalities) identifies an MUS of Eqn. 6.2.■

Several classes of propositional CNF formulae have the integral-point property,
including Horn, renamable-Horn, extended Horn, Balanced and Matched, hence
Thm. 6.25 is quite useful. Bruni (2005) presents computational results which show
this.

De Siqueira N. and Puget (1988) introduce a prototype of the additive method
(see Sec. 6.1.3) for use in logic programming. Clauses are tested in a specific
order. There are three steps in their algorithm, as follows. (1) There is a clause that
has always failed during the proof of infeasibility; remove this clause from the
original set and add to the set P. (2) If P is infeasible, then exit with P as a
minimal infeasible set. (3) Find a solution to the set of clauses in P, apply this
solution to the set of clauses remaining in the original set, and go to step 1. Note

B(x) ≤ ν(B) − 1, 0 ≤ x ≤ 1, for all x, where x are continuous

Where B is the m × n {0,1,–1} matrix whose rows correspond to clauses in this

be converted to the binary linear system B(x) ≤ ν(B) − 1. The continuous-variable

This is now a standard linear program that matches the first form required in

155 6.5 Methods Specific to Constraint Programming

that the solution found in step 3 will necessarily cause failure of the reduced
original set during step 1. This is very similar to the additive method (Alg. 6.2)
except for the use of the specific solution found in step 3.

Some general constraint logic programming (CLP) languages extend ordinary
logic programming to include linear constraints. In this case, methods for finding
IISs in linear programs can be used when the model proves infeasible. De Backer
and Beringer (1991) find IISs for the purposes of intelligent backtracking, using a
method similar to that of Gleeson and Ryan (1990); this idea is extended by
Holzbaur et al. (1996). Burg et al. (1994) present a method of finding minimal
conflict sets (i.e. IISs) which are also used for intelligent backtracking. In
constraint logic programming, constraints are processed one at a time. Burg et al.
maintain the current set of constraints in a special solved form achieved by
Gaussian operations. The solved form appears to be similar to van Loon’s form,
and the “minimal conflict sets” appear to be isolated in the same manner.

Bakker et al. (1993) rediscover the deletion filter in the context of constraint
satisfaction problems. They name their algorithm DOC for “Diagnosis of Over-
determined Constraint satisfaction problems”.

Junker (2001) introduces three variants of an algorithm for finding minimal
conflicts in general constraint satisfaction problems, i.e. IISs, among the con-
straints defining the problem. This is an extension of the work by de Siqueira N.
and Puget (1988) to general constraint satisfaction problems. The RePlayXplain
variant is identical to the additive method (Alg. 6.2). The RobustXplain variant is
equivalent to carrying out the additive method until infeasibility is detected, fol-
lowed by a reverse deletion filter (see Alg. 6.7). Finally, the QuickXplain algo-
rithm is a variant of the additive method with binary grouping (see e.g. Alg. 6.5).

Hemery et al. (2006) work towards increasing the efficiency of isolating mini-
mal unsatisfiable cores (MUCs), which are equivalent to IISs. They describe a

equivalent to the deletion filter, and a dichotomic method equivalent to a binary
search (see Sec. 6.1.5) for finding MUCs. Several ideas are used to improve effi-
ciency, such as using the dom/wdeg heuristic (Boussemart et al. 2004) to order the
variables when assigning values. Dom/wdeg selects the variable that occurred
most frequently in the constraints that were most often violated during previous
steps. An additional efficiency is to first reduce the original set of constraints by
eliminating all constraints containing no variables whose range was reduced dur-
ing the filtering steps. In other words, the initial set of constraints is condensed to
those constraints that were used to eliminate some values from the domain of any
variable; this is the wcore process. Wcore produces an infeasible set, but it is not
necessarily irreducible. Still it is normally smaller than the original set of con-
straints and hence provides an advanced start for the process of isolating a MUC.
This is similar to Thm. 6.22 introduced by Guieu and Chinneck (1999).

Isolating IISs (or minimal conflict sets or minimal cores or minimal unsatifiable
sets) has been a preoccupation of both the mathematical programming and the
constraint programming communities for some time. Until recently, however, the

156

constructive method equivalent to the additive method, a destructive method

 6 Isolating Infeasibility

velopments in the other community. Similar ideas were re-invented numerous
times. Some of the pioneering papers on several subjects are listed below.

• The additive method. De Siqueira N. and Puget (1988) develop a prototype of
the additive method for the case of conjunction of clauses. Tamiz, Mardle and

finalized in Chinneck and Dravnieks (1991). Bakker et al. (1993) rediscover the
deletion filter for constraint satisfaction problems.

• Additive/deletion filter. Guieu and Chinneck (1999) show how the additive
method and the deletion filter can be combined into a single method. Junker
(2001) introduces a QuickXplain variant on the additive/deletion algorithm.

• Pivoting methods. Gleeson and Ryan (1990) show how IIS pivoting can be used
to isolate IISs. De Backer and Beringer (1991) develop similar methods for
constraint programming.

• Constraint grouping. Chinneck (1995) suggests that the deletion filter and the
additive method could be improved by treating constraints in groups. Guieu and
Chinneck (1999) introduce several specific grouping algorithms for the deletion
filter and the additive method for mathematical programs. Junker (2001)
introduces binary grouping for constraint satisfaction problems. Atlihan and
Schrage (2006) introduce binary grouping for mathematical programs.

• Advanced subset of constraints. Guieu and Chinneck (1999) introduce the
concept that only the variables that have been branched on in the solution of an
infeasible MIP form an infeasible set in conjunction with their bounds and
integer restrictions and the complete set of linear constraints (Thm. 6.22). This
can be refined if each leaf node is analyzed via a sensitivity filter. Hemery et al.
(2006) introduce the wcore concept which eliminates some of the original
constraints during the search for an IIS based on the fact that they have not
been used to reduce the range of any variables.

157 6.5 Methods Specific to Constraint Programming

two communities operated largely in isolation, and so neither was aware of the

Jones (1995, 1996) introduce the additive method for use in linear programming.
Junker (2001) expands on the concept for general constraint programs.

• The deletion filter. Dravnieks (1989) introduces the deletion filter, the sen-
sitivity filter for linear programming, and the elastic method. This work is

7 Finding the Maximum Feasible Subset of Linear
Constraints

When a linear program is infeasible the usual first tactic is to isolate an IIS via the
methods described in the previous chapter. However there is a complementary
approach that has analytic value: find the smallest number of constraints to
remove such that the remaining constraints constitute a feasible set. The removed
constraints in some sense contribute to the infeasibility most heavily. Consider
two overlapped IISs: {A,B,C} and {C,D,E} in a larger model with some number
m of constraints in total. To eliminate all infeasibility from the model, we can
remove one constraint from each IIS, say A from the first IIS and E from the
second, leaving a feasible set of size m – 2. However, we can also remove all
infeasibility by removing just the single constraint C, which destroys both IISs
simultaneously and leaves a maximum cardinality feasible set of size m – 1. The
single removed constraint C contributes to infeasibility in both of the IISs in the
model, and hence is a better focus for the initial diagnostic effort.

Nothing in the previous paragraph restricts this concept to sets of linear
constraints. However the current state of the art is indeed limited to methods for
linear systems. For this reason we restrict our attention in this chapter mainly to
linear constraints. There is wide scope for extending the methods to other forms of
optimization problems.

The problem of finding the maximum cardinality feasible subset in an infeasible set
of linear constraints is known most commonly as the maximum feasible subsystem
problem (MAX FS) (Amaldi et al. 1999). The problem can also be viewed as
finding the minimum number of linear constraints to remove such that the retained
constraints constitute a feasible system, which is known as the minimum
unsatisfied linear relation problem (MIN ULR) (Amaldi 1994). The two problems
have complementary objective functions. In addition, all infeasible systems have
one or more IISs, so an infeasible set of constraints can be made feasible by
deleting at least one member of every IIS it contains. Finding the smallest
cardinality set of constraints to cover all IISs is known as the minimum-cardinality
IIS set-covering problem (MIN IIS COVER) (Chinneck 1996c), which is identical to
MIN ULR.

For our purposes, MAX FS, MIN ULR, and MIN IIS COVER are the same problem
and the terms will be used interchangeably. Several authors have shown that these
problems are NP-hard (Sankaran 1993, Chakravarti 1994, Amaldi and Kann
1995). Amaldi and Kann (1995) showed that the problem is also NP-hard for ho-
mogeneous systems of inequalities (both strict and nonstrict) and binary coefficients.
Amaldi and others (Amaldi 1994, Amaldi and Kann 1995, Amaldi et al. 1999)

time approximation scheme unless P = NP. Until relatively recently there has been
little development of algorithms for actually solving the MAX FS problem, but heu-
ristic methods are now available, with more under development, spurred by sev-
eral important applications in fields such as radiation therapy planning, machine
learning, signal processing, etc.

Note that the solution to a MAX FS, MIN ULR, or MIN IIS COVER problem is not
usually unique. Consider a system having two IISs {A,B,C} and {B,C,D}; there
are two MIN IIS COVER solutions of size one: {B} and {C}, and hence two different
associated MAX FS sets {A,C,D} and {A,B,D}.

A closely related problem arises when the individual constraints are assigned
weights. Now the problem is to find the minimum (or maximum) weight set of
feasible constraints; see Parker (1995) and Parker and Ryan (1996).

It would be helpful to know in advance the number of distinct IISs in the
model, though determining this is as difficult as solving the MIN IIS COVER prob-
lem itself. However a simple lower bound on the number of IISs is readily found
using the deletion/sensitivity filter given in Alg. 6.9 (Chinneck 1994). Recall that
this algorithm runs a sensitivity filter if a constraint is permanently dropped during
the deletion filter. The sensitivity filter will remove the members of any IISs that
overlap on the constraint just dropped permanently, unless they are also part of
another IIS not yet eliminated. If k constraints are permanently removed by the de-
letion filter part of the deletion/sensitivity filter (i.e. at Step 3.2.2.1 of Alg. 6.9),
then the model contains at least k + 1 IISs, if not more. The cost of running the de-
letion/sensitivity filter is relatively small, so it is not usually expensive to deter-
mine this lower bound, especially if the total number of constraints involved in
IISs is small compared to the total number of constraints in the model.

Note carefully that a maximum feasible subsystem is a different concept
than a maximal feasible subsystem. If a feasible subsystem is maximal, the
addition of any further constraints renders it infeasible. A maximum feasible
subsystem is a maximal feasible subsystem of largest cardinality. It is easy
to construct maximal feasible subsystems by a simple inversion of the dele-
tion filter (Alg. 6.1). Start with a single constraint, and add constraints one
by one. When a newly added constraint triggers infeasibility, discard it. This
is the grow method used by Bailey and Stuckey (2005) to find maximal fea-
sible subsystems. This also suggests a simple, though inefficient, way to find
maximum feasible subsystems: run the grow algorithm numerous times, ran-
domizing the order of the constraints between each run, and return the larg-
est cardinality feasible subsystem found over all of the runs.

 Finding the Maximum Feasible Subset of Linear Constraints

have also extensively analyzed the approximability of MAX FS, showing that it
can be approximated within a factor of 2, but that it does not have a polynomial-

160

7.1 Exact Solutions

Though MAX FS is known to be NP-hard, it can be formulated for exact solution.
Only relatively small instances can be solved this way since the exact solutions
require exponential time to run.

7.1.1 An Exact Solution via MIP

An exact solution via mixed-integer linear programming has been suggested sev-
eral times, e.g. by Greenberg and Murphy (1991). Here is a variation of the formu-
lation given by Parker (1995):

Minimize Z = Σyi
i i i

 a i x ≥ bi − Myi for all constraints i of type ≥
 a i x = bi + My i’ – My i” for all constraints i of type =

where the y, y’ and y ” are binary variables, and M is the usual “big-M ” large
positive value. Further, all variable bounds are included in the set of constraints
shown above, or they can optionally be included separately in the normal way, but
then the solution will consider only the functional constraints. In the usual manner,
if a binary y variable takes the value 1, then the corresponding constraint is effec-

dicated by the constraints whose corresponding y (or y’ and y ”) variable(s) are all
zero. The MIN ULR or MIN IIS COVER is given by the constraints having a corre-
sponding y, y’ or y ” variable whose value is 1. The conversion to a weighted version
of problem is straightforward: simply add appropriate weights in the objective
function.

As Parker (1995) points out, there are several difficulties with this formulation.
Incorrect selection of the value of M can lead to the incorrect conclusion that the
model is still infeasible, or can cause fractional values or numerical instability. In

els in which all of the variables are bounded as 0 ≤ xj ≤ uj for all j, a reasonable

choice for M is
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

− ∑
<

=
0:

...1
max

ijaj
jijimi

uab .

Bordetski and Kazarinov (1981) also describe a branch and bound solution to an in-
teger programming formulation for finding the maximum weight feasible subsystem
of constraints in an infeasible set of inequalities.

tive on larger models for reasons of both speed and accuracy. Numerical difficulties

7.1 Exact Solutions 161

tively loosened and has no effect due to the effect of adding or subtracting M. After
solving this MIP, the maximum cardinality feasible subset of constraints is in-

addition, the solution can be quite slow. Amaldi et al. (2007) suggest that for mod-

with this approach are evident in the empirical studies by Amaldi et al. (2005).

Subject to a x ≤ b + My for all constraints i of type ≤

While the exact big-M MIP formulation is useful for small models, it is not effec-

7.1.2 An Exact Formulation via Equilibrium Constraints

As shown by Amaldi (2003), MAX FS can be formulated as a mathematical
program with a linear objective function, bilinear constraints and real variables,
which is known as a linear program with equilibrium constraints (LPEC). The
formulation is as follows:

}1,0{
},,{..

max
1

∈
=≥≤

∑ =

i

iii

m

i i

y
byyts

y

xai

Note that ai denotes the row of the A matrix corresponding to the ith constraint.
The binary variables yi take the value 1 if the equation is included in the feasible
subset and the value 0 if the variable is excluded. The MAX FS objective is
straightforward: maximize the sum of the yi. The binary restriction on the yi can be
relaxed and replaced by 0 ≤ yi ≤ 1 without harm since any nonzero value of yi in
that range simply amounts to a scaling of the linear constraint, and the objective
function will drive any yi to 1 if it is able to take any nonzero value at all.

The continuous version of the formulation constitutes a nonlinear global
optimization problem which can be tackled via global solvers, or by standard NLP
local solvers (though these latter may not return a globally optimum solution). The
ability to solve mathematical programs with equilibrium constraints has improved

this approach, but it is still relatively slow.
An equivalent formulation for sets of inequalities that has better properties for

solution was developed in the machine learning community. Mangasarian (1994)
introduces a slack variable si and a nonnegative variable yi for each inequality to
arrive at the following LPEC:

0y0sx

01ys
01y

0bAxsy
0bAxs

≥≥ℜ∈

=+−
≥+−

=+−
≥+−

∑ =

,,

)(

)(
..

min
1

n

m

i i

ts

y

This is perhaps more naturally written as follows:

0y0sx

01ys
1y

0sbAxy
sbAx

≥≥ℜ∈

=−
≤

=−−
+≤

∑ =

,,

)(

)(
..

min
1

n

m

i i

ts

y

162 7 Finding the Maximum Feasible Subset of Linear Constraints

in recent years (see e.g. Ferris et al. (2005)), which has increased the viability of

The effect of this formulation is to ensure that yi is zero only when si is zero, i.e.
i i j

because they represent the coefficients in the separating hyperplane equation (see
Sec. 10.1 for details). The two bilinear relationships can be included in the
objective function with penalty terms, yielding a bilinear objective function
subject to linear constraints. Mangasarian (1994) solves this using a sequential
linear approximation procedure.

The solution procedure is improved by Bennett and Bredensteiner (1997), who
add a parametric control element, δ. Modifying their development to align with
the notation above yields:

[]

0sx

1y0
sbAx

1yssbAxy
sy,

≥ℜ∈

≤

≤≤
+≤

−+−−

∑ =

,

..

)()(min

1
n

m

i iy

ts

δ

The Frank-Wolfe algorithm for uncoupled bilinear programs is used to solve this
problem. It must be solved a number of times to determine the smallest value of δ
for which the objective function can reach a value of zero. A secant method is
used in an outer loop to adjust the value of δ until the objective function is able to
reach zero.

Mangasarian (1996) proposes an alternative formulation in which the step
function associated with including or excluding a constraint is approximated:

0z
bAxz

≥
−≥

−∑ =
−

..

)1(min
1

ts

e
m

i
ziα

i i i
term in the objective function likewise goes to zero. The larger the violation of
constraint i, the larger zi becomes, and the closer the corresponding term in the
objective function approaches 1. The nonnegative parameter α controls the quality
of the approximation. This is again solved by successive linear approximation.

Empirical results reported by Mangasarian (1994, 1997) and Bennett and
Bredensteiner (1997) show that the parametric variants are more effective. Still,
the inherent nonlinearity of these models makes it difficult to solve them to
optimality, and hence to guarantee that MAX FS is solved optimally.

7.1 Exact Solutions 163

The δ parameter specifies an upper bound on the number of violated constraints.

when the ith constraint a x ≤ b is satisfied. Note that the x are unrestricted in sign

When z is zero, the ith constraint a x ≤ b is satisfied, and the corresponding

7.2 IIS Enumeration and Covering

Parker (1995) and Parker and Ryan (1996) outline a method of enumerating the
IISs in an infeasible system of linear inequalities, and then solving a set-covering
problem over the IISs to solve the minimum weight IIS set cover problem (equiva-
lent to MIN IIS COVER when the weights are all equal to 1). The basic theorems that
allow the enumeration of the IISs are given in Sec. 6.2.3. The number of IISs can
potentially be exponential in the size of the model (Chakravarti 1994), so some at-
tention must be paid to the efficiency of the method. Parker and Ryan (1996) ad-
dress the efficiency issue by generating IISs one at a time, making sure to find
new IISs that are not covered by the current MIN IIS COVER solution.

Parker and Ryan’s algorithm is shown in Alg. 7.1. There is one binary variable
yi for each constraint i. If some IIS Jk consists of constraints 3, 7 and 11 for exam-
ple, then the associated set cover constraint is y3 + y7 + y11 ≥ 1 to indicate that at
least one of the three constraints must be removed from the model to render it fea-
sible. There is a similar constraint for each IIS Jk in the set of IISs J.

di: the ith constraint in the model, ci: weight on ith constraint,
yi: binary variable (one per constraint), Jk: the kth IIS in the set J of IISs.

INPUT: an infeasible set of linear inequalities P.
1. Identify an initial set of IISs J (J may be empty).
2. Solve the minimum weight IIS set covering problem:
 minimize ∑ciyi
 subject to ∑yi ≥ 1 for di∈Jk, for all IISs Jk∈J.
 Let T index the elements of the optimal cover.

 ELSE find an IIS that is not covered by T and add it to J.
 Go to Step 2.
OUTPUT: T is the minimum weight cover.

Alg. 7.1. Minimum-weight IIS set covering algorithm (Parker and Ryan 1996)

In terms of efficiency, there are three crucial elements in Alg. 7.1. The first is
the solution of the integer program in Step 2. Some speed-up is achieved by
substituting a quick set-covering heuristic in place of the full integer programming
solution during all but the final iteration. The full integer programming solution is
then run only once when the heuristic method returns a cover such that P \ T is
feasible, in order to determine whether a smaller weight cover exists. Parker and
Ryan’s method can thus be converted to a polynomial-time heuristic by omitting
the final full integer programming solution.

The second crucial step is the generation of new IISs in Step 3. The algorithm uses
a column generation strategy and it is generally not necessary to enumerate all IISs in
order to cover them. In fact, it is possible that one constraint appears in all IISs and is
found right away, so that the algorithm does not have to generate any other IIS. In the

164 7 Finding the Maximum Feasible Subset of Linear Constraints

3. IF P\T feasible THEN exit.

worst case, the IISs are all disjoint, in which case the algorithm must generate
them all. Two methods are used to enumerate IISs, one based on visiting the
extreme points of a specially constructed polytope (Thm. 6.16), and another based
on the extreme rays of a specially constructed polyhedral cone (Thm. 6.17).
Heuristics are applied in an attempt to find new IISs having little overlap with IISs
already in J to reduce the number of integer programming solutions needed during
Step 2.

The third crucial element is the limitation of the method to linear inequalities.
Equalities are handled by converting each one into a pair of oppositely-oriented
inequalities. This may cause a blow-up in the number of inequalities. Hence the
suitability of the method may depend on the number of equality constraints in the
system. Parker and Ryan extend Thm. 6.17 to deal with this problem, yielding a
new theorem, as follows.

Theorem 7.1: Supports of a general infeasible linear system (Parker and Ryan
1996). Given the inconsistent system S = {x ∈ Q n | Ax ≤ b, Cx = d, L ≤ x ≤ U },
the indices of the IISs of S are exactly the supports of the vertices of the polyhe-
dron P = { y,w,v,z ∈ Q m | yTA + wTC + v – z = 0, yTb + wTd + vTU – zTL = –1, y,z,v
≥ 0, w unrestricted}.■

Further, if x is bounded only by nonnegativity, then Thm. 7.1 can be simplified
as follows.

Theorem 7.2: Supports on a general infeasible linear system with only
nonnegativity bounds (Parker and Ryan 1996). Given the inconsistent system S =
{x ∈ Q n | Ax ≤ b, Cx = d, x ≥ 0}, the indices of the IISs of S are exactly the supports of
the vertices of the polyhedron P = { y,w ∈ Q m | yTA + wTC ≥ 0, yTb + wTd = –1, y ≥ 0, w
unrestricted}.■

Thm. 7.2 means that the nonnegativity bounds do not need to be handled ex-
plicitly: you need only check the slack variables in the solution of the alternative
system to determine whether a nonnegativity constraint forms part of the IIS.

There are some numerical issues when the right hand side of the second con-
straint in the alternative system in Thms. 7.1 and 7.2 is set to –1. Parker and Ryan
(1996) present a solution to this difficulty by replacing the –1 right hand side by a
new value determined by various parameters in the model.

Parker and Ryan conduct an empirical evaluation of three variations of their
method using the standard test set of infeasible LPs (Chinneck 1993). The times
reported are reasonable. For most problems the vast majority of the solution time
is spent on identifying IISs in Step 3 of Alg. 7.1, with relatively little time spent
on solving the set covering problem in Step 2.

enumeration of IISs, and then follows with a frequency-based heuristic to solve
the resulting set-covering problem. It uses the additive method (Sec. 6.1.3) to find
the individual IISs. See Alg. 7.2.

7.2 IIS Enumeration and Covering 165

Tamiz et al. (1995) describe an algorithm that starts with a heuristic

INPUT: an infeasible set of linear constraints C.
0. pass = forward.
 CoverSet = ∅.
1. Use the additive method to find an IIS I and write it out.
 Delete the first member of I from C.
 IF C is infeasible THEN go to Step 1.
 IF pass = forward THEN
 Reinstate the original constraint set C.
 Reverse the order of the constraints in C.
 pass = reverse.
 Go to Step 1.
2. Compare IISs found in Step 1 to eliminate duplicates, forming the set D
 of distinct IISs.
3. Find f, the most frequent constraint in D, and add it to CoverSet.
 D = D\{IISs having f as a member}.
 IF D = ∅ THEN exit.
 Go to Step 3.
OUTPUT: CoverSet is a small set of constraints covering the IISs

Algorithm 7.2 suffers from the method used to isolate distinct IISs. The for-
ward and reverse passes of the additive algorithm are not efficient ways of gener-
ating all possible IISs compared to the method used by Parker and Ryan since
some IISs may be omitted while others may be isolated twice. An expensive Step 2
must also be used to eliminate the duplicates. Finally Step 3 is simply a standard
set covering heuristic, likely similar to the fast heuristic used at intermediate steps
by Parker and Ryan.

netlib set of infeasible LPs (Chinneck 1993). Their criteria for the selection of this
subset are not stated. They are able to find a true minimum cardinality IIS set
cover in 14 of the 16 models examined (the exceptions are reactor and greenbea).
Pfetsch (2002, 2005) advances Parker and Ryan’s approach by using a branch-
and-cut approach to improve the solutions of the intermediate set-covering MIPs.
The main idea is to add a cut after each intermediate LP-relaxation is solved that
separates the rows corresponding to IISs that are covered in the current solution
from the rows corresponding to IISs that are not yet covered. Since this is NPhard,
various heuristics are used. Cuts are of three types: (i) inequalities derived from
IISs, (ii) special inequalities due to Balas and Ng (1989), and (iii) Gomory cuts
(e.g. Nemhauser and Wooley (1988)). Cuts are stored in a pool and are added to
the LP relaxation if violated. In addition, Pfetsch applies a preprocessing step to
find small IISs, and uses a primal heuristic for possibly decreasing the cardinality
of any covers found at intermediate steps.

The preprocessing step discovers simple small-cardinality IISs. IISs of
cardinality 2 (i.e. parallel but oppositely-oriented inequalities) are found when
constraints have the same left-hand-side bodies but different constants, and a

166 7 Finding the Maximum Feasible Subset of Linear Constraints

Tamiz et al. (1995) present empirical results for 16 of the 29 models from the

Alg. 7.2. The constraint frequency heuristic for the IIS cover (Tamiz et al. 1995)

mismatch in their orientations. Individual constraints are also scanned for
infeasibility relative to the bounds on their variables. IISs identified during this
step are used to set up the first covering MIP, but the method proceeds without
difficulty if no IISs are found during this step.

The primal heuristic is applied after every k branch and bound nodes and oper-
ates as follows. Suppose that we have a current cover S. Initially set S’ = S. Sort
the elements of S’ in increasing order of the fractional values of the associated
variables in the covering LP-relaxation. Remove each member of S’ in this order
and check whether the reduced version of S’ is still an IIS cover. If the reduced S’
is no longer an IIS cover, then return the member and continue, else drop the
member permanently.

Details on the cuts are available in the original publications (Pfetsch 2002,
2005). Empirical results show good results, though solution times are quite long.
Chinneck’s heuristic methods (see Sec. 7.4) give better or equivalent results in
most cases in much shorter times. Codato and Fischetti (2004, 2006) introduce
further cuts, termed combinatorial Benders’ cuts, which are useful in this context.

Finally, simple (though inefficient) heuristics can be created based on deletion
filtering or the additive method. Simply choose a random ordering of the con-
straints, isolate an IIS, and make note of it. Repeat the process until no new IISs
are discovered in several iterations. Now solve a set-covering problem based on
the IISs discovered. Note that if the sensitivity filter is applied after each randomi-
zation of the constraint ordering then certain IISs may not be discovered and so
the resulting IIS set cover may be incomplete (see Sec. 6.2.2).

7.3 Phase One Heuristics

Any LP Phase 1 solution for an infeasible LP results in a set of constraints that are
satisfied and a set that are violated. The set of violated constraints provides an IIS
set cover, though generally not a minimum cover. However this Phase 1 cover
does provide an upper limit on the cardinality of the MIN IIS COVER. Chinneck
(1996c) summarizes these insights in the following observation.

Observation 7.1: Elastic program cover (Chinneck 1996c). Upon termination
of an elastic program, the set of stretched constraints is an IIS set cover, and the
number of stretched constraints is an upper bound on the cardinality of the set
cover.■

Most phase 1 procedures are some variation of an elastic program (see Sec.
6.1.4) in which extra nonnegative elastic or artificial variables introduce added
dimensions which allow the constraints to “stretch” in the original dimensions to
accommodate infeasibility. The main differences in the variations involve which
subsets of constraints are elasticized and whether the minimum sum of the con-
straint violations is the only Phase 1 stopping condition. Common measures of the
infeasibility of a solution include the sum of the infeasibilities (SINF), i.e. the sum
of the nonnegative artificial or elastic variables, and the number of infeasibilities
(NINF), i.e. the number of violated constraints.

7.3 Phase One Heuristics 167

Several versions of elastic or Phase 1 programs are in common use, some of
which are listed below.
• Standard elastic program. All row constraints are fully elasticized, including ≤

type, ≥ type, and = type (elasticized by adding two elastic variables). The
variable bounds are not elasticized. The objective is to minimize SINF.

• Full elastic program. Same as standard elastic program, but the variable bounds
are also elasticized.

• Simple Phase 1. As usually described in textbooks on linear programming, arti-
ficial variables are added only to constraints of the ≥ and = types. Just a single
nonnegative artificial variable with coefficient +1 is added to each equality
constraint. The objective is to minimize SINF.

• MINOS Phase 1. Wolfe (1965) describes a Phase 1 procedure that considers
both SINF and NINF in deciding whether an LP is infeasible. The MINOS LP
solver (Murtagh and Saunders 1987) permits arbitrary upper and lower bounds
on the variables, so the model is fully elasticized. However the procedure usu-
ally terminates when it recognizes that NINF cannot be reduced any further, so
SINF may not be at its minimum value upon termination. As an implementation
detail, note that MINOS keeps direct track of the constraint violations and
hence does not explicitly include artificial or elastic variables.
Any of these is sufficient to produce an IIS cover. While you might expect that

the chances of returning a smaller IIS cover are improved if more constraints are
elasticized, this is not always the case, as shown below (see Table 7.1).

A second simple observation can be made, as follows.
Observation 7.2: Single member cover (Chinneck 1996c). If an elastic program

reports a single stretched constraint, then that constraint constitutes a minimum
cardinality IIS set cover.■

The smallest possible IIS set cover cardinality is 1, which indicates that the
cover constraint occurs in all IISs in the model. Hence if the model is infeasible
and the Phase 1 or related procedure returns a cover of size 1, then it must be a
minimum cardinality cover. This fact was also noted by Parker and Ryan (1996).

Chinneck (1996c) carried out a series of tests on various algorithms for finding
MIN IIS COVER, including the MINOS Phase 1 procedure and the standard elastic
program. The test set consisted of the infeasible models in the netlib repository
(Chinneck 1993). The unassisted MINOS phase 1 reported a single violated
constraint for 14 of the 29 models: bgetam, box1, ceria3d, cplex2, ex72a, ex73a,
forest6, galenet, gosh, klein1, pang, pilot4i, qual, vol1. This single violated
constraint is reported as the minimum IIS cover (Observation 7.2).

The results for the 15 remaining models are presented in Table 7.1. The true
minimum cardinality is also included for comparison. Results in boldface indicate
cases in which the Phase 1 method found the true MIN IIS COVER. The Phase 1
methods do find the true MIN IIS COVER with reasonable frequency over this test
set (18 of 29 cases, or 62%). If they do not find a minimum cardinality cover, they
often provide a cover that is not very much larger.

168 7 Finding the Maximum Feasible Subset of Linear Constraints

Table 7.1. IIS cover cardinality on difficult LPs for two Phase 1 methods (Chinneck 1996c)

Model Minimum cover cardinality
(Parker and Ryan 1996)

MINOS Phase 1cover Standard elastic
program Phase 1 cover

bgdbg1 12 23 13
bgindy 1 14 1
bgprtr 1 2 2
chemcom 1 11 12
cplex1 1 211 212
gran not calculated 244 473
greenbea 2 3 2
itest2 2 2 2
itest6 2 3 4
klein2 1 3 5
klein3 1 4 19
mondou2 3 3 5
reactor 1 3 2
refinery 1 3 6
woodinfe 2 2 2

7.4 Chinneck’s SINF-Reduction Heuristics

Chinneck (1996c, 2001a) develops a set of heuristic methods for MIN IIS COVER
based on several observations in addition to the two mentioned above. The most
important observation follows.

Observation 7.3: Reduction in elastic objective function value (Chinneck
1996c). The elimination of a constraint that is a member of the minimum-
cardinality IIS set cover should reduce elastic SINF more than the elimination of a
constraint that is not a member of the minimum-cardinality IIS set cover.■

The removal of a constraint that is a member of the minimum cardinality set cover
normally eliminates more than one IIS, hence its removal should reduce the elastic

objective function value more than the
removal of a constraint that is not a
member of the minimum cardinality IIS
set cover, whose removal will eliminate
fewer IISs. Consider Fig. 7.1 which has
IISs {A,B,D} and {A,C,D} with two
different minimum cardinality IIS set
covers: {A} and {D}. Eliminating either
one of constraint A or D will reduce the
elastic objective function to zero, while
eliminating either constraint B or C will
reduce the elastic objective function value,
but not to zero. Hence either {A} or {D}
should be removed by Observation 7.3.

Fig. 7.1. Example infeasibility

D

C B A

7.4 Chinneck’s SINF-Reduction Heuristics 169

In fact, the removal of constraint C has no effect on the value of the elastic ob-
jective function because the elastic program returns a solution in which constraint
C is not stretched or tight. Minimizing the elastic objective function makes it
cheaper to choose one of these three options:

• constraint A stretches to the intersection of B and D,
• constraint D stretches to the intersection of A and B,
• constraint B stretches up to C, and then A or D or both stretch.

Constraint C does not stretch because, to achieve a feasible point, B would first
need to stretch to meet C and then would have to continue to stretch along with C
until reaching the intersection of A and D. The cost of stretching B and C simulta-
neously is twice the cost of stretching a single constraint. Thus C will not be tight
upon termination of the elastic program. This leads to the fourth observation.

Observation 7.4: Elastic sensitivity (Chinneck 1996c). Constraints to which the
elastic objective function is not sensitive do not reduce the elastic objective func-
tion value when removed from the model.■

Observations 7.1–7.4 underlie Alg. 7.3, a heuristic algorithm for solving MIN IIS
COVER. The algorithm takes a greedy approach: the most promising candidate is
added to the cover set at each iteration of Step 2. The basic mechanism is to test
each eligible constraint by temporarily removing it from the set of constraints to
determine the new value of elastic SINF. As per Observation 7.3, the constraint
whose temporary removal most reduces elastic SINF is added to the cover set and
removed permanently. To reduce the number of constraints tested, the algorithm
uses Observation 7.4 to omit testing any constraints to which the elastic objective
is not sensitive.

Observation 7.2 provides an early exit from the algorithm where appropriate.
The steps marked as optional in Alg. 7.3 boost the speed of the basic algorithm by
noting when the cover set can be completed by a single constraint. The optional
steps are easily implemented if the solver provides NINF as a matter of course, but
can be ignored if NINF must be calculated by a time-consuming comparison of
each constraint left hand side and right hand side.

Alg. 7.3 specifies the use of a procedure which returns elastic SINF. However,
any phase 1 procedure can be used to detect infeasibility before Alg. 7.3 is ap-
plied, and the process can be terminated at that point if NINF = 1. The speed of
Alg. 7.3 is greatly improved by using the advanced start facilities available in
most modern LP solvers. Each elastic LP starts at the terminal point generated by
the previous elastic LP.

Note that variable bounds are also tested during Step 2, even if the variable
bounds are not elasticized, as in a simple phase 1 or a standard elastic program.
Variable bounds are added to CoverSet whenever their elimination provides the
lowest value of elastic SINF, just as for row constraints.

170 7 Finding the Maximum Feasible Subset of Linear Constraints

INPUT: Constraints defining an infeasible system of linear constraints.
0. CoverSet = ∅.
 Set up elastic LP.
1. Solve elastic LP.
 IF NINF = 1:
 Add the single violated constraint to CoverSet.
 Exit.
 HoldSet = {constraints to which elastic objective is sensitive}.
2. MinSINF = ∞.
 CandidateSet = HoldSet.
 FOR each constraint in CandidateSet:
 Delete the constraint.
 Solve elastic LP.
 IF elastic SINF = 0 THEN:
 Add constraint to CoverSet.
 Exit.
 IF elastic SINF < MinSINF THEN:
 Winner = currently deleted constraint.
 MinSINF = elastic SINF.
 HoldSet = {all constraints to which elastic objective is sensitive}.
 IF NINF = 1, NextWinner = single violated constraint. (optional)
 ELSE NextCand = ∅. (optional)
 Reinstate the constraint.
3. Add Winner to CoverSet.
 IF NextWinner ≠ ∅ THEN: (optional)
 Add NextWinner to CoverSet. (optional)
 Exit. (optional)
 Delete the Winner constraint permanently.
 Go to Step 2.
OUTPUT: CoverSet is a small set of constraints covering the IISs.

Alg. 7.3. Heuristic 1 for MIN IIS COVER (Chinneck 1996c)

Alg. 7.3 is easily altered to find minimum weight IIS covers by assigning
weights to the elastic variables in the elastic objective function. Constraints as-
signed higher weights will tend to be included in CoverSet because their elimina-
tion gives a greater reduction in the elastic objective function value.

Empirical results (see Table 7.2) show that Alg. 7.3 is very effective in practice,
but as a heuristic, it cannot guarantee to identify a minimum cardinality IIS in all
cases. This is illustrated by the example in Fig. 7.2. The constraints are:

7.4 Chinneck’s SINF-Reduction Heuristics 171

 B0: –x1 + x2 ≥ 2
 B1: –x1 + x2 ≥ 3
 C0: –0.25x1 + x2 ≤ 2.75
 C1: –0.25x1 + x2 ≤ 1.75

Assuming a full elastic program, the

elastic objective function is initially sensi-
tive to the outermost constraints A2, B1,
and C1. The spacing between the two con-
straints in the B and C sets is equal to one,
the space between A1 and A2 is 11, so
SINF is most reduced by removing A2. By
inspection of Fig. 7.2, this leads to a cover
of cardinality 3, even though smaller cov-
ers of cardinality 2 exist (either {B0,B1}
or {C0,C1}). The cover reported for this
problem by a software implementation of
Alg. 7.3 is {A2,C1,C0}, with the members
found in that order. This cover is not of
minimum cardinality, and is also not

minimal. In a minimal cover, every member of the cover set is needed in order to
eliminate all of the infeasibility in the model. Similar pathological cases are
unlikely in practice since it depends on there being a great deal of redundancy
with a particular pattern.

Alg. 7.3 is affected by the elastic programming variant that is used because the
variants will report different values of SINF for a given set of constraints. The dif-
ferent variants elasticize different subsets of the constraints, and hence Alg. 7.3
will make different decisions concerning which constraint to drop permanently in
Step 3. A full elastic program is preferred for any implementation of Alg. 7.3
since this will prevent any artificial distortion of SINF.

While the MINOS phase 1 procedure does not guarantee to minimize SINF, it
does work towards minimizing NINF until it recognizes that it cannot be reduced
to zero. This behaviour can be used to identify set cover candidates by looking for
the greatest drop in NINF when a constraint is removed, rather than the greatest
drop in SINF as in Alg. 7.3, with the drop in SINF used to break ties between can-
didates with equivalent drops in NINF. Since the MINOS phase 1 permits literal
constraint violations rather than using elastic variables, Step 2 of Alg. 7.3 must
test violated constraints in addition to constraints to which the phase 1 objective
function is sensitive. Since the MINOS phase 1 provides both NINF and SINF, the
steps marked optional in Alg. 7.3 are naturally included.

Fig. 7.2. A pathological counter-
example (Chinneck 1996c)

A1

B0

C0

A2
A0

B1

C1

172 7 Finding the Maximum Feasible Subset of Linear Constraints

 A0: x1 + x2 ≥ 8
 A1: x1 + x2 ≥ 9
 A2: x1 + x2 ≥ 20

Alg. 7.3 is extremely effective, so any modifications should ideally delete the
same constraints, and in the same order. In the best case, we would like to directly
identify the correct constraint for removal at each iteration, and place only that
single constraint in CandidateSet. While this is not possible, the two observations
following below allow the assessment of each potential candidate quickly without
solving an LP. This permits the addition of only a very few of the most promising
candidate constraints to CandidateSet for testing via LP solution. Very often, the
first constraint on the list is indeed the correct constraint for removal.

Observation 7.5: Estimating SINF reduction for violated constraints (Chinneck
2001a). For constraints that are violated in the original model (i.e. whose elastic
variables are stretched in an elastic solution), a good predictor of the magnitude of
the drop in SINF that will be obtained by deleting the constraint is given by the
product (constraint violation) × |(constraint sensitivity)|.■

When converted to a full elastic program, “constraint violation” in the original
model is given by the value of the elastic variable associated with a constraint. If
there are two elastic variables associated with a constraint, as for equality and
range constraints, then the constraint violation is the maximum value of the two
elastic variables. “Constraint sensitivity” refers to the reduced cost of the variable
associated with the constraint. The absolute value of the constraint sensitivity is
used because the sign, determined by the constraint sense (≤, ≥, =), is irrelevant
since all violations are relaxations of the constraint, regardless of constraint sense.

Having a nonzero elastic variable in the elasticized model is equivalent to
changing the right-hand-side value of the constraint in the original model. Thus
the product in Observation 7.5, obtained from the elastic version of the model, is
the same as operating on the original model to estimate the change in the objective
value caused by relaxing the right hand side by the amount given by the nonzero
elastic variable. As shown in elementary texts on simple sensitivity analysis, this
is a perfectly accurate estimator of the change in SINF, provided that the basis in
the original model does not change. Of course, the basis in the original model does
change when an active constraint is deleted, so Observation 7.5 provides an un-
derestimate of the change in SINF. Chinneck (2001a) carries out a small study of
the accuracy of the estimates provided by Observation 7.5 on two difficult classi-
fication problems and concludes that the maximum-product heuristic is remarka-
bly accurate in predicting ΔSINF: it is over 95% accurate in 87% of the cases ex-
amined, and over 90% accurate in 94% of the cases examined.

Observation 7.5 suggests a revision to Alg. 7.3. In Steps 1 and 2, instead of set-
ting HoldSet = {constraints to which the elastic objective function is sensitive},
find HoldSet as follows:

7.4 Chinneck’s SINF-Reduction Heuristics 173

Chinneck (2001a) later studied how to improve the speed of Alg. 7.3 by
reducing the number of candidate constraints tested, i.e. the size of CandidateSet,
which is normally determined by the number of constraints to which the elastic
objective function is sensitive. New observations lead to new criteria for inclusion
in CandidateSet; objective-function sensitivity is no longer the single sufficient
criterion.

2(k) requires the use of a fully elastic version of the original model (i.e. variable
bounds must be elasticized as well as rows). This is straightforward in solver im-
plementations that already permit literal constraint violations during their Phase 1
procedure (by violating the bounds on the variable associated with the constraint),
but it may require the explicit addition of elastic variables in other solver imple-
mentations.

Concentrating solely on the violated constraints is often successful because the
elastic objective function is itself trying to minimize SINF, hence it tends to vio-
late the constraints that cause the least increase in SINF. However, in some models
having numerous infeasibilities, it may be possible to obtain a larger drop in SINF
by deleting a constraint that is not currently violated. Observation 7.6 describes an
indicator for identifying satisfied constraints that are good candidates for deletion.

Observation 7.6: Identifying candidate satisfied constraints (Chinneck 2001a).
For constraints that are satisfied in the original model (i.e. their associated elastic
variables are zero), a good predictor of the relative magnitude of the drop in SINF
that will be obtained by deleting the constraint is given by |(constraint
sensitivity)|.■

This observation allows an ordering of the set of satisfied constraints for possi-
ble inclusion in CandidateSet. Observation 7.6 does not provide a direct estimate
of the size of the drop in SINF expected when the constraint is deleted, only the
relative size (i.e. a constraint with a larger |sensitivity| is expected to provide a lar-
ger drop in SINF).

Observations 7.5 and 7.6 can be combined to provide another variant of Alg.
7.3. In Steps 1 and 2, instead of setting HoldSet = {constraints to which the elastic
objective function is sensitive}, find HoldSet as follows:

1. Select the violated constraints, and arrange them in order from largest to
smallest value of the product (constraint violation) × |(constraint sensitivity)|.

2. Fill HoldSet with the top k elements of the ordered list (or all of the elements
of the list if there are fewer than k).

3. Select the satisfied constraints to which the elastic objective function is sen-
sitive, and arrange them in order from largest to smallest |(constraint sensi-
tivity)|.

4. Add the top k elements of this ordered list to the bottom of HoldSet (or all of
the elements of the list if there are fewer than k).

174 7 Finding the Maximum Feasible Subset of Linear Constraints

1. Select the violated constraints, and arrange them in order from largest to smallest
value of the product (constraint violation) × |(constraint sensitivity)|.

2. Fill HoldSet with the top k elements of the ordered list (or all of the elements
of the list if there are fewer than k).

Chinneck (2001a) refers to this variant as Algorithm 2(k), where k refers to the
length of the candidate list. Empirical results using this algorithm are presented
later. Note that a list length of 1 is frequently successful. Because we wish to es-
timate the effect of every constraint via the product in Observation 7.5, Algorithm

a full elastic SINF minimization. The implementation would normally proceed as
follows:

1. Native phase 1 method detects infeasibility and records the NINF and IIS
cover.

2. Convert to full elastic version of model.
3. Minimize SINF in fully elastic model (using an advanced start provided by

the native phase 1 solution) and record the NINF and IIS cover.

The smallest NINF provided by the native phase 1 or the elastic phase 1 then
acts as a stopping condition for any more advanced algorithm.

Alg. 7.4 combines all of these observations into a generic framework. The pos-
sible selection criteria for inclusion in HoldSet include (i) phase 1 objective func-
tion sensitivity (as in Alg. 7.3), (ii) high values of the product for violated con-
straints (i.e. Algorithm 2), or (iii) both high values of the product for violated
constraints and high phase 1 objective function sensitivities (i.e. Algorithm 3).

Chinneck (1996c, 2001a) conducted a number of empirical tests of Algorithms 7.3
and 7.4. Results for 14 of the more difficult infeasible LPs in the netlib set (those for
which the MINOS phase 1 does not find a single-member IIS cover) are summa-
rized in Table 7.2. Numbers in boldface indicate solutions that return an IIS cover
of true minimum cardinality, “NINF” indicates the cardinality of the IIS cover,
and “LPs” indicates the number of LPs solved (excluding the initial phase 1 solu-
tion that signalled infeasibility). The results for Algorithms 2(k) and 3(k) are for
simply using the selection criteria for those models directly in Alg. 7.3. The results
for “Alg. 7.4 with 3(7)” are derived by combining the two phase 1 results in Table
7.1 with the results of Algorithm 3(7) to infer the outcome (Alg. 7.4 with 3(7) was
not actually implemented). The SafetySet established during Step 0 of Alg. 7.4 is
actually used for mondou2. If Alg. 7.4 is combined with the Algorithm 2(1), 2(7),
or 3(1) selection criteria, the SafetySet is used even more often.

7.4 Chinneck’s SINF-Reduction Heuristics 175

Chinneck (2001a) refers to this variant as Algorithm 3(k), where k refers to the
length of each of the two lists. Note that a list length of k implies the solution of
up to 2k LPs to identify the winning candidate.

We can also improve on Alg. 7.3 by taking better advantage of Observation 7.1
to provide a safety exit when the more advanced algorithms perform poorly. Be-
cause the cardinality of the IIS cover provided by the phase 1 procedure is already
known, any subsequently applied algorithm can be halted when its cover cardinal-
ity exceeds the cardinality of the IIS cover already provided by the phase 1 proce-
dure.

Further, more than one phase 1 procedure would probably be applied in a prac-
tical implementation because the solver-native phase 1 procedure is unlikely to be

INPUT: Linear constraints defining an infeasible model.
0. CoverSize = 0, CoverSet = ∅, SafetySize = 0, SafetySet = ∅.
 If native phase 1 procedure detects feasibility, then exit.
 SafetySize = (cardinality of native phase 1 cover).
 SafetySet ← {members of native phase 1 cover}.
 IF SafetySize = 1 THEN:
 CoverSize = 1.
 CoverSet ← SafetySet.
 Exit.
 Set up elastic LP.
 Solve elastic LP using advanced start from the native phase 1 solution.
 IF (elastic cover cardinality) < SafetySize THEN:
 SafetySize = (cardinality of elastic phase 1 cover).
 SafetySet ← {members of elastic phase 1 cover}.
 If SafetySize = 1 then:
 CoverSize = 1.
 CoverSet ← SafetySet.
 Exit.
 HoldSet = {constraints meeting selection criteria}.
1. MinSINF = ∞.
 CandidateSet ← HoldSet.
 FOR each constraint in CandidateSet:
 Delete the constraint.
 Solve elastic LP.
 IF SINF = 0 THEN:
 Add constraint to CoverSet.
 CoverSize = CoverSize + 1.
 Exit.
 If SINF < MinSINF then:
 Winner = currently deleted constraint.
 MinSINF = SINF.
 HoldSet ← {constraints meeting selection criteria}.
 If NINF = 1, NextWinner = single violated constraint.
 Else NextWinner = ∅.
 Reinstate the constraint.
2. Add Winner to CoverSet.
 CoverSize = CoverSize + 1.
 IF NextWinner ≠ ∅ THEN:
 Add NextWinner to CoverSet.
 CoverSize = CoverSize + 1.
 Exit.
 Delete the Winner constraint permanently.
 IF CoverSize ≥ (SafetySize – 1) THEN:
 CoverSet ← SafetySet.
 CoverSize = SafetySize.
 Exit.
 Go to Step 1.
OUTPUT: CoverSet is an IIS cover of cardinality CoverSize.

Alg. 7.4. Heuristic 2 for MIN IIS COVER (Chinneck 2001a)

176 7 Finding the Maximum Feasible Subset of Linear Constraints

The gran model is omitted because it causes numerical difficulties. The list
length for Algorithms 2 and 3 can be set as desired. Shorter lists are faster, but
longer lists are more accurate. With a sufficiently long list, Algorithm 3 is equiva-
lent to Alg. 7.3. Experimentation with shorter lengths showed that a length of 7 is
quite effective, particularly for Algorithm 3. Results with list lengths of 1 and 7
for Algorithms 2 and 3 are given in Table 7.2.

Table 7.2. Comparison of algorithms on difficult infeasible LPs (Chinneck 2001a)

 Alg. 7.3 Alg. 2(1) Alg. 2(7) Alg. 3(1) Alg. 3(7) Alg. 7.4
with 3(7)

model NINF LPs NINF LPs NINF LPs NINF LPs NINF LPs NINF
bgprtr 1 1 1 0 1 0 1 0 1 0 1
itest2 2 7 2 1 2 2 2 2 2 6 2
mondou2 3 384 7 6 5 25 6 11 5 53 3
reactor 1 25 1 0 1 0 1 0 1 0 1
woodinfe 2 47 2 1 2 2 2 2 2 4 2
bgdbg1 12 645 12 11 12 65 12 22 12 142 12
bgindy 1 1 1 1 1 1 1 1 1 1 1
chemcom 1 2 1 1 1 1 1 1 1 1 1
greenbea 2 404 2 1 2 6 2 2 2 13 2
itest6 2 10 4 4 2 7 4 7 2 8 2
klein3 1 53 9 9 1 7 4 8 1 7 1
cplex1 1 213 211 210 211 1455 4 8 1 9 1
klein2 1 17 3 2 3 7 2 4 1 11 1
refinery 1 36 3 2 3 9 3 4 2 18 2
min NINF 14 8 10 8 12 13
avg. NINF 2.2 18.5 17.6 3.2 2.4
avg. LPs 131.8 17.8 113.4 5.1 19.5

As expected, Alg. 7.3 requires the most LP solutions on average (131.8) while

Algorithm 3(1) requires the fewest (5.1). These average results are skewed by
cplex1. In 12 of the 14 models, Algorithm 2(1) requires the smallest number of LPs.
Algorithms 2(1) and 3(1) are both very quick in comparison to Alg. 7.3. It is
instructive to look in detail at the 4 models that require more than 100 LPs for
solution by Alg. 7.3. In most cases, Algorithms 2 and 3 solve far fewer LPs than
Alg. 7.3 (the exception is cplex1), and are reasonably accurate.

Algorithms 2 and 3 are slightly less accurate than Alg. 7.3. Algorithm 2 does
poorly on cplex1, in terms of both accuracy and speed. Ignoring cplex1 gives
Algorithm 2(1) an average of 3.0 LPs (instead of 17.8), and Algorithm 2(7) an
average of 10.2 LPs (instead of 113.4). A corollary observation is that a change of
algorithms can have a dramatic impact on accuracy for a particular model. Alg.
7.3 and 3(7) are the only ones able to achieve the true MIN IIS COVER for cplex1.

Table 7.2 is broken into five groups. The MIN IIS COVER in models 1–5 is found
by one or both of the two phase 1 procedures applied. In fact, the MINOS phase 1 is
the only procedure to find a MIN IIS COVER for mondou2. Because of this, Alg. 7.4

7.4 Chinneck’s SINF-Reduction Heuristics 177

finds the true MIN IIS COVER for all five of these models in conjunction with any of
the Algorithm 2 and 3 candidate selection criteria. This argues for the inclusion of
the MINOS-style phase 1 procedure in Alg. 7.4, as does the excellent performance
of the MINOS phase 1 on the other 14 models for which it found single-member
IIS covers.

The MIN IIS COVER is found by all of the algorithms for models 6–9 in Table
7.2, including the fast short-list versions. The reduction in the number of LPs
solved as compared to Alg. 7.3 is dramatic for bgdbg1 and greenbea. This
underlines the effectiveness of the new algorithms.

Models 10 and 11 of Table 7.2 require a longer list length to find a MIN IIS
COVER. Each of the four short-list algorithms requires about the same small num-
ber of LPs to arrive at a solution, but smaller cardinality solutions are returned by
Algorithms 2(7) and 3(7). This argues for the longer list lengths in Algorithms 2
and 3.

Algorithm 3 is the best approach for models 12 and 13 of Table 7.2. Even with
a list length of 1, a cover of cardinality 4 is found for cplex1 using Algorithm 3
versus a cover cardinality of 211 using Algorithm 2. Algorithm 3(7) finds the true
MIN IIS COVER in both cases. This argues for the use of the selection criteria of Al-
gorithm 3 in the framework of Alg. 7.4.

Finally, a MIN IIS COVER is not found using any heuristic method for the last
model in Table 7.2. However, the best result, provided by both the MINOS phase
1 and by Algorithm 3(7), is very close to the optimum at only 1 greater than the
true minimum cardinality.

These empirical results indicate that an effective version of Alg. 7.4 would in-
corporate a MINOS-style phase 1 procedure, and would use the selection criteria
of Algorithm 3 at list length 7. This provides a significant speedup for general LP
problems with little loss in accuracy: it fails to find a MIN IIS COVER only for refin-
ery, and the cover is too large by just 1 member in that case. This algorithm is
about 7 times faster than Alg. 7.3 on average.

For maximum speed at reasonable accuracy, use Alg.7.4 with selection criteria
from Algorithm 3(1). This does not give a poor result on any of the test models.
On the five models for which this combination does not achieve a MIN IIS COVER,
the maximum distance from optimality is 3, and the average is 1.8. This algorithm
is about 25 times faster than Alg.7.3 on average, and dramatically faster on many
models.

Sadegh (1999) modifies Alg. 7.3 by substituting a minimax solution for the
minimization of the sum of the elastic variables. This is easily done by adding
constraints requiring that every elastic variable be less than some value β, and sub-
stituting the objective function min β. Sadegh reports good results on a number of
test problems.

178 7 Finding the Maximum Feasible Subset of Linear Constraints

7.5 Two-Phase Relaxation-Based Heuristic

formulation (Sec. 7.1.1) often results in numerical difficulties for large models,
but works well when the problem is small or moderate in size. This observation
leads them to develop an interesting two-phase algorithm. In the first phase, a heu-
ristic is applied to isolate a feasible subset, which is then frozen. In the second
phase, the exact big-M MIP or other methods are used to expand the initial feasi-
ble set as much as possible. This has the pleasing feature of reducing the size of
the problem in the second phase sufficiently that a big-M MIP can be effective.
The success of the method hinges on the pairing of the methods applied in the two
phases.

bounded, which is easily transformed into a version in which all variables are
nonnegative and upper-bounded. It is also straightforward to adapt the method for
general linear constraints.

The most important new first phase heuristic is a linearization of the exact
nonlinear bilinear formulation of the MAX FS problem seen in Sec. 7.1.2. This uses
a substitution of the new variable zij for the bilinear terms yi xj, with further
restrictions added so that zij is a closer approximation of yi xj. The resulting
linearization is:

0..,...1,...1,0
...1,10

...1,

0..,...1,...1,)1(

0..,...1,...1,

0..,...1,...1,

...1,

:

max

0: 0:

1

<==≥
=≤≤

=≤≤

<==≤−−

<==≤

<==≤

=≥+∑ ∑

∑

< ≥

=

ijij

i

jjj

ijijijj

ijjij

ijijij

iiaj aj jijijij

m

i i

atsnjmiz
miy

njuxl
atsnjmizyux

atsnjmixz
atsnjmiyuz

mibyxaza

tosubject

y

ij ij

An optimum solution to this model does not guarantee that the yi variables,
which are binary in the original LPEC formulation, will all have binary values.
However it does provide a reasonable heuristic for identifying a large feasible sub-
system, i.e. all of those constraints for which yi = 1 are satisfied at the resulting
point x.

relaxation described above, as well as for a linear relaxation of the big-M MIP
formulation, the inequalities for which y i < 1 in the solution are not always
inconsistent with those for which yi = 1. This means that the feasible subsystem
returned by the relaxation can possibly be augmented by further constraints, and

7.5 Two-Phase Relaxation-Based Heuristic 179

Amaldi et al. (2007) observe that the exact solution for MAX FS using a big-M MIP

Amaldi et al. develop the method for the case in which all variables are

The important observation made by Amaldi et al. (2007) is that for the linear

this is where the second phase of the two-phase method comes into play. Note,
though, that it is equally true that some of the constraints for which yi = 1 in the
relaxation solution may not belong to any maximum feasible subsystem, i.e. are
wrongly included in the first phase feasible subsystem when the goal is to find a
maximum cardinality set. Since the feasible subsystem returned by the first phase
solution is frozen, there is no way to remove these constraints later, even if it
would allow a larger feasible subsystem to be constructed.

The overall logic of the two-phase algorithm is summarized in Alg. 7.5. The
output feasible subset consists of those constraints for which yi = 1 in the first
phase solution plus those constraints identified during the second phase procedure.

INPUT: an infeasible set of linear inequalities.
First Phase:
 1. Solve a relaxation of MAX FS to obtain a solution y.
 2. I1←{i: yi = 1, i = 1 … m}
Second Phase:
 3. Solve an exact formulation of MAX FS in which yi = 1 is fixed for all i∈ I1.
OUTPUT: a feasible subset.

The authors apply their two-phase method, written in the AMPL language

formulation is always used for the reduced-size second phase problem, various
methods are used for the first phase:

A linearization of the big-M formulation.
The linearization of the bilinear LPEC formulation described above.
An ordinary LP phase 1 procedure (see Sec. 7.3).

The two-phase variations are compared with several complete methods:

A re-implementation of Chinneck’s first SINF-reducing algorithm (Alg. 7.3)
in AMPL.
A branch-and-cut algorithm (Pfetsch 2002).
A combinatorial Bender’s cut algorithm (Codato and Fischetti 2004).

These methods are compared over a variety of random models as well as mod-
els derived from linear classification and machine learning instances and problems
arising in digital video broadcasting. Different methods dominate in the different
test sets, and various tradeoffs between solution speed and accuracy are seen.

For the complete methods, a straightforward application of the big-M MIP ex-
act formulation to the entire problem is not able to reach optimality for very large
models, as expected. However it frequently reaches a very good incumbent solu-
tion within the imposed time limits, which can then be used as a heuristic solution.
The branch-and-cut method provides excellent results on the random test set, the
only set to which it is applied. The combinatorial bender’s cut algorithm performs
very well on the single test set to which it is applied, though it fails completely on
several of the larger instances. The SINF-reducing algorithm (Alg. 7.3) performs
very well throughout most of the tests, though it times out on several of the ex-

180 7 Finding the Maximum Feasible Subset of Linear Constraints

(Fourer et al. 2003) over several combinations of methods. While the exact big-M

–
–
–

–

–
–

Alg. 7.5. Overall logic of the two-phase relaxation-based heuristic (Amaldi et al. 2007)

tremely large digital video broadcasting problems whereas the two-phase methods
and the exact big-M method are able to reach heuristic solutions at an incumbent
before timing out.

The size of the feasible system produced during the first phase varies according
to the method applied. The big-M relaxation gives the largest feasible subsystems
for the random instances and some of the machine learning instances, but is domi-
nated by the other two methods in some of the other test sets. It’s an open question
as to whether it is better to find a larger rather than a smaller feasible subsystem
during the first phase. A small first-phase feasible subsystem gives the exact algo-
rithm more room to maneuver during the second phase, but by the same token
may make the second phase problem too large for exact solution. The true test is
in the result returned after the completion of the second phase algorithm.

Generally speaking, the two-phase method with a bilinear relaxation first phase
provides the best results over all of the data sets, though the SINF-reducing algo-
rithm (Alg. 7.3) outperforms on the small classification dataset. The two-phase
method with big-M relaxation first phase provides results that are almost as good
as those produced by the bilinear first phase method, but is also much faster. The
two-phase method with ordinary LP phase 1 first phase is dominated.

7.6 Randomized Thermal Relaxation Algorithms

systems of linear inequalities. More specifically, because the systems that they
consider are so large (up to tens of millions of inequalities) they are content with
solutions that are simply large feasible subsystems when it is not possible to ob-
tain the true MAX FS. The randomized thermal relaxation (RTR) algorithm de-
scribed in this section can be considered as a heuristic phase 1 procedure that tries
to maximize the number of satisfied inequalities.

randomized variants of projection algorithms (see Sec. 2.8) to iteratively attempt
to satisfy as many of the inequalities as possible. When the algorithm halts, the set
of constraints currently satisfied constitutes the approximate solution to MAX FS.
The projection variant they use is based on the thermal perceptron heuristic (Frean
1992) which iteratively relaxes all violated inequalities except for one, while mov-
ing orthogonally to the selected constraint to reduce its violation. This is similar to

the selection of the constraint to consider and the decision to accept an update. De-
tails follow.

Constraints are of the form aix ≥ bi, i = 1…m. At iteration i, constraint ki is cho-
sen randomly, and the current point xi is updated as follows:

ikiii axx η+=+1 with
probability pi > 0 if constraint ki is violated, or xi+1 = xi otherwise. The randomized
acceptance of an update is similar to the basic method in simulated annealing
(Kirkpatrick et al 1983), and along with the random selection of a constraint for

7.6 Randomized Thermal Relaxation Algorithms 181

Amaldi et al. (2005) consider the problem of solving MAX FS for extremely large

The approach taken by Amaldi et al. (2005) for these very large models is to use

a sequential projection algorithm (Censor et al. 2001), but with randomization in

update helps avoid roundoff difficulties. The thermal variant gradually shifts

straints with small violations as the updating process proceeds, with the idea that
as much feasibility as possible should be retained near the end of the process,
rather than continually concentrating on very large updates which can seriously af-
fect the number of violated constraints. Here again we see the interaction between
reducing the sum of the infeasibilities (i.e. SINF) and the number of violations
(NINF).

The shift in attention from large to small constraint violations is controlled by a
temperature schedule, another feature borrowed from simulated annealing. The
temperature ti is a positive number that starts at a large value and gradually re-
duces, e.g. t0 = 1000, and ti+1 = ti × 0.0001. The update step length ηi is determined
by the violation of the selected constraint vi = max{0, }ikk ii

b xa− and the current
temperature as follows: ii tvi

i e
t
t /

0

−=η i

near the start of the process, large violations yield large updates, but when ti is
small near the end of the process, only small violations yield significant updates.
The best solution xbest seen so far, in terms of the maximum number of satisfied
constraints, is retained. After a preset number of iterations, xbest is returned as the
approximate solution to MAX FS. Variations of these randomized thermal relaxa-
tion (RTR) methods are obtained by (i) changing the rule by which an inequality is
selected for update (randomly, with or without replacement), (ii) changing the rule
by which ηi is determined, and (iii) changing the rule by which pi is set.

best al-
most surely solves MAX FS optimally after a finite number of iterations. The termi-
nation proofs use very long update sequences and very slow temperature decrease
schedules, however empirical results are much better than might be expected from
the proofs. Some modifications are implemented in practice:

• After each cycle of m randomly chosen inequalities, t0 is reset as follows:

∑ =
+=

m

k kvtt
100 3

2
3
1 .

• The maximum number of iterations is preset and is used to reduce the tempera-

ture as follows: 01 t
onsMaxIterati

iti ⎟
⎠
⎞

⎜
⎝
⎛ −= .

• When an update yields a new point in which some of the variables fall outside
of their bounds, those variables are projected back onto the bounds before pro-
ceeding.

• Good sub-optimal solutions are found by using a block-iterative update in
which the update direction is given by a convex combination of the ak from the
violated inequalities in the block. The block size is decreased as the iterations
proceed.

• A search is conducted along the line segment between xi and xi+1 to find the
point that satisfies the most constraints.

. Using this relationship, when t is large

182 7 Finding the Maximum Feasible Subset of Linear Constraints

attention from selecting constraints with large violations towards selecting con-

Amaldi et al. (2005) provide probabilistic termination guarantees that x

• When there has been no improvement for a predetermined number of iterations,
a local search is conducted by altering the values of individual variables to sat-
isfy more constraints. This can also be done in a grouped manner.

• A preprocessing step similar to an LP presolve is applied to identify constraints
that cannot be satisfied within the current variable bounds, constraints that are
always satisfied within the current variable bounds, and variables that can be
fixed to their upper or lower bounds (possibly with suitable changes to b).

network planning, protein folding potentials, and discriminant analysis. They
compare their RTR method to a big-M based MIP solution (see Sec. 7.1.1) using
Cplex 8.1 (Ilog 2006). The value of M is easily determined from the problem, but
is very large, which negatively impacts the MIP approach due to numerical
difficulties. A two hour time limit is imposed on the MIP solutions. Despite the
generous time allowed for the MIP solutions, Cplex is able to solve only relatively
small instances, and RTR performs about as well as Cplex over these small
instances. Over the larger instances, Cplex is generally not able to complete at all
within two hours, though it occasionally returns a first solution within that time.
RTR, on the other hand generally returns high quality solutions very quickly, and
occasionally improves these somewhat if given more computation time.

six large feasible instances having 200,176 to 401,115 inequalities and 301 variables.
RTR is able to satisfy almost all constraints within a relatively short time (less than 75
seconds in all cases, usually closer to 30 seconds on a 2.8 GHz PC). The number of
unsatisfied constraints is very small in most cases, ranging between 0 and 6, with
an average of 2.5 unsatisfied inequalities over the 6 instances.

for 5000 iterations, at which point a MIP is formulated in which only the currently

This MIP is then solved to optimality. This is a two-phase algorithm (Sec. 7.5) in
which the first phase is solved by RTR. The results are again very promising, with
the hybrid method producing near-optimal results in just a few seconds in most
cases. The results are compared to both Cplex and a new Combinatorial Bender’s
Cuts method (Codato and Fischetti 2004). The latter method proves slightly better
overall, but uses the entire two-hour time limit on several of the instances.
Instance sizes are relatively small in these experiments: 169 to 1066 inequalities.

The randomized thermal relaxation methods are an excellent approach for heu-
ristically solving MAX FS for very large sets of linear inequalities.

7.7 An Interior-Point Heuristic

large sets of linear inequalities that makes use of the properties of interior-point
LP solvers. Specifically, for a null objective function, interior point algorithms
find a point near the analytic centre of a set of linear inequalities, i.e. the point that

7.7 An Interior-Point Heuristic 183

Amaldi et al. (2005) report on experiments in digital video broadcasting

In an interesting experiment, Amaldi et al. also apply their RTR algorithm to a set of

unsatisfied constraints have the possibility of relaxation via the inclusion of a big-M.

Meller et al. (2002) develop an approximate solution for MAX FS for extremely

In a third experiment, Amaldi et al. apply a hybrid method in which RTR is run

minimizes ∑ =
−

m

i iib
1

)ln(xa where there are m inequality constraints of the form

i i
away from the satisfied constraints and generally towards the centre of a polytope.
Note that the final point reached is affected by the extra push from redundant con-
straints, so it may not be near the geometric centre of a polytope.

operates as follows. First obtain an initial solution x0, which will satisfy some sub-
set P(x0) of the inequality constraints in this infeasible system. For the protein

0
tical potentials, but may be more difficult to obtain in other contexts. The success
of the method depends greatly on a good choice of x0. Next, find the analytic cen-
tre of the subset of constraints P(x0) and denote this by x1. The analytic centre will
necessarily satisfy all of the constraints in P(x0), and may satisfy a number of ad-
ditional constraints; this possibly larger set of constraints satisfied at x1 is denoted
by P(x1). Now iterate the process, finding a new analytic centre for P(xk) and de-
noting this as xk+1, halting the iterations when P(xk) = P(xk+1).

ing from protein folding problems. In one problem with 627,567 inequalities, the
method progresses from an initial guess that violates 57,211 constraints to violat-
ing 6,800 constraints after the first analytic centre is found, and finally to 1,928
violated constraints when the method converges. Two different methods of gener-
ating the initial solution are used, based on knowledge of the application. One
method gives better results than the other, but in both cases there is a significant
increase in the size of the feasible subset as the algorithm iterates. The authors
note that it can require up to 15 analytic centre solutions before the method con-
verges, each solution requiring several minutes of workstation time. In their im-
plementation, each analytic centre solution is independent, without the benefit of a
warm start for the interior point solution.

This approach is reminiscent of the bootstrapping method for achieving

feasibility for sets of nonlinear constraints as outlined in Sec. 5.3.

7.8 Working with IIS Covers

An IIS cover is directly useful as a tool to focus the analytic effort, but it also has
other applications. It can be used to quantify the importance of constraints relative
to the infeasibility, and it can also be used as a basis for finding individual IISs.
Details follow below.

184 7 Finding the Maximum Feasible Subset of Linear Constraints

The maximum feasibility guideline algorithm developed by Meller et al. (2002)

Meller et al. (2002) test their method on several very large infeasible LPs result-

folding application of interest to Meller et al. x is conveniently provided by statis-

a x ≤ b . This is a form of barrier function that tends to push the current iterate

7.8.1 Single Member IIS Covers

Small cardinality IIS covers are generally the most useful in focussing the analytic
effort on the constraints that cause the greatest difficulties. However, an IIS cover
having only a single member may not be especially helpful for two reasons. If the

member set cover, so the single-member IIS cover focuses inappropriately on a
random member of the IIS. The same problem of possibly misleading focus ap-
plies when there are IISs overlapped on a common subset of constraints, each of
which is a candidate for an IIS cover of cardinality 1.

What needs to be determined is the complete set of single member IIS covers.
If given a complete IIS in addition, it is then easy to determine whether there is
only a single IIS, or whether there are overlapped constraints. Alg. 7.6 outlines a
procedure first used in LINDO (Schrage 1991). The members of the IIS are la-
belled either “necessary” (i.e. necessary to the IIS) or “sufficient” (i.e. sufficient to
remove all infeasibility in the model). “Sufficient” constraints are single member
IIS set covers.

INPUT: Constraints defining an infeasible model.
1. Find an IIS.
2. FOR each member of the IIS:
 Temporarily remove the current member from the model.
 Test feasibility of the reduced model via solution of phase 1 LP.
 IF the reduced model is feasible, label the current member “sufficient”.
 ELSE (reduced model infeasible), label the current member “necessary”.
 Return the current member to the model.
OUTPUT: An IIS with all members labelled “necessary” or “sufficient”.

Alg. 7.6. The IIS member labelling scheme

Alg. 7.6 has some useful properties, as described in the following theorems.
Theorem 7.3: Single IIS (Chinneck 1997a). All of the IIS members are labelled

“sufficient” by Alg. 7.6 if and only if there is only a single IIS in the model.
Proof: If there is another IIS in the model that does not overlap with the

original IIS, then none of the members of the original IIS will be labelled
“sufficient” since none of them can eliminate all of the infeasibility in the model.
If there are other IISs in the model which overlap the original IIS, then some of
the members of the original IIS will be labelled “necessary” rather than
“sufficient” (recall that it is impossible to have a subset of an IIS that is itself
infeasible since IISs are irreducible). Hence all members of the IIS are labelled
“sufficient” if and only if there is only a single IIS in the model. ■

Corollary 7.4: Overlapped IISs (Chinneck 1997a). Alg. 7.6 labels some of the
IIS members “sufficient” and some “necessary” if and only if there is a single
cluster of IISs with some elements common to all IISs in the cluster.

Proof: As in Theorem 7.3, if there is another IIS in the model that does not
overlap with the original IIS, then none of the members of the original IIS will be

model contains just a single IIS, then any member of the IIS forms a single-

7.8 Working with IIS Covers 185

labelled “sufficient” since none of them can eliminate all of the infeasibility in the
model. Hence there is only a single cluster of IISs that overlaps on the “sufficient”
members. And since some members are labelled “necessary” (because their re-
moval does not eliminate all of the infeasibility) there must be other IISs in the
model. ■

If some constraints are labelled “sufficient” and some are labelled “necessary”,
then additional information is obtained because the “sufficient” members are more
probably incorrect than the “necessary” members.

Algorithm 7.6 can be used when the set cover cardinality is greater than one by
first applying Alg. 7.7 (described below) to create subsets of the model in which
the set cover cardinality is one. Thm. 7.3 and Corollary 7.4 can then be used to
extract additional information about the infeasibility.

If Alg. 7.6 is applied to the first IIS isolated, without knowledge of the set
cover cardinality, it can give some idea of the set cover cardinality by using
Thm.7.3 and Corollary 7.4.

Theorem 7.5: Set cover cardinality of 1 (Chinneck 1997a). The minimum IIS
set cover cardinality is one if and only if any member of the IIS is labelled
“sufficient” by Alg. 7.6.

Proof: If the removal of any constraint in the model eliminates all of the infea-
sibility, then it is a set cover, by definition. Further, since it has cardinality one, it
must be of minimum cardinality (see Observation 7.2). ■

Corollary 7.6: Set cover cardinality >1 (Chinneck 1997a). No members of the
IIS are labelled “sufficient” if and only if the minimum IIS set cover cardinality is
greater than one.

Proof: If no members of the IIS are labelled “sufficient”, then no single
constraint is able to eliminate all of the infeasibility in the model. Hence the
minimum set cover cardinality must be greater than one. ■

7.8.2 Finding Specific IISs Based on IIS Covers

In repairing an infeasible LP, it is very helpful if one IIS covered by each member
of the cover set is found. This is simple to do if the covering algorithm is
operating on a list of IISs, even if the list is incomplete, as in Parker and Ryan’s
method or the constraint frequency heuristic. Otherwise, a simple algorithm due to
Chinneck (1996c) can be used when the set cover is provided by a method which
does not first list IISs. See Alg. 7.7.

186 7 Finding the Maximum Feasible Subset of Linear Constraints

INPUT: (i) Constraints defining original infeasible model, (ii) IIS cover.
FOR each member of IIS cover:
 Eliminate all members of IIS cover except the current member.
 Test feasibility via solution of phase 1 LP.
 IF the reduced model is feasible THEN:
 Issue message and remove current member from IIS cover.
 ELSE (reduced model is infeasible):
 Isolate and report an IIS having few rows.
 Reinstate all members of IIS cover.
OUTPUT: One IIS for each member of (possibly reduced) IIS cover.

Alg. 7.7. Finding one IIS for each member of the IIS set cover

Alg. 7.7 will sometimes identify constraints which have been added to the IIS
cover in error. When all but one member of the cover are removed from the model
and it becomes feasible, then it is obviously not necessary to remove the single
remaining member as well in order to eliminate all infeasibility, hence the current
member is not part of a minimal cover.

Note that when all but one member of the cover are eliminated in Alg. 7.7, sub-
sets of the model are created in which the retained set cover member is a single
member IIS set cover.

The satisfiability community has taken a different approach to finding IISs based on
IIS covers. Given the availability of efficient solvers for the maximum satisfiability
(MAXSAT) problem (see Sec. 4.1), Liffiton and Sakallah (2005) first generate the
complete set of IIS covers, and then use this set to generate the complete set of IISs. To
generate the complete set of IIS covers, they allow the maximum satisfiability solver
to eliminate at most k constraints while seeking a feasible solution for all constraints
that remain. Of course, each maximum satisfiability solution yields an associated IIS
cover. All covers at some value k are found by adding constraints that block out
solutions already found. k is incremented from an initial value of 1 until no more IIS
covers can be found.

Now a second algorithm is applied to generate a single IIS from the complete
set of IIS covers, as shown in Alg. 7.8. It operates on the principle that every
member of every IIS must be in some IIS cover in the complete set. At each itera-
tion the algorithm chooses a particular cover and a constraint from that cover is
added to the IIS that is being constructed. It then removes the constraints from the
set of covers to make sure that in later steps we will only find IISs that contain the
chosen constraint. The process repeats until a single IIS has been constructed,
which is signalled by the emptying of the list of IIS covers. The main idea is that a
minimal cover of the cover sets is an IIS.

7.8 Working with IIS Covers 187

INPUT: COVERS, the complete set of IIS covers in the model.
0. IIS=∅
1. WHILE COVERS ≠ ∅:
 1.1 CurrentCover ← select a cover in COVERS.
 1.2 Constraint ← select a constraint in CurrentCover.
 1.3 IIS ← IIS ∪ constraint.
 1.4 Remove all constraints in CurrentCover\Constraint from
 all covers in COVERS.
 1.5 Remove all covers in COVERS that contain Constraint.
2. Return IIS.
OUTPUT: a single IIS.

Alg. 7.8. Finding a single IIS given the complete set of IIS covers (Liffiton and Sakallah
2005)

An example follows. Suppose the model contains the IISs {A,B,C}, {C,D,E}

and {F,G,H}, then the complete set of IIS covers is {A,D,F}, {A,D,G}, {A,D,H},
{A,E,F}, {A,E,G}, {A,E,H}, {B,D,F}, {B,D,G}, {B,D,H}, {B,E,F}, {B,E,G},
{B,E,H}, {C,F}, {C,G}, {C,H}. The algorithm proceeds as follows:

• Step 1.1: Select cover {A,D,F}.
• Step 1.2: Select constraint A.
• Step 1.3: IIS ←{A}.
• Step 1.4: Eliminate constraints D and F from all covers. COVERS ←{ {A},

{A,G}, {A, H}, {A, E}, {A, E, G}, {A, E, H}, {B}, {B,G}, {B, H}, {B, E}, {B, E, G}, {B, E, H}, {C},
{C,G}, {C,H} }.

• Step 1.5: Eliminate all covers containing constraint A. COVERS ←{ {B},
{B,G}, {B,H}, {B,E}, {B,E,G}, {B,E,H}, {C}, {C,G}, {C,H} }.

• Step 1.1: Select cover {B,E,G}.
• Step 1.2: Select constraint B.
• Step 1.3: IIS ←{A,B}.
• Step 1.4: Eliminate constraints E and G from all covers. COVERS ←{ {B},

{B}, {B,H}, {B}, {B}, {B,H}, {C}, {C}, {C,H} }.
• Step 1.5: Eliminate all covers containing constraint B. COVERS←{ {C}, {C},

{C,H} }.
• Step 1.1: Select cover {C}.
• Step 1.2: Select constraint C
• Step 1.3: IIS ←{A,B,C}.
• Step 1.4: COVERS ←{ {C}, {C}, {C,H} }.
• Step 1.5: Eliminate all covers containing constraint C. COVERS ← ∅.
• Step 2: Return {A,B,C}.

There is also an effort to use Alg. 7.8 to generate all IISs in the model, basically
by branching to reorder the choices made in Steps 1.1 and 1.2 of Alg. 7.8. Given
that the number of IISs is potentially exponential, this is not an efficient approach.

188 7 Finding the Maximum Feasible Subset of Linear Constraints

Bailey and Stuckey (2005) also find IISs by operating on the set of IIS covers,
but they do not assume that the complete set of IIS covers is provided in advance.
Their dualize and advance heuristic instead finds IIS covers one by one using the
grow algorithm mentioned at the beginning of this chapter. Set covers of the par-
tial set of IIS covers are found as the algorithm proceeds. Again, this algorithm is
only practical in where a fast method for finding maximum feasible subsystems is
available, as in the MAXSAT context.

7.9 The Minimum Number of Feasible Partitions Problem

Amaldi and Mattavelli (2002) propose a generalization of the MAX FS problem,
which they designate the minimum number of feasible partitions problem (MIN PFS):
given a possibly infeasible system of linear constraints, find a partition of this
system into a minimum number of feasible subsystems. In the previous part of this
chapter we have considered the separation of an infeasible system of linear
constraints into two partitions: the MAX FS set and the MIN IIS COVER (equivalently,
MIN ULR) set. Note that it is possible that the MIN IIS COVER set is itself infeasible,
hence further partitioning may be needed to solve the MIN PFS problem. MIN GRAPH
COLOURING is a special case of MIN PFS.

William Pulleyblank and others showed that any set of linear inequalities Ax ≥ b
can be partitioned into two sets that are both feasible. The proof is provided by
Greenberg (1996a) in the following theorem.

Theorem 7.7: MIN PFS cardinality for linear inequalities (Greenberg 1996a,
Theorem 18). Suppose a set S of linear inequalities is inconsistent. There exists a
partition of S, say S’∪S” such that S’ and S” are each consistent and S’ is a maxi-
mal consistent subsystem (in which case X(S’)∩X(S”) = ∅).

Proof: Construct a line that intersects each hyperplane, Hi = {x|aix = bi} where ai ≠ 0
for each i. Totally order the points along the line; rename and reorder so that xi is the
point on Hi. Now initialize S’={a1x ≥ b1} and continue to add ai x ≥ bi to S’ as long as
ai xk ≥ bi for all k < i. The first time this fails, initialize S”={ai x ≥ bi}. For each i >
k, the halfspace X({ai x ≥ bi}) intersects either X(S’) or X(S”), so the inequality can
be added to S’ or S” respectively. Test first if S’∪{ai x ≥ bi} is consistent and if so
add this inequality to S’. It then follows that all inequalities not in S’ are precisely
those whose augmentation renders inconsistency. This means that S’ is a maximal
consistent subsystem (and that X(S’)∩X(S”) = ∅). ■

Note that Thm. 7.7 applies only when all of the constraints in the model are
linear inequalities. It does not apply when equalities are included. Consider, for
example, a set of three or more parallel and separated hyperplane equality
constraints. Now the cardinality of the MIN PFS solution is equal to the number of
hyperplanes. For similar reasons, Thm. 7.7 also does not apply in the case of
hyperslabs, pairs of complementary inequalities that define a slab in hyperspace,
when the pairs must be handled together (i.e. both satisfied in the same partition).
This is important in the sequel.

7.9 The Minimum Number of Feasible Partitions Problem 189

Amaldi and Mattavelli (2002) raise MIN PFS in the context of a particular application
in estimating piecewise linear models (see Sec. 11.8). The goal is to model a set of
noisy data points with a small number of linear pieces. Each known point di in j di-
mensions can be transformed into an equation of the form Σjdijwj = w0, where w is the
vector of variables w1,w2…wn and w+ is w augmented with w0. It is then possible to
solve a MIN PFS problem to find the smallest number of piecewise linear sections to
model the data, but the noise in the data means that there will be an unnecessarily large
number of linear sections. To handle the noise in the data points, each point is instead
rendered as a pair of complementary inequalities defining a slab of limited thickness in
n-space: diw ≤ w0 + ε and diw ≥ w0 –ε. This defines a slab of width 2ε, where ε may
not be identical for all pairs of complementary inequalities. After the heuristic MIN
PFS solution, each partition is feasible, so each partition allows a solution for the
variables in w+. This defines a slab that contains all of the data points whose corre-
sponding pairs of complementary inequalities are satisfied in the partition.

Amaldi and Mattavelli (2002) propose a greedy heuristic for the MIN PFS solu-
tion over the pairs of complementary inequalities. It first finds a close-to-
maximum feasible subsystem (feasible subsystem containing a close-to-maximum
number of pairs of complementary inequalities), and the complementary close-to-
minimum cardinality set of removed pairs of complementary inequalities, for the
original set of complementary inequalities. The process is then repeated on the set
of removed complementary inequalities. This cycle continues until the final set of
removed complementary inequalities is itself feasible. In this way the system is
subdivided into a small number of feasible partitions. Empirical results for the
piecewise linear modelling application are very good where the MAX FS subprob-
lems are solved by a randomized thermal relaxation algorithm (see Sec. 7.6).

The same general greedy approach can be applied in the more general case that
does not feature slabs defined by pairs of inequalities. Simply recursively solve
MAX FS until the MIN IIS COVER partition is itself feasible. This approach is clearly
not guaranteed to solve MIN PFS exactly, as Amaldi and Mattavelli (2002) show in
this example: A: x1 + x2 = 0, B: x1 − x2 = 0, C: x2 = 1, D: x2 = 2. The cardinality of
MAX FS for this system is two. There are five feasible systems: A and B are satis-
fied at (0,0), B and C are satisfied at (1,1), B and D are satisfied at (2,2), A and C
are satisfied at (−1,1), and A and D are satisfied at (−2, 2). If the greedy algorithm
finds {A,B} as the first MAX FS solution, then it will return a cardinality 3 MIN PFS
solution, even though a solution of cardinality 2 exists, e.g. {B,D} and {A,C}. Of
course the MAX FS subproblems can be solved by any suitable method.

problem and the same greedy approach, though they approach it by looking sepa-
rately at systems composed entirely of equalities, and systems composed entirely
of inequalities. They show that the problem is NP-hard for systems composed en-
tirely of equalities.

Bemporad et al. (2005) improve on the greedy algorithm in the context of
solving a problem of identifying piecewise affine models of discrete-time
nonlinear and hybrid systems from input-output data. They alter the greedy
algorithm by allowing a degree of backtracking to see whether solutions

190 7 Finding the Maximum Feasible Subset of Linear Constraints

Murty et al. (2000) outline the same minimum number of feasible partitions

developed for later partitions might provide better solutions at earlier stages of the
process.

The main algorithm developed by Bemporad et al. (2005) is summarized in
Alg. 7.9. U is the entire set of complementary inequalities in the original infeasible
system; Uk is the set of complementary inequalities addressed by the k th MAX FS
heuristic solution. Sk is the set of complementary inequalities satisfied by the slab
solution w+

k for the kth feasible partition. Hence Uk=U \{S1∪S2∪…∪Sk-1}. Note
that the sets Sk and Uk may be changed as the algorithm backtracks.

The main idea in Alg. 7.9 is that the slab solution developed at some stage k
may actually provide a better solution at some earlier stage d than the solution
originally returned for stage d. In this case (Step 7.3) the algorithm backtracks to
stage d and replaces its solution with the solution for stage k, then resumes from
stage d. This helps mitigate the greedy aspect of the original algorithm by Amaldi
and Mattavelli.

Bemporad et al. use a variation of the Randomized Thermal Relaxation algo-
rithm (Sec. 7.6) to solve the individual MAX FS problems. Their variation is spe-
cifically designed to improve performance in solving the MIN PFS problem. The
main idea is that if the number of cycles in the RTR algorithm becomes too high,
then the current best solution w+

best (i.e. the solution seen so far that satisfies the
most pairs of complementary inequalities) is replaced by an improved version
over the same set of satisfied constraints. The improved solution is obtained by
solving for the l∞ projection norm over the set D of points contained within the
w+

best slab. The l∞ projection norm is defined as ||maxminarg 0, 0

wd
w iDw

w − , which
+

terline of the slab is minimized. This is found by solving a linear programming
problem. The l∞ projection norm is used because it has favourable properties in a
later refinement procedure that works with data points that satisfy more than one
of the linear models to try to assign them to a single model. However Bemporad et
al. mention that different measures could be used to return an improved model for
the set, including least squares.

Where the maximum number of RTR cycles is C, recalculation of w+
best is

carried out for all cycles above 0.7C or 0.8C. This value was determined
experimentally.

Bemporad et al. (2005) carry out a set of experiments to compare their
modified algorithm (both the RTR modifications and the backtracking heuristic in
Alg. 7.9) with the original RTR (Sec. 7.6). The experiments use randomized data
generated in such a way that the minimum number of feasible partitions is known
a priori to be 4. Over repeated trials, the original RTR algorithm generates an
average of 18 feasible partitions, with a range of 12 to 22, and a high variance.
Bemporad et al.’s modified algorithm generates an average of 5 feasible partitions,
with a range of 4 to 7, and low variance. It is also interesting that there are very
few points in any partitions beyond the 4th one.

7.9 The Minimum Number of Feasible Partitions Problem 191

has the effect of setting w so that the distance from the farthest data point to the cen-

INPUT: an infeasible set of complementary inequalities U.
0. k ← 0; S1,S2,S3… ← ∅
1. k ← k + 1
2. Uk ← U \{S1∪S2∪…∪Sk-1}.
3. IF Uk = ∅ THEN:
 3.1 k ← k – 1
 3.2 Exit.
4. w+

k ← slab equation returned by heuristic MAX FS solution for Uk.
5. Sk ← {all constraints in Uk satisfied by slab w+

k}.
6. d ← 1
7. WHILE d < k DO:
 7.1 Ud ← U \{S1∪S2∪…∪Sd–1}
 7.2 Nkd ← number of constraints in Ud satisfied by slab w+

k.
 7.3 IF Nkd > |Sd| THEN:
 7.3.1 w+

d ← w+
k

 7.3.2 Sd ←{all constraints in Ud satisfied by slab w+
d}

 7.3.3 k ← d
 7.3.4 Go to Step 1.
 7.4 d ← d+1
8. Go to Step 1.
OUTPUT: k feasible partitions with slabs w+

1… w+
k.

Alg. 7.9. Backtracking greedy algorithm for MIN PFS (Bemporad et al. 2005)

Once a heuristic solution for MIN PFS has been found, Bemporad et al. (2005)
add a final refinement stage. This stage allows partitions to be merged, discarded,
and updated. It also handles undecidable points that are contained within more
than one partition slab. The main steps are summarized in Alg. 7.10. The
algorithm begins (Step 0) by calculating the best slab equation for each partition
using the l∞ projection norm. In Step 1, partitions whose slab equations are too
similar (as measured by the ratio of matrix norms) are merged, and replaced by a
new slab equation. α is a user-specified control parameter. Partitions may also be
discarded in Step 3 if their slab contains too few data points. β is a user-specified
control parameter.

Step 4 deals with the undecidable points. The user-specified control parameter
c sets the number of nearest-neighbour feasible points to use in the decision. The
undecidable point is assigned to the partition whose slab contains the most near-
est-neighbour feasible points, provided it is contained in the slab associated with
that partition. It is possible that an undecidable point will retain its undeciable
status after this process.

It is also possible that the process will terminate with some points still in the in-
feasible category. If an infeasible point is far from any feasible slab, then Bempo-
rad et al categorize it as an outlier that should be ignored.

Note that there is a considerable literature on other approaches to solving the
piecewise linear model estimation problem, and it is certainly possible that some

192 7 Finding the Maximum Feasible Subset of Linear Constraints

of those other approaches can be adapted to solving the MIN PFS problem. Note
particularly the literature on PieceWise affine AutoRegressive eXogenous
(PWARX) models. See Juloski et al. (2005) for a comparison of four procedures
for this problem, including the method by Bemporad et al.

7.10 Partial Constraint Satisfaction in Constraint
Programming

In an overconstrained constraint satisfaction problem, not all of the constraints can
be satisfied simultaneously. This is addressed in 3 different ways in constraint
programming: the
straints.

true/false values for the Boolean literals such that the largest number of clauses is
satisfied. This is directly analogous to the problem of finding the maximum feasi-
ble subset of constraints that is the subject of this chapter. The Boolean literals are

(A∨B)∧(¬A∨C∨D)∧(¬B∨¬D)∧(¬C). The conversion of a Boolean satisfiability
problem to a binary integer programming problem is well-known and direct:

clause in Boolean variables constraint in binary variables
A∨B A + B ≥ 1
¬A∨C∨D (1– A) + C + D ≥ 1 → –A + C + D ≥ 0
¬B∨¬D (1–B) + (1– D) ≥ 1 → –B–D ≥–1 → B + D ≤ 1

¬C (1– C) ≥ 1 → –C ≥ 0 → C ≤ 0

 This implies that the maximum feasible subset problem can be attacked for certain
binary integer programming problems by converting them to Boolean satisfiability

way: de Givry et al. (2003) examine a number of options for solving the weighted

7.10 Partial Constraint Satisfaction in Constraint Programming 193

equivalent to binary variables, and the clauses are equivalent to constraints.
Consider the example Boolean satisfaction problem given in Sec. 4.1:

MAXSAT problem, partial constraint satisfaction, and soft con-

As described in Sec. 4.1, the MAXSAT problem consists of finding a set of

problems and applying MAXSAT solution algorithms. This can also go the other

MAXSAT problem, including converting it for solution by a standard MIP solver.

INPUT: a heuristic solution for MIN PFS consisting of s partitions.
0. Calculate the best slab model w+

i for each partition using the
 l∞ projection norm.
1. Merge partitions:

 1.1 Find partitions i and j such that
},min{

),(
++

++
++

−
=

ji

ji
ji

ww

ww
wwμ

 is minimized.
 1.2 IF αμ ≤++),(ji ww , THEN merge the data points associated
 with each partition into a new partition.
 1.3 Calculate the new slab for this partition using the l∞ projection norm.
 1.4 s ← s – 1.
2. Data point reassignment:
 2.1 FOR each data point dk:
 2.2 Select case:
 a. IF dk is contained within the slab associated with exactly one
 partition, THEN assign it to that partition and mark as feasible.
 b. IF dk is contained within the slab associated with more than one
 partition, THEN mark as undecidable.
 c. ELSE mark dk as infeasible.
3. Discard partitions:
 3.1 Find partition i whose associated slab contains the smallest
 number of points.
 3.2 IF (data points contained in slab for partition i)/(total number of
 data points) ≤ β THEN discard partition i.
 3.3 s ← s – 1.
 3.4 Go to Step 2.
4. Assign undecidable data points:
 4.1 For each undecidable point dk:
 4.1.1 Find the c closest feasible points to dk.
 4.1.2 Identify the partition i to which the greatest number
 of the c closest feasible points belong.
 4.1.3 IF dk is within the slab associated with partition i
 THEN assign dk to partition i and mark it as feasible.
5. Update parameters:
 5.1 Calculate (w+

i)best for each partition using the l∞ projection norm.
6. Termination:
 6.1 IF ||(w+

i)best – w+
i|| ≤ γ||w+

i|| for all i = 1…s, THEN exit.
 6.2 w+

i ← (w+
i)best for all i = 1…s.

 6.3 Go to Step 1.
OUTPUT: s partitions with associated slabs (w+

i)best for i = 1…s.

Alg. 7.10. Partition refinement (Bemporad et al. 2005)

194 7 Finding the Maximum Feasible Subset of Linear Constraints

Freuder and Wallace (1992) raise the idea of partial constraint satisfaction.
Their main goal is to find values for a subset of the variables such that a subset of
the constraints is satisfied. One obvious goal is to find variable values such that a
maximum number of constraints are satisfied. Mechanisms used include branch
and bound, and more efficient use of the search tree via backjumping, backmark-
ing, arc-consistency, forward checking, and other techniques. Constraints can also
be assigned an order, with constraints added to the set in the given order, stopping
when infeasibility is reached. As well, constraints can be assigned a weight or
strength, which implies an order. Again, constraints are added to the set in de-
creasing order of strength, with ties among constraints of identical strength being
broken in various ways. The idea of partial constraint satisfaction gave rise later to
the concept of soft constraints that are not necessarily satisfied at the solution,
unlike hard constraints that must be satisfied; the same idea under the same name
is also seen in the context of multi-objective programming in optimization (see
Sec. 9.3).

Meseguer et al. (2003) summarize the state of the art in solving over-constrained
constraint satisfaction problems. The techniques are similar to those found in the
optimization literature for finding the best solution for an infeasible model or for a
multi-objective program, including fuzzy and probabilistic approaches (see Sec.
8.1.5), lexicographical ordering (see Sec. 9.3), weighting methods, and
hierarchical approaches. Meseguer et al. recognize that solving an overconstrained
constraint satisfaction problem in the “best” way amounts to an optimization
problem, and hence various optimization techniques are also employed; we will
return to this theme in Chap. 8. In addition, various constraint programming
techniques have been modified to deal with soft constraints. See also Petit et al.

7.10 Partial Constraint Satisfaction in Constraint Programming 195

(2000). Research in constraint programming techniques to deal with soft cons-
traints is ongoing.

8 Altering Constraints to Achieve Feasibility

Chapters 6 and 7 present two different approaches for analyzing infeasible
systems of constraints. Both try to discover useful information about the system
(an IIS or a maximum feasible subsystem) that the modeler can use to correct the
model. However it is possible to approach the analysis in a completely different
way by asking this question: what is the smallest adjustment to the constraints in
the model that will render if feasible?

Most available methods in this category address only infeasible linear systems,
though at least one method can be applied to nonlinear systems. The methods di-
vide into two broad classes: those that only consider shifting the constraints via a
change to the right hand side constant (i.e. a parallel translation of the constraint),
and those that consider the much harder problem of finding the minimum change
to all of the constraint coefficients, including both the constraint bodies and the
right hand side constants. Oddly, none of the research addresses the issue of incor-
rect relationship directions. For example, the model might be rendered feasible if a
≥ relationship is changed to a ≤ relationship, or if an = is changed to a ≥, etc. The
general unaddressed question is this: what is the smallest number of constraint re-
lationships to change such that the model is made feasible?

As we will see in this chapter, there are several ways to define the “smallest ad-
justment” that will render a model feasible, each having different solution com-
plexities and yielding different results. All are based on minimizing some kind of
matrix norm that expresses the difference between the “corrected” version of the
model and the original version.

8.1 Shifting Constraints

The most straightforward approach to altering constraints to attain feasibility is to
simply shift (or “translate”) them in space by adjusting the value of the constant,
also known as the “right hand side” (RHS). Many researchers have developed
methods for finding the “best” set of constraint shifts according to some criteria
(e.g. minimum total distance moved, etc.). The most attention has been paid to in-
feasible linear programs, but some more recent methods can also be applied to
nonlinear models.

In the case of infeasible linear systems, Murty et al. (2000) distinguish four
different ways to measure the “best” adjustment of the right hand sides needed to
attain feasibility:

 8 Altering Constraints to Achieve Feasibility

• The smallest number of shifted constraints (called the “smallest changes

problem of Chap. 7, or more exactly, it is equivalent to the MIN ULR problem.
• The smallest total penalty for fixed penalties. The penalty cost of changing a

RHS is fixed for each individual constraint (regardless of the size of the shift),
and the goal is to choose the constraints to shift such that the total penalty is
minimized. This model may apply when there is a fixed cost to break a
contract, for example. This is the same as the previous model if the penalties
are identical across all constraints.

minimize the total penalty. This is equivalent to a weighted elastic
programming model (see Sec. 6.1.4 and Sec. 8.1.1).

• The smallest total penalty for variable penalties with bounds. This is identical
to the previous model, except that some or all of the elastic variables are
bounded, indicating that the associated constraint can be shifted only a limited
distance. This is again equivalent to elastic programming with simple bounds
on the elastic variables. Note that if the bounds on the elastic variables are too
tight, then even the elastic formulation may be infeasible.

achieve feasibility depends on the application. Other measures, including
nonlinear penalties, can also be imagined.

Note that row scaling can significantly affect the results for many of the
measures described below. It is best to apply these methods to a fully scaled

8.1.1 Using the Phase 1 Result

effectively allow the constraints to shift so that an initial feasible solution is
readily available to start the simplex method (see Sec. 7.3). If the LP is infeasible,

optimum. However, if the original LP is modified by adjusting the right hand side
constants as indicated by the nonzero artificial variables, then a feasible solution is
obtained. If the phase 1 objective function seeks to minimize the sum of the
artificial variables, then this is a “minimum” adjustment of the constraints in that
sense.

should be used. This allows all constraints to shift, and allows equality constraints
to shift in either direction (see Sec. 6.1.4). This is equivalent to the smallest total
penalty for a variable penalties model in which the penalty rates are all identical
and equal to one.

The phase 1 formulation for a linear program includes artificial variables which

Note that the usual phase 1 formulation does not add artificial variables to

Which way to measure the “best” adjustment of the constraint RHSs needed to

all constraints, nor does it allow equality constraints to shift in both directions.

then at least one of these artificial variables cannot be forced to zero at the phase 1

To obtain a true minimum adjustment of the constraints, a fully elastic program

“original” version of the model.

198

model” by Murty et al.). This is equivalent to the maximum feasible subset

• The smallest total penalty for variable penalties. The penalty cost of shifting
a constraint is a linear function of the size of the shift, and the goal is to

 8.1 Shifting Constraints

8.1.2 Minimizing the l1 Norm

The l1 matrix norm for some matrix D is ∑= ij ijl d
1

D . For a system of
inequality constraints of the form Ax ≥ b, a full elastic program is identical to
minimizing an l1 matrix norm objective function subject to the elastic constraints,
i.e.

1
)(min +− Axb where (•)+ indicates component-wise application of the

operator max{0,•}. Minimizing the l1 matrix norm to obtain the best feasible
correction to an infeasible set of linear relations was first suggested by Charnes
and Cooper (1961) in the context of goal programming. Without using the term
elastic programming, which arrived much later, they added elastic variables to
some of the constraints in an infeasible model and minimized their sum, i.e.
minimized the l1 matrix norm. In the goal programming application, some goals,
expressed as constraints, are known to be incompatible, and it is only these
constraints that are elasticized.

Minimizing the l1 matrix norm can of course be accomplished by standard
linear programming applied to the fully elasticized model, but Dax (2006)
describes a more efficient affine-scaling method. Once the solution point x* for
the l1 matrix norm minimization is known, the adjustments for the constraint right
hand sides can be seen directly from the values of any nonzero elastic variables. If
a constraint is violated, then its right hand side should be relaxed by an amount
equal to the magnitude of the elastic variable, with appropriate sign.

The Cplex 10.0 (Ilog 2006) LP solver incorporates a FeasOpt option which
allows the user to specify preferences that result in a weighted elastic solution for
the infeasible model. The weighted penalty function takes the form ∑i ii pv /
where vi is the constraint violation and pi is the user-specified preference value.
Values of pi that are zero or negative indicate that constraint i is not to be
modified, and higher values of pi indicate a greater preference for constraint i to be
modified, if necessary. In addition, upper and lower bounds can be specified for
the extent of adjustment of the right hand side constant for each constraint. This
arrangement lets the user specify a fully or partially elasticized version of the
model with preference weights on the elastic variables and limits on their
adjustment. The bound changes determined by the weighted elastic solution are
returned, along with the solution point and objective function value now permitted
by the relaxed model.

8.1.3 Least-Squares Methods

One of the earliest approaches to finding the best correction for an infeasible set of
linear inequalities is to find the point that has the smallest sum of squared
constraint violations. As before, once the solution point is known, the necessary
constraint shifts are easily found by substituting the point into each constraint.

The least-squares problem for a system of linear inequalities Ax≥ b is

199

2
1

])[(min∑=
+−

m

i iib xa

 8 Altering Constraints to Achieve Feasibility

where ai is the ith row of the A matrix and is violated. Solution methods for this
problem have been considered by Han (1980), Censor and Elfving (1982), and De
Pierro and Iusem (1985). Byrne and Censor (2001) show that simultaneous projec-

minimizes a Bregman distance function that in some sense measures the total vio-
lation. In the usual case this amounts to a weighted sum of the squared Euclidean
distances from the solution point to feasible points on all violated constraints.

The least-squares optimization is considered less robust than minimizing the l1
norm (Sec. 8.1.2) because a single outlier can dominate the solution.

He first described a very simple approach that is effective if there is only a single
IIS in the model, and then developed more advanced methods that apply when the
infeasibility is more complex. The main idea is to find the smallest adjustments of
the constraint right hand sides that are needed to provide a feasible solution.
Roodman’s motivations in developing his method are interesting. He began with a
feasible investment problem, and then pushed this to become infeasible. He next
looked for parametric adjustments to make the problem feasible again, with the
idea of seeing how this changed the original solution.

When the adjustment of a single constraint is sufficient to render the model fea-
sible, then simple methods can be applied. This is the case when there is a single
IIS, or when the IIS set cover has a cardinality of one. Methods to determine this a
priori were not available in Roodman’s time, but it is easy to identify some of the
constraints that are involved in the infeasibility, e.g. constraints that are violated.
Given a constraint that is probably involved in the infeasibility, convert the con-
straint to an objective function with a sense (maximize or minimize) that tries to
tighten the constraint as much as possible. This is equivalent to elasticizing the
constraint appropriately and then minimizing the elastic variable. If the final solu-
tion for this modified problem is now feasible for the original model (with the ex-
ception of the constraint that was converted to an objective function), then we
know the minimum adjustment of the constraint right hand side that will render
the model feasible. This process can be repeated over all of the likely constraints,
and the smallest adjustment of any violated constraint can be recommended as the
minimum adjustment of the constraints to render the model feasible.

This approach has several drawbacks. As described by Roodman, the method
has no way of making sure that all of the relevant constraints are selected for test-
ing (applying the sensitivity filter would take care of this, but the method was not
available in Rooman’s time). More importantly, this method cannot deal with
more complex infeasibilities that require the adjustment of more than one con-

adjustment of the constraints in an infeasible system, in the case of linear systems.

8.1.4 Roodman’s Bounds on Minimum Constraint Adjustments

Roodman (1979) was the first to develop methods for finding the minimum

tion methods converge for infeasible sets of convex constraints to a point that

straint in order to achieve feasibility. For this reason, Roodman develops more

200

right hand side for every linear constraint that is needed to achieve feasibility.
advanced methods that try to find lower bounds on the minimum adjustment of the

 8.1 Shifting Constraints

Define A(bi) as the optimum value of the objective function associated with
some right hand side bi of constraint i in a feasible model. A(bi) is a piecewise
convex linear function of bi. Each linear piece is given by a different basic feasible
solution and has a slope equal to the dual price of constraint i. This same principle
applies to a phase 1 solution, which is artificially “feasible”. Let bi* be the original
right hand side value in constraint i, and let Πi* be the dual price of constraint i in
the phase 1 solution. Finally, let bi

f denote the value of bi such that A(bi
f)=0 in the

phase 1 solution, with all other parameters unchanged.
Given the convexity of A(bi), Roodman calculates bounds on the value of bi

such that feasibility is just achieved using the relationship:
A(bi*) + Πi*(bi

f − bi*) ≤ A(bi
f) = 0.

right hand sides, as covered by suitable algebra in the following three cases:

i i
f

i i
f

i i

i
f

i

i i
f

i i
f

i i

i
f Πi* to reach feasibility.
i i

to the sensitivity filter.

i i i i

Ri = i i i i i
sense of the constraint. The feasible solution x is not determined by this method,
which only provides lower bounds on the RHS adjustments that are needed.

Roodman also develops heuristics for finding phase 1 solutions for infeasible
systems that have better properties for subsequent analysis. These methods are

are violated by approximately the same amount so that the bounds determined by
the analysis above are more consistent. The main idea is to assign weights to the
artificial variables to try to achieve this outcome. Roodman provides some sugges-
tions on how to assign the weights on the artificial variables:

• Assign a weight that is inversely proportional to the units used in the constraint.
• Assign the smallest positive weights to the constraints for which it is most

important to find tight bounds. This low weight means that the constraint is
more likely to be violated, and by a larger amount, and hence its adjustment
bound will be the tightest.
The bounds can be further tightened after the weighted phase 1 solution is ob-

tained. Define lj and uj as the lower and upper bounds on wj (the weight associated
j j j

Let Ri(wj) define Ri as a function of wj. Ri(wj) is monotone so that the two end-
points Ri(lj) or Ri(uj) will both provide lower bounds on the adjustment to the

This relationship yields bounds on the minimum adjustments of the constraint

− b*) ≥ −A(b)/ Π• If Π * < 0 then (b *. b must be increased by at least
−A(b)/

• If Π * > 0 then (b − b*) ≤ −A(b) /Π *. b must be decreased by at least
A(b)/

• If Π * = 0 then no change in b will permit a feasible solution. This is equivalent

lower bounds on the right hand side adjustment needed to reach feasibility.
Accordingly, it is worthwhile to find a phase 1 solution in which all of the constraints

based on the observation that the most violated constraints provide the tightest

with the jth artificial variable) such that for l ≤w ≤u the final basis is unchanged.

Roodman defines s =1 if Π * < 0 and s = −1 if Π * > 0. Hence a lower bound on
the size of the appropriate relaxation of the right hand side for constraint i is

−s (A(b *) /Π *), and the actual change is given by s R to take into account the

201

Π * to reach feasibility.

 8 Altering Constraints to Achieve Feasibility

RHS, hence choose the tighter of the two. Given G basic artificial variables in the
phase 1 solution, then the tightest lower bounds are given by

)]}(),({max[max
...1

*
jijiGji uRlRR

=
= .

Roodman (1979) reports that some of the lower bounds are usually made exact by
this computationally inexpensive process.

Roodman goes on to develop a very similar approach for the case in which the
dual simplex method is used to solve the phase 1 problem. In addition he briefly
outlines an approach based on parametric programming for modifying multiple
constraint RHSs simultaneously.

8.1.5 A Fuzzy Approach to Constraint Shifting

León and Liern (2001) use a fuzzy sets approach to shifting constraints to repair
infeasibility in sets of linear inequalities (easily extendable to equalities). The
main idea is that the fuzzy membership function expresses the degree to which a
particular point satisfies a given constraint. The membership function makes use
of Roodman’s limits: the membership value is 0 if the point violates the original
constraint to an amount greater than Roodman’s limit; varies linearly between 0
and 1 if the point violates the original constraint to an amount between Roodman’s
limit and satisfying the constraint; and is equal to 1 if the point satisfies the origi-
nal constraint. They then solve the problem of finding a point that maximizes the
minimum membership function value for any constraint.

Given a set of inequalities defined as A1
1

2
2

amounts to finding a value λ to transform the original RHS vector B = (b1, b2)T
1 2 T

appropriate signs. The value of λ will be at least equal to 1/k where k is the num-
ber of nonzero dual prices. A smaller λ represents a smaller perturbation of the
model relative to the original, and is in some sense the “best” adjustment of the
constraints.

Gupta et al. (2004) take a similar fuzzy approach to finding a best approximate
solution to an infeasible generalized linear complementarity problem.

8.1.6 A Goal Programming Approach to Constraint Shifting

Yang (2006) points out that any method based on a weighted sum of elastic vari-
ables to determine the constraint shifts can arrive at only a limited set of possible
solutions: those that appear at the cornerpoints of the solution space. A goal pro-
gramming approach, on the other hand, allows solutions that arrive at any point on
the efficient frontier, giving the modeller a vastly larger set of possible constraint
shifts that provide a feasible solution.

For an infeasible continuous optimization problem (linear or nonlinear) having
i

1 2

into B(λ) = (b – λR, b + λS) , where R and S are vectors of Roodman’s limits with

m…,y) shifting problem as a multi-objective program as follows: minimize (y , y ,

202

x ≥ b and A x ≤ b with x ≥ 0, this

inequality constraints of the form f (x) ≤ 0, i =1...m, Yang formulates the constraint

 8.1 Shifting Constraints

iii i

∑
=

m

i
ii yw

1

 subject to 0≤ii i

1
1

=∑
=

m

i
iw i

elastic program whose solution will always yield one of a limited number of basic
feasible solutions.

The multi-objective program can instead be handled by a goal programming
formulation. The simplest such formulation is yy −min where),...,(1 myyy =
is a reference point and • is a norm operator, for which several different choices
are available. The usual reference point is . Given 0 as the reference point,

the commonly-used l1 norm objective function is ∑
=

=
m

i
ii ywz

1

min where

∑=

m

i i1 i

equivalent to a weighted elastic program, and has the same shortcoming of pro-
ducing only a limited number of basic feasible solutions.

The l∞ norm, on the other hand, has different properties. The objective function
∞ iimi ...1= ∑ =

=
m

i iw
1

1 i

i i

yiii ,0≤ ∑ =
=

m

i iw
1

1 i

The absolute value is again not needed because w and y are nonnegative. Yang
(2006) shows that an optimal solution to the l∞ norm optimization (x*, y*) is guar-
anteed to be a weakly efficient solution to the multi-objective program. A second
theorem shows that an optimal solution to the l∞ norm optimization that is unique
in y* is an efficient solution to the multi-objective program. Yang presents a way
to improve any solution returned by the l∞ norm optimization to make it efficient
by reducing the members of y as much as possible. This is done by solving a sec-
ond optimization based on the y* returned by the original l∞ norm optimization:

∑
=

m

i
ii

1
i i yiii ,0≤

∑ =

m

i i1 i

l∞ norm optimization for the set of constraints constituting an IIS is necessarily an

minimize the weighted sum of the objective functions, in this case:
variables. A common solution approach for a multi-objective program is to
 subject to f (x) − y ≤ 0, y ≥ 0, i = 1...m where the y are nonnegative elastic

min z = f (x) − y for i =1…m where y ≥ 0 for i =1…m,

 and w ≥ 0 for all i = 1…m. This amounts to a weighted version of an

 and w ≥ 0 for all where based on the l norm is min z = max w y
≤ z, i =1…m, i =1…m. This can be implemented as min z subject to w y

f (x) − y ≥ 0, i =1...m and the usual and w ≥ 0 for all i =1…m.

min z = w y subject to y ≤ y * and f (x) − y ≥ 0, i =1...m where

w =1 and w ≥ 0 for all i =1…m. A third theorem (Yang 2006) shows that the

efficient solution for the multi-objective problem. Yang demonstrates that this

w =1 and w ≥0 for all i =1…m. Given nonnegative w and y, this is again

203

y = 0

 8 Altering Constraints to Achieve Feasibility

∞

8.1.7 Constraint Shifting in Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is a technique for solving nonlinear
programs in which the original model is approximated by a sequence of quadratic
programs that are much easier to solve. Each quadratic subproblem has linear con-
straints that approximate the original nonlinear constraints at the current trial
point, and a quadratic objective function that approximates the original nonlinear
objective function at the current trial point (or more accurately approximates the
Lagrangian of the original objective function). The solution point for the current
quadratic subproblem becomes the trial point at which the next set of constraint
and objective function approximations are created. This cycle of approximation
and solution continues until certain stopping conditions are met, typically that the
current point and the last point are sufficiently close.

As pointed out by Boman (1999), a few unusual situations arise in solving
SQPs:

1. The original NLP model is feasible, but some of the quadratic subproblems
are infeasible.

2. The original NLP model is infeasible, but some of the quadratic subproblems
are feasible.

3. The quadratic subproblem is feasible, but we don’t want to move to the
resulting optimum point.

In the first case, Boman suggests that some form of approximate solution for
the subproblem that is in some sense “closest to feasibility” is needed to permit the
algorithm to proceed. In the second case, the main algorithm should return a solu-
tion that is in some sense “closest to feasibility” for the complete original model.
In the third case, some measure of the closeness of the subproblem optimum point
to feasibility in the original NLP helps to determine whether the algorithm wishes
to accept the updated point. In all three cases, the issue of determining the closest
feasible and infeasible points arises. Not surprisingly, minimization of l1 and l∞
norms emerges as a major theme of Boman’s work.

Boman’s l1 norm minimization is carried out by elasticizing the constraints of
the quadratic program in a manner similar to that used for linear programs (see
Sec. 6.1.4), but using an objective function that combines the original objective
and a minimization of the sum of the elastic variables. For an NLP of the form

various nonlinear optimizations can be solved correctly.
approach is also effective for nonlinear problems, providing of course that the

The l norm optimization with subsequent tightening allows any solution on
the efficient frontier to be reached by adjusting the w weights. This provides the
modeler with a vastly increased set of possible ways to shift the constraints to
achieve feasibility. The choice of the weights is left to the modeler, but this may

to constraints that he prefers not to violate.
for constraints expressing basic physical laws, and may assign large weights
be obvious by context. In practice the modeler may omit elastic variables entirely

204

 8.1 Shifting Constraints

tex T
tx

F γ+)(min
,

subject to c(x) + t ≥ 0, t ≥ 0, where t are the elastic variables, γ is a penalty weight,
and e is a column vector of 1s. Boman considers differing weights for individual
constraints, bounded elastic variables, elastic bounds, switching between elastic
and non-elastic modes, updating the penalty parameters and various other alterna-
tives in developing an improved SQP solution algorithm. He compares his method

 The l∞
elastic variable is needed:

γτ
τ

+)(min
,

xF
x

,

subject to c(x) + τe ≥ 0, τ ≥ 0, as formulated by Boman.

8.1.8 Violating a Limited Number of Constraints by a Limited Amount

In the context of a radiation therapy planning problem (Sec. 11.1) Censor et al.
(2006) propose a method for finding a feasible solution by allowing the violation
of a limited number of constraints by a limited amount. Individual linear inequali-
ties can be violated by up to an amount β. Specifically, where a particular linear
inequality i has the form aix ≤ bi, it may be relaxed up to aix ≤ (1+ β)bi, where
0 ≤ β ≤ βmax
αmax where 0 ≤ α ≤ αmax ≤1.

i i i i i i

max

∑=
+=−++≤

m

i i mmmt
1

)1()1()1(αβαβα .

i
lem does not guarantee that no more than αmaxm constraints are violated; a MIP
formulation is needed to guarantee this. However, for the radiation planning prob-
lems studied by Censor et al. (2006), the solution of this approximating LP fre-
quently provides a solution which respects the limit on the number of constraints
violated. This is partly due to the effect of the objective function which tries to
keep the ti small, thereby reducing the number of unnecessarily violated con-
straints.

Censor et al. define a heuristic iterative procedure to determine small values of α
and β that solve the problem, as shown in Alg. 8.1. Δα and Δβ are small incre-
ments for the two main parameters and are adjusted in an outer loop to find a solu-
tion that is in some sense close to feasible.

min F(x) subject to c(x) ≥ 0, the elastic version is:

. The fraction of the constraints that can be so violated is limited by

The problem is formulated as follows. Replace each inequality i of the form

α mto help insure that the number of violated inequalities does not exceed
where there are m inequalities in total:

radiation treatment planning problems.

Censor et al. report good results using the approximating LP and the heuristic
 adjustment to find small values of α and β when the procedure is applied to

a x ≤ b by a x ≤ t b where 0 ≤ t ≤ (1+ β). A check inequality can then be formulated

It is difficult to know in advance what values of α and β should be chosen, so

 The objective function is to minimize Σt . Of course, the LP solution of this prob-

205

with the long history of usage of elastic models in solvers such as SNOPT (Gill
et al. 2005). norm minimization is more space efficient in that only a single

 8 Altering Constraints to Achieve Feasibility

INPUT: αmax, βmax, Δα, Δβ.
0. k = α0 = β0 = 0.
1. Solve the approximating LP using αk and βk. IF feasible THEN:
 1.1 IF k = 0 THEN exit with the solution x.
 1.2 IF the α and β conditions are satisfied at x
 THEN exit with the solution x.
2. ρ = βk +Δβ.
3. IF ρ ≤ βmax THEN βk+1 = ρ and αk+1 = αk.
 ELSE
 3.1 σ = αk+Δα.
 3.2 IF σ ≤ αmax THEN αk+1 = σ and βk+1 = βk.
 ELSE exit unsuccessfully.
4. k = k + 1; go to Step 1.
OUTPUT: a solution x that satisfies the α and β conditions or a failure
 message.

Alg. 8.1. Adjusting the α and β conditions (Censor et al. 2006)

8.2 Adjusting the Constraint Matrix

It is much more difficult to determine the best way to achieve feasibility for an in-
feasible model by adjusting the constraint coefficients in addition to adjusting the
right hand side constants. However a number of researchers have addressed this
problem for infeasible LPs. The motivation is generally not to provide an auto-
matic fix for the model, but instead to provide some insight into the infeasibility
by showing the “nearest” feasible model.

There are various ways to measure how closely the adjusted feasible model ap-
proximates the original infeasible version. Amaral et al. (2006) describe the gen-
eral problem for a set of linear inequality constraints as min φ(H, p) subject to

corrections to the right hand side vector b such that feasibility is achieved for the
infeasible original set of inequalities Ax ≤ b. The objective function φ(H,p) meas-
ures the closeness of the adjusted system to the original system and is taken as a
suitable matrix norm. Some common choices for the matrix norm include the l1

∞ ijijl dmax=
∞

D

∑=
∞ j iji

dmaxD .

Vatolin (1992) developed an LP-based solution for the problem of minimizing
the l∞ norm for a system of linear inequalities. He defines the original system as

norm, the l norm

(A+H)x ≤ b + p where x is a convex set (usually limited by upper and lower
bounds). H is a set of corrections to the constraint body matrix A and p is a set of

 for some matrix D, and the ∞-norm

206

Matrix

0
M1 (available for correction). The columns are also subdivided into the sets J0 (not
to be corrected) and J1 (available for correction). Where ai represents row i of A
and the corrections vector for row i is hi = [hi’, hi,n+1

i i 0 i i i i,n+1 1

hij = 0 for i∈M1 and j∈J0.
i

i i 1

∞ j

j 1 0 0

1,0

,02,01,0),...,(

+
=

n

T
n

h
hhh

x ,

∞

 min θ
subject to: i i 0 0

 i bi]h0 ≤ ti for i∈M1
 i 1
 ∑ ∈

=
1

1,0Jj jh

 h0,j ≥ 0 for j =1…n+1
The solution of this LP yields values for h0 and t, from which the individual

corrections can be found using hi = tic, i.e. for i∈M1, hij = 0 for j∈J0 and hij ti
1

the best correction point x can also be recovered by reversing the change of vari-
ables. If the l1 norm is to be minimized using Vatolin’s approach, then |J1| LPs
must be solved, each LP correcting a single column of [A,b]. Popescu (2001) con-
siders the use of interior-point LP algorithms for the solution of the Vatolin for-
mulations.

Amaral (2001) extends this idea to minimization of the ∞-norm and derives
limits on the number of LPs needed for this optimization. However she observes
that this approach involves only a single column of [A,b] at a time and results in
particular patterns of the corrections. To provide greater freedom in the resulting

Amaral et al. 2006) study the use of the Frobenius norm

∑ ∑= =
=

m

i

n

j ijF d
1 1

22D

for the objective function min φ(H,p), yielding the problem (P) 2],[min FpH sub-

bounds on x, respectively. The Frobenius norm has several attractive properties
compared to the l1, l∞, and ∞ norms. Imposing upper and lower bounds on the
variables improves the solution properties, guaranteeing that (P) has a global
minimum, and is not restrictive in practice.

includes corrections to both the constraint body and the right hand side constant),
] of dimension 1×(n+1) (which

Ax ≤ b, x ≥ 0, whose rows are subdivided into the sets M (not to be corrected) and

the corrected system is a x ≤ b , i∈M ; (a + h’)x ≤ (b − h), i∈M ; x ≥ 0.
Note that

This formulation is nonlinear due to the bilinear h ’x terms, but can be rendered

 8.2 Adjusting the Constraint

linear by a change of variables. Let h = t c for i∈M where the definition of c de-

resulting in the following LP for minimization of the l norm:

0pends on the matrix norm used in the optimization; for the l norm, c = 0 for j∈J
and c = – 1 for j∈J . Further, ch = –1 where h > 0. The change of variables is then

b]h ≤ 0 for i∈M [a ,–

0 ≤ t ≤ θ for i∈M
[a ,–

= –
for j∈J . The magnitude of the largest individual correction is given by θ. If desired,

corrections patterns, Amaral and colleagues (Amaral and Barahona 2005, 2005a,

ject to (A+H)x ≤ b + p, where l≤ x ≤ u and l and u are vectors of the lower and upper

207

 8 Altering Constraints to Achieve Feasibility

Minimization of the Frobenius norm correction is a nonconvex and nonlinear
global optimization problem that can be solved by any suitable global optimiza-
tion technique. Amaral et al. (2006) use a branch and bound approach incorporat-
ing the Reformulation-Linearization-Convexification Technique due to Sherali
and Tuncbilek (1992) to solve the global optimization. The tree is constructed by
subdividing the range of a selected variable to create two child nodes for each par-
ent node, as in the standard branch and bound algorithm for MIPs. An approxima-
tion to (P) is solved at each node to provide a lower bound on the value of the
Frobenius norm. The approximation is constructed to be a convex NLP that is
solved efficiently due to its special structure. See Amaral et al. (2006) for details
of the optimization approach.

As an example of the kind of information provided by adjusting both the con-
straint matrix and the right hand side, consider the small demonstration example in

1 2 2 1 2

1 2

1 2 1 2

1

sults are promising in that solutions are returned for about half of the problems in
a very small number of nodes, indicating that the lower bound approximation is
quite tight. Computation times for all models are small, though this is partly due to
artificially tight bounds being imposed on the variables. The authors conclude that
their technique will handle infeasible LPs with fewer than 100 rows and 100 col-
umns. This is very restrictive compared to the size of linear programs encountered
in practice, but the technique can be applied to subsets of the constraints. In par-
ticular, in may be useful to first isolate an IIS via the techniques of Chap. 6 and to
then apply the techniques of Amaral et al. (2006) to find an optimal correction.

8.3 Related Research

There are several research directions that are related to the topic of this chapter,
but that are sufficiently different that they are given only a cursory treatment here.
References are provided so that readers can follow up on these topics.

A number of authors have studied condition measures for mathematical
programs, an important aspect of which is the distance to ill-posedness (including
infeasibility) of feasible models. Here again various matrix norms are used to
measure this distance. See e.g. Vera (1998) or Ordonez and Freund (2003).

1.9839.
1.1193x ≤

 + 0.6805x ≤ 3.0672, 1.9745x – 1.0764x ≤ –

Amaral et al. (2006). The original infeasible system consists of the three constraints
–x – x ≤ –7, x ≤ 3, 2x – x ≤ –2, with bounds 1≤ x ≤ 5. Applying the Reformulation
-Linearization-Convexification Technique results in a 17-node branch and bound
tree with the resulting optimum corrected system being –1.0398x –
 –6.9749, –0.1067x
This does show that a feasible solution is available with a relatively similar system
of inequalities, though it is difficult to know exactly how to use the information.
For example, the corrected system introduces x into the second inequality
though it seems unlikely that a change of this type has real physical meaning.

Amaral et al. (2006) apply the method to a selection of small problems. The re-

208

 8.3 Related Research

Renegar (1994) shows that LPs have large or sensitive optimal values only if they
are nearly primal or dual infeasible.

Another problem on feasible models is the best approximation problem in
which the best feasible point relative to a given infeasible point is sought. This
arises when a solution may have been obtained by other means, prior to the addi-
tion of various constraints. Now a feasible solution is found that is as similar as
possible to the original, but now infeasible, solution. Projection algorithms of
various types are often used to solve this problem, see e.g. Censor (2006).

209

PART III: APPLICATIONS

Part I of this book addressed methods for reaching a feasible solution quickly in
optimization models. Part II addressed the analysis of infeasible models. As you
might imagine, there are countless direct applications for algorithms in these
classes: reducing the time to reach a feasible solution reduces the overall solution
time; good tools for analysis of infeasible instances reduces the overall time for
the complete modeling and solution cycle. However, there are a surprising num-
ber of applications beyond these straightforward ones. These “spin-off” applica-
tions are the subject of Part III.

Closest to home is the application of methods for the analysis of infeasibility to
the analysis of other model forms. Unboundedness in primal linear programs is
directly related to infeasibility in the dual (Sec. 9.1). Network models can be
plagued by the inability to carry flow in some of the arcs, a condition known as
nonviability that can be analyzed by a simple transformation to an infeasibility
problem (Sec. 9.2). The interaction of the objectives in multiple objective linear
programs can also be transformed into an infeasibility problem and analyzed with
the assistance of the tools developed in Part II (Sec. 9.3).

Other important and seemingly unrelated problems can also be addressed by
simple transformations to infeasibility analysis problems. Many of these are well
addressed by methods for the solution of the maximum feasibility problem (see
Chap. 7). A standard problem in classification and data mining is the placement
of hyperplanes to separate data points of one type from data points of other types
in the training set. This is easily transformed into a MAX FS problem, and hence
solutions are returned that tend to minimize the number of misclassified points,
whereas more traditional approaches may have minimized other measures such as
the sum of the squared misclassification distances (Sec. 10.1). This is the same as
providing the initial training for a neural network. A related problem is determin-
ing the data depth of a particular point in a multidimensional cloud of data points,
defined as the minimum number of data points on one side of a hyperplane
through the point in question (Sec 10.2). This again is easily transformed into a
MAX FS problem and addressed via the methods of Chap. 7. Massive data sets,
such as census data, are routinely screened for errors using linear relationships.
The data validation rules can be analyzed for internal inconsistencies using the
methods of Chaps. 6 and 7 (Sec. 10.3).

Several specific applications are well addressed as instances of the MAX FS
problem. Radiation treatment planning results in a large set of linear inequalities
that express the fact that diseased tissue must receive more than some minimum
amount of radiation while nearby healthy tissue and important organs should

receive less than some maximum dose. Since these requirements often conflict,

problem in protein folding is to find the natural folding shape that minimizes the
energy, which will be smaller than for other folded shapes. Given the energy
inequalities associated with similar “decoy” shapes, information about the
natural folded shape is gleaned by solving a MAX FS problem that is typically
extremely large (Sec. 11.2). The digital video broadcasting problem is another
MAX FS problem of very large scale (Sec. 11.3). Here the broadcast coverage
area is subdivided into small regions, each of which should receive a signal with
a minimum amount of power from a set of transmitters. This is again a MAX FS
problem.

The best approximation methods of Chap. 8 are needed in automated test
assembly (Sec. 11.4) in which the idea is to meet the requirements imposed by the
test assembly rules as well as possible. IIS isolation is used to analyze problems of
buffer overrun in computer programs (Sec. 11.5) when linear constraints describing
the growth in the size of the buffer generate infeasibilities. User preferences used to
rank the value of internet pages can be expressed as linear inequalities (Sec. 11.6),
but these can result in infeasibilities, which are analyzed using either a best
correction approach (Chap. 8) or a MAX FS strategy (Chap. 7).

IIS analysis is a common feature in tree-structured search, such as in branch
and bound solution of MIPs or modern constraint programming systems, and is

linear models are often used to approximate various physical phenomena such as
signals. Estimation of such models (Sec. 11.8) can be represented as an instance
of the MIN PFS problem of Sec. 7.9. Finding sparse solutions for systems of linear
equations amounts to a MAX FS problem (Sec. 11.9). Various NP-hard problems
can also be converted to the MAX FS problem (Sec 11.10), though some of these
are in binary rather than continuous variables, for which we do not as yet have
good solution heuristics.

212 PART III: APPLICATIONS

this can be addressed as an instance of a MAX FS problem (Sec. 11.1). The

used to direct the backtracking process more efficiently (Sec. 11.7). Piecewise

The various algorithms for analyzing infeasibility turn out to be useful in analyzing
other types of models and modeling problems. This chapter describes three such
examples.

9.1 Analyzing Unbounded Linear Programs

It is well known that if the primal form of a linear program is unbounded, then the
dual form is infeasible (see e.g. Winston and Venkataramanan (2003)). For this
reason, if an LP is found to be unbounded then an infeasibility analysis of the dual
provides insight into the reason for the unboundedness. This is exactly the
approach taken in the LINDO software (Schrage 1997) to return a minimal
unbounded set of variables. At least one of the variables in this set must be finitely
bounded to eliminate the unboundedness in the model. The thought process for the
analyst is similar to the process for analyzing infeasibility: there may be other
minimal unbounded sets of variables that must be found and fixed one by one in
order to eliminate all unboundedness in the model. It is also possible to find a
minimal set of variables to restrict so that all unboundedness is removed (similar
to an IIS set cover). Since unboundedness difficulties are usually caused by
missing constraints or bounds, the usefulness of this approach lies in providing
clues as to where constraints have been omitted.

9.2 Analyzing the Viability of Network Models

Network models are among the largest constrained optimization problems
regularly solved. Because of their scale and complexity, automated methods for
“debugging” formulation errors are especially welcome. Networks are susceptible
to a special kind of modeling error called nonviability (Chinneck 1990a, 1990b,
1992) that results in some of the arcs being unable to carry flow. Note that zero
flow is still a feasible solution for an arc, but the fact that it is the only solution for
an arc indicates a modeling error. This is a special case of a forcing substructure
(Greenberg 1996a), i.e. a structural problem that forces a variable to take on a
particular fixed value.

9 Other Model Analyses

There are a number of variations of network models:

• Pure networks contain only regular nodes which conserve flow.
• Generalized networks have one or more arcs in which a gain factor multiplies

the flow into the arc to determine the flow out of the arc.
• Pure processing networks have regular nodes

and one or more processing nodes in which
the flows in the incident arcs are constrained
to fixed proportions. Processing nodes are
usually depicted as squares with labels on the
incident arcs showing the proportions of
flow. Flow conservation holds at all nodes.
An example appears in Fig. 9.1.

• Nonconserving processing networks are
processing networks in which at least one of
the processing nodes does not conserve flow.

Further information on processing networks is available from Koene (1982) or
Chinneck (1990a, 1992). Chinneck (1992) shows how generalized networks are
easily transformed into nonconserving processing networks. All network forms
can then be considered as various special cases of nonconserving processing net-
works.

Nonviability is a property of the network structure (i.e. the pattern of intercon-
nection of the arcs and nodes). It is particularly common in processing networks.
The structural relationships of a network model include:
• for regular nodes: the flow conservation equation,

tions that specify the proportions of flow in each incident arc,
• for arcs: the nonnegativity constraints on the arc flow.

Note that other bounds on the arc flows are not considered to be part of the
network structure, nor are the arc costs per unit of flow, the objective function, or
any extra side constraints. Network viability and nonviability are defined as fol-
lows:

Definition 9.1: Network viability and nonviability (Chinneck 1997a). If the
complete set of structural relationships in a network model does not provide a
unique solution for any of the arc flow variables, then the network is viable. In a
nonviable network, the set of structural relationships provides a unique solution
for one or more of the arc flow variables. ■

Because the structural relationships are all homo-
geneous equations or nonnegativity constraints, non-
viability forces arc flows to zero. A simple example is
shown in Figure 9.2 in which both of the arcs cut by
the dashed line are nonviable.

Nonviability is generally an undesirable property
of a network model since it indicates that a portion of

the model can never be used, even before nonstructural arc bounds or an objective
function are considered. Modellers should be alerted to nonviability in the same

Fig. 9.1. Example processing node
with ratio equations

Fig. 9.2. A nonviable pure
network

0.7

0.3

0.6

0.4

0.4A – 0.7D = 0
0.4B – 0.3D = 0
0.4C – 0.6D = 0

A

B

C

D

• for a processing node having t terminals: a set of t–1 independent ratio equa-

214 9 Other Model Analyses

way that they are alerted to infeasibility so that corrections can be made if
warranted. However, unlike infeasibility, nonviability is “silent”: it is not reported
automatically. Explicit measures must be taken to screen networks for this property.

Chinneck (1990a) presents a procedure for detecting, localizing, and analyzing
nonviabilities in pure processing networks and provides a taxonomy of structures
causing nonviability. A prototype of the procedure was implemented in software
(Chinneck 1990b). A second paper (Chinneck 1992) extends the method to non-
conserving processing networks, thereby covering all network forms, including
generalized networks. However, a simpler approach using standard IIS isolation
techniques can be adapted to the isolation of nonviabilities. The method is based
on the following theorem.

Theorem 9.1: Nonviability and infeasibility (Chinneck 1990a). A network is
viable if and only if it is feasible for all variables to be positive simultaneously.

Proof: The structure of the network consists of the homogeneous structural

Thm. 9.1 makes it easy to test for viability by placing arbitrary positivity bounds
on the arc flow variables, e.g. xj ≥ 1, and then testing the feasibility of the resulting
system using a standard LP phase 1. If the modified system is feasible, then the
original network model is viable. If the modified system is infeasible, then the
original network model is nonviable, and IIS isolation techniques can be applied

to the infeasible
modified model to
isolate the nonviabil-
ity in the original
network model. If
desired, the isolated
portion of the model
can be tested using
the original algorithm
(Chinneck 1990a)
to arrive at a classifi-
cation of the cause of
the novabiity. Strip-

Fig. 9.3. Finding a minimal nonviability in a processing network
model (Chinneck 1996b)

2 3

4

1

5

1
1

2

1
2

3

2 3

5
2 3

4 5

1

2

1

3

2

5

(a) original network (b) minimal nonviability

ping the isolated IIS of its added posibility bounds yields the minimal
nonviabiityabiity.

9.2 Analyzing the Viability of Network Models 215

equations and the arc flow nonnegativity bounds. These define a convex polyhedral

and the nonnegativity constraints (i.e. a nonviable solution of zero). Each variable

feasible region is a convex polyhedral cone, if a variable can be positive in some
each variable must be positive in at least one feasible solution. Because the
must have more than one possible solution value for viability, which implies that

for a variable is possible only at the intersection of the homogeneous equations

cone feasible region. There is either a unique solution to such a system with
x = 0 or there are multiple semipositive solutions (Murty 1983). A unique solution

solution, then there must exist feasible solutions in which all of the variables are
positive simultaneously. If one such solution exists, then there are many (Murty
1983). Therefore if we can find any feasible solution in which all variables are
positive simultaneously, then the network must be viable. The converse follows
easily. ■

A simple example is shown in Fig. 9.3. The processing node proportions are

shown in italics. The minimal nonviability found by assigning positivity bounds to
all arcs and isolating an IIS is shown in Fig. 9.3 (b). It is easy to explain. Assume,
for simplicity, that the arc connecting node 5 to node 4 is carrying 3 units of flow.
Following the flow ratios imposed by the processing nodes, this becomes 1 unit of

entering node 5, but expect 3 units (or more given the outflow from node 5 to
node 1) to leave node 5. This is clearly not possible and results in the minimal
nonviability shown in Fig. 9.3 (b). Note that the arc connecting nodes 5 and 1 is
part of the minimal nonviability because it is part of the simple flow balance of
regular node 5 and its nonnegativity bound prevents backward flow. While struc-
turally nonviable, the model in Fig. 9.3 (a) is feasible since it admits the solution
in which all arc flows are set to zero. It only becomes infeasible when the positiv-
ity constraints on the arc flows are added.

The IIS isolation approach to nonviability analysis is used in a method for ana-
lyzing petri net models for various classes of modelling errors (You 1993). Petri
nets are commonly used in the design of software systems.

9.3 Analyzing Multiple-Objective Linear Programs

A multiple-objective linear program (MOLP) consists of a set of linear constraints
and a set of more than one linear objective functions. Formulating a large multiple
objective linear program can be difficult due to questions about whether relation-
ships should be cast as objectives or constraints, and about how the different ob-
jectives interact and interfere with each other.

Chinneck and Michalowski (1996) show how techniques for the analysis of in-
feasible LPs can assist in the formulation of MOLPs, both by analyzing infeasible
constraint sets and by illuminating the interactions among objectives and con-
straints. IIS analysis can help in deciding whether relationships should be repre-
sented as objectives or constraints, and in simplifying the model by eliminating
objectives or assigning lexicographic ordering or weights to the objectives.

Chinneck and Michalowski approach MOLPs as models with inherent struc-
tural inconsistencies. The inability to reach a single solution optimizing all of the
objective functions at the same time can be converted to a feasibility problem.
Techniques for isolating IISs are used to identify sources of MOLP objective in-
compatibility and to analyze the options for reducing or removing them. This
analysis may reduce the degree of conflict among MOLP objectives, and the re-
sulting problem should be easier to solve by means of, for example, interactive
methods (see Michalowski and Szapiro (1992), Steuer (1986), or Zionts and
Wallenius (1983) for a discussion of interactive programming methods).

216 9 Other Model Analyses

flow between nodes 4 and 2, then 0.5 units of flow between nodes 2 and 3, and
finally 1.25 units of flow between nodes 3 and 5. Hence we have 1.25 units of flow

Michalowski define four classes of mathematical relationships below; a similar
distinction has been used by Ignizio and Cavalier (1994):

• Hard constraint: a mathematical relationship that is definitely classed as a
constraint. These are often basic physical relationships such as conservation of
flow in a network.

• Soft constraint: a mathematical relationship that is currently classed as a

hand side and adding an objective sense (maximize or minimize).

objective (maximize or minimize).
• Soft objective: a mathematical relationship that is currently classed as an

objective, but which could be considered as a constraint if an appropriate right
hand side and relationship sense were added.

Constraint to objective conversions are straightforward: drop the right hand
side and the relationship symbol, and add the appropriate optimization sense:
> constraints become maximizations, < constraints become minimizations,
= constraints can become either (though = constraints are unlikely candidates
for conversion to objectives). Objective to constraint conversions are more
complicated. First the constraint sense must be determined. Generally maximization
objectives become > constraints, and minimization objectives become <
constraints, but either could be converted to an = constraint and used as a goal
constraint with the addition of appropriate deviational variables. Second, the
right hand side value must be set; this requires some knowledge of the
application. The value assigned to the right hand side in a soft constraint is
called the aspiration level of the constraint. Similarly, when a soft objective is
converted to a constraint, an aspiration level must be assigned.

Current practice assumes that the modeller can make an initial assignment of
every relationship to one of the four classes described above. Given this initial
classification of the relationships, the modeller faces two main MOLP formulation
problems, in addition to the usual LP formulation problems:

1. Final Classification: arriving at a final classification of the soft constraints
and objectives. Should a soft constraint be converted to an objective? Should
a soft objective be converted to a constraint, and if so, what should the aspi-
ration value be? This produces the final form of the MOLP, which can then
be solved.

2. Simplification: elimination of constraints and objectives, rewriting of con-
straints, resetting of aspiration values etc. to arrive at a simpler or clearer
formulation.

Chinneck and Michalowski approach these two formulation problems by provid-

• Hard objective: a mathematical relationship that is definitely classed as an

constraint, but which could be considered an objective by dropping the right

ing algorithmic tools for Interaction Analysis, the process of analyzing the

objectives can be difficult. For example, should a cost expression be an object i ve
Classifying the mathematical relationships in a MOLP as constraints or

9.3 Analyzing Multiple-Objective Linear Programs 217

(“minimize cost”), or a constraint (“cost must not exceed $100,000”)? Chinneck and

9.3.1 Interaction Analysis of the Constraints

The MOLP constraint set is analyzed in two stages: (i) test the feasibility of the
complete set of hard constraints, and then (ii) test the entire set of constraints in-
cluding both the hard and soft constraints. Infeasibility during step (i) indicates
ordinary LP infeasibility that can be analyzed by the techniques outlined in Chaps.
6–8. Infeasibility during step (ii) shows that the aspiration levels of the soft con-
straints are unrealistic. The IIS isolated by the infeasibility analysis in step (ii) is
especially revealing because it shows the set of constraints which interact to cause
infeasibility. There are two cases to consider.

• Case 1: only one soft constraint and a set of hard constraints in the IIS. This
shows that the aspiration level of the soft constraint is unrealistic and conflicts
with basic hard constraints, such as physical limitations of equipment. This im-
plies that either (i) the aspiration level of the soft constraint must be relaxed to a
feasible level, or (ii) the soft constraint should be converted to an objective.

• Case 2: more than one soft constraint in the IIS. In this case, the aspiration lev-
els of the soft constraints interact with each other, and any hard constraints in
the IIS, to create the infeasibility. The changes needed to repair the model are
similar to the first case: (i) change the aspiration level of one or more of the soft
constraints, or (ii) convert one or more of the soft constraints to objectives. In
addition, we know that if more than one of the soft constraints is converted to
an objective, then these converted objectives will interfere with each other. The
kind of analysis needed at this point is then similar to the methods described
below.

9.3.2 Interaction Analysis of the Objectives

Infeasibility analysis deals only with constraints, so to use IIS isolation to analyze
the interaction of the objectives in the MOLP, all objectives (both soft and hard)
must first be converted to constraints. This is easily accomplished via a two-step
process which produces the converted MOLP.

1. Find the extreme feasible aspiration level of each objective. Create and solve
one LP for each objective, in which only that objective appears while all of
the other objectives are temporarily removed. Note the optimum terminating
point(s) (this is the extreme feasible aspiration point, xA

opt, for some objec-
A A A

objective A) for each LP.
opttive A) and the extreme feasible aspiration level (y = f (x) for some

objective as a constraint, with the relationship sense determined appropriately

become < constraints), and the right hand side equal to the extreme feasible

strains. Interaction Analysis may also assist in the solution of the MOLP.
intercations and interferences between objectives and between objectives and con-

2. C onvert each objective to a constraint . This is done by rewriting each

(maximization objectives become > constraints, minimization objectives

218 9 Other Model Analyses

aspiration level determined in Step 1. For numerical reasons, it is better to
relax the right hand side from the extreme feasible aspiration level by a
small epsilon amount.

Observation 9.1: Identifying objectives that are not in conflict (Chinneck and
Michalowski 1996). Any objectives whose Step 1 LPs terminate at the same ex-
treme point in Step 1 (or who have the same extreme points as alternative optima)
are not in conflict. Consider Fig. 9.4 for example.■

Observation 9.2: Identifying models that are not true MOLPs (Chinneck and
Michalowski 1996). If all of the Step 1 LPs terminate at the same extreme point
(or have the same extreme points as alternative optima), then none of the objec-
tives are in conflict, and the model is not a true MOLP.■

If the condition described in Obs. 9.2 holds, then the converted MOLP is feasi-
ble because the common extreme point exists, and it satisfies all of the original
(hard and soft) constraints, and all of the converted objectives. This leads directly
to the following theorem.

Theorem 9.2: Converted MOLP infeasibility (Chinneck and Michalowski
1996). If the original constraint set (hard and soft) is feasible, then the converted
MOLP is infeasible if and only if the original model is a true MOLP.

Proof: The constraint set is feasible, so infeasibility can happen only due to an
interaction involving one or more of the converted objectives. If the converted ob-
jectives are not in conflict, then a feasible point exists, as discussed above. Thus
an infeasible converted LP can be constructed only if one or more of the converted
objectives are in conflict. This is the definition of a true MOLP.■

Observation 9.3: Objectives in converted MOLP infeasibility (Chinneck and
Michalowski 1996). If the original constraint set is feasible and the model is a true
MOLP, then any IIS in the converted MOLP will involve more than one converted
objective. The extreme feasible aspiration levels are defined such that each con-
verted objective is feasible with respect to the constraint set. Infeasibility then re-
quires at least two converted objectives.■

Observation 9.4: Conflicting objectives in converted MOLP IIS (Chinneck and
Michalowski 1996). Any converted objectives appearing together in an IIS are in

Fig. 9.4. Examples of nonconflicting and conflicting objectives

converted LP is {C,D,4}.

9.3 Analyzing Multiple-Objective Linear Programs 219

B

A

4

3

2

D

C

4

3

2

1

feasible
region

feasible
region

1

(b) Conflicting objectives. IIS in (a) Nonconflicting objectives.

conflict. If they are not in conflict, then the infeasibility is not irreducible, since
both would restrict the converted model to the same extreme point.■

These observations can be used to provide insight on the objective behaviour
and to suggest model reformulations and simplifications. There are two cases to
consider:

• Case 1: The IIS includes only converted hard objectives, and possibly hard
constraints. The IIS isolates sets of conflicting hard objectives. The model can
be reformulated by abandoning an objective that is clearly of lesser importance
among the converted objectives in the IIS, if appropriate. Or, once the conflict
sets are known, the information can be used to guide the setting of the lexico-
graphic order or weights on the objectives.

• Case 2: The IIS includes at least one converted soft objective or soft constraint.
Here we have more reformulation options. A reformulation of a soft constraint
may permit the objectives to achieve their extreme feasible aspiration levels.
For example, assume that constraint 4 in Fig. 9.4 (b) is a soft constraint. Objec-

Constraint 4 in Fig. 9.4 (b) can be relaxed in two ways: (i) it can be converted
to an objective instead of a constraint, or (ii) its aspiration level can be adjusted.
Further, we can discover exactly how much to relax constraint 4 by constructing
and solving a small elastic program (see Sec. 6.1.4) from the IIS: elasticize just
constraint 4 and solve the LP consisting of the IIS constraints only. The value of
the elastic objective gives the relaxation in constraint 4 that is needed to allow the
other objectives to achieve their extreme feasible aspiration levels.

If the IIS includes a soft objective, then similar considerations apply: if it is im-
portant that the other objectives achieve their extreme aspiration levels, then ig-
nore the soft objective, or convert it to a soft constraint whose aspiration level is
set appropriately.

9.3.2.1 Generating Different Interacting Sets of Objectives

You normally deal with a single IIS at a time when considering only constraints:
each IIS found is repaired before analysis proceeds. When considering objectives
as well, the IISs in the converted MOLP simply provide information about inter-
acting sets of relationships, so we wish to be able to shift our focus from one in-
teracting set to another (i.e. from one IIS to another) as the analysis proceeds,
while all IISs remain intact in the converted MOLP. Because IIS analysis algo-
rithms isolate only a single IIS, this causes some difficulty, but three techniques
can be applied, as described below.

1. Eliminate a converted objective from the current IIS. One method of generat-
ing a different IIS, and hence a different interacting set of relationships, is to
eliminate one of the converted objectives from the current IIS. When this is done,
restarting the IIS isolation algorithm will isolate a different IIS if one exists. Con-
verted objectives can be eliminated by either (i) actual elimination from the
model, or (ii) elasticization.

vels if constraint 4 is relaxed back to the intersection of C and D.
tives C and D can simultaneously achieve their extreme feasible aspiration le-

220 9 Other Model Analyses

To examine how much the aspiration level of a particular objective must be
adjusted to accommodate the other objectives in a particular IIS, the following
procedure can be used: (1) choose the constraint set consisting only of the
constraints and converted objectives in the IIS, (2) change the converted objective
in question back to an objective, (3) solve the now-feasible LP to optimality, (4)
calculate the difference between the original aspiration level and the optimum
value found in step (3). The difference found in step (4) shows whether the
conflicts between the objectives in the IIS are serious. A small difference indicates
that the conflict is not serious, perhaps resolvable by converting one objective to a
constraint with a slightly relaxed aspiration level, or by eliminating one objective
entirely.

2. Apply the IIS search guide codes. Different IISs are often found by setting
the IIS guide codes so as to encourage or discourage the inclusion of specific con-
straints or converted objectives. One approach is to discourage the inclusion of all
of the members of the current IIS. A particularly useful technique when examining
the objective interactions is to run the IIS analysis once for each objective with
that objective encouraged to stay in the IIS, and the other objectives encouraged to
drop out of the IIS. If a certain relationship appears in all or most of the IISs gen-
erated this way, then that relationship is particularly conflictive and is a good can-
didate for change in some manner (convert relationship type if soft, adjust right
hand side if constraint, etc.).

3. Use an IIS-enumerating algorithm. The IIS-enumerating algorithm described
by Gleeson and Ryan (1990) could, in principle, be used to find all of the IISs in
the converted model (see Sec. 6.2.3).

Option 2 is used in the complete method described later.

9.3.2.2 Which Objectives Conflict With a Particular Objective?

One common MOLP formulation question is to find all of the other objectives
which conflict with a particular objective. This is easily determined by examining
the converted MOLP: all objectives which do not share the same extreme aspira-
tion point xk

opt (or an alternative extreme aspiration point) with the objective in
question are in conflict with it.

9.3.2.3 Evaluating the Relative Amount of Objective Interference

The degree of interference between some objective A and some objective B is
determined by (i) substituting xA

opt into objective B and xB
opt into objective A, then

(ii) determining how much each objective moves away from its extreme aspiration
level at the new point. The absolute difference found in step (ii) can be used
directly, or it can be normalized by dividing by the extreme aspiration level if
appropriate.

9.3 Analyzing Multiple-Objective Linear Programs 221

We say that objective A interferes strongly with objective B if the value of
objective B at xA

opt is greatly different (absolute or normalized difference as
appropriate) from the extreme aspiration level of objective B; otherwise objective
A interferes weakly. Objective interference is relative because it is possible that
objective A interferes strongly with objective B while objective B interferes
weakly with objective A.

This analysis may suggest model simplifications. For example, if objective B
interferes weakly with objective A, then the model can perhaps be simplified by
considering objective B superior to objective A and, for example, using lexico-
graphic ordering of the objectives.

Where the tradeoffs among several objectives must be analyzed simultane-
ously, an objective interference table can be constructed. First create a table hav-
ing columns for the objectives and rows for the extreme aspiration points for the
objectives, e.g. xA

opt, xB
opt, etc. The element of the table for the row xA

opt and the
column for objective B is then [yBopt – f B(xA

opt)] or [yBopt – f B(xA
opt)]/yBopt if normal-

ized. The normalized table shows the fractional loss in the objective function
value relative to the extreme aspiration level when the objective function is evalu-
ated at the extreme aspiration point for a different objective. Examples of how it
can be used are given in Section 9.3.4.

9.3.3 Summary of the Method

The steps in the method are summarized in Alg. 9.1. Note that each test is re-
applied until passed because there may be more than one IIS in the model, perhaps
unrelated.

Steps 1–5 of Alg. 9.1 are straightforward. Step 6 allows a great deal of flexibil-
ity. The modeller could, for example, choose to generate and analyze a single IIS
in Step 6. Decisions on how to simply the model (e.g. convert a soft constraint to
an objective or just modify its right hand side) require domain knowledge which
cannot be incorporated into the algorithm. Similarly, only the modeller, applying
domain knowledge, can determine when the model is sufficiently well formulated
to proceed to the solution stage.

222 9 Other Model Analyses

Analyze the constraint interactions:
1. Apply a phase 1 feasibility test to the set of hard constraints. If feasible, go to

Step 2, else (infeasible) identify an IIS and repair the basic LP formulation er-
ror. Go to Step 1.

2. Select the entire set of constraints (hard and soft) and apply a phase 1 feasibil-
ity test. If feasible, go to Step 3, else (infeasible) identify an IIS and proceed as
follows:

 Case 1: only one soft constraint in the IIS. Either (i) relax aspiration level of
 the soft constraint, or (ii) convert the soft constraint to an objective.
 Case 2: more than one soft constraint in the IIS. Either (i) relax the aspiration
 level(s) of one or more of the soft constraints, or (ii) convert one or more of
 the soft constraints to objectives.
 Go to Step 2.

Create the converted MOLP:
3. Find the extreme feasible aspiration level and extreme feasible aspiration point

(and any alternative extreme feasible aspiration points) for each objective by
selecting the entire set of constraints and only one objective at a time and
solving to optimality.

4. Group objectives having the same extreme feasible aspiration points (or alter-
native extreme feasible aspiration points): members of each group are non-
conflicting objectives. If there is only one group of objectives, then the model
is not a true MOLP, so exit.

5. Convert each objective to a constraint by appending the extreme feasible aspi-
ration level as the right hand side and using the constraint sense appropriate to
the objective (≥ for maximize and ≤ for minimize).

Analyze the objective interactions:
6. Identify a set of IISs as follows. For each objective, set the guide codes to en-

courage the inclusion of that objective in the IIS and to encourage the exclusion
of the other objectives. Identify frequently occurring elements in the IISs and
proceed as follows.

 Case 1: frequent element is a hard objective or constraint. Either (i) abandon
 objective(s) in the set that are of lesser importance, or (ii) use the objective
 interference table to set the lexicographic order or weights on the objectives
 appearing in the IIS.
 Case 2: frequent element is a converted soft objective or soft constraint. Either
 (i) soft constraint: adjust the aspiration level or convert to an objective, or
 (ii) soft objective: use the objective interference table to decide whether to
 ignore or convert to a soft constraint with appropriate aspiration level.
7. If analysis complete then construct objective interference table for final setting

of lexicographic order or objective weights and exit. Else (analysis not com-
plete) go to Step 3.

Alg. 9.1. Analyzing MOLPs using IIS isolation algorithms

9.3 Analyzing Multiple-Objective Linear Programs 223

9.3.4 Example

The example is an adapted and simplified version of a land-use problem deveoped
by Steuer and Schuler (1981). See Chinneck and Michalowski (1996) for details
of the relationships. The seven objectives relate to, in order, pasturage, dispersed
recreation, timber production, and populations of deer, rabbits, squirrels, and
quail. The first three objectives are soft (i.e. they could be considered as con-
straints), while the last four are hard (they are definitely objectives), since this is
basically a forestry problem. Soft constraint s1 is a budget limitation. The steps of
the analysis method are applied below.

 Steps 1 and 2. The complete set of constraints is feasible, so the tests in Steps 1
and 2 are passed.

Step 3. The extreme feasible aspiration levels of the various objectives are
summarized below:

objective extreme feasible aspiration level
zs1 1577.59
zs2 164.33
zs3 7437.00
zh4 28.96
zh5 81.07
zh6 40.28
zh7 100.57

Step 4. Every extreme aspiration point is different, so no groupings can be
made. All objectives are in conflict and the original problem is a true MOLP.

Step 5. All objectives are converted to constraints. For example, maximize zs1
is converted to zs1 ≥ 1577.59 – ∈, where ∈ is about 0.01.

Step 6. The set of IISs identified by using the guide codes follows. Notice how
each objective appears in its respective IIS.

 {zs1, zs2, s1, h2, h3}
 {zs1, zs2, s1, h2, h3}
 {zs1, zs3, s1, h2, h6, h8, h12, h16}
 {zs1, zh4, s1}
 {zs1, zh5, s1}
 {zs1, zh6, s1}
 {zs1, zh7, s1, h2, h3, h6, h8, h12}
Frequently occurring elements in the IISs are zs1 and s1 which are members of

all seven IISs. We elect to remove the budget constraint s1 entirely, which is
equivalent to adjusting the right hand side to a high value.

Step 7. Analysis is not complete, so proceed to Step 3.
Step 3. The new extreme feasible aspiration levels are shown below. Notice that

all of the extreme feasible aspiration levels have increased (except zs3) with the
removal of s1.

224 9 Other Model Analyses

objective extreme feasible aspiration level
zs1 1853.88
zs2 185.65
zs3 7437.00
zh4 31.87
zh5 95.58
zh6 44.01
zh7 134.88

Step 4. Every extreme aspiration point is different, so no groupings can be
made. All objectives are in conflict and we are still dealing with a true MOLP.

Step 5. All objectives are converted to constraints. For example, maximize zs1

Step 6. The set of IISs identified by using the guide codes follows:
 {zs1, zs2, s2–s7, h1, h3–h5, h8–h9, h12–h13, h16}

 {zs1, zs2, s2–s7, h1, h3–h5, h8–h9, h12–h13, h16}
 {zs1, zs2, s2–s7, h1, h3–h5, h8–h9, h12–h13, h16}
 {zs1, zh4, s2–s7, h1–h5, h8–h9, h13}
 {zs2, zh5, s2–s7, h1, h3–h5, h8–h9, h12–h13, h16}
 {zs2, zh6, s2–s7, h1, h3–h5, h9, h13}
 {zs1, zh7, s2–s7, h1, h3–h5, h9, h13}
The results are less conclusive this time. The IISs contain many more elements,

zs3 does not appear in any of the IISs generated, there are several common soft
constraints (s2–s7), and all of the IISs contain a lengthy list of hard constraints.
Because there is no clear-cut conclusion to be drawn, we construct a normalized
objective interference table, as shown in Table 9.1. Rows in the table are for the
extreme aspiration points for the named objective, columns are for the objectives,
and the elements are the fractional decreases in the objectives at the points (i.e.
[y Bopt – f B(xA

opt)]/y Bopt for table element AB).

 Table 9.1. Normalized objective interference table

 zs1 zs2 zs3 zh4 zh5 zh6 zh7
zs1 0.000 0.426 1.000 0.550 0.490 0.435 0.154
zs2 0.103 0.000 0.000 0.063 0.014 0.219 0.016
zs3 0.827 0.816 0.000 0.670 0.795 0.583 0.753
zh4 0.250 0.132 0.000 0.000 0.046 0.258 0.056
zh5 0.000 0.006 0.000 0.092 0.000 0.201 0.023
zh6 0.000 0.357 0.000 0.267 0.423 0.000 0.021
zh7 0.183 0.449 0.000 0.207 0.430 0.053 0.000

Note that the diagonal elements of the table are zero, because each objective

reaches its extreme aspiration level at its extreme aspiration point.
Since no particular relationship is clearly identified as a candidate for change,

the final formulation phase activity is to make recommendations about lexico-
graphic ordering or weighting of the objectives. We choose to use the objective in-
terference table to examine how best to set the lexicographic order.

is converted to zs1 ≥ 1853.88 – ∈.

9.3 Analyzing Multiple-Objective Linear Programs 225

One way to set the order is to look at which extreme aspiration points have the
least negative impact on the other objectives. This can be done in a many ways:
average deterioration in objective value, smallest maximum decrease in objective
value, etc. For illustrative purposes, we choose to look at the average decline in
objective value by calculating the average of the off-diagonal elements in each
row of the table, with results as follows:

 zs1 zs2 zs3 zh4 zh5 zh6 zh7
 .509 .069 .741 .125 .054 .178 .220

With the idea of ordering the objectives so that a greater degree of satisfaction
of one objective early has the least negative impact on the later objectives, we can
order the objectives based on increasing values of the average decline in objective
values: zh5, zs2, zh4, zh6, zh7, zs1, zs3. The reverse of this ordering shows the ob-
jectives having the most to the least impact on the others. It is not surprising to see
that timber production (zs3) and pasturage (zs1), both land-intensive activities,
have the most impact on the other recreation and wildlife objectives. This sort of
insight can be used to prepare the final model formulation for solution.

Step 7. Finished formulating, so exit and go to solver. Choosing a lexicographic
ordering approach, our final model is thus to maximize the objectives in the cho-
sen order (zh5,zs2,zh4,zh6,zh7,zs1,zs3) subject to the constraints excluding con-
straint s1.

226 9 Other Model Analyses

10 Data Analysis

Techniques originally devised for analyzing infeasible linear programs turn out to
have many interesting and useful applications in data analysis. The problem of
placing a hyperplane in an n-dimensional space to separate two categories as well
as possible can be directly transformed into an instance of the MAX FS problem, so
the algorithms of Chap. 7 can be applied. This is also identical to the problem of
providing the initial training for a neural network. A related problem in statistics is
determining the data depth of a point in an n-dimensional cloud of data points, de-
fined as the smallest number of data points on one side of hyperplane through the
point in question. This is again transformable to the MAX FS problem. Finally,
arithmetic constraints are often used to check massive data sets such as census re-
sults. The rules themselves may be contradictory, and this can be checked via the
methods of Chaps. 6 and 7.

10.1 Classification and Neural Networks

A standard problem in machine learning and data classification is the placement of
a separating surface (normally a hyperplane) in an n-dimensional space of item
features in such a way that it completely separates instances in one set (e.g. of
Type 0) from instances in another set (e.g. of Type 1). This is not normally possi-
ble with real data, so the objective is usually to place the separating surface so as

into the MIN IIS COVER problem (Amaldi 1994, Parker 1995, Chinneck 1998,
2001a) as shown below. The conversion results in a MIN IIS COVER problem that
has no variable bounds or equality constraints, and hence is somewhat simpler in
structure.

The data instances exist as points in an n-dimensional space of attributes or fea-
tures, each having an associated type (e.g. Type 0 or Type 1). This constitutes the
training set of instances. Finding the minimum-misclassification hyperplane in the
training set is an essential step in building up a decision tree that can be used to
classify new instances as they are encountered. The problem of placing a hyper-
plane to misclassify as few of the training set instances as possible can also be
viewed as the problem of determining the smallest number of points to remove
from the training set such that all of the remaining points can be correctly classified

to minimize the number of incorrectly classified instances. See the example in
nality problem is easily transformed Fig.10.1.T his minimum misclassification cardi

by a single hyperplane. This is translated into the MIN IIS COVER (or MAX FS) prob-
lem as follows:

ij
point is known (either Type 0 or Type 1), define a set of linear constraints as

follows (one constraint for each data
point): Σjdijwj ≤ w0 − ∈ for points of Type
0, and Σjdijwj ≥ w0 + ∈ for points of Type
1, where ∈ is a small positive constant.
Note that the variables are the unrestricted

j ij
known constants. A similar conversion is
given by Parker (1995).

If the data are completely separable by a
single hyperplane, then any solution to the
LP resulting from the conversion will yield
a set of values for the wj, which then defines

the separating hyperplane wx = w0. If the data cannot be completely separated by a
single hyperplane, then the LP resulting from the conversion will necessarily be
infeasible. Finding a solution to the MIN IIS COVER problem in this infeasible LP
then also solves the classification problem of finding the smallest number of
points to remove such that the remaining points are completely separable by a sin-
gle hyperplane. The constraints in the IIS cover correspond to misclassified points
in the classification problem. Because the points removed will be incorrectly clas-
sified by the resulting hyperplane, this constitutes a method of finding a hyper-

Table 10.1 provides information about nine frequently analyzed binary classifi-
cation problems taken from the publicly available UCI Repository of Machine
Learning Databases (Newman et al. 1998), a common source of classification test
data. “Net points” is the number of data instances remaining after incomplete
tuples are removed.

Table 10.1. Classification data sets

data set net points number of features
breast cancer 683 9
bupa 345 6
glass (type 2 vs. others) 214 9
ionosphere 351 34
iris (versicolor vs. others) 150 4
iris (virginica vs. others) 150 4
new thyroid (normal vs. others) 215 5
pima 768 8
wpbc 194 32

Fig. 10.1. Separating hyperplane

in which the value of attribute j for point i is denoted by d , and the class of each
Given a training set of I data points (i = 1… I) in J dimensions (j = 1… J),

w , where j = 0… J, while the d are

classification research.
plane that misclassifies the smallest number of points, an important goal in

228 10 Data Analysis

Table 10.2 compares the results obtained when three different algorithms for
placing separating hyperplanes are applied to these data sets:

• Alg. 7.3 as implemented in CLIIS, a MINOS-based prototype for placing
classifier hyperplanes (Chinneck 2001a).

• Algorithm 2(1) of Sec. 7.4 (i.e. choosing only the violated constraint having the
maximum product as the single candidate each time) as implemented in CLIIS
(Chinneck 2001a).

• A parametric exact LPEC formulation (see Sec. 7.1.2) solved by successive
linear programming, and implemented in the MISMIN code (Bennett and
Bredensteiner 1997).

All algorithms are applied to the entire data set (i.e. there is no separation into
training and testing sets). The best results in terms of both accuracy (% acc.) and
time (secs) are shown in boldface.

Because MISMIN is among the best of the available programs for minimizing
the number of classification errors in classification problems, it is a good standard
for comparison. Bennett and Bredensteiner (1997) show that MISMIN performs
favorably against such other well-known programs as OC1 (Murthy et al. 1994)
and CSADT (Heath et al. 1993).

Table 10.2 shows that Alg. 7.3 is the most accurate, but also the slowest, while
MISMIN is the fastest. Algorithm 2(1) provides a major speed-up over Alg. 7.3
(several orders of magnitude in some cases), yielding times comparable to those
for MISMIN (and sometimes faster). More significant, however, is that it does this
with very little loss of accuracy.

Table 10.2. Three algorithms for classification (Chinneck 2001a)

 Alg. 7.3 Alg. 2(1) MISMIN
 % acc. secs % acc. secs % acc. secs
breast cancer 98.4 17 98.4 4.3 98.2 0.7
bupa 75.1 159 75.9 1.3 73.9 0.6
glass (type 2 vs. others) 81.8 38 78.5 0.6 76.6 0.6
ionosphere 98.3 44 98.3 5.4 98.3 2.6
iris (versicolor vs. others) 83.3 5 83.3 0.2 82.0 0.3
iris (virginica vs. others) 99.3 0.4 99.3 0.1 99.3 0.3
new thyroid (normal vs. others) 94.9 3 94.9 0.3 93.5 0.3
pima 80.6 1434 80.2 7.2 80.5 1.5
wpbc 96.9 17 96.9 1.2 91.2 1.5
average: 89.8 216.2 89.5 2.3 88.2 0.9

An important difference between the approaches taken in Alg. 7.3 and in Al-
gorithm 2(1) as opposed to many other methods is that they remove points from
the data sets one at a time instead of all at once as in other methods. This raises
the possibility of “guiding” the removal process as it is underway. For example, if
the classification accuracy of Type 0 points is lower than that of Type 1 points at
some intermediate point in the hyperplane placement process, then the point removal

10.1 Classification and Neural Networks 229

procedure could be coerced to prevent the removal (and hence misclassification) of
any more Type 0 points until the classification accuracies are balanced.

Amaldi et al. (2007) ran various MAX FS algorithms on the same data sets as re-
ported in Table 10.2. Algorithms include:

• A branch-and-cut implementation due to Pfetsch (2002), see Sec. 7.2.
• An exact Big-M branch and bound using the Cplex 8.1 solver, see Sec. 7.1.1.
• The two-phase algorithm using the linearized bilinear model for the first phase,

and the exact Big-M branch and bound using Cplex 8.1 for the second phase,
see Sec. 7.5.

• The two-phase algorithm using a linearization of the Big-M method for the first
phase, and the exact Big-M branch and bound using Cplex 8.1 for the second
phase, see Sec. 7.5.

• The two-phase algorithm using a simple LP phase 1 for the first phase, and the
exact Big-M branch and bound using Cplex 8.1 for the second phase, see Sec. 7.5.

• A reimplementation of Alg. 7.3 using the AMPL scripting language and with
Cplex 8.1 as the LP solver.

Results are summarized in Table 10.3. All solutions were limited to 10,000
seconds of CPU time. Alg. 7.3 is the only method that is not branch-and-bound
based, and is also the only method that did not time out on any of the data sets.
The accuracy shown for timed-out solutions is for the incumbent solution available
at time-out. There are some differences in the accuracies and times for Alg. 7.3 be-
tween Tables 10.2 and 10.3 which are likely due to differences in coding and in
the LP solvers used.

Table 10.3. More MAX FS algorithms for classification (Amaldi et al. 2007)

 branch &

cut
Big-M 2Ph-bilin 2Ph-BigM 2Ph-LP Alg. 7.3

 %acc sec %acc sec %acc sec %acc sec %acc sec %acc sec
breast cancer 98.4 43 98.2 t 98.4 371 98.4 1 98.4 8 98.4 15
bupa 65.8 t 71.9 t 75.7 t 75.4 t 75.1 t 75.1 331
glass (type 2
vs. others)

83.2 t 82.2 t 78.5 133 80.4 375 78.0 t 80.4 143

ionosphere 98.3 2215 98.3 t 98.3 2268 98.3 4 98.3 36 98.3 36
iris (versicolor
vs. others)

83.3 1735 83.3 7630 82.7 4 82.7 1 82.7 5 83.3 30

iris (virginica
vs. others)

99.3 0.1 99.3 0.4 99.3 1 99.3 0.2 99.3 0.2 99.3 0.1

new thyroid
(nrm vs others)

94.9 17 94.9 46 94.9 9 94.9 0.2 94.9 0.4 94.9 10

pima 79.9 t 76.6 t 80.3 t 80.1 t 80.1 t 80.6 1977
wpbc 93.3 t 90.2 t 91.8 t 91.8 1863 91.8 t 91.8 91
avg 88.5 88.3 88.9 89.0 88.7 89.1
t: algorithm timed out. Boldface indicates best accuracy in the row.

Adem and Gochet (2006) extend the mathematical programming based meth-

ods for finding separating hyperplanes for the two-class problem to the multiclass

230 10 Data Analysis

problem. One approach they use is to modify Alg. 7.3 for use in solving multiclass
problems. The main idea is that if there are C classes, then C constraints are for-
mulated for each data point. As for the two-class version of Alg. 7.3, one data
point is removed at each iteration, but this is done by removing C-1 constraints
(instead of just one constraint in the original two-class version). Various rules
based on Chinneck (2001a) are used to identify the data point for removal at each
iteration. Empirical results with the modified heuristic are very good.

As pointed out by Mangasarian (1993), the training of neural networks is
equivalent to finding separating hyperplanes. Hence the conversion of the classifi-
cation problem into the MIN IIS COVER problem allows the spectrum of solutions
for MIN IIS COVER to be applied to the initial training of neural networks.

Solution of the MIN IIS COVER problem to find separating hyperplanes also ap-
pears to underlie the statistical technique known as optimal data analysis (Yarnold
and Soltysik 2004).

10.2 Data Depth

The data depth of a point in a cloud of points in a multi-
dimensional space is a statistical concept that is related to the
idea of the median of a set of points in a one-dimensional
space. It is also known as the halfspace depth, the location
depth, and the Tukey depth. The data depth of some point p in
a set of points S is defined as the smallest number of points in
S in any closed halfspace with boundary through p. The point
with the largest data depth is called the Tukey median.

Fukuda and Rosta (2005) provide an introduction to basic
concepts and algorithms for calculating the data depth and also show that finding
the data depth of a given point is equivalent to solving the MAX FS problem (or
equivalently the MIN IIS COVER problem). Given the use of algorithms for solving
MAX FS in classification (Sec. 10.1), this is not surprising. Here the goal is to sepa-
rate a given point from as few other points as possible via a single hyperplane, as
compared to separating Type 0 points from Type 1 points in data classification.
The data depth problem also is identical to the closed (open) hemisphere problem,

The problem of finding the data depth for some point p is converted to a linear
program as follows. Let there be I other points in the set S, each represented as a
J-tuple in the J-dimensional space. Set up one constraint for every point xi as fol-
lows: a1(xi1 – p1) + a2(xi2 – p2) + …+ aJ(xIJ – pJ) ≥ ∈, where ∈ is a small positive
constant. Note that the xij and pj are known constants while the aij are the unknown
variables. If p is on the convex hull of the cloud of data points, i.e. has a data
depth of 0, then the resulting LP is feasible, and the hyperplane that separates p
from the rest of the points is given by ax ≥ ∈.

In the more general case where p has a data depth of greater than 0, then the re-
sulting LP will be infeasible, and the various algorithms for solving MAX FS can be
applied (see Chap. 7). More exactly, this problem is best solved by the MIN IIS

Fig. 10.2. The
grey point has
data depth 2

10.2 Data Depth 231

COVER or MIN ULR variants of MAX FS. The cardinality of the MIN IIS COVER or MIN
ULR is the data depth of the point.

Chen (2007) reports on experiments using various branch-and-bound and
branch-and-cut algorithms to calculate data depth. Bremner et al. (2006) report on
experiments using so-called primal-dual methods that calculate both upper and
lower bounds on the data depth and terminate when the bounds are the same.
Unreported experiments by the author using Alg. 7.3 show promise.

10.3 Errors in Massive Data Sets

Mathematical and logical rules are commonly used to check the data in massive data
sets, such as census or survey data (Bruni 2005a). Very simple mathematical rules
may check the range of a data value, e.g. that age is between 0 and 110 years. More
complex rules tie conditions together, for example (Age−YearsMarried ≥ 16) to
express the fact that the minimum age for marriage is 16. Bruni (2005a) further
demonstrates how logical conditions can readily be converted to linear inequality
constraints.

Given a set of rules for checking a massive data set, various difficulties may
arise, such as inconsistency among the rules. In the case of complete inconsis-
tency, it is straightforward to check the linear inequalities arising from the rules to
identify an IIS (Chap. 6) or to find the maximum feasible subset (Chap. 7). This
allows the analyst to alter the rules appropriately. However there is also the case
of partial inconsistency in which an inconsistency among the rules arises when
particular values are chosen for some of the fields. This can also be handled by IIS
isolation and maximum feasible subset identification by analyzing the infeasibility
that arises in that case. Depending on the format of the data, methods for the
analysis of infeasibility in LPs or in MIPs may be required. This process is re-
ferred to as validating the data check rules.

Given a set of validated rules, it is then simple to check each data record by
verifying that it satisfies all of the linear constraints that express the rules. If a re-
cord does not satisfy all of the rules, then it is possible to automatically correct the
record. The goal in this case is to make the smallest possible adjustment to the
record such that it satisfies all of the rule inequalities, while simultaneously dis-
turbing the original frequency distribution of the data as little as possible. This is
usually done by identifying a donor record that is as similar as possible to the er-
roneous record, and copying low-cost fields from the donor record to the errone-
ous record so that the erroneous record now satisfies all of the rules.

Bruni (2005a) reports very encouraging results using the methods described
above for test sets based on census data for Italy. See also Bruni et al. (2001).
Riera-Ledesma and Salazar-Gonzalez (2007) describe a branch-and-cut approach
for the correction of records that violate some of the rule inequalities; they find the
minimum number of fields to change (or more generally, the minimum weight set
of fields to change).

232 10 Data Analysis

Wu and Barbará (2002) discuss a variety of methods for imputing missing data
values based on data available in summary constraints (e.g. determining missing
individual values when the column total is known). The value of the summary
constraint and the individual data values may conflict, and in this case techniques
of infeasibility analysis can be of assistance.

10.3 Errors in Massive Data Sets 233

11 Miscellaneous Applications

Many applications depend on representations that consist of sets of constraints.
The constraints might represent limits on the amount of radiation that healthy and
diseased tissue must receive when planning a course of radiation treatment (Sec. 11.1),
the minimum levels of signal strength needed for digital video broadcasting
(Sec. 11.3), restrictions on the questions drawn from a test bank (Sec. 11.4), etc.
When the constraints conflict, common questions concern the cause of the conflict
(Chap. 6), the maximum set of constraints that can be satisfied simultaneously
(Chap. 7), or the smallest fix for the constraints (Chap. 8). This chapter briefly
surveys some of the many specific applications that have arisen in recent years as
effective techniques for the analysis of infeasibility have become available. Even
more applications are sure to be discovered soon as more researchers become
aware of these tools: why not add your own applications to the list?

11.1 Radiation Treatment Planning

Radiation treatment for diseases such as cancer involve careful planning such that
the diseased target tissue receives a large enough dose to kill the problem cells,
while non-diseased tissue receives doses that are not large enough to cause signifi-
cant damage. Various kinds of optimization problems and solution methods arise
in the attempt to solve the radiation treatment planning problem. See Censor
(2003), Holder (2004) and Lim et al. (2006) for an overview of radiation planning
models and solution techniques.

Intensity-modulated radiation therapy (IMRT) machines are designed such that
small individual beams of radiation of adjustable intensity are directed through the
body at various angles and intensities. The body is modeled as a collection of
“volume pixels” known as voxels, and the resulting set of constraints, often lin-
earized, is of the form A1x ≤ u for voxels in non-diseased tissue that should not re-
ceive more than a specified dose of radiation, and A2x ≥ l for diseased tissue that
should receive a sufficiently lethal dose. The nonnegative variables x represent the
intensity setting that should be assigned to each individual radiation beam.

The first IMRT problem is quickly finding a feasible solution for this set of
constraints. There is a lengthy literature on this process. Standard LP and MIP so-
lution methods can be used, depending on the problem formulation. Various forms
of projection algorithms have been developed extensively for the solution of this
problem. See e.g. Censor and Zenios (1997).

The second IMRT problem arises when the resulting voxel dosage inequalities
form an infeasible set. A solution must be found so that the radiation therapy can
proceed for the patient, but the solution must be as close as possible (in some
sense) to satisfying the constraints. The measures and approaches of Sec. 8.1 can
be applied to determine the minimum violation of the constraints that will result in
a feasible solution. Censor et al. (2006) developed the method of Sec. 8.1.8 spe-
cifically for the solution of this problem.

Sadegh (1999) approaches the infeasible radiation therapy planning problem as
an instance of MAX FS, and develops a variation of Chinneck’s heuristics (see Sec. 7.4)
to solve it. A MIP solution to the MAX FS problem is also described by Lee et al.
(1999), in this case for a brachytherapy procedure, which involves the insertion of
radioactive “seeds” in the patient. However the underlying model is similar to the
IMRT models in that the body is discretized into voxels and there are lower
bounds on the radiation to be delivered to diseased voxels and upper bounds on
the radiation to be delivered to the healthy voxels.

11.2 Protein Folding

The prediction of the three-dimensional protein folding pattern from its amino
acid sequence is currently a subject of great interest in computational biology.
Knowing the folding pattern gives clues to the function of proteins. Linear con-
straints are often used to formulate protein energy models, resulting in LPs with
extremely large numbers of constraints (on the order of tens to hundreds of mil-
lions) in a few hundred variables.

Protein folding prediction can be cast as a problem of comparing the energy of
a misfolded shape to the energy of the native shape of a protein sequence. Native
shapes always have a lower energy than a misfolded shape. Meller et al. (2002)
express this via the relationship ΔEmis,nat = Emisfolded – Enative ≥ ε where Enative =
E(snat, x) is the energy of the native structure snat while x is the vector of unknown
parameters. Similarly, Emisfolded = E(smis
and x is the set of unknown parameters. Given a set of similar decoy structures to
compare against, energy inequalities can be constructed for each one; ε is a small
positive constant indicating that the energy of the native structure is lower than
that of any of the decoy structures. The goal is to determine the unknown values of
x which represents a linear combination of basis functions.

Since the energy function is a linear combination of basis functions, the values
of x can be found by linear programming subject to the constraints arising from
the energy inequalities for the decoy structures as defined above. The resulting
models are very large, having hundreds or millions of constraints in a few hundred
parameters (Wagner et al. 2004). Further, the models are very often infeasible, so
a problem of identifying a maximum feasible subset of linear inequalities arises.
The MAX FS solution helps define the region for the correct native structure. The
techniques of Chap. 7 can be applied to this problem.

236 11 Miscellaneous Applications

, x) is the energy of the misfolded sequence

Given the scale of the resulting MAX FS problems, special large-scale solution

Sec. 7.7. Amaldi et al. (2005) tested a number of algorithms for solving the protein
folding MAX FS problem. The exact Big-M MIP method (Sec. 7.1.1) was entirely
unsuccessful on models in range of several hundred thousand inequalities, how-
ever the randomized thermal relaxation algorithms (Sec. 7.6) performed well,
though there are no exact results for comparison.

11.3 Digital Video Broadcasting

problem results in models having large numbers of linear inequalities. Given m
square areas representing test points for signal reception, and n transmitters, the
goal is to determine the transmission power of each transmitter so that the signal

arrive at the same test point with a delay; if this delay is too large, then the signals
interfere. Hence the resulting model has a linear inequality for each test point of
the form ∑ =

≥
n

j ijij bxa
1

, where xj is the unknown power of transmitter j, and aij

is the strength of the signal arriving at test point i from transmitter j. aij is positive
if the signal is useful, and negative if it interferes. bi is the minimum signal
strength needed at test point i to provide adequate signal strength with 95% prob-
ability. Each transmitter is also limited in transmission power: xj ≤ pmax for all j.
Complete coverage of a large number of test points is not usually possible, so the
problem becomes one of satisfying as many of the inequalities as possible, i.e. a
MAX FS problem, so the methods of Chap. 7 are applicable.

Amaldi et al. (2005) formulate a discretized version of the problem for Italy us-
ing a few thousand transmitters that results in 55,000 inequalities. A version can
also be formulated that is weighted by the population at each of the test points.
They approach this problem using the randomized thermal relaxation (RTR) heu-
ristic (Sec. 7.6) as well as the exact Big-M formulation (Sec. 7.1.1). The exact
Big-M solution works well for the smaller models, but runs into difficulties and
times out on the larger models. The RTR heuristic completes all solutions quickly
(never taking more than 3 minutes of computation time on a PC). It is possible to
assess the quality of the RTR solutions on the models completed by both methods
within the time limits. The RTR solutions are in general not greatly worse than the
exact Big-M solutions, and are even better in a couple of cases because of the nu-
merical issues that arise in the Big-M method.

 Amaldi et al. (2007) report on the use of the two-phase relaxation-based heu-
ristic (Sec. 7.5) to solve the digital video broadcasting problem. The version of the
algorithm using a linearization of the Big-M formulation as a first phase gives the
best results, despite the fact that the second phase Big-M formulation times out
frequently, hence returning only the incumbent solution available at time-out.

A similar problem formulation is likely applicable to cell phone towers.

techniques are needed. Meller et al. (2002) devised the interior-point heuristic of

reception at each test point is acceptable. Signals from different transmitters may

As described by Amaldi et al. (2005), the digital video broadcasting planning

11.3 Digital Video Broadcasting 237

11.4 Automated Test Assembly

Many types of tests (e.g. the Scholastic Aptitude Test) are automatically assembled
subject to constraints, e.g. that certain categories of knowledge are tested a certain
number of times, or that the word count is less than a prescribed limit, etc. Test
questions are drawn from a pool of authorized questions. The problem of assem-
bling a test from a bank of questions such that it meets all of the constraints is
usually formulated as a binary program in linear constraints in which the binary
variables indicate whether a particular question is to be included in the test or not

lection of questions that is too small for the desired test. Several researchers have
addressed the issue of how to resolve the infeasibility.

Huitzing et al. (2005) approach the analysis of infeasibility in these problems in
several ways, including IIS isolation (see Chap. 6), finding a maximum feasible
subsystem (see Chap. 7), and finding the best approximation solution (see Chap. 8).
Two categories of methods are applied. The first category provides a best ap-
proximate solution to the infeasible test assembly problem. Methods in this cate-
gory include:

• A weighted elastic program. The objective is to minimize the sum of the
weighted elastic variables (see Sec. 6.1.4). Huitzing et al. (2005) refer to this as
goal programming.

• Multi-objective programming. An ordered application of the objective functions
may be used, or a weighted combination of them. See Sec. 9.3.

• Greedy heuristics. Start the test assembly with a single item and successively
add the next best item until a predetermined number of items has been added.
The ordering of the items may be set by assigning weights to the violation of a
constraint and choosing the next item as the one that minimizes the sum of the
weights.

The second category of methods tries to determine the cause of the infeasibility
so that it can be analyzed and repaired by the human test assembler. Various
methods for isolating IISs are used:

• Standard deletion filtering applied to the LP-relaxation of the original binary
test assembly problem. The deletion filter as implemented in Cplex 6.6 is used
(termed RODA for relaxed and ordered deletion algorithm). See Sec. 6.1.2.

• A version of the deletion filter that randomizes the order of the constraints and
respects the integrality constraints (termed IRDA for integer and randomized
deletion algorithm).

• A sampling approach termed SCIS for set covering and item sampling. The
sampling respects the binary nature of the variables, but otherwise the method
is identical to that in Sec. 6.1.7.

• A method for successively relaxing bounds until feasibility is reached. This
works by finding an IIS (by either RODA or IRDA), and then calculating a

238 11 Miscellaneous Applications

sembly formulation may be infeasible due to incompatible restrictions, or to a col-

(Huitzing et al. 2005). Questions are assigned an importance weight, and the
objective is to maximize the total importance of the questions in the test. The test as-

measure for each member of the IIS to determine which one to relax. The
process is repeated until the model is feasible. The measure for each member of
the IIS is based on the amount it must be relaxed to make the IIS feasible
relative to the size of its right hand side constant. A new LP/MIP must be
solved for each constraint in the IIS to determine how much it must be relaxed
to render the IIS feasible. Huitzing et al. (2005) refer to this process as the IIS-solver.
It is similar to the methods of Sec. 7.2. This method can also be used to
automatically provide an approximate solution to the infeasible problem.

Huitzing et al. (2005) evaluate the performance of the various methods on two
examples derived from real test assembly problems.

Timminga (1998) further mentions a standard Big-M integer program for find-
ing a minimum IIS set cover (see Sec. 7.1.1).

11.5 Buffer Overrun Detection

Computer buffer overruns are a serious problem. Unintentional buffer overruns
may cause program failure while intentional buffer overruns are serious security
vulnerabilities. Ganapathy et al. (2003) approach the problem of preventing possi-
ble buffer overruns by analyzing the source code for a computer program before it
runs. Their analysis transforms the source code into a list of linear constraints,
typically inequalities that relate to the size of the buffer (e.g. number of bytes) and
to the current level of usage of the buffer, which can be analyzed for possible
buffer overruns. Application of their technique to several commercial programs
identified a number of previously-unknown buffer overruns. Infeasibility of the
constraints indicates a modeling problem that must be corrected before the re-
mainder of the overrun analysis can be applied (or may possibly indicate an over-
run vulnerability). Ganapathy et al. (2003) carry out the infeasibility analysis via
an elastic filter (see Sec. 6.1.4).

11.6 Customized Page Rankings

Page rankings are used by web search engines to sort a collection of web pages for
presentation to the user. Ranking algorithms use web page features such as how
many other pages point to a particular page, some measure of the “quality” of a
page, the quality of the pages pointing to this page, etc. However the importance
of a page is relative to the search at hand and the interests of the human searcher,
hence customized page rankings are more suitable for particular fields of study.
Tsoi et al. (2006) model user preferences on page rankings via linear constraints,
e.g. that the rank of page A should be higher than the rank of page B, or that the
rank of a page on a particular topic should be at least twice its general page rank-
ing etc. Their page ranking algorithm results in a quadratic objective function sub-
ject to linear constraints.

11.6 Customized Page Rankings 239

The linear constraints may form an infeasible set. Tsoi et al. address the infea-
sibility in two ways. One approach is to solve an elastic program to minimize a
weighted sum of the constraint violations (see Sec. 8.1.2). The second approach is
a modified form of maximum feasible subset analysis (see Chap. 7). In the second
approach, they first enumerate all of the maximum feasible subsets (an NP-hard
problem in general), and then solve the linearly-constrained quadratic page rank-
ing problem for each feasible subset. This approach is exercised on a small problem.

11.7 Backtracking in Tree-Structured Search

Tree-structured search arises in solving mixed-integer programs, in constraint pro-
gramming, in solving the satisfiability problem (Sec. 4.1), and in many other con-
texts. When an infeasible node is reached in a tree-structured search, there is an
opportunity to use the information about the infeasibility of the current node to
decide which node to backtrack to, or to develop global constraints which will
prevent branching to other nodes in the tree that have the same infeasibility. In
both cases, the efficiency of the tree search is greatly improved. The efficiency re-
lies on the ability to identify IISs.

Bruynooghe (1981) did some of the earliest work on intelligent backtracking in
the context of constraint programs for combinatorial search problems. For such
problems, each variable has a discrete set of possible values. Conflicts arise at a
node in the search tree when the values of some of the variables have been fixed
by the search tree and this fixing violates one or more constraints. The conflict set
is then the set of fixed variables in the violated constraint. From the optimization
perspective, this is similar to detecting infeasibility at a branch and bound node
and identifying an infeasible subset that consists of a single functional constraint
and the bounds on the variables it contains that have been altered by the branch and
bound process. Bruynooghe defines a minimal conflict set similarly to an IIS: it is
a conflict set for which every proper subset is not a conflict set. Bruynooghe sug-
gests first finding all minimal conflict sets, and then ordering them from smallest
to largest cardinality. Backtracking is then done on the variables in the chosen
conflict set.

De Backer and Beringer (1991) find minimal conflict sets (i.e. IISs) in the sub-
set of linear constraints that define the constraint program, again for the purposes
of intelligent backtracking. They use a method similar to that of Thm. 6.16. Burg
et al. (1994) present another method of finding minimal conflict sets in the subset
of linear constraints in the model for the same purpose. Constraints are processed
one at a time in constraint programming. Burg et al. maintain the current set of
constraints in a special solved form achieved by Gaussian operations. The solved
form appears to be similar to van Loon’s (1981) form, and the minimal conflict
sets appear to be isolated in the same manner. In both cases, the minimal conflict set
directs the backtracking process to the nodes at which the members of the minimal
conflict set were introduced so that another branch of the search can be explored.

240 11 Miscellaneous Applications

Davey et al. (2002) introduce more efficient intelligent backtracking for binary
linear programs consisting of inequalities. Each inequality of the form aix ≤ bi is a
knapsack constraint, and a knapsack-cover is defined when a constraint is vio-
lated, of the form

∑ ∑+ −−∈ ∈
−>

Ci CNi iii aba
\

.

N − indexes the set of variables with negative coefficients (with C − as a subset)
and N + indexes the set of variables with positive coefficients (with C + as a sub-
set). This equation states that given the current set of variable fixings (C +, C −),
the constraint is violated no matter how the current unset variables are set. Based
on this, a knapsack-cover inequality can be defined of the form

1−≤−∑ ∑+ −∈ ∈
+

Ci Ci ii Cxx ,

which states that not all of the variable settings in the knapsack-cover can hold si-
multaneously. The knapsack-cover inequality is used as a global constraint.

The efficiency of the method depends on finding small inconsistent sets with
relatively little additional effort. Davey et al. find IISs using an approach based on
identifying an improving ray in the dual cone of the unbounded dual problem as-
sociated with the infeasible primal problem. Their method is similar to that of
Thm. 6.17. After the IIS is found, it is examined to see whether some of the con-
straints introduced by the branching process can be replaced by original con-
straints. For example, the IIS may include the constraint x1 + 5x2 + 4x3 + 2x4 ≤ 8,
with the variables x1, x2, and x3 all set to 1 by the branching process and the value
of x4 not yet set. This constraint is violated with these variable fixings, and is still
violated if x1 = 1 (fixed by the branching process) is replaced by the original con-
straint x1 ≥ 0. The resulting knapsack-cover inequality in this case expresses the
fact that x2 and x3 cannot be set equal to 1 at the same time: x2 + x3 ≤ 1. Knapsack-
cover inequalities involving fewer variables are more powerful and easier to
check, hence the final examination of the functional constraint in an attempt to re-
place constraints introduced by the branching process with original variable
bounds. This is done by a simple pass through the variables in the functional con-
straint whose values were set by the branching process, from smallest to largest
coefficient, replacing the set value with the original bound as long as the func-
tional constraint remains violated.

Davey et al. (2002) present empirical results for a variety of binary linear pro-
grams showing that their method solves binary linear programs faster than an
unmodified branch and bound approach.

Fränzle and Herde (2005) describe a system for dealing with models that com-
bines the Boolean satisfiability problem with linear inequalities. One aspect of the
problem formulation uses Boolean variables to indicate whether or not a real-
valued linear inequality is included in the model or not. There is thus a higher-level
SAT problem in Boolean variables that controls various lower-level combinations of the
linear inequalities. At some nodes of the search tree, the combination of linear ine-
qualities may be infeasible. When this happens, an IIS is isolated and used to
guide the backtracking in the SAT tree in the form of a conflict clause based on
the IIS.

11.7 Backtracking in Tree-Structured Search 241

Codato and Fischetti (2006) use a similar approach for solving certain classes
of MIPs. The model is separated into an all-binary master problem and slave con-
tinuous LP problems. If a slave LP problem is infeasible, an IIS analysis is used to
generate a combinatorial cut constraint that is then added to the master binary
problem to prevent recurrence of that particular infeasible combination of con-
straints. This approach greatly reduces the time to solve certain categories of MIPs
as compared to a standard MIP solution method.

11.8 Piecewise Linear Model Estimation

Piecewise linear models are used to model a wide range of nonlinear phenomena.
Such models typically result in a large set of linear equations, usually one for
every data point, which is typically infeasible. Solving the MIN PFS problem for
such a set of constraints (see Sec. 7.9) can be a very effective way of determining
how to partition the model into linear segments. A feasible solution for each feasi-
ble partition then provides values for the model parameters.

Amaldi and Mattavelli (2002) show how piecewise model estimation problems
can be converted to MIN PFS problems. First, to deal with noisy data, each equation
i is replaced by a pair of inequalities defining a hyperslab of width 2ε, where ε is
the noise tolerance: ai x ≤ bi+ε and ai x ≥ bi−ε. The noise thresholds need not be
identical over all equations since they may be subject to different physical effects.
A MIN PFS solution finds a small set of hyperslabs that contains all of the original
data points; see the example in Fig. 11.1.

Amaldi and Mattavelli (2002) show how to
apply heuristics for the solution of MIN PFS to
line detection in digital images and to model-
ing of time series. For the line detection prob-
lem we are given a set of two-dimensional
points pi in the x1 × x2 plane associated with
contours extracted from the image. The goal
is to detect line segments in this collection of
contour points. Contour points lying on the
same line will satisfy the constraint a1x1 +

a2x2 + a3 = 0. We thus construct one such constraint for each contour point x. As
described above, this equation is replaced by a pair of inequalities, which creates a

ues of a1, a2, and a3, defining the line segment. The problem can be further simpli-
fied by replacing a3 by –1, which amounts to a scaling of each constraint; this
simplification eliminates only solutions that pass exactly through the origin.
Amaldi and Mattavelli test the greedy solution algorithm for the MIN PFS formula-
tion (Sec. 7.9) by application to a number of line detection problems. The quality
of the results returned is always at least as good as and sometimes better than a
Hough transform.

Fig. 11.1. A piecewise linear model
consisting of three slabs

242 11 Miscellaneous Applications

hyperslab to allow for noise. Solving the MIN PFS problem will yield separate
subsets of feasible inequalities. A solution for each feasible subset will yield the val-

Time series arise in many applications including various types of signal proc-
essing. These may be broken into linear submodels, as in threshold autoregressive
models which choose the submodel at some time t by comparing the signal at time
t-1 with predetermined thresholds. However it is difficult to choose the thresholds
in advance. Such a piecewise linear model has the form

∑ = − +=
n

j tjttjt uyxy
1

)(y

where yt = (yt-1,…,yt-n) are the known observations, and the coefficients of the cur-
rent submodel xj (yt), 1 ≤ j ≤ n, depend on the values of the observations in yt, i.e.
where the point is located in the state space. {ut} is an independent and identi-
cally-distributed random sequence. The xj coefficients and the partitions of the
state space must both be estimated.

As Amaldi and Mattavelli (2002) show, this system can be represented by a set
of linear equations of the form Ax = b where

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

−−−

+

−

nLLL

nn

nn

yyy

yyy
yyy

…

…
…

21

21

11

A and

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= +

+

L

n

n

y

y
y

2

1

b

for a sequence of observations {y1 ,…, yL}. For anything beyond a simple model,
this will be an infeasible system of linear equations, and the MIN PFS solution will
define groupings of the vectors in the state space; the solution for each feasible
subsystem will provide the parameters for the corresponding linear submodel.
Noise is handled by replacing the equations by two oppositely-oriented inequali-
ties so as to create slabs as we have seen above. With an appropriate choice of the
error parameter ε for the slab separation, Amaldi and Mattavelli report very good
results on a number of sample applications, as do Bemporad et al. (2005) for their
related method.

11.9 Finding Sparse Solutions to Systems of Linear
Equations

Given a feasible system of linear equations, what is the solution that has the
smallest number of nonzeroes? The answer to this question can be important in
numerous applications, e.g. signal processing. A number of special-purpose heu-
ristics for solving this problem have been developed, under the general name of
basis pursuit. However this problem can be cast as an instance of the MAX FS
problem and hence solved by the many heuristics for this problem (see Chap. 7).

We are given a system of linear equations Ax = b in which m < n where m is the
number of equations, n is the number of variables, and b is not empty. This is an
underdetermined system, so there are multiple solutions. Defining ||d||0 to be a
norm giving the number of nonzeroes in some vector d, the problem at hand is to
solve min{||x||0: Ax = b}. The most straightforward conversion of this problem to

11.9 Finding Sparse Solutions to Systems of Linear Equations 243

MAX FS is to set up the infeasible system Ax = b, x = 0 in which the Ax = b
constraints are strictly enforced, with only the constraints in x = 0 removable in
the search for the largest feasible subsystem. The largest feasible subsystem under
these conditions corresponds directly with the smallest number of nonzeroes in the
solution x.

Amaldi and Kann (1998) show the equivalence of this problem and the MIN ULR
problem. For an infeasible set of linear equations Ax = b, the MIN ULR problem is
the same as finding x such that Ax + s= b has as few nonzero slacks in s as possi-
ble. Now imagine a matrix D that is orthogonal to A, i.e. DA =0. Multiplying the
system Ax + s = b by D yields the system DAx + Ds = Db, but since DA=0 this
reduces to Ds = Db. If Ax = b is infeasible then Db ≠ 0 and there exists an s satis-
fying Ds = Db with k nonzeroes if and only if there exists an x satisfying all but k
equations of Ax = b.

A similar transformation is given by Jokar and Pfetsch (2007): using Gaussian
elimination, transform the first m rows and columns of Ax = b into a unit matrix,
which is then simplified to the equivalent system u + Rv = r, where r and u are
m×1 vectors, R is an m × (n – m) matrix, and v is an (n – m) × 1 vector. Setting u = 0
and v = 0 yields an infeasible system. Eliminating u reduces the infeasible system
to Rv = r, v = 0. A maximum feasible subsystem of this infeasible system yields a
solution for the original system Ax = b that has the fewest nonzeroes in the solu-
tion x. The instance of the inequality-constrained MAX FS problem is Rv ≤ r, Rv ≥ r,
v ≤ 0, v ≥ 0, which has 2n inequalities in n-m variables. If k inequalities are elimi-

qualities gives a solution (u,v) for u + Rv = r that has at most k nonzeroes, where
u = r-Rv.

Jokar and Pfetsch (2007) study a variety of heuristic methods for solving their
MAX FS transformation of the sparsest solution problem. Their experiments show
that the best results are given by a heuristic method due to Mangasarian (1999)
that is similar to the exponential approximation (Mangasarian 1996) given in Sec. 7.1.2.
The exponential approximation gives better results than the special-purpose basis
pursuit and orthogonal matching pursuit algorithms for this problem.

11.10 Various NP-Hard Problems

Several NP-hard problems can be reduced to MAX FS or its variants. Once con-
verted, these problems can then be attacked via the methods of Chap. 7. One such
problem is the MINIMUM FEEDBACK ARC SET problem.

Given a directed graph, the FEEDBACK ARC SET problem is to determine
whether there is a subset S of the arcs such that |S| ≤ k and the directed graph that
results when you remove the arcs in S is acyclic. Sankaran (1993) constructs a set
of linear inequalities of the form ti − tj ≤ −1 for every arc that connects some node i
to some node j. He then goes on to prove that the graph can be made acyclic by
removing at most k arcs if and only if the system of associated inequalities can be
made feasible by deleting at most k constraints. The MINIMUM FEEDBACK ARC SET

244 11 Miscellaneous Applications

nated to render the system feasible, then a solution v to the remaining 2n-k ine-

problem is to determine the smallest number of arcs to remove to render the graph
acyclic; this is identical to the MIN ULR (or MAX FS) problem in the set of associ-
ated constraints.

Various other NP-hard problems reduce to MAX FS in binary variables. We do
not have good heuristics for the solution of such problems yet. Two examples follow.

Given an undirected graph, the MAX INDEPENDENT SET problem is to find the
largest set of nodes that are not pairwise adjacent (known as an independent set of
nodes). Amaldi (2003) shows how to convert the MAX INDEPENDENT SET problem
to MAX FS. Let there be a variable xi for each node in the graph, which has a set of
vertices vi and set E of arcs (vi,vj). We can construct a constraint for each node of
the form ∑ ∈

=−
Evvj ji

ji
xx

),(:
1 . The constraint is satisfied only if the node vi rep-

resented by xi is included in the independent set while all nodes directly connected
to it via a single arc are excluded. A maximum feasible subset of this set of linear
constraints corresponds to a maximum independent set.

find a true/false assignment for the Boolean variables that satisfies the maximum
number of clauses. Amaldi (2003) shows the conversion to MAX FS as follows. For
each clause of the form nzzz ...21 ∨∨ create a linear inequality of the form

1...)1(21 ≥+−+ nxxx . The MAX FS solution then yields the largest subset of
clauses that can be satisfied.

Given a set of m points on the surface of an n-dimensional unit sphere centred
at the origin, the HEMISPHERE problem is to find the hemisphere that contains the
largest number of points (this hemisphere may not be unique). If the points are
given by n-vectors xi for i = 1 to m, this amounts to finding an n-vector a such that
axi ≥ 0 for as many of the xi vectors as possible (see Amaldi (2003)). Constructing
one homogeneous inequality for each xi vector converts this directly to the MAX FS
problem.

11.10 Various NP-Hard Problems 245

Given m disjunctive clauses in n Boolean variables, the MAXSAT problem is to

12 Epilogue

Until recently, the main focus of algorithmic and computational work in optimiza-
tion was firmly on finding optimum solutions. Issues of feasibility and infeasibil-
ity received much less attention, and even then mostly in the context of finding a
feasible point as a preliminary step en route to the optimum. But the situation has
changed markedly in the last twenty years or so. Computing power has increased
dramatically and become inexpensive. As a consequence, optimization models
have become larger and more complex, and hence more prone to modeling errors
resulting in infeasibility, as well as difficulties in finding feasible solutions. New
algorithms and computational methods have been developed in response to both
problems. The algorithms for analyzing infeasibility have found unexpected ap-
plications outside of their original purpose. In addition, new application areas that
pose challenging problems of feasibility and infeasibility have arisen. Examples
include computational biology (e.g. Sec. 11.2) and medicine (e.g. Sec. 11.1), net-
work security, and data analysis (Chap. 10), among others.

In short, the time is ripe for a summary of research on algorithms and computa-
tional methods related to feasibility and infeasibility in optimization, which is of
course the point of this book. The field continues to be extremely active, with
new developments almost daily, and much fascinating basic research remains to
be done. Examples include ways to choose the best remedial actions in the face of
infeasibility (delete constraints? shift constraints? reverse inequalities?), better
infeasibility analysis for NLPs and MIPs, better feasibility-seeking methods for
MIPs and mixed-integer nonlinear programs, etc. A particularly exciting devel-
opment is the ongoing integration of ideas and methods from the mathematical
programming and the constraint programming communities. This interaction con-
tinues to be extremely fruitful, resulting in powerful new hybrid methods; see for
example the stimulating new book Integrated Methods for Optimization (Hooker
2007).

It is my hope that this book will serve as a valuable reference for researchers,
practitioners and graduate students into the future.

References

Aardal K, Bixby RE, Hurkens CAJ, Lenstra AK, Smeltink JW (2000) Market Split and Ba-

Journal on Computing 12:192–202.

Press, London.

tion 4:4–20.

Konrad–Zuse–Zentrum für Informationstechnik Berlin.
Achterberg T, Koch T, Martin A (2006) MIPLIB 2003, Operations Research Letters 34:1–12.

pean Journal of Operational Research 168:181–199.

Problems, Mathematical Programming 81:263–280.
Agmon S (1954) The Relaxation Method for Linear Inequalities, Canadian Journal of

Mathetmatics 6:382–392.

matiques, École Polytechnique Fédérale de Lausanne, Switzerland.

gora Editrice Bologna, 31–69.

feasible subsystem problem, Proceedings of the 14th

3509, Springer–Verlag, 249–264.

pear (available online now).

sible Subsystems of Linear Relations, Theoretical Computer Science 147:181–210.

Unsatisfied Relations in Linear Systems, Theoretical Computer Science 209:237–260.

mation, Discrete Applied Mathematics 118:115–143.

ence 1610, Springer–Verlag, New York, NY, 45–59.

Case of Nonlinear Constraints, in Fletcher R (ed.), Optimization: 37–47, Academic

forward Neural Network Design, PhD thesis no. 1282, Département de Mathé-

sis Reduction: Towards a Solution of the Cornuéjols–Dawande Instances, INFORMS

Abadie J, Carpentier J (1969) Generalization of the Wolfe Reduced Gradient Method to the

Achterberg T (2007) Conflict Analysis in Mixed Integer Programming, Discrete Optimiza-

Achterberg M, Berthold T (2005) Improving the Feasibility Pump, technical report 5–42,

Adem J, Gochet W (2006) Mathematical Programming Based Heuristics for Improving
LP–Generated Classifiers for the Multiclass Supervised Classification Problem, Euro-

Aggarwal C, Ahuja R, Hao J, Orlin JB (1998) Diagnosing Infeasibilities in Network Flow

Amaldi E (1994) From Finding Maximum Feasible Subsystems of Linear Systems to Feed-

Amaldi E (2003) The maximum feasible subsystem problem and some applications, in Agnetis
A, Di Pillo G, Eds., Modelli e Algoritmi per l’Ottimizzazione di Sistemi Complessi, Pita-

Amaldi E, Belotti P, Hauser R (2005) Randomized relaxation methods for the maximum
 Integer Programming and Combi-

natorial Optimization conference (IPCO’05), Lecture Notes in Computer Science

Amaldi E, Bruglieri M, Casale G (2007) A Two–Phase Relaxation–Based Heuristic for the
Maximum Feasible Subsystem Problem, Computers and Operations Research, to ap-

Amaldi E, Kann V (1995) The Complexity and Approximability of Finding Maximum Fea-

Amaldi E, Kann V (1998) On the Approximability of Minimizing Nonzero Variables or

Amaldi A, Mattavelli M (2002) The MIN PFS Problem and Piecewise Linear Model Esti-

Amaldi E, Pfetsch M, Trotter Jr. L (1999) Structural and Algorithmic Properties of the
Maximum Feasible Subsystem Problem, Proceedings of the Integer Programming and
Combinatorial Optimization conference (IPCO’99), Lecture Notes in Computer Sci-

250 References

Amaral P (2001) Contribuições Para o Estudo de Sistemas Lineares Inconsistentes, PhD
Disertation, Faculty of Science and Technology, UNL, Lisbon, Portugal (in Portu-
guese).

Amaral P, Barahona P (2005) Connections Between the Total Least Squares and the
Correction of an Infeasible System of Linear Inequalities, Linear Algebra and its
Applications 395:191–210.

Amaral P, Barahona P (2005a) A Framework for Optimal Correction of Inconsistent Linear
Constraints, Constraints 10:67– 86.

Amaral P, Júdice J, Sherali HD (2006) A Reformulation–Linearization–Convexification
Algorithm for Optimal Correction of an Inconsistent System of Linear Constraints,
Computers and Operations Research, to appear (available online now).

Amarger RJ, Biegler LT, Grossmann IE (1992) An Automated Modelling and
Reformulation System for Design Optimization, Computers and Chemical Engineering
16:623–636.

Andersen ED, Andersen KD (1995) Presolving in Linear Programming, Mathematical
Programming 71:221–245.

Andersen ED, Gondzio J, Mészáros C, Xu X (1996) Implementation of interior point

Atlihan MK, Schrage L (2006) Generalized Filtering Algorithms for Infeasibility Analysis,
Computers and Operations Research, to appear (available online now).

Bailey J, Stuckey PJ (2005) Discovery of Minimal Unsatisfiable Subsets of Constraints

International Conference of Practical Applications of Declarative Languages, Lecture
Notes on Computer Science 3350:174–186, Springer–Verlag.

Bakker RR, Dikker F, Tempelman F, Wognum PM (1993) Diagnosing and solving over–
determined constraint satisfaction problems, in Proceedings of IJCAI’93, 276–281.

Balas E, Ceria S, Dawande M, Margot F, Pataki G (2001) OCTANE: a New Heuristic for
Pure 0–1 Programs, Operations Research 49:207–225.

Balas E, Martin C (1980) Pivot and Complement–a Heuristic for 0–1 Programming,
Management Science 26:224–234.

Balas E, Martin C (1986) Pivot and Shift–a Heuristic for Mixed Integer Programming,
GSIA Technical Report, Carnegie Mellon University.

Balas E, Ng SM (1989) On the set covering polytope: I. All the facets with coefficients in
{0,1,2}, Mathematical Programming 43:57–69.

Balas E, Schmieta S, Wallace C (2004) Pivot and Shift–a Mixed Integer Programming
Heuristic, Discrete Optimization 1:3–12.

Banerjee I, Ierapetritou MG (2005) Feasibilit Evaluation of Nonconvex Systems Using
Shape Reconstruction Techniques, Industrial and Engineering Chemistry Research
44:3638–3647.

Bartak R (1999) Constraint Programming: In Pursuit of the Holy Grail, Proceedings of the
8th Annual Conference of Doctoral Students WDS’99.

Beale EML, Tomlin JA (1970) Special facilities in a general mathematical programming
system for nonconvex problems using ordered sets of variables, Proceedings of the Fifth
International Conference on Operational Research, Tavistock publication, London, 447–
454.

Bemporad A, Garulli A, Paoletti S, Vicino A (2005) A Bounded–Error Approach to Piecewise
Affine System Identification, IEEE Transactions on Automatic Control 50:1567–1580.

Benichou M, Gauthier JM, Girodet P, Hentges G, Ribiere G, Vincent O (1971). Experiments
in mixed–integer linear programming, Mathematical Programming 1:76–94.

in Mathematical Programming, Kluwer Academic Publishers: 189–252.

Using Hitting Set Dualization, in Hermenegildo M (ed.), Proceedings of the

methods for large scale linear programming, in Terlaky T (ed.), Interior Point Methods

References 251

Bennett KP, Bredensteiner E (1997) A Parametric Optimization Method for Machine
Learning, INFORMS Journal on Computing 9:311–318.

Berbee HCP, Boender CGE, Rinooy Kan AHG, Scheffer CL, Smith RL, and Telgen J (1987)
Hit–and–Run Algorithms for the Identification of Nonredundant Linear Inequalities,
Mathematical Programming 37:184–207.

Bertacco L, Fischetti M, Lodi A (2005) A Feasibility Pump Heuristic for General Mixed–
Integer Problems, technical report OR–05–5, D.E.I.S. Operations Research Group,
Università di Bologna.

Berthold T (2006) Primal Heuristics for Mixed Integer Programs, master’s thesis, Technischen
Universität Berlin.

Bixby R, Ceria S, McZeal CM, Savelsbergh MWP (1996) MIPLIB 3.0, World Wide Web
http://www.caam.rice.edu/~bixby/miplib/miplib.html.

Boman EG (1999), Infeasibility and Negative Curvature in Optimization, PhD thesis, Scientific
Computing and Computational Mathematics, Stanford University.

Bonami P, Cornuejols G, Lodi A, Margot F (2006) A Feasibility Pump for Mixed Integer
Nonlinear Programs, IBM Research Report RC23862 (W0602– 029).

Boneh A (1983) PREDUCE–a Probabilistic Algorithm Identifying Redundancy by a Random
Feasible Point Generator (RFPG) in Karwan, Lotfi, Telgen, Zionts (eds.), Lecture Notes in
Economics and Mathematical Systems 206.

Bongartz I, Conn AR, Gould N, Toint PL (1995) CUTE: constrained and unconstrained
testing environment, ACM Transactions on Mathematical Software 21:123–160. See
http://www.sor.princeton.edu/~rvdb/ampl/nlmodels/cute/index.html for CUTE models
in AMPL format.

Bonner & Moore (1979) RPMS (Refinery and Petrochemical Modeling System): a System
Description, Bonner & Moore Management Science, Houston.

Boussemart F, Hemery F, Lecoutre C, Sais L (2004) Boosting systematic search by weighting
constraints, in Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI’04), 146–150.

Bordetski AB, Kazarinov LS (1981) Determining the Committee of a System of Weighted
Inequalities, Kibernetika 6:44–48.

Brearly AL, Mitra G, Williams (1975) Analysis of Mathematical Programming Problems
Prior to Applying the Simplex Algorithm. Mathematical Programming 8:54–83.

Bremner D, Fukuda K, Rosta V (2006) Primal–Dual Algorithms for Data Depth, in Liu RY
(ed.), Data Depth: Robust Multivariate Analysis, Computational Geometry and
Applications, DIMACS series in Discrete Mathematics and Theoretical Computer
Science 72:171–194.

Brown G, Graves G (1975) Elastic Programming: A New Approach to Large–Scale Mixed
Integer Optimization, presented at ORSA/TIMS Conference, Las Vegas.

Bruni R (2005) On Exact Selection of Minimally Unsatisfiable Subformulae, Annals of
Mathematics and Artificial Intelligence 43: 35–50.

Bruni R (2005a) Error Correction for Massive Data Sets, Optimization Methods and Soft-
ware 20:295–314.

Bruni R, Reale A, Torelli R (2001) Optimization Techniques for Edit Validation and Data
Imputation, Proceedings of Statistics Canada Symposium 2001, Ottawa.

Bruynooghe M (1981) Solving Combinatorial Search Problems by Intelligent Backtracking,
Information Processing Letters 12:36–39.

Burg J, Lang SD, Hughes CE (1994) Finding Conflict Sets and Backtrack Points in

Programming Conference, MIT Press, 323–338.
CLP(ℜ), in Van Hentenryck P (ed.), Proceedings of the 11th International Logic

252 References

Byrne C, Censor Y (2001) Proximity Function Minimization Using Multiple Bregman Pro-
jections, with Applications to Split Feasibility and Kullback–Leibler Distance Minimi-
zation, Annals of Operations Research 105:77–98.

Caron RJ, Greenberg HJ, Holder AG (2002) Analytic centers and repelling inequalities,
European Journal of Operational Research 143:268–290.

Carver WB (1921) Systems of Linear Inequalities, Annals of Mathematics 23, series 2:212–
220.

Censor Y (2003) Mathematical Optimization for the Inverse Problem of Intensity Modu-

Therapy: The State of The Art, American Association of Physicists in Medicine,
Medical Physics Monograph No. 29, Medical Physics Publishing, Madison, Wiscon-
sin, 25–49.

Censor Y (2006) Computational Acceleration of Projection Algorithms for the Linear Best
Approximation Problem, Linear Algebra and its Applications 416:111–123.

Censor Y, Ben–Israel A, Xiao Y, Galvin JM (2006) On Linear Infeasibility Arising in In-
tensity–Modulated Radiation Therapy Inverse Planning, working paper, University of
Haifa, Israel.

Censor Y, Elfving T (1982) New methods for linear inequalities, Linear Algebra and its
Applications 42:199–211.

Censor Y, Elfving T, Herman, GT (2001) Averaging Strings of Sequential Iterations for
Convex Feasibility Problems, in Butnariu D, Censor Y, Reich S, eds. Inherently Paral-
lel Algorithms in Feasibility and Optimization and their Applications, Elsevier Science
B.V., Amsterdam. 101–113.

Censor Y, Gordon D, and Gordon R (2001) Component Averaging: An Efficient Iterative
Parallel Algorithm for Large and Sparse Unstructured Problems, Parallel Computing
27:777–808.

Censor Y, Zenios SA (1997) Parallel Optimization: Theory, Algorithms, and Applications.
Oxford University Press, New York.

Chakravarti N (1994) Some Results Concerning Post–Infeasibility Analysis, European
Journal of Operational Research 73:139–143.

Charnes A, Cooper WW (1961) Management Models and Industrial Applications of Linear
Programming, John Wiley and Sons, New York.

Chen D (2007) A Branch and Cut Algorithm for the Halfspace Depth Problem, MCS thesis,
the University of New Brunswick, Canada.

Chen XB, Kostreva MM (1999) Global Convergence Analysis of Algorithms for Finding
Feasible Points in Norm–Relaxed MFD, Journal of Optimization Theory and Applica-
tions 100:287–309.

http://www.sce.carleton.ca/
faculty/chinneck/minosiis.html, 1990–2006.

Chinneck JW (1990a) Formulating Processing Networks: Viability Theory, Naval Research
Logistics 37:245–261.

Chinneck JW (1990b) VIABLE1––Code for Identifying Nonviabilities in Processing Net-
work Models, European Journal of Operational Research 44:119–120.

Chinneck JW (1992) Viability Analysis: A Formulation Aid for All Classes of Network
Models, Naval Research Logistics 39:531–543.

Chinneck JW (1993) Netlib Repository of Infeasible LP Instances, World Wide Web
http://www.netlib.org/lp/infeas/.

Chinneck, JW (1994), MINOS(IIS): Infeasibility Analysis Using MINOS, Computers and
Operations Research 21:1–9.

Chinneck, JW (1995) Analyzing Infeasible Nonlinear Programs, Computational Optimiza-
tion and Applications 4:167–179.

lated Radiation Therapy, in Palta JR, Mackie TR (eds.), Intensity–Modulated Radiation

Chinneck JW (1990) MINOS(IIS) software, World Wide W eb,

References 253

Chinneck JW (1996a) “Computer Codes for the Analysis of Infeasible Linear Programs”,
Journal of the Operational Research Society 47:61–72.

Chinneck JW (1996b) Localizing and Diagnosing Infeasibilities in Networks, ORSA Jour-
nal on Computing 8:55–62.

Chinneck, JW (1996c) An Effective Polynomial–Time Heuristic for the Minimum–
Cardinality IIS Set–Covering Problem, Annals of Mathematics and Artificial Intelli-
gence 17:127–144.

Chinneck JW (1997a) Feasibility and Viability, in Advances in Sensitivity Analysis and Pa-
rametric Programming, Gal T, Greenberg HJ (eds.), International Series in Operations
Research and Management Science. 6:14–1 to 14–41, Kluwer Academic Publishers.

Chinneck JW (1997b), Finding a Useful Subset of Constraints for Analysis in an Infeasible
Linear Program, INFORMS Journal on Computing 9:164–174.

Chinneck JW (1998) Improved linear classification via LP infeasibility analysis, Technical
Report SCE–98–09, Department of Systems and Computer Engineering, Carleton Uni-
versity, Ottawa, Canada.

Chinneck JW (2001) Analyzing Mathematical Programs using MProbe, Annals of Opera-
tions Research 104:33–48.

Chinneck JW (2001a) Fast Heuristics for the Maximum Feasible Subsystem Problem,
INFORMS Journal on Computing 13:210–223.

Chinneck JW (2002) Discovering the Characteristics of Mathematical Programs via Sam-
pling”, Optimization Methods and Software 17:319–352.

Chinneck JW (2002a) Guest Editor, Special Issue on The Merging of Mathematical Pro-
gramming and Constraint Programming, INFORMS Journal on Computing 14.

Chinneck JW (2004) The Constraint Consensus Method for Finding Approximately Feasi-
ble Points in Nonlinear Programs, INFORMS Journal on Computing 16:255–265.

Chinneck JW, Dravnieks EW (1991) Locating Minimal Infeasible Constraint Sets in Linear
Programs, ORSA Journal on Computing 3:157–168.

Chinneck JW, Michalowski M (1996) MOLP Formulation Assistance Using LP Infeasibil-
ity Analysis, in Tamiz M (ed.) Multi–Objective Programming and Goal Programming:
Theories and Applications, Lecture Notes in Economics and Mathematical Systems,
432:87–106.

Chinneck JW, Saunders, MA (1995) MINOS(IIS) Version 4.2: Analyzing Infeasibilities in
Linear Programs, European Journal of Operational Research 81:217–218.

Chvátal, V (1983) Linear Programming, W.H. Freeman and Company, New York.
Cimmino G (1938) Calcolo Approssimato per Soluzioni dei Sistemi di Equazioni Lineari.

La Ricerca Scientifica XVI, Series II, Anno IX 1:326–333.
Codato G, Fischetti M (2004) Combinatorial Benders’ Cuts, Proceedings of IPCO, Lecture

Notes in Computer Science 3064:178–195.
Codato G, Fischetti M (2006) Combinatorial Benders’ Cuts for Mixed–Integer Linear Pro-

gramming, Operations Research 54:756–766.
Conrad J, Gomes CP, van Hoeve WJ, Sabharwal A, Suter J (2007) Connections in Net-

Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, Proceedings of the 4th International Conference CPAIOR
2007, Springer, Lecture Notes in Computer Science 4510:16–28.

Cornuéjols G, Dawande M (1998) A Class of Hard Small 0–1 Programs, in Bixby RE,

zation, 6th International IPCO Conference, Lecture Notes in Computer Science
1412:284–293, Springer–Verlag, Berlin.

Crowder H, Johnson EL, Padberg M (1983) Solving Large–Scale Zero–One Linear Pro-
gramming Problems, Operations Research 31: 803–834.

works: Hardness of Feasibility vs. Optimality, in Van Hentenryck P, Wolsey L (eds.),

Boyd EA, Ríos–Mercado RZ (eds.), Integer Programming and Combinatorial Optimi-

254 References

Dakin RJ (1965) A Tree Search Algorithm for Mixed Integer Programming Problems,
Computer Journal 8:250–255.

Danna E, Rothberg E, Le Pape C (2005) Exploring Relaxation Induced Neighborhoods to
Improve MIP Solutions, Mathematical Programming 102:71–90.

Dantzig GB, Thapa MN (1997) Linear Programming, 1: Introduction, Springer–Verlag,
New York.

Dash Optimization (2006) XPRESS–Optimizer User Manual, Dash Optimization.
Davey B, Boland N, Stuckey PJ (2002) Efficient Intelligent Backtracking Using Linear

Programming, INFORMS Journal on Computing 14:373–386.
Davis M, Logemann G, Loveland D (1962) A Machine Program for Theorem Proving,

Communications of the ACM 5:394–397.
Davis M, Putnam H (1960) A Computing Procedure for Quantification Theory, Journal of

the ACM 7:201–215.
Dax, A (2006) The l1 Solution of Linear Inequalities, Computational Statistics and Data

Analysis 50:40–60.
DeBacker B, Beringer H (1991) Intelligent Backtracking for CLP Languages, an Applica-

tion to CLP(R), International Logic Programming Symposium, San Diego, 405–419.
De Backer B, Beringer H (1993) A CLP Language Handling Disjunctions of Linear Con-

straints, International Conference on Logic Programming, 550–563.
Debrosse CJ, Westerberg AW (1973) A Feasible–Point Algorithm for Structured Design

Systems in Chemical Engineering, AIChE Journal 19:251–258.

nitive Science, Nature Publishing Group, London, 2002.
de Givry S, Larrosa J, Meseguer P, Schiex T (2003) Solving Max–SAT as Weighted CSP,

Principles and Practice of Constraint Programming CP 2003, Lecture Notes in Com-
puter Science 2833:363–376.

De Pierro AR, Iusem AN (1985) A Simultaneous Projection Method for Linear Inequali-
ties, Linear Algebra and its Applications 64:243–253.

de Siqueira N. JL, Puget JF (1988) Explanation–Based Generalisation of Failures. Euro-

Dravnieks EW (1989) Identifying Minimal Sets of Inconsistent Constraints in Linear Pro-
grams: Deletion, Squeeze and Sensitivity Filtering, MSc thesis, Systems and Computer
Engineering, Carleton University.

Dravnieks EW, Chinneck JW (1997) Formulation Assistance for Global Optimization
Problems, Computers and Operations Research 24:1151–1168.

Drud AS (1994) CONOPT−A Large Scale GRG Code, ORSA Journal on Computing
6:207–216.

Duran M, Grossmann IE (1986) An Outer–Approximation Algorithm for a Class of Mixed–
Integer Nonlinear Programs, Mathematical Programming 36:307–339.

Dyer ME (1983) The Complexity of Vertex Enumeration Methods, Mathematics of Opera-
tions Research 8:381–402.

Eckstein J (1994) Parallel branch–and–bound algorithms for general mixed integer pro-
gramming on the CM–5, SIAM Journal on Optimization 4:794–814.

Ellison EFD, Hajian M, Jones H, Levkovitz R, Maros I, Mitra G, Sayers D (1999) FortMP
Manual, Numerical Algorithms Group and Brunel University.

Elwakeil OA, Arora JS (1995) Methods for Finding Feasible Points in Constrained Optimi-
zation, AIAA Journal 33:1715–1719.

Elwakeil OA, Arora JS (1996) Two algorithms for global optimization of general NLP
problems, International Journal for Numerical Methods in Engineering 39:3305–3325.

Fan, K (1956) On Systems of Linear Inequalities, Annals of Mathematical Studies 38:99–
156.

pean Conference on Artificial Intelligence: 339–344.

Dechter R, Rossi F (2002) Constraint satisfaction, in Nadel L. (ed.), Encyclopedia of Cog-

References 255

Ferris MC, Dirkse SP, Meeraus A (2005) Mathematical programs with equilibrium con-
straints: Automatic reformulation and solution via constrained optimization, in Kehoe

ing, 67–93, Cambridge University Press.
Fischetti M, Glover F, Lodi A (2005) The Feasibility Pump, Mathematical Programming A

104:91–104.
Fischetti M, Lodi A (2003) Local Branching, Mathematical Programming B 98:23–49.
Ford LR, Fulkerson DR (1962) Flows in Networks, Princeton University Press, Princeton,

NJ.
Fourer R, Gay DM, Kernighan BW (2003) AMPL: A Modeling Language for Mathemati-

cal Programming, Second Edition, Brooks/Cole, Pacific Grove, California, USA.
Fourer R, Orban D (2007) DrAmpl−A meta solver for optimization, technical report G–

2007–10, GERAD, Montreal, Canada.
Fourier JBJ (1827) Analyse des Travaux de l’Académie Royale des Sciences Pendant

l’Année 1824, Histoire de l’Académie Royale des Sciences de l’Institut de France
7:xlvii–lv.

Fränzle M, Herde C (2005) Efficient Proof Engines for Bounded Model Checking of Hy-
brid Systems, Electronic Notes in Theoretical Computer Science 133 :119–137.

Freuder EC, Wallace RJ (1992) Partial Constraint Satisfaction, Artificial Intelligence 58:
21–70.

http://www.solver.com/sdkplatformd.htm#

Fukuda K, Rosta V (2005) Data Depth and Maximum Feasible Subsystems, in Avis D,

37–67.
Fulkerson DR (1959) A Network Flow Feasibility Theorem and Combinatorial Applica-

tions, Canadian Journal of Mathematics 11:440–451.
Fylstra D, Lason L, Watson J, Waren A (1998) Design and Use of the Microsoft Excel

Solver, Interfaces 28:29–55.

Ganapathy V, Jha S, Chandler D, Melski D, Vitek D (2003) Buffer Overrun Detection
Using Linear Programming and Static Analysis, Proceedings of the 10th ACM Confe-

Gauthier JM, Ribiere G (1977) Experiments in mixed–integer linear programming, Mathe-
matical Programming 12:26–47.

Gertz M, Nocedal J, Sartenaer A (2004) A Starting–Point Strategy for Nonlinear Interior

Gill PE, Murray W, Saunders MA (2005) SNOPT : an SQP Algorithm for Large–Scale
Constrained Optimization, SIAM Review 47:99–131.

Gleeson J, Ryan J (1990) Identifying Minimally Infeasible Subsystems of Inequalities,
ORSA Journal on Computing 2:61–63.

Glover F (1968) Surrogate Constraints, Operations Research 16:741–749.
Glover F (1990) Tabu Search: A Tutorial, Interfaces, 20:74–94.
Glover F (2003) Tutorial on Surrogate Constraint Approaches for Optimization in Graphs,

Journal of Heuristics 9:175–227.

Feng, J (1999). Nonlinear Redundancy: Where is the Information? M.Sc., Mathematics,
Department of Economics, Mathematics, and Statistics, University of Windsor,
Canada.

TJ, Srinivasan TN, Whalley J (eds.), Frontiers in Applied General Equilibrium Model-

Hertz A, Marcotte O (eds.), Graph Theory and Combinatorial Optimization, Springer

rence on Computer and Communications Security: 345–354.

Frean M (1992) A “Thermal” Perceptron Learning Rule, Neural Computation 4:946–957.

Frontline Systems Inc. (2007) World Wide Web
Diagnosing%20Infeasibility.

Methods, Applied Mathematics Letters 17:945–952.

Gale D (1957) A Theorem in Networks, Pacific Journal of Mathematics 7:1073–1082.

256 References

Glover F, Laguna M, Martí R (2000) Fundamentals of Scatter Search and Path Relinking,
Control and Cybernetics 29:653–684.

Glover F, Laguna M, Martí R (2003) Scatter search and path relinking: Advances and ap-
plications”, in Glover FW, Kochenberger GA (eds.), Handbook of Metaheuristics, In-
ternational Series in Operations Research & Management Science 57:1–36, Kluwer
Academic Publishers, Boston.

Glover F, Laguna M, Martí R (2004) New Ideas and Applications of Scatter Search and
Path Relinking, in New Optimization Technologies in Engineering, Onwubolu GC,
Babu BV (eds.), Studies in Fuzziness and Soft Computing 141:367–384, Springer.

Goyal V, Ierapetritou MG (2003) Framework for Evaluating the Feasibility/Operability of
Nonconvex Processes, American Institute of Chemical Engineering Journal 49:1233–
1240.

Stanford University.
Grant M, Boyd S, Ye Y (2006) Disciplined Convex Programming, in Liberti L, Maculan N

(eds.) Global Optimization: From Theory to Implementation, Nonconvex Optimization
and its Applications 84:155–210, Springer.

tation of Optimization Software, Sijthoff and Noordhoff:143–174.
Greenberg HJ (1981a) The Scope of Computer–Assisted Analysis and Model Simplifica-

Simplification, Academic Press, New York: 17–26.
Greenberg HJ (1981b) Implementation Aspects of Model Management: A Focus on Com-

Analysis and Model Simplification, Academic Press, New York: 455–479.
Greenberg HJ (1983) A Computer–Assisted Analysis System for Linear Programming

Models, ACM Transactions on Mathematical Software 9:18–56.
Greenberg HJ (1987a) Computer–Assisted Analysis for Diagnosing Infeasible or Un-

bounded Linear Programs, Mathematical Programming Studies 31:79–97.
Greenberg HJ (1987b) Diagnosing Infeasibility in Min–cost Network Flow Problems; Part

I: Dual Infeasibility, IMA Journal of Mathematics in Management 1:99–109.
Greenberg HJ (1987c) The Development of an Intelligent Mathematical Programming Sys-

tem, WORMSC Proceedings, Washington, D.C., November.
Greenberg HJ (1988) Diagnosing Infeasibility in Min–cost Network Flow Problems; Part

II: Primal Infeasibility, IMA Journal of Mathematics in Management 2:39–50.
Greenberg HJ (1991) An Industrial Consortium for the Development of an Intelligent

Mathematical Programming System, Interfaces 20:88–93.
Greenberg HJ (1992) An Empirical Analysis of Infeasibility Diagnosis for Instances of Lin-

ear Programming Blending Models, IMA Journal of Mathematics in Business & Indus-
try 4:163–210.

Greenberg HJ (1993) How to Analyze the Results of Linear Programs−Part 3: Infeasibility
Diagnosis, Interfaces 23:120–139.

Greenberg HJ (1993a) A Computer–Assisted Analysis System for Mathematical Pro-
gramming Models and Solutions: A User’s Guide for ANALYZE, Kluwer Academic
Publishers, Boston.

Greenberg HJ (1996a) Consistency, Redundancy, and Implied Equalities in Linear Systems,
Annals of Mathematics and Artificial Intelligence 17:37–83.

Greenberg HJ (1996b) A bibliography for the development of an intelligent mathematical
programming system, Annals of Operations Research 65:55–90

Greenberg HJ (2003) Mathematical Programming Glossary Supplement: Tolerances, World
Wide Web http://glossary.computing.society.informs.org/notes/tolerances.pdf.

Grant M (2004) Disciplined Convex Optimization, PhD thesis, Electrical Engineering,

Greenberg HJ (1978) Pivot Selection Tactics, in Greenberg HJ (ed.), Design and Implemen-

tion, In: Greenberg HJ, Maybee JS (eds.), Computer–Assisted Analysis and Model

puter–Assisted Analysis, In: Greenberg, HJ, Maybee JS (eds.), Computer–Assisted

References 257

Greenberg HJ (2003a) Mathematical Programming Glossary Supplement: Convex Cones,
http://glossary.computing.society.informs.org/

notes/convexity.pdf.
Greenberg HJ, Murphy FH (1991) Approaches to Diagnosing Infeasibility for Linear Pro-

grams, ORSA Journal on Computing 3:253–261.
Greenberg HJ, Pierskalla WP (1971) A Review of Quasi–Convex Functions, Operations

Research 19:1553–1570.
Guieu O, Chinneck JW (1999) Analyzing Infeasible Mixed–Integer and Integer Linear Pro-

grams”, INFORMS Journal on Computing 11:63–77.
Gupta P, Vlach M, Bhatia D (2004) Fuzzy Approximation to an Infeasible Generalized

Linear Complementarity Problem, Fuzzy Sets and Systems 146:221–233.
Han SP (1980) Least–squares solution of linear inequalities. Technical Report 2141, Math-

ematics Research Center, University of Wisconsin–Madison.
Heath D, Kasif S, Salzburg S (1993) Learning Oblique Decision Trees, Proceedings of the

13th International Conference on Artificial Intelligence, Chambery, France, Morgan
Kaufmann, San Mateo, CA, 1002–1007.

Hemery F, Lecoutre C, Sais L, Boussemart F (2006) Extracting MUCs from Constraint
Networks, in Proceedings of the 17th European Conference on Artificial Intelligence
(ECAI’2006), 113–117.

Holder A (2004) Radiotherapy Treatment Design and Linear Programming, Operations Re-
search and Health Care: A Handbook of Methods and Applications, Brandeau ML,

Holder A (2006) Mathematical Programming Glossary, INFORMS Computing Society,
World Wide Web, http://glossary.computing.society.informs.org/.

Optimization Inc.
Holzbaur C, Menezes F, Barahona P (1996) Defeasibility in CLP(Q) Through Generalized

Slack Variables, Principles and Practice of Constraint Programming–CP 96, Lecture
Notes in Computer Science 1118:209–223.

Hoffman AJ (1960) Some Recent Applications of the Theory of Linear Inequalities to Ex-
tremal Combinatorial Analysis, Proceedings of Symposia on Applied Mathematics 10.

Hooker JN (2007) Integrated Methods for Optimization, Springer Science+Business Media
LLC, New York.

Huitzing HA, Veldkamp BP, Verschoor AJ (2005) Infeasibility in Automated Test Assem-
bly Models: A Comparison Study of Different Methods, Journal of Educational Meas-
urement 42:223–243.

Ibrahim W, Chinneck JW (2005) Improving Solver Success in Reaching Feasibility for Sets
of Nonlinear Constraints, Computers and Operations Research, to appear (available
online at www.sciencedirect.com).

Ignizio JP, Cavalier TM (1994) Linear Programming, Prentice Hall, Englewood Cliffs.
Ilog (2006) Cplex software, World Wide Web http://www.ilog.com/products/cplex/.
John E, Yildirim EA (2006) Implementation of warm–start strategies in interior–point

methods for linear programming in fixed dimension, Computational Optimization and
Applications, to appear.

Johnson EL, Nemhauser GL, Savelsbergh MWP (2000) Progress in Linear Programming–
Based Algorithms for Integer Programming: An Exposition, INFORMS Journal on
Computing 12:2–23.

Jokar S, Pfetsch ME (2007) Exact and Approximate Sparse Solutions of Underdetermined

Sets, and Functions, World Wide Web

Sainfort F, Pierskalla WP (eds.), Chap. 29, Kluwer Academic Publishers.

Holmström K, Göran AO, Edvall MM (2006) User’s Guide for Tomlab/Xa V14, Tomlab

Linear Equations, Konrad–Zuse–Zentrum für Informationstechnik Berlin, technical
report 07–05.

258 References

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive
black–box functions, Journal of Global Optimization 13:455–492.

Juloski AL, Heemels WPMH, Ferrari–Trecate G, Vidal R, Paoletti S, Niessen JHG (2005)
Comparison of Four Procedures for the Identification of Hybrid Systems, Lecture
Notes in Computer Science 3414:354–369, Springer–Verlag, Berlin.

Junker U (2001) Quickxplain: Conflict detection for arbitrary constraint propagation algo-
rithms, in IJCAI–2001 Workshop on Modeling and Solving Problems with Con-
straints, 75–82.

Kaczmarz S (1937) Angenäherte Auflösung von Systemen Linearer Gleichungen, Bulletin
de l’Académie Polonaise des Sciences et Lettres, A35:355–357.

Kirkpatrick S., Gelatt Jr. CD, Vecchi MP (1983) Optimization by Simulated Annealing,
Science 220:671–680.

Koene J (1982) Minimal Cost Flow in Processing Networks, a Primal Approach, CWI
Tract 4.

Kumar V (1992) Algorithms for Constraint–Satisfaction Problems: a Survey, AI Magazine,
Spring 1992:32–44.

Kurator WG, O’Neill RP (1980) PERUSE: An Interactive System for Mathematical Pro-
grams, ACM Transactions on Mathematial Software 6:489–509.

Lagoudakis MG, Littman ML (2001) Learning to Select Branching Rules in the DPLL Pro-
cedure for Satisfiability, Electronic Notes in Discrete Mathematics 9, LICS 2001
Workshop on Theory and Applications of Satisfiability Testing (SAT 2001), Boston,
MA, June 14–15, 2001.

Laguna M, Martí R (2005) Experimental Testing of Advanced Scatter Search Designs for
Global Optimization of Multimodal Functions, Journal of Global Optimization
33:235–255.

Land AH, Doig AG (1960) An Automatic Method for Solving Discrete Programming Prob-
lems, Econometrica 28:497–520.

Lasdon LS (1970) Optimization Theory for Large Systems, Macmillan Company, New
York.

Lasdon L, Plummer J (2006) Multistart Algorithms for Seeking Feasibility, Computers and
Operations Research, to appear (available online now).

Lasdon L, Plummer J, Ugray Z, Bussieck M (2004) Improved filters and randomized driv-
ers for multi–start global optimization, McCombs School of Business Research Paper
Series No. IROM–06–06, University of Texas at Austin.

Lasdon L, Waren AD (1978) Generalized Reduced Gradient Software for Linearly and

of Optimization Software, Sijthoff and Noordhoff.
Lawrence CT, Tits AL (2001) A Computationally Efficient Feasible Sequential Quadratic

Programming Algorithm, SIAM Journal on Optimization 11:1092–1118.
Lee EK, Gallagher RJ, Zaider M (1999) Planning Implants of Radionuclides for the Treat-

ment of Prostate Cancer: An Application of Mixed Integer Programming, OPTIMA
Mathematical Programming Society Newsletter 61:1–7.

León T, Liern V (2001) A Fuzzy Method to Repair Infeasibility in Linearly Constrained
Problems, Fuzzy Sets and Systems 122:237–243.

Liffiton MH, Sakallah KA (2005) On Finding All Minimally Unsatisfiable Subformulas,
Proceedings of the 8th International Conference on Theory and Applications of Satisfi-
ability Testing (SAT–2005):173–186, June.

Lim J, Ferris MC, Shepard DM, Wright SJ, Earl MA (2006) An Optimization Framework
for Conformal Radiation Treatment Planning, INFORMS Journal On Computing, to
appear.

Nonlinearly Constrained Problems, in Greenberg HJ (ed.), Design and Implementation

References 259

Linderoth JT, Savelsbergh MWP (1999) A computational study of search strategies for
Mixed Integer Programming, INFORMS Journal on Computing 11:173–187.

http://www.lindo.com/products/lingo/
lingom.html.

Lustig IJ, Puget JF (2001) Program Does Not Equal Program: Constraint Programming and
its Relationship to Mathematical Programming, Interfaces 31:29–53.

MacLeod M (2006) Multistart Constraint Consensus for Seeking Feasibility in Nonlinear Pro-
grams, MASc thesis, Systems and Computer Engineering, Carleton University, Ottawa,
Canada.

MacLeod M, Chinneck JW (2007) Multistart Constraint Consensus for Seeking Feasibility
in Nonlinear Programs, technical report, Systems and Computer Engineering, Carleton
University.

Main RA (1993a) Infeasibility Analysis Using CLAUDIA–I, BP Oil International, Oil
Technology Centre, technical report.

Main RA (1993b) Infeasibility Analysis Using CLAUDIA–II. BP Oil International, Oil
Technology Centre, technical report.

Mammen DL, Hogg T (1997) A New Look at the Easy–Hard–Easy Pattern of Combinato-
rial Search Difficulty, Journal of Artificial Intelligence Research 7:47–66.

Mangasarian OL (1993) Mathematical Programming in Neural Networks, ORSA Journal
on Computing 5:349–360.

Mangasarian OL (1994) Misclassification Minimization, Journal of Global Optimization
5:309–323.

Mangasarian OL (1996) Machine Learning via Polyhedral Concave Minimization, Applied
Mathematics and Parallel Computing, in Fischer H, Riedmueller B, Schaeffler S (eds.),
Physical–Verlag:175–188.

Mangasarian OL (1999) Minimum–Support Solutions of Polyhedral Concave Programs,
Optimization 45:149–162.

McCarl B (1998) Repairing Misbehaving Mathematical Programming Models: Concepts
and a GAMS–Based Approach, Interfaces 28:124–138.

Meller J, Wagner M, Elber R (2002) Maximum Feasibility Guideline to the Design and Analysis
of Protein Folding Potentials, Journal of Computational Chemistry 23:111–118.

Meneses CN, Pardalos PM, Resende MGC (2005) GRASP for nonlinear optimization,
Technical Report TD–6DUTRG, AT&T Labs Research, Florham Park, NJ, June.

Meseguer P, Bouhmala N, Bouzoubaa T, Irgens M, Sánchez M (2003) Current Approaches
for Solving Over–Constrained Problems, Constraints 8:9–39.

Mészáros Cs, Suhl UH (2003) Advanced Preprocessing Techniques for Linear and Quad-
ratic Programming, Operations Research Spectrum 25:575–595.

Michalewicz Z, Logan TD, Swaminathan S (1994) Evolutionary Operators for Continuous
Convex Parameter Spaces, in Proceedings of the 3rd Annual Conference on Evolution-

Edge, NJ, 84–97.
Michalewicz Z, Nazhiyath G (1995) Genocop III: a co–evolutionary algorithm for numeri-

cal optimization problems with nonlinear constraints, IEEE International Conference
on Evolutionary Computation 1995, 2:647–651.

Michalowski W, Szapiro T (1992) A Bi–reference Procedure for Interactive Multiple Criteria
Programming, Operations Research 40:247–258.

Miguel I (2001) Dynamic Flexible Constraint Satisfaction and Its Application to AI Plan-
ning, PhD Thesis, University of Edinburgh.

Mitchell D, Selman B, Levesque H (1992) Hard and Easy Distributions of SAT Problems, Pro-
ceedings of the 10th Annual Conference on Artificial Intelligence AAAI–92:459–465.

Lingo Systems Inc. (2007) LINGO, World Wide Web

ary Programming, Sebald AV, Fogel LJ (eds.), World Scientific Publishing, River

Mitra G, Tamiz M (1988) FortLP Reference Manual, NAG Ltd.

260 References

Motzkin TS (1936) Beiträge zur Theorie der linearen Ungleichungen, Ph.D. thesis, Azriel,
Jerusalem.

Motzkin TS, Schoenberg JJ (1954) The Relaxation Method for Linear Inequalities, Cana-
dian Journal of Mathematics 6:393–404.

Murtagh BA, Saunders MA (1987) MINOS 5.1 User’s Guide, technical report SOL 83–20R,
Systems Optimization Laboratory, Department of Operations Research, Stanford Univer-
sity.

Murthy S, Kasif S, Salzberg S(1994) A System for induction of oblique decision trees,
Journal of Artificial Intelligence Research 2:1–32.

Murty KG (1983) Linear Programming, John Wiley & Sons, New York.
Murty KG, Kabadi SN, Chandrasekaran R (2000) Infeasibility Analysis for Linear Systems,

a Survey, Arabian Journal of Science and Technology 25:3–18.
Nadel A (2002) Backtrack Search Algorithms for Propositional Logic Satisfiability: Re-

view and Innovations, master’s thesis, Hebrew University of Jerusalem.
Nazareth JL (1987) Computer Solution of Linear Programs, Oxford University Press, New

York.
Newman DJ, Hettich S, Blake CL, Merz CJ (1998) UCI Repository of machine learning da-

tabases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University
of California, Department of Information and Computer Science.

Nemhauser GL, Savelsbergh MWP, Sigismondi GC (1994) MINTO: a Mixed INTeger
Optimizer, Operations Research Letters 15:47–58.

Nemhauser GL, Wolsey LA (1988) Integer and Combinatorial Optimization, Wiley–
Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons,
New York.

Obuchowska WT (1998) Infeasibility Analysis for Systems of Quadratic Convex Inequali-
ties, European Journal of Operational Research 107:633–643.

Obuchowska WT (1999) On Infeasibility of Systems of Convex Analytic Inequalities,
Journal of Mathematical Analysis and Applications 234:223–245.

Ordonez F, Freund RM (2003) Computational Experience and the Explanatory Value of Condi-
tion Measures for Linear Optimization, SIAM Journal on Optimization 14:307–333.

Padberg M (1999) Linear Optimization and Extensions, 2nd edition, Springer–Verlag.
Pannell DJ (1997) Introduction to Practical Linear Programming, John Wiley and Sons

Inc., New York.
Pardalos PM (1994) On the Passage from Local to Global in Optimization, in Birge JR,

Michigan.
Parker M (1995) A Set Covering Approach to Infeasibility Analysis of Linear Program-

ming Problems and Related Issues, PhD thesis, University of Colorado at Denver.
Parker M, Ryan J (1996) Finding the Minimum Weight IIS Cover of an Infeasible System

of Linear Inequalities, Annals of Mathematics and Artificial Intelligence 17:107–126.
Patel J, Chinneck JW (2006) Active–Constraint Variable Ordering for Faster Feasibility of

Mixed Integer Linear Programs, Mathematical Programming, to appear.
Petit T, Regin JC, Bessiere C (2000) Meta–Constraints on Violations for Over Constrained

Problems, Proceedings of the 12th IEEE International Conference on Tools with Artifi-
cial Intelligence 2000 (ICTAI 2000):358–365

Pfetsch ME (2002) The Maximum Feasible Subsystem Problem and Vertex–Facet Incidences of
Polyhedra, PhD thesis, Dept. of Mathematics, Technischen Universität Berlin.

Pfetsch ME (2005) Branch–and–Cut for the Maximum Feasible Subsystem Problem, ZIB
Report 05–46, Konrad–Zuse–Zentrum für Informationstechnik Berlin.

Murty KG (eds.), Mathematical Programming: State of the Art 1994, The University of

References 261

Pintér JD (1998) Continuous global optimization: An introduction to models, solution
approaches, tests and applications, Interactive Transactions of ORMS 2, World Wide
Web http://catt.bus.okstate.edu/itorms/pinter/.

Popescu E (2001) Use of the Interior–Point Method fort Correcting and Solving
Inconsistent Linear Inequality Systems, Analele Stiinţifice ale Universităţii “Ovidius”
Constanţa, Seria Matematică 9:65–72.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C:
The Art of Scientific Computing, Second Edition, Cambridge University Press, Cam-
bridge.

Rardin RL (1998) Optimization in Operations Research, Prentice Hall, Upper Saddle River,
New Jersey.

Renegar J (1994) Some Perturbation Theory for Linear Programming, Mathematical Pro-
gramming 65:73–91.

Resende MGC, Ribeiro CC (2003a) Greedy randomized adaptive search procedures, in
Glover FW, Kochenberger G (eds.), Handbook of Metaheuristics, International Series
in Operations Research and Management Science 57:219–249, Kluwer Academic Pub-
lishers, Boston.

Resende MGC, Ribeiro CC (2003b) GRASP with path–relinking: Recent advances and
applications, Technical Report TD–5TU726, AT&T Labs Research, December.

Riera–Ledesma J, Salazar–Gonzalez JJ (2007) A Branch–and–Cut Algorithm for the
Continuous Error Localization Problem in Data Cleaning, Computers and Operations
Research 34:2790–2804.

Rosenthal R (2007) GAMS — A User’s Guide, GAMS Development Corporation, Washington,
D.C., World Wide Web http://www.gams.com/docs/gams/GAMSUsersGuide.pdf.

Roodman GM (1979) Post–Infeasibility Analysis in Linear Programming, Management
Science 25:916–922.

Russell S, Norvig P (2002) Artificial Intelligence, A Modern Approach, Second Edition,
Prentice Hall.

Sadegh P (1999) A Maximum Feasible Subset Algorithm with Application to Radiation

Sahinidis NV (1996) BARON: A general purpose global optimization software package,
Journal of Global Optimization 8:201–205.

Sahindis NV (2000) BARON: Brand and Reduce Optimization Navigator User’s Manual.
Version 4.0.

Sandholm T, Shields R (2006) Nogood Learning for Mixed Integer Programming, CMU
Computer Science Department technical report CMU–CS–06–155.

Sankaran JK (1993) A Note on Resolving Infeasibility in Linear Programs by Constraint
Relaxation, Operations Research Letters 13:19–20.

Savelsbergh MWP (1994) Preprocessing and Probing Techniques for Mixed Integer Pro-
gramming Problems, ORSA Journal on Computing 6:445–454.

Sepulveda AE, Epstein L (1996) The repulsion algorithm, a new multistart method for
global optimization, Structural and Multidisciplinary Optimization 11:145–152.

Schrage L (1991) LINDO: An Optimization Modeling System 4th edition, The Scientific
Press, San Francisco.

Scharge L (1997) Optimization Modeling with LINDO, Duxbury Press.
Sherali HD, Tuncbilek CH (1992) A Global Optimization Algorithm for Polynomial Pro-

gramming Problems using a Reformulation–Linearization Technique, Journal of
Global Optimization 2:101–112.

Smith S, Lasdon L (1992) Solving Large Sparse Nonlinear Programs Using GRG, ORSA
Journal on Computing 4:2–15.

Therapy, Proceedings of the American Control Conference, San Diego, California:
405–408.

262 References

Steuer RE (1986) Multiple Criteria Optimization: Theory, Computation and Application,
Wiley, New York.

Steuer RE, Schuler AT (1981) Interactive Multiple Objective Linear Programming Applied
to Multiple Use Forestry Planning, publication FWS–1–81, School of Forestry and
Wildlife Resources, Virginia Polytechnic Institute and State University.

Tamiz M, Mardle SJ, Jones DF (1995) Resolving Inconsistency in Infeasible Linear Pro-
grammes, technical report, School of Mathematical Studies, University of Portsmouth,
U.K.

Tamiz M, Mardle SJ, Jones DF (1996) Detecting IIS in Infeasible Linear Programmes using
Techniques from Goal Programming, Computers and Operations Research 23:113–119.

Timminga E (1998) Solving Infeasibility in Computerized Test Assembly, Applied Psycho-
logical Measurement 22:280–291.

Tsoi AC, Hagenbucher M, Scarselli F (2006) Computing Customized Page Ranks, ACM
Transactions on Internet Technology 6:381–414.

Tu W, Mayne RW (2002a) An approach to multi–start clustering for global optimization
with non–linear constraints, International Journal for Numerical Methods in Engineer-
ing 53:2253–2269.

Tu W, Mayne RW (2002b) Studies of multi–start clustering for global optimization, Inter-
national Journal for Numerical Methods in Engineering 53:2239–2252.

Ugray Z, Lasdon L, Plummer J, Glover F, Kelly J, Martí R (2006) Scatter Search and Local
NLP Solvers: A Multistart Framework for Global Optimization, INFORMS Journal on
Computing, to appear.

Van Hentenryck P (1999) The OPL Optimization Programming Language, MIT Press,
Cambridge, Massachusetts.

van Loon J (1981) Irreducibly Inconsistent Systems of Linear Inequalities, European Jour-
nal of Operations Research 8:283–288.

Vatolin AA (1992) An LP–Based Algorithm for the Correction of Inconsistent Linear
Equation and Inequality Systems, Optimization 24:157–164.

Vera JR (1998) On the Complexity of Linear Programming Under Finite Precision Arith-
metic, Mathematical Programming 80:91–123.

Wagner M, Meller J, Elber R (2004) Large–Scale Linear Programming Techniques for the
Design of Protein Folding Potentials, Mathematical Programming 101:301–318.

Williams HP (1978) Model Building in Mathematical Programming, John Wiley and Sons,
Chichester.

Winston WL, Venkataramanan M (2003) Introduction to mathematical programming, 4th
edition. Brooks/Cole, Pacific Grove, USA.

Wolfe P (1965) The Composite Simplex Method, SIAM Review 7:42–54.
Wright, SJ (1997) Primal–Dual Interior–Point Methods, SIAM Publications.
Wu X, Barbará D (2002) Learning Missing Values from Summary Constraints, ACM

SIGKDD Explortions Newsletter 4:21–30.
Xiao Y, Censor Y, Michalski D, Galvin J (2003) The Least–Intensity Feasible Solution for Aper-

ture–Based Inverse Planning in Radiation Therapy. Annals of Operations Research
119:183–203.

Yang J (2006) Infeasibility Resolution Based on Goal Programming, Computers and Operations
Research, to appear (available online now).

Yarnold PR, Soltysik RC (2004) Optimal Data Analysis: a Guidebook with Software for
Windows, American Psychological Association.

Yildirim EA, Wright SJ (2002) Warm–Start Strategies in Interior–Point Methods for Linear
Programming, SIAM Journal on Optimization 12:782–810.

References 263

Zionts S, Wallenius J (1983) An Interactive Multiple Objective Linear Programming
Method for a Class of Underlying Nonlinear Utility Functions, Management Science
29:519–529.

You Z (1993) Localization and Diagnosis of Structural Problems in Petri Net Models, MSc
thesis, Systems and Computer Engineering, Carleton University, Ottawa, Canada.

Index

A
Active constraints method, 37–42
Additive adaptive grouping, 104

Additive/deletion method, 109, 110, 120,
137, 140–143

Additive/sensitivity method, 119, 120
Adjusting the constraint matrix, 206–208

156, 170, 175, 176
Affine-scaling method, 65, 199
Algorithm 2(k), 174, 175
Algorithm 3(k), 175
Alldiff, 46
Almost convex region effect, 57, 58
Alpha-shape technique, 60
Altering constraints, 197
AMPL, 54, 76, 96, 180, 230
ANALYZE, 90, 127, 128, 130, 131

Approximating LP, 205, 206
Arc consistency, 47, 195
Artificial variables, 11–13, 16, 17, 101,

114, 115, 124, 167, 168, 198, 201, 202
Automated test assembly, 212, 238–239
Average direction-based constraint

consensus, 69

B
Back jumping, 195
Backtracking, 43, 46–49, 118, 131, 156,

190–192, 212, 240, 241
BARON, 87
Basis pursuit, 243, 244
Basis reduction, 43, 44
Best approximation problem, 209
Big-M method, 11, 13, 181, 230, 237
Bilinear relationship, 163
Binary constraint, 47

Binary integer program, 193
Binary program, 25, 27–29, 130, 238, 242
Bootstrapping, 52, 59, 60, 62, 85, 87, 88,

144, 184
Bound tightening, 10, 75, 76, 95, 96, 130,

131

230, 232
Branch down, 24
Branch up, 24
Branching variable selection, 24, 37, 139,

140
Bregman distance, 200
Buffer overrun detection, 239

C

Check inequality, 205

Closed hemisphere problem, 231
Column protection, 122, 125

183
Combining methods, 118
Complementary inequalities, 189–192
Complete inconsistency, 232
Component averaging, 20, 21, 66
Composite objective, 18
Concave function, 55–57
Conflict analysis, 42–43
Conflict constraints, 42, 43
Conflict-directed backtracking, 48
Conflict refiner, 129, 143
Conflict set, 43, 48, 143, 156, 220, 240
Consensus vector, 4, 19–21, 66, 67, 69,

71, 81
Constrained region, 57, 58, 60, 62
Constraint consensus, 19, 65–73, 77, 80,

81, 83, 84

Advanced start, 17, 18, 23, 109, 112, 149,

Candidate variable, 15, 23, 24, 37–40

Combinatorial Bender’s cuts, 167, 180,

CLAUDIA, 128, 129

109–110, 119, 124, 126, 129, 132,
134–137, 140–143, 144, 149, 153,

Additive method, 98–101, 104, 106,

Branch and bound, 8, 17, 23–24, 44,

Branch and cut, 23, 24, 28, 30, 130, 180,
212, 230, 232, 240–241
130–133, 138–144, 167, 195, 208,

154, 155–157, 165–167

Analyzing infeasibility, 7, 25, 89–209, 213

266 Index

Constraint effectiveness, 59, 111
Constraint learning, 42, 48
Constraint logic programming, 45, 156
Constraint programming, 42, 45–50, 96,

98, 154, 156, 157, 193, 195, 212, 240
Constraint propagation, 46, 47, 96
Constraint satisfaction problem, 45, 46,

48, 49, 156, 157, 193, 195
Constraint sensitivity, 173, 174
Constraint shifting, 197–199, 202,

204–205
Constraint violation, 2, 3, 19, 23, 51, 52,

58, 80, 148, 149, 167, 168, 172–174,
199, 240

Constructive method, 156
Control row, 128, 129
Control sequence, 19, 20
Convex function, 9, 54–56
Convexify, 8, 9
Convex region effect, 57–60, 62
Convex sampling enclosure, 58–60, 75
Convex set, 19, 36, 51, 54, 56–58, 206
Cplex, 32, 34, 37, 40–42, 113, 129, 143,

168, 169, 177, 178, 183, 199, 230, 238

CSADT, 229
CUTE, 64, 77

D
Data analysis, 227–233
Data classification, 227, 231

Davis-Putnam-Logemann-Loveland
algorithm, 49

DBavg constraint consensus, 69
DBbound constraint consensus, 71, 72
DBmax constraint consensus, 70, 71
Debug command, 129
Degree heuristic, 46

Deletion/sensitivity filter, 118–122, 125,
129, 150, 160

Depth first binary search filter (DFBS),
105–107, 109, 142

Destructive method, 156
Diagnosis of over determined constraint

satisfaction problems (DOC), 156

Dichotomic method, 156
Digital video broadcasting, 180, 181, 183,

212, 235, 237
Disciplined convex optimization, 58
Discriminant analysis, 183
Distance to ill-posedness, 208
Dom/Wdeg, 156
Dr. AMPL, 54
Duality gap, 5
Dubious constraint, 133, 134, 137, 141
Dynamic reordering additive method,

100, 136, 141

E
Easy-hard-easy pattern, 7
Efficient global optimization (EGO), 78
Elastic filter, 101–104, 108, 112, 120,

122, 125, 126, 128, 129, 144, 239
Elastic programming, 102, 105, 172, 198,

199
Elastic SINF, 169–171, 175

122, 167, 168, 171–174, 178,
198–200, 202, 204, 205, 238

Enforcing a constraint, 102, 125

Exact penalty function, 80
Extreme aspiration level, 220–222, 225

F
Fail-first heuristic, 46
FDfar algorithm, 68, 69
FDnear algorithm, 68, 69
Feasibility-distance based constraint

consensus, 68
Feasibility distance tolerance, 67–70, 72,

84
Feasibility pump, 30–36
Feasibility vector, 4, 19–21, 66–72, 83, 84
Feasible sequential quadratic

programming, 51
Forcing substructure, 213
FortMP, 15–17
Forward checking, 47, 195
Frequency-based heuristic, 165
Frobenius norm, 207, 208
Frontline systems solvers, 130, 154
Full elastic program, 168, 172, 173, 199
Function tolerance test, 3
Fuzzy sets, 202

Crash start, 11, 15, 16
Crossover from an infeasible basis, 16, 17

Data depth, 211, 227, 231, 232

Equilibrium constraints, 162, 163

Elastic variable, 98, 101, 102, 114, 115,

Errors in massive data sets, 211, 232, 233

Deletion filter, 43, 97–98, 104–110, 112,
118–122, 123–126, 128–129, 132–134

156–157, 160, 167, 238
137, 140–143, 144–146, 149–153, 154,

Index 267

G
GAMS, 8
Generalized binary search filter (GBS),

107–109, 142
Generalized network, 214, 215
Generalized reduced gradient algorithm

(GRG), 51, 65
Genetic algorithm, 60, 78
Global optimization, 52, 78, 79, 87–88,

153, 154, 162, 208
Goal programming, 98, 199, 202, 203,

238
GPIIS, 98
Gradient projection, 66
GRASP, 78
Greedy unit propagation (GUP), 50
Grouping constraints, 149, 157
Grow method, 160
Guard constraints, 145, 146
Guide codes, 121, 122, 129, 221,

223–225
Guiding the isolation, 120–122, 143

H
Half space depth, 231
Hard constraint, 195, 217, 218, 220, 223,

225
Hard objective, 217, 220, 223
Hemisphere problem, 231, 245
Hill-climbing, 48
Hit-and-run methods, 59–62, 75
Hyperslab, 189, 242

I
IIS cover, 159–161, 164, 166–171,

175–178, 184–190, 227, 228, 231,
232

IIS enumeration, 164, 165
IIS pivoting, 117, 157
Implied equality, 59, 111, 152
Incumbent solution, 7, 24, 25, 180, 230,

237
Infeasible due to mathematical error, 145,

146
Infeasible in the ordinary sense, 145, 146

Infeasible subset, 48, 88–90, 93, 132–139,
141–143, 154, 240

Infeasible-path interior point methods, 11

Initial point placement, 63–65, 76, 77
Integer and randomized deletion

algorithm (IRDA), 238
Integer infeasibility, 4, 5, 26, 32
Intelligent backtracking, 43, 48, 156, 240,

241
Intelligent Mathematical Programming

System (IMPS), 90
Intensity-Modulated Radiation Therapy

(IMRT), 235, 236
Interaction analysis, 217, 218, 223

Interior point methods, 11, 18, 65, 112,
118

Irreducible infeasible subset of constraints
(IIS), 42, 48, 85–90, 93, 94, 96–106

J
Jeroslaw-Wang branching heuristic, 49,

50

K
k-consistency, 47
killing constraint, 152, 153
knapsack cover, 241

L
L1 norm, 31, 203, 204, 206, 207
Least constraining value heuristic, 47

LINDO, 129, 143, 154, 185, 213

Linear program with equilibrium
constraints (LPEC), 162, 179, 180,
229

l-infinity norm, 199
LINGO, 143, 154
Local search, 25, 46, 48, 78, 79, 183
Location depth, 231
Logarithmic barrier function, 61, 62
Logic programming, 45, 155, 156
Logical reduction, 95, 96, 127

LP relaxation, 23–28, 30–33, 37, 38, 131,
132, 134, 138, 140, 141, 166, 167, 238

LSGRG(MIS), 147, 149, 154

Interior point heuristic, 183, 184, 237

Isolating infeasibility, 93–157

Infeasible network LP, 127, 128

Least-squares, 199, 200

228–232, 235–236
101, 112–130, 159–209, 213, 216–226,

Linear program, 2, 11–21, 45, 90, 93–95,

LP. See Linear program

268 Index

M
Machine learning, 160, 162, 180, 181,

227, 228
Maintaining Arc Consistency (MAC), 47
Mams branching heuristic, 49, 50
Marker point, 81–84

Max independent set problem, 245
Maximum feasibility guideline algorithm,

184
Maximum feasible subsystem problem

Maximum satisfiability problem

MAXO branching heuristic, 49, 50
Measuring infeasibility, 2–5
Method of feasible directions, 65
Min-conflicts heuristic, 48
Minimal conflict set, 48, 156, 240
Minimal cover, 172, 187
Minimal infeasible system, 189
Minimal intractable subsystem (MIS), 90,

145, 147
Minimal unbounded set of variables, 213
Minimal unsatisfiable core, 156
Minimally unsatisfiable subformula

(MUS), 154, 155
Minimum feedback arc set problem, 244
Minimum misclassification cardinality,

227
Minimum number of feasible partitions

problem (MIN PFS), 189–193
Minimum remaining values heuristic, 46
Minimum unsatisfied linear relation

problem (MIN ULR), 159
Minimum-cardinality IIS set-covering

problem (MIN IIS COVER), 159–161,
164, 227, 228, 231

Minimum-weight IIS cover, 171
MINLP. See Mixed-integer nonlinear

program
MINOS(IIS), 121, 122, 124, 128–130
MINOS, 18, 63
MINTO, 131

MISMIN, 229

Mixed-integer nonlinear program
(MINLP), 34–36

MOMS branching heuristic, 49, 50
Most violated constraint control, 20
Movement tolerance, 67–70, 72
MProbe, 55, 56, 59, 61, 73, 75, 76, 90, 111
MSNLP, 79, 80, 83

238
Multiple constraint, 86, 202
Multiple-objective linear program

(MOLP), 216–226

Multistart constraint consensus, 80–84
Multistart methods, 73, 77–79, 87
Mutually incompatible constraints (MIC),

129

N
Necessary constraint, 62, 199
Netlib, 112, 113, 166, 175
Neural networks, 227–231
Node selection, 24, 46, 140
Nogood learning, 42, 48
Nonbasic variable, 13, 14, 16, 17, 25–27,

116
Nonconserving processing network, 214,

215
Nonconvex region effect, 57–59
Nonlinear program (NLP), 2, 34, 51, 144,

204
Nonlinear range cutting, 75
Nonlinear turnabout, 86
Nontermination, 130, 132
Nonviability, 214–216
NP-hard, 159, 161, 212, 240, 244–245

Number of infeasibilities (NINF), 3, 14,
67, 167

O
Objective interference, 221–223, 225
Oblique projection, 20
OC1, 229
OCTANE, 28–30
Open hemisphere problem, 231

Market split problems, 43, 44

Multi-objective program, 195, 202, 203,

Nucleus box, 74, 75

240, 243–245

Mixed-integer linear program (MIP or

130–143, 157, 161, 166–167, 179–180,
183, 236, 237, 242

MILP), 2, 23–44, 96, 102, 104–105,

(MAXSAT), 49, 187, 189, 193, 245
Multiplicative adaptive grouping, 104, 105

(MAX FS), 89, 159–195, 198, 211,
212, 227, 228, 231, 232, 236, 237,

MIP. See Mixed-integer linear program

Mixed-integer program (MIP), See
Mixed-integer linear program

Index 269

OPL, 45
Optimal data analysis, 231
Optimality gap, 32, 41
OptQuest, 78
Orthogonal projection, 4, 19–21, 66
OSL, 129
Overconstrained problem, 193, 195
Overlapped IISs, 119, 185

P

Partial constraint satisfaction, 193–195
Partial inconsistency, 232
Path-consistent, 47
Penalty function, 51–53, 80, 145
PERUSE, 90
Petri net, 216

Phase 1 heuristics, 167–169
Phase 2 algorithm, 174, 175, 177, 229
Piecewise affine autoregressive

exogenous (PWARX), 193
Piecewise linear model estimation,

Pivot-and-complement, 25–28
Pivot-and-shift, 25–28
Pivoting methods, 116–118
Pointer, 82–84
Posynomial function, 9
PREDUCE, 55
Preference constraint, 46

Primal-dual interior point methods, 18
Prime analytic centre, 61
Processing node, 214, 216
PROFLOW, 129
Projection methods, 19–21
Propagation, 47, 50

Pseudo-costs, 37
Pure network, 214

Purify algorithm, 17
Push algorithm, 17

Q
Quadratic program, 14, 151–153, 204
Quadratically-constrained quadratic

program (QCP, QCQP), 14, 150, 151,
153

R

Random sampling, 58, 73
Random walks, 48
Randomized standard heuristic, 63–65
Randomized thermal relaxation algorithm

(RTR), 181–183
Ratio equation, 214
Reciprocal filter, 113
Refinery and Petrochemical Modeling

System, 90
REFORM, 8
Reformulation, 8–10
Relaxation method, 21
Relaxation parameter, 20
Relaxation-induced neighbourhood search

(RINS), 25
Relaxed and ordered deletion algorithm

(RODA), 238
Remotest set control, 20, 69
Reverse deletion filter, 124–126, 156
Root node, 24, 32, 38
Row aggregation, 130

S

Sampling enclosure, 55, 57–60

Satisfiability problem (SAT), 49, 240, 241
Scaling, 3, 4, 9, 71, 162, 242
Scatter search, 78
Selective unit propagation (SUP), 50
Sensitivity filter, 114–116, 119, 126, 129,

138, 160
Sequential linear approximation, 163
Sequential projection, 19, 181
Sequential quadratic programming (SQP),

Set covering, 110, 112, 164–166, 238
Set covering and item sampling (SCIS),

238
Shifting constraints, 197–206
Simple phase 1, 168, 170
Simulated annealing, 48, 182
Simultaneous projection, 20
SINF-reduction heuristic, 169–178
Single-start methods, 73, 77
Small-cardinality IIS, 116
Soft constraint, 195, 217–220, 223
Soft objective, 217, 220, 223

Page ranking, 239, 240

Phase 1 algorithm, 11, 12

242, 243

Presolving, 47, 75, 95, 96

Protein folding, 183, 236, 237

Pure processing network, 214, 215

Radiation treatment planning, 235, 236

Sampling box, 73, 74, 76–78, 83

Sampling methods, 110, 111

204, 205

270 Index

Space-covering global optimizers, 153
Spanning line segment, 59, 63, 75
Sparse solutions to systems of linear

Special ordered sets, 37
Stand-and-hit algorithm, 59
Standard elastic program, 168–170
Standard heuristic, 63–65, 77, 83
Stochastic local search, 48
Strictly complementary partition, 118
Strong branching, 37
Structural infeasibility, 87
Structural relationships, 214
Successive overrelaxation, 17
Sufficient constraint, 134, 185
Sum of the infeasibilities (SINF), 3,

Superbasic variable, 17
Surface of maximal intersection, 85
Surrogate constraints, 37

T
Tabu search, 48
Tightening variable bounds, 9, 73–76
Tolerances, 3, 5, 90, 94, 144
Tree-structured search, 212, 240
True MOLP, 219, 223–225
Tukey depth, 231
Tukey median, 231
Two-phase method, 11, 13, 180, 181
Two-phase relaxation-based heuristic,

179–181

Type 1 pivot, 25–28
Type 2 pivot, 26–28
Type 3 pivot, 26–28

U
Unary constraint, 46
Unbounded linear program, 213–216
Undecidable point, 192–194
Underdetermined system, 243
Unit basis, 15
Unit propagation (UP), 50
Useful isolation, 122–127

V

Voting heuristics, 20

W

Weighted random multistart, 81
Witness nodes, 128

X
XA, 130
Xpress, 28, 34, 129

Z
Zooming and domain elimination, 79

equations, 243, 244

14, 15, 18, 167, 182 Voxel, 235, 236

Warm start, 17, 18

Viability, 213–215

Wcore, 156, 157

Early Titles in the

OPERATIONS RESEARCH & MANAGEMENT SCIENCE
 Frederick S. Hillier, Series Editor, Stanford University

Saigal/ A MODERN APPROACH TO LINEAR PROGRAMMING
Nagurney/ PROJECTED DYNAMICAL SYSTEMS & VARIATIONAL INEQUALITIES WITH

APPLICATIONS
Padberg & Rijal/ LOCATION, SCHEDULING, DESIGN AND INTEGER PROGRAMMING
Vanderbei/ LINEAR PROGRAMMING
Jaiswal/ MILITARY OPERATIONS RESEARCH
Gal & Greenberg/ ADVANCES IN SENSITIVITY ANALYSIS & PARAMETRIC PROGRAMMING
Prabhu/ FOUNDATIONS OF QUEUEING THEORY
Fang, Rajasekera & Tsao/ ENTROPY OPTIMIZATION & MATHEMATICAL PROGRAMMING
Yu/ OR IN THE AIRLINE INDUSTRY
Ho & Tang/ PRODUCT VARIETY MANAGEMENT
El-Taha & Stidham/ SAMPLE-PATH ANALYSIS OF QUEUEING SYSTEMS
Miettinen/ NONLINEAR MULTIOBJECTIVE OPTIMIZATION
Chao & Huntington/ DESIGNING COMPETITIVE ELECTRICITY MARKETS
Weglarz/ PROJECT SCHEDULING: RECENT TRENDS & RESULTS
Sahin & Polatoglu/ QUALITY, WARRANTY AND PREVENTIVE MAINTENANCE
Tavares/ ADVANCES MODELS FOR PROJECT MANAGEMENT
Tayur, Ganeshan & Magazine/ QUANTITATIVE MODELS FOR SUPPLY CHAIN MANAGEMENT
Weyant, J./ ENERGY AND ENVIRONMENTAL POLICY MODELING
Shanthikumar, J.G. & Sumita, U./ APPLIED PROBABILITY AND STOCHASTIC PROCESSES
Liu, B. & Esogbue, A.O./ DECISION CRITERIA AND OPTIMAL INVENTORY PROCESSES
Gal, T., Stewart, T.J., Hanne, T. / MULTICRITERIA DECISION MAKING: Advances in
 MCDM Models, Algorithms, Theory, and Applications
Fox, B.L. / STRATEGIES FOR QUASI-MONTE CARLO
Hall, R.W. / HANDBOOK OF TRANSPORTATION SCIENCE
Grassman, W.K. / COMPUTATIONAL PROBABILITY
Pomerol, J-C. & Barba-Romero, S. / MULTICRITERION DECISION IN MANAGEMENT
Axsäter, S. / INVENTORY CONTROL
Wolkowicz, H., Saigal, R., & Vandenberghe, L. / HANDBOOK OF SEMI-DEFINITE
 PROGRAMMING: Theory, Algorithms, and Applications
Hobbs, B.F. & Meier, P. / ENERGY DECISIONS AND THE ENVIRONMENT: A Guide

to the Use of Multicriteria Methods
Dar-El, E. / HUMAN LEARNING: From Learning Curves to Learning Organizations
Armstrong, J.S. / PRINCIPLES OF FORECASTING: A Handbook for Researchers and

Practitioners
Balsamo, S., Personé, V., & Onvural, R./ ANALYSIS OF QUEUEING NETWORKS WITH
 BLOCKING
Bouyssou, D. et al. / EVALUATION AND DECISION MODELS: A Critical Perspective
Hanne, T. / INTELLIGENT STRATEGIES FOR META MULTIPLE CRITERIA DECISION MAKING
Saaty, T. & Vargas, L. / MODELS, METHODS, CONCEPTS and APPLICATIONS OF THE
 ANALYTIC HIERARCHY PROCESS
Chatterjee, K. & Samuelson, W. / GAME THEORY AND BUSINESS APPLICATIONS
Hobbs, B. et al. / THE NEXT GENERATION OF ELECTRIC POWER UNIT COMMITMENT
 MODELS
Vanderbei, R.J. / LINEAR PROGRAMMING: Foundations and Extensions, 2nd Ed.
Kimms, A. / MATHEMATICAL PROGRAMMING AND FINANCIAL OBJECTIVES FOR
 SCHEDULING PROJECTS
Baptiste, P., Le Pape, C. & Nuijten, W. / CONSTRAINT-BASED SCHEDULING
Feinberg, E. & Shwartz, A. / HANDBOOK OF MARKOV DECISION PROCESSES: Methods

and Applications
Ramík, J. & Vlach, M. / GENERALIZED CONCAVITY IN FUZZY OPTIMIZATION

AND DECISION ANALYSIS
Song, J. & Yao, D. / SUPPLY CHAIN STRUCTURES: Coordination, Information and

Optimization
Kozan, E. & Ohuchi, A. / OPERATIONS RESEARCH/ MANAGEMENT SCIENCE AT WORK

INTERNATIONAL SERIES IN

INTERNATIONAL SERIES IN
OPERATIONS RESEARCH & MANAGEMENT SCIENCE
(Continued)

Bouyssou et al. / AIDING DECISIONS WITH MULTIPLE CRITERIA: Essays in
 Honor of Bernard Roy
Cox, Louis Anthony, Jr. / RISK ANALYSIS: Foundations, Models and Methods
Dror, M., L’Ecuyer, P. & Szidarovszky, F. / MODELING UNCERTAINTY: An Examination

of Stochastic Theory, Methods, and Applications
Dokuchaev, N. / DYNAMIC PORTFOLIO STRATEGIES: Quantitative Methods and Empirical Rules

for Incomplete Information
Sarker, R., Mohammadian, M. & Yao, X. / EVOLUTIONARY OPTIMIZATION
Demeulemeester, R. & Herroelen, W. / PROJECT SCHEDULING: A Research Handbook
Gazis, D.C. / TRAFFIC THEORY
Zhu/ QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING

Surveys
Bienstock/ Potential Function Methods for Approx. Solving Linear Programming Problems
Matsatsinis & Siskos/ INTELLIGENT SUPPORT SYSTEMS FOR MARKETING
 DECISIONS
Alpern & Gal/ THE THEORY OF SEARCH GAMES AND RENDEZVOUS
Hall/HANDBOOK OF TRANSPORTATION SCIENCE - 2nd Ed.
Glover & Kochenberger/ HANDBOOK OF METAHEURISTICS
Graves & Ringuest/ MODELS AND METHODS FOR PROJECT SELECTION:
 Concepts from Management Science, Finance and Information Technology
Hassin & Haviv/ TO QUEUE OR NOT TO QUEUE: Equilibrium Behavior in Queueing Systems
Gershwin et al/ ANALYSIS & MODELING OF MANUFACTURING SYSTEMS
Maros/ COMPUTATIONAL TECHNIQUES OF THE SIMPLEX METHOD
Harrison, Lee & Neale/ THE PRACTICE OF SUPPLY CHAIN MANAGEMENT: Where Theory and

Application Converge
Shanthikumar, Yao & Zijm/ STOCHASTIC MODELING AND OPTIMIZATION OF

MANUFACTURING SYSTEMS AND SUPPLY CHAINS

Thissen & Herder/ CRITICAL INFRASTRUCTURES: State of the Art in Research and Application
Carlsson, Fedrizzi, & Fullér/ FUZZY LOGIC IN MANAGEMENT
Soyer, Mazzuchi & Singpurwalla/ MATHEMATICAL RELIABILITY: An Expository Perspective

Manufacturing Perspectives
Talluri & van Ryzin/ THE THEORY AND PRACTICE OF REVENUE MANAGEMENT

Maximize Value

Methods and Applications
Cooper, Seiford & Zhu/ HANDBOOK OF DATA ENVELOPMENT ANALYSIS: Models and Methods
Luenberger/ LINEAR AND NONLINEAR PROGRAMMING, 2nd Ed.
Sherbrooke/ OPTIMAL INVENTORY MODELING OF SYSTEMS: Multi-Echelon Techniques,

 Second Edition
Chu, Leung, Hui & Cheung/ 4th PARTY CYBER LOGISTICS FOR AIR CARGO
Simchi-Levi, Wu & Shen/ HANDBOOK OF QUANTITATIVE SUPPLY CHAIN ANALYSIS: Modeling

in the E-Business Era
Gass & Assad/ AN ANNOTATED TIMELINE OF OPERATIONS RESEARCH: An Informal History
Greenberg/ TUTORIALS ON EMERGING METHODOLOGIES AND APPLICATIONS IN OPERATIONS

RESEARCH
Weber/ UNCERTAINTY IN THE ELECTRIC POWER INDUSTRY: Methods and Models for Decision

Support
Figueira, Greco & Ehrgott/ MULTIPLE CRITERIA DECISION ANALYSIS: State of the Art Surveys

Early Titles in the

Ehrgott & Gandibleux/ MULTIPLE CRITERIA OPTIMIZATION: State of the Art Annotated Bibliographical

Nabrzyski, Schopf & Węglarz/ GRID RESOURCE MANAGEMENT: State of the Art and Future Trends

Chakravarty & Eliashberg/ MANAGING BUSINESS INTERFACES: Marketing, Engineering, and

Kavadias & Loch/PROJECT SELECTION UNDER UNCERTAINTY: Dynamically Allocating Resources to

Brandeau, Sainfort & Pierskalla/ OPERATIONS RESEARCH AND HEALTH CARE: A Handbook of

Early Titles in the
INTERNATIONAL SERIES IN
OPERATIONS RESEARCH & MANAGEMENT SCIENCE
(Continued)

Reveliotis/ REAL-TIME MANAGEMENT OF RESOURCE ALLOCATIONS SYSTEMS: A Discrete Event

Systems Approach
Kall & Mayer/ STOCHASTIC LINEAR PROGRAMMING: Models, Theory, and Computation
Sethi, Yan & Zhang/ INVENTORY AND SUPPLY CHAIN MANAGEMENT WITH FORECAST

UPDATES
Cox/ QUANTITATIVE HEALTH RISK ANALYSIS METHODS: Modeling the Human Health Impacts of

Antibiotics Used in Food Animals
Ching & Ng/ MARKOV CHAINS: Models, Algorithms and Applications
Li & Sun/ NONLINEAR INTEGER PROGRAMMING
Kaliszewski/ SOFT COMPUTING FOR COMPLEX MULTIPLE CRITERIA DECISION MAKING

* A list of the more recent publications in the series is at the front of the book *

	Cover
	Contents
	PART I SEEKING FEASIBILITY.pdf
	Chapter1.pdf
	Chapter2.pdf
	Chapter3.pdf
	Chapter4.pdf
	Chapter5.pdf
	PART II ANALYZING INFEASIBILITY.pdf
	Chapter6.pdf
	Chapter7.pdf
	Chapter8.pdf
	PART III APPLICATIONS.pdf
	Chapter9.pdf
	Chapter10.pdf
	Chapter11.pdf
	Chapter12.pdf
	back-matter.pdf

