
Lecture Notes in Bioengineering

Modelling Organs,
Tissues, Cells and
Devices

Socrates Dokos

Using MATLAB and COMSOL
Multiphysics

Lecture Notes in Bioengineering

More information about this series at http://www.springer.com/series/11564

Socrates Dokos

Modelling Organs, Tissues,
Cells and Devices
Using MATLAB and COMSOL Multiphysics

123

Socrates Dokos
Graduate School of Biomedical Engineering
University of New South Wales
Sydney
Australia

ISSN 2195-271X ISSN 2195-2728 (electronic)
Lecture Notes in Bioengineering
ISBN 978-3-642-54800-0 ISBN 978-3-642-54801-7 (eBook)
DOI 10.1007/978-3-642-54801-7

Library of Congress Control Number: 2017930790

© Springer-Verlag Berlin Heidelberg 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

To my wonderful Anna for her selfless
support, inspiration, wisdom, and
encouragement over a lifetime in academia;
and to our children Vasilia, Elias, George,
Timothy, Catherine and Raphael, who make
us proud beyond words.

Preface

Computational modeling plays an increasingly important role in biological and
medical research, as well as in the medical device industry. Like other industries,
successful development of medical devices and implants requires not only exten-
sive testing (bench tests, animal experiments and human trials), but also extensive
computational simulations which allow engineers to cost-effectively investigate
system behavior and iterate the device design. These approaches are inherently
multidisciplinary: biomedical engineers are required to understand not only the
fundamental physical principles of their devices, but also how they interact with
complex physiological systems at the cellular, tissue, and whole-organ levels.
Computational models of such systems are typically multiphysics in nature. In the
not too distant future, bioengineering modeling will also be used routinely in the
clinic to tailor a range of individual therapies and treatment strategies based on
patient-specific models.

It is evident that computational modeling is an important skill for biomedical
engineers, and should form an indispensable component of modern curricula in
biomedical engineering. This book grew from my own course, ‘Modelling Organs,
Tissues and Devices’, taught to late-stage undergraduate and postgraduate engi-
neering students at the Graduate School of Biomedical Engineering, UNSW. It
covered a broad range of modeling topics, from electrical stimulation of tissues
through to diffusion, biomechanics, heat transfer and fluid dynamics. Numerical
software used for teaching the course wereMATLAB and COMSOLMultiphysics—
the former due to its prevalent use in engineering and the latter due to its multiphysics
capabilities and appealing user interface. For their major project, students were
required to submit a COMSOL model in any bioengineering field of their choice.
Despite the popularity of the course, it became apparent there was no single book
which could be used as recommended text which covered the range of topics taught,
including numerical/analytical methods for solving ODE/PDEs, an overview of the
various multiphysics principles involved, as well as how such models can be prac-
tically implemented in MATLAB and COMSOL. Hence, the idea for this book was
born!

vii

The text is divided into two parts: Part A covers basic modeling concepts as well
as analytical and numerical methods for solving ODE/PDE systems. Part B covers
specific physics applications in bioengineering. Each chapter also includes a set of
problems, over 50 in total, with detailed answers provided in the solutions section,
along with several worked-examples with code listings throughout the main text
itself. Appendices A and B provide an introduction to MATLAB and COMSOL,
respectively.

All models in the text were solved on a base-model MacBook Air 2013 laptop
with 8G RAM. Some of the models took tens of minutes to solve, whilst others took
only a few seconds. The MATLAB version employed was R2014b, and the
COMSOL version was 5.2 (the latest at the time of writing). Most of these models
could be solved using the standard base packages of MATLAB and COMSOL,
whilst other models required optional add-ons such as MATLAB’s Symbolic Math
Toolbox or COMSOL’s Nonlinear Structural Materials Module. Such instances
whenever they occur are mentioned in the text.

Finally, I wish to acknowledge my family for their unwavering support
throughout the four long years it took to complete this text, as well the encour-
agement and support from my colleagues at UNSW. A special mention to
Jan-Philip Schmidt, my editor at Springer Verlag, for his patience and encour-
agement, as well as my many students and postdocs, past and present, whose
MATLAB and/or COMSOL modeling works have inspired many examples
throughout this text. They include Amr Al Abed, Siwei Bai, Tianruo Guo,
Miganoosh Abramian, Khalid Alonazi, Siniša Sovilj, Yousef Alharbi, Azam Bakir,
Chin Neng Leong, Bee Ting Chan, Abdulrahman Alqahtani, Mitra Mohd Addi,
Shuhaida Yahud, Shijie Yin, Ben Hui, David Chan and Einly Lim. I have thor-
oughly treasured and learnt much from our interactions.

Sydney, Australia Socrates Dokos
May 2016

viii Preface

Contents

Part I Bioengineering Modelling Principles, Methods and Theory

1 Introduction to Modelling in Bioengineering . 3
1.1 Modelling and Simulation in Medicine and Biology 3
1.2 The Modelling Process . 4
1.3 Mathematical Model Types . 5

1.3.1 Linear Versus Non-linear . 6
1.3.2 Dynamic Versus Static . 7
1.3.3 Deterministic Versus Stochastic . 7
1.3.4 Continuous Versus Discrete . 9
1.3.5 Rule-Based . 12

1.4 Dimensional Analysis . 16
1.4.1 Dimensions and Units . 16
1.4.2 Buckingham p-Theorem . 19

1.5 Model Scaling . 21
Problems . 23
References. 27

2 Lumped Parameter Modelling with Ordinary Differential
Equations . 29
2.1 Overview of Ordinary Differential Equations 29
2.2 Linear ODEs. 31
2.3 ODE Systems . 35

2.3.1 Example Model 1: Cardiac Mechanics 37
2.3.2 Example Model 2: Hodgkin–Huxley Model of Neural

Excitation . 42
2.4 Further Reading . 46
Problems . 46
References. 53

ix

3 Numerical Integration of Ordinary Differential Equations. 55
3.1 Taylor’s Theorem . 55
3.2 One-Step Methods . 60

3.2.1 Backward-Euler Method . 63
3.2.2 Trapezoidal Method . 65
3.2.3 Runge–Kutta Methods. 66
3.2.4 The Generalized-a Method . 73

3.3 Multistep Methods . 82
3.3.1 Predictor-Corrector Methods . 86
3.3.2 Backward Differentiation Formulas 93
3.3.3 Numerical Differentiation Formulas. 96

3.4 ODE Solver Implementations in Matlab and COMSOL 97
3.5 Further Reading . 100
Problems . 100
References. 103

4 Distributed Systems Modelling
with Partial Differential Equations. 105
4.1 Modelling with PDEs . 105

4.1.1 The Gradient . 105
4.1.2 The Divergence. 108
4.1.3 The Curl . 112
4.1.4 The Divergence Theorem . 113
4.1.5 Conservation Law Formulation . 117
4.1.6 The Laplacian . 119
4.1.7 PDE Boundary Conditions . 120

4.2 Basic Analytical and Numerical Solution Techniques. 123
4.2.1 Separation of Variables . 123
4.2.2 Finite Difference Method . 139
4.2.3 Method of Lines . 147

4.3 Further Reading . 153
Problems . 153
References. 157

5 The Finite Element Method . 159
5.1 Finite Elements for 1D Systems . 159

5.1.1 Weak Form PDE Equivalent . 160
5.1.2 Basis Function Approximation . 164
5.1.3 Higher-Order Basis Functions . 175

5.2 Finite Elements for 2D/3D Systems . 179
5.2.1 Weak Form Description . 180
5.2.2 Basis Function Approximation . 183

x Contents

5.3 FEM Numerical Implementation. 190
5.3.1 Assembly of System Matrices . 191
5.3.2 Gaussian Quadrature . 192
5.3.3 Non-Linear Systems . 194

5.4 Further Reading . 195
Problems . 196
References. 197

Part II Bioengineering Applications

6 Modelling Electrical Stimulation of Tissue . 201
6.1 Electrical Stimulation . 201

6.1.1 Maxwell’s Equations. 201
6.1.2 Electrostatic Formulations . 203
6.1.3 Volume Conductor Theory . 204
6.1.4 Example: Cell Culture Electric Field Stimulator 207
6.1.5 Example: Access Resistance of Electrode Disc 210

6.2 Modelling Electrical Activity of Tissues. 215
6.2.1 Continuum Models of Excitable Tissues 215
6.2.2 Example: Modelling Spiral-Wave Reentry

in Cardiac Tissue . 217
6.2.3 Modelling PDEs/ODEs on Boundaries,

Edges and Points. 225
6.2.4 Example: Axonal Stimulation Using Nerve Cuff

Electrodes . 226
6.3 Further Reading . 234
Problems . 234
References. 235

7 Models of Diffusion and Heat Transfer . 237
7.1 Diffusion. 237

7.1.1 Fick's Laws of Diffusion . 237
7.1.2 Example: Diffusion and Uptake into a Spherical Cell 238
7.1.3 Convective Transport . 241
7.1.4 Example: Drug Delivery in a Coronary Stent 242

7.2 Heat Transfer . 247
7.2.1 Heat Conduction and Convection . 248
7.2.2 The Bioheat Equation . 250
7.2.3 Example: RF Atrial Ablation . 251

7.3 Further Reading . 258
Problems . 258
References. 260

Contents xi

8 Solid Mechanics . 263
8.1 Biomechanics . 263
8.2 Tensor Fundamentals . 263

8.2.1 Tensor Definition . 263
8.2.2 Indicial Notation . 265
8.2.3 Tensor Transformation Law . 266
8.2.4 Tensor Invariants. 268

8.3 Mechanics Principles . 271
8.3.1 Stress . 271
8.3.2 Strain . 275

8.4 Linear Elasticity . 281
8.4.1 Example: Detecting Tension in a Respirator Strap 284

8.5 Linear Viscoelasticity . 290
8.6 Hyperelastic Materials . 291

8.6.1 Example: Myocardial Shear . 294
8.7 Further Reading . 299
Problems . 300
References. 302

9 Fluid Mechanics . 305
9.1 Fluid Motion . 305

9.1.1 Example: Laminar Flow Through a Circular Tube 306
9.2 Navier-Stokes Equations . 311

9.2.1 Example: Drug Delivery in a Coronary Stent Revisited . . . 314
9.3 Non-laminar Flow. 321
9.4 Modelling Blood Flow . 324

9.4.1 Electric Circuit Analogues for Blood Flow 324
9.4.2 Example: Aortic Blood Flow . 325
9.4.3 Blood as a Non-newtonian Fluid. 329
9.4.4 Example: Axial Streaming of a Blood Cell 330

9.5 Further Reading . 339
Problems . 339
References. 341

Appendix A: Matlab Fundamentals . 343

Appendix B: Overview of COMSOL Multiphysics 355

Solutions . 381

Index . 495

xii Contents

Acronyms

0D Zero-Dimensional
1D One-Dimensional
2D Two-Dimensional
3D Three-Dimensional
AE Algebraic Equation
BDF Backward Differentiation Formula
CAD Computer-Aided Design
CFD Computational Fluid Dynamics
DAE Differential-Algebraic Equation
DC Direct Current
ECG Electrocardiogram
FD Finite Difference
FE Finite Element
FEM Finite Element Method
GMRES Generalized Minimal Residual Method
LV Left Ventricle/Ventricular
NDF Numerical Differentiation Formula
ODE Ordinary Differential Equation
PDE Partial Differential Equation
RF Radio Frequency
RMS Root Mean Square
SI International System of Units (Systéme International d’Unités)
STL Stereolithography
TTX Tetrodotoxin
VRML Virtual Reality Modeling Language

xiii

Part I
Bioengineering Modelling Principles,

Methods and Theory

The first part of this text will cover fundamentals of bioengineering modelling,
including computational techniques and relevant principles of physics.

Chapter 1
Introduction to Modelling in Bioengineering

1.1 Modelling and Simulation in Medicine and Biology

In mathematics and engineering, modelling is defined as the formulation of a math-
ematical or computational representation of a physical system. Such representations
(or models) are typically solved numerically using a computer: a process known as
simulation. The termsmathematical modelling (i.e. representing a systemwith equa-
tions) and computational modelling (replicating a system on computer) are largely
synonymous insofar that numerical computation is utilised in both.

Modelling is central to science itself. Since the time of the ancient Greeks, mathe-
matical principles have been regarded as integral to understanding the cosmos. Plato
for instance, was said to have placed an inscription over the doors of his philosophical
Academy: “let no one ignorant of geometry enter under my roof” [16].1 However the
first great triumph of modelling occurred in the 17th century with the publication of
Isaac Newton’s “Mathematical Principles of Natural Science” (otherwise known as
the “Principia”), in which he expounded his laws of motion and the inverse-square
law of gravity, accurately accounting for the complex motions of the planets with a
simple and elegant mathematical description. Since then, modelling has continued
to enjoy enormous success throughout the fields of physics and engineering.

However the slowest areas of science to succumb to mathematical description
have arguably been those ofmedicine and biology, owing largely to the overwhelming
complexity and variation found in living systems. There are no analogous simple laws
of biology as in physics which lend themselves to simple mathematical formulation.
Despite the complexity inherent in biological systems, the last several decades have
seen major advances in the application of mathematics to biology, physiology and
medicine. Modelling is increasingly being utilised to study the integrative behaviour
of complex biological systems [5, 13, 14, 17], also known as systems biology.

Today, computational modelling is used extensively for biomedical research and
medical device development in areas as diverse as biomechanics and orthopaedics,

1mhde…j ¢gewmštrhtoj e„s…tw mou t¾n stšghn.

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7_1

3

4 1 Introduction to Modelling in Bioengineering

fluid dynamics, drug delivery, tissue ablation, neurostimulation and many others.
Computer models are increasingly being utilised for virtual prototyping of medical
devices and implants [19]. Standards for reporting medical simulations are under
active development [6], as are standards for the representation and exchange of
biological models [3, 12]. Major initiatives are underway for developing multiscale
physiological models ranging from the molecular through to the whole-organ and
organ systems scale [20]. Furthermore, patient-specific computer simulations are
increasingly being employed to tailor individualised treatments and therapies [18].

Bioengineering models are simulated using custom-written, open-source or com-
mercial software. In many cases, the models require implementation of highly-
specific equations, or utilise complex coupling between multiple systems. As such,
they require simulation platforms flexible enough to cope with a range of formula-
tions and physics implementations. In this text,Matlab2 andCOMSOLMultiphysics3

softwarewill be used to implement a variety of bioengineeringmodels. For the reader
unfamiliar with these software, a brief overview ofMatlab and COMSOL is provided
in Appendices A and B respectively.

1.2 The Modelling Process

The modelling process typically involves iteration of the following four stages: For-
mulation, Coding, Verification and Validation, as shown in Fig. 1.1.

The first step is this process is model formulation, which consists in choosing
the appropriate equations/rules that describe the system to be modelled. In some
cases, this will simply involve selecting the appropriate laws of physics known to
apply e.g. conservation of mass, charge, etc. In other cases, specialised formulations
characteristic of the systemwill need to be derived. This latter process will depend to
some extent on the level of computational detail required, which in turn will depend
on the objectives of the model itself. Typically the model formulations will represent
some degree of simplification, as opposed to reproducing the full extent of biological
complexity known to be present in the system. To this end, modelling is as much art
as it is science.

The next step in the modelling process is to implement the formulations on com-
puter, a process referred to as coding. This includes manually programming the
model equations or entering these in a modelling software user-interface, along with
initial variable values and/or boundary conditions. In addition, numerical algorithms
must be implemented for solving the model. The use of specialised mathematical or
modelling software such as Matlab or COMSOL can drastically speed-up this cod-
ing stage, due to inbuilt user-interfaces for entering equations as well as extensive
libraries of numerical solvers from which the modeller can select.

2The Mathworks Inc, Natick, Massachusetts, U.S.A.
3COMSOL AB, Stockholm, Sweden.

1.2 The Modelling Process 5

Fig. 1.1 The modelling
process. The first stage
begins with model
formulation (choosing
equations/rules), followed by
coding (implementation on
computer), then verification
(checking solution
accuracy), followed finally
by validation (checking if
model matches observed
system behaviour). It may be
necessary to visit earlier
stages of the process as
shown if the model fails the
verification or validation
steps

Results of computer simulations following the coding procedure must then be
subjected to model verification. This entails checking whether the simulation results
represent accurate solutions of the underlying model formulation. This verification
process may involve, for example, reducing the numerical integration step size to
verify that the simulations have converged to the same solution towithin an acceptable
tolerance, irrespective of the step size. If the verification step fails, the user will need
to return to the coding step to make adjustments, either by modifying parameters
of the numerical solver or the underlying spatial discretization employed, or even
switching to another more appropriate solver.

The final step in the modelling process is that of validation. Even though the
simulation results may have been verified, this of itself provides no guarantee that the
model is a sufficiently accurate representation of the system in question. Simulation
results must match observed behaviour of the real system. If the model fails the
validation step, it may be necessary to revisit the coding step, modifying formulation-
independent model features as parameter values, initial variables, and/or boundary
conditions. It may even be necessary to reformulate the model again, reiterating the
entire modelling process from the beginning.

1.3 Mathematical Model Types

Mathematical models can be categorised into linear or non-linear, static or dynamic,
deterministic or stochastic, continuous or discrete, or rule-based, as described below.

6 1 Introduction to Modelling in Bioengineering

1.3.1 Linear Versus Non-linear

A linear model is characterised by a set of equations whose general solution (that
is, ignoring constraints imposed by initial values or boundary conditions) is a linear
combination of other solutions of the same set of equations. That is, if φ1 and φ2 are
distinct solutions of a linearmodel, then for all constants c1, c2, the linear combination
c1φ1 + c2φ2 is also a solution.

Example 1.1 Consider the following simple model of bacterial growth in a Petri
dish:

dN

dt
= kN (1.1)

where N is the total number of bacteria, and k is a parameter. Determine if this
equation is linear.
Answer: To ascertain if this equation is linear, we assume that φ1(t) and φ2(t) are
two distinct solutions. We can readily show that N = c1φ1(t) + c2φ2(t) is also a
solution:

dN

dt
= d

dt

[
c1φ1(t) + c2φ2(t)

]

= c1
dφ1(t)

dt
+ c2

dφ2(t)

dt
= c1kφ1(t) + c2kφ2(t)

= k
(
c1φ1(t) + c2φ2(t)

)

= kN

and thus Eq.1.1 is linear. �

Example 1.2 We now modify Eq.1.1 such that the Petri dish can only support a
maximum bacterial population Nmax:

dN

dt
= kN

(
1 − N

Nmax

)
(1.2)

then it is left as an exercise for the reader to show that Eq.1.2 is non-linear (see
Problem 1.1b).

In general, linear models are easier to solve for than their non-linear counterparts:
numerical solvers often run into convergence issues when attempting to solve highly
non-linear models.

1.3 Mathematical Model Types 7

1.3.2 Dynamic Versus Static

Models whose dependent variables vary with time are referred to as dynamic or
time-dependent. An example is the 1D diffusion equation:

∂c

∂t
= D

∂2c

∂x2
(1.3)

where c is the concentration of a diffusing substance and D is a parameter known as
the diffusion coefficient. Clearly variable c will dependent on time t as well as space
x. However, if instead we are interested in the steady-state concentration profile as
t → ∞, then by setting the time-derivative to zero in Eq. 1.3, we obtain the static
form:

D
∂2c

∂x2
= 0 (1.4)

where variable c now only depends on x. When solving time-dependent models on
computer, solutions to dependent variablesmust be stored for all required output time
points, as well as discrete spatial locations. As a result, storage requirements for time-
dependent models are typically much larger than those of their static counterparts,
particularly in 3D.

1.3.3 Deterministic Versus Stochastic

Models specified by exact mathematical or rule-based formulations involving no ran-
dom variables are referred to as deterministic. In contrast, models involving random
processes are referred to as stochastic.4

Example 1.3 Consider the following stochastic model of a single ion channel in a
cell membrane:

Closed
α−⇀↽−
β

Open

where the channel can be in either the Open or Closed state and α, β determine the
transition probabilities between each state as shown.When the channel is in its Open
state, ions can enter or leave the cell through the channel, and this can influence the
resulting electric potential developed across the membrane. It is therefore of interest
to model the kinetics of such channels in order to understand the biophysical mech-
anisms underlying electrical activity in excitable cells [9]. Using Matlab, simulate
the stochastic behaviour of such a channel.

4From the Greek stoc£zomai – I ponder over, guess at, take aim.

8 1 Introduction to Modelling in Bioengineering

Answer: For a sufficiently small time step �t, the state transition probabilities are
governed by the following:

• If the channel is Closed, the probability it will switch to Open is α�t.
• If the channel is Open, the probability it will switch to Closed is β�t.

We can simulate the stochastic behaviour of, for example, N = 1000 such channels,
assuming α = 0.1ms−1, β = 0.01ms−1 and �t = 0.001ms, with all channels
initially in the Closed state at t = 0. The proportion of all N channels in the Open
state can be determined using the following Matlab code:

% Stochastic model of ion channel kinetics

alpha = 0.1; % (1/ms)

beta = 0.01; % (1/ms)

Dt = 0.001; % (ms)

N = 1000; % no. of ion channels

time = 0:Dt:40; % (0 --> 40 ms)

state = zeros(length(time),N); % channel states

% generate random variable array:

R = rand(length(time)-1,N);

% generate sequence of states for each channel:

for j = 1:N

for i = 2:length(time)

if (state(i-1,j) == 0) % if previously closed

if (R(i-1,j) <= alpha*Dt)

state(i,j) = 1;

else

state(i,j) = 0;

end;

else % if previously open

if (R(i-1,j) <= beta*Dt)

state(i,j) = 0;

else

state(i,j) = 1;

end;

end;

end;

end;

Open_stochastic = sum(state,2)/N; % open proportion

Open_deterministic = ... % deterministic proportion

(1-exp(-time*(alpha+beta)))*alpha/(alpha+beta);

% plot result

plot(time, Open_stochastic, ’k-’, ...

time, Open_deterministic, ’k--’), ...

1.3 Mathematical Model Types 9

xlabel(’time (ms)’), ...

ylabel(’Proportion Open’), ...

title(’Ion Channel Dynamics’), ...

legend(’Open (stochastic)’, ...

’Open (deterministic)’, ...

’Location’, ’East’);

with the resulting Matlab plot generated shown in Fig. 1.4. Also shown in the figure
is the theoretical proportion of Open channels x as N → ∞, given by:

x = α

α + β

[
1 − e−(α+β)t

]
(1.5)

which is the solution of the deterministic model

dx

dt
= α(1 − x) − βx (1.6)

with initial value x(0) = 0. Depending on the context, a sufficiently large number
of stochastic processes can usually be averaged to yield an equivalent deterministic
description of the system, such asEq.1.6. The remainder of this textwill concern itself
primarilywith deterministicmodels, as these aremore common in the bioengineering
context (Fig. 1.2). �

1.3.4 Continuous Versus Discrete

Whenmodelling biological tissues, it is often convenient to represent the tissue using
a collection of distinct subunits, each representing individual cells or groups of cells.
In general, models comprised of a finite number of distinct subunits are referred

Fig. 1.2 Proportion of open
ion channels as a function of
time, solved using Matlab®

for N = 1000, α = 0.1ms−1

and β = 0.01ms−1. The
solid curve is the output of
the stochastic simulation
using �t = 0.001ms, whilst
the dashed curve is the
solution of the deterministic
equivalent given by Eq.1.6.
The channels are all assumed
to be in the Closed state at
t = 0

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

time (ms)

P
ro

po
rti

on
 O

pe
n

Ion Channel Dynamics

Open (stochastic)
Open (deterministic)

10 1 Introduction to Modelling in Bioengineering

Fig. 1.3 a
Force-displacement
characteristic of non-linear
spring unit: x0 is the slack
length and k is the spring
constant, b Schematic
representation of the same
spring unit: the spring resists
stretch only after its slack
length has been exceeded, c
Schematic representation of
entire muscle fibre
comprised of multiple
parallel spring units, each
with varying slack length

to as discrete. In the limit of an infinite number of subunits, each one vanishingly
small, such a model can be represented by a continuous ‘macroscopic’ equivalent
description, with all model variables being continuous in time and/or space. The ion
channel kineticmodel of the previous section is an example of a discrete systemwhen
the number of channels N is finite. As N becomes large, the discrete description is
well-approximated by the continuous formulation of Eq.1.6.

Example 1.4 Another example of a discrete model is illustrated in Fig. 1.3, which
describes the non-linear mechanical properties of passive muscle. In this model, the
muscle is assumed to consist of multiple ‘springs’ in parallel, each with its own slack
length x0. These spring elements could represent, for example, individual collagen
fibres which exhibit slack due to their helical arrangement which ‘uncoils’ when the
fibre is stretched. Below the slack length, the collagen fibres offer no resistance to
stretch, but after uncoiling, they oppose any further stretch with a force in proportion
to their extension beyond the slack length. The force-displacement characteristic of
such a spring unit is shown in Fig. 1.3a, with a schematic representation of the unit
in Fig. 1.3b. In the discrete muscle model, the multiple spring units are connected
in parallel, each with identical stiffness k but varying slack length, as depicted in
Fig. 1.3c.

Let N be the number of parallel springs and kmax the maximum stiffness of the
muscle when all springs have been recruited, that is all springs have all been stretched
above their slack length. Since the springs are connected in parallel,

kmax = Nk (1.7)

Furthermore, we assume that the slack lengths of all unit springs follow a lognormal
distribution, characterised by parameters μ and σ according to:

1.3 Mathematical Model Types 11

φx = 1

σ
√
2π

∫ x

0

1

ξ
e

−(ln ξ−μ)2

2σ2 dξ (1.8)

where φx denotes the proportion of all springs having slack lengths between 0 and
x. Lognormal distributions are useful for describing strictly positive quantities: the
distribution given by Eq.1.8 is related to the standard normal distribution in that the
quantity (ln ξ) is distributed normally with mean μ and standard deviation σ . The
discrete-spring model is therefore characterised by four parameters: kmax, N , μ, and
σ . Solve this model in Matlab, and determine the force-displacement characteristic
for reasonable physiological values of these parameters.
Answer: To represent Eq.1.8 as a discrete distribution in N springs, we solve for the
N values of slack length x which yield φx = i

N+1 for i = 1 . . .N . To do this, Matlab
provides the helpful logninv function, as implemented in the following code:

N = 10;

k_max = 87; % N/cm

mu = 3.88;

sigma = 0.027;

x_start = 40; % cm

x_end = 52; % cm

x0 = logninv((1/(N+1):1/(N+1):N/(N+1)),mu,sigma);

x = [x_start, x0, x_end];

F = zeros(size(x));

dynamic_k = 0;

for i=2:N+2

F(i) = F(i-1) + dynamic_k*(x(i)-x(i-1));

dynamic_k = dynamic_k + k_max/N;

end;

plot(x,F,’-k’, x(2:end-1),F(2:end-1),’ks’), ...

xlabel(’x (cm)’), ylabel(’F (N)’), ...

title(’Passive Discrete Muscle Model’);

where parameters for the discrete model (N = 10, kmax = 87N cm−1, μ = 3.88 and
σ = 0.027) were chosen to match an empirical passive force-displacement relation
for human gastrocnemius muscle given by F = ag[ekg(x−lg) − 1] if x > lg , otherwise
F = 0, usingmedian reported parameter values ofag = 0.053N, kg = 0.92428 cm−1

and lg = 41.381 cm [11]. The force-displacement characteristic of this discrete
model is shown in Fig. 1.4.

In the limit N → ∞, the discrete model can be expressed as the continuous
distribution of Eq.1.8. In this case, the dynamic stiffness of the muscle, dF/dx, is
simply equal to the proportion of all springs having slack length less than the current
displacement x multiplied by the maximum muscle stiffness kmax:

12 1 Introduction to Modelling in Bioengineering

40 42 44 46 48 50 52
0

50

100

150

200

250

300

350

x (cm)

F
(N

)

Passive Discrete Muscle Model

Fig. 1.4 Force-displacement characteristic of discrete 1D muscle spring model with parameters
N = 10, kmax = 87N cm−1, μ = 3.88 and σ = 0.027. The hollow squares denote the positions
of the piecewise linear nodes of the curve, and have x coordinates corresponding to the discrete
spring slack lengths. The dashed curve is the solution to the continuous limit as N → ∞, given by
Eq.1.10

dF

dx
= kmaxφx = kmax

σ
√
2π

∫ x

0

1

ξ
e

−(ln ξ−μ)2

2σ2 dξ (1.9)

and taking the derivative of both sides with respect to x, we obtain the continuous
equivalent:

d2F

dx2
= kmax

xσ
√
2π

e
−(ln x−μ)2

2σ2 (1.10)

the solution of which is also plotted in Fig. 1.4, using the initial conditions F = 0,
dF/dx = 0 at x = 0. �

1.3.5 Rule-Based

Rule-based models are those for which model behaviour is not expressed in terms
of algebraic or differential equations, but through algorithms that readily lead to
implementation on computer. An important class of suchmodels is cellular automata
[7], the most famous example being John Conway’s Game of Life [8]. Such models
consist of an array of cellular elements whose states are evolving with time. The
current state of each cell and the state of its immediate neighbours defines its state
in the next time step, according to a defined set of rules. Such a cellular automata
approach has been used, for example, to model the spread of electrical activation in
cardiac tissue, including factors underlying ventricular fibrillation [15]. Other types
of rule-based models are used to reproduce branching features of tree-like biological

1.3 Mathematical Model Types 13

Fig. 1.5 Neuronal branching algorithm. The root node of the neuron (soma) is shown at bottom
left, labelled as 1, with three additional nodes i − 1, i and i + 1. Point P represents a seed point.
The neuron can grow towards P by forming a new segment connecting P to an existing node that
minimizes the cost function (1−b)diP +bsiP over all values of i, where b is a fixed ‘balance factor’,
diP is the Euclidean distance between node i and P, and siP is the total path length along the neuron
from the root node through node i to P

structures such as the arteries, airways of the lung, or neuronal dendrites, as described
in the below example.

Example 1.5 Considered a neuronal branching model adapted from Cuntz et al. [4],
in which a neural dendritic tree ‘grows’ from a single node (the soma) to connect to a
set of pre-defined seed points. Consider a seed point P, as shown in Fig. 1.5, adjacent
to an existing neural branch, with three representative nodes on the neuron labelled
i − 1, i and i + 1. The neuron will ‘grow’ towards P by forming a new straight-line
segment connecting an existing node to P. The node chosen is that which minimizes
the following cost function over all nodes i:

costi = (1 − b)diP + bsiP (1.11)

where diP is the Euclidean distance between node i and seed point P, sip is the total
path length along the neuron from node 1 through node i terminating at P, and b
is a user-defined ‘balance factor’ lying between 0 and 1. Finally, for the optimal
node i that minimizes Eq.1.11, a new node j is appended to the neuron by drawing a
straight-line segment not greater than length dseg from node i towards P, where dseg
is a parameter defining the length of each neural segment. If the Euclidean distance
between i and P is greater than dseg , some random jitter is added to the coordinates
of node j, otherwise the segment is connected directly to P. Implement this neural
growth model in Matlab.

Answer: TowriteMatlab code to implement the above algorithm,we introduce the
following bookkeeping convention for our neuron: define a M × 5 array neuron,
where M is the total number of nodes. Each row of the array contains five pieces of
information for one node as follows:

14 1 Introduction to Modelling in Bioengineering

Fig. 1.6 Dendritic tree structures produced by the neuronal branching Matlab code. Numbers next
to each structure represent the corresponding balance factor used. The left panel shows the default
tree structure generated using the balance factor of 0.5, as per the Matlab code in the text. The right
panels show, from top to bottom, corresponding structures for balance factors of 0.1, 0.7 and 0.9,
using the same seed points for all four trees. These seed points were randomly placed in a circular
annular region surrounding the root node

[node number, x coordinate, y coordinate, parent node, ...

path length to root node]

The array is initialised to [1 0 0 0 0] representing root node 1 located at
(0, 0). Each time a new node is added, a row is appended to the array until all seed
points have been reached. The Matlab code implementing this algorithm is given
below for random set of seed points located within a circular annular region, with the
resulting dendritic tree shown in Fig. 1.6 for a range of balance factors. Using this
algorithm, it is possible to generate a wide range of realistic neuron morphologies by
adjusting the seed point placement and number, as well as the balance factor used [4].

N = 500; % total no. of seed pts

mu = 100; % mean annular radius (um)

sd = 40; % annular standard deviation (um)

jitt = 2; % jitter in generated node positions (um)

seg = 10; % neuron segment length (um)

bf = 0.5; % balance factor

% generate random seed points

theta = 2*pi*rand(1,N);

r = mu + sd*randn(1,N);

1.3 Mathematical Model Types 15

x = r.*cos(theta);

y = r.*sin(theta);

% initialize root node (soma)

neuron = [1, 0, 0, 0, 0];

points_left = N; % seed points left to connect

nodes = 1;

% generate neural segments

while (points_left > 0)

best_dist = inf;

for ii = 1:nodes

dist_1 = sqrt((x-neuron(ii,2)).ˆ2 + ...

(y-neuron(ii,3)).ˆ2);

dist_2 = dist_1 + neuron(ii,5);

dist = (1-bf)*dist_1 + bf*dist_2;

[min_dist, seed_pt] = min(dist);

if (min_dist < best_dist)

best_dist = min_dist;

best_dist_1 = dist_1(seed_pt);

best_pt = seed_pt;

best_node = ii;

end;

end;

if (best_dist_1 <= seg)

node_x = x(best_pt);

node_y = y(best_pt);

a = find(neuron(:,1)==best_node);

neuron = [neuron; [nodes+1, node_x, node_y, ...

best_node, neuron(a,5)+best_dist_1]];

x(best_pt) = [];

y(best_pt) = [];

points_left = points_left-1;

else

jitter = jitt*randn(2,1);

a = find(neuron(:,1)==best_node);

x0 = neuron(a,2);

y0 = neuron(a,3);

node_x = x0+seg*(x(best_pt)-x0)/best_dist_1 + ...

jitter(1);

node_y = y0+seg*(y(best_pt)-y0)/best_dist_1 + ...

jitter(2);

neuron = [neuron; [nodes+1, node_x, node_y, ...

best_node, seg+neuron(a,5)]];

end;

16 1 Introduction to Modelling in Bioengineering

nodes = nodes+1;

end;

% plot neuron

x1 = neuron(2,2);

y1 = neuron(2,3);

plot([0 x1], [0 y1], ’k’, ’LineWidth’, 2), axis(’square’);

if (nodes > 2)

hold on;

for jj = 3:nodes

x1 = neuron(jj,2);

y1 = neuron(jj,3);

a = find(neuron(:,1)==neuron(jj,4));

x2 = neuron(a,2);

y2 = neuron(a,3);

plot([x1 x2], [y1 y2], ’k’, ’LineWidth’, 2), ...

axis(’square’);

set(gca,’xticklabel’,[]);

set(gca,’yticklabel’,[]);

end;

hold off;

end;

1.4 Dimensional Analysis

Useful information on a physical system can often be obtained purely through analy-
sis of the dimensions of its physical properties, a process referred to as dimensional
analysis. This process can readily lead to mathematical relationships between these
physical properties in the absence of other detailed information on physical principles
involved.

1.4.1 Dimensions and Units

Physical properties of a system, expressed as variables or parameters, are associated
with a set of seven fundamental dimensions, each of which has its own base unit
of measure. A list of the fundamental dimensions and base units according to the
International System of Units (SI)5 is given in Table1.1. The dimensions of any other
physical quantity can be expressed in terms of these fundamental quantities. Thus,

5Systéme International d’Unités.

1.4 Dimensional Analysis 17

Table 1.1 Fundamental dimensions and SI base units

Dimension Symbol SI unit name SI symbol

Length L metre, meter m

Mass M kilogram kg

Time T second s

Electric current I ampere A

Temperature Θ kelvin K

Amount of substance N mole mol

Luminous intensity J candela cd

for example, the dimensions of area are L2 and volume L3, where L is the symbol
for the dimension of length (Table1.1).

In any equation that links physical quantities together, all terms must be consis-
tent in terms of their dimensionality. In practice, this means that (a) both sides of
an equation must have the same dimension, (b) each term appearing in a sum must
have the same dimension and (c) arguments of transcendental and special functions
such as exponentials, logarithms and trigonometric functions must be dimension-
less. Knowledge of the relationship between various physical quantities allows their
dimension to be readily determined.

Example 1.6 Find the dimensions of force.

Answer: To find the dimensions of force F, which we denote by [F], we can use the
equation F = ma, where m is mass and a acceleration, to obtain:

[F] = [m][a]
= (M)

(
L

T 2

)

= MLT−2 �

Example 1.7 Determine the dimensions of pressure.

Answer: We can use the relation P = F/A, where P is pressure, F is force and A
area to obtain:

[P] = [F]/[A]
= (MLT−2)/(L2)

= ML−1T−2 �

18 1 Introduction to Modelling in Bioengineering

Fig. 1.7 Fluid with linearly varying velocity profile. Shear stress τ (in Nm−2) is defined as the
viscosity μ multiplied by the velocity gradient dv/dy

Note that some physical quantities are themselves dimensionless. This includes the
radian measure of an angle, defined as the arc length subtended on a circle by the
angle divided by the radius. Hence its dimension is L/L = 1.

Example 1.8 A final example relates to the dimension of viscosity, loosely defined
as the internal friction of a fluid moving past itself. To more formalise its definition,
consider the case of a fluid moving in a medium such that its velocity v is linearly
varying with spatial position y, as shown in Fig. 1.7. The relative motion of fluid
layers generates an internal shear stress τ , defined as force per unit area, which
opposes the fluid motion and is given by:

τ = μ

(
dv

dy

)

where μ is the viscosity. Using this expression, determine the dimension of μ.

Answer:

[τ] = [μ]
[
dv

dy

]

[F]
[A] = [μ] [v][y]

∴ [μ] = [F][y]
[A][v]

= (MLT−2)(L)

(L2)(LT−1)

= ML−1T−1 �

Dimensions of some common physical quantities are summarised in Table1.2.

1.4 Dimensional Analysis 19

Table 1.2 Dimensions and SI units of common physical quantities

Quantity Dimension SI unit

Area L2 m2

Volume L3 m3

Velocity LT−1 ms−1

Acceleration LT−2 ms−2

Mass density ML−3 kgm−3

Force MLT−2 kgms−2 = N (newton)

Pressure ML−1T−2 Nm−2 = Pa (pascal)

Work, energy ML2T−2 Nm = J (joule)

Electric charge IT As = C (coulomb)

Electric potential ML2T−3I−1 kgm2 s−3 A−1 = V (volt)

1.4.2 Buckingham π-Theorem

TheBuckinghamπ-theorem [2] is a powerful tool in dimensional analysis that allows
mathematical relationships to be derived between physical quantities from dimen-
sional considerations only, without detailed knowledge of the physical principles
involved. Consider a system involving n dimensionally independent physical quan-
tities q1, q2, . . . , qn, such that there exists a non-trivial mathematical relationship
between them given by

f (q1, q2, . . . , qn) = 0 (1.12)

If the dimensions of the n quantities can be expressed using m fundamental dimen-
sions, then the Buckingham π-theorem states that n−m independent dimensionless
quantities π1, π2, . . . , πn−m can be defined from the products and quotients of the
original quantities such that a non-trivial mathematical relationship corresponding
to Eq.1.12 exists between these dimensionless quantities:

f ∗(π1, π2, . . . , πn−m) = 0 (1.13)

The theorem gives no information of the nature of f ∗, only that it exists. The precise
form of f ∗ must be derived from theoretical principles or from experiment.

Example 1.9 Use Buckingham’s-π theorem to derive an expression for blood flow
in a circular-cylindrical artery.

Answer: We assume that the vessel is a circular cylinder of diameter D and length L,
and that flow arises due to a pressure differential ΔP across the ends of the tube. For
this problem, the physical quantities to be included are vessel diameterD ([D] = L),
pressure difference per unit length of vessel ΔP/L ([ΔP/L] = ML−2T−2), viscosity
of blood μ ([μ] = ML−1T−1), and flow Q ([Q] = L3T−1). Since there are four
physical quantities in three fundamental dimensions, it follows that there will only

20 1 Introduction to Modelling in Bioengineering

a single (4 − 3 = 1) independent dimensionless quantity π1 that can be formed.
Taking the product of powers of all four original physical quantities, we form the
new quantities

πi = Da

(
ΔP

L

)b

μcQd (1.14)

where the powers a, b, c, d will be chosen to make these quantities dimensionless.
Inserting the fundamental dimensions into Eq.1.14, we obtain:

[πi] = [L]a[ML−2T−2]b[ML−1T−1]c[L3T−1]d
= La−2b−c+3dMb+cT−2b−c−d

For these quantities to be dimensionless, we require that

a − 2b − c + 3d = 0

b + c = 0

−2b − c − d = 0

which has infinitely many solutions of the form

⎛
⎜⎜⎝
a
b
c
d

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−4
−1
1
1

⎞
⎟⎟⎠ α

where α may be freely chosen. Choosing α = 1, we have

π1 = D−4

(
ΔP

L

)−1

μQ

and from the theorem of Buckingham (Eq.1.13), there exists a non-trivial function
f ∗ such that

f ∗
(
D−4

(
ΔP

L

)−1

μQ

)
= 0

which implies

D−4

(
ΔP

L

)−1

μQ = c

where c is a dimensionless constant. Hence, on re-arranging:

Q = c

(
D4

μ

)(
ΔP

L

)

1.4 Dimensional Analysis 21

Fig. 1.8 Two-compartment pharmacokinetic model of glucose-insulin interaction in the human
body. G denotes glucose concentration in a lumped glucose compartment and I is insulin concen-
tration in another lumped remote compartment. Ip(t) represents input insulin injected into the blood
plasma, and B0 is the basal production of glucose by the liver. Insulin is extracted into the kidneys,
whilst glucose is uptaken by the peripheral tissues and the liver. The latter rates of glucose uptake
are dependant on I . k1-k6 are rate parameters

Fromdimensional analysis alone,we have deduced that bloodflow in a circular vessel
is proportional to both the pressure gradient along the vessel and the fourth power of
its diameter, as well as inversely proportional to the viscosity, without invoking any
advanced principles of fluid mechanics! �

1.5 Model Scaling

For mathematical models involving multiple variables and parameters, it is often an
advantage to apply an appropriate scaling of variables to reduce the total number of
parameters characterising the system. Scaling is often used to expedite mathemat-
ical analysis of model behaviour, but is rarely used in computational modelling of
biological and physiological systems, due to the complexity of the models involved.
Scaling, however, is useful in reducing the total number of parameters in a given
model, and is particularly useful when fitting models to experimental data.

The aim therefore of model scaling is to reduce the number of parameters char-
acterising a system. Typically, although not necessarily, the scaling of variables is
chosen to produce dimensionless quantities.

Example 1.10 Consider a minimal model of glucose-insulin kinetics6 in the human
body, as shown in Fig. 1.8. The concentrations of insulin and glucose are denoted by
I and G respectively, representing an insulin ‘remote’ compartment and a glucose
compartment. The input to this system is a time-dependent insulin concentration Ip(t),
injected into the blood plasma. Model parameters are B0, the basal rate of glucose
production by the liver, and rates k1−k6, representing a total of seven parameters.
Can this number of parameters be reduced?

Answer: The system shown in Fig. 1.8 can be represented by the following pair of
equations:

6Adapted from Bergman et al. [1], model VI.

22 1 Introduction to Modelling in Bioengineering

dI

dt
= k2Ip − k3I (1.15)

dG

dt
= B0 − (k1 + k4I + k5 + k6I)G (1.16)

Now, when Ip = 0 (i.e. no insulin injected), the steady-state values of I and G can
be determined by setting their corresponding time-derivatives to zero, namely:

k2Ip − k3I = 0

B0 − (k1 + k4I + k5 + k6I)G = 0

to yield I∞ = 0 and G∞ = B0
k1+k5

. In particular, the latter G∞ represents a ‘charac-
teristic concentration’ of the system, that can be used to scale I , G and Ip, to yield
the new dimensionless quantities:

I∗ = I

G∞
= (k1 + k5)I

B0
(1.17)

G∗ = G

G∞
= (k1 + k5)G

B0
(1.18)

I∗p = Ip
G∞

= (k1 + k5)Ip
B0

(1.19)

Furthermore, we note that the dimensions of rate parameter k3 in Eq.1.15 are T−1

(see Problem 1.3), which can be used to scale t to yield the dimensionless time
variable:

t∗ = k3t (1.20)

The time-derivatives in Eqs. 1.15 and 1.16 can now be related to derivatives of the
dimensionless variables:

dI

dt
= dI

dI∗
dI∗

dt∗
dt∗

dt
= G∞

dI∗

dt∗
k3 =

(
B0k3

k1 + k5

)
dI∗

dt∗
(1.21)

dG

dt
= dG

dG∗
dG∗

dt∗
dt∗

dt
= G∞

dG∗

dt∗
k3 =

(
B0k3

k1 + k5

)
dG∗

dt∗
(1.22)

Substituting Eqs. 1.17–1.22 into 1.15 and 1.16, after a little algebraic maipulation
we obtain the scaled system of equations:

dI∗

dt∗
= p1I

∗
p − I∗ (1.23)

dG∗

dt∗
= p2(1 − G∗) − p3I

∗G∗ (1.24)

1.5 Model Scaling 23

with p1 = k2
k3
, p2 = k1+k5

k3
and p3 = B0(k4+k6)

k3(k1+k5)
, representing only three parameters

that fully characterise system behaviour. Note that other choices of scaling are also
possible. �

Problems

1.1 (a) Verify from first principles that the following 1D diffusion equation is linear:

∂c

∂t
= D

∂2c

∂x2

where c is concentration and D is a fixed diffusion coefficient.
(b) Verify using first principles that the following equation governing bacterial pop-
ulation N in a Petri dish is non-linear:

dN

dt
= kN

(
1 − N

Nmax

)

where k and Nmax are fixed parameters.

1.2 Determine the dimensions of the following quantities:

(a) Weight
(b) Diffusion coefficient (see Problem1.1a)
(c) Capacitance
(d) Resistance
(e) Cardiac output
(f) Heart rate
(g) Radian angle measure

1.3 For the minimal glucose-insulin kinetic model given by

dI

dt
= k2Ip − k3I

dG

dt
= B0 − (k1 + k4I + k5 + k6I)G (1.25)

the dimensions of I , G and Ip are all N L−3. Find the corresponding dimensions of
B0, k1, k2, k3, k4, k5, and k6.

1.4 (a) In a left ventricular assist pump, the pressure head �P developed across the
device is given by the following empirical relationship:

�P = c0 + c1Q
3
P + c2ω

2

24 1 Introduction to Modelling in Bioengineering

where ω is the angular velocity of the pump impeller in units of rad s−1 and QP is
the pump flow rate in m3 s−1. If �P is in units of Pa (=Nm−2), find the dimensions
and units of the coefficients c0, c1 and c2.
(b) The opening (α) and closing (β) rate coefficients for potassium ionic channels in a
particular excitable cell membrane are given by the following empirical expressions:

α = a(V + b)

1 − exp
[

−(V+b)
c

] β = A exp

[−(V + B)

C

]

where V is the transmembrane potential in mV, and α, β are in units of s−1. Find the
units of parameters a, b, c, A, B and C.

1.5 (a) The electrical resistance across a block of material of resistivity ρ is given
by R = ρL/A, where A is the cross-sectional area and L is the length of the block.
Find the dimensions of resistivity.
(b) A monopolar disk stimulating electrode of diameter D is embedded in a medium
of resistivity ρ. Assuming the medium is an infinite hemisphere centred around the
disk, use dimensional analysis to find a formula for the access resistance of the
electrode, defined as the resistance between the electrode disk and the hemispherical
boundary at infinity.

1.6 The 1Dmomentum balance equation for the velocity u of a fluid may be written
as

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
+ μ

∂2u

∂x2

where x is the spatial position, t is time, ρ is fluid density, μ the viscosity and p is
the pressure. Assuming the system has characteristic velocity, length and frequency
of V , L, and ω respectively, scale all variables to dimensionless quantities and obtain
the dimensionless form of this equation. How many parameters characterise the
dimensionless system?

1.7 The Hodgkin–Huxley [10] equations governing electrical activity in neuronal
axons may be written as a coupled system of four differential equations as follows:

dV

dt
= − 1

C

[
gNam

3h(V − VNa) + gKn
4(V − VK) + gL(V − VL)

]

dn

dt
= αn(1 − n) − βnn

dm

dt
= αm(1 − m) − βmm

dh

dt
= αh(1 − h) − βhh

with

1.5 Model Scaling 25

αn = An(V+Van)

1−exp
[−(V+Van)

san

] βn = Bnexp

[−(V + Vbn)

sbn

]

αm = Am(V+Vam)

1−exp
[−(V+Vam)

sam

] βm = Bmexp

[−(V + Vbm)

sbm

]

αh = Ahexp
[

−(V+Vah)

sah

]
βh = Bh

1 + exp
[

−(V+Vbh)

sbh

]

where V is the transmembrane potential (typically in units of mV), n,m, h are dimen-
sionless gating variables, and istim(t) is the input stimulus current. The remaining
terms represent 25 parameters, namely: C, gNa, VNa, gK , VK , gL, VL, An, Van, san, Bn,
Vbn, sbn, Am, Vam, sam, Bm, Vbm, sbm, Ah, Vah, sah, Bh, Vbh and sbh.

Variables V and tmay be transformed into corresponding dimensionless variables
using

V∗ = V − VK

VNa − VK
t∗ = Bnt

Using these, find the dimensionless form of the above Hodgkin–Huxley equations.
How many parameters are needed to characterise this dimensionless system?

1.8 A hydrogel-based optical sensor responds to concentrations of an analyte (c)
through changes in the mean wavelength (λ) of its emitted reflectance. The wave-
length – log-concentration profile consists of three sequential levels of saturation,
as shown below. Formulate a possible model of this behaviour using a system of
differential equations.

1.9 Steady-state passive electrical behaviour of an unmyelinated nerve cell axon can
be approximated by a cylinder of length 10mm, radius 25µm, filled with axoplasmic
medium of resistivity 0.2�m, and surrounded by amembrane of resistance 0.1�m2.
If a current of 1mA is injected into one end of the axon, and assuming the extracellular
potential is set everywhere to ground, this system can be represented as N discrete
circuit elements shown below:

26 1 Introduction to Modelling in Bioengineering

where the value of each Ri and Rm will depend on N . The membrane voltage across
the Rm’s will monotonically decrease from the current source, and the distance at
which it has decayed to e−1 ≈ 0.368 of its maximum value is known as the length
constant of the axon. Determine the length constant for N = 5, 10, 20, 40, 80 and
160. If the length constant for N = 160 is assumed to be the exact value, what
minimum value of N in this list is sufficient to guarantee a length constant accuracy
of 1%?

1.10 A simplified model of cardiac ventricular electrical activity, based on the cel-
lular automata model of Mitchell et al. [15], consists of a 50 × 50 square grid, each
square representing a small 2 × 2mm2 region of electrical activity in the heart. The
grid is wrapped around into a cylinder, so that the left and right edges are assumed
to be in contact. Every region has exactly eight neighbours, with the exception of
those squares on the top and bottom edges alone. Each square in the grid can be in
one of four states: 0 (quiescent), 1 (relative refractory), 2 (absolute refractory) and 3
(excited). Once a region is excited, it will move through states 3 → 2 → 1 → 0 in
that order, unless it is prematurely excited again.

State Description Behaviour
0 quiescent the region is excited on the next time step if at least one if its

eight neighbours is currently excited
3 excited the region is excited, and can excite neighbouring regions on

the next time step
2 absolute refractory the region cannot be excited, nor can it excite any of its neigh-

bours
1 relative refractory the region is excited on the next time step if more than one

if its eight neighbours is currently excited. The number of
excited neighbours required is dependent on the time elapsed
since entering this state, according to the following:

Time elapsed (in ms) Excited neighbours required
≤2 8
≤4 7
≤6 6
≤8 5
≤12 4
≤20 3
≤50 2

1.5 Model Scaling 27

The duration of the excited state is fixed at Tex and the duration of the relative
refractory period is fixed at 50ms. To account for the inhomogeneous refractory
properties of the tissue, the duration of the total refractory period (absolute + relative)
is a random variable for each region, drawn from a normal distribution of mean Trp
and standard deviation σrp. The ventricles are excited by a periodic impulse from the
atrioventricular (AV) node, of period T , located in a small square on the top border of
the grid one quarter of the way in from the left edge. Whenever applied, this impulse
can only excite the small square if its current state is not absolute refractory. All state
behaviours and parameter values are given on the following page.

Parameter Description Value
Tex Duration of excited state 70ms
Trp Mean total refractory period 250ms
σrp Standard deviation of total refractory period 100ms
T AV node pacing period 0.8 s
dT Time step increment 2ms

(a) Implement this model in Matlab, and plot a snapshot of the heart’s electrical
activity at t = 1.65s.
(b) Decrease the pacing period to 0.2 s, and plot the electrical activity again at
t = 1.7s. You should observe chaotic activation akin to ventricular fibrillation.

References

1. Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sen-
sitivity. Am J Physiol 236:E667–E677

2. Buckingham E (1914) On physically similar systems: illustrations of the use of dimensional
equations. Phys Rev 4:345–376

3. Cuellar AA, LloydCM,Nielsen PF, BullivantDP,NickersonDP,Hunter PJ (2003)An overview
of CellML 1.1, a biological model description language. Simulation 79(12):740–747

4. Cuntz H, Forstner F, Borst A, Häusser A (2010) One rule to the grow them all: a general theory
of neuronal branching and its practical application. PLoS Comput Biol 6(8):e1000877

5. Edelstein-Keshet L (2005) Mathematical models in biology. SIAM, Philadephia
6. Erdemir A, Guess TM, Halloran J, Tadepalli SC, Morrison TM (2012) Considerations for

reporting finite element studies in biomechanics. J. Biomech. 45:625–633
7. Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches to biological mod-

eling. J. Theor. Biol. 160:97–113
8. Gardner M (1970) Mathematical games - the fantastic combinations of John Conway’s new

solitaire game “life”. Sci Am 223:120–123
9. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland
10. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its appli-

cation to conduction and excitation in nerve. J Physiol (Lond) 117:500–544
11. Hoang PD, Herbert RD, Todd G, Gorman RB, Gandevia SC (2007) Passive mechanical prop-

erties of human gastrocnemius muscle-tendon units, muscle fascicles and tendons in vivo. J
Exp Biol 210:4159–4168

28 1 Introduction to Modelling in Bioengineering

12. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ,
Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin
II, Hedley WJ, Hodgman TC, Hofmeyr J-H, Hunter PJ, Juty NS, Kasberger JL, Kremling A,
Kummer U, Le Novère A, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama
Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD,
Stelling J, Takahashi K, Tomita M, Wagner JM, Wang J (2003) The systems biology markup
language (SBML): a medium for representation and exchange of biochemical network models.
Bioinformatics 19:524–531

13. Keener J, Sneyd J (2009) Mathematical physiology: I. cellular physiology. Springer, New York
14. Keener J, Sneyd J (2009) Mathematical physiology: II. systems physiology. Springer, New

York
15. Mitchell RH, Bailey AH, Anderson J (1992) Cellular automaton model of ventricular fibrilla-

tion. IEEE Trans Biomed Eng 39:253–259
16. Smith DE (1958) History of mathematics, vol 1, Dover edn. Dover, New York
17. Stewart I (2012)Mathematics of life: unlocking the secrets of existence. Profile Books, London
18. Suzuki S, Eto K, Hattori A, Yanaga K, Suzuki N (2007) Surgery simulation using patient-

specific models for laparoscopic colectomy. Stud Health Technol Inform 125:464–466
19. Thomas R (2012) Improving medical devices using computational modeling. https://www.

asme.org/engineering-topics/articles/performance-test-codes/improving-medical-devices-
using-computational-mode. Accessed on 3 Aug 2013

20. Viceconti M, Clapworthy G, Van Sint JS (2008) The virtual physiological human - a European
initiative for in silico human modelling. J Physiol Sci 58(7):441–446

https://www.asme.org/engineering-topics/articles/performance-test-codes/improving-medical-devices-using-computational-mode
https://www.asme.org/engineering-topics/articles/performance-test-codes/improving-medical-devices-using-computational-mode
https://www.asme.org/engineering-topics/articles/performance-test-codes/improving-medical-devices-using-computational-mode

Chapter 2
Lumped Parameter Modelling with Ordinary
Differential Equations

2.1 Overview of Ordinary Differential Equations

An ordinary differential equation (ODE) is used to express a relationship between
a function of one independent variable (typically time) and its derivatives. If no
derivatives are present, the relationship is characterised by an algebraic equation
(AE). ODEs are often used in lumped parameter modelling to approximate the
behaviour a physical system by separating it into discrete parts, each characterised
by one or more dependent variables. An example of a simple ODE is:

dN

dt
= r N (K − N)

K
, N (0) = N0 (2.1)

where N represents the population of, say, bacteria in a Petri-dish, r is the growth
rate when N = 0, and K is the maximum population capacity of the system. For
this simple example, it is possible to obtain an exact closed-form solution for N as a
function of t using the method of separation of variables, in which the variables are
grouped on each side of the equality. Thus, we can rewrite Eq.2.1 in the form:

dN

rN (K − N)
= dt

K

Integrating both sides, we obtain

∫
dN

rN (K − N)
=

∫
dt

K
= t

K
+ C0 (2.2)

where C0 is a constant of integration. To integrate the left-hand side, we rewrite the
integrand using the partial fraction expansion:

1

r N (K − N)
= A1

r N
+ A2

K − N
(2.3)

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7_2

29

30 2 Lumped Parameter Modelling with Ordinary Differential Equations

where A1, A2 are constants to be determined. Multiplying both sides of Eq. 2.3 by
r N , then setting N = 0, yields A1 = 1/K . Similarly, multiplying both sides of
Eq.2.3 by K − N , then setting N = K , yields A2 = 1/r K . Hence, the left-hand side
of Eq.2.2 can be written as:

∫
dN

rN (K − N)
= 1

K

∫
dN

rN
+ 1

r K

∫
dN

(K − N)

= ln N

rK
− ln(K − N)

r K

= 1

r K
ln

[
N

K − N

]

Substituting this into the left-hand side of Eq.2.2 and multiplying both sides by r K
yields:

ln

[
N

K − N

]
= r t + CorK

and since N = N0 when t = 0, we have C0 = 1
r K ln

[
N0

K−N0

]
. Thus,

ln

[
N

K − N

]
= r t + ln

[
N0

K − N0

]

and taking the exponential of both sides:

N

K − N
=

[
N0

K − N0

]
er t

Finally, after a little algebraic manipulation, we obtain the closed-form solution for
N as:

N = K er t[
K−N0
N0

+ er t
]

which is known as the logistic equation. In general, however, when modelling with
ODEs we must numerically-integrate to obtain an approximate solution.

Whenmore than oneODE is involved, the set of equations is known as a system of
ordinary differential equations. If themultiple set of equations includes a combination
of ODEs and AEs, it is termed a differential-algebraic equation (DAE) system. If any
of the differential equations involves multiple independent variables (such as time
and space), then it is referred to a partial differential equation (or PDE). PDEs are
discussed further in the next chapter.

Example 2.1 Consider a mass m connected to a spring, moving in the presence of
a damping resistance, as shown in Fig. 2.1. Derive an ODE governing the motion of
the mass.

2.1 Overview of Ordinary Differential Equations 31

Fig. 2.1 Damped oscillator. Mass m is connected to a linear spring k in the presence of a damping
medium γ . The other end of the spring is connected to a fixed support. The force exerted by the
spring on the mass is −kx , where x is the displacement of the mass. The damping force exerted by
the medium is equal to −γ v, where v is the velocity of the mass

Answer: The motion of the mass can be determined from the following relations:

• Total force acting on mass = ma, where a is the acceleration.
• Damping force = −γ v, where v is the velocity.
• Elastic force of spring = −kx , where x is the displacement of the mass from its
resting position.

This yields the following equation for the motion of the mass:

ma = −γ v − kx

ma + γ v + kx = 0

Substituting the relationships a = d2x
dt2 and v = dx

dt , we obtain the following ODE:

m
d2x

dt2
+ γ

dx

dt
+ kx = 0

This represents a 2nd order ODE, since the highest derivative is of order 2. It can be
reduced to a coupled system of 1st order ODEs by introducing the velocity variable
v to obtain:

dx

dt
= v

dv

dt
= − k

m
x − γ

m
v

�

2.2 Linear ODEs

Ignoring constraints imposed by initial or boundary values, we assume that a given
ODE is satisfied by two distinct solutions, φ1(t) and φ2(t). If the combination of
solutions c1φ1(t) + c2φ2(t) is also a solution, where c1 and c2 are any arbitrary

32 2 Lumped Parameter Modelling with Ordinary Differential Equations

constants, then the ODE is linear. Otherwise, it is non-linear. In general, a linear
ODE of order N is given by:

aN (t)
dN x

dt N
+ aN−1(t)

dN−1x

dt N−1 + · · · + a2(t)
d2x

dt2
+ a1(t)

dx

dt
+ a0(t)x = F(t) (2.4)

where F(t) is the forcing term and along with the coefficients ai (t)(i = 0 · · · N),
are all functions only of the independent variable. If F(t) = 0, the linear ODE is
said to be homogeneous, and its solution is known as the homogeneous solution. If
F(t) �= 0, then the ODE is non-homogeneous. If one solution can be found for the
ODE (i.e. a particular solution), then the general solution is given by the sum of the
particular and homogeneous solutions.

If the coefficients ai (i = 0 · · · N) in Eq.2.4 are constant, then the homogeneous
ODE can be solved analytically. Consider the following N th order ODE:

dN x

dt N
+ aN−1

dN−1x

dt N−1
+ · · · + a2

d2x

dt2
+ a1

dx

dt
+ a0x = 0 (2.5)

where aN−1 · · · a0 are constant. To solve this ODE, substitute x = emt into Eq.2.5,
where m is constant to be determined, to obtain:

aN−1m
N−1emt + · · · + a1memt + a0e

mt = 0

Dividing throughout by emt , we obtain the characteristic equation:

aN−1m
N−1 + · · · + a1m + a0 = 0

which has N roots: m1, . . .mN . The solution to the ODE is then given by the linear
combination:

x(t) = C1e
m1t + C2e

m2t + · · · + CNe
mN t

where the Ci (i = 1 · · · N) are N integration constants whose values can be deter-
mined from the ODE boundary conditions. Two types of boundary conditions for
N th order ODEs, both linear and non-linear, are defined:

• Initial-value problem, where N initial conditions are specified at the start of the
interval. For example:

d2x

dt2
+ 2

dx

dt
+ 3x = 0

x(0) = 0

x ′(0) = 1

• Boundary-value problem, where N conditions are specified at either end of the
interval, as in:

2.2 Linear ODEs 33

d2x

dt2
+ 2

dx

dt
+ 3x = 0

x(0) = 1

x(1) = −1

Example 2.2 Solve the ODE

d2x

dt2
+ 4

dx

dt
+ 3x = 0

x(0) = 1

x ′(0) = 1

Answer: The characteristic equation is

m2 + 4m + 3 = 0

(m + 3)(m + 1) = 0

m = −3 or − 1

Hence the solution is of the form

x(t) = C1e
−3t + C2e

−t

To find C1,C2, we use the given initial values x(0) = x ′(0) = 1. Noting that
x ′(t) = −3C1e−3t − C2e−t , we obtain

C1 + C2 = 1

−3C1 − C2 = 1

which yields C1 = −1, C2 = 2. Hence, the solution to the initial-value problem is

x(t) = −e−3t + 2e−t

�

If the characteristic equation contains r repeated roots

r times︷ ︸︸ ︷
m1,m1, . . . ,m1, . . .mN−r+1

then the form of the solution is

x(t) = C1e
m1t + C2te

m1t + · · · + Cr t
r−1em1t︸ ︷︷ ︸

note extra powers of t

+ · · · + CN−r+1e
mN−r+1t

34 2 Lumped Parameter Modelling with Ordinary Differential Equations

where extra powers of the dependent variable are present for the repeated roots.

Example 2.3 Find the solution to the ODE:

d2x

dt2
+ 2

dx

dt
+ x = 0

x(0) = 1

x ′(0) = 0

Answer: The ODE has a repeated root of -1 in its characteristic equation, and has the
solution

x(t) = e−t + te−t

�

If the characteristic equation contains complex roots, then we make use of Euler’s
formula:1

eiθ = cos θ + i sin θ

where i = √−1.

Example 2.4 Solve the ODE

d2x

dt2
+ ω2x = 0

x(0) = 1

x ′(0) = 0

Answer: The characteristic equation has roots of ±iω, hence

x(t) = C1e
−iωt + C2e

iωt

x ′(t) = −iωC1e
−iωt + iωC2e

iωt

Substituting the initial values at t = 0 yields

C1 + C2 = 1

−iωC1 + iωC2 = 0

which can be solved to obtain C1 = C2 = 0.5. Hence,

1Named after Leonhard Euler (1707–1783), influential Swissmathematician, physicist and engineer
whomade important discoveries inmathematics, mechanics, fluidmechanics, optics and astronomy.

2.2 Linear ODEs 35

x(t) = 0.5e−iωt + 0.5eiωt

= 0.5[cos(−ωt) + sin(−ωt)] + 0.5[cos(ωt) + sin(ωt)]
= 0.5[cos(ωt) − sin(ωt)] + 0.5[cos(ωt) + sin(ωt)]
= cos(ωt)

�

2.3 ODE Systems

A system of ODEs can be expressed in terms of 1st order ODEs expressed in the
general form:

dy1
dt

= f1(t, y1, y2, . . . , yN)

dy2
dt

= f2(t, y1, y2, . . . , yN)

...
dyN
dt

= fN (t, y1, y2, . . . , yN)

y1(0) = y1,0, y2(0) = y2,0, . . . , yN (0) = yN ,0

where f1, f2, . . . , fN represent linear or non-linear functions, and the yi,0(i =
1 · · · N) are the initial variable values. The above system can be more compactly
written as

dy
dt

= f(t, y), y(0) = y0 (2.6)

where y = (y1, . . . , yN)T, f = (f1, . . . , fN)T, and y0 is the initial value of y at
t = 0. Note that for any instant in time, variable y contains enough information to
completely characterise the system. This information is known as the system state,
and the y are known as state-variables.

To solve such ODE systems using Matlab, two .m files are required. One is a
function that evaluates f(t, y) of Eq.2.6, returning the state-variable derivatives at a
given time and state. The other file is a script that calls one of Matlab’s in-built ODE
solvers, for which the previous function will be an input argument. Matlab provides
the following ODE solvers, all of which use the same syntax:

[Tout,Yout] = odexxx(’user_fun’, t_span, init);

where odexxx stands for one of ode45, ode23, ode113, ode15s, ode23s,
ode23t, and ode23tb. user_fun(t,Y) is a user-defined function to compute

36 2 Lumped Parameter Modelling with Ordinary Differential Equations

the ODE derivatives as a function of the system variable array Y and the current time-
value t. Note that when this function is used as an argument to the ODE solvers,
its name must be enclosed in single quotes. Also note that its first argument must
be the independent variable (in this case, t), irrespective if this variable is present or
not in the f function of Eq.2.6. t_span is an array of time-values specifying the
output times. Alternately, tspan can also consist of just two values specifying the
start and end times of integration, such as [0 100]. Finally, the init argument
specifies an array of initial values for Y. Note that the solver outputs an array of time
values (Tout), as well as the calculated state-variables (Yout) corresponding to
these times. Each column of Yout corresponds to one state-variable.

It is also possible to include an additional options argument following init to
specify non-default settings for the ODE solver.When used, the options argument
is initialised using the odeset command. For example, to specify a maximum time
step of 0.001 and a relative tolerance of 10−4 (i.e. 0.01% accuracy), use:

options = odeset(’MaxStep’, 0.001, ’RelTol’, 1e-4);

[Tout,Yout] = odexxx(’user_fun’, t_span, init, options);

Example 2.5 The Van der Pol oscillator, defined by the coupled pair of ODEs

dv

dt
= u

du

dt
= μ(1 − v2)u − v

v(0) = 2, u(0) = 0

has been used to model many biological oscillators, including the heartbeat [11]
as well as neural spiking activity, referred to as action potentials [2]. If parameter
μ ≥ 0, the system will undergo stable oscillations, known as a limit cycle. Using
Matlab, solve the Van der Pol ODE system.

Answer: To solve theVander PolOscillator equations inMatlab, first define a function
to output the state-variable derivatives:

function dy = vdp(t,y)

dy = zeros(2,1); % defines dy as a 2x1 column vector

mu = 1000;

dy(1) = y(2);

dy(2) = mu*(1 - y(1)ˆ2)*y(2) - y(1);

and save to vdp.m. Then implement the following separate script to solve the ODEs
from t = 0 to 3000:

[T,Y] = ode15s(’vdp’,[0 3000],[2 0]);

plot(T,Y(:,1),’k-’), legend(’v’);

2.3 ODE Systems 37

0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
v

Fig. 2.2 Van der Pol oscillator output

which produces the plot shown in Fig. 2.2. �

2.3.1 Example Model 1: Cardiac Mechanics

A lumped parameter mechanics model of the cardiac left ventricle coupled to the sys-
temic circulation [9] is shown in Fig. 2.3. Here, the various elements of the circulation
are represented using electric circuit analogues:

• voltage is analogous to pressure
• current is analogous to volumetric flow rate
• resistance equals pressure across an element divided by flow though it (the hy-
draulic equivalent of Ohm’s law)

• diodes are analogous to valves, allowing only one-way flow
• capacitance is analogous to vessel compliance (C), and equals the volume of fluid
(V) stored in the vessel divided by the pressure (P). Writing

V = CP

and taking derivatives of both sides, we obtain:

dV

dt
= C

dP

dt

or Q = C
dP

dt

where Q is the volumetric flow rate (i.e. fluid volume per unit time).

Left-ventricular pressure (Pv) is given by

38 2 Lumped Parameter Modelling with Ordinary Differential Equations

Fig. 2.3 Time-varying elastance model of left ventricle. Pv is the left ventricular pressure, which
is a function of left ventricular volume (Vv) and time. Pr represents a fixed filling pressure from
a venous reservoir, Rin is the input filling resistance, Ro is the resistance of the aorta, Ps is the
lumped systemic circulation pressure and Rs , Cs represent the systemic resistance and compliance
respectively

Pv = a(Vv − b)2 + (cVv − d) f (t)

where a, b, c, d are parameters, and f (t) describes a time-varying elastance
given by:

f (t) =

⎧⎪⎪⎨
⎪⎪⎩

sin2
(

π t
2tp

)
0 ≤ t < tp

cos2
(

π(t−tp)
2(ts−tp)

)
tp ≤ t < ts

0 ts ≤ t < T

f (t + T) = f (t)

where T is the heart period and tp, ts refer respectively to peak contraction time
and total contraction time (systole). All model parameters are given in Table2.1.
The state-variables for this model are the systemic pressure Ps and the ventricular
volume Vv. From the circuit diagram of Fig. 2.3, we can readily write expressions for
the flow Qin entering the ventricle from Pr , as well as the flow Qout exiting through
Ro as follows:

Qin =
{ Pr−Pv

Rin
Pr > Pv

0 Pr ≤ Pv (due to input valve)

Qout =
{ Pv−Ps

Ro
Pv > Ps

0 Pv ≤ Ps (due to output valve)

and since Qout flows through the parallel systemic compliance and resistive branches,
we can write:

Qout = Cs
dPs
dt

+ Ps
Rs

Hence, the ODEs for this model are:

2.3 ODE Systems 39

Table 2.1 Parameter values of ventricular elastance model

Parameter Value Parameter Value

Ro 0.06mmHgscm−3 a 0.0007 mmHgcm−6

Cs 2.75cm3mmHg−1 b 8cm3

Rs 1mmHgs−3 c 1.5mmHgcm−3

Rin 0.001mmHgscm−3 d 0.9mmHg

Pr 10mmHg tp 0.35 s

T 1s ts 0.8 s

dPs
dt

= Qout

Cs
− Ps

RsCs

dVv

dt
= Qin − Qout

where Pv, Qin and Qout are defined above. Our task is to implement this model in
Matlab, and in particular, obtain the steady-state pressure-volume loop for the left
ventricle.

The first step is to code the user-defined function to return the derivatives of the
state-variables for any given state and time. This is shown below for the function file
heart_prime.m:

function Y_prime = heart_prime(t,Y)

global Ro Cs Rs R_in Pr T a b c d tp ts;

Y_prime = zeros(2,1); % to ensure a column vector

% extract states

Ps = Y(1);

Vv = Y(2);

% determine elastance

tt = mod(t,T);

if (tt < tp)

f = sin(pi*tt/(2*tp))ˆ2;

elseif (tt < ts)

f = cos(pi*(tt-tp)/(2*(ts-tp)))ˆ2;

else

f = 0;

end;

% determine Pv

Pv = a*(Vv-b)ˆ2+(c*Vv-d)*f;

40 2 Lumped Parameter Modelling with Ordinary Differential Equations

% determine flows

if (Pr > Pv)

Q_in = (Pr-Pv)/R_in;

else

Q_in = 0;

end;

if (Pv > Ps)

Q_out = (Pv-Ps)/Ro;

else

Q_out = 0;

end;

%evaluate derivatives

Y_prime(1) = Q_out/Cs - Ps/(Rs*Cs);

Y_prime(2) = Q_in - Q_out;

Note the use of theglobal keyword to declaremodel parameters as global variables.
This allows Matlab to assign and access their values outside of the current function.
Also, note the use of the mod (modulus) function to implement a periodic elastance.
mod(t,T) returns the remainder on division of t by T.

Once the user-defined function has been coded, the following script can be used
to solve the model, and extract and plot the steady-state ventricular pressure loop:

global Ro Cs Rs R_in Pr T a b c d tp ts;

% assign parameters

a = 0.0007; % mmHg/cmˆ6

b = 8; % cmˆ3

c = 1.5; % mmHg/cmˆ3

d = 0.9; % mmHg

tp = 0.35; % s

ts = 0.8; % s

Ro = 0.06; % mmHg.s/cmˆ3

Cs = 2.75; % cmˆ3/mmHg

Rs = 1; % mmHg.s/cmˆ3

R_in = 0.001; % mmHg.s/cmˆ3

Pr = 10; % mmHg

T = 1; % s

% solve ODEs

[Tout, Yout] = ode15s(’heart_prime’,[0 10*T],[50 50]);

% extract Pv, Vv

2.3 ODE Systems 41

f = zeros(size(Tout));

tt = mod(Tout,T);

for ii = 1:length(f)

if (tt(ii) < tp)

f(ii) = sin(pi*tt(ii)/(2*tp))ˆ2;

elseif (tt(ii) < ts)

f(ii) = cos(pi*(tt(ii)-tp)/(2*(ts-tp)))ˆ2;

else

f(ii) = 0;

end;

end;

Vv = Yout(:,2);

Pv = a*(Vv-b).ˆ2+(c*Vv-d).*f;

% plot the final heart period PV loop (steady state)

index = find(Tout>=9*T);

A = index(1)-1;

plot(Vv(A:end),Pv(A:end),’k-’), xlabel(’Volume (cmˆ3)’), ...

ylabel(’Pressure (mmHg)’), title(’Steady-State PV Loop’);

which produces the steady-state pressure-volume loop plot shown in Fig. 2.4. Note
that to produce this plot, it is necessary to re-extract the ventricular pressure Pv,
which is calculated inside the function heart_prime. Once the Matlab ODE
solver has completed its execution, only the state-variables at the output time values
are returned. To extract any other ancillary quantities, these must be re-evaluated.

Fig. 2.4 Steady-state
pressure-volume loop for
time-varying elastance left
ventricular model

50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

120

Volume (cm3)

P
re

ss
ur

e
(m

m
H

g)

Steady−State PV Loop

42 2 Lumped Parameter Modelling with Ordinary Differential Equations

For this model, the state variables are Ps and Vv: knowing the associated time value t
allows any other model quantity (in this case Pv) to be determined. Also note that the
steady-state pressure-volume loop represents a stable limit cycle of the ODE system,
independent of the initial values chosen for Ps and Vv (in the above code these initial
values were 50mmHg and 50cm3 respectively).

2.3.2 Example Model 2: Hodgkin–Huxley Model of Neural
Excitation

Sir Alan Hodgkin (1914–1998) and Sir Andrew Huxley (1917–2012) shared the
1963 Noble Prize in Physiology or Medicine (jointly with Sir John Eccles) “for their
discoveries concerning the ionic mechanisms involved in excitation and inhibition
in the peripheral and central portions of the nerve cell membrane”.2 Their work
culminated in the publication of amathematicalmodel of the neural electrical impulse
known as the action potential, based on their electrophysiological experiments in the
giant axon of the squid [5]. This model significantly advanced our understanding
of active ionic mechanisms in excitable tissues, and most computational models of
nerves, muscle and heart electrical activity are based on the formalism Hodgkin and
Huxley pioneered several decades ago.

The space-clamped electric analogue of the Hodgkin–Huxley model is shown
Fig. 2.5. In this version, the neuron is represented as a single compartment, ignoring
any spatial propagation in electrical activity. The neural membrane is described by a
capacitance Cm in parallel with three conductance branches representing transmem-
brane ionic currents. Denoting the transmembrane potential as V , and noting that
current flowing through Cm returns through the conductance branches, we can write:

Cm
dV

dt
= − (iNa + iK + iL)

where iNa , iK and iL denote Na+, K+, and non-specific leakage currents through the
conductance pathways. These currents in turn are given by

iNa = gNa (V − VNa)

iK = gK (V − VK)

iL = gL (V − VL)

where VNa , VK and VL correspond to the reversal potential for each of the iNa , iK
and iL membrane currents respectively. These potentials correspond to themembrane
voltage which exactly balances ionic diffusion in each channel with ion flow due to
the electric field. Themembrane conductances gNa and gK follow voltage-dependent

2http://www.nobelprize.org/nobel_prizes/medicine/laureates/1963/.

http://www.nobelprize.org/nobel_prizes/medicine/laureates/1963/

2.3 ODE Systems 43

Fig. 2.5 Hodgkin–Huxley equivalent-circuit model of neural electrical activity. The neural cell
membrane is represented as a capacitance Cm in parallel with conductance pathways representing
transmembrane channels for Na+ ions (gNa), K+ ions (gK) and a non-specific leakage (gL). Each
conductance is in series with a voltage source, representing the reversal potential for that channel.
gNa and gK are variable, obeying voltage-dependent kinetics. Vinside and Voutside denote the volt-
ages inside and outside the neuron, with their difference equal to the transmembrane potential V

kinetics, so that the complete ODE system is given by:

dV

dt
= − 1

Cm

[
ḡNam

3h (V − VNa) + ḡK n
4 (V − VK) + ḡL (V − VL) − istim

]

dn

dt
= αn (1 − n) − βnn

dm

dt
= αm (1 − m) − βmm

dh

dt
= αh (1 − h) − βhh

where ḡNa , ḡK , ḡL are the maximum membrane conductances of each channel, n,
m, h are ‘gating’ variables governed by first-order kinetics, and istim is an applied
intracellular stimulus current. Using a square-wave profile, this stimulus current is
given by

istim =
{
Is ton ≤ t < ton + tdur
0 otherwise

where Is , ton and tdur represent the stimulus current amplitude, onset time andduration
respectively. The n, m, h gating variables lie between 0 and 1 and have voltage-
dependent forward (α) and reverse (β) rates (in s−1) according to:

44 2 Lumped Parameter Modelling with Ordinary Differential Equations

αn = 10(V+50)

1−exp
[−(V+50)

10

] βn = 125 exp

[−(V + 60)

80

]

αm = 100(V+35)

1−exp
[−(V+35)

10

] βm = 4000 exp

[−(V + 60)

18

]

αh = 70 exp
[

−(V+60)
20

]
βh = 1000

1 + exp
[

−(V+30)
10

]

where V in units of mV. All model parameter values are given in Table2.2.3

To solve this model in Matlab, a user-defined derivative function, HH_prime.m
can be written as follows:

function y_out = HH_prime(t,y)

% returns state-variable derivatives for HH neuron model

% initialise parameters and state-variables

y_out = zeros(4,1);

Cm = 1;

g_Na = 120000;

g_K = 36000;

g_L = 300;

V_Na = 55;

V_K = -72;

V_L = -49.387;

I_s = 60000;

t_on = 0.001;

t_dur = 0.001;

V = y(1);

n = y(2);

m = y(3);

h = y(4);

% calculate rates

alpha_n = 10*(V+50)/(1-exp(-(V+50)/10));

beta_n = 125*exp(-(V+60)/80);

alpha_m = 100*(V+35)/(1-exp(-(V+35)/10));

beta_m = 4000*exp(-(V+60)/18);

alpha_h = 70*exp(-(V+60)/20);

beta_h = 1000/(1+exp(-(V+30)/10));

3These parameters were modified from the original Hodgkin–Huxley formulation to yield a resting
potential of−60mV and outward currents positive in accordance with modern electrophysiological
convention.

2.3 ODE Systems 45

% determine membrane and stimulus currents

i_Na = g_Na*mˆ3*h*(V-V_Na);

i_K = g_K*nˆ4*(V-V_K);

i_L = g_L*(V-V_L);

if (t >= t_on)&&(t<t_on+t_dur)

i_stim = I_s;

else

i_stim = 0;

end;

% calculate derivatives

y_out(1) = -(i_Na+i_K+i_L-i_stim)/Cm;

y_out(2) = alpha_n*(1-n)-beta_n*n;

y_out(3) = alpha_m*(1-m)-beta_m*m;

y_out(4) = alpha_h*(1-h)-beta_h*h;

This function is then called upon in the following script, which produces the mem-
brane potential plot shown in Fig. 2.6:

Y_init = [-60, 0.3177, 0.0529, 0.5961];

[time,Y] = ode15s(’HH_prime’, [0 0.02], Y_init);

plot(time,Y(:,1),’k-’), xlabel(’time(s)’), ylabel(’V (mV)’);

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
−80

−60

−40

−20

0

20

40

60

time (s)

V
 (m

V
)

Fig. 2.6 Hodgkin–Huxley neuron model response to a brief stimulus. Shown is the membrane
potential V against time

46 2 Lumped Parameter Modelling with Ordinary Differential Equations

Table 2.2 Parameter values used for Hodgkin–Huxley neuron model

Parameter Value Parameter Value

Cm 1µFcm−2 VK −72mV

ḡNa 120,000µScm−2 VL −49.387mV

ḡK 36,000µScm−2 Is 60,000µAcm−2

gL 300µScm−2 ton 1ms

VNa 55mV tdur 1ms

2.4 Further Reading

Further interesting examples of ODE models in physiological systems and bioengi-
neering can be found in the texts of King and Mody [7], Ottesen et al. [9] and
Izhikevitch [6]. A good general text on ODE systems is that of Rabenstein [10].

Problems

2.1 In the Hodgkin–Huxley formulation of neural activation, three gating variables
n, m, h are employed, satisfying the ODE:

dx

dt
= αx (V)(1 − x) − βx (V)x

where x ≡ n,m, h and αx (V) and βx (V) are known functions of membrane voltage
V . Assuming a voltage-clamp experiment is performed, whereby the membrane
voltage is stepped suddenly from a value Vhold to a new value Vclamp and held at this
value via a feedback mechanism. αx and βx are now constant.
(a) Solve this equation analytically for x , with initial value x(0) = x0, stating the
homogeneous, particular and general solutions.
(b) What is the steady-state value of x? Hence, what is a reasonable estimate for x0?

2.2 The passive mechanical behaviour of skeletal muscle can be modelled using a
simplified lumped parameter representation consisting of a linear spring k1 in series
with a parallel linear spring-dashpot combination k2, b, as shown below:

2.4 Further Reading 47

One end of the muscle is fixed, and the displacement of the other end is x . If x1
denotes the change in length from rest in spring k1, then the forces in each element
are given by:

F1 = k1x1 F2 = k2x2 Fb = b
dx2
dt

where F1, F2 and Fb refer to elements k1, k2 and b respectively, and x2 = x − x1.
(a) If the length x of the muscle is suddenly stepped and held from 0 to Xm at t = 0,
solve the system analytically for the applied force, F .
(b) If the applied force on the muscle F is suddenly stepped and held from 0 to Fm

at t = 0, find the analytical solution for the change in length, x .

2.3 A simple model of neuronal excitation represents the cell membrane as a resis-
tance R in parallelwith a capacitanceC . An applied stimulus current I depolarises the
membrane to a potential of V , as shown below. If V exceeds a pre-defined threshold
Vth , the neuron will fire.

The currents iR and iC flowing through the R and C branches are given by

iR = V

R
iC = C

dV

dt

(a) Assuming the neuron is initially at rest with V = 0, and a constant stimulus
current I is applied at t = 0, find the time taken T to depolarize the membrane
to Vth . Determine the corresponding stimulus strength-duration characteristic for
neuronal activation, i.e. I as a function of T .
(b) Defining the rheobase as the minimum current necessary to activate the neuron,
and the chronaxie as the required stimulus duration for an applied current of twice the
rheobase, determine both quantities from the above strength-duration characteristic.

2.4 Consider the system below of two coupled masses M , connected to each other
and to fixed supports via three linear springs with spring constants k:

48 2 Lumped Parameter Modelling with Ordinary Differential Equations

(a) Determine the pair of ODEs describing the motion of this system.
(b) Solve this system analytically for the displacements x1 and x2, assuming the
masses are initially at rest and displaced by amounts u1 and u2.
Hint: Use the variable substitutions y1 = x1 + x2, y2 = x1 − x2.

2.5 A simplified two-compartment model of glucose-insulin kinetics in a human
subject proposed by Berman et al. [1]4 is shown below. Ip(t) represents insulin
injected intravenously into the blood, I is the concentration of insulin in a remote
body compartment, and G is the glucose concentration in the blood plasma.

Ip, I and G are all in units of mM, with model parameters given below:

Parameter Value Parameter Value
k1 0.015 min−1 k5 0.035 min−1

k2 1 min−1 k6 0.02 mM−1 min−1

k3 0.09 min−1 B0 0.5 mMmin−1

k4 0.01 mM−1 min−1

An intravenous dose of insulin is administered as a square-pulse waveform according
to:

Ip(t) =
{
200 mM 0 ≤ t < 0.1 min
0 t ≥ 0.1 min

The initial values of I and G at t = 0 are 0 and 10 mM respectively.
Solve for I and G using Matlab over the time interval 0 ≤ t ≤ 60 min.

2.6 A simplified lumped parameter electric-analogue model of the heart and sys-
temic circulation5 is shown below:

4Model VI in their paper.
5This is an example of a four-element windkesselmodel, translated from German as “air-chamber”.
Early German fire engines incorporated an air-filled elastic reservoir between the water pump and
outflow hose to dampen any intermittent interruptions to hand-pump water supply. Such damping
can be modelled by an electric circuit comprised of resistive, capacitive and inductive elements.

2.4 Further Reading 49

where Ps is the systemic pressure and Lo represents the blood inertance within the
aortic root such that the pressure drop across this element is given Lo

dQL

dt , where QL

is the flow (in cm3 s−1) through it. Pv(t) represents the developed ventricular pressure
as a function of time, given by the following simplified periodic square-wave profile:

Pv(t + T) = Pv(t)

Pv(t) =
{
P 0 ≤ t < tc
0 tc ≤ t ≤ T

All other elements are similar to those given earlier in the example of Sect. 2.3.1.
Remaining model parameters and descriptions are given below:

Parameter Description Value
Ro Aortic root resistance 0.06mmHgscm−3

Lo Aortic root blood inertance 0.2mmHgs2 cm−3

Cs Systemic compliance 1cm3mmHg−1

Rs Systemic resistance 1.4mmHgs−3

P Peak ventricular pressure 120mmHg
T Heart period 1s
tc Active contraction interval (systole) 0.35 s

(a) Determine the ODEs describing this system.
(b) Using an appropriate choice of initial values, solve this system using Matlab for
the steady-state oscillations in systemic pressure Ps .

2.7 The following set of ODEs modified from McSharry et al. [8] reproduce a
synthetic electrocardiogram (ECG) waveform in variable z:

dx

dt
= αx − ωy

dy

dt
= αy + ωx

dz

dt
= −

5∑
i=1

ai (θ − θi) exp

(
− (θ − θi)

2

2b2i

)
− (z − z0)

50 2 Lumped Parameter Modelling with Ordinary Differential Equations

where α = 1−√
x2 + y2, ω = 2π rad s−1, z0 = 0 and θ = atan2(y, x), where atan2

represents the four-quadrant inverse tangent implemented by the Matlab function
atan2. Remaining model parameters are given below:

Index i 1 2 3 4 5

θi (rad) − 1
3π − 1

12π 0 1
12π 1

2π

ai (mVs−1 rad−1) 1.2 −5 30 −7.5 0.75
bi (rad) 0.25 0.1 0.1 0.1 0.4

Given the initial values, x(0) = −1, y(0) = 0, z(0) = 0, numerically solve this
ECG model in Matlab from t = 0 to 1 s, plotting z against t , where z, t are in units
of mV and s respectively.

2.8 The Frankenhaeuser-Huxley neural action potential model [3] consists of the
following ODE system:

dV

dt
= − 1

Cm
[iNa + iK + iP + iL − istim]

dm

dt
= αm (1 − m) − βmm

dh

dt
= αh (1 − h) − βhh

dn

dt
= αn (1 − n) − βnn

dp

dt
= αp (1 − p) − βp p

with membrane ionic currents given by

iNa = m2h P̄Na

(
EF2

RT

) [
[Na]o − [Na]i exp

(
EF
RT

)

1 − exp
(
EF
RT

)
]

iK = n2 P̄K

(
EF2

RT

) [
[K]o − [K]i exp

(
EF
RT

)

1 − exp
(
EF
RT

)
]

iP = p2 P̄P

(
EF2

RT

) [
[Na]o − [Na]i exp

(
EF
RT

)

1 − exp
(
EF
RT

)
]

iL = gL(V − VL)

where E is the transmembrane potential, V is the membrane potential displacement
from its resting value Er (V = E − Er), F is Faraday’s constant, R is the gas
constant, and T is the absolute temperature. [Na]o, [Na]i, [K]o and [K]i represent
outside (extracellular) and intracellular Na+ and K+ concentrations, whilst iNa , iK ,

2.4 Further Reading 51

iP and iL represent the membrane Na+, K+, non-specific (mainly Na+), and leakage
currents respectively. The membrane permeabilities of iNa , iK and iP are P̄Na , P̄K

and P̄P respectively, with the kinetics of these currents determined from the m, h, n
and p gating variables. istim is an applied intracellular stimulus current given by

istim =
{
Is ton ≤ t < ton + tdur
0 otherwise

where Is , ton and tdur represent the stimulus current amplitude, onset time andduration
respectively. The voltage-dependent forward (α) and reverse (β) rates (in ms−1) are
given by:

αm = 0.36(V−22)

1−exp
[

(22−V)

3

] βm = 0.4(13 − V)

1 − exp
[

(V−13)
20

]

αh = 0.1(−10−V)

1−exp
[

(V+10)
6

] βh = 4.5

1 + exp
[

(45−V)

10

]

αn = 0.02(V−35)

1−exp
[

(35−V)

10

] βn = 0.05(10 − V)

1 − exp
[

(V−10)
10

]

αp = 0.006(V−40)

1−exp
[

(40−V)

10

] βp = 0.09(−25 − V)

1 − exp
[

(V+25)
20

]

where V is in units of mV. Initial values are V = 0mV, m = 0.0005, h = 0.8249,
n = 0.0268 and p = 0.0049.

The drug tetrodotoxin (TTX) is known to selectively block the membrane iNa

current. Assuming that at one given dosage, TTX reduces parameter P̄Na to 20%
of its original value. Solve this model using Matlab over the time interval t = 0 to
5 ms, plotting the transmembrane potentials E (in mV) on the same graph for the
following two cases:
(1) control (i.e. no TTX) and
(2) TTX applied.
All model parameters are given in the following table:

2.9 A simple three-element model of active cardiac muscle contraction consists of a
passive non-linear spring in parallel with a contractile and passive series element, as
shown in the diagram. The model structure and equations have been modified from
Fung [4].

52 2 Lumped Parameter Modelling with Ordinary Differential Equations

Parameter Value Parameter Value

Cm 2µFcm−2 [K]o 2.5mM
P̄Na 0.008cms−1 [K]i 120mM
P̄K 0.0012cms−1 Is 1mAcm−2

P̄P 0.00054cms−1 ton 1ms
gL 30.3mscm−2 tdur 0.12ms
VL 0.026mV F 96.49Cmmol−1

[Na]o 114.5mM R 8.31 Jmol−1 K−1

[Na]i 13.74mM T 310K
Er −70mV

The total tension T in the muscle is given by the sum of tensions in the parallel and
series elements:

T = Tp + Ts

where Tp and Ts , the tensions in the parallel and series elements respectively, are
given by:

Tp = β
(
eα(L−L0) − 1

)
, Ts = β

(
eαLs − 1

)

where α, β are parameters and L0 denotes the resting length of the muscle. For the
contractile element, the velocity of its shortening is described by:

dLc

dt
= a [Ts − S0 f (t)]

Ts + γ S0

where a, γ , S0 are muscle parameters and f (t) is the muscle activation function
given by

f (t) =
{
sin

(
π
2

[
t+t0
tip+t0

])
0 ≤ t < 2tip + t0

0 t ≥ 2tip + t0

with t0 and tip constants defining activation phase offset and the time to peak isometric
contraction respectively.

2.4 Further Reading 53

Model parameters for a cardiac papillary muscle specimen are given in the table
below:

Parameter Value Parameter Value
L0 10mm S0 4mN
α 15mm γ 0.45
β 5mN t0 0.05 s
a 0.66mm−1 tip 0.2 s

Note that in the relaxed state, the length of the series element Ls is 0.
(a) Using Matlab, solve for and plot the total tension T against time during an
isometric contraction in which the muscle is clamped at its resting length L0.
(b) Solve for and plot muscle length L against time during an isotonic contraction in
which the muscle is allowed to freely contract with no imposed load (i.e. T = 0).

References

1. Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sen-
sitivity. Am J Physiol 236:E667–E677

2. FitzHugh R (1961) Impulses and physiological states in theoretical models of nervemembrane.
Biophys J 1:445–466

3. Frankenhaeuser B, Huxley AF (1964) The action potential in the myelinated nerve fibre of
Xenopus laevis as computed on the basis of voltage clamp data. J Physiol 171:302–315

4. Fung YC (1970)Mathematical representation of the mechanical properties of the heart muscle.
J Biomech 3:381–404

5. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its appli-
cation to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

6. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and
bursting. MIT Press, Cambridge

7. KingMR,ModyNA (2011) Numerical and statistical methods for bioengineering: applications
in Matlab. Cambridge University Press, Cambridge

8. McSharry PE, Clifford GD, Tarassenko L, Smith LA (2003) A dynamical model for generating
synthetic electrocardiogram signals. IEEE Trans Biomed Eng 50:289–294

9. Ottesen JT, OlufsenMS, Larsen JK (2004) Appliedmathematical models in human physiology.
SIAM, Philadelphia

10. Rabenstein AL (1972) Introduction to ordinary differential equations. Academic Press, New
York

11. van der Pol B, van der Mark J (1928) The heartbeat considered as a relaxation oscillation, and
an electrical model of the heart. Philos Mag Ser 7(6):763–775

Chapter 3
Numerical Integration of Ordinary
Differential Equations

Almost all lumped-parameter ODE models encountered in physics, biology or
medicine cannot be solved in closed-loop form, but require numerical integration
to find their solution. As we have seen from the previous chapter, Matlab provides
an extensive suite of ODE solvers including ode15s and ode45, and COMSOL also
employs its own ODE solvers based on the backward differential formula (BDF) and
generalized-α methods. This chapter provides an overview of numerical methods
commonly used for integrating ODE systems, including those algorithms used by
Matlab and COMSOL.

3.1 Taylor’s Theorem

The basis of all numerical integration algorithms is Taylor’s theorem, which can be
stated for a function of a single variable as:

Theorem 3.1 Let f be a real-valued function of a single variable with n + 1
continuous derivatives in the closed interval [t, t + h]. Then there exists some
ξ ∈ [t, t + h] such that

f (t + h) = f (t) + h f ′(t) + h2

2! f ′′(t) + · · · + hn

n! f (n)(t) + hn+1

(n + 1)! f (n+1)(ξ)

(3.1)

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7_3

55

56 3 Numerical Integration of Ordinary Differential Equations

Proof We begin with the fundamental theorem of calculus:

∫ b

a
f ′(τ) dτ = f (b) − f (a)

Using a = t , b = t + h and re-arranging:

f (t + h) = f (t) +

R1︷ ︸︸ ︷∫ t+h

t
f ′(τ) dτ

The integral on the right (remainder term R1) can be expanded using the integration
by parts formula:

∫ b

a
u · v dτ =

[
u

∫
v dτ

]b

a

−
∫ b

a

(
du

dτ

∫
v dτ

)
dτ (3.2)

Using u = t + h − τ and v = f ′′(τ), we have:

∫ t+h

t
(t + h − τ) f ′′(τ) dτ = [

(t + h − τ) f ′(τ)
]t+h

t −
∫ t+h

t
− f ′(τ) dτ

= −h f ′(t) +
∫ t+h

t
f ′(τ) dτ

Hence,

R1 =
∫ t+h

t
f ′(τ) dτ = h f ′(t) +

R2︷ ︸︸ ︷∫ t+h

t
(t + h − τ) f ′′(τ) dτ

We can continue expanding R2 using integration by parts (Eq. 3.2), now with u =
(t+h−τ)2

2! and v = f ′′′(τ):

∫ t+h

t

(t + h − τ)2

2! f ′′′(τ) dτ =
[

(t + h − τ)2

2! f ′′(τ)

]t+h

t
−

∫ t+h

t
−(t + h − τ) f ′′(τ) dτ

= −h2

2! f ′′(t) +
∫ t+h

t
(t + h − τ) f ′′(τ) dτ

Hence,

R2 =
∫ t+h

t
(t + h − τ) f ′′(τ) dτ = h2

2! f ′′(t) +

R3︷ ︸︸ ︷∫ t+h

t

(t + h − τ)2

2! f ′′′(τ) dτ

3.1 Taylor’s Theorem 57

We can continue indefinitely expand the remainder terms integration by parts to
obtain

f (t + h) = f (t) +
n∑

i=1

hi

i ! f (i)(t) +

Rn+1︷ ︸︸ ︷∫ t+h

t

(t + h − τ)n

n! f (n+1)(τ) dτ (3.3)

To verify that Eq.3.3 is true, we make use of the principle of mathematical induction.
Assume it is true for some value n = k. That is,

f (t + h) = f (t) +
k∑

i=1

hi

i ! f (i)(t) + Rk+1

with Rk+1 =
∫ t+h

t

(t + h − τ)k

k! f (k+1)(τ) dτ

We then show that Eq.3.3 also holds for k + 1. This is equivalent to showing that
Rk+1 = hk+1

(k+1)! f (k+1)(t)+ Rk+2. To do this, we use integration by parts (Eq.3.2) with

u = (t+h−τ)k+1

(k+1)! and v = f (k+2)(τ), to obtain:

Rk+2︷ ︸︸ ︷∫ t+h

t

(t + h − τ)k+1

(k + 1)! f (k+2)(τ) dτ =
[
(t + h − τ)k+1

(k + 1)! f (k+1)(τ)

]t+h

t

−
∫ t+h

t
− (t + h − τ)k

k! f (k+1)(τ) dτ

= − hk+1

(k + 1)! f (k+1)(t)

+

Rk+1︷ ︸︸ ︷∫ t+h

t

(t + h − τ)k

k! f (k+1)(τ) dτ

Hence, Rk+1 = hk+1

(k+1)! f (k+1)(t) + Rk+2 and therefore Eq.3.3 is true for n = k + 1.
Since we have already shown it is true for n = 0 (from the fundamental theorem of
calculus), it must be true for all n.

The final part of our proof is to show that the remainder term Rn+1 in Eq.3.3
is equivalent to the final term in Eq.3.1. Denote the maximum value of f (n+1)(τ)

(τ ∈ [t, t + h]) by M . Then,

58 3 Numerical Integration of Ordinary Differential Equations

Rn+1 =
∫ t+h

t

(t + h − τ)n

n! f (n+1)(τ) dτ

≤
∫ t+h

t

(t + h − τ)n

n! M dτ

=
[
− (t + h − τ)n+1

(n + 1)!
]t+h

t

M

= hn+1

(n + 1)! M

represents an upper bound on Rn+1. Using a similar analysis, we can show that if L
is the minimum value of f (n+1)(τ) over the same interval, then hn+1

(n+1)! L represents
the lower bound for Rn+1. That is,

hn+1

(n + 1)! L ≤ Rn+1 ≤ hn+1

(n + 1)! M

Since f (n+1)(τ) is continuous over [t, t + h], with values between L and M , then
there must exist some ξ ∈ [t, t + h] for which

Rn+1 = hn+1

(n + 1)! f (n+1)(ξ)

This completes the proof of Taylor’s theorem. �

The polynomial

f (t) + h f ′(t) + h2

2! f ′′(t) + · · · + hn

n! f (n)(t)

is known as the Taylor polynomial of f (τ) centred at t , and the remainder term

hn+1

(n + 1)! f (n+1)(ξ)

is known as the truncation error. Since this error consists of a quantity proportional
to hn+1, we say that the error is of order hn+1, written using the notation O(hn+1).

For a real-valued function of many variables, the multivariate form of Taylor’s
theorem is:

3.1 Taylor’s Theorem 59

Theorem 3.2 Let f be a real-valued function of m variables with continuous
partial derivatives up to order n + 1. Then there exists some ξ ∈ [0, 1] such
that

f (x + h) = f (x) +
m∑

i1=1

hi1
∂ f

∂xi1

(x) + 1

2!
m∑

i1,i2=1

hi1hi2
∂2 f

∂xi1∂xi2

+ · · ·

+ 1

n!
m∑

i1,i2,...,in=1

hi1hi2 . . . hin

∂n f

∂xi1∂xi2 . . . ∂xin

(x) +

+ 1

(n + 1)!
m∑

i1,i2,...,in+1=1

hi1hi2 . . . hin+1

∂n+1 f

∂xi1∂xi2 . . . ∂xin+1

(x + ξh)

(3.4)

with x, h ∈ R
m

This multivariate form of Taylor’s theorem can be shown to follow directly from
the single-variable version [15].

For two variables, the second-order form of Eq.3.4 may be written as:

f (x1 + h1, x2 + h2) = f (x1, x2) + h1
∂ f

∂x1
(x1, x2) + h2

∂ f

∂x2
(x1, x2) +

1

2

[
h2
1
∂2 f

∂x21
(x1, x2) + 2h1h2

∂2 f

∂x1∂x2
(x1, x2) + h2

2
∂2 f

∂x22
(x1, x2)

]
+

+1

6

[
h3
1
∂3 f

∂x31
(x1 + ξh1, x2 + ξh2)+

3h2
1h2

∂3 f

∂x21∂x2
(x1 + ξh1, x2 + ξh2) +

3h1h2
2

∂3 f

∂x1∂x22
(x1 + ξh1, x2 + ξh2) +

h3
2
∂3 f

∂x32
(x1 + ξh1, x2 + ξh2)

]
, ξ ∈ [0, 1] (3.5)

60 3 Numerical Integration of Ordinary Differential Equations

3.2 One-Step Methods

One-step ODE numerical integration methods use information at the current integra-
tion step to determine the dependent variable values at the next step.

Forward-Euler Method

The simplest numerical ODE integration algorithm is the forward-Euler1 method,
which utilises the Taylor series expansion with n = 1. For the ODE

dy

dt
= f (t, y), y(0) = y0

we can use the Taylor series expansion to form

y(t + h) = y(t) + hy′(t) + h2

2
y′′(ξ)

= y(t) + h f (t, y) + O(h2)

which yields the forward-Euler algorithm for stepsize h:

y(t + h) = y(t) + h f (t, y)

The local truncation error for this method is O(h2), which represents the error at
each step. The global truncation error is the accumulated error after many steps, and
is one-order less than the local truncation error, or O(h).

Example 3.1 Solve the following ‘test’ ODE using the forward-Euler method:

dy

dt
= λy, y(0) = y0

which has the exact solution y0eλt .

Answer: Assuming a fixed step-size of h, we can use the forward-Euler method to
form the following sequence of approximations to y at each time step:

y(t + h) = y(t) + hy′(t)
= y(t) + hλy(t)

= y(t)[1 + hλ]

1Pronounced forward-Oiler.

3.2 One-Step Methods 61

The followingMatlab function (forward_Euler_test.m) implements this test problem
up to t = 3 using λ = −2 and y0 = 1:

function [time,y_out] = forward_Euler_test(h)
lambda = -2;
y0 = 1; % initial value
tf = 3; % final time
% initialize arrays
time = zeros(1,round(tf/h));
y_out = zeros(1,round(tf/h));
time(1) = 0;
y_out(1) = y0;
% implement forward-Euler iterations
for i = 1:round(tf/h)-1
time(i+1) = time(i)+h;
y_out(i+1) = y_out(i)*(1+lambda*h);
end;

with the following script used to plot numerical solutions for three step-sizes of
h = 0.8, h = 0.1, and h = 0.01, as shown in Fig. 3.1.

[time_1, y_1] = forward_Euler_test(0.01);
[time_2, y_2] = forward_Euler_test(0.1);
[time_3, y_3] = forward_Euler_test(0.8);
y_exact = exp(-2*time_1);
plot(time_1, y_1, ’k--’, time_2, y_2, ’k:’, ...

time_3, y_3, ’k-.’, time_1, y_exact, ’k-’), ...
legend(’h = 0.01’, ’h = 0.1’, ’h = 0.8’, ’exact’), ...
title(’Numerical Solution of y’’(t) = -2y Using Forward Euler’), ...
xlabel(’t’), ylabel(’y’);

For this test problem, the forward-Euler solution at each time-step multiplies the
previous step solution by (1 + hλ). When λ < 0, the exact solution will decay
towards 0,. For numerical stability, the forward-Euler method must therefore yield

Fig. 3.1 Forward-Euler
solutions to y′(t) = −2y,
y(0) = 1, for three step-sizes
(h) of 0.01, 0.1, and 0.8.
Also shown is the exact
solution y = e−2t

0 0.5 1 1.5 2 2.5 3
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y

Numerical Solution of y’(t) = −2y Using Forward Euler

h = 0.01
h = 0.1
h = 0.8
exact

62 3 Numerical Integration of Ordinary Differential Equations

solutions at each step whose magnitudes are decreasing. This leads to the following
absolute stability restriction on the step-size:

|1 + hλ| ≤ 1

or h ≤ 2

−λ
(for λ < 0)

�

Ideally, the step-size of the forward-Euler method should be governed by the local
truncation error, given by the Taylor series remainder term h2

2 f ′′(ξ). When the solu-
tion is slowly-varying, f ′′(ξ) (and therefore the local error), will be less. This indi-
cates that larger step-sizes can be chosen to maintain a given accuracy. However, the
absolute stability requirement of the method still holds, restricting the step size from
increasing beyond a given limit. When the step size of the forward-Euler method is
constrained by stability considerations rather than accuracy, the ODE is said to be
stiff [2].

For a system of ODEs written in the general form

dy
dt

= f(t, y), y(0) = y0 (3.6)

the forward-Euler method becomes:

y(t + h) = y(t) + hf(t, y(t))

or more simply
yn = yn−1 + hf(tn−1, yn−1) (3.7)

Since the unknown term yn appears on only one side of Eq.3.7, and can be directly
determined from (tn−1, yn−1), this method is said to be explicit.

Linearizing Eq.3.6 about the current time (tc) and y-point (yc), we can approxi-
mate the ODE system as:

dy
dt

= J · (y − yc) + fc, y(tc) = yc (3.8)

where fc = f(tc, yc), and matrix J = ∂f
∂y is referred to as the Jacobian of f . Defining

an eigenvalue (λ) and associated eigenvector (v) of J such that

J · v = λv, (3.9)

there will be N such eigenvalue-eigenvector pairs of the N × N matrix J, where N
is the number of elements of y [1]. The solution to Eq.3.8 is given by:

3.2 One-Step Methods 63

y = yc − J−1fc +
N∑

i=1

ci vie
λi (t−tc)

where the ci are constants chosen to satisfy the initial condition y(tc) = yc. The
above solution can be verified by substituting directly into the right-hand side of
Eq.3.8 to obtain:

J · (y − yc) + fc = J ·
(

yc − J−1fc +
[

N∑
i=1

ci vie
λi (t−tc)

]
− yc

)
+ fc

= J ·
(

N∑
i=1

ci vie
λi (t−tc)

)

=
N∑

i=1

ci J · vie
λi (t−tc)

=
N∑

i=1

ciλi · vie
λi (t−tc) (since the vi are eigenvectors of J)

= dy
dt

Hence, the solution of this system involves a sum of exponential terms, and for
forward-Euler stability, the step-size must therefore be restricted to

h ≤ 2

|λ|max
(3.10)

where |λ|max is the maximum negative eigenvalue magnitude of the Jacobian.

3.2.1 Backward-Euler Method

In order to overcome the stability issues associated with the forward-Euler method,
we can centre the Taylor series around the future step at t + h, instead of at t , to
obtain:

y(t) = y(t + h) − hy′(t + h) + h2

2
y′′(ξ)

= y(t + h) − h f (t + h, y(t + h)) + O(h2)

64 3 Numerical Integration of Ordinary Differential Equations

which yields the backward-Euler method:

y(t + h) = y(t) + h f (t + h, y(t + h))

In terms of our familiar ODE system (Eq.3.6), this method can be written as:

yn = yn−1 + hf(tn, yn) (3.11)

Since the unknown term yn appears on both sides of Eq.3.11, this method is referred
to as implicit. If f(t, y) is non-linear, then Eq.3.11 must be solved using iterative
routines to converge to the solution at each time step. Thus represents an increased
computational overhead, but as we shall see, the method is stable, even for large
step-sizes.

Example 3.2 Solve the test ODE

dy

dt
= λy, y(0) = y0

using the backward-Euler method.

Answer: We use Eq.3.11 to form the following approximations to y at each step:

y(t + h) = y(t) + hy′(t + h)

= y(t) + hλy(t + h)

y(t + h)[1 − hλ] = y(t)

∴ y(t + h) = y(t)

[1 − hλ]
Hence, the solution at each step is formed by multiplying the previous step by a
factor of [1 − hλ]−1. For positive step size h and λ < 0, this factor will be pos-
itive and less than unity. The numerical solution will therefore decay towards 0,
and the backward-Euler method will be unconditionally stable for all positive step-
sizes h. �

When the ODE system is non-linear, the backward-Euler method involves solving a
set of non-linear equations at each step. Rewriting Eq.3.11 as

g(yn) = yn − yn−1 − hf(tn, yn) = 0

we can use Newton’s method to define a set of iterations to converge on a solution
to this system. Linearizing g(yn) around the current iterate yν

n , we obtain:

∂g
∂y

(yν
n)

[
yn − yν

n

] + g(yν
n) = 0

3.2 One-Step Methods 65

Re-arranging to solve for yn , we obtain an expression for the next iterate:

yν+1
n = yν

n −
[
∂g
∂y

(yν
n)

]−1

g(yν
n) (3.12)

where ∂g
∂y (yν

n) is the Jacobian of g at the current iteration. A variant of Eq. 3.12 is to
take a fractional step γ towards the estimated solution using

yν+1
n = yν

n − γ

[
∂g
∂y

(yν
n)

]−1

g(yν
n) (3.13)

where γ (0 ≤ γ ≤ 1) is referred to as the damping factor. The damped Newton
method of Eq.3.13 often leads to improved convergence.

3.2.2 Trapezoidal Method

The forward and(| backward-Euler methods yield local truncation errors of O(h2).
Higher accuracy can be obtained by centring the Taylor series around t + h/2, as
follows:

y(t + h) = y(t + h/2) + h

2
y′(t + h/2) + h2

8
y′′(t + h/2) + h3

48
y′′′(ξ1)

y(t) = y(t + h/2) − h

2
y′(t + h/2) + h2

8
y′′(t + h/2) − h3

48
y′′′(ξ2)

with ξ1 ∈ [t + h/2, t + h] and ξ2 ∈ [t, t + h/2]. Subtracting these expressions, we
obtain:

y(t + h) − y(t) = hy′(t + h/2) + O(h3) (3.14)

To evaluate y′(t + h/2), we take another two Taylor expansions, this time of y′, to
form:

y′(t + h) = y′(t + h/2) + h

2
y′′(t + h/2) + h2

8
y′′′(ξ3)

y′(t) = y′(t + h/2) − h

2
y′′(t + h/2) + h2

8
y′′′(ξ4)

with ξ3 ∈ [t + h/2, t + h] and ξ4 ∈ [t, t + h/2]. Adding these expressions and
re-arranging yields:

y′(t + h/2) = 1

2

(
y′(t + h) + y′(t)

) + O(h2)

66 3 Numerical Integration of Ordinary Differential Equations

Substituting this back into Eq.3.14 we obtain:

y(t + h) − y(t) = h

2

(
y′(t + h) + y′(t)

) + O(h3)

Which yields the trapezoidal numerical integration algorithm, also known as the
modified-Euler method:

yn = yn−1 + h

2

[
f(tn, yn) + f(tn−1, yn−1)

]
(3.15)

The method is implicit, with local and global truncation errors of O(h3) and O(h2)

respectively.

Example 3.3 Solve the test ODE

dy

dt
= λy, y(0) = y0

using the trapezoidal method.

Answer: Using Eq.3.15, we can determine y at each step as follows:

y(t + h) = y(t) + h

2

[
y′(t) + y′(t + h)

]

= y(t) + h

2
[λy(t) + λy(t + h)]

y(t + h)

[
1 − hλ

2

]
= y(t)

[
1 + hλ

2

]

∴ y(t + h) = y(t)

[
2 + hλ

2 − hλ

]

For positive step-sizes h and λ < 0, the magnitude of factor [2 + hλ]/[2 − hλ] will
always be less than unity, rendering the method unconditionally stable. �

3.2.3 Runge–Kutta Methods

For the ODE
dy

dt
= f (t, y), y(0) = y0

Runge–Kutta2 methods effectively integrate both sides at each time-step to obtain:

2Pronounced Run-ghee Cut-ah.

3.2 One-Step Methods 67

y(t + h) = y(t) +
∫ t+h

t
f (τ, y) dτ (3.16)

and then approximate the integral using numerical quadrature. In brief, quadra-
ture methods sub-divide the interval [t, t + h] at intermediate points ti = t + ci h,
i = 1 · · · s, where the ci ∈ [0, 1] denote fixed nodal positions along the interval.
The integral is then approximated using a weighted sum of function evaluations at
these intermediate points. For a one-variable function f (τ), the general quadrature
approach may be written as:

∫ t+h

t
f (τ) dτ ≈ h

s∑
i=1

bi f (t + ci h)

where the bi are constant coefficients that typically depend on s and the ci . Two
popular quadrature formulae for one-variable functions are the midpoint rule and
Simpson’s rule:

∫ t+h

t
f (τ) dτ ≈ h f

(
t + h

2

)
midpoint rule

∫ t+h

t
f (τ) dτ ≈ h

6

[
f (t) + 4 f

(
t + h

2

)
+ f (t + h)

]
Simpson’s rule

However for the function of Eq.3.16which involves an additional variable y, wemust
estimate the function values at the intermediate points ti . Denoting these intermediate
function values by Ki , Runge–Kutta methods approximate these from a weighted
sum of other intermediate values on the interval, then use a weighted sum of the Ki

to approximate the integral in Eq.3.16, and hence determine y(t + h). The general
Runge–Kutta algorithm can be expressed in the form:

Ki = f

⎛
⎝t + ci h, y(t) + h

s∑
j=1

ai j K j

⎞
⎠

y(t + h) = y(t) + h
s∑

i=1

bi Ki (3.17)

where s is the number of stages. Runge–Kutta algorithms are typically represented
using the shorthand notation:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

68 3 Numerical Integration of Ordinary Differential Equations

For computational efficiency, we always choose c1 = 0: this conveniently provides
one function evaluation at the current step. To find, for example, the remaining
coefficients for an explicit two-stage (i.e. s = 2) Runge–Kutta method, we rewrite
Eq.3.17 as

K1 = f (t + c1h, y(t) + h[a11K1 + a12K2])
K2 = f (t + c2h, y(t) + h[a21K1 + a22K2])

y(t + h) = y(t) + h [b1K1 + b2K2]

Since we require the method to be explicit, we can immediately see that a11 = a12 =
a22 = 0, and along with c1 = 0, we are left with four unknown coefficients to be
determined for the algorithm:

K1 = f (t, y(t))

K2 = f (t + c2h, y(t) + ha21K1)

y(t + h) = y(t) + h [b1K1 + b2K2] (3.18)

We can express y(t + h) in terms of our familiar Taylor series expansion (Eq.3.1)
centered on t as:

y(t + h) = y(t) + hy′(t) + h2

2
y′′(t) + O(h3) (3.19)

Since y′(t) = f (t, y) from the original ODE, we have:

y′′(t) = f ′(t, y)

= ∂ f (t, y)

∂t
+ ∂ f (t, y)

∂y

dy(t)

dt

= ∂ f (t, y)

∂t
+ ∂ f (t, y)

∂y
f (t, y)

and Eq.3.19 becomes:

y(t + h) = y(t) + h f (t, y) + h2

2

[
∂ f

∂t
(t, y) + ∂ f

∂y
(t, y) f (t, y)

]
+ O(h3) (3.20)

We then use the multivariate form of Taylor’s theorem (Eq.3.4) to expand K2 in
Eq.3.18:

K2 = f (t + c2h, y(t) + ha21K1)

= f (t, y) + c2h
∂ f

∂t
(t, y) + ha21K1

∂ f

∂y
(t, y) + O(h2)

= f (t, y) + c2h
∂ f

∂t
(t, y) + ha21 f (t, y)

∂ f

∂y
(t, y) + O(h2) (3.21)

3.2 One-Step Methods 69

Substituting Eq.3.21 into 3.18, we obtain:

y(t + h) = y(t) + h [b1K1 + b2K2]

= y(t) + h

[
b1 f (t, y) + b2

(
f (t, y) + c2h

∂ f

∂t
(t, y)

+ ha21 f (t, y)
∂ f

∂y
(t, y) + O(h2)

)]
+ O(h3)

= y(t) + h(b1 + b2) f (t, y) + h2c2b2
∂ f

∂t
(t, y)

+ h2a21b2 f (t, y)
∂ f

∂y
(t, y) + O(h3) (3.22)

Comparing the coefficients of Eqs. 3.20 and 3.22, we have:

b1 + b2 = 1

c2b2 = 1/2

a21b2 = 1/2

representing three equations in four unknowns. Setting a21 = α, where α is a para-
meter, we obtain b2 = 1/2α , b1 = 1 − 1/2α , c2 = α, with the algorithm represented
as:

0 0 0
α α 0

1 − 1
2α

1
2α

Since the local truncation error is O(h3), the global truncations error will be O(h2).
This one-parameter family of Runge–Kutta algorithms is therefore second-order. For
α = 1/2 , we have the explicit midpoint method:

y(t + h) = y(t) + h

[
f (t + h

2
, y(t) + h

2
f (t, y)

]

which in terms of our familiar ODE system (Eq.3.6), may be written as:

K1 = f(tn−1, yn−1)

K2 = f
(

tn−1 + h

2
, yn−1 + h

2
K1

)

yn = yn−1 + hK2

Example 3.4 Solve the following test ODE using the second-order explicit midpoint
Runge–Kutta method:

dy

dt
= λy, y(0) = y0

70 3 Numerical Integration of Ordinary Differential Equations

Answer: For each step, we perform the following stage evaluations:

K1 = f (t, y) = λy

K2 = f

(
t + h

2
, y + h

2
K1

)

= f

(
t + h

2
, y + h

2
λy

)

= λ

(
1 + h

2
λ

)
y

y(t + h) = y(t) + hK2

= y(t) + hλ

(
1 + h

2
λ

)
y(t)

= y(t)

[
1 + hλ + 1

2
h2λ2

]

For absolute stability, we require−1 ≤ 1+hλ+ 1
2h2λ2 ≤ 1, which is satisfied when

−2 ≤ hλ ≤ 0, or h ≤ 2
|λ| . �

A similar derivation to the above second-order methods, although more tedious,
can be used to obtain the well-known classical fourth-order Runge–Kutta algorithm:

K1 = f(tn−1, yn−1)

K2 = f
(

tn−1 + h

2
, yn−1 + h

2
K1

)

K3 = f
(

tn−1 + h

2
, yn−1 + h

2
K2

)

K4 = f (tn−1 + h, yn−1 + hK3)

yn = yn−1 + h

6
(K1 + 2K2 + 2K3 + K4)

represented in shorthand as:
0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Runge–Kutta algorithms are employed by many ODE numerical solvers, together
with adaptive step-size routines that monitor the local error and adjust the step-size
accordingly. Matlab’s ode23, ode23tb and ode45 solvers use a pair of Runge–Kutta
algorithms of orders p and p + 1 to determine the local error.3 Denoting the current

3For ode23/ode23tb, p = 2, whilst for ode45, p = 4.

3.2 One-Step Methods 71

step solutions for these higher and lower order methods by ŷn and yn respectively,
these codes estimate the local error, ln , using

ln = ||ŷn − yn||∞ (3.23)

where ||.||∞ denotes the infinity or maximum norm, corresponding to the maxi-
mum absolute value of all vector elements.4 From each element i of the lower-order
estimates yn and yn−1, the maximum absolute values from each are taken to form
yi = max

(|(yi)n|, |(yi)n−1|
)
. Denoting y = min

i
(yi), the step is rejected if

ln > max (Rtol y, Atol) (3.24)

where Rtol and Atol are user-specified parameters denoting the relative and absolute
tolerances respectively. Matlab uses default values of Rtol = 10−3 and Atol = 10−6.
If a step is rejected, it is performed again using the smaller step-size

hnew = hold max

(
0.5 , 0.8

[
max (Rtol y, Atol)

ln

] 1
p+1

)
(3.25)

The rationale behind this step-size choice is based on the fact that the local truncation
error for a p-order method is equal to ch p+1, where c is a constant. To reduce the
step-size such that the local error satisfies the specified tolerance levels, the codes
require the new step to satisfy ln ≈ γ max (Rtol y, Atol), with γ being around 0.9. In
other words, Eq.3.24 no longer holds, with a safety factor of γ employed to ensure
this. The new step-size can be determined from

ch p+1
new = γ max (Rtol y, Atol)

ch p+1
old = ln

∴
(

hnew

hold

)p+1

= γ

[
max (Rtol y, Atol)

ln

]

or hnew = hold

(
γ

1
p+1

) [
max (Rtol y, Atol)

ln

] 1
p+1

To speed-up the computations, the factor
(
γ

1
p+1

)
is simply replaced by 0.8, which is

adequate for most p used. Equation3.25 also employs a minimum reduction factor
of 0.5 to avoid excessive small steps. The Matlab ODE solvers also employ addi-
tional restrictions on the step-size reduction, including that hnew is no smaller than
the computational precision. If the step is successful, Eq.3.25 can be also used to

4Matlab ODE solver options also allow the local error to be determined using the 2-norm. By
default, however, the maximum norm is used.

72 3 Numerical Integration of Ordinary Differential Equations

increase the step-size to ensure the local error is not too small, but still satisfies
ln ≈ γ max (Rtol y, Atol).

As we have seen, using a pair of Runge–Kutta algorithms allows for an adaptive-
step strategy. However to reduce the computational burden of employing two algo-
rithms per step, it is advantageous to choose a pair of methods that share the same
stage computations (i.e. the ai j and ci in Eq.3.17), known as embedded methods.
These embedded pairs typically have orders that differ by 1 and are termed a p(q)
pair, where p is the order of the method used to advance to the next step, and q is
the order used to determine the local error. The most well-known of these is the
Fehlberg 4(5) pair. Leaving out the zero coefficients above the diagonal, this pair can
be represented as

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 − 7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 − 3544
2565

1859
4104 − 1

5

25
216 0 1408

2565
2197
4104 − 1

5 0
16
135 0 6656

12825
28561
56430 − 9

50
2
55

where the rows below the horizontal lines denote two sets of bi coefficients (cf.
Eq. 3.17): the first row pertains to the fourth-order method and the second row to the
fifth. This pair has six stage computations.

In many implementations of embedded Runge–Kutta pairs, the higher-order
method is instead used to provide the solution for the next step, a process referred to
as local extrapolation. When this occurs, the local error estimate given by Eq.3.23
is no longer accurate, but the adaptive-step strategy of Eq.3.25 is nonetheless used.
An example of such a local extrapolation method is the 3(2) pair implemented by
the Matlab ode23 solver [4]:

0
1
2

1
2

3
4 0 3

4

2
9

1
3

4
9 0

7
24

1
4

1
3

1
8

Here, the first row of bi coefficients represents the third-order method, whilst the sec-
ond row represents the second-ordermethod. Another-example is the 5(4) Dormand–
Prince pair [7] implemented by Matlab’s ode45:

3.2 One-Step Methods 73

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 − 2187

6784
11
84

35
384 0 500

1113
125
192 − 2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

Here, the first bi row yields the fifth order estimate whilst the second row yields
the fourth order one. This pair has a total of seven stages, corresponding to seven
function evaluations per step. However, as can be seen from the above table, the last
row of the ai j has the same coefficients as the first bi row. This means that the final
function evaluation in a step corresponds to the first function evaluation of the next
step. Hence, after each successful step, only six function evaluations are required for
the next step, effectively reducing the computational cost to a six-stage method.

3.2.4 The Generalized-α Method

For many ODE systems commonly encountered in structural or fluid mechanics
applications, it may be desirable (or even necessary) to incorporate some degree
of high-frequency suppression in the numerical integration procedure, known as
algorithmic damping. When present, these high-frequency components typically
represent numerical artefacts due to an excessively large step-size, compounded
by poor spatial discretization when formulating the underlying ODE system. One
side-effect is that algorithmic damping can also introduce undesired damping in the
important low-frequency ranges aswell. To this end, thegeneralized-α method [5, 14]
implements user-controlled high-frequency dampingwhilst minimizing the damping
over lower frequencies. An extension of the generalized trapezoidal family [12], the
generalized-α method takes on slightly different algorithm parameters depending on
whether the ODE for a given variable is first or second order. We will describe in
detail the first-order ODE implementation below, and simply give the result for the
second-order system.

For the first-order ODE
ẏ = f (t, y)

74 3 Numerical Integration of Ordinary Differential Equations

the generalized-α method is written as:

ẏn+αm = f (tn+α f , yn+α f)

yn+1 = yn + h ẏn + hγ (ẏn+1 − ẏn) (3.26)

where h is the step-size and

ẏn+αm = ẏn + αm (ẏn+1 − ẏn)

yn+α f = yn + α f (yn+1 − yn)

tn+α f = tn + hα f

αm , α f and γ are parameters of the algorithmwhose values are determined from con-
siderations of accuracy, stability and user-specified damping. The method is implicit,
and Newton’s method (Eq.3.12) must be used to solve for the yn+1, ẏn+1 at each step.
To improve convergence, a predictor is commonly used to provide initial estimates
for these values.

To determine the values of the algorithm parameters, we apply the method to the
simple first-order ODE:

ẏ = λy

The generalized-α method (Eq.3.26) can then be written as:

ẏn + αm (ẏn+1 − ẏn) = λ
[
yn + α f (yn+1 − yn)

]

yn+1 = yn + h ẏn + hγ (ẏn+1 − ẏn)

Grouping together terms at steps n and n + 1, the above can be re-arranged into the
matrix system

[−λα f
αm
h

1 −γ

] [
yn+1

h ẏn+1

]
=

[
λ(1 − α f)

αm−1
h

1 (1 − γ)

] [
yn

h ẏn

]
(3.27)

Noting that

[−λα f
αm
h

1 −γ

]−1

= 1

γ λα f − αm
h

[−γ −αm
h−1 −λα f

]

= 1

γ λhα f − αm

[−γ h −αm

−h −λhα f

]

= 1

αm − γΩα f

[
γ h αm

h Ωα f

]

where Ω = λh represents a normalized frequency term. Multiplying both sides of
Eq.3.27 by this inverse matrix, we obtain:

3.2 One-Step Methods 75

[
yn+1

h ẏn+1

]
= 1

αm − γΩα f

[
γ h αm

h Ωα f

] [
λ(1 − α f)

αm−1
h

1 (1 − γ)

] [
yn

h ẏn

]

= 1

αm − γΩα f

[
γ λh(1 − α f) + αm γ (αm − 1) + αm(1 − γ)

Ω(1 − α f) + Ωα f αm − 1 + Ωα f (1 − γ)

] [
yn

h ẏn

]

= 1

αm − γΩα f

[
αm + γΩ(1 − α f) αm − γ

Ω αm − 1 + Ωα f (1 − γ)

] [
yn

h ẏn

]

Denoting the solution vector by yn = [yn, h ẏn]T , the above matrix system can be
written simply as:

yn+1 = Ayn (3.28)

where A is the amplification matrix given by

A = 1

αm − γΩα f

[
αm + γΩ(1 − α f) αm − γ

Ω αm − 1 + Ωα f (1 − γ)

]
(3.29)

From Eq.3.28, we can see that
yn+1 = Any0

where y0 is the initial solution vector at t = 0. For the generalized-α method to
be stable, we require that for real λ ≤ 0, yn → 0 as n → 0. This is equivalent to
stating that the modulus of the eigenvalues of A are all less than or equal to 1. Each
eigenvalue of A, ρ, must satisfy

det(A − ρI) = 0

Denoting the elements of A by Ai j (i, j = 1, 2), we can expand the above as:

det

[
A11 − ρ A12

A21 A22 − ρ

]
= (A11 − ρ)(A22 − ρ) − A12 A21

= A11A22 − (A11 + A22)ρ + ρ2 − A12 A21

= A11A22 − A12 A21 − (A11 + A22)ρ + ρ2

= det(A) − trace(A)ρ + ρ2

= 0

where trace(A) is the sum of diagonal elements of A. Hence, the eigenvalues of A
satisfy the characteristic equation

ρ2 − trace(A)ρ + det(A) = 0 (3.30)

76 3 Numerical Integration of Ordinary Differential Equations

the solution of which leads to two eigenvalues ρ1, ρ2 given by

ρ1,2 = trace(A) ±
√
trace(A)2 − 4 det(A)

2
(3.31)

Furthermore, using the Caley–Hamilton theorem, a square matrix must also satisfy
its own characteristic equation. Thus, A also satisfies Eq.3.30:

A2 − trace(A)A + det(A) = 0

Right-multiplying all terms by the previous solution vector, yn−1, we obtain:

A2yn−1 − trace(A)Ayn−1 + det(A)yn−1 = 0

Using yn+1 = A2yn−1 and yn = Ayn−1, this simplifies to:

yn+1 − trace(A)yn + det(A)yn−1 = 0

Taking the first element of each solution vector in the above leads to the following
recurrence relation:

yn+1 − trace(A)yn + det(A)yn−1 = 0 (3.32)

If we substitute the exact values of the solution in Eq.3.32, using y(tn+1) for yn+1,
y(tn) for yn , and y(tn−1) for yn−1, we can define the local truncation error τ(tn)
according to [12]:

y(tn+1) − trace(A)y(tn) + det(A)y(tn−1) = hτ(tn) (3.33)

Using Taylor series expansions about y(tn), we can rewrite Eq.3.33 as:

y(tn) + h ẏ(tn) + h2

2
ÿ(tn) − trace(A)y(tn) + det(A)

[
y(tn) − h ẏ(tn) + h2

2
ÿ(tn)

]

+ O(h3) = hτ(tn)

Evaluating the above using exact derivatives, we have:

y(tn) + hλy(tn) + h2λ2y(tn)

2
− trace(A)y(tn) + det(A)

[
y(tn) − hλy(tn) + h2λ2y(tn)

2

]

+ O(h3) = hτ(tn)

3.2 One-Step Methods 77

Substituting Ω = hλ:

y(tn)

[
1 + Ω + Ω2

2
− trace(A) + det(A)(1 − Ω + Ω2

2
)

]
+ O(h3) = hτ(tn)

The method will be second-order accurate (i.e. local truncation error will be O(h2))
if the term in square brackets above is zero. That is

1 + Ω + Ω2

2
− trace(A) + det(A)

(
1 − Ω + Ω2

2

)
= 0 (3.34)

From Eq.3.29, we can readily determine that

trace(A) = 2αm − 2α f γΩ + γΩ + α f Ω − 1

αm − α f γΩ

= 2 + Ωα f + γΩ − 1

αm − α f γΩ
(3.35)

det(A) = [αm − α f γΩ + γΩ][αm − α f γΩ + α f Ω − 1] − αmΩ + γΩ

[αm − α f γΩ]2

= 1 − Ω − Ωα f − γΩ + 1

αm − α f γΩ
(3.36)

Substituting these into Eq.3.34 and after much re-arranging, we obtain:

Ω2
(

Ω
2 + α f − αm + γ − α f Ω

2 − γΩ

2 − α f γΩ − 1
2

)

αm − α f γΩ
= 0

Which leads to the solution

γ = 2αm − 2α f − Ω(1 − α f) + 1

2Ωα f − Ω + 2

For very small step sizes, Ω → 0, and the method will be second-order accurate
when

γ = 1

2
+ αm − α f (3.37)

The choice of remaining algorithm parameters αm and βm will determine the stability
of the generalized-α method, as well as its high-frequency damping. Recall that the
method will be stable if for all real λ ≤ 0, the magnitudes of the eigenvalues of A
are less than or equal to 1. From Eq.3.31, these eigenvalues are given by

ρ1,2 = trace(A) ±
√
trace(A)2 − 4 det(A)

2

78 3 Numerical Integration of Ordinary Differential Equations

where trace(A) and det(A) are given by Eqs. 3.35 and 3.36. In the limit as Ω → 0:

trace(A) = 2 − 1

αm

det(A) = 1 − 1

αm

and therefore

ρ1 = 1 , ρ2 = 1 − 1

αm

From ρ2, we see that stability requires αm ≥ 1
2 . Furthermore, for large step-sizes

with λ < 0, Ω → −∞ and

lim|Ω|→∞ trace(A) = 2 − α f + γ

α f γ

lim|Ω|→∞ det(A) = 1 − α f + γ − 1

α f γ

for which we obtain

ρ1 = 1 − 1

α f
, ρ2 = 1 − 1

γ

Hence, for stability, we require α f ≥ 1
2 , γ ≥ 1

2 . Combining all the above stability
constraints with Eq.3.37, we obtain the overall stability requirement αm ≥ α f ≥ 1

2 .
To choose specific values for α f and αm , we can specify a required level of high-

frequency damping, ρ∞ defined as

ρ∞ = lim|Ω|→∞max (|ρ1|, |ρ2|)

where 0 ≤ ρ∞ ≤ 1. From Eq.3.31, the sum of ρ1 and ρ2 will be trace(A): if
both eigenvalues are real, then one will necessarily grow with Ω whilst the other is
reduced. To keep the magnitude of both eigenvalues ≤ 1, the optimal constraint is
to force both to be complex for all values of Ω . Then, from Eq.3.31, they will be
complex conjugate and have the same magnitude. Only in the limit as |Ω| → ∞
will both eigenvalues become real and equal to ρ∞. Therefore, we have:

ρ∞ = 1 − 1

α f

∴ α f = 1

1 + ρ∞
(3.38)

and ρ∞ = 1 − 1

γ

3.2 One-Step Methods 79

∴ γ = 1

1 + ρ∞
= α f = 1

2
+ αm − α f (from Eq. 3.37)

∴ αm = 2α f − 1

2

= 1

2

(
3 − ρ∞
1 + ρ∞

)
(3.39)

Equations3.37–3.39 define the algorithmic parameters that specify given high-
frequency damping and optimize stability over all frequencies. When ρ∞ = 1 (i.e.
no damping) the method is equivalent to the trapezoidal method (Sect. 3.2.2). When
ρ∞ = 0, the method provides maximal high-frequency damping.

COMSOL implements the generalized-α method as an option in its time depen-
dent solver settings. In particular, the high-frequency damping parameter ρ∞ is set
by specifying the “amplification for high frequency” setting, as shown in Fig. 3.2.
For first-order ODEs, COMSOL does not allow the user to specify no-damping (i.e.
ρ∞ = 1), but allows any other positive damping value <1.

Example 3.5 Use the generalized-α method in COMSOL to solve the logistic-
growth ODE (see Eq.2.1)

du

dt
= 1000u(1 − u) , u(0) = 0.1

Fig. 3.2 Generalized-αmethod interface inCOMSOL.The amplification for high frequency setting
(shown circled) corresponds to ρ∞ in the text, and is set to a default value of 0.75

http://dx.doi.org/10.1007/978-3-642-54801-7_2

80 3 Numerical Integration of Ordinary Differential Equations

for ρ∞ = 0, 0.5, 0.75, 0.99, and compare with the exact solution:

u(t) = e1000t

[
9 + e1000t

]

Answer: To solve this ODE in COMSOL, we implement a 0D model with a single
Global ODE and DAE interface, specifying the Generalized-α method in the time-
stepping settings. The full implementation of the model is given in the steps below.
For readers not familiar with COMSOL, a brief overview is provided in Appendix B.

Model Wizard

1. Open the Model Wizard and select the 0D spatial dimension.
2. In the Select Physics panel, chooseMathematics|ODEandDAE Interfaces|Global

ODEs and DAEs. Click “Add”.
3. Click the Study arrow to open the Select Study panel. Select Time Dependent,

and click “Done” to exit the Model Wizard.

Global Definitions

1. Right-click Global Definitions in the model tree and select Parameters. Enter
a single parameter in the Parameters table of the Settings window with name
rho_inf and expression 0.75.

Global ODEs and DAEs

1. Select the Global Equations 1 subnode of the Global ODEs and DAEs node. In
the settings table, enter a single row specifying the variable name as u and in the
f(u,ut,utt,t) column (column 2), enter the expression

ut-(1000[1/s])*u*(1-u)

This corresponds to the global equation f(u,ut,utt,t) = 0, where ut, utt

denotes the first- and second-derivatives of u with respect to time. Note that
utt is not used here, since our ODE is only first-order. In the third column, enter
the initial value as 0.1.

2. In the units section, just below the settings table, leave the units of the dependent
variable quantity as dimensionless, but specify the source term quantity units as
‘frequency factor (1/s)’.

Study

1. Select the Step1: Time Dependent sub-node of the Study 1 node. In the Settings
window, Click the Range button () adjacent to the Times field. Leave the entry
method as ‘Step’ and enter Start, Step and Stop values of 0, 0.0001 and 0.025
respectively. Click Replace. This will create a range of output time values from
0 to 0.025s in time steps of 0.0001s.

2. Right-click the Study 1 node and select Show Default Solver. Select the Study 1|
Solver Configurations|Solver 1|Time-Dependent Solver 1 node. In the Settings
window, expand the Time Stepping tab, and select Generalized alpha for the

3.2 One-Step Methods 81

method. In the Amplification for high frequency setting, enter rho_inf. This
will set the user-specified high-frequency damping to the global parameter defined
earlier.

3. Right-click the Study 1 node and select the Parametric Sweep option. In the
settings table, click the Add button () to add the parameter as rho_inf. In
the parameter value list, type 0, 0.5, 0.75, 0.99. These comma-separated entries
represent values the parameter will be successively assigned to during the sweep.

4. To solve the model, right-click Study 1 and select Compute ().

Results

1. When the model has completed solving, the Graphics window will display a
default plot of the solutions for each rho_inf parameter value. Right-click the
1D Plot Group 1 sub-node of the Results node and select Global. This will create
a Global 2 sub-node of 1D Plot Group 1. In the settings table, specify

exp((1000[1/s])*t)/(9+exp((1000[1/s])*t))

as the expression to plot, overwriting the default expression comp1.u. Note that
units have also been entered in this expression to maintain unit consistency. Spec-
ify the Data set as Solution 2 and the Parameter selection as First.

2. Go to the Coloring and Style section below the settings table. Under Line style,
specify the line as Dashed, the colour as Black, and the line width to be 2.

3. Next, go to the Legends tab below the Coloring and Style section. In the Legends
setting, select Manual. In the legends table, type Exact Solution, overwriting
the default entry rho_inf=0.

4. Clicking the plot button () will display the plot shown in Fig. 3.3.

It can be seen from the COMSOL solution that higher damping factors of 0 and 0.5
suppress high-frequency numerical oscillations, yielding results closer to the exact
solution. �

Fig. 3.3 COMSOL generalized-α solution to u′(t) = 1000u(1 − u), u(0) = 0.1, using four
high-frequency damping factors (ρ∞) of 0, 0.5, 0.75 and 0.99. Also shown is the exact solution

82 3 Numerical Integration of Ordinary Differential Equations

For second-order systems, the generalized-α algorithm of Eq.3.26 is slightly
modified. For the second-order ODE

ÿ + g(t, y)ẏ = f (t, y)

the method may be written as [5]:

ÿn+1−αm = f (tn+1−α f , yn+1−α f) − g(tn+1−α f , yn+1−α f)ẏn+1−α f

ẏn+1 = ẏn + h
[
(1 − γ)ÿn + γ ÿn+1

]

yn+1 = yn + h ẏn + h2

[(
1

2
− β

)
ÿn + β ÿn+1

]
(3.40)

where h is the step-size and

ÿn+1−αm = (1 − αm)ÿn+1 + αm ÿn

ẏn+1−α f = (1 − α f)yn+1 + α f ẏn

yn+1−α f = (1 − α f)yn+1 + α f yn

tn+1−α f = tn + h(1 − α f)

Note that αm and α f in Eq.3.40 have a slightly different definitions from the first-
order case, and that a new algorithm parameter β has now been introduced. As in
the first-order case, considerations of second-order accuracy, stability, and specified
high-frequency damping lead to the new algorithm parameter values as [5]:

αm = 2ρ∞ − 1

ρ∞ + 1

α f = ρ∞
ρ∞ + 1

β = 1

4

(
1 − αm + α f

)2

γ = 1

2
− αm + α f

where as before, ρ∞ represents the user-specified high-frequency damping.

3.3 Multistep Methods

Multistep methods for numerically-integrating ODEs use information stored in pre-
vious time steps to advance the solution to the next step. For the general first-order
ODE given by

dy

dt
= f (t, y)

3.3 Multistep Methods 83

these methods store the values of y and/or f from the previous k steps. Denoting
these stored values as yn−1 . . . yn−k and fn−1 . . . fn−k , linear multistep methods
take the form

k∑
i=0

αi yn−i = h
k∑

i=0

βi fn−i (3.41)

where h is the step-size. The αi , βi coefficients are determined using an interpolating
polynomial passing through the previous k step solutions. Consider the general set
of k equi-spaced points (t1, y1), (t2, y2) . . . (tk, yk) such that ti = t1 + (i − 1)h
(i = 1 . . . k), then the unique interpolating polynomial of degree<k passing through
these points is given by

φ(t) = ∇0yk + (t − tk)

h
∇1yk + (t − tk)(t − tk−1)

2! h2
∇2yk + . . .

+ (t − tk)(t − tk−1) . . . (t − t2)

(k − 1)! hk−1
∇k−1yk (3.42)

where ∇ i denotes the backward difference operator of order i , defined by

∇0y j = y j

∇ i y j = ∇ i−1y j − ∇ i−1y j−1 (3.43)

Equation3.42 is referred to as Newton’s backward difference formula. To show that
it represents the required interpolating polynomial, we immediately see that when
t = tk ,

φ(tk) = ∇0yk = yk

as required. Furthermore, substituting t = tk−1 yields

φ(tk−1) = ∇0yk + (tk−1 − tk)

h
∇1yk

= yk − ∇1yk (since tk−1 − tk = −h)

= yk − (∇0yk − ∇0yk−1) (from (3.43))

= yk−1

also as required. In general, substituting ti into Eq.3.42, we obtain:

φ(ti) = ∇0yk + (ti − tk)

h
∇1yk + · · · + (ti − tk) . . . (ti − ti+1)

(k − i)! hk−i
∇k−i yk

= ∇0yk − (k − i)∇1yk + (k − i)(k − i − 1)

2! ∇2yk · · · + (−1)k−i (k − i)!
(k − i)!∇

k−i yk

(using ti − t j = (i − j)h)

84 3 Numerical Integration of Ordinary Differential Equations

= ∇0yk − (k − i)∇1yk + (k − i)!
2! (k − i − 2)!∇

2yk · · · + (−1)k−i (k − i)!
(k − i)!∇

k−i yk

=
k−i∑
r=0

(−1)r Ck−i
r ∇r yk , where Ck−i

r = (k − i)!
r ! (k − i − r)! (3.44)

To show that Eq.3.42 is satisfied at all the (ti , yi) points (i = 1 . . . k), we proceed by
mathematical induction. Assume that for some i (2 ≤ i ≤ k), we have φ(ti) = yi .
Our task is to show that φ(ti−1) = yi−1. We begin with the backward difference
relationship:

∇1yi = yi − yi−1

∴ yi−1 = yi − ∇1yi

Substituting φ(ti) from Eq.3.44 in place of yi on the right-hand side of the above
(since we have assumed that yi = φ(ti)), we obtain:

yi−1 =
k−i∑
r=0

(−1)r Ck−i
r ∇r yk − ∇1

[
k−i∑
r=0

(−1)r Ck−i
r ∇r yk

]

=
k−i∑
r=0

(−1)r Ck−i
r ∇r yk −

k−i∑
r=0

(−1)r Ck−i
r ∇r+1yk

=
k−i∑
r=0

(−1)r Ck−i
r ∇r yk −

k−i+1∑
s=1

(−1)s−1Ck−i
s−1 ∇s yk

(where we have used s = r + 1 in the second summation)

=
k−i∑
r=0

(−1)r Ck−i
r ∇r yk +

k−i+1∑
s=1

(−1)sCk−i
s−1 ∇s yk

=
k−i∑
r=0

(−1)r Ck−i
r ∇r yk +

k−i+1∑
r=1

(−1)r Ck−i
r−1 ∇r yk

(where dummy index s has been replaced with r)

= Ck−i
0 ∇0yk +

k−i∑
r=1

(−1)r
[
Ck−i

r + Ck−i
r−1

]∇r yk

+(−1)k−i+1Ck−i
k−i ∇k−i+1yk

Now,

Ck−i
r + Ck−i

r−1 = (k − i)!
r !(k − i − r)! + (k − i)!

(r − 1)!(k − i − r + 1)!
= (k − i)!(k − i − r + 1)

r !(k − i − r + 1)! + (k − i)!r
r !(k − i − r + 1)!

3.3 Multistep Methods 85

= (k − i)!(k − i + 1)

r !(k − i − r + 1)!
= (k − i + 1)!

r !(k − i + 1 − r)!
= Cr

k−i+1

Hence,

yi−1 = Ck−i
0 ∇0yk +

[
k−i∑
r=1

(−1)r Ck−i+1
r ∇r yk

]
+ (−1)k−i+1Ck−i

k−i ∇k−i+1yk

=
k−i+1∑

r=0

(−1)r Ck−i+1
r ∇r yk

(since Ck−i
0 = Ck−i+1

0 = 1 and Ck−i
k−i = Ck−i+1

k−i+1 = 1)

= φ(ti−1) from Eq. 3.44, with i replaced by i − 1.

and since we know that Eq.3.42 satisfies φ(tk) = yk , it must satisfy φ(ti) = yi for
all i : 1 ≤ i ≤ k. Thus, Newton’s backward difference polynomial passes though all
the k (ti , yi) points, and is the required interpolating polynomial.

To determine the error when using Newton’s backward difference formula, we
assume that the yi values above represent discrete samples of a continuous function
y(t) that is k-times differentiable over some closed interval t ∈ [a, b] that includes
the interpolation points ti . We then define the error E(t) = y(t) − φ(t): where E(t)
will also be continuous and differentiable up to the same order as y(t). It can be
readily shown that for any value of t ∈ [a, b], E(t) satisfies

E(t) = λ(t − t1)(t − t2) · · · (t − tk) (3.45)

where λ is some constant. To see that this expression represents the error, clearly E(t)
in Eq.3.45 will be exactly zero at the interpolation points t1, t2, . . . , tk as required.
Furthermore, for a given value t = τ between the interpolation points, we have:

E(τ) = λ(τ − t1)(τ − t2) · · · (τ − tk) = y(τ) − φ(τ)

and therefore λ can be assigned to

λ = y(τ) − φ(τ)

(τ − t1)(τ − t2) · · · (τ − tk)
, τ
= t1, t2, . . . tk

to precisely yield the error at t = τ . With this choice of λ, we can form the new
expression:

G(t) = y(t) − φ(t) − λ(t − t1)(t − t2) · · · (t − tk) (3.46)

86 3 Numerical Integration of Ordinary Differential Equations

G(t) will have at least k + 1 zeros in [a, b]: k of these at t = t1, t2, . . . , tk , and one
at t = τ . Since G(t) is continuous, it will have one local maximum or minimum
between two adjacent zeros. Its first-derivative, G ′(t), will therefore have at least k
zeros. Similarly, its second-derivative G ′′(t) will have at least k − 1 zeros, and so
on. Continuing in this manner, and since G(t) is also k-times differentiable, its k-th
derivative, G(k)(t), must have at least one zero. From Eq.3.46, we have:

G(k)(t) = y(k)(t) − φ(k)(t) − λk!

and since φ(t) is a polynomial of degree k − 1, φ(k)(t) = 0. Hence,

G(k)(t) = y(k)(t) − λk!

Now, denoting ξ ∈ [a, b] as the zero of G(k)(t), we see that

λ = 1

k! y(k)(ξ)

And hence,

E(t) = y(k)(ξ)

k! (t − t1)(t − t2) · · · (t − tk) (3.47)

for some ξ ∈ [a, b]. This represents the error in Newton’s backward difference
formula, and depending on the choice of interval [a, b], can be used to bound the
error for either interpolation or extrapolation.

Since multistep methods make use of previous stored values of the solution, they
are not self-starting and require other methods such as Runge–Kutta algorithms to
generate the first few values. Furthermore, since the previous solutions are stored
at equi-spaced intervals, if the step-size is subsequently changed, new stored values
must be generated by interpolation/extrapolation based on the new step-size.

3.3.1 Predictor-Corrector Methods

The idea behind predictor-corrector methods is to utilise two linear multistep algo-
rithms of the formof Eq.3.41, one corresponding to the predictor, the other to the cor-
rector. The predictor and corrector employ polynomial extrapolation/interpolation
to estimate the subsequent step value, with the difference in values between the two
multistep algorithms providing an estimate of the local truncation error, which can
be used to adjust the step-size. We illustrate the approach in detail using the Adams–
Bashforth–Moulton predictor-corrector scheme, which employs a cubic polynomial
extrapolation for the predictor, followed by another cubic polynomial interpolation
for the corrector.

3.3 Multistep Methods 87

Consider the general ODE
dy

dt
= f (t, y) (3.48)

we can use the fundamental theorem of calculus to determine the value of y at the
next step, tn , according to:

yn = yn−1 +
∫ tn

tn−1

f (t, y) dt (3.49)

To evaluate the integral, we use Newton’s backward difference polynomial to
determine a cubic polynomial that interpolates the previous four step-values of f .
Denoting these values by fn−1, fn−2, fn−3 and fn−4, the required predictor cubic
interpolating polynomial, Fp(t), approximating f (t, y) from Eq.3.42 is:

Fp(t) = ∇0 fn−1 + (t − tn−1)

h
∇1 fn−1 + (t − tn−1)(t − tn−2)

2! h2
∇2 fn−1

+ (t − tn−1)(t − tn−2)(t − tn−3)

3! h3
∇3 fn−1 (3.50)

We can evaluate the backward differences about fn−1 as follows:

∇0 fn−1 = fn−1

∇1 fn−1 = f 0n−1 − f 0n−2 = fn−1 − fn−2

∇2 fn−1 = f 1n−1 − f 1n−2 = (fn−1 − fn−2) − (fn−2 − fn−3)

= fn−1 − 2 fn−2 + fn−3

∇3 fn−1 = f 2n−1 − f 2n−2 = (fn−1 − 2 fn−2 + fn−3) − (fn−2 − 2 fn−3 + fn−4)

= fn−1 − 3 fn−2 + 3 fn−3 − fn−4

Substituting these into Eq.3.50, we obtain

Fp(t) = fn−1 +
[

fn−1 − fn−2

h

]
(t − tn−1)

+
[

fn−1 − 2 fn−2 + fn−3

2h2

]
(t − tn−1)(t − tn−2)

+
[

fn−1 − 3 fn−2 + 3 fn−3 − fn−4

6h3

]
(t − tn−1)(t − tn−2)(t − tn−3)

88 3 Numerical Integration of Ordinary Differential Equations

We now substitute this cubic polynomial approximation to f (t, y) in Eq.3.49, to
obtain:

yn = yn−1 +
∫ tn

tn−1

Fp(t) dt

= yn−1 + fn−1 I0 +
[

fn−1 − fn−2

h

]
I1 +

[
fn−1 − 2 fn−2 + fn−3

2h2

]
I2

+
[

fn−1 − 3 fn−2 + 3 fn−3 − fn−4

6h3

]
I3 (3.51)

where

I0 =
∫ tn

tn−1

dt = h

I1 =
∫ tn

tn−1

(t − tn−1) dt =
[

(t − tn−1)
2

2

]tn

tn−1

= h2

2

I2 =
∫ tn

tn−1

(t − tn−1)(t − tn−2) dt

=
[
(t − tn−2)

∫
(t − tn−1) dt

]tn

tn−1

−
∫ tn

tn−1

1 ·
∫

(t − tn−1) dt dt

(using integration by parts)

=
[

(t − tn−2)(t − tn−1)
2

2

]tn

tn−1

−
[

(t − tn−1)
3

6

]tn

tn−1

= 5h3

6

I3 =
∫ tn

tn−1

(t − tn−1)(t − tn−2)(t − tn−3) dt

=
[
(t − tn−3)

∫
(t − tn−1)(t − tn−2) dt

]tn

tn−1

−
∫ tn

tn−1

1 ·
∫

(t − tn−1)(t − tn−2) dt dt

=
[

(t − tn−3)(t − tn−2)(t − tn−1)
2

2
− (t − tn−3)(t − tn−1)

3

6

]tn

tn−1

−
∫ tn

tn−1

(
(t − tn−2)(t − tn−1)

2

2
− (t − tn−1)

3

6

)
dt

=
(
3h · 2h · h2

2
− 3h · h3

6

)
−

[
(t − tn−2)

∫
(t − tn−1)

2

2

]tn

tn−1

+
∫ tn

tn−1

1 ·
∫

(t − tn−1)
2

2
dt dt +

∫ tn

tn−1

(t − tn−1)
3

6
dt

3.3 Multistep Methods 89

= 5h4

2
−

[
(t − tn−2)(t − tn−1)

3

6

]tn

tn−1

+
[

(t − tn−1)
4

24

]tn

tn−1

+
[

(t − tn−1)
4

24

]tn

tn−1

= 5h4

2
− h4

3
+ h4

24
+ h4

24

= 9h4

4

Substituting these integral evaluations into Eq.3.51, we obtain:

yn = yn−1 + h fn−1 + h

[
fn−1 − fn−2

2

]
+ 5h

[
fn−1 − 2 fn−2 + fn−3

12

]

+9h

[
fn−1 − 3 fn−2 + 3 fn−3 − fn−4

24

]

= yn−1 + h

24

[
55 fn−1 − 59 fn−2 + 37 fn−3 − 9 fn−4

]
(3.52)

Equation3.52 is known as the fourth-orderAdams–Bashforth predictor. To determine
its truncation error, εp, we note that the error in the polynomial approximation Fp(t)
at each point t ∈ [tn−4, tn] can be determined from Eq.3.47 as

E(t) = f (4)(ξ)

4! (t − tn−1)(t − tn−2)(t − tn−3)(t − tn−4) (3.53)

for some ξ ∈ [tn−4, tn]. This error can then be incorporated into the integral of Fp(t)
in Eq.3.51 to obtain:

εp =
∫ tn

tn−1

E(t) dt

=
∫ tn

tn−1

f (4)(ξ)

4! (t − tn−1)(t − tn−2)(t − tn−3)(t − tn−4) dt

where ξ is a function of t . Denoting the maximum and minimum values of 1
4! f (4)(ξ)

in the interval [tn−4, tn] by M and m respectively, we have:

m
∫ tn

tn−1

p(t) dt ≤ εp ≤ M
∫ tn

tn−1

p(t) dt

where p(t) = (t − tn−1)(t − tn−2)(t − tn−3)(t − tn−4). Since we assume 1
4! f (4)(t)

to be continuous, taking all values between m and M , then there must be a value of
t ∈ [tn−4, tn], say ξ1, for which

90 3 Numerical Integration of Ordinary Differential Equations

εp =
∫ tn

tn−1

f (4)(ξ)

4! p(t) dt = f (4)(ξ1)

4!
∫ tn

tn−1

p(t) dt

Evaluating the definite integral of p(t) above is a tedious calculation which can be
carried out by hand, or through the use of symbolic computation software,5 to obtain:

∫ tn

tn−1

p(t) dt =
∫ tn

tn−1

(t − tn−1)(t − tn−2)(t − tn−3)(t − tn−4) dt = 251h5

30

Hence,

εp = f (4)(ξ1)

4!
251h5

30
= 251

720
f (4)(ξ1)h

5

= 251

720
y(5)(ξ1)h

5, ξ1 ∈ [tn−4, tn] (3.54)

represents the local truncation error for the Adams–Bashforth predictor.
A similarmethod to the above canbeused to derive an alternative cubic polynomial

that will be used as the corrector. In this case, we shift the interpolation points one-
step forwards to the four points tn−3, tn−2, tn−1 and tn . Referring to the corresponding
values of f (t, y) as fn−3, fn−2, fn−1 and fn , the required polynomial from Eq.3.42
is

Fc(t) = ∇0 fn + (t − tn)

h
∇1 fn + (t − tn)(t − tn−1)

2! h2
∇2 fn

+ (t − tn)(t − tn−1)(t − tn−2)

3! h3
∇3 fn

= fn +
[

fn − fn−1

h

]
(t − tn) +

[
fn − 2 fn−1 + fn−2

2h2

]
(t − tn)(t − tn−1)

+
[

fn − 3 fn−1 + 3 fn−2 − fn−3

6h3

]
(t − tn)(t − tn−1)(t − tn−2)

Substituting this polynomial as an approximation to f (t, y) in the integral of Eq.3.49,
we obtain:

5If you have installed Matlab’s Symbolic Math Toolbox, the following commands can be entered
from the command prompt to readily evaluate this integral:

syms t1 t h
P = (t-t1)*(t-(t1-h))*(t-(t1-2*h))*(t-(t1-3*h));
I4 = int(P,t,t1,t1+h);
simplify(I4)

where syms declares the symbolic variables t1, t and h, where t1 denotes tn−1. The command
int symbolically evaluates the definite integral, and simplify simplifies the resulting expression
to obtain the required answer.

3.3 Multistep Methods 91

yn = yn−1 +
∫ tn

tn−1

Fc(t) dt

= yn−1 + fn J0 +
[

fn − fn−1

h

]
J1 +

[
fn − 2 fn−1 + fn−2

2h2

]
J2

+
[

fn − 3 fn−1 + 3 fn−2 − fn−3

6h3

]
J3

where

J0 =
∫ tn

tn−1

dt = h

J1 =
∫ tn

tn−1

(t − tn) dt = −h2

2

J2 =
∫ tn

tn−1

(t − tn)(t − tn−1) dt = −h3

6

J3 =
∫ tn

tn−1

(t − tn)(t − tn−1)(t − tn−2) dt = −h4

4

and hence,

yn = yn−1 + h fn − h2

2

[
fn − fn−1

h

]
− h3

6

[
fn − 2 fn−1 + fn−2

2h2

]

−h4

4

[
fn − 3 fn−1 + 3 fn−2 − fn−3

6h3

]

= yn−1 + h

24

[
9 fn + 19 fn−1 − 5 fn−2 + fn−3

]
(3.55)

which is known as the fourth-order Adams–Moulton corrector. Note that unlike the
corresponding explicit Adams–Bashforth predictor, the corrector is implicit. Its trun-
cation error, εc, can be determined using similar principles to those used to derive the
predictor error (Eq. 3.54): namely by integrating the local error of the interpolating
polynomial. This interpolation error is given from Eq.3.47 as

E(t) = f (4)(ξ)

4! (t − tn)(t − tn−1)(t − tn−2)(t − tn−3)

for some ξ ∈ [tn−3, tn]. We can then integrate this error term to obtain:

εc =
∫ tn

tn−1

f (4)(ξ)

4! (t − tn)(t − tn−1)(t − tn−2)(t − tn−3) dt

= f (4)(ξ2)

4!
∫ tn

tn−1

(t − tn)(t − tn−1)(t − tn−2)(t − tn−3) dt (ξ2 ∈ [tn−3, tn])

92 3 Numerical Integration of Ordinary Differential Equations

= f (4)(ξ2)

4!
(

−19h5

30

)

= − 19

720
y(5)(ξ2)h

5 (3.56)

We can now combine the predictor-corrector pair (Eqs. 3.52 and 3.55) to formMilne’s
method as follows:

yp = yn−1 + h

24

[
55 fn−1 − 59 fn−2 + 37 fn−3 − 9 fn−4

] + 251

720
y(5)(ξ1)h

5

yc = yn−1 + h

24

[
9 f (tn, yp) + 19 fn−1 − 5 fn−2 + fn−3

] − 19

720
y(5)(ξ2)h

5

where yp and yc are the predictor and corrector estimates of y at the next step tn . Note
that the fn term in the corrector (Eq.3.55) has been estimated from the predicted value
yp as f (tn, yp). For small time-steps h, we can assume that ξ1 ≈ ξ2, and denoting
the exact value of yn by y, we obtain the following error estimates for the predictor
and corrector:

yp − y = 251

720
y(5)(ξ)h5

yc − y = − 19

720
y(5)(ξ)h5

where ξ ∈ [tn−4, tn]. Subtracting these error terms, we obtain:

yp − yc = 270

720
y(5)(ξ)h5

= −270

19
(yc − y)

And hence,

ln = |yc − y| = 19

270
|yp − yc| (3.57)

is an estimate of the local error, which can be used to adjust the step-size similar to
that of Eq.3.25.

Tables3.1 and 3.2 display the coefficients and truncation errors for the Adams–
Bashforth and Adams–Moulton families of predictors and correctors up to order 6.

3.3 Multistep Methods 93

Table 3.1 Coefficients (Eq.3.41) of Adams–Bashforth predictors up to order 6. Note that for the
error term, ξ ∈ [tn−k , tn], where k is the order

Order β1 β2 β3 β4 β5 β6 Error term

1 1 1
2 y′′(ξ)h2

2 3
2 − 1

2
5
12 y′′′(ξ)h3

3 23
12 − 16

12
5
12

3
8 y(4)(ξ)h4

4 55
24 − 59

24
37
24 − 9

24
251
720 y(5)(ξ)h5

5 1901
720 − 2774

720
2616
720 − 1274

720
251
720

95
288 y(6)(ξ)h6

6 4277
1440 − 7923

1440
9982
1440 − 7298

1440
2877
1440 − 475

1440
19087
60480 y(7)(ξ)h7

Table 3.2 Coefficients (Eq.3.41) of Adams–Moulton correctors up to order 6. For the error,
ξ ∈ [tn−k , tn], where k is the order

Order β1 β2 β3 β4 β5 β6 Error term

1 1 − 1
2 y′′(ξ)h2

2 1
2

1
2 − 1

12 y′′′(ξ)h3

3 5
12

8
12 − 1

12 − 1
24 y(4)(ξ)h4

4 9
24

19
24 − 5

24
1
24 − 19

720 y(5)(ξ)h5

5 251
720

646
720 − 264

720
106
720 − 19

720 − 3
160 y(6)(ξ)h6

6 475
1440

1427
1440 − 798

1440
482
1440 − 173

1440
27

1440 − 863
60480 y(7)(ξ)h7

3.3.2 Backward Differentiation Formulas

Another family of linear multistep methods, first made popular by C.W. Gear [8],
are those based on Backward Differentiation Formula (BDF) methods. For the ODE

dy

dt
= f (t, y)

BDF methods utilise Newton’s backward difference polynomial, Eq. 3.42, to obtain
an estimate for the next step yn from the interpolating polynomial φ(t) of degree k
passing through yn and the previous k step solutions yn−1, . . . , yn−k , then differen-
tiating this polynomial to obtain:

dφ(t)

dt

∣∣∣∣
t=tn

= d

dt

[
∇0yn + (t − tn)

h
∇1yn + (t − tn)(t − tn−1)

2! h2
∇2yn + . . .

+ (t − tn)(t − tn−1) . . . (t − tn−k+1)

k! hk
∇k yn

]

t=tn

94 3 Numerical Integration of Ordinary Differential Equations

=
[
1

h
∇1yn + (t − tn−1)

2! h2
∇2yn + . . .

+ (t − tn−1) . . . (t − tn−k+1)

k! hk
∇k yn

]

t=tn

= 1

h
∇1yn + h

2! h2
∇2yn + . . .

h . . . (k − 1)h

k! hk
∇k yn

= 1

h

[
∇1yn + ∇2yn

2
+ . . .

∇k yn

k

]

And since
dφ(t)

dt

∣∣∣∣
t=tn

≈ dy

dt

∣∣∣∣
t=tn

= f (tn, yn)

the k-step BDF is obtained:

1

h

[
∇1yn + ∇2yn

2
+ . . .

∇k yn

k

]
= f (tn, yn)

or
k∑

i=1

1

i
∇ i yn = h f (tn, yn) (3.58)

Defining the truncation error εn by

εn =
k∑

i=1

1

i
∇ i yn − h f (tn, yn)

the leading term may be conveniently written as

εn = 1

k + 1
∇k+1 yn (3.59)

which represents the next term that would be added to the sum after i = k. When
the backward differences in Eq.3.58 are evaluated for k = 1 . . . 5, the resulting
BDF multistep coefficients (Eq. 3.41), normalized such that α0 = 1, are given in
Table3.3, where the number of steps k is equal to the order of the method. Since
Eq.3.58 contains yn on both sides, BDF methods are implicit and have excellent
stability properties. They are therefore popular for stiff ODE systems.

To solve Eq.3.58, Newton’s method is used with an initial guess determined from
the predicted value

y p
n =

k∑
i=0

∇ i yn−1 (3.60)

3.3 Multistep Methods 95

Table 3.3 Multistep coefficients of BDF methods up to order 5 (see Eq.3.41)

Order β0 α0 α1 α2 α3 α4 α5

1 1 1 −1

2 2
3 1 − 4

3
1
3

3 6
11 1 − 18

11
9
11 − 2

11

4 12
25 1 − 48

25
36
25 − 16

25
3
25

5 60
137 1 − 300

137
300
137 − 200

137
75
137 − 12

137

This predictor leads to a useful estimate of the truncation error. Writing

yn − y p
n = yn −

k∑
i=0

∇ i yn−1

and noting from Eq.3.43 that

∇ i+1 yn = ∇ i yn − ∇ i yn−1

∴ ∇ i yn−1 = ∇ i yn − ∇ i+1 yn

we have

yn − y p
n = yn −

k∑
i=0

(∇ i yn − ∇ i+1 yn
)

= yn −
k∑

i=0

∇ i yn +
k∑

i=0

∇ i+1 yn

= −
k∑

i=1

∇ i yn +
k∑

i=0

∇ i+1 yn (since ∇0 yn = yn)

= ∇k+1 yn (3.61)

And using Eq.3.59, we obtain

εn = 1

k + 1

(
yn − y p

n

)
(3.62)

This estimate of the error can be used to adjust the step-size in a manner similar
to Eq.3.25. Furthermore, typical BDF codes also adjust the order in addition to the
step-size. One order-selection strategy is to simplymaintain, increment or decrement
the order by one, depending on which order yields the maximum step-size. BDF

96 3 Numerical Integration of Ordinary Differential Equations

order-varying methods begin with an order of 1 (which is self-starting), and then
increase the order as required. COMSOL implements the BDF method by default in
its time-dependent solver, with orders varying between 1–5. If desired, a maximum
order less than 5 can also be specified.

3.3.3 Numerical Differentiation Formulas

A variant of BDF methods is the family of numerical differentiation formulas, or
NDFs, whereby Eq.3.58 is modified to:

(
k∑

i=1

1

i
∇ i yn

)
− κγk

(
yn − y p

n

) = h f (tn, yn) (3.63)

where κ is a parameter, γk = ∑k
i=1(1/i) and y p

n is the predicted value given by
Eq.3.60. Substituting this predicted value into Eq.3.63, and making use of Eq.3.61,
we obtain the equivalent NDF form:

(
k∑

i=1

1

i
∇ i yn

)
− κγk∇k+1yn = h f (tn, yn) (3.64)

The truncation error of Eq.3.64 is given by

εn =
(

k∑
i=1

1

i
∇ i yn

)
− κγk∇k+1yn − h f (tn, yn)

The leading term of this error may be estimated from the increment in its value when
i is increased from k to k + 1:

εn = 1

k + 1
∇k+1yn − κ

(
γk+1∇k+2yn − γk∇k+1yn

)

=
(

κγk + 1

k + 1

)
∇k+1yn − κγk+1∇k+2yn

≈
(

κγk + 1

k + 1

)
∇k+1yn (3.65)

Hence, it is possible to choose a negative value of parameter κ to reduce the truncation
error below that of the corresponding BDF (Eq.3.62). Unfortunately, such a reduc-
tion in truncation error will compromise the stability of the method. Shampine and
Reichelt [18] report values of κ for NDF orders from 1 to 5 numerically-determined
to achieve a balance between good reduction in the truncation error with only slight

3.3 Multistep Methods 97

Table 3.4 Multistep coefficients of NDF methods up to order 5 (see Eq.3.41), scaled such that
α0 = 1. The κ coefficients in the final column have been incorporated into the multistep coefficients
of previous columns by expanding Eq.3.64

Order β0 α0 α1 α2 α3 α4 α5 κ

1 200
237 1 − 274

237
37
237 −0.185

2 3
5 1 − 3

2
3
5 − 1

10 − 1
9

3 60000
119053 1 − 216212

119053
144318
119053 − 56212

119053
823

10823 −0.0823

4 960
2083 1 − 4255

2083
3710
2083 − 2110

2083
655
2083 − 83

2083 −0.0415

5 60
137 1 − 300

137
300
137 − 200

137
75
137 − 12

137 0

change in stability. These values are given in Table 3.4, along with the corresponding
multistep coefficients determined from the expansion Eq.3.64. NDF methods form
the basis of Matlab’s ode15s ODE solver.

3.4 ODE Solver Implementations in Matlab and COMSOL

Matlab and COMSOL provide an extensive range of ODE solvers based on several of
the numerical integration algorithms described in this chapter. A summary of ODE
solvers used in both Matlab and COMSOL is given in Table3.5.

For models involving a large number of variables, it is common to express the
ODE system in the general form:

M(t, y)
dy
dt

= f(t, y), y(0) = y0 (3.66)

where M is referred to as the mass matrix,6 which may depend on t and y. Both
COMSOL and Matlab allow ODE systems to be expressed in this form. In Matlab,
for example, to solve the ODE system:

[
1 −1
t uv

] [
u̇
v̇

]
=

[
u − v2

u + v

]

with u(0) = v(0) = 1, we could use the following code to solve the system from
t = 0 to 1, which uses odeset to specify the mass matrix:7

6For second-order ODE systems of the form Eÿ + Mẏ + Ky = F, E is instead referred to as the
mass matrix, M is the damping matrix, and K is the stiffness matrix.
7In recent releases ofMatlab, setting themass matrix via odeset requires that function handles are
used to specify the user-defined functions, rather than string expressions. Hence for this example,
using options = odeset(’Mass’, ’my_mass_fun’); will not work.

98 3 Numerical Integration of Ordinary Differential Equations

Table 3.5 Summary of ODE solvers in Matlab and COMSOL. An overview of the Matlab ODE
suite may be found in Shampine and Reichelt [18]

Solver Description

ode45 Matlab ODE solver based on the 5(4) Runge–Kutta Dormand–Prince pair [7]
(see p. 72)

ode23 Matlab ODE solver based on the 3(2) Runge–Kutta Bogacki–Shampine pair
[4]

ode113 Matlab ODE solver based on the Adams–Bashforth–Milne
predictor-corrector family (see Sect. 3.3.1) of orders 1–13

ode15s Matlab ODE solver based of the NDF family of orders 1–5 (see Sect. 3.3.3),
suitable for solving stiff systems. It represents the default solver of choice for
most ODE systems encountered in bioengineering applications

ode23s Matlab ODE solver based on a modified Rosenbrock second-order algorithm
[20], suitable for stiff systems

ode23t Matlab ODE solver based on the trapezoidal method (see Sect. 3.2.2). Error
estimation for step-size control is based on the difference between the
trapezoidal evaluation and a third-order polynomial interpolant at each step

ode23tb Matlab ODE solver based on a trapezoidal-BDF2 pair [11]

BDF COMSOL time-dependent solver based on the BDF family of orders 1–5
(see Sect. 3.3.2).

Generalized-α COMSOL time-dependent solver based on the generalized-α method (see
Sect. 3.2.4). The solver detects which variables have ODE orders of 1 or 2,
and applies the appropriate method parameters and algorithm based on this
order

ode15i Matlab DAE solver for implicit DAEs in the form F(t, y, ẏ) = 0

Y_init = [1, 1];
t_span = [0, 1];
options = odeset(’Mass’, @my_mass_fun);
[time, Y_out] = ode15s(@my_fun, t_span, Y_init, options);

where the user-defined functions my_mass_fun and my_fun, which define the
mass matrix and the right-hand side of the above system respectively, are:

function M = my_mass_fun(t,Y)
M = [1, -1; t, Y(1)*Y(2)];

and

function Y_prime = my_fun(t,Y)
Y_prime = zeros(2,1);
Y_prime(1) = Y(1) - Y(2)ˆ2;
Y_prime(2) = Y(1) + Y(2);

If the mass matrix M is non-singular, left-multiplying both sides of Eq.3.66 by
M−1 will transform Eq.3.66 to the standard form of Eq.2.6, which we have used

http://dx.doi.org/10.1007/978-3-642-54801-7_2

3.4 ODE Solver Implementations in Matlab and COMSOL 99

Fig. 3.4 Advanced settings tab of COMSOL’s time-dependent solver. The user can specify a
singular mass matrix (default setting is ‘Maybe’), as well as the method of consistent initialization
of variables. For the default backward-Euler method of consistent initialization, the user can specify
the fraction of the initial solver step to be taken. Finally, the error estimation method for adjusting
the solver time-step can be set to include or exclude any algebraic variables present

throughout this chapter. However, ifM is singular, then the ODE system is equivalent
to a differential-algebraic equation (DAE) system, which may be expressed as:

dy
dt

= f(t, y, z) (3.67)

g(t, y, z) = 0 (3.68)

where the z represent purely algebraic variables, that is, variables with no derivatives
appearing in the equations. For such DAE systems, care must be taken to specify
initial values which are consistent with the solution. For example, the DAE

dy

dt
= y + z

y + z − t = 0

must satisfy the initial condition y(0)+ z(0) = 0 (substituting t = 0 into the second
equation), so any initial values not satisfying this relationship are not consistent with
the DAE. Matlab and COMSOL provide options to allow the user to specify if the
massmatrix is singular, and if so, to adjust initial values to ensure they are consistent.8

Figure3.4 shows the advanced settings tab of the time-dependent solver inCOMSOL,
where the user can specify a singularmassmatrix, aswell as themethod for consistent
initialization of variables. By default, COMSOL uses the backward-Euler method

8Matlab and COMSOL can readily solve DAEs for which ∂g
∂z in Eq.3.68 is non-singular, also known

as index-1 DAEs [2]. The DAE index is defined as the maximum number of system differentiations
required such that for all variables y, dy/dt can be uniquely determined from y and t . For more
information on solving index-1 DAEs using the standard Matlab ODE suite, see Shampine et al.
[19].

100 3 Numerical Integration of Ordinary Differential Equations

to take a small time-step of 0.1% of the initial solver step (this fraction can also be
adjusted), in order to generate a consistent solution using Newton’s method. This
solution is then taken as the initial value.

3.5 Further Reading

Comprehensive texts covering numerical methods for ODEs are those of Ascher and
Petzold [2], Shampine [17], Deuflhard and Bornemann [6] and the two-volume work
of Hairer et al. [9, 10]. The finite element method text of Hughes [12] provides an
introduction to the generalized trapezoidal family on which COMSOL’s generalized-
α method is based. Finally, the text of Press et al. [16] provides a general overview of
numerical methods for a range of scientific computation tasks, including the numer-
ical integration of ODEs.

Problems

3.1 The Beeler–Reuter [3] model of cardiac ventricular myocyte electrical activity
is given by the following system of 8 ODEs:

dVm

dt
= − 1

Cm

[
iK1 + ix1 + iNa + is − istim

]

d[Ca]i

dt
= −rCais + kup ([Ca]SR − [Ca]i)

dx1
dt

= αx1 (1 − x1) − βx1 x1

dm

dt
= αm (1 − m) − βmm

dh

dt
= αh (1 − h) − βhh

d j

dt
= α j (1 − j) − β j j

dd

dt
= αd (1 − d) − βdd

d f

dt
= α f (1 − f) − β f f

with four membrane ionic currents: a time-independent outward K+ current (iK1),
a voltage-dependent outward K+ current (ix1), an inward Na+ current (iNa), and a
slow inward Ca2+ current (is), given by the expressions:

3.5 Further Reading 101

iK1 = AK1

{
4

(
e0.04(Vm+85) − 1

)

e0.08(Vm+53) + e0.04(Vm+53)
+ 0.2(Vm + 23)

1 − e−0.04(Vm+23)

}

ix1 = Ax1 x1
e0.04(Vm+77) − 1

e0.04(Vm+35)

iNa = (
gNam3hj + gNaC

)
(Vm − VNa)

is = gsd f (Vm − VCa)

with
VCa = −82.3 − 13.0287 ln [Ca]i

where Vm is the transmembrane potential (in mV) and [Ca]i denotes the free intra-
cellular Ca2+ ion concentration (in M). The remaining variables x1, m, h, j , d, f
are dimensionless kinetic gating terms whose voltage-dependent forward (α) and
reverse (β) rates (in ms−1) are given by:

αx1 = 0.0005e0.083(Vm +50)

e0.057(Vm +50)+1
βx1 = 0.0013e−0.06(Vm +20)

e−0.04(Vm +20)+1

αm = −(Vm+47)
e−0.1(Vm +47)−1

βm = 40e−0.056(Vm+72)

αh = 0.126e−0.25(Vm+77) βh = 1.7
e−0.082(Vm +22.5)+1

α j = 0.055e−0.25(Vm +78)

e−0.2(Vm +78)+1
β j = 0.3

e−0.1(Vm +32)+1

αd = 0.095e−0.01(Vm −5)

e−0.072(Vm −5)+1
βd = 0.07e−0.017(Vm +44)

e0.05(Vm +44)+1

α f = 0.012e−0.008(Vm +28)

e0.15(Vm +28)+1
β f = 0.0065e−0.02(Vm +30)

e−0.2(Vm +30)+1

Finally, istim is the applied stimulus current given by

istim =
{

As ton ≤ t < ton + tdur

0 otherwise

where As , ton and tdur represent the stimulus current amplitude, onset time and
duration respectively.

Initial variable values at t = 0 are Vm = −83.3mV, [Ca]i = 1.87 × 10−7 M,
x1 = 0.1644, m = 0.01, h = 0.9814, j = 0.9673, d = 0.0033 and f = 0.9884,
with remaining model parameters given below:

Parameter Value Parameter Value
Cm 1µFcm−2 gNa 4mscm−2
rCa 1 × 10−7Mcm2 nC−1 gNaC 0.003mscm−2

[Ca]S R 1 × 10−7M gs 0.09mscm−2

kup 0.07ms−1 As 40µAcm−2

AK1 0.35µAcm−2 ton 50ms
Ax1 0.8µAcm−2 tdur 1ms
VNa 50mV

102 3 Numerical Integration of Ordinary Differential Equations

(a) Use Matlab’s ode15s solver to solve and plot for membrane potential Vm against
time from t = 0 to 500ms.
(b) Write your own Matlab code to solve the same model using the forward-Euler
method with a fixed step-size of 0.01ms, plotting on the same graph Vm obtained
with both the forward-Euler and ode15s methods.
(c) Verify that when the forward-Euler step-size is increased to 0.03ms, the method
becomes unstable.
(d) Now write Matlab code to solve this model using the backward-Euler method
with fixed step-sizes of 0.01 and 0.1ms, plotting these solutions with the Vm obtained
using ode15s. Note that because the backward-Euler is implicit, you will need to
implement Newton’s method (Eq.3.12) to iteratively obtain the solution at each step.
(e) Finally, solve the model using Matlab’s in-built ODE solvers ode15s, ode23s,
ode23t, ode23tb, ode45, ode23 and ode113, plotting the Vm obtained for each method
on the same plot. Based on the time taken for each of these to solve the model, which
solvers would you recommend for this system? HINT: use Matlab’s tic and toc

timing commands to determine the computational time taken for each solver.

3.2 A minimal model of neural spiking, known as the INa,p + IK model [13] (pro-
nounced persistent sodium plus potassium), is defined by the ODE pair

dV

dt
= − 1

C

[
gNam∞(V − ENa) + gK n(V − EK) + gL(V − EL) − I

]

dn

dt
= (n∞ − n) /τn

with

m∞ = 1

1 + exp
[− V +20

15

] , n∞ = 1

1 + exp
[− V +25

5

]

where V represents the neuronal membrane potential, n governs the kinetics of the
outward K+ current, and I is the applied stimulus. Initial values for V and n are
−72.9mV and 0.36 respectively, with all remaining model parameters given below:

Parameter Value Parameter Value
C 1µFcm−2 τn 1ms
gNa 20mscm−2 gL 8mscm−2

ENa 60mV EL −80mV
gK 10mscm−2 I 40µAcm−2

EK −90mV

Write custom Matlab code to solve the model and plot V from t = 0 to 30ms for
the following two fixed-step methods:
(a) A third-order Runge–Kutta algorithm with coefficients

3.5 Further Reading 103

0
1
2

1
2

3
4 0 3

4
2
9

1
3

4
9

using step-sizes of 0.01 and 0.1ms. Plot both solutions for V on the same plot, along
with the solution obtained from ode15s.
(b) The generalized-α method with step size of 0.1ms and high-frequency damping
factors of 1 (no-damping), 0.5 and 0 (maximum damping). As above, plot your
solutions on the same plot with the solution obtained from ode15s.

3.3 For the BDF family of implicit solvers, Newton’s method is used with an initial
estimate for the solution at the next step yn determined from the predictor of Eq. 3.60:

y p
n =

k∑
i=0

∇ i yn−1

Verify that this predictor is equivalent to extrapolation of a polynomial of degree k
passing through the previous k + 1 step solutions yn−1, yn−2, . . . , yn−k−1.

3.4 Determine the formula for the 7-step BDF method. For the test ODE

dy

dt
= λy

with λ real and negative, numerically estimate the absolute stability constraint on
the step-size, namely step-sizes ensuring |yn| < |yn−1|. Note that for this test ODE,
BDF methods of orders 1-6 are absolutely stable for all step-sizes, but orders 7 and
above have only limited stability and are therefore not used in practice.

References

1. Anton H, Rorres C (1987) Elementary linear algebra with applications. Wiley, New York
2. Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and

differential-algebraic equations. SIAM, Philadelphia
3. Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial

fibres. J Physiol 268:177–210
4. Bogacki P, Shampine LF (1989) A 3(2) pair of Runge-Kutta formulas. Appl Math Lett 2:321–

325
5. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with

improved numerical dissipation: the generalized-alpha method. Appl Mech 60:371–375
6. Deuflhard P, Bornemann F (2002) Scientific computing with ordinary differential equations.

Springer, New York
7. Dormand JR, Prince PJ (1980) A family of embedded Runge-Kutta formulae. J Comp Appl

Math 6:19–26

104 3 Numerical Integration of Ordinary Differential Equations

8. Gear CW (1973) Numerical initial value problems in ordinary differential equations. Prentice-
Hall, Englewood Cliffs

9. Hairer E, Wanner G (1991) Solving ordinary differential equations II: stiff and differential-
algebraic problems. Springer, Berlin

10. Hairer E, Nørsett SP, Wanner G (1987) Solving ordinary differential equations I: nonstiff
problems. Springer, Berlin

11. Hosea ME, Shampine LF (1996) Analysis and implementation of TR-BDF2. Appl Num Math
20:21–37

12. HughesTJR (1987)Thefinite elementmethod: linear static anddynamicfinite element analysis.
Dover, New York

13. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and
bursting. MIT Press, Cambridge

14. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-α method for integrating the
filtered Navier-Stokes equations with a stabilized finite-element method. Comp Meth Appl
Eng 190:305–319

15. Marsden JE, Tromba AJ (2003) Vector calculus, 5th edn. W H Freeman, New York
16. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of

scientific computing, 3rd edn. Cambridge University Press, Cambridge
17. Shampine LF (1994) Numerical solution of ordinary differential equations. Chapman and Hall,

New York
18. Shampine LF, Reichelt MW (1997) The Matlab ODE suite. SIAM J Sci Comput 18:1–22
19. Shampine LF, Reichelt MW, Kierzenka JA (1999) Solving index-1 DAEs in Matlab and

Simulink. SIAM Rev 41:538–552
20. Zedan H (1987) An AN-stable Rosenbrock-type method for solving stiff differential equations.

Comput Math Appl 13:611–615

Chapter 4
Distributed Systems Modelling with Partial
Differential Equations

Modelling physiological systems and medical devices often requires the
formulation of quantities that are distributed over space. Such quantities include,
for example, pressure, electric field, drug concentration, mechanical stress, or fluid
velocity. Distributed systems models are formulated through the use of partial dif-
ferential equations or PDEs. In this chapter, we will provide an overview of the
fundamentals of modelling distributed systems with PDEs, focussing on applica-
tions in bioengineering.

4.1 Modelling with PDEs

Fundamental laws of physics, including those which specify conservation of quan-
tities such as mass and charge, as well as macroscopic, continuum approximations
of biological tissue behaviour, can all be expressed mathematically through PDEs.
This section provides an overview of the building blocks necessary in understanding
model formulation with PDEs.

4.1.1 The Gradient

Consider a real-valued scalar function of two spatial variables

w = f (x, y)

where x and y represent the 2D coordinates of a point with respect to fixed Cartesian
axes andw represents a spatially-varying scalar quantity such as the concentration of
a substance, the temperature, or the pressure in a fluid. We wish to describe how this

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7_4

105

106 4 Distributed Systems Modelling …

function changes when the spatial position is varied from (x, y) to (x+�x, y+�y).
From the two-variable form of Taylor’s theorem (Eq.3.5), we have:

f (x + �x, y + �y) ≈ f (x, y) + �x
∂f

∂x
+ �y

∂f

∂y

Hence,

�f = f (x + �x, y + �y) − f (x, y)

≈ �x
∂f

∂x
+ �y

∂f

∂y

This equation is similar to the expression for the scalar (i.e. dot) product of two
vectors, a · b = axbx + ayby.1 Hence, we can write

�f = �r · ∇f (4.1)

where

�r ≡
(

�x
�y

)
, ∇f =

(
∂f
∂x
∂f
∂y

)
and ∇ ≡

(
∂
∂x
∂
∂y

)
,

the latter known as the ‘nabla’2 or more commonly the ‘del’ operator. A similar
treatment can be undertaken for 3D and 1D functions, with the del operator defined
analogously as

∇ ≡
⎛
⎜⎝

∂
∂x
∂
∂y
∂
∂z

⎞
⎟⎠ (3D), and ∇ ≡ ∂

∂x
(1D)

where x, y, z are the relevant spatial coordinates. When this operator is applied to a
scalar function f , the result will be a vector field ∇f , and is known as the gradient
of f .

The physical interpretation of the gradient can be seen from Eq.4.1: for an infin-
itesimal displacement �r of fixed-length dr, the change in function value �f will
be a maximum when �r is parallel to ∇f . Thus, the direction of the gradient of f
represents the direction of steepest-slope, and its magnitude represents the change
in function value per unit length along its steepest-slope, df /dr. Conversely, when
�r is perpendicular to �f , there will be no change in the value of f . Hence, this
perpendicular direction is tangential to a contour of f (in 2D), or tangential to a level
surface (in 3D) in which the value of f remains constant.

1Here, the x and y components of a are referred to as ax , ay, and similarly for b.
2n£bla, meaning harp.

http://dx.doi.org/10.1007/978-3-642-54801-7_3

4.1 Modelling with PDEs 107

Fig. 4.1 Determining the total force acting on an infinitesimal block in a 3D pressure field p(x, y, z)

Example 4.1 Consider an infinitesimal 3D block of sides �x, �y, �z, immersed in
a fluid with 3D pressure field given by p(x, y, z), as shown in Fig. 4.1. Find the total
force f acting on the block due to this pressure.

Answer: Along the x-direction, the x-component of the force, fx, acts normal to
the two faces perpendicular to the x-axis. For positive pressure p, the force will be
directed inward to the block. Since pressure is equal to the force per unit area, we
multiply the pressure by the area of each face to obtain the required component of
force:

fx = − [p(x + �x, y, z) − p(x, y, z)
]
�y�z ≈ −∂p

∂x
�x�y�z

Similarly for the y- and z-directions, we obtain:

fy = − [p(x, y + �y, z) − p(x, y, z)
]
�x�z ≈ −∂p

∂y
�x�y�z

fz = − [p(x, y, z + �z) − p(x, y, z)
]
�x�z ≈ −∂p

∂z
�x�y�z

Combining all these components of force, we obtain the total force, f :

f = −∇p�V

where �V = �x�y�z is the volume of the block and ∇p is the gradient of the
pressure. �

Example 4.2 Find the gradient of the function

f (x, y) = 2e−(x2+y2)

108 4 Distributed Systems Modelling …

Fig. 4.2 Arrow plot of ∇f ,
where f = 2e−(x2+y2

)
. Each

arrow points along the
direction of the gradient,
with length proportional to
the gradient magnitude

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Gradient of 2e−(x2+y2)

Answer: Taking partial derivatives in x and y, we obtain:

∂f

∂x
= −4xe−(x2+y2)

∂f

∂y
= −4ye−(x2+y2)

Hence,

∇f = −2f

(
x
y

)

which is shown as an arrow plot in Fig. 4.2. �

4.1.2 The Divergence

Consider a vector function F(x, y, z) which describes the variation of some vector
quantity in space. Such a vector could represent for example, fluid velocity, electric
field or heat flux. F = (

Fx,Fy,Fz
)T

has components in the x-, y-, and z-directions,
and is referred to as a vector field. Using our previous del operator, we can define
the divergence of F as:

∇ · F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
(4.2)

4.1 Modelling with PDEs 109

Fig. 4.3 Vector field F
through an arbitrary closed
surface S having
infinitesimal element �S
with outward normal n

fromwhich it can be seen that the divergence of a vector fieldwill be a scalar quantity.
Consider an arbitrary infinitesimal surface element of area �S having unit nor-

mal n. We can define the flux of F through this surface element as

�φ = (F · n) �S (4.3)

If we now assemble a large number of such infinitesimal elements to form a closed
surface, S, as shown in Fig. 4.3, and specifying each n to be the outward unit normal
to the surface, we can define the total outward flux of F through S as:

φ =
∑
S

(v · F)�S

Taking the limit as �S → 0, this summation becomes a surface integral:

φ =
∫

S
(F · n) dS =

∫

S
F · dS

where dS denotes the infinitesimal surface element vector of magnitude dS and
direction n. It can be shown that the total outward flux of a vector field F through a
closed surface is related to its divergence, as illustrated in the example below.

Example 4.3 Consider a vector field v(x, y, z) representing the velocity of a fluid at
point (x, y, z). Determine the total volume of fluid per unit time flowing out of an
infinitesimal block of sides �x, �y, and �z, as shown in Fig. 4.4.

Answer: For this vector field, the flux given by Eq.4.3 corresponds to the volume of
fluid passing through the surface element �S per unit time.3 We denote the x-, y-,
and z-components of v as vx, vy and vz respectively. In the x-direction, the volume of
fluid per unit time leaving through each end of the block is vxA, where A = �x�y is
the area of each face perpendicular to the x-axis. Hence, the total outward flow (as
volume per per unit time) through both ends is

vx (x + �x, y, z) �y�z − vx (x, y, z) �y�z ≈
(

∂vx
∂x

)
�x�y�z

3In this case, flux corresponds to volumetric flow, with SI units of m3 s−1.

110 4 Distributed Systems Modelling …

Fig. 4.4 Determining the total volume of fluid per unit time flowing out of an infinitesimal block
of sidelengths �x, �y, and �z. The fixed block is immersed in a fluid with velocity field v(x, y, z)

We can obtain similar expressions for the y- and z-directions to obtain the total
volume of fluid per unit time, Q, leaving the block as:

Q =
(

∂vx
∂x

+ ∂vy
∂y

+ ∂vz
∂z

)
�x�y�z

= (∇ · v)�V

where �V = �x�y�z is the volume of the block. From this expression, we see that
the divergence of a vector field corresponds to the total outward flux per unit volume
through an infinitesimal block located at that point. We will return to this concept in
Sect. 4.1.4 when we introduce the divergence theorem. �

Another physical interpretation of the divergence can be obtained from considering
a fluid velocity field v, similar to the above Example 4.3. Again we consider an
infinitesimal block located at some point, however the vertices of the block are now
free to move with the fluid. In a given time interval �t, each vertex is displaced to
a new position by an amount v�t, where v is the fluid velocity at that point. If we
denote the edges of the block by the vectors �x, �y, �z, these edges are re-oriented
into the vectors�x′,�y′,�z′ by the action of the fluid, as shown in Fig. 4.5. Denoting
the sidelengths of the original edges by �x, �y, and �z, we have:

x =
⎛
⎝

�x
0
0

⎞
⎠ , y =

⎛
⎝

0
�y
0

⎞
⎠ , z =

⎛
⎝

0
0

�z

⎞
⎠

To find x′, the displacement of each of the two vertices of x are given by v(x, y, z)�t
and v(x + �x, y, z)�t. x′ can be found from the difference of these displacements,
namely:

x′ = x + [v(x + �x, y, z) − v(x, y, z)
]
�t

4.1 Modelling with PDEs 111

Fig. 4.5 Deformation of an infinitesimal block of fluid due to velocity field v(x, y, z)

Using Taylor’s theorem (3.1) to approximate the components of the velocity field at
vertex (x + �x, y, z), we have:

vx (x + �x, y, z) = vx (x, y, z) + ∂vx
∂x

�x

vy (x + �x, y, z) = vy (x, y, z) + ∂vy
∂x

�x

vz (x + �x, y, z) = vz (x, y, z) + ∂vz
∂x

�x

from which we obtain the new edge vector

x′ =
⎛
⎝

�x
0
0

⎞
⎠+

⎛
⎜⎜⎝

∂vx
∂x �x

∂vy
∂x �x

∂vz
∂x �x

⎞
⎟⎟⎠�t =

⎛
⎜⎜⎝

1 + ∂vx
∂x �t

∂vy
∂x �t

∂vz
∂x �t

⎞
⎟⎟⎠�x

A similar derivation leads to the following expressions for y′ and z′:

y′ =
⎛
⎜⎝

∂vx
∂y �t

1 + ∂vy
∂y �t

∂vz
∂y �t

⎞
⎟⎠�y, z′ =

⎛
⎜⎜⎝

∂vx
∂z �t
∂vy
∂z �t

1 + ∂vz
∂z �t

⎞
⎟⎟⎠�z

The volume V ′ of the fluid-deformed block is given by

V ′ = z′ · (x′ × y′)

http://dx.doi.org/10.1007/978-3-642-54801-7_3

112 4 Distributed Systems Modelling …

=

⎛
⎜⎜⎝

∂vx
∂z �t
∂vy
∂z �t

1 + ∂vz
∂z �t

⎞
⎟⎟⎠�z ·

⎛
⎜⎜⎜⎜⎝

{
∂vy
∂x

∂vz
∂y �t −

[
1 + ∂vy

∂y �t
]

∂vz
∂x

}
�t

{
∂vz
∂x

∂vx
∂y �t − [1 + ∂vx

∂x �t
]

∂vz
∂y

}
�t

[
1 + ∂vx

∂x �t
] [

1 + ∂vy
∂y �t

]
− ∂vy

∂x
∂vx
∂y �2t

⎞
⎟⎟⎟⎟⎠

�x�y

≈
[
1 +

(
∂vx
∂x

+ ∂vy
∂y

+ ∂vz
∂z

)
�t

]
�x�y�z

ignoring higher-order terms in �t. Noting the original volume of the block is V =
�x�y�z, we obtain the fractional volume expansion

V ′ − V

V
=
(

∂vx
∂x

+ ∂vy
∂y

+ ∂vz
∂z

)
�t = (∇ · v)�t

From this expression, we see that the divergence corresponds to the rate of fractional
volume expansion of a fluid at a point.

4.1.3 The Curl

The curl of vector field F is defined by taking the vector cross product of the del
operator with F = (Fx,Fy,Fz)

T to obtain:

∇ × F =

⎛
⎜⎜⎝

∂Fz

∂y − ∂Fy

∂z
∂Fx
∂z − ∂Fz

∂x
∂Fy

∂x − ∂Fx
∂y

⎞
⎟⎟⎠ (4.4)

forming a new vector field. Similar to the divergence, we can obtain a physical
interpretation of the curl by considering a fluid velocity field v(x, y, z) such that the
fluid is rotating about a fixed axis n of unit magnitude with angular velocity ω, as
shown in Fig. 4.6. Defining ω = ωn,4 the fluid velocity at any point r = (x, y, z)T

can be expressed by the vector cross-product:

v = ω × r

This can be seen from the fact that the cross-product of two vectors is perpendicular to
both, as is the case for the velocity vwhich is orthogonal to both r andω. Furthermore,
if r is the radius of rotation of each point in the fluid (see Fig. 4.6), and θ is the
angle between r and ω, then r = ||r|| cos(θ) and the magnitude of the velocity is
given by v = rω = ||r|| cos(θ)||ω|| = ||ω × r||. Defining the components of ω as
ω = (ω1, ω2, ω3)

T , we therefore have

4ω is also referred to as the angular velocity vector.

4.1 Modelling with PDEs 113

Fig. 4.6 Rotating fluid about
around unit axis n, aligned
with vector ω, such that the
angular velocity of rotation is
ω = ||ω||. For each point r, r
is the radius of rotation, and
θ is the angle between r and
ω. v is the velocity of point r

v = ω × r =
⎛
⎝

ω1

ω2

ω3

⎞
⎠×

⎛
⎝
x
y
z

⎞
⎠ =

⎛
⎝

ω2z − ω3y
ω3x − ω1z
ω1y − ω2x

⎞
⎠

and taking the curl of v using Eq.4.4, we obtain:

∇ × v =
⎛
⎝

ω1 − −ω1

ω2 − −ω2

ω3 − −ω3

⎞
⎠ =

⎛
⎝
2ω1

2ω2

2ω3

⎞
⎠ = 2ω

Hence, the curl of a rotating velocity field is equal to twice the angular velocity
vector. The direction of the curl denotes the axis of rotation, and its magnitude is
equal to twice the angular velocity.

Example 4.4 Show that the vector field F = ∇φ, where φ(x, y, z) is some scalar
function, has a curl which is zero everywhere.5

Answer:

∇ × (∇φ) =

⎛
⎜⎜⎝

∂[∇φ]z
∂y − ∂[∇φ]y

∂z
∂[∇φ]x

∂z − ∂[∇φ]z
∂x

∂[∇φ]y
∂x − ∂[∇φ]x

∂y

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

∂
∂y

[
∂φ

∂z

]
− ∂

∂z

[
∂φ

∂y

]

∂
∂z

[
∂φ

∂y

]
− ∂

∂y

[
∂φ

∂z

]

∂
∂x

[
∂φ

∂y

]
− ∂

∂y

[
∂φ

∂x

]

⎞
⎟⎟⎟⎟⎠

=
⎛
⎝
0
0
0

⎞
⎠

Hence, the curl of the gradient of a scalar function is equal to zero. �

4.1.4 The Divergence Theorem

An important theorem in formulating partial differential equations characterising
physical systems is the divergence theorem, also known as Gauss’ divergence theo-
rem. The theorem relates the volume integral of the divergence of a vector field to
the surface integral of its flux:

5Vector fields having a zero curl everywhere are referred to as “curl-free”.

114 4 Distributed Systems Modelling …

Theorem 4.1 Let F be a continuous vector field defined over a closed region
in space V with boundary S. Then

∫

V
(∇ · F) dV =

∫

S
F · dS (4.5)

Proof Define F by (Fx,Fy,Fz)
T . Then the left-hand side of Eq.4.5 expands to

∫

V
(∇ · F) dV =

∫

V

∂Fx

∂x
dV +

∫

V

∂Fy

∂y
dV +

∫

V

∂Fz

∂z
dV

Furthermore, by defining the components of the outward surface normal by
n = (nx, ny, nz)T , we can also expand the right-hand side of Eq.4.5 using

∫

S
F · dS =

∫

S
(F · n) dS =

∫

S
Fxnx dS +

∫

S
Fyny dS +

∫

S
Fznz dS

Equating these left and right-hand side expansions, we have:

∫

V

∂Fx

∂x
dV +

∫

V

∂Fy

∂y
dV +

∫

V

∂Fz

∂z
dV =

∫

S
Fxnx dS +

∫

S
Fyny dS +

∫

S
Fznz dS

The theorem will be proven if we can show that

∫

V

∂Fx

∂x
dV =

∫

S
Fxnx dS (4.6)

∫

V

∂Fy

∂y
dV =

∫

S
Fyny dS (4.7)

∫

V

∂Fz

∂z
dV =

∫

S
Fznz dS (4.8)

To do so, we must first establish a useful expression for the area of an infinitesimal
surface element having outward normal n, relative to its projection along a particular
coordinate-axis. Consider an infinitesimal area element dS, as shown in Fig. 4.7, with
projected areaA = dxdy on the xy-plane. The area of the the quadrilateral element dS
may be found from the cross-product of vectors a and b, denoting two of its adjacent
edges (see Fig. 4.7).6

dS = ||a × b||

6The area of a quadrilateral having two adjacent sides given by vectors a and b subtending an angle
θ can readily be shown to be ||a|| · ||b|| cos θ . This is simply the magnitude of the cross-product
a × b.

4.1 Modelling with PDEs 115

Fig. 4.7 Infinitesimal area
element dS with unit normal
n and projected area (dxdy)
on the xy-plane

Denoting the z-coordinate values of each vertex of dS by h1-h4 (see Fig. 4.7), we
have

a × b =
⎛
⎝

0
dy

h2 − h1

⎞
⎠×

⎛
⎝

−dx
0

h3 − h1

⎞
⎠ =

⎛
⎝

dy(h3 − h1)
−dx(h2 − h1)

dxdy

⎞
⎠

The magnitude of this vector equals dS, and since it is perpendicular to both a and
b, it must be parallel to the surface normal n. Hence,

dS =
√
d2y(h3 − h1)2 + d2x(h2 − h1)2 + (dxdy)2

n = 1

dS

⎛
⎝

dy(h3 − h1)
−dx(h2 − h1)

dxdy

⎞
⎠

From the latter expression for the normal, we note from the z-component:

nz = dxdy

dS
∴ nzdS = dxdy (4.9)

In a similar way, we can show that for the other two projections of dS on the yz- and
zx-planes, we have

nxdS = dydz and nydS = dxdz (4.10)

We are now in a position to prove Eqs. 4.6–4.8. Beginning with Eq.4.8, consider
the arbitrary closed surface S shown in Fig. 4.8. An infinitesimal area element in
the xy-plane is projected along the z-axis onto the surface, projecting a total of N

116 4 Distributed Systems Modelling …

Fig. 4.8 Infinitesimal area
element, dx × dy, projected
along the z-axis onto an
arbitrary closed surface S,
resulting in N infinitesimal
surface elements
dS1 · · · dSN , where N is even

infinitesimal area elements dS1 · · · dSN onto the surface, withN being even. For such
a surface, the left-hand side of Eq.4.8 may be written as:

∫

V

∂Fz
∂z

dV =
∫∫∫

V

(
∂Fz
∂z

dz

)
dxdy

=
∫∫

S

[
Fz(dS2) − Fz(dS1)

]
dxdy + · · · +

∫∫

S

[
Fz(dSN) − Fz(dSN−1)

]
dxdy

where Fz(dS1), Fz(dS2), . . ., Fz(dSN) denote Fz evaluated at surfaces dS1, dS2, · · ·
dSN respectively. Using Eq.4.9, we have dxdy = nzdS for each integral above.
Furthermore, since nz alternates in sign from dSi to dSi+1, i = 1 · · ·N − 1, the entire
right-hand side of the above simplifies to

∫
S FznzdS. Hence,

∫

V

∂Fz

∂z
dV =

∫

S
Fznz dS

and we have proven Eq.4.8. Using a similar analysis, we can also verify Eqs. 4.6–4.7
using infinitesimal areas dydz and dxdz projected onto S along the x- and y-axes
respectively. Hence, we have proved the divergence theorem. �

Example 4.5 Consider an incompressible fluid with velocity field u(x, y, z). Using
only the divergence theorem and the principle of mass conservation, derive a PDE
for the components of its velocity.

4.1 Modelling with PDEs 117

Answer:Consider a hypothetical, fixed closed surface S enclosing a volumeV placed
anywhere within the fluid. Using the divergence theorem, we have:

∫

S
u · dS =

∫

V
(∇ · u) dV

where the left-hand side represents the total flux of fluid (in volume per unit time)
flowing out of the surface. Since the fluid is incompressible, its density must remain
constant. Therefore, the total mass of fluid within the fixed volume is conserved. As a
consequence, the total flux of fluid passing through the closed surface, and therefore
the left-hand side of the above equation, must therefore be zero. Hence,

∫

V
(∇ · u) dV = 0

And since this is true for any arbitrary volume, the above integrand must identically
be equal to zero everywhere. Therefore,

∇ · u = 0 (4.11)

is the required PDE. �

4.1.5 Conservation Law Formulation

The divergence theorem is highly useful in formulating PDEs for a range of physical
applications. For conserved quantities such as mass, charge, heat or energy, we can
use it to derive a general PDE conservation law as follows:

Consider a conserved scalar quantity u(x, t), where x ≡ (x, y, z)T . We assume
that u is transported through space with a flux density Γ (x, t), expressed in units of
amount of u per unit time per unit area perpendicular to the direction of transport.
Furthermore, we assume that u can also be produced or annihilated at a rate of f (x, t)
in units of amount of u per unit volume per unit time. Now, the amount of u in a fixed
volume V , say U(t) is given by

U(t) =
∫

V
u(x, t) dV

The rate at which U increases in this fixed volume is

dU

dt
=
∫

V

∂u

∂t
dV

118 4 Distributed Systems Modelling …

From the definition of flux density and rate of production, this rate of increase must
also be equal to

dU

dt
= −

∫

S
Γ · dS +

∫

V
f dV

Equating both of these expressions, we have

∫

V

∂u

∂t
dV = −

∫

S
Γ · dS +

∫

V
f dV

and using the divergence theorem, we obtain:

∫

V

∂u

∂t
dV = −

∫

V
(∇ · Γ) dV +

∫

V
f dV

∫

V

[
∂u

∂t
+ ∇ · Γ − f

]
dV = 0

Since this integral holds for any arbitrary volume V , it follows that the integrand
must be equal to zero:

∂u

∂t
+ ∇ · Γ − f = 0

or simply
∂u

∂t
+ ∇ · Γ = f (4.12)

where u is the conserved quantity, Γ is the flux density (or simply flux), and f
is the source term. In simple terms Eq.4.12 states that the rate of increase of a
conserved quantity (i.e. ∂u

∂t) plus the rate of outward flow (∇ · Γ) is equal to the rate
of production (f).

Example 4.6 A substance with concentration c(x, t) in a 3D region is subjected to
Fick’s Law of diffusion:

Γ = −D∇c

which states that the substance diffuses down its concentration gradient at a rate equal
to the negative of the gradient (i.e. the substance diffuses from regions of high to
low concentration), multiplied by a diffusion coefficient D (with SI units of m2 s-1).
Assuming there are no sources or sinks for the substance, derive the governing PDE
for the concentration c.

Answer: Since there are no sources or sinks, f (x, t) = 0. From Eq.4.12, we therefore
have:

∂c

∂t
+ ∇ · Γ = 0

4.1 Modelling with PDEs 119

which becomes
∂c

∂t
= ∇ · (D∇c) (4.13)

�

Example 4.7 Ohm’s Law governing isotropic electric current flow in a 3D volume
is given by

J = σE

where J is the current density (SI units of Am-2), σ is the scalar conductivity (SI units
of Siemens, or S), and E is the electric field (Vm-1), given by the negative gradient
of the electric potential V :

E = −∇ V

Derive the governing PDE for the electric potential V .

Answer:Assuming there are no sources or sinks of electric charge, we have f (x, t) =
0. Defining u in Eq.4.12 as the electric charge, then Γ corresponds to current density
J. From the principle of conservation of charge, the total amount of electric charge
must remain fixed in any fixed region V . Therefore ∂u

∂t = 0, and from Eq.4.12 and
Ohm’s Law, we obtain:

∇ · (σE) = 0

or simply
∇ · (−σ∇V) = 0 (4.14)

�

4.1.6 The Laplacian

Avariety of PDEs describing physical systems, such as the diffusion PDE of Eq.4.13
and the electric potential PDE of Eq.4.14, include terms such as ∇ · (D∇c). From
the definition of the del operator, this term can be expanded to

∇ · (D∇c) =

⎛
⎜⎜⎝

∂
∂x

∂
∂y

∂
∂z

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
D ∂c

∂x

D ∂c
∂y

D ∂c
∂z

⎞
⎟⎟⎠ ·

= ∂

∂x

[
D

∂c

∂x

]
+ ∂

∂y

[
D

∂c

∂y

]
+ ∂

∂z

[
D

∂c

∂z

]

120 4 Distributed Systems Modelling …

If D is constant, independent of spatial position, then the above reduces to

∇ · (D∇c) = D

(
∂

∂x

[
∂c

∂x

]
+ ∂

∂y

[
∂c

∂y

]
+ ∂

∂z

[
∂c

∂z

])

= D

(
∂2c

∂x2
+ ∂2c

∂y2
+ ∂2c

∂z2

)

= D∇2c

where we have introduced the Laplacian operator ∇2, defined by

∇2 ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

Using this Laplacian notation, the diffusion PDE given by Eq.4.13 can be expressed
as

∂c

∂t
= D∇2c

provided D is independent of spatial position. Furthermore, under steady-state con-
ditions, ∂c

∂t = 0, and the diffusion equation can be reduced to its static formulation:

∇2c = 0

This PDE is known as Poisson’s equation. If we further assume a non-zero source
or sink term f throughout space, the static PDE diffusion formulation becomes

∇2c = g

where g = f /D, This type of PDE is known as Laplace’s equation.

4.1.7 PDE Boundary Conditions

In order to uniquely solve a PDE, it is necessary to specify appropriate boundary con-
ditions. These boundary conditions represent constraints on the dependent variable at
the boundaries of the domain of interest. The simplest type of boundary condition is
the Dirichlet7 condition, where the value of the dependent variable itself is specified
at the boundary.

Example 4.8 Solve the 1D steady-state diffusion equation

∂2c

∂x2
= 0

7Pronounced ‘Diri-klay’.

4.1 Modelling with PDEs 121

over the domain x ∈ [0, 1], subject to the Dirichlet boundary conditions c|x=0 = 0,
c|x=1 = 2

Answer: Successively integrating both sides of the PDE with respect to x, we obtain

∂c

∂x
= C1

c = C1x + C2

where C1, C2 are constants of integration. Substituting the boundary values of c at
x = 0 and x = 1, we obtain C2 = 0 and C1 = 2. Hence, the PDE solution is

c = 2x

�
A second type of boundary condition is to specify the value of flux at the boundary,
known as a Neumann8 boundary condition. For the diffusion PDE given by Eq.4.13,
recall that the flux was given by Fick’s Law:

Γ = −D∇c

which represents a vector quantity. On the boundaries of the PDE domain, instead
of specifying all three-components of this flux vector, only the inward component
normal to the boundary is typically specified. For an outward unit normal n, the
inward diffusion flux normal to the boundary is a scalar quantity given by

Γ = (D∇c) · n

If the inward flux is specified to be zero, this type of boundary condition is also
termed a zero-flux boundary condition.

Example 4.9 Solve the 1D steady-state diffusion equation

∂2c

∂x2
= 0

over the domain x ∈ [0, 1], subject to the Dirichlet boundary condition c|x=0 = 0,
and the Neumann boundary condition ∂c

∂x

∣∣
x=1

= 3

Answer: As in the previous example, successively integrating both sides of the PDE
with respect to x, we obtain

∂c

∂x
= C1

c = C1x + C2

8Pronounced ‘Noy-mahn’.

122 4 Distributed Systems Modelling …

where C1, C2 are constants of integration. Substituting the boundary value of c
at x = 0, we obtain C2 = 0. Substituting the Neumann boundary condition,
∂c
∂x

∣∣
x=1

= 3, we obtain C1 = 3. Hence, the PDE solution is

c = 3x

�
A third type of boundary condition, known as a mixed or Robin boundary condition,
is to specify the weighted sum of the variable and its inward flux at the boundary. For
example, for our 1D diffusion example above, a mixed boundary condition would
be
[
c + ∂c

∂x = 1
]
x=0

.

Example 4.10 Solve the 1D steady-state diffusion equation

∂2c

∂x2
= 0

over the domain x ∈ [0, 1], subject to the Dirichlet boundary condition c|x=0 = 0,
and the mixed boundary condition

[
x + ∂c

∂x

]
x=1

= 2

Answer:As in the previous examples, successively integrating both sides of the PDE
with respect to x, we obtain

∂c

∂x
= C1

c = C1x + C2

where C1, C2 are constants of integration. Substituting the boundary value of c at
x = 0, we obtainC2 = 0. Substituting the mixed boundary condition,

[
x + ∂c

∂x

]
x=1

=
2, we obtain

[
x + ∂c

∂x

]

x=1

= (C1 + C2) + C1

= 2C1 + C2

= 2

Since C2 = 0, then C1 = 1. Hence, the PDE solution is

c = x

�
It is important to note that not all boundary conditions will result in a unique solution
to a given PDE. For example, specifying only Neumann boundary conditions for the
diffusion PDE of Eq.4.13 will not result in a unique solution. This can readily be
seen from the following: if c = φ(x, t) satisfies the PDE with associated Neumann
boundary conditions, then so does c = c0+φ(x, t), where c0 is an arbitrary constant,

4.1 Modelling with PDEs 123

since any value of c0 will satisfy the PDE as well as the boundary conditions. To
uniquely solve a given PDE, it is necessary to specify at least one essential boundary
condition. For our diffusion PDE example, an example of an essential boundary
condition would be a Dirichlet condition on part of the boundary.

For time-dependent PDEs, i.e. PDEs containing time-derivatives, in addition to
specifying appropriate boundary conditions, it is also necessary to specify an initial
value for the dependent variable at every point in the spatial domain.

4.2 Basic Analytical and Numerical Solution Techniques

4.2.1 Separation of Variables

Analytical solutions to many linear PDEs can be obtained using the method of sep-
aration of variables. The method assumes that the solution to the dependent PDE
variable can be split into a product of separate time- and spatial-dependent functions,
as in

u(x, t) = V(x)S(t) = P(x)Q(y)R(z)S(t)

where u(x, t) is the dependent variable and P(x),Q(y), R(z), S(t) are scalar functions
of the separate spatial and time components. We will use this method to obtain an
analytical solution of the 1D time-dependent diffusion PDE of Eq.4.13.

Example 4.11 Use the method of separation of variables to solve the 1D time-
dependent diffusion equation

∂c

∂t
= ∂2c

∂x2

for x ∈ [0, 1] subject to zero-flux boundary conditions at x = 0 and x = 1, with
initial value of c(x, t) at t = 0 given by the square-wave distribution:

c(x, 0) = Φ(x) =
{
1 0.4 ≤ x ≤ 0.6
0 otherwise

(4.15)

Answer: Using the method of separation of variables, we can write c(x, t) as

c(x, t) = V(x)S(t)

Substituting this expression into the PDE, we have

∂c

∂t
= ∂2c

∂x2

V(x)S′(t) = V ′′(x)S(t)
S′(t)
S(t)

= V ′′(x)
V(x)

124 4 Distributed Systems Modelling …

Since the left-hand side of the above expression only involves terms in t, and the
right-hand side only terms in x, it follows that for both sides to to be equal, they must
be constant. Denoting this constant by λ, we have

S′(t)
S(t)

= λ

S′(t) = λS(t)

∴ S(t) = μeλt

where μ, λ are constants. Similarly for V(x), we have

V ′′(x)
V(x)

= λ

V ′′(x) = λV(x)

This ODE has the characteristic equation

m2 − λ = 0

with roots m = ±√
λ. Hence its general solution is given by

V(x) = f e
√

λx + ge−√
λx

where f and g are additional constants of integration. To enforce the zero-flux bound-
ary conditions, we require that ∂c

∂x = 0 at x = 0 and x = 1, or more simply,
V ′(0) = V ′(1) = 0. Differentiating the V(x) expression above, we obtain:

V ′(x) = f
√

λe
√

λx − g
√

λe−√
λx

Substituting V ′(0) = V ′(1) = 0 leads to the following pair of equations for f and g:

f − g = 0

f e
√

λ − ge−√
λ = 0

For λ > 0, the only solution to this pair of equations is f = g = 0 leading to
V(x) = 0, and therefore c(x, t) = 0. This clearly cannot be the solution to the PDE,
as it does not even satisfy the given initial condition for t = 0. If however we allow
λ < 0, say λ = −k, where k > 0, then the second equation in the above pair becomes

4.2 Basic Analytical and Numerical Solution Techniques 125

f ei
√
k − ge−i

√
k = 0

f
[
cos(

√
k) + i sin(

√
k)
]

− g
[
cos(

√
k) − i sin(

√
k)
]

= 0

(f − g) cos(
√
k) + i(f + g) sin(

√
k) = 0

Substituting f − g = 0 from the first equation (i.e. f = g), the above becomes

2gi sin(
√
k) = 0

which, for general values of g, can only be satisfied when sin(
√
k) = 0. This will be

true only for certain values of k satisfying

√
k = nπ, n = 0, 1, 2, . . .

or
k = π2n2

for integer values of n ≥ 0. Hence, the general solution for V(x) is

V(x) = geinπx + ge−inπx

= g [cos(nπx) + i sin(nπx)] + g [cos(nπx) − i sin(nπx)]

= 2g cos(nπx)

where g is a constant of integration. Furthermore, we have S(t) = μe−π2n2t . Multi-
plying these solutions together leads to

V(x)S(t) = Cne
−π2n2t cos(nπx) (4.16)

whereCn = 2gμ is the sole remaining constant of integration, lumped together from
constantsμ and g. Since the original diffusion PDE is linear, its general solution will
consist of the sum of all solutions of the form of Eq.4.16, namely

c(x, t) =
∞∑
n=0

Cne
−π2n2t cos(nπx) (4.17)

To satisfy the initial condition for c(x, t) given by Eq.4.15, we substitute t = 0 into
Eq.4.17 to obtain

Φ(x) =
∞∑
n=0

Cn cos(nπx)

Multiplying both sides by cos(mπx), where m is some integer ≥ 0, and integrating
over the PDE domain, we obtain

126 4 Distributed Systems Modelling …

∫ 1

0
Φ(x) cos(mπx) dx =

∫ 1

0

[∞∑
n=0

Cn cos(nπx)

]
cos(mπx) dx

=
∞∑
n=0

∫ 1

0
Cn cos(nπx) cos(mπx) dx

=
∫ 1

0
Cm cos(mπx) cos(mπx) dx (4.18)

since each integral term in the summation will be zero for m �= n. Evaluating the
left-hand side of Eq.4.18, we have

∫ 1

0
Φ(x) cos(mπx) dx =

∫ 0.6

0.4
cos(mπx) dx

=
{∫ 0.6

0.4 cos(0) dx m = 0[
1
mπ

sin(mπx)
]0.6
0.4

m = 1, 2, 3, . . .

=
{
[x]0.60.4 m = 0
1
mπ

{sin(0.6mπ) − sin(0.4mπ)} m = 1, 2, 3, . . .

Using the trigonometric relation

sin(A + B) − sin(A − B) = sin(A) cos(B) + cos(A) sin(B) − [sin(A) cos(B) − cos(A) sin(B)]

= 2 cos(A) sin(B)

with A = 0.5mπ and B = 0.1mπ , the above integral evaluates to

∫ 1

0
Φ(x) cos(mπx) dx =

{
0.2 m = 0
2
mπ

cos(0.5mπ) sin(0.1mπ) m = 1, 2, 3, . . .

Evaluating the right-hand side of Eq.4.18, we have

∫ 1

0
Cm cos2(mπx) dx = Cm

∫ 1

0

1

2
[1 + cos(2mπx)] dx

=
{
Cm
∫ 1
0

1
2 [1 + cos(0)] dx m = 0

Cm
2

[
x + 1

2mπ
sin(2mπx)

]1
0
m = 1, 2, 3, . . .

=
{
Cm m = 0
Cm
2 m = 1, 2, 3, . . .

Equating both the left and right-hand side evaluations of Eq. 4.18, we obtain

Cm =
{
0.2 m = 0
4
mπ

cos(0.5mπ) sin(0.1mπ) m = 1, 2, 3, . . .

4.2 Basic Analytical and Numerical Solution Techniques 127

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

c(
x,

t)

1D Diffusion Solution

t=0
t=0.005
t=0.1

Fig. 4.9 Solution of 1D diffusion example at times t = 0, 0.005 and 0.1, as generated by theMatlab
code given

Finally, substituting these values of the integration constants into Eq.4.17, we obtain
the PDE solution

c(x, t) = 0.2 +
∞∑
n=1

{
4

nπ
cos(0.5nπ) sin(0.1nπ)e−π2n2t cos (nπx)

}
(4.19)

The following Matlab code plots this solution for values of n up to 10000 for t = 0,
0.005, and 0.1. The resulting plot shown in Fig. 4.9.

x = 0:0.001:1;
c_0 = 0.2*ones(size(x));
c_1 = 0.2*ones(size(x));
c_2 = 0.2*ones(size(x));
for n = 1:10000

t = 0;
c_0 = c_0 + (4/(pi*n))*cos(0.5*n*pi)*...

exp(-piˆ2*nˆ2*t)*sin(0.1*n*pi)*cos(n*pi*x);
t = 0.005;
c_1 = c_1 + (4/(pi*n))*cos(0.5*n*pi)*...

exp(-piˆ2*nˆ2*t)*sin(0.1*n*pi)*cos(n*pi*x);
t = 0.1;
c_2 = c_2 + (4/(pi*n))*cos(0.5*n*pi)*...

exp(-piˆ2*nˆ2*t)*sin(0.1*n*pi)*cos(n*pi*x);
end;
plot(x,c_0,’k’,x,c_1,’k--’,x,c_2,’k:’),...

legend(’t=0’,’t=0.005’,’t=0.1’), xlabel(’x’), ylabel(’c(x,t)’),...
title(’1D Diffusion Solution’);

�

128 4 Distributed Systems Modelling …

Fig. 4.10 Circular-disc
electrode of radius Re
stimulating a hemispherical
infinite domain of
conductivity σ . The
boundary at infinity is taken
to be at electrical ground (i.e.
V = 0)

Example 4.12 A far more complex example relates to 3D volumetric current flow
arising from a circular disc electrode embedded in a hemispherical infinite medium
of conductivity σ , as shown in Fig. 4.10. The PDE governing the voltage distribution
is given by Eq.4.14:

∇ · (−σ∇V) = 0

with current density
J = −σ∇V

The radius of the disc electrode is Re, and the potential at the infinite boundary
of the hemisphere is taken to be ground (i.e. V = 0). The plane of the electrode
disc outside the electrode is assumed to be electrically-insulating (i.e. a zero-flux
boundary condition). Assuming the surface of the disc electrode is at an isopotential
value Vs, and that a total stimulus current of Is is injected into the electrode, use the
method of separation of variables to solve for the voltage distribution, and find the
access resistance Z of the electrode, defined as the ratio Vs/Is.

Answer:Using themethod of separation of variables, and the fact that the voltage dis-
tributionV(x, y, z)must be axisymmetric about the z-axis due to the radial symmetry
of the problem, the voltage distribution can be written as:

V(r, z) = P(r)Q(z)

where r = √x2 + y2. Furthermore, since the conductivity σ is constant throughout
the domain, the relevant PDE reduces to

∇ · (∇V) = ∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 0

Evaluating the first term, we have

4.2 Basic Analytical and Numerical Solution Techniques 129

∂2V

∂x2
= ∂2P(r)Q(z)

∂x2

= Q(z)
∂2P(r)

∂x2

= Q(z)
∂

∂x

[
∂P(r)

∂x

]

= Q(z)
∂

∂x

[
dP(r)

dr

∂r

∂x

]

= Q(z)
∂

∂x

[
P′(r)

∂
√
x2 + y2

∂x

]

= Q(z)
∂

∂x

[
P′(r)

x√
x2 + y2

]

= Q(z)

[
∂P′(r)

∂x

x√
x2 + y2

+ P′(r)

(
1√

x2 + y2
+ x

− 1
2

(x2 + y2)
3
2

2x

)]

= Q(z)

[
dP′(r)
dr

∂x

∂r

x

r
+ P′(r)

(
1

r
− x2

r3

)]

= Q(z)

[
P′′(r)

x2

r2
+ 1

r
P′(r)

(
1 − x2

r2

)]

In a similar fashion, the second term evaluates to

∂2V

∂y2
= Q(z)

[
P′′(r)

y2

r2
+ 1

r
P′(r)

(
1 − y2

r2

)]

Finally, the third term is simply

∂2V

∂z2
= P(r)Q′′(z)

Substituting all three terms into the PDE, we obtain

Q(z)

[
P′′(r) x

2

r2
+ 1

r
P′(r)

(
1 − x2

r2

)
+ P′′(r) y

2

r2
+ 1

r
P′(r)

(
1 − y2

r2

)]
+ P(r)Q′′(z) = 0

Gathering all terms together, this simplifies to

Q(z)

[
P′′(r)

x2 + y2

r2
+ 1

r
P′(r)

(
2 − x2

r2
− y2

r2

)]
+ P(r)Q′′(z) = 0

Q(z)

[
P′′(r) + 1

r
P′(r) (2 − 1)

]
+ P(r)Q′′(z) = 0

130 4 Distributed Systems Modelling …

Q(z)

[
P′′(r) + 1

r
P′(r)

]
+ P(r)Q′′(z) = 0

Dividing throughout by P(r)Q(z), the above expression may be written as

1

P(r)

[
P′′(r) + 1

r
P′(r)

]
+ Q′′(z)

Q(z)
= 0

or
1

P(r)

[
P′′(r) + 1

r
P′(r)

]
= −Q′′(z)

Q(z)

Since each side of this expression is a function of r or z alone, it follows that each
must equal a constant. That is

1

P(r)

[
P′′(r) + 1

r
P′(r)

]
= λ and

Q′′(z)
Q(z)

= −λ (4.20)

where λ is a constant. Examining the first of these equations, we have

P′′(r) + 1

r
P′(r) − λP(r) = 0

This ODE can be solved by assuming that P(r) may be expressed as a power series
of the form

P(r) =
∞∑
k=0

akr
k

where ak are coefficients to be determined. Substituting this series expression into
the ODE, we obtain:

∞∑
k=2

akk(k − 1)rk−2 + 1

r

∞∑
k=1

akkr
k−1 − λ

∞∑
k=0

akr
k = 0

∞∑
k=2

akk(k − 1)rk−2 +
∞∑
k=1

akkr
k−2 −

∞∑
k=0

λakr
k = 0

∞∑
k=2

akk(k − 1)rk−2 +
(
a1
r

+
∞∑
k=2

akkr
k−2

)
−

∞∑
k=0

λakr
k = 0

a1
r

+
∞∑
k=2

[akk(k − 1) + akk] r
k−2 −

∞∑
k=0

λakr
k = 0

a1
r

+
∞∑
k=2

akk
2rk−2 −

∞∑
k=0

λakr
k = 0

4.2 Basic Analytical and Numerical Solution Techniques 131

Using the substitution j = k − 2 in the first summation, the above expression trans-
forms to

a1
r

+
∞∑
j=0

aj+2(j + 2)2rj −
∞∑
k=0

λakr
k = 0

and since j is a dummy index, it can be replaced with k again to combine both sums
into a single series:

a1
r

+
∞∑
k=0

[
ak+2(k + 2)2 − λak

]
rk = 0

Since the left-hand side must be identically equal to zero for all values of r, the
coefficients of all the powers of r in the above expression must be zero. Hence,

a1 = 0 and ak+2(k + 2)2 − λak = 0

which may be re-written as

a1 = 0

ak+2 =
[

λ

(k + 2)2

]
ak

from which we determine

ak =
⎧⎨
⎩
0 if k is odd(

λ
k
2

k2(k−2)2 ... 22

)
a0 if k is even

where a0 is the first coefficient of the series. Expanding the above coefficient ak for
the case when k is even, we obtain:

ak =
(

λ
k
2

k2(k − 2)2 . . . 22

)
a0

=
(

λ
k
2

{
(k2)

2(k2 − 1)2 . . . 12
}
2(k

2)2(k
2)

)
a0

=
(

λ
k
2

2k
(
k
2 !
)2
)
a0

Hence, by summing these even terms, P(r) may be expressed as the power series

P(r) = a0

[∞∑
n=0

(
λn

22n(n!)2
)
r2n
]

132 4 Distributed Systems Modelling …

from which it is evident that for P(r) to be real-valued, both a0 and λ must be real.
Furthermore, since the voltage V will approach ground as r → ∞, we require that
limr→∞ P(r) = 0. This can only happen if the coefficients of the individual r2n terms
of the power series alternate in sign, which implies that λ < 0. Denoting λ = −μ2,
where μ is real, we can express P(r) as

P(r) = a0

[∞∑
n=0

(−1)n
(

μ2n

22n(n!)2
)
r2n
]

This expression is related to the Bessel function of the first kind of order zero, J0(x),
defined as [1]:

J0(x) = 1 − x2

22
+ x4

22 · 42 − x6

22 · 42 · 62 + . . .

=
∞∑
n=0

(−1)n
(

x2n

(2nn!)2
)

=
∞∑
n=0

(−1)n
(

x2n

22n(n!)2
)

from which we deduce that
P(r) = a0J0(μr) (4.21)

Now that we have determined P(r), we can now turn toQ(z) in Eq.4.20. In this case,
the relevant ODE is

Q′′(z) − μ2Q(z) = 0

whose characteristic equation has the real roots ±μ. Its general solution is therefore

Q(z) = C1e
μz + C2e

−μz

where C1, C2 are constants. Furthermore, since V will be zero at infinite distance
from the electrode, we must have Q(z) → 0 as z → ∞. Therefore C1 = 0, and Q(z)
will have the form

Q(z) = C2e
−μz (μ > 0)

Forming the product P(r)Q(z) we have

V(r, z) = P(r)Q(z)

= KJ0(μr)e
−μz (μ > 0)

4.2 Basic Analytical and Numerical Solution Techniques 133

where K is a new constant such that K = a0C2. The general solution to the PDE
can be determined by adding together all possible solutions of the above form. Since
each term will have different values for K and μ, we can represent this sum using a
definite integral, to obtain the following general solution for V(r, z):

V(r, z) =
∫ ∞

0
K(μ)J0(μr)e

−μz dμ (4.22)

To determine K(μ), we implement the following mixed boundary conditions on the
lower boundary, where z = 0:

V = Vs (r ≤ Re: i.e. equipotential state within the electrode disc)

∂V

∂z
= 0 (r > Re: i.e. electric insulation elsewhere on this boundary)

From Eq.4.22, these conditions lead to the following pair of dual integral equations:

Vs =
∫ ∞

0
K(μ)J0(μr) dμ (0 ≤ r ≤ Re)

0 =
∫ ∞

0
−μK(μ)J0(μr) dμ (r > Re)

and substituting the variable ρ = r/Re, this pair of integrals becomes

∫ ∞

0
K(μ)J0(μReρ) dμ = Vs (0 ≤ ρ ≤ 1) (4.23)

∫ ∞

0
μK(μ)J0(μReρ) dμ = 0 (ρ > 1) (4.24)

To solve this pair of integral equations for K(μ), we set

K(μ) =
∫ 1

0
φ(ξ) cos(μReξ) dξ (4.25)

and substituting into the left-hand side of the second integral equation (Eq. 4.24), we
obtain:

∫ ∞

0
μK(μ)J0(μReρ) dμ =

∫ ∞

0
μ

(∫ 1

0
φ(ξ) cos(μReξ) dξ

)
J0(μReρ) dμ

=
∫ ∞

0
μ

[
φ(ξ)

sin(μReξ)

μRe
−
∫

φ′(ξ)
sin(μReξ)

μRe
dξ

]1
0

J0(μReρ) dμ

134 4 Distributed Systems Modelling …

= 1

Re

∫ ∞

0

[
φ(ξ) sin(μReξ) −

∫
φ′(ξ) sin(μReξ) dξ

]1
0

J0(μReρ) dμ

= 1

Re

∫ ∞

0
φ(1) sin(μRe)J0(μReρ) dμ

− 1

Re

∫ ∞

0

(∫ 1

0
φ′(ξ) sin(μReξ) dξ

)
J0(μReρ) dμ

= 1

Re

∫ ∞

0
φ(1) sin(μRe)J0(μReρ) dμ

− 1

Re

∫ 1

0
φ′(ξ)

(∫ ∞

0
sin(μReξ)J0(μReρ) dμ

)
dξ (4.26)

To evaluate this expression, wemake use ofWeber’s discontinuous integral identities
[1]:

∫ ∞

0
J0(ax) sin(bx) dx =

{ 1√
b2−a2

(a < b)

0 (a > b)
(4.27)

∫ ∞

0
J0(ax) cos(bx) dx =

{
0 (a < b)

1√
a2−b2

(a > b) (4.28)

Hence, for the first integral of Eq.4.26, we have:

1

Re

∫ ∞

0
φ(1) sin(μRe)J0(μReρ) dμ = φ(1)

Re

∫ ∞

0
J0(μReρ) sin(μRe) dμ

= 0 (since ρ > 1)

where we havemade use of Eq.4.27. For the second integral of Eq.4.26, its integrand
similarly evaluates to zero from the same identity:

∫ ∞

0
sin(μReξ)J0(μReρ) dμ = 0 (since ρ > 1 and 0 ≤ ξ ≤ 1)

Hence for the second integral,

1

Re

∫ 1

0
φ′(ξ)

(∫ ∞

0
sin(μReξ)J0(μReρ) dμ

)
dξ = 0

and we have verified that Eq. 4.24 holds. Substituting Eq.4.25 into 4.22, we obtain

∫ ∞

0
K(μ)J0(μReρ) dμ =

∫ ∞

0

(∫ 1

0
φ(ξ) cos(μReξ) dξ

)
J0(μReρ) dμ

=
∫ 1

0
φ(ξ)

(∫ ∞

0
J0(μReρ) cos(μReξ) dμ

)
dξ

4.2 Basic Analytical and Numerical Solution Techniques 135

=
∫ ρ

0
φ(ξ)

1√
R2
eρ

2 − R2
eξ

2
dξ (from Eq. 4.28 using 0 ≤ ρ ≤ 1)

= 1

Re

∫ ρ

0

φ(ξ)√
ρ2 − ξ 2

dξ

=Vs (from Eq. 4.23)

Hence, φ(ξ) satisfies the integral equation

1

Re

∫ ρ

0

φ(ξ)√
ρ2 − ξ 2

dξ = Vs (0 ≤ ρ ≤ 1) (4.29)

Using the identity ∫ ρ

0

dξ√
ρ2 − ξ 2

=
[
sin−1

(
ξ

ρ

)]ρ

0

= π

2

we see that Eq.4.29 is solved when

φ(ξ) = 2VsRe

π

Substituting this value for φ(ξ) into Eq.4.25, we obtain the required expression for
K(μ):

K(μ) =
∫ 1

0
φ(ξ) cos(μReξ) dξ

=
∫ 1

0

2VsRe

π
cos(μReξ) dξ

= 2Vs

π

[
sin(μReξ)

μ

]1
0

= 2Vs sin(μRe)

μπ

Finally, we can substitute this expression for K(μ) into the PDE general solution
(Eq.4.22), to obtain:

V(r, z) =
∫ ∞

0

2VsJ0(μr) sin(μRe)

μπ
e−μz dμ

which can be solved using the integral identity [1]:

136 4 Distributed Systems Modelling …

∫ ∞

0

J0(ax) sin(bx)

x
e−cx dx = tan−1

(
b

γ

)

γ =

√√√√a2 + c2 − b2 +
√(

a2 + c2 − b2
)2 + 4b2c2

2

to yield the PDE solution:

V(r, z) = 2Vs

π
tan−1

⎛
⎜⎜⎝

Re
√
2√

r2 + z2 − R2
e +

√(
r2 + z2 − R2

e

)2 + 4z2R2
e

⎞
⎟⎟⎠ (4.30)

When z = 0 and r < Re (i.e. on the lower boundary within the electrode disc), then
the denominator term of the arctan argument will be zero, leading to a solution of

V(r, 0)|inside disc = 2Vs

π
· π

2
= Vs

as required. Furthermore, noting that d
dx tan

−1(x) = 1/(1+ x2), we can differentiate
Eq.4.30 with respect to z using the chain rule, substituting β = r2 + z2 − R2

e to
simplify the analysis, to obtain:

∂V

∂z
= 2Vs

π
(
1 + D2

) ∂D

∂z

where we have used

D = Re

√
2√

β +√β2 + 4z2R2
e

Now,

∂D

∂z
= −1

2
Re

√
2

(
β +

√
β2 + 4z2R2

e

)− 3
2 ∂E

∂z

E = β +
√

β2 + 4z2R2
e

∂E

∂z
= ∂B

∂z
+ 1

2

(
β2 + 4z2R2

e

)− 1
2
∂F

∂z
F = β2 + 4z2R2

e

∂F

∂z
= 2β

∂β

∂z
+ 8zR2

e

∂B

∂z
= 2z

4.2 Basic Analytical and Numerical Solution Techniques 137

Hence,

∂F

∂z
= 4βz + 8zR2

e

∂E

∂z
= 2z + 1

2

(
β2 + 4z2R2

e

)− 1
2
(
4βz + 8zR2

e

)

= 2z + 2βz + 4zR2
e√

β2 + 4z2R2
e

∂D

∂z
= −1

2
Re

√
2

(
β +

√
β2 + 4z2R2

e

)− 3
2

[
2z + 2βz + 4zR2

e√
β2 + 4z2R2

e

]

= −Re

√
2

(
β +

√
β2 + 4z2R2

e

)− 3
2

[
z + βz + 2zR2

e√
β2 + 4z2R2

e

]

and therefore

∂V

∂z
= −2

√
2VsRe

π

(
1 + 2R2e

β+√β2+4z2R2e

)
(

β +
√

β2 + 4z2R2e

)− 3
2

⎡
⎣z + βz + 2zR2e√

β2 + 4z2R2e

⎤
⎦

= −2
√
2VsRe

π

(
β +

√
β2 + 4z2R2e + 2R2e

)

⎛
⎜⎜⎝

1√
β +

√
β2 + 4z2R2e

⎞
⎟⎟⎠

⎡
⎣z + βz + 2zR2e√

β2 + 4z2R2e

⎤
⎦

= −2
√
2VsRe

π

(
β +

√
β2 + 4z2R2e + 2R2e

)

⎛
⎜⎜⎝

z√
β +

√
β2 + 4z2R2e

⎞
⎟⎟⎠

⎡
⎣1 + β + 2R2e√

β2 + 4z2R2e

⎤
⎦

For small values of z near zero, we can approximate the expression
√

β2 + 4z2R2
e

from its Taylor series about z = 0 as

√
β2 + 4z2R2

e ≈ |β| + 4z2R2
e

2|β| = |β| + 2z2R2
e

|β|
and substituting this into the above expression for ∂V/∂z, we obtain:

lim
z→0

∂V

∂z
= lim

z→0

⎧⎪⎪⎨
⎪⎪⎩

−2
√
2VsRe

π

(
β + |β| + 2z2R2e|β| + 2R2e

)

⎛
⎜⎜⎝

z√
β + |β| + 2z2R2e|β|

⎞
⎟⎟⎠

⎡
⎢⎣1 + β + 2R2e

|β| + 2z2R2e|β|

⎤
⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

138 4 Distributed Systems Modelling …

When β > 0 (i.e. in regions outside the electrode disc), this limit will be zero due to
the middle term being a multiple of z. Thus ∂V/∂z = 0 on the lower boundary when
r > Re, also as required. However within the electrode disc, β ≤ 0 and β + |β| will
equal zero. Hence,

lim
z→0

∂V

∂z

∣∣∣∣
β<0

= lim
z→0

⎧
⎨
⎩

−2
√
2VsRe

π
(
2z2R2

e
|β| + 2R2

e

)
⎛
⎝ z√

2z2R2
e

|β|

⎞
⎠
⎡
⎣1 + β + 2R2

e

|β| + 2z2R2
e

|β|

⎤
⎦
⎫
⎬
⎭

= −2
√
2VsRe

2πR2
e

⎛
⎝ 1√

2R2
e

|β|

⎞
⎠
[
1 + β + 2R2

e

|β|
]

= − Vs

πRe

(√|β|
Re

)[|β| + β + 2R2
e

|β|
]

= − Vs

πRe

(√|β|
Re

)[
2R2

e

|β|
]

(since |β| + β = 0)

= − 2Vs

π
√|β|

= − 2Vs

π
√
R2
e − r2

Over the electrode disc, the current density is given by

J = −σ∇V

= −σ

⎛
⎝

∂V/∂x
∂V/∂y
∂V/∂z

⎞
⎠

and since the disc is at a constant potential of Vs, ∂V/∂x = ∂V/∂y = 0. Thus, the
only non-zero component of current density is the z-component, given by

Jz = −σ(∂V/∂z)

= 2σVs

π
√
R2
e − r2

Note that near the edge of the discwhere r → Re, Jz will approach infinity. To find the
total current through the disc electrode, the current flowing through an infinitesimally
thin annulus in the disc with inner and outer radii r and r + dr is simply given by
Jz2πr dr. Hence, the total current through the electrode can be determined from

Is =
∫ Re

0
Jz2πr dr

4.2 Basic Analytical and Numerical Solution Techniques 139

= 4σVs

∫ Re

0

r√
R2
e − r2

dr

= 4σVs

[
−
√
R2
e − r2

]Re

0

= 4σVsRe

Hence, the access resistance of the electrode is given by Z = Vs
Is

= 1
4σRe

. �

The above example illustrates that even for moderately simple PDE systems for
which closed form solutions exist, analytical solutions may be tedious to obtain. For
many PDE systems, such closed form solutions do not even exist. We must therefore
resort to computational techniques to obtain approximate solutions. The next two
subsections provide an overview of the two most basic numerical techniques used
for solving PDEs: the finite difference method and for time-dependent PDEs, the
method of lines. The finite element method will be introduced in Chap.5.

4.2.2 Finite Difference Method

The finite difference (FD) method is a relatively simple approach for numerically
solving PDEs. In this method, the underlying PDE is discretized into a regular grid
covering the PDE domain, and partial derivatives are approximated from the dis-
cretized grid variables. Consider a quantity u(x), a function of the 1D spatial position
x. We can discretize the 1D spatial domain into a regularly-spaced set of nodes in x,
given by x1, x2, . . . xj, . . . , each spaced a distance h apart, as shown in Fig. 4.11. If
we denote the value of u at node j by uj, then we can use Taylor’s theorem (Eq.3.1)
to obtain

Fig. 4.11 Discretization of
u(x) onto a regular 1D
spatial grid

http://dx.doi.org/10.1007/978-3-642-54801-7_5
http://dx.doi.org/10.1007/978-3-642-54801-7_3

140 4 Distributed Systems Modelling …

uj+1 = uj + h
∂u

∂x
+ h2

2

∂2u(ξ)

∂x2
, ξ ∈ [xj, xj+1]

= uj + h
∂u

∂x
+ O(h2)

where the derivative is evaluated at xj. Hence, we obtain the forward finite difference
approximation to the derivative as:

∂u

∂x

∣∣∣∣
x=xj

= uj+1 − uj
h

+ O(h) (4.31)

Similarly, we can approximate ui−1 using

uj−1 = uj − h
∂u

∂x
+ h2

2

∂2u(ξ)

∂x2
, ξ ∈ [xj−1, xj]

= uj − h
∂u

∂x
+ O(h2)

to obtain the backward finite difference approximation to the derivative at xj:

∂u

∂x

∣∣∣∣
x=xj

= uj − uj−1

h
+ O(h) (4.32)

We can also add a further terms to each Taylor series approximation above to obtain:

uj+1 = uj + h
∂u

∂x
+ h2

2

∂2u

∂x2
+ h3

6

∂3u

∂x3
+ O(h4) (4.33)

uj−1 = uj − h
∂u

∂x
+ h2

2

∂2u

∂x2
− h3

6

∂3u

∂x3
+ O(h4) (4.34)

where all partial derivatives are evaluated at x = xj. Adding Eqs. 4.33 and 4.34, we
obtain:

uj+1 + uj−1 = 2uj + h2
∂2u

∂x2
+ O(h4)

which can be re-arranged to obtain the FD approximation of the second-order
derivative:

∂2u

∂x2

∣∣∣∣
x=xj

= uj+1 − 2uj + uj−1

h2
+ O(h2) (4.35)

Such FD approximations to derivatives can be substituted into a given PDE to obtain
a system of equations in the nodal variables uj. For example, to solve the 1D diffusion
equation

4.2 Basic Analytical and Numerical Solution Techniques 141

∂c

∂t
= ∂2c

∂x2

we can approximate the first-order time derivative from the forward finite difference
approximation in the time domain, similar to Eq. 4.31, as:

∂c(t)

∂t
= c(t + �t) − c(t)

�t
+ O(�t) (4.36)

where �t is the time-step size and all c-terms are evaluated at the same spatial
position. Similarly, the second-order spatial derivative can be approximated from
Eq.4.35 as:

∂2c(t)

∂x2

∣∣∣∣
x=xj

= cj+1(t) − 2cj(t) + cj−1(t)

h2
+ O(h2) (4.37)

where h is the spatial step-size and all values of u are determined at the current time t.
Equating the right-hand sides of Eqs. 4.36 and 4.37 we obtain:

cj(t + �t) − cj(t)

�t
= cj+1(t) − 2cj(t) + cj−1(t)

h2
+ O(�t) + O(h2)

where the error term O(�t) + O(h2) represents the local truncation error of the
method. Neglecting this error, and re-arranging, we obtain the following explicit FD
scheme:

cj(t + �t) = cj(t) + μ
{
cj+1(t) − 2cj(t) + cj−1(t)

}
(4.38)

where μ = �t/h2. In other words, the future value of c at the next time step t + �t
for a given spatial position j can be approximated from its values at the current time
step t for the same spatial position as well as its neighbouring spatial positions j + 1
and j − 1.

To explore the stability properties of Eq.4.38 for various spatial and time step
sizes, we can use Fourier analysis of the error, to insert the following proposed
solution for c(x, t) into the explicit algorithm:

c(jh, n�t) = λneik(jh) (4.39)

where xj = jh and tn = n�t are the solution grid points, i = √−1 and λ, k
are parameters associated with the given solution. In particular, λ represents an
amplification factor thatmultiplies the solution at the previous time step. For stability,
we require |λ| ≤ 1. Substituting Eq.4.39 into the explicit schemeEq.4.38, we obtain:

c(jh, (n + 1)�t) = c(jh, n�t) + μ
{
c((j + 1)h, n�t) − 2c(jh, n�t) + c((j − 1)h, n�t)

}

λn+1eik(jh) = λneik(jh) + μ
{
λneik(j+1)h − 2λneik(jh) + λneik(j−1)h

}

142 4 Distributed Systems Modelling …

and dividing through by λneik(jh), the above simplifies to:

λ = 1 + μ
{
eikh − 2 + e−ikh

}

= 1 + μ {2 cos(kh) − 2}
= 1 − 2μ {1 − cos(kh)}

and using the trigonometric identity sin2(α) = 1
2 {1 − cos(2α)}, we obtain:

λ = 1 − 4μ sin2
(
1
2kh
)

For stability, we require |λ| ≤ 1, which is satisfied when 0 ≤ μ ≤ 1
2 . This corre-

sponds to �t ≤ 1
2h

2.

Example 4.13 Use the explicit FD scheme of Eq.4.38 to numerically solve the 1D
diffusion equation

∂c

∂t
= ∂2c

∂x2

over the interval x ∈ [0, 1] from t = 0 to 0.005, subject to the boundary conditions:

∂c

∂x

∣∣∣∣
x=0

= ∂c

∂x

∣∣∣∣
x=1

= 0 (i.e. zero-flux boundary conditions)

with initial value at t = 0 given by:

c =
{
1 0.4 ≤ x ≤ 0.6
0 otherwise

Implement the explicit FD scheme using a spatial grid FD resolution h of 0.01 and
a time step �t of 0.00001.

Answer: Let cnj denote the value of c at x = (j− 1)h and t = (n− 1)�t, where j and
n are integer values given by

j = 1, 2, . . . ,
1

h
+ 1, n = 1, 2, . . . ,

0.005

�t
+ 1

and h, �t are the regular grid-spacing in x and t respectively. Implementing the
explicit scheme of Eq.4.38, we obtain:

cn+1
j = cnj + �t

h2
(
cnj+1 − 2cnj + cnj−1

)

To implement the zero-flux boundary conditions, we use the forward and back-
ward FD approximations of the spatial derivative (Eqs. 4.31 and 4.32 respectively)

4.2 Basic Analytical and Numerical Solution Techniques 143

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c(
x)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
c(x) at t = 0.005

Fig. 4.12 Solution of 1D diffusion example at time t = 0.005 using the FD explicit scheme of
Eq.4.38 with h = 0.01 and �t = 0.00001

to obtain:
cn2 − cn1

h
= 0,

cnM − cnM−1

h
= 0

or more simply
cn2 − cn1 = 0, cnM − cnM−1 = 0

for all time steps n, where M = 1/h + 1.
The following Matlab code implements this explicit scheme, plotting the solution

at t = 0.005 in Fig. 4.12. This solution compares well with the analytical result
obtained earlier in Example 4.11 (see Fig. 4.9 for t = 0.005).

h = 0.01; % x-increment
dt = 0.00001; % time-increment
T = 0.005; % total time
M = round(1/h)+1; % total x points
N = round(T/dt)+1; % total time points
c = zeros(M,N);

% set initial waveform
for j = 1:M

if ((j-1)*h >= 0.4)&&((j-1)*h <= 0.6)
c(j,1) = 1;

else
c(j,1) = 0;

end;
end;

% solve for subsequent times
for n = 1:N-1

for j = 2:M-1
c(j,n+1) = c(j,n)+(dt/hˆ2)*(c(j+1,n)-2*c(j,n)+c(j-1,n));

end;

144 4 Distributed Systems Modelling …

c(1,n+1) = c(2,n+1); % zero-flux b.c.
c(M,n+1) = c(M-1,n+1); % zero-flux b.c.

end;

% plot solution
plot(0:h:1,c(:,end),’k’), xlabel(’x’), ylabel(’c(x)’),...

title(’c(x) at t = 0.005’);

�

The stability of the explicit FD scheme given by Eq.4.38 can be improved by replac-
ing the FD approximation of the second-order spatial derivative in Eq.4.37, evaluated
at the current time step, with a similar approximation evaluated at the next time step.
For the diffusion PDE example, this leads to the following scheme:

cj(t + �t) = cj(t) + μ
{
cj+1(t + �t) − 2cj(t + �t) + cj−1(t + �t)

}
(4.40)

where μ = �t/h2. This finite difference algorithm is known as an implicit scheme,
whereby the c terms on the right-hand side are determined from the next time step.
This scheme represents a coupled system of equations that must be solved for at
each step. Although such implicit schemes are more difficult to implement than their
explicit counterparts, they are more stable. To see this, we can perform a Fourier
analysis of the error by substituting the general solution form given by Eq.4.39,
c(jh, n�t) = λneik(jh), into Eq.4.40, to obtain:

c(jh, (n + 1)�t) = c(jh, n�t) + μ
{
c((j + 1)h, (n + 1)�t)

− 2c(jh, (n + 1)�t) + c((j − 1)h, (n + 1)�t)
}

λn+1eik(jh) = λneik(jh) + μ
{
λn+1eik(j+1)h − 2λn+1eik(jh) + λn+1eik(j−1)h

}

Dividing through by λneik(jh), the above simplifies to:

λ = 1 + μ
{
λeikh − 2λ + λe−ikh

}

= 1 + μλ {2 cos(kh) − 2}
= 1 − 4μλ sin2(12kh)

On re-arranging, we obtain

λ = 1

1 + 4μ sin2(12kh)

Hence, for any choice of positive μ(= �t/h2), we have 0 ≤ λ ≤ 1. This method is
therefore unconditionally stable.

4.2 Basic Analytical and Numerical Solution Techniques 145

Example 4.14 Use the implicit FD algorithm of Eq.4.40 to solve the diffusion PDE
with boundary/initial conditions as given in Example 4.13, using a spatial grid size
of h = 0.01 and �t = 0.0001.

Answer: As in Example 4.13, we let cnj denote the value of c at x = (j − 1)h and
t = (n − 1)�t, where j and n are integer values given by

j = 1, 2, . . . ,
1

h
+ 1, n = 1, 2, . . . ,

0.005

�t
+ 1

Implementing the implicit scheme of Eq.4.40, we have:

cn+1
j = cnj + �t

h2

(
cn+1
j+1 − 2cn+1

j + cn+1
j−1

)

which can be re-arranged to

−
(

�t

h2

)
cn+1
j+1 +

(
1 + 2�t

h2

)
cn+1
j −

(
�t

h2

)
cn+1
j−1 = cnj (4.41)

To implement the zero-flux boundary conditions, we use the forward and backward
FD approximations of the spatial derivative (Eqs. 4.31 and 4.32 respectively), but
this time evaluated at time step n + 1 to obtain:

cn+1
2 − cn+1

1

h
= 0,

cn+1
M − cn+1

M−1

h
= 0

or more simply
cn+1
1 − cn+1

2 = 0, cn+1
M − cn+1

M−1 = 0 (4.42)

for all time steps n+ 1, whereM = 1/h+ 1. Equations4.41 and 4.42 can be written
as the following matrix system of equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0 0 0
−�t

h2 1 + 2�t
h2 −�t

h2 · · · 0 0 0
...

. . .
...

0 · · · −�t
h2 1 + 2�t

h2 −�t
h2 · · · 0

...
. . .

...

0 0 0 · · · −�t
h2 1 + 2�t

h2 −�t
h2

0 0 0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cn+1
1
cn+1
2
...

cn+1
j
...

cn+1
M−1
cn+1
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
cn2
...

cnj
...

cnM−1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The followingMatlab code implements this implicit scheme, solving the abovematrix
systemof equations at each time step. The resulting concentration profile at t = 0.005
is plotted in Fig. 4.13, which compares well with the explicit scheme solution in

146 4 Distributed Systems Modelling …

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
c(x) at t = 0.005

Fig. 4.13 Solution of 1D diffusion example at time t = 0.005 using the FD implicit scheme of
Eq.4.41 with h = 0.01 and �t = 0.0001

Example 4.13. This time, however, a larger time step was used due to the superior
stability of the implicit method.

h = 0.01; % x-increment

dt = 0.0001; % time-increment

T = 0.005; % total time

M = round(1/h)+1; % total x points

N = round(T/dt)+1; % total time points

c = zeros(M,N); % concentration array

% initialise system matrix

A = diag((1+2*dt/hˆ2)*ones(M,1),0) + ...

diag(-(dt/hˆ2)*ones(M-1,1),1) + ...

diag(-(dt/hˆ2)*ones(M-1,1),-1);

A(1,1) = 1;

A(1,2) = -1;

A(M,M-1) = -1;

A(M,M) = 1;

% set initial waveform

for j = 1:M

if ((j-1)*h >= 0.4)&&((j-1)*h <= 0.6)

c(j,1) = 1;

else

c(j,1) = 0;

end;

end;

4.2 Basic Analytical and Numerical Solution Techniques 147

% solve for subsequent times

for n = 2:N

b = c(:,n-1);

b(1) = 0;

b(M) = 0;

c(:,n) = A\b;

end;

% plot solution

plot(0:h:1,c(:,end),’k’), xlabel(’x’), ylabel(’c(x)’),...

title(’c(x) at t = 0.005’);

�

4.2.3 Method of Lines

Another common numerical technique used to solve time-dependent PDEs is the
method of lines, in which the spatial domain is discretized into a regular grid to form
a system of ODEs in the grid variables, as illustrated in Fig. 4.14. For example, to
solve our familiar diffusion PDE:

∂c

∂t
= ∂2c

∂x2

over the interval x ∈ [0, 1] subject to zero-flux boundary conditions, we let cj be the
value of c at the nodes xj = (j − 1)h, j = 1 · · ·M, whereM = (1/h) + 1. The above
PDE can then be replaced by a coupled ODE system inM − 2 variables, by using a
FD difference approximation to the second-order spatial derivative as follows:

Fig. 4.14 Method of lines
for numerically solving a
PDE in the dependent
variable u(x, t). u(x, t) is
discretized in the spatial
domain using a regular
grid-spacing of h, to obtain a
series of time-dependent
state variables uj at each
node. The PDE is thereby
transformed into a regular
ODE system in the nodal
variables uj

148 4 Distributed Systems Modelling …

dcj
dt

= cj+1 − 2cj + cj−1

h2
, j = 2 · · ·M − 1 (4.43)

The zero-flux boundary conditions can be implemented by expressing the boundary
variables c1 and cM in terms of interior c variables using a similar concept to Eq.4.42:

c1 = c2
cM = cM−1

Example 4.15 Consider a cylindrical axonal nerve membrane of radius r, as shown
in Fig. 4.15. The intracellular potential at each point is denoted by V , which is a
function of both the 1D spatial position x and time t. Assuming the extracellular
potential is everywhere set to ground, then V will also represent the transmembrane
potential. The axon is assumed to have an axoplasmic (i.e. intracellular) resistivity of
ρi (Ω m), a membrane capacitance of Cm (Fm−2), and a membrane ionic current of
iion (Am−2), the latter governed by the Hodgkin-Huxley formulations, as described
in Sect. 2.3.2 on p. 42. In that earlier example, the axon was assumed to be space-
clamped, in which V was a function of time alone with its value shared across all
spatial positions of the axon. In the present example however, V is allowed to vary
in both space and time. iion in the Hodgkin-Huxley formulations is given by:

iion = ḡNam
3h (V − VNa) + ḡKn

4 (V − VK) + ḡL (V − VL)

dn

dt
= αn(V) (1 − n) − βn(V)n

dm

dt
= αm(V) (1 − m) − βm(V)m

dh

dt
= αh(V) (1 − h) − βh(V)h

where ḡNa, ḡK , ḡL, VNa, VK and VL are parameters, and n, m, h are time-dependent
gating variables with rate coefficients (in units of s-1) given by:

Fig. 4.15 Nerve cable model

http://dx.doi.org/10.1007/978-3-642-54801-7_2

4.2 Basic Analytical and Numerical Solution Techniques 149

αn = 10(V+50)

1−exp
[−(V+50)

10

] βn = 125 exp

[−(V + 60)

80

]

αm = 100(V+35)

1−exp
[−(V+35)

10

] βm = 4000 exp

[−(V + 60)

18

]

αh = 70 exp
[

−(V+60)
20

]
βh = 1000

1 + exp
[

−(V+30)
10

]

where V is in units of mV. Model parameters are r = 0.0025 cm, ρi = 600Ω cm,
with remaining parameters as given earlier in Table2.2.

(a) By discretizing the x domain into spatial units of width�x, derive the underlying
PDE governing V in the limit as �x → 0.
(b) Solve the PDE using themethod of lines for a fixed cable length of 1 cm, assuming
zero-flux boundary conditions for V at each end of the cable, and initial values of
variables given by

V(x, 0) =
{
20 mV 0 ≤ x ≤ 0.01 cm
−60 mV otherwise

n(x, 0) = 0.3177

m(x, 0) = 0.0529

h(x, 0) = 0.5961

Answer: (a) To derive the underlying PDE of this system, we discretize the nerve
into segments of length �x. The electrical equivalent circuit of three adjacent nodes
is shown in Fig. 4.16.

Fig. 4.16 Electrical equivalent circuit representation of three adjacent nodes, Vj−1, Vj , and Vj+1 in
the discretized nerve cable model. The internodal separation is given by �x, r denotes the radius
of the axon, and ρi is the axoplasmic resistivity. Membrane capacitance Cm and ionic current iion
are given per unit membrane area

http://dx.doi.org/10.1007/978-3-642-54801-7_2

150 4 Distributed Systems Modelling …

To determine the axoplasmic resistance between two nodes, we make use of
Pouillet’s law, which states that the resistance R of a material specimen of length L,
resistivity ρ, and cross-sectional area A is given by:

R = ρL

A
(4.44)

Substituting ρ = ρi, L = �x and A = πr2 into Eq.4.44, we obtain an intracellular
resistance of ρi�x/πr2 between two nodes, as shown in Fig. 4.16. Furthermore, the
total membrane capacitance of a cylindrical nerve segment of length �x is given by
Cm multiplied by the area of its curved surface, or Cm2πr�x. A similar argument
follows for the total membrane ionic current of the segment, namely iion2πr�x.
These values are also shown in Fig. 4.16. From Kirchhoff’s current law, the total
current entering node jmust equal the current leaving through the parallel membrane
capacitance and ionic pathways. This can be expressed by the equation

current entering︷ ︸︸ ︷
Vj+1 − Vj

ρi�x/πr2
+ Vj−1 − Vj

ρi�x/πr2
=

current leaving︷ ︸︸ ︷
Cm2πr�x

dVj

dt
+ iion2πr�x

On re-arranging, this becomes:

Vj+1 − 2Vj + Vj−1

�2x
=
(
2ρi

r

)[
Cm

dVj

dt
+ iion

]
(4.45)

The left-hand side of this equation is simply the FD approximation of the second-
order derivative ofV (see Eq.4.35). Hence, in the limit as�x → 0, Eq.4.45 becomes

∂2V

∂x2
=
(
2ρi

r

)[
Cm

∂V

∂t
+ iion

]
(4.46)

where Cm, ρi and r are assumed to be fixed along the nerve.
(b) To solve Eq.4.46 using the method of lines, we utilise the FD approximation of
Eq.4.45, re-arranged as:

dVj

dt
= 1

Cm

[
r

2ρi

(
Vj+1 − 2Vj + Vj−1

�2x

)
− iion

]
j = 2 · · ·M − 1

representing an ODE system in M − 2 variables, where M = 1/�x + 1. Zero-flux
boundary conditions are implemented by specifying the boundary values V1 and VM

as

V1 = V2

VM = VM−1

4.2 Basic Analytical and Numerical Solution Techniques 151

Fig. 4.17 Solution of nerve
cable PDE (Eq. 4.46) using
the method of lines, as
implemented by the Matlab
code HH_cable_solve.m

These can be substituted into the expressions for dV2/dt and dVM−1/dt to obtain the
following set of ODEs:

dVj

dt
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Cm

[
r
2ρi

(V3−2V2+V2
�2x

)− iion
]

j = 2

1
Cm

[
r
2ρi

(
Vj+1−2Vj+Vj−1

�2x

)
− iion

]
j = 3 · · ·M − 2

1
Cm

[
r
2ρi

(
VM−1−2VM−1+VM−2

�2x

)
− iion

]
j = M − 1

(4.47)

The above ODE system is implemented and solved in the following Matlab code
using a spatial resolution of �x = 0.01 cm. The code is divided into two Matlab
files: HH_cable_prime.m (which outputs the right-hand side derivatives of the ODE
system in Eq.4.47, and HH_cable_solve.m which calls the in-built Matlab solver
ode15s to solve the ODE system, plotting the solution for V as a function of x
and t as shown in Fig. 4.17. The action potential is seen to travel along the axon
with constant propagation velocity, taking around 10ms to travel a distance of 1cm,
corresponding to a velocity of approximately 1ms-1.

HH_cable_prime.m

function y_prime = HH_cable_prime(t,y)
% calculates derivatives for solving the HH nerve cable.
global dx Cm g_Na g_K g_L rho_i r;
y_prime = zeros(size(y));
M2 = length(y)/4;
for j = 1:M2

152 4 Distributed Systems Modelling …

V = y(4*j-3);
n = y(4*j-2);
m = y(4*j-1);
h = y(4*j);
alpha_n = 10*(V+50)/(1-exp(-(V+50)/10));
beta_n = 125*exp(-(V+60)/80);
alpha_m = 100*(V+35)/(1-exp(-(V+35)/10));
beta_m = 4000*exp(-(V+60)/18);
alpha_h = 70*exp(-(V+60)/20);
beta_h = 1000/(1+exp(-(V+30)/10));
i_K = g_K*nˆ4*(V+72);
i_Na = g_Na*mˆ3*h*(V-55);
i_L = g_L*(V+49.387);
i_ion = i_K+i_Na+i_L;
if (j == 1) % zero-flux b.c.

y_prime(1) = (r/(2*rho_i*dxˆ2)*(y(5)-2*y(1)+y(1))-i_ion)/Cm;
elseif (j == M2) % zero-flux b.c.

y_prime(4*M2-3) = (r/(2*rho_i*dxˆ2)*...
(y(4*M2-7)-2*y(4*M2-3)+y(4*M2-3))-i_ion)/Cm;

else
y_prime(4*j-3) = (r/(2*rho_i*dxˆ2)*...

(y(4*j-7)-2*y(4*j-3)+y(4*j+1))-i_ion)/Cm;
end;
y_prime(4*j-2) = alpha_n*(1-n)-beta_n*n;
y_prime(4*j-1) = alpha_m*(1-m)-beta_m*m;
y_prime(4*j) = alpha_h*(1-h)-beta_h*h;

end;

HH_cable_solve.m

% solves the HH cable equations using the method of lines
global L dx Cm g_Na g_K g_L rho_i r;
L = 1; % axon length (cm)
dx = 0.01; % x_increment (cm)
M = round(L/dx)+1; % total nodal points
Cm = 1; % uF/cmˆ2
g_Na = 120000; % uS/cmˆ2
g_K = 36000; % uS/cmˆ2
g_L = 300; % uS/cmˆ2
rho_i = 0.0006; % Mohm.cm
r = 0.0025; % cm
Y_init = [];
for j = 1:M-2

Y_init = [Y_init, -60, 0.3177, 0.0529, 0.5961];
end;
Y_init(1) = 20; % initial conditions at x(0) (== V_2)
[time, Y] = ode15s(’HH_cable_prime’, [0 0.02], Y_init);
% plot
VV = [Y(:,1), Y(:,1:4:end), Y(:,end-3)]; % V (incl. boundary values)
[TT, XX] = meshgrid(time,0:dx:L);
mesh(XX,TT,VV’), xlabel(’x (cm)’), ylabel(’t (s)’), zlabel(’V (mV)’);

indexMatlab!example code!Hodgkin-Huxley nerve cable—) �

4.3 Further Reading 153

4.3 Further Reading

Auseful reference on vector calculus, including the divergence theorem, is the text of
Marsden and Tromba [5]. Excellent treatment of finite difference methods for PDEs
is given in the texts of Morton and Mayers [7] and Eriksson et al. [3]. Interesting
applications of PDE modelling in physical systems in general may be found in the
texts of van Groesen and Molenaar [9], Lin and Segel [4] and Cumberbatch and Fitt
[2]. Older texts which cover analytical techniques for solving PDEs in a wide range
of physical systems include those of Menzel [6] and Webster [10].

Problems

4.1 Determine the gradient of the following scalar functions:
(a) f (x, y, z) = 2x − y + 3z
(b) g(x, y, z) = x2 + y2 + z2

(c) h(x, y, z) = x
y

4.2 Find the divergence and the curl of the following vector functions:

(a) u(x, y, z) =
⎛
⎝
x
y
z

⎞
⎠

(b) v(x, y, z) =
⎛
⎝

−y
x
1

⎞
⎠

(c) w(x, y, z) =
⎛
⎝
2x + 3y − z
x − y + z

x + 2y + 3z

⎞
⎠

4.3 Verify the following identities for arbitrary vector fields u and v:
(a) ∇ · (∇ × u) = 0
(b) ∇ · (u × v) = v · (∇ × u) − u · (∇ × v)
(c) ∇ × (∇ × u) = ∇(∇ · u) − ∇2u

4.4 Show that the volume of an arbitrary closed region bounded by surface S is given
by

V =
∫

S
nxx dS =

∫

S
nyy dS =

∫

S
nzz dS

where nx, ny, nz are the x-, y-, and z-components of the outward normal to the surface
respectively.

4.5 A drug-eluting microsphere of radius R is implanted into a tumour, having a
fixed concentration c0 of drug within its volume as well as on its outer surface. The
drug diffuses into the surrounding interstitial space with diffusion coefficient D, and
is taken up into tumour cells at a rate of kupc, where c is the local drug concentration

154 4 Distributed Systems Modelling …

and kup is the cell uptake rate.
(a) Assuming the tumour tissue and cells can be represented by a continuum, and that
the model is spherically symmetric, derive the underlying PDE for the drug concen-
tration, c(r, t), as a function of radial distance r from the centre of the microsphere
and time t.
(b) Using the substitution c = u/r, transform this PDE in terms of u, and hence
determine the analytical solution for the steady-state concentration profile c∞(r).

4.6 A large room is full of people arranged in a square grid, each person surrounded
by four neighbours a distance of h away. Each person has a varying amount of coins
in their possession c. At successive time frames spaced �t apart, the distribution of
coins changes according to given rules. In the limit as h → 0 and �t → 0, derive
the governing PDE for each of the three rules below:
(a) Each person gives away a fixed proportion of the coins they currently have to
each of their four neighbours. This proportion is the same for each person.
(b) As above, each person gives away a fixed proportion of the coins they have to
each of their four neighbours. However, they simultaneously receive a fixed income
of coins per unit time. The income and the proportion of coins given away represent
system parameters, which are the same for every person in the room.
(c) Each person receives a fixed proportion of coins per unit time from each of their
neighbours. They also give away a proportion of coins they currently have per unit
time to charity. The amount of coins received per unit time and the proportion given
to charity per unit time are parameters identical for every person.

4.7 For the 1D axonal nerve cable of Example 4.15, derive the PDE for the trans-
membrane potential V , this time for the case when axon radius r is assumed to vary
along the length of the nerve.

4.8 A strand of cardiac papillary muscle of resting length L and mass M per unit
length may be discretized into multiple 1D sub-units of length �x as shown in the
figure below. The sub-units are characterised by three parameters: a series linear
spring of stiffness k1, a parallel linear spring of stiffness k2, and a viscous dashpot
component of value b. These parameters scale with �x as shown in the figure, but
otherwise are assumed to remain constant during deformation of the muscle. The
sub-unit connects two lumped point masses, each of massM�x.

4.3 Further Reading 155

Displacements of u1 and u2 are applied to each end of each sub-unit, as shown in the
figure. If the change in length of the series element is denoted by l1 and the change in
length of the parallel dashpot/stiffness combination is given by l2, then themagnitude
of forces produced by each of these components opposing the length changes are
given by:

Series spring:
(k1

�x

)
l1

Parallel spring:
(k2

�x

)
l2

Parallel dashpot:
(

b
�x

) dl2
dt

In the limit as �x → 0, derive the PDE for the displacement u at each point along
the muscle.

4.9 Initiation of the mammalian heartbeat normally occurs in the specialised pace-
maker cells of the sinoatrial node (SAN), located in the right atrial wall of the heart.
From there, the electrical impulse spreads across the surface of the atria before
reaching the ventricles. Disruptions to atrial excitation and/or propagation represent
the most common forms of arrhythmias encountered clinically. One such arrhyth-
mia, atrial flutter, arises from self-sustained periodic excitation of the atria. In this
problem, we will simulate the onset of atrial flutter using a modified form of the
Rogers-McCulloch PDE formulations [8] for the cardiac action potential:

βCm

(
∂Vm

∂t

)
= ∇ · (σ∇Vm) − βiion + istim

∂u

∂t
= e (Vm − du − b)

with
iion = c1(Vm − a) (Vm − A) (Vm − B) + c2u (Vm − B)

where u is an auxiliary ‘recovery’ variable, σ is the electrical conductivity within the
atrial tissue, β is the tissue surface to volume ratio, Cm is cell membrane capacitance
per unit area, iion is the ionic current per unit cell membrane area, istim is the applied
stimulus current per unit tissue volume, and A, B, a, b, d, e, c1 and c2 are parameters
describing the active electrical activity of the atria, as given in the table below. Initial
values at t = 0 throughout the tissue are Vm = −85mV and u = 0.

The atrial tissue domain is a 2D square of side-length 10cm, with the left-hand
corner located at x = 0, y = 0, where x, y represent the 2D spatial coordinates.
Zero-flux boundary conditions for Vm apply on all four external boundaries of the
domain. The stimulus current is given by:

istim(x, y, t) =
⎧⎨
⎩
50Am−3 y ≤ 1 cm, 10ms ≤ t ≤ 11ms
50Am−3 x ≤ 1 cm, 150ms ≤ t ≤ 151ms
0 otherwise

156 4 Distributed Systems Modelling …

(a) Using the method of lines, solve this PDE system for a spatial discretization of
51 × 51, ploting Vm at times t = 0.3, 0.35, 0.4, and 0.45s.
(b) Solve the PDE using an explicit finite difference scheme for the same spatial
discretization, with a fixed time step �t of 1 × 10−5 s. As above, plot the solution
for Vm for t = 0.3, 0.35, 0.4, and 0.45s.

Parameter Value Parameter Value
A 55mV σ 0.001Sm−1

B −85mV c1 530SV−2 m−2

a −66.8mV c2 400µ Scm−2

b −85mV Cm 1µ Fcm−2

d 140mV β 100m−1

e 285.7V−1 s−1

4.10 An experiment is to be conducted to determine the effect of electric fields on
cells in a Petri dish. The electric field is delivered using an identical pair of wire
electrodes formed from circular arcs placed at opposite ends of the dish against its
walls, as shown in the figure below. Each electrode subtends an angle of θ0 at the
centre of the dish, whose radius is R. The electrical conductivity of the medium in
which the cells are placed is constant at all points in the dish, and electrode 1 is
grounded whilst electrode 2 has a voltage of V0 applied to it. All other boundaries
are electrically-insulating: that is, the voltage gradient in the normal direction of the
boundary is zero.

(a) Determine the PDE governing the voltage distribution in the Petri dish in terms
of polar coordinates (r, θ), such that r = 0 corresponds to the centre of the dish,
and θ = 0 corresponds to the Cartesian x-axis bisecting both electrodes on the dish
boundary.
(b) Using the method of finite differences, solve the above PDE to obtain the voltage
distribution for R = 45mm, θ0 = 60◦ and V0 = 2V.
(c) Using the same R and V0 values as in (b), estimate the optimal value for the
electrode angle θ0 that yields the largest area in which the electric field magnitude is
uniformly within ±10% of its value at the centre of the dish.

References 157

References

1. Bowman F (1958) Introduction to Bessel functions. Dover, New York
2. Cumberbatch E, Fitt A (2001) Mathematical modeling: case studies from industry. Cambridge

University Press, Cambridge
3. Eriksson E, Estep D, Hansbo P, Johnson C (1996) Computational differential equations. Cam-

bridge University Press, Cambridge
4. LinCC, Segel LA (1988)Mathematics applied to deterministic problems in the natural sciences.

SIAM, Philadelphia
5. Marsden JE, Tromba AJ (2003) Vector calculus, 5th edn. W H Freeman, New York
6. Menzel DA (1961) Mathematical physics, Dover edn. Dover, New York
7. MortonKW,MayersDF (2005)Numerical solution of partial differential equations. Cambridge

University Press, Cambridge
8. Rogers JM, McCulloch AD (1994) A collocation-Galerkin finite element model of cardiac

action potential propagation. IEEE Trans Biomed Eng 41:743–757
9. van Groesen E, Molenaar J (2007) Continuum modeling in the physical sciences. SIAM,

Philadelphia
10. Webster AG (1955) Partial differential equations of mathematical physics, Dover edn. Dover,

New York

Chapter 5
The Finite Element Method

The finite element method (FEM) represents a well-established and widespread
numerical approach for solving partial differential equations in physics and engi-
neering. The basics of the method were first published in 1943 in seminal paper by
Richard Courant [4], who solved 2D plate and plane torsion problems by discretizing
the spatial domain into triangular “elements”, resulting in piecewise approximations
of the displacements to be solved for. In the early years, the main application of
FEM was in the area of structural mechanics [12], but its use quickly spread to other
engineering applications, including electromagnetics [5, 10], and fluid dynamics.
Today, the method is used in a numerous range of physics applications, including
bioengineering [8]. A major advantage of FEM over the finite difference method is
that irregular geometries can be readily accommodated. This feature is particularly
is useful for bioengineering, in which organs, tissues and other structures of the body
typically exhibit complex anatomies.

5.1 Finite Elements for 1D Systems

The finite element method is based on two important concepts:

1. Formulation of the underlying PDE in terms of its so-called weak form.
2. Approximating the dependent variable in the weak form using a finite sum of

basis functions.

Both of these concepts will be illustrated using our familiar example of 1D diffusion,
represented by the PDE

∂c

∂t
= D

∂2c

∂x2

defined over the domain x ∈ [0, 1], where D is a fixed parameter denoting the
diffusion coefficient. We assume an initial value of c0(x) at t = 0, where c0 is a
given function. Furthermore, we impose a Dirichlet boundary condition at x = 0

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7_5

159

160 5 The Finite Element Method

and a Neumann boundary condition at x = 1, according to

c|x=0 = p(t)

D
∂c

∂x

∣∣∣∣
x=1

= q(t)

where p(t), q(t) are given functions of time. Note that q(t) represents the inward dif-
fusional flux at x = 1.1 The PDE with its associated boundary and initial conditions
comprise what is referred to as the strong form representation, given by:

Find c(x, t), x ∈ [0, 1], such that

∂c

∂t
= D

∂2c

∂x2

c(x, 0) = c0(x), c(0, t) = p(t), D
∂c

∂x

∣∣∣∣
x=1

= q(t) (5.1)

5.1.1 Weak Form PDE Equivalent

To derive the equivalent weak form of Eq.5.1, let H 1 be the set of all functions with
finite square-derivative integrals.2 That is, for all u ∈ H 1:

∫ 1

0

(
∂u

∂x

)2

dx < ∞

We now define a two sets of functions: the set of trial solutions, S, and the set of test
functions, V , as follows:

S = {
c(x) : c(x, t) ∈ H 1, c(x, 0) = c0(x), c(0, t) = p(t)

}

V = {
w(x) : w(x) ∈ H 1, w(0) = 0

}

Multiplying both sides of the original PDE by any such test function w(x) ∈ V , then
integrating over the spatial domain, we obtain:

∫ 1

0

∂c

∂t
w dx =

∫ 1

0
D

∂2c

∂x2
w dx

1From Fick’s Law of diffusion (see Exercise4.6).
2The set H1 is an example of a Sobolev space [1].

http://dx.doi.org/10.1007/978-3-642-54801-7_4

5.1 Finite Elements for 1D Systems 161

d

dt

∫ 1

0
cw dx =

[
D

∂c

∂x
w

]1
0

−
∫ 1

0
D

∂c

∂x

dw

dx
dx (using integration by parts)

= q(t)w(1) −
∫ 1

0
D

∂c

∂x

dw

dx
dx (using Eq. 5.1 and w(0) = 0)

Re-arranging by bringing all the integrals to one side, we obtain the weak form
equivalent of Eq.5.1, including all boundary and initial conditions, as:

Find c ∈ S such that

d

dt

∫ 1

0
cw dx +

∫ 1

0
D

∂c

∂x

dw

dx
dx = q(t)w(1) (5.2)

for ∀w ∈ V .

It is evident from the above derivation that any solution of the strong form Eq.5.1
also satisfies the weak equivalent Eq. 5.2. To show that the converse is also true, we
proceed with the following steps:

1. Integrate Eq.5.2 by parts to obtain

d

dt

∫ 1

0
cw dx +

[
D

∂c

∂x
w

]1
0

−
∫ 1

0
D

∂2c

∂x2
w dx = q(t)w(1)

d

dt

∫ 1

0
cw dx + w(1)

[
D

∂c

∂x

]

x=1

−
∫ 1

0
D

∂2c

∂x2
w dx = q(t)w(1)

where we have used w(0) = 0 (since w ∈ V). We can now integrate all terms in
the above equation with respect to time from t = 0 to T , where T is arbitrary, to
obtain[∫ 1

0
cw dx

]T

0
+ w(1)

∫ T

0

[
D

∂c

∂x

]

x=1
dt −

∫ T

0

∫ 1

0
D

∂2c

∂x2
w dx dt = w(1)

∫ T

0
q(t) dt

Re-arranging the above, we have
∫ 1

0

[
c(x, T) − c0(x) −

∫ T

0
D

∂2c

∂x2
dt

]
w dx + w(1)

∫ T

0

([
D

∂c

∂x

]

x=1
− q(t)

)
dt = 0

(5.3)
where we have used the initial condition c(x, 0) = c0(x).

2. We note that Eq.5.3 is satisfied if both c(x, T) − c0(x) − ∫ T
0 D ∂2c

∂x2 dt = 0 and[
D ∂c

∂x

]
x=1

− q(t) = 0 hold. We now proceed to verify both of these in the steps
below.

3. To show that c(x, T) − c0(x) − ∫ T
0 D ∂2c

∂x2 dt = 0, we choose the following test
function w in Eq.5.3:

162 5 The Finite Element Method

w(x) =
[
c(x, T) − c0(x) −

∫ T

0
D

∂2c

∂x2
dt

]
φ(x)

where φ(x) ∈ H 1, φ(x) ≥ 0 for x ∈ [0, 1] and φ(0) = φ(1) = 0. Clearly, for
this choice of w, w(0) = 0, and hence w ∈ V . Substituting this test function into
Eq.5.3, we obtain:

∫ 1

0

[
c(x, T) − c0(x) −

∫ T

0
D

∂2c

∂x2
dt

]2
φ(x) dx +

[
c(x, T) − c0(x) −

∫ T

0
D

∂2c

∂x2
dt

]

x=1
φ (1)

∫ T

0

([
D

∂c

∂x

]

x=1
− q(t)

)
dt = 0

and since φ(1) = 0, the above reduces to

∫ 1

0

[
c(x, T) − c0(x) −

∫ T

0
D

∂2c

∂x2
dt

]2
φ(x) dx = 0

Furthermore, since the integrand is always ≥ 0, it follows that the above integral
can only be zero if

c(x, T) − c0(x) −
∫ T

0
D

∂2c

∂x2
dt = 0

as required.
4. To show that

[
D ∂c

∂x

]
x=1

− q(t) = 0, we substitute the above result into Eq.5.3 to
obtain

w(1)
∫ T

0

([
D

∂c

∂x

]

x=1

− q(t)

)
dt = 0

The requirement that w ∈ V provides no restriction whatsoever on its value at
x = 1, namely w(1). Hence, for the left-hand side of above expression to be zero,
we must have ∫ T

0

([
D

∂c

∂x

]

x=1

− q(t)

)
dt = 0

Since T is arbitrary, the above integral must hold for all T ≥ 0, This can only be
true if the integrand itself is identically equal to zero, namely:

[
D

∂c

∂x

]

x=1

− q(t) = 0

as required.
5. From Step 3 above, we have shown that

5.1 Finite Elements for 1D Systems 163

c(x, T) − c0(x) −
∫ T

0
D

∂2c

∂x2
dt = 0

which is equivalent to

∫ T

0

∂c

∂t
dt −

∫ T

0
D

∂2c

∂x2
dt = 0

or ∫ T

0

[
∂c

∂t
− D

∂2c

∂x2

]
dt = 0

Since this integral must hold for any arbitrary choice of T ≥ 0, then the integrand
must identically be equal to zero, namely

∂c

∂t
− D

∂2c

∂x2
= 0

or
∂c

∂t
= D

∂2c

∂x2

which satisfies the original PDE. Furthermore, since
[
D ∂c

∂x

]
x=1

−q(t) = 0 (from
Step 4), then the required Neumann boundary condition is satisfied at x = 1.
Finally, since the weak form of the PDE requires c ∈ S, we have c(x, 0) = c0(x)
and c(0, t) = g(t). Hence, the required initial and Dirichlet boundary conditions
are also satisfied. We have therefore shown that any solution of the PDE weak
form Eq.5.2 also satisfies its strong form equivalent (Eq. 5.1).

In obtaining the weak form equivalent of a PDE system, the following points are
important to note:

• The weak form is obtained by first multiplying the PDE by a suitable test function.
• Integration by parts is then used to obtain the weak form equivalent.
• Finally, we note that in theweak form expression of Eq.5.2, the Dirichlet boundary
condition at x = 0 is explicitly enforced by making this condition a property of
the set of trial solutions S. However, the Neumann boundary condition at x = 1 is
not explicitly enforced, but is rather embedded in the derivation of the weak form
expression itself. Boundary conditions that are not enforced in this way are known
as natural boundary conditions. In contrast, those that are explicitly specified in
the set of trial solutions are referred to as essential boundary conditions.

164 5 The Finite Element Method

5.1.2 Basis Function Approximation

To solve the PDE equivalent weak form using the method of finite elements, the next
step is to approximate the dependent variable using a finite sum of basis functions.
For our weak form example of Eq.5.2 the variable c(x, t) is approximated by

c(x, t) ≈
N∑
i=1

ci (t)ϕi (x) (5.4)

where ϕi (x) is the i th basis function, ci (t) is the i th time-dependent coefficient, and
N is the total number of basis functions. The basis functions are chosen with the
following properties:

• they have small spatial support: that is, they are non-zero onlywithin small regions,
referred to as elements.

• Within each element, a number of nodes are specified at which the solution of the
PDE is desired. The basis functions are chosen such that they equal unity at one
specific node and zero at all other nodes, namely

ϕi (x j) =
{
1 i = j
0 i �= j

The above properties of the basis functions mean that the coefficients ci (t) are simply
the value of the dependent variable c(x, t) evaluated at the nodes at each time t , since

c(x j , t) =
N∑
i=1

ci (t)ϕi (x j)

= c j (t)ϕ j (x j)

= c j (t)

In 1D, a simple choice for the ϕi (x) are the linear basis functions, given by

ϕi (x) =

⎧⎪⎨
⎪⎩

x−xi−1

xi−xi−1
xi−1 ≤ x < xi

xi+1−x
xi+1−xi

xi ≤ x < xi+1

0 x < xi−1, x ≥ xi+1

where the xi denote the node positions, as illustrated in Fig. 5.1, with each adjacent
pair of nodes spanning a single element. These 1D linear basis functions are also
known as “hat” functions, resembling an inverted “V”. The linear combination of
these basis functions results in a piecewise linear approximation of c(x, t), as shown
in the upper curve of Fig. 5.1. Within element xi ≤ x ≤ xi+1, the variable c(x, t)
can be determined by linearly interpolating between its values at the nodes, ci (t) and
ci+1(t), using

5.1 Finite Elements for 1D Systems 165

Fig. 5.1 1D linear basis or “witch’s hat” functions. Shown are three nodes, xi−1, xi and xi+1
spanning two adjacent elements. Upper trace shown a linear combination of these basis functions,
producing a piecewise linear approximation of the dependent variable c

c(x, t) = ci (t)

(
xi+1 − x

xi+1 − xi

)
+ ci+1(t)

(
x − xi

xi+1 − xi

)

The next step in solving the weak form Eq.5.2 is to utilise a finite number of test
functionswj (x), and require that the weak form holds for each of these test functions
individually. The most common choice for the test functions is simply the basis
functions themselves, namely

wj (x) = ϕ j (x) (j = 1 . . . N)

This choice of test functions is known as the Galerkin3 method. Substituting the
basis function approximation for c(x, t) (Eq. 5.4) into the weak form

d

dt

∫ 1

0
cw dx +

∫ 1

0
D

∂c

∂x

dw

dx
dx = q(t)w(1)

we obtain for each test function ϕ j (x):

3Pronounced ‘Gal-err-kin’. Named after Boris Grigoryevich Galerkin (1871–1945), a Soviet math-
ematician and engineer.

166 5 The Finite Element Method

d

dt

∫ 1

0

(
N∑
i=1

ci (t)ϕi (x)

)
ϕ j (x) dx+

∫ 1

0
D

∂

∂x

(
N∑
i=1

ci (t)ϕi (x)

)
dϕ j (x)

dx
dx = q(t)ϕ j (1)

which can be written as

dci (t)

dt

∫ 1

0

(
N∑
i=1

ϕi (x)

)
ϕ j (x) dx + ci (t)

∫ 1

0
D

d

dx

(
N∑
i=1

ϕi (x)

)
dϕ j (x)

dx
dx = q(t)ϕ j (1)

and taking out the summation operator, we obtain

N∑
i=1

[
dci (t)

dt

∫ 1

0
ϕi (x)ϕ j (x) dx + ci (t)

∫ 1

0
D
dϕi (x)

dx

dϕ j (x)

dx
dx

]
= q(t)ϕ j (1)

which is equivalent to a matrix system of ODE’s:

D
dc
dt

+ Kc = f

where c is the vector of coefficients ci (t), K is the stiffness matrix with elements

Ki j =
∫ 1

0
D
dϕi (x)

dx

dϕ j (x)

dx
dx , (5.5)

D is the damping matrix, whose i , j th element is

Di j =
∫ 1

0
ϕi (x)ϕ j (x) dx (5.6)

and f is the source or load vector, with components

fi = q(t)ϕi (1) =
{
0 i < N
q(t) i = N

(5.7)

since ϕi (1) = 0 (i < N) and ϕN (1) = 1. Note that the i th diagonal element of the
stiffness matrix is given by

Kii =
∫ 1

0
D

(
dϕi (x)

dx

)2

dx

which is why we required earlier that our test functions had square-integrable deriv-
atives.

5.1 Finite Elements for 1D Systems 167

Fig. 5.2 N linear basis functions ϕ1(x) · · ·ϕN (x) defined on x ∈ [0, 1] for equi-spaced nodes
spaced h apart

To solve our PDE weak form (Eq.5.2), we can choose linear basis functions such
that the nodes xi are regularly spaced, with internodal distance of h. For this choice
of basis functions, we have

ϕi (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h−x
h i = 1, x < h

x−(1−h)

h i = N , 1 − h ≤ x ≤ 1
x−(i−2)h

h 1 < i < N , (i − 2)h ≤ x < (i − 1)h
ih−x
h 1 < i < N , (i − 1)h ≤ x < ih

0 otherwise

(5.8)

A plot of these basis functions is shown in Fig. 5.2, from which it can be seen that
these are hat-shaped, with the exception of ϕ1(x) and ϕN (x), which are “half-hats”.
We are now in a position to evaluate the stiffness matrix K, the damping matrix D,
and the load vector f . For the stiffness matrix, we must evaluate

Ki j =
∫ 1

0
D
dϕi (x)

dx

dϕ j (x)

dx
dx

for all i, j = 1 . . . N . From Eq.5.8, we note that

dϕi (x)

dx
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 1
h i = 1, 0 ≤ x < h

1
h i = N , 1 − h ≤ x ≤ 1

− 1
h 1 < i < N , (i − 1)h ≤ x < ih

1
h 1 < i < N , (i − 2)h ≤ x < (i − 1)h

0 otherwise

Using this result, we can deduce that

168 5 The Finite Element Method

dϕi (x)

dx

dϕ j (x)

dx
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
h2 i = j = 1, 0 ≤ x < h
1
h2 i = j = N , 1 − h ≤ x ≤ h
1
h2 1 < i = j < N , (i − 2)h ≤ x < ih

− 1
h2 1 < i = j + 1 ≤ N , (i − 2)h ≤ x < (i − 1)h

− 1
h2 1 ≤ i = j − 1 < N , (i − 1)h ≤ x < ih

0 otherwise

and therefore

Ki j =
∫ 1

0
D
dϕi (x)

dx

dϕ j (x)

dx
dx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
h i = j = 1
D
h i = j = N
2D
h 1 < i = j < N

− D
h i = j + 1, 2 ≤ i ≤ N

− D
h i = j − 1, 1 ≤ i ≤ N − 1

0 otherwise

(5.9)

Similarly for the damping matrix, we must evaluate its components

Di j =
∫ 1

0
ϕi (x)ϕ j (x) dx

To do so, we use Eq.5.8 to determine that

ϕi (x)ϕ j (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[h−x]2
h2

i = j = 1, 0 ≤ x ≤ h

[x−(1−h)]2
h2

i = j = N , 1 − h ≤ x ≤ 1

[x−(i−2)h]2
h2

1 < i = j < N , (i − 2)h ≤ x < (i − 1)h

[ih−x]2
h2

1 < i = j < N , (i − 1)h ≤ x < ih
[x−(i−2)h][(i−1)h−x]

h2
i = j + 1, 2 ≤ i ≤ N , (i − 2)h ≤ x < (i − 1)h

[x−(i−1)h][ih−x]
h2

i = j − 1, 1 ≤ i ≤ N − 1, (i − 1)h ≤ x < ih

0 otherwise

For the case i = j = 1, we have

∫ 1

0
ϕi (x)ϕ j (x) dx =

∫ h

0

[h − x]2
h2

dx

=
[
−[h − x]3

3h2

]h
0

= h

3

5.1 Finite Elements for 1D Systems 169

For the case i = j = N :

∫ 1

0
ϕi (x)ϕ j (x) dx =

∫ 1

1−h

[x − (1 − h)]2
h2

dx

=
[[x − (1 − h)]3

3h2

]1
1−h

= h

3

We can combine the next two cases corresponding to 1 < i = j < N , to obtain:

∫ 1

0
ϕi (x)ϕ j (x) dx =

∫ (i−1)h

(i−2)h

[x − (i − 2)h]2
h2

dx +
∫ ih

(i−1)h

[ih − x]2
h2

dx

=
[[x − (i − 2)h]3

3h2

](i−1)h

(i−2)h

+
[[ih − x]3

3h2

]ih
(i−1)h

= 2h

3

For the case i = j + 1 (2 ≤ i ≤ N), we have

∫ 1

0
ϕi (x)ϕ j (x) dx =

∫ (i−1)h

(i−2)h

[x − (i − 2)h][(i − 1)h − x]
h2

dx

=
∫ (i−1)h

(i−2)h

[(i − 1)hx − x2 − (i − 1)(i − 2)h2 + (i − 2)hx]
h2

dx

=
∫ (i−1)h

(i−2)h

(
− x2

h2
+ [(i − 1) + (i − 2)]x

h
− (i − 1)(i − 2)

)
dx

=
[
− x3

3h2
+ [(i − 1) + (i − 2)]x2

2h
− (i − 1)(i − 2)x

](i−1)h

(i−2)h

=h

3

[
−(i − 1)3 + (i − 2)3

]
+ h

2
[(i − 1) + (i − 2)]

[
(i − 1)2 − (i − 2)2

]

− (i − 1)(i − 2)h

=h

3
(−1)

[
(i − 2)2 + (i − 2)(i − 1) + (i − 1)2

]

+ h

2
[(i − 1) + (i − 2)] [(i − 1) + (i − 2)] (1) − (i − 1)(i − 2)h

= − h

3

[
(i − 2)2 + (i − 2)(i − 1) + (i − 1)2

]

+ h

2

[
(i − 1)2 + 2(i − 1)(i − 2) + (i − 2)2

]
− (i − 1)(i − 2)h

=h

6

[
(i − 1)2 − h

3
(i − 1)(i − 2) + h

6
(i − 2)2

]

=h

6
[(i − 1) − (i − 2)]2

170 5 The Finite Element Method

=h

6

After a similar calculation, we also find for the case i = j − 1 (1 ≤ i ≤ N − 1):

∫ 1

0
ϕi (x)ϕ j (x) dx = h

6

Hence, we have determined the components of the damping matrix D as

Di j =
∫ 1

0
ϕi (x)ϕ j (x) dx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h
3 i = j = 1
h
3 i = j = N
2h
3 1 < i = j < N
h
6 i = j + 1, 2 ≤ i ≤ N
h
6 i = j − 1, 1 ≤ i ≤ N − 1
0 otherwise

(5.10)

From the above evaluations, the resulting ODE matrix system can be written as

D︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
3

h
6 0 · · · 0 0 0

h
6

2h
3

h
6 · · · 0 0 0

0 h
6

2h
3 · · · 0 0 0

...
. . .

...

0 0 0 · · · 2h
3

h
6 0

0 0 0 · · · h
6

2h
3

h
6

0 0 0 · · · 0 h
6

h
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dc1
dt
dc2
dt

...

dcN
dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

K︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2D
h

−D
h 0 · · · 0 0 0

−D
h

2D
h

−D
h · · · 0 0 0

0 −D
h

2D
h · · · 0 0 0

...
. . .

...

0 0 0 · · · 2D
h

−D
h 0

0 0 0 · · · −D
h

2D
h

−D
h

0 0 0 · · · 0 −D
h

D
h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2

...

cN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

f︷︸︸︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

...

0
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.11)

This matrix ODE system has four important features to note:

• Its stiffness (K) and damping matrices (D) are tri-diagonal, due to the fact that the
product of any two linear basis functions (or their derivatives in the case of the
damping matrix) is non-zero only if they are equal or adjacent to each other.

• Since very few basis functions overlap, the matrices will contain mostly zero
entries and are therefore sparse. Sparse matrices are highly advantageous from a
computational point of view because very large matrix systems can be efficiently
stored in computer memory and solved for.

• The stiffness and damping matrices are symmetric, as is often the case for many
physical PDE systems. Sparse symmetric matrix systems can be efficiently solved
for.

• Finally, the above matrix system inherently incorporates the Neumann boundary
condition at x = 1, through the q term appearing in the last element of the right-

5.1 Finite Elements for 1D Systems 171

hand side source vector. Hence, this boundary condition is natural to the system.
The Dirichlet condition however at x = 0 has not yet been implemented, but must
be enforced through an additional modification of the above matrices.

To implement the Dirichlet boundary condition at x = 0, namely a1(t) = p(t),
we modify the above matrix system by adding an additional row and column to the
damping and stiffness matrices in order to directly specify the boundary constraint
whilst preserving the symmetry of both matrices. Such a modification however,
entails the addition of a dummy variable λ to the system, whose value may be
discarded from the solution. Adding an additional row to the D, K and f matrices,
with a corresponding symmetric column to D and K, we obtain the following DAE
matrix system of equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
3

h
6 0 · · · 0 0 0

h
6

2h
3

h
6 · · · 0 0 0

0 h
6

2h
3 · · · 0 0 0

...
. . .

...

0 0 0 · · · 2h
3

h
6 0

0 0 0 · · · h
6

h
3 0

0 0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dc1
dt
...

dci
dt
...

dcN
dt
dλ
dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D
h

−D
h 0 · · · 0 0 1

−D
h

2D
h

−D
h · · · 0 0 0

0 −D
h

2D
h · · · 0 0 0

...
. . .

...

0 0 0 · · · 2D
h

−D
h 0

0 0 0 · · · −D
h

D
h 0

1 0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...

ci
...

cN
λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
...

q

p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with initial values ci (0) = c0(hi), i = 1 . . . N . The above system can be more
compactly written as

[
D 0
0T 0

][dc
dt
dλ
dt

]
+
[
K N
NT 0

] [
c
λ

]
=
[
f
p

]
(5.12)

whereD,K and f are as defined inEq.5.11, dummyvariableλ is known as aLagrange
multiplier, and N = [1 0 . . . 0]T is the constraint matrix, such that NTc = p. For
a given PDE with multiple Dirichlet boundary conditions, each of these boundary
constraints will be associated with its own Lagrange multiplier. The resulting DAE
system (Eq.5.12) can be solved using any themethods described in Chap.3, Sect. 3.4.

Example 5.1 Using 1D linear basis functions on a uniformly-spaced grid consisting
of 10 elements, determine the finite element D, K and f matrices for the 1D time-
dependent diffusion equation

∂c

∂t
= ∂2c

∂x2

for x ∈ [0, 1] subject to zero-flux boundary conditions at x = 0 and x = 1, with
initial value of c(x, t) at t = 0 given by the square-wave distribution:

http://dx.doi.org/10.1007/978-3-642-54801-7_3

172 5 The Finite Element Method

c(x, 0) =
{
1 0.4 ≤ x ≤ 0.6
0 otherwise

Using the same basis functions and number of elements, solve this PDE inCOMSOL,
plotting the solution at t = 0.1, and confirm that the COMSOL-generated D and K
matrices are equal to those obtained analytically.

Answer: We can use the matrix ODE system of Eq.5.11, noting that there are a
total of 11 variables to be solved for: one variable per element node. Furthermore,
the source vector will contain q flux terms in each of its first and last elements, corre-
sponding to each Neumann boundary condition. Since these are zero-flux conditions,
each q term will be zero. Noting that D = 1 and h = 0.1, we obtain the following
system matrices:

f = [
0 0 0 0 0 0 0 0 0 0 0

]T

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
30

1
60 0 0 0 0 0 0 0 0 0

1
60

1
30

1
60 0 0 0 0 0 0 0 0

0 1
60

1
30

1
60 0 0 0 0 0 0 0

0 0 1
60

1
30

1
60 0 0 0 0 0 0

0 0 0 1
60

1
30

1
60 0 0 0 0 0

0 0 0 0 1
60

1
30

1
60 0 0 0 0

0 0 0 0 0 1
60

1
30

1
60 0 0 0

0 0 0 0 0 0 1
60

1
30

1
60 0 0

0 0 0 0 0 0 0 1
60

1
30

1
60 0

0 0 0 0 0 0 0 0 1
60

1
30

1
60

0 0 0 0 0 0 0 0 0 1
60

1
30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.13)

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 −10 0 0 0 0 0 0 0 0 0

−10 20 −10 0 0 0 0 0 0 0 0

0 −10 20 −10 0 0 0 0 0 0 0

0 0 −10 20 −10 0 0 0 0 0 0

0 0 0 −10 20 −10 0 0 0 0 0

0 0 0 0 −10 20 −10 0 0 0 0

0 0 0 0 0 −10 20 −10 0 0 0

0 0 0 0 0 0 −10 20 −10 0 0

0 0 0 0 0 0 0 −10 20 −10 0

0 0 0 0 0 0 0 0 −10 20 −10

0 0 0 0 0 0 0 0 0 −10 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.14)

To solve this PDE in COMSOL and inspect the resulting damping and stiffness
matrices, implement the following steps:

5.1 Finite Elements for 1D Systems 173

Model Wizard

1. Open the Model Wizard and select the 1D spatial dimension.
2. In the Select Physics panel, choose Mathematics|PDE Interfaces|General Form

PDE. Click “Add”.
3. In the Review Physics Interface panel at right, specify c as the Field name and

c as the name of the dependent variable in the dependent variables list. For the
dependent variable quantity, leave the units and source term quantity units to their
default values.

4. Click theStudy arrow () to open theSelect Studypanel. SelectTimeDependent,
and click “Done”. Thiswill exit theModelWizard, displaying themainCOMSOL
interface.

Geometry

1. Right-click Geometry 1 in the model tree and select Interval. Leave the left and
right endpoints to their default values of 0 and 1 respectively. Click Build Selected
().

Global Definitions

1. Right-click the Definitions sub-node under the Global node, and select Functions|
Rectangle. This will define a square-wave function for implementing the initial
value profile. Specify the lower and upper limits as 0.4 and 0.6 respectively.

2. Under the Smoothing tab, specify a value of 0.01 for the size of the transition
zone. This defines a smooth transition from 0 to 1, avoiding discontinuities in
the rising and falling edges. Leave the function name to its default of rect1.
Clicking Plot () will display the function, as shown in Fig. 5.3.

General Form PDE

1. Select the General Form PDE 1 sub-node of General Form PDE, and leave the
conservative flux expression to its default of -cx. Enter a value of 0 for the source
term f , and leave the damping and mass coefficients to their default values.

2. Select the Initial Values 1 sub-node of the General Form PDE node. For the initial
value of c, enter the initial value expression rect1(x [1/m]) to implement
the initial square-wave concentration profile.

Mesh

1. Right-click Mesh 1 and select Distribution. For the Domain selection, select the
line interval in the Graphics window (Domain 1). Specify the number of elements
as 10.

2. Right-click Mesh 1 again and select Edge. Leave the default geometric entity
level as ‘Remaining’. This will mesh the remaining parts of the model with a free
edge mesh.

3. Click Build All () in the Settings window to build and display the mesh.

174 5 The Finite Element Method

Fig. 5.3 COMSOL user-defined Rect1 function for implementing the initial square-wave concen-
tration profile of Example5.1

Discretization

1. In the toolbar of the model tree, click the show button (), and select Discretiza-
tion to view the finite element basis function discretization.

2. Select the General Form PDE node of the model tree. There should now be a
Discretization tab visible in the settings panel. Select this tab to view the dis-
cretization settings. By default, the element order will show as Quadratic: change
this to Linear. This specifies linear basis functions for the elements.

Study

1. To solve the model, right-click Study 1 and select Compute (). This will com-
pute the solution using the default time range of 0 to 1 s in output steps of 0.1 s.

Results

1. Under the Results node of the model tree, select the 1D Plot Group 1 sub-node. In
the Settings window, specify the Time selection option as ‘From list’, and select a
time of 0.1 s from the Times dropdown list. Click the Plot button () will display
the concentration variable c at this time, as shown in Fig. 5.4.

System Matrices

1. Select Study 1|SolverConfigurations|Solution 1.Right-click Solution 1 and select
Other|Assemble. In the Settings window, under the Non-Eliminated Output tab,

5.1 Finite Elements for 1D Systems 175

Fig. 5.4 COMSOL result at t = 0.1 s for PDE diffusion Example5.1.

check the ‘Load vector’, ‘Stiffness matrix’ and ‘Damping matrix’ checkboxes.
Click the Compute button () to evaluate and store these system matrices.

2. Right-click the Results|Derived Values node, and select System Matrix. In the
Settings panel under the Output tab, leave the default Matrix as the Stiffness
matrix, and select the output Format as ‘Filled’. Click the Evaluate button () to
display the stiffness matrix below the Graphics window, as shown in Fig. 5.5. It
can be readily seen that all entries of this stiffness matrix are identical to that of
the analytical stiffness matrix obtained earlier (Eq.5.13).

3. Select the Results|Derived Values|SystemMatrix 1 sub-node of themodel tree. In
the Settings panel, specify theMatrix output as ‘Dampingmatrix’.Keep the output
format as ‘Filled’. Click the Evaluate button () to display the damping matrix,
as shown in Fig. 5.6. As can be seen from the entries of the COMSOL-generated
matrix, its entries are all equal to the analytical dampingmatrix (Eq.5.14), correct
to several decimal places.

5.1.3 Higher-Order Basis Functions

5.1.3.1 Element Coordinates

In the previous section, we expressed the finite element basis functions ϕi as a
function of global spatial coordinates, x i.e.ϕi (x)defines the i th global basis function.

176 5 The Finite Element Method

Fig. 5.5 COMSOL-generated stiffness matrix (seen at lower right) for the PDE diffusion Exam-
ple5.1

Fig. 5.6 COMSOL-generated damping matrix for the PDE diffusion Example5.1

However, a more convenient description is to use local element coordinates to define
local shape functions. For our previous 1D linear basis functions, we can define a
local element coordinate ξ , which varies between 0 and 1 within the element, to
define two local element shape functions, ϕ1(ξ) and ϕ2(ξ), as follows:

ξ = x − xi
xi+1 − xi

, ϕ1(ξ) = 1 − ξ, ϕ2(ξ) = ξ (5.15)

where xi , xi+1 denote the global node positions of element i . These shape functions,
together with their local and global descriptions, are plotted in Fig. 5.7. It should be
noted that the combination of shape function ϕ2 from one element with ϕ1 from the
next will produce the familiar hat-shaped basis function used previously.

5.1 Finite Elements for 1D Systems 177

Fig. 5.7 Local (left) versus global (right) descriptions of 1D linear (or Lagrange) element shape
functions, resulting in a linear interpolation of the dependent variable c within element i

5.1.3.2 Lagrange Shape Functions

It is possible to choose higher order polynomials for element shape functions that
satisfy our FEM requirement that they equal 1 at one node and 0 at all other nodes
of the element, namely:

ϕi (ξ j) =
{
1 i = j
0 i �= j

where ϕi denotes the i th element shape function, and ξ j denotes the j th node of the
element. These are known as Lagrange shape functions, and those of order higher
than 1 will have more than 2 nodes per element, with the number of shape functions
equal to the number of nodes. An example are the quadratic Lagrange functions,
with three nodes per element located at ξ = 0, ξ = 0.5, and ξ = 1. The three shape
functions are given by

ϕ1(ξ) = 2(0.5 − ξ)(1 − ξ)

ϕ2(ξ) = 4ξ(1 − ξ) (5.16)

ϕ3(ξ) = 2ξ(ξ − 0.5)

and are plotted in Fig. 5.8. As for the linear shape functions, the value of a dependent
variable c within the element is given by the linear combination of quadratic shape

178 5 The Finite Element Method

Fig. 5.8 1D quadratic
element shape functions

functions, namely:
c(ξ) = c1ϕ1(ξ) + c2ϕ2(ξ) + c3ϕ3(ξ)

where c1, c2, c3 are the values of c at nodes ξ = 0, ξ = 0.5 and ξ = 1 respectively.

5.1.3.3 Hermite Shape Functions

Another choice of element shape functions is to use polynomials that interpolate
not only the dependent variable, but also its spatial derivative at the nodes. One
such example are the cubic Hermite4 shape functions, used to interpolate within an
element which has the dependent variable as well as its spatial derivative specified
at each of its two nodes. For these shape functions, there are two nodes per element
(located at ξ = 0 and ξ = 1), and four shape functions, given by:

ϕ1(ξ) = 1 − 3ξ 2 + 2ξ 3 ϕ3(ξ) = ξ 2(3 − 2ξ)

ϕ2(ξ) = ξ(ξ − 1)2 ϕ4(ξ) = ξ 2(ξ − 1)

These shape functions satisfy the following relationships:

ϕ1(0) = 1, ϕ1(1) = 0, dϕ1

dξ

∣∣∣
ξ=0

= 0, dϕ1

dξ

∣∣∣
ξ=1

= 0

ϕ3(0) = 0, ϕ3(1) = 1, dϕ3

dξ

∣∣∣
ξ=0

= 0, dϕ3

dξ

∣∣∣
ξ=1

= 0

ϕ2(0) = 0, ϕ2(1) = 0, dϕ2

dξ

∣∣∣
ξ=0

= 1, dϕ2

dξ

∣∣∣
ξ=1

= 0

ϕ4(0) = 0, ϕ4(1) = 0, dϕ4

dξ

∣∣∣
ξ=0

= 0, dϕ4

dξ

∣∣∣
ξ=1

= 1

and are plotted in Fig. 5.9. The dependent variable c is interpolated using a linear
combination of its nodal values and its nodal derivatives according to the expression

4Pronounced Her-meet.

5.1 Finite Elements for 1D Systems 179

Fig. 5.9 1D cubic Hermite
element shape functions

c(ξ) = c1ϕ1(ξ) + c2ϕ3(ξ) + dc1
dξ

ϕ2(ξ) + dc2
dξ

ϕ4(ξ)

where c1, c2 are the values of the dependent variable at element nodes 1 (ξ = 0) and
2 (ξ = 1) respectively, and dc1

dξ ,
dc2
dξ are the values of its spatial derivative at each

corresponding node. Note that unlike Lagrange elements, in which the dependent
variable is only piecewise continuous, cubic Hermite elements are also piecewise
continuous in the value of the spatial derivative, resulting in a smoother solution for
the dependent variable. The disadvantage is that there are more degrees of freedom
(i.e. variables to be solved for), since nodal derivatives must also be determined in
addition to nodal values.

5.2 Finite Elements for 2D/3D Systems

We can implement the finite element method for higher dimensional systems by
using the same concepts we employed for 1D, namely:

1. Formulate the underlying PDE in its weak form.
2. Approximate the dependent variable using a finite sum of basis functions. Sub-

stituting this approximation into the weak form will lead to a matrix system of
equations for the dependent variable that can be solved for.5

For simplicity, wewill illustrate these concepts using the following time-independent
PDE, written in strong form as

5In the case of non-linear PDEs, these system matrices will need to be iteratively updated in order
to converge to a solution.

180 5 The Finite Element Method

∇ · (−κ∇u) = f in �

u = 0 on ∂� (5.17)

where u is the dependent variable to be solved for, κ , f are given functions of spatial
position, and �, ∂� denote the PDE closed domain and boundary respectively. For
2D systems, ∂� will consist of 1D bounding edges: for 3D systems, it will be 2D
surfaces.6

5.2.1 Weak Form Description

Just as in the 1D case, we can express Eq.5.17 in its equivalent weak form by
multiplying both sides of the PDE by a suitable test function and integrate over the
domain. Before we can do this, however, it will be necessary to establish a multi-
dimensional integration by parts formula, also known as Green’s identity.

5.2.1.1 Green’s Identity

Consider two scalar functions v(x) and w(x), each a function of spatial position
x = (x y z)T. Then,7

∇. (v∇w) = ∇ ·
⎛
⎜⎝
v ∂w

∂x

v ∂w
∂y

v ∂w
∂z

⎞
⎟⎠

= ∂

∂x

[
v
∂w

∂x

]
+ ∂

∂y

[
v
∂w

∂y

]
+ ∂

∂z

[
v
∂w

∂z

]

= ∂v

∂x

∂w

∂x
+ v

∂2w

∂x2
+ ∂v

∂y

∂w

∂y
+ v

∂2w

∂y2
+ ∂v

∂z

∂w

∂z
+ v

∂2w

∂z2

= ∇v · ∇w + v∇2w

Integrating both sides of the above identity over the domain �, we obtain:

∫

�

∇. (v∇w) dV =
∫

�

(∇v · ∇w) dV +
∫

�

(
v∇2w

)
dV (5.18)

6Needless to say, Eq.5.17 also holds for 1D systems, in which case � will be a line interval and
∂� will consist of its two bounding points.
7The subsequent analysis also holds for 2D, where x = (x y)T.

5.2 Finite Elements for 2D/3D Systems 181

where dV in the above integrals denotes an infinitesimal volume element of �.
Recalling the divergence theorem (see Eq.4.5):

∫

V
(∇ · F) dV =

∫

S
F · dS

we can replace the volume integral of the left-hand side of Eq.5.18 with a surface
integral, to obtain Green’s identity8:

∫

∂�

(v∇w) · dS =
∫

�

(∇v · ∇w) dV +
∫

�

(
v∇2w

)
dV (5.19)

where dS = ndS denotes an infinitesimal surface element area vector of boundary
∂�, of area dS in the direction of the outward surface unit normal n.

5.2.1.2 PDE Weak Form

Having derived Green’s identity, we are now in position to obtain the weak form
equivalent of Eq.5.17. The weak form is obtained by multiplying both sides of the
PDE by a suitable test function, utest (x), such that utest = 0 on ∂�, then integrating
over � to obtain:

∫

�

∇ · (−κ∇u) utest dV =
∫

�

f utest dV
∫

�

− [(∇κ) · (∇u) + κ∇2u
]
utest dV =

∫

�

f utest dV

Upon re-arranging, we obtain:

∫

�

[−κutest∇2u
]
dV =

∫

�

[(∇κ) · (∇u)] utest dV +
∫

�

f utest dV (5.20)

Using Green’s identity (Eq.5.19), we can substitute into it v = −κutest and w = u
to obtain:
∫

∂�

(−κutest∇u) · dS =
∫

�

− [∇ (κutest) · ∇u] dV +
∫

�

− [κutest∇2u
]
dV

and noting that ∇ (κutest) = utest∇κ + κ∇utest , the above becomes:

∫

∂�

(−κutest∇u) · dS =
∫

�

− [(utest∇κ + κ∇utest) · ∇u] dV +
∫

�

− [κutest∇2u
]
dV

8Also referred to as Green’s first identity.

http://dx.doi.org/10.1007/978-3-642-54801-7_4

182 5 The Finite Element Method

=
∫

�

− [(∇κ) · (∇u) utest + κ (∇u) · (∇utest)] dV +
∫

�

− [κutest∇2u
]
dV

Re-arranging, we obtain

∫

�

− [κutest∇2u
]
dV =

∫

∂�

(−κutest∇u) · dS +
∫

�

[(∇κ) · (∇u)] utest dV

+
∫

�

(κ∇u) · (∇utest) dV

Since the left-hand side of this expression is equal to that of Eq. 5.20, we can equate
both right-hand sides to obtain:

∫

∂�

(−κutest∇u) · dS +
∫

�

[(∇κ) · (∇u)] utest dV +
∫

�

(κ∇u) · (∇utest) dV

=
∫

�

[(∇κ) · (∇u)] utest dV +
∫

�

f utest dV

Cancelling terms, we obtain:

∫

∂�

(−κutest∇u) · dS +
∫

�

(κ∇u) · (∇utest) dV =
∫

�

f utest dV

and since utest = 0 on ∂�, the first term will be zero, and we obtain the resulting
weak form equivalent:

∫

�

(κ∇u) · (∇utest) dV =
∫

�

f utest dV

Defining a function set U as the set of all functions u that are:

• piecewise continuous on �

• satisfy
∫

�

(∇u) · (∇u) dV < ∞
• satisfy u = 0 on ∂�,

we can state the weak form of Eq.5.17 as:

Find u ∈ U such that
∫

�

(κ∇u) · (∇utest) dV =
∫

�

f utest dV (5.21)

for ∀utest ∈ U

5.2 Finite Elements for 2D/3D Systems 183

5.2.2 Basis Function Approximation

To solve the PDE equivalent weak form, we can discretize the domain � into a
number of finite elements, each element associated with a set of nodes. In 2D for
example, such elements are typically triangles or quadrilaterals, with each vertex
corresponding to a node. in 3D, these elements can be tetrahedrons or hexahedrons,
again with the vertices corresponding to nodes. It is also possible to define additional
interior nodes within each element. The total set of elements over � is known as
the finite element mesh. Associated with a given mesh is a set of basis functions,
ϕi (x), such that for the j th global node in the mesh located at spatial point x j , basis
function i , ϕi (x), satisfies the following

ϕi (xi) =
{
1 i = j
0 i �= j

The dependent PDE variable can then be approximated using a finite sum of these
basis functions, such that

u(x) ≈
N∑
i=1

uiϕi (x) (5.22)

where ϕi (x) is the i th basis function, ui is the value of the dependent variable at the
i th gobal node, and N is the total number of basis functions.

5.2.2.1 Galerkin Method Revisited

To solve theweak PDE formof Eq.5.21,we take as our set of candidate test functions,
utest thefinite element basis functions themselves. Settingutest = ϕ j , and substituting
into the weak form expression

∫

�

(κ∇u) · (∇utest) dV =
∫

�

f utest dV

we obtain

∫

�

(
κ∇

[
N∑
i=1

uiϕi

])
· (∇ϕ j

)
dV =

∫

�

f ϕ j dV

N∑
i=1

[
ui

∫

�

(κ∇ϕi) · (∇ϕ j
)
dV

]
=
∫

�

f ϕ j dV

This is equivalent to solving the matrix system

Ku = f

184 5 The Finite Element Method

where u is the vector of dependent variables ui to be solved for, K is the stiffness
matrix whose (i, j)th entry is given by

Ki j =
∫

�

(κ∇ϕi) · (∇ϕ j
)
dV (5.23)

and f is the load vector, whose j th entry is

f j =
∫

�

f ϕ j dV (5.24)

As in the case of 1D elements, the 2D/3D basis functions ϕi (x) can also be expressed
in terms of local element coordinates ξ = (ξ1, ξ2)

T (2D) or ξ = (ξ1, ξ2, ξ3)
T (3D),

where each element coordinate ξi varies between 0 and 1. Expressed this way within
a local element, the ϕi (x) are referred to as shape functions.

5.2.2.2 Isoparametric Elements

Within any element, the value of the dependent variable u can be interpolated from
its values at the element nodes (ui) using the element shape functions as follows:

u(ξ) =
n∑

i=1

uiϕi (ξ) (5.25)

where n is the number of nodes of the element. Denote the value of the global
coordinate x at the i th element node by xi . If themapping between global coordinates
x and local coordinates (ξ) anywhere within the element is also given by the same
interpolation function as Eq.5.25, namely:

x(ξ) =
n∑

i=1

xiϕi (ξ)

y(ξ) =
n∑

i=1

yiϕi (ξ)

and for 3D:
z(ξ) =

n∑
i=1

ziϕi (ξ)

which may be compactly expressed as

x(ξ) =
n∑

i=1

xiϕi (ξ)

5.2 Finite Elements for 2D/3D Systems 185

then the element is said to be isoparametric. Isoparametric elements represent a
powerful feature of the finite element method, allowing curved edges and surfaces of
domains to be readily represented. Some examples of 2D/3D isoparametric elements
will be given in the following subsections.

5.2.2.3 Bilinear Quadrilateral Elements

We can use the two 1D linear shape functions ϕ1(ξ), ϕ2(ξ) defined in Eq.5.15 to con-
struct a set of four shape functions for the 2Dquadrilateral element. Defining 2D local
element coordinates by (ξ1, ξ2), we can form four product combinations of the 1D
linear shape functions, ϕ1(ξ1)ϕ1(ξ2), ϕ2(ξ1)ϕ1(ξ2), ϕ2(ξ1)ϕ2(ξ2) and ϕ1(ξ1)ϕ2(ξ2),
to define the four bilinear quadrilateral element shape functions:

ϕ1(ξ1, ξ2) = (1 − ξ1)(1 − ξ2)

ϕ2(ξ1, ξ2) = ξ1(1 − ξ2)

ϕ3(ξ1, ξ2) = ξ1ξ2

ϕ4(ξ1, ξ2) = (1 − ξ1)ξ2

with four element nodes at the corners of the quadrilateral. These shape functions
are plotted in Fig. 5.10. The value of a dependent variable u anywhere within the
element can be determined from the interpolation formula of Eq.5.25, namely:

u(ξ1, ξ2) = u1ϕ1(ξ1, ξ2) + u2ϕ2(ξ1, ξ2) + u3ϕ3(ξ1, ξ2) + u4ϕ4(ξ1, ξ2)

where u1–u4 are the values of u at each of the four nodes.
Using a similar interpolation formula, the spatial (x, y) coordinates within the

element can also be determined from the local (ξ1, ξ2) coordinate values if these
spatial coordinates are known at each of the four nodes. This leads to a bilinear
map between the local and global coordinates such that in global (x, y) space, the
boundaries of the quadrilateral element remain straight, as shown in the example of
Fig. 5.11.

5.2.2.4 Linear Triangular Element

For 2D triangular elements,we canderive simple shape functions from the 2Dbilinear
shape functions for a quadrilateral. This process can be achieved by merging two
nodes of the quadrilateral, a process known as degeneration. For example, for the
quadrilateral element of Fig. 5.11, we can merge nodes 3 and 4 by assigning their
spatial coordinates to the same value, namely x3 = x4 and y3 = y4, as shown in
Fig. 5.12.

Denote the triangular basis functions by ϕ∗
1 , ϕ

∗
2 , and ϕ∗

3 . Starting with the bilin-
ear quadrilateral shape functions, the spatial coordinate of any point x within the

186 5 The Finite Element Method

Fig. 5.10 Bilinear quadrilateral shape functions

Fig. 5.11 Bilinear quadrilateral element representation in local element (left) and spatial frames
(right). Element nodes 1–4 are shown numbered in each case

quadrilateral is given by

x =
4∑

i=1

xiϕi (ξ1, ξ2)

where the xi denote the coordinates at the four nodes. Setting x3 = x4, the above
becomes

5.2 Finite Elements for 2D/3D Systems 187

Fig. 5.12 Quadrilateral element degenerated into a triangle by merging nodes 3 and 4

Fig. 5.13 Linear triangular shape functions plotted for the triangular element with spatial (x, y)
nodes located at (0,0), (0,1), (1,0)

x = x1ϕ1(ξ1, ξ2) + x2ϕ2(ξ1, ξ2) + x3ϕ3(ξ1, ξ2) + x3ϕ4(ξ1, ξ2)

= x1

ϕ∗
1︷ ︸︸ ︷

ϕ1(ξ1, ξ2) +x2

ϕ∗
2︷ ︸︸ ︷

ϕ2(ξ1, ξ2) +x3

ϕ∗
3︷ ︸︸ ︷

[ϕ3(ξ1, ξ2) + ϕ4(ξ1, ξ2)]

=
3∑

i=1

xiϕ∗
i (ξ1, ξ2)

where

ϕ∗
1 = (1 − ξ1)(1 − ξ2)

ϕ∗
2 = xi1(1 − ξ2)

ϕ∗
3 = ξ1ξ2 + (1 − ξ1)ξ2

= ξ2

In the spatial (x, y) frame, these shape functions correspond to planes of height 1
at one node and 0 at the other two nodes. They are shown plotted in Fig. 5.13 for
a triangular element with vertices located at (0,0), (0,1), and (1,0) in spatial (x, y)

188 5 The Finite Element Method

Fig. 5.14 Trilinear element
with local element
coordinates ξ1, ξ2, and ξ3
and 8 nodes numbered 1–8

coordinates. Within this element, the value of the dependent variable u is determined
using a linear interpolation of its value at the nodes, hence these shape functions are
known as linear triangular.

5.2.2.5 Trilinear Elements

We can extend our application of 1D linear shape functions to 3D hexahedral ele-
ments having 8 nodes: one node per vertex. For such a 3D element, there will be
three local element coordinates (ξ1, ξ2, ξ3), as shown in Fig. 5.14. As for the bilinear
quadrilateral element, we can form the product of all combinations of three 1D linear
shape functions, one shape function per element coordinate, to obtain a set of eight
trilinear shape functions:

ϕ1(ξ1, ξ2, ξ2) = (1 − ξ1)(1 − ξ2)(1 − ξ3)

ϕ2(ξ1, ξ2, ξ2) = ξ1(1 − ξ2)(1 − ξ3)

ϕ3(ξ1, ξ2, ξ2) = ξ1ξ2(1 − ξ3)

ϕ4(ξ1, ξ2, ξ2) = (1 − ξ1)ξ2(1 − ξ3)

ϕ5(ξ1, ξ2, ξ2) = (1 − ξ1)(1 − ξ2)ξ3

ϕ6(ξ1, ξ2, ξ2) = ξ1(1 − ξ2)ξ3

ϕ7(ξ1, ξ2, ξ2) = ξ1ξ2ξ3

ϕ8(ξ1, ξ2, ξ2) = (1 − ξ1)ξ2ξ3.

5.2 Finite Elements for 2D/3D Systems 189

Fig. 5.15 Biquadratic element representation in local element (left) and spatial frames (right).
Element nodes 1–9 are shown numbered in each case

5.2.2.6 Biquadratic Elements

We can form even higher order element shape functions in 2D and 3D by forming
various product combinations of 1D shape functions for each element coordinate.
For example, using the set of three 1D quadratic shape functions (Eq.5.16), we can
form the following nine biquadratic shape functions for a 2D quadrilateral element:

ϕ1(ξ1, ξ2) = 4(0.5 − ξ1)(1 − ξ1)(0.5 − ξ2)(1 − ξ2)

ϕ2(ξ1, ξ2) = 4ξ1(ξ1 − 0.5)(0.5 − ξ2)(1 − ξ2)

ϕ3(ξ1, ξ2) = 4ξ1ξ2(ξ1 − 0.5)(ξ2 − 0.5)

ϕ4(ξ1, ξ2) = 4(0.5 − ξ1)(1 − ξ1)ξ2(ξ2 − 0.5)

ϕ5(ξ1, ξ2) = 8ξ1(1 − ξ1)(0.5 − ξ2)(1 − ξ2)

ϕ6(ξ1, ξ2) = 8ξ1ξ2(ξ1 − 0.5)(1 − ξ2)

ϕ7(ξ1, ξ2) = 8ξ1ξ2(1 − ξ1)(ξ2 − 0.5)

ϕ8(ξ1, ξ2) = 8ξ2(0.5 − ξ1)(1 − ξ1)(1 − ξ2)

ϕ9(ξ1, ξ2) = 16ξ1ξ2(1 − ξ1)(1 − ξ2)

where the element has nine nodes, as shown in Fig. 5.15. These set of shape func-
tions define the biquadratic element. Such higher order shape functions allow 2D/3D
elements to have curved edges and surfaces, as can be seen from Fig. 5.15. Such ele-
ments can therefore be used to approximate curved boundaries, representing a major
advantage of finite element methods over conventional finite difference schemes.

Example 5.2 Use a single biquadratic element to approximately represent a 2D
domain consisting of quarter-circle of radius 20mm.

190 5 The Finite Element Method

Fig. 5.16 Single biquadratic
element approximate
representation of a
quarter-circle domain of
radius 20mm

Answer: Referring to Fig. 5.15, we can place the eight exterior nodes of the element
on the boundary of the quarter-circle, with nodes 4, 7, 3, 6, and 2 equi-spaced along
the circular arc. The interior node 9 can be placed at half the radial distance from the
centre of the arc, at 45◦ from the radial edge. This leads to the following choice of
node positions:

• Node 1: (0, 0)mm
• Node 2: (20, 0)mm
• Node 3: (20 cos 45◦, 20 sin 45◦)mm
• Node 4: (0, 20)mm
• Node 5: (10, 0)mm
• Node 6: (20 cos 22.5◦, 20 sin 22.5◦)mm
• Node 7: (20 cos 67.5◦, 20 sin 67.5◦)mm
• Node 8: (0, 10)mm
• Node 9: (10 cos 45◦, 10 sin 45◦)mm

The biquadratic element with these nodes is shown in Fig. 5.16, where it can be seen
that the edges of the element well-approximate the quarter circle. �

5.3 FEM Numerical Implementation

This section will provide a brief overview of issues related to FEM numerical imple-
mentation. Although FEM is far-more difficult to program ‘from scratch’ than the FD
approach, fortunately there exists a large range of FEM software, both open-source
and commercial, that can be used to implement bioengineering models, including
COMSOL Multiphysics®.

5.3 FEM Numerical Implementation 191

5.3.1 Assembly of System Matrices

For our earlier PDE example, Eq.5.17, namely

∇ · (−κ∇u) = f

subject to given boundary conditions, we have seen that the Galerkin method leads
to the matrix system

Ku = f

where the elements of the stiffness matrix K and load vector f are given by (see
Eqs. 5.23, and 5.24):

Ki j =
∫

�

(κ∇ϕi) · (∇ϕ j
)
dV

f j =
∫

�

f ϕ j dV

where ϕi , ϕ j denote the i th and j th global basis function, which can be any one of
the 1D/2D/3D alternatives covered earlier, depending on the dimension of the PDE
domain. In numerical FEM implementations, rather than using global basis functions
to construct the system matrices, these are calculated on an element-element basis,
then incorporated into the global system matrices, a process known as assembly. At
the local element level, we can define an analogous element stiffness matrix Ke and
load vector fe according to

Ke,i j =
∫

�e

(κ∇ϕi (x)) · (∇ϕ j (x)
)
dV

fe, j =
∫

�e

f ϕ j dV

where �e denotes the element domain, ϕi , ϕ j refer to the i th, j th element shape
function respectively, and x refers to the spatial coordinate. The element Ke and
fematrices will be of size n × n and n × 1 respectively, where n is the number of
element degrees of freedom. For Lagrange elements, n will simply equal the number
of element nodes.

Once the individual elementmatrices have been determined, the entries are assem-
bled into the global systemmatrices by numerically adding the elementmatrix entries
to the corresponding global system matrix entries at the appropriate global matrix
index positions.

192 5 The Finite Element Method

5.3.2 Gaussian Quadrature

We have seen that determining the FEM system matrices requires evaluation of inte-
grals involving the element shape functions. Furthermore, during FEM postprocess-
ing, the integral of a given quantity may be required. For example, in simulations of
electric current flow, one of the available outputs for postprocessing is the current
density (in SI units of Am-2). Integrating the normal component of current density at
a given boundary will yield the total current flowing through that boundary. In FEM
codes, integration for determining the system matrices, as well as postprocessing
calculations, are performed numerically using the method of Gaussian quadrature.

In brief, Gaussian quadrature approximates the integral of a function by the
weighted sum of the function evaluated at certain points known as Gauss points.
For example, to integrate the function f (ξ) over a 1D element, where ξ varies from
0 to 1, the method uses the formula

∫ 1

0
f (ξ) dξ ≈

I∑
i=1

wi f (ξi) (5.26)

where I is the order of the method, ξi are the fixed Gauss points, and wi are weights
associated with these points. To exactly integrate a polynomial of order 3, we can
use I = 2. In this case, we can set f (ξ) = aξ 3 + bξ 2 + cξ + d, where a, b, c, d
are the polynomial coefficients. The Gauss points and associated weights can then
be determined from

∫ 1

0
f (ξ) dξ = w1 f (ξ1) + w2 f (ξ(2)

∫ 1

0

(
aξ3 + bξ2 + cξ + d

)
dξ = w1

(
aξ31 + bξ21 + cξ1 + d

)
+w2

(
aξ32 + bξ22 + cξ2 + d

)

[
aξ4

4
+ bξ3

3
+ cξ2

2
+ dξ

]1

0

= a
(
w1ξ

3
1 + w2ξ

3
2

)
+ b

(
w1ξ

2
1 + w2ξ

2
2

)

+c (w1ξ1 + w2ξ2) + d (w1 + w2)

a

4
+ b

3
+ c

2
+ d = a

(
w1ξ

3
1 + w2ξ

3
2

)
+ b

(
w1ξ

2
1 + w2ξ

2
2

)

+c (w1ξ1 + w2ξ2) + d (w1 + w2)

Equating the a, b, c, d coefficients on both sides, we obtain

w1ξ
3
1 + w2ξ

3
2 = 1

4
(5.27)

w1ξ
2
1 + w2ξ

2
2 = 1

3
(5.28)

w1ξ1 + w2ξ2 = 1

2
(5.29)

5.3 FEM Numerical Implementation 193

w1 + w2 = 1 (5.30)

which represents four equations in the four unknowns, w1, w2, ξ1, ξ2. We can solve
this system of equations by assuming symmetry in the weights and the positioning
of the Gauss points as follows:

w1 = w2 (5.31)

ξ2 = 1 − ξ1 (5.32)

From Eqs. 5.30 and 5.31, we obtain:

w1 = w2 = 1

2
(5.33)

Substituting this result along with Eq.5.32 into Eq.5.28, yields:

ξ 2
1

2
+ (1 − ξ1)

2

2
= 1

3

ξ 2
1 + 1 − 2ξ1 + ξ 2

1 = 2

3
6ξ 2

1 − 6ξ1 + 1 = 0 (5.34)

∴ ξ1 = 1

2
±

√
3

6

Either choice of ξ1 will solve Eq.5.28. Furthermore, it is straightforward to show
these solutions also satisfy Eqs. 5.27 and 5.29. For the left-hand side of Eq.5.27,
using Eqs. 5.32 and 5.33, we have:

w1ξ
3
1 + w2ξ

3
2 = ξ 3

1

2
+ (1 − ξ1)

3

2

= ξ 3
1

2
+ (1 − 3ξ1 + 3ξ 2

1 − ξ 3
1)

2

= (1 − 3ξ1 + 3ξ 2
1)

2

= (6ξ 2
1 − 6ξ1 + 2)

4

= (6ξ 2
1 − 6ξ1 + 1)

4
+ 1

4

= 1

4
(from Eq. 5.34)

as required. Furthermore, we can substitute Eqs. 5.32 and 5.33 into the left-hand side
of Eq.5.29 to obtain:

194 5 The Finite Element Method

w1ξ1 + w2ξ2 = ξ1

2
+ 1 − ξ1

2

= 1

2

again, as required. Without loss of generality, we can take the lowest value of the
two solutions for ξ1 to yield our Gauss points and weights as

ξ1 = 1

2
−

√
3

6
, w1 = 1

2
, ξ2 = 1

2
+

√
3

6
, w2 = 1

2

It is possible to choose even higher order Gaussian quadrature methods that exactly
integrate higher-order polynomials. To carry out higher-dimensional integration (i.e.
in 2D and 3D), Eq.5.26 can be used to apply successive summations over each
dimension. Hence, to integrate the function f (ξ), where ξ are the 2D (= (ξ1, ξ2)) or
3D (= (ξ1, ξ2, ξ3)) element coordinates, we can use

∫ 1

0

∫ 1

0
f (ξ1, ξ2) dξ1 dξ2 ≈

I1∑
i=1

I2∑
j=1

wiw j f (ξ1,i , ξ2, j) (2D)

∫ 1

0

∫ 1

0

∫ 1

0
f (ξ1, ξ2, ξ3) dξ1 dξ2 dξ3 ≈

I1∑
i=1

I2∑
j=1

I3∑
k=1

wiw jwk f (ξ1,i , ξ2, j , ξ3,k) (3D)

where ξ1,i , ξ2, j , ξ3,k are the Gauss points along each coordinate, wi , wk , wk are
the weights, and I1, I2, I3 are the Gaussian quadrature orders for each coordinate
dimension.

5.3.3 Non-Linear Systems

To solve non-linear PDEs using the of method finite elements, application of
Galerkin’s methodwill lead to a system of non-linear equations in the nodal variables
ui , represented by the general vector equation

f(u) = 0 (5.35)

To solve Eq.5.35, we can use the multivariate form of Taylor’s theorem (Eq.3.4) to
linearize about some point u0, representing the current estimate of the solution, to
obtain:

http://dx.doi.org/10.1007/978-3-642-54801-7_3

5.3 FEM Numerical Implementation 195

u = u0 + h

f(u0 + h) = f(u0) + hT ∂f
∂u

(u0)

= f(u0) + ∂f
∂u

(u0)h

Hence,

f(u) = f(u0) + ∂f
∂u

(u0) (u − u0)

Setting the left-hand side to zero (Eq.5.35), and using K(u0) = ∂f
∂u (u0), we obtain:

f(u0) + K(u0) (u − u0) = 0

or
u = u0 − K(u0)

−1f(u0) (5.36)

whereK(u0) is the stiffness matrix and f(u0) is the load vector. These system matri-
ces will depend on the current solution u0. To solve Eq.5.35, we can iteratively
apply Eq.5.36, replacing u with u0 at each iteration, until f(u) converges to 0. This
technique is known as Newton’s method (see Eq.3.12), and can be written as

uν+1 = uν − K(uν)−1f(uν)

where ν is the iteration number. For highly non-linear problems, convergence of
the method can be improved by using the damped Newton’s method (see Eq.3.13),
written as:

uν+1 = uν − γK(uν)−1f(uν)

where γ is a damping parameter between 0 and 1.

5.4 Further Reading

Detailed overviews on the finite element method can be found in the texts of Cook et
al. [3], Johnson [7], andChen [2].More theoretical treatments are provided in the texts
of Braess [1] and Larsson and Thomée [9]. A useful FEM text providing practical
programming considerations is that of Hughes [6], whilst the text of Saad [11] is an
excellent reference on solving sparse linearmatrix systems, including the generalized
minimal residual method (GMRES) as used in COMSOL. Finally, an overview of
FEM models for bioengineering, particularly in the areas of biomechanics and fluid
mechanics, is provided in the text of Kojić et al. [8].

http://dx.doi.org/10.1007/978-3-642-54801-7_3
http://dx.doi.org/10.1007/978-3-642-54801-7_3

196 5 The Finite Element Method

Problems

5.1 Solve the following PDE numerically by-hand using FEM, utilising four equi-
sized linear Lagrange elements over the interval x ∈ [0, 1], and compare the solution
obtained with the exact solution.

∇ · (−∇u) = 2

u(0) = 1

u(1) = −1

You may use Matlab to solve the resulting 7 × 7 system of equations.

5.2 Solve the following PDE numerically by-hand using FEM, utilising four equi-
sized linear Lagrange elements over the interval x ∈ [0, 1], and compare the solution
obtained with the exact solution.

∇ · (−∇u) = x

u(0) = 1
∂u

∂x
(1) = −1

You may use Matlab to solve the resulting 6 × 6 system of equations.

5.3 For the family of cubic 1D Lagrange functions, we can define four cubic poly-
nomial element shape functions ϕi (ξ), i = 1 . . . 4, such that

ϕi (ξ j) =
{
1 i = j
0 i �= j

where ξ j is the local element coordinate of node j , and i, j = 1 . . . 4. Assuming
these nodes are equi-spaced along the element, determine the four cubic Lagrange
functions and plot their shape.

5.4 Using 1D quadratic basis functions on a uniformly-spaced grid consisting of 4
elements, determine the finite elementD,K and f matrices for the 1D time-dependent
diffusion equation

∂c

∂t
= ∂2c

∂x2

for x ∈ [0, 1] subject to zero-flux boundary conditions at x = 0 and x = 1, with
initial value of c(x, t) at t = 0 given by the square-wave distribution:

c(x, 0) =
{
1 0.4 ≤ x ≤ 0.6
0 otherwise

5.4 Further Reading 197

Using the same basis functions and number of elements, solve this PDE inCOMSOL,
plotting the solution at t = 0.1, and confirm that the COMSOL-generated D and K
matrices are equal to those you obtained analytically.

References

1. Braess D (2001) Finite elements: theory, fast solvers, and applications in solid mechanics, 2nd
edn. Cambridge University Press, Cambridge

2. Chen Z (2011) The finite element method: its fundamentals and applications in engineering.
World Scientific, Singapore

3. Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element
analysis, 4th edn. Wiley, New York

4. CourantR (1943)Variationalmethods for the solution of problems of equilibriumand vibration.
Bull Am Math Soc 49:1–23

5. FerrariR, Silvester PP (2007)Thefinite-elementmethod, part 2: an innovator in electromagnetic
numerical modeling. IEEE Ant Prop Mag 49(3):216–234

6. HughesTJR (2000)Thefinite elementmethod: linear static anddynamicfinite element analysis,
Dover edn. Dover, Mineola

7. Johnson C (2009) Numerical solution of partial differential equations by the finite element
method. Dover, Mineola

8. Kojić M, Filipović N, Stojanović B, Kojić N (2008) Computer modelling in bioengineering.
Wiley, Chichester

9. Larsson S, Thomée V (2003) Partial differential equations with numerical methods. Springer,
Berlin

10. Pelosi G, Courant RL (2007) The finite-elementmethod, part 1. IEEEAnt PropMag 49(2):180–
182

11. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia
12. Zienkiewicz OC, Cheung YK (1967) The finite element method in structural and continuum

mechanics. McGraw-Hill, London

Part II
Bioengineering Applications

This section will cover basic theory of bioengineering models and their implemen-
tation in COMSOL software, focusing on electrical stimulation, diffusion processes,
heat transfer as well as solid and fluid biomechanics.

Chapter 6
Modelling Electrical Stimulation of Tissue

6.1 Electrical Stimulation

Matter is composed of atoms consisting of positively-charged nuclei and negatively-
charged electrons. These positive and negative charges produce and respond to elec-
tromagnetic fields, which are completely described by Maxwell’s equations.1

6.1.1 Maxwell’s Equations

Maxwell’s equations, expressed in so-called “macroscopic” formwhich characterize
electromagnetic fields in materials, are:

∇ × E = −∂B
∂t

(6.1)

∇ × H = J + ∂D
∂t

(6.2)

∇ · D = ρv (6.3)

∇ · B = 0 (6.4)

where E denotes the electric field (SI units: Vm−1), B the magnetic field (SI units:
T), D the electric displacement (SI units: Cm−2), H the magnetization (SI units:
Am−1), J the applied current density (SI units: Am−2) and ρv the volume charge
density (SI units: Cm−3). Equation6.1 is also known as Faraday’s Law of Induction
and states that a time-varying change in the local magnetic field will produce an
electric field. Equation6.2 represents an extension to Ampère’s Law, which states
that a steady electric current produces a magnetic field. Maxwell’s contribution was

1James Clerk Maxwell (1831–1879), Scottish mathematical physicist whose contributions to
physics, along with those of Einstein and Newton, are regarded as greatest in the history of science.

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7_6

201

202 6 Modelling Electrical Stimulation of Tissue

the addition of a “displacement current” term ∂D/∂t , such that the magnetization
field is also produced by a time-varying electric field in addition to a steady current.
Equation6.3 is known as Gauss’ Law, and states that an electric field is produced
by electric charge. Equation6.4 is also known as Gauss’ Law for Magnetism, and
effectively states that there are no analogues of electric charge for magnetic fields
(so-called “magnetic charges”).

For homogeneous linear isotropic materials, the electric displacement and mag-
netization fields satisfy

D = εE

B = μH

with με = 1

c2

where ε is the permittivity, μ is the permeability, and c is the speed of light within
the material.2 Denoting the permittivity and permeability of free space by ε0 and μ0,
we can express ε and μ for any such material relative to their free-space values as

ε = ε0εr

μ = μ0μr

where εr ,μr respectively denote the relative permittivity andpermeability.Numerical
values for ε0 and μ0 are:

ε0 = 8.854 × 10−12 F m−1

μ0 = 4π × 10−7 Hm−1

where H denotes the Henry, the unit of electrical inductance. Substituting the above
expressions for D and H into Maxwell’s equations, we can express these equations
in terms of fields E and B as follows:

∇ × E = −∂B
∂t

(6.5)

∇ × B = μrμ0J + 1

c2
∂E
∂t

(6.6)

∇ · (εrε0E) = ρv (6.7)

∇ · B = 0 (6.8)

2The relationship between D and E is known as the electric constitutive relation of the material.

6.1 Electrical Stimulation 203

6.1.2 Electrostatic Formulations

If the electric and magnetic fields are steady, then the time derivatives in Eqs. 6.5–6.8
will vanish, resulting in the following formulations:

∇ · (εrε0E) = ρv ∇ × E = 0 (Electrostatics)
∇ · B = 0 ∇ × B = μrμ0J (Magnetostatics)

The above equations indicate that in the static case, electricity and magnetism are
distinct phenomena: only in the presence of sufficiently rapid changes will E and B
depend on each other.

The formulation ∇ × E = 0 states that the electrostatic electric field is curl-free.
Recalling Example 4.4, such curl-free fields can be formed from the gradient of a
scalar quantity. Defining this scalar as V , and letting

E = −∇V (6.9)

we can show that it has zero curl, using:

∇ × (−∇V) = −

⎛
⎜⎜⎝

∂[∇V]z
∂y − ∂[∇V]y

∂z
∂[∇V]x

∂z − ∂[∇V]z
∂x

∂[∇V]y
∂x − ∂[∇V]x

∂y

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

∂
∂y

[
∂V
∂z

] − ∂
∂z

[
∂V
∂y

]

∂
∂z

[
∂V
∂x

] − ∂
∂x

[
∂V
∂z

]

∂
∂x

[
∂V
∂y

]
− ∂

∂y

[
∂V
∂x

]

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝
0
0
0

⎞
⎟⎠

where we have used our earlier definition of the curl operator (Eq. 4.4). The scalar
V in Eq.6.9 is known as the electric potential, with SI Units of Volts or V. The SI
units of electric field E = −∇V are therefore Vm−1.

The second equation of electrostatics is ∇ · (εrε0E) = ρ. Using Eq.6.9, this
formulation is equivalent to:

∇ · (−εrε0∇V) = ρv (6.10)

Equation6.10 represents a PDE in the electric potential that can be solved for in any
medium given the distributed charge density and appropriate boundary conditions.3

3COMSOL provides the electrostatics module under its AC/DC physics application interface to
solve such formulations. Equation6.10 is specifically implemented using COMSOL’s charge con-
servation domain setting in the electrostatics module.

http://dx.doi.org/10.1007/978-3-642-54801-7_4
http://dx.doi.org/10.1007/978-3-642-54801-7_4

204 6 Modelling Electrical Stimulation of Tissue

6.1.3 Volume Conductor Theory

In this section, we derive the fundamental equations describing conservation of cur-
rent in a 3D4 conductive medium, also known as a volume conductor.

6.1.3.1 Electrical Conductivity

If we wish to determine the voltage distribution in a conducting medium arising from
the flow of electric current within it, we can utilise Ohm’s Law.5 In 1D, Ohm’s Law
relates the voltage drop across a resistor to the current flow through it according to:

V = I R (6.11)

where V is the potential difference across the resistor, I is the electric current flowing
through it (in SI units of Ampères, or A), and R is its resistance (in SI units of Ohms,
or �). The value of resistance will depend on the resistor material as well as its
dimensions. For a resistor of length L and uniform cross-sectional area A, the total
resistance across its ends (see Fig. 6.1) will depend on the resistivity ρ, a parameter
of the material with SI units of �m, in accordance with Pouillet’s Law6:

R = ρL

A
= L

σ A
(6.12)

where σ = 1/ρ is the conductivity of the material in SI units of Siemens per metre,
or Sm−1.

For a 3D block of material of infinitesimal length �x , we can substitute Eq.6.12
into Ohm’s Law (Eq.6.11), to obtain the voltage drop, �V , across it as:

�V = I R = I
L

σ A
= I

�x

σ A

On re-arranging, we obtain
I

A
= σ

�V

�x

and taking the limit as �x → 0,

I

A
= σ

∂V

∂x

4The subsequent analysis may also be generalised to lower dimensions.
5Named after the German physicist Georg Simon Ohm (1789–1854).
6French physicist Claude Pouillet (1790–1868).

6.1 Electrical Stimulation 205

Fig. 6.1 Pouillet’s Law for
the electrical resistance R12
between ends 1 and 2 shown
of a material of
cross-sectional area A,
length L , and resistivity ρ

1 2

L

A
ρ

R12=
ρ L

A

where the derivative on the right-hand side is simply the electric field in the x-
direction along the infinitesimal length of the block, Ex . Defining the current density
along the x-direction as Jx = I/A, the above becomes:

Jx = σ Ex

In a higher dimensional volume conductor, all components of current density and
electric field will satisfy the above relationship. The equivalent expression of Ohm’s
law therefore becomes

J = σE (6.13)

where current density J has SI units of Am−2. Using Eq.6.9, this expression is
equivalent to

J = −σ∇V (6.14)

For isotropic materials, where the electrical conductivity is independent of direction,
σ will be a scalar and J and E will be parallel to each other. Many physical struc-
tures however, including many biological tissues, exhibit preferential directions of
conductivity whereby current flow is not in the same direction as the applied electric
field. The white matter of the brain, for example, consists of numerous nerve fibres
and tracts, which exhibit lower resistance along the local fibre direction than trans-
verse to it. Such materials are said to possess anisotropic conductivity, in which σ in
Eq.6.14 is represented by a conductivity tensor, equivalent in 3D to a 3 × 3 matrix:

σ =
⎛
⎝

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞
⎠ (6.15)

where the σi j , (i, j = 1, 2, 3) denote the individual conductivity components. The
eigenvectors of this tensor define the principle directions of conductivity, inwhich any
applied electric field oriented in these directionswill result in a current density parallel
to it. For most anisotropic materials, it is possible to define three such principle
directions which are orthogonal to each other. In such cases, the conductivity tensor
will be symmetric and given by:

206 6 Modelling Electrical Stimulation of Tissue

Fig. 6.2 Current flow J
leaving an arbitrary volume
� through an infinitesimal
surface element �S with
outward normal n. �
contains a volumetric current
source of is Am−3

σ = σ1n1nT
1 + σ2n2nT

2 + σ3n3nT
3 (6.16)

where σ1, σ2 and σ3 are the scalar conductivities along the three orthogonal principle
directions given by the unit vectors n1, n2, n3 respectively.

6.1.3.2 Current Conservation

Now assume that an arbitrary volume � in a region of space is providing a source
of current with volume current density is (in SI units of Am3), as shown in Fig. 6.2.
From conservation of current, the total current iout leaving the closed surface S of �

must be

iout =
∫

�

is d� =
∫

S
J · dS (6.17)

where d� denotes an infinitesimal volume element of �. Using the divergence the-
orem (Eq.4.5), we can transform the right-hand surface integral above into

∫

S
J · dS =

∫

�

∇ · J d�

=
∫

�

∇ · (−σ∇V) d� (using Eq. 6.14)

Substituting this identity into Eq.6.17, we obtain

∫

�

is d� =
∫

�

∇ · (−σ∇V) d�

Since this relationship holds true for any arbitrary volume �, the integrands must
identically be equal. That is,

∇ · (−σ∇V) = is (6.18)

Equation6.18 represents the governing PDE for volume conductor electric current
flow based on the principle of conservation of current. For most conductive media,
the volumetric source current on the right-hand side will be zero, since there are no
physical sources of current present. That is,

http://dx.doi.org/10.1007/978-3-642-54801-7_4

6.1 Electrical Stimulation 207

Fig. 6.3 Cell culture electric
field stimulator

θ02 V

∇ · (−σ∇V) = 0 (6.19)

However, for electrically active biological tissue, macroscopic approximations of
tissue activity incorporate a volumetric current source due to cell membrane currents
flowing between the intracellular and extracellular domains. In such cases, as will
be seen later in this chapter, Eq. 6.18 is used. For inactive non-biological conductive
media such as saline, Eq.6.19 is used, as in the example of the next section.

6.1.4 Example: Cell Culture Electric Field Stimulator

We wish to design an electric field stimulator to experimentally determine the effect
of electric fields on cell cultures in a Petri dish. The electric field is to be delivered
using an identical pair of wire electrodes formed from circular arcs placed at opposite
ends of the dish against its walls, as shown in Fig. 6.3. Each electrode subtends
an angle of θ0 at the centre of the dish, whose overall radius is 45mm. The right
electrode is grounded whilst the left electrode has a voltage of 2V applied to it. All
other boundaries are electrically-insulating. The electrical conductivity of the saline
medium in which the cells are placed is 1 S/m, and the dish is filled to a height of
10mm.

Using COMSOL, we will determine the optimal value of electrode angle θ0 that
maximises the area in which the electric field magnitude is within ±10% of its value
at the dish centre (see also Problem 4.10). To do this, we implement the following
sequence of steps in COMSOL:

Model Wizard

1. Open the Model Wizard and select the 2D spatial dimension.
2. In the Select Physics panel, choose AC/DC|Electric Currents. Click “Add”. For

the dependent variable in the settings window, leave its name as V .
3. Click the Study arrow () to open the Select Study panel. Select Stationary, and

click “Done”. This will exit the Model Wizard, displaying the main COMSOL
interface.

http://dx.doi.org/10.1007/978-3-642-54801-7_4

208 6 Modelling Electrical Stimulation of Tissue

Global Definitions

1. Right-click the Definitions sub-node under the Global node, and select Parame-
ters. Specify the name of the parameter as theta and in the expression column
enter 60 [deg]. This will be the default electrode angle θ0.

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
default length unit to ‘mm’.

2. Right-click Geometry 1 and select Circle. Specify the radius as 45mm. Click
Build Selected ().

3. Right-click Geometry 1 again and select Circle a second time. Specify the radius
as 45mm, the sector angle as theta and the rotation angle as -theta/2. Click
Build Selected ().

4. Repeat the previous step and select Circle for a third time. Specify the the radius
as 45mm, the sector angle as theta|, and the rotation angle as 180-theta/2.
Click Build Selected ().

5. Right-click Geometry 1 and select Booleans and Partitions|Union. For the input
objects, select all three objects in the geometry (one circle and two sectors).
Uncheck the checkbox ‘Keep interior boundaries’, and select Build Selected ().
This will remove the interior sector lines, keeping electrode arc regions on the
perimeter of the circular domain.

6. Finally, right-click Geometry 1 and select Point. Leave the default x, y values to
0 and select Build Selected (). This creates a geometric point at the centre of
the dish.

Component Definitions

1. Right-click the Definitions sub-node under the Component 1 node, and select
Component Couplings|Integration. Specify the geometric entity level as ‘point’,
and select point 5 corresponding to the centre of the Petri dish. Leave the default
operator name as intop1. This integration operator will simply return the value
of a given expression evaluated at that point, making it available elsewhere in the
model. We will use it to store the electric field magnitude at the centre of the dish.

2. Right-click the Component 1 Definitions sub-node again, and select Component
Couplings|Integration. This time, keep the geometric entity level to its default
type of ‘domain’, and select domain 1 corresponding to the entire dish. Leave the
default operator name as intop2. This integration operator will be used to evaluate
the area in which the electric field is relatively uniform.

3. Finally, right-click the Component 1 Definitions sub-node a third time and select
‘Variables’. Keep the default geometric entity selection as ‘Entiremodel’. Specify
a variable with name Ec and expression intop1(ec.normE). This will equal
the electric field magnitude at the centre of the dish. Specify a second variable
with name A and expression:
intop2((ec.normE>0.9*Ec)*(ec.normE<1.1*Ec))
Each of the boolean expressions in the argument of intop2 will return a value of

6.1 Electrical Stimulation 209

1 if true or 0 if false.
The product(ec.normE>0.9*Ec)*(ec.normE<1.1*Ec) is equivalent to
a logical AND operation, returning a value of 1 if (ec.normE>0.9*Ec)AND
(ec.normE<1.1*Ec), and 0 otherwise. As a result, the domain integration
operator intop2will return the area of the dish for which the argument is true. That
is, the area in which the electric field magnitude is within ±10% of its magnitude
at the centre.

Electric Currents

1. Select the Electric Currents (ec) node of the model tree, and specify the out-of-
plane thickness as 0.01m (i.e. 10mm, corresponding to the height of saline filling
the dish).

2. Select the Current Conservation 1 sub-node of Electric Currents. In the settings
panel, specify the electrical conductivity as ‘user-defined’ with a value of 1Sm−1.
Similarly, specify the relative permeability as user-defined, leaving the default
value of 1.

3. Right-click the Current Conservation 1 sub-node and select ‘Electric Potential’.
In the settings panel, select boundaries 1 and 2 (i.e. left electrode) and specify the
electric potential as 2V.

4. Right-click the Current Conservation 1 sub-node again and select ‘Ground’. In
the settings panel, select boundaries 7 and 8 (i.e. the right electrode) to be the
grounded boundaries.

Study

1. Right-click the Study 1 node and select ‘Parametric Sweep’. In the settings panel,
click the ‘Add’ button () to add parameter theta. To specify the parameter
value list, click the ‘Range’ button () and specift the start, step and stop values
as 5, 5, 175 respectively. Click add to insert this range of parameter values. For
the parameter unit, enter deg. This will setup a parameter sweep on the electrode
angle from 5 ◦ to 175 ◦ in steps of 5 ◦.

2. To solve the model, right-click Study 1 and select Compute (). This will com-
pute the solution for the specified range of parameter values of theta.

Results

1. Under the Results node of the model tree, select the Electric Potential (ec) sub-
node. In the Settingswindow, specify the Parameter value of theta as 60 ◦. Click
the Plot button () to display the electric potential variable V for this parameter
value, as shown in Fig. 6.4.

2. Right-click the Result node and select ‘1D Plot Group’. Right-click the newly-
created 1D Plot Group 2 sub-node and select ‘Global’. In the settings panel, click
the ‘Add’ button () followed by Component 1|Definitions|Variables|A to add
expression A to the y-axis data for plotting. Specify the y-axis data unit as mmˆ2.
For the data set, specify ‘Study 1/Parametric Solutions 1’. For the x-axis data,
leave the default entry as ‘Parameter value’. Click the Plot button () to display
the plot of uniform electric field area versus electrode angle, as shown in Fig. 6.4.

210 6 Modelling Electrical Stimulation of Tissue

Fig. 6.4 Top
COMSOL-generated voltage
distribution in Petri-dish for
an electrode angle theta
(i.e. θ0) of 60 ◦
(≈1.0472 rad). Bottom
COMSOL-generated plot of
uniform electric field area
(variable A) against electrode
angle theta. As can be
seen, the maximum uniform
electric field area is
≈4000mm2 for θ0 ≈ π/2
rad, or 90 ◦

6.1.5 Example: Access Resistance of Electrode Disc

Consider a 2D circular disc electrode embedded in a 3D hemispherical infinite
medium of conductivity σ = 1 Sm−1 as shown in Fig. 6.5. The radius of the disc
electrode is Re = 5mm, and the potential at the infinite boundary of the hemisphere
is taken to be ground (i.e. V = 0). Outside the electrode, the x-y plane boundary
surounding the electrode is assumed to be electrically-insulating. Assuming the sur-
face of the disc electrode is at an isopotential value of Vs = 1V, plot the normal
component of inward current density as a function of radial position across the elec-
trode and determine the total electrode current Is . Compare the normal component
of current density in the disc with the theoretical solution (see Example 4.12):

Jn = 2σVs

π
√
R2
e − r2

http://dx.doi.org/10.1007/978-3-642-54801-7_4

6.1 Electrical Stimulation 211

Fig. 6.5 Circular-disc
electrode of radius Re
stimulating a hemispherical
infinite domain of
conductivity σ . The
boundary at infinity is at
ground (i.e. V = 0)

where r is the radial distance from the centre of thedisc. Find also the access resistance
Z of the electrode, defined as the ratio Vs/Is , comparing this with the theoretical
value of

Z = 1

4σ Re

To solve this model in COMSOL, we can use a 2D axisymmetric geometry due to the
rotational symmetry about the z-axis (Fig. 6.5). COMSOL also provides the option of
adding an infinite domain to represent regions with boundaries infinitely far away.7

To implement this model in COMSOL, we can utilise the following steps:

Model Wizard

1. Open the Model Wizard and select the 2D Axisymmetric spatial dimension.
2. In the Select Physics panel, choose AC/DC|Electric Currents. Click “Add”. For

the dependent variable in the settings window, leave its name as V .
3. Click the Study arrow () to open the Select Study panel. Select Stationary, and

click “Done”. This will exit the Model Wizard, displaying the main COMSOL
interface.

Global Definitions

1. Right-click the Definitions sub-node under the Global node, and select Parame-
ters. Specify the name of the parameter as Vs and in the expression column enter
1 [V]. This will be the electrode voltage. Specify a second parameter with name
sigma and expression 1 [S/m] to define the conductivity. Specify a third para-
meter Re with expression 5 mm. This is the electrode disc radius. Finally, specify

7Available in the AC/DC module. Infinite domains are implemented by applying a coordinate
transformation within the domain such that the transformed coordinate tends to infinity on the
appropriate boundary, whilst the spatial coordinate remains finite.

212 6 Modelling Electrical Stimulation of Tissue

a fourth parameter Zthwith expression 1/(4*sigma*Re): this is the theoret-
ical access resistance. COMSOL evaluates this expression in terms of the other
specified parameters, displaying its value as 50�.

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
default length unit to ‘mm’.

2. Right-click Geometry 1 and select Circle. Specify the radius as 10mm and the
sector angle as 90 ◦. Click Build Selected ().

3. Right-click Geometry 1 again and select Circle a second time. Specify the radius
as 15mm and the sector angle as 90 ◦. Click Build Selected (). To zoom out to
the entire geometry, click the Zoom Extents button ().

4. Right-click Geometry 1 and select Polygon. In the settings window, specify the
r coordinate values as 0 Re (insert a space between these two entries), and for
the z coordinate, specify 0 0 (again with a space). Click Build Selected () to
draw the electrode as a line interval of length 5mm on the lower boundary. Once
complete, the geometry and model tree will look like that shown in Fig. 6.6.

Component Definitions

1. Right-click the Definitions sub-node under the Component 1 node, and select
Component Couplings|Integration. Specify the geometric entity level as ‘bound-
ary’, and select boundary 2 corresponding to the electrode. Leave the default
operator name as intop1. This integration operator will return the integral of its

Fig. 6.6 COMSOL interface for axisymmetric electrode disc example, showing geometry and
model tree. The edge of the electrode disc can be seen as a point on the lower boundary at r = 5mm.
The outer quarter-circle represents the infinite domain

6.1 Electrical Stimulation 213

argument over the electrode. We will use it to determine the total inward current
is by integrating the normal component of current density as

is =
∫ Re

0
2πr Jn dr (6.20)

2. Right-click the Component 1 Definitions sub-node again, and select ‘Variables’.
Keep the default geometric entity selection as ‘Entire model’. Specify a vari-
able with name Is and expression intop1(2*pi*r*ec.Jn). This will equal
return the total electrode current, according to Eq.6.20. Specify a second variable
with name Jth and expression 2*sigma*Vs/(pi*sqrt(Reˆ2-rˆ2)) to
specify the theoretical current density.
Finally, specify an access resistance variable with name Z and expression Vs/Is.

3. Right-click the Component 1 Definitions sub-node a third time and select ‘Infinite
Element Domain’. Specify domain 2 in the settings panel.

Electric Currents

1. Select the Current Conservation 1 sub-node of Electric Currents. In the settings
panel, specify the electrical conductivity as ‘user-defined’ with a value of sigma.
Similarly, specify the relative permeability as user-defined, leaving the default
value of 1.

2. Right-click the Current Conservation 1 sub-node and select ‘Electric Potential’.
In the settings panel, select boundary 2 (i.e. electrode disc) and specify the electric
potential as Vs.

3. Right-click the Current Conservation 1 sub-node again and select ‘Ground’. In
the settings panel, select boundary 7 (i.e. infinite boundary) to be the ground.

Mesh

1. Right-click theMesh 1 node and select ‘Distribution’. In the settings panel, select
boundary 2 and specify 100 as the number of elements.

2. Right-click the Mesh 1 node again and select ‘Free Triangular’, leaving the geo-
metric entity level to its default value of ‘Remaining’. Click the Build all button
() to build and display the mesh. A view of the resulting mesh is shown in
Fig. 6.7.

Study

1. To solve the model, right-click Study 1 and select Compute (). This will com-
pute the solution and display the default plot of voltage, as shown in Fig. 6.8.

Results

1. Right-click the Results node of the model tree, and select ‘1D Plot Group’. Right-
click the 1D Plot Group 3 sub-node and select ‘Line Graph’. In the Settings win-
dow, select boundary 2 in the boundary selection list. Under the y-Axis Data tab,
specify ec.nJ as the expression to plot. For the x-Axis Data under Parameter,
select ‘Expression’ and specify r. Under the Legends tab, check the ‘Show leg-
ends’ checkbox and specify the ‘Manual’ option. In the Legends table, enter the
text ‘Computed’.

214 6 Modelling Electrical Stimulation of Tissue

Fig. 6.7 COMSOL-
generated mesh for
axisymmetric disc electrode
geometry. A higher density
of elements can be seen over
the electrode disc on the
lower left boundary

Fig. 6.8 Computed voltage
distribution around disc
electrode. The electrode at
bottom left is at an
isopotential level of 1V,
whilst the boundary at
infinity is at 0V

2. Right-click the 1D Plot Group 3 sub-node and select ‘Line Graph’ again. In the
Settings window, select boundary 2 and specify J_th as the expression to plot.
For the x-Axis Data under Parameter, select ‘Expression’ and specify r. Under
the Legends tab, check the ‘Show legends’ checkbox and specify the ‘Manual’
option. In the Legends table, enter the text ‘Theoretical’. Click the Plot button
() to display the current density plots, as shown in Fig. 6.9. As can be seen
from the plots, the computed and theoretical solutions for current density across
the electrode agree closely.

3. Right-click the Derived Values sub-node under Results and select ‘Global Eval-
uation’. In the settings panel, specify Z as the expression to evaluate. Click the

6.1 Electrical Stimulation 215

Fig. 6.9 Computed and theoretical normal current density as a function of radial position across
the disc electrode

Evaluate button () to display the value of the access resistance in a table below
the graphics window. COMSOL determines this value to be 52.65� which is
slightly higher that the 50� theoretical value. The discrepancy is due to the mesh
resolution not being able to capture the theoretical infinite current density at the
edge of the disc. An even finer mesh resolution would improve the estimate of
this resistance value.

6.2 Modelling Electrical Activity of Tissues

This section will describe macroscopic approximations of excitable tissue electrical
activity, and how these can be used to formulate models of tissue electrical stim-
ulation. An example of such an approach may be found in the model of cardiac
defibrillation described in Appendix B.

6.2.1 Continuum Models of Excitable Tissues

As described in Sect. 6.1.3.2, the electrostatic PDE describing voltage distribution in
a volume conductor is Eq.6.18:

∇ · (−σ∇V) = is

216 6 Modelling Electrical Stimulation of Tissue

This equation is the basis of continuum formulations of the electrical activity of
excitable tissues and their modulation by extracellular stimulation. We begin with
the formulation of nerve axon membrane current proposed by Hodgkin and Huxley
(see Sect. 2.3.2), which we will generalise to any excitable tissue:

im =

capacitive current︷ ︸︸ ︷
Cm

dVm

dt
+

ionic current︷ ︸︸ ︷
iNa + iK + iL (6.21)

where im is the total cell membrane current per unit membrane area, Cm , iNa , iK ,
iL are the membrane capacitance, sodium, potassium and leakage currents per unit
membrane area respectively, and Vm is the transmembrane voltage, defined as

Vm = Vi − Ve

where Vi , Ve are the intracellular and extracellular voltages. Equation6.21 describes
total membrane current as consisting of capacitive and ionic components. The equa-
tion may be generalised for any excitable cell type (neural, muscular, sensory) by
substituting in a generic ionic current, iion as:

im = Cm
dVm

dt
+ iion (6.22)

where iion is particular to the cell type in question. Rather thanmodel every individual
cell in the tissue, we can employ amacroscopic approximation by assuming the tissue
consists of two interpenetrating domains: the intracellular and extracellular spaces.
That is, at every point in the excitable tissue, we can define coupled variables Vi , Ve

corresponding to the intracellular and extracellular voltages. Using Eq.6.18, we can
write the equations for both domains as:

∇ · (−σe∇Ve) = βim (extracellular domain) (6.23)

∇ · (−σi∇Vi) = −βim (intracellular domain) (6.24)

where β is the tissue surface-to-volume ratio (in SI units of m−1). In these equations,
the extracellular volume current source is (Eq. 6.18) has been replaced with βim , and
the corresponding current source for the intracellular domain has been replaced with
an equal and opposite magnitude, −βim . The factor β is a parameter of the tissue
representing the total cell membrane surface area per unit volume.

Substituting Eq.6.22 into Eqs. 6.23 and 6.24, we obtain the bidomain equations:

∇ · (−σe∇Ve) = β
(
Cm

∂Vm
∂t + iion

)
(extracellular domain) (6.25)

∇ · (−σi∇Vi) = −β
(
Cm

∂Vm
∂t + iion

)
(intracellular domain) (6.26)

http://dx.doi.org/10.1007/978-3-642-54801-7_2

6.2 Modelling Electrical Activity of Tissues 217

Furthermore, substituting the expression Vm = Vi − Ve, and incorporating extra-
cellular and intracellular volume stimulus current sources ise and isi , we obtain the
full-form of the bidomain equations:

∇ · (−σe∇Ve) = β

(
Cm

∂Vi

∂t
− Cm

∂Ve

∂t
+ iion

)
+ ise (6.27)

∇ · (−σi∇Vi) = −β

(
Cm

∂Ve

∂t
− ∂Vi

∂t
− iion

)
+ isi (6.28)

where isi and ise are external stimulus currents per unit volume for the intracellular and
extracellular domains respectively. External intracellular stimulus currents include
stimuli delivered directly to the cell interiors through insertedmicroelectrodes. Exter-
nal extracellular stimulus currents are delivered directly to the extracellular space,
but are not typically specified as a volume current source as above, but rather as
boundary conditions on the electrode boundaries of the extracellular volume.

By fixing the extracellular potential everywhere to ground (i.e. Ve = 0), the
bidomain equations reduce to the simpler monodomain formulation:

∇ · (σ∇Vm) = β

(
Cm

∂Vm

∂t
+ iion

)
(6.29)

where σ denotes the intracellular conductivity of the tissue. Although much simpler
than the bidomain equations, the monodomain Eq.6.29 cannot be used to simulate
the effects of an applied extracellular stimulus, or to simulate extracellular voltage
signals such as the ECG arising from the electrical activity of tissue.

6.2.2 Example: Modelling Spiral-Wave Reentry
in Cardiac Tissue

In this example, we will simulate spiral-wave reentry in cardiac tissue using a mod-
ified bidomain formulation of the Rogers-McCulloch PDE formulations [8] for the
cardiac action potential:

∇ · (−σ e∇Ve) = β

(
Cm

∂Vm

∂t
+ iion

)
+ istim

∇ · (−σ i∇Vi) = −β

(
Cm

∂Vm

∂t
+ iion

)

∂u

∂t
= e (Vm − du − b)

218 6 Modelling Electrical Stimulation of Tissue

Table 6.1 Model parameters for cardiac spiral wave reentry

Parameter Value Parameter Value

A 55mV c2 400µScm−2

B −85mV Cm 1µFcm−2

a −66.8mV β 100m−1

b −85mV σex 0.1mScm−1

d 140mV σey 0.025mScm−1

e 285.7V−1 s−1 σi x 0.2mScm−1

c1 530SV−2 m−2 σiy 0.1mScm−1

with

iion = c1(Vm − a) (Vm − A) (Vm − B) + c2u (Vm − B)

σ e =
(

σex 0
0 σey

)

σ i =
(

σi x 0
0 σiy

)

where u is an auxiliary ‘recovery’ variable, σ i and σ e are the intra- and extracellular
conductivity tensors, with principle conductivities along the global x, y axes given
by σi x , σex , σiy , σey , β is the tissue surface to volume ratio, Cm is cell membrane
capacitance per unit area, iion is the ionic current per unit cell membrane area, istim
is the applied extracellular stimulus current per unit tissue volume, and A, B, a, b,
d, e, c1 and c2 are parameters describing the active electrical activity of the atria,
as given in Table6.1. Initial values at t = 0 throughout the tissue are Ve = 0mV,
Vi = −85mV and u = 0.
The cardiac tissue domain is a 2D square of side-length 10cm, with the left-hand
corner located at x = 0, y = 0, where x , y represent the 2D spatial coordinates.
Zero-flux boundary conditions for Ve, Vi apply on all four external boundaries of
the domain. Furthermore, the extracellular potential at the top right-hand corner at
x = 10 cm, y = 10 cm is held at ground (i.e. Ve = 0V). The stimulus current is
given by:

istim(x, y, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

200Am−3 y ≤ 1 cm, 10ms ≤ t ≤ 11ms
−200Am−3 y ≥ 9 cm, 10ms ≤ t ≤ 11ms
200Am−3 x ≤ 1 cm, 110ms ≤ t ≤ 111ms
−200Am−3 x ≥ 9 cm, 110ms ≤ t ≤ 111ms
0 otherwise

6.2 Modelling Electrical Activity of Tissues 219

To setup and solve this model in COMSOL, we implement the following steps:

Model Wizard

1. Open the Model Wizard and select the 2D spatial dimension.
2. In the Select Physics panel, choose Mathematics|PDE Interfaces|General Form

PDE, and click “Add”. In the Review Physics panel at right, specify V as the Field
name and 2 as the number of dependent variables. In the dependent variables
list, enter the names of these variables as Ve and Vi. For the dependent variable
quantity, specify the units as Electric potential (V), and the source term quantity
as Current source ().

3. Next, select again Mathematics|PDE Interfaces|General Form PDE, and click
“Add”. This will insert a second General Form PDE into the model. In the Review
Physics panel, leave the field name as u and the number of dependent variables
as 1. Leave the units of the dependent variable as Dimensionless, but enter the
source term units manually as 1/s.

4. Click theStudy arrow () to open theSelect Studypanel. SelectTimeDependent,
and click “Done”. Thiswill exit theModelWizard, displaying themainCOMSOL
interface.

Global Definitions

1. Right-click Global Definitions in the model tree and select Parameters. Enter the
following details in the Parameters table of the Settings window:

Name Expression Description
A 55 [mV] Model parameter
B -85 [mV] Model parameter
a -66.8 [mV] Model parameter
b -85 [mV] Model parameter
d 140 [mV] Model parameter
e 285.7 [1/(V*s)] Model parameter
c_1 530 [S/(V*m)ˆ2] Model parameter
c_2 400 [uS/cmˆ2] Model parameter
C_m 1 [uF/cmˆ2] Membrane capacitance
beta 100[1/m] Surface to volume ratio
s_ex 0.1 [mS/cm] Extracellular x conductivity
s_ey 0.025 [mS/cm] Extracellular y conductivity
s_ix 0.2 [mS/cm] Intracellular x conductivity
s_iy 0.1 [mS/cm] Intracellular y conductivity
I_stim 200 [A/mˆ3] Stimulus amplitude
T1_on 10 [ms] Stimulus 1 onset
T2_on 110 [ms] Stimulus 2 onset
T_dur 1 [ms] Stimulus duration

2. Right-click Global Definitions and select Functions|Rectangle. Specify the lower
limit as T1_on and the upper limit as T1_on+T_dur. In the Smoothing tab,
specify the size of the transition zone as T_dur/10. Leave the function name to
its default (rect1).

220 6 Modelling Electrical Stimulation of Tissue

3. Right-click Global Definitions again and select Functions|Rectangle. Specify the
lower limit as T2_on and the upper limit as T2_on+T_dur. In the Smoothing
tab, specify the size of the transition zone as T_dur/10. Leave the function
name to its default (rect2).

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
length unit to ‘cm’.

2. Right-click Geometry 1 and select Square. Specify the side length as 10cm and
click Build Selected ().

3. Right-click Geometry 1 again and select Rectangle. Specify the width as 1cm
and the height as 10cm. Click Build Selected ().

4. Right-click Geometry 1 a third time and select Rectangle again. In the settings
window, specify the width as 10cm and the height as 1cm. Click Build Selected
().

5. Right-click Geometry 1 a fourth time and select Rectangle again. In the set-
tings window, specify the width as 10cm, the height as 1cm, and the corner at
x = 0 cm, y = 9 cm. Click Build Selected ().

6. Right-click Geometry 1 a fifith time and select Rectangle again. In the set-
tings window, specify the width as 1cm, the height as 10cm, and the corner at
x = 9 cm, y = 0 cm. Click Build Selected (). Once complete, the geometry
and model tree will look like that shown in Fig. 6.10.

Fig. 6.10 COMSOL interface for cardiac spiral wave reentry example, showing geometry and
model tree. The rectangular subdomains on the periphery of the tissue square correspond to regions
where stimuli are delivered

6.2 Modelling Electrical Activity of Tissues 221

Component Definitions

1. Right-click theDefinitions sub-node of Component 1 and select Variables. Leave
the geometric entity level to its default as ‘Entire model’, and enter the following
variables in the settings table:

Name Expression
Vm Vi-Ve
i_ion c_1*(Vm-a)*(Vm-A)*(Vm-B)+c_2*u*(Vm-B)
i_stim_1 I_stim*rect1(t [1/s])
i_stim_2 I_stim*rect2(t [1/s])

2. Right-click the Definitions sub-node of Component 1 a second time and select
Variables again. This time, specify the geometric entity level as ‘Domain’, and
select domain 1 corresponding to the small square region in the the lower left-
hand corner. Define a variable with name stim and expression
i_stim_1+i_stim_2.
This specifies domain 1 as a region in which both stimuli are delivered, albeit at
different times.

3. Right-click the Definitions sub-node of Component 1 a third time and select
Variables again. As above, specify the geometric entity level as ‘Domain’, and
select domain 2 corresponding to the mid-rectangular sub-domain on the left-
hand edge of the tissue. Define a variable with the same name as above, stim,
but this time with expression i_stim_2. This specifies domain 2 as the region
in which the second stimulus is delivered.

4. Right-click the Definitions sub-node of Component 1 a fourth time and select
Variables again. As above, specify the geometric entity level as ‘Domain’, and
now select domain 3 corresponding to the small square sub-domain at top-
left of the tissue. Define another variable with the name stim and expression
-i_stim_1+i_stim_2. This specifies domain 3 as the region in which a
negative first stimulus is delivered followed by a positive second stimulus.

5. Right-click the Definitions sub-node of Component 1 a fifth time and select
Variables again. As above, specify the geometric entity level as ‘Domain’, and
now select domain 4 corresponding to the mid-rectangular sub-domain on the
bottom edge of the tissue. Define a variable with name stim and expression
i_stim_1. This specifies domain 4 as the region in which the first stimulus is
delivered.

6. Right-click the Definitions sub-node of Component 1 a sixth time and select
Variables. Again, specify the geometric entity level as ‘Domain’, and select
domain 5 corresponding to the larger square sub-domain occupying the central
portion of the tissue. Define another variablewith the name stim and expression
0. This specifies domain 5 as the region in which no stimulus is delivered.

7. Right-click the Definitions sub-node of Component 1 a seventh time and select
Variables again. As above, specify the geometric entity level as ‘Domain’,
and now select domain 6 corresponding to the mid-rectangular sub-domain on

222 6 Modelling Electrical Stimulation of Tissue

the top edge of the tissue. Define a variable with name stim and expression
-i_stim_1. This specifies domain 6 as the region in which the negative of the
first stimulus is delivered.

8. Right-click the Definitions sub-node of Component 1 an eighth time and select
Variables again. As above, specify the geometric entity level as ‘Domain’, and
nowselect domain 7 corresponding to the small square sub-domain at the bottom-
right corner of the tissue. Define another variable with the name stim and
expression i_stim_1-i_stim_2. This specifies domain 7 as the region in
which the first stimulus is delivered followed by a negative second stimulus.

9. Right-click the Definitions sub-node of Component 1 a ninth time and select
Variables again. As above, specify the geometric entity level as ‘Domain’, and
now select domain 8 corresponding to the mid-rectangular sub-domain on the
right edge of the tissue. Define a variable with name stim and expression
-i_stim_2. This specifies domain 8 as the region in which the negative of the
second stimulus is delivered.

10. Finally, right-click the Definitions sub-node of Component 1 a tenth time and
select Variables again. As above, specify the geometric entity level as ‘Domain’,
and now select domain 9 corresponding to the small square sub-domain at the
top-right corner of the tissue. Define another variable with the name stim and
expression -i_stim_1-i_stim_2. This specifies domain 9 as the region in
which the negative of the first stimulus is delivered followed by the negative of
the second stimulus.

General Form PDE

1. Select the General Form PDE 1 sub-node of General Form PDE, and enter the
following expressions for the conservative flux Γ components for variables Ve

and Vi respectively:

Component Expression
x -s_ex*Vex
y -s_ey*Vey

x -s_ix*Vix
y -s_iy*Viy

Enter the following expressions for the source term f corresponding to variables
Ve and Vi respectively:
beta*i_ion + stim
-beta*i_ion
Finally, enter the following terms for the damping coefficient matrix da :
beta*C_m -beta*C_m
-beta*C_m beta*C_m
Leave the mass coefficient matrix ea entries to their default value of 0.

2. Right-click General Form PDE again and select Points|Pointwise Constraint. In
the settings panel, specify point 16 corresponding to the upper right-hand corner

6.2 Modelling Electrical Activity of Tissues 223

of the square domain. Under the Constraint expression tab in the settings panel,
specify Ve. The constraint expression is held to a value of 0: in this case, this is
equivalent to specifying Ve = 0 at point 16.

3. Select the Initial Values 1 sub-node of the General Form PDE node. Leave the
initial value of Ve to its default value of 0. For Vi however, enter the initial value
expression −85 [mV].

General Form PDE 2

1. Select the General Form PDE 1 sub-node of General Form PDE 2, and enter a
value of 0 for each of the two components of conservative flux Γ , since there
are no spatial derivatives in the equation for u. For the source term f , enter the
expression e*(Vm-d*u-b) and for the damping and mass coefficients da and
ea , leave their value as 1 and 0 respectively.

Study

1. Select the Step1: Time Dependent sub-node of the Study 1 node. In the Settings
window, Click the Range button () adjacent to the Times field. Leave the
entry method as ‘Step’ and enter Start, Step and Stop values of 0, 0.001 and 0.6
respectively. Click Replace. This will create a range of output time values from
0 to 0.6 s in time steps of 0.001s.

2. Right-click the Study 1 node and select Show Default Solver. Select the Study
1|Solver Configurations|Solver 1|Time-Dependent Solver 1 node. In the Settings
window, expand the Time Stepping tab and specify ‘Strict’ for the steps taken
by solver option. Expand the Advanced tab, and for the ‘Singular mass matrix’
option, select ‘Yes’.

3. To solve the model, right-click Study 1 and select Compute (). Select the
Progress tab in the Information window to see the solver progress.

Results

1. When the model has completed solving,8 the Graphics window will display a
default plot of the extracellular potential (variable Ve) at t = 0.6 s, as shown in
Fig. 6.11.

2. To plot the membrane potential at this time, select the Surface 1 sub-node of 2D
Plot Group 1. In the settings panel, type the expression to plot as Vm. Specify the
unit as ‘mV’ and click the Plot button (). Selecting the parent 2D Plot Group
1 node, the required time can be selected from the list of times stored in the
solution output. Figure6.12 shows the plot of membrane potential at t = 0.54 s.
The solution for Vm consists of a spiral wavefront rotating counter-clockwise in
the tissue, also referred to as reentrant activation.

3. To plot the Vm and Ve waveforms at a given point in the tissue, right-click the
Data Sets sub-node under Results and select ‘Cut Point 2D’. In the settings panel,
specify the Point Data coordinates as x = 5 cm, y = 5 cm.

8Using a MacBook Air 2013 with 8GB RAM and OS X 10.8.5, it took 47s to solve this model.

224 6 Modelling Electrical Stimulation of Tissue

Fig. 6.11 Extracellular potential Ve at t = 0.6 s for cardiac reentry simulation

Fig. 6.12 Membrane potential Vm at t = 0.54 s for cardiac reentry simulation

4. Right-click the Results node of the model tree, and select ‘1D Plot Group’. Right-
click the 1D Plot Group 3 sub-node and select ‘Point Graph’. In the Settings
window, select Cut Point 2D 1 for the Data set. Under the y-Axis Data tab, specify
Vm as the expression to plot, with units of ‘mV’. Under the Legends tab, check
the ‘Show legends’ checkbox and specify the ‘Manual’ option. In the Legends
table, overwrite the default text of ‘(5,5)’ with the text ‘Membrane Potential’.

5. Right-click the 1D Plot Group 3 sub-node and select ‘Point Graph’ again. In the
Settings window, select Cut Point 2D 1 for the Data set and specify Ve as the

6.2 Modelling Electrical Activity of Tissues 225

Fig. 6.13 Membrane Vm and extracellular potential Ve waveforms at point (5,5) cm corresponding
to the centre of the tissue for the cardiac reentry simulation

expression to plot in units of ‘mV’. Under the Legends tab, check the ‘Show
legends’ checkbox and specify the ‘Manual’ option. In the Legends table, enter
the text ‘Extracellular Potential’.

6. Select the 1D Plot Group 3 sub-node and in the settings window, expand the Title
tab and select ‘Manual’ for the Title type. Enter the text ‘Ve and Vm at Point (5,5)
cm (in mV)’. Under the Axis tab, check the Manual axis limits checkbox and
enter the following values: x minimum (−0.01), x maximum (0.61), y minimum
(-100), y maximum (100). Click the Plot button () to display the point plots,
as shown in Fig. 6.13.

6.2.3 Modelling PDEs/ODEs on Boundaries,
Edges and Points

Many models require the formulation of PDEs/ODEs on lower-dimensional bound-
aries, edges or points, in addition to any PDEs that may be specified in the main
spatial domain. For example, to simulate the 3D electrical activity of cardiac atrial
tissue, the atria can be modelled as 2D surfaces embedded in 3D space owing to the
small thickness of their walls. A 2D PDE such as Eq.6.29 can then be employed to
simulate electrical activity on these surfaces. To implement such equations in COM-
SOL, we can utilise use the Lower Dimensions PDE application modes (boundary,
edge or point) of COMSOL’s Mathematics Physics interface.

For a COMSOL variable u defined only on a lower dimensional boundary, edge
or point, the standard COMSOL spatial derivative variables ux, uy, uz are not
defined on this boundary, and cannot be used to specify the components of flux Γ in

226 6 Modelling Electrical Stimulation of Tissue

Fig. 6.14 Tangential
gradient (∇u)t , defined as
the projection of ∇u onto a
lower-dimensional boundary
with outward unit normal n

COMSOL’s PDE General form:

ea
∂2u

∂t2
+ da

∂u

∂t
+ ∇ · Γ = f (6.30)

To specify the components of Γ , we instead utilise COMSOLs tangential deriva-
tive in-built variables uTx, uTy, and uTz, which are available on the boundary.
To understand the concept of tangential derivatives, consider a variable u which is
defined everywhere in the higher-dimensional domain of a model. If ∇u is the gra-
dient of u, then on a lower-dimensional boundary with outward unit normal n, the
tangential gradient, (∇u)t , is defined as the projection of ∇u onto the boundary, as
shown in Fig. 6.14. Referring to this figure, we can determine the tangential gradient
according to:

(∇u)t = ∇u − n(n · ∇u)

= ∇u − n(nT∇u)

= (
I − nnT

)∇u (6.31)

For variables u defined only on a lower-dimensional boundary, the tangential deriv-
atives define the components of flux tangential to the surface itself, analogous to
Eq.6.31.

6.2.4 Example: Axonal Stimulation Using
Nerve Cuff Electrodes

Consider a 10mm length nerve bundle of radius 1mm containing an embedded edge
element along its central axis representing a single axon fibre as shown in Fig. 6.15.
The two small surface patches represent external cuff electrodes to stimulate the
axon, and are squares of sidelength 1mm ‘wrapped around’ the bundle, with a centre-
centre spacing of 7mm along the main axis. To stimulate the axon, the active left
cuff electrode delivers an outward square-wave current of 1mA over 1ms and acts
as a cathode, whilst the right electrode is held at ground.

6.2 Modelling Electrical Activity of Tissues 227

Fig. 6.15 Cylindrical nerve bundle with an internal axonal 1D edge (dashed line) stimulated by
external cuff electrodes (shaded grey)

Fig. 6.16 Axon cable discretization showing three adjacent nodes for intracellular potential
Vi : Vi,k−1, Vi,k , and Vi,k+1. The extracellular potential at node k is Ve,k , and the internodal separa-
tion is given by�s, r denotes the radius of the axon, and ρi is the axoplasmic resistivity. Membrane
capacitance Cm and ionic current iion are given per unit membrane area

To derive the underlying PDE governing the intra- and extracellular potentials
on the 1D neural edge, we can use a process similar to Example 4.15, whereby we
discretize the axon into segments of length �s, where s is the arclength along the
axon. The electrical equivalent circuit of three adjacent intracellular nodes is shown
in Fig. 6.16.
The axoplasmic resistance between two nodes may be determined from Pouillet’s
law, ρL/A which evaluates to ρi�s/πr2, as shown in Fig. 4.16 between the nodes.
Furthermore, the totalmembrane capacitance of a cylindrical nerve segment of length
�s is given by Cm multiplied by the area of its curved surface, or Cm2πr�s.
A similar argument follows for the total membrane ionic current of the segment,
namely iion2πr�s. These values are also shown in Fig. 4.16. From Kirchhoff’s cur-
rent law, the total current entering node k must equal the current leaving through the
parallel membrane capacitance and ionic pathways. This can be expressed by the
equation

current entering︷ ︸︸ ︷
Vi,k+1 − Vi,k

ρi�s/πr2
+ Vi,k−1 − Vi,k

ρi�s/πr2
=

current leaving︷ ︸︸ ︷
Cm2πr�s

d
(
Vi,k − Ve,k

)

dt
+ iion2πr�s

http://dx.doi.org/10.1007/978-3-642-54801-7_4
http://dx.doi.org/10.1007/978-3-642-54801-7_4
http://dx.doi.org/10.1007/978-3-642-54801-7_4

228 6 Modelling Electrical Stimulation of Tissue

On re-arranging, this becomes:

Vi,k+1 − 2Vi,k + Vi,k−1

ρi�2s
=

(
2

r

) [
Cm

dVm,k

dt
+ iion

]
(6.32)

where Vm,k is the membrane potential at node k, equal to Vi,k − Ve,k . The left-hand
side of this equation is simply the FD approximation of the second-order derivative
of Vi (see Eq.4.35). Hence, in the limit as �s → 0, Eq.6.32 becomes

1

ρi

∂2Vi

∂s2
=

(
2

r

)[
Cm

∂Vm

∂t
+ iion

]
(6.33)

where Cm , ρi and r are assumed to be fixed along the axon. Using Vi = Vm + Ve,
Eq. 6.33 may also be expressed as:

1

ρi

∂2Vm

∂s2
+ 1

ρi

∂2Ve

∂s2
=

(
2

r

)[
Cm

∂Vm

∂t
+ iion

]

Re-arranging all terms of this equation, we can express it in terms of the COMSOL
PDE general form Eq.6.30 in 1D as

(
2Cm

r

)
∂Vm

∂t
+ ∂

∂s

[
− 1

ρi

∂Vm

∂s
− 1

ρi

∂Ve

∂s

]
= −

(
2

r

)
iion (6.34)

where the flux Γ , source term f and damping coefficient da are given by:

Γ = − 1

ρi

∂Vm

∂s
− 1

ρi

∂Ve

∂s

f = −
(
2

r

)
iion

da = 2Cm

r

To express the flux, we make use COMSOL’s tangential derivative variables:

Γ =
⎛
⎝
-VmTx/rhoi- VeTx/rhoi

-VmTy/rhoi- VeTy/rhoi

-VmTz/rhoi- VeTz/rhoi

⎞
⎠

where Vm, Ve, rho_i are the COMSOL variables/parameters corresponding to
Vm , Ve and ρi respectively. For the ionic current ii on in Eq.6.34, we can use the
Hodgkin-Huxley formulation of axonal electrical activity (see Sect. 2.3.2):

iion = ḡNam
3h(Vm − VNa) + ḡK n

4(Vm − VK) + ḡL(Vm − VL)

http://dx.doi.org/10.1007/978-3-642-54801-7_4
http://dx.doi.org/10.1007/978-3-642-54801-7_2

6.2 Modelling Electrical Activity of Tissues 229

with

dn

dt
= αn (1 − n) − βnn

dm

dt
= αm (1 − m) − βmm

dh

dt
= αh (1 − h) − βhh

αn = 10(Vm + 50)

1 − exp
[

−(Vm+50)
10

] βn = 125 exp

[−(Vm + 60)

80

]

αm = 100(Vm + 35)

1 − exp
[

−(Vm+35)
10

] βm = 4000 exp

[−(Vm + 60)

18

]

αh = 70 exp

[−(Vm + 60)

20

]
βh = 1000

1 + exp
[

−(Vm+30)
10

]

where Vm in these equations is in units of mV. All Hodgkin-Huxley model parameter
values are as given earlier in Table2.2.

To determine the extracellular potential Ve in Eq.6.30, we utilise COMSOL’s
current conservation physics mode for determining electric potential in a volume
conductor. To account for the influence of nerve axon excitation on the extracel-
lular potential, we utilise COMSOL’s line current source to specify outward nerve
membrane current per unit length along the axon as

Q = 2πr

(
Cm

∂Vm

∂t
+ iion

)
(6.35)

To implement this model in COMSOL, we implement the following steps:

Model Wizard

1. Select the 3D dimension. Under Select Physics, choose Mathematics|PDE
Interfaces|Lower Dimensions|General Form Edge PDE. Click Add to add the
physics application. Specify 1 dependent variable with name Vm, units of Electric
potential (V), and source term quantity as Current source in units of A/m3.

2. Select the General Form Edge PDE again, and click Add a second time to add
another Edge PDE physics node. This time, specify 3 dependent variables with
names N, M and H. Note that COMSOL variables are case-sensitive, and that
lower-case h is a reserved variable denoting mesh size. Leave the units of these
three variables as dimensionless, and specify the source term units as 1/s.

3. Finally, selectAC/DC|ElectricCurrents, and clickAdd to add the physics. Specify
the name of the dependent variable as Ve.

4. For the study type, select ‘Time Dependent’, then click ‘Done’.

http://dx.doi.org/10.1007/978-3-642-54801-7_2

230 6 Modelling Electrical Stimulation of Tissue

Geometry

1. Right click the Geometry 1 node of the model tree and specify a cylinder with
radius = 1mm, height = 10mm, position (0, 0, 0) and axis type to x-axis in order
to make the cylinder align along the x-axis. Click ‘Build Selected’.

2. Right click the Geometry 1 node again to define a work plane as a quick yz-plane
located at x = 0. Select the Plane Geometry sub-node of this work plane and click
the Zoom to Extents tool button at the top of the graphics window. Right click
the Plane Geometry work plane sub-node node and specify a point at (0, 0). Click
‘Build Selected’.

3. Right click the Geometry 1 node a third time and select Extrude. Specify the input
object as the point in the work plane array, with the distance to extrude as 10mm.
Click ‘Build Selected’: this defines a line element in 3D. Click the transparency
tool button () to see the edge element within the nerve.

4. Right click theGeometry 1 node again to define a secondwork plane as a quick-zx
plane located at y = 0. Select the Plane Geometry sub-node of this work plane
and click the Zoom to Extents tool button.

5. Right click the Plane Geometry sub-node and select Polygon. Specify its type as
Open curve with x coordinates: −1mm, −1mm and y coordinates: 1mm, 2mm.
Click ‘Build Selected’.

6. Right click the Plane Geometry sub-node node again and reselect Polygon. Again
specify its type as Open curve with x coordinates: −1mm, −1mm and y coordi-
nates: 8mm, 9mm. Click ‘Build Selected’.

7. Return to the Geometry 1 node and right click to select Revolve. Specify the input
objects as ‘wp2’ (i.e.Work Plane 2), start angle: (pi [rad] +1 [rad]) and
end angle: pi [rad]. Leave the points on the revolution axis and the revolution
axis direction to their default values and click ‘Build Selected’. This defines the
two cuff electrodes. The resulting COMSOL model tree and geometry are shown
in Fig. 6.17.

Global Definitions

1. Right click Global Definitions and define the following Parameters:

Name Expression
g_Na 120000 [uS/cmˆ2]
g_K 36000 [uS/cmˆ2]
g_L 300 [uS/cmˆ2]
V_Na 55 [mV]
V_K -72 [mV]
V_L -49.387 [mV]
Cm 1 [uF/cmˆ2]
rho_i 60 [ohm*cm]
sigma_e 1 [S/m]
r 0.00025 [cm]
I_stim 1 [mA]

6.2 Modelling Electrical Activity of Tissues 231

Fig. 6.17 COMSOL interface for nerve bundle cuff electrode example, showing geometry and
model tree. The 1D edge corresponding to the axon can be seen in transparent view mode along the
central axis of the nerve bundle cylinder

2. Right click Global Definitions again and select Functions|Rectangle. Specify the
upper and lower limits as 0.001 and 0.002 respectively. In the Smoothing tab,
specify the size of the transition zone as 1e − 5. Leave the name rect1 as the
default function name. This defines the stimulus current waveform.

Definitions

1. Right click the Definitions sub-node of Component 1 to specify Variables, and
select Edge as the geometric entity level. Specify edge 6 and define variables as
shown below. Note that ‘...’ is used for convenience whenever relevant expres-
sions continue to the next line - it would be omitted when typing in COMSOL:

Name Expression
i_Na g_Na*Mˆ3*H*(Vm-V_Na)
i_K g_K*Nˆ4*(Vm-V_K)
i_L g_L*(Vm-V_L)
i_ion i_Na+i_K+i_L
alpha_N (10 [1/(mV*s)])*(Vm+(50 [mV]))/...

(1-exp(-(Vm+(50 [mV]))/(10 [mV])))
beta_N (125 [1/s])*exp(-(Vm+(60 [mV]))/(80 [mV]))
alpha_M (100 [1/(mV*s)])*(Vm+(35 [mV]))/...

(1-exp(-(Vm+(35 [mV]))/(10 [mV])))
beta_M (4000 [1/s])*exp(-(Vm+(60 [mV]))/(18 [mV]))
alpha_H (70 [1/s])*exp(-(Vm+(60 [mV]))/(20 [mV]))
beta_H (1000 [1/s])/...

(1+exp(-(Vm+(30 [mV]))/(10 [mV])))

232 6 Modelling Electrical Stimulation of Tissue

General Form Edge PDE

1. Select the General Form Edge PDE node and remove all edges except edge 6
which corresponds to the axon fibre.

2. Select the General Form PDE 1 sub-node and enter the following into the flux
(Γ) fields:

-VmTx/rho_i - VeTx/rho_i

-VmTy/rho_i - VeTy/rho_i

-VmTz/rho_i - VeTz/rho_i

Specify the source term (f) as -(2/r)*i_ion, and the damping coefficient (da)
as (2*Cm/r).

3. Under the Initial Values node, specify −60 [mV].
4. Right click the General Form PDE Edge node and select ‘Dirichlet boundary

condition’. Add points 3 and 16 to the selection corresponding to the end points
of the axon edge. Specify a prescribed value for Vm of −60 [mV].

General Form Edge PDE 2

1. Select the General Form Edge PDE 2 node and remove all edges except edge 6
which corresponds to the axon fibre.

2. Select the General Form PDE 1 sub-node and enter 0 into all of the flux (Γ) fields,
since there are no spatial derivatives in the PDEs for variables N, M, H. Enter the
following into the source term components (f):

N: alpha_N*(1-N)-beta_N*N

M: alpha_M*(1-M)-beta_M*M

H: alpha_H*(1-H)-beta_H*H

3. Select the Initial Values node and specify initial values for the gating variables as
N: 0.3177, M: 0.0529, H: 0.5961

Electric Currents

1. Select the Current Conservation 1 node. Set the conductivity σ to the user-defined
value of sigma_e, and the relative permittivity to the user-defined value of 1.

2. Right click the Electric Currents node and add a Ground boundary condition for
boundary 7, which corresponds to the right cuff electrode.

3. Right click the Electric Currents node again and add a Normal Current
Density boundary condition. Specify boundary 6 (i.e. the active left cuff elec-
trode) and set the inward current density Jn to
-I_stim*rect1(t [1/s])/(1 [mmˆ2]). Note that the (1 [mmˆ2])
term denotes the area of the 1 × 1mm cuff electrode, and the negative sign up
front specifies cathodic stimulation.

6.2 Modelling Electrical Activity of Tissues 233

4. Right click theElectricCurrents node again and selectEdges|LineCurrent Source.
Specify edge 6 and enter the expression for Q j corresponding to Eq.6.35 as:
2*pi*r*(Cm*Vmt+i_ion).

Mesh

1. Right click the Mesh node and select ‘Distribution’. Specify the geometric entity
level as Edge, and select edge 6. Specify the number of elements as 100 to specify
this amount of edge elements along the axon.

2. Right click the Mesh node again and add a Free Tetrahedral sub-node to mesh
the remaining geometry.

Study 1

1. Under the Step 1: Time-Dependent node, specify the time range from 0 to 0.01 s
in steps of 0.0001s.

2. Right click the Study 1 node and select ‘Show default solver’. Under Solver
Configurations|Solver 1|Time-Dependent Solver 1, select the Time Stepping tab.
Specify the time steps taken by solver to be ‘Strict’.

3. Right click the Time-Dependent Solver 1 sub-node, and select ‘Fully Coupled’.
Right click the ‘Direct’ solver greyed-out sub-node and select ‘enabled’.

4. Right click the Study 1 node again and select Compute.

Results

1. When the model has completed solving,9 the Graphics window will display a
default plot of the membrane potential (variable Vm) along the axon at t = 0.01 s.

2. To plot themembrane potential along the axon at various times, right-clickResults
and select ‘1D Plot Group’. Right-click the 1D Plot Group 4 sub-node and select
‘Line Graph’. In the Settings window, select edge 6 corresponding to the axon.

3. Select the 1D Plot Group 4 sub-node and in the settings window, select ‘From
list’ for the Time selection, and choose times of 0.001, 0.003, 0.005, 0.007 and
0.009s. Under the Plot Settings Tab, check the x-axis label checkbox and enter
‘Axon position (mm)’.

4. Click the Line Graph 1 sub-node. Leave Vm as the default expression to plot, but
specify the units as ‘mV’. Under the Legends tab, click the ‘Show legends’ check
box.

5. Finally, click the Plot button () to display the line plots, as shown in Fig. 6.18.

9Using a MacBook Air 2013 with 8GB RAM and OS X 10.8.5, it took 4min, 23 s to solve this
model.

234 6 Modelling Electrical Stimulation of Tissue

Fig. 6.18 COMSOL-generated membrane potential plots for nerve bundle cuff electrode example
along the axon at times of 0.001, 0.003, 0.005, 0.007 and 0.009s. The action potential is seen
travelling along the axon from left to right

6.3 Further Reading

Angoodoverviewof the theoryof electromagnetismandMaxwell’s equationsmaybe
found in the very short and readable text of Fleisch [3]. Electromagnetism applied to
physiology and biology is covered in the texts of Malmivuo and Plonsey [5], Plonsey
and Barr [6], and Barnes and Greenebaum [2]. More comprehensive treatments of
the electrophysiology of excitable cells and tissues, including nerve and muscle, is
provided in the texts ofHille [4] andAidley [1]. Further examples of electromagnetics
modelling using COMSOL, albeit in a non-biological context, may be found in the
text of Pryor [7].

Problems

6.1 Two platinum spherical stimulating electrodes of radius 0.5mmare placed 2mm
apart centre-centre in an infinite saline solution of conductivity 1Sm−1. Assuming
the surface of each electrode lies at an isopotential state, use COMSOL to determine
the resistance between the electrodes.

6.2 Consider a 2D square slab of excised cardiac tissue of sidelength 1cm, as shown
below. Electrical stimulating electrodes are placed on its left and right boundaries
such that the left boundary is held at a potential of 1V whilst the right is at ground.
All other boundaries are assumed to be electrically insulated. The tissue consists
of parallel muscle fibres oriented at an angle θ relative to the x-axis, with longitu-

6.3 Further Reading 235

dinal conductivity (i.e. along the fibre) of 0.2mScm−1 and transverse conductivity
0.1mScm−1. Plot the potential distribution and current streamlines for fibre angles
θ = 0◦, θ = 45◦ and θ = 90◦.

6.3 A platinum disc electrode of radius 1mm is injecting current into a hemispher-
ical infinite saline domain of conductivity 1Sm−1, similar to the geometry shown in
Fig. 6.5. At the junction between the saline and the platinum, there is a liquid-metal
interface, represented by a distributed resistance of 0.001�m2. If the platinum elec-
trode is at a steady-state equipotential level of 1V, the local potential in the saline
adjacent to the electrode will be less, owing to the voltage drop across the distributed
resistance. Using COMSOL, plot the inward current density as a function of radial
position along the disc, comparing against the theoretical solution with no distributed
resistance.

References

1. Aidley DJ (1978) The physiology of excitable cells, 2nd edn. Cambridge University Press,
Cambridge

2. Barnes FS, Greenebaum B (eds) (2007) Handbook of biological effects of electromagnetic
fields: bioengineering and biophysical aspects of electromagnetic fields, 3rd edn. CRC Press,
Boca Raton

3. Fleisch D (2008) A student’s guide to Maxwell’s equations. Cambridge University Press,
Cambridge

4. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland
5. Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric

and biomagnetic fields. Oxford University Press, Oxford
6. Plonsey R, Barr RC (2007) Bioelectricity: a quantitative approach. Springer, New York
7. Pryor RW (2011) Multiphysics modeling using COMSOL: a first principles approach. Jones

and Bartlett, Sudbury
8. Rogers JM, McCulloch AD (1994) A collocation-Galerkin finite element model of cardiac

action potential propagation. IEEE Trans Biomed Eng 41:743–757

Chapter 7
Models of Diffusion and Heat Transfer

7.1 Diffusion

Diffusion refers to the net transport of molecules from regions of high concentration
to lowconcentration as a result of randommolecularmotion.Diffusion processes play
an important role in a range of biological systems and bioengineering applications.
Typical examples include:

• exchange of metabolites between a cell and its environment
• diffusion of water through a semi-permeable membrane (osmosis)
• exchange of oxygen and carbon dioxide in the alveoli of mammalian lungs
• drug delivery medical devices

7.1.1 Fick’s Laws of Diffusion

In 1855, Adolf Fick1 formulated two important laws governing diffusion processes
based on his experimental observations using salt solutions. The first law states that
the amount of substance transported by diffusion per unit time is proportional to the
gradient in substance concentration. The rate of substance transported per unit area
is also known as the material flux, and is a vector quantity having both magnitude
and direction. Fick’s first law can be stated mathematically in terms of the material
flux as

Γ = −D∇c (7.1)

where Γ is the material flux in SI units of molm-2 s-1, c is the concentration with SI
units ofmolm-3, and D is the diffusion coefficient of the substance in a givenmedium
in SI units of m2 s-1. Note that the negative sign in Eq.7.1 indicates that diffusion
occurs down the concentration gradient, from regions of high to low concentration.

1German physiologist and physician, 1829–1901.

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7_7

237

238 7 Models of Diffusion and Heat Transfer

Fick’s second law describes the transient changes of concentration with time, and is
written mathematically as a PDE in the concentration variable c. It can be derived
from the divergence theorem (Eq.4.5) for any vector field F:

∫

V
(∇ · F) dV =

∫

S
F · dS

where V denotes a closed region with boundary S. Substituting the material flux for
F, we obtain:

∫

V
(∇ · Γ) dV =

∫

S
Γ · dS = − ∂

∂t

∫

V
c dV

∫

V
∇ · (−D∇c) dV = −

∫

V

∂c

∂t
dV

Swapping the left and right-hand sides, and cancelling the negative sign from both,
we obtain: ∫

V

∂c

∂t
dV =

∫

V
∇ · (D∇c) dV

Since this holds for any arbitrary volume V , it follows that the integrands must be
identically equivalent. Namely,

∂c

∂t
= ∇ · (D∇c) (7.2)

Typical values for the diffusion coefficient D are 0.6 × 10−9 – 2 × 10−9 m2 s−1

for individual ions and 10−11 – 10−10 m2 s−1 for biological molecules. D itself is
proportional to the velocity squared of the diffusing molecules and inversely propor-
tional to their size. Equation7.2 is automatically implemented in COMSOL using
the Chemical Species Transport| Transport of Diluted Species physics interface,2 but
can also be readily implemented using the Mathematics PDE interfaces in the base
COMSOL package.

7.1.2 Example: Diffusion and Uptake into a Spherical Cell

A spherical cell of radius 50µm is taking in a nutrient from the interstitial space and
metabolising it. The rate of uptake through the cell surface is 0.0005c mol s-1 m-2,
where c is the nutrient concentration in mM. If the initial concentration in the inter-
stitial space is 100mM, find the concentration of the nutrient 0.5µm from the cell
surface as a function of time. The diffusion constant of the nutrient in the interstitial
space is 5 × 10−11 m2 s−1.

2This interface is part of the optional Chemical Reaction Engineering Module.

http://dx.doi.org/10.1007/978-3-642-54801-7_4

7.1 Diffusion 239

To solve this problem in COMSOL, we utilize a 2D axisymmetric geometry as
implemented in the following steps:

Model Wizard

1. Open the Model Wizard and select the 2D axisymmetric spatial dimension.
2. In the Select Physics panel, choose Chemical Species Transport| Transport of

Diluted Species. Leave c as the default dependent variable.
3. Click the Study arrow () to open the Select Study panel. Select the Time

Dependent, and click “Done”. This will exit the Model Wizard, displaying the
main COMSOL interface.

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
default length unit to ‘µm’.

2. Right-clickGeometry 1 and select Circle. Specify the radius as 50µmand a sector
angle of 90 ◦. Click Build Selected ().

3. Right-click Geometry 1 again and select Circle a second time. Specify the radius
as 70µm and the sector angle as 90 ◦. Click Build Selected (), followed by the
Zoom Extents button ().

4. Right-click Geometry 1 again and select Booleans and Partitions| Difference.
Specify circle c2 as the object to add, and circle c1 as the object to subtract. Click
Build Selected (). The resulting COMSOL interface with geometry and model
tree should look like that shown in Fig. 7.1.

Transport of Diluted Species

1. Select the Transport Properties 1 node of the model tree and set the isotropic
diffusion coefficient Dc to the user-defined value of 5e-11 m2/s. On the Initial
Values 1 sub-node, specify the initial value of c as 100mol/m3.

2. Right click to add a ‘Flux’ boundary condition. Select boundary 3 and check the
Species c checkbox. Specify the inward flux as −(0.0005 [m/s])*c.

Fig. 7.1 COMSOL interface for axisymmetric spherical cell diffusion example, showing 2D
axisymmetric geometry (right) and model tree (far left)

240 7 Models of Diffusion and Heat Transfer

Fig. 7.2 Zoomed-in view of
COMSOL-generated mesh
for axisymmetric spherical
cell diffusion model,
showing boundary mesh
layers at bottom adjacent to
the cell boundary

Fig. 7.3 Zoomed-in view of
COMSOL concentration
solution for axisymmetric
spherical cell diffusion
model at 0.001s

Mesh

1. Right-click theMesh 1 node and add a ‘BoundaryLayers’ node.Under theBound-
ary Layer Properties sub-node, select boundary 3, and specify the number of
boundary layers to be 20. Click the ‘Build All’ button () to build the mesh.
A zoomed-in view of the resulting mesh is shown in Fig. 7.2.

Study

1. Under the Study 1 node, select the Time Dependent solver. Specify the time range
as 0 to 0.001s with a step size of 1e-5 s.

2. Right-click Study 1 and select Show Default Solver. Under Study 1| Solver
Configurations| Solver 1| Time Dependent Solver 1, select ‘Strict’ for the Time
steps taken by solver (under the Time Stepping tab).

3. To solve the model, right-click Study 1 and select Compute (). COMSOL will
display the default plot of concentration at 0.001s, similar to that shown inFig. 7.3.

7.1 Diffusion 241

Fig. 7.4 Concentration as a function of time at a point located 0.5µm from the spherical cell
boundary

Results

1. Right-click the Data Sets sub-node of Results in the model tree, and select Cut
Point 2D. In the Settings window, specify the coordinates of the cut point as r =
0, z = 50.5µm.

2. Right-click the Result node and select ‘1D Plot Group’. Right-click the newly-
created 1D Plot Group 3 sub-node and select ‘Point Graph’. In the settings panel,
specify the Data set as ‘Cut Point 2D 1’. Click the Plot button () to display the
plot of concentration c against time at this point, as shown in Fig. 7.4.

7.1.3 Convective Transport

When a diffusing substance (solute) is present in a moving liquid, there will be an
additional component of flux due to the velocity of the fluid itself. Transport due
to fluid movement is referred to as convection. If a fluid is moving with velocity
magnitude u perpendicularly through an infinitesimal area �A, then the volume of
fluid passing through this area over infinitesimal time �t is the fluid displacement
(u�t) multiplied by �A, or

�V = (u�t)�A

For a substance of concentration c, this represents a total amount of substance c�V
passing through the area in the direction of fluid velocity u. Since flux represents
the amount of substance flowing per unit area per unit time, the convective flux,
expressed as a vector quantity, is given by

242 7 Models of Diffusion and Heat Transfer

Γ =
(

c�V

�t�A

)(u
u

)
= cu (7.3)

Adding this convective flux component to the diffusional flux (Eq.7.1), we obtain
the total flux in the presence of diffusion and convection as

Γ = cu − D∇c (7.4)

For afixed closed regionV in thefluidwith boundary S,we can employ the divergence
theorem (Eq.4.5) to obtain

∫

V
(∇ · Γ) dV =

∫

S
Γ · dS = − ∂

∂t

∫

V
cdV

∫

V
∇ · (cu − D∇c) dV = −

∫

V

∂c

∂t
dV (7.5)

For an incompressible fluid, we can simplify this expression by noting that

∇ · (cu) = u · ∇c + c∇ · u = u · ∇c

since ∇ · u = 0 for incompressibility (see Eq.4.11). Substituting this into Eq.7.5,
we obtain

∫

V
[u · ∇c − ∇ · (D∇c)] dV = −

∫

V

∂c

∂t
dV

∫

V

[
∂c

∂t
+ u · ∇c − ∇ · (D∇c)

]
= 0

and since this expression must hold for any arbitrary fixed volume V , it follows that
the integrand must be identically equal to zero, or

∂c

∂t
+ u · ∇c = ∇ · (D∇c) (7.6)

7.1.4 Example: Drug Delivery in a Coronary Stent

A drug-eluting stent is a wire scaffold placed into an occluded artery (typically a
coronary artery) in order to re-open the vessel for blood flow (Fig. 7.5). Such stents
slowly release drugs, typically paclitaxel or sirolimus and its analogues including
everolimus [9], which prevent scar tissue formation and keep the artery open. We
wish to implement a simplified model of such a system to determine the blood drug
distribution as a function of time along the artery. Assuming that blood is travelling
parallel to the axis everywhere, and that its velocity is zero along the walls (no-

http://dx.doi.org/10.1007/978-3-642-54801-7_4
http://dx.doi.org/10.1007/978-3-642-54801-7_4

7.1 Diffusion 243

Fig. 7.5 Occluded coronary
artery segment with plaque
deposits shown in grey (top).
Insertion of a coronary stent
opens the artery (bottom),
allowing blood to flow freely
again. Drug-eluting stents
slowly release
pharmaceutical agents that
inhibit scar tissue formation
and prevent re-occlusion

Fig. 7.6 Simplified stent
model geometry, with
uniform stent surface shown
in grey

slip condition) and maximum along the central axis, its motion can be reasonably
approximated by a parabolic velocity profile according to

u = umax

R2

(
R2 − r2

)
(7.7)

where u is the velocity in the axial direction, umax is the maximum velocity at the axis
(= 50 cm−1), R is the arterial radius (= 1mm), and r is the radial distance from the
central axis. We take the length of the arterial segment as 9mm and the length of the
stent as 6mm. Although the stent wire mesh is a complex structure, we can simplify
it as a uniform, continuous cylindrical surface along the boundary of the artery
(Fig. 7.6). We utilize the reported free diffusion coefficient of paclitaxel as 2.56 ×
10−4 cm2 min−1 [4]. Furthermore, we assume the initial total content of paclitaxel
in the stent as 42µg. Since the molecular weight of paclitaxel is 853.9gmol-1, this
corresponds to an initial drug content of 49.2nmol.3 In rabbit iliac artery experiments,
the drug content of the stent has been reported to decrease from 42 to 12.4µg 6 hours
post-implantation [6]. Assuming mono-exponential decay of stent drug-content

M = M0 exp(−kt)

where M0 is the initial content, this data corresponds to a drug release rate k of
0.2 hr−1.

3http://pubchem.ncbi.nlm.nih.gov/compound/paclitaxel.

http://pubchem.ncbi.nlm.nih.gov/compound/paclitaxel

244 7 Models of Diffusion and Heat Transfer

To implement this model in COMSOL, we use the following steps:

Model Wizard

1. Open the Model Wizard and select the 2D axisymmetric spatial dimension.
2. In the Select Physics panel, choose Chemical Species Transport| Transport of

Diluted Species. Click ‘Add’, and leave c as the default dependent variable.
3. Click theStudy arrow () to open theSelect Studypanel. SelectTimeDependent,

and click “Done”. Thiswill exit theModelWizard, displaying themainCOMSOL
interface.

Global Definitions

1. Right-click Global Definitions in the model tree and select Parameters. Enter the
following details in the Parameters table of the Settings window:

Name Expression Description
u_max 50 [cm/s] Maximum blood velocity
D_drug 2.56e-4 [cmˆ 2/min] Drug diffusion coefficient
k 0.2 [1/hour] Drug release rate
R 1 [mm] Artery radius
L_artery 9 [mm] Arterial segment length
L_stent 6 [mm] Stent length
M0 49.2 [nmol] Initial stent drug content

2. Right-click Global Definitions again and select Variables. Specify a new variable
Mwith expression M0*exp(-k*t). This represents the total drug content of the
stent as function of time.

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
default length unit to ‘mm’.

2. Right-click Geometry 1 and select Rectangle. Specify the width and height as R
and L_artery respectively. Click Build Selected ().

3. Right-click Geometry 1 again and select Point. In the Settings panel, enter R
and R in the r field (these values should be separated by a space), followed by
(L_artery-L_stent)/2 and (L_artery+L_stent)/2 in the z field.
This specifies two points enclosing the stent boundary. Click the Build Selected
() button. The resulting COMSOL interface with geometry and model tree
should look like that shown in Fig. 7.7.

Transport of Diluted Species

1. Expand the Transport of Diluted Species node of the model tree and select the
Transport Properties 1 sub-node. In the Settings panel, set the isotropic diffusion
coefficient Dc to the user-defined value of D_drug. For the velocity field, specify
0 for the r component and (u_max/Rˆ 2)*(Rˆ 2-rˆ 2) for the z component.

7.1 Diffusion 245

Fig. 7.7 COMSOL interface for stent diffusion and convection example, showing 2D axisymmetric
geometry (right) andmodel tree (far left). The axis of rotational symmetry on the geometry is shown
as a vertical red dashed line corresponding to r = 0, where r is the radial coordinate. The vertical
coordinate is denoted by z. The two points on the interior of the right boundary correspond to each
end of the stent

2. Right click the Transport of Diluted Species node to add an ‘Inflow’ boundary
condition. Select boundary 2 (i.e. the lower boundary) and specify the boundary
condition type as Flux (Danckwerts)with a default concentration of 0. This bound-
ary condition specifies that there there is no diffusive flux normal to the boundary,
only convective inflow. Furthermore, since we have specified a concentration of
0 at this boundary, this is equivalent to a zero-flux boundary condition.

3. Right click the Transport of Diluted Species node again to add an ‘Outflow’
boundary condition. Select boundary 3 (i.e. the upper boundary). This boundary
condition specifies that there there is no diffusive flux normal to the boundary,
only convective outflow.

4. Right click the Transport of Diluted Species node a third time to add a ‘Flux’
boundary condition. Select boundary 5, and click the species ‘c’ checkbox. Spec-
ify an inward flux of k*M/(2*pi*R*L_stent), where we have divided the
total transport rate per unit time (kM) by the surface area of the stent (2πRLstent).

5. Click the COMSOL Show button () just above the Model Tree and select
‘Stabilization’. This allows model stabilization settings to be viewed. Click the
Transport of Diluted Species node and under the Inconsistent Stabilization tab,
select the ‘Isotropic diffusion’ checkbox. This adds a small artificial amount
of diffusion proportional to the mesh element size, and is necessary to avoid
numerical oscillations when convection flow dominates the diffusional flux.

Study

1. Under the Study 1 node, select the Time Dependent solver. Click the range
button () and specify the time range as 0 to 5 in steps of 0.001. Spec-

246 7 Models of Diffusion and Heat Transfer

Fig. 7.8 Drug concentration
in arterial segment at
99,999s (≈27.8hrs). At left
is shown the concentration in
the axisymmetric model
plane, whilst at right is the
3D concentration profile
formed by rotating this plane
around the axis. Note that the
top and bottom boundaries
represent the outflow and
inflow respectively

ify the function to apply to all values as ‘exp10’. Click the ‘Replace’ but-
ton. This will result in the expression for the output times of the solver as
10ˆ range(0,0.001,5). Manually append ‘-1’ to this expression so that it
reads 10ˆ range(0,0.001,5)-1: this will create a geometrically increasing
time sequence from 0 to (105 − 1) s.

2. Right-click Study 1 and select Show Default Solver. Under Study 1| Solver
Configurations| Solution 1| Time Dependent Solver 1, select the Time Stepping
tab and choose ‘Strict’ for the Time steps taken by solver. Select the Initial step
checkbox and specify an initial step value of 1e-6 s.

3. To solve the model, right-click Study 1 and select Compute (). COMSOL will
display the default plot of concentration at 99,999s, similar to that shown in
Fig. 7.8. Clicking on the Concentration (tds) 1 volume plot (under the Results
node of the model tree) will generate a 3D representation of the axisymmetric
concentration profile, as shown also in Fig. 7.8.

Results

1. Right-click the Data Sets sub-node of Results in the model tree, and select Cut
Point 2D. In the Settings window, specify the coordinates of the cut point as
r = R/2, z = L_artery. This corresponds to a point half-way across the outflow
boundary.

2. Right-click the Result node and select ‘1D Plot Group’. Right-click the newly-
created 1D Plot Group 3 sub-node and select ‘Point Graph’. In the settings panel,
specify the Data set as ‘Cut Point 2D 1’. Click the Plot button () as well as the
x-axis log scale button () to display the plot of concentration c against time at
this point, as shown in Fig. 7.9. It can be seen that the concentration of the drug at
the outflow rapidly increases to its maximum value of ≈ 3.35 × 10−6 molm−3,
before declining again to 0 after 105 s, when the drug content of the stent has
depleted.

7.1 Diffusion 247

Fig. 7.9 Drug concentration as a function of time at a point located half-way across the outflow
boundary

Although this example used a simplified representation of stent structure, we will
return to thismodel again inChap.9, Sect. 9.2.1,wherewewill utilize fluidmechanics
to also solve for the actual fluid flow around the struts of the stent, utilizing more
fully the multiphysics capabilities of COMSOL.

7.2 Heat Transfer

Heat transfer within a medium takes place by direct transfer via contact of particles
vibrating randomly due to their thermal energy. This process is similar to that of
diffusion, and therefore the underlying PDEs characterising the two phenomena
have many similarities. In a medical device context, the physics of heat transfer is
relevant for understanding, among others, heat treatment of tumours, thermal ablation
of cardiac tissue for managing arrhythmia, tissue burns, as well as the thermal safety
of electronic devices.

http://dx.doi.org/10.1007/978-3-642-54801-7_9

248 7 Models of Diffusion and Heat Transfer

7.2.1 Heat Conduction and Convection

The law of thermal conduction was first formulated by Jean-Baptiste Joseph Fourier4

as
q = −k∇T (7.8)

where q is the heat flux in SI units ofWm-2, T is the temperature in SI units of Kelvin
(or K), and k is the thermal conductivity of the medium in SI units of WK-1 m-1.
Temperature is a scalar quantity that indicates the energy of molecular vibration, and
heat flux is the rate of molecular vibrational energy transport per unit time per unit
area. In a given medium, the relationship between the molecular energy of vibration
and temperature is given by

E = Tmcp (7.9)

where E is the energy,m is themass of themedium, and cp is its specific heat capacity
in units of Jkg-1 K-1. Specific heat capacity is a fundamental material property of the
medium, independent of its geometric shape or size.

Similar to diffusion, we can formulate the underlying PDE governing heat flow in
a medium by combining the conductive heat flux given by Eq.7.8 with transport by
convection i.e. through physical movement of the medium, typically a fluid. If the
fluid is moving with velocity magnitude u perpendicularly through an infinitesimal
area �A, then the volume of fluid �V passing through this area over infinitesimal
time�t is the fluid displacement (u�t) multiplied by�A, or �V = (u�t)�A. For
a medium of temperature T and mass density ρ, and using Eq.7.9, this represents a
total heat energy Tρ�Vcp passing through the area in the direction of fluid velocity
u. Since heat flux represents the amount of heat energy flowing per unit area per unit
time, the convective heat flux, expressed as a vector quantity, is given by

q =
(
T (ρ�V)cp

�t�A

) (u
u

)
=

(
Tρu�t�Acp

�t�A

) (u
u

)
= uTρcp (7.10)

Adding this convective flux component to the conductive heat flux Eq.7.8, we obtain
the total heat flux in the presence of conduction and convection as

q = uTρcp − k∇T (7.11)

For a fixed closed region V in the fluid with boundary S, and containing a heat source
Q (in Wm-3), we can integrate the outward heat flux over S to obtain

4French mathematician (1768–1830), best known for his instigation of Fourier series and Fourier
transforms which he applied to problems of heat transfer.

7.2 Heat Transfer 249

∫

S
q · dS =

∫

V
Q dV − ∂

∂t

∫

V
ρcpT dV

=
∫

V
Q dV −

∫

V

∂(ρcpT)

∂t
dV (since V is fixed) (7.12)

where the first term on the right-hand side denotes the amount of heat produced by
the heat source, and the second term denotes the rate of heat loss. We can then invoke
the divergence theorem (Eq.4.5) to state

∫

S
q · dS =

∫

V
∇ · q dV

Substituting this identity into Eq.7.12, we obtain

∫

V
∇ · q dV =

∫

V
Q dV −

∫

V

∂(ρcpT)

∂t
dV

∫

V

(
∂(ρcpT)

∂t
+ ∇ · q

)
dV =

∫

V
Q dV

Since the above integral is true for any arbitrary volume V , the integrands on both
sides must be identically equal. That is:

∂(ρcpT)

∂t
+ ∇ · q = Q (7.13)

For incompressible fluid flow, ρ and cp will be constant at each point in the medium.
Equation7.13 is then equivalent to

ρcp
∂T

∂t
+ ∇ · q = Q

Substituting the expression for heat flux (Eq. 7.11) into this equation, we obtain

ρcp
∂T

∂t
+ ∇ · (uTρcp − k∇T

) = Q

which for incompressible fluid flow, reduces to the following PDE:

ρcp
∂T

∂t
+ ∇ · (−k∇T) + ρcpu∇ · T = Q (7.14)

which is the governing PDE for heat transfer in a medium, including convection
under incompressible flow.

http://dx.doi.org/10.1007/978-3-642-54801-7_4

250 7 Models of Diffusion and Heat Transfer

7.2.2 The Bioheat Equation

For many biological applications, the heat source Q in Eq.7.14, representing heat
energy supplied to the medium per unit time per unit volume, consists of several
components:

• tissue metabolism, namely the energy output of chemical reactions underlying
cellular function, including maintenance, growth and reproduction.

• blood perfusion, which transports heat to the tissue at a rate proportional to the
difference between the temperatures of the blood and tissue.

• external heat sources, such as Joule heating from the flow of electric current in a
conductive medium. Such external heat sources typically require the implementa-
tion of a coupled physics mode to determine the heat source at each point, feeding
the value into Eq.7.14. In the case of Joule heating, for example, the external heat
source Qext would be determined by solving the electrostatic equations for the
electric potential, according to

Qext = J · E (7.15)

= σ |E|2 for conductive media

where J, E are the root mean square (RMS) vector quantities of current density
and electric field respectively, and σ is the electrical conductivity.
In biological tissues, another source of heat from applied electric fields arises
from dielectric heating, due to the flow of polarizing currents displacing charged
molecules in the tissue. The total current which flows in the tissue is the sum of
conductive and displacement currents, as given by Ampère’s Law (Eq.6.2)

Jtot = J + ∂D
∂t

= σE + ε
∂E
∂t

For most dielectrics, including biological tissues, the permittivity ε is a frequency-
dependent complex quantity, producing a further phase shift in the displacement
current. Writing this permittivity as

ε = ε′ − jε′′

where j = √−1, the total heat produced by both conductive and dielectric heating
is given by

Qext = σ |E|2 + ωε′′|E|2 (7.16)

where E is the RMS electric field, and the angular frequency factor ω in the
dielectric heat term is due to the time-derivative of E in the displacement current.
At high frequencies where ωε′′ � σ , dielectric heating will dominate.

http://dx.doi.org/10.1007/978-3-642-54801-7_6

7.2 Heat Transfer 251

These sources of heat can be incorporated into the bioheat equation,5 whichmodifies
Eq.7.14, ignoring convective heat flow, into

ρcp
∂T

∂t
+ ∇ · (−k∇T) = ρbcbωb (Tb − T) + Qmet + Qext (7.17)

whereρb is the density of blood (in kgm-3), cb is the specific heat capacity of blood (in
Jkg-1 K-1), ωb is the blood perfusion rate (in s-1), Tb is the arterial blood temperature
(in K), Qmet is the heat source from metabolism (in Wm-3), and Qext is the external
heat source (in Wm-3).

The bioheat equation can also be used to determine the spatial extent of tis-
sue damage due to heat. The most common measure of tissue damage is based on
Arrhenius’ equation6:

θd = 1 − exp (−α)

α =
∫ t

0
A. exp

[−Ea

RT

]
dt (7.18)

where θd is the fraction of necrotic tissue, A is the tissue frequency factor (in s-1),
Ea is the activation energy for irreversible tissue damage (in Jmol-1), T is the tem-
perature (in K), and R is the gas constant (8.31 JK-1 mol-1). Parameters A and Ea are
tissue-dependent, with typical values for liver reported as A = 7.39 × 1039 s−1 and
Ea = 2.577 × 105 Jmol−1 [8], and A = 3 × 1023 s−1, Ea = 1.62 × 105 Jmol−1 for
myocardium [1].

7.2.3 Example: RF Atrial Ablation

Disturbances in the electrical)| rhythm of the atria of the heart represent the most
common type of cardiac arrhythmia. Such arrhythmias can be treated using RF
ablation, in which a percutaneous catheter containing an active electrode placed onto
the endocardial surface of the atria, injecting radio frequency (RF) electrical current
at 500kHz to form necrotic scars in the atria. A large dispersive return electrode is
typically placed on the back of the chest. A simplified axisymmetric geometrical
representation of a spherical RF ablation electrode indenting the atrial endocardium
is shown in Fig. 7.10.We assume here that the myocardium is essentially conductive,
and that the appliedRFvoltage is equivalent to direct current (DC) stimulation applied
at the RMS value.7 Values of all model parameters are given in Table7.1.

5Also referred to as the Pennes bioheat equation, named after Harry H. Pennes (1918–1963), who
first introduced the mathematical description of the blood perfusion heat source component [10].
6Due to Svante Arrhenius (1859–1927), a founder of the modern science of physical chemistry.
7The effect of dielectric heating will be investigated further in Problem7.4.

252 7 Models of Diffusion and Heat Transfer

Fig. 7.10 Cross-section of RF atrial ablation model geometry, with rotational axis of symmetry
shown dashed. The active electrode is shown as a circular arc indenting the upper (endocardial) atrial
boundary. Between the lower (epicardial) atrial boundary and the electrodea layer of intervening
tissue of thickness much greater than the atrial wall

Table 7.1 Parameters for RF atrial ablation model

Parameter Value Description

Latr 6mm Atrial wall thickness

R 9mm Radius (i.e. width) of atrial tissue segment

Re 1.5mm Active electrode radius

de 0.5mm Electrode indentation depth

Ve 80V Active electrode voltage

Lint 20cm Intervening tissue thickness

σ 0.61Sm-1 Atrial electrical conductivity [3]

ρ 1200kgm-3 Atrial tissue density [3]

Cp 3200Jkg-1 K-1 Atrial specific heat capacity [3]

k 0.7Wm-1 K-1 Atrial thermal conductivity [3]

Tb 37 ◦C Blood temperature

ρb 1000kgm-3 Blood density [3]

Cb 4180Jkg-1 K-1 Blood specific heat capacity [3]

ωb 0.005s-1 Blood perfusion rate [12]

Qmet 0Wm-3 Atrial metabolic heat source [12]

A 3 × 1023 s-1 Myocardial frequency factor [1]

Ea 162kJmol-1 Myocardial activation energy [1]

7.2 Heat Transfer 253

To implement this model in COMSOL, we use the following steps:

Model Wizard

1. Open the Model Wizard and select the 2D axisymmetric spatial dimension.
2. In the Select Physics panel, choose Heat Transfer|Heat Transfer in Solids.8 Click

‘Add’, and leave T as the default temperature variable.
3. Staying within the Select Physics panel, choose AC/DC| Electric Currents, and

click ‘Add’. Leave V as the default voltage variable.
4. Again from the Select Physics panel, choose Mathematics| PDE Interfaces| Gen-

eral Form PDE, and click ‘Add’. Leave u as the default variable, which will
represent the α tissue damage variable of Eq.7.18. Leave the default units of u
as dimensionless, but change the units of the source term to 1/s.

5. Click theStudy arrow () to open theSelect Studypanel. SelectTimeDependent,
and click “Done”. Thiswill exit theModelWizard, displaying themainCOMSOL
interface.

Global Definitions

1. Right-click Global Definitions in the model tree and select Parameters. Enter the
following details in the Parameters table of the Settings window:

Name Expression Description
L_atr 6 [mm] Atrial thickness
R 9 [mm] Atrial tissue width
R_e 1.5 [mm] Electrode radius
d_e 0.5 [mm] Electrode indentation depth
V_e 80 [V] Electrode voltage
L_int 20 [cm] Intervening tissue depth
sigma 0.61 [S/m] Tissue electrical conductivity
rho 1200 [kg/mˆ 3] Atrial density
C_p 3200 [J/(kg*K)] Atrial specific heat
k 0.7 [W/(m*K)] Atrial thermal conductivity
T_b 37 [degC] Blood temperature
rho_b 1000 [kg/mˆ 3] Blood density
C_b 4180 [J/(kg*K)] Blood specific heat
omega_b 0.005 [1/s] Blood perfusion rate
Q_met 0 [W/mˆ 3] Metabolic heat source
A 3e23 [1/s] Atrial frequency factor
E_a 162 [kJ/mol] Atrial activation energy

8If you have installed COMSOL’s optional Heat Transfer module, it includes a bioheat transfer
module incorporating the Arrhenius measure of tissue damage and other tissue damage indicators.
In our example, however, we use COMSOL’s default Heat Transfer module and will implement the
Bioheat equation and Arrhenius tissue damage measure directly.

254 7 Models of Diffusion and Heat Transfer

Fig. 7.11 COMSOL interface for atrial ablationmodel, showing 2D axisymmetric geometry (right)
and model tree (far left)

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
default length unit to ‘mm’.

2. Right-click Geometry 1 and select Rectangle. Specify the width and height as R
and L_atr respectively. Click Build Selected ().

3. Right-click Geometry 1 again and select Circle. In the Settings panel, enter R_e
for the radius and 0 and L_atr+R_e-d_e in the r and z fields for the centre
coordinates respectively. Click the Build Selected () button.

4. Right-click Geometry 1 a final time and select Booleans and Partitions| Differ-
ence. In the Settings panel, select rectangle (r1) as the object to add. Activate the
‘Objects to subtract’ panel and select circle (c1) as the object to subtract. Click
the Build Selected () button. The resulting COMSOL interface with geometry
and model tree should look like that shown in Fig. 7.11.

Component Definitions

1. Right-click the Definitions sub-node of Component 1 in the model tree and select
Component Couplings| Integration. In the Settings panel, select domain 1. This
specifies a user-defined integration operator ‘intop1’ for integrating expressions
over the atrial wall domain.

2. Right-click the Definitions sub-node of Component 1 again and select Variables.
Enter the following details in the Variables table of the Settings window:

Name Expression Description
damage 1-exp(-u) Tissue damage
lesion intop1(2*pi*r*(damage>0.5)) Lesion volume

7.2 Heat Transfer 255

Note that the variable damage corresponds to θd in Eq.7.18. To understand the
expression for thelesion variable, COMSOLevaluates conditional expressions
such asdamage>0.5 to 1 if true, and 0 if false. The volume of the lesion, defined
here as those tissue regions with θd > 0.5, is then given by the axisymmetric
integral expression

Vlesion =
∫∫

�

2πr (θd > 0.5) dr dz

where � denotes the axisymmetric tissue domain and (θd > 0.5) represents the
conditional evaluation described above.

Electric Currents

1. Select the Current Conservation 1 sub-node of the Electric Currents node. In
the Settings panel, specify a user defined electrical conductivity of sigma for
domain 1 and a user defined relative permittivity of 1.

2. Right-click the Electric Currents node to add an ‘Electric Potential’ boundary
condition. Select boundary 5 (i.e. the active electrode circular arc) and specify
the value of the electric potential as V_e.

3. Right-click the Electric Currents node again to add a ‘Distributed Impedance’
boundary condition. Select boundary 2 (i.e. the lower boundary). This boundary
condition specifies that there there is resistive layer between the boundary and a
reference voltage Vref on the other side of the layer, such that the outward normal
component of current density Jn is given by

Jn = σ

ds

(
V − Vref

)

where V is the voltage at the boundary, σ is the electrical conductivity of the layer
and ds is its thickness. Using such a distributed impedance boundary condition
allows is to specify the electrical properties of the intervening tissue without
physically incorporating its geometry into the model. In the Settings panel of the
Distributed Impedance 1 sub-node, specify Vre f as 0, the surface thickness ds as
L_int, the electrical conductivity as sigma and the relative permittivity as 1.
These values assume that the intervening tissue has the same electrical properties
as myocardium, and that the dispersive electrode is at ground voltage.

4. All remaining boundaries will be set to electrically insulating by default.

Heat Transfer in Solids

1. Select the Heat Transfer in Solids 1 sub-node of the Heat Transfer in Solids node.
In the Settings panel, specify the thermal conductivity as k, the density as rho,
and the heat capacity as C_p.

2. Right click the Heat Transfer in Solids node to add Heat Source. Select the newly-
created Heat Source 1 sub-node and specify a user defined general heat source
with expression:
sigma*ec.normEˆ 2 + rho_b*C_b*omega_b*(T_b-T) + Q_met.

256 7 Models of Diffusion and Heat Transfer

3. Right-click the Heat Transfer in Solids node again to add a ‘Heat Flux’ boundary
condition. Select boundary 2 (i.e. the lower boundary). We will use this boundary
condition to specify a thermally-resistive layer between the boundary and an
external temperature Text on the other side of the layer, such that the inward
normal component of heat flux qn is given by

qn = k

Lint
(Text − T)

where T is the temperature at the boundary, k is the thermal conductivity of the
intervening tissue layer and Lint is its thickness. In COMSOL, we can conve-
niently specify this boundary condition by selecting the ‘Convective heat flux’
option in the Heat Flux 1 sub-node settings, specifying k/L_int as the heat
transfer coefficient and T_b as the external temperature, which corresponds to
typical body (& blood) temperature. These parameter values assume that the
intervening tissue has the same thermal properties as the myocardium.

4. Select the Initial Values 1 sub-node of the Heat Transfer in Solids node, and
specify the initial value of temperature as T_b.

General Form PDE

1. Select the General Form PDE 1 sub-node of the General Form PDE node. In the
Settings panel, specify the Conservative flux Γ as 0 and 0 for both the r and z
components, the source term as A*exp(-Ea/(R_const*T)), the damping
coefficient da as 1, and the the mass coefficient ea as 0. This represents the PDE

∂u

∂t
= A. exp

(−Ea

RT

)

which is equivalent to the integral form of Eq.7.18 with u ≡ α.

Mesh

1. Select the Mesh node of the model tree and choose an ‘Extra fine’ element size
in the Settings panel.

Study

1. Under the Study 1 node, select the Time Dependent solver. Click the range button
() and specify the time range as 0 to 20s in steps of 0.1 s.

2. To solve the model, right-click Study 1 and select Compute (). COMSOL will
display the default axisymmetiric plot of voltage distribution at 20 s, similar to
that shown in Fig. 7.12. Clicking on the Temperature, 3D (ht) volume plot (under
the Results node of the model tree) will generate a 3D representation of the
axisymmetric temperature at this time, as shown also in Fig. 7.12.

7.2 Heat Transfer 257

Fig. 7.12 (Left) Atrial wall voltage distribution at 20 s in the axisymmetric model plane. (Right)
3D temperature profile at 20 s formed by rotating the axisymmetric plane around its axis

Fig. 7.13 Lesion volume against time, as determined by the RF ablation model

Results

1. Right-click the Result node and select ‘1D Plot Group’. Right-click the newly-
created 1D Plot Group 3 sub-node and select ‘Global’. In the settings panel,
specify the y-Axis Data expression to plot as lesion, and specify the units
mmˆ 3 by typing this directly into the Units column, overwriting the default units.

2. Select the 1D Plot Group 3 sub-node and select the y-axis label checkbox. Type
Lesion Volume (mmˆ 3) as the label to display on this axis.

258 7 Models of Diffusion and Heat Transfer

3. Click the Plot button () to display the plot of lesion volume against time, as
shown in Fig. 7.13. It can be seen that the lesion volume begins to increase from
a time of about 5.6 s reaching a value of ≈9.7mm−3 at 20 s.

Although this model is based on a simplified geometrical representation of the abla-
tion electrode and atrial wall, a significant feature of the implementation is the use
of distributed impedance and heat flux boundary conditions to represent flow of
electrical current and heat into the intervening tissue between the atrial wall and
the dispersive electrode. The choice of appropriate boundary conditions that mimic
system behaviour forms a crucial aspect of the overall modelling process.

7.3 Further Reading

A good resource on modelling diffusion and heat transfer in biomedical systems,
with a focus on COMSOL implementations, is the text of Datta and Rakesh [5].
Further examples of COMSOL bioheat modelling may be found in the text of Pryor
[11]. The text of Zemansky and Dittman [14] provides a general overview of the
physics of thermodynamics, whilst those of Barnes and Greenebaum [2] and Vorst
et al. [13] cover the principles of electromagnetic heating of biological tissues.

Problems

7.1 A transdermal patch is placed on the arm of a patient to deliver a specific dose
of medication through the skin. The equation governing the concentration c of the
drug is

∂c

∂t
= D

∂2c

∂x2
− kupc

where x is the depth through the skin, D is the diffusion coefficient and kup is the
rate of uptake of the drug into the bloodstream. Find the steady-state concentration
as a function of x given the boundary conditions c = C0 at x = 0 (skin surface) and
c = 0 at x = dc (critical depth). D, kup, C0 and dc are fixed parameters.

7.2 Cardiac output can be determined clinically using the method of indicator
dilution, whereby a known quantity of an indicator, typically a contrast agent, is
injected into the bloodstream, and its concentration measured downstream from
the site of injection as a function of time. Using COMSOL, we can numerically
investigate the validity of this method by employing a simplified cylindrical blood
vessel of length 50cm and diameter 1cm, and assuming 1mol of indicator is injected
throughone endof the vessel over a brief time interval of 100ms.We then solve for the
concentration profile of the indicator at the downstream boundary centre, assuming
a parabolic velocity profile of the blood (Eq.7.7), and a diffusion coefficient for the

7.3 Further Reading 259

indicator of 1×10−9 m2 s−1. Using a parametric sweep to vary the total volume flow
rate (i.e. cardiac output) from 0.1 to 1Lmin-1 in steps of 0.1Lmin-1, verify that the
cardiac output, Q satisfies

Q = M0

[∫ ∞

0
c dt

]−1

where M0 is the total amount of injected indicator (in mol) and c is the indicator
concentration downstream. Take the upper limit of the above integral as t = 20 s.

7.3 Aproposed cylindrical probe for the heat treatment of hepatic tumours is shown
below.

Joule heating due to current flow between electrodes A and B (with B at ground)
kills cancerous tissue when the Arrhenius damage proportion reaches above 0.5.

Parameter Value Description
σ 0.61Sm-1 Electrical conductivity
ρ 1200kgm-3 Density
Cp 3200Jkg-1 K-1 Specific heat capacity
k 0.7Wm-1 K-1 Thermal conductivity
Tb 37 ◦C Blood temperature
ρb 1000kgm-3 Blood density
Cb 4180Jkg-1 K-1 Blood specific heat capacity
ωb 0.05 s-1 Blood perfusion rate
Qmet 0Wm-3 Metabolic heat source
A 7.39 × 1039 s-1 Frequency factor
Ea 257.7kJmol-1 Activation energy

Implement a COMSOLmodel of this probe inserted into a spherical tumour of radius
2.5cm, such that the mid-point between the probe electrodes lies at the centre of the
tumour. Assume that the temperature of the outer surface of the tumour is maintained
at a body temperature of Tb = 37 ◦C. Plot the volume of tissue destroyed by the heat
treatment as a function of time (up to 8min) for DC probe voltages of 22V and 30V.
Use the tissue parameters shown in the table above.

260 7 Models of Diffusion and Heat Transfer

7.4 For the RF atrial ablation model of this chapter (Sect. 7.2.3), the atrial tissue
was assumed to be purely conductive, with the external heat source given by σ |E|2,
where σ is the electrical conductivity and |E| is the electric field magnitude. In
reality, the permittivity of atrial tissue may not be negligible, particularly at the RF
frequency of 500kHz. To investigate the contribution of the additional dielectric
heating component, we note that the relative permittivity of heart muscle has been
reported to satisfy the following empirical relation [7]

εr (ω) = ε∞ +
4∑

n=1

�εn

1 + (jωτn)
(1−αn)

(7.19)

where ω is the angular frequency and j = √−1. Using the parameters of this
relation given in the following table, determine the negative complex component of
the permittivity ε′′ at 500kHz, and re-solve the RF atrial ablation model accordingly,
plotting the new lesion volume against time. Is the purely conductive assumption
justified when simulating RF cardiac ablation?

Parameter Value Parameter Value
ε∞ 4 �ε3 4.5 × 105

�ε1 50 τ3 72.34µs
τ1 7.96ps α3 0.22
α1 0.1 �ε4 2.5 × 107

�ε2 1200 τ4 4.547ms
τ2 159.15ns α4 0
α2 0.05

References

1. Agah R, Gandjbakhche AH, Motamedi M, Nossal R, Bonner RF (1996) Dynamics of tempera-
ture dependent optical properties of tissue: dependence on thermally induced alteration. IEEE
Trans Biomed Eng 43:839–846

2. Barnes FS, Greenebaum B (eds) (2007) Handbook of biological effects of electromagnetic
fields: bioengineering and biophysical aspects of electromagnetic fields, 3rd edn. CRC Press,
Boca Raton

3. Berjano EJ, Hornero F (2004) Thermal-electrical modeling for epicardial atrial radiofrequency
ablation. IEEE Trans Biomed Eng 51:1348–1357

4. Cremasco MA, Wang LN-H (2012) Estimation of partition, free and specific diffusion coef-
ficients of paclitaxel and taxanes in a fixed bed by moment analysis: experimental, modeling
and simulation studies. Acta Sci Technol 34:33–40

5. Datta A, Rakesh V (2010) An introduction to modelling of transport processes: applications to
biomedical systems. Cambridge University Press, Cambridge

6. Farb A, Heller PF, Shroff S, Cheng L, Kolodgie FD, Carter AJ, Scott DS, Froehlich J, Vir-
mani R (2001) Pathological analysis of local delivery of paclitaxel via a polymer-coated stent.
Circulation 104:473–479

References 261

7. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Para-
metric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

8. Jacques S, Rastegar S, Thomsen S, Motamedi M (1996) Nonlinear finite-element analysis of
the role of dynamic changes in blood perfusion and optical properties in laser coagulation of
tissue. IEEE J Sel Top Quantum Electron 2:922933

9. Kaul U, Bangalore S, Seth A, Arambam P, Abhaychand RK, Patel TM, Banker D, Abhyankar
A, Mullasari AS, Shah S, Jain R, Kumar PR, Bahuleyan CG (2015) Paclitaxel-eluting versus
everolimus-eluting coronary stents in diabetes. N Engl J Med 373(18):1709–1719

10. Pennes HH (1948) Analysis of tissue and arterial blood temperature in the resting forearm. J
Appl Physiol 1:93122

11. Pryor RW (2011) Multiphysics modeling using COMSOL: a first principles approach. Jones
and Bartlett, Sudbury

12. Shahidi AV, Savard P (1994) A finite element model for radiofrequency ablation of the
myocardium. IEEE Trans Biomed Eng 41:963–968

13. Vorst AV, Rosen A, Kotsuka Y (2006) RF/microwave interaction with biological tissues.Wiley,
Hoboken

14. Zemansky MW, Dittman RH (1997) Heat and thermodynamics, 7th edn. McGraw-Hill, New
York

Chapter 8
Solid Mechanics

8.1 Biomechanics

The application of mechanics to biological systems is referred to as biomechanics.
Biomechanics can be further subdivided into the fields of solid mechanics and fluid
mechanics, the latter which will be dealt with in Chap.9. Solid mechanics deals
with the deformation of solid bodies under applied loads. In biomedical engineering
applications, solid mechanics is used for simulating mechanical properties of soft
tissues and bone to understand their normal and pathological function, as well as
for the development of rehabilitation devices and mechanical prostheses such as hip
joint replacements.

8.2 Tensor Fundamentals

To understand the basic principles of solid mechanics, including the notions of stress
and strain, it necessary to be familiar with the concept of tensors. We have already
seen that some physical quantities, including electrical conductivity in anisotropic
materials (see Eq.6.16), can be represented as a tensor.

8.2.1 Tensor Definition

Tensors represent a natural extension to vectors. Defining a set of three orthogonal
basis unit vectors in 3D space e1, e2, e3, any vector quantity a can be expressed in
terms of these as

a = a1e1 + a2e2 + a3e3

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7_8

263

http://dx.doi.org/10.1007/978-3-642-54801-7_9
http://dx.doi.org/10.1007/978-3-642-54801-7_6

264 8 Solid Mechanics

where a1, a2, a3 are the components of the vector awith respect to the basis set. Given
two vectors a, b, we can formally define their scalar dot and vector cross products
according to:

a · b = a1b1 + a2b2 + a3b3 (8.1)

a × b =
∣∣∣∣∣∣
e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
(8.2)

where the ai, bi (i = 1, 2, 3) are the components of these vectors, and the determinant
expansion in Eq.8.2 is understood to be taken by the first row.

In addition to these products, we can also define the dyadic product of two vectors
a ⊗ b, which forms a second-order tensor. For any three vectors a, b, c and scalar
quantity α, the dyadic product satisfies the following properties:

(αa) ⊗ b = a ⊗ (αb) = α(a ⊗ b)

a ⊗ (b + c) = a ⊗ b + a ⊗ c

(b + c) ⊗ a = b ⊗ a + c ⊗ a

Furthermore, we define the dot product between a dyad and a vector to yield a vector,
according to

(a ⊗ b) · c = a (b · c)
a · (b ⊗ c) = (a · b) c

Using the above rules, we can express the dyadic product of vectors a and b as

a ⊗ b =
3∑

i=1

3∑
j=1

(aiei) ⊗ (
bjej

)

=
3∑

i=1

3∑
j=1

aiei ⊗
(
bjej

)

=
3∑

i=1

3∑
j=1

aibj ei ⊗ ej (8.3)

The dyadic products of the basis vectors ei ⊗ ej are also tensors, and are referred to
as unit dyads. Hence the second-order tensor quantity a ⊗ b consists of the linear
combination of unit dyads ei ⊗ ej (i, j = 1, 2, 3), each weighted by a tensor compo-
nent aibj. In fact, any second-order tensor A can be expressed in terms of the sum of
the product of its components and the nine unit dyads as:

8.2 Tensor Fundamentals 265

A =
3∑

i=1

3∑
j=1

Aij ei ⊗ ej (8.4)

where theAij are the tensor components. FromEq.8.3,we see that in general, a ⊗ b �=
b ⊗ a, since the ijth components of the former and latter are aibj and biaj respectively,
which are not equal.

We can also define third-order tensors using the triadic product of three vectors
a ⊗ b ⊗ c whose 27 components are aibjck (i, j, k = 1, 2, 3). In particular, a third
order tensor C is given by the sum of the product of its components Cijk and the unit
triads as

C =
3∑

i=1

3∑
j=1

3∑
k=1

Cijk ei ⊗ ej ⊗ ek (8.5)

with analogous definitions for even higher-order tensors.1

8.2.2 Indicial Notation

When dealing with cumbersome tensor equations such as Eqs. 8.4 and 8.5, it is
convenient to utilize a shorthand indicial notation2 governed by the following rules:

• Terms with a single index such as xi denote x1, x2, or x3.
• Terms with multiple indices such σij denote σ11, σ12, σ13, σ21, σ22, σ23, σ31, σ32, or

σ33.
• Unless explicitly stated otherwise, repetition of an index in any single term denotes
summation over the range of the index. For example:

xixi ≡ x1x1 + x2x2 + x3x3

and
yi = Aijxj

is shorthand for
yi = Ai1x1 + Ai2x2 + Ai3x3

1The descriptions here and in the following sections pertain to 3D space by default, however
these descriptions are readily generalizable to lower dimensions. For example in 2D, vectors have
two components, second-order tensors have four components, and third-order tensors have eight
components.
2This notation was introduced by Albert Einstein (1879–1955) in his 1916 paper on the General
Theory of Relativity [5].

266 8 Solid Mechanics

which is in turn shorthand for

y1 = A11x1 + A12x2 + A13x3
y2 = A21x1 + A22x2 + A23x3
y3 = A31x1 + A32x2 + A33x3

Using this indicial notation, Eq. 8.4 may be conveniently written as A = Aij ei ⊗ ej
and C = Cijk ei ⊗ ej ⊗ ek respectively. We can also use indicial notation to express
the dot product between a second-order tensorA and a vector b to yield a new vector
c according to

ci = Aikbk (c = A · b) (8.6)

Similarly, we can also define the dot product between two second-order tensors, A
and B, to yield another second-order tensor C according to:

Cij = AikBkj (C = A · B) (8.7)

8.2.3 Tensor Transformation Law

Consider a set of orthogonal unit basis vectors e1, e2, e3. Since these form an orthog-
onal unit set, we can write

ei · ej = δij (8.8)

where δij is the Kronecker delta, defined as

δij =
{
1 i = j
0 i �= j

We can form a new set of basis vectors ē1, ē2, ē3 by an appropriate rotational trans-
formation given by

ēk = Mkiei (8.9)

where we have used here (and from now on) the indicial notation, andMki represents
the cosine of the angle between ēk and ei (the so-called direction cosines). Since this
new set of vectors also forms an orthogonal unit set, we also have

δij = ēi · ēj
= (Mises) · (

Mjrer
)

(using Eq. 8.9)

= MisMjrδsr

= MirMjr (8.10)

8.2 Tensor Fundamentals 267

Any vector a with components ai with respect to the basis e1, e2, e3 will have com-
ponents āi with respect to the basis ē1, ē2, ē3. A relation between these components
may be found using

a = aiei = āsēs = āsMsiei

where we have made use of Eq.8.9 in the last term. Equating the coefficients of ei
in the last two terms above, we have

ai = Msiās

Multiplying both sides byMki and continuing with the usual summation convention,
the above becomes

Mkiai = MkiMsiās
= δksās
= āk

Hence,
āk = Mkiai (8.11)

which follows the same transformation law as Eq.8.9. Vectors are typically expressed
in terms of their components in vector-matrix form as

a =
⎛
⎝
a1
a2
a3

⎞
⎠

However, any set of three scalars arranged in this form will not necessarily yield a
physical vector: they will only form a vector if they satisfy the transformation law
given by Eq.8.11 for a change of coordinate basis.

We can also derive a similar transformation law for a second-order tensorA. With
respect to the basis e1, e2, e3, this tensor has components Aij, and with respect to the
basis ē1, ē2, ē3, it has components Āij. Both representations of the same tensor are
equivalent. Hence,

A = Aij ei ⊗ ej
= Ārs ēr ⊗ ēs
= Ārs (Mriei) ⊗ (

Msjej
)

= ĀrsMriMsj ei ⊗ ej

Equating the coefficients of ei ⊗ ej in the first and last lines above, we obtain

Aij = MriMsjĀrs

268 8 Solid Mechanics

Multiplying both sides of the above by MkiMmj, and continuing with the default
summation convention, we obtain

MkiMmjAij = MkiMmjAijMriMsjĀrs

= MkiMriMmjMsjĀrs

= δkrδmsĀrs

= Ākm

From which we obtain the tensor transformation law:

Ākm = MkiMmjAij (8.12)

We can write a second-order tensor in equivalent vector-matrix form as

A =
⎛
⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎠

Aswith vectors, any set of nine quantities aij will not necessarily form a second-order
tensor. It will be such a tensor only if it satisfies the transformation law of Eq.8.12.
Expressing the components of the rotational transformMij as a matrixM, we obtain
the following matrix equivalent expressions of the above transformation rules:

ā = Ma (From Eq. 8.11)

Ā = MAMT (From Eq. 8.12)

MMT = I (From Eq. 8.10)

where I is the identity matrix.

8.2.4 Tensor Invariants

When a vector a is subjected to an orthogonal coordinate transformation ā = Ma,
we can show that the magnitude-squared of the vector will not change. In terms of
the vector components, this is expressed as:

ā21 + ā22 + ā23 = a21 + a22 + a23

This result can be shown as follows:

8.2 Tensor Fundamentals 269

ā21 + ā22 + ā23 = ā · ā
= (Ma) · (Ma)

= (Ma)T(Ma)

= (aTMT)(Ma)

= aT(MMT)Ta

= aTa

= a21 + a22 + a23

Hence, the expression
I = a21 + a22 + a23 (8.13)

is an example of a vector invariant, that is a scalar property of the vector whose value
remains unchanged for any orthogonal transformation of the coordinate basis.

For any second-order tensor A, we will also determine a set of invariants
whose value remains unchanged under the orthogonal coordinate transformation
Ā = MAMT. In fact, one such set is the three eigenvalues of A as well as any func-
tion of these. To see this, we note that the eigenvalues λ of Ā can be determined by
solving its characteristic equation:

det
(
Ā − λI

) = 0

and using Ā = MAMT, we have:

det
(
MAMT − λI

) = 0

det
(
MAMT − MλIMT

) = 0 (since MMT = I)

det
(
M (A − λI)MT

) = 0

And using the determinant identities det(AB) = detA detB, det(BT) = detB, the
above becomes

detM det (A − λI) detM = 0

and sinceMMT = I, we have (detM)2 = 1. Therefore, we have

det (A − λI) = 0 (8.14)

which is the characteristic equation ofA. Hencewe have shown that the characteristic
equation, and therefore the eigenvalues, of both Ā and A are the same. Expanding
Eq.8.14 by writing out all the components of A, we obtain

270 8 Solid Mechanics

∣∣∣∣∣∣
A11 − λ A12 A13
A21 A22 − λ A23
A31 A32 A33 − λ

∣∣∣∣∣∣
= 0

(A11 − λ)

∣∣∣∣
A22 − λ A23
A32 A33 − λ

∣∣∣∣ − A12

∣∣∣∣
A21 A23
A31 A33 − λ

∣∣∣∣ + A13

∣∣∣∣
A21 A22 − λ

A31 A32

∣∣∣∣ = 0

(A11 − λ) {(A22 − λ) (A33 − λ) − A23A32} − A12 {A21 (A33 − λ) − A23A31} +
A13 {A21A32 − (A22 − λ)A31} = 0

(A11 − λ)
{
A22A33 − A23A32 − λ (A22 + A33) + λ2

}
−

A12 {A21A33 − A23A31 − λA21} + A13 {A21A32 − A22A31 + λA31} = 0

A11A22A33 − A11A23A32 − λ (A11A22 + A11A33) + A11λ
2−

λ (A22A33 − A23A32) + λ2 (A22 + A33) − λ3−
A12A21A33 + A12A23A31 + λA12A21 + A13A21A32 − A13A22A31 + λA13A31 = 0

A11A22A33 − A11A23A32 − A12A21A33 + A12A23A31 + A13A21A32 − A13A22A31−
λ {A11A12 + A11A33 + A22A33 − A23A32 + A12A21 + A13A31} +

λ2 {A11 + A22 + A33} − λ3 = 0

which is a cubic polynomial in λ. Multiplying throughout by −1, we obtain the
characteristic polynomial

λ3 − I1λ
2 + I2λ − I3 = 0

with

I1 = A11 + A22 + A33

I2 = A11A12 + A11A33 + A22A33 − A23A32 − A12A21 − A13A31

I3 = A11A22A33 − A11A23A32 − A12A21A33 + A12A23A31 + A13A21A32 − A13A22A31

As noted above, this characteristic polynomial remains unchanged under orthogonal
coordinate transformation, hence I1, I2 and I3 are also invariants ofA.We can simplify
their expressions further using

traceA = A11 + A22 + A33 = I1
1
2

{
(traceA)2 − traceA2

} = 1
2

{
(A11 + A22 + A33)

2 − (
A2
11 + A12A21 + A13A31+

A21A12 + A2
22 + A23A32 + A31A13 + A32A23 + A2

33

)}

= 1
2 {2A11A22 + 2A11A33 + 2A22A33−
2A12A21 − 2A13A31 − 2A23A32}

= A11A22 + A11A33 + A22A33 −
A12A21 − A13A31 − A23A32

= I2

detA =
∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣

8.2 Tensor Fundamentals 271

= A11

∣∣∣∣
A22 A23

A32 A33

∣∣∣∣ − A12

∣∣∣∣
A21 A23

A31 A33

∣∣∣∣ + A13

∣∣∣∣
A21 A22

A31 A32

∣∣∣∣
= A11 (A22A33 − A23A32) − A12 (A21A33 − A23A31) +

A13 (A21A32 − A22A31)

= A11A22A33 − A11A23A32 − A12A21A33 + A12A23A31 +
A13A21A32 − A13A22A31

= I3

Hence, the three invariants for second order tensors may be written as

I1 = traceA (8.15)

I2 = 1
2

{
(traceA)2 − traceA2} (8.16)

I3 = detA (8.17)

Finally, we note that it is possible to choose an orthogonal transformationM such
that in the new basis ēi, the transformed tensor Ā is diagonal:

Ā =
⎛
⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎠

where the λi values on the diagonal correspond to the eigenvalues of A (and Ā). The
set of basis vectors ēi which render Ā diagonal are known as the principal axes of
A, and the eigenvalues λi are known as its principal values.

8.3 Mechanics Principles

Having covered the concept of tensors, we are now in position to introduce the
mechanical notions of stress and strain, which respectively characterize loads and
deformations in solids.

8.3.1 Stress

Stress is defined as force per unit area, having SI units of Pascals (Pa), which is
equivalent to Nm−2. These are the same units as the physical scalar quantity of
pressure. Stress however is a tensor, as will be clarified further below. When applied
to an external surface of a body, stress is referred to as traction, a vector quantity
proportional to the applied force, as shown in Fig. 8.1, equal to

272 8 Solid Mechanics

Fig. 8.1 Force �F acting on an infinitesimal surface of area �S with outward normal n. The limit
of �F/�S as �S → 0 is defined as the traction

Fig. 8.2 Components of stress acting on the faces of an infinitesimal cube within a solid. The edges
of the cube are aligned with the global Cartesian axes x1, x2, x3. For each stress component, σij , the
first index i denotes the face of the cube perpendicular to the xi axis, and the second index j denotes
the stress component acting on that face along the xj axis

n
T = lim

�S→0

�F
�S

where �F is the applied force and �s is the area of the infinitesimal surface element
having outward normal n. pressure�S, the traction is not necessarily aligned with n,
but can be in any direction.

Traction is also known as the stress vector, whosemagnitude and direction depend

on the orientation of the surface element onwhich it acts (hence then overscript in
n
T).

With this in mind, it is also possible to define an internal stress vector at any point
within a solid for any arbitrary internal surface of normal n through it. Defining
an infinitesimal cube around an internal point, whose edges are aligned with the
Cartesian coordinate axes x1, x2, x3, we can identify nine stress components σij

(i, j = 1, 2, 3) acting on the faces of such a cube, as shown in Fig. 8.2. These can be
arranged to form a stress tensor, expressed in matrix form as

σ =
⎛
⎝

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞
⎠

8.3 Mechanics Principles 273

also known as the Cauchy stress3 or state of stress at any given point within a solid
medium.

Given the Cauchy stress tensor at any point, the stress vector acting on any imag-
inary internal surface of normal n through that point is given by

n
T = σ · n (

n
Ti = σiknk) (8.18)

From considerations of finite angular acceleration, we can show that the stress tensor
must be symmetric: that is, σ12 = σ21, σ13 = σ31, and σ23 = σ32. If the sidelength of
the infinitesimal cube is �x, we can determine the total right-hand moment around
the x1 axis (Mx1) through the centre of the cube (see Fig. 8.3) as follows:

Mx1 =
force components︷ ︸︸ ︷

�2x (2σ23 − 2σ32)×

distance to axis︷ ︸︸ ︷(
�x

2

)

= (σ23 − σ32)�3x

This moment is equal to the applied torque, which is in turn equal moment of inertia
of the cube about the x1-axis multipled by the angular acceleration. For a cube of
density ρ, and sidelength �x, its moment of inertia around the x1-axis is given by
the volume integral:

Ix1 =
∫ �x/2

−�x/2

∫ �x/2

−�x/2

∫ �x/2

−�x/2
ρr2 dx1 dx2 dx3

=
∫ �x/2

−�x/2

∫ �x/2

−�x/2

∫ �x/2

−�x/2
ρ

(
x22 + x23

)
dx1 dx2 dx3

= ρ
�5x

6

Hence the angular acceleration (α) is given by

α = Mx1

Ix1
= 6 (σ23 − σ32)

ρ�2x

In the infinitesimal limit as�x → 0, α will be infinitely large, unless σ23 − σ32 = 0.
Hence, to maintain angular acceleration finite, we must have σ23 = σ32. A similar
analysis can bemade for the other axes of the infinitesimal cube, leading to σ13 = σ31

and σ12 = σ21. Hence, the Cauchy stress tensor is symmetric.
Now that we have defined the stress tensor, we can formulate the PDE governing

stress distribution within a solid using Newton’s second law of motion. To do so,
we consider an arbitrary volume V in a solid medium enclosed by a surface S, as

3Augustin-Louis Cauchy (1789–1857), prolific French mathematician who contributed numerous
works in mathematical analysis and the theory of elasticity.

274 8 Solid Mechanics

Fig. 8.3 Cross-sectional
view along x1-axis of stress
components acting on the
faces of infinitesimal cube of
sidelength �x

shown earlier in Fig. 8.1. In addition, we denote a body force acting per unit volume
throughout the solid as f . An example of such a body force is gravity, whereby
f = ρg, where ρ is the density and g is the acceleration due to gravity. From the
definition of the stress tensor, the total force acting on the surface S due to stress
imparted by the surrounding medium is

F =
∫

S
σ · n dS =

∫

S
σ · dS

Furthermore, the force acting on V due to the body force is

F =
∫

V
f dV

Hence, the total force acting on V is

F =
∫

S
σ · dS +

∫

V
f dV

FromNewton’s second law, the total force acting on a body equals the time-derivative
of its momentum. Denoting the displacement field of points within V as u, the total
momentum of V is given by

p =
∫

V
ρ

∂u
∂t

dV

Newton’s second law of motion for V is then

d

dt

∫

V
ρ

∂u
∂t

dV =
∫

S
σ · dS +

∫

V
f dV

8.3 Mechanics Principles 275

Using the principle of conservation of mass, the total mass of V is constant, hence
ρ dV in the left-most integral above is independent of time. The time-derivative can
then be transferred within the integral to form

∫

V
ρ

∂2u
∂t2

dV =
∫

S
σ · dS +

∫

V
f dV

and making use of the divergence theorem, the surface integral
∫
S σ · dS can be

transformed to
∫
V ∇ · σ dV . The entire equation therefore becomes

∫

V
ρ

∂2u
∂t2

dV =
∫

V
∇ · σ dV +

∫

V
f dV

=
∫

V
(∇ · σ + f) dV

Since this integral holds true for any arbitrary volume V with the solid medium,
the integrands must be identically equal. Hence, we obtain Cauchy’s momentum
equation as

ρ
∂2u
∂t2

= ∇ · σ + f (8.19)

For a body at rest under equilibrium conditions, the left-hand side of Eq. 8.19 is zero,
and we obtain the elastostatics PDE:

∇ · σ + f = 0 (8.20)

8.3.2 Strain

The deformation of a solid body is described by strain. For a 1D object such as an
elastic bar, strain may be simply defined as the change in length relative to the initial
length, or

ε = L − L0
L0

(8.21)

where ε is the strain, L is the new length of the bar after a load is applied, and L0 is
its initial length. For 3D solids, the actual deformation can be far more complex than
this example, with strain consisting of several components forming a second-order
tensor quantity, as will be seen below.

To characterise the complex deformation of a solid, consider two closely-spaced
material ‘particles’ in a solid body, originally located at pointsM and N , with spatial
coordinatesX andX + dX respectively, as shown inFig. 8.4.After somedeformation,
these particles are now displaced to the new points M ′, N ′ with coordinates x and
x + dx. We assume the deformation throughout the solid can be characterised by a

276 8 Solid Mechanics

Fig. 8.4 Displacement of two material particlesM, N toM ′, N ′ due to deformation of a solid body.
The spatial coordinates ofM prior to deformation are X. After deformation, the spatial coordinates
of the same material particle, now at position M ′, are x. Prior to deformation, particle N is offset
from M by a distance �X. After deformation, particle N ′ is offset from M ′ a distance �x

continuous function x(X) that returns the new coordinates of the particle given its
initial coordinates X. The deformation tensor F(X) is defined as

F =
(

∂x
∂X

)
, Fij = ∂xi

∂Xj
, dx = FdX (8.22)

and its inverse

F−1 =
(

∂X
∂x

)
,

(
F−1

)
ij = ∂Xi

∂xj
, dX = Fdx (8.23)

If the original length of segment M-N is denoted by L0, and the post-deformation
length M ′-N ′ by L, then these square lengths are given by

L2
0 = dXTdX

L2 = dxTdx = dXTFTFdX

with the change in square length being:

L2 − L2
0 = dXT

(
FTF − I

)
dX

Defining a new tensorC = FTF as the right Cauchy–Green4 deformation tensor, and
denoting the directional vector of dX as m, with dX = L0m, we have:

4Co-named after George Green (1793–1841), British mathematical physicist. We can also define
the left Cauchy–Green deformation tensor as B = FFT.

8.3 Mechanics Principles 277

L2 − L2
0 = dXT

(
FTF − I

)
dX

= L0mT (C − I)mL0
L2 − L2

0

L2
0

= mT (C − I)m (8.24)

where I is the identity tensor. For small changes in length, we can take the Taylor
expansion of the left-hand side in L about L0 to yield the first-order approximation:

L2 − L2
0

L2
0

≈ 2

L0
(L − L0)

and substituting into Eq.8.24, we obtain

L − L0
L

≈ 1
2m

T (C − I)m

Comparing this expression toEq.8.21,we can define the analogous generalized strain
measure, known as Green’s strain tensor, as

E = 1
2 (C − I) (8.25)

Recalling the definition of F from Eq.8.22 as

F = ∂x
∂X

= ∇x

and defining the displacement vector field throughout the solid body as

u = x − X (8.26)

we obtain:

F = ∇x = ∇ (X + u)

= I + ∇u

which can be substituted into Green’s strain tensor (Eq. 8.25) to yield

E = 1
2 (C − I)

= 1
2

(
FTF − I

)

= 1
2

(∇u + ∇uT + ∇uT∇u
)

278 8 Solid Mechanics

which can be written in indicial notation from the components of displacement ui as

Eij = 1

2

(
∂ui
∂Xj

+ ∂uj
∂Xi

+ ∂ui
∂Xj

∂uj
∂Xi

)
(8.27)

In linear elasticity theory, strains are assumed to be small (∇u 	 1). Green’s strain
tensor can then be approximated by Cauchy’s infinitesimal strain tensor ε as

ε = 1
2

(∇u + ∇uT
)

(8.28)

which can be expressed using indicial notation as

εij = 1

2

(
∂ui
∂Xj

+ ∂uj
∂Xi

)
(8.29)

However in biomechanics, we often deal with large deformations. Green’s strain
(Eqs. 8.25 and 8.27) is therefore used by default in such applications.

Finally, if dV0 denotes the original volume of an infinitesimal material element,
and dV is its corresponding volume after deformation, then we can define the volu-
metric strain as

dV

dV0
= J = det F (8.30)

This relationship can be verified by noting that the volume of a parallelpiped with
edge vectors a, b, c is given by

V = a · (b × c) =
∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
= ∣∣ a b c

∣∣

Hence an infinitesimal element with edges given by da, db, dc has a volume

dV0 = ∣∣ da db dc
∣∣

On deformation, these edges are transformed (using Eq.8.22) into Fda, Fdb, Fdc.
Hence the new volume after deformation is

dV = ∣∣Fda Fdb Fdc
∣∣

= |F| ∣∣ da db dc
∣∣

= det F dV0

from which we readily obtain Eq.8.30. Note that for incompressible solids, there is
no volume change anywhere in the material: consequently det F = 1.

8.3 Mechanics Principles 279

Fig. 8.5 Example of 2D deformation by simple extension along x1

Example 8.1 A 2D square of sidelength 1 is stretched along the x1-axis to a new
sidelength of λ, as shown in Fig. 8.5. Determine the 2D Cauchy and Green strain
tensors.

Answer: To find the strain, we first need to determine the displacement field. The
simplest such field is a linear interpolation between the boundaries along x1, noting
also that there is no displacement along x2, according to:

u1 = (λ − 1) x1
u2 = 0

The components of the Cauchy strain are therefore:

ε11 = 1
2

(
∂u1
∂x1

+ ∂u1
∂x1

)
= λ − 1, ε12 = ε21 = ε22 = 0

Note that in 2D, there are only 4 components of strain. The corresponding Green
strain components are determined from:

E11 = 1
2

(
∂u1
∂x1

+ ∂u1
∂x1

+ ∂u1
∂x1

∂u1
∂x1

)

= 1
2

(
2(λ − 1) + (λ − 1)2

)

= 1
2 ((λ − 1)(2 + λ − 1))

= 1
2 ((λ − 1)(λ + 1))

= 1
2

(
λ2 − 1

)

E12 = E21 = E22 = 0

In matrix form, these strain tensors are written as:

ε =
(

λ − 1 0
0 0

)
E =

(
1
2

(
λ2 − 1

)
0

0 0

)

280 8 Solid Mechanics

Fig. 8.6 Example of 2D deformation by pure shear

It can be seen that the diagonal components of the strain correspond to the components
of pure extension. The off-diagonal components of strain correspond to another type
of deformation - shear - as will be seen in the next example.
�
Example 8.2 A 2D square of sidelength 1 is subjected to the pure shear deformation
shown in Fig. 8.6. Determine the 2D Cauchy and Green strain tensors.

Answer: The displacement field for this deformation may be written as:

u1 = λx2
u2 = λx1

The components of the Cauchy strain are therefore:

ε11 = 1
2

(
∂u1
∂x1

+ ∂u1
∂x1

)
= 0

ε12 = 1
2

(
∂u2
∂x1

+ ∂u1
∂x2

)
= λ

ε21 = 1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
= λ

ε22 = 1
2

(
∂u2
∂x2

+ ∂u2
∂x2

)
= 0

The corresponding Green strain components are:

E11 = 1
2

(
∂u1
∂x1

+ ∂u1
∂x1

+ ∂u1
∂x1

∂u1
∂x1

)
= 0

E12 = 1
2

(
∂u1
∂x2

+ ∂u2
∂x1

+ ∂u1
∂x2

∂u2
∂x1

)
= λ + 1

2λ
2

E21 = 1
2

(
∂u2
∂x1

+ ∂u1
∂x2

+ ∂u2
∂x1

∂u1
∂x2

)
= λ + 1

2λ
2

E22 = 1
2

(
∂u2
∂x2

+ ∂u2
∂x2

+ ∂u2
∂x2

∂u2
∂x2

)
= 0

8.3 Mechanics Principles 281

In matrix form, these strain tensors are therefore:

ε =
(
0 λ

λ 0

)
E =

(
0 λ + 1

2λ
2

λ + 1
2λ

2 0

)

It can be seen that the off-diagonal components correspond to the components of
pure shear. All deformations therefore are a combination of stretch (i.e. extension)
and shear components.
�

8.4 Linear Elasticity

In order to solve for the deformation of a solid body under an applied external
load, Cauchy’s momentum equation (Eq.8.19) or its elastostatics stationary form
(Eq.8.20) are insufficient. What is required is a formulation linking stress to strain
in a given material. Such a formulation is known as a constitutive law. For materials
exhibiting linear elasticity, the constitutive law follows the generalised Hooke’s law5

which linearly relates the stresses to the infinitesimal strains via a tensor of elastic
moduli C:

σij = Cijmnεmn (8.31)

where Cijmn is a fourth-order tensor with 81 constants specific to the material. If
the material is isotropic, these 81 material constants can be reduced to just two
independent parameters, λ andμ, also known as Lamé’s constants,6 with constitutive
law given by:

σij = λεααδij + 2μεij (8.32)

where we have used the indicial notation to signify εαα = trace(ε), and δij is the Kro-
necker delta. Equation8.32 describes the constitutive law for an isotropic Hookean
elastic solid, with λ known as Lamé’s first parameter and μ often referred to as the
shear modulus. Another way of writing this constitutive law is:

εij = 1 + ν

E
σij − ν

E
σααδij (8.33)

where E is Young’s modulus7 (or modulus of elasticity), and ν is Poisson’s ratio8.

5Robert Hooke, 1635–1703, English scientist, mathematician and architect who made numerous
contributions to the fields of physics, biology, astronomy and mechanics.
6Named after the French mathematician Gabriel Léon Jean Baptiste Lamé (1795–1870), who made
important contributions to the mathematical theory of elasticity.
7Thomas Young (1773–1829), English scientist who made contributions to many fields, including
solid mechanics.
8Siméon Denis Poisson (1781–1840), French mathematician and physicist.

282 8 Solid Mechanics

In order to understand the significance of the various terms in Eq.8.33, we note
firstly that stresses and strains can be separated into hydrostatic and deviatoric com-
ponents, such that the hydrostatic stress is akin to an internal pressure in the medium,
containing only equal diagonal entries and the hydrostatic strains containing only
equal diagonal terms that simply scale the shape of the material element That is,

σ = σH + σD, σH
ij = 1

3σααδij

ε = εH + εD, εHij = 1
3εααδij

Note (using indicial summation) that σH
αα = σαα and σD

αα = 0, with similar identities
for the strain tensor. Splitting the stress into these components, Eq. 8.33 can be
written as:

εij = 1 + ν

E
σij − 3ν

E
σH
ij

= 1 + ν

E

(
σH
ij + σD

ij

) − 3ν

E
σH
ij

= 1 − 2ν

E
σH
ij + 1 + ν

E
σD
ij (8.34)

The hydrostatic component of strain can then be determined from

εHij = 1
3εααδij

= 1
3

(
1 − 2ν

E
σH

αα + 1 + ν

E
σD

αα

)
δij

= 1 − 2ν

E
σH
ij (8.35)

wherewehaveusedσD
αα = 0.This equation shows that hydrostatic stresses and strains

are proportional to each other in an isotropicHookean elasticmaterial.Note thatwhen
Poisson’s ratio ν = 0.5, the solid will be incompressible, since the hydrostatic strain
components will be zero regardless of the hydrostatic pressure. To find the deviatoric
strain, we subtract the hydrostatic component from Eq.8.34 to obtain:

εDij = εij − εHij

=
(
1 − 2ν

E
σH
ij + 1 + ν

E
σD
ij

)
−

(
1 − 2ν

E
σH
ij

)

= 1 + ν

E
σD
ij (8.36)

which shows that the deviatoric stresses and strains are also proportional to each
other.

Most materials are well able to withstand hydrostatic stresses and strains, but will
fail when the deviatoric stresses are too high. Since stress is a tensor quantity, it

8.4 Linear Elasticity 283

would be useful if a single representative scalar measure of stress could be used as
an indicator of high deviatoric stress levels. One such representative stress indicator
is the von Mises stress.9 To derive this stress measure, consider the work done per
unit volume in deforming a solid, known as the strain energy, determined from

W =
∫

σij dεij (8.37)

which for a Hookean elastic material evaluates to

W = 1
2σijεij (8.38)

Substituting in the hydrostatic and deviatoric components of stress and strain, the
above becomes:

W = 1
2

(
σH
ij + σD

ij

) (
εHij + εDij

)

= 1
2σ

H
ij ε

H
ij + 1

2σ
H
ij ε

D
ij + 1

2σ
D
ij ε

H
ij + 1

2σ
D
ij ε

D
ij

= 1
2σ

H
ij ε

H
ij + 1

2σ
D
ij ε

D
ij

where we have used the fact that the scalar product AijBij of any hydrostatic and
deviatoric tensor is equal to zero (see Problem 8.1b). This equation shows that the
total strain energy can be separated into hydrostatic and deviatoric components.
Examining the deviatoric strain energy WD component, we can write:

WD = 1
2σ

D
ij ε

D
ij

= 1
2σ

D
ij

(
1 + ν

E
σD
ij

)
(from Eq. 8.36)

= 1 + ν

2E
σD
ij σ

D
ij

We can choose a representative scalar stress value σrep such that WD = 1+ν
2E σ 2

rep.
That is,

σ 2
rep = σD

ij σ
D
ij

Now consider the case of a uniaxial stress in a solid:

σ =
⎛
⎝

σa 0 0
0 0 0
0 0 0

⎞
⎠

9Named after Richard Edler von Mises (1883–1953), German scientist and mathematician who
made important contributions to the fields of solid mechanics, fluid mechanics, statistics and prob-
ability theory.

284 8 Solid Mechanics

In this case, the hydrostatic and deviatoric stresses are given by

σH =
⎛
⎝

σa/3 0 0
0 σa/3 0
0 0 σa/3

⎞
⎠ σD =

⎛
⎝

2σa/3 0 0
0 −σa/3 0
0 0 −σa/3

⎞
⎠

with the representative stress given by

σ 2
rep = 4σ 2

a

9
+ σ 2

a

9
+ σ 2

a

9

= 6σ 2
a

9

∴ σrep = σa

√
2

3

It would, however, would bemore intuitive if the representative stress for this uniaxial
case was σa instead of the above. Scaling the representative stress by

√
3/2 yields the

von Mises stress value:
σVM =

√
3
2σ

D
ij σ

D
ij (8.39)

When simulating structural mechanics problems in COMSOL, the default plot pro-
duced is typically the von Mises stress distribution.

8.4.1 Example: Detecting Tension in a Respirator Strap

Many artificial respirators use a face mask to deliver oxygen, with the mask attached
using straps placed around the head. In order to improve mask design, it is useful
to measure tension in the strap using a simple steel three-pronged sensor shown in
Fig. 8.7 that can be easily applied to the strap in-situ. The middle prong contains a
strain gauge whose electrical resistance changes in proportion to the change in length
of the gauge. As the strap tension increases, the middle prong deflects, leading to a
measurable response in the strain gauge.

Using COMSOL, determine the change in strain gauge length as a function of
strap tension T from 0 to 100N, assuming that the strain gauge is positioned in the
centre of the device. Also, for a strap tension of T = 50N, determine the optimal
placement of the strain gauge along the central device axis that produces a maximum
change in strain gauge length.

Answer: To model this device in COMSOL, we can implement the following steps:

Model Wizard

1. Open the Model Wizard and select the 3D spatial dimension.

8.4 Linear Elasticity 285

Fig. 8.7 Strap tension
measurement device with
strain gauge SG. The strap,
with tension T , is shown as a
dashed outline. Overall
dimensions of the device are
50 × 40 × 0.4mm, with
each fork (or prong) being
10mm wide and 20mm
deep. The strain gauge is
5mm in length

2. In the Select Physics panel, choose Structural Mechanics|Solid Mechanics, and
click “Add”.

3. Click the Study arrow () to open the Select Study panel. Select Stationary, and
click “Done”. This will exit the Model Wizard, displaying the main COMSOL
interface.

Global Definitions

1. Right-click Global Definitions in the model tree and select Parameters. Enter the
following two parameters in the Parameters table of the Settings window:

Name Expression Description
L 17.5 [mm] SG position
T 50 [N] Strap tension

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
length unit to ‘mm’.

2. Right-click Geometry 1 and select Work Plane. Leave all settings to their default
values and click Build Selected (). This creates an xy-workplane located at
z = 0mm.

3. Right-click the Plane Geometry sub-node of the newly-created Work Plane 1
node and select Polygon. Specify the width as 1cm and the height as 10cm. Click
Build Selected (). In the settings window, specify the vertex coordinates by
entering xw values of 0 0 25 25 20 20 10 10 (include spaces between
the entries) and yw values of 0 40 40 0 0 20 20 0. Click Build Selected
() to produce a plot of the 2D geometry in the work plane.

4. Right-click Geometry 1 and select Extrude. In the settings window, specify the
Distances from Plane as 0.4mm. The workplane wp1 object will have already
been specified by default. Click Build Selected () to extrude the work plane
geometry into 3D.

5. Right-click Geometry 1 again and select More Primitives| Point. In the settings
window, specify the x-values as 25, 25, the y-values as L, L+(5 [mm]),

286 8 Solid Mechanics

Fig. 8.8 COMSOL interface for strap tension device example, showing geometry and model tree.
Note that due to device symmetry, only half of the geometry is implemented

and the z-values as 0.4, 0.4mm. These define two points marking the extents
of the strain gauge. Click Build Selected (). Once complete, the geometry and
model tree will look like that shown in Fig. 8.8.

Component Definitions

1. Right-click the Definitions sub-node of Component 1 and select Component
Couplings| Integration. In the Settings window, specify the Geometric entity level
as ‘Edge’, and select edge 24, corresponding to the strain gauge. Leave the Frame
setting to its default Spatial (x, y, z). This defines an integration operator, intop1,
acting over the strain gauge length. It will be used to determine the strain gauge
length during deformation.

2. Right-click the Definitions sub-node of Component 1 again and select Compo-
nent Couplings| Integration a second time. In the Settings window, specify the
Geometric entity level as ‘Point’, and select point 6, corresponding to the upper
inner vertex of the outer device prong. As above, leave the Frame setting to its
default Spatial (x, y, z) value. This defines an integration operator, intop2, acting
over point 6 - this will be used to determine the displacement due to the strap and
hence the tension transmitted to the prongs of the device.

3. Right-click the Definitions sub-node of Component 1 a third time and select
Component Couplings| Integration again. As above, specify the Geometric entity
level as ‘Point’, and this time select point 9, corresponding to the lower vertex
of the inner prong. Leave the Frame setting to its default Spatial (x, y, z) value.
This defines an integration operator, intop3, acting over point 9, which will also
be used to determine the tension transmitted to the prongs of the device.

8.4 Linear Elasticity 287

4. Right-click the Definitions sub-node of Component 1 a final time and select
Variables. Leave the geometric entity level to its default as ‘Entire model’, and
enter the following variables in the settings table:

Name Expression
SG intop1(1)
w1 intop2(w)
w2 intop3(w)
F T*(w1-w2+(0.4 [mm]))/(10 [mm])

Note that the F variable corresponds to the vertical projection of the strap tension,
the latter being diagonally oriented between upper and lower edges on the outer
and middle prongs separated horizontally by 10mm and vertically by 0.4mm.

Materials

1. Right-click theMaterials node of the model tree and select AddMaterial. Expand
the list of in-built materials and select ‘Steel AISI 4300’. Click ‘Add to Compo-
nent’ to add this material to the model. This feature allows ready access to a range
of pre-defined material parameters to be used in various physics applications.

Solid Mechanics

1. Select the Linear Elastic Material 1 sub-node of Solid Mechanics, and leave all
material parameters to their default setting of “From material”.

2. Right-click Solid Mechanics and select the Fixed Constraint boundary condition.
In the settings panel, specify boundary 5 corresponding to the rear boundary of
the device, forcing it to be fixed in place.

3. Right-click Solid Mechanics again and select Edges| Edge Load. In the Settings
window, select edge 16 (i.e. the lower edge on the middle prong), and specify
the x, y, z components of load force per unit length as 0, 0, F/(20 [mm])
respectively. This assumes that the tension from the strap is transmitted over the
entire length of this edge.

4. As above, right-clickSolidMechanics again and select Edges|EdgeLoad. Specify
edge 11 (i.e. the upper inner edge on the outer prong), and specify the x, y, z
components of load force per unit length as 0, 0, -F/(20 [mm]) respectively.

5. Right-click Solid Mechanics a final time and select More Constraints| Symmetry.
Specify boundary 10 as the symmetric boundary.

Study

1. Right-click the Study node and select Parametric Sweep. In the Settings panel,
click the Add parameter button () and specify parameter T. Click the Range
button () and specify start, step and stop values of 0, 5, and 100 respectively.
For the parameter units, enter N.

288 8 Solid Mechanics

Fig. 8.9 von Mises stress distribution in deformed device for a strap tension level of 100N. The
deformation shownhasbeen increasedbyadefault scale factor of≈9.7 tovisualise the displacements
more clearly. The original device edges prior to deformation are outlined in black

2. Select the Step 1: Stationary sub-node of Study 1 and click the ‘Include geomet-
ric nonlinearity’ checkbox. Click Compute () to solve the model. Select the
Progress tab in the Information window to see the solver progress.

Results

1. When the model has completed solving, the Graphics window will display a
default plot of the von Mises stress in the deformed solid at the final parameter
value of T = 100N, similar to that shown in Fig. 8.9.

2. To visualise the full 3D symmetric model solution at this strap tension, click
the Data Sets sub-node of Results and select More Data Sets| Mirror 3D. In the
settings panel, leave the default data set as Study1/Solution 1, as well as quick
YZ-plane for the mirror plane. For the X-coordinate, specify a value of 25mm.
Now right-click the Results node and select 3D Plot Group. In the settings panel,
specify the data set as Mirror 3D 1. Right-click the newly-created 3D Plot Group
2 node and select Surface. In the settings panel, specify the expression to plot as
solid.mises, corresponding to the vonMises stress. Right-click the Surface 1
sub-node of 3D Plot Group 2 and select Deformation. The resulting full-geometry
visualization is shown in Fig. 8.10.

3. To plot the change in strain gauge length against strap tension, right-click the
Results node and select ‘1D Plot Group’. Right-click the 1D Plot Group 3 sub-
node and select ‘Global’. Under the y-Axis Data tab, specify SG-(5 [mm]) as
the expression to plot, with units of ‘nm’.

4. Select the 1D Plot Group 3 sub-node again, and in the Plot Settings window,
check the ‘x-axis label’ and ‘y-axis label’ checkboxes. Specify the x-axis label

8.4 Linear Elasticity 289

Fig. 8.10 von Mises stress distribution for a strap tension of 100N visualised in the full symmetric
3Dmodel representation, even though only half this geometry was actually used to solve the model.
All deformations have been magnified by a scale factor of ≈13.4

Fig. 8.11 Plot of change in strain gauge (SG) length against strap tension. Note that the overall
change in length is negative, indicating a reduction of length due to local compression of thematerial
at the strain gauge

as ‘Strap Tension (N)’ and the y-axis label as ‘Change in SG Length (nm)’. Click
the Plot button () to display the graph, as shown in Fig. 8.11.

Add Study

1. To determine the optimal placement of the strain gauge, right-click the root node
of the model tree and select Add Study. Specify Stationary and click ‘Add Study’.

290 8 Solid Mechanics

Fig. 8.12 Plot of change in strain gauge (SG) length against SG Position. The greatest change in
strain gauge length occurs at a position of 16mm from the end of the middle prong

A newly-created Study 2 node will appear in the model tree. In the Settings panel
for Study 2, click the ‘Include geometric nonlinearity’ checkbox.

2. Right-click Study 2 and select Parametric Sweep. In the Settings panel, click
the Add parameter button () and specify parameter L. Click the Range button
() and specify start, step and stop values of 10, 1, and 30 respectively. For the
parameter units, enter mm.

3. To solve the model again, right-click Study 2 and select compute (). Select the
Progress tab in the Information window to see the solver progress.

4. When the model has finished solving, right-click the Results node and select ‘1D
Plot Group’. Specify the Data set to be ‘Study 2/Parametric Solutions 1’. Right-
click the 1D Plot Group 5 sub-node and select ‘Global’. Under the y-Axis Data
tab, specify SG-(5 [mm]) as the expression to plot, with units of ‘nm’.

5. Select the 1D Plot Group 5 sub-node again, and in the Plot Settings window,
check the ‘x-axis label’ and ‘y-axis label’ checkboxes. Specify the x-axis label as
‘SG Position (mm)’ and the y-axis label as ‘Change in SG Length (nm)’. Click
the Plot button () to display the graph, as shown in Fig. 8.12. It can be seen
that the optimal position for the strain gauge, producing the greatest change in its
length, is 16mm from the end of the prong.

8.5 Linear Viscoelasticity

Viscoelastic materials, including most biological tissues, exhibit a time-dependent
response in their stress or strain response to an applied load, even if this load remains
constant. In a linear viscoelasticmaterial, the deviatoric stress depends linearly on the
deviatoric strain and its time derivatives. One commonmodel of linear viscoelasticity

8.5 Linear Viscoelasticity 291

Fig. 8.13 Generalized Maxwell model withM branches)|

is the generalized Maxwell model,10 as shown in Fig. 8.13, employing a number of
parallel branches, each consisting of a linear spring in series with a dashpot. For
each spring element, stress is proportional to strain, whereas for each dashpot, stress
is proportional to the time-derivative of strain across it. The overall relationship
between deviatoric stress and strain for this model satisfies

σD +
M∑

m=1

cm
∂σD

∂t
= μ0G0ε

D +
M∑

m=1

μiG0cm
∂εD

∂t
,

M∑
m=1

μm = 1

where G0, μm and cm are material parameters, andM is the total number of parallel
branches in the Maxwell model.

8.6 Hyperelastic Materials

Hyperelastic materials are defined by the existence of a strain energy function W ,
analogous to Eq.8.37, as

σD
ij = ∂W

∂Eij
(8.40)

whereW is a function of the Green strain components E11, E22, etc. For example, an
elastic solid whose stress components are linear functions of the strains would have

10After James Clerk Maxwell who, in addition to formulating his famous equations of electromag-
netism (Eqs. 6.1–6.4), also made important contributions to structural mechanics.

http://dx.doi.org/10.1007/978-3-642-54801-7_6
http://dx.doi.org/10.1007/978-3-642-54801-7_6

292 8 Solid Mechanics

a strain energy function of the form

W = q

2
q = a1E

2
11 + a2E

2
22 + a3E

2
33 + 2a4E11E22 + 2a5E22E33 +

2a6E33E11 + a7E
2
12 + a8E

2
23 + a9E

2
31

where a1, a2, . . . , a9 are material parameters. For isotropic hyperelastic materials,
whose properties are independent of direction, the strain energy must be of the form:

W = W (I1, I2, I3)

where I1, I2, I3 are the strain tensor invariants (see Eqs. 8.15 and 8.16), since the
strain energy of such a material is independent of coordinate rotation. We recall from
Sect. 8.2.4 that the principal values of the strain tensor are also invariants. Denoting
these principal strains by E1, E2 and E3, we note that it is possible to rotate the
reference coordinate system so that the strain tensor contains only these diagonal
terms, and is equal to

Ē =
⎛
⎝
E1 0 0
0 E2 0
0 0 E3

⎞
⎠

Since the stress tensor is related to the deformation tensor F by Ē = 1
2

(
F̄
T
F̄ − I

)
,

we readily deduce that

F̄ =
⎛
⎝

√
2E1 + 1 0 0
0

√
2E2 + 1 0

0 0
√
2E3 + 1

⎞
⎠

The diagonal elements of F̄ are known as the principal stretch ratios, and are given by

λ1 = √
2E1 + 1

λ2 = √
2E2 + 1

λ3 = √
2E3 + 1

and are also invariant under coordinate rotation. We can therefore define a new set
of strain invariants as functions of the above principal stretches according to:

I1 = λ2
1 + λ2

2 + λ3
1

I2 = λ−2
1 + λ−2

2 + λ−2
1

I3 = λ1λ2λ3

8.6 Hyperelastic Materials 293

For incompressible materials, we note from Eq.8.30 that det F = 1. From the above,

det F̄ =
∣∣∣∣∣∣
λ1 0 0
0 λ2 0
0 0 λ3

∣∣∣∣∣∣
= 1

∴ λ1λ2λ3 = 1 = I3

Hence, for incompressible materials, I3 = 1. The strain energy function will depend
only on I1 and I2. An example is the Mooney–Rivlin11 strain energy function used
to describe materials such as rubber:

W = C1
(
I1 − 3

) + C2
(
I2 − 3

)
(8.41)

whereC1,C2 are material constants.12 In COMSOL, the incompressibility constraint
is handled by adding an additional volumetric strain term to the strain energy function
according to:

Wvol = 1
2K (J − 1)2 (8.42)

where K is the bulk modulus. When K is sufficiently large, this volumetric strain
energy contributes sufficient additional stress to maintain J = det F = 1 for incom-
pressibility.

Unlike the Mooney–Rivlin hyperelastic description, many biological tissues
exhibit anisotropic mechanical properties. Cardiac muscle, for example, consists
of a microstructure defined by muscle fibres with mechanical properties different
along the fibre direction than in the transverse directions. Defining the local fibre
orientation as a unit vector f with components fi, a suitable transverse anisotropic
hyperelastic strain energy function for myocardium, based on a formulation intro-
duced by Holzapfel et al. [10], is:

W = c0
2

(
Ī1 − 3

) + cf 1
2cf 2

[
ecf 2(Īf −1)

2 − 1
]

(8.43)

with Īf = C̄ijfifj (8.44)

where Ī1 is the first invariant of the isochoric right Cauchy–Green deformation ten-
sor13 C̄ (=J−2/3 FTF), and c0, cf 1, cf 2 arematerial parameters specific tomyocardium.
Since most biological tissues, including myocardium, are incompressible, a

11Named after American rheologists Melvin Mooney (1893–1968) and Ronald Samuel Rivlin
(1915–2005).
12It should also be noted that in some descriptions, the invariants of Eq.8.41 refer to the standard
first and second invariants of the Cauchy–Green deformation tensor.
13So named because this modified deformation preserves local volume. Defining F̄ = J−1/3 F,

where J = det F, then det F̄ = 1, and C̄ = F̄
T
F̄ = J−2/3 FTF.

294 8 Solid Mechanics

volumetric strain energy function such as that of Eq. 8.42 should be added to the
above strain energy when simulating the mechanical behaviour of tissues in COM-
SOL)|.

8.6.1 Example: Myocardial Shear

During contraction of the heart, the left ventricle (LV) ejects approximately 75%
of its blood volume, reducing LV cavity volume primarily through wall-thickening
than by reduction of its outer (epicardial) dimensions. Such a mode of deformation
suggests substantial myocardial shear occurs during the contraction process. In order
to investigate the shear properties of passive LV myocardium, simple shear experi-
ments were undertaken on small 3 × 3 × 3mm cubic blocks of myocardial tissue at
different orientations of underlying local microstructure [3]. Using the transversely
anisotropic hyperelastic constitutive law of Eq.8.43 and the volume strain energy
function Eq.8.42, use COMSOL to simulate the similar myocardial simple shear
experiments shown in Fig. 8.14, plotting shear force F against shear displacements
from 0 to 0.4, normalised against cube sidelength. Use the model parameters given
in Table8.1.

Fig. 8.14 Simple shear experiments on a myocardial cubic block of sidelength 3mm. The orienta-
tion of myocardial fibres in the resting (undeformed) configuration are shown in each case as lines
on the front face. In Shear Experiment 1, the fibres are oriented vertically from top to bottom faces,
whilst in Shear Experiment 2, the fibres are oriented horizontally from left to right

Table 8.1 Parameters for myocardial shear model

Parameter Value Description

ρ 1200kgm−3 Myocardial density

K 1 × 106 kPa Bulk modulus

c0 3kPa Hyperelastic material parameter [10]

cf 1 4.51kPa Hyperelastic material parameter [11]

cf 2 23.4 Hyperelastic material parameter [11]

8.6 Hyperelastic Materials 295

Answer: To model user-defined hyperelastic strain energies in COMSOL, including
the myocardial strain energy function of Eq.8.43, we require COMSOL’s Nonlinear
Structural Materials Module, an optional add-on to the base COMSOL package.
The required simple shear simulations can then be implemented using the following
steps:

Model Wizard

1. Open the Model Wizard and select the 3D spatial dimension.
2. In the Select Physics panel, choose Structural Mechanics|Solid Mechanics, and

click “Add”.
3. Click the Study arrow () to open the Select Study panel. Select Stationary, and

click “Done”. This will exit the Model Wizard, displaying the main COMSOL
interface.

Global Definitions

1. Right-click Global Definitions in the model tree and select Parameters. Enter the
following list of parameters in the Parameters table of the Settings window:

Name Expression Description
d_shear 0.4 Shear displacement
experiment 1 Shear experiment no.
rho 1200 [kg/mˆ3] Density
K 1e6 [kPa] Bulk modulus
c_0 3 [kPa] Material parameter
c_f1 4.51 [kPa] Material parameter
c_f2 23.4 Material parameter

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
length unit to ‘mm’.

2. Right-click Geometry 1 and select Block. Specify the width, depth and height to
be 1.5, 3 and 3mm respectively. Note that due to model symmetry, we will only
be simulating half of the cubic block. Click Build Selected (). Once complete,
the geometry and model tree will look like that shown in Fig. 8.15.

Component Definitions

1. Right-click the Definitions sub-node of Component 1 and select Component
Couplings| Integration. In the Settings window, specify the Geometric entity level
as ‘Boundary’, and select boundary 4, corresponding to the top face of the block.
This integration operator will be used to determine the shear force from the y-
component of calculated traction for each shear displacement.

296 8 Solid Mechanics

Fig. 8.15 COMSOL interface for myocardial simple shear model, showing geometry and model
tree

2. Right-click the Definitions sub-node of Component 1 again and select select
Variables. Leave the geometric entity level to its default as ‘Entire model’, and
enter the following variables in the settings table14:

Name Expression
fx 0
fy if(experiment==1,0,1)
fz if(experiment==1,1,0)
W_1 c_0*(solid.I1CIel-3)
I_f1 solid.CIel11*fx*fx+solid.CIel12*fx*fy
I_f2 solid.CIel13*fx*fz+ solid.CIel12*fy*fx
I_f3 solid.CIel22*fy*fy+solid.CIel23*fy*fz
I_f4 solid.CIel13*fz*fx+solid.CIel23*fz*fy
I_f5 solid.CIel33*fz*fz
I_f I_f1+I_f2+I_f3+I_f4+I_f5
W_f c_f1/(2*c_f2)*(exp(c_f2*(I_f-1)ˆ2)-1)
W W_1+W_f
F 2*intop1(solid.Tay)

where the fx, fy, and fz variables correspond to the x-, y-, and z-components
of the fibre orientation vector fi in Eq.8.44, solid.I1CIel denotes the first
invariant of the isochoric right Cauchy–Green tensor, and solid.CIel11,
solid.CIel12 etc. denote its components.15

14Many of these expressionswill appear orange-coloured inCOMSOLwhenfirst entered, indicating
that some terms have not yet been defined. This is because we have not yet added the hyperelastic
material description, which we will do in the next step.
15Many of COMSOL’s solid mechanics in-built variables include the term ‘el’, which is short
for elastic. COMSOL separates deformations into elastic and inelastic components, with inelastic

8.6 Hyperelastic Materials 297

Solid Mechanics

1. Right-click the Solid Mechanics node and select Material Models|Hyperelastic
Material. In the Settings panel, select domain 1 as the domain to which this
material applies. Under the HyperelasticMaterial tab, select ‘User defined’ from
the Material model dropdown list. Click the ‘Nearly incompressible material’
checkbox. For the isochoric strain energy density, enter the expression W, and
for the volumetric strain energy density, enter 0.5*K*(solid.Jel-1)ˆ2.
The latter corresponds to Eq.8.42, and the former to Eq.8.43. Finally, for the
density, enter the user defined value of rho.

2. Right-click SolidMechanics and select the FixedConstraint boundary condition.
Specify boundary 3 corresponding to the lower face of the block, forcing it to
be fixed.

3. Right-click Solid Mechanics again and select Prescribed Displacement. In the
Settings window, select boundary 4 corresponding to the upper face of the cube.
Click the ‘Prescribed in x direction’ checkbox and specify a value of 0. Click
the ‘Prescribed in y direction’ checkbox and specify a value of d_shear*(3
[mm]).
Finally, click the ‘Prescribed in z direction’ checkbox and specify a value of 0.

4. Right-click SolidMechanics a final time and selectMoreConstraints|Symmetry.
Specify boundary 1, corresponding to the left-face of the block, located at x = 0.
This boundary condition prevents displacements normal to the boundary, as
required for a symmetry-plane.

Mesh

1. Right-click the Mesh 1 node and select More Operations|Mapped. In the Settings
panel, select boundary 6, corresponding to the right face of the block. Right-click
the newly created Mapped 1 sub-node and select Distribution. In the settings
panel, select edges 11 and 12, and specify the fixed number of elements to be 10.

2. Right-click the Mesh 1 node again and select Swept. Specify the source face as
boundary 6 and the destination face as boundary 1. Right-click the Swept 1 sub-
node and select Distribution. Specify domain 1 and the fixed number of elements
to be 5. Click the build all button (()) to display the resulting mesh made up of
cubic elements.

Study

1. Right-click the Study 1 node and select Parametric Sweep. In the Settings panel,
click the Add parameter button () and specify parameter d_shear. Click the
Range button () and specify start, step and stop values of 0, 0.05, and 0.4
respectively. Leave the parameter unit field as empty (i.e. dimensionless unit).
Click ‘Replace’ to add this range to the parameter. Click Add parameter a second

(Footnote 15 continued)
components arising fromnon-elastic effects such as thermal expansion and plasticity. For themodels
presented in this chapter, there are no inelastic effects, hence COMSOL terms such as the elastic
isochoric right Cauchy Green tensor are equivalent to the standard definitions presented.

298 8 Solid Mechanics

time and specify parameter experiment. In the Parameter value list, manually
enter 1, 2 and leave the parameter units field blank. For the Sweep type, select
‘All combinations’ from the dropdown list.

2. Right-click Study 1 and select Show Default Solver. Select Study 1| Solver
Configurations| Solution 1| Stationary Solver 1| Parametric 1. In the Settings
panel, find the ‘Run continuation for’ option, and select ‘Manual’ from the drop-
down list. Specify the continuation parameter as d_shear. For the ‘Reuse solu-
tion from previous step’ option, select ‘Yes’.

3. Select Study 1| Solver Configurations| Solution 1| Stationary Solver 1| Fully
Coupled 1. Under theMethod and Termination tab, specify the Nonlinear method
to be Automatic (Newton) and enter values for the Initial damping factor and
Minimum damping factor as 1e-4 and 1e-8 respectively.

4. Right-click Study 1 again and select compute () to solve the model. Select the
Progress tab in the Information window to see the solver progress.

Results

1. When the model has completed solving, the Graphics window will display a
default plot of the von Mises stress in the deformed solid at the final parameter
values of d_shear and experiment of 0.4 and 2 respectively. To visualise
the full 3D symmetric model solution at this shear, click the Data Sets sub-node
of Results and select More Data Sets| Mirror 3D. In the settings panel, leave the
default data set as Study1/Solution 1, as well as quick YZ-plane for the mirror
plane with the X-coordinate value of 0mm. Now right-click the Results node and
select 3D Plot Group. In the settings panel, specify the data set as Mirror 3D 1.
Right-click the newly-created 3D Plot Group 2 node and select Surface. In the
settings panel, specify the expression to plot as solid.mises, corresponding
to the von Mises stress. Right-click the Surface 1 sub-node of 3D Plot Group 2
and select Deformation. Click on the Scale factor checkbox and specify a scale
factor of 1. Select the Surface 1 sub-node again and under the Range tab in the
Settings, click the Manual color range checkbox and select a maximum value

Fig. 8.16 von Mises stress
distribution in myocardial
block at a normalised shear
displacement of 0.4 for
Simple Shear Experiment 2

8.6 Hyperelastic Materials 299

Fig. 8.17 Simulated myocardial shear force against normalised shear displacement in LV tissue
block for the two simple shear experiments described

of 1e4. Click the Plot button (). The resulting plot of von Mises stress on the
full-geometry visualization is shown in Fig. 8.16.

2. To plot the shear force against displacement for both experiments, right-click the
Results node and select ‘1D Plot Group’. Right-click the 1D Plot Group 3 sub-
node and select ‘Global’. Under the y-Axis Data tab, specify F as the expression
to plot, with units of ‘mN’.

3. Select the 1D Plot Group 3 sub-node again, and in the Plot Settings window,
check the ‘x-axis label’ and ‘y-axis label’ checkboxes. Specify the x-axis label
as ‘Shear Displacement’ and the y-axis label as ‘Shear Force (mN)’. Under the
Legend tab, specify the legend position as ‘Upper Left’. Click the Plot button
() to display the graph, as shown in Fig. 8.17.

The simple shear results from this model (see Fig. 8.17) indicate that myocardial
tissue is mechanically anisotropic, with greater forces produced in shear modes
where fibres are actually stretched (i.e. shear experiment 1), as has been verified
experimentally [3].

8.7 Further Reading

Excellent texts on solid mechanics with some biomechanics examples, are those of
Fung [6–8] and Holzapfel [9]. Even more concise and readable texts, although not
biomechanics-based, are those of Spencer [12], Chadwick [2], andAtkin and Fox [1].

300 8 Solid Mechanics

A thorough coverage of the principles of continuum mechanics applied to a diverse
range of physical phenomena, with detailed problems and worked solutions, is the
two-part volume edited by Eglit and Hodges [4].

Problems

8.1 (a) Show that the triple scalar product (a × b) · c is given by

(a × b) · c =
∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
= εijkaibjck

where εijk is the permutation symbol (a third-order tensor) defined by

ε123 = ε231 = ε312 = 1

ε321 = ε132 = ε213 = −1

εijk = 0 (if any two of i, j, k are equal)

(b) Verify that σH
ij ε

D
ij = σD

ij ε
H
ij = 0.

8.2 Determine the Cauchy and Green strain tensors for the following deformations:

(a) Simple shear:

(b) Uniform inflation:

8.7 Further Reading 301

(c) Rotation:

8.3 Consider the left ventricle to be approximated by a spherical shell with inner
and outer radii A and B. A uniform pressure is applied to the endocardial (i.e. inner)
surface such that the ventricle passively expands to new inner and outer radii of a
and b respectively.
(a) Assuming that the myocardium is incompressible, find b as a function of a, A,
and B.
(b) Determine the resulting Cauchy strain tensor in the ventricular wall.

8.4 A 100 × 100 × 1mm square piece of rabbit skin tissue is subjected to a tensile
test in the laboratory as shown schematically below:

Assume that the constitutive law of the skin tissue obeys a Mooney–Rivlin relation-
ship with material parameters C1 and C2 equal to 20kPa, density ρ = 1100kgm−3

and bulk modulus K = 1 × 106 kPa. Assume that the leftmost edge of the tissue is
clamped (fixed) in place, and that the rightmost edge is subjected to a prescribed
displacement only in the x-direction. All other edges are free.
(a) Use COMSOL’s stationary solver to simulate this tensile test and plot the applied
force magnitude F (in mN) against skin displacement from 0 to 50mm.
(b) Plot the spatial distribution of strain energy in the deformed skin sample at its
maximum displacement of 50mm.

8.5 The left ventricle of the heart can be approximated by a circular half-ellipsoidal
shell, with endocardial semi-axes of aendo and bendo, and epicardial semi-axes of aepi
and bepi, as shown in the figure below:

302 8 Solid Mechanics

Assuming the myocardium follows a two-parameter Mooney–Rivlin strain energy
formulation, use COMSOL to simulate passive inflation of the venticle using a 2D
axisymmetric implementation, and determine endocardial volume inml as a function
of filling pressures from 0 to 50mmHg. Use the model parameters in the table below,
and employ a stationary solver for each pressure. Assume the upper boundary (base)
of the ventricle is held fixed, and take the external pressure on the epicardial surface
to be zero.

Parameter Value Description
aendo 2cm Endocardial radius
aepi 3 cm Epicardial radius
bendo 6cm Endocardial long semi-axis
bepi 7 cm Epicardial long semi-axis
ρ 1200kgm−3 Myocardial density
K 1 × 106 kPa Bulk modulus
C1 3kPa Mooney–Rivlin material parameter
C2 5kPa Mooney–Rivlin material parameter

References

1. Atkin RJ, Fox N (2005) An introduction to the theory of elasticity, Dover edn. Dover, Mineola
2. Chadwick P (1999) Continuum mechanics: concise theory and problems, Dover edn. Dover,

Mineola
3. Dokos S, Smaill BH, Young AA, LeGrice IJ (2002) Shear properties of passive ventricular

myocardium. Am J Physiol Heart Circ Physiol 283:H2650–H2659
4. Eglit ME, Golublatnikov AN, Kamenjarzh JA, Karlikov VP, Kulikovsky AG, Petrov AG, Shik-

ina IS, Sveshnikova EI (1996) In: Eglit ME, Hodges DH (eds) Continuum mechanics via

References 303

problems and exercises. World scientific series on nonlinear science. Series A, vol 19. World
Scientific, Singapore

5. Einstein A (1916) The foundation of the general theory of relativity (Tranlated by Engel A).
In: Kox AJ, Klein MJ, Schulmann R (eds) The collected papers of Albert Einstein. The Berlin
years: Writings, 1914–1917, vol 6, Princeton University press, Princeton, pp 146–200 (1997)

6. Fung YC (1984) Biomechanics: circulation, 2nd edn. Springer, New York
7. Fung YC (1994) A first course in continuum mechanics, 3rd edn. Prentice-Hall, Upper Saddle

River
8. Fung YC, Tong P (2001) Classical and computational solid mechanics. World Scientific, Sin-

gapore
9. HolzapfelGA (2000)Nonlinear solidmechanics: a continuumapproach for engineering.Wiley,

Chichester
10. Holzapfel G, Gasser T, Ogden R (2000) A new constitutive framework for arterial wall mechan-

ics and a comparative study for material models. J Elast 61:1–48
11. Schmid H, Wang YK, Ashton J, Ehret AE, Krittian SBS, Nash MP, Hunter PJ (2009) Myocar-

dial material parameter estimation: a comparison of invariant based orthotropic constitutive
equations. Comput Meth Biomech Biomed Eng 12:283–295

12. Spencer AJM (1980) Continuum mechanics. Longman, Burnt Mill

Chapter 9
Fluid Mechanics

Fluid mechanics deals with the motion of fluids and the forces acting on them, where
fluid refers to both liquids and gases. Numerically solving the equations of fluid
mechanics can be difficult, requiring finer mesh discretization than other physics
applications such as diffusion or electric current flow. In biomedical engineering,
examples of fluid mechanics modelling include:

• Simulating the flow of blood in the heart and circulation.
• Flow of air in the pulmonary tracts.
• Peristaltic motion of lymph fluid.
• Prosthetic devices such as artificial heart valves, ventricular assist pumps, drug
eluting stents and implantable drug delivery devices.

9.1 Fluid Motion

In contrast to solids, where deformation andmovement is described in terms of strain
and displacement, the motion of fluids is described by velocity and strain rate. For
continuous flow, let a particle of fluid located at (x1, x2, x3) have components of
velocity

v1(x1, x2, x3), v2(x1, x2, x3), v3(x1, x2, x3)

then the strain rate tensor is defined as

Vi j = 1
2

(
∂v j
∂xi

+ ∂vi
∂x j

)

In the case of solidmechanics, strainwas linked to stress via the particular constitutive
law of the material. In the case of fluids, the constitutive law links stress to strain rate.

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7_9

305

306 9 Fluid Mechanics

Fig. 9.1 Concept of viscosity for the case of shear flow with a uniform velocity gradient. In this
case, the fluid velocity increases linearly with y. The viscous stress in the fluid, τ , is proportional
to the velocity gradient dv/dy, with the coefficient of proportionality equal to the viscosity μ

The most common constitutive law for fluids is that for the incompressible, isotropic
case:

σi j = −pδi j + 2μVi j (9.1)

where σi j are the components of stress, p denotes the pressure, Vi j atr the components
of strain rate, δi j is the Kronecker delta, and μ denotes the viscosity coefficient. If
μ is a constant, then the fluid is Newtonian.1 Viscosity can be understood as akin to
internal friction, in which stress is induced whenever regions of fluid move relative
to each other, as illustrated in Fig. 9.1.

When fluid in motion has a strain rate that remains constant with time, the flow
is defined as steady. When the fluid is moving in parallel layers, with no penetration
between layers, the flow is said to be laminar or streamline.

9.1.1 Example: Laminar Flow Through a Circular Tube

Consider the case of a fluid flowing axially along a long cylindrical tube such as,
for example, blood travelling through an artery. Let the diameter of the tube be D,
its length L , and the viscosity of fluid within it μ. Furthermore, there are pressures
acting at the upstream and downstream ends of the tube, Pup and Pdown , that cause
the fluid to flow.

To analytically determine the steady-state fluid motion, we note that due to radial
symmetry, and since the diameter of the tube is constant, the steady-state fluid velocity
will only be a function of radial position. We can represent such fluid motion with a
series of sliding tubes as shown in Fig. 9.2, each tube travelling a distance in a given
time proportional to its own velocity. Consider one such sliding tube of radius r . The
three forces acting on the surface boundaries of this tube will be:

1. the force on the upstream end due to the upstream pressure. This force acts in a
positive direction along the axis of the tube and is given by Fup = πr2Pup.

1Named after English physicist andmathematician Sir IsaacNewton (1642–c.1726)who, in addition
to formulating his laws of motion, gravitational action and other foundational principles of physics
and mathematics, also introduced the concept of fluid viscosity.

9.1 Fluid Motion 307

Fig. 9.2 Fluid flow in a
circular tube, where the fluid
layers are represented by
concentric cylinders, the
length of each proportional
to the axial velocity v of fluid
in that layer

2. the force on the downstream end due to the downstream pressure. This acts in a
negative direction along the axis of the tube and is given by Fdown = −πr2Pdown .

3. the traction acting on the curved surface of the tube, due to the viscous force from
the relative velocities of layers sliding past each other. Using the definition given
in Fig. 9.1, this viscous force equals the viscous stress τ multiplied by the curved
surface area, or

Fviscous = 2πr Lτ

= 2πr Lμ
dv

dr

where v is the fluid velocity and the positive sign of the force indicates that a
positive dv/dr , that is the layer surrounding the inner tube is moving with higher
velocity, then this viscous force will act to increase the velocity of this inner layer.

Adding the above three forces together yields the total force on the inner tube. For
steady-state flow, the fluid is not accelerating, and the total force must be zero. That
is,

πr2Pup − πr2Pdown + μ
dv

dr
2πr L = 0

Denoting the pressure differential between the upstream and downstream ends as
�P(= Pup − Pdown), and dividing throughout by πr , we have:

r�P + μ
dv

dr
2L = 0

dv

dr
= −r�P

2μL

v = −r2�P

4μL
+ C

whereC is a constant of integration. Its value can be determined from the experimen-
tal observation that fluids tend to ‘stick’ to solid boundaries, such that the velocity of
the fluid is zero at the boundary. This boundary state is known as a no-slip boundary
condition. If the diameter of the tube is D, then this condition states that at r = D/2,
v = 0. This implies that C = D2�P/16μ, or

308 9 Fluid Mechanics

v = �P

4μL

(
D2

4
− r2

)
(9.2)

In other words, the fluid follows a parabolic velocity profile in the tube (see also
Eq.7.7 of Sect. 7.1.4), with maximum axial velocity corresponding to r = 0 at the
centre of the tube.

We can also use COMSOL to simulate this system to confirm that the velocity
profile is indeed parabolic.2 In particular, we will utilize an axisymmetric geometry
with the following parameters: D = 2 cm, L = 15 cm, μ = 3.5mPa s, and �P =
100 Pa. To setup the model in COMSOL, implement the following steps:

Model Wizard

1. Open the Model Wizard and select the 2D axisymmetric spatial dimension.
2. In the Select Physics panel, choose Fluid Flow|Single-Phase Flow|Laminar Flow.

Click ‘Add’, and leave variables u, v, w as the default dependent variables for the
velocity field components, and p as the default dependent variable for pressure.

3. Click the Study arrow () to open the Select Study panel. Select Stationary, and
click “Done”. This will exit the Model Wizard, displaying the main COMSOL
interface.

Global Definitions

1. Right-click Global Definitions in the model tree and select Parameters. Enter the
following details in the Parameters table of the Settings window:

Name Expression Description
D 2 [cm] Diameter
L 15 [cm] Length of tube
mu 3.5 [mPa*s] Viscosity coefficient
rho 1000 [kg/mˆ3] Density
Delta_P 100 [Pa] Pressure differential

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
default length unit to ‘mm’.

2. Right-click Geometry 1 and select Rectangle. Specify the width and height as
D/2 and L respectively. Click Build Selected ().

2The Navier-Stokes equations that COMSOL solves for will be described more fully in the next
section.

http://dx.doi.org/10.1007/978-3-642-54801-7_7

9.1 Fluid Motion 309

Component 1 Definitions

1. Right-click the Definitions sub-node of Component 1 and select Variables. Define
a single variableV_thwith expressionDelta_P/(4*mu*L)*(Dˆ2/4-rˆ2)
to denote the theoretical velocity profile given by Eq.9.2.

Laminar Flow

1. Select the Fluid Properties 1 sub-node of Laminar Flow. In the Settings panel, set
the fluid density and dynamic viscosity fields to the user-defined values of rho
and mu respectively.

2. Right click the Laminar Flow node to add an ‘Inlet’ boundary condition. Select
boundary 2 (i.e. the lower boundary) and specify the boundary condition type as
Pressure with a pressure value of Delta_P.

3. Right click the Laminar Flow node again to add an ‘Outlet’ boundary condition.
Select boundary 3 (i.e. the upper boundary). Leave the boundary condition type
to the default value of Pressure, and leave the pressure value at 0.

Mesh

1. Select the Mesh 1 node of the model tree. In the Settings panel, specify the
element size as ‘Extra Fine’. This will create an extra fine mesh consisting of
almost 108,000 elements!

Study

1. Right-click the Study 1 and select Compute () to solve the model. COMSOL
will display the default plot of fluid velocity magnitude, similar to that shown
in Fig. 9.3 (left). Clicking on the Velocity (spf) 1 volume plot (under the Results
node of the model tree) will generate a 3D representation of the axisymmetric
velocity profile, as shown also in Fig. 9.3.

Results

1. Right-click the Data Sets sub-node of Results in the model tree, and select Cut
Line 2D. In the Settings window, specify the (r, z) coordinates of the two points
defining the cut line as r = 0, z = L/2 and r = D/2, z = L/2. This corresponds to
a line perpendicular to the axis of the tube at a position half-way along it.

2. Right-click the Results node and select ‘1D Plot Group’. Right-click the newly-
created 1D Plot Group 4 sub-node and select ‘Line Graph’. In the settings panel,
specify the Data set as ‘Cut Line 2D 1’. For the expression to plot, enter w,
corresponding to the z- (i.e. axial) component of velocity. In the Legends tab,
select the Show legends checkbox, and specify ‘Manual’. Enter the expression
‘Computed’.

3. Right-click the 1D Plot Group 4 node again and select Line Graph. As above,
enter the Data set as ‘Cut Line 2D 1’. This time, specify the expression to plot
as V_th. In the Legends tab, select the Show legends checkbox, and specify
‘Manual’. Enter the expression ‘Theoretical’.

310 9 Fluid Mechanics

Fig. 9.3 Steady-state
velocity magnitude in
circular tube, as computed
by COMSOL in the 2D
axisymmetric geometry
(left), and in the 3D
representation (right),
obtained by rotating the
axisymmetric 2D data about
its axis. Dimensions shown
are in mm

Fig. 9.4 Laminar parabolic
velocity profile in circular
tube as computed by
COMSOL, compared with
the theoretical profile given
by Eq.9.2

4. Select the 1D Plot Group 4 node and click the x-axis and y-axis label checkboxes.
Enter the x label as ‘Radial Position (mm)’ and the y label as ‘Axial Velocity
(m/s)’. Click the Plot button (). The resulting plot should be similar to that
shown in Fig. 9.4.

This simulation in COMSOL verifies that the laminar fluid velocity profile in a
circular tube is indeed parabolic, although the number of mesh elements required for
an accurate solution is large. It is left as an exercise for the reader to perform a mesh
convergence analysis on this simple model, plotting the error in the axial velocity
component as a function of maximum element size (see Problem 9.2).

9.2 Navier-Stokes Equations 311

9.2 Navier-Stokes Equations

To determine the equations governing motion of an incompressible Newtonian fluid,
we first introduce two spatial frameworks for defining time derivatives of various
quantities such as pressure and temperature in a moving fluid. This is necessary
because, in a moving fluid, such quantities will generally vary in a complex manner
with respect to both time and space, and it will be convenient to switch between two
separate viewpoints for spatial position.

Consider a scalar field f that represents some quantity of interest in a moving
fluid. Denote the spatial coordinates of each point in the fluid by x relative to a fixed
global Cartesian set of axes. We can characterise the time derivative of f according
to the following two frameworks:

• the Eulerian framework, in which we take the time derivative holding x fixed, so
that ∂ f/∂t represents the time rate of change of f at a fixed point in space.

• the Lagrangian framework, where we describe the rate of change of f as viewed
by a given ‘particle’ in the fluid. Labelling each fluid particle with its starting
position X, we can parameterise the scalar field as f (X, t). We then take the time
derivative of f holdingX fixed: that is, the time derivative - D f/Dt - as viewed by
a particle flowing along with the fluid, where D/Dt is referred to as the material
derivative.

We can transform between these two frameworks by utilizing the chain rule as fol-
lows:

D f

Dt
= ∂ f

∂t
+ dx1

dt

∂ f

∂x1
+ dx2

dt

∂ f

∂x2
+ dx3

dt

∂ f

∂x3

= ∂ f

∂t
+ u1

∂ f

∂x1
+ u2

∂ f

∂x2
+ u3

∂ f

∂x3

which can be simplified to
D f

Dt
= ∂ f

∂t
+ u · ∇ f (9.3)

where x = (x1, x2, x3)T and u = (u1, u2, u3)T is the fluid velocity. Equation9.3
also holds for vector fields. For example, acceleration in the Lagrangian frame of
reference is related to its description in the Eulerian frame according to:

a = Du
Dt

= ∂u
∂t

+ u · ∇u (9.4)

where a is the acceleration and u is the velocity.
Using this concept of the material derivative, we can apply Newton‘s second law

of motion to regions within a fluid: this law states that the time rate of change of
momentum equals the applied force. In our case, we consider a region of fluid V
enclosed by a surface S. In this context, V is understood to be part of a small region

312 9 Fluid Mechanics

within a larger overall fluid domain. Newton’s second law of motion applied to V
yields:

D

Dt

∫

V
ρu dV =

∫

S

n
T dS +

∫

V
f dV

where ρ is the fluid density, u is the velocity,
n
T is the stress vector acting on the

region of S with outward normal direction n, and f is the body force per unit volume,

typically due to gravity. Noting that
n
T = σ · n, we can substitute this into the above,

employing the divergence theorem (Eq.4.5), to obtain:

D

Dt

∫

V
ρu dV =

∫

V
∇ · σ dV +

∫

V
f dV

Furthermore for an incompressible fluid, ρ will be constant. We can therefore take
the material derivative of the first term inside its integral to obtain

∫

V
ρ
Du
Dt

dV =
∫

V
∇ · σ dV +

∫

V
f dV

Since this must hold for any arbitrary volume V in the fluid, then the integrands on
both sides of the equation must be equal. Namely,

ρ
Du
Dt

= ∇ · σ + f (9.5)

We now recall the constitutive law for an incompressible Newtonian fluid (Eq. 9.1):

σi j = −pδi j + 2μVi j

where Vi j is the strain rate tensor satisfying

Vi j = 1
2

(
∂u j

∂xi
+ ∂ui

∂x j

)

The above can also be written in matrix form as

V = ∇u + (∇u)T

2
σ = −pI + 2μV

= −pI + μ
[∇u + (∇u)T

]

where I is the identity matrix and σ , V are the stress and strain rate respectively.
Substituting these expressions into Eq.9.5, and employing the material derivative
expression (Eq.9.3), we obtain:

http://dx.doi.org/10.1007/978-3-642-54801-7_4

9.2 Navier-Stokes Equations 313

ρ

(
∂u
∂t

+ u · ∇u
)

= ∇ · (−pI + μ
[∇u + (∇u)T

]) + f (9.6)

We note that for a Newtonian fluid, the viscosity μ is constant. Furthermore,

∇ · (pI) =
⎛
⎝

∂
∂x
∂
∂y
∂
∂z

⎞
⎠ ·

⎛
⎝
p 0 0
0 p 0
0 0 p

⎞
⎠ =

⎛
⎜⎜⎝

∂p
∂x
∂p
∂y
∂p
∂z

⎞
⎟⎟⎠ = ∇ p

In addition, since the fluid is incompressible, we have from the equation of continuity
for incompressible flow (see Eq.4.11 of Sect. 4.5):

∇ · u = 0

or
∂u1
∂x

+ ∂u2
∂y

+ ∂u3
∂z

= 0 (9.7)

With this result, we can also determine the remaining quantities of Eq.9.6, namely:

∇ · ∇u =
⎛
⎜⎝

∂
∂x
∂
∂y
∂
∂z

⎞
⎟⎠ ·

⎛
⎜⎝

∂u1
∂x

∂u1
∂y

∂u1
∂z

∂u2
∂x

∂u2
∂y

∂u2
∂z

∂u3
∂x

∂u3
∂y

∂u3
∂z

⎞
⎟⎠ =

⎛
⎜⎝

∂2u1
∂x2 + ∂2u1

∂y2 + ∂2u1
∂z2

∂2u2
∂x2 + ∂2u2

∂y2 + ∂2u2
∂z2

∂2u3
∂x2 + ∂2u3

∂y2 + ∂2u3
∂z2

⎞
⎟⎠ =

⎛
⎝

∇2u1
∇2u2
∇2u3

⎞
⎠ = ∇2u

and

∇ · (∇u)T =
⎛
⎜⎝

∂
∂x
∂
∂y
∂
∂z

⎞
⎟⎠ ·

⎛
⎜⎝

∂u1
∂x

∂u2
∂x

∂u3
∂x

∂u1
∂y

∂u2
∂y

∂u3
∂y

∂u1
∂z

∂u2
∂z

∂u3
∂z

⎞
⎟⎠ =

⎛
⎜⎜⎝

∂2u1
∂x2 + ∂2u2

∂y∂x + ∂2u3
∂z∂x

∂2u1
∂x∂y + ∂2u2

∂y2 + ∂2u3
∂z∂y

∂2u1
∂x∂z + ∂2u2

∂y∂z + ∂2u3
∂z2

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

∂
∂x

[
∂u1
∂x + ∂u2

∂y + ∂u3
∂z

]

∂
∂y

[
∂u1
∂x + ∂u2

∂y + ∂u3
∂z

]

∂
∂z

[
∂u1
∂x + ∂u2

∂y + ∂u3
∂z

]

⎞
⎟⎟⎟⎟⎠

=
⎛
⎝
0
0
0

⎞
⎠ = 0

where we have made use of Eq.9.7. Substituting all the above relationships into
Eq.9.6, we obtain:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p + μ∇2u + f (9.8)

which represents a vector equation in the components of velocity u and the scalar
pressure p. Equation9.8 represents a system of PDEs known as the incompressible

http://dx.doi.org/10.1007/978-3-642-54801-7_4

314 9 Fluid Mechanics

Navier-Stokes equations.3 In 3D, there are four unknowns to be solved for (i.e. the
components of u and p) in only three equations. Therefore, an additional equation is
needed, and this is provided by the equation of continuity (Eqs. 4.11 and 9.7). Hence,
the full set of equations governing motion of incompressible Newtonian fluids, as
solved in COMSOL’s single phase laminar flow physics are:

ρ

total
acceleration︷ ︸︸ ︷⎛

⎜⎜⎜⎜⎝
∂u
∂t︸︷︷︸

unsteady
acceleration

+ u · ∇u︸ ︷︷ ︸
convective
acceleration

⎞
⎟⎟⎟⎟⎠

= −∇ p︸ ︷︷ ︸
pressure
gradient

+ μ∇2u︸ ︷︷ ︸
viscosity

+ f︸︷︷︸
body
force

∇ · u = 0 (incompressibility)

Note that the total acceleration of the fluid consists of both unsteady and convec-
tive components. Unsteady acceleration occurs when the fluid velocity at a point in
space is changing with time. In some instances of laminar flow, the fluid may still
be undergoing acceleration even if ∂u/∂t is zero everywhere. To understand this
phenomenon, consider the steady-state case of an incompressible fluid flowing in
a tube with a narrowing at some point along its length. At the narrowing section,
the cross-sectional area of the tube is lower, resulting in a greater fluid velocity to
maintain the required incompressible volumetric flow rate. If the fluid velocity at
each point in space is not changing with time, the flow is steady, and ∂u/∂t = 0.
That is, in the Eulerian framework, the acceleration is zero. However, from the La-
grangian point of view of an individual fluid particle, the fluid will accelerate as it
travels through the occlusion. This component of acceleration is referred to as the
convective component u · ∇u, and occurs due to the spatial gradient of velocity.

9.2.1 Example: Drug Delivery in a Coronary Stent Revisited

In this example, we revisit the coronary stent model described in Sect. 7.1.4, in which
we simulate the concentration of drug eluted from a stent in a coronary artery. In this
case, however, we will incorporate the mechanics of fluid flow around the individual
stent struts, and not assume the fluid is flowing in a prescribed velocity profile along
a continuum uniform boundary representing the stent. We will use similar model
parameters to the former example: namely the maximum blood velocity along the
arterial axis is 50 cm−1), the arterial radius is 1mm, the length of the arterial segment
is 9mm and the length of the stent is 6mm.Although the stent wiremesh is a complex
structure, we will make some simplifications for computational efficiency: namely,

3Named after French engineer andmathematician Claude-Louis Navier (1785–1836), and the Irish-
born mathematical physicist Sir George Gabriel Stokes (1819–1903).

http://dx.doi.org/10.1007/978-3-642-54801-7_4
http://dx.doi.org/10.1007/978-3-642-54801-7_7

9.2 Navier-Stokes Equations 315

Fig. 9.5 Simplified axisymmetric stent model geometry showing cylindrical arterial segment and
stent strut hoops (dashed)

we take the overall stent geometry to be axisymmetric, with individual stent struts
represented by regularly-spaced ‘hoops’ along the artery. Each strut consists of a
square cross-section 100µm in sidelength, spaced 0.5mm apart centre-centre. The
overall geometry is shown in Fig. 9.5. As in the earlier example, we take the diffusion
coefficient of the drug to be 2.56 × 10−4 cm2 min−1, and the initial total content of
drug in the stent as 49.2nmol. We also assume mono-exponential decay of stent
drug-content

M = M0 exp(−kdrugt)

where M0 is the initial content with a drug release rate kdrug of 0.2 hr−1. For the
blood parameters, we use a density of 1100 kgm−3 and a viscosity of 3.5mPa s.

To implement this model in COMSOL, we take advantage of the weakly-coupled
physics and solve first for the fluid flow, then use this solution to solve for the
diffusion/convection of the drug. To implement the desired axial velocity, we impose
a uniform pressure boundary condition on the upstream end, using a global PDE to
determine the appropriate pressure value as follows:

dP

dt
= Gin (wmax − win)

where P is the upstream pressure, wmax is the specified fluid axial velocity, wmodel

is the actual fluid axial velocity determined by the model, and Gin is a gain factor,
nominally set to a value of 1000Pam−1. We expect that in the steady-state, P will
adjust itself so that dP/dt = 0 and wmodel = wmax , as desired. To implement this
model in COMSOL, we can use the following steps:

Model Wizard

1. Open the Model Wizard and select the 2D axisymmetric spatial dimension.
2. In the Select Physics panel, choose Fluid Flow|Single-Phase Flow|Laminar Flow,

and click ‘Add’. Choose also Chemical Species Transport| Transport of Diluted
Species, and click ‘Add’ again. Finally, choose Mathematics|ODE and DAE
Interfaces|Global ODEs and DAEs and click ‘Add’ a third time. There will now
be three physics interfaces that will be added to the model.

3. Click the Study arrow () to open the Select Study panel. Select Time De-
pendent, and click “Done”. This will exit the Model Wizard, displaying the main
COMSOL interface.

316 9 Fluid Mechanics

Global Definitions

1. Right-click Global Definitions in the model tree and select Parameters. Enter the
following details in the Parameters table of the Settings window:

Name Expression Description
w_max 50 [cm/s] Maximum blood velocity
D_drug 2.56e-4 [cmˆ2/min] Drug diffusion coefficient
k_drug 0.2 [1/hour] Drug release rate
M0 49.2 [nmol] Initial stent drug content
rho 1100 [kg/mˆ3] Blood density
mu 3.5 [mPa*s] Blood viscosity
G_in 1000 [Pa/m] Input pressure gain factor

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
default length unit to ‘mm’.

2. Right-click Geometry 1 and select Rectangle. Specify the width and height as
1mm and 9mm respectively. Click Build Selected ().

3. Right-click Geometry 1 again and select Square. In the Settings panel, enter
0.1mm for the sidelength, and for the corner position, enter 0.9mm and 1.45mm
in the r and z fields respectively. Click Build Selected ().

4. Right-click Geometry 1 again and select Transforms|Array. In the Settings panel,
specify the input object as the square strut (sq1), the Array type as Linear, and
the Size as 13. This specifies that the strut will be copied 13 times and placed in
a linear array. For the Displacement settings, enter 0 and 0.5mm into the r and z
fields respectively. Click Build Selected ().

5. Right-clickGeometry 1 afinal time and selectBooleans andPartitions|Difference.
For the objects to add, specify the large rectangle (r1). For the objects to subtract,
specify the 13 squares (struts) formed from the previous linear array operation.
Click Build Selected (). The resulting COMSOL interface with geometry and
model tree should look like that shown in Fig. 9.6.

Component 1 Definitions

1. Right-click the Definitions sub-node of Component 1 and select Component
Couplings|Maximum. In the settings panel, specify the geometric entity level
as ‘Boundary’, and select boundary 1 corresponding to the symmetry axis. This
will create a maximum operator (maxop1) located on the symmetry axis of the
model, which will be used to evaluate the maximum fluid velocity on the artery
axis, making its value globally available to the rest of the model.

2. Right-click again theDefinitions sub-node ofComponent 1 and select Component
Couplings|Integration. In the settings panel, specify the geometric entity level as
‘Point’, and select point 2. This will create a point integration operator (intop1)

9.2 Navier-Stokes Equations 317

Fig. 9.6 COMSOL interface for stent drug delivery model, showing 2D axisymmetric geometry
(right) and model tree (far left). The tiny square insets on the rightmost boundary of the geometry
correspond to the individual stent struts

located on the symmetry axis of the outlet boundary, which will be later used to
evaluate and plot the drug concentration at that point.

3. Right-click the Definitions sub-node of Component 1 a third time and select
Component Couplings|Integration again. In the settings panel, specify the geo-
metric entity level as ‘Boundary’, and select boundaries 4–42, corresponding to
all the strut surfaces. This integration operator (intop2) will be used to evaluate
the surface area of the struts to determine the boundary flux of drug release.

4. Right-click the Definitions sub-node of Component 1 a final time and select
Variables. Specify the following variables and expressions:

Name Expression
M M0*exp(-k*t)
w_model maxop1(w)
c_out intop1(c)
Area intop2(2*pi*r)

where variable M represents the total drug content of the stent as function of time,
w_model is the maximum z-component of velocity along the symmetry axis,
and Area is the surface area of the struts given by

∫
2πr ds for an axisymmetric

geometry, where s is the arc length along the boundary.

318 9 Fluid Mechanics

Global ODEs and DAEs

1. Select theGlobal Equations1 sub-node ofGlobalODESandDAEs. In theSettings
panel under the Units tab, set the dependent variable quantity to ‘Pressure (Pa)’
from the drop-down list. For the source term quantity, manually enter the units
as Pa/s. Under the Global Equations tab, enter the following details on a single
row of the equations table:

Name f(u,ut,utt,t) Initial value
(u_0)

Description

P Pt-G_in*(w_max-w_model) 0 Inlet pressure

This defines the global ODE for the inlet pressure dP/dt−Gin(wmax −wmodel) =
0, with initial value P(0) = 0.

Laminar Flow

1. Select the Fluid Properties 1 sub-node of Laminar Flow. In the Settings panel, set
the fluid density and dynamic viscosity fields to the user-defined values of rho
and mu respectively.

2. Right click the Laminar Flow node to add an ‘Inlet’ boundary condition. Select
boundary 2 (i.e. the lower boundary) and specify the boundary condition type as
Pressure with a pressure value of P.

3. Right click the Laminar Flow node again to add an ‘Outlet’ boundary condition.
Select boundary 3 (i.e. the upper boundary). Leave the boundary condition type
to the default value of Pressure, and leave the pressure value at 0.

Study

1. Under the Study 1 node, select the Time Dependent solver. Click the range button
() and specify the time range as 0 to 10 in steps of 0.1, and click ‘Replace’.
Under the Physics and Variables Selection tab, uncheck the Transport of Diluted
Species Interface, leaving Laminar Flow and Global ODEs and DAEs as the only
two physics modes solved for in this study.

2. To solve the model, right-click Study 1 and select Compute (). COMSOL
will display the default plot of fluid velocity magnitude at 10 s, similar to that
shown in Fig. 9.7. Clicking on the Zoom Box button () and dragging a zoom
box around the bottom two struts closest to the inlet will show a magnified view
of the velocity there, as shown also in Fig. 9.7.

3. COMSOL also generates a default 1D global plot of the inlet pressure Global
ODE variable, as shown in Fig. 9.8: it can be seen that the value of this pressure
has stabilized after 10 s, indicating the model has already reached steady-state.

9.2 Navier-Stokes Equations 319

Fig. 9.7 Fluid velocity
magnitude across coronary
stent at 10 s, showing
zoomed-in view around the
two struts closest to the inlet
boundary

Fig. 9.8 Inlet pressure P as
a function of time. It can be
seen that the pressure has
stabilized at t = 10 s,
indicating that the desired
axial velocity
wmax = 0.5 cm s−1 has been
reached

Transport of Diluted Species

1. Select the Transport Properties 1 sub-node of the Transport of Diluted Species
node. In the Settings panel, set the isotropic diffusion coefficient Dc to the user-
defined value of D_drug. For the velocity field, specifyu for the r component and
w for the z component. These are the COMSOL fluid velocity variables from the
Laminar Flow physics interface.Wewill be using these to compute the convection
component of drug transport.

2. Right click the Transport of Diluted Species node to add an ‘Inflow’ boundary
condition. Select boundary 2 (i.e. the lower boundary) and specify the boundary
condition type as Flux (Danckwerts)with a default concentration of 0. This bound-
ary condition specifies that there there is no diffusive flux normal to the boundary,
only convective inflow. Furthermore, since we have specified a concentration of
0 at this boundary, this is equivalent to a zero-flux boundary condition.

320 9 Fluid Mechanics

3. Right click the Transport of Diluted Species node again to add an ‘Outflow’
boundary condition. Select boundary 3 (i.e. the upper boundary). This boundary
condition specifies that there there is no diffusive flux normal to the boundary,
only convective outflow.

4. Right click the Transport of Diluted Species node a third time to add a ‘Flux’
boundary condition. Select boundaries 4–42 corresponding to the strut surfaces,
and click the species ‘c’ checkbox. Specify an inward flux of k_drug*M/Area,
wherewe have divided the total transport rate per unit time (kdrugM) by the surface
area of the stent.

5. Click the COMSOL Show button () just above the Model Tree and select
‘Stabilization’. This allows model stabilization settings to be viewed. Click the
Transport of Diluted Species node and under the Inconsistent Stabilization tab,
select the ‘Isotropic diffusion’ checkbox. This adds a small artificial amount
of diffusion proportional to the mesh element size, and is necessary to avoid
numerical oscillations whenever convection flow dominates the diffusional flux.
Leave the default tuning parameter to its value of 0.25.

Study

1. Right-click the root node of the model tree and Select ‘Add Study’. Specify ‘Time
Dependent’ and click the add study button ().

2. Under the newly created Study 2 node, select the Time Dependent solver. Click
the range button () and specify the time range as 0–5 in steps of 0.001. Spec-
ify the function to apply to all values as ‘exp10’. Click the ‘Replace’ but-
ton. This will result in the expression for the output times of the solver as
10ˆ{range(0,0.001,5)}. Manually append ‘−1’ to this expression so that
it reads
10ˆ{range(0,0.001,5)}-1: this will create a geometrically increasing
time sequence from 0 to (105 − 1) s. Under the Physics and Variables Selection
tab, uncheck the Laminar Flow and Global ODEs and DAEs physics checkboxes,
leaving only the Transport of Diluted Species physics mode to be solved for in
this study. Under the Values of Dependent Variables tab, specify ‘User controlled’
for the Values of variables not solved for. For the Method, select ‘Solution’, and
for the Study, select ‘Study 1, Time Dependent’, For the Times(s) field, specify
‘Last’.

3. Right-click Study 2 and select Show Default Solver. Under Study 2| Solver
Configurations| Solution 2| Time-Dependent Solver 1, select the Time Stepping
tab and choose ‘Strict’ for the Time steps taken by solver. Select the Initial step
checkbox and specify an initial step value of 1e-6 s.

4. To solve for the diffusion/convection physics, right-click Study 2 and select Com-
pute ().

Results

1. Right-click theResult node and select ‘1DPlotGroup’.Click on the newly-created
1D Plot Group 5 sub-node and specify the Data set as Study 2/Solution 2.

9.2 Navier-Stokes Equations 321

Fig. 9.9 Drug concentration
eluted by stent as a function
of time at the axial point on
the outflow boundary

2. Right-click the 1D Plot Group 5 sub-node and select ‘Global’. In the settings
panel under the y-Axis Data tab, specify the expression to plot as c_out. Click
the Plot button () as well as the x-axis log scale button () to display the
plot of concentration cout against time, as shown in Fig. 9.9. It can be seen that
the concentration of the drug at the outflow rapidly increases to its maximum
value of ≈1.64 × 10−6 molm−3, before declining again to 0 after 105 s, when
the drug content of the stent has depleted. This represents about half the peak
drug concentration of the former model (see Fig. 7.9), although the time to peak
release value has also been delayed, most likely due to the smaller surface area
of this model compared with the earlier example.

To solve this model, we utilized a coupled set of physics modes involving fluid
mechanics, diffusion and convection as well a global ODE. We also took advantage
of the weakly-coupled nature of the model (i.e. drug concentration has no effect
on the fluid motion) to solve first for the fluid motion using one study, then use a
second study to solve for the diffusion/convection transport from the results of the
first. The results of this model compare favourably with those of the earlier example
(see Sect. 7.1.4), although peak drug concentration was reduced and time to peak
concentration was delayed, likely due to the reduced surface area of the stent with
struts compared to the uniform stent surface of the former example.

9.3 Non-laminar Flow

To generalize the behaviour of Newtonian fluids, we can rewrite the Navier-Stokes
equations (Eq.9.8) in their dimensionless form by scaling all variables to dimension-
less quantities. This is achieved by choosing characteristic quantities peculiar to a
given fluid system, namely:

http://dx.doi.org/10.1007/978-3-642-54801-7_7
http://dx.doi.org/10.1007/978-3-642-54801-7_7

322 9 Fluid Mechanics

• a characteristic length L
• a characteristic velocity v
• a characteristic frequency ω

We can then form the dimensionless variables

x′ = x
L

, u′ = u
v
, p′ = p

ρv2
, t ′ = ωt

along with the following:

∂u′

∂t ′
= ∂u

∂t
· du

′

du
· dt

dt ′
=

(
1

vω

)
∂u
∂t

∂u′

∂x ′
1

= ∂u
∂x1

· du
′

du
· dx1
dx ′

1

=
(
L

v

)
∂u
∂x1

where x ′
1, x1 are the first components of x′, x respectively. We obtain a similar

relationship for derivatives with respect to the other two components, namely:

∂u′

∂x ′
2

=
(
L

v

)
∂u
∂x2

∂u′

∂x ′
3

=
(
L

v

)
∂u
∂x3

Defining the newdel operator∇′ with respect to the dimensionless spatial coordinates
x ′
1, x

′
2, x

′
3, the above expressions lead to the following relationships:

∇′u′ =
(

∂u′

∂x ′
1

,
∂u′

∂x ′
2

,
∂u′

∂x ′
3

)
=

(
L

v

)
∇u

∇′2u′ = ∂2u′

∂x ′2
1

+ ∂2u′

∂x ′2
2

+ ∂2u′

∂x ′2
3

= ∂

∂x ′
1

[
∂u′

∂x ′
1

]
+ ∂

∂x ′
2

[
∂u′

∂x ′
2

]
+ ∂

∂x ′
3

[
∂u′

∂x ′
3

]

=
(
L

v

)
∂

∂x ′
1

[
∂u
∂x1

]
+

(
L

v

)
∂

∂x ′
2

[
∂u
∂x2

]
+

(
L

v

)
∂

∂x ′
3

[
∂u
∂x3

]

=
(
L

v

) {
∂

∂x1

[
∂u
∂x1

]
· dx1
dx ′

1

+ ∂

∂x2

[
∂u
∂x2

]
· dx2
dx ′

2

+ ∂

∂x3

[
∂u
∂x3

]
· dx3
dx ′

3

}

=
(
L

v

) {
∂2u

∂x21
· L + ∂2u

∂x22
· L + ∂2u

∂x23
· L

}

=
(
L2

v

)
∇2u

Finally, we also obtain

9.3 Non-laminar Flow 323

∂p′

∂x ′
1

= ∂p

∂x1
· dp

′

dp
· dx1
dx ′

1

=
(

L

ρv2

)
∂p

∂x1

with similar relationships for the derivative of p′ with respect to x ′
2 and x ′

3. Hence,
we obtain

∇′ p′ =
(

L

ρv2

)
∇ p

Substituting all these relationships into Eq.9.8, and ignoring the body force f , we
obtain

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p + μ∇2u

ρ

(
vω

∂u′

∂t ′
+ vu′ ·

(v

L

)
∇′u′

)
= −

(
ρv2

L

)
∇′ p′ + μ

(v

L2

)
∇′2u′

ρvω
∂u′

∂t ′
+ ρv2

L
u′ · ∇′u′ = −ρv2

L
∇′ p′ + μv

L2
∇′2u′

ωL

v

∂u′

∂t ′
+ u′ · ∇′u′ = −∇′ p′ + μ

vLρ
∇′2u′

For convenience, we write ∇′ = ∇, with the understanding that the del operator is
taken with respect to the dimensionless spatial variables. The above may therefore
be re-arranged and written as the dimensionless equation

NS

NR

∂u′

∂t ′
+ u′ · ∇u′ = −∇ p′ + 1

NR
∇2u′ (9.9)

where

NR = vLρ

μ
, NS = ωL2ρ

μ

are two dimensionless parameters that completely characterise the fluid system. NR

and NS are known as the Reynolds number4 and the Stokes number5 respectively.
As the characteristic velocity v increases, NR also increases, decreasing the relative
contribution of the viscous force component 1/NR ∇2u′ in Eq.9.9. For high values
of NR above 2000, experimental observations indicate that flow becomes unstable
and chaotic, forming small swirls or eddies at multiple spatial scales. Such flow is
said to be turbulent, and is highly sensitive to initial conditions and any surface
roughness on the boundaries. Under these conditions, the Navier-Stokes equations
(Eq.9.8) become computationally inefficient, and alternative formulations approxi-
mating the eddy viscosities are required for simulating turbulent flow [2], including

4Named after the Irish-born Engineer Osborne Reynolds (18421912).
5After Sir George Gabriel Stokes (1819–1903), of Navier-Stokes equation fame.

324 9 Fluid Mechanics

the k−εmodel [5] used in COMSOL’s optional computational fluid dynamics (CFD)
module.)|

Bioengineering applications of turbulence include modelling blood flow in the
large arteries and heart, where velocities are high enough even under normal condi-
tions to induce turbulence [6].

9.4 Modelling Blood Flow

As noted above, an important application of CFD in bioengineering is the simula-
tion of blood flow. This section will outline the use of electrical analogues of flow,
which can be coupled to CFD models as boundary conditions to simulate flow in the
cardiovascular system. The non-Newtonian characteristics of blood flow will also be
briefly outlined.

9.4.1 Electric Circuit Analogues for Blood Flow

Electric circuit analogues of the circulation have already been introduced in Chap. 2
(see Sect. 2.3.1 and Problem 2.6), where it was seen that fluid pressure and flowwere
analogous to electric voltage and current respectively. With these basic definitions,
it is possible to form a hydraulic circuit representation of blood flow, with circuit
elements similar to that of an electric circuit. The following hydraulic elements can
be defined, where P is the pressure across the element and Q is the flow through it:

• hydraulic resistance R: analogous to electric resistance, with P = QR.
• fluid volume V : analogous to electric charge, with

Q = dV

dt

• compliance C : analogous to capacitance, with

Q = C
dP

dt

• inertance L: analogous to inductance, with

P = L
dQ

dt

• valve element: analogous to a diode, with Q = 0 if P < 0.

Hydraulic circuit elements can be combined in series and parallel, with analogous
equivalent values as per an electric circuit.

http://dx.doi.org/10.1007/978-3-642-54801-7_2
http://dx.doi.org/10.1007/978-3-642-54801-7_2

9.4 Modelling Blood Flow 325

Fig. 9.10 Simplified model of aortic blood flow coupled to hydraulic circuit representation of
downstream circulation. Values of R and C are 1.0 mmHgscm−3 and 2.75 cm3mmHg−1 respec-
tively

9.4.2 Example: Aortic Blood Flow

Consider the simplified axisymmetric model of the descending thoracic and abdom-
inal aorta shown in Fig. 9.10. Solve this model in COMSOL and plot blood flow
against time (0 ≤ t ≤ 1 s) for an input half-sine pressure pulse (in mmHg) of:

P(t) =
{
120 sin(2π t) 0 ≤ t < 0.5 s
0 otherwise

Take the viscosity coefficient of blood to be μ = 3.5mPa s and density ρ =
1000 kgm−3.

To implement this model in COMSOL, we can use the following steps:

Model Wizard

1. Open the Model Wizard and select the 2D axisymmetric spatial dimension.
2. In the Select Physics panel, choose Fluid Flow|Single-Phase Flow|Laminar Flow,

and click ‘Add’. Select Mathematics| ODEs and DAE interfaces| Global ODEs
and DAEs and click ‘Add’ again.

3. Click the Study arrow () to open the Select Study panel. Select Time De-
pendent, and click “Done”. This will exit the Model Wizard, displaying the main
COMSOL interface.

Global Definitions

1. Right-click Global Definitions in the model tree and select Parameters. Enter the
following details in the Parameters table of the Settings window:

326 9 Fluid Mechanics

Fig. 9.11 COMSOL interface for aortic flow example model, showing 2D axisymmetric geometry
(right) and model tree (far left). The inlet boundary is located at the top of the 2D rectangular
domain, and the the outlet boundary, which connects to the systemic circulation, is at the bottom

Name Expression Description
mu 3.5 [mPa*s] Blood viscosity
rho 1100 [kg/mˆ3] Blood density
P_max 120 [mmHg] Maximum blood pressure
R 1 [mmHg*s/cmˆ3] Systemic resistance
C 2.75 [cmˆ3/mmHg] Systemic compliance

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
default length unit to ‘mm’.

2. Right-click Geometry 1 and select Rectangle. Specify the width and height as
10 and 300mm respectively. Click Build Selected (). The resulting COMSOL
interface with geometry and model tree should look like that shown in Fig. 9.11.

Component 1 Definitions

1. Right-click the Definitions sub-node of Component 1 and select Component
Couplings|Integration. In the settings panel, specify the geometric entity level
as ‘Boundary’, and select boundary 2 (i.e. the lower boundary). This will create
a boundary integration operator (intop1) over the outlet boundary, which will be
used to determine the blood flow into the systemic circulation.

2. Right-click the Definitions sub-node of Component 1 again and select Variables.
Specify the following variables and expressions:

9.4 Modelling Blood Flow 327

Name Expression
tt mod(t,(1 [s]))
P_in if(tt<0.5, P_max*sin(2*pi*tt/(1 [s])), 0)
Q intop1(-2*pi*r*w)

where variable w represents the z-component of velocity parallel to the symmetry
axis, and Q is the flow out of the lower outlet boundary, given by

∫ R
0 −2πrw dr

for an axisymmetric geometry, where R is the radius of the aorta, and w is the
z-component of blood velocity (i.e. parallel to the symmetry axis), with positive
values denoting upward flow.

Global ODEs and DAEs

1. Select theGlobal Equations1 sub-node ofGlobalODESandDAEs. In theSettings
panel under the Units tab, set the dependent variable quantity to ‘Pressure (Pa)’
from the drop-down list. For the source term quantity, select ‘Volume per time
(m̂ 3/s)’ from the drop-down list. Under the Global Equations tab, enter the
following details on a single row of the equations table:

Name f(u,ut,utt,t) Initial
value
(u_0)

Description

P_out C*P_outt+P_out/R-Q 0 Outlet pressure

This defines the global ODE for the outlet pressure CdPout/dt + Pout
R = Q, with

initial value Pout (0) = 0. Note that the COMSOL term P_outt denotes the
derivative of variable Pout with respect to time.

Laminar Flow

1. Select the Laminar Flow node and under ‘Compressibility’, select ‘Incompress-
ible flow’.

2. Select the Fluid Properties 1 sub-node of Laminar Flow. In the Settings panel, set
the fluid density and dynamic viscosity fields to the user-defined values of rho
and mu respectively.

3. Right click the Laminar Flow node to add an ‘Inlet’ boundary condition. Select
boundary 3 (i.e. the upper boundary) and specify the boundary condition type
as ‘Pressure’ with a pressure value of P_in. Uncheck the ‘Suppress backflow’
checkbox to allow flow to reverse at the inlet.

4. Right click the Laminar Flow node again to add an ‘Outlet’ boundary condition.
Select boundary 2 (i.e. the lower boundary). Leave the boundary condition type
to the default value of Pressure, with pressure value P_out. As above, uncheck
the ‘Suppress backflow’ checkbox to allow flow to reverse (due to discharge of
the systemic compliance).

328 9 Fluid Mechanics

Fig. 9.12 Simulation result
of blood velocity magnitude
in aorta at 1 s (left), showing
zoomed-in view around the
inlet boundary (right). In
each case, the axis of
symmetry is the left-most
edge. Note that the velocity
profile is not parabolic with
maximum velocity at the
axis, since there is an
oscillatory pressure gradient

Fig. 9.13 Global outlet
pressure variable Pout as a
function of time

Study

1. Under the Study 1 node, select the Time Dependent solver. Click the range button
() and specify the time range as 0 to 1 s in steps of 0.01 s, and click ‘Replace’.

2. To solve the model, right-click Study 1 and select Compute (). COMSOL will
display the default plot of fluid velocity magnitude at 1 s, similar to that shown in
Fig. 9.12.

3. COMSOL also generates a default 1D global plot of the outlet pressure Global
ODE variable. Select the Global 1 sub-node of 1D Plot Group 4 (under the Results
node), and under the y-Axis data tab, change the default units of the expression
‘P_out’ from ‘Pa’ to ‘mmHg’. Clicking the Plot button () will generate the
graph of outlet pressure, as shown in Fig. 9.13.

Results

1. Right-click the Result node and select ‘1D Plot Group’. Right-click the 1D Plot
Group 5 sub-node and select ‘Global’. In the settings panel under the y-Axis Data
tab, specify the expression to plot as Q, and modify the units to be ‘cm̂ 3/s’.

9.4 Modelling Blood Flow 329

Fig. 9.14 Aortic blood flow
Q as a function of time

2. Select the 1D Plot Group 5 sub-node and under the Plot Settings tab, check the y-
axis label checkbox and enter the expression ‘Q (cm³/s)’.6 Under
the Title tab, select the title type to be manual, and edit the expression to be
‘Aortic Flow: (cm³/s)’. Finally, under the Legend tab, uncheck
the checkbox ‘Show legends’. Click the Plot button () to display the plot of
aortic blood flow Q against time, as shown in Fig. 9.14.

9.4.3 Blood as a Non-newtonian Fluid

Unlike many fluids which are well-approximated by Newtonian behaviour, blood
consists of a suspension of red cells (erythrocytes) in plasma, which can lead to
a non-linear relationship between shear rate and viscosity, as well as changes in
viscosity due to vessel diameter. In most cases however, the Newtonian assumption
for blood still remains valid, although for some cases outlined below, there may be
a significant departure from Newtonian assumptions.

9.4.3.1 Blood Viscosity and Shear Rate

Recall that the strain rate tensor V, with components Vi j , is defined as

Vi j = 1
2

(
∂v j
∂xi

+ ∂vi
∂x j

)

where the vi are the components of fluid velocity. The off-diagonal terms ofV define
the components of shear rate. For blood, low values of shear rate less than 100s−1

lead to aggregation or clumping together of red blood cells, leading to an increase

6Note that ³ will superscript the ‘3’.

330 9 Fluid Mechanics

in the viscosity. At high shear rates above 100s−1 (typically 200–300s−1), blood
behaves essentially as a Newtonian fluid.

9.4.3.2 Blood Viscosity and Vessel Diameter

For blood vessels with internal diameter greater than 1mm, blood viscosity ap-
proaches its asymptotic value (Newtonian condition) at shear rates higher than
200−1–300s−1, as described above. However for vessels less than 1mm in diam-
eter, the value of viscosity is constant (i.e. independent of shear rate), but varies with
vessel diameter. For vessels of diameter 300µm, the viscosity is about 95% of its
asymptotic value at 1mm. For vessels of diameter 20µm, the viscosity is about 50%
of its asymptotic value. This effect was first described by Fåhræus7 and Lindqvist8

in 1931, and is consequently known as the Fåhræus-Lindqvist effect. The effect is
due to axial streaming, whereby erythrocytes become concentrated at the vessel axis
during laminar flow because of the higher velocity near the centre. The velocity
gradient pulls the long axis of the erythrocytes parallel to the direction of flow and
forces the cell toward the centre. This leaves a cell-free sleeve of plasma near the
wall, decreasing the viscosity of the blood. The effect is more pronounced in smaller
vessels, due to the larger velocity gradient present over the dimensions of a single
blood cell.

9.4.4 Example: Axial Streaming of a Blood Cell

In order to simulate the effect of axial streaming, we consider a simple 2D model of
a blood vessel with diameter 80µm, in which is placed a rounded rectangular cell
of dimensions of 4 and 10µm, located initially at a radial offset of 20µm from the
vessel axis, as shown in Fig. 9.15. The fluid in the vessel is modelled as blood plasma
with density ρ = 1000 kgm−3 and viscosityμ = 1.2mPa s. Instead ofmodelling the
entire vessel length,we consider only a segment of length 100µmwhich travels along
with the cell along the main vessel axis. We assume there is a pressure differential
of 0.1mmHg continually applied between the inlet (left) and outlet (right) domain
boundaries. The cell is free to displace laterally in the y-direction through the plasma
towards the vessel axis, as well as free to rotate about its centre. To determine the
moment of inertia of the cell, we assume it to be approximated by a rectangular
prism of dimensions 4 × 10 × 10µm, in which its depth perpendicular to the 2D
domain is 10µm. The model will demonstrate some useful multiphysics capabilities
of COMSOL, including its moving mesh interface.

To implement this model of axial streaming in COMSOL, we can employ the
following steps:

7Robert (Robin) Sanno Fåhræus (1888–1968), Swedish pathologist and haematologist.
8Johan Torsten Lindqvist (1906–2007), Swedish physician.

9.4 Modelling Blood Flow 331

Fig. 9.15 Simplified 2D model of axial streaming in a 100µm blood vessel segment of diameter
80µm. A single red blood cell is placed at an offset of 20µ from the vessel axis in the y-direction.
Blood flows from left to right in the x-direction. The vessel domain is assumed to travel in the
x-direction along with the blood cell, so that the cell is always centred in the domain with respect
to the x-axis. The cell is free migrate along the y-axis, as well as rotate about its centre

Model Wizard

1. Open the Model Wizard and select the 2D spatial dimension.
2. In the Select Physics panel, choose Fluid Flow|Single-Phase Flow|Laminar Flow,

and click ‘Add’. Select Mathematics| ODEs and DAE interfaces| Global ODEs
and DAEs and click ‘Add’ again. Select Mathematics|ODEs and DAE interfaces|
Global ODEs and DAEs a second time and click ‘Add’ a third time. Finally, select
Mathematics| Deformed mesh| Deformed Geometry and click ‘Add’.

3. Click the Study arrow () to open the Select Study panel. Select Time De-
pendent, and click “Done”. This will exit the Model Wizard, displaying the main
COMSOL interface.

Global Definitions

1. Right-click Global Definitions just beneath the root node of themodel tree and se-
lect Parameters. Enter the following details in the Parameters table of the Settings
window:

Name Expression Description
mu 1.2 [mPa*s] Plasma viscosity
rho 1000 [kg/mˆ3] Plasma density
m 27 [pg] Blood cell mass
I m/12*((4[um])ˆ2+(10[um])ˆ2) Moment of inertia

where the last parameter I is the moment of inertia of the blood cell, determined
from the theoreticalmoment of inertia of a rectangular prism about its central axis,

332 9 Fluid Mechanics

Fig. 9.16 COMSOL interface for axial streaming model, showing 2D vessel segment geometry
with blood cell (rightmost panel) and model tree (leftmost panel). In the model geometry, the inlet
boundary is located at the left edge of the 2D domain, whilst the outlet boundary is at the right edge

given by I = 1
12m

(
a2 + b2

)
, where a, b are the dimensions of the rectangular

cross-section perpendicular to the axis, and m is the mass.

Geometry

1. Select the Geometry 1 node in the model tree. In the settings window, change the
default length unit to ‘µm’.

2. Right-click Geometry 1 and select Rectangle. Specify the width and height as
100 and 80µm respectively. Click Build Selected ().

3. Right-click the Geometry 1 node again and select Rectangle for a second time.
Specify the width and height as 4 and 10µm respectively. Also specify the x, y
positions of the centre as 50 and 60µm respectively. Click Build Selected ().

4. Right-click Geometry 1 again and select Fillet. In the settings window, specify
the vertices to be filleted as 1–4, corresponding to the four vertices of the smaller
rectangle (i.e. the blood cell). Specify the fillet radius as 2µm and click Build
Selected ().

5. Right-click Geometry 1 a final time and select Booleans and Partitions| Differ-
ence. In the settings panel, select the rectangle (r1) as the object to add. Click the
objects to substract toggle button to make it active, and select the filleted rectan-
gle (fil1). Click Build Selected () to subtract the blood cell from the vessel
segment. The resulting COMSOL interface with geometry and model tree should
look like that shown in Fig. 9.16.

9.4 Modelling Blood Flow 333

Component 1 Definitions

1. Right-click the Definitions sub-node of Component 1 and select Component
Couplings|Integration. In the settings panel, specify the geometric entity level
as ‘Boundary’, and select boundaries 4, 5, 7–10 (i.e. the cell boundaries). This
will create a boundary integration operator (intop1) over the cell boundary, which
will be used to determine the forces and moments acting on the cell due to the
blood plasma.

2. Right-click the Definitions sub-node of Component 1 again and select Variables.
Specify the following variables and expressions:

Name Expression
Fx (-10[um])*intop1(spf.T_stressx)
Fy (-10[um])*intop1(spf.T_stressy)
rr_x x-(50 [um])
rr_y y-(60[um])-cell_y
rr_X Xg-(50 [um])
rr_Y Yg-(60 [um])
Torque (-10[um])*intop1(...

-spf.T_stressx*rr_y+spf.T_stressy*rr_x)

wherespf.T_stressx,spf.T_stressy are in-built variables inCOMSOL
representing the x-and y-components of the stress vector (traction) acting on the
fluid at the domain boundaries, and Xg, Yg are the COMSOL variables defining
the initial coordinates of the undeformed mesh within the fluid domain. The
remaining user-defined variables are described below:

• Fx, Fy represent the x- and y-components of force acting on the cell, and result
from stresses acting in the negative direction to the traction on the fluid. The
components of the traction are integrated over the cell boundary, andmultiplied
the 10µm depth of the cell perpendicular to the 2D domain, to yield Fx, Fy
in units of Newtons.

• rr_x, rr_y are the x- and y-components of radial displacement from the cell
centre in its moved state. The centre of the cell has shifted from (50,60)µm
to (50,60+cell_y) µm, where cell_y denotes the displacement of the
cell in the y-direction (to be defined later). Note that x, y denote the standard
spatial coordinates, which will shift along with each point as it moves in the
deformed mesh.

• rr_X, rr_Y are the x- and y-components of radial displacement from the
cell centre in the undeformed (i.e. initial) state. These variables are useful for
describing the displacement of the cell due to its rotation.

• Torque represents the torque acting on the cell due to stresses from the
fluid. These stresses act in the negative direction from the traction on the
fluid boundaries. If the radial vector from the centre of the cell to a point
on its boundary is given by (rr_x, rr_y), then its perpendicular unit

334 9 Fluid Mechanics

vector is given by (-rr_y, rr_x)/r, where r denotes the magnitude
of the radial vector. Components of the traction along this vector will con-
tribute to the torque. Since torque is defined by Fr , where r is the ra-
dius and F is the magnitude of force acting perpendicular to the radius,
the total torque is determined by integrating the negative components of
traction along this perpendicular vector, multiplying by the radius and the
depth of the cell. The traction along this perpendicular vector is simply
spf.T_stressx*-rr_y/r + spf.T_stressy*rr_x/r. Multiply-
ing by the radius r, the depth of the cell (10µm), and taking the negative,
yields the total torque as (-10[um])*intop1(...
-spf.T_stressx*rr_y+spf.T_stressy*rr_x).

Note that some of these variables will appear in ‘orange’ as a COMSOLwarning,
since variables cell_x and cell_y have not yet been defined. These variables
will be implemented next in the Global ODEs and DAE interface below.

Global ODEs and DAEs

1. Select theGlobal Equations1 sub-node ofGlobalODESandDAEs. In theSettings
panel under the Units tab, set the dependent variable quantity to ‘Displacement
field (m)’ from the drop-down list. For the source term quantity, select ‘Force load
(N)’ from the drop-down list. Under the Global Equations tab, enter the following
details on two rows of the equations table, leaving all initial values to their default
setting of zero:

Name f(u,ut,utt,t) Description
cell_x m*cell_xtt-Fx Cell x-displacement
cell_y m*cell_ytt-Fy Cell y-displacement

This defines two global ODEs for the cell displacements m · d2cx/dt2 = Fx , and
m · d2cy/dt2 = Fy , where m is the mass of the cell and cx ≡ cell_x, cy ≡
cell_y. Note that the terms cell_xtt, cell_ytt in COMSOL denote the
second-derivatives of variables cell_x, cell_y with respect to time.

Global ODEs and DAEs 2

1. Select the Global Equations1 sub-node of Global ODES and DAEs 2. In the
Settings panel under the Units tab, set the dependent variable quantity to ‘None’
from the drop-down list and manually enter the units as ‘rad’. For the source
term quantity, select ‘Torque (N*m)’ from the drop-down list. Under the Global
Equations tab, enter the following details on a single row of the equation table,
leaving initial values to their default setting of zero:

9.4 Modelling Blood Flow 335

Name f(u,ut,utt,t) Description
theta I*thetatt-Torque Cell angular rotation

This defines a global ODE for the angle of rotation of the cell theta, such that
I · d2θ/dt2 = T , where θ ≡ theta, T ≡ Torque, and I is the moment of
inertia. Note that thetatt denotes the second-derivative of thetawith respect
to time. Also note that a second Global ODEs and DAEs node is implemented
in the model, since the units of variable theta are different from variables
cell_x, cell_y defined in the first Global ODEs and DAEs node.

Deformed Geometry

1. Select the Deformed Geometry node and under ‘Mesh smoothing type’, select
‘Yeoh’. Leave the mesh stiffening parameter to its default value of 100. This
setting solves for the mesh deformation within the fluid domain by minimising a
strain energy function of the form

W = 1

2

∫

Ω

(I1 − 3) + k (I1 − 3)2 + κ (J − 1)2 dV

where Ω is the mesh domain, k is the stiffening factor (set to a default value
of 100), I1 is the first invariant of the mesh strain tensor (see Eq.8.15), κ is an
artificial bulk modulus , and J is the volumetric strain (see Eq. 8.30). This mesh
smoothing approach allows large deformations of the mesh, whilst preserving
overall mesh quality.

2. Right click the Deformed Geometry node and select ‘Free Deformation’. In the
Settings panel, specify domain1 (i.e. the blood plasma domain).

3. Right click the Deformed Geometry node again and select ‘Prescribed Mesh
Displacement’. Select boundaries 4, 5, 7–10 (i.e. the cell surface boundaries).
Specify the x and y displacements of the mesh on these boundaries as

• dx : rr_X*(cos(theta)-1)-rr_Y*sin(theta)
• dy : cell_y+rr_X*sin(theta)+rr_Y*(cos(theta)-1)

where dx and dy denote the x and y displacements respectively. These displacement
expressions are derived from the rotation of the cell counter-clockwise by angle
theta, added to a displacement in the y-direction by cell_y.9 The displacements
due to rotation can be understood in reference to Fig. 9.17. Assume the cell centre is
located at point O, and a point on the cell boundary is located at A with coordinates
(x, y) relative to O. The radial segment OA with length r initially makes an angle
θ0 with respect to the x-axis. After counter-clockwise rotation by θ about O, point
A moves to A’ with coordinates (x ′, y′), such that segment OA’ is also of length r .
Coordinates x ′, y′ can be determined from

9Note that the mesh is not displaced in the x-direction by cell_x, since the domain is moving
along with the cell in this direction.

http://dx.doi.org/10.1007/978-3-642-54801-7_8
http://dx.doi.org/10.1007/978-3-642-54801-7_8

336 9 Fluid Mechanics

Fig. 9.17 Displacement of
point A to A’ due to
counter-clockwise rotation
about the origin O by an
angle θ

x ′ = r cos(θ + θ0)

= r cos θ cos θ0 − r sin θ sin θ0

= r cos θ
(x
r

)
− r sin θ

(y

r

)

= x cos θ − y sin θ

and

y′ = r sin(θ + θ0)

= r sin θ cos θ0 + r cos θ sin θ0

= r sin θ
(x
r

)
+ r cos θ

(y

r

)

= x sin θ + y cos θ

with x, y displacements given by:

dx = x ′ − x = x (cos θ − 1) − y sin θ

dy = y′ − y = x sin θ + y (cos θ − 1)

Replacing x and y in these expressions with the initial relative coordinates of each
point on the cell boundary relative to the cell centre, namely rr_X and rr_Y re-
spectively, we obtain the mesh displacement expressions used earlier for the cell
boundaries due to rotation of the cell by an angle θ = theta.

Laminar Flow

1. Select the Laminar Flow node and under ‘Compressibility’, leave the default
setting as ‘Incompressible flow’.

2. Select the Fluid Properties 1 sub-node of Laminar Flow. In the Settings panel, set
the fluid density and dynamic viscosity fields to the user-defined values of rho
and mu respectively.

9.4 Modelling Blood Flow 337

3. Right click the Laminar Flow node to add an ‘Inlet’ boundary condition. Select
boundary 1 (i.e. the left boundary) and specify the boundary condition type as
‘Pressure’ with a pressure value of 0.1 [mmHg].

4. Right click the Laminar Flow node again to add an ‘Outlet’ boundary condition.
Select boundary 6 (i.e. the right boundary). Leave the boundary condition type to
the default value of Pressure, with pressure value of 0.

5. Right click the Laminar Flow node a third time and select ‘Wall’. In the Settings
panel, select boundaries 4, 5, 7–10 (i.e. the cell boundaries). Specify the boundary
condition type toMovingwall from the dropdown list, with the following velocity
components:

• vx : cell_xt-thetat*rr_y
• vy : cell_yt+thetat*rr_x

where vx , vy are the components of velocity in the x and y directions respectively.
These components are determined from the translational velocity of the cell, with
x, y components of cell_xt and cell_yt respectively, as well as the rota-
tional velocity components. The latter are determined from v = ωr , whereω is the
angular velocity (i.e. thetat) and r is radius. This velocity is directed perpen-
dicular to the radial vector, that is, in the direction of the unit vector (-rr_y/r,
rr_x/r). Hence the x-component of velocity due to rotation is ω×-rr_y, with
the corresponding y-component of velocity being ω×rr_x. Adding these to the
translation velocities gives the moving wall velocities above.

6. Click theViewbutton () just above themodel tree and select ‘AdvancedPhysics
Options’. Select the Wall 2 node, and in the Settings panel, under Constraint
Settings, select the ‘Use weak constraints checkbox’. This allows COMSOL to
use time-derivatives of variables (namely cell_xt, cell_yt and thetat)
in the moving wall velocity settings.

Mesh

1. Right-click the Mesh 1 node and select ‘Size’. In the Settings panel, specify the
Geometric entity level as ‘Boundary’, and select boundaries 4, 5, 7–10. Under
the Element Size tab, select ‘Custom’ and specify a maximum element size of
0.5µm.

2. Select the Size sub-node of Mesh 1 (just above the Size 1 sub-node), and specify
a pre-defined mesh size of ‘Extremely fine’ from the drop-down list. Now check
the ‘Custom’ radio button and overwrite the default maximum element size of
1µm to the new setting of 0.7µm.

3. Right-click Mesh 1 and select ‘Boundary Layers’. Select the Boundary Layer
Properties sub-node of Boundary Layers 1. In the Settings panel, specify bound-
aries 4, 5, 7–10 (i.e. the cell boundaries) as well boundaries 2 and 3 (the bottom
and top domain boundaries). Under the Boundary Layer Properties tab, specify
the number of boundary layers as 16.

4. Right-click Mesh 1 again and select ‘Free Triangular’. Leave all settings to their
default values. Clicking the Build All button () will result in a plot of the mesh

338 9 Fluid Mechanics

Fig. 9.18 Zoomed-in view
of initial mesh around the
blood cell, showing
boundary mesh layers
surrounded by
free-triangular elements

Fig. 9.19 Blood plasma
velocity magnitude in vessel
segment at 0.2 s. Note that
the blood cell has rotated and
shifted from its initial
geometric specification
towards the vessel centre

elements, for which a zoomed-in view in the vicinity of the blood cell is shown
in Fig. 9.18.

Study

1. Under the Study 1 node, select the Time Dependent solver. Click the range button
() and specify the time range as 0–0.2 s in steps of 0.001s, and click ‘Replace’.

2. Right-click Study 1 and select ‘Show Default Solver’. Under Solver
Configurations| Solution 1|Time-Dependent Solver 1|Fully Coupled 1, select the
‘Method and Termination’ tab and specify the Nonlinear method as ‘Automatic
(Newton)’.

3. Select the Step 1: Time Dependent sub-node of Study 1 and under the Results
While Solving tab, click the ‘Plot’ checkbox. This provides an intermediate plot
of results during the solution process.

4. To solve the model, right-click Study 1 and select Compute (). COMSOL will
display the default plot of fluid velocity magnitude at 0.2 s, similar to that shown

9.4 Modelling Blood Flow 339

Fig. 9.20 Plot of state
variable cell_y as a
function of time,
representing the lateral
displacement of the blood
cell from its starting
position. At 0.2 s, the cell has
displaced 15µm towards the
vessel axis (located at
−20µm), in accordance with
the axial streaming effect

in Fig. 9.19, where it can be seen that the blood cell has aligned itself with the
flow and drifted toward the centre of the vessel.

5. COMSOL also generates default plots of the Global ODE variables cell_x,
cell_y and theta. To visualize the lateral displacement of the cell (i.e.
cell_y) as a function of time, select the Global 1 sub-node of 1D Plot Group 3
(under the Results node), and under the y-Axis data tab, select the row containing
the expression cell_x and click Delete (). Clicking the Plot button ()
will generate the graph of lateral cell displacement, as shown in Fig. 9.20, where
it can be seen that the cell is moving towards the vessel axis, corresponding to a
displacement of −20µm from its starting position.

9.5 Further Reading

An excellent introductory text on fluid mechanics is that of Massey and Ward-Smith
[3]. Amore general treatment of fluid and solidmechanics, with interesting examples
covering a range of physics, is the text of Trefil [7]. More specific texts on fluid
mechanics principles underlying blood flow in the circulation are those of Nichols
and O’Rourke [4] and Fung [1].

Problems

9.1 Consider a circular tube of diameter D and length L containing an incom-
pressible Newtonian fluid of density ρ and viscosity μ. Initially, the upstream and

340 9 Fluid Mechanics

downstream pressures at each end of the tube are 0 and the fluid is at rest. Suddenly,
the upstream pressure is instantaneously stepped to a value of P . By approximat-
ing this system as a concentric set of circular tubes of fluid sliding past each other,
determine the governing 1D PDE and associated boundary conditions for the axial
fluid velocity v in terms of radial position r and time t . Use COMSOL to solve this
PDE for the following parameters: D = 10mm, L = 100mm, ρ = 1000 kgm−3,
μ = 2mPa s, and P = 10mmHg. Plot the axial velocity as a function of radial
position for times 0, 0.5, 1, and 1.5 s.

9.2 In the example of Sect. 9.1.1, a simple axisymmetric COMSOL model was
implemented to determine the steady-state fluid velocity profile in a cylindrical tube
of diameter 2 cm, length 15 cm, fluid viscosity 3.5mPa s, and pressure differential of
100 Pa between the ends of the tube. Use COMSOL to perform a mesh convergence
analysis on this model, solving for a free-triangular mesh automatically generated
at maximum element sizes of 0.1–1mm in steps of 1mm. Plot the axial velocity at
the inlet against maximum element size. What maximum element size is required to
achieve an axial velocity error of less than 5%?

9.3 The descending thoracic and abdominal aorta may be modelled as a cylindrical
tube of diameter 20mm and length 30cm, terminated at its distal end by a simple
RC hydraulic-circuit, similar to the example of Sect. 9.4.2. In this case, however, the
inlet pressure P(t) is a pressure pulse whose values are shown below as a function
of time:

Time
(ms)

Pressure
(mmHg)

Time
(ms)

Pressure
(mmHg)

Time
(ms)

Pressure
(mmHg)

0 72 360 104 720 86
40 78 400 93 760 86
80 90 440 81 800 83
120 112 480 77 840 79
160 132 520 77 880 77
200 148 560 78 920 75
240 149 600 81 960 73
280 135 640 85 1000 72
320 122 680 86

As in Sect. 9.4.2, assume the material parameters of blood are μ = 3.5mPa s and
ρ = 1100 kgm−3. Also assume the blood is initially at rest: for this to be the case,
the initial values of pressure at both ends of the tube must be the same (72mmHg).
Simulate this model using COMSOL and plot aortic blood flow as a function of time
over 1 s.
HINT: Use COMSOL’s interpolation function feature to specify the inlet pressure
waveform as a table.

References 341

References

1. Fung YC (1997) Biomechanics: circulation, 2nd edn. Springer, New York
2. LaytonW (2008) Introduction to the numerical analysis of incompressible viscous flows. SIAM,

Pittsburgh
3. Massey BS, Ward-Smith J (2012) Mechanics of fluids, 9th edn. Spon Press, New York
4. NicholsWW,O’RourkeMF (2005)McDonald’s blood flow in arteries: theoretical, experimental

and clinical principles, 5th edn. Hodder Arnold, London
5. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge
6. Sabbah HN, Stein PD (1976) Turbulent blood flow in humans: its primary role in the production

of ejection murmurs. Circ Res 38:513–525
7. Trefil JS (2010) Introduction to the physics of fluids and solids, Dover edn. Dover, Mineola

Appendix A
Matlab Fundamentals

This appendix provides an overview of Matlab1 mathematical software, widely used
in scientific computation applications to simulate physical systems, run computa-
tional algorithms, as well as perform comprehensive data analysis and visualisation.
Optional toolboxes extend Matlab functionality to specialised applications includ-
ing neural networks, signal processing, bioinformatics, system identification, image
processing and systems biology.

A.1 Matlab Overview

Matlab provides an interpreter environment for executing an extensive library of
in-built mathematical commands, as well as user-defined code scripts and functions.
This section provides an overview of the Matlab interface and basic functionality.

A.1.1 User Interface

The defaultMatlab interface consists of several windows, as shown in Fig.A.1. These
are the command window where commands are entered and executed by the Matlab
interpreter, the workspace which lists variables defined in the current session, the
command history which lists recent commands, and the current folder window and
file path where user-defined scripts and functions are saved and accessed. Recent
commands can be re-typed in the command window by using the up-arrow key-
board shortcut. Repeated use of the up-arrow will cycle through several commands,
beginning from the most recent entered.

1The Mathworks Inc, Natick, Massachusetts, U.S.A.

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7

343

344 Appendix A: Matlab Fundamentals

Fig. A.1 Default Matlab interface. The command window represents the main work area where
commands are entered for execution by the Matlab interpreter. The workspace window displays
current variables, the command history shows recent commands entered, and the current folder
window specified by the file path lists local files

A.1.2 Working with Variables and Arrays

Variables do not need to be declared first: simply assign their value directly. For
example, the following commands entered in the command window:

r = 2;

c = 2*pi*r;

will create the variables r and c in the current workspace and assign their values
to 2 and 2 × π × 2 = 4π respectively (note that pi is the in-built Matlab constant
for π ≈ 3.1416). Note that each command ends with a semicolon. Although not
strictly necessary, the semicolon prevents command results from being echoed in the
command window.

To define an array, values can be entered element by element, as in the following:

x = [2,3,1,0,0];

y = [1;2;3;4;5];

A = [1,0;0,1];

which define x to be a five-element row array, y a five-element column array, and A
as the 2 × 2 identity matrix. The subsequent command

Appendix A: Matlab Fundamentals 345

d = x*y;

would perform array multiplication of a row and column vector, yielding the scalar
d = 11. Reversing the order of the arrays in the command E = y*x would assign a
5 × 5 matrix to E.

Individual elements of the above arrays can be accessed using commands such
as x(1) (returning a value of 2) and A(1,2) (returning a value of 0). To append
elements to existing arrays, use commands like

z = [x,3];

w = [y;8];

which add extra elements of value 3 and 8 to the end of the above-defined arraysx and
y respectively. Note that a comma appends to rows, whilst a semi-colon appends to
columns. Similar principles applywhen concatenating two-arrays. Thus, for example

z = [x,x];

w = [y;y];

would double the length of both x and y defined above.
Arrays can also be defined using

x = 0:0.001:1;

which creates a row array of 1001 uniformly-spaced elements, 0 as the first and 1
as the last, in increments of 0.001. An alternative is to use Matlab’s linspace
function:

x = linspace(0,1,1001);

which yields the same result. Note that this function takes three arguments, the first
and last values of the array, and the total number of elements.

To square each element of x, use the .ˆ exponent operator which acts on each
element of x individually:

y = x.ˆ2;

Analogous element by element array operators also defined for multiplication (.*)
and division (./). Thus, for example, the following sequence of commands:

A = [1,2;3,4];

B = [5,6;7,8];

346 Appendix A: Matlab Fundamentals

C = A*B;

D = A.*B;

E = A/B;

F = A./B;

would yield

C =
[
19 22
43 50

]
, D =

[
5 12
21 32

]
, E =

[
3 −2
2 −1

]
, F =

[
0.2 0.3333

0.4286 0.5

]
.

Note that the division operator (/) for calculating E denotes matrix division, such
that A/B = A*inv(B) where inv(B) is the inverse of matrix B.

In addition to real number data types,Matlab allows other variable types including
strings and complex numbers. For example, the commands

a = ‘This is some text’;

b = complex(1,2);

define a and b to be string and complex data types respectively.
A short list of basic Matlab operators and functions is given in TableA.1. More

comprehensive documentation onMatlab operators, functions and advanced features
can be found in the in-built documentation, which can be accessed from the command
window using

doc matlab

Help on any command can be obtained in the command window by typing help
followed by the command, e.g.

help linspace

Typing doc followed by the command will display html-formatted documentation
instead:

doc linspace

A.1.3 Matlab Programming

Matlab provides an extensive set of high-level programming features for implement-
ing complex automated numerical computations and algorithms.

Appendix A: Matlab Fundamentals 347

Table A.1 List of basic Matlab operators and functions

Operator(s) Description

* + - / Basic arithmetic operators

ˆ Exponent operator e.g. 3ˆ2 (= 9)

.* ./ .ˆ Element by element array operators

mod(x,y) Modulus operator, yielding the remainder on
division of x by y

sin(x) cos(x) tan(x) Trigonometric functions

exp(x) Exponential function ex

log(x) Natural logarithm

\textbackslash{} Array division

inv(A) Returns the inverse of square matrix A

> < >= <= == ∼= Comparison operators, returning a value of 1 if
true, or 0 otherwise

∼ && || NOT, AND, OR logical operators

linspace(x1,x2,N) Generates row array of N equi-spaced values
from x1 to x2

zeros(N,M) Returns an N × M matrix of zero elements

ones(N,M) Returns an N × M matrix with all elements
equal to 1

rand(N,M) Returns an N × M matrix of random
uniformly-distributed elements between 0 and 1

randn(N,M) Returns an N × M matrix of
normally-distributed random elements with
mean 0 and standard deviation 1

plot(x,y) Plots array y against x

A.1.3.1 Scripting

Matlab command sequences can also be saved as scripts; text files having a .m
extension. Scripts can be written using the in-built Matlab editor, invoked from the
Matlab Filemenu or from theToolbar, depending on the version ofMatlab. To execute
the script, enter the name of the script (i.e. the filename without the .m extension) in
the command window. For example, to generate a plot of y = sin(x) + 0.2 cos(2x),
the following commands can be saved to a script named my_waveform.m:

% initialise x from 0 to 2*pi:

x = 0:2*pi/1000:2*pi;

% calculate waveform:

y = sin(x)+0.2*cos(2*x);

348 Appendix A: Matlab Fundamentals

Fig. A.2 Plot of
y = sin(x) + 0.2cos(2x)
using the my_waveform
Matlab script

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

% plot graph:

plot(x,y);

Note that text following the% character in a line is a comment, useful for documenting
code function, and is ignored by the Matlab interpreter. Entering my_waveform in
the command window produces the plot shown in Fig.A.2.

A.1.3.2 Conditional Branching and Loops

As with all high-level programming languages, Matlab provides several conditional
branching and loop structures, including if... else and case structures, as
well as for and while loops. These can be used in scripts as well as user-defined
functions (see Sect.A.1.5). For example, the following code generates, rather cum-
bersomely, a square-wave input stimulus current I from an array of time values, such

that I =
{
50 t ≤ 10

0 otherwise
:

t = 0:1:100;

I = zeros(1,101);

for i=1:101

if (t(i)<=10)

I(i)=50;

else

I(i)=0;

end

end

Appendix A: Matlab Fundamentals 349

Note that the same result could be generated using the far more compact code:

t = 0:1:100;

I = 50*(t<=10);

A.1.3.3 Code Debugging

The in-built Matlab editor provides continuous, automated code checking to alert the
user to coding errors and warnings, as well as additional tools for code debugging.
Fig.A.3 illustrates the editor view for the previous for-loop generating a square-wave
stimulus, however this time with a missing end statement. An error indicator in the
top right margin of the editor window alerts the user to a serious code error. The
indicator colour can be red, orange or green and indicates either (1) a syntax error
(red) in which the code will not run, (2) a warning (orange) in which the code will run
but the user should heed the given suggestion, or (3) no error (green). Also shown
in the right margin are line markers indicating the relevant location of errors and
warnings.

It is also possible to insert breakpoints into the code by clicking in the left margin
of the editor. When run, the code will pause execution at the breakpoint, allowing
variables to be examined. In fact, any Matlab command can be executed from the
command window whilst the code has paused, providing a very powerful debugging
feature. Editor toolbuttons allow the user to subsequently step through the code, one
line at a time, or continue execution until the next breakpoint.

Fig. A.3 Matlab editor, with red indicator (top right) alerting the user to a syntax error, due here
to a missing end statement. Also shown in the right margin are line markers indicating specific
locations of code errors and warnings. In this case, a red marker at line 3 indicates that the for
statement has a missing end, and the orange marker provides a warning that the if statement on
line 4 does not have a matching end

350 Appendix A: Matlab Fundamentals

A.1.4 Solving Linear Systems of Equations

The following linear system of equations:

2x + 3y − 4z = 7

x + 5y − z = 2

x + y = 1

can be represented by the equivalent array equation

Ax = b

A =
⎡
⎣2 3 −4
1 5 −1
1 1 0

⎤
⎦ , x =

⎡
⎣xy
z

⎤
⎦ , b =

⎡
⎣72
1

⎤
⎦

which has the solution
x = A−1b.

In Matlab, the above system can be solved for using the backslash (\) operator:

A = [2, 3, -4; 1, 5, -1; 1, 1, 0];

b = [7; 2; 1];

x = A\b;

which yields, correct to four decimal places,

x =
⎡
⎣ 1.0667

−0.0667
−1.2667

⎤
⎦ .

Use of the backslash operator is equivalent to the Matlab command

x = inv(A)*b;

which inverts matrix A and multiplies by b. However, Matlab’s backslash operator
is more efficient and accurate than direct matrix inversion, particularly for large
systems.Using this operator,Matlab can easily solve systems consisting of thousands
of matrix elements, as in the following example:

A = rand(1000);

b = ones(1000,1);

x = A\b;

Appendix A: Matlab Fundamentals 351

which only takes a fraction of a second to solve for on a current standard desktop or
laptop computer! In the above code, A consists of a 1000×1000matrix of uniformly-
distributed random elements between 0 and 1, and b is a 1000-element column array
consisting of 1’s.

A.1.5 User-Defined Functions

In addition to hundreds of in-built mathematical functions, Matlab allows the user to
define custom functions which can take multiple arguments, and produce multiple
outputs. User-defined functions are saved in .m files whose first line contains the
function reserved word. For example, to create a function to solve the system of
equations Ax = b, the following code can be used:

function x = solve_my_system(A, b)

x = A\b;

end

which must be saved in a .m file having the same name as the function: in this case,
solve_my_system.m. Note that this function takes two arguments, A and b, and
returns a single output x. The following command can then be invoked from the
command window, or within other code:

C = [2, 3; 1, 4];

d = [3; 8];

z = solve_my_system(C, d);

To define a function with multiple outputs, use code such as:

function [x y] = solve_my_systems(A, b, c)

x = A\b;

y = A\c;

end

which would be invoked from the command window using

C = [2, 3; 1, 4];

d = [3; 8];

e = [1; 2];

[u v] = solve_my_systems(C, d, e);

352 Appendix A: Matlab Fundamentals

A.1.6 Solving Systems of ODEs in Matlab

Matlab provides powerful functions for numerically solving systems of ordinary
differential equations (ODEs). As an example, consider the following ODE system:

dx

dt
= −2x − 3y − 4z

dy

dt
= −x + 5z

dz

dt
= −x − 2y − 3z

with initial values x(0) = y(0) = z(0) = 1. This can be written in matrix form as

dx
dt

= Ax, A =
⎡
⎣−2 −3 −4

−1 0 5
−1 −2 −3

⎤
⎦ , x =

⎡
⎣xy
z

⎤
⎦ , with x(0) =

⎡
⎣11
1

⎤
⎦ .

To solve such a system in Matlab, we write a function to output the time-derivative
evaluations as a function of both t and x:

function dxdt = derivs(t,x)

A = [-2, -3, -4; -1, 0, 5; -1, -2, -3];

dxdt = A*x;

end

The system can then be numerically-solved using Matlab’s built-in ODE solver
ode15s by coding the following in a separate script:

x_start = [1; 1; 1];

t_range = [0 5];

[t, y] = ode15s(’derivs’, t_range, x_start);

plot(t,y), legend(’x’,’y’,’z’);

Executing this code produces the plot shown in Fig.A.4. Note that the user-defined
derivs function above included botht andx as arguments, even though onlyxwas
strictly required in this example (the time-derivatives of this systemare functions only
of x). However, ode15s requires the user-specified derivative-evaluation function
to include both t and x as arguments.

Appendix A: Matlab Fundamentals 353

Fig. A.4 Numerical solution
of ODE system using
Matlab’s ode15s function

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

2
x
y
z

Appendix B
Overview of COMSOL Multiphysics

COMSOL Multiphysics2 is a versatile finite-element software package providing a
convenient means for implementing a wide range of multiphysics models. These
include standard physics modalities such as electromagnetism, structural and fluid
mechanics, diffusion and heat transfer, as well as user-defined systems. Its multi-
physics coupling capabilities render COMSOL an increasingly popular choice for
bioengineering modelling. Optional add-on modules provide user-interfaces and
functionality for additional physics implementations including electromagnetics,
microelectromechanical systems (MEMS), heat transfer, nonlinear structural materi-
als, fluid mechanics, microfluidics, as well as interfaces to other software such as the
LiveLink for Matlab interface, which allows COMSOL models to be implemented
from within Matlab.

B.1 COMSOL Basics

COMSOL has undergone several changes to its user-interface since early versions
pre-2005. This section provides an overview of COMSOL v5.2, the most recent
release at the time of writing.

B.1.1 User Interface

The default COMSOL user-interface consists of several windows, as shown in
Fig.B.1. These include the Model Builder Window, which provides a tree repre-
sentation of the current model, the Settings Window which reports associated model
settingswhen clicking a node in themodel tree, theGraphicsWindow, which displays
the model geometry, mesh and results, and the Information Windows which provide

2COMSOL Inc., Burlington, MA.

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7

355

356 Appendix B: Overview of COMSOL Multiphysics

Fig. B.1 Default COMSOL interface (MacOSX, version 5.2). From left to right, themodel builder
window displays the model tree, the settings window presents various model settings, the graphics
window displays model geometry, mesh and results, and the information window displays non-
graphical model information including solver progress details, error messages and post-processing
evaluations. Across the top of the interface are various toolbars and menus

various model information including solution progress, solver logs, error messages,
as well as the results of post-processing evaluations. Across the top of the interface
are various toolbars and menus.

Central to theCOMSOL interface is theModel Treedisplayed in theModelBuilder
window. The model tree allows all aspects of a model to be specified and adjusted,
including the model geometry, physics, equations, mesh and solver settings, as well
as visualisation of results. When solving a model, it is useful to regard the model
tree as being executed from top to bottom. Thus, settings in higher nodes in the tree
will be visible to all subsequent nodes and sub-nodes.

The Model Builder, Settings and Graphics windows are fully-interactive. Thus,
clicking on a node in the model tree will display its associated settings in the Settings
window, allowing these to be specified. If the node pertains to the model geometry,
mesh or results, the Graphics window will also be updated as appropriate. Right-
clicking a node in the model tree will create a new sub-node associated with that
node. To set model boundary conditions or domain properties, relevant domains,
boundaries, edges or points can be specified by selecting these directly from the
Graphics window.

Context-sensitive help can be obtained at any time by selecting the help button
() at the top of the COMSOL interface. COMSOL also provides an extensiveModel

Appendix B: Overview of COMSOL Multiphysics 357

Library containing a range of models with step by step instructions for implementa-
tion.

B.1.2 Specifying Models

COMSOL provides a series of tools and interfaces for implementing models from
scratch, including the Model Wizard, geometry tools, physics and user-equation
interfaces, mesh and solver settings, parameters, variables and model couplings, as
well as post-processing analysis and visualisation.

B.1.2.1 The Model Wizard

The Model Wizard provides for rapid configuration of new models, and is accessed
from theCOMSOL start-up screen (or from the File|Newmenu) as shown in Fig.B.2.
Clicking Model Wizard will bring up the Select Space Dimension panel, allowing a
choice of 3D, 2D, 1D, 0D, as well as 2D and 1D axisymmetric space dimensions.
Selecting the space dimension will then open the Select Physics panel, from which a
number of physics interfaces can be added to the model, including the Mathematics

Fig. B.2 COMSOL model wizard. Shown at top left is the new model startup screen. Clicking
model wizard will in turn bring up select space dimension, select physics and select study panels

358 Appendix B: Overview of COMSOL Multiphysics

interface for specifying user-defined equations. The list of physics interfaces dis-
played will depend on which optional COMSOLmodules have been installed. Inter-
faces can be added to the model by clicking the “Add” button. Additional physics
interfaces can also be added later from the model tree.

Once the required physics interfaces have been added, clicking the Study forward
arrow button () will open the Select Study panel for specifying a default study
(i.e. solver) for the model. Depending on the physics interface(s) selected, the choice
of solver can include Stationary, Time Dependent or Frequency Domain. Additional
studies can also be added later to the same model. Clicking “Done” will exit the
Model Wizard and display the main COMSOL interface with model tree configured
according to the specified Model Wizard settings.

B.1.2.2 Creating a Geometry

Once the model tree has been initialised, the model geometry can be specified by
right-clicking on the geometry node. Depending on the space dimension, the geom-
etry interface allows basic geometric objects, known as primitives, to be defined
and added to the model. FigureB.3(left) illustates some of the 3D geometric primi-
tives available on right clicking the geometry node: analogous interfaces are available
for other spatial dimensions. 3D primitives include blocks, cones, cylinders, spheres,
ellipsoids, toroids, as well as parametric surfaces. On selecting a primitive, its dimen-
sions and position can be specified from within the Settings window. Clicking the
Build Selected () or Build All Objects () buttons in the Settings window will
build the object, display the resulting geometry in the Graphics window. To automat-
ically adjust the zoom and view the entire geometry, click the Zoom Extents button
() in the Graphics window.

Fig. B.3 COMSOL 3D geometry tools available from the model tree geometry node. From left to
right shows the geometry submenus for more primitives, Boolean operations and transforms

Appendix B: Overview of COMSOL Multiphysics 359

By right-clicking the geometry node, it is also possible to perform Boolean opera-
tions on geometric primitives, including subtracting objects from each other, forming
unions and intersections, as well as custom combinations of these (Fig.B.3, middle).
It is also possible to transform objects by moving, scaling, rotating, mirroring or
copying (Fig.B.3, right). Geometric objects for Boolean operations and transforma-
tions can be selected using the Graphics window.

In 3D, it is also possible to define aWork Plane, a 2D plane embedded in the 3D
geometry, again by right-clicking the geometry node. 2D primitives can be specified
by right-clicking the associated plane geometry sub-node. These 2D objects can then
be revolved or extruded into the 3D geometry.

Using a combination of COMSOL’s in-built geometry tools, it is possible to con-
struct fairly complex objects and shapes. For specifying more complex geometries,
it is also possible to import CAD, STL and VRML files.

All geometric primitives, operations and transforms appear as geometry sub-nodes
in the model tree. It is possible to click on an existing node in any order and modify
its settings. Clicking the “Build All Objects” button in the Settings window will then
update the geometry.

B.1.2.3 User-Defined Parameters, Functions and Variables

Right-clicking on the Global Definitions node in the model tree, just below the root
node, and selecting Parameters allows global parameters to be defined, as shown
in Fig.B.4. These parameters can be accessed and used anywhere in the model,
including within the geometry settings (e.g. for specifying the size of objects).
Parameters are entered in the Settings window by specifying their name, numer-
ical value, and an optional brief description. It is also possible to enter expres-
sions for values using Matlab-type syntax (without the semicolon), provided these

Fig. B.4 COMSOL global parameters interface

360 Appendix B: Overview of COMSOL Multiphysics

Fig. B.5 COMSOL user-defined function options

expressions yield constants. Examples, of allowable parameter expressions are
sqrt(2), a*sin(pi/3), a/b etc., where a and b are themselves parameters.

COMSOL allows physical units for parameters to be specified using square brack-
ets following the parameter value, as seen in Fig.B.4. COMSOL’s units feature is very
convenient, particularly for bioengineering models which typically involve multiple
physical units. COMSOL supports standard SI unit nomenclature as well as other
units, in addition to prefixes such as nano-, micro-, milli-, kilo-, or mega-. Thus for
example, a value of 1km would be expressed as 1[km], and 2mA would be written
as 2[mA]. For expressions involving other terms with units, COMSOL automati-
cally determines the unit of the dependent quantity. For example, a parameter value
expression of (2[m])*(1[1/s]) would have units of ms–1.

In addition to parameters, user-defined functions can also be specified, with a
number of function type options, as shown in Fig.B.5. These are accessible from
anywhere in the model, and include Interpolation functions which interpolate a set
of supplied data values, aswell asRectangle andStep functions. To specify a rectangle
function for example, select this option and enter a function name along with upper
and lower limits from the Settings window. The function will output a value equal to
1 if its argument lies between these limits, or 0 otherwise. The interface also allows
the user to enter a ‘smoothing factor’, which defines the length of a transition zone
region for continuous change from 0 to 1. This is a useful feature, since discontinuous
function values can lead to model convergence issues. For user-defined functions,

Appendix B: Overview of COMSOL Multiphysics 361

Fig. B.6 COMSOL user-defined variables interface. In the top part of the settings window, a
geometric entity level for the variables can be specified

COMSOL assumes their inputs and outputs are dimensionless. The only exception is
the Interpolation function type, where units for inputs and outputs can be specified.

When specifying physics interfaces, COMSOL will assign default names to the
associated dependent variables. Thus, for example, the default variable for voltage
in the AC/DC physics interface is V. These variable names can be overridden by
the user. To specify additional user-defined variables, right-click the Definitions sub-
node of the Component node in the model tree (typically named “Component 1”)
and select the Variables option.3 This will create a table in the settings window,
where new variables can be defined, as shown in Fig.B.6. Similar to the parameters
interface,Matlab-like expressions can be entered to define values. Unlike parameters,
however, the expressions don’t have to yield constant values, but can include other
variables that vary in space and/or time. Furthermore, user-defined variables can be
associated with a geometric entity level to specify their scope. Depending on the
spatial dimension of the model, this scope can include the entire model, specific
domains, boundaries, edges or points. Multiple variable sub-nodes can be created
within the Definitions node, to group variables into different scopes.

When naming user-defined parameters and variables, COMSOL is case-sensitive.
A number of reserved names should be avoided, such as those shown in TableB.1.

3It is also possible to define variables in the Global Definitions node, but these can only be of global
scope, unlike variables defined within a component node.

362 Appendix B: Overview of COMSOL Multiphysics

Table B.1 Examples of reserved COMSOL variables and parameters. Depending on the spatial
dimension of the model and the study type, not all of these may be reserved in a given model.
Variable u is a generic dependent variable defined in a physics interface, and should be replaced
with the actual variable name

Name Description Name Description

t Time ut ∂u/∂t

x, y, z, r, X, Y, Z, R Position ux, uy, uz ∂u/∂x , ∂u/∂y , ∂u/∂z

freq Frequency utt ∂2u/∂t2

lambda Eigenvalues uxx, uyy, uzz ∂2u/∂x2 , ∂2u/∂y2 ,
∂2u/∂z2

phase Phase angle uxy, uyz, … etc. ∂2u/∂x∂y , ∂2u/∂y∂z , . . .

pi π (≈ 3.14159) uxt, uyt, uzt ∂2u/∂x∂t , ∂2u/∂y∂t ,
∂2u/∂z∂t

i, j
√−1 uxxt, uxyt, … etc. ∂3u/∂2x∂t ,

∂3u/∂x∂y∂t , . . .

h Mesh size uxxtt, uxytt, … ∂4u/∂2x∂2t ,
∂4u/∂x∂y∂2t , . . .

nx, ny, nz Normal vector
components

uTx, uTy, uTz Tangential derivatives

B.1.2.4 Assigning Materials

Right-clicking on the Materials node in the model tree allows the optional selec-
tion, definition and assignment of various physical materials to parts of the model.
The materials include physical parameters utilised by COMSOL’s physics interfaces
such electrical conductivity, density, Young’s modulus etc. To add a material from
COMSOL’s in-built material libraries, right-click the Materials node and select Add
Material. Once thematerial is selected, clickAdd toComponent to insert thatmaterial
as a sub-node of the Materials node. The domains of the model in which the material
is active can then be selected from the Graphics window, as shown in Fig.B.7.

It is not necessary to explicitly define materials in a model: material constants can
manually be inserted into the appropriate physics settings by simply entering user-
defined values. The latter can include global parameters defined under the Global
Definitions node.

B.1.2.5 Physics and User-Defined Equation Settings

Physics interfaces added during the Model Wizard are visible as nodes in the model
tree. If desired, additional physics nodes can be inserted by right-clicking on the
Component node in the model tree (typically named “Component 1”) and selecting
“Add Physics”. Right-clicking a physics node will then bring-up all available settings
for that interface, including domain settings and boundary conditions. FigureB.8 lists

Appendix B: Overview of COMSOL Multiphysics 363

Fig. B.7 COMSOL materials interface. Added materials can be assigned to various parts of a
model, and include material properties used by the physics interfaces

the options available when right-clicking the Electric Currents physics node, part of
the AC/DC interface.

Physics options are mainly grouped into domain settings (shown for 3D with
a solid-filled shape icon) and boundary conditions (shown for 3D as a bound-
ary patch). Selecting any of these will allow specific settings to be entered in
the Settings window. This includes specifying regions where that physics setting is
applicable. Each selected setting will appear in the model tree as a sub-node of that
physics node. Settings can be modified at any time by returning to that node.

To enter user-defined model equations, COMSOL provides several Mathematics
interfaces for specifying a number of equation types, including the Coefficient Form
and General Form PDE interfaces. The general form PDE is represented as

ea

(
∂2u

∂t2

)
+ da

(
∂u

∂t

)
+ ∇ · � = f

where u is the dependent variable, ea is the mass coefficient, da is the damping
coefficient, f is the source term, and � is the conservative flux associated with u.
By default, as shown in Fig.B.9, � is set to the negative gradient of u, −∇u, with
components (in 3D) given by:

364 Appendix B: Overview of COMSOL Multiphysics

Fig. B.8 Example COMSOL physics options, in this case made available by right-clicking the
electric currents node for 3D (left) and 2D (right) models. Physics options are mainly grouped
into domain settings (upper options with solid-filled shape icons) and boundary conditions (lower
options with highlighted boundary patch or edge)

� =
⎛
⎝−∂u/∂x

−∂u/∂y
−∂u/∂z

⎞
⎠ =

⎛
⎝−ux

−uy
−uz

⎞
⎠

where the rightmost column-vector is written using COMSOL notation (see
TableB.1). The ea , da , f , and � terms can be modified by the user as required.
Note that u can be replaced by any other variable name as required. Furthermore, u
can consist of several variables, in which case both u and f are replaced by column-
arrays, and ea , da and � are matrices (the interface is updated accordingly).

As with the other physics interfaces, a range of domain settings and boundary
conditions can be specified for the general PDE form. It is also possible (and rec-
ommended) to assign physical units to the dependant variable u and source term
f .

B.1.2.6 Component Couplings

Right-clicking the component definitions sub-node allows a range of component cou-
plings to be defined, as shown in Fig.B.10. Coupling operators evaluate expressions
or integrals over one part of a model (i.e. component), andmake these available glob-
ally, or to another part of the model. The integration coupling operators, for example,

Appendix B: Overview of COMSOL Multiphysics 365

Fig. B.9 COMSOL general form PDE interface. Right-clicking the general form domain setting
displays the general form terms in the settings window, which can be modified by the user

specify integration over one or more domains, boundaries, edges or points, and once
defined, can be used in any COMSOL expression. Integration of an expression over
a point simply returns the value at that point, and is useful for making pointwise
values globally-available to other expressions.

366 Appendix B: Overview of COMSOL Multiphysics

Fig. B.10 COMSOL component coupling options. These define coupling and integration operators
that link parts of a model together or assign the evaluations to global scope

B.1.3 Solving and Visualisation

B.1.3.1 Mesh Settings

In order to solve a PDE model, COMSOL automatically generates a finite element
mesh to spatially discretize the geometry. It consists of freely-generated tetrahedral
elements (3D) or triangular elements (2D) according to default settings, but it is also
possible to specify additional settings to mesh, for example, more finely over a given
region or boundary. Mesh settings can be specified by right-clicking the mesh node
and sub-nodes in the model tree, as shown in Fig.B.11. For example, to globally
refine the mesh everywhere, select Size and choose from a number of predefined
sizes including ‘Fine’, ‘Finer’, and ‘Extra Fine’. To specify a custom mesh size over
part of a model, choose the appropriate geometric entity level (e.g. edge, boundary,
or entire model), select the region of interest, then choose “Custom” in the mesh size
Settings window. This allows custom sizing to be applied to that part of the model.
After custom sizes have been specified, select the “Free Tetrahedral” option to freely
mesh the remaining geometry. Finally, click the Build All button () to build and
visualise the mesh in the Graphics window.

Appendix B: Overview of COMSOL Multiphysics 367

Fig. B.11 COMSOL meshing options. Left mesh options available on right-clicking the Mesh
node of the model tree (typically named “Mesh 1”). Right selecting “size” provides options for
predefined mesh sizes, as well as custom size settings

B.1.3.2 Solver Settings

Solver settings can be modified from the Study node in the model tree. Right clicking
this node and selecting Show Default Solver will display basic solver settings which
can be adjusted by the user (see Fig.B.12). For a time-dependent solver, for example,
these settings include the output time steps as well as time stepping behaviour.

Once the solver settings have been specified, right-clicking the study node and
selecting Compute () will solve the model. Solution progress can be examined in
the Progress Information window.

COMSOL also allows parameter sweeps which generate multiple solutions for
various values of one or more global parameters. Simply right-click the study node
and select “Parametric Sweep” to specify the parameter(s) and their values. This
feature is very useful and can be used to generate, for example, a mesh analysis plot
by specifying a mesh size global parameter, assigning the maximum mesh size to
this parameter, and then performing a parameter sweep to examine how the solution
changes with mesh size.

B.1.3.3 Visualisation of Results

On solving a model, COMSOL will automatically generate a plot of the primary
dependent variable in the Graphics window. Depending on the spatial dimension of
the model, the default plot is either a multislice plot (3D model), a surface plot (2D
model), or a line plot (1D model). Right-clicking the Results node in the model tree
allows additional plots to be defined, including arrow and streamline plots, contour

368 Appendix B: Overview of COMSOL Multiphysics

Fig. B.12 COMSOL solver options. Left options available on right-clicking the study node (typ-
ically named “study 1”). Right selecting “show default solver” provides options for the solver.
Including time stepping behaviour and absolute tolerance

Fig. B.13 Example of
COMSOL multislice plot
combined with streamline
plot. The plot shows the
voltage distribution in a
cubic volume conductor of
sidelength 0.5m. There are
two electrodes at the top and
bottom boundaries, with one
electrode held at ground
(0V) and the other at a fixed
potential (1V). The two
slices and colourbar show
the electric potential (in V),
and the streamlines show the
direction of current flow

plots, as well as surface and line plots. It is possible to combine multiple plot types
together into a single plot, as shown in Fig.B.13 for a slice and streamline plot.

On right-clicking the Results node, options may appear for 3D, 2D and 1D plot
groups. Selecting one of these will create the appropriate sub-node in Results. Right-
clicking on these sub-nodes provides further plot choices appropriate to the plot
group. COMSOL allows for lower-dimensional plots than that of the model space-
dimension. This allows, for example, plots along edges or surfaces in a 3D model.
Using the 1D plot group, it is also possible to plot global variables or expressions
against time or against a global parameter following a parametric sweep.

Appendix B: Overview of COMSOL Multiphysics 369

Fig. B.14 Cardiac defibrillationmodel geometry. The torso is an elliptic cylinder of height 300mm,
with two defibrillation electrodes, A and B, on its surface. The heart is embedded within the torso,
and is electrically-active

B.2 Example Model: Cardiac Defibrillation

To illustrate many of COMSOL’s features, this section will present a
fully-implemented model of cardiac defibrillation, in which abnormal reentrant acti-
vation of the heart is “reset” by an external current applied to electrodes on the wall
of the chest. The heart, torso and defibrillating electrodes are represented using the
idealised geometry shown in Fig.B.14.

Outside the walls of the heart, the electric potential (V) is governed by

∇ · (−σb∇V) = 0

where σb is the electrical conductivity of the torso. Within the walls of the heart,
extracellular (Ve) and intracellular (Vi) potentials are defined at every point using
the bidomain formulation, coupled with modified Fitzhugh–Nagumo kinetics for the
electrically-active tissue:

βCm

(
∂Ve

∂t
− ∂Vi

∂t

)
+ ∇ · (−σe∇Ve) = βiion

βCm

(
∂Vi

∂t
− ∂Ve

∂t

)
+ ∇ · (−σi∇Vi) = −βiion

with

iion = c1(Vm − a) (Vm − A) (Vm − B) + c2u (Vm − B)

Vm = Vi − Ve

∂u

∂t
= e (Vm − du − b)

370 Appendix B: Overview of COMSOL Multiphysics

Table B.2 Parameter values of cardiac defibrillation model

Parameter Value Parameter Value

A 55mV c1 53nSmV–2 cm–2

B –85mV c2 400μScm–2

a –66.8mV Cm 1μF

b –85mV σe 0.02Sm–1

d 140mV σi 0.008Sm–1

e 285.7V–1 s–1 β 100m–1

σb 0.2Sm–1 TON 840ms

Id 20mA TDUR 10ms

where u is an auxiliary ‘recovery’ variable, σe and σi are the extracellular and intra-
cellular electrical conductivities within the heart, β is the surface to volume ratio,
Cm is cell membrane capacitance per unit area, iion is the ionic current per unit cell
membrane area, and A, B, a, b, d, e, c1 and c2 are parameters describing the active
electrical activity of the heart.

To defibrillate the heart, a rectangular current-pulse of amplitude Id and duration
TDUR is applied to defibrillating electrode A (Fig.B.14) at time t = TON . Defibril-
lating electrode B is held at ground.

All external boundaries of the torso are electrically-insulating, except at the defib-
rillating electrodes. At the boundaries of the heart, the extracellular voltage equals
the torso potential and the extracellular current density is continuous. For the intra-
cellular potential, the boundaries of the heart are electrically-insulating. All model
parameter values are given in TableB.2.

To implement this model in COMSOL, use the following steps:

Model Wizard

1. Open the Model Wizard and select the 3D spatial dimension.
2. In the Select Physics panel, choose AC/DC|Electric Currents. Click “Add”.
3. Next, select Mathematics|PDE Interfaces|General Form PDE. Click “Add”.
4. In the Review Physics panel at right, specify U as the Field name and 2 as the

number of dependent variables. In the dependent variables list, enter the names
of these variables as Ve and Vi. For the dependent variable quantity, specify the
units as Electric potential (V), and the source term quantity as Current source
(A/m^3).

5. Next, select again Mathematics|PDE Interfaces|General Form PDE, and click
“Add”. This will insert a second General Form PDE into the model. In the Review
Physics panel, leave the field name as u and the number of dependent variables
as 1. Leave the units of the dependent variable as Dimensionless, but enter the
source term units manually as 1/s.

6. Click the Study arrow to open the Select Study panel. Select TimeDependent, and
click “Done”. This will exit the Model Wizard, displaying the main COMSOL
interface. The model tree will look like the following:

Appendix B: Overview of COMSOL Multiphysics 371

Geometry

1. Select Geometry 1 in the model tree and specify the length unit as mm.
2. Right-click Geometry 1 and select Sphere. Specify the radius as 45mm. Click

Build Selected ().
3. Right-click Geometry 1 and select Sphere again. Specify the radius as 30mm.

Click Build Selected.
4. Right-clickGeometry 1 and selectBooleanOperations|Difference. In theObjects

to add field, select the outer sphere (sph1). In the Objects to subtract field, turn
on its Active button and select the inner sphere (sph2). To select this, you may
need to hide the outer sphere first by clicking the Select and Hide button().
This will make the inner sphere visible. Deselect the hide button select the inner
sphere. Click the reset hiding button () to make both spheres visible. Clicking
Build Selected will subtract the inner sphere from the outer.

5. Next, right-click Geometry 1 and select Block. Specify the width, depth and
height as 100, 100 and 50mm respectively. Specify the corner coordinates as
(–50, –50, –50mm), and click Build Selected.

6. Right-click Geometry 1 again and select Boolean Operations|Difference. Select
the hollowed-out sphere (dif1) as the object to add, and select the block (blk1)
as the object to substract. Click Build Selected. This will result in the hollowed
hemispherical ‘shell’ shown below:

7. Right-click Geometry 1 again and select More Primitives|Ellipsoid. Specify the
a-, b- and c-semiaxes as 30, 30, and 46mm respectively. Click Build Selected.

372 Appendix B: Overview of COMSOL Multiphysics

8. Right-click Geometry 1, selecting again More Primitives|Ellipsoid. This time,
specify the a-, b- and c-semiaxes as 45, 45, and 69mm respectively. Click Build
Selected.

9. Right-click Geometry 1 and select Block. Specify the width, depth and height to
all be 100mm. Specify the corner of the block to be at (–50, –50, 0mm). Click
Build Selected.

10. Right-click Geometry 1 again and select Boolean Operations|Difference. Select
the outer ellipsoid (elp1) as the object to add, and select the block (blk2) as the
object to substract. Click Build Selected.

11. Now right-click Geometry 1 and select BooleanOperations|Difference onemore
time. Select the outer half-ellipsoid (dif3) as the object to add, and select the inner
ellipsoid (elp1) as the object to substract. Click Build Selected. This will result
in a hollowed-out ‘heart’ object:

12. Next, rotate the heart by right-clicking Geometry 1 and selecting Transforms
|Rotate. Select both halves of the heart (dif2 and dif4) and specify a rotation
angle of −45◦. Specify the axis of rotation as the y-axis. Click Build Selected.
This completes the heart geometry.

13. We now proceed to specify the torso and defibrillating electrodes. Right-click
Geometry 1 and select Work Plane. Define a quick xy-plane (the default setting),
and specify the z-coordinate as –150mm. Click Build Selected, followed by the
Zoom Extents () button in the Graphics window to view the whole geometry
with work plane, as shown below.

Appendix B: Overview of COMSOL Multiphysics 373

14. Now, right-click on the Plane Geometry subnode of Work Plane 1 and select
Ellipse. Specify the a- and b-semiaxes as 200 and 125mm respectively. Specify
the (xw, yw) position of the centre to be (0, 30mm) and click Build Selected.
Click the Zoom Extents () button to see the whole ellipse.

15. Next right-click Geometry 1 and select Extrude. By default, the input object of
the extrude operation will be the work plane (wp1). Specify an extrude distance
from the plane as 300mm and click Build Selected. This will extrude the ellipse
to construct the torso elliptic cylinder. Click Zoom Extents followed by the
Transparency button () to visualise the heart embedded in the torso as shown
below.

16. To build the defibrillation electrodes on the torso surface, we specify elongated
blocks that intersect with the torso surface. Right-click Geometry 1 and select
Block. Specify the width, depth and height to be 70, 150 and 80mm respectively.
Specify the centre (not corner) of the block to be at (–125, –30, 75mm) and click
Build Selected.

17. Next, right-click Geometry 1 and select Transforms|Copy. Select the torso (ext1)
and click Build Selected. This creates a copy of the torso. Right-click Geometry
1 and select Boolean Operations|Intersection. Select both the torso (ext1) and the
block (blk3) as input objects and click Build Selected. The resulting geometry
will look like:

374 Appendix B: Overview of COMSOL Multiphysics

18. Now we repeat this procedure for the other electrode. Right-click Geometry 1
and select Block. Specify the width, depth and height to be 70, 150 and 80mm
respectively. Specify the centre of the block to now be at (125, –30, –75mm)
and click Build Selected.

19. As before, right-click Geometry 1 and select Transforms|Copy. Select the torso
(copy1) and click Build Selected. Right-click Geometry 1 and select Boolean
Operations|Intersection. Select both the torso (copy1) and the block (blk4) as
input objects and click Build Selected.

20. Finally, right-click Geometry 1 and select Boolean Operations|Union. Specify
the two intersection regions (int1 and int2) and the torso (copy2) as the three
input objects. Deselect the “Keep interior boundaries” checkbox and click Build
Selected. The final geometry obtained is shown below:

Global Definitions

1. Right-click Global Definitions and select Parameters. Enter the following details
in the Parameters table of the Settings window:

Name Expression Description
A 55[mV] Model parameter
B -85[mV] Model parameter
a -66.8[mV] Model parameter
b -85[mV] Model parameter
d 140[mV] Model parameter
e 285.7[1/(V*s)] Model parameter
c_1 53[nS/(mVˆ2*cmˆ2] Model parameter
c_2 400[uS/cmˆ2] Model parameter
C_m 1[uF/cmˆ2] Membrane capacitance
sigma_e 0.02[S/m] Extracellular conductivity
sigma_i 0.008[S/m] Intracellular conductivity
beta 100[1/m] Surface to volume ratio
sigma_b 0.2[S/m] Torso bulk conductivity
I 100[mA] Defibrillation amplitude
T_on 760[ms] Defibrillation onset
T_dur 100[ms] Defibrillation duration

Appendix B: Overview of COMSOL Multiphysics 375

2. Right-click Global Definitions and select Functions|Rectangle. Specify the lower
limit asT_on and the upper limit asT_on+T_dur. In the Smoothing tab, specify
the size of the transition zone asT_dur/10. Leave the functionname to its default
(rect1).

Component Definitions

1. Right-click the Definitions sub-node of Component 1 and select Component
Couplings|Integration. Specify the geometric entity level as ‘Boundary’ and select
boundary 5. This creates an integration operator for integrating expressions over
this boundary. Leave the default operator name as intop1.

2. Right-click the Definitions sub-node again and select Variables. Leave the geo-
metric entity level to its default as ‘Entiremodel’, and enter the following variables
in the settings table:

Name Expression Description
Area intop1(1) Electrode area
J_stim (I/Area)*rect1(t[1/s]) Current density

3. Again, right-clickDefinitions and select Variables to define a newvariables group.
Specify the geometric entity level as ‘Domain’ and select domains 2 and 3 cor-
responding to the heart. It may be easier to use the Select Box button () in the
Graphics window to drag a box around the heart to select these domains. Enter
the following in the variables settings table:

Name Expression
Vm Vi-Ve
i_ion c_1*(Vm-a)*(Vm-A)*(Vm-B)+c_2*u*(Vm-B)

Electric Currents

1. Select the Electric Currents node in the model tree. By default this physics is set
to hold in all domains of the model (1–4). We wish to override this setting, since
this physics should apply only to the torso and not the heart. Select domains 2 and
3 and click the Remove from Selection button () to individually remove these
domains.

2. Expand the Electric Currents node and select the Current Conservation sub-node.
In the Settings window, specify the electrical conductivity to be user defined, and
enter a value of sigma_b. Similarly, specify the relative permittivity to be user
defined, and leave the default value of 1.

3. Right-click Electric Currents and select Ground. In the Settings window, select
boundary 25 (defibrillating electrode B in Fig.B.14), to set this electrode to
ground.

376 Appendix B: Overview of COMSOL Multiphysics

4. Right-click Electric Currents again and select Normal Current Density. Select
boundary 5 (defibrillating electrode A in Fig.B.14) and specify a normal current
density of J_stim.

5. Right-click Electric Currents again and select Normal Current Density. This time,
select all the boundaries of the heart by dragging a select box around it. These
correspond to boundaries 6, 7, 9–18, 20–23. For the inward normal current density,
enter the expression sigma_e*(Vex*nx+Vey*ny+Vex*nz) to specify that
the current density flowing into the torso from the heart is equal to the current
density flowing out of the heart’s extracellular domain.

General Form PDE

1. Select the General Form PDE node. Again by default, this PDE is set to apply
to all domains of the model (1–4). However, since it should be applicable only
within the heart, remove domains 1 and 4 using the Remove fromSelection button
(), leaving only domains 2 and 3.

2. Select the General Form PDE 1 sub-node of General Form PDE, and enter the
following expressions for the conservative flux � components for variables Ve

and Vi respectively:

Component Expression
x -sigma_e*Vex
y -sigma_e*Vey
z -sigma_e*Vez
x -sigma_i*Vix
y -sigma_i*Viy
z -sigma_i*Viz

Enter the following expressions for the source term f corresponding to variables
Ve and Vi respectively:
beta*i_ion+stim

-beta*i_ion

Finally, enter the following terms for the damping coefficient matrix da :
beta*C_m -beta*C_m
-beta*C_m beta*C_m
Leave the mass coefficient matrix ea entries to their default value of 0.

3. Right-click General Form PDE again and select Dirichlet Boundary Condition.
Using the select box, drag a selection around the heart to select all heart bound-
aries. Remove boundary 8 from the selection, which is the internal boundary
between the top and bottom parts of the heart. Deselect the ‘Prescribed value of
Vi’ checkbox, leaving only the ‘Prescribed value of Ve’ checkbox selected. Enter
a value of V in the r1 field. This constrains the value of Ve at the outer and inner
boundaries of the heart to equal the torso potential.

Appendix B: Overview of COMSOL Multiphysics 377

4. Finally, select the Initial Values 1 sub-node of the General Form PDE node.
Leave the initial value of Ve to its default value of 0. For Vi however, enter
the initial value expression -0.085 + 0.12*(y<0)*(z>0.02). This sets
Vi to an initial value of −0.085 + 0.12 = 0.035V for the sector of the heart
corresponding to y < 0 and z > 0.02m, representing an electrically-excited
state. In all other heart regions, Vi is initially set to –0.085V, corresponding to
the resting, non-excited state.

General Form PDE 2

1. Select the General Form PDE 2 node. Select domains 1 and 4 and individually
remove these using the Remove from Selection button (), leaving only domains
2 and 3.

2. Select the General Form PDE 1 sub-node of General Form PDE 2, and enter a
value of 0 for each of the three components of conservative flux �, since there
are no spatial derivatives in the equation for u. For the source term f , enter the
expression e*(Vm-d*u-b) and for the damping and mass coefficients da and
ea , leave their value as 1 and 0 respectively.

3. Finally, select the Initial Values 1 sub-node of the General Form PDE 2 node, and
enter the initial value expression 5*(x>0.03). This sets variable u to an initial
value of 5 when x > 0.03m, corresponding to heart state that is temporarily
inexcitable (i.e. refractory), and 0 elsewhere.

Mesh

1. Right-click Mesh 1 and select Size. In the Settings window, specify ‘Domain’ as
the geometric entity level, and select domains 2 and 3 corresponding to the heart.
Under the Predefined Element Size option, select ‘Finer’ from the dropdown list.

2. Right-clickMesh 1 again and select Free Tetrahedral. Leave the default geometric
entity level as ‘Remaining’. This will mesh the remaining parts of the model with
a free tetrahedral mesh.

3. Click Build All () in the Settings window to build and display the mesh.

Study

1. Select the Step1: Time Dependent sub-node of the Study 1 node. In the Settings
window, Click the Range button () adjacent to the Times field. Leave the
entry method as ‘Step’ and enter Start, Step and Stop values of 0, 0.001 and 2
respectively. Click Replace. This will create a range of output time values from
0 to 2s in time steps of 0.001s.

2. Right-click the Study 1 node and select Show Default Solver. Select the Study
1|Solver Configurations|Solution 1|Time-Dependent Solver 1 node. In the Set-
tingswindow, expand theAdvanced tab, and for the ‘Singularmassmatrix’ option,
select ‘Yes’. Under the Time Stepping tab, select ‘Strict’ for the Steps taken by
solver option.

3. To solve the model, right-click Study 1 and select Compute (). Select the
Progress tab in the Information window to see the solver progress.

378 Appendix B: Overview of COMSOL Multiphysics

Results

1. When the model has completed solving,4 the Graphics window will display a
default multislice plot of the torso potential (variable V) at t = 0, as shown below:

In the Settings window, select a time of 0.8 s from the Time dropdown list and
click the Plot button () to display the torso potential at this time, during the
defibrillation stimulus:

2. Right-click Results and select 3D Plot Group. Right-click this new plot group
(3D Plot Group 4) and select Surface. In the Settings window, enter Vm as the
expression to plot and select mV as the units from the Unit dropdown list. Left-
click the 3D Plot Group 4 node again, and select a time of 0.52 s from the Time
dropdown list. Clicking the Plot button () will display the membrane potential
on the surface of the heart at this time:

4Using my MacBook Air laptop with 8GB RAM and OS X version 10.8.5, it took just under 5min
to solve this model.

Appendix B: Overview of COMSOL Multiphysics 379

3. Right-click Results and select 1D Plot Group. Right-click this new plot group
(1D Plot Group 5) and select Point Graph. In the Settings window, enter Vm as
the expression to plot and select mV as the units. In the Graphics window, select
point 22 corresponding to a point at the apex of the heart. Click the Descrip-
tion checkbox, and type ‘Apex Membrane Potential’ in the Description field. By
default, the x-axis data will be the time values. Clicking the Plot button () will
display the membrane potential at the apex against time:

This plot shows a repetitive sequence of action potentials (electrical excitations)
at the surface of the heart prior to 0.7 s, due to re-entrant activation from a wave
of excitation travelling continuously around the heart. Following application of
an extracellular current between t = 0.76 and 0.86 s through the torso surface
electrodes, these periodic self-excitations are terminated, indicating successful
defibrillation.

Solutions

Problems of Chap.1

1.1 (a) Let φ1 and φ2 be two distinct solutions satisfying the 1D diffusion equation,
such that ∂φ1

∂t = D ∂2φ1

∂x2 and ∂φ2

∂t = D ∂2φ2

∂x2 . We then form u = c1φ1 + c2φ2, to obtain:

∂u

∂t
= c1

∂φ1

∂t
+ c2

∂φ2

∂t

= c1D
∂2φ1

∂x2
+ c2D

∂2φ2

∂x2

= D

[
∂2(c1φ1 + c2φ2)

∂x2

]

= D
∂2u

∂x2

Hence u is also a solution, and the 1D diffusion equation is linear.
(b) Let φ1 and φ2 be two distinct solutions to the equation, and form u = c1φ1+c2φ2,
to obtain:

du

dt
= c1

dφ1

dt
+ c2

dφ2

dt

= c1kφ1

(
1 − φ1

Nmax

)
+ c2kφ2

(
1 − φ2

Nmax

)

= k(c1φ1 + c2φ2) − k

Nmax

(
c1φ

2
1 + c2φ

2
2

)

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7

381

http://dx.doi.org/10.1007/978-3-642-54801-7_1

382 Solutions

= ku − k

Nmax

(
u2 − u2 + c1φ

2
1 + c2φ

2
2

)

= ku − ku2

Nmax
+ k

Nmax

(
u2 + c1φ

2
1 + c2φ

2
2

)

= ku

(
1 − u

Nmax

)
+ k

Nmax

(
u2 + c1φ

2
1 + c2φ

2
2

)

�= ku

(
1 − u

Nmax

)

Hence, the equation is non-linear.

1.2 (a) MLT−2 (b) L2T−1 (c) M−1L−2T 4 I 2 (d) ML2T−3 I−2 (e) L3T−1 (f) T−1

(g) The radian angle measure is defined as the circular arc length subtended divided
by the radius. Hence its dimensions are L/L = 1, i.e. a dimensionless quantity.

1.3 [B0] = NL−3T−1, [k1] = T−1, [k2] = T−1, [k3] = T−1, [k4] = L3N−1T−1,
[k5] = T−1, [k6] = L3N−1T−1.

1.4 (a) [c0] = ML−1T−2, SI units: Nm–2 = Pa, [c1] = ML8T , SI units: kgm8 s,
[c2] = ML−1, SI units: Pa s2 rad–2

(b) a: mV–1 s–1, b: mV, c: mV, A: s–1, B: mV, C : mV.

1.5 (a) ML3T−3 I−2

(b) Physical quantities are Ra (access resistance), D and ρ. From these, we form the
products

πi = Ra
aDbρc

[πi] = (
ML2T−3 I−2)a Lb

(
ML3T−3 I−2)c

= M (a+c)L(2a+b+3c)T (−3a−3c) I (−2a−2c)

For these to be dimensionless, we require

a + c = 0

2a + b + 3c = 0

−3a − 3c = 0

−2a − 2c = 0

which has infinitely many solutions of the form

⎛
⎝a
b
c

⎞
⎠ =

⎛
⎝ 1

1
−1

⎞
⎠α

Solutions 383

where α may be freely chosen. Choosing α = 1, we have π1 = RaDρ−1. Hence,

Ra = cρ

D

where c is a dimensionless constant.

1.6 We form the dimensionless variables u∗ = u/V , x∗ = x/L , t∗ = ωt ,
p∗ = p/(ρV 2). This leads to the scaled equation:

∂u∗

∂t∗
+
(

V

ωL

)
u∗ ∂u∗

∂x∗ = −
(

V

ωL

)
∂p∗

∂x∗ +
(

μ

ρωL2

)
∂2u∗

∂x∗2

with two dimensionless parameters characterising this system:

p1 = V

ωL

p2 = μ

ρωL2

1.7 The scaled form of the Hodgkin–Huxley equations may be written as:

dV ∗

dt∗
= p1(V

∗ − 1) + p2V
∗ + p3(V

∗ − p4)

dn

dt∗
= α∗

n(1 − n) − β∗
n n

dm

dt∗
= α∗

m(1 − m) − β∗
mm

dh

dt∗
= α∗

h(1 − h) − β∗
h h

with

α∗
n = p5(V ∗+p6)

1−exp
[−(V∗+p6)

p7

] β∗
n = exp

[−(V ∗+p8)
p9

]

α∗
m = p10(V ∗+p11)

1−exp
[−(V∗+p11)

p12

] β∗
m = p13exp

[−(V ∗+p14)
p15

]

α∗
h = p16exp

[−(V ∗+p17)
p18

]
β∗
h = p19

1+exp
[−(V∗+p20)

p21

]

where 21 parameters characterise the system:

384 Solutions

p1 = − gNa

CBn
p2 = − gK

CBn
p3 = − gL

CBn

p4 = VL−VK
VNa−VK

p5 = An
Bn

(VNa − VK) p6 = VK+Van
VNa−VK

p7 = San p8 = VK+Vbn
VNa−VK

p9 = sbn
VNa−VK

p10 = Am
Bn

(VNa − VK) p11 = VK+Vam
VNa−VK

p12 = sam
VNa−VK

p13 = Bm
Bn

p14 = VK+Vbm
VNa−VK

p15 = sbm
VNa−VK

p16 = Ah
Bn

p17 = VK+Vah
VNa−VK

p18 = sah
VNa−VK

p19 = Bh
Bn

p20 = VK+Vbh
VNa−VK

p21 = sbh
VNa−VK

1.8 Assume there are three compounds U, V, and W in the hydrogel, each of which
can enter into a chemical reaction with the analyte to produce distinct complexes that
fluoresce with wavelengths λ1, λ2 and λ3 respectively. Furthermore, these reactions
are given by:

U + n1A
k1−⇀↽−
k2

C1

V + n2A
k3−⇀↽−
k4

C2

W + n3A
k5−⇀↽−
k6

C3

where n1, n2, n3 are the number of molecules of analyte A needed for each reaction,
and C1, C2, C3 are the resultant complexes formed. If the total concentration of each
compound/complex is denoted by T1, T2 and T3, then

[U] + [C1] = T1
[V] + [C2] = T2
[W] + [C3] = T3

Furthermore, if λU , λV , λW are the fluorescence wavelengths of U, V, and W respec-
tively, then the mean wavelength of the hydrogel-analyte system will be given by:

λ = λU [U] + λ1 [C1] + λV [V] + λ2 [C2] + λW [W] + λ3 [C3]

T1 + T2 + T3

= λU (T1 − [C1]) + λV (T2 − [C2]) + λW (T3 − [C3]) + λ1 [C1] + λ2 [C2] + λ3 [C3]

T1 + T2 + T3

= λUT1 + λV T2 + λWT3 + (λ1 − λU) [C1] + (λ2 − λV) [C2] + (λ3 − λW) [C3]

T1 + T2 + T3

Denoting the concentration of analyte A with c, the above reaction scheme can be
modelled as the following system of differential equations:

Solutions 385

d [C1]

dt
= k1 [U] cn1 − k2 [C1] = k1 (T1 − [C1]) c

n1 − k2 [C1]

d [C2]

dt
= k3 [V] cn2 − k4 [C2] = k3 (T2 − [C2]) c

n1 − k4 [C2]

d [C3]

dt
= k5 [W] cn3 − k6 [C3] = k5 (T3 − [C3]) c

n1 − k6 [C3]

The steady-state concentrations of C1, C2, C3 can be found by equating the above
derivatives to zero, to obtain:

[C1] = T1cn1[
cn1 + k2

k1

] , [C2] = T2cn2[
cn2 + k4

k3

] , [C3] = T3cn3[
cn3 + k6

k5

]

with the steady-state fluorescent wavelength given by:

λ = λ0 + F1(λ1 − λU)cn1[
cn1 + k2

k1

] + F2(λ2 − λV)cn2[
cn2 + k4

k3

] + F3(λ3 − λW)cn3[
cn3 + k6

k5

]

where

λ0 = λUT1 + λV T2 + λWT3
T1 + T2 + T3

, F1 = T1
T1 + T2 + T3

, F2 = T2
T1 + T2 + T3

,

F3 = T3
T1 + T2 + T3

Choosing, for example, the following parameter values (all in arbitrary units):
T1 = T2 = T3 = 1, n1 = n2 = n3 = 2, λU = 1000, λV = 1500, λW = 2000,
λ1 = 2000, λ2 = 2500, λ3 = 3000, k1 = 108, k3 = 104 and k2 = k4 = k5 = k6 = 1,
the following graph for steady-state mean wavelength against log analyte concentra-
tion is readily obtained.

386 Solutions

1.9 For a cylindrical axon of length L , radius r , axoplasmic resistivity ρi , and mem-
brane resistance rm , the axon can be discretized into N discrete elements, each of
length x = L/N . Values of the Ri and Rm components are then given by:

Ri = ρix

πr2
, Rm = rm

2πrx

Applying Kirchhoff’s current law to each node, the following system of equations
can be obtained:

⎡
⎢⎢⎢⎢⎢⎢⎣

(
1
Rm

+ 1
Ri

)
− 1

Ri
0 · · · 0

− 1
Ri

(
1
Rm

+ 2
Ri

)
− 1

Ri
· · · 0

...
. . .

...

0 · · · − 1
Ri

(
1
Rm

+ 1
Ri

)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

V1

V2

...

VN

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

I

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

where V1, V2, …, VN are the membrane voltages at the nodes, and I is the current
injected into the axon at the first node. Using Matlab’s interp1 interpolation
function, the length constant at which the membrane voltage has fallen to V1e−1 can
then be determined. This will depend on the number of nodes N as follows:

N Length Constant (mm)
5 2.733
10 2.570
20 2.510
40 2.506
80 2.506
160 2.505

Solutions 387

N = 20 is sufficient to yield a length constant accuracy of 1%.

1.10 (a) For a heart pacing period of 0.8 s, the plot at t = 1.65 s is shown below,
where black regions denote state 0 (i.e. quiescent), and white regions denote state 3
(excited):

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50
Pacing Period = 0.8 s

(b) For a heart pacing period of 0.2 s, the plot at t = 1.65 s is shown below, where
black regions denote state 0 (i.e. quiescent), dark grey regions denote state 1 (absolute
refractory), light grey regions denote state 2 (relative refractory), and white regions
denote state 3 (excited):

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50
Pacing Period = 0.2 s

Some suggestions for implementing this model in Matlab are as follows:

– Define a 50 × 50 array H_state to store the current state of each region in the
grid. Update the values of the array during each time increment.

– Define a 50 × 50 array S_duration to store the time elapsed for the current
state in each grid region. Whenever a region changes state, its elapsed time should
be reset to zero. Whilst remaining in its current state, the time elapsed should be
incremented by dT on every time step.

– To plot the grid states, use the command

388 Solutions

pcolor(H_state), caxis([0 3]), axis(’square’);

– To generate a square array of random total refractory periods, use

RP = MRP + SD*randn(size(H_state));

– To determine the total number of excited neighbours at any instant, use the code:

padded_exc = [zeros(1,52); (H_state(:,50) == 3), ...

(H_state == 3), (H_state(:,1) == 3); zeros(1,52)];

EN = padded_exc(1:50,1:50) + padded_exc(1:50,2:51) + ...

padded_exc(1:50,3:52) + padded_exc(2:51,1:50) + ...

padded_exc(2:51,3:52) + padded_exc(3:52,1:50) + ...

padded_exc(3:52,2:51) + padded_exc(3:52,3:52);

This provides an extra “padded” row and column around all edges of H_state,
allowing the direct summation of the “eight” neighbours.

The full Matlab code listing that generated the above plots (in this instance, for the
rapid pacing case) is given below:

% Solves a cellular automata model of cardiac electrical
% activation, based on Mitchell et al. (1992), "Cellular
% Automaton Model of Ventricular Fibrillation", IEEE
% Transactions on Biomedical Engineering, 39:253-259.

N = 50; % number of cells in each column
M = 50; % number of cells in each row
H_state = zeros(N,M); % state of all cells of the heart

% 3 = excited
% 2 = absolute refractory
% 1 = relative refractory
% 0 = quiescent

S_duration =... % time each cell has spent in its
zeros(size(H_state)); % current state

Dt = 0.002; % time step (in seconds)
t_end = 1.7; % final time (in seconds)
MRP = 0.25; % mean refractory period (in seconds)
SD = 0.1; % standard deviation of refractory

% period (in seconds)
ES = 0.07; % Excited-state duration
RP = MRP + ... % Total refractory period
SD*randn(size(H_state)); % (abs. + rel.) for each cell (in seconds)
T = 0.2; % Heartbeat period (in seconds)

% begin simulation

Solutions 389

for t = 0:Dt:t_end
% determine number of excited neighbours for each cell
padded_exc = [zeros(1,M+2); (H_state(:,M) == 3), ...
(H_state == 3), (H_state(:,1) == 3); zeros(1,M+2)];

EN = padded_exc(1:N,1:M) + padded_exc(1:N,2:M+1) + ...
padded_exc(1:N,3:M+2) + padded_exc(2:N+1,1:M) + ...
padded_exc(2:N+1,3:M+2) + padded_exc(3:N+2,1:M) + ...
padded_exc(3:N+2,2:M+1) + padded_exc(3:N+2,3:M+2);

% calculate spread of activation
for i = 1:M
for j = 1:N

if (H_state(i,j) == 0) % if quiescent
if (EN(i,j) > 0)

H_state(i,j) = 3;
S_duration(i,j) = 0;

else
S_duration(i,j) = S_duration(i,j) + Dt;

end;
elseif (H_state(i,j) == 3) % if excited
if (S_duration(i,j) >= ES)

H_state(i,j) = 2;
S_duration(i,j) = 0;

else
S_duration(i,j) = S_duration(i,j) + Dt;

end;
elseif (H_state(i,j) == 2) % if absolute refractory
if (S_duration(i,j) >= RP(i,j)-0.05)

H_state(i,j) = 1;
S_duration(i,j) = 0;

else
S_duration(i,j) = S_duration(i,j) + Dt;

end;
else % if relative refractory
if ((S_duration(i,j) <= 0.002)&&(EN(i,j) == 8))

H_state(i,j) = 3;
S_duration(i,j) = 0;

elseif ((S_duration(i,j) <= 0.004)&&(EN(i,j) >= 7))
H_state(i,j) = 3;
S_duration(i,j) = 0;

elseif ((S_duration(i,j) <= 0.006)&&(EN(i,j) >= 6))
H_state(i,j) = 3;
S_duration(i,j) = 0;

elseif ((S_duration(i,j) <= 0.008)&&(EN(i,j) >= 5))
H_state(i,j) = 3;
S_duration(i,j) = 0;

elseif ((S_duration(i,j) <= 0.012)&&(EN(i,j) >= 4))
H_state(i,j) = 3;
S_duration(i,j) = 0;

elseif ((S_duration(i,j) <= 0.02)&&(EN(i,j) >= 3))
H_state(i,j) = 3;
S_duration(i,j) = 0;

elseif ((S_duration(i,j) <= 0.05)&&(EN(i,j) >= 2))

390 Solutions

H_state(i,j) = 3;
S_duration(i,j) = 0;

elseif ((S_duration(i,j) > 0.05)&&(EN(i,j) >= 1))
H_state(i,j) = 3;
S_duration(i,j) = 0;

elseif (S_duration(i,j) > 0.05)
H_state(i,j) = 0;
S_duration(i,j) = 0;

else
S_duration(i,j) = S_duration(i,j) + Dt;

end;
end;

end; % j loop
end; % i loop
% if necessary, excite the pacemaker cell
if (mod(t,T) < Dt)
if (H_state(N,round(M/4)) ˜= 2)

H_state(N,round(M/4)) = 3;
S_duration(N,round(M/4)) = 0;

end;
end;

% plot states
pause(0.1);
pcolor(H_state), caxis([0 3]), axis(’square’), ...
title(’Simulation of Cardiac Electrical Activity ’);

end; % t loop

Problems of Chap.2

2.1 (a) To solve dx
dt = αx (1 − x) − βx x , we re-write it as the non-homogeneous

linear equation:
dx

dt
+ (αx + βx)x = αx

To solve this ODE, we first solve the homogeneous form

dx

dt
+ (αx + βx)x = 0

with characteristic equation

m + (αx + βx) = 0

∴ m = −(αx + βx)

Hence, the homogeneous solution is

xh = Ce−(αx+βx)t

http://dx.doi.org/10.1007/978-3-642-54801-7_2

Solutions 391

where C is a constant.
Next, we solve for a particular solution, which we can conveniently take as the
steady-state value of x . This steady-state value can be obtained from the original
non-homogeneous ODE by simply setting dx

dt = 0,

⇒ (αx + βx)x = αx

Hence, a particular solution is

xp = αx

αx + βx

The general solution is the sum of the homogeneous and particular solutions:

x = Ce−(αx+βx)t + αx

αx + βx

When t = 0, x = x0

∴ x0 = C + αx

αx + βx

⇒ C = x0 − αx

αx + βx

Thus, the solution of the ODE is

x =
[
x0 − αx

αx + βx

]
e−(αx+βx)t + αx

αx + βx

(b) From above, the steady-state solution, x∞, is given by

x∞ = αx

αx + βx

and since αx , βx are functions of the membrane potential, which equals Vclamp during
the voltage-clamp, this steady state value is more accurately expressed as

x∞ = αx (Vclamp)

αx (Vclamp) + βx (Vclamp)

Hence, a reasonable estimate for x0 would be the corresponding steady-state value
at the holding potential Vhold , prior to the onset of the voltage-clamp step, or

x0 = αx (Vhold)

αx (Vhold) + βx (Vhold)

2.2 (a) The total force applied to the muscle is given by

392 Solutions

F = k1x1 = b
dx2
dt

+ k2x2

and since the total length x is held fixed at Xm , then x1 = Xm − x2. Substituting this
value for x1 into the right-most equality above, we have:

b
dx2
dt

+ k2x2 = k1 [Xm − x2]

b
dx2
dt

+ (k1 + k2)x2 = k1Xm

or
dx2
dt

+
(
k1 + k2

b

)
x2 = k1

b
Xm

To solve this ODE, the corresponding homogeneous equation is

dx2
dt

+
(
k1 + k2

b

)
x2 = 0

with homogeneous solution

x2,h = Ce
−
(

k1+k2
b

)
t

where C is a constant. A particular solution can be found for the steady-state value
of x2 by setting dx2

dt = 0 in the non-homogeneous ODE. This yields the particular
solution

x2,p =
(

k1
k1 + k2

)
Xm

Hence, the general solution is the sum of the homogeneous and particular solutions:

x2 = Ce
−
(

k1+k2
b

)
t +

(
k1

k1 + k2

)
Xm

When t = 0, x2 = 0, which implies C = −
(

k1
k1+k2

)
Xm . Hence

x2 =
(

k1
k1 + k2

)
Xm

[
1 − e

−
(

k1+k2
b

)
t
]

Knowing x2, we can readily obtain x1:

x1 = Xm − x2

=
(

k2
k1 + k2

)
Xm +

(
k1

k1 + k2

)
Xme

−
(

k1+k2
b

)
t

=
(

Xm

k1 + k2

)[
k2 + k1e

−
(

k1+k2
b

)
t
]

Solutions 393

Since F = k1x1, the applied force is readily determined as

F =
(

k1Xm

k1 + k2

)[
k2 + k1e

−
(

k1+k2
b

)
t
]

(b) The fixed applied force, Fm , satisfies

Fm = k1x1 = b
dx2
dt

+ k2x2

and working with variable x2, we can rewrite the above as

dx2
dt

+ k2
b
x2 = Fm

b

The homogeneous ODE is
dx2
dt

+ k2
b
x2 = 0

with solution

x2,h = Ce
−
(

k2
b

)
t

where C is a constant. The particular solution can be found from the steady-state
value of x2 in the non-homogeneous ODE by setting dx2

dt = 0. We therefore obtain
the particular solution

x2,p = Fm

k2

and the general solution

x2 = Ce
−
(

k2
b

)
t + Fm

k2

When t = 0, x2 = 0, which implies C = − Fm
k2
. Hence

x2 = Fm

k2

[
1 − e

−
(

k2
b

)
t
]

Furthermore, since Fm = k1x1, we have x1 = Fm/k1. Hence, the total length of the
muscle is given by

x = x1 + x2 = Fm

[
1

k1
+ 1

k2
− 1

k2
e
−
(

k2
b

)
t
]

2.3 (a) The total current flowing through the parallel resistive and capacitive
branches is equal to the applied stimulus current. Hence, the ODE for this system is
given by

394 Solutions

C
dV

dt
+ V

R
= I

or
dV

dt
+ V

RC
= I

C

The homogeneous ODE for this system is

dV

dt
+ V

RC
= 0

with homogeneous solution Vh = Ce− t
RC , where C is a constant. The particular

solution, V2,p, can be obtained by setting dV
dt = 0 in the original ODE to obtain:

V2,p = I R

Hence, the general solution, given by the sum of the homogeneous and particular
solutions, is

V = I R + Ce− t
RC

When t = 0, V = 0, which implies C = −I R. Hence,

V = I R
(
1 − e− t

RC

)

Now, when V = Vth , the required stimulus duration T must therefore satisfy

Vth = I R
(
1 − e− T

RC

)

Hence, the strength-duration characteristic is

I = Vth

R
(
1 − e− T

RC

)

(b) From the strength-duration characteristic above, the rheobase may be found from
the stimulus current I as T → ∞, or simply

Irheobase = Vth

R

The chronaxie can be found by solving for stimulus duration T corresponding to an
applied current of 2Irheobase. From the previous strength-duration characteristic, we
have:

Solutions 395

2
Vth

R
= Vth

R
(
1 − e− T

RC

)

2 = 1

1 − e− T
RC

1 − e− T
RC = 1

2

e− T
RC = 1

2
T

RC
= ln 2

∴ Tchronaxie = RC ln 2

≈ 0.69RC

2.4 (a) The pair of ODEs describing the coupled spring masses is

Mẍ1 = −kx1 + k(x2 − x1)

Mẍ2 = k(x1 − x2) − kx2

or

Mẍ1 = −2kx1 + kx2
Mẍ2 = kx1 − 2kx2

(b) Adding the above ODEs together produces

Mẍ1 + Mẍ2 = −kx1 − kx2

or simply
Mÿ1 = −ky1

where we have used the substitution y1 = x1 + x2. To solve this ODE, we can write
its characteristic equation as

Mm2 + k = 0

⇒ m = ±i

√
k

M

Hence,

y1 = C1e
i t
√

k
M + C2e

−i t
√

k
M

= C1 cos

(
t

√
k

M

)
+ C1i sin

(
t

√
k

M

)
+ C2 cos

(
t

√
k

M

)
− C2i sin

(
t

√
k

M

)

396 Solutions

where C1 and C2 are constants. Differentiating this expression, we obtain

ẏ1 = − C1

√
k

M
sin

(
t

√
k

M

)
+ C1

√
k

M
i cos

(
t

√
k

M

)

− C2

√
k

M
sin

(
t

√
k

M

)
− C2

√
k

M
i cos

(
t

√
k

M

)

When t = 0, y1 = u1 + u2 and ẏ1 = ẋ1 + ẋ2 = 0. Substituting these into the above
equations for y1 and ẏ1 yields

u1 + u2 = C1 + C2

0 = C1

√
k

M
i − C2

√
k

M
i

or

C1 = C2 = 1

2
(u1 + u2)

Hence,

y1 = (u1 + u2) cos

(
t

√
k

M

)

Similarly, we can subtract the two original ODEs in x1 and x2 to obtain:

Mẍ1 − Mẍ2 = −3kx1 + 3kx2

or
Mÿ2 = −3ky2

where we have used the substitution y2 = x1 − x2. The characteristic equation of
this ODE is

Mm2 + 3k = 0

⇒ m = ±i

√
3k

M

Hence,

y2 = C3e
i t
√

3k
M + C4e

−i t
√

3k
M

= C3 cos

(
t

√
3k

M

)
+ C3i sin

(
t

√
3k

M

)
+ C4 cos

(
t

√
3k

M

)
− C4i sin

(
t

√
3k

M

)

where C3 and C4 are constants. Differentiating this expression, we obtain

Solutions 397

ẏ2 = − C3

√
3k

M
sin

(
t

√
3k

M

)
+ C3

√
3k

M
i cos

(
t

√
3k

M

)

− C4

√
3k

M
sin

(
t

√
3k

M

)
− C4

√
3k

M
i cos

(
t

√
3k

M

)

When t = 0, y2 = u1 − u2 and ẏ2 = ẋ1 − ẋ2 = 0. Substituting these into the above
equations for y2 and ẏ2 yields

u1 − u2 = C3 + C4

0 = C3

√
3k

M
i − C4

√
3k

M
i

or

C3 = C4 = 1

2
(u1 − u2)

Hence,

y2 = (u1 − u2) cos

(
t

√
3k

M

)

To recover x1 and x2 from y1 and y2, we can use the expressions

x1 = 1

2
(y1 + y2)

x2 = 1

2
(y1 − y2)

to finally obtain

x1 = 1

2
(u1 + u2) cos

(
t

√
k

M

)
+ 1

2
(u1 − u2) cos

(
t

√
3k

M

)

x2 = 1

2
(u1 + u2) cos

(
t

√
k

M

)
− 1

2
(u1 − u2) cos

(
t

√
3k

M

)

2.5 The ODEs for the glucose-insulin model are

dI

dt
= k2 Ip(t) − k3 I

dG

dt
= B0 − (k1 + k4 I + k5 + k6 I)

The followingMatlab code (GI_solve.m andGI_prime.m)will numerically-integrate
these and display the solution:

398 Solutions

GI_solve.m

[time, y_out] = ode15s(’GI_prime’, [0 60], [0 10]);

plot(time, y_out(:,1),’k’, time, y_out(:,2),’k--’), ...

xlabel (’time (min)’), ylabel(’G & I (mM)’), ...

title(’glucose-insulin model’), legend(’I’, ’G’);

GI_prime.m

function y_prime = GI_prime(t,y)

y_prime = zeros(2,1);

k1 = 0.015;

k2 = 1;

k3 = 0.09;

k4 = 0.01;

k5 = 0.035;

k6 = 0.02;

B0 = 0.5;

I = y(1);

G = y(2);

if (t < 0.1)

Ip = 200;

else

Ip = 0;

end;

y_prime(1) = k2*Ip - k3*I;

y_prime(2) = B0 - (k1+k4*I+k5+k6*I)*G;

producing the plot:

Solutions 399

0 10 20 30 40 50 60
0

5

10

15

20

time (min)

G
 &

 I
(m

M
)

glucose−insulin model

I
G

2.6 (a) Denoting the total outflow from the ventricle as Q, we can write

Q = Cs
dPs
dt

+ Ps
Rs

To evaluate Q, there are two cases to consider:
(1) Pv ≤ Ps . In this case, the aortic valve (diode) prevents any backflow and Q = 0.
(2) Pv > Ps . Denoting the flows through elements Ro and Lo by QR and QL respec-
tively, we have

Q = QL + QR

= QL + Pv − Ps
Ro

Combining both cases above:

Cs
dPs
dt

+ Ps
Rs

=
{
QL + Pv−Ps

Ro
Pv > Ps

0 Pv ≤ Ps

which can be re-arranged to

dPs
dt

=
{

QL

Cs
+ Pv−Ps

RoCs
− Ps

RsCs
Pv > Ps

− Ps
Rs

Pv ≤ Ps

To evaluate QL , we can consider the same two cases:
(1) Pv ≤ Ps . In this case, Q = 0 and QR = −QL . The pressure drop across Lo is

QRRo = −RoQL = Lo
dQL

dt

400 Solutions

Hence,
dQL

dt
= − Ro

Lo
QL

(2) Pv > Ps . In this case, the pressure drop across Lo is given by:

Pv − Ps = Lo
dQL

dt

∴ dQL

dt
= Pv − Ps

Lo

Hence, the pair of ODEs characterising the system is

dPs
dt

=
{

QL

Cs
+ Pv−Ps

RoCs
− Ps

RsCs
Pv > Ps

− Ps
Rs

Pv ≤ Ps

dQL

dt
=

{
Pv−Ps
Lo

Pv > Ps

− Ro
Lo
QL Pv ≤ Ps

(b) The followingMatlab code (Windkessel_solve.m andWindkessel_prime.m) will
solve these ODEs over a time interval of 100T (i.e. 100 heartbeats) to obtain a suffi-
cient steady-state Ps waveform, then use the final state variable values as subsequent
initial values to solve for a further time interval of T . The initial values for Ps and
QL are both zero at the start of the 100T simulation:

Windkessel_solve.m

% define global parameters

global R0 L0 Cs Rs P T tc

R0 = 0.06; % mmHg.s/cmˆ3

L0 = 0.2; % mmHg.sˆ2/cmˆ3

Cs = 1; % cmˆ3/mmHg

Rs = 1.4; % mmHg.s/cmˆ3

P = 120; % mmHg

T = 1; % s

tc = 0.35; % s

% solve first for 100 heartbeats

Ps_init = 0;

QL_init = 0;

[time, y_out] = ode15s(’Windkessel_prime’, ...

[0 100*T], [Ps_init QL_init]);

Solutions 401

% solve for one additional heartbeat for steady-state

Ps_init = y_out(end,1);

QL_init = y_out(end,2);

[time, y_out] = ode15s(’Windkessel_prime’, ...

[0 T], [Ps_init QL_init]);

plot(time, y_out(:,1),’k’), ...

xlabel (’time (s)’), ylabel(’P_s (mmHg)’), ...

title(’Systemic pressure - windkessel model’);

Windkessel_prime.m

function y_prime = Windkessel_prime(t,y)

global R0 L0 Cs Rs P T tc

y_prime = zeros(2,1);

Ps = y(1);

QL = y(2);

tt = mod(t,T); % to produce a periodic waveform

if (tt < tc)

Pv = P;

else

Pv = 0;

end;

if (Pv > Ps)

y_prime(1) = QL/Cs + (Pv-Ps)/(R0*Cs) - Ps/(Rs*Cs);

y_prime(2) = (Pv-Ps)/L0;

else

y_prime(1) = -Ps/Rs;

y_prime(2) = -R0*QL/L0;

end;

producing the following plot:

402 Solutions

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

100

105

110

115

120

time (s)

P
s (m

m
H

g)

Systemic pressure − windkessel model

2.7 The following Matlab code (ECG_solve.m and ECG_prime.m) will solve the
ECG model over a time interval of 1 s:

ECG_solve.m

% define global parameters

global A B TH w z0;

A = [1.2, -5, 30, -7.5, 0.75];

B = [0.25, 0.1, 0.1, 0.1, 0.4];

TH = [-1/3, -1/12, 0, 1/12, 1/2]*pi;

w = 2*pi;

z0 = 0;

[time, y_out] = ode15s(’ECG_prime’, [0 1], [-1 0 0]);

plot(time, y_out(:,3),’k’), ...

xlabel (’time (s)’), ylabel(’mV’), ...

title(’Synthetic ECG Signal’);

ECG_prime.m

function Y_prime = ECG_prime(t,Y)

global A B TH w z0;

Y_prime = zeros(3,1);

x = Y(1);

y = Y(2);

z = Y(3);

alpha = 1-sqrt(xˆ2+yˆ2);

th = atan2(y,x);

Y_prime(1) = alpha*x - w*y;

Solutions 403

Y_prime(2) = alpha*y + w*x;

Y_prime(3) = -(z-z0);

for ii = 1:5

Y_prime(3) = Y_prime(3)-...

A(ii)*(th-TH(ii))*exp(-(th-TH(ii))ˆ2/(2*B(ii)ˆ2));

end;

to produce the plot

0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

time (s)

m
V

Synthetic ECG Signal

2.8 The Frankenhaeuser–Huxley neural model is a typical example of pitfalls typi-
cally encountered when modelling biological systems. A chief difficulty arises from
the choice of appropriate units. Since (1) the membrane capacitance is in units of
μFcm–2, (2) the transmembrane potential is in units of mV and (3) time is in ms, the
membrane ionic current iion in the equation

dV

dt
= − iion

Cm

should be in units of μAcm–2. Naive use of the supplied parameters for iNa , iK and
iP would result in units of mAcm–2, so these evaluated currents must be multiplied
by a factor of 1000 (note that iL is already in the correct units of μAcm–2). Another
difficulty is that the stimulus current duration is only 0.12ms, so that naive use of any
of of Matlab’s ODE solvers such as ode15s would likely result in too large a step
size, bypassing the stimulus. It is therefore necessary to restrict the step size, which
can be achieved by specifying a maximum step with Matlab’s odeset command.
These ‘tricks’ have been implemented in the following Matlab code (FH_solve.m
and FH_prime.m):

404 Solutions

FH_solve.m

% solves the Frankenhaeuser--Huxley neural model
global Cm P_Na P_K P_P g_L V_L Na_o;
global Na_i K_o K_i I_s t_on t_dur;
global Er F R T;

Cm = 2; % uC/cmˆ2
P_Na = 0.008; % cm/s
P_K = 0.0012; % cm/s
P_P = 0.00054; % cm/s
g_L = 30.3; % mS/cmˆ2
V_L = 0.026; % mV
Na_o = 114.5; % mM
Na_i = 13.74; % mM
K_o = 2.5; % mM
K_i = 120; % mM
I_s = 1; % mA/cmˆ2
t_on = 1; % ms
t_dur = 0.12; % ms
Er = -70; % mV
F = 96.49; % C/mmol
R = 8.31; % J/(mol*K)
T = 310; % K

Y_init = [0, 0.0005, 0.8249, 0.0268, 0.0049];
options = odeset(’MaxStep’, 0.01);
% solve first for control case (no TTX)
[time_1, Y_out_1] = ode15s(’FH_prime’, [0 5], Y_init, options);
% next, solve for presence of TTX
P_Na = 0.2*P_Na;
[time_2, Y_out_2] = ode15s(’FH_prime’, [0 5], Y_init, options);
plot(time_1, Y_out_1(:,1)+Er, ’k’, time_2, Y_out_2(:,1)+Er, ’k--’), ...

xlabel(’ms’), ylabel(’mV’), legend(’Control’, ’TTX’), ...
title(’TTX effect on neural action potential’);

FH_prime.m

function y_out = FH_prime(t,y)

% calculates derivatives for solving the

% Frankenhaeuser--Huxley neural model.

global Cm P_Na P_K P_P g_L V_L Na_o;

global Na_i K_o K_i I_s t_on t_dur;

global Er F R T;

y_out = zeros(5,1);

V = y(1);

m = y(2);

h = y(3);

n = y(4);

Solutions 405

p = y(5);

alpha_m = 0.36*(V-22)/(1-exp((22-V)/3));

beta_m = 0.4*(13-V)/(1-exp((V-13)/20));

alpha_h = 0.1*(-10-V)/(1-exp((V+10)/6));

beta_h = 4.5/(1+exp((45-V)/10));

alpha_n = 0.02*(V-35)/(1-exp((35-V)/10));

beta_n = 0.05*(10-V)/(1-exp((V-10)/10));

alpha_p = 0.006*(V-40)/(1-exp((40-V)/10));

beta_p = 0.09*(-25-V)/(1-exp((V+25)/20));

E = V+Er;

i_Na = 1000*mˆ2*h*P_Na*(E*Fˆ2/(R*T))*...

(Na_o - Na_i*exp(E*F/(R*T)))...

/(1-exp(E*F/(R*T)));

i_K = 1000*nˆ2*P_K*(E*Fˆ2/(R*T))*...

(K_o - K_i*exp(E*F/(R*T)))...

/(1-exp(E*F/(R*T)));

i_P = 1000*pˆ2*P_P*(E*Fˆ2/(R*T))*...

(Na_o - Na_i*exp(E*F/(R*T)))...

/(1-exp(E*F/(R*T)));

i_L = g_L*(V-V_L);

if ((t >= t_on)&&(t<t_on+t_dur))

i_s = 1000*I_s;

else

i_s = 0;

end;

y_out(1) = -(i_Na+i_K+i_P+i_L-i_s)/Cm;

y_out(2) = alpha_m*(1-m)-beta_m*m;

y_out(3) = alpha_h*(1-h)-beta_h*h;

y_out(4) = alpha_n*(1-n)-beta_n*n;

y_out(5) = alpha_p*(1-p)-beta_p*p;

to produce the plot

406 Solutions

0 1 2 3 4 5
−80

−60

−40

−20

0

20

40

60

ms

m
V

TTX effect on neural action potential

Control
TTX

2.9 (a) For the isometric contraction case, total muscle length L is held at L0. The
total tension T is given by

T = Tp + Ts
= β

(
eα(L−L0) − 1

) + β
(
eαLs − 1

)
= β

(
eαLs − 1

)
(since L = L0)

= β
(
eα(L0−Lc) − 1

)

Taking derivatives of both sides and using the chain rule:

dT

dt
= d

dLc

[
eα(L0−Lc) − 1

] dLc

dt

= −αeα(L0−Lc)
dLc

dt

= −αeα(L0−Lc)

(
a [Ts − S0 f (t)]

Ts + γ S0

)

Hence, the pair of ODEs describing this isometric contraction is

dT

dt
= −αeα(L0−Lc)

(
a [Ts − S0 f (t)]

Ts + γ S0

)

dLc

dt
= a [Ts − S0 f (t)]

Ts + γ S0

These are implemented in following Matlab code (isometric_solve.m and isomet-
ric_prime.m):

Solutions 407

isometric_solve.m

global L0 alpha beta a S0 gamma t_0 t_ip;

L0 = 10; % mm
alpha = 15; % mm
beta = 5; % mN
a = 0.66; % 1/mm
S0 = 4; % mN
gamma = 0.45;
t_0 = 0.05; % s
t_ip = 0.2; % s

Y_init = [0, 10];
options = odeset(’MaxStep’, 0.01);

[time, Y_out] = ode15s(’isometric_prime’, [0 1], Y_init, options);
plot(time, Y_out(:,1), ’k’), ...

xlabel(’s’), ylabel(’mN’),
title(’Isometric contraction - muscle tension’);

isometric_prime.m

function y_prime = isometric_prime(t,y)

global L0 alpha beta a S0 gamma t_0 t_ip;

y_prime = zeros(2,1);

if (t<2*t_ip+t_0)

f = sin((pi/2)*(t+t_0)/(t_ip+t_0));

else

f = 0;

end

T = y(1);

Lc = y(2);

Ls = L0-Lc;

Ts = beta*(exp(alpha*Ls)-1);

y_prime(1) = -alpha*exp(L0-Lc)*...

a*(Ts-S0*f)/(Ts+gamma*S0);

y_prime(2) = a*(Ts-S0*f)/(Ts+gamma*S0);

to produce the plot

408 Solutions

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

s

m
N

Isometric contraction − muscle tension

(b) For the isotonic contraction case, total muscle tension T is held at 0. This total

tension T may be written as

T = Tp + Ts
= β

(
eα(L−L0) − 1

) + β
(
eαLs − 1

)

Taking derivatives of both sides and using the chain rule:

dT

dt
= d

dL

[
eα(L−L0) − 1

] dL
dt

+ d

dLs

[
eαLs − 1

] dLs

dt

= αeα(L−L0)
dL

dt
+ αeαLs

dLs

dt

= αeα(L−L0)
dL

dt
+ αeα(L−Lc)

d(L − Lc)

dt

and since this contraction is isotonic, dT
dt = 0. Hence,

0 = αeα(L−L0)
dL

dt
+ αeα(L−Lc)

d(L − Lc)

dt

αeα(L−Lc)
dLc

dt
= αeα(L−L0)

dL

dt
+ αeα(L−Lc)

dL

dt

αeα(L−Lc)
dLc

dt
= (

αeα(L−L0) + αeα(L−Lc)
) dL
dt

∴ dL

dt
=

(
eα(L−Lc)

eα(L−L0) + eα(L−Lc)

)
dLc

dt

=
(

eαLc

eαL0 + eαLc

)
dLc

dt

Solutions 409

=
(

eαLc

eαL0 + eαLc

)
a [Ts − S0 f (t)]

Ts + γ S0

Hence, the pair of ODEs describing the isotonic contraction is

dL

dt
=

(
eαLc

eαL0 + eαLc

)
a [Ts − S0 f (t)]

Ts + γ S0
dLc

dt
= a [Ts − S0 f (t)]

Ts + γ S0

These are implemented in following Matlab code (isotonic_solve.m and
isotonic_prime.m):

isotonic_solve.m

global L0 alpha beta a S0 gamma t_0 t_ip;

L0 = 10; % mm
alpha = 15; % mm
beta = 5; % mN
a = 0.66; % 1/mm
S0 = 4; % mN
gamma = 0.45;
t_0 = 0.05; % s
t_ip = 0.2; % s

Y_init = [10, 10];
options = odeset(’MaxStep’, 0.01);

[time, Y_out] = ode15s(’isotonic_prime’, [0 1], Y_init, options);
plot(time, Y_out(:,1), ’k’), ...

xlabel(’s’), ylabel(’mm’),
title(’Isotonic contraction - muscle length’);

isotonic_prime.m

function y_prime = isotonic_prime(t,y)

global L0 alpha beta a S0 gamma t_0 t_ip;

y_prime = zeros(2,1);

if (t<2*t_ip+t_0)

f = sin((pi/2)*(t+t_0)/(t_ip+t_0));

else

f = 0;

end

L = y(1);

410 Solutions

Lc = y(2);

Ls = L-Lc;

Ts = beta*(exp(alpha*Ls)-1);

y_prime(1) = (exp(alpha*Lc)/(exp(alpha*L0)+exp(alpha*Lc)))*...

a*(Ts-S0*f)/(Ts+gamma*S0);

y_prime(2) = a*(Ts-S0*f)/(Ts+gamma*S0);

to produce the plot

0 0.2 0.4 0.6 0.8 1
9.975

9.98

9.985

9.99

9.995

10

10.005

s

m
m

Isotonic contraction − muscle length

Problems of Chap.3

3.1 (a)

0 50 100 150 200 250 300 350 400 450 500
−100

−80

−60

−40

−20

0

20

40

ms

m
V

Beeler−Reuter Membrane Potential

This plotwasproducedby the followingMatlab code (BR_solve.mandBR_prime.m).
Note that the maximum step for ode15s was conservatively set to 0.1ms to ensure
the applied stimulus at t = 50ms was not bypassed:

http://dx.doi.org/10.1007/978-3-642-54801-7_3

Solutions 411

BR_solve.m

% solves the Beeler-Reuter (1977) model
global Cm r_Ca Ca_SR k_up A_K1 A_x1 g_Na;
global g_NaC V_Na g_s A_s t_on t_dur;

Cm = 1; % uC/cmˆ2
r_Ca = 1e-7; % M*cmˆ2/nC
Ca_SR = 1e-7; % M
k_up = 0.07; % 1/ms
A_K1 = 0.35; % uA/cmˆ2
A_x1 = 0.8; % uA/cmˆ2
V_Na = 50; % mV
g_Na = 4; % mS/cmˆ2
g_NaC = 0.003; % mS/cmˆ2
g_s = 0.09; % mS/cmˆ2
A_s = 40; % uA/cmˆ2
t_on = 50; % ms
t_dur = 1; % ms

Y_init = [-83.3, 1.87e-7, 0.1644, 0.01, 0.9814, 0.9673, 0.0033, 0.9884];
options = odeset(’MaxStep’, 0.1);
[time, Y_out] = ode15s(’BR_prime’, [0 500], Y_init, options);
plot(time, Y_out(:,1), ’k’), xlabel(’ms’), ylabel(’mV’), ...

title(’Beeler-Reuter Membrane Potential’);

BR_prime.m

function y_prime = BR_prime(t,y)
global Cm r_Ca Ca_SR k_up A_K1 A_x1 g_Na;
global g_NaC V_Na g_s A_s t_on t_dur;
y_prime = zeros(8,1);

V = y(1);
Ca = y(2);
x1 = y(3);
m = y(4);
h = y(5);
j = y(6);
d = y(7);
f = y(8);
alpha_x1 = 0.0005*exp(0.083*(V+50))/(exp(0.057*(V+50))+1);
beta_x1 = 0.0013*exp(-0.06*(V+20))/(exp(-0.04*(V+20))+1);
alpha_m = -(V+47)/(exp(-0.1*(V+47))-1);
beta_m = 40*exp(-0.056*(V+72));
alpha_h = 0.126*exp(-0.25*(V+77));
beta_h = 1.7/(exp(-0.082*(V+22.5))+1);
alpha_j = 0.055*exp(-0.25*(V+78))/(exp(-0.2*(V+78))+1);
beta_j = 0.3/(exp(-0.1*(V+32))+1);
alpha_d = 0.095*exp(-0.01*(V-5))/(exp(-0.072*(V-5))+1);
beta_d = 0.07*exp(-0.017*(V+44))/(exp(0.05*(V+44))+1);
alpha_f = 0.012*exp(-0.008*(V+28))/(exp(0.15*(V+28))+1);
beta_f = 0.0065*exp(-0.02*(V+30))/(exp(-0.2*(V+30))+1);

V_Ca = -82.3-13.0287*log(Ca);

412 Solutions

i_K1 = A_K1*(4*(exp(0.04*(V+85))-1)/(exp(0.08*(V+53))+exp(0.04*(V+53))) + ...
0.2*(V+23)/(1-exp(-0.04*(V+23))));

i_x1 = A_x1*x1*(exp(0.04*(V+77))-1)/exp(0.04*(V+35));
i_Na = (g_Na*mˆ3*h*j + g_NaC)*(V-V_Na);
i_s = g_s*d*f*(V-V_Ca);

if ((t >= t_on)&&(t<t_on+t_dur))
i_stim = A_s;

else
i_stim = 0;

end;

y_prime(1) = -(i_K1+i_x1+i_Na+i_s-i_stim)/Cm;
y_prime(2) = -r_Ca*i_s+k_up*(Ca_SR-Ca);
y_prime(3) = alpha_x1*(1-x1)-beta_x1*x1;
y_prime(4) = alpha_m*(1-m)-beta_m*m;
y_prime(5) = alpha_h*(1-h)-beta_h*h;
y_prime(6) = alpha_j*(1-j)-beta_j*j;
y_prime(7) = alpha_d*(1-d)-beta_d*d;
y_prime(8) = alpha_f*(1-f)-beta_f*f;

(b) To solve the Beeler–Reuter model using the forward-Euler method, the follow-
ing code was implemented (BR_forward_Euler_solve.m and BR_forward_Euler.m).
Note that BR_forward_Euler.m makes use of the BR_prime.m function defined
above:

BR_forward_Euler_solve.m

% solves the Beeler-Reuter (1977) model with
% the forward-Euler and ode15s algorithms
global Cm r_Ca Ca_SR k_up A_K1 A_x1 g_Na;
global g_NaC V_Na g_s A_s t_on t_dur;
global Y_init;

Cm = 1; % uC/cmˆ2
r_Ca = 1e-7; % M*cmˆ2/nC
Ca_SR = 1e-7; % M
k_up = 0.07; % 1/ms
A_K1 = 0.35; % uA/cmˆ2
A_x1 = 0.8; % uA/cmˆ2
V_Na = 50; % mV
g_Na = 4; % mS/cmˆ2
g_NaC = 0.003; % mS/cmˆ2
g_s = 0.09; % mS/cmˆ2
A_s = 40; % uA/cmˆ2
t_on = 50; % ms
t_dur = 1; % ms

Y_init = [-83.3, 1.87e-7, 0.1644, 0.01, 0.9814, 0.9673, 0.0033, 0.9884];

% solve model using forward-Euler with step-size 0.01 ms
[time_fE, Y_out_fE] = BR_forward_Euler(0.01);

% solve using ode15s

Solutions 413

options = odeset(’MaxStep’, 0.1);
[time_15s, Y_out_15s] = ode15s(’BR_prime’, [0 500], Y_init, options);

% plot results
plot(time_15s, Y_out_15s(:,1), ’k’, time_fE, Y_out_fE(:,1), ’k--’), ...

xlabel(’ms’), ylabel(’mV’), ...
title(’Beeler-Reuter Membrane Potential’), ...
legend(’ode15s’, ’forward-Euler: 0.01ms’);

BR_forward_Euler.m

function [time, Y_out] = BR_forward_Euler(h)

% solves the Beeler-Reuter (1977) model

% from t = 0 to 500ms using the forward-Euler

% method with fixed step-size h (in ms)

global Y_init;

S = round(500/h)+1; % output time length

time = zeros(S,1);

Y_out = zeros(S,8);

t = 0;

Y = Y_init;

Y_out(1,:) = Y_init;

% main loop

for ii = 1:S

Y = Y + h*BR_prime(t,Y)’;

t = t+h;

time(ii+1) = t;

Y_out(ii+1,:) = Y;

end;

producing the following plot:

414 Solutions

0 100 200 300 400 500 600
−100

−80

−60

−40

−20

0

20

40

ms

m
V

Beeler−Reuter Membrane Potential

ode15s
forward−Euler: 0.01ms

(c) The following code was used to plot the forward-Euler solution for Vm over the
first few milliseconds using a step size of 0.03ms:

% solves the Beeler-Reuter (1977) model using
% forward-Euler with step-size 0.03 ms
global Cm r_Ca Ca_SR k_up A_K1 A_x1 g_Na;
global g_NaC V_Na g_s A_s t_on t_dur;
global Y_init;
Cm = 1; % uC/cmˆ2
r_Ca = 1e-7; % M*cmˆ2/nC
Ca_SR = 1e-7; % M
k_up = 0.07; % 1/ms
A_K1 = 0.35; % uA/cmˆ2
A_x1 = 0.8; % uA/cmˆ2
V_Na = 50; % mV
g_Na = 4; % mS/cmˆ2
g_NaC = 0.003; % mS/cmˆ2
g_s = 0.09; % mS/cmˆ2
A_s = 40; % uA/cmˆ2
t_on = 50; % ms
t_dur = 1; % ms
Y_init = [-83.3, 1.87e-7, 0.1644, 0.01, 0.9814, 0.9673, 0.0033, 0.9884];

[time_fE, Y_out_fE] = BR_forward_Euler(0.03);

% plot first 100 points only
plot(time_fE(1:100), Y_out_fE(1:100,1), ’k--’), ...

xlabel(’ms’), ylabel(’mV’), ...
title(’Beeler-Reuter Membrane Potential’);

producing the result:

Solutions 415

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0
x 1010

ms

m
V

Beeler−Reuter Membrane Potential

where it is apparent the method has become unstable.

(d) To solve the Beeler–Reuter model using the backward-Euler method, we rewrite
Eq.3.11 in the form:

yn − yn−1 − hf(tn, yn) = 0

and use Newton’s method (Eq.3.12) to solve for yn at each step. This technique
has been utilized in the below Matlab code (BR_backward_Euler_solve.m and
BR_backward_Euler.m):

BR_backward_Euler_solve.m

% solves the Beeler-Reuter (1977) model with

% the backward-Euler and ode15s algorithms

global Cm r_Ca Ca_SR k_up A_K1 A_x1 g_Na;

global g_NaC V_Na g_s A_s t_on t_dur;

global Y_init;

Cm = 1; % uC/cmˆ2

r_Ca = 1e-7; % M*cmˆ2/nC

Ca_SR = 1e-7; % M

k_up = 0.07; % 1/ms

A_K1 = 0.35; % uA/cmˆ2

A_x1 = 0.8; % uA/cmˆ2

V_Na = 50; % mV

g_Na = 4; % mS/cmˆ2

g_NaC = 0.003; % mS/cmˆ2

g_s = 0.09; % mS/cmˆ2

A_s = 40; % uA/cmˆ2

t_on = 50; % ms

t_dur = 1; % ms

http://dx.doi.org/10.1007/978-3-642-54801-7_3
http://dx.doi.org/10.1007/978-3-642-54801-7_3

416 Solutions

Y_init = [-83.3, 1.87e-7, 0.1644, 0.01, 0.9814, 0.9673, ...

0.0033, 0.9884];

% solve model using backward-Euler with step-sizes of

% 0.01 ms and 0.1 ms

h1 = 0.01;

[time_bE_h1, Y_out_bE_h1] = BR_backward_Euler(h1);

h2 = 0.1;

[time_bE_h2, Y_out_bE_h2] = BR_backward_Euler(h2);

% solve using ode15s

options = odeset(’MaxStep’, 0.1);

[time_15s, Y_out_15s] = ode15s(’BR_prime’, [0 500], ...

Y_init, options);

% plot results

plot(time_15s, Y_out_15s(:,1), ’k’, ...

time_bE_h1, Y_out_bE_h1(:,1), ’k--’, ...

time_bE_h2, Y_out_bE_h2(:,1), ’k:’), ...

xlabel(’ms’), ylabel(’mV’), ...

title(’Beeler-Reuter Membrane Potential’), ...

legend(’ode15s’, ’backward-Euler: 0.01ms’, ...

’backward-Euler: 0.1ms’);

BR_backward_Euler.m

function [time, Y_out] = BR_backward_Euler(t_step)
% solves the Beeler-Reuter (1977) model
% from t = 0 to 500ms using the backward-Euler
% method with fixed step-size t_step (in ms)

global Y_init Y_prev h_step;

S = round(500/t_step)+1; % output time length
time = zeros(S,1);
Y_out = zeros(S,8);
t = 0;
Y_prev = Y_init;
h_step = t_step;
Y_out(1,:) = Y_init;

% main loop
for ii = 1:S

t = t+h_step;
% use Newton’s method to determine Y at the next step
Y_iter = Y_prev;
bE_res_0 = Y_iter’ - Y_prev’ - h_step*BR_prime(t,Y_iter);
while max(abs(bE_res_0)) > 1e-6

% determine Jacobian

Solutions 417

Jac = zeros(8,8);
for jj = 1:8

Y_test = Y_iter;
step_j = 1e-6*max(abs(Y_iter(jj)),1e-3);
Y_test(jj) = Y_iter(jj) + step_j;
bE_res = Y_test’ - Y_prev’ - h_step*BR_prime(t,Y_test);
Jac(:,jj) = (bE_res-bE_res_0)/step_j;

end;
Y_iter = Y_iter - (Jac\bE_res_0)’;
bE_res_0 = Y_iter’ - Y_prev’ - h_step*BR_prime(t,Y_iter);

end;
time(ii+1) = t;
Y_out(ii+1,:) = Y_iter;
Y_prev = Y_iter;

end;

which produces the following plot:

0 100 200 300 400 500 600
−100

−80

−60

−40

−20

0

20

40

ms

m
V

Beeler−Reuter Membrane Potential

ode15s
backward−Euler: 0.01ms
backward−Euler: 0.1ms

Note that unlike the forward-Euler method which was unstable for the step-size of
0.03ms, the backward-Euler algorithm is stable at the even larger step-size of 0.1ms.
However, too large a step may lead to convergence issues with Newton’s method.

(e) The followingMatlab code was used to solve the Beeler–Reuter model for a range
of Matlab in-built ODE solvers, determining the computational time taken for each
solver (using Matlab’s tic and toc timing commands):

% solves the Beeler-Reuter (1977) model with

% several in-built Matlab ODE algorithms

global Cm r_Ca Ca_SR k_up A_K1 A_x1 g_Na;

global g_NaC V_Na g_s A_s t_on t_dur;

Cm = 1; % uC/cmˆ2

r_Ca = 1e-7; % M*cmˆ2/nC

Ca_SR = 1e-7; % M

418 Solutions

k_up = 0.07; % 1/ms

A_K1 = 0.35; % uA/cmˆ2

A_x1 = 0.8; % uA/cmˆ2

V_Na = 50; % mV

g_Na = 4; % mS/cmˆ2

g_NaC = 0.003; % mS/cmˆ2

g_s = 0.09; % mS/cmˆ2

A_s = 40; % uA/cmˆ2

t_on = 50; % ms

t_dur = 1; % ms

Y_init = [-83.3, 1.87e-7, 0.1644, 0.01, 0.9814, 0.9673, ...

0.0033, 0.9884];

% solve using ode15s

options = odeset(’MaxStep’, 0.1);

tic

[time_15s, Y_out_15s] = ode15s(’BR_prime’, [0 500], ...

Y_init, options);

ode15s_time_taken = toc;

% solve using ode23s

tic

[time_23s, Y_out_23s] = ode23s(’BR_prime’, [0 500], ...

Y_init, options);

ode23s_time_taken = toc;

% solve using ode23t

tic

[time_23t, Y_out_23t] = ode23t(’BR_prime’, [0 500], ...

Y_init, options);

ode23t_time_taken = toc;

% solve using ode23tb

tic

[time_23tb, Y_out_23tb] = ode23tb(’BR_prime’, [0 500], ...

Y_init, options);

ode23tb_time_taken = toc;

% solve using ode45

tic

[time_45, Y_out_45] = ode45(’BR_prime’, [0 500], ...

Y_init, options);

ode45_time_taken = toc;

Solutions 419

% solve using ode23

tic

[time_23, Y_out_23] = ode23(’BR_prime’, [0 500], ...

Y_init, options);

ode23_time_taken = toc;

% solve using ode113

tic

[time_113, Y_out_113] = ode113(’BR_prime’, [0 500], ...

Y_init, options);

ode113_time_taken = toc;

time_taken = [ode15s_time_taken, ode23s_time_taken, ...

ode23t_time_taken, ode23tb_time_taken, ...

ode45_time_taken, ode23_time_taken, ...

ode113_time_taken];

% plot results

figure(1), plot(time_15s, Y_out_15s(:,1), ’b’, ...

time_23s, Y_out_23s(:,1), ’b:’, ...

time_23t, Y_out_23t(:,1), ’b-.’, ...

time_23tb, Y_out_23tb(:,1), ’b--’, ...

time_45, Y_out_45(:,1), ’k’, ...

time_23, Y_out_23(:,1), ’k:’, ...

time_113, Y_out_113(:,1), ’k-.’), ...

xlabel(’ms’), ylabel(’mV’), ...

title(’Beeler-Reuter Membrane Potential’), ...

legend(’ode15s’, ’ode23s’, ’ode23t’, ’ode23tb’,...

’ode45’, ’ode23’, ’ode113’);

figure(2), bar(time_taken), title(’Computation Times’), ...

set(gca, ’XTickLabel’, {’ode15s’, ’ode23s’, ...

’ode23t’, ’ode23tb’, ’ode45’, ’ode23’, ’ode113’}), ...

ylabel(’seconds’);

producing the following plots:

420 Solutions

0 50 100 150 200 250 300 350 400 450 500
−100

−80

−60

−40

−20

0

20

40

ms

m
V

Beeler−Reuter Membrane Potential

ode15s
ode23s
ode23t
ode23tb
ode45
ode23
ode113

ode15s ode23s ode23t ode23tb ode45 ode23 ode113
0

1

2

3

4

5
Computation Times

se
co

nd
s

From these plots, we can see that all of Matlab’s ODE solvers were able to accurately
compute the Beeler–Reuter equations, however ode15s, ode23t, and ode23tb
exhibited the fastest computational times.5 Of these, ode23t was slightly more
efficient thanode15s. Inmost cases however,ode15s remains the general-purpose
ODE solver of choice for most biological systems, although some other solvers may
be slightly more computationally efficient for specific systems.

3.2 (a) The INa,p + IK model can be represented by the ODE system

dy
dt

= f(t, y)

To solve such a system, the third-order Runge–Kutta algorithm with coefficients

0
1
2

1
2

3
4 0 3

4
2
9

1
3

4
9

is equivalent to the algorithm

5These particular computation times were obtained on a modest 1.3GHz Intel i5MacBook Air with
8GB RAM running OS X 10.8.5.

Solutions 421

K1 = f(tn−1, yn−1)

K2 = f
(
tn−1 + h

2
, yn−1 + h

2
K1

)

K3 = f
(
tn−1 + 3h

4
, yn−1 + 3h

4
K2

)

yn = yn−1 + h

9
(2K1 + 3K2 + 4K3)

which is implemented below in the code INapK_solve.m, INapK_Runge_Kutta.m
and INapK_prime.m:

INapK_solve.m

% solves the I_Na,p + I_K model

% using a third-order Runge-Kutta algorithm

% and ode15s

global C g_Na E_Na g_K E_K tau_n g_L E_L I;

global Y_init;

C = 1; % uF/cmˆ2

g_Na = 20; % mS/cmˆ2

E_Na = 60; % mV

g_K = 10; % mS/cmˆ2

E_K = -90; % mV

tau_n = 1; % ms

g_L = 8; % mS/cmˆ2

E_L = -80; % mV

I = 40; % uA/cmˆ2

Y_init = [-72.9 0.36];

h1 = 0.01;

h2 = 0.1;

% solve model with all steps and methods

[time_h1, Y_out_h1] = INapK_Runge_Kutta(h1);

[time_h2, Y_out_h2] = INapK_Runge_Kutta(h2);

[time_15s, Y_out_15s] = ode15s(’INapK_prime’, [0 30], Y_init);

% plot solutions

plot(time_15s, Y_out_15s(:,1), ’k’, ...

time_h1, Y_out_h1(:,1), ’k--’, ...

time_h2, Y_out_h2(:,1), ’k:’), ...

xlabel(’ms’), ylabel(’mV’), ...

422 Solutions

title(’I_{Na,p}+I_K Model’), ...

legend(’ode15s’, ’RK: 0.01 ms’, ’RK: 0.1 ms’);

INapK_Runge_Kutta.m

function [time, Y_out] = INapK_Runge_Kutta(h)

% solves the I_Na,p + I_K model

% from t = 0 to 30 ms using a

% third-order Runge-Kutta algorithm

% with fixed step-size h (in ms)

global Y_init;

S = round(30/h)+1; % output time length

time = zeros(S,1);

Y_out = zeros(S,2);

t = 0;

Y = Y_init;

Y_out(1,:) = Y_init;

% main loop

for ii = 1:S

K1 = INapK_prime(t,Y);

K2 = INapK_prime(t+h/2,Y+K1’*h/2);

K3 = INapK_prime(t+3*h/4,Y+K2’*3*h/4);

Y = Y + (h/9)*(2*K1’+3*K2’+4*K3’);

t = t+h;

time(ii+1) = t;

Y_out(ii+1,:) = Y;

end;

iNapK_prime.m

function y_prime = INapK_prime(t,y)

% solves the I_Na,p + I_K model

global C g_Na E_Na g_K E_K tau_n g_L E_L I;

y_prime = zeros(2,1);

V = y(1);

n = y(2);

Solutions 423

m_inf = 1/(1+exp(-(V+20)/15));

n_inf = 1/(1+exp(-(V+25)/5));

y_prime(1) = -(1/C)*(g_Na*m_inf*(V-E_Na) + ...

g_K*n*(V-E_K) + g_L*(V-E_L) - I);

y_prime(2) = (n_inf-n)/tau_n;

Executing INapK_solve from the Matlab command line produces the following
plot of solutions:

0 5 10 15 20 25 30 35
−80

−60

−40

−20

0

20

ms

m
V

INa,p+IK Model

ode15s
RK: 0.01 ms
RK: 0.1 ms

The differences between these three methods can be highlighted more clearly when
zooming in on the plot near t = 10 ms:

8.5 9 9.5 10 10.5 11 11.5 12

2

4

6

8

10

12

14

ms

m
V

INa,p+IK Model

ode15s
RK: 0.01 ms
RK: 0.1 ms

(b) To solve the above model using the generalized-α method, we first re-write
the implicit algorithm of Eq.3.26 for use with Newton’s method: i.e. in the form
g(x) = 0. For the general first-order ODE system

dy
dt

= f(t, y)

http://dx.doi.org/10.1007/978-3-642-54801-7_3

424 Solutions

the generalized-α method can be expressed as:

ẏn−1 + αm
(
ẏn − ẏn−1

) − f
(
tn−1 + hα f , yn−1 + α f (yn − yn−1)

) = 0

yn − yn−1 − hẏn−1 − hγ
(
ẏn − ẏn−1

) = 0

which is in the required form g(x) = 0 with x = [ẏTn , yTn]. The method parameters
are

α f = 1

1 + ρ∞
, αm = 1

2

(
3 − ρ∞
1 + ρ∞

)
, γ = 1

1 + ρ∞

where ρ∞ specifies the required level of high-frequency damping from 0 to 1,
with ρ∞ = 0 denoting maximal damping and ρ∞ = 1 no damping. The algo-
rithm is implemented below in the code INapK_generalized_alpha_solve.m and
INapK_generalized_alpha.m:

INapK_generalized_alpha_solve.m

% solves the I_Na,p + I_K model

% using the generalized-alpha and

% ode15s methods.

global C g_Na E_Na g_K E_K tau_n g_L E_L I;

global Y_init;

C = 1; % uF/cmˆ2

g_Na = 20; % mS/cmˆ2

E_Na = 60; % mV

g_K = 10; % mS/cmˆ2

E_K = -90; % mV

tau_n = 1; % ms

g_L = 8; % mS/cmˆ2

E_L = -80; % mV

I = 40; % uA/cmˆ2

Y_init = [-72.9 0.36];

% solve model with ode15s and generalized_alpha method

% using three high-frequency damping factors

[time_15s, Y_out_15s] = ode15s(’INapK_prime’, [0 30], Y_init);

[time_1, Y_out_1] = INapK_generalized_alpha(0.1,1);

[time_2, Y_out_2] = INapK_generalized_alpha(0.1,0.5);

[time_3, Y_out_3] = INapK_generalized_alpha(0.1,0);

% plot solutions

plot(time_15s, Y_out_15s(:,1), ’k’, ...

Solutions 425

time_1, Y_out_1(:,1), ’k--’, ...

time_2, Y_out_2(:,1), ’k-.’, ...

time_3, Y_out_3(:,1), ’k:’), ...

xlabel(’ms’), ylabel(’mV’), ...

title(’I_{Na,p}+I_K Model’), ...

legend(’ode15s’, ’gen. alpha: \rho_{\infty} = 1’,...

’gen. alpha: \rho_{\infty} = 0.5’,...

’gen. alpha: \rho_{\infty} = 0’);

INapK_generalized_alpha.m

function [time, Y_out] = INapK_generalized_alpha(h,rho_inf)
% solves the I_Na,p + I_K model
% from t = 0 to 30 ms using the
% generalized-alpha method
% with fixed step-size h (in ms)
% and high-frequency damping factor rho_inf between 0 and 1

global Y_init;

S = round(30/h)+1; % output time length
time = zeros(S,1);
Y_out = zeros(S,2);

t = 0;
Y_prev = Y_init;
Y_out(1,:) = Y_init;
Y_prime_prev = INapK_prime(0,Y_init)’;

a_f = 1/(1+rho_inf); % alpha_f
a_m = 0.5*(3-rho_inf)/(1+rho_inf); % alpha_m
gamma = 1/(1+rho_inf); % gamma

% main loop
for ii = 1:S

% Use Newton’s method to determine [Y_prime, Y] at the next step
% First, begin with a constant predictor
Y_iter = [Y_prime_prev, Y_prev];
gen_alpha_res_Yprime = (1-a_m)*Y_prime_prev+a_m*Y_iter(1:2)...

- INapK_prime(t+a_f*h,(1-a_f)*Y_prev+a_f*Y_iter(3:4))’;
gen_alpha_res_Y = Y_iter(3:4)-Y_prev...

- h*(Y_prime_prev + gamma*(Y_iter(1:2)-Y_prime_prev));
gen_alpha_res_0 = [gen_alpha_res_Yprime,gen_alpha_res_Y];
while max(abs(gen_alpha_res_0)) > 1e-6

% determine Jacobian
Jac = zeros(4,4);
for jj = 1:4

Y_test = Y_iter;
step_j = 1e-6*max(abs(Y_iter(jj)),1e-3);
Y_test(jj) = Y_iter(jj) + step_j;
gen_alpha_res_Yprime = (1-a_m)*Y_prime_prev+a_m*Y_test(1:2)...

- INapK_prime(t+a_f*h,(1-a_f)*Y_prev+a_f*Y_test(3:4))’;
gen_alpha_res_Y = Y_test(3:4)-Y_prev...

- h*(Y_prime_prev + gamma*(Y_test(1:2)-Y_prime_prev));
gen_alpha_res = [gen_alpha_res_Yprime,gen_alpha_res_Y];

426 Solutions

Jac(:,jj) = (gen_alpha_res-gen_alpha_res_0)/step_j;
end;
Y_iter = Y_iter - (Jac\gen_alpha_res_0’)’;
gen_alpha_res_Yprime = (1-a_m)*Y_prime_prev+a_m*Y_iter(1:2)...

- INapK_prime(t+a_f*h,(1-a_f)*Y_prev+a_f*Y_iter(3:4))’;
gen_alpha_res_Y = Y_iter(3:4)-Y_prev...

- h*(Y_prime_prev + gamma*(Y_iter(1:2)-Y_prime_prev));
gen_alpha_res_0 = [gen_alpha_res_Yprime,gen_alpha_res_Y];

end;
t = t+h;
time(ii+1) = t;
Y_out(ii+1,:) = Y_iter(3:4);
Y_prime_prev = Y_iter(1:2);
Y_prev = Y_iter(3:4);

end;

Executing INapK_generalized_alpha_solve from the Matlab command
line produces the following plot:

0 5 10 15 20 25 30 35
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

ms

m
V

INa,p+IK Model

ode15s
gen. alpha: ρ∞ = 1

gen. alpha: ρ∞ = 0.5

gen. alpha: ρ∞ = 0

The differences between the three levels of damping can be seen more clearly when
zooming in on the plot near t = 10 ms:

8.5 9 9.5 10 10.5 11 11.5 12

−4

−2

0

2

4

6

8

10

12

14

ms

m
V

INa,p+IK Model

ode15s
gen. alpha: ρ∞ = 1

gen. alpha: ρ∞ = 0.5

gen. alpha: ρ∞ = 0

where it can be seen that membrane potential peak is progressively reduced with
increased levels of damping.

Solutions 427

3.3 Using Newton’s backward difference formula (Eq. 3.42), the interpolating poly-
nomial passing through the k + 1 step solutions yn−1, yn−1,…, yn−k−1 is:

φ(t) =∇0yn−1 + (t − tn−1)

h
∇1yn−1 + (t − tn−1)(t − tn−2)

2! h2 ∇2yn−1 + . . .

+ (t − tn−1)(t − tn−2) . . . (t − tn−k)

k! hk ∇k yn−1

Substituting t = tn , we obtain

φ(tn) = ∇0yn−1 + (tn − tn−1)

h
∇1yn−1 + (tn − tn−1)(tn − tn−2)

2! h2 ∇2yn−1 + . . .

+ (tn − tn−1)(tn − tn−2) . . . (tn − tn−k)

k! hk ∇k yn−1

= ∇0yn−1 + h

h
∇1yn−1 + (h)(2h)

2! h2 ∇2yn−1 + · · · + (h)(2h) . . . (kh)

k! hk ∇k yn−1

= ∇0yn−1 + ∇1yn−1 + ∇2yn−1 + · · · + k! hk
k! hk ∇k yn−1

=
k∑

i=0

∇ i yn−1

= y p
n as required.

3.4 The k-step BDF formula is given by Eq.3.58:

k∑
i=1

1

i
∇ i yn = h f (tn, yn)

For k = 7, we form the backward difference expressions:

∇1yn = yn − yn−1

∇2yn = yn − 2yn−1 + yn−2

∇3yn = yn − 3yn−1 + 3yn−2 − yn−3

∇4yn = yn − 4yn−1 + 6yn−2 − 4yn−3 + yn−4

∇5yn = yn − 5yn−1 + 10yn−2 − 10yn−3 + 5yn−4 − yn−5

∇6yn = yn − 6yn−1 + 15yn−2 − 20yn−3 + 15yn−4 − 6yn−5 + yn−6

∇7yn = yn − 7yn−1 + 21yn−2 − 35yn−3 + 35yn−4 − 21yn−5 + 7yn−6 − yn−7

Substituting these into the above k-step formula, and after re-arranging, we obtain
the 7-step BDF formula:

http://dx.doi.org/10.1007/978-3-642-54801-7_3
http://dx.doi.org/10.1007/978-3-642-54801-7_3

428 Solutions

yn − 980

363
yn−1 + 490

121
yn−2 − 4900

1089
yn−3 + 1225

363
yn−4

− 196

121
yn−5 + 490

1089
yn−6 − 20

363
yn−7 = 140

363
h f (tn, yn)

For the test ODE
dy

dt
= λy

with λ < 0, we take the initial value at t = 0 to be y0. The exact solution is then
given by y0eλt . For a fixed step-size of h, we can write the exact solutions to the first
seven steps up to t = 6h as

t = 0 = tn−7, yn−7 = y0
t = h = tn−6, yn−6 = y0e

λh

t = 2h = tn−5, yn−5 = y0e
2λh

t = 3h = tn−4, yn−4 = y0e
3λh

t = 4h = tn−3, yn−3 = y0e
4λh

t = 5h = tn−2, yn−2 = y0e
5λh

t = 6h = tn−1, yn−1 = y0e
6λh

Substituting these values into the above 7-step BDF formula, and noting that
f (tn, yn) = λyn , we obtain:

yn − 980

363
y0e

6λh + 490

121
y0e

5λh − 4900

1089
y0e

4λh + 1225

363
y0e

3λh

−196

121
y0e

2λh + 490

1089
y0e

λh − 20

363
y0 = 140

363
hλyn

∴ yn

(
140

363
hλ − 1

)
= y0e

6λh

(
−980

363
+ 490

121
e−λh − 4900

1089
e−2λh + 1225

363
e−3λh

−196

121
e−4λh + 490

1089
e−5λh − 20

363
e−6λh

)

yn (420hλ − 1089) = yn−1
(−2940 + 4410e−λh − 4900e−2λh + 3675e−3λh

−1764e−4λh + 490e−5λh − 60e−6λh
)

Substituting z = e−λh and re-arranging, we obtain:

yn = yn−1

(−2940 + 4410z − 4900z2 + 3675z3 − 1764z4 + 490z5 − 60z6

−420 ln z − 1089

)

= yn−1

(
60z6 − 490z5 + 1764z4 − 3675z3 + 4900z2 − 4410z + 2940

420 ln z + 1089

)

= yn−1A

Solutions 429

where A is a multiplicative factor that depends on z. For λ < 0 and h positive, z will
be > 1. In the limit as the step-size h becomes infinitely large,

lim
z→∞ A = 60z6

420 ln z
= 360z5

420/z
= 6

7
z6 = ∞

where we have used L’Hôpital’s rule6 to evaluate the limit. Hence, the method is
unstable for large step-sizes. The plot of A against z is shown below:

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

z

A

BDF7 Amplification Factor

where the dashed line represents A = 1. Clearly the method is unstable when A > 1,
corresponding to a value of z near 2.8 on the plot. To numerically determine this value
of z, we can use theMatlabfzero command,which solves the one-variable equation
g(x) = 0, to solve the equation A = 1. Namely,

60z6 − 490z5 + 1764z4 − 3675z3 + 4900z2 − 4410z + 2940

420 ln z + 1089
= 1

which can be re-arranged to

60z6 − 490z5 + 1764z4 − 3675z3 + 4900z2 − 4410z + 2940− 420 ln z − 1089 = 0

This equation can be solved for z using the Matlab command:

z = fzero(’BDF_zero’, 2.8);

where 2.8 is the initial estimate for z, and the function BDF_zero is defined as

function f_out = BDF_zero(z)

6Pronounced lopi-tahl, the rule is limx→∞ f (x)
g(x) = f ′(x)

g′(x) provided (i) the limit exists, (ii) g′(x) �= 0,
and (iii) the corresponding limits of f (x) and g(x) are identical and both equal to 0 or ±∞.

430 Solutions

f_out = 60*zˆ6 - 490*zˆ5 + 1764*zˆ4 ...

- 3675*zˆ3 +4900*zˆ2 - 4410*z + 2940 ...

- 420*log(z) - 1089;

Executing the above fzero command yields a value of z ≈ 2.8596. For stability,
we therefore require

z = e−λh < 2.8596

−λh < ln(2.8596) ≈ 1.0507

Hence for absolute stability, we require h < 1.0507
|λ| .

Problems of Chap.4

4.1 (a) ∇ f =
⎛
⎝ 2

−1
3

⎞
⎠ (b) ∇g =

⎛
⎝2x
2y
2z

⎞
⎠ (c) ∇h =

⎛
⎝ 1/y

−x/y2

0

⎞
⎠

4.2 (a) ∇ · u = 3, ∇ × u =
⎛
⎝0
0
0

⎞
⎠ (b) ∇ · v = 0, ∇ × v =

⎛
⎝ 0

0
−1

⎞
⎠

(c) ∇ · w = 4, ∇ × w =
⎛
⎝−3

−2
2

⎞
⎠

4.3 Writing u = (ux , uy, uz)
T and v = (vx , vy, vz)T , we have:

(a)

∇ · (∇ × u) = ∇ ·
⎛
⎜⎝

∂uy

∂z − ∂uz
∂y

∂uz
∂x − ∂ux

∂z
∂ux
∂y − ∂uy

∂x

⎞
⎟⎠

= ∂

∂x

(
∂uy

∂z
− ∂uz

∂y

)
+ ∂

∂y

(
∂uz

∂x
− ∂ux

∂z

)
+ ∂

∂z

(
∂ux

∂y
− ∂uy

∂x

)

= ∂2uy

∂x∂z
− ∂2uz

∂x∂y
+ ∂2uz

∂x∂y
− ∂2ux

∂y∂z
+ ∂2ux

∂y∂z
− ∂2uy

∂x∂z
= 0

(b)

∇ · (u × v) = ∇ ·
⎛
⎝uyvz − uzvy
uzvx − uxvz
ux vy − uyvx

⎞
⎠

= ∂

∂x

(
uyvz − uzvy

)
+ ∂

∂y

(
uzvx − uxvz

)
+ ∂

∂z

(
uxvy − uyvx

)

http://dx.doi.org/10.1007/978-3-642-54801-7_4

Solutions 431

= vz
∂uy
∂x

+ uy
∂vz
∂x

− vy
∂uz
∂x

− uz
∂vy
∂x

+ vx
∂uz
∂y

+ uz
∂vx
∂y

− vz
∂ux
∂y

− ux
∂vz
∂y

+vy
∂ux
∂z

+ ux
∂vy
∂z

− vx
∂uy
∂z

− uy
∂vx
∂z

= vx

(
∂uz
∂y

− ∂uy
∂z

)
+ vy

(
−∂uz

∂x
+ ∂ux

∂z

)
+ vz

(
∂uy
∂x

− ∂ux
∂y

)

+ux

(
−∂vz

∂y
+ ∂vy

∂z

)
+ uy

(
∂vz
∂x

− ∂vx
∂z

)
+ uz

(
−∂vy

∂x
+ ∂vx

∂y

)

= vx

(
∂uz
∂y

− ∂uy
∂z

)
+ vy

(
∂ux
∂z

− ∂uz
∂x

)
+ vz

(
∂uy
∂x

− ∂ux
∂y

)

+ux

(
∂vy
∂z

− ∂vz
∂y

)
+ uy

(
∂vz
∂x

− ∂vx
∂z

)
+ uz

(
∂vx
∂y

− ∂vy
∂x

)

= v · (∇ × u) + u · (−(∇ × v))

= v · (∇ × u) − u · (∇ × v)

(c) Starting from the right-hand side, we have:

∇(∇ · u) = ∇
(

∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

)

=

⎛
⎜⎜⎜⎜⎝

∂
∂x

(
∂ux
∂x + ∂uy

∂y + ∂uz
∂z

)
∂
∂y

(
∂ux
∂x + ∂uy

∂y + ∂uz
∂z

)
∂
∂z

(
∂ux
∂x + ∂uy

∂y + ∂uz
∂z

)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

∂2ux
∂x2 + ∂2uy

∂x∂y + ∂2uz
∂x∂z

∂2ux
∂x∂y + ∂2uy

∂y2 + ∂2uz
∂y∂z

∂2ux
∂x∂z + ∂2uy

∂y∂z + ∂2uz
∂z2

⎞
⎟⎟⎟⎠

∇2u = ∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

=

⎛
⎜⎜⎝

∂2ux
∂x2 + ∂2ux

∂y2 + ∂2ux
∂z2

∂2uy

∂x2 + ∂2uy

∂y2 + ∂2uy

∂z2

∂2uz
∂x2 + ∂2uz

∂y2 + ∂2uz
∂z2

⎞
⎟⎟⎠

∴ ∇(∇ · u) − ∇2u =

⎛
⎜⎜⎜⎝

∂2uy

∂x∂y + ∂2uz
∂x∂z − ∂2ux

∂y2 − ∂2ux
∂z2

∂2ux
∂x∂y + ∂2uz

∂y∂z − ∂2uy

∂x2 − ∂2uy

∂z2

∂2ux
∂x∂z + ∂2uy

∂y∂z − ∂2uz
∂x2 − ∂2uz

∂y2

⎞
⎟⎟⎟⎠

432 Solutions

On the left-hand side, we have:

∇ × (∇ × u) = ∇ ×

⎛
⎜⎜⎝

∂uy

∂z − ∂uz
∂y

∂uz
∂x − ∂ux

∂z
∂ux
∂y − ∂uy

∂x

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

∂
∂z

(
∂uz
∂x − ∂ux

∂z

)
− ∂

∂y

(
∂ux
∂y − ∂uy

∂x

)
∂
∂x

(
∂ux
∂y − ∂uy

∂x

)
− ∂

∂z

(
∂uy

∂z − ∂uz
∂y

)
∂
∂y

(
∂uy

∂z − ∂uz
∂y

)
− ∂

∂x

(
∂uz
∂x − ∂ux

∂z

)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

∂2uz
∂x∂z − ∂2ux

∂z2 − ∂2ux
∂y2 + ∂2uy

∂x∂y

∂2ux
∂x∂y − ∂2uy

∂x2 − ∂2uy

∂z2 + ∂2uz
∂y∂z

∂2uy

∂y∂z − ∂2uz
∂y2 − ∂2uz

∂x2 + ∂2ux
∂x∂z

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

∂2uy

∂x∂y + ∂2uz
∂x∂z − ∂2ux

∂y2 − ∂2ux
∂z2

∂2ux
∂x∂y + ∂2uz

∂y∂z − ∂2uy

∂x2 − ∂2uy

∂z2

∂2ux
∂x∂z + ∂2uy

∂y∂z − ∂2uz
∂x2 − ∂2uz

∂y2

⎞
⎟⎟⎟⎠

which is equal to the right-hand side. Hence, we have shown:

∇ × (∇ × u) = ∇(∇ · u) − ∇2u

4.4 From the divergence theorem (Eq.4.5), we have

∫
V
(∇.F)dV =

∫
S
F · dS

Choosing F =
⎛
⎝x
0
0

⎞
⎠, we obtain ∇ · F = 1 and F · dS = F ·

⎛
⎝nx

ny

nz

⎞
⎠ dS = xnxdS.

Hence, substituting these into the above divergence theorem, we obtain

∫
V
dV = V =

∫
S
xnxdS

Similarly, we can choose F =
⎛
⎝0
y
0

⎞
⎠, to obtain ∇ · F = 1 and F · dS = ynydS.

Therefore, ∫
V
dV = V =

∫
S
ynydS

http://dx.doi.org/10.1007/978-3-642-54801-7_4

Solutions 433

Finally, choosing F =
⎛
⎝0
0
z

⎞
⎠, we have ∇ · F = 1 and F · dS = znzdS. Hence,

∫
V
dV = V =

∫
S
znzdS

Thus, for an arbitrary closed surface, we have shown its volume is given by

V =
∫
S
xnxdS =

∫
S
ynydS =

∫
S
znzdS

as required.

4.5 (a) Assume we have a spherical shell region V centred on the microsphere,
having inner radius r and outer radius r + r . The total amount of drug C within
the spherical shell is the volume integral of concentration c, namely:

C =
∫
V
c dV =

∫ r+r

r
4πρ2c dρ = 4πr2cr (if r is sufficiently small)

Since C is a conserved quantity, its time rate of change within the spherical shell
must equal the rate of amount of drug entering plus the rate at which it is produced
(or lost) within the shell. We can express this statement as a differential equation:

∂C

∂t
= −

∫
S
Γ · dS +

∫
V
f dV

where Γ is the outward flux (i.e. amount of drug diffusing out of the boundaries S
per unit time per unit area), and f is the rate of drug production per unit volume,
which equals −kupc. To find Γ , we use Fick’s Law of diffusion:

Γ = −D∇c

and since the system is spherically symmetric, the concentration gradient will be
along the radial direction only. Hence,

Γ = −D
∂c

∂r
nr

where nr is the unit vector along the local radial axis. For our spherical shell,

434 Solutions

−
∫
S
Γ · dS =

∫
S
D

∂c

∂r
nr · dS

=
[
D
(
4πρ2

) ∂c

∂ρ

]
ρ=r+r

−
[
D
(
4πρ2

) ∂c

∂ρ

]
ρ=r

= 4π

([
Dρ2 ∂c

∂ρ

]
ρ=r+r

−
[
Dρ2 ∂c

∂ρ

]
ρ=r

)

r
r

= 4π

(
∂

∂r

[
Dr2

∂c

∂r

])
r (for sufficiently small r)

The rate of drug production within the shell is given by

∫
V
f dV =

∫
V

−kupc dV

=
∫ r+r

r
− (

4πρ2kupc
)
dρ

= −4πr2kupcr (if r is sufficiently small)

Substituting all these expressions into our earlier conservation law, we have:

∂C

∂t
= −

∫
S
Γ · dS +

∫
V
f dV

4πr2r
∂c

∂r
= 4πr

∂

∂r

[
Dr2

∂c

∂r

]
− 4πr2kupcr

Dividing all terms by 4πr2r , we obtain the required PDE:

∂c

∂t
= 1

r2
∂

∂r

[
Dr2

∂c

∂r

]
− kupc

(b) Substituting c = u/r into the above PDE, we obtain

1

r

∂u

∂t
= 1

r2
∂

∂r

[
Dr2

(
1

r

∂u

∂r
− u

r2

)]
− kup

(u
r

)

= 1

r2
∂

∂r

[
Dr

∂u

∂r
− Du

]
− kup

(u
r

)

= 1

r2

[
D

∂u

∂r
+ Dr

∂2u

∂r2
− D

∂u

∂r

]
− kup

(u
r

)

= 1

r2

[
Dr

∂2u

∂r2

]
− kup

(u
r

)

=
(
D

r

)
∂2u

∂r2
− kup

(u
r

)

Solutions 435

Multiplying all terms by r , leads to the following simplified PDE in u:

∂u

∂t
= D

∂2u

∂r2
− kupu

To find the steady-state concentration, we set ∂u/∂t = 0. The PDE is then trans-
formed into the following ODE:

D
d2u

dr2
− kupu = 0

which has the characteristic equation

Dm2 − kup = 0

with roots m = ±√
kup/D. Hence, its general solution is

u = C1e
r
√

kup
D + C2e

−r
√

kup
D

where C1, C2 are constants of integration. Since u cannot increase without bound as
r → ∞, we must have C1 = 0. Furthermore, since the concentration c at r = R
(i.e. on the surface of the microsphere) equals c0, u must therefore equal to c0R at
r = R. Hence,

u(R) = c0R = C2e
−R

√
kup
D

∴ C2 = c0Re
R
√

kup
D

Hence,

u = c0Re
R
√

kup
D e−r

√
kup
D

= c0Re
−(r−R)

√
kup
D

and since c = u/r , the steady-state concentration of c is given by:

c∞(r) = c0

(
R

r

)
e−(r−R)

√
kup
D (r > R)

Including the region inside themicrosphere, the complete solution for the steady-state
concentration is

c∞(r) =
{
c0
(
R
r

)
e−(r−R)

√
kup
D r > R

c0 r ≤ R

436 Solutions

4.6 Let cni, j denote the amount of coins held by person (i, j) at time frame n. Each
of the three rules for distribution yield an expression for the amount of coins held by
person (i, j) at time frame n + 1, as follows:

(a) Denote the fixed fraction of coins given to each neighbour as α. Then,

cn+1
i, j = cni, j −

giving to 4 neighbours︷ ︸︸ ︷
4αcni, j +

receiving from 4 neighbours︷ ︸︸ ︷
αcni−1, j + αcni+1, j + αcni, j−1 + αcni, j+1

= cni, j + αcni−1, j − 2αcni, j + αcni+1, j + αcni, j−1 − 2αcni, j + αcni, j+1

cn+1
i, j − cni, j = α

(
cni−1, j − 2cni, j + cni+1, j + cni, j−1 − 2cni, j + cni, j+1

)

t
cn+1
i, j − cni, j

t
= h2α

(
cni−1, j − 2cni, j + cni+1, j

h2
+ cni, j−1 − 2cni, j + cni, j+1

h2

)

cn+1
i, j − cni, j

t
= α

μ

(
cni−1, j − 2cni, j + cni+1, j

h2
+ cni, j−1 − 2cni, j + cni, j+1

h2

)

where μ = t/h2. The terms in this expression represent finite-difference approxi-
mations to first-order derivatives in time and second-order derivatives space. In the
limit as h,t → 0, keeping μ fixed, the expression reduces to the familiar diffusion
PDE:

∂c

∂t
= D

(
∂2c

∂x2
+ ∂2c

∂y2

)

where the diffusion coefficient D = α/μ.
(b) Denote the fixed fraction of coins given to each neighbour by α, the income

received per unit time by β. Then,

cn+1
i, j = cni, j −

giving to 4 neighbours︷ ︸︸ ︷
4αcni, j +

receiving from 4 neighbours︷ ︸︸ ︷
αcni−1, j + αcni+1, j + αcni, j−1 + αcni, j+1 +

income︷︸︸︷
βt

cn+1
i, j − cni, j = αcni−1, j − 2αcni, j + αcni+1, j + αcni, j−1 − 2αcni, j + αcni, j+1 + βt

t
cn+1
i, j − cni, j

t
= h2α

(
cni−1, j − 2cni, j + cni+1, j

h2
+

cni, j−1 − 2cni, j + cni, j+1

h2

)
+ βt

cn+1
i, j − cni, j

t
= α

μ

(
cni−1, j − 2cni, j + cni+1, j

h2
+

cni, j−1 − 2cni, j + cni, j+1

h2

)
+ β

where μ = t/h2. In the limit as h,t → 0, keeping μ fixed, the expression
reduces to the PDE:

∂c

∂t
= D

(
∂2c

∂x2
+ ∂2c

∂y2

)
+ β

where D = α/μ.
(c) Denote the fraction of coins received from each neighbour by α, and the

proportion given to charity per unit time by β. Then,

Solutions 437

cn+1
i, j = cni, j −

giving to 4 neighbours︷ ︸︸ ︷
4αcni, j +

receiving from 4 neighbours︷ ︸︸ ︷
αcni−1, j + αcni+1, j + αcni, j−1 + αcni, j+1 −

giving to charity︷ ︸︸ ︷
βtcni, j

cn+1
i, j − cni, j = αcni−1, j − 2αcni, j + αcni+1, j + αcni, j−1 − 2αcni, j + αcni, j+1 − βtcni, j

t
cn+1
i, j − cni, j

t
= h2α

(
cni−1, j − 2cni, j + cni+1, j

h2
+ cni, j−1 − 2cni, j + cni, j+1

h2

)
− βtcni, j

cn+1
i, j − cni, j

t
= α

μ

(
cni−1, j − 2cni, j + cni+1, j

h2
+ cni, j−1 − 2cni, j + cni, j+1

h2

)
− βcni, j

where μ = t/h2. In the limit as h,t → 0, keeping μ fixed, the expression
reduces to the PDE:

∂c

∂t
= D

(
∂2c

∂x2
+ ∂2c

∂y2

)
− βc

where D = α/μ.

4.7 Discretizing the nerve fibre into elements of length x , we obtain the following
electrical equivalent circuit for one node, where r j denotes the radius at node j :

From Kirchhoff’s current law, the current flowing into node j must equal the current
leaving it. Namely:

current entering︷ ︸︸ ︷
Vj+1 − Vj

ρix/πr2j
+ Vj−1 − Vj

ρix/πr2j−1

=

current leaving︷ ︸︸ ︷
Cm2πr jx

dVj

dt
+ iion2πr jx

π

ρi

[
r2j

Vj+1 − Vj

x
+ r2j−1

Vj−1 − Vj

x

]
= 2πr jx

(
Cm

dVj

dt
+ iion

)

1

x

[
r2j
2ρi

Vj+1 − Vj

x
− r2j−1

2ρi

Vj − Vj−1

x

]
= r j

(
Cm

dVj

dt
+ iion

)

438 Solutions

In the limit as x → 0, the above finite difference expressions approximate to the
following PDE:

∂

∂x

[
r2

2ρi

∂V

∂x

]
= r

(
Cm

∂V

∂t
+ iion

)

or to be compatible with COMSOL’s general PDE form:

rCm
∂V

∂t
+ ∂

∂x

[
− r2

2ρi

∂V

∂x

]
= −riion

4.8 To derive the underlying PDE for the muscle displacement, we discretize the
muscle strand into N sub-units, each of length x = L/N . We can therefore char-
acterise N + 1 nodes, each having displacement ui (i = 0 · · · N). Denoting the
change in length of the i th sub-unit by li , and its corresponding l1, l2 values by l1i ,
l2i respectively. Then the following relationships hold:

li = l1i + l2i = ui − ui−1

Fi = (k1
x

)
l1i for the series element

Fi = (k2
x

)
l2i + (

b
x

) dl2i
dt for the parallel spring/dashpot

where Fi is the passive force generated by the i th sub-unit, which acts on the point
masses to oppose the changes in length. Fi is the same for both the series spring and
the parallel spring/dashpot combination in the i th sub-unit, since these elements are
in series. Re-arranging the last two of the above relationships, we obtain:

l1i =
(
Fi
k1

)
x

l2i =
(
Fi
k2

)
x −

(
b

k2

)
dl2i
dt

Adding these together yields:

l1i + l2i =
(
1

k1
+ 1

k2

)
Fix −

(
b

k2

)
dl2i
dt

li =
(
1

k1
+ 1

k2

)
Fix −

(
b

k2

)
dl2i
dt

=
(
1

k1
+ 1

k2

)
Fix −

(
b

k2

)[
dli
dt

− dl1i
dt

]

and using the series element relationship Fi = (k1/x)l1i , we obtain dFi/dt =
(k1/x)dl1i/dt and hence dl1i/dt = (x/k1)dFi/dt . Substituting the latter into the
above expression, we obtain:

Solutions 439

li =
(
1

k1
+ 1

k2

)
Fix −

(
b

k2

)[
dli
dt

− x

k1

dF

dt

]

li +
(
b

k2

)
dli
dt

=
(
1

k1
+ 1

k2

)
Fix +

(
b

k1k2

)
dF

dt
x

Multiplying throughout by k1k1/x and re-arranging terms, yields:

(
1

x

)[
bk1

dli
dt

+ k1k2li

]
= b

dFi
dt

+ (k1 + k2)Fi

Finally, substituting li = ui − ui−1, we obtain:

(
1

x

)[
bk1

(
dui
dt

− dui−1

dt

)
+ k1k2(ui − ui−1)

]
= b

dFi
dt

+ (k1 + k2)Fi (B.1)

A similar relation holds also for the (i + 1)th sub-unit:

(
1

x

)[
bk1

(
dui+1

dt
− dui

dt

)
+ k1k2(ui+1 − ui)

]
= b

dFi+1

dt
+ (k1 + k2)Fi+1

(B.2)
The total force acting on point mass i is given by

Fi+1 − Fi = (Mx)
d2ui
dt2

Therefore, subtracting Eq.B.1 from Eq.B.2, we obtain:

(
1

x

)[
bk1

(
dui+1

dt
− dui

dt
+ dui−1

dt

)
+ k1k2(ui+1 − 2ui + ui−1)

]

= b

(
dFi+1

dt
− dFi

dt

)
+ (k1 + k2)

[
Fi+1 − Fi

]

= bMx
d

dt

[
d2ui
dt2

]
+ (k1 + k2)Mx

d2ui
dt2

Dividing both sides by x :

bk1
d

dt

[
ui+1 − 2ui + ui−1

2x

]
+ k1k2

(
ui+1 − 2ui + ui−1

2x

)

= bM
d

dt

[
d2ui
dt2

]
+ (k1 + k2)M

d2ui
dt2

In the limit as x → 0, this expression reduces to the PDE:

bk1
∂

∂t

[
∂2u

∂x2

]
+ k1k2

∂2u

∂x2
= bM

∂3u

∂t3
+ (k1 + k2)M

∂2u

∂t2

440 Solutions

where x is the spatial coordinate along the length of the muscle. Re-arranging terms,
the above PDE can also be re-written as:

b
∂

∂t

[
k1

∂2u

∂x2
− M

∂2u

∂t2

]
+ k2

(
k1

∂2u

∂x2
− M

∂2u

∂t2

)
= k1M

∂2u

∂t2

4.9 (a) To solve the atrial tissue PDE system using the method of lines, we first
discretize the 2D domain into a square grid of size N × N . There will therefore be
a total of N 2 individual nodes, with 2N 2 variables to be solved for (i.e. Vm and u at
each node). The following PDE must be discretized:

βCm

(
∂Vm

∂t

)
= ∇ · (σ∇Vm) − βiion + istim

= σ

(
∂2Vm

∂x2
+ ∂2Vm

∂y2

)
− βiion + istim (since σ is constant)

∴ ∂Vm

∂t
= σ

βCm

(
∂2Vm

∂x2
+ ∂2Vm

∂y2

)
− iion

Cm
+ istim

βCm

Denoting Vm and u for the (i, j)th node as Vi, j and ui, j respectively, this PDE can
be discretized as:

dVi, j
dt

= σ

βCm

[
Vi, j+1 − 2Vi, j + Vi, j−1

h2
+ Vi+1, j − 2Vi, j + Vi−1, j

h2

]
− iion,i, j

Cm
+ istim,i, j

βCm

= σ

βCm

[
Vi, j+1 + Vi, j−1 + Vi+1, j + Vi−1, j − 4Vi, j

h2

]
− iion,i, j

Cm
+ istim,i, j

βCm

where iion,i, j and istim,i, j are ii on and is t im evaluated at node (i, j). To setup this
system in Matlab, its in-built ode solvers require the independent variables to be
in a single-column array format. Denoting this array by Y, we can assign the first
N 2 elements to the Vm variables and the final N 2 elements for the u, according the
following “map”:

Vi, j = Y(i−1)N+ j

ui, j = YN 2+(i−1)N+ j

with i, j = 1 · · · N . To implement the zero-flux boundary conditions on the external
boundaries, we set the Vm value of points exterior to the boundary to its value at the
adjacent boundary point. InMatlab, this can be achieved by padding the 2D Vm-array
with extra rows and columns whose Vm values are equal to the adjacent boundary.

Solutions 441

The Matlab code below7 solves this PDE system using a spatial discretization of
51× 51 nodes, plotting the solution for Vm at times 0.3, 0.35, 0.4, and 0.45 s, where
it can be seen that a self-perpetuating reentrant spiral wave of activation is initiated
by the stimulus protocol delivered.

atrial_prime.m:

function Y_prime = atrial_prime(t,Y)
global beta sigma Cm a b c1 c2 A B d e N h
V = reshape(Y(1:Nˆ2),N,N)’; % membrane potentials
U = reshape(Y(Nˆ2+1:2*Nˆ2),N,N)’; % u values
Y_prime = zeros(2*Nˆ2,1);
% Next,"pad" the V array to implement zero-flux b.c.’s
VV = [V(1,1), V(1,1:N), V(1,N); ...

V(1:N,1), V, V(1:N,N); ...
V(N,1), V(N,1:N), V(N,N)];

% calculate derivatives
for i = 1:N

for j=1:N
% obtain Vm value of current node
% and its four neighbours
Vm = VV(i+1,j+1); % padded indices
Vm_left = VV(i+1,j);
Vm_right = VV(i+1,j+2);
Vm_below = VV(i,j+1);
Vm_above = VV(i+2,j+1);
% obtain remaining nodal variables
u = U(i,j);
x = (j-1)*h; % x value
y = (i-1)*h; % y value
i_ion = c1*(Vm-a)*(Vm-A)*(Vm-B)+c2*u*(Vm-B);
if (t >= 0.01)&&(t<=0.011)

if (y < 0.01)
i_stim = 50;

else
i_stim = 0;

end;
elseif (t >= 0.15)&&(t<=0.151)

if (x < 0.01)
i_stim = 50;

else
i_stim = 0;

end;
else

i_stim = 0;
end;
% determine derivative of Vm
Y_prime((i-1)*N+j) = ...

sigma/(beta*Cm)*(Vm_left+Vm_right+Vm_below+Vm_above-4*Vm)/(hˆ2)
... - i_ion/Cm + i_stim/(beta*Cm);

% determine derivative of u
Y_prime(Nˆ2+(i-1)*N+j) = e*(Vm-d*u-b);

end;
end;

7This code took just over 12min to solve using Matlab (R2014b) on a MacBook Air (2013) with
8GB RAM.

442 Solutions

atrial_solve_MOL.m

% solves atrial tissue electrical model
% using the method of lines
global beta sigma Cm a b c1 c2 A B d e N h
beta = 100; % 1/m
sigma = 0.001; % S/m
Cm = 0.01; % F/mˆ2
a = -0.0668; % V
b = -0.085; % V
c1 = 530; % S/(V*m)ˆ2
c2 = 4; % S/mˆ2
A = 0.055; % V
B = -0.085; % V
d = 0.14; % V
e = 285.7; % (1/(V*s)
N = 51;
h = 0.1/(N-1);
Y_init = zeros(2*Nˆ2,1);
Y_init(1:Nˆ2) = -0.085;
options = odeset(’MaxStep’,0.001);
[t_out, Y_out] = ode15s(’atrial_prime’, 0:0.001:0.5, Y_init, options);
% plot result
V_array_1 = Y_out(300,1:Nˆ2);
V_out_1 = reshape(V_array_1,N,N);
V_array_2 = Y_out(350,1:Nˆ2);
V_out_2 = reshape(V_array_2,N,N);
V_array_3 = Y_out(400,1:Nˆ2);
V_out_3 = reshape(V_array_3,N,N);
V_array_4 = Y_out(450,1:Nˆ2);
V_out_4 = reshape(V_array_4,N,N);
subplot(2,2,1), pcolor(V_out_1), colorbar, axis(’square’), ...

caxis([-0.085,0.04]), title(’t = 0.30 s’);
subplot(2,2,2), pcolor(V_out_2), colorbar, axis(’square’), ...

caxis([-0.085,0.04]), title(’t = 0.35 s’);
subplot(2,2,3), pcolor(V_out_3), colorbar, axis(’square’), ...

caxis([-0.085,0.04]), title(’t = 0.40 s’);
subplot(2,2,4), pcolor(V_out_4), colorbar, axis(’square’), ...

caxis([-0.085,0.04]), title(’t = 0.45 s’);

Solutions 443

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
t = 0.30 s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
t = 0.35 s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
t = 0.40 s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
t = 0.45 s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

(b) To solve the above PDE system using an explicit finite difference scheme, we
denote Vm and u for the (i, j)th node and nth time step by V n

i, j and u
n
i, j respectively.

The PDE can therefore be discretized as:

V n+1
i, j − V n

i, j

t
= σ

βCm

[
V n
i, j+1 + V n

i, j−1 + V n
i+1, j + V n

i−1, j − 4V n
i, j

h2

]
− inion,i, j

Cm
+ instim,i, j

βCm

where h and t are the spacial resolution and time step respectively, and i nion,i, j ,
i nstim,i, j are iion and istim evaluated at node (i, j) and time step n. Re-arranging the
above, we have:

Vn+1
i, j = Vn

i, j+
σt

βCmh2

[
Vn
i, j+1 + Vn

i, j−1 + Vn
i+1, j + Vn

i−1, j − 4Vn
i, j

]
−
inion,i, j

Cm
+
instim,i, j

βCm

Similarly for the u variables, we have

Un+1
i, j −Un

i, j

t
= e

(
V n
i, j − dUn

i, j − b
)

∴ Un+1
i, j = Un

i, j + e
(
V n
i, j − dUn

i, j − b
)
t

The Matlab code below implements the above explicit FD scheme for Vm and u,
plotting the solution for Vm at t = 0.3, 0.35, 0.4, and 0.45 s. As in part a), a ‘padded’
Vm-array was used to implement the zero-flux boundary conditions. The code takes

444 Solutions

advantage of Matlab’s array processing abilities, and is much more rapid to solve for
than the method of lines approach above.8

% solves atrial tissue electrical model
% using an explicit FD method
beta = 100; % 1/m
sigma = 0.001; % S/m
Cm = 0.01; % F/mˆ2
a = -0.0668; % V
b = -0.085; % V
c1 = 530; % S/(V*m)ˆ2
c2 = 4; % S/mˆ2
A = 0.055; % V
B = -0.085; % V
d = 0.14; % V
e = 285.7; % (1/(V*s)
N = 51;
h = 0.1/(N-1); % m
Dt = 1e-5; % s
% initialise Vm and u
V = ones(N)*-0.085;
U = zeros(N);
% Next, "pad" the V array to implement zero-flux b.c.’s
VV = [V(1,1), V(1,1:N), V(1,N); ...

V(1:N,1), V, V(1:N,N); ...
V(N,1), V(N,1:N), V(N,N)];

% initialise spatial coordinates
x = zeros(N);
y = zeros(N);
for j=2:N

x(:,j) = x(:,j-1)+h;
end; for i=2:N

y(i,:) = y(i-1,:)+h;
end;
% explicit FD time stepping loop
for t = 0:Dt:0.5

i_ion = c1*(V-a).*(V-A).*(V-B)+c2*U.*(V-B);
if (t >= 0.01)&&(t<=0.011)

i_stim = 50*(y<0.01);
elseif (t >= 0.15)&&(t<=0.151)

i_stim = 50*(y<0.01);
else

i_stim = zeros(N);
end;
V = V + sigma*Dt/(beta*Cm*hˆ2)*(VV(2:N+1,1:N)+VV(2:N+1,3:N+2) + ...

VV(1:N,2:N+1)+VV(3:N+2,2:N+1)-4*VV(2:N+1,2:N+1) ...
- i_ion/Cm + i_stim/(beta*Cm));

U = U + e*(VV(2:N+1,2:N+1)-d*U-b)*Dt;
if (t == 0.3)

V_array_1 = V;
elseif (t == 0.35)

V_array_2 = V;

8This FD scheme took just over 4 s to solve for and plot using Matlab (R2014b) on a MacBook Air
(2013) with 8GB RAM.

Solutions 445

elseif (t == 0.4)
V_array_3 = V;

elseif (t == 0.45)
V_array_4 = V;

end;
end;
% plot result
subplot(2,2,1), pcolor(V_out_1), colorbar, axis(’square’), ...

caxis([-0.085,0.04]), title(’t = 0.30 s’);
subplot(2,2,2), pcolor(V_out_2), colorbar, axis(’square’), ...

caxis([-0.085,0.04]), title(’t = 0.35 s’);
subplot(2,2,3), pcolor(V_out_3), colorbar, axis(’square’), ...

caxis([-0.085,0.04]), title(’t = 0.40 s’);
subplot(2,2,4), pcolor(V_out_4), colorbar, axis(’square’), ...

caxis([-0.085,0.04]), title(’t = 0.45 s’);

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
t = 0.30 s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
t = 0.35 s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
t = 0.40 s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
t = 0.45 s

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

4.10 (a) We can write the voltage distribution V (x, y) in the Petri dish in terms of
polar coordinates V (r, θ), to take advantage of the circular geometry of the problem,
where r = √

x2 + y2 and θ = cos−1(x/r). The relevant PDE is:

∇ · (σ∇V) = 0

and since the conductivityσ is constant throughout the domain,we can divide through
by σ to obtain:

∇ · (∇V) = ∂2V

∂x2
+ ∂2V

∂y2
= 0

To express this PDE in terms of r and θ polar coordinates, we first note that

446 Solutions

∂r

∂x
= ∂

∂x

[√
x2 + y2

]

= x√
x2 + y2

= x

r
∂θ

∂x
= ∂

∂x

[
cos−1

(x
r

)]

= −1√
1 − x2

r2

∂

∂x

[x
r

]

= −1√
r2
r2 − x2

r2

[
1

r
− x

r2
∂r

∂x

]

= −1√
y2

r2

[
1

r
−
(x

r2

) (x
r

)]

= − r

y

[
1

r
− x2

r3

]

= −1

y

[
1 − x2

r2

]

= −1

y

[
r2

r2
− x2

r2

]

= −1

y

[
y2

r2

]

= − y

r2

Using a similar evaluations, we find that

∂r

∂y
= y

r

∂θ

∂y
= x

r2

Using the above expressions,we can nowevaluate the first termof the PDE, ∂2V/∂x2.
We begin with:

∂V

∂x
= ∂V

∂r

∂r

∂x
+ ∂V

∂θ

∂θ

∂x
(using the chain rule)

= x

r

∂V

∂r
− y

r2
∂V

∂θ
(using the previous expressions)

And taking one more derivative, we have:

Solutions 447

∂2V

∂x2
= ∂

∂x

[
x

r

∂V

∂r

]
− ∂

∂x

[
y

r2
∂V

∂θ

]

Evaluating each of the terms on the right-hand side separately, we have:

∂

∂x

[
x

r

∂V

∂r

]
= ∂

∂r

[
x

r

∂V

∂r

]
∂r

∂x
+ ∂

∂θ

[
x

r

∂V

∂r

]
∂θ

∂x

= x

r

{[
− x

r2
+ 1

r

∂x

∂r

]
∂V

∂r
+ x

r

∂2V

∂r2

}
− y

r2

{[
1

r

∂x

∂θ

]
∂V

∂r
+ x

r

∂2V

∂r∂θ

}

= x

r

{[
− x

r2
+ 1

r
cos θ

]
∂V

∂r
+ x

r

∂2V

∂r2

}
− y

r2

{[
−1

r
r sin θ

]
∂V

∂r
+ x

r

∂2V

∂r∂θ

}

= x

r

{[
− x

r2
+ 1

r

x

r

]
∂V

∂r
+ x

r

∂2V

∂r2

}
− y

r2

{[
−1

r
r
y

r

]
∂V

∂r
+ x

r

∂2V

∂r∂θ

}

= y2

r3
∂V

∂r
+ x2

r2
∂2V

∂r2
− xy

r3
∂2V

∂r∂θ

∂

∂x

[
y

r2
∂V

∂θ

]
= ∂

∂r

[
y

r2
∂V

∂θ

]
∂r

∂x
+ ∂

∂θ

[
y

r2
∂V

∂θ

]
∂θ

∂x

= x

r

{[
1

r2
∂y

∂r
− 2y

r3

]
∂V

∂θ
+ y

r2
∂2V

∂r∂θ

}
− y

r2

{[
1

r2
∂y

∂θ

]
∂V

∂θ
+ y

r2
∂2V

∂θ2

}

= x

r

{[
1

r2
sin θ − 2y

r3

]
∂V

∂θ
+ y

r2
∂2V

∂r∂θ

}
− y

r2

{[
1

r2
r cos θ

]
∂V

∂θ
+ y

r2
∂2V

∂θ2

}

= x

r

{[
1

r2
y

r
− 2y

r3

]
∂V

∂θ
+ y

r2
∂2V

∂r∂θ

}
− y

r2

{[
1

r2
r
x

r

]
∂V

∂θ
+ y

r2
∂2V

∂θ2

}

= x

r

{
− y

r3
∂V

∂θ
+ y

r2
∂2V

∂r∂θ

}
− y

r2

{
x

r2
∂V

∂θ
+ y

r2
∂2V

∂θ2

}

= − xy

r4
∂V

∂θ
+ xy

r3
∂2V

∂r∂θ
− xy

r4
∂V

∂θ
− y2

r4
∂2V

∂θ2

= −2xy

r4
∂V

∂θ
+ xy

r3
∂2V

∂r∂θ
− y2

r4
∂2V

∂θ2

Combining both terms together, we obtain

∂2V

∂x2
= y2

r3
∂V

∂r
+ 2xy

r4
∂V

∂θ
− 2xy

r3
∂2V

∂r∂θ
+ x2

r2
∂2V

∂r2
+ y2

r4
∂2V

∂θ2

After a similar lengthy derivation, we also obtain for ∂2V/∂y2:

∂2V

∂y2
= x2

r3
∂V

∂r
− 2xy

r4
∂V

∂θ
+ 2xy

r3
∂2V

∂r∂θ
+ y2

r2
∂2V

∂r2
+ x2

r4
∂2V

∂θ2

Adding both of the above second-order partial derivatives, we obtain:

448 Solutions

∂2V

∂x2
+ ∂2V

∂y2
= y2 + x2

r3
∂V

∂r
+ x2 + y2

r2
∂2V

∂r2
+ y2 + x2

r4
∂2V

∂θ2

= 1

r

∂V

∂r
+ ∂2V

∂r2
+ 1

r2
∂2V

∂θ2

Substituting this into the PDE, we obtain

1

r

∂V

∂r
+ ∂2V

∂r2
+ 1

r2
∂2V

∂θ2
= 0

(b)We can discretize the above PDE using a regular grid over (r, θ) coordinate space.
Furthermore, due to symmetry of the problem about the x-axis, we will utilise only
the half-domain θ ∈ [0, π], r ∈ [0, R], such that for the (i, j)th node, we have:

ri = ir 0 = 1 · · · N
θ j = jθ 0 = 1 · · · M

wherer ,θ are the spatial resolutions in r and θ respectively, with the total number
of grid points in r and θ given by N + 1, M + 1 respectively, such that

r = R

N
and θ = π

M

Denoting the value of V at the (i, j)th node by Vi, j , the above PDE can be discretized
using finite difference approximations of the derivatives as follows:

1

ri

(
Vi+1, j − Vi, j

r

)
+
(
Vi+1, j − 2Vi, j + Vi−1, j

2r

)
+ 1

r2i

(
Vi, j+1 − 2Vi, j + Vi, j−1

2θ

)
= 0

This approximation, however, cannot be used at the centre of the domain, since
evaluation at ri = 0 (i.e. i = 0) will lead to a singular value in the expression.9
However, for i ≥ 1 we can continue to expand the above as follows:

1

ir

(
Vi+1, j − Vi, j

r

)
+
(
Vi+1, j − 2Vi, j + Vi−1, j

2r

)
+ 1

i22r

(
Vi, j+1 − 2Vi, j + Vi, j−1

2θ

)
= 0

Multiplying all terms by i22r2θ , we obtain:

i2θ
(
Vi+1, j − Vi, j

)+i22θ
(
Vi+1, j − 2Vi, j + Vi−1, j

)+(
Vi, j+1 − 2Vi, j + Vi, j−1

) = 0

or
(
i22θ + i2θ

)
Vi+1, j +

(
i22θ

)
Vi−1, j + Vi, j+1 + Vi, j−1 −

(
2i22θ + i2θ + 2

)
Vi, j = 0

9This property is a consequenceof the choice of polar coordinates, raher than anyactual discontinuity
in the solution for V at the centre of the domain.

Solutions 449

At the centre of the Petri dish, where i = 0, we can assign V to equal the mean value
of all surrounding nodes, namely

V0, j = 1

M + 1

M∑
j=0

V1, j j = 0 · · · M

or more simply,

(M + 1)V0, j −
M∑
j=0

V1, j = 0 j = 0 · · · M

Furthermore, along the walls of the dish (i.e. at i = N), the following boundary
conditions are enforced:

VN , j =
⎧⎨
⎩
V0 jθ ≤ θ0

2 (active electrode)
0 jθ ≥ π − θ0

2 (ground electrode)
VN−1, j

θ0
2 < jθ < π − θ0

2 (zero − flux boundaries)

Finally, due to the symmetry of the problem, there is a zero-flux boundary condition
for V on the lower edge of the half-domain, corresponding the x-axis, i.e. when
j = 0 and M . Hence,

Vi,0 = Vi,1 and Vi,M = Vi,M−1

To solve for the individual Vi, j using all the above relationships, we must set up a
matrix system of the form

Ay = b

where y is a column vector of length (N + 1)(M + 1) containing the unknown Vi, j ,
A is an (N + 1)(M + 1) × (N + 1)(M + 1) matrix, and b is also a column vector
of length (N + 1)(M + 1). To map the Vi, j to the elements of y, we can use:

y1+ j+i(M+1) = Vi, j

The Matlab code below implements the above equations for N , M = 100, solves
the resulting matrix system, and plots the voltage distribution in the symmetric half-
domain:

% solves for the Petri dish voltage distribution using
% finite differences on a polar coordinate grid
R = 0.045; % m
theta_0 = pi/3; % radians
V_0 = 2; % V
N = 100;
M = 100;

450 Solutions

D_r = R/N;
D_theta = pi/M;
B = zeros((N+1)*(M+1),1);
A = sparse((N+1)*(M+1),(N+1)*(M+1));
for i = 0:N

for j= 0:M
index = 1+j+i*(M+1);
if (i == 0) % i.e. at centre of dish

A(index,index) = M+1;
A(index,1+(0:M)+M+1) = -1;

elseif (i == N) % i.e. on circular boundary
theta = j*D_theta;
if (theta <= theta_0/2)

% active electrode
A(index,index) = 1;
B(index) = V_0;

elseif (theta >= pi-theta_0/2)
% ground electrode
A(index,index) = 1;

else
% zero-flux boundaries
A(index,index) = 1;
A(index,1+j+(N-1)*(M+1)) = -1;

end;
elseif (j == 0) % i.e. on symmetric boundary

A(index,index) = 1;
A(index,1+1+i*(M+1)) = -1;

elseif (j == M) % i.e. also on symmetric boundary
A(index,index) = 1;
A(index,1+M-1+i*(M+1)) = -1;

else % everywhere else
A(index,index) = -(2*iˆ2*D_thetaˆ2+i*D_thetaˆ2+2);
A(index,1+j+(i+1)*(M+1)) = iˆ2*D_thetaˆ2+i*D_thetaˆ2;
A(index,1+j+(i-1)*(M+1)) = iˆ2*D_thetaˆ2;
A(index,1+j+1+i*(M+1)) = 1;
A(index,1+j-1+i*(M+1)) = 1;

end;
end;

end;
% solve matrix system
Y = A\B; VV = reshape(Y,N+1,M+1);
% plot solution
[RR, WW] = meshgrid(0:D_r:R, 0:D_theta:pi);
XX = RR.*cos(WW);
YY = RR.*sin(WW);
pcolor(XX,YY,VV), colorbar, axis(’equal’),...

shading(’interp’),
title(’Voltage Distribution in Petri Dish’);

Solutions 451

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06
Voltage Distribution in Petri Dish

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) The electric field at all points within the dish is given by

E = −σ∇V = −σ

(
∂V
∂x
∂V
∂y

)

In particular, the electric field magnitude E is given by

E = σ

√(
∂V

∂x

)2

+
(

∂V

∂y

)2

From part (a), these derivatives can be expressed in polar coordinates as

∂V

∂x
= x

r

∂V

∂r
− y

r2
∂V

∂θ
= cos θ

∂V

∂r
− sin θ

r

∂V

∂θ
∂V

∂y
= y

r

∂V

∂r
+ x

r2
∂V

∂θ
= sin θ

∂V

∂r
+ cos θ

r

∂V

∂θ

Therefore,

E = σ

√(
cos θ

∂V

∂r
− sin θ

r

∂V

∂θ

)2

+
(
sin θ

∂V

∂r
+ cos θ

r

∂V

∂θ

)2

= σ

√√√√ cos2 θ
(

∂V
∂r

)2 − 2 sin θ cos θ
r

(
∂V
∂r

) (
∂V
∂θ

) + sin2 θ
r2

(
∂V
∂θ

)2
+ sin2 θ

(
∂V
∂r

)2 − 2 sin θ cos θ
r

(
∂V
∂r

) (
∂V
∂θ

) + cos2 θ
r2

(
∂V
∂θ

)2

452 Solutions

= σ

√(
∂V

∂r

)2

− 2 sin 2θ

r

(
∂V

∂r

)(
∂V

∂θ

)
+ 1

r2

(
∂V

∂θ

)2

Due to symmetry of the voltage distribution about the x-axis, the gradient of the
voltage at the centre of the dish (and hence the electric field) must be parallel to the
x-axis itself. Hence, at the centre of the dish, the electric field is given by:

E|r=0 = −σ

(
∂V
∂x
0

)∣∣∣∣
x=0, y=0

and its magnitude, Ec, is equal to

Ec = σ

∣∣∣∣∂V∂r
∣∣∣∣
r=0, θ=0

since the x-axis is aligned with the θ = 0 axis at r = 0. Hence, the electric field
magnitude in the dish relative to the centre is given by

E

Ec
=

√(
∂V
∂r

)2 − 2 sin 2θ
r

(
∂V
∂r

) (
∂V
∂θ

) + 1
r2
(

∂V
∂θ

)2
∣∣ ∂V

∂r

∣∣
r=0, θ=0

Defining a scalar function Γ (r, θ) such that

Γ (r, θ) =
{
1 0.9 ≤ E

Ec
≤ 1.1

0 otherwise

then the area of the dish for which the electric field magnitude is ±10% of Ec is
giben by

Area =
∫ π

0

∫ R

0
Γ (r, θ)r dr dθ

TheMatlab code below approximates this integral by summing the integrand over all
elements of the 2D voltage polar-grid array VV, plotting the area against the electrode
angle θ0:

% Determines the area for which electric field
% magnitude is with +/- of its value at the
% the centre of the Petri dish, for a range of
% electrode angles.

R = 0.045; % m
V_0 = 2; % V
N = 100;
M = 100;
D_r = R/N;

Solutions 453

D_theta = pi/M;
Area_array = [];
for theta_0 = pi/50:pi/50:49*pi/50

B = zeros((N+1)*(M+1),1);
A = sparse((N+1)*(M+1),(N+1)*(M+1));
for i = 0:N

for j= 0:M
index = 1+j+i*(M+1);
if (i == 0) % i.e. at centre of dish

A(index,index) = M+1;
A(index,1+(0:M)+M+1) = -1;

elseif (i == N) % i.e. on circular boundary
theta = j*D_theta;
if (theta <= theta_0/2)

% active electrode
A(index,index) = 1;
B(index) = V_0;

elseif (theta >= pi-theta_0/2)
% ground electrode
A(index,index) = 1;

else
% zero-flux boundaries
A(index,index) = 1;
A(index,1+j+(N-1)*(M+1)) = -1;

end;
elseif (j == 0) % i.e. on symmetric boundary

A(index,index) = 1;
A(index,1+1+i*(M+1)) = -1;

elseif (j == M) % i.e. also on symmetric boundary
A(index,index) = 1;
A(index,1+M-1+i*(M+1)) = -1;

else % everywhere else
A(index,index) = -(2*iˆ2*D_thetaˆ2+i*D_thetaˆ2+2);
A(index,1+j+(i+1)*(M+1)) = iˆ2*D_thetaˆ2+i*D_thetaˆ2;
A(index,1+j+(i-1)*(M+1)) = iˆ2*D_thetaˆ2;
A(index,1+j+1+i*(M+1)) = 1;
A(index,1+j-1+i*(M+1)) = 1;

end;
end;

end;
% solve matrix system
Y = A\B;
VV = reshape(Y,N+1,M+1)’;
% Determine E-field magnitude at centre of disk using
% finite difference approximation (normalised to sigma = 1)
Ec = abs(VV(2,1)-VV(1,1))/D_r;
% Determine Gamma coefficient
E_ratio = ones(N+1,M+1);
Gamma = zeros(N+1,M+1);
for i = 2:N+1

r = (i-1)*D_r;
for j = 1:M+1

theta = (j-1)*D_theta;
dVdr = (VV(i,j)-VV(i-1,j))/D_r;
if (j==1)

dVdtheta = 0;
else

dVdtheta = (VV(i,j)- VV(i,j-1))/D_theta;
end;

454 Solutions

E_ratio(i,j) = sqrt(dVdrˆ2-2*sin(2*theta)/r*dVdr*dVdtheta + ...
dVdthetaˆ2/rˆ2)/Ec;

if ((E_ratio(i,j)>=0.9)&&(E_ratio(i,j)<=1.1))
Gamma(i,j) = 1;

end;
end;

end;
% determine area of uniform E-field
Area = 0;
for i = 1:N+1

r = i*D_r;
for j = 1:M+1

Area = Area + Gamma(i,j)*r*D_r*D_theta;
end;

end;
Area_array = [Area_array, Area];

end;
% plot solution
plot(pi/50:pi/50:49*pi/50, Area_array*1e6, ’k’), xlabel(’\theta_0 (rad)’),
... ylabel(’Area (mmˆ2)’), title(’Area of Uniform E-field’);

From the plot produced by this code (shown above), a maximum uniform electric
field area of approximately 950mm2 is attained for an electrode angle of around
24π/50 radians, corresponding to θ0 ≈ 86◦.

Problems of Chap.5

5.1 To solve the PDE, we can make use of the system matrices of Eqs. 5.23 and
5.24, determined at the local element level, namely:

http://dx.doi.org/10.1007/978-3-642-54801-7_5
http://dx.doi.org/10.1007/978-3-642-54801-7_5
http://dx.doi.org/10.1007/978-3-642-54801-7_5

Solutions 455

Ke,i j =
∫

�

(κ∇ϕi) · (∇ϕ j
)
dV

fe, j =
∫

�

f ϕ j dV

where i, j = 1, 2, κ = 1, and f = 2. Using 1D Lagrange shape functions, we have
ϕ1 = (1 − ξ) and ϕ2 = ξ . The (1,1) component of the element stiffness matrix can
be determined from

Ke,11 = h
∫ 1

0

(
1

h

)
∂ϕ1(ξ)

∂ξ

(
1

h

)
∂ϕ1(ξ)

∂ξ
dξ

where h denotes the element size, and the various h factors convert the shape function
derivatives and integral from the local element to the spatial frame. Hence,

Ke,11 = h
∫ 1

0

(
1

h

)
(−1)

(
1

h

)
(−1) dξ

= 1

h

Similarly for the other components,

Ke,12 = h
∫ 1

0

(
1

h

)
∂ϕ1(ξ)

∂ξ

(
1

h

)
∂ϕ2(ξ)

∂ξ
dξ

= h
∫ 1

0

(
1

h

)
(−1)

(
1

h

)
(1) dξ

= −1

h

Ke,21 = h
∫ 1

0

(
1

h

)
∂ϕ2(ξ)

∂ξ

(
1

h

)
∂ϕ1(ξ)

∂ξ
dξ

= h
∫ 1

0

(
1

h

)
(1)

(
1

h

)
(−1) dξ

= −1

h

Ke,22 = h
∫ 1

0

(
1

h

)
∂ϕ2(ξ)

∂ξ

(
1

h

)
∂ϕ2(ξ)

∂ξ
dξ

= h
∫ 1

0

(
1

h

)
(1)

(
1

h

)
(1) dξ

= 1

h

For the element load vector calculations, we have

456 Solutions

fe,1 = h
∫ 1

0
2ϕ1(ξ) dξ

= h
∫ 1

0
2 (1 − ξ) dξ

= h
[
2ξ − ξ 2

]1
0

= h

fe,2 = h
∫ 1

0
2ϕ2(ξ) dξ

= h
∫ 1

0
2ξ dξ

= h
[
ξ 2
]1
0

= h

Hence, the element stiffness matrix and load vector are

Ke = 1

h

[
1 −1

−1 1

]
fe = h

[
1
1

]

Assembling the individual matrices into the global system matrices, noting that h =
0.25 and that matrix components are added wherever the element matrices overlap,
we obtain:

K = 4

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎦ f = 0.25

⎡
⎢⎢⎢⎢⎣

1
2
2
2
1

⎤
⎥⎥⎥⎥⎦

The matrix system may then be written as:

⎡
⎢⎢⎢⎢⎣

4 −4 0 0 0
−4 8 −4 0 0
0 −4 8 −4 0
0 0 −4 8 −4
0 0 0 −4 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0.25
0.5
0.5
0.5
0.25

⎤
⎥⎥⎥⎥⎦

To enforce the Dirichlet boundary conditions u1 = 1 and u5 = −1, we add two
rows to the load vector and two additional rows and columns to the stiffness matrix,
corresponding to two dummy Lagrange multiplier variables λ1 and λ2, to obtain the
full matrix system as follows:

Solutions 457

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −4 0 0 0 1 0
−4 8 −4 0 0 0 0
0 −4 8 −4 0 0 0
0 0 −4 8 −4 0 0
0 0 0 −4 4 0 1
1 0 0 0 0 0 0
0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
λ1

λ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.25
0.5
0.5
0.5
0.25
1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where we have preserved symmetry in the square matrix by appending symmetric
columns to its end. Inverting this matrix system in Matlab, we obtain (correct to 4
decimal places) u1 = 1.0000, u2 = 0.6875, u3 = 0.2500, u4 = −0.3125, u5 = −
1.0000, λ1 = −1, λ2 = 3.

To obtain the exact solution to the PDE, we rewrite it as

−∂2u

∂x2
= 2

Integrating twice, we obtain:

u = −x2 + c1x + c2

where c1, c2 are constants of integration. Their value can be determined from the
boundary conditions, namely

u(0) = 1 = c2
u(1) = −1 = −12 + c1 + c2 (.3)

yielding c1 = −1, c2 = 1. Hence the exact PDE solution is

u = −x2 − x + 1

Evaluating this solution at the node positions x = 0, 0.25, 0.5, 0.75 and 1, we
obtain: u(0) = 1, u(0.25) = 0.6875, u(0.5) = 0.25, u(0.75) = −0.3125, and
u(1) = -1. These values correspond to the nodal values u1, u2, u3, u4, and u5 obtained
by solving the matrix system earlier. Therefore, the FEM solution agrees with the
exact solution.

5.2 To solve this PDE using FEM, we begin by first formulating the strong PDE
form of the problem into its equivalent weak form. Rewriting the PDE as

−∂2u

∂x2
= x

u(0) = 1
∂u

∂x
(1) = −1

458 Solutions

we first multiply by our test function utest , where we impose utest (0) = 0, namely,
at the Dirichlet boundary.10 Integrating across the domain, we obtain:

∫ 1

0
−utest

∂2u

∂x2
dx =

∫ 1

0
xutest dx

Integrating the left-hand side by parts, yields:

[
−utest

∂u

∂x

]1
0

−
∫ 1

0
−∂utest

∂x

∂u

∂x
dx =

∫ 1

0
xutest dx

−utest (1)
∂u

∂x
(1) + utest (0)

∂u

∂x
(0) −

∫ 1

0
−∂utest

∂x

∂u

∂x
dx =

∫ 1

0
xutest dx

utest (1) +
∫ 1

0

∂utest
∂x

∂u

∂x
dx =

∫ 1

0
xutest dx

where we have used ∂u
∂x (1) = −1 and utest (0) = 0. Utilising our 1D Lagrange

basis functions ϕi (x), we employ Galerkin’s method to substitute utest = ϕ j and
u = ∑

i uiϕi , to obtain:

ϕ j (1) +
N∑
i=1

∫ 1

0

∂ϕ j

∂x

∂ϕi

∂x
dx =

∫ 1

0
xϕ j dx

N∑
i=1

∫ 1

0

∂ϕ j

∂x

∂ϕi

∂x
dx = −ϕ j (1) +

∫ 1

0
xϕ j dx

For our 1D Lagrange functions, ϕ j (1) will equal 1 only for j = N , where N is the
number of basis functions (and global nodes). For all other values of j , it will be 0.
The above is equivalent to the following matrix system:

Ku = f

Ki j =
∫ 1

0

∂ϕ j

∂x

∂ϕi

∂x
dx

fi = −δNi +
∫ 1

0
xφi dx

where δNi is the Kronecker delta, defined by

δ
j
i =

{
1 i = j
0 i �= j

10Later, the actual Dirichlet condition x(0) = 1 will be enforced through the method of Lagrange
multipliers, but for now, this constraint on utest will allow us to conveniently obtain the PDE weak
form.

Solutions 459

To evaluate these components, it is convenient to work with local element versions
of these matrices, namely:

Ke,i j = h
∫ 1

0

(
1

h

)
∂ϕ j

∂ξ

(
1

h

)
∂ϕi

∂ξ
dξ

= 1

h

∫ 1

0

∂ϕ j

∂ξ

∂ϕi

∂ξ
dξ

fe,i = −δx (1) + h
∫ 1

0
xφi dξ

where i, j = 1, 2, h is the element size, and δx (1) = 1 if x = 1, 0 otherwise. Using
the 1D Lagrange shape functions, ϕ1 = (1− ξ) and ϕ2 = ξ , the four components of
the element stiffness matrix can be determined using:

Ke,11 = 1

h

∫ 1

0

∂ϕ1(ξ)

∂ξ

∂ϕ1(ξ)

∂ξ
dξ

= 1

h

∫ 1

0
(−1)(−1) dξ

= 1

h

Ke,12 = 1

h

∫ 1

0

∂ϕ1(ξ)

∂ξ

∂ϕ2(ξ)

∂ξ
dξ

= 1

h

∫ 1

0
(−1)(1) dξ

= −1

h

Ke,21 = 1

h

∫ 1

0

∂ϕ2(ξ)

∂ξ

∂ϕ1(ξ)

∂ξ
dξ

= 1

h

∫ 1

0
(1)(−1) dξ

= −1

h

Ke,22 = 1

h

∫ 1

0

∂ϕ2(ξ)

∂ξ

∂ϕ2(ξ)

∂ξ
dξ

= 1

h

∫ 1

0
(1)(1) dξ

= 1

h

For the element load vector, we must evaluate the integral of xϕ j with respect to the
local element coordinate ξ . To do this, we first express x in local element coordinates.

460 Solutions

Since the element is isoparametric, the value of x within the element is simply the
weighted sum of its shape functions, namely:

x = x1ϕ1(ξ) + x2ϕ2(ξ)

= x1(1 − ξ) + x2ξ

where x1, x2 are the values of x at nodes 1 and 2 of the element. The components of
the load vector are therefore

fe,1 = −δx (1) + h
∫ 1

0
xϕ1(ξ) dξ

= −δx (1) + h
∫ 1

0
[x1(1 − ξ) + x2ξ] (1 − ξ) dξ

= −δx (1) + h
∫ 1

0

[
x1(1 − ξ)2 + x2ξ (1 − ξ)

]
dξ

= −δx (1) + h

[
− x1(1 − ξ)3

3
+ x2

(
ξ 2

2
− ξ 3

3

)]1
0

= −δx (1) + h

[
1

3
x1 + 1

6
x2

]

fe,2 = −δx (1) + h
∫ 1

0
xϕ2(ξ) dξ

= −δx (1) + h
∫ 1

0
[x1(1 − ξ) + x2ξ] ξ dξ

= −δx (1) + h
∫ 1

0

[
x1(1 − ξ)ξ + x2ξ

2
]
dξ

= −δx (1) + h

[
x1

(
ξ 2

2
− ξ 3

3

)
+ x2

ξ 3

3

]1
0

= −δx (1) + h

[
1

6
x1 + 1

3
x2

]

Using h = 0.25, we can write the stiffness matrix of each element as

Ke = 1

h

[
1 −1

−1 1

]
=

[
4 −4

−4 4

]

Furthermore, the element load vectors fe are given by

fe = −δx (1) + h

6

[
2x1 + x2
x1 + 2x2

]

= −δx (1) + 1

24

[
2x1 + x2
x1 + 2x2

]

Solutions 461

These element load vectors will be different for each element, and are given as
follows:

Element 1 : x1 = 0, x2 = 0.25 fe = 1
24

[
0.25
0.5

]

Element 2 : x1 = 0.25, x2 = 0.5 fe = 1
24

[
1

1.25

]

Element 3 : x1 = 0.5, x2 = 0.75 fe = 1
24

[
1.75
2

]

Element 4 : x1 = 0.75, x2 = 1 fe =
[
0

−1

]
+ 1

24

[
2.5
2.75

]

Assembling the individual element matrices into the global system matrices, noting
that matrix components are added wherever the element matrices overlap, we obtain:

K =

⎡
⎢⎢⎢⎢⎣

4 −4 0 0 0
−4 8 −4 0 0
0 −4 8 −4 0
0 0 −4 8 −4
0 0 0 −4 4

⎤
⎥⎥⎥⎥⎦ f = 1

24

⎡
⎢⎢⎢⎢⎣

0.25
1.5
3
4.5

−21.25

⎤
⎥⎥⎥⎥⎦

The matrix system may then be written as:

⎡
⎢⎢⎢⎢⎣

4 −4 0 0 0
−4 8 −4 0 0
0 −4 8 −4 0
0 0 −4 8 −4
0 0 0 −4 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0.0104
0.0625
0.1250
0.1875

−0.8854

⎤
⎥⎥⎥⎥⎦

To enforce the Dirichlet boundary condition at x = 0, namely u1 = 1, we add a
row to the load vector and one additional row and column to the stiffness matrix,
corresponding to a dummy Lagrange multiplier variable λ1, to obtain the full matrix
system as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

4 −4 0 0 0 1
−4 8 −4 0 0 0
0 −4 8 −4 0 0
0 0 −4 8 −4 0
0 0 0 −4 4 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
λ1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0104
0.0625
0.1250
0.1875

−0.8854
1

⎤
⎥⎥⎥⎥⎥⎥⎦

Inverting this matrix system in Matlab, we obtain (correct to 4 decimal places)
u1 = 1.0000, u2 = 0.8724, u3 = 0.7292, u4 = 0.5547, u5 = 0.3333,
λ1 = −0.5000.

To obtain the exact solution to the PDE, we have

462 Solutions

−∂2u

∂x2
= x

Integrating twice, we obtain:

∂u

∂x
= − x2

2
+ c1

u = − x3

6
+ c1x + c2

where c1, c2 are constants of integration, whose value can be determined from the
boundary conditions, namely

u(0) = 1 = c2
∂u

∂x
(1) = −1 = −1

2
+ c1 (.4)

yielding c1 = − 1
2 , c2 = 1. Hence the exact PDE solution is

u = − x3

6
− x

2
+ 1

Evaluating this solution at the node positions x = 0, 0.25, 0.5, 0.75 and 1, we
obtain: u(0) = 1, u(0.25) = 0.8724, u(0.5) = 0.7292, u(0.75) = 0.5547, and
u(1) = 0.3333. These values correspond to the nodal values u1, u2, u3, u4, and u5
obtained by solving the matrix system earlier. Therefore, the FEM solution agrees
with the exact solution.

5.3 For the cubic Lagrange 1D element, there are four nodes located at ξ = 0,
ξ = 1/3, ξ = 2/3 and ξ = 1. The four cubic Lagrange functions can be determined
as follows:
For ϕ1(ξ), we require ϕ1(0) = 1, ϕ1(1/3) = 0, ϕ1(2/3) = 0 and ϕ1(1) = 0. The
cubic polynomial must therefore satisfy the following form:

ϕ1(ξ) = c1
(
ξ − 1

3

) (
ξ − 2

3

)
(ξ − 1)

where c1 is a constant. Its value can be determined from the requirement that ϕ1(0) =
1. Hence, c1 = −9/2, and we obtain

ϕ1(ξ) = 9
2

(
ξ − 1

3

) (
ξ − 2

3

)
(1 − ξ)

A similar analysis can be applied to the other three shape functions, requiring these
to equal 1 at one node and 0 at all others. This yields the remaining shape functions
as follows:

Solutions 463

ϕ2(ξ) = 27
2 ξ

(
ξ − 2

3

)
(ξ − 1)

ϕ3(ξ) = 27
2 ξ

(
ξ − 1

3

)
(1 − ξ)

ϕ4(ξ) = 9
2ξ

(
ξ − 1

3

) (
ξ − 2

3

)

A plot of these shape functions is shown below:

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Cubic Lagrange Shape Functions

1

2

3

4

5.4 This diffusion PDE is similar to Example 5.1, in which we computed the global
damping, stiffness and load matrices/vectors using Eqs. 5.5–5.7

Di j =
∫ 1

0
ϕi (x)ϕ j (x) dx (damping matrix)

Ki j =
∫ 1

0
D
dϕi (x)

dx

dϕ j (x)

dx
dx (stiffness matrix)

fi = q(t)ϕi (1) = q(t)δNi (load vector)

where D is the diffusion coefficient (= 1 for this problem), δNi is the Kronecker
delta, and q(t) = [

D ∂c
∂x

]
x=1

, which represents the specified flux at x = 1. As in
Example 5.1, since zero-flux boundary conditions have been specified at both ends
of the domain, all elements of the load vector will be 0.

To determine the damping and stiffness matrices, is convenient to express these
at the local element level, namely:

De,i j = h
∫ 1

0
ϕi (ξ)ϕ j (ξ) dξ

Ke,i j = h
∫ 1

0

(
1

h

)
dϕi (ξ)

dξ

(
1

h

)
dϕ j (ξ)

dξ
dξ

= 1

h

∫ 1

0

dϕi (ξ)

dξ

dϕ j (ξ)

dξ
dξ

http://dx.doi.org/10.1007/978-3-642-54801-7_5
http://dx.doi.org/10.1007/978-3-642-54801-7_5
http://dx.doi.org/10.1007/978-3-642-54801-7_5
http://dx.doi.org/10.1007/978-3-642-54801-7_5

464 Solutions

We can then substitute the three quadratic Lagrange shape functions,

ϕ1(ξ) = 2(0.5 − ξ)(1 − ξ)

ϕ2(ξ) = 4ξ(1 − ξ)

ϕ3(ξ) = 2ξ(ξ − 0.5)

into these expressions to determine the above system matrices. For the damping
matrix, we have:

De,11 = h
∫ 1

0
ϕ1(ξ)ϕ1(ξ) dξ

= 4h
∫ 1

0
(0.5 − ξ)2(1 − ξ)2 dξ

= 4h
∫ 1

0
(0.25 − ξ + ξ 2)(1 − 2ξ + ξ 2) dξ

= 4h
∫ 1

0

[
0.25 − ξ + ξ 2 − 0.5ξ + 2ξ 2 − 2ξ 3 + 0.25ξ 2 − ξ 3 + ξ 4] dξ

= 4h
∫ 1

0

[
0.25 − 1.5ξ + 3.25ξ 2 − 3ξ 3 + ξ 4] dξ

= 4h

[
0.25ξ − 0.75ξ 2 + 3.25

3
ξ 3 − 0.75ξ 4 + 0.2ξ 5

]1
0

= 2h

15

De,12 = h
∫ 1

0
ϕ1(ξ)ϕ2(ξ) dξ

= 8h
∫ 1

0
(0.5 − ξ)(1 − ξ)ξ(1 − ξ) dξ

= 8h
∫ 1

0
(0.5ξ − ξ 2)(1 − 2ξ + ξ 2) dξ

= 8h
∫ 1

0

[
0.5ξ − ξ 2 − ξ 2 + 2ξ 3 + 0.5ξ 3 − ξ 4

]
dξ

= 8h
∫ 1

0

[
0.5ξ − 2ξ 2 + 2.5ξ 3 − ξ 4

]
dξ

= 8h

[
0.25ξ 2 − 2

3
ξ 3 + 2.5

4
ξ 4 − 0.2ξ 5

]1
0

= h

15

De,13 = h
∫ 1

0
ϕ1(ξ)ϕ3(ξ) dξ

Solutions 465

= 4h
∫ 1

0
(0.5 − ξ)(1 − ξ)ξ(ξ − 0.5) dξ

= 4h
∫ 1

0
(ξ − 0.5)2ξ(ξ − 1) dξ

= 4h
∫ 1

0
(ξ 2 − ξ + 0.25)(ξ 2 − ξ) dξ

= 4h
∫ 1

0

[
ξ 4 − ξ 3 + 0.25ξ 2 − ξ 3 + ξ 2 − 0.25ξ

]
dξ

= 4h
∫ 1

0

[
ξ 4 − 2ξ 3 + 1.25ξ 2 − 0.25ξ

]
dξ

= 4h

[
0.2ξ 5 − 0.5ξ 4 + 1.25

3
ξ 3 − 0.125ξ 2

]1
0

= − h

30

De,22 = h
∫ 1

0
ϕ2(ξ)ϕ2(ξ) dξ

= 16h
∫ 1

0
ξ 2(1 − ξ)2 dξ

= 16h
∫ 1

0
ξ 2(1 − 2ξ + ξ 2) dξ

= 16h
∫ 1

0

[
ξ 2 − 2ξ 3 + ξ 4] dξ

= 16h

[
1

3
ξ 3 − 0.5ξ 4 + 0.2ξ 5

]1
0

= 8h

15

De,23 = h
∫ 1

0
ϕ2(ξ)ϕ3(ξ) dξ

= 8h
∫ 1

0
ξ(1 − ξ)ξ(ξ − 0.5) dξ

= 8h
∫ 1

0
ξ 2(−0.5 + 1.5ξ − ξ 2) dξ

= 8h
∫ 1

0

[−0.5ξ 2 + 1.5ξ 3 − ξ 4
]
dξ

= 8h

[
−0.5

3
ξ 3 + 1.5

4
ξ 4 − 0.2ξ 5

]1
0

= h

15

466 Solutions

De,33 = h
∫ 1

0
ϕ3(ξ)ϕ3(ξ) dξ

= 4h
∫ 1

0
ξ 2(ξ − 0.5)2 dξ

= 4h
∫ 1

0
ξ 2(ξ 2 − ξ + 0.25) dξ

= 4h
∫ 1

0

[
ξ 4 − ξ 3 + 0.25ξ 2

]
dξ

= 4h

[
0.2ξ 5 − 0.25ξ 4 + 0.25

3
ξ 3

]1
0

= 2h

15

with remaining terms being symmetric, that is: De21 = De12, De31 = De13,
De32 = De23. Hence, the 3 × 3 element damping matrix is given by:

De = h

30

⎡
⎣ 4 2 −1

2 16 2
−1 2 4

⎤
⎦

For the element stiffness matrix, we must first calculate the derivatives of our shape
functions:

dϕ1(ξ)

dξ
= d

dξ

[
2(0.5 − ξ)(1 − ξ)

]

= d

dξ

[
2ξ 2 − 3ξ + 1

]

= 4ξ − 3
dϕ2(ξ)

dξ
= d

dξ

[
4ξ(1 − ξ)

]

= d

dξ

[
4ξ − 4ξ 2

]

= 4 − 8ξ
dϕ3(ξ)

dξ
= d

dξ

[
2ξ(ξ − 0.5)

]

= d

dξ

[
2ξ 2 − ξ

]

= 4ξ − 1

Solutions 467

Hence, the components of the element stiffness matrix can be determined as
follows:

Ke,11 = 1

h

∫ 1

0

dϕ1(ξ)

dξ

dϕ1(ξ)

dξ
dξ

= 1

h

∫ 1

0
(4ξ − 3)2 dξ

= 1

h

∫ 1

0

(
16ξ 2 − 24ξ + 9

)
dξ

= 1

h

[
16

3
ξ 3 − 12ξ 2 + 9ξ

]1
0

= 7

3h

Ke,12 = 1

h

∫ 1

0

dϕ1(ξ)

dξ

dϕ2(ξ)

dξ
dξ

= 1

h

∫ 1

0
(4ξ − 3)(4 − 8ξ) dξ

= 1

h

∫ 1

0

(−12 + 40ξ − 32ξ 2
)
dξ

= 1

h

[
−12ξ + 20ξ 2 − 32

3
ξ 3

]1
0

= − 8

3h

Ke,13 = 1

h

∫ 1

0

dϕ1(ξ)

dξ

dϕ3(ξ)

dξ
dξ

= 1

h

∫ 1

0
(4ξ − 3)(4ξ − 1) dξ

= 1

h

∫ 1

0

(
16ξ 2 − 16ξ + 3

)
dξ

= 1

h

[
16

3
ξ 3 − 8ξ 2 + 3ξ

]1
0

= 1

3h

Ke,22 = 1

h

∫ 1

0

dϕ2(ξ)

dξ

dϕ2(ξ)

dξ
dξ

= 1

h

∫ 1

0
(4 − 8ξ)2 dξ

= 1

h

∫ 1

0

(
16 − 64ξ + 64ξ 2) dξ

468 Solutions

= 1

h

[
16ξ − 32ξ 2 + 64

3
ξ 3

]1
0

= 16

3h

Ke,23 = 1

h

∫ 1

0

dϕ2(ξ)

dξ

dϕ3(ξ)

dξ
dξ

= 1

h

∫ 1

0
(4 − 8ξ)(4ξ − 1) dξ

= 1

h

∫ 1

0

(−4 + 24ξ − 32ξ 2
)
dξ

= 1

h

[
−4ξ + 12ξ 2 − 32

3
ξ 3

]1
0

= − 8

3h

Ke,33 = 1

h

∫ 1

0

dϕ3(ξ)

dξ

dϕ3(ξ)

dξ
dξ

= 1

h

∫ 1

0
(4ξ − 1)2 dξ

= 1

h

∫ 1

0

(
16ξ 2 − 8ξ + 1

)
dξ

= 1

h

[
16

3
ξ 3 − 4ξ 2 + ξ

]1
0

= 7

3h

with the remaining components being symmetric. Thus, the element stiffness matrix
is given by

Ke = 1

3h

⎡
⎣ 7 −8 1

−8 16 −8
1 −8 7

⎤
⎦

Assembling the four individual element matrices into the global system matrices,
using h = 0.25 and noting that matrix components are added wherever the element
matrices overlap, we obtain the 9 × 9 global system matrices:

Solutions 469

D = 1

120

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 −1 0 0 0 0 0 0
2 16 2 0 0 0 0 0 0

−1 2 8 2 −1 0 0 0 0
0 0 2 16 2 0 0 0 0
0 0 −1 2 8 2 −1 0 0
0 0 0 0 2 16 2 0 0
0 0 0 0 −1 2 8 2 −1
0 0 0 0 0 0 2 16 2
0 0 0 0 0 0 −1 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(damping matrix)

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.33 1.67 −0.83 0 0 0 0 0 0
1.67 13.33 1.67 0 0 0 0 0 0

−0.83 1.67 6.67 1.67 −0.83 0 0 0 0
0 0 1.67 13.33 1.67 0 0 0 0
0 0 −0.83 1.67 6.67 1.67 −0.83 0 0
0 0 0 0 1.67 13.33 1.67 0 0
0 0 0 0 −0.83 1.67 6.67 1.67 −0.83
0 0 0 0 0 0 1.67 13.33 1.67
0 0 0 0 0 0 −0.83 1.67 3.33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 10−2

and

K = 4

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 −8 1 0 0 0 0 0 0
−8 16 −8 0 0 0 0 0 0
1 −8 14 −8 1 0 0 0 0
0 0 −8 16 −8 0 0 0 0
0 0 1 −8 14 −8 1 0 0
0 0 0 0 −8 16 −8 0 0
0 0 0 0 1 −8 14 −8 1
0 0 0 0 0 0 −8 16 −8
0 0 0 0 0 0 1 −8 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(stiffness matrix)

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9.33 −10.67 1.33 0 0 0 0 0 0
−10.67 21.33 −10.67 0 0 0 0 0 0
1.33 −10.67 18.67 −10.67 1.33 0 0 0 0
0 0 −10.67 21.33 −10.67 0 0 0 0
0 0 1.33 −10.67 18.67 −10.67 1.33 0 0
0 0 0 0 −10.67 21.33 −10.67 0 0
0 0 0 0 1.33 −10.67 18.67 −10.67 1.33
0 0 0 0 0 0 −10.67 21.33 −10.67
0 0 0 0 0 0 1.33 −10.67 9.33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

To solve the PDE in COMSOL and inspect the resulting damping and stiffness matri-
ces, we can implement the same steps as Example 5.1, however this time specifying 4
elements under the mesh distribution settings, and ‘Quadratic’ for the Lagrange ele-
ment order under the Discretization tab of the General Form PDE node in the model

http://dx.doi.org/10.1007/978-3-642-54801-7_5

470 Solutions

tree. The solution at t = 0.1 is shown plotted below, along with the COMSOL-
generated damping matrix.

The COMSOL-generated stiffness matrix is shown below:

Both of these COMSOL matrices agree with those we obtained analytically.

Problems of Chap.6

6.1 To solve this problem in COMSOL, we can utilise the 2D axisymmetric geom-
etry shown below, where all dimensions are in mm. Note that the electrodes are
defined as semi-circular boundaries of the saline domain.

http://dx.doi.org/10.1007/978-3-642-54801-7_6

Solutions 471

Using the electric currents physics mode of the AC/DC module, we set the con-
ductivity of the saline as 1Sm–1, the boundaries one electrode at ground, and the
boundaries of the other electrode to a potential of 1V. The surrounding hemispherical
domain is assigned an infinite element with zero-flux boundary. Defining an integra-
tion coupling operator along the active electrode boundaries, we can determine the
total current i flowing into the saline domain as

i =
∫
Ae

2πr Jn ds

where Ae is the active electrode boundary, s is the arc-length along the boundary, and
Jn is the normal component of the inward current density, given by the COMSOL
variable ec.nJ. The resistance R between the electrodes can then be determined
using

R = 1

i

Setting the mesh distribution along the boundaries of each electrode to be 100 ele-
ments, COMSOL yields a value of R = 237.23�.

6.2 Using Eq.6.16 for the 2D case, we can determine the conductivity tensor in the
tissue slab using

σ = σ1n1nT
1 + σ2n2nT

2

where σ1, σ2 are the conductivities in the fibre and transverse-fibre directions, and
n1, n2 are the corresponding orthogonal unit vectors in the fibre and transverse-fibre
directions. For a fibre angle of θ , these directions are given by

n1 =
(
cos θ

sin θ

)
n2 =

(− sin θ

cos θ

)

http://dx.doi.org/10.1007/978-3-642-54801-7_6

472 Solutions

with resulting conductivity tensor

σ = σ1

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
+ σ2

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)

=
(

σ1 cos2 θ + σ2 sin2 θ (σ1 − σ2) sin θ cos θ

(σ1 − σ2) sin θ cos θ σ1 sin2 θ + σ2 cos2 θ

)

Using σ1 = 0.2mS cm−1, σ2 = 0.1mS cm−1, along with values of θ = 0◦,
45◦, 90◦, we obtain the followingCOMSOLplots of voltage distributions and current
streamlines (using the 2D streamline plot type):

6.3 This problem is similar to that of Sect. 6.1.5, with the exception that the electric
potential on the electrode disc is replaced with a normal current density boundary

http://dx.doi.org/10.1007/978-3-642-54801-7_6

Solutions 473

condition, with inward normal current density Jn given by:

Jn = Vs − V

R

where Vs is the supply voltage (1V), V is the potential in the saline medium adjacent
to the electrode, and R is the distributed resistance (0.001�m2). The COMSOL-
generated plot of current density as a function of radial position along the disc
electrode is shown below, where the theoretical plot with no distributed resistance
has been generated using

Jn = 2σVs

π
√
R2
e − r2

where r is the radial position along the disc,σ is the conductivity of the salinemedium
(1Sm–1), Vs is the supply voltage (1V) and Re is the electrode radius (1mm). Note
that the effect of the distributed resistance is to smooth out the variations in current
density, particularly at the edge of the disc, resulting in a near-constant current across
the disc electrode.

Problems of Chap.7

7.1 At steady-state, ∂c/∂t = 0 and the PDE reduces to the ODE

D
d2c

dt2
− kupc = 0

which can be solved for using the methods of Chap.2. The characteristic equation
of this ODE is

http://dx.doi.org/10.1007/978-3-642-54801-7_7
http://dx.doi.org/10.1007/978-3-642-54801-7_2

474 Solutions

Dm2 − kup = 0

∴ m = ±
√
kup
D

Hence the solution is of the form

c(x) = C1e
x
√

kup
D + C2e

−x
√

kup
D

where C1, C2 are constants which can be determined from the boundary conditions.
Specifically, when x = 0, c = C0. Hence

C0 = C1 + C2

Also, when x = dc, c = 0. Hence

0 = C1e
dc

√
kup
D + C2e

−dc

√
kup
D

Substituting C2 = C0 − C1 into the above, we have

C1e
dc

√
kup
D + (C0 − C1)e

−dc

√
kup
D = 0

C1e
dc

√
kup
D − C1e

−dc

√
kup
D = −C0e

−dc

√
kup
D

C1

[
edc

√
kup
D − e−dc

√
kup
D

]
= −C0e

−dc

√
kup
D

∴ C1 = C0e
−dc

√
kup
D

e−dc

√
kup
D − edc

√
kup
D

and using C2 = C0 − C1, we also obtain

C2 = C0 − C0e
−dc

√
kup
D

e−dc

√
kup
D − edc

√
kup
D

= C0

⎡
⎣e−dc

√
kup
D − edc

√
kup
D

e−dc

√
kup
D − edc

√
kup
D

⎤
⎦ − C0e

−dc

√
kup
D

e−dc

√
kup
D − edc

√
kup
D

= − C0e
dc

√
kup
D

e−dc

√
kup
D − edc

√
kup
D

Substituting these values of C1, C2 into the general solution form, we obtain

Solutions 475

c(x) =

C1︷ ︸︸ ︷⎡
⎣ C0e

−dc

√
kup
D

e−dc

√
kup
D − edc

√
kup
D

⎤
⎦ ex

√
kup
D +

C2︷ ︸︸ ︷⎡
⎣ −C0e

dc

√
kup
D

e−dc

√
kup
D − edc

√
kup
D

⎤
⎦ e−x

√
kup
D

= C0

e−dc

√
kup
D − edc

√
kup
D

[
e(x−dc)

√
kup
D − e−(x−dc)

√
kup
D

]

which may also be written as

c(x) = C0

⎡
⎢⎢⎣
sinh

(
(x − dc)

√
kup
D

)

sinh

(
−dc

√
kup
D

)
⎤
⎥⎥⎦

where sinh is the hyperbolic sine function.

7.2 To simulate this system in COMSOL,we can utilise the 2D axisymmetric geom-
etry shown below (all dimensions are in cm), corresponding to a single rectangular
domain with axisymmetric axis coinciding with the left long edge of the rectangle.
Note that the lower boundary is the site of indicator injection, and the upper left corner
of the rectangular domain is the downstream site of concentration measurement.

We can also use two physics to implement themodel: (1) Transport ofDiluted Species
and (2) Global ODEs and DAEs, and define the following parameters: Q (volume

476 Solutions

flow rate), R (radius of vessel), and M0 (total amount of indicator injected). Under the
Transport of Diluted Species node, the diffusion coefficient of the indicator species
is set to a user-defined value 1 × 10−9 m2 s−1. The components of the velocity field
are also specified as a function of the total volumetric flow, Q, to correspond to a
parabolic velocity profile. To determine this velocity field, we have from Eq.7.7:

u = umax

R2

(
R2 − r2

)

where umax is the maximum velocity at the axis of the vessel, R is its radius, and r
is the radial coordinate. The total flow through the vessel is then determined by:

Q =
∫ R

0
2πru dr

= 2πumax

R2

∫ R

0
r
(
R2 − r2

)

= 2πumax

R2

[
r2R2

2
− r4

4

]R

0

= 2πumax

R2

[
R4

2
− R4

4

]

= πR2umax

2

Hence,

umax = 2Q

πR2

Substituting this expression for umax into the expression for the parabolic velocity
profile, we obtain

u = 2Q

πR4

(
R2 − r2

)

This expression for u is entered into the velocity field for the z-component, and a
value of 0 entered for the r-component. We also enter a flux boundary condition on
the lower boundary (i.e. the site of injection), with flux given by
M0/(pi*Rˆ2*(100 [ms]))*rect1(t [1/s])

where rect1 is a user-defined rectangular function having lower limit of 0.005,

upper limit 0.105, and smoothing factor 0.01. This defines a rectangular pulse of
duration 0.1 that begins at t = 0, taking the smooth onset of the pulse into account.
We also specify an outflow boundary condition for the upper boundary. Finally for
this physics node,we specify ‘Isotropic diffusion’ under the Inconsistent stabilization
tab (make sure the Stabilization option is checked under the view menu).

Under the Component definitions, we define a point integration operator (intop1)
for the upper left-hand corner of the rectangular domain. In the variables sub-node,

http://dx.doi.org/10.1007/978-3-642-54801-7_7

Solutions 477

we can then define a global variable c_dwith expression intop1(c) to define the
indicator concentration at the downstream site. Under the Global ODEs and DAEs
physics node, we can then specify a global ODE variable c_int satisfying the
equation

c_intt-c_d (=0)

which states that the time-derivative of c_int equals c_d. This is equivalent to the
integral

c_int =
∫ t

0
c_d dt

We can then define a variable c_id with expression equal to M0/c_int. Finally,
we mesh the model geometry using the mapped mesh option consisting of 5 × 500
quadrilateral elements over the rectangular domain. For the time-dependent solver,
specify the times from 0 to 20s in steps of 0.1 s, using strict time stepping. Performing
a parameter sweep on parameterQ generates the following result for Q_id, evaluated
at the final output time of t = 20 s.

This result verifies that the method of indicator dilution is able to approximate flow
rate from the expression Q = M0

[∫∞
0 c dt

]−1
.

7.3 To simulate this model in COMSOL, we utilise a 2D axisymmetric geometry as
shown below (all dimensions are in cm), and then follow a similar implementation
to that of Example 7.2.3, using the three physics nodes (1) Electric Currents, (2)
Heat Transfer in Solids and (3) the General Form PDE, with the following boundary
conditions:

• An electric ground for the boundary of Electrode B

http://dx.doi.org/10.1007/978-3-642-54801-7_7

478 Solutions

• An electric potential condition for Electrode boundary A (22 and 30V, imple-
mented as a parametric sweep on a defined applied voltage parameter).

• Electric insulation on all other boundaries (except the axisymmetric axis, which
employs a similar axisymmetric condition).

• A temperature boundary condition (37 ◦C for the outer boundaries of the tumour.
• Thermal insulation on all other boundaries.

For the mesh, we set the general element size as ‘Extra fine’, and for the time-
dependent solver, we use output times from 0 to 480s in steps of 1 s. Defining
variables and integration operators as in Example 7.2.3, we obtain the following
result for the lesion volume for both 22 and 30V probe voltages.

http://dx.doi.org/10.1007/978-3-642-54801-7_7

Solutions 479

7.4 To determine the negative complex part of the permittivity of heart tissue, we can
employ parameter definitions within COMSOL to enter the permittivity parameters
of Eq.7.19 and undertake the necessary complex number calculations, as shown
below:

Note that the last column of the above table represents the numerical values
calculated by COMSOL. As can be seen from the last row of the table, COMSOL
yields a value of ε′′ = 7.3444× 10−8 F m−1. This parameter can then be used in the
user-defined heat source as follows:

http://dx.doi.org/10.1007/978-3-642-54801-7_7

480 Solutions

sigma*ec.normEˆ2 +
epsilon_prime_prime*omega*ec.normEˆ2 +
rho_b*C_b*omega_b*(T_b-T)

where the first term denotes the conductive (i.e. Joule) heating component, the second
term denotes dielectric heating, and the third term denotes blood perfusion heating.
All other model settings are as given in Example 7.2.3. Solving this model yields the
following lesion volume against time plot:

Comparing this result with that of Example 7.2.3 (Fig. 7.13), we see that addition
of the dielectric heating component at 500kHz doubles the lesion volume. At this
frequency, dielectric heating is therefore significant and should not be neglected
when simulating RF atrial ablation.

Problems of Chap.8

8.1 (a) Using the definitions of scalar dot and vector cross products given by Eqs. 8.1
and 8.2, we have:

(a × b) · c =
∣∣∣∣∣∣
e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ · c

=
{
e1

∣∣∣∣a2 a3b2 b3

∣∣∣∣ − e2

∣∣∣∣a1 a3b1 b3

∣∣∣∣ + e3

∣∣∣∣a1 a2b1 b2

∣∣∣∣
}

· c

= (e1 · c)
∣∣∣∣a2 a3b2 b3

∣∣∣∣ − (e2 · c)
∣∣∣∣a1 a3b1 b3

∣∣∣∣ + (e3 · c)
∣∣∣∣a1 a2b1 b2

∣∣∣∣
= c1

∣∣∣∣a2 a3b2 b3

∣∣∣∣ − c2

∣∣∣∣a1 a3b1 b3

∣∣∣∣ + c3

∣∣∣∣a1 a2b1 b2

∣∣∣∣

=
∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣

=
∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣

http://dx.doi.org/10.1007/978-3-642-54801-7_7
http://dx.doi.org/10.1007/978-3-642-54801-7_7
http://dx.doi.org/10.1007/978-3-642-54801-7_7
http://dx.doi.org/10.1007/978-3-642-54801-7_8
http://dx.doi.org/10.1007/978-3-642-54801-7_8
http://dx.doi.org/10.1007/978-3-642-54801-7_8

Solutions 481

Expanding this determinant, we obtain:

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 b3c2 c3

∣∣∣∣ − a2

∣∣∣∣ b1 b3c1 c3

∣∣∣∣ + a3

∣∣∣∣ b1 b2c1 c2

∣∣∣∣
= a1 (b2c3 − b3c2) − a2 (b1c3 − b3c1) + a3 (b1c2 − b2c1)

= a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1
= εi jkai b j ck

Hence,

(a × b) · c =
∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = εi jkai b j ck

(b) We recall that
σH
i j = 1

3σααδi j εHi j = 1
3εααδi j

and writing these hydrostatic tensors in terms of their components, we have:

σH =
⎛
⎝

1
3 (σ11 + σ22 + σ33) 0 0

0 1
3 (σ11 + σ22 + σ33) 0

0 0 1
3 (σ11 + σ22 + σ33)

⎞
⎠

εH =
⎛
⎝

1
3 (ε11 + ε22 + ε33) 0 0

0 1
3 (ε11 + ε22 + ε33) 0

0 0 1
3 (ε11 + ε22 + ε33)

⎞
⎠

For the deviatoric tensors, we have

σD = σ − σH εD = ε − εH

and therefore

σD =
⎛
⎝

1
3 (2σ11 − σ22 − σ33) σ12 σ13

σ21
1
3 (−σ11 + 2σ22 − σ33) σ23

σ31 σ32
1
3 (−σ11 − σ22 + 2σ33)

⎞
⎠

εD =
⎛
⎝

1
3 (2ε11 − ε22 − ε33) ε12 ε13

ε21
1
3 (−ε11 + 2ε22 − ε33) ε23

ε31 ε32
1
3 (−ε11 − ε22 + 2ε33)

⎞
⎠

In particular, we note that

trace
(
σD

) = 1
3 {2σ11 − σ22 − σ33 − σ11 + 2σ22 − σ33 − σ11 − σ22 + 2σ33} = 0

trace
(
εD) = 1

3 {2ε11 − ε22 − ε33 − ε11 + 2ε22 − ε33 − ε11 − ε22 + 2ε33} = 0

482 Solutions

Writing

σH =
⎛
⎝σH 0 0

0 σH 0
0 0 σH

⎞
⎠ , εH =

⎛
⎝εH 0 0

0 εH 0
0 0 εH

⎞
⎠

with
σH = 1

3 (σ11 + σ22 + σ33) , εH = 1
3 (ε11 + ε22 + ε33)

we have:
σH
i j ε

D
i j = σH

11ε
D
11 + σH

22ε
D
22 + σH

33ε
D
33 = σH trace

(
εD

) = 0

and
σD
i j ε

H
i j = σD

11ε
H
11 + σD

22ε
H
22 + σD

33ε
H
33 = εH trace

(
σD

) = 0

Hence we have verified that σH
i j ε

D
i j = σD

i j ε
H
i j = 0.

8.2 (a) For the simple shear deformation given, we have

u1 = λx2, u2 = 0

Therefore,

ε11 = ∂u1
∂x1

= 0

ε12 = ε21 = 1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
= 1

2 (λ + 0) = λ

2

ε22 = ∂u2
∂x2

= 0

and

E11 = 1
2

(
∂u1
∂x1

+ ∂u1
∂x1

+ ∂u1
∂x1

∂u1
∂x1

)
= 0

E12 = E21 = 1
2

(
∂u1
∂x2

+ ∂u2
∂x1

+ ∂u1
∂x2

∂u2
∂x1

)
= 1

2 (λ + 0 + λ · 0) = λ

2

E22 = 1
2

(
∂u2
∂x2

+ ∂u2
∂x2

+ ∂u2
∂x2

∂u2
∂x2

)
= 0

In matrix form, these strain tensors are

ε =
(
0 λ

2
λ
2 0

)
, E =

(
0 λ

2
λ
2 0

)

Solutions 483

(b) For the uniform inflation deformation, we have

u1 = (R − 1)x1, u2 = (R − 1)x2

Therefore,

ε11 = ∂u1
∂x1

= R − 1

ε12 = ε21 = 1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
= 0

ε22 = ∂u2
∂x2

= R − 1

and

E11 = 1
2

(
∂u1
∂x1

+ ∂u1
∂x1

+ ∂u1
∂x1

∂u1
∂x1

)
= 1

2

(
2R − 2 + (R − 1)2

)
= 1

2 ((R − 1)(R + 1))

= 1
2

(
R2 − 1

)

E12 = E21 = 1
2

(
∂u1
∂x2

+ ∂u2
∂x1

+ ∂u1
∂x2

∂u2
∂x1

)
= 0

E22 = 1
2

(
∂u2
∂x2

+ ∂u2
∂x2

+ ∂u2
∂x2

∂u2
∂x2

)
= 1

2

(
2R − 2 + (R − 1)2

)
= 1

2 ((R − 1)(R + 1))

= 1
2

(
R2 − 1

)

In matrix form, these strain tensors are

ε =
(
R − 1 0
0 R − 1

)
, E =

(1
2

(
R2 − 1

)
0

0 1
2

(
R2 − 1

)
)

(c) In the case of rotation, a point originally at (x1, x2) is rotated to the new point
(x̄1, x̄2) according to the rotation transformation:

(
x̄1
x̄2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x1
x2

)

Hence the displacements are given by

u1 = x1 cos θ − x2 sin θ − x1 = x2 (cos θ − 1) − x2 sin θ

u2 = x2 cos θ + x1 sin θ − x2 = x1 (cos θ − 1) + x1 sin θ

Therefore,

484 Solutions

ε11 = ∂u1
∂x1

= cos θ − 1

ε12 = ε21 = 1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
= 1

2 (− sin θ + sin θ) = 0

ε22 = ∂u2
∂x2

= cos θ − 1

and

E11 = 1
2

(
∂u1
∂x1

+ ∂u1
∂x1

+ ∂u1
∂x1

∂u1
∂x1

)
= 1

2

(
2(cos θ − 1) + (cos θ − 1)2

)

= 1
2 ((cos θ − 1)(cos θ + 1)) = 1

2

(
cos2 θ − 1

) = − 1
2 sin

2 θ

E12 = E21 = 1
2

(
∂u1
∂x2

+ ∂u2
∂x1

+ ∂u1
∂x2

∂u2
∂x1

)
= 1

2 (− sin θ + sin θ + − sin θ · sin θ)

= − 1
2 sin

2 θ

E22 = 1
2

(
∂u2
∂x2

+ ∂u2
∂x2

+ ∂u2
∂x2

∂u2
∂x2

)
== 1

2

(
2(cos θ − 1) + (cos θ − 1)2

)

= 1
2 ((cos θ − 1)(cos θ + 1)) = 1

2

(
cos2 θ − 1

) = − 1
2 sin

2 θ

In matrix form, these strain tensors are therefore given by

ε =
(
cos θ − 1 0

0 cos θ − 1

)
, E = 1

2

(− sin2 θ − sin2 θ

− sin2 θ − sin2 θ

)

8.3 (a) For an incompressible deformation, the volume of the spherical shell must
be preserved. That is:

4
3π

(
b3 − a3

) = 4
3π

(
B3 − A3

)

Therefore,

b3 = a3 + B3 − A3

b = 3
√
a3 + B3 − A3

(b) For a particle in the myocardial wall initially located at a radial position of R,
we can use a similar analysis as part a) to show that the volume of the shell between
radial distances of A and R must be preserved. Hence, if this particle moves to a new
radial position of r , then we must have

r = 3
√
a3 + R3 − A3

which corresponds to a radial displacementu(R) = r−R, withu1,u2,u3 components
of

Solutions 485

u1 =
(x1
R

)
u(R) = x1

R

(
3
√
a3 + R3 − A3 − R

)
= x1

(
3

√
1 + a3 − A3

R3
− 1

)

u2 =
(x2
R

)
u(R) = x2

R

(
3
√
a3 + R3 − A3 − R

)
= x2

(
3

√
1 + a3 − A3

R3
− 1

)

u3 =
(x3
R

)
u(R) = x3

R

(
3
√
a3 + R3 − A3 − R

)
= x3

(
3

√
1 + a3 − A3

R3
− 1

)

where R =
√
x21 + x22 + x23 . For convenience, we let γ = 3

√
1 + a3−A3

R3 − 1 and write
these displacement components as

u1 = γ x1, u2 = γ x2, u3 = γ x3

To determine the components of Cauchy strain, we need to determine the partial
derivatives of these displacements with respect to x1, x2 and x3. These in turn require
the following derivatives:

dγ

dR
= 1

3

(
1 + a3 − A3

R3

)− 2
3
[

−3
(
a3 − A3

)
R4

]

= −
[
a3 − A3

R4

](
1 + a3 − A3

R3

)− 2
3

= −
[
(γ + 1)3 − 1

R

]
(γ + 1)−2

= − 1

R

[
γ + 1 − 1

(γ + 1)2

]

∂R

∂x1
= 1

2

(
x21 + x22 + x23

)− 1
2 2x1 = x1

R
∂R

∂x2
= 1

2

(
x21 + x22 + x23

)− 1
2 2x2 = x2

R
∂R

∂x3
= 1

2

(
x21 + x22 + x23

)− 1
2 2x3 = x3

R

Hence, the derivatives of displacement u1 with respect to each of x1, x2, and x3 are:

∂u1
∂x1

= γ + x1
∂γ

∂x1
= γ + x1

dγ

dR

∂R

∂x1
= γ − x21

R2

[
γ + 1 − 1

(γ + 1)2

]

∂u1
∂x2

= x1
∂γ

∂x2
= x1

dγ

dR

∂R

∂x2
= − x1x2

R2

[
γ + 1 − 1

(γ + 1)2

]

486 Solutions

∂u1
∂x3

= x1
∂γ

∂x3
= x1

dγ

dR

∂R

∂x3
= − x1x3

R2

[
γ + 1 − 1

(γ + 1)2

]

Again for convenience, we let β = γ + 1 − 1
(γ+1)2 . The above derivatives then

become:
∂u1
∂x1

= γ − βx21
R2

,
∂u1
∂x2

= −βx1x2
R2

,
∂u1
∂x3

= −βx1x3
R2

Similarly, we obtain the remaining derivatives of the other displacement terms as

∂u2
∂x1

= −βx1x2
R2

,
∂u2
∂x2

= γ − βx22
R2

,
∂u2
∂x3

= −βx2x3
R2

∂u3
∂x1

= −βx1x3
R2

,
∂u2
∂x3

= −βx2x3
R2

,
∂u3
∂x3

= γ − βx23
R2

The Cauchy strain is given by εi j = 1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
. Inserting the above derivatives,

we obtain its following matrix form:

ε =
⎛
⎜⎝

γ − βx21
R2 − βx1x2

R2 − βx1x3
R2

− βx1x2
R2 γ − βx22

R2 − βx2x3
R2

− βx1x3
R2 − βx2x3

R2 γ − βx23
R2

⎞
⎟⎠

where, as indicated earlier, γ = 3

√
1 + a3−A3

R3 − 1 and β = γ + 1 − 1
(γ+1)2 .

8.4 (a) Since the skin thickness of the sample is small compared to its other dimen-
sions, a 2D implementation in COMSOL is preferable, using the plane stress con-
dition (i.e. there are no components of stress perpendicular to the plane). Since the
model is symmetric, we can implement only half of the geometry, employing a sym-
metric boundary condition on the lower face. The following are key points regarding
this COMSOL implementation

• In the Solid Mechanics settings, specify a thickness of 1mm and the plane stress
2D approximation mode.

• Specify a hyperelastic material employing the Mooney-Rivlin, two parameters
material model. Enter all user-defined material values as given.

• Specify a prescribed displacement boundary condition on the right boundary with
only a prescribed x-displacement of d, where d is a user-defined global model
parameter. Specify a symmetry boundary condition for the lower boundary a fixed
constraint boundary condition for the left boundary.

• Define an integration boundary operator, intop1, acting over the right boundary.
Define a model variable F representing the applied force, given by the expres-
sion 2*intop1(solid.Tax)*(1 [mm]). In this expression, Tax denotes a
COMSOL in-built variable for the x-component of traction, (1 [mm]) denotes

Solutions 487

the skin thickness, and the factor 2 takes into account that only half the geometry
is implemented.

• Perform a parameter sweep of parameter d from 0 to 50mm.
• Setup a 1D plot group (global plot) to plot the resulting applied force vs displace-
ment, as shown below:

(b) To plot the elastic strain energy, first create a 2D mirror dataset so that the entire
geometry of the skin sample can be visualised. Setup a new 2D plot group (surface
plot) and plot COMSOL’s in-built elastic strain energy variable solid.ws. Right-
click the surface plot-sub-node and specify deformation with a scale factor of 1. The
resulting plot of strain energy in the deformed sample is shown below:

488 Solutions

8.5 To implement this model in COMSOL, setup the 2D axisymmetric geometry
shown below, where all dimensions are shown in mm:

Additional points regarding model implementation are as follows:

• Define amodel parameter press for the endocardial pressure with a default value
of 50[mmHg].

• For the model geometry, use two ellipses for the epi and endocardial surfaces,
perform a boolean subtraction of one from the other, and subtract a rectangle
covering their upper half from both.

• Define an integration boundary operator, intop1, acting over the endocardial
edge. This operator is then used in a variable expression to calculate the volume of
the LV cavity according to intop1(-pi*nr*rˆ2). Note the negative sign for
nr is to specify the outward normal of the LV cavity as opposed to the LV wall.
To understand this expression, we note that the volume of a solid of revolution is
given by

V =
∫
A
2πrdrdz

=
∫
A
π∇ ·

(
r2

0

)
dA (where dA = drdz)

=
∫
L
πnrr

2 dL (which follows from the divergence theorem)

Solutions 489

where L is the edge boundary of the axisymmetric solid of revolution, and nr is
the r-component of the outward normal along the boundary.

• Select the hyperelastic/Mooney-Rivlin, two parameters material model and enter
all material coefficients as described.

• For the base boundary, select the Fixed Constraint boundary condition. For the
endocardial edge, select the Boundary Load boundary condition, and specify the
load type as ‘pressure’. Enter the value as the pressure parameter press.

• For the parameter sweep, specify parameter press ranging from 0 to 50mmHg
in steps of 5mmHg.

• For the mesh, select the ‘Fine’ mesh setting.
• Solving the model produces the following von Mises stress distribution in the
deformed (i.e. inflated) state at 50mmHg, where we have used the default 3D
stress plot:

• Specifying a new 1D Plot Group (Global plot), produces the following plot of
variable V against press:

490 Solutions

Problems of Chap.9

9.1 Following the same principles as Sect. 9.1.1, we can represent the fluid motion
in the circular tube using a series of sliding tubes. Denoting the radius of one such
tube as r , the forces acting on its surface boundaries will be:

1. the force on the upstream end due to the upstreampressure, given by Fup = πr2P .
2. the force on the downstream end due to the downstream pressure, given by

Fdown = 0, since in this case there is no downstream pressure.
3. the traction acting on the curved surface of the tube, due to the viscous force from

the relative velocities of layers sliding past each other. This viscous force equals
the viscous stress τ multiplied by the curved surface area, or

Fviscous = 2πr Lτ = 2πr Lμ
∂v

∂r

where v is the fluid velocity.

Adding the above three forces together yields the total force on the inner tube, which
is the mass of the tube multiplied by its acceleration. This total force is given by

F =
∫ r

0
2πr Lρ

∂v

∂t
dr

Hence,

πr2P + μ
∂v

∂r
2πr L = F =

∫ r

0
2πr Lρ

∂v

∂t
dr

Differentiating both sides with respect to r , we obtain:

http://dx.doi.org/10.1007/978-3-642-54801-7_9
http://dx.doi.org/10.1007/978-3-642-54801-7_9

Solutions 491

2πr P + ∂2v

∂r2
2πrμL + 2πμL

∂v

∂r
= 2πr Lρ

∂v

∂t

Dividing throughout by 2πrμL and re-arranging:

ρ

μ

∂v

∂t
− ∂2v

∂r2
− 1

r

∂v

∂r
= P

μL

or
ρ

μ

∂v

∂t
+ 1

r

∂

∂r

[
−r

∂v

∂r

]
= P

μL

Multiplying throughout by r , we obtain the resulting PDE:

ρr

μ

∂v

∂t
+ ∂

∂r

[
−r

∂v

∂r

]
= Pr

μL

with initial and boundary conditions on v(r, t) given by

v(r, 0) = 0 (initial value)
v(D/2, t) = 0 (no − slip wall)

∂v(0, t)/∂r = 0 (radial symmetry at r = 0)

To solve this PDE, we can use COMSOL’s mathematics PDE interface (General
Form PDE) over a 1D spatial dimension, using the following settings:

flux : � = −r∂v/∂r
damping coefficient : da = ρr/μ

source term : f = Pr/μL

and using r ≡ x for COMSOL’s 1D PDE General form, the above quantities are
written as -x*vx, rho*x/mu, and P*x/(mu*L) respectively. Implementing this
PDE in COMSOL, using a Dirichlet boundary condition of v = 0 at x = D/2 and
zero-flux boundary condition at x = 0, produces the following solution for v at
t = 0, 0.5, 1, and 1.5 s:

492 Solutions

9.2 We can implement the axisymmetric model of Sect. 9.1.1 in COMSOL using
an additional parameter mesh to denote the maximum element size. Specifying a
custommesh size with maximum element size of mesh, and performing a parameter
sweep, results in the followingplot of axial velocity at the inlet of the tube as a function
of element size:

http://dx.doi.org/10.1007/978-3-642-54801-7_9

Solutions 493

from which it is evident that a maximum element size of 0.2mm achieves an error
of 5% of theoretical axial velocity of Vth = ΔPD2

16μL ≈ 4.76m s−1.

9.3 We can utilize the COMSOLmodel of Sect. 9.4.2, this time defining an interpo-
lation function (under Global Definitions | Functions | Interpolation) and entering a
table of the pressure values and times specified. In the Units tab of the interpolation
function settings, specify the units of the function argument as ‘ms’ and the function
output as ‘mmHg’. Under the Interpolation and Extrapolation tab, specify the inter-
polation type as ‘Cubic Spline’. Thiswill create an interpolation functionwith default
name ‘int1’. Under the component 1 variable definitions, we can then specify the
variableP_in as the expressionint1(t). Specify themesh element size as ‘Finer’,
and specify the global ODE variable P_out to have the initial value 72 [mmHg].
All other settings are the same as per the COMSOLmodel of Sect. 9.4.2. Using these
settings, the resulting plot of aortic flow is shown below:

http://dx.doi.org/10.1007/978-3-642-54801-7_9
http://dx.doi.org/10.1007/978-3-642-54801-7_9

494 Solutions

Index

A
Action Potential, 36, 42, 49, 151, 155, 217,

234, 379, 406
Algebraic Equation (AE), 29–30
Arrhenius Equation, 251
Arrhenius, Svante, 251
Axial Streaming, 330

model of, 330–339
Axisymmetric Models, 128, 211–215, 239–

241, 244–247, 251–258, 302, 308–
310, 314–321, 325–329, 340, 357,
470, 475–477, 488–490, 492–493

B
Backward Difference

backward difference operator, 83
Newton’s backward difference formula,
83

Backward Differentiation Formula (BDF),
93–96, 98, 103, 427–430

coefficients, 95
order selection, 95

Bacterial Growth, models of, 6, 23, 29–30
Basis Functions, 159, 164–179, 183–190,

196, see also Shape Functions
1D linear (witch’s hat), 164, 165, 167,
170, 171, 174, 176

Beeler–Reuter Model, 100–102, 410–420
Bidomain Equations, 216–217

COMSOL example (cardiac reentry),
217–225

Bioheat Equation, 250–251, see also Heat
Transfer

Blood Flow, 324–339
hydraulic circuits, 37–42, 324–329, 340–
341, 493

in a cylindrical vessel, 19–21, 306–310,
340–341, 490–493

models of, 242–247, 314–321, 325–339
non-Newtonian properties of, 329–330

Body Force, 274, 312, 323
Boundary Conditions, 4–6, 120–123, 133,

160, 161, 191, 203, 217, 258, 324,
340, 449, 457, 462, 474, 477, 491

COMSOL, 356, 362–364
Dirichlet, 120–123, 159, 163, 171, 456
essential, 123, 163
initial value, 32, 159, 163, 171, 196
mixed (Robin), 122
natural, 163, 171
Neumann, 121, 122, 160, 163, 170
ODEs, 32
zero-flux, 123, 124, 142, 145, 147, 148,
150, 155, 171, 196, 218, 440, 443, 463

Bulk Modulus, 293–295, 301, 302
artificial (deformed geometry), 335

C
Cable Models, 25–26, 148–152, 154, 226–

233, 386
Cardiac

cellular automata model, 26, 386–390
defibrillation model, 369–379
elastance model, 37–42
ionic model, 100–102, 410–420
mechanical constitutive law, 293
muscle contraction model, 51–53, 406–
410

passive inflation model, 301–302, 488–
490

passive shear model, 294–299

© Springer-Verlag Berlin Heidelberg 2017
S. Dokos, Modelling Organs, Tissues, Cells and Devices,
Lecture Notes in Bioengineering, DOI 10.1007/978-3-642-54801-7

495

496 Index

passive stretch model, 154–155, 438–
440

spiral wave reentry model, 155–156,
217–225, 440–444

Cauchy, Augustin-Louis, 273
Compliance, 37, 38, 49, 324, 325, 327
Computer-Aided Design (CAD), 359
COMSOL, 355–379

AC/DC interface, 203
chemical reaction engineering module,
238

coefficient form PDE, 363
component couplings, 364
component definitions, 208, 212, 221,
231, 254, 286, 295, 309, 316, 326, 333,
374

Computational Fluid Dynamics (CFD)
module, 324

deformed geometry, 331, 335–336
discretization, 174
electric currents, 209, 213, 232, 255, 375
example models

1D diffusion, 171–175
aortic blood flow, 325–329
axial streaming of blood cell, 330–

339
axonal stimulation, 226–233
cardiac defibrillation, 369–379
cardiac spiral wave reentry, 217–225
cell culture electric field stimulator,

207–210
diffusion and uptake into a spherical

cell, 238–241
drug delivery in a coronary stent

revisited, 314–321
drug delivery in coronary stent, 242–

247
electrode disc access resistance, 210–

215
fluid flow in cylindrical tube, 308–

310
logistic growth ODE, 79–81
myocardial shear, 294–299
respirator strap tension device, 284–

290
RF atrial ablation, 251–258

functions, 360
general form edge PDE, 232
general form PDE, 173, 222, 223, 256,
363, 364, 375, 376

geometric entity level, 361

geometry, 173, 208, 212, 220, 230, 239,
244, 254, 285, 308, 316, 326, 332, 358–
359, 371

global definitions, 80, 173, 208, 211, 219,
230, 244, 253, 285, 295, 308, 316, 325,
331, 359–360, 374

global ODEs and DAEs, 80, 318, 327,
334

heat transfer in solids, 255
heat transfer module, 253
laminar flow, 309, 318, 327, 336
materials, 287, 362
mesh, 173, 213, 233, 240, 256, 297, 309,
337–338, 366, 377

model tree, 356
model wizard, 80, 173, 207, 211, 219,
229, 239, 244, 253, 284, 295, 308, 315,
325, 331, 357–358, 370

moving mesh interface, 330
nonlinear structural materials module,
295

parametric sweep, 81, 209, 259, 287,
290, 297, 367, 368, 477, 487, 489, 492

PDE/ODEs on boundaries, edges and
points, 225–226

results, 81, 174, 209, 213, 223, 233, 241,
246, 257, 288, 298, 309, 320, 328, 367–
368, 377

solid mechanics, 287, 297
study, 80, 174, 209, 213, 223, 233, 240,
245, 256, 287, 289, 297, 309, 318, 320,
327, 338, 367, 377

system matrices, 174
tangential derivatives, 226
transport of diluted species, 239, 244,
319

user interface, 355
Conductivity, Electrical, 119, 204–206

anisotropic conductivity tensor, 205
Conservation Law Formulation, 117–119
Constitutive Law, 281, see also Solid

Mechanics
Constitutive Relation, electrical, 202
Constraint Matrix, 171
Continuous Models, macroscopic form, 9–

12
Contour, 106
Convection, 241–242, 248–249
Convergence, 6, 65, see also Newton’s

Method
Conway, John, 12
Coronary Stent, models of drug delivery,

242–317

Index 497

Curl, 112–430
curl-free field, 203

D
Damping

algorithmic, 73
force, 31
high frequency, 73, 74, 77–79, 81, 82,
424–426

Damping Matrix, 97, 166–168, 170, 175,
463, 464, 466, 469, 470

Dashpot, 46, 154, 155, 291, 438
Defibrillation, model of, 369–379
Deformed Geometry, 331, 335–336
Del Operator, 106, 119, 322, see also Nabla

Operator
Deterministic Models, 7–9
Differential-Algebraic Equation (DAE), 30,

98, 99, 171
Diffusion, 237–241

coefficient, 7, 23, 118
equation, 7, 23, 119–120, 140, 159, 160,
381
analytical solution, 120–127, 153,

433–435
numerical solution, 140–147, 171–

175, 196, 463–470
Fick’s laws, 118, 237–238
models of, 238–247

Dimensional Analysis, 16–21, 24, 382–383
Buckingham π-theorem, 19–21
fundamental dimensions, 16

Direct Current (DC), 251
Discrete Models, 9–12, 25, 386
Distributed Systems Models, 105, 148–150,

154–156, 436–444
Divergence, 108–112, 153, 430
Divergence Theorem, 113–117
Drug Delivery

from coronary stent, 242–247, 314–321
from microsphere, 153, 433–435

Dynamic Models, 7, see also Time-
Dependent

E
Eigenvalues, 62–63, 75–79, 269, 271, 362
Eigenvectors, 62, 63, 205
Electrical Stimulation of Tissues, 201–235,

369–379
cardiac spiral wave reentry, 155–156,
217–225, 440–445

cell culture electric field stimulator, 156,
207–210, 445–454

continuum models of excitable tissues,
215–217

electrode disc stimulation, 128–139,
210–215, 235, 472–473

nerve axon extracellular stimulation,
226–233

Electrocardiogram (ECG), 49, 217, 402–403
Electrode Disc (Isopotential)

analytical solution, 128–139
COMSOL implementation, 210–215,
235, 472–473

Electromagnetic Fields, 201–202, see also
Maxwell’s Equations

Electrostatics, 203
Eulerian Framework, 311, 314
Euler, Leonhard, 34
Euler Method

backward, 63–65, 99, 102, 415–417
forward, 60–63, 102, 412–415
modified, 65–66, see also Trapezoidal
Method

Euler’s Formula, 34

F
Fåhræus-Lindqvist Effect, 330
Fåhræus, Robert (Robin) Sanno, 330
Fick, Adolf, 237
Fick’s Laws, 118, 121, 237–238, see also

Diffusion
Finite Difference Method, 139–147

cardiac reentrant arrhythmia example,
155–156, 443–445

derivative approximations, 140
diffusion example, 142–147
electric currents example, 156, 445–454
error analysis, 141, 144
explicit scheme, 141–144
implicit scheme, 144–147
polar coordinates, 156, 445–454
stability, 141–142, 144

Finite Element Method, 159–197
1D basis functions, 159, 164–171, 177–
179, 196–197, 454–470

2D/3D basis functions, 185–190
assembly of system matrices, 191, 456,
461, 468

degrees of freedom, 179
diffusion example, 159–175

COMSOL implementation, 171–175
elements, 159, 164, 165, 171, 183–190

498 Index

Galerkin method, 165, 183–184, 458
Gaussian Quadrature, 192–194
isoparametric elements, 184–185
local element coordinates, 175–177, 184,
459

mesh, 183
nodes, 164, 167, 177, 178, 183–185,
188–191

non-linear systems, 179, 194–195
shape functions, 176–179, 185–190
strong PDE form, 160, 179, 457
test functions, 160, 161, 163, 165, 166,
180, 181, 183

weak PDE form, 160–182, 457
Fluid Mechanics, 305–341

constitutive law for incompressible,
isotropic fluid, 306

equation of continuity for incompress-
ible flow, 117, 313

Eulerian framework, 311, 314
Lagrangian framework, 311, 314
laminar flow in a circular tube, 306–310,
340–341, 490–493

momentum balance, 24, 311–312
Navier-Stokes equations, 313
non-laminar flow, 321–324
parabolic velocity, 243, 258, 308, 310,
476

Reynolds number, 323
Stokes number, 323
turbulence, 323

Flux, 109, 110, 113, 117, 118, 121, 122, 160,
172, 226, 228, 237, 241, 242, 248,
249, 256, 258, 363

Fourier, Jean-Baptiste Joseph, 248
Frankenhaeuser–Huxley Neural Model, 49–

51, 403–406

G
Galerkin, Boris Grigoryevich, 165
Galerkin Method, 165, 183–184, 458
Game of Life, 12
Generalized Minimal Residual Method

(GMRES), 195
Generalized-α Method, 73–82, 103, 423–

426
amplification matrix, 75
COMSOL implementation, 79–81, 98
high frequency damping factor, 78, 79,
81, 82

Gradient, 105–108, 113, 118, 119, 153, 203,
226, 237, 314, 430

Green’s Identity, 180–181
Green, George, 276

H
Heat Transfer, 247–258

bioheat equation, 250–251
conduction and convection, 248–249
RF atrial ablation, 251–258, 260, 479–
480

specific heat capacity, 248
tissue damage, 251
tumour ablation, 259–260, 477–478

Hermite Shape Functions, 178–179
Hodgkin–Huxley Model, 24, 42–45, 148–

149
Hodgkin, Sir Alan, 42
Hookean Elastic Solid, 281
Hooke, Robert, 281
Hooke’s Law, 281
Huxley, Sir Andrew, 42
Hydrogel Sensor, 25
Hyperelastic Materials, 291–294, see also

Solid Mechanics
Holzapfel constitutive law, 293
Mooney–Rivlin constitutive law, 293

I
Indicator-Dilution Model, 258–259, 475–

477
Indicial Notation, 265–266
Initial Values

as boundary conditions, 32
COMSOL implementation, 80, 99, 173,
223, 232, 239, 256, 318, 327, 376

consistent, 99
Matlab ODE solver implementation, 36,
352

Integration
by parts, 161, 163, 180
constants, 29, 32, 121, 122, 124, 125,
127, 307

numerical, 192–194, see also Quadra-
ture, numerical

ODEs (analytical and numerical), 53,
55–103

operator (COMSOL), 208, 212, 254,
286, 295, 316, 326, 333, 365, 366

Ion Channels
gating formulations, 25, 43, 46, 50, 101,
148

stochastic model of, 7–9

Index 499

J
Jacobian, 62, 63, 65, 417, 426

K
Kronecker Delta, 266, 281, 306

L
Lagrange Multiplier, 171, 456, 461
Lagrange Shape Functions, 177–178, 196,

455, 458, 459, 462–463
Lagrangian Framework, 311, 314
Lamé, Gabriel Léon Jean Baptiste, 281
Lamé’s Constants, 281
Laplace Equation, 120
Laplacian, 119–120
Left Ventricle, 37–42, 294, 399–402, 484–

486
passive inflation, model of, 301–302,
488–490

Length Constant, 26
Level Surface, 106
Lindqvist, Johan Torsten, 330
Linear Models, 6
Load Vector, 166, 167, 175, 184, 191, 195,

455, 456, 459–461, 463
Logistic Equation, 29–30, 79–81
Lumped Parameter Models, 21, 29, 37–53

M
Magnetostatics, 203
Mass Matrix, 97–99

singular mass matrix (COMSOL), 99,
223, 377

Matlab, 343–352
\, 350
linspace, 345
logninv, 11
ode113, 35, 98, 102
ode15i, 98
ode15s, 35, 36, 40, 45, 55, 97, 98, 102,
151, 352

ode23s, 35, 98, 102
ode23tb, 70, 98, 102
ode23t, 35, 98, 102
ode23, 35, 70, 72, 98, 102
ode45, 35, 55, 70, 72, 98, 102
odeset, 36, 97
sparse, 449, 452
tic, 102
toc, 102
example code

Beeler–Reutermodel, 100–102, 410–
420
cardiac cellular automata model,

388–390
cardiac elastance model, 39–41
cardiac muscle contraction, 51–53,

406–410
cardiac reentry, 155–156, 441–445
cardiac windkessel model, 48–49,

399–402
cell culture electric field stimulator,

156, 448–454
diffusion equation, explicit finite dif-

ference scheme, 143
diffusion equation, implicit finite dif-

ference scheme, 146
diffusion equation series solution,

127
ECG model, 49, 402–403
forward Euler method, 61
Frankenhaeuser–Huxley neural

model, 49–51, 403–406
glucose-insulin kinetics, 48, 397–399
Hodgkin–Huxley model, 44–45
Hodgkin-Huxley nerve cable, 151
neural spiking model, 102–103, 420–

426
neuronal branching model, 14
passive muscle spring model, 11
single ion channel gate, 8
Van der Pol oscillator, 36–37

solving ODEs, 35–36, 97–100, 352
symbolic math toolbox, 90

Maxwell, James Clerk, 201
Maxwell’s Equations, 201–202

Ampère’s law, 201, 250
charge density, 201
current density, 201
displacement current, 202
electric displacement, 201
electric field, 201, 203
electric potential, 203
Faraday’s law of induction, 201
Gauss’ law, 202
Gauss’ law for magnetism, 202
magnetic field, 201
magnetization, 201
permeability, 202
permittivity, 202, 250

Mesh (COMSOL), 173, 213–214, 233, 240,
256, 297, 309

boundary layers, 240

500 Index

convergence analysis, 310, 340, 367,
492–493

specifying size, 256
Method of Lines, 139, 147

cardiac spiral wave reentry, 155–156,
440–443

Hodgkin-Huxley nerve cable, 148–152
Model

coding, 4
formulation, 4
scaling, 21–25, 383
types, 5–17
validation, 5
verification, 5

Modelling
bioengineering, 3–4
definition, 3
process, 4–5

Monodomain Equation, 217
Mooney, Melvin, 293
Mooney–Rivlin Constitutive Law, 293, 301,

302, 486–490
Moving Mesh, see Deformed Geometry
Muscle

cardiac, active model, 51–53, 406–410
cardiac, passive model, 154–155, 438–
440

skeletal, passive model, 10–12, 46–47,
391–393

Myocardial Shear, model of, 294–299

N
Nabla Operator, 106, see also Del Operator
Navier, Claude-Louis, 314
Navier-Stokes Equations, 311–314, 321–

324, see also Fluid Mechanics
Neuron

INa,p + IK model, 102
action potential, 36, 42
branching model, 13–14
cable model, 148–152, 154, 227, 437–
438

chronaxie, 47
electrical stimulation, 226–233
Frankenhaeuser–Huxley model, 49–51
Hodgkin–Huxley model, 24–25, 42–45
rheobase, 47

Newton Interpolating Polynomial, 83–85
error in, 85–86

Newton Method, 64, 74, 94, 100, 102, 103,
195, 415–417, 423

COMSOL, 298, 338

convergence, 65, 195, 417
damping factor, 65, 195

Newton, Isaac, 3, 306
Newton’s Second Law of Motion, 273, 274,

311
Newtonian Fluid, 306, 311–313, 321, 329
Non-Linear Models, 6
Numerical Differentiation Formula (NDF),

96–98
coefficients, 97

O
Ohm’s Law, 37, 119, 204, 205
Ohm, Georg Simon, 204
Ordinary Differential Equations (ODEs), 53

analytical solution methods, 29–34
boundary conditions, 32
characteristic equation, 32
homogeneous, 32
initial value, 32
linear, 31–34
non-homogeneous, 32
numerical solution methods, 35–36, 55–
103

system of, 35
Oscillator

coupled, 47–48, 395–397
damped, 30–31
Van der Pol, 36–37

P
Parameters

defining in COMSOL, 80, 208, 211, 219,
230, 244, 253, 285, 295, 308, 316, 325,
331

scaling of, 21–23
Parametric Sweep (COMSOL), 81, 209, 259,

287, 290, 297, 367, 368, 477, 487,
489, 492

Partial Differential Equations (PDEs), 105–
156

analytical solution methods, 123–139
boundary conditions, 120–123
COMSOL general form, 226
conservation law formulation, 117–119
diffusion, 118–120, 238
electric potential, 119, 206

Pennes Bioheat Equation, 251
Pennes, Harry, 251
Pharmacokinetic Models

glucose-insulin interaction, 21–23, 48,
397–399

Index 501

Plato, 3
Poisson, Denis Siméon, 281
Poisson Equation, 120
Poisson Ratio, 281
Pouillet, Claude, 204
Pouillet’s Law, 204, 205, 227
Predictor-Corrector Methods, 86–93

Adams-Bashforth-Moulton scheme, 86–
93

Principal Values, 271

Q
Quadrature, numerical, 67, 192–194

Gaussian, 192–194
midpoint rule, 67
Simpson’s rule, 67

R
Resistance

access, 24, 128, 139, 211
electrical, 24, 204, 205, 284
hydraulic, 37, 324

Resistivity, 24, 25, 148, 149, 204, 205, 227
Respirator Strap Tension, 284–290
Reynolds Number, 323, see also Fluid

Mechanics
Reynolds, Osborne, 323
RF Ablation, 251–258, 260, 479–480
Rivlin, Ronald Samuel, 293
Root Mean Square (RMS), 250, 251
Rule-Based Models, 12–14

cellular automata, 26–27, 386–390
Runge-Kutta Methods, 66–73

classical fourth-order, 70
Dormand-Prince pair, 72
embedded methods, 72–73
local extrapolation, 72
variable step size, Matlab implementa-
tion, 70–72

S
Scaling (of Models), 21–23
Separation of Variables, 29, 123–139
Shape Functions, 175–179, 185–190, 455,

458–460, 462–464, 466
bilinear, 185–186
biquadratic, 189–190
cubic, 196, 462–463
Hermite, 178–179
Lagrange, 177–178
linear, 176–177

linear triangular, 185–188
linear trilinear, 188
quadratic, 177–178

Shear Modulus, 281
SI units, 16, 19, 360

base quantities, 16
Solid Mechanics, 263–302

Cauchy infinitesimal strain tensor, 278
Cauchy momentum equation, 275
Cauchy stress, 273–274
constitutive law, 281
elastostatics PDE, 275
Green’s Strain Tensor, 277
hyperelasticity, 291–299
linear elasticity, 281
viscoelasticity, 290–291

Solvers
ODE, 35–36, 55, 97–100, 102, 417–420
parametric sweep, 209, 287, 297, 487,
489

stationary, 285, 289, 301, 302
time-dependent, 80, 96, 99, 173, 223,
233, 240, 245, 256, 318, 320, 327, 338

Source/Sink Terms, 80, 118–120, 206, 216,
217, 219, 222, 223, 228, 229, 232,
233, 248–251, 253, 256, 260, 318,
327, 334, 363, 364, 370, 376, 377,
479, 491

Source Vector, 166
Sparse Matrix, 170, 195, 449, 452
Spring, 10–12, 30–31, 46–48, 51–53, 154–

155, 291, 391–393, 395–397, 406–
410, 438–440

Stability
finite difference methods, 141–142, 144
ODE numerical methods, 61–64, 66, 70,
75, 77–78, 94, 96, 102, 103, 412–417,
429–430

Stabilization (COMSOL), 245, 320
Static Models, 7, 120, see also Stationary
Stationary, 7, see also Static Models
Stereolithography (STL), 359
Stiffness Matrix, 97, 166–168, 170–172,

175, 176, 184, 191, 195, 455, 456,
459–461, 463, 466–470

Stiff Systems, 62, 94, 98
Stochastic Models, 7–9
Stokes, Sir George Gabriel, 314, 323
Strain, 275–281

bulk modulus, 293
deformation tensor, 276
deviatoric, 282–284, 291
displacement field, 277

502 Index

hydrostatic, 282–284
invariants, 292
isochoric right Cauchy–Green deforma-
tion tensor, 293

left Cauchy–Green deformation tensor,
276

principal stretch ratios, 292–293
pure extension, 280
right Cauchy–Green deformation tensor,
276

shear, 280–281, 294–299
strain energy, 283, 291–294
volumetric strain, 278

Strain Gauge, modelling of, 284–290
Strain Rate, 305–306, 312

shear rate, 329
Stress, 271–275

Cauchy stress, 273
deviatoric, 282–284, 291
hydrostatic, 282–284
shear, 18
state of stress, 273
symmetric tensor, 273
traction (or stress vector), 271–272
viscous, 306, 307
von Mises, 283, 284, 288, 289
von Mises Stress, 298

Symmetric Matrix, 170, 171
Systems Biology, 3, 343

T
Taylor’s Theorem, 55–59

multivariate form, 58–59
univariate form, 55

Tensors, 263–265
conductivity tensor, 205, 218
dyadic components, 264
invariants, 268–271
principal axes, 271
principal values, 271
strain tensor, 277, 278
stress tensor, 272
symmetric, 205
transformation law, 266–268

Tetrodotoxin (TTX), 51
Time-Dependent, 7, see alsoDynamicMod-

els
Torque, 333–335
Trapezoidal Method, 65–66

U
Units

dimensional analysis, 16–19, 23–24,
382–383

use in COMSOL, 80, 81, 219, 224, 229,
233, 253, 257, 287, 288, 290, 299, 318,
327, 328, 334, 360–361, 364, 370, 378,
379

V
Validation of Models, 4, 5
Variables, 7, 10, 21, 29, 30

COMSOL units of, 219, 229, 333, 334,
370

global (Matlab), 40
state, 35, 36, 38, 39, 41

Vector
cross product, 112, 114
dot product, 106
field, 106, 108

Verification of Models, 4, 5
Virtual Reality Modelling Language

(VRML), 359
Viscoelasticity, 290–291, see also Solid

Mechanics
Viscosity, 18–21, 24, 306, 313, 329–330
Volume Conductor, 204–207
Von Mises, Richard Edler, 283

W
Windkessel Models, 48, 399–402

Y
Young’s Modulus, 281
Young, Thomas, 281

	Preface
	Contents
	Acronyms
	Part I Bioengineering Modelling Principles, Methods and Theory
	1 Introduction to Modelling in Bioengineering
	1.1 Modelling and Simulation in Medicine and Biology
	1.2 The Modelling Process
	1.3 Mathematical Model Types
	1.3.1 Linear Versus Non-linear
	1.3.2 Dynamic Versus Static
	1.3.3 Deterministic Versus Stochastic
	1.3.4 Continuous Versus Discrete
	1.3.5 Rule-Based

	1.4 Dimensional Analysis
	1.4.1 Dimensions and Units
	1.4.2 Buckingham -Theorem

	1.5 Model Scaling
	References

	2 Lumped Parameter Modelling with Ordinary Differential Equations
	2.1 Overview of Ordinary Differential Equations
	2.2 Linear ODEs
	2.3 ODE Systems
	2.3.1 Example Model 1: Cardiac Mechanics
	2.3.2 Example Model 2: Hodgkin--Huxley Model of Neural Excitation

	2.4 Further Reading
	References

	3 Numerical Integration of Ordinary Differential Equations
	3.1 Taylor's Theorem
	3.2 One-Step Methods
	3.2.1 Backward-Euler Method
	3.2.2 Trapezoidal Method
	3.2.3 Runge--Kutta Methods
	3.2.4 The Generalized-α Method

	3.3 Multistep Methods
	3.3.1 Predictor-Corrector Methods
	3.3.2 Backward Differentiation Formulas
	3.3.3 Numerical Differentiation Formulas

	3.4 ODE Solver Implementations in Matlab and COMSOL
	3.5 Further Reading
	References

	4 Distributed Systems Modelling with Partial Differential Equations
	4.1 Modelling with PDEs
	4.1.1 The Gradient
	4.1.2 The Divergence
	4.1.3 The Curl
	4.1.4 The Divergence Theorem
	4.1.5 Conservation Law Formulation
	4.1.6 The Laplacian
	4.1.7 PDE Boundary Conditions

	4.2 Basic Analytical and Numerical Solution Techniques
	4.2.1 Separation of Variables
	4.2.2 Finite Difference Method
	4.2.3 Method of Lines

	4.3 Further Reading
	References

	5 The Finite Element Method
	5.1 Finite Elements for 1D Systems
	5.1.1 Weak Form PDE Equivalent
	5.1.2 Basis Function Approximation
	5.1.3 Higher-Order Basis Functions

	5.2 Finite Elements for 2D/3D Systems
	5.2.1 Weak Form Description
	5.2.2 Basis Function Approximation

	5.3 FEM Numerical Implementation
	5.3.1 Assembly of System Matrices
	5.3.2 Gaussian Quadrature
	5.3.3 Non-Linear Systems

	5.4 Further Reading
	References

	Part II Bioengineering Applications
	6 Modelling Electrical Stimulation of Tissue
	6.1 Electrical Stimulation
	6.1.1 Maxwell's Equations
	6.1.2 Electrostatic Formulations
	6.1.3 Volume Conductor Theory
	6.1.4 Example: Cell Culture Electric Field Stimulator
	6.1.5 Example: Access Resistance of Electrode Disc

	6.2 Modelling Electrical Activity of Tissues
	6.2.1 Continuum Models of Excitable Tissues
	6.2.2 Example: Modelling Spiral-Wave Reentry in Cardiac Tissue
	6.2.3 Modelling PDEs/ODEs on Boundaries, Edges and Points
	6.2.4 Example: Axonal Stimulation Using Nerve Cuff Electrodes

	6.3 Further Reading
	References

	7 Models of Diffusion and Heat Transfer
	7.1 Diffusion
	7.1.1 Fick's Laws of Diffusion
	7.1.2 Example: Diffusion and Uptake into a Spherical Cell
	7.1.3 Convective Transport
	7.1.4 Example: Drug Delivery in a Coronary Stent

	7.2 Heat Transfer
	7.2.1 Heat Conduction and Convection
	7.2.2 The Bioheat Equation
	7.2.3 Example: RF Atrial Ablation

	7.3 Further Reading
	References

	8 Solid Mechanics
	8.1 Biomechanics
	8.2 Tensor Fundamentals
	8.2.1 Tensor Definition
	8.2.2 Indicial Notation
	8.2.3 Tensor Transformation Law
	8.2.4 Tensor Invariants

	8.3 Mechanics Principles
	8.3.1 Stress
	8.3.2 Strain

	8.4 Linear Elasticity
	8.4.1 Example: Detecting Tension in a Respirator Strap

	8.5 Linear Viscoelasticity
	8.6 Hyperelastic Materials
	8.6.1 Example: Myocardial Shear

	8.7 Further Reading
	References

	9 Fluid Mechanics
	9.1 Fluid Motion
	9.1.1 Example: Laminar Flow Through a Circular Tube

	9.2 Navier-Stokes Equations
	9.2.1 Example: Drug Delivery in a Coronary Stent Revisited

	9.3 Non-laminar Flow
	9.4 Modelling Blood Flow
	9.4.1 Electric Circuit Analogues for Blood Flow
	9.4.2 Example: Aortic Blood Flow
	9.4.3 Blood as a Non-newtonian Fluid
	9.4.4 Example: Axial Streaming of a Blood Cell

	9.5 Further Reading
	References

	Appendix A Matlab Fundamentals
	A.1 Matlab Overview
	A.1.1 User Interface
	A.1.2 Working with Variables and Arrays
	A.1.3 Matlab Programming
	A.1.3.1 Scripting
	A.1.3.2 Conditional Branching and Loops
	A.1.3.3 Code Debugging
	A.1.4 Solving Linear Systems of Equations
	A.1.5 User-Defined Functions
	A.1.6 Solving Systems of ODEs in Matlab

	Appendix B Overview of COMSOL Multiphysics
	B.1 COMSOL Basics
	B.1.1 User Interface
	B.1.2 Specifying Models
	B.1.2.1 The Model Wizard
	B.1.2.2 Creating a Geometry
	B.1.2.3 User-Defined Parameters, Functions and Variables
	B.1.2.4 Assigning Materials
	B.1.2.5 Physics and User-Defined Equation Settings
	B.1.2.6 Component Couplings
	B.1.3 Solving and Visualisation
	B.1.3.1 Mesh Settings
	B.1.3.2 Solver Settings
	B.1.3.3 Visualisation of Results
	B.2 Example Model: Cardiac Defibrillation

	Solutions
	Index

