
Anca Molnos · Christian Fabre Editors

Model-Implementation
Fidelity in Cyber
Physical System Design

Model-Implementation Fidelity in Cyber Physical
System Design

Anca Molnos • Christian Fabre
Editors

Model-Implementation
Fidelity in Cyber Physical
System Design

123

Editors
Anca Molnos
Campus MINATEC
CEA, Grenoble, France

Christian Fabre
Campus MINATEC
CEA, Grenoble, France

ISBN 978-3-319-47306-2 ISBN 978-3-319-47307-9 (eBook)
DOI 10.1007/978-3-319-47307-9

Library of Congress Control Number: 2016958303

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The trend towards large-scale deployments of cyber-physical systems (CPSs) makes
analysis of computing and physical world interactions of paramount importance.
During the development of the software, designers model the physical world that the
future CPS will interact with. Some of these models represent the external physical
world that the CPS will monitor and control, and others represent a physical part of
the CPS itself: its computing platform, sensors and actuators.

Models are built with various techniques and granularity. Several of these models
are used at various stages of the CPS lifecycle, from the early stages of specification
to development and all the way to production time when a CPS is actually deployed.
Furthermore, they are involved not only in the development of the software but also
in the assessment of functional and non-functional properties of the full CPS.

As a consequence, CPS software development raises several questions on the
fidelity of models:

• What is the fidelity of a model with regard to the part of the physical world it
represents?

• To what extent is a model’s fidelity adequate, i.e. accurate enough but not too
complex or costly, with regard to the way the model will be used by the CPS
software?

• What is the impact of a model’s fidelity on key properties of the full CPS, like
dependability, performance or energy consumption?

These three questions lay beneath the authors’ contributions. The chapters
address several crucial CPS design aspects such as cross-application interference,
parsimonious modelling and trustful code production. The book describes a wide
range of solutions from simulation for extra-functional properties, extension of
programming techniques, model-driven development (MDD), resource-driven mod-
elling and quantitative and qualitative verification based on statistics and formal
proofs. These solutions are applied to several CPS design techniques: mixed critical-
ity, communication protocols and computing platform simulation. Tentative answers
are presented from very different communities, such as compiler construction,

v

vi Preface

power/temperature modelling of digital devices, high-level performance analysis,
code/device certification, etc.

The target audience is researchers and engineers in the field of CPS development
and validation. They will have the opportunity to learn what is the common practice
in these fields and, more importantly, to make the links between them. Trends and
open research issues presented in this book can be an inspiration for future research.

Grenoble, France Anca Molnos
August 29, 2016 Christian Fabre

Introduction

This book presents different modelling and analysis techniques used for CPS devel-
opment, such as model-driven development (MDD), resource-driven development,
statistical analysis and proofs of simulator implementation. Each chapter describes
the modelling techniques used and the analysis enabled thereby and discusses model
fidelity in this specific context.

The first chapter overviews some of the sought challenges for building faithful
embedded systems models, especially the growing demand for using formal models
for dealing with, e.g., performance. The impact of the hardware part of the system
on performance is discussed, and a probabilistic interpretation is proposed to build
appropriately abstract models towards trustworthy analysis. Such a view is useful
to investigate the system performance as it provides a formal and parsimonious
framework.

The second chapter offers a view on how to manage the fidelity of a model’s
representation in order to control its complexity. This approach includes two
concrete and related methods targeting two aspects of the problem. Dynamic
resource graphs highlight the dependencies between system resources and describe
a system’s progression as resource and dependency evolution steps. This forms a
theoretical foundation for tracking the parameters that can be regarded as resources,
e.g. power consumption, time and computation units. With this resource-oriented
view of a system, a hierarchical modelling method emphasising cross-layer cuts
is established. This method facilitates parameter-proportional modelling to achieve
fidelity vs. complexity trade-offs in models. Use-case simulation and state space
analysis help to validate the approach.

The third chapter covers the power, thermal and reliability problems brought by
the extreme device, core and multicore scaling that we face today. A system engineer
should be aware of any possible cross-application interferences with respect to
timing, power and thermal properties as soon as possible in the design process.
Power and temperature management should be dealt with without introducing
unwanted interference. For this reason, the extra-functional properties need to be
modelled and analysed at the system level, because they can strongly affect the
overall quality of service (QoS)—performance and battery lifetime—or even cause

vii

viii Introduction

the system to fail meeting its real-time and safety requirements. This covers the
specification of platform properties (extra-functional model) as well as the dynamic
capturing, processing and extraction of power/temperature information during the
simulation. Especially closing the loop back to the application and run-time services
is an important feature for complex heterogeneous hardware platforms and software
stacks. As an example, a battery-powered mixed-critical avionics system, running a
safety-critical flight control application and a performance critical image processing
application on the same multicore system-on-chip (SoC) is presented.

Chapter 4 addresses the performance analysis in relation with the programming
models for the embedded domain. In particular, the focus is on synchronous
data flow (SDF) graphs that are often the computational model of choice for
specification, analysis and automated synthesis of parallel streaming kernels tar-
geting embedded multiprocessor system-on-chip (MPSoC) platforms. The chapter
discusses several limitations of the SDF graphs in the context of conventional
parallel software synthesis methodologies and highlights the associated degradation
of fidelity, in terms of analysis’ accuracy and synthesised software performance.
Subsequently, the chapter proposes several extensions to the strict notion of SDF
graph model that address the identified issues. An extensive empirical evaluation,
which underscores the model limitations and the effectiveness of the approach, is
included.

Chapter 5 presents a simulation view on the process of verification of MPSoC.
The virtual prototyping framework, SimSoC, is proposed. SimSoC is a full system
simulation framework based on SystemC and transaction-level modelling (TLM).
It takes as input a binary executable file, which can be a full operating system,
and simulates the behaviour of the target hardware on the host system. It is using
internally dynamic binary translation from target code to host code to simulate
the application software. A potential issue with simulators is that they might
not accurately simulate the real hardware. This gap is filled by proving that an
instruction set simulator coded in C (of an ARM processor, in our case) is a high-
fidelity implementation of the processor architecture. The first part of the chapter
presents the general architecture and features of SimSoC. The second part describes
the proof of the ARM simulator.

Chapter 6 addresses the design and verification of mixed-critical systems from
models of computation to describe an application all the way to the implementation
on a hardware platform. The chapter describes a compositional method to design
applications independently and then to execute them without interference. It defines
a formal modelling framework as a suitable entry point for application design. The
models are executable, which enables early detection of specification errors, and
include the formal properties of the applications based on well-defined models of
computation. This is combined with a predictable MPSoC platform template that has
a supporting design flow. The structure and behaviour of the application models are
exported to an intermediate format via introspection which is iteratively transformed
for the backend flow. The problems arising in this transformation are identified and
appropriate solutions are provided. The design flow is demonstrated by a system
consisting of two streaming applications.

Introduction ix

Chapter 7 tackles the problem of qualitative and quantitative verification of an
embedded system via a holistic development approach. This includes visual mod-
elling of the system and its environment, qualitative and quantitative verification of
the model and automated executable code generation. An application with electronic
tags is utilised to illustrate the approach. To this end, pState, a tool for the design and
verification of hierarchical state machines, is extended with probabilistic transitions,
costs/rewards and state invariants, called pCharts. From a pChart, pState generates
input code for a probabilistic model checker in the form of either a Markov decision
process (MDP) or a probabilistic timed automaton (PTA). On the generated model,
qualitative and quantitative properties can be verified to help assess its fidelity. From
sub-charts without probabilistic transitions, pState can generate executable code in
C or assembly language.

Finally, Chap. 8 focusses on reducing the design gap between design complex-
ity and design productivity associated with the drastic increase of functionality,
implemented as software or dedicated hardware, in embedded MPSoCs. The trend
is to increase the level of abstraction at which designers and CAD tools work.
To deal with this problem, starting the design process from high-level UML
models combined with functional code using (i.e. in C/C++) the different system
components is presented. Video processing is one of the areas where high-level
modelling and analysis based on UML may have a wider impact. In this chapter,
MDD using UML/MARTE is proposed to support the specification and analysis of
a positioning system for “recreated reality” applications.

The chapters describe techniques and goals characteristic for several engineering
contexts: modelling of computing and communication, proof architecture models
and statistically based validation techniques.

Contents

Introduction . vii

1 Building Faithful Embedded Systems Models: Challenges
and Opportunities . 1
Ayoub Nouri, Marius Bozga, and Saddek Bensalem

2 Resource-Driven Modelling for Managing Model Fidelity 25
Ashur Rafiev, Andrey Mokhov, Fei Xia, Alexei Iliasov,
Rem Gensh, Ali Aalsaud, Alexander Romanovsky,
and Alex Yakovlev

3 Empowering Mixed-Criticality System Engineers in the
Dark Silicon Era: Towards Power and Temperature
Analysis of Heterogeneous MPSoCs at System Level . 57
Kim Grüttner

4 Throughput-Driven Parallel Embedded Software Synthesis
from Synchronous Dataflow Models: Caveats and Remedies 91
Matin Hashemi, Kamyar Mirzazad Barijough,
and Soheil Ghiasi

5 SimSoC: A Fast, Proven Faithful, Full System Virtual
Prototyping Framework . 129
Vania Joloboff, Jean-François Monin, and Xiaomu Shi

6 A Composable and Predictable MPSoC Design Flow for
Multiple Real-Time Applications. 157
Seyed-Hosein Attarzadeh-Niaki, Ekrem Altinel,
Martijn Koedam, Anca Molnos, Ingo Sander,
and Kees Goossens

7 Analysis and Implementation of Embedded System
Models: Example of Tags in Item Management Application 175
Bojan Nokovic and Emil Sekerinski

xi

xii Contents

8 Positioning System for Recreated Reality Applications
Based on High-Performance Video-Processing . 201
Patricia Martinez and Eugenio Villar

Index . 231

Chapter 1
Building Faithful Embedded Systems Models:
Challenges and Opportunities

Ayoub Nouri, Marius Bozga, and Saddek Bensalem

1.1 Introduction

Embedded systems (ES) have deeply impacted our daily lives and contributed to
draw a completely new lifestyle where mobility, rapidity, and connectivity are the
keywords. The substantial advances in the integrated circuits and the networks
bandwidth have contributed to democratize these systems which became ubiquitous.
According to the Artemis Strategic Research Agenda 2011,1 it is estimated that
there will be over 40 billion devices worldwide, that is 5–10 embedded devices per
person on earth by 2020. While a large portion of ES is dedicated for customer
electronics (entertainment and personal use), they are becoming also essential for
companies and even for governments and states as they represent an important
leverage for innovation and competitiveness. Domains benefiting from ES assets,
such as transportation, national security, health care, and education, to mention but
a few, are wide and steadily increasing.

The great and various benefits of ES come at the price of an increasing
complexity to design them. More burden is thus put on designers that have

1ftp.cordis.europa.eu/pub/technology-platforms/docs/sra-2011-book-page-by-page-9.pdf

A. Nouri (�)
Université Grenoble Alpes, F-38000 Grenoble, France

CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
e-mail: ayoub.nouri@imag.fr

M. Bozga • S. Bensalem
VERIMAG, Université Grenoble Alpes, F-38000 Grenoble, France

VERIMAG, CNRS, F-38000 Grenoble, France
e-mail: marius.bozga@imag.fr; saddek.bensalem@imag.fr

© Springer International Publishing AG 2017
A. Molnos, C. Fabre (eds.), Model-Implementation Fidelity in Cyber
Physical System Design, DOI 10.1007/978-3-319-47307-9_1

1

ftp.cordis.europa.eu/pub/technology-platforms/docs/sra-2011-book-page-by-page-9.pdf
mailto:ayoub.nouri@imag.fr
mailto:marius.bozga@imag.fr
mailto:saddek.bensalem@imag.fr

2 A. Nouri et al.

to produce systems in less time with ever reducing costs. Whereas designing
mixed hardware/software systems that provide sophisticated services is inherently
challenging, additional constraints such as the shrinking time to market and costs
optimization make it even harder. Furthermore, ES are increasingly used in safety-
critical setups involving human lives and wealth. Thus, formally ensuring their
functional correctness is becoming primordial.

As our reliance on these systems increases, so does the expectation that they
will provide us with more mobility and ensure high-performance response. The
major breakthrough of ES in our everyday lives has resulted on a shift from
task-specific settings, e.g., control of an industrial robot, to more programmable
configurations running various functionalities, targeting mass consumption, and
often battery supplied. The former rely on dedicated hardware ensuring low power
consumption, low cost, real-time constraints, and silicon efficiency, whereas the
latter require programmable circuits with an increasing computation power, which
are less efficient, consume more energy, and are harder to program.

The design of these systems generally falls within one of three configurations2:
(1) hardware-centric: which aims at finding the most appropriate hardware archi-
tecture for a specific domain of application, e.g., multimedia, (2) software-centric:
which tackles the issue of designing and deploying functionally correct and efficient
applications on a given hardware architecture, and (3) co-design: which starts from
abstract functional specifications and tries to figure out the best partition of these
functionalities into software and hardware components.

In this chapter, we focus on the design of embedded software applications for a
given hardware architecture [30]. Whereas several advances have been performed in
this context [23, 27, 28, 34, 50, 58], many open challenges are still ahead, especially
with the advent of multi- and many-cores architectures, e.g., how to distribute and
map software applications onto these platforms for an optimal utilization and to
satisfy performance requirements, e.g., energy?

This chapter considers the design of embedded software following a model-based
approach and using formal techniques. In model-based design, the whole process is
driven by models and all the choices are made upon them. Hence, they must satisfy
two important conditions for a successful design. First, they must be faithful, that is
to capture the real behavior of the system, in term of functionality and performance.
Second, the built models must have a clear interpretation, i.e., they must have a
formally defined semantics, to enable unambiguous/trustworthy analysis and then
enable to make well-founded choices. Relying on models that do not respect these
conditions leads to inconsistent decisions and later to poor designs.

In this work, our concern are the earliest phases of the design as they have
the greatest impact on the rest of the process. We precisely focus on modeling
performance aspects, which are inherently challenging and hard to faithfully predict
during the early stages of ES design. Unlike classical programs design where
performance is evaluated using complexity theory with respect to abstract machine,

2These settings may coexist within the same design process, e.g., at different phases.

1 Building Faithful Embedded Systems Models: Challenges and Opportunities 3

i.e., Turing machine, the performance of ES is induced by the combination of the
software and hardware parts of the system, e.g., the execution time of a Fourier
transform on a processing unit, the communication delay of a bus or a Network
on Chip (NoC), the amount of consumed energy induced by that function on the
corresponding hardware.

Building faithful, formal, and high-level system models that capture the func-
tional and the performance aspects entails several challenges, e.g., how to access
(predict) the real performance evolution of the system during the early design
phases? Assuming that such information is available, what is the appropriate
model to characterizes it faithfully, and how? Additional challenges concern the
appropriate level of abstraction of the performance model. In addition of being
determinant for applying formal analysis techniques, the choice of the adequate
level of abstraction is essential to enable understanding and mastering the complex-
ity of the system under design, especially early in the process.

An important characteristic that must be considered when dealing with perfor-
mance of ES is variability. ES performance is ideally constant, albeit in practice,
it shows fluctuation, which should be taken into consideration for a trustworthy
analysis. The environment where the ES is deployed has an important impact on
performance and it can be seen twofold. First, is the input data to the system,
e.g., different video qualities for a multimedia player. Variable inputs generally
provokes a variable performance, although some systems expose a constant behavior
when varying input data (data-independent systems). The second component within
the environment includes all the external factors which may affect its function
and/or performance, e.g., unusual external temperature. Another important source of
fluctuation, which will be our focus in this chapter, is the hardware (and networked)
part of the system, e.g., buses and memory.

Ideally, the variability induced by the above factors is deterministically charac-
terized, which implies to build detailed models of the environment and the hardware
architecture. However, besides being in contradiction with the objective of building
high-level models, this is generally unfeasible. Precisely modeling the environment
(including inputs) is unfeasible unless the system is designed for specific tasks
and is targeted to a well-known and controlled environment. Similarly, building
formal detailed models of the underlying hardware is challenging. First, it requires
to have detailed specifications, which are rarely available during early design phases.
Assuming that such details are available, this will induce an important understand-
ing/interpretation effort and consequently a considerable time and produces huge
models. This eventually leads to an ad hoc approach which is tedious and error
prone. Abstraction of details is thus a must. That is, we need models and methods
that enable characterizing performance3 and to use it for building formal high-level
system models (including the functional behavior) towards trustworthy analysis.

3Our view of characterizing performance is to capture the gist of performance evolution formally
and in a parsimonious way.

4 A. Nouri et al.

The vision supported in this work is to interpret the performance evolution prob-
abilistically. We argue that such a view provides a natural and faithful abstraction
in addition of being the unique mathematically sound framework for capturing
variability and its uncertainty. Probabilistic modeling is a natural choice to abstract
details either because we don’t care about them for the moment, e.g., early design
stages, or because we are not able to handle all of them, e.g., no access, too complex,
or it takes too much time.

The chapter aims at providing, without claiming to be exhaustive, an overview
of the sought challenges and promising techniques for building faithful, formal,
high-level probabilistic software/hardware models for performance evaluation. This
work is motivated by a steadily growing research results providing efficient formal
probabilistic techniques that can be used for performance evaluation [4, 26, 63].
We consider that among the obstacle for using such techniques are the absence
of systematic techniques to obtain faithful formal models. We detail in Sect. 1.2
the issues related to faithfully characterizing ES performance. Then we review
in Sect. 1.3 some existing methods and models for gathering and characterizing
performance. In Sect. 1.4, we overview a recent work that provides an attempt to
answer the underlying challenges following a probabilistic view. We discuss the
assumptions and restrictions made in this work and provide in Sect. 1.5 future
directions and sought opportunities to overcome them.

1.2 Challenges for ES Performance

Performance of ES can be thought in term of several aspects, e.g., timing behavior
(computation and communication), energy consumption, memory utilization, or
global throughput. These aspects are necessary together with functional behavior
to enable trustworthy system analysis. In this section we highlight some factors that
may affect ES performance. We precisely focus on the impact of the hardware part
of the system.4

Hardware architectures complexity is steadily increasing due to the massive
integration of sophisticated functionalities, e.g., dynamic energy management. Due
to the transistors integration limit and the thermal wall, a shift towards multi- and
many-cores architectures has been operated. These provide a considerable compu-
tation power; however, they raise several problems for efficiently designing and
implementing software on them. More importantly, they pose together with other
hardware mechanisms such as caches, several challenges for the early estimation of
systems performance. To illustrate these challenges, we discuss hereafter the impact
of various hardware mechanisms on the system performance. We mainly focus on
timing and energy aspects.

4Challenges related to modeling the environment are out of the scope of this chapter.

1 Building Faithful Embedded Systems Models: Challenges and Opportunities 5

Fig. 1.1 Memory contention
and arbitration

...

Shared Memory

Arbitration

P1 PnP2

t’t

end
Coccurrent Memory AccessSimple Memory Access

Memory Access

end

begin

T
im

e

Processing

x
1

x
2

Fig. 1.2 Contention impact on execution time

1.2.1 Memory Contention

Consider the problem of characterizing the execution time or the consumed energy
of a process P (executing some computation function, i.e., a set of sequential
instructions) running on a specific processing unit. The latter is first assumed to
exclusively execute P, i.e., no scheduling algorithm is required on top of it, and thus
no context swapping overhead is induced for the moment. Data to be processed by
P is stored in a shared memory which is accessible by different processing units
executing similar tasks as shown in Fig. 1.1. Thus, the execution time of P will
vary depending on the number of processes and the way they are accessing the
shared memory each time. Formally, if at time t, the processing unit executing P
tries to access the memory alone, its execution time will be x1, which is the time
of executing the instructions of P when directly accessing the memory and getting
the required data. Now, assume that at time t0 ¤ t, the processing unit executing P
tries to access the memory simultaneously with n � 1 others concurrent processing
units (in competition). The execution time of P will be x2 D x1 C �, where � is
a time overhead encompassing the arbitration time and the waiting time (stall) to
access the memory as illustrated in Fig. 1.2. The overhead � varies with respect to
the number of concurrent processes simultaneously accessing the memory and the
implemented arbitration policy. Hence, different executions of this setting provide
different execution times of P.

6 A. Nouri et al.

1.2.2 Memory Architectures

In the previous paragraph, we considered a relatively simple setting where the
shared memory is designed as a single addressed space accessible by all the
processing units in a similar way. With the progress of the hardware design, more
involved memory architectures were proposed to overcome the memory access
latency. It is known that the processing units are generally faster than the memory
and thus their access represents a bottleneck for computation. Architectures such as
the Tightly Coupled Memory (TCM) or the Non-Uniform Memory Access (NUMA)
aim at reducing the access latency by providing parallel access to different memory
banks (different addressed spaces). The main idea behind these architectures is to
divide the shared memory into different portions accessible in parallel (a portion
for each processing unit), with a fast local access and slower distant one. The
point is that such solution may reduce latency by exposing more parallelism for
access. However, this should be carefully mitigated since the concurrency effect
is still important as it depends on how the required data (by each process) is
mapped onto the portions of the memory. Concretely, when the data required by
two or more processes is mapped onto the same portion, a concurrent access will
be necessary to fetch it. Thus, arbitration is still needed at this level. In these
examples, note that it is increasingly hard to follow and understand the impact on
the time and energy evolution of the system, although, we only considered data
memory. Similar technologies are generally used to store instructions. Furthermore,
other architectures propose structured memories with several levels and hence
increasing the complexity of understanding and estimating the impact on the system
performance.

1.2.3 Caches and DMAs

In the setting shown in Fig. 1.1, assume that we introduce caches and/or DMAs.
These hardware components will further impact the variation of the execution/-
communication times and similarly the energy of the system. For instance, for
caches, depending on miss or hit situations, a processing unit will require to access
the main (shared or local) memory or to get the data from the cache which is
in turn a shared resource and requires arbitration when accessed concurrently. As
for the DMA, its impact on the system performance can be interpreted as follow.
The DMA enables the processing elements to perform data transfer in parallel
to computation. Concretely, the processing unit only initiates the communication
and another specialized hardware component will perform it while the processing
unit continues its computation. When the transfer is done, mechanisms such as
hardware interruptions are used to notify the processing element. This has the

1 Building Faithful Embedded Systems Models: Challenges and Opportunities 7

advantage to reduce communication overhead in the processing element, however,
it consumes more energy as it uses specialized hardware. Moreover, it makes the
task of observing the exact communication and computation times more involved.

1.2.4 Multi-processing, Pipelining, and Others

In addition to the previous hardware functionalities, a processing element is
generally able to execute several tasks in (pseudo-)parallel. This requires to
use a scheduling policy to manage them (or synchronization/mutual exclusion
mechanisms). A context swap between the executing processes (save/restore of
stack) is thus operated, which generates an additional time and energy overhead.
More complicated settings are induced by more sophisticated mechanism such as
pipelines (with different levels), execution speculation mechanisms, and dynamic
frequency scaling procedures. Techniques such as tasks migration, which moves
processes from a processing element to another or onto a completely different
cluster to equilibrate energy consumption or temperature over a chip/cluster, add
a huge complexity to the system.

Modeling the previously discussed hardware aspects (and many others which are
not discussed here) in details is not possible neither recommended during the early
stages of ES design. High-level models have to be abstract, easy to understand,
and rapid to build and to analyze. As shown in the previous paragraphs, hardware
aspect might be too complex to understand and to model in detail, especially for
application development teams. These have as mission to design and implement
applications which satisfy specific performance requirements in addition of being
functionally correct. This should not be conditioned by a detailed comprehension
and definitely not a detailed modeling of the functional and the non-functional
behavior of target platforms. Nevertheless, performance aspects should be somehow
taken into account early in the design to enable faithful modeling and later-on a
trustworthy analysis towards good designs.

In the next section, we review some state-of-the-art techniques for modeling
performance of ES. We discuss their advantages and weaknesses and argue in favor
of probabilistic techniques that we believe to be well-suited for characterizing ES
performance faithfully.

1.3 Performance Modeling: State of the Art

In this section, we review methods and models used in the literature for ES
performance characterization. The section will be organized around three important
issues, namely (1) the used methods for gathering performance details during early
design stages, (2) given raw performance data, the usually utilized models to model
performance, and finally, (3) the methods used to build such models.

8 A. Nouri et al.

1.3.1 Techniques for Gathering ES Performance

The state-of-the-art techniques for gathering low-level performance information in
early design phases can be classified into three different families. The first uses
human expertise or documentation such as constructors data sheet of hardware
architectures [23]. When available, this provides an easy way to get perfor-
mance information, albeit it does not necessarily include details about the system
performance, e.g., caches impact. The second used technique is based on source/bi-
nary/object code, e.g., static analysis and code inspection [8, 11]. While it can
give an idea on the expected system performance, this technique suffers from the
absence of dynamic behavior of the system. The third technique is more accurate
and is widely used, although the most time and resource consuming. It relies on
executables models/implementations, i.e., high/low-level simulation or execution
[37, 41, 49]. These techniques are not exclusive, that is, they can be combined
together during the same process

1.3.2 Characterizing ES Performance: Models and Methods

1.3.2.1 Detailed Representations

A widely used technique in the context of ES design is to rely on a detailed
description of the target hardware (a virtual platform, an RTL description, and an
FPGA implementation) and to perform co-simulation/emulation. That is, to simu-
late/emulate a model of the application on top of the hardware part of the system
[48]. This enables to try different system configurations, e.g., mapping, buffers sizes,
and to access a detailed view of the system performance. Besides the issues related
to building the detailed hardware description and the application implementation,
additional technical issues are to handle such as measuring the performance and
managing scalability issues, e.g., limited size of FPGAs. Moreover, an important
time is necessary to perform co-simulation/emulation, e.g., simulating the boot of
a Linux on an RTL description of a processor takes a half day. Such approach is
empirical and provides no guarantee on the obtained performance. The reason is that
the simulated/emulated artifact do not generally rely on a clear formal semantics,
e.g., a SystemC description of the hardware architecture combined with a C/CCC
implementation of the application. Hence, only classical testing [4] techniques are
possible to check the performance requirements.

1.3.2.2 Abstract Representations

As opposed to the previous procedure, the approach for formal modeling and
evaluation of ES performance relies on mathematically sound models of the
application and the target hardware. The first advantage of such approach is that it

1 Building Faithful Embedded Systems Models: Challenges and Opportunities 9

allows to evaluate the system performance early, i.e., before spending too much time
building concrete implementations. Furthermore, it enables automatic code gener-
ation once the model is validated. The second advantage is that models validation
relies on formal verification techniques which provide mathematical guarantees for
performance evaluation results (in addition to functional requirements). However,
as stated in Sect. 1.2, it is challenging to build detailed hardware models (especially
formal ones) during early design stages. Thus, abstract models are often built and
combined with the application model in order to assess the expected ES performance
formally. This approach requires to characterize the system performance, i.e., to
build a parsimonious (abstract) formal representation of performance usually based
on incomplete view of the system. Many approximation schemes providing different
abstraction and faithfulness levels are possible.

A widely used class of techniques for characterizing performance especially
timing uses upper/lower bounds. These techniques are mostly used for modeling and
verifying hard real-time systems. They take their roots on well-known theories such
as the Queuing theory [22] and the Network Calculus [36]. They essentially reason
on best/worst case scenarios and have as objective to build upper/lower bounds on
performance. Worst Case Execution Time (WCET) analysis techniques [61], for
instance, are used to compute the longest execution time in order to guarantee
hard deadlines of executing tasks with respect to some scheduling policy. Such
techniques are challenging and heavily dependent on the target hardware. Moreover,
they are increasingly difficult and sometime impossible to apply in the case of multi
and many-cores architectures [19].

Compositional analysis techniques have been proposed to handle the complexity
of performance evaluation of heterogeneous real-time systems. These techniques
mainly rely on the Real Time Calculus (RTC) method [56], which characterizes the
input stream (workload) and the processing power of some task as arrival and service
curves, respectively. It then gives exact bounds on the output stream as a function
of its input stream. The latter can then be used as input to the next component and
so on. Arrival curves capture upper and lower bounds of arrival time of a class of
input events, while service curve captures upper and lower bound of the processing
time of consecutive events for any potential stream. RTC was adopted and extended
in several researches such as SymTA/S (Symbolic Timing Analysis for Systems)
[25], MAST [24], and the Modular Performance Analysis (MPA) [17]. The latter
is used within the DOL methodology [57] for system-level performance analysis in
the context of ES. As stated earlier, these methods are conceived to be conservative
and thus are more appropriate to address stringent constraints such as hard real-time
requirements. Consequently, they often result in over-dimensioned designs.

The previous methods generally produce analytical models and have the advan-
tage of short analysis time. However, they generally fail to capture complex
interactions and state-dependent behavior. The latter are enabled by another class
of models known as operational models, e.g., timed automata [2], which enable a
state-space representation of the system. Thus, they allow to build more accurate
models. Nevertheless, these suffer from the state-space explosion problem which
results in important analysis time. An important advantage, however, is their ability

10 A. Nouri et al.

to abstraction. Actually, it is possible using these models to represent the same
functionality at different levels of details. Additional techniques for characterizing
performance are also used in the literature. They often rely on simple averages or
median measures [6, 41]. These provide too coarse characterization and thus are not
very useful for building faithful models.

1.3.2.3 Probabilistic Representations

Characterizing performance probabilistically avoids modeling sophisticated hard-
ware functionalities in details. It enables capturing the gist of performance evolution
and its associated fluctuation, e.g., the interference due to concurrent access to a
shared resource is interpreted as a stochastic evolution over time. This provides a
natural view for representing systems performance in a faithful and parsimonious
way. For example, when tossing a coin, it is common to consider that its outcome
is probabilistic, i.e., head and tail have equal probability to appear when assuming
a fair coin. However, this is an abstract view of reality. Actually, if we are able
to precisely characterize the coin, e.g., its weight, and it initial position, the
environment where the experiment is happening, e.g., wind speed and direction,
and the flipping power, we would be able to precisely compute the outcome of the
experiment by applying the classical laws of physics.

Probabilistic modeling provides various abstraction possibilities, ranging from
simple point estimate with confidence intervals, e.g., mean, variance, to more
sophisticated models, e.g., probability density function, Markov Models. This
depends not only on the level of details required to solve a given problem but
also on the used method to build such models. Several techniques in the literature
were extended to a probabilistic setting to take advantage of this view. Such as
the Probabilistic WCET analysis techniques [16, 19] which enable to compute
probabilistic upper bounds, that is a classical upper bound with the probability to
exceed it, probabilistic real-time calculus [29, 53], probabilistic timed automata
[32], and stochastic timed automata [5].

1.4 The ASTROLABE Approach

In this section, we review a recent work that illustrates our view of probabilistic
performance characterization and how it may be used within a complete ES design
process. The considered work introduces an approach for building and verifying
faithful stochastic ES models that combine the functional behavior of the system
with its performance information. We briefly overview the proposed approach and
its different steps. Then, we discuss the assumptions it makes for inferring sound
probabilistic performance models in order to propose later more general techniques.

1 Building Faithful Embedded Systems Models: Challenges and Opportunities 11

titi

Fig. 1.3 Illustration of the ASTROLABE approach

1.4.1 Overview

The ASTROLABE approach was introduced in [44]. It targets the earliest phases
of systems design and aims at providing fast and accurate quantitative evaluation of
possible design alternatives with respect to performance requirements, e.g., time. As
shown in Fig. 1.3, the approach considers as inputs a parametric application model,
a hardware architecture model, one or more mappings, i.e., a binding of the software
into hardware components, and a set of system requirements. The approach starts
by automatically building a functional system model consisting of the combination
of the software application with the hardware architecture with respect to the given
mapping [10]. The input application and architecture models are purely functional
and are expressed in the BIP formalism [7]. These may be obtained automatically
through refinement from higher level specifications [8] or provided directly by the
designer.

A complete iteration of the approach builds and analyzes a specific configuration,
where all the application parameters and the mapping are fixed, against the
given performance requirements. Quantitative results corresponding to different
configurations enable to choose the most adequate and to refine the input models
accordingly. To do so, the approach combines two activities, namely system
modeling followed by performance evaluation. The former aims at producing a
faithful model combining functional and performance information, while the latter
aims at performing fast and accurate performance analysis. Both modeling and
evaluation are composed of sub-tasks as shown in Fig. 1.3.

12 A. Nouri et al.

The modeling phase consists of three successive steps: (1) A distributed imple-
mentation of the application and the corresponding deployment code on the target
platform are automatically generated given some runtime support. The code gener-
ation step produces instrumented code with respect to the input requirements which
specify the performance aspects to characterize. (2) The generated implementation
is executed on the target platform and the obtained traces are analyzed to build a
probabilistic characterization of the specified performance aspects. This relies on a
statistical inference procedure, namely distribution fitting described below. Finally,
(3) a model calibration step integrates the obtained probabilistic characterization of
performance into the functional system model, which produces a stochastic SBIP
model [43, 46].

On the other hand, the performance evaluation phase is twofold: (4) a more
compact and equivalent representation with respect to the original model is auto-
matically built [45]. The goal of this step is to speed up the verification of
performance requirements. (5) The analysis part is based on Statistical Model
Checking algorithms [26, 63], which probabilistically answer if the system model
satisfies the performance requirements up to a given precision.

The ASTROLABE approach is supported by a tool-flow that automates almost all
the underlying steps and it was successfully applied to model and analyze a real-
life case-study consisting of a distributed image recognition application running on
many-cores platform [44].

1.4.2 Distribution Fitting

The distribution fitting procedure proposed in the ASTROLABE approach aims at
fitting a probability distribution to performance observations obtained by executing
an automatically generated application implementation on a target architecture. It
consists of three successive steps which are briefly described in this section (for a
complete description kindly refer to [44]).

The first step in this procedure is an exploratory analysis. It consists of verifying
that the considered data is adequate for such procedure, i.e., that the performance
observations are independent and identically distributed (iid). In addition, this step
tries to identify potential probability distribution families that potentially fit the
data. The second step in the procedure consists of estimating the parameters of
the identified probability distribution candidates. For this, it relies on well-known
estimation procedure such as the Maximum Likelihood and the Moment Matching
estimates [3, 18]. Finally, once the candidate distributions parameters are estimated,
they are evaluated using goodness-of-fit tests to decide if they represent a good
fit to the input data and to select the best fit. For this it uses test statistics such as
the Kolmogorov–Smirnov (K-S), Anderson–Darling (A-D), and Cramer–Von Mises
(C-VM) [31, 60].

1 Building Faithful Embedded Systems Models: Challenges and Opportunities 13

1.4.3 Assumptions and Shortcomings

The ASTROLABE approach relies on a formal semantics in all its phases, which
is important for a consistent design process. The distribution fitting procedure
proposed to infer probabilistic models from concrete execution traces of the system
represents a fundamental step to ensure a faithful modeling of performance. Further-
more, using abstraction and verification techniques for a quantitative performance
evaluation provides fast and accurate analysis results.

Despite these advantages, in its current status, the approach has some weaknesses
due to simplifying assumptions and restrictions which are necessary for the perfor-
mance characterization proposal to work. These assumptions are verified for specific
classes of systems where the performance observations satisfy the iid assumption.
To ensure this assumption, the input models to the approach are restricted to the
following:

– The application model is required to follow a process network model of
computation, i.e., a set of computation processes (each operating sequentially)
coordinated through communication channels. Such models enforce a clear
separation between computation and communication.

– The hardware architectures model corresponds to many-cores platforms with
homogeneous processing elements sharing a main memory. Processing cores and
memory may be organized in clusters, i.e., each cluster has a set of processing
elements and a local memory. Clusters may communicate through an NoC or a
bus. The considered platforms do not use sophisticated hardware functionalities
such as caches, or pipelining. Thus, the main source of interference at this level
is the contention on shared resources.

– The considered mappings statically bind each computation processes to a
processing core, i.e., no multi-threading on cores is allowed. Communication
channels are mapped into shared memory.

1.5 Performance Modeling Using Probabilistic Models

Probabilistic modeling usually consists of manually deriving a probabilistic char-
acterization from given specifications of some artifact. In some cases, we are
only given output data of an experiment, e.g., data collected during a poll. Such
data represents a partial view of the artifact, that is, in statistical terms, a sample
of the complete data population. In such situations, inferential analysis, that is
a bottom up path, is used to build the model. Statistical inference is thus the
process of probabilistically characterizing the behavior of an artifact based on partial
observations. Such approach is often denoted model fitting [35, 60].

In our context we are concerned with performance measurements obtained by
simulating/executing embedded software implementations on a hardware architec-
ture. The goal is to characterize the system performance by finding an appropriate

14 A. Nouri et al.

model that faithfully and parsimoniously describe it. To do so, various probabilistic
models exist, spanning from standard probability distributions, e.g., Exponential or
Normal, to more complex ones such as regression models.

From this perspective, data is assumed to be generated by a stochastic process
(Definition 1) for which the governing law is unknown. The goal of the statistical
inference is to infer such a law from given observations which represent a partial
view of the process since the whole population is generally not available. Formally,
given x1; : : : ; xn a set of observations, there exist X1; : : : ; Xn random variables such
that xi is a possible realization of Xi, for 1 � i � n. The set of random variables
X1; : : : ; Xn represent together a stochastic process.

Definition 1 (Stochastic Process). Given two sets S and T , a stochastic process X
is a collection of random variables fXi j i 2 Tg where each Xi is an S-valued random
variable. The set S is called the state space of the process.

In the context of performance modeling, the random variables X1; : : : ; Xn

represent measurements of the same performance metric, say the execution time
of a computation process, at different time points, i.e., the indexes i 2 T actually
represent the measurement times. They typically correspond to the set of non-
negative integers Z

� in the case of discrete-time stochastic processes and to the
set of non-negative real number Œ0; 1/ for continuous-time stochastic processes.

Depending on the target probabilistic model and on the underlying data, different
inference methods can be used to construct the desired model. In the ASTROLABE
approach, for instance, we targeted a simple probabilistic model consisting of
standard probability distributions as discussed in the previous section. In that
work, it is assumed that performance observations are independent and identically
distributed. Independent means that given the realization xi of the random variable
Xi, it does not provide any information about the realization xj of Xj, for i < j � n.
Formally P.Xj D xj j Xi D xi/ D P.Xj D xj/. Identically distributed states that the
underlying random variables follow a same probability distribution D.!/, where
! 2 � is the set of parameters of the distribution defined over the space �.

This iid assumption may be seen as an abstraction choice. That is, since the
underlying random variables are independent and they follow the same distribution
D.!/, they can be modeled by a single random variable X that follows the distri-
bution D.!/ and where xi; : : : ; xn are possible realizations of X with probabilities
defined by D.!/. In this view, one can forget about the time dimension of the
stochastic process, i.e., the measurements order, as it is assumed to have no impact
on the process evolution. While providing a nice abstract and parsimonious model
of performance, the iid assumption is usually too strong. In practice, measurements
performed on real-life systems relying on sophisticated hardware functionalities do
not generally satisfy it.

Consider a hardware architecture implementing functionalities such as the ones
presented in Sect. 1.2. Such hardware introduces a dependency between the random
variables X1; : : : ; Xn representing the performance metric. Concretely, we can write
that P.Xi D xi/ D P.Xi D xi j Xi�1 D xi�1; : : : ; X0 D x0/. Assume we are
measuring the execution time of some computation process at different times.

1 Building Faithful Embedded Systems Models: Challenges and Opportunities 15

The value obtained at time i may impact future measures because of the effects
of caches, branch prediction, or pipelining. Such hardware components are known
to introduce a history within the data evolution [62]. In general, they may create
additional dependency with other random variables modeling the execution context.
For instance, the execution time of a process depends on the data cache status (hit
or miss), the number of concurrent processes accessing a shared resource, the used
arbitration policy, and other factors. Moreover, the impact of such components is not
always the same, e.g., a cache hit does not systematically imply a lower execution
time. This kind of behavior is known as timing anomaly in the literature [52].

Capturing such a history or dependency is important to characterize performance
faithfully. However, the obtained models must be parsimonious and concise to
enable fast analysis. Ideally, they should be obtained automatically. In the fol-
lowing we first present some models that we believe promising for ensuring such
requirements. Next, we survey some techniques that enable to obtain such models
automatically from measurements.

1.5.1 Probabilistic Models

The distribution fitting procedure presented in [44] is one among various model
fitting procedures [35, 60]. It aims at inferring a probability distribution as a target
performance model. Different probabilistic models may be used and they imply to
use different techniques with different complexities. The chosen model may or may
not take into account the internal structure of the data induced by the hardware part
of the system. This primarily depends not only on the required level of abstraction,
but also on the inherent properties of the data. In the following, we present three
models that capture the data internal structure in different ways.

1.5.1.1 Mixture Distributions

Mixture distributions [40, 47] are useful when the considered data provides clues
to be drawn from different parent populations. In practice this may corresponds
to performance measurements performed in different computation modes, e.g., the
energy consumption measured during a power-save mode and a normal mode. The
decision of fitting such a model to the data usually follows an exploratory analysis
(similar to the distribution fitting procedure in [44]). For instance, a histogram of
the data may show a clear multi-modality5 as illustrated in Fig. 1.4 which shows a
bimodal shape.

A mixture distribution enables to capture data sub-populations and to fit it with
a single probability distribution that can be used to perform classical computation,

5A mode can be identified as a prominent peak in the histogram.

16 A. Nouri et al.

Example Histogram and Fitted Mixture Distribution

Data

D
en

si
ty

10040 50 60 70 80 90

0.
00

0.
01

0.
02

0.
03

0.
04

Fig. 1.4 A mixture distribution example

e.g., expectations. Let f1.x/; : : : ; fm.x/ be a set of probability density functions asso-
ciated with distributions D1.!/; : : : ; Dm.!/, and let w1; : : : ; wm be some weights
such that

Pm
iD1 wi D 1 (they follow an additional probability distribution which

we denote the selection distribution W). Then, the mixture distribution density
function f is defined as

Pm
iD1 wifi. An important assumption in this context is the

independence between the selection distribution W and the underlying distributions
fi. That is, we assume that a component distribution is first selected randomly
according to W, then the selected distribution is used to draw a value. Figure 1.4
shows an example data illustrated using a histogram with a clear bimodality.
The figure also shows the fitted mixture distribution composed of two Normal
distributions [9]. It is worth mentioning that we are not aware of works that uses
mixture distributions to characterize performance of ES.

1.5.1.2 Regression Models

Regression models provide a mathematical tool to understand, explain, and forecast
on data. They enable to model the underlying stochastic process evolution as
depending on internal or external factors. Hence, they allow for capturing dependen-
cies within the process or with respect to other impacting factors. More precisely, the
process evolution (denoted response or output variable) can be explained by its own
history evolution or by other random variables (denoted explaining variables). In our
context, we focus on the first case, that is we provide models that characterize the
process evolution in terms of its own history. The second case is equally interesting

1 Building Faithful Embedded Systems Models: Challenges and Opportunities 17

for investigation in this context as it enables to characterize a given performance
metric as a function of its execution context, e.g., caches status, shared resource
contention.

In general, regression models can be linear (respectively, non-linear), that is, the
response variable is a linear (respectively, non-linear) combination of the explaining
variables. Furthermore, different regression models can be used to model stochastic
processes with different properties. In the following, we focus on regression models
for stationary stochastic processes [13, 42]. That is the process has a constant
variance over time (no trend), a constant autocorrelation structure over time, and
no periodic fluctuation (no seasonal behavior). We believe that this class of process
may be interesting for ES performance measurements.

There exist various regression models that can be used to characterize stationary
processes. A well-known class is the Autoregressive Models (AR) which are linear
regression models that represent the response variable as a linear function of
previous steps (explaining variables) in addition to a random error.

Xi D c C �1Xi�1 C � � � C �pXi�p C �i D c C �i C
pX

jD1

�iXj�1

where c is a constant, �i; : : : ; �p are parameters of the model, and p is the order of the
AR model, i.e., the number of considered explaining variables (how many previous
steps impact the next one). Another commonly used regression model for stationary
processes is the Moving Average (MA). The latter is also a linear regression model.
However, it represents the response variable as a function of random error terms
evolving around the expected value (the mean) of the data.

Xi D � C �i C '1�i�1 C � � � C 'q�i�q D � C �i C
qX

kD1

'i�j�1

where � is the expectation of Xi, 'i; : : : ; 'q are parameters of the model, and q is the
order of the model. In both models, � represent random error terms which are often
assumed to be independent and identically distributed random variables following a
Normal distribution N.0; �2/, where �2 is its variance. In addition to the previous
models a combination of them can also be used to characterize stationary stochastic
processes. This is known as Box–Jenkins ARMA model [12, 13] and includes p
autoregressive terms and q moving average ones.

Xi D c C �i C
pX

jD1

�iXj�1 C
qX

kD1

'i�j�1

It is also possible to handle nonstationary processes by differencing the process
one or more times to achieve stationarity. This leads to the so-called ARIMA
models, where the “I” stands for integrated [42].

18 A. Nouri et al.

A few works in the literature have used regression models to characterize perfor-
mance of embedded systems. For example, in [21], regression models corresponding
to processes execution time over a single processor are used to calibrate high-level
behavioral models in the context of the VCC system-level modeling and analysis
methodology. In [1], a tool for power estimation on co-processors is presented, it
also relies on regression techniques to learn predictive power consumption models
as functions of different aspects of the system.

1.5.1.3 Markov Models

Markov models or chains are stochastic processes that have a particular properties
known as the Markov property. Concretely, they are memoryless processes, in the
sense that the probability of reaching the next state of the system only depends on
its current state and not on the complete history of the process. Formally, we write
that:

P.XiC1 D xiC1 j Xi D xi; : : : ; X0 D x0/ D P.XiC1 D xiC1 j Xi D xi/

A Markov chain is often represented as a directed graph where vertices represent the
model states and the edges represent transitions from one state to another. An edge
from a state si to a state siC1 is labeled with the probability P.XiC1 D xiC1 j Xi D xi/.
Figure 1.5 illustrates an example of a Markov chain modeling the behavior of the
Craps Gambling game [4]. In this game, a player starts by rolling two fair six-sided
dice. The outcome of the two dice determines whether he wins or not. If the outcome
is 7 or 11, the player wins. If the outcome is 2; 3; or 12, the player looses. Otherwise,
the dice are rolled again taking into account the previous outcome (called point). If
the new outcome is 7, the player looses. If it is equal to point, he wins. For any other
outcome, the dice are rolled again and the process continues until the player wins or
loses.

Markov models are by far the most used to characterize ES performance
[14, 32, 33]. However, most of these works start from systems specifications to
manually build the Markov model. Only few works follow an inferential path, i.e.,
uses concrete execution data to obtain a faithful model [38, 39].

1.5.2 Learning and Fitting Techniques

In this section we survey some techniques that may be used to automatically build
the models presented above. These techniques mainly rely on model fitting which is
represent an important part of the family of machine learning techniques. The latter
is an active field of research and learning algorithms are constantly developed and
improved in order to address new challenges and new classes of problems (see [59]
for a recent survey).

1 Building Faithful Embedded Systems Models: Challenges and Opportunities 19

1/12

1/12

3/4 3/4 25/3613/18 13/18

1/9
5/36

5/36

1/92/9

25/36

1/9

1/12
1/12 1/6

1/9 1/6 5/36
1/6

1/9 1/6
5/36

1/6

1 1

1/6

s0
start

s1
point4

s2
point10

s3
point5

s4
point9

s5
point6

s6
point8

s8
lost

s7
won

Fig. 1.5 A Markov chain example

1.5.2.1 Fitting Mixture Models

To estimate the parameters of mixture models, i.e., the parameters ! of the sub-
distributions Di and the selection distribution W, one may use classical estimation
techniques such as the likelihood estimate or the moment matching estimate [3, 18].
However, in this setting such techniques often fail to perform the estimation. Gen-
erally, for fitting a mixture model to input data, we rely on a well-known algorithm,
namely the Expectation Maximization (EM) [13, 40]. This is an iterative algorithm
used for computing the maximum likelihood estimate when the considered data is
incomplete. Some tools also exist for automatically fitting such models [9].

1.5.2.2 Fitting Regression Models

Fitting an ARMA model to the data can be done using classical least square
regression after fixing the orders p and q [42]. This will estimate the values of
the model parameters by minimizing the error term. The fitting procedure follows
usually three main steps, namely model identification, that is to check if the
considered data is stationary and if there is a seasonality that need to be taken

20 A. Nouri et al.

into account (one can use run plot or autocorrelation plot to identify it). This first
step is also useful to identify p and q. The second step is the model estimation,
that is estimating the parameters of the model. As stated earlier one can relies on
classical estimation approaches such as least squares and maximum of likelihood
[3, 18]. The last step of the procedure is an evaluation step. It consists of verifying
that the model residuals are independent drawings from a fixed distribution [42].
Recently, a new and rich class of models and techniques were proposed in this
context. They are known state-space models and were originally developed in the
context of linear systems control [13]. They rely, for instance, on Kalman recursions
and EM algorithm [13].

1.5.2.3 Learning Markov Models

In the last years, several works were proposed to learn Markov Models with their
different varieties. Aalergia [38] is a state merging algorithm that enable to learn
deterministic Markov Chain. It is a variant of the alergia algorithm proposed by
Carrasco and Oncina in the early 1990s [15]. Given a sample of execution traces,
the algorithm builds an intermediate graph that represents all the traces in the input
sample and their corresponding frequencies. Then, it iteratively merges the nodes of
the graph that have the same labels and similar probability distributions until reach-
ing a compact version, which corresponds to the final Markov chain. An extension
of this algorithm was also proposed in [39] to enable learning Markov models with
non-determinism, namely Markov Decision Processes (MDPs). Other techniques
based on the Bayesian approach were proposed for learning the parameters and
the structure of Hidden Markov Models (HMMs) [51]. They are also following a
state merging procedure [55]. The previously mentioned works essentially focus
on discrete-time models. Other works, albeit few, exist for learning continuous-time
Markov models. For instance, in [54] it is proposed to learn continuous-time Markov
chains (CTMCs) models from sample traces following the state merging approach
by providing a variant of the alergia algorithm. In [20], an algorithm that follows the
same strategy is proposed to learn more general continuous-time models, namely
General Semi-Markov Processes (GSMPs).

1.5.3 Perspectives

In the previous sections, we focused on presenting models and techniques for char-
acterizing performance probabilistically. Nonetheless, given such characterization,
an important question remains on how to combine the performance characterization
with the function behavior of the system within a single formal framework. Within
the ASTROLABE approach, a calibration procedure is used in order to augment
functional BIP models with performance characterization in form of probability
distributions. This procedure produces stochastic SBIP models [43, 46].

1 Building Faithful Embedded Systems Models: Challenges and Opportunities 21

We speculate that a similar procedure is potentially applicable when charactering
performance as mixture distributions since they are formally described as probabil-
ity distributions. On the other side, this might be more complicated for regression
and Markov models. The latter might be easier to integrate within BIP models due
to their underlying operational semantics. In [43], a transformation of a Markov
chain to a stochastic SBIP component is formally defined. However, integrating it
within the functional model requires to add the appropriate glue. Regression models
are more involved because of their underlying analytical models. They require more
investigation as how to combine them with operational functional models, e.g., BIP,
and about the semantics it will induce.

References

1. S. Ahuja, D.A. Mathaikutty, A. Lakshminarayana, S.K. Shukla, Scope: statistical regression
based power models for co-processors power estimation. J. Low Power Electron. 5(4), 407–415
(2009)

2. R. Alur, D.L. Dill, A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
3. T.W. Anderson, J.D. Finn, The New Statistical Analysis of Data (Springer, New York, 1996)
4. C. Baier, J.P. Katoen, Principles of Model Checking (MIT Press, Cambridge, MA, 2008)
5. C. Baier, N. Bertrand, P. Bouyer, T. Brihaye, M. Grösser, Probabilistic and topological

semantics for timed automata, in Proceedings of the 27th International Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS (Springer,
Berlin/Heidelberg, 2007), pp. 179–191

6. A. Bakshi, V.K. Prasanna, A. Ledeczi, MILAN: a model based integrated simulation frame-
work for design of embedded systems. ACM Sigplan Not. 36(8), 82–93 (2001)

7. A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, J. Sifakis, Rigorous
component-based system design using the BIP framework. IEEE Softw. 28(3), 41–48 (2011)

8. A. Basu, S. Bensalem, M. Bozga, P. Bourgos, M. Maheshwari, J. Sifakis, Component
assemblies in the context of manycore, in Formal Methods for Components and Objects
(Springer, New York, 2013), pp. 314–333

9. T. Benaglia, D. Chauveau, D.R. Hunter, D.S. Young, Mixtools: an R package for analyzing
finite mixture models. J. Stat. Softw. 32(6), 1–29 (2009)

10. P. Bourgos, Rigorous design flow for programming manycore platforms. Ph.D. thesis, Grenoble
University, 2013

11. P. Bourgos, A. Basu, M. Bozga, S. Bensalem, J. Sifakis, K. Huang, Rigorous system level
modeling and analysis of mixed HW/SW systems, in MEMOCODE (2011), pp. 11–20

12. G.E.P. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and Control.
Forecasting and Control Series (Prentice Hall, Englewood Cliffs, 1994)

13. P.J. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting. Number v. 1 in
Introduction to Time Series and Forecasting (Springer, New York, 2002)

14. P.E. Bulychev, A. David, K.G. Larsen, M. Mikucionis, D.B. Poulsen, A. Legay, Z. Wang,
UPPAAL-SMC: statistical model checking for priced timed automata, in Proceedings 10th
Workshop on Quantitative Aspects of Programming Languages and Systems, QAPL 2012,
Tallinn, 31 March and 1 April 2012 (2012), pp. 1–16

15. R.C. Carrasco, J. Oncina, Learning stochastic regular grammars by means of a state merging
method, in International Colloquium on Grammatical Inference (1994), pp. 139–152

16. F.J. Cazorla, E. Quinones, T. Vardanega, L. Cucu-Grosjean, B. Triquet, G. Bernat, E. Berger,
J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, D. Maxim, PROARTIS:
probabilistically analysable real-time systems, Research Report RR-7869, INRIA, 2012

22 A. Nouri et al.

17. S. Chakraborty, S. Künzli, L. Thiele, A general framework for analysing system properties in
platform-based embedded system designs, in Design Automation and Test in Europe, Citeseer,
vol. 3 (2003), p. 10190

18. G. Cowan, Statistical Data Analysis (Oxford University Press, Oxford, 1998)
19. L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis, J. Abella,

E. Mezzeti, E. Quinones, F.J. Cazorla, Measurement-based probabilistic timing analysis for
multi-path programs, in The 24th Euromicro Conference on Real-Time Systems, Pisa, Italy
(2012)

20. A. de Matos Pedro, P.A. Crocker, S.M. de Sousa, Learning stochastic timed automata from
sample executions, in Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change (Springer, New York, 2012), pp. 508–523

21. P. Giusto, G. Martin, E. Harcourt, Reliable estimation of execution time of embedded software,
in Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’01 (IEEE
Press, Piscataway, NJ, USA, 2001), pp. 580–589

22. D. Gross, J.F. Shortle, J.M. Thompson, C.M. Harris, Fundamentals of Queueing Theory. Wiley
Series in Probability and Statistics (Wiley, New York, 2011)

23. W. Haid, M. Keller, K. Huang, I. Bacivarov, L. Thiele, Generation and calibration of
compositional performance analysis models for multi-processor systems, in ICSAMOS (2009),
pp. 92–99

24. M.G. Harbour, J.J.G. García, J.C.P. Gutiérrez, J.M.D. Moyano, Mast: modeling and analysis
suite for real time applications, in 13th Euromicro Conference on Real-Time Systems (IEEE,
Computer Society, Washington, DC, USA, 2001), pp. 125–134

25. R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, R. Ernst, System level performance
analysis - the SymTA/S approach, in IEEE Proceedings Computers and Digital Techniques
(2005)

26. T. Hérault, R. Lassaigne, F. Magniette, S. Peyronnet, Approximate probabilistic model
checking, in Verification, Model Checking, and Abstract Interpretation (2004), pp. 73–84

27. K. Huang, W. Haid, I. Bacivarov, M. Keller, L. Thiele, Embedding formal performance analysis
into the design cycle of MPSoCs for real-time streaming applications. ACM Trans. Embed.
Comput. Syst. 11(1), 8:1–8:23 (2012)

28. Z.J. Jia, A. Núñez, T. Bautista, A.D. Pimentel, A two-phase design space exploration strategy
for system-level real-time application mapping onto MPSoC. Microprocess. Microsyst. 38(1),
9–21 (2014)

29. Y. Jiang, Y. Liu, Stochastic Network Calculus (Springer, London, 2008)
30. K. Keutzer, S. Malik, S. Member, A.R. Newton, J.M. Rabaey, A. Sangiovanni-vincentelli,

System-level design: orthogonalization of concerns and platform-based design. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 19, 1523–1543 (2000)

31. S.A. Klugman, H.H. Panjer, G.E. Willmot, Loss Models: From Data to Decisions, vol. 715
(Wiley, New York, 2012)

32. M.Z. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Automatic verification of real-time
systems with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150 (2002)

33. M. Kwiatkowska, G. Norman, D. Parker, Probabilistic verification of Herman’s self-
stabilisation algorithm. Form. Asp. Comput. 24(4), 661–670 (2012)

34. K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, N. Stoimenov, A formal approach to the
WCRT analysis of multicore systems with memory contention under phase-structured task sets.
Real-Time Syst. 50(5–6), 736–773 (2014)

35. J.-Y. Le Boudec, Performance Evaluation of Computer and Communication Systems (EPFL
Press, Lausanne, 2010)

36. J.-Y. Le Boudec, P. Thiran, Network Calculus: a Theory of Deterministic Queuing Systems for
the Internet (Springer, Berlin/Heidelberg, 2001)

37. P. Lieverse, P. Van Der Wolf, K. Vissers, E. Deprettere, A methodology for architecture
exploration of heterogeneous signal processing systems. J. VLSI Sig. Process. Syst. Sig. Image
Video Technol. 29(3), 197–207 (2001)

1 Building Faithful Embedded Systems Models: Challenges and Opportunities 23

38. H. Mao, Y. Chen, M. Jaeger, T.D. Nielsen, K.G. Larsen, B. Nielsen, Learning probabilistic
automata for model checking, in QEST (2011), pp. 111–120

39. H. Mao, Y. Chen, M. Jaeger, T.D. Nielsen, K.G. Larsen, B. Nielsen, Learning Markov decision
processes for model checking. arXiv preprint arXiv:1212.3873 (2012)

40. N. Matloff, From Algorithms to Z-Scores: Probabilistic and Statistical Modeling in Computer
Science (University Press of Florida, Gainesville, 2009)

41. S. Mohanty, V.K. Prasanna, Rapid system-level performance evaluation and optimization for
application mapping onto SoC architectures, in ASIC/SOC Conference, 2002. 15th Annual
IEEE International (IEEE, Piscataway, NJ, USA, 2002), pp. 160–167

42. NIST/SEMATECH, NIST/SEMATECH e-Handbook of Statistical Methods (2016)
43. A. Nouri, Rigorous system-level modeling and performance evaluation for embedded system

design, Theses, Université Grenoble Alpes, 2015
44. A. Nouri, M. Bozga, A. Molnos, A. Legay, S. Bensalem, Building faithful high-level

models and performance evaluation of manycore embedded systems, in Twelfth ACM/IEEE
International Conference on Formal Methods and Models for Codesign (MEMOCODE), 2014
(IEEE, 2014), pp. 209–218

45. A. Nouri, B. Raman, M. Bozga, A. Legay, S. Bensalem, Faster statistical model checking by
means of abstraction and learning, in Proceedings of Runtime Verification - 5th International
Conference, RV 2014, Toronto, ON, Canada, 22–25 Sept 2014 (2014), pp. 340–355

46. A. Nouri, S. Bensalem, M. Bozga, B. Delahaye, C. Jégourel, A. Legay, Statistical model
checking QoS properties of systems with SBIP. Softw. Tools Technol. Trans. 17(2), 171–185
(2015)

47. R. Pearson, Exploring Data in Engineering, the Sciences, and Medicine (Oxford University
Press, New York, 2011)

48. A.D. Pimentel, The artemis workbench for system-level performance evaluation of embedded
systems. Int. J. Embed. Syst. 3, 181–196 (2008)

49. A.D. Pimentel, C. Erbas, S. Polstra, A systematic approach to exploring embedded system
architectures at multiple abstraction levels. Comput. IEEE Trans. 55(2), 99–112 (2006)

50. A.D. Pimentel, M. Thompson, S. Polstra, C. Erbas, Calibration of abstract performance models
for system-level design space exploration. J. Sig. Process. Syst. 50(2), 99–114 (2008)

51. L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recogni-
tion. Proc. IEEE 77(2), 257–286 (1989)

52. J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, B. Becker, A definition
and classification of timing anomalies, in 6th International Workshop on Worst-Case Execution
Time (WCET), Analysis, 4 Jul 2006, Dresden, Germany (2006)

53. L. Santinelli, L. Cucu-Grosjean, Toward probabilistic real-time calculus. SIGBED Rev. 8(1),
54–61 (2011)

54. K. Sen, M. Viswanathan, G. Agha, Learning continuous time Markov chains from sample
executions, in First International Conference on the Quantitative Evaluation of Systems QEST.
(IEEE, Computer Society, Washington, DC, USA, 2004), pp. 146–155

55. A. Stolcke, S. Omohundro, Hidden Markov model induction by Bayesian model merging, in
Advances in Neural Information Processing Systems (1993), pp. 11–11

56. L. Thiele, S. Chakraborty, M. Naedele, Real-time calculus for scheduling hard real-time
systems, in International Symposium on Computer Architecture, vol. 4 (2000), pp. 101–104

57. L. Thiele, I. Bacivarov, W. Haid, K. Huang, Mapping applications to tiled multiprocessor
embedded systems, in Application of Concurrency to System Design (2007)

58. L. Thiele, L. Schor, I. Bacivarov, H. Yang, Predictability for timing and temperature in
multiprocessor system-on-chip platforms, in ACM Transactions on Embedded Computing
Systems (TECS) - Special Section on ESTIMedia12, LCTES11, Rigorous Embedded Systems
Design, and Multiprocessor, 12 March 2013

59. S. Verwer, R. Eyraud, C. de la Higuera, Results of the pautomac probabilistic automa-
ton learning competition, in International Conference on Grammatical Inference (2012),
pp. 243–248

60. D. Vose, Risk Analysis: a Quantitative Guide (Wiley, New York, 2008)

24 A. Nouri et al.

61. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,
P. Stenström, The worst-case execution-time problem—overview of methods and survey of
tools. ACM Trans. Embed. Comput. Syst. 7(3), 36:1–36:53 (2008)

62. R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, C. Ferdinand, Memory
hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.
IEEE Trans. CAD Integr. Circuits Syst. 28(7), 966–978 (2009)

63. H.L.S. Younes, Verification and planning for stochastic processes with asynchronous events.
Ph.D. thesis, Carnegie Mellon, 2005

Chapter 2
Resource-Driven Modelling for Managing
Model Fidelity

Ashur Rafiev, Andrey Mokhov, Fei Xia, Alexei Iliasov, Rem Gensh,
Ali Aalsaud, Alexander Romanovsky, and Alex Yakovlev

2.1 Introduction

Systems with large scale concurrency and complexity, e.g. computation systems
built upon architectures with multiple and increasingly many processing cores with
heterogeneity among the components, are becoming more popular and common-
place [6]. The hardware motivations are clear, as concurrency scaling can help
delay the potential saturation of Moore’s Law with current and future CMOS
technology and better use the opportunities provided by the technology scaling.
In this environment, software designs are increasingly focused towards greater
concurrency and mapping to such many-core hardware [16].

If we regard elements of computation, such as software, hardware, energy, time,
etc. as resources, then computation itself can be regarded as behaviours of the
entire resource space. Existing modelling approaches usually include some degree
of representation of resources [5]. Functional units such as transistors, gates, CPUs,
memory, software threads, etc. need to be represented in functional models, and
non-functional parameters including power, time, temperature, etc. also need to be
represented in models that are used to study non-functional behaviours of systems.
Existing modelling methods in the literature therefore embed certain degrees of
resource representation. However, a modelling method that is entirely based on
representing resources and their dependencies has, to our knowledge, not yet been
investigated. Being able to reason about resources and their interdependency during
computation directly, on the other hand, should be advantageous for studying the

A. Rafiev (�) • A. Mokhov • F. Xia • A. Iliasov • R. Gensh • A. Aalsaud
• A. Romanovsky • A. Yakovlev
Newcastle University, Newcastle upon Tyne, UK
e-mail: ashur.rafiev@ncl.ac.uk; andrey.mokhov@ncl.ac.uk; fei.xia@ncl.ac.uk;
alexei.iliasov@ncl.ac.uk; r.gensh@ncl.ac.uk; a.m.m.aalsaud@ncl.ac.uk;
alexander.romanovsky@ncl.ac.uk; alex.yakovlev@ncl.ac.uk

© Springer International Publishing AG 2017
A. Molnos, C. Fabre (eds.), Model-Implementation Fidelity in Cyber
Physical System Design, DOI 10.1007/978-3-319-47307-9_2

25

mailto:ashur.rafiev@ncl.ac.uk
mailto:andrey.mokhov@ncl.ac.uk
mailto:fei.xia@ncl.ac.uk
mailto:alexei.iliasov@ncl.ac.uk
mailto:r.gensh@ncl.ac.uk
mailto:a.m.m.aalsaud@ncl.ac.uk
mailto:alexander.romanovsky@ncl.ac.uk
mailto:alex.yakovlev@ncl.ac.uk

26 A. Rafiev et al.

more complex systems of today and the future. For instance, power consumption
has become a crucial limiting factor for the continued expansion of the world’s
computing capabilities and power is one of the most straightforward resources [11].

Functional resources, such as hardware and software in large complex systems,
tend to form hierarchical structures, for instance, the levels of detail in hardware
include the entire spectrum from transistors to gates to function blocks to entire
CPUs to multiple CPUs with supporting logic, memory, etc. For system designers,
software (e.g. applications), operating systems and the platforms on which these are
run also form natural design layers with clear boundaries between the layers. Such
structures are usually conveniently modelled with traditional hierarchical modelling
methods, with the modelling levels of abstraction corresponding to these system
layers of concern [15].

This is, however, not always optimal for analysis, design and runtime manage-
ment. In most cases these require the modelling of particular parameters and the
“modelling fidelity” [21] should, ideally, be determined by the parameter(s) under
study [28]. For instance, when a part of a system makes a crucial contribution to the
power consumption of the entire system and small changes may have a significant
effect, it pays to study it in detail, i.e. at some lower layer of abstraction. On the other
hand, to moderate the modelling, analysis and design effort, and potentially runtime
overhead for models that need to be used in runtime, other less significant parts of
the system should be studied at higher levels of abstraction. When this “centre of
gravity” of system operation concerning power can dynamically move around the
system, traditional hierarchical modelling methods are ill positioned for efficient
representation.

Hierarchical methods, because of their complexity, are usually less straightfor-
ward to use than flat representations. Petri nets [3], which exemplify flat modelling
methods, have extremely simple semantics and offer conveniences in reasoning,
proofing and other aspects of analysis, a quality shared by other flat modelling
methods. But when the modelling needs span multiple layers in a hierarchy it
becomes somewhat difficult to adopt flat methods as study tools.

In this chapter, we present a systematic resource-driven approach to modelling
that emphasises resources and dependencies between resources. The distinction
between static design-time modelling which focus on types or classes of resources
and run-time dynamic modelling which focuses on actual instances of resources will
be made, with the proposed approach covering both issues. The semantics and other
theoretical details will be presented, and derived modelling techniques, including
the simulation tool ArchOn, will be used to solve real-world problems. For instance,
scalable simulations and finding the optimal scaling factor for homogeneous many-
core systems considering performance, energy and reliability (PER) trade-offs will
be shown to be potential application areas of the method. This resource-driven focus
will further lead to the presentation of a method of achieving resource parameter-
proportional fidelity in models through analysing abstraction hierarchies and using
cross-layer cuts. And this will be demonstrated through solving real PER and system
task scheduling trade-offs in heterogeneous multi-core systems.

2 Resource-Driven Modelling for Managing Model Fidelity 27

Fig. 2.1 The organisation of the chapter

The rest of this chapter is organised as shown in Fig. 2.1. Section 2.2 introduces
the resource-driven modelling approach in a form of static and dynamic resource
graphs, and also defines the notions of implementability and resource quantification.
Section 2.3 describes Order Graphs (OG)—a hierarchical modelling formalism, and
the concept of cross-layer cuts. In Sect. 2.4, methods derived from these theories are
used solve the real-life problem of performance, energy and reliability interplay in
systems. Section 2.5 concludes the chapter.

2.2 Resource-Driven Modelling

The central subject of our method is the study of a computational platform
comprising a number of diverse resources and the way resources may be handled in
order to realise a computation [24]. A resource is in this case an indivisible element
required by the system in order to change its state, and it is defined by its function
and availability in relation to this transition. With the word “resources” we make the
point that we do not exclude computation, communication, or other facilities, e.g.
energy and time.

We propose to represent a system with a relation graph .R; D/, consisting of a
set of vertices R and a set of edges D � R � R. Each vertex r 2 R represents a
single resource and each edge d D hr1; r2i 2 D represents a dependency between
two resources r1; r2 2 R. Modelling different types of resources may be achieved by
labelling the graph, as illustrated in Fig. 2.2a.

28 A. Rafiev et al.

Fig. 2.2 Examples of using flat labelled graphs to reason about diverse resource types and
dependencies (a), and different levels of abstraction (b)

Organising systems, both practically and conceptually, as hierarchies is a popular
way of thinking and engineering. The practical motivation for this is manageability.
This is the “natural” way for humans to reason about, design and organise most of
our systems. In Sect. 2.3 we emphasise the hierarchy-based cross-layer aspects of
our work, while this section focuses on the flat graph models.

Figure 2.2b demonstrates that the flat labelled graph approach can, in fact,
facilitate the cross-layer way of thinking as long as the behaviour of different
layers of abstraction is coherent. A label can be viewed as a condition that includes
or excludes an edge or a vertex, giving a graph projection onto that label. The
complexity of the system can be dealt with using projections of the resource graphs.
With resources as diverse as a software instruction or a single hardware gate, within
the same single graph executed in a transition, we could reason about different
parts of the system at different abstraction layers. This helps a designer focus
their attention on any particular details of a system they want, and build a system
either top down or bottom up or with mixed-level components at different stages of
development.

At the same time, this does not prevent designers to isolate concerns and
concentrate on some layers only. For instance, all resources in one transition could
be elements of the same layer, or a software engineer could arrange complex low-
level software resources for detailed study with coarse-grain hardware resources
provided by hardware colleagues (which are not the specific target of concern) in
the same transition.

2.2.1 System Design and Implementation

This section introduces the basic concepts of the resource-driven modelling and
draws the boundary between the static and dynamic resource representations of a
system. It is essential to understand that the knowledge of a system (its definition
or design) exists independently of its implementation. In order for the system to be

2 Resource-Driven Modelling for Managing Model Fidelity 29

realised, we need to map this knowledge onto a set of resources—an architecture.
Thence, if the architecture contains enough resources of the right type, the system
implementation or implementations may emerge.

An unconstrained architecture AC D .R; Tr; � r/ is the set of discrete resources
R and the set of resource types Tr, where � r W R ! Tr is the resource type
assignment function. Such an architecture is called unconstrained because it does
not put any restriction on how the resources may interact. Constrained architectures
will be introduced later in Sect. 2.2.4. For now, we see an architecture as a “soup”
of resources, where every resource is equally accessible.

The system design S D .V; E; Tv; �v/ is a graph, where V is the set of vertices,
E � V � V is the set of edges (dependencies), Tv is the set of vertex types, and
�v W V ! Tv is the type assignment for vertices. The type of some edge hv1; v2i 2 E
is a tuple h�v .v1/ ; �v .v2/i.

In order for the system to be implemented, the vertices must be instantiated with
resources and the edges must become active resource dependencies.

For some design S and an architecture AC, an instantiation of vertices V on a
set of resources R is a partial function qi W V !Í R, such that for any v 2 V; r 2 R the
statement hv; ri 2 qi) �v .v/ D � r .r/ holds true. In other words, resource r can
instantiate vertex v if their types match. Relation qi being a partial function means
that for a single instantiation of V each vertex can be instantiated no more than once,
however there can be multiple instantiations: Q D fq0; q1; : : :g. Let Ri D ranqi be
the set of resources involved in the instantiation qi. For any pair of instantiations
qi 2 Q; qj 2 Q; i ¤ j and any resource r 2 R, it is required that r 2 Ri) r … Rj, i.e.
any resource cannot belong to multiple instantiations at the same time.

Let D � Ri �Ri be the set of active resource dependencies, w.r.t. the instantiation
qi. D is constrained by E, i.e. for every hr1; r2i 2 D there must exist hv1; v2i 2 E,
such that qi .v1/ D r1 and qi .v2/ D r2. Also, following from the properties of vertex
instantiation, any edge in E can have at most one related element in D.

Thus, an implementation of the design S on the architecture AC is defined as
Si D �S;AC; qi; D

�
, where qi is a vertex instantiation and D is a set of active

resource dependencies. The design S can be mapped onto an architecture giving
zero or more implementations (Fig. 2.3):

S 7! AC D fS0; S1; : : :g : (2.1)

Lastly, an implementation is complete if domqi D V and for any hv1; v2i 2 E
there exist hqi .v1/ ; qi .v2/i 2 D, i.e. every vertex and every edge of the system
design graph are realised and active. The architecture may have more resources
than it is required for the system implementation Si, but it must have at least the
required number of resources and dependencies in order to complete Si. When it is
not possible to form any complete implementations on the architecture AC for the
system design S , the design is called non-implementable on the given architecture.
For example, the design is surely non-implementable if it does not share common
types with an architecture: Tv \ Tr D ;.

30 A. Rafiev et al.

Fig. 2.3 System design S is mapped onto an architecture AC giving system implementations
fS0; S1; : : :g, some or all of which may be incomplete

One can notice that vertex instantiations as well as active dependencies can have
multiple solutions for each mapping S 7! AC. In fact, the result depends on the
order in which the elements of qi and D have been added. That is why we consider
this mapping as a non-deterministic discrete process.

2.2.2 Dynamic Systems and Architectures

In many real-life systems the dependencies between resources do not have to
be maintained all the time in order for the system to function normally. In fact,
for some systems the functionality requires switching dependencies on and off.
For example, let’s consider a FIFO connection consisting of reader, writer and a
buffer. Reader and writer both depend on the buffer, so the system design contains
edges hreader; bufferi and hwriter; bufferi. However, at runtime writer and reader
accessing the buffer at the same time will cause deadlock, so these dependencies
cannot be active at the same time.

In the previous section we mentioned that the mapping S 7! AC is a discrete
process. Now we can go further by allowing elements of qi and D to be not just
added, but also removed from the implementation. Thus, the state of the dynamic
set qi � D encodes the state of the implementation Si. Each state of a dynamic
implementation Si is called a configuration. We consider four possible transitions
between configurations: instantiation of a vertex, releasing of a resource (as opposed
to instantiation), activation of a dependency and deactivation of a dependency:

Instantiate vertex v 2 V: if v is currently not instantiated in qi and there is a
resource r 2 R of the same type as the vertex v and this resource is not used in
any other instantiations, add hv; ri to qi.
Release vertex v 2 V: if v is instantiated in qi and resource qi .v/ is not used in
any active dependency, then remove v from qi.
Activate dependency hv1; v2i 2 E: if vertices v1 and v2 are instantiated in qi but
dependency hqi .v1/ ; qi .v2/i is not active, activate it.
Deactivate dependency hv1; v2i 2 E: if vertices v1 and v2 are instantiated in qi

and dependency hqi .v1/ ; qi .v2/i is active, deactivate it.

2 Resource-Driven Modelling for Managing Model Fidelity 31

On the same limited set of resources it is possible to have more working dynamic
systems than static, because the dynamic systems can use resources “in turns”
grabbing and then releasing them, e.g. as a CPU core activating computing resources
according to the instruction being executed [20]. Sharing in the static systems is not
possible.

It is important to note that, although an implementation Si of the system is
dynamic, the design of the system S remains static by definition and includes all
vertices that can be instantiated and all dependencies that can be active.

Similarly to dynamic implementations, we can introduce dynamic architectures,
where the set of resource R is dynamic, i.e. individual resources of an architecture
may appear and disappear during runtime. The closest example is dark silicon [14],
which exploits powering on and off different regions of the electronic system.
Resources being excluded from R may also model malfunction of these resources. In
this case, if some resource used in an active dependency in Si leaves the architecture,
then the system implementation Si fails.

We illustrate the above definitions by a small example shown in Fig. 2.4. There
are three resources A, B and C and two possible resource dependencies ab D .A; B/

and ac D .A; C/. When the system is fully shut down, no resources and no resource
dependencies are required and can therefore be powered off to save energy, as
illustrated by the empty box at the top of the diagram. The system can function
normally in one of two modes as determined by a Boolean variable mode: when
mode D 0 resources A and B as well as the dependency ab must be active, and

Fig. 2.4 An example of a dynamic resource graph with completeness condition (2.2)

32 A. Rafiev et al.

when mode D 1 resources A and C as well as the dependency ac must be active. Let
us now consider two possible power control strategies. The coarse-grain control,
activated when ctrl D 0, powers on all resources regardless of the current mode,
while the fine-grain control, activated when ctrl D 1, power on the resources on
demand according to the current mode. Figure 2.4 covers all possible situations
with the four boxes at the bottom of the diagram corresponding to the four possible
complete implementations. One can derive the following completeness condition
which captures all situations in a compact form:

A ^ .mode ^ ab ^ B _ mode ^ ac ^ C/: (2.2)

Note that the condition does not depend on the chosen power control strategy ctrl,
because it does not influence the completeness property. See [19] for a systematic
approach to the derivation of such completeness conditions.

2.2.3 Resources Quantification and Reward Functions

In very large systems, representing each resource with a node leads to large increases
in model sizes. An unconstrained architecture, defined in Sect. 2.2.1, differentiates
the resources by their types, so it makes sense to group same-type resources under
a single node with an added scalar value representing the quantity.

For some resource r 2 R, its quantity ! .r/ 2 Z
C is the number of the resource’s

instances. For some dependency hr1; r2i 2 D, its multiplicity ! .hr1; r2i/ 2 Z
C

means that the number ! .hr1; r2i/ of resource instances r2 is dependent on the same
number of resource instances r1; ! .hr1; r2i/ � ! .r1/ and ! .hr1; r2i/ � ! .r2/.

Figure 2.5 gives an example of using resource quantification. The system design
shown in Fig. 2.5a represents a task t running on a core c using some scheduler
s D hqi .t/ ; qi .c/i. We map this design on the architecture shown in Fig. 2.5b, which
consists of n cores c0; : : : ; cn�1 and a number of task instances. Task instances are

Fig. 2.5 Resource quantification example: (a) the system design representing a task t scheduled
on a core c, (b) the system architecture consisting of n cores and m types of tasks, (c) a possible
configuration for n D 3; m D 3

2 Resource-Driven Modelling for Managing Model Fidelity 33

grouped by their type t0; : : : ; tm�1, m types in total; !
�
tj
� 2 Z

C is the number of
task instances of a particular type tj, 0 � j < m. Figure 2.5c shows a possible
configuration for n D 3; m D 3. The system has two tasks of type 1 (! .t1/ D
2), thus the node t1 can have two outgoing connections. Each core, in turn, has a
quantifier of 1 and can connect to no more than one task, thus t0 cannot be scheduled
due to the lack of core resources.

In addition to quantifying discrete resources, we can model continuous resources
by quantising them in a way that some amount of a continuous resource is
represented with an integer !. A dynamic architecture can also include an inflow
and outflow of resource quanta.

An alternative approach, inspired by Markov analysis [17], is using reward
functions. For a given configuration of a resource graph, the reward function com-
putes some numeric value representing an instantaneous quantity of a continuous
resource. For example, this could be an instantaneous power consumption in a
system, and a time-integral of this reward would give the total amount of energy
consumed. Notably, in many cases, reward functions can be computed locally on
dependency arcs and adjacent resources.

2.2.4 Constrained Architectures

In general, an architecture is defined as A D .R; L; Tr; � r/, where R is the set of
discrete resources, Tr is the set of resource types, � r W R ! Tr is the resource
type assignment function. The constraint L � R � R is the set of allowed resource
dependencies, so for any pair of resources r1 2 R; r2 2 R the statement hr1; r2i 2
D) hr1; r2i 2 L must be true, where D is a set of active dependencies of some
system implementation Si D .S;A; qi; D/. Thus, an architecture is also a resource
graph, and an unconstrained architecture AC is a complete graph: L D R � R.
The process of mapping the design onto an architecture, S 7! A, is the process of
mapping one graph onto another graph.

An illustrative example for constrained architectures is many-core processors.
Every core in such a system contains a similar set of resources, like registers and
ALUs, but the resources of one core cannot directly access the resources of another
core. Instead, we need to connect them via the network component of the system.
This can be modelled using architecture constraint.

To conclude Sect. 2.2, the presented resource-driven modelling approach allows
the capturing of static and dynamic knowledge of a system being implemented on a
given architecture. Both the system design and the architecture are represented with
resource graphs, and the behaviour is realised in a transitional semantic. Quantitative
modelling of the system resources is also possible using quantised resources or by
defining reward functions.

34 A. Rafiev et al.

By the definition of resource graphs, anything can be considered a resource. Can
we say that the edges of a graph are also resources? It is actually true, especially for
hierarchical systems and architectures. This contradiction is explained and solved
by Order Graphs in the next section.

2.3 Hierarchical Modelling in Order Graphs

The following discussion revisits the definition of a hierarchy as a sequence of
model transformations, which thereafter is applied to graph models leading to Order
Graphs. The latter combines the notions of resource modelling with the hierarchical
representation of system layers.

2.3.1 Introducing Hierarchies

An underlying approach for having adjustable fidelity in the models relies on
different levels of abstraction. Naturally, these layers have to be consistent with each
other, however the very definition of consistency may vary from model to model and
depend on the system properties that need to be preserved.

A common way to define a model of a system is to represent it as a set tuple
M D .E1; E2; : : : En/, where each set Ek contains system elements of a particular
type, e.g. vertices, edges, labels, etc. We can also generalise these to a single type—
“system elements”, E—so E1 � E ; E2 � E ; : : :. Thus, we can have a type-agnostic
representation of a model: M D E0 [E1 [� � � [En.

Let Ma and Mb be some system models with corresponding sets of system
elements Ma;Mb, and some relation between these elements � � Ma � Mb.
Given a boolean predicate ˆ, such that

ˆ W P .Ma/ � P .Mb/ � P .Ma � Mb/ ! f0; 1g ; (2.3)

the relation � is called a consistency relation between models Ma and Mb under the
predicate ˆ if ˆ .Ma; Mb; �/ D 1. ˆ is called the rule set, and for convenience can
be specified as a conjunction of smaller predicates of the same type (2.3).

The predicate ˆ is called strongly consistent if it requires � to be a total surjective
relation, i.e. for every element in Ma there must be at least one related element in
Mb, and for every element in Mb there must be at least one related element in
Ma. In this case, � is called a transformation; transformations are further denoted
as � D Ma ` Mb (or � D Ma ` Mb since Ma;Mb are derived from Ma and Mb).

Let
˚
: : : ; M.k�1/; M.k/; M.kC1/; : : :

�
be an infinite or finite set of models of the

same system, where each M.k/ models the system in a specific level of details.
An abstraction hierarchy is a total order of models where any two adjacent models

2 Resource-Driven Modelling for Managing Model Fidelity 35

Fig. 2.6 Conventional hierarchy representation (a) compared to Order Graphs (b); k is the higher
level of abstraction and k � 1 is the lower level

form a transformation �k D M.k/ ` M.kC1/ under a given strongly consistent
predicate ˆk, and the size of models monotonically decreases (or increases) with k:

H D � � � ` M.k�1/ ` M.k/ ` M.kC1/ ` � � � (2.4)

Each M.k/ is kth level of abstraction, also called order k.
A hierarchy is called homogeneous if it uses the same rule set ˆ for all its

consistency relations; this implies that P
�
M.k/

� D P
�
M.kC1/

�
for all k.

Every hierarchy contains both horizontal and vertical knowledge: each abstrac-
tion layer M.k/ is a horizontal view of the system, while the set of relations
f: : : ; �k; �kC1; : : :g stores the information on how different layers interlink. Notions
of horizontality and verticality can be found in [10].

Figure 2.6a shows the conventional approach to hierarchical graphs, which is
based on clustering and uses tree structures [15]. Each node of a higher layer
zooms into a subgraph in a lower layer. Consequently, an edge between two nodes
becomes multiple edges between the corresponding subgraphs. The notation used in
the diagram is based on Zoom Structures [10]. A convenient way to display graph
hierarchies is zoom views, showing verticality and horizontality with vertical and
horizontal arcs, respectively. The following is a redefinition of hierarchical graphs
in the terms presented in Sect. 2.3.1.

A Hierarchical graph is a homogeneous hierarchy, such that, each kth order is
a graph G.k/ D .V; E/, where V is the set of vertices and E � V � V is the set of
edges; and all consistency relations in this hierarchy are defined as follows:

Inclusion function represents vertex clustering by relating multiple vertices in
the lower order to a single vertex in a higher order.
Supplementary inclusion function ensures that all edges within a cluster are
also included, i.e. if two vertices in the lower order relate to the same vertex in
the higher order, any edge connecting them is automatically related to the same
high-level vertex.

36 A. Rafiev et al.

Edge grouping function groups edges connecting vertex clusters: an edge in the
lower order connects vertices iff there is an edge in the higher order connecting
related high-order vertices.

A more formal definition of these rules can be found in [25]. The inclusion
function can be chosen arbitrarily, and from it, the other two uniquely describe the
edges in the hierarchical graph.

The most important property of the rule set defined above is that it preserves all
paths in the graph during the mapping. In other words, for any vertices v1; v2 2 V
and related vertices v01; v02 2 V 0, if there exists a path between v1 and v2 in G.k/,
there will be a path between v01 and v02 in G.kC1/, and vice versa:

8v1; v2 2 V; v01; v02 2 V 0 W �v .v1/ D v01^�v .v2/ D v02) �
P .v1; v2/ , P

�
v01; v02

��
;

(2.5)

where P .x; y/ is a function that is true iff there is a path between x and y. This
property ensures that the dependencies between resources are consistent throughout
the hierarchy.

2.3.2 Order Graphs

Section 2.2 suggests that an edge in a resource graph can be a resource (a node). As
an example, let’s imagine that Fig. 2.6a models a network interaction, where a is a
server and b is a client. On the very abstract level we do not care about the structure
of the network, we just need to know that the client and the server are connected
somehow, thus we model this entire system as the client and the server connected
directly with a single dependency. However, in a more detailed model we can no
longer ignore the network protocols and have to introduce it at least as a single
resource node as shown in Fig. 2.6b.

A distinct property of the proposed Order Graph (OG) modelling method is that a
high-order edge relates to a node at the next lower order. In this case we say that the
node supports an edge, while in fact this is the same entity viewed from the different
abstraction levels. In real-life systems, any dependency is always supported by a
resource of some kind, and this “fractal” structure goes down to the smallest details,
including atoms and below. We may not want to include all these in the model, and
this is pragmatically solved by saying that an edge is either supported by a resource
at the lower layer or stays an edge like in conventional hierarchical graphs.

An Order Graph is a homogeneous hierarchy, such that, each kth order is a graph
G.k/ D .V; E/, where V is the set of vertices and E � V � V is the set of edges; and
all consistency relations in this hierarchy are defined as follows:

Inclusion, supplementary inclusion, and edge grouping are defined as in
Sect. 2.3.1.

2 Resource-Driven Modelling for Managing Model Fidelity 37

Support function is a one-to-one mapping of some vertices onto some of the
edges of a higher order graph. The first rule on this function tells that we can
map a vertex in the lower order to some edge hv1; v2i in the higher order iff this
vertex is connected to at least one vertex related to v1 and at least one vertex
related to v2. In addition, all vertices adjacent to v must be related either to v1 or
v2. Finally, the same vertex cannot be used in a vertex-to-vertex and a vertex-to-
edge relation; and the same higher order edge cannot be used in an edge-to-edge
and a vertex-to-edge relation.
Supplementary support function groups all edges adjacent to v into the same
higher order edge.

These rules are formally defined in [25]. OGs preserve paths in the same way
as (2.5) shows for hierarchical graphs.

2.3.3 Cross-Layer Cuts

In the approach presented in this chapter, the analysis of the system is performed
on a flat model, not the entire hierarchy. The actual benefit of using hierarchies
in this case is in the possibility to obtain a flat model (or models) by cutting the
hierarchy not horizontally but across multiple layers. The level of details is selected
per element of the system, which gives high control on adjusting the precision of the
obtained models, ultimately leading to the best sized models for the given fidelity
requirement.

An elementary transformation is the minimum set of changes that may happen
between two graphs without violating the rule set of OGs. Thus, OGs have the
following types of elementary transformations, shown in Fig. 2.7:

Inclusion: Vertices and edges of the lower order are mapped into a single vertex
in the higher order. Figure 2.7a shows vertices a1; a2; a3, and edge e1 being
mapped into vertex a; relation he1; ai is implied and not drawn. This elementary
transformation also appears in conventional hierarchical graphs.

Fig. 2.7 Elementary transformations in Order Graphs and their notation: (a) inclusion, (b) edge
grouping, (c) support

38 A. Rafiev et al.

Edge grouping: Edges of the lower order are mapped into a single edge in
the higher order. Figure 2.7b shows edges e1; e2 being mapped into edge e.
The relations are drawn as thin black lines to be differentiated from vertex-to-
vertex relations. This elementary transformation also appears in conventional
hierarchical graphs.
Support: One vertex is mapped into one edge in the higher order. Figure 2.7c
shows vertex c being mapped into edge e; relations he1; ei ; he2; ei are implied
and not drawn. This elementary transformation is unique to OGs.

Any transformation � D G.k/ ` G.kC1/ in OG can be represented with a sequence
of elementary transformations � D �1 ı � � � ı �n, or:

G.k/ ` G.x1/ ` � � � ` G.xn/ ` G.kC1/: (2.6)

For two consecutive orders G.k/; G.kC1/ of an OG, a cross-layer cut G.x/ between
order k and order .k C 1/ is a graph, such that G.k/ ` G.x/ ` G.kC1/ under the same
rule set, and G.x/ is partially equal to G.k/ and G.kC1/.

Figure 2.8 explains the above definition. Let �a D G.k/ ` G.x/ and �b D G.x/ `
G.kC1/. From � D G.k/ ` G.kC1/ and G.k/ ` G.x/ ` G.kC1/, it follows that � D
�a ı�b. Then, G.x/ can be split in three parts: G.x/ D ga [gb [gi, where gi is the part
that is not changed by � , so gi � G.k/; gi � G.kC1/; ga � G.k/ is the part not changed
by �a, and gb � G.kC1/ is the part not changed by �b. Thus, G.x/ contains parts equal
to subgraphs of G.k/ (namely, ga and gi) and subgraphs of G.kC1/ (gb and gi).

An example of a cross-layer cut can be found in Fig. 2.9.
Making a cut through more than two layers—from G.k/ to some G.kCb/—can be

done iteratively. Firstly, obtain a cut between G.k/; G.kC1/, so G.k/ ` G.x1/ ` G.kC1/.
Then, obtain a cut G.x2/ between newly created G.x1/ and G.kC2/, which may now
contain parts from G.k/; G.kC1/ and G.kC2/. Repeat the process until the final cut
G.xb�1/ ` G.xb/ ` G.kCb/ is found.

Cross-layer cuts are models of the same system and are consistent with the
layers in the corresponding OG and preserve the connectivity property. The choice,
which cut is the most appropriate, depends on the application. Section 2.4.3 presents
the use case of parametric-proportional approach to optimise the model size for
modelling system power.

Fig. 2.8 Cross-layer cut G.x/

explained

2 Resource-Driven Modelling for Managing Model Fidelity 39

Fig. 2.9 Cross-layer cut
example from Fig. 2.6b
showing (a) the cut and (b)
resulting flat graph

2.4 Case Studies

This section describes cases of application for our modelling methods. These cases
focus on example parameters that can be regarded as resources and we motivate
their studies with real applications.

2.4.1 Studying the Performance, Energy and Reliability
Trade-Offs of Scalable Systems

In digital VLSI systems, a higher supply voltage (Vdd) usually allows a higher
operating (clock) frequency and hence a higher throughput, but at the cost of higher
power consumption. For reliable operation, there is a limited space within the Vdd

vs frequency space in which the system can operate, as shown in Fig. 2.10.
Figure 2.10 illustrates the number of limits within which a system can reliably

function. There may be a minimum requirement for throughput, which translates to a
lower frequency bound a system must achieve. Otherwise the system is not regarded
as reliable because it cannot deliver the required performance. There is usually a data
reliability requirement which means that the system must operate at a Vdd higher
than some lower bound because reducing the Vdd further the data representation
stops being reliably digital and start having unacceptable susceptibility to noise.
The VLSI (usually CMOS) technology’s fundamental characteristic between its
switching speed and Vdd means that a circuit cannot be run at a frequency higher

40 A. Rafiev et al.

Fig. 2.10 The region of
reliable operation

than an upper bound at a particular Vdd, in order not to risk combinational logic not
completing before the next clock pulse. Any CMOS technology will have a specific
highest possible Vdd under which it functions correctly. And finally, system power
may be limited by some higher bound because of issues like battery life, thermal
dissipation, energy efficiency requirements, etc.

Dynamic power is known to be related to switching activity (and through which
to system frequency), switching swing voltage (and through which to system Vdd)
and switching element capacitance (and through which to system size/area—which
is a constant before hardware scaling). Lumping all the constants together we can
say that power is related to frequency and Vdd in the following manner:

P D cF � V2
dd; (2.7)

where c is a constant, P is the power and F is the frequency. In this section, we
explore the issue of core scaling (increasing or decreasing the degree of paralleli-
sation) with an assumption of perfect scaling. Multiplied hardware operating at the
same frequency will provide multiplied throughput and require a multiplied amount
of power based on the same constant multiplier. Non-zero scaling overheads will be
investigated in Sect. 2.4.2. In perfect scaling with a scaling factor of n, the constant
c is scaled in the same way, i.e.

c D nc1; (2.8)

where c1 is the c for the hardware before scaling (e.g. a single core). In general,
scaling with a factor of n will give a new c which is a factor of n of the unscaled c.

2 Resource-Driven Modelling for Managing Model Fidelity 41

For each core in a new scaled set-up, the available power is also changed by a
factor of 1=n. Considering these factors, for each core, Eq. (2.7) now becomes

Pn D cF � V2
dd=n; (2.9)

and the overall system power equation with n cores stays the same as (2.7).
Parallelism may be used as a way of increasing throughput without increasing

system power dissipation, effectively enlarging the reliable operation region of
a system. For instance, if a software application or set of applications can be
parallelised and distributed to multiple cores, it will be possible to scale the Vdd

and the frequency of each core down, while using the multiple cores to improve
the overall throughput. Because the dynamic power of CMOS systems is related
to Vdd and frequency according to Eq. (2.9), reducing both Vdd and frequency
together reduces power much faster than frequency is reduced, leading to the power-
performance advantage of using multiple cores.

Figure 2.11 shows the potential of using parallelisation scaling to reduce power
and/or improving performance. The constant power and safe frequency vs Vdd

operation curves are obtained from experimenting with a real CMOS system [4].
From Fig. 2.11 it can be observed that with a parallelisation scaling factor of 16 and
for the constant power budget Pmax, it is possible to operate at a lower Vdd of 0.55 V
instead of the nominal 1.2 V, and achieve a nearly four-times overall throughput
improvement. On the other hand, if the requirement of throughput is unchanged, it
is possible to scale the parallelisation up by the factor of 4, reduce the Vdd down to
0.55 V, and use only 25 % of Pmax of power.

Fig. 2.11 SRAM constant max power curve and scaling lines

42 A. Rafiev et al.

Reasoning about these trade-offs can be done in an ad-hoc manner on a
per-system or per-circuit bases using characterisation data. However, for system
designers it would be much more convenient if this can be done through system-
independent models. Resource-driven modelling provides such opportunities as
explained in the following sections.

2.4.2 Exploring Concurrency in Many-Core Systems

This section presents the example of using flat dynamic resource graphs, pre-
sented in Sect. 2.2, to implement a scalable hardware–software co-simulation for
exploring concurrency. The analysis of physical parameters is done via resource
access counting. The simulator is flexible towards the hardware architecture and
facilitates controllable model fidelity by combining resources from different levels
of abstraction. The systematic way of determining the choice of the abstraction
levels based on fidelity requirements will be presented in Sect. 2.4.3.

2.4.2.1 Architecture-Open (ArchOn) Simulator

The method to supply resource graphs to the simulation software has been derived
from our hardware vision. We view the simulator modules as connected via the
connectivity fabric, and the simulator input parser works as a router. Table 2.1 shows
some commands for this “router”, which provide step-by-step graph configurations
as well as explicit invocations of resource state transitions. Applying this method
to sparsely connected graphs with many vertices gives more compact specifications
than traditionally used adjacency matrices. We call it the graph assembly language.

Figure 2.12 shows a virtual communication-based hardware architecture that
could potentially emulate most real-world systems. This type of architecture is
called transport-triggered architecture [7]. It hasn’t become popular in general
purpose microprocessors, but it appeared attractive for our purposes. Assuming

Table 2.1 Some commands of graph assembly language

Command Description

U Œa	 D value Set resource a state to value

a! b Set a dependency between resources a and b

a
x! b Set a labelled dependency between resources

a ¹ b Unset a dependency

G D ; Clear all dependencies

go! “Execute” graph: fire all resource state transitions

go to X Continue assembly from label X (jump)

if condition go to X Conditional jump

2 Resource-Driven Modelling for Managing Model Fidelity 43

Fig. 2.12 A virtual hardware
resembling dynamic resource
graphs

that the target system has an instruction set, its software can be recompiled into
the connectivity fabric routing commands. The process of executing such software
would have alternating phases of configuring the connectivity fabric and executing
modules.

2.4.2.2 Benchmark Results

In this section we demonstrate the application of the ArchOn framework to
modelling PER trade-offs in a many-core processor. As our example we take the
basic computational step in the 3 � 3 matrix convolution that is used in most image
processing applications [23]. Given two 3�3 matrices A and B the goal is to multiply
them element-wise and sum up the results, denoted by A � B:

0

@
x1 x2 x3

x4 x5 x6

x7 x8 x9

1

A �

0

@
y1 y2 y3

y4 y5 y6

y7 y8 y9

1

A D
X

1�k�9

xkyk: (2.10)

Usually, one of the matrices is a 3 � 3 sub-matrix of an image being processed
and the other matrix, called a kernel or a mask, represents the required image
transformation, e.g., sharpening or edge detection. This step is applied to all 3 � 3

sub-matrices of a given image, each time producing a value for a pixel in the
resulting image. This is an embarrassingly parallelisable computation task: one can
cut an image into pieces and process them in parallel on different cores. However,
the memory access is still a bottleneck, which will define the system’s scalability.

As a many-core test platform we used a simplified ARM architecture. The
mainstream ARM processors to date consist of up to 8 cores, however there are

44 A. Rafiev et al.

concrete plans to increase the number of cores to 16, 32, and beyond [2, 12].
In ArchOn we ran the benchmark on up to 64 cores, however it was possible to
use even more as the simulation time scales linearly with the number of cores. The
difference between multi-core and single core architectures for the simulator is in
the restrictions on certain connections between the resources belonging to different
cores, as described in Sect. 2.2.4.

Algorithm 1 ARM instruction MLA r8,r9,r10,r8 in graph assembly language
G D ;
r9

n! mul
r10

m! mul
go!

G D ;
mul

n! alu_add
r8

m! alu_add
go!

G D ;
alu_add! r8

go!

The convolution filter software is written in ARM assembly language. Here,
a 256�256 image is divided between processing cores, each working on a separate
set of pixels (with single pixel wide overlaps). Each pixel is a 32-bit integer
representing grey-scale colour. For every ARM instruction we derive a resource
evolution and translate it into graph assembly language. This is a routine task since
all instructions follow a common pattern. The process of translation can be done
automatically. An example instruction is shown in Algorithm 1.

The nature of this simulation requires appropriate functional behaviour
resources, thus the computation resources have to be modelled down to the ALU
level. On the other hand, the memory access does not require exact modelling
of all levels of cache (the behaviour of cache is typically non-deterministic), and
can be approximated to the set number of access “modes”. Since shared memory
would become the bottleneck while scaling to many-cores, we added control over
the “criticality” of this resource, so the program can be executed in three different
modes: (1) simultaneous read and write access to the memory is allowed, (2)
simultaneous read is allowed, but only one writer is allowed at a time, (3) all
memory access is exclusive and must be done sequentially. With this example we
start exploring non-ideal concurrency scaling and non-zero overheads.

By Amdahl’s law [1], the theoretical speed-up that can be achieved by executing
a given algorithm on a system capable of executing n threads is

T .1/

T .n/
D 1

ss C sp

n

; (2.11)

2 Resource-Driven Modelling for Managing Model Fidelity 45

Table 2.2 Execution time
(in cycles) versus the number
of cores running for different
memory access models

Mode 1: Mode 2: Mode 3:
multiple read multiple read single read

N cores multiple write single write single write

1 26607635 26607635 26607635

2 13303827 13303947 19660819
3 8938515 8938755 19660819
4 6651923 7864625 19660819
5 5404691 7864625 19660819
6 4469267 7864625 19660819

where T .n/ is the time an algorithm takes to finish when being executed on n cores,
and ss 2 Œ0; 1	 is the fraction of the algorithm that is strictly serial, sp D 1 � ss is the
fraction of the algorithm that runs in parallel.

For our algorithm ss and sp are not known in advance, and actually depend on the
memory mode and the number of cores running, i.e. are not constants. ArchOn time
estimation enables analysis of this factor. Table 2.2 gives the estimates for execution
time. From (2.11) we can find sp, which will be an estimate of parallelisation for our
example. In Mode 1 the scaling is nearly perfect, sp � 9:999999, however in Mode 3
the memory becomes such a narrow bottleneck that there is no performance gain
for more than two cores (performance cap is shown in bold). The most illustrative
example is Mode 2, when multiple cores are allowed to simultaneously read, but
forbidden to simultaneously write to the memory. The performance cap is reached
at four cores, and sp varies from 9.96 at two cores to 0.4 at four cores and decreasing.

The main goal of this section is to use ArchOn simulation to draw PER diagrams,
described in Sect. 2.4.1. The diagrams can be drawn using the ARM power
models, which, however, are typically unavailable. ARM power characterisation
from measurements using a prototyping board requires high effort, as shown in
Sect. 2.4.3.1. Moreover, the commercially available systems usually do not allow
near-threshold and sub-threshold operation. In order to explore PER into these
regions, we substitute the power profile with that of an asynchronous SRAM
controller [4], which qualitatively reflects the behavior of any CMOS combinational
logic in terms of PER. Thus, a hypothetical proprietary ARM core with a wide
voltage range should display similar PER relations.

Figure 2.13a illustrates perfect scaling (memory Mode 1) with applied power
limit of 2 mW. Figure 2.13b shows the PER diagram for the same system with
the same power budget after applying actual metrics for scalability to many cores
in Mode 2. The diagram considers only integer numbers of cores, hence the
performance line looks jagged. Please note that the line for four cores in Fig. 2.13b is
lower than in Fig. 2.13a due to imperfect scaling. The data for this graph is computed
automatically. One can see that the performance cap is clearly reflected in the power
limit.

Such diagrams can be used in a runtime management system in order to predict
the best voltage and the number of cores for a particular software with regard to the

46 A. Rafiev et al.

a

b

Fig. 2.13 Computed power limit for perfect scaling (a) and for an actual scaling to many cores in
the simulated example (b)

power restrictions. In our example, for memory Mode 2, if the system is limited to
2 mW, the best number of cores is 4 running at 0.8 V.

2 Resource-Driven Modelling for Managing Model Fidelity 47

2.4.3 Power-Proportional Modelling of Heterogeneous Systems

This section presents the method of managing fidelity based on power-
proportionality metric and cross-layer cuts. Section 2.3 gives the theoretical
foundation for this method.

The method can be applied to resource graph simulations in ArchOn. However,
in contrast to ArchOn’s deterministic simulations, the example method presented in
this section uses stochastic modelling and Markov rewards for quantitative analysis
of system power consumption. The reward functions are still determined by the
resource graphs, as described in Sect. 2.2.3. Since state-space exploration-based
analysis has exponential complexity, choosing the right size of the model becomes
crucial.

2.4.3.1 Platform Description

The experimental platform used in this section is Odroid XU3 [22].
The main component of Odroid XU3 is the 28 nm 8-core Application Processor

Exynos 5422. This System-on-Chip is based on the ARM big.LITTLE architec-
ture [13] and consists of a high performance Cortex-A15 quad-core processor
block, a low power Cortex-A7 quad-core block, a Mali-T628 GPU and 2GB
LPDDR3 DRAM. The board contains four real-time current sensors allowing the
measurement of power consumption on the four separate power domains: A7,
A15, GPU and DRAM. Because of the system’s heterogeneity and suppled power
measurement facilities, the Odroid XU3 is arguably one of the best off-the-shelf
heterogeneous platforms for power analysis.

For each domain, the supply voltage and clock frequency can be tuned through
a number of pre-set pairs of values. The performance-oriented A15 quad core block
can scale its frequencies from 200 to 2000 MHz, whilst the low-power A7 block has
a frequency range from 200 to 1400 MHz. Core 0 in the A7 domain has an additional
speciality of running the OS kernel and drivers, and it cannot be switched off. We
avoid using this core for stress tests and benchmarks to reduce the impact from the
OS on the measurements.

There are compatible Linux and Android distributions available for Odroid; in
our examples, we used Ubuntu 14.04.

In our characterisation experiments, firstly the above parameters were measured
without any additional workload, with only the OS running. Then the same
parameters were measured for each core with application threads running. We
experimented with the typical Linux stress task, i.e. running square root calculations
repeatedly, and in addition, other computations including logarithm calculations and
the four arithmetic operations. We also covered different levels of workload.

Another important experiment is the measurement of the same parameters with
some of the cores in each block disabled. Odroid allows from one to four of the A15
to be disabled and from one to three of the A7 to be disabled.

48 A. Rafiev et al.

Fig. 2.14 Measured power in
relation to the time required
to complete a fixed amount of
computation. The same
performance requires higher
power consumption from A15
than A7

In these experiments, it was observed that an A15 consumes four times or more
power than an A7 when both are running at the same frequency, and up to an order
of magnitude more power when both are running at the same voltage. Figure 2.14
shows the relationship between power consumption and the execution time for the
two types of cores on the average running a range of different types of tasks.

These radically different performance and power figures, and their complex
relations to the different tasks being executed in a core, validate the approach
promoted in this paper. For instance, when certain tasks are mapped to the A7 block,
because of the relatively light power demand of these cores we may be able to afford
to model such processing with less fidelity, i.e. using a more probabilistic model
and/or using a more structurally fuzzy model. For instance, when the A15 block is
also running, it may be a good idea to not represent individual A7 cores but to cover
the entire A7 block as a meta-core with a single model.

2.4.3.2 Platform Model

In this case study we focus on modelling power consumption of the platform. Two
major contributors are task affinities (which task runs on which core) and voltage-
frequency pairs.

Figure 2.15 shows the OG model of the system. At the higher levels of
abstraction, the system is represented as a set of tasks running on a platform,
which in turn consists of a computation component and a power component. The
computation resource is provided by A7 and A15 cores, which appear in the lower
orders, and the power resource is divided into four power domains, as described in
Sect. 2.4.3.1.

For clarity, some of the horizontal edges on this diagram are hidden: every core
is actually connected to the corresponding Vdd tree and to the task node, etc. Every
hTask; Core Xi edge at order 0 represents scheduling of a task onto a certain core.
The next order groups these edges into hTask; A7 coresi and hTask; A15 coresi,
respectively. Similarly, every core is connected to the corresponding “Vdd tree”
resource in the power domain. “Vdd tree” resource included in “A15 power domain”
supports hA15 cores; A15 power domaini dependency; the same is true for A7

2 Resource-Driven Modelling for Managing Model Fidelity 49

Fig. 2.15 Order Graph model of running tasks on Odriod XU3 platform (some horizontal
dependencies are omitted). The shaded area marks the cut shown in Fig. 2.17

Cores. In this example, the interactions with “GPU power domain” domain and
“Memory power domain” are not captured during the experiments, therefore these
resources are removed from the model in the following discussion.

The above OG model represents the structural (static) knowledge of the sys-
tem. In order to model power, this section uses Stochastic Activity Networks
(SANs) [26]. SANs are an extension to Generalised Stochastic Petri Nets (GSPNs)
and a more expressive representation language. SANs inherit from Petri nets the
basic elements: places, transitions and tokens. In general, a system state is a
marking, which intuitively is a configuration of token to place distribution (the
number of tokens in each place). A system’s dynamic progression consists of its
moving from one state to another. This is represented in Petri nets as the firing of
a transition. A transition may fire when every one of its input place is marked with
at least one token and firing a transition results in a marking modification to a new
state, where every input place has its marking reduced by one and every output place
has its marking increased by one.

The SANs formalism provides a general way of specifying the enabling of an
activity (SANs extension of a Petri net transition), a general way of specifying a
completion (firing) rule, a method of representing zero-time events (hence including
deterministic as well as stochastic behaviours), a method of representing probabilis-
tic choice in addition to probabilistic delay provided by GSPNs. All of these are
based on extensions of the Petri net rules described above. The SANs formalism also
provides state-dependent reward values and general delay distributions on activities.
For instance, SANs markings can be coded with rewards relating to such parameters
as power consumption.

A crucial issue to be modelled for this system, when we talk about system
power consumption, is processing, i.e. the execution of threads/tasks in the cores.
The fundamental processing element model is shown in Fig. 2.16a. Here the place

50 A. Rafiev et al.

Capacity represents the unused capacity of a processing element (e.g. a core), and
the place Processing represents the current number of tasks being executed in the
core. If it is a single core, the sum of tokens of these two places represents the
pipeline depth or multi-threading capability of the core. If there are multiple cores
in this model, the sum of tokens in the Capacity and Processing places represents
the entire block’s multi-threading capability. There is a direct relation between the
marking in this model and the resource quantifiers in the graph shown in Fig. 2.5:

M
�
Tasksj

� D !
�
tj
� �

X

i

!
�
sij

�
;

M .Capacityi/ D ! .ci/ �
X

j

!
�
sij

�
;

M
�
Processingij

� D !
�
sij

�
:

In the model in Fig. 2.16a, the initial marking, as shown, represents multi-tasking
capacity of three and no active processing. The Spawn activity is a stochastic
activity with a given firing rate and distribution, and because it does not have input
places, it is always enabled and can generate tokens into the Tasks place. When
both Tasks and Capacity places are marked, the Start transition becomes enabled.
This is instantaneous transition, thus it fires deterministically and adds a token into
Processing, whilst removing one token each from Capacity and Tasks. The input
gate of the Start transition may contain any additional logic controlling the firing
depending on the global of the net. The stochastic transition Finish represents the
end of processing of a task and returns the token to Capacity. The rate of Finish
represents the throughput related to a single task.

The power consumption is modelled by assigning rewards to markings in
appropriate places. For instance, each token in Processing can have a reward value
corresponding to the power consumption of processing a single task in this core (or
cores). A token in Capacity can have a reward value associated with the idle power.

Different levels of fidelity are possible with this representation. For instance,
the degree of probabilistic vs. deterministic can be tuned for a more or less fuzzy
representation. We may decide to model part of a core (i.e. a multiplier), an entire

Fig. 2.16 SANs models for task execution

2 Resource-Driven Modelling for Managing Model Fidelity 51

Fig. 2.17 Proposed
cross-layer cut for
power-proportional modelling

single core, a core-block, or the entire Odroid chip with one of these sub-nets. When
setting up a more detailed model with higher fidelity, we may need to distinguish
how a processing element behaves with different types of tasks, as our experiments
showed that the Odroid cores consume different amounts of power when dealing
with different tasks. The model in Fig. 2.16b allows this differentiation by assigning
different rewards to Processing places corresponding to different tasks. With more
fuzzy representations, such issues may be covered by probabilities.

Once a cut has been determined using the OG model, a flat SANs model covering
the entire system can be made with different levels of fidelity for different parts. This
will be a flat model with power-proportional fidelity and effort.

2.4.3.3 Power-Proportional Model Sizes

Based on experimental data from the Odroid, presented earlier in Sect. 2.4.3.1, for a
certain modelling fidelity we may need to represent each A15 core with a model of
the type in Fig. 2.16b, with multiple types of tasks—e.g., CPU-heavy and memory-
heavy, and many levels of DVFS and workload resolutions. For the same level of
fidelity, we can represent the entire A7 block with a single sub-net of the type in
Fig. 2.16a without task, DVFS and workload differentiation.

The corresponding OG cut is shown as a flat graph in Fig. 2.17 and also marked
with a shaded area in Fig. 2.15. Power-proportional cuts through the model space
usually result in models whose sizes are optimal for studying power, in the sense that
the resolution or fidelity of power as a parameter is constant through the model. In
other words, a power-proportional cut for a specific power representational fidelity
gives the smallest possible model for that degree of fidelity. Other representations
away from this cut will inevitably result in certain parts showing an unnecessarily
higher degree of fidelity leading, usually, to higher degrees of representational
complexity.

This approach can be expressed with a metric .p=ec/, where p is the power
consumption (or any other parameter in study) of a resource, e is the modelling

52 A. Rafiev et al.

error produced locally by this resource’s sub-model and c is the cost to compute this
sub-model. The most power-proportional cut has minimal variance of this metric
across all its elements. Typically, reducing the error in the model increases its
computational cost, hence the term ec within the same modelling technique can be
approximated to a constant. This gives the direct proportionality metric p meaning
that each resource in the final cross-layer model should have as approximately the
same as possible power consumption as the other resources.

One of the generally accepted metrics of model size and therefore modelling
effort and the effort of using models is the size of the state space of the model.
For instance, one of the envisaged applications of our modelling method is the
design and analysis of runtime parameter management algorithms or machines,
e.g. runtime power management for mobile and embedded systems. For such
management or control schemes, more sophistication is usually needed to achieve
better results. Naïve examples that are widely available in the public and commercial
domains, such as such Linux/Android power governors as ondemand, usually
assume very simplistic plant models and rely on feedbacks to achieve some degree
of effectiveness, which is almost never optimal. More sophisticated algorithms
such as those based on learning and those providing a degree of adaptation can
almost always provide better results than the standard governors, but inevitably
require better plant models. On the other hand, most computer system control
algorithm designers are most comfortable with thinking of the plant as a state
machine. And many types of parameter management algorithms, e.g. learning and
model adaptive schemes, depend on a state space representation of the plant being
available [8, 9, 18, 27]. The size of the state space of a model, therefore, is directly
relevant for this type of model usage.

The example architecture of the type seen in the big.LITTLE Exynos chip
featured in the Odroid system consists of N power domains. The kth power domain,
0 � k < N, has dk DVFS points (pre-set pairs of Vdd and clock frequency
values) and ck processing cores of the same type. For such a system and for power
studies, the fundamental state element is ‘a particular core in a particular power
domain is running a particular type of task at a certain workload’. Usually the
parameter representational fidelity requirement dictates the granularity of workload
representation, which should be constant within each individual power domain, as
there is no intra-domain core heterogeneity. This leads the jth core in the kth domain
having wkj workload points and tkj types of tasks, where 0 � j < ck. With no core
heterogeneity within a power domain, it is convenient to differentiate workloads and
task types into the same numbers of points for all cores, i.e. wk and tk. The size of
the state space S of a cut model for such a system as the controlled plant, of the type
described in the previous sections, is therefore

jSj D
N�1Y

kD0

dk .wktk/
ck : (2.12)

2 Resource-Driven Modelling for Managing Model Fidelity 53

For the Odroid’s ARM cores, reducing the representation of the A7 cores to a
single execution sub-net model, as in Fig. 2.17, effectively changing cA7 from 4 to
1, produces .wA7tA7/3 times reduction of the model state space. Reducing the DVFS
resolution of the A7 cores to equal power fidelity of the A15 cores produces a further
state space reduction.

There are 20 DVFS points for the A15 power domain and 15 for the A7 power
domain in the Odroid. Maintaining the same power fidelity, a maximum of five,
not 15, DVFS bands are needed for the A7 domain in the model. Assuming a
workload resolution of five .0; 25; : : : ; 100 %/ and task type resolution of two (CPU-
and memory-heavy), a 3 � .5 � 2/3 D 3000 times reduction of the state space
(new state space size D 1/3000 or 0.033 % of the original) can be obtained by
using a power-proportional cut. This kind of state space reduction may result in
qualitative differences in the sophistication of the runtime management scheme
given any constant overhead budget for the management, or it can be used to reduce
the management overhead whilst maintaining the same degree of management
effectiveness.

This modelling method provides more opportunities for runtime tuning and
adaptation because cuts may be allowed to dynamically change during runtime.
For instance, if it is found that no A15 core is active and the entire A15 block is
shut down, power fidelity may be improved by representing the A7s individually by
adopting a different cut. This can be necessary because an A15 total shutdown may
indicate that the system is running in low power or even survival modes and during
these modes what are regarded as small amounts of power during normal operation
become significant. This should lead to a higher degree of fidelity in representing
the quantity of power in the runtime model. On the other hand, if the A15 total
shutdown is purely a result of workload demand reduction, the previous coarse A7
block cut should be entirely satisfactory. The facility of layer-crossing cuts provides
additional flexibility for model adaptation.

2.5 Conclusions

This chapter presents a general systematic approach to model complexity con-
trol through managing model fidelity. The approach is based on resource-driven
modelling and includes two concrete methods. Resource graphs represent the
static information of computation systems as sets of resources and their cross
dependencies, and the dynamic behaviour of these systems as evolution steps of
resources and dependencies. This method allows the straightforward emphasis of
elements and issues that can be regarded as resources and their interplay in system
models, making it easy for designers to reason about them. Issues such as the level of
representational fidelity of parameters can be managed through resource definitions
leading to the scalability of models as well as the straightforward reasoning of the
scalability of systems themselves.

54 A. Rafiev et al.

The second method presented within this resource-driven framework is the use
of cross-layer cuts to achieve parameter-proportional fidelity in hierarchical models.
In this a previously presented formalism Order Graphs is shown to be effective, and
techniques relevant to the derivation of parameter-proportional cuts are presented.
We propose a metric for rationalising parameter fidelity across complex models
within this context.

The entire approach is tested and validated by a number of application cases,
with systems ranging from homogeneous many-core to heterogeneous multi-core,
and properties ranging from performance, energy/power and reliability. Models are
derived for design-time explorations, and both static and dynamic analysis are made.
For analysis, the usefulness of such models is demonstrated through both simulation
studies and state space analysis.

Acknowledgements This work is supported by EPSRC grant EP/K034448/1.

References

1. G.M. Amdahl, Validity of the single processor approach to achieving large scale computing
capabilities, in Proceedings of the Spring Joint Computer Conference, AFIPS’67 (Spring)
(ACM, New York, 1967), pp. 483–485

2. ARM. http://www.arm.com, 2015
3. G. Balbo, Introduction to generalized stochastic petri nets. Formal Methods for Performance

Evaluation. Lecture Notes in Computer Science, vol. 4486 (Springer, Berlin, 2007), pp. 83–131
4. A. Baz, D. Shang, F. Xia, A. Yakovlev, Self-timed SRAM for energy harvesting systems. J.

Low Power Electron. 7(2), 274–284 (2011)
5. A. Beyranvand Nejad, A. Molnos, K. Goossens, A unified execution model for multiple

computation models of streaming applications on a composable MPSoC. J. Syst. Archit.
59(10), 1032–1046 (2013)

6. S. Borkar, Thousand core chips: a technology perspective, in Proceedings of the 44th Annual
Design Automation Conference, DAC’07 (ACM, New York, 2007), pp. 746–749

7. H. Corporaal, Design of transport triggered architectures, in Proceedings on Design Automa-
tion of High Performance VLSI Systems (1994), pp. 130–135

8. A. Das, R.A. Shafik, G.V. Merrett, B.M. Al-Hashimi, A. Kumar, B. Veeravalli, Reinforcement
learning-based inter- and intra-application thermal optimization for lifetime improvement of
multicore systems, in Proceedings of the 51st Annual Design Automation Conference, DAC’14
(ACM, San Francisco, 2014), pp. 1–6

9. A.K. Das, R.A. Shafik, G.V. Merrett, B.M. Hashimi, A. Kumar, B. Veeravalli, Workload
uncertainty characterization and adaptive frequency scaling for energy minimization of
embedded systems, in Proceedings of the Conference on DATE’15, March 2015

10. A. Ehrenfeucht, G. Rozenberg, Zoom structures and reaction systems yield exploration
systems. Int. J. Found. Comput. Sci. 25, 275–306 (2014)

11. H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger, Dark silicon and
the end of multicore scaling, in Proceedings of the 38th Annual International Symposium on
Computer Architecture, ISCA’11 (ACM, New York, 2011), pp. 365–376

12. EZchip. http://www.tilera.com, 2015
13. P. Greenhalgh, big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7 – Improving Energy

Efficiency in High-Performance Mobile Platforms. ARM, 2011. White Paper

http://www.arm.com
http://www.tilera.com

2 Resource-Driven Modelling for Managing Model Fidelity 55

14. N. Hardavellas, M. Ferdman, B. Falsafi, A. Ailamaki, Toward dark silicon in servers. IEEE
Micro 31(4), 6–15 (2011)

15. B. Kumar, E.S. Davidson, Computer system design using a hierarchical approach to perfor-
mance evaluation. Commun. ACM 23(9), 511–521 (1980)

16. Y. Lhuillier, M. Ojail, A. Guerre, J.-M. Philippe, K. Ben Chehida, F. Thabet, C. Andriamisaina,
C. Jaber, R. David, HARS: a hardware-assisted runtime software for embedded many-core
architectures. ACM Trans. Embed. Comput. Syst. 13(3s), 102:1–102:25 (2014)

17. Q.-L. Li, Markov reward processes. Constructive Computation in Stochastic Models with
Applications (Springer, Berlin, 2010), pp. 526–573

18. L.A. Maeda-Nunez, A.K. Das, R.A. Shafik, G.V. Merrett, B. Al-Hashimi, PoGo: an
application-specific adaptive energy minimisation approach for embedded systems, in HiPEAC
Workshop on Energy Efficiency with Heterogenous Computing (EEHCO). HiPEAC, January
2015

19. A. Mokhov, Conditional partial order graphs. PhD thesis, University of Newcastle upon Tyne,
School of Electrical, Electronic and Computer Engineering, 2009

20. A. Mokhov, A. Iliasov, D. Sokolov, M. Rykunov, A. Yakovlev, A. Romanovsky, Synthesis
of processor instruction sets from high-level ISA specifications. IEEE Trans. Comput. 63(6),
1552–1566 (2014)

21. A. Nouri, M. Bozga, A. Molnos, A. Legay, S. Bensalem, Building faithful high-level
models and performance evaluation of manycore embedded systems, in In Proceedings
of 12th ACM/IEEE International Conference on Methods and Models for System Design,
MEMOCODE, 2014

22. Odroid XU3. http://www.hardkernel.com/main/products, 2013
23. M. Petrou, C, Petrou, Image Processing: The Fundamentals (Wiley, Chichester, 2010)
24. A. Rafiev, A. Iliasov, A. Romanovsky, A. Mokhov, F. Xia, A. Yakovlev, Studying the interplay

of concurrency, performance, energy and reliability with ArchOn – an architecture-open
resource-driven cross-layer modelling framework, in Proceedings of International Conference
on ACSD, 2014

25. A. Rafiev, F. Xia, A. Iliasov, R. Gensh, A.M.M. Aalsaud, A. Romanovsky, A. Yakovlev,
Order graphs and cross-layer parametric significance-driven modelling, in Proceedings of
International Conference on ACSD, 2015

26. W.H. Sanders, J.F. Meyer, Stochastic activity networks: formal definitions and concepts, in
Lectures on Formal Methods and Performance Analysis (Springer, Berlin, 2001), pp. 315–343

27. A. Suardi, S. Longo, E.C. Kerrigan, G.A. Constantinides, Robust explicit MPC design under
finite precision arithmetic, in Proceedings of IFAC, 2014

28. B. Wang, Y. Xu, R. Rosales, R. Hasholzner, M. Glaß, J. Teich, End-to-end power estimation for
heterogeneous cellular LTE SoCs in early design phases, in 2014 24th International Workshop
on Power and Timing Modeling, Optimization and Simulation (PATMOS), Sept 2014, pp. 1–8

http://www.hardkernel.com/main/products

Chapter 3
Empowering Mixed-Criticality System
Engineers in the Dark Silicon Era: Towards
Power and Temperature Analysis of
Heterogeneous MPSoCs at System Level

Kim Grüttner

3.1 Introduction

The vision of ambient intelligence describes an “intelligent environment,” which
reacts in a sensitive and adaptive way to the presence of people and objects, offering
a variety of services. These services will combine data from various sources creating
valuable information and support the self-organization across different domains
like transportation, medical, and energy. They will be an integral part of smart
objects (e.g., consumer electronics, smart phones, cloth, cars, buildings, traffic
infrastructure, etc.) and thus of our daily life. Current technologies trend will help
enable the vision of ambient intelligence:

– Multi-core processors that provide increasing computation power under accept-
able computation/power ratio even for mobile battery-powered systems

– Increasing semiconductor integration levels enable powerful on-chip networking
facilities that enable on-chip scaling of computation resources and seamless
integration with networked distributed systems

– Increasing heterogeneity (more than Moore) enables sensor and actuator integra-
tion in a single chip or system in package

With the support of many others, see Acknowledgments.

K. Grüttner (�)
OFFIS — Institute for Information Technology, Oldenburg, Germany
e-mail: kim.gruettner@offis.de

© Springer International Publishing AG 2017
A. Molnos, C. Fabre (eds.), Model-Implementation Fidelity in Cyber
Physical System Design, DOI 10.1007/978-3-319-47307-9_3

57

mailto:kim.gruettner@offis.de

58 K. Grüttner

– Wireless communication technologies enable flexible interconnect topologies
among devices of all kinds.

All of these enabling technologies are driven by the consumer market (mobile
phones, tablets, laptops, etc.) and redefine the way embedded and complex systems
are being designed. This way, safety- and mission-critical services that have been
previously running on dedicated and often custom designed hardware/software
platforms will either interact, be tightly connected or even execute on devices made
of generic hardware/software platforms that have been previously used with non-
safety/mission-critical applications only.

The advantages are clear in terms of reduced Space/Size, Weight, and Power
consumption (SWaP). Generic hardware platforms with multiple processing cores
and flexible programmable I/O logic have a much lower price than custom designed
platforms. Scaling the number of cores per chip instead of controllers and ASICs,
combined with the flexibility of pure software solutions, offers the required scala-
bility and flexibility for ambient intelligence. With these technological capabilities,
integration of critical and non-critical services on the same hardware platform
becomes essential. As observed today, the ongoing convergence of devices, which
leads to an increased function/service density (number of functions/services per
device), will rapidly break the existing separation of critical and non-critical services
running on isolated devices.

With critical and non-critical applications integrated onto a single chip locally,
enforcing temporal and spatial segregation becomes an essential capability in the
design of multi-core platforms, operating systems, and applications rather than seg-
regating them through allocation and mapping onto dedicated, physically separate
devices. When moving to smaller technology nodes, segregation techniques must
cope with totally new challenges (see Fig. 3.1). While extra-functional properties
like cost, installation space, and weight can be optimized, by taking advantage of
higher integration density, the main challenge is to guarantee temporal and spatial
segregation on a single chip, while maintaining power, temperature, and reliability
requirements. In contrast to the traditional distributed multi-controller approach,
power, temperature, and reliability cannot be considered as isolated effects (per
device) for single chip mixed-criticality systems.

Significant improvements have been achieved to support the design of mixed-
critical systems by developing predictable computing platforms and mechanisms
for temporal and spatial segregation between applications of different criticalities
sharing the same computing platform [2]. Such platforms provide techniques for
the compositional certification of applications’ correctness, run-time properties,
and reliability of computing platform. Multi-core SoCs that supports spatial and
temporal segregation for mixed-critical applications need to become analyzable
regarding their power, temperature, and reliability properties taking into account
a certain configuration and application mapping [7].

The reminder of this chapter is organized as follows. In the next section
an introduction to the CONTREX project is given. Section 3.3 describes the
CONTREX flow, considering power and temperature of a full chip in virtual

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 59

1900 1920 1940 1960 1980 2000

10

100

1000

Vmax

[km/h]

energy

10

100

1000

fmax

[MHz]
energy

variation
reliabiloty

Sources: www.wikipedia.org, www.intel.com

Fig. 3.1 Influence of extra-functional properties on the development of systems. Comparing
trends in aircraft speed and clock frequency of general-purpose processors [21]

platforms at system level. In Sect. 3.4, the specification and implementation of
a mixed-criticality multi-rotor use-case, integrating a safety-critical flight control
algorithm with mission-critical payload processing on a single chip, is described.
Section 3.5 describes the application of the CONTREX flow from Sect. 3.3 on the
use-case presented in Sect. 3.4. This chapter closes with a conclusion and future
work in Sect. 3.6.

3.2 The CONTREX Project

CONTREX [3] complements the above-mentioned existing European excellence
through methodologies and tool support for the analysis and segregation along extra-
functional properties, i.e., (real-) time, power, temperature, and reliability. These
properties are the next roadblocks

1. to scale up the number of applications per platform and the number of cores per
chip,

2. in battery-powered mobile platforms using wireless communication, and
3. for mission- and safety-critical systems when switching to technology nodes of

45 nm and below (see Fig. 3.2).

The CONTREX tools and design flow aim at cost-efficient and cost-sensitive design
through analysis and optimization of power, temperature, and reliability with regard

60 K. Grüttner

100µm

10µm

1µm

100nm

10nm

1nm
1970 1980 1990 2000 2010 2020

energy (per computation)

power (static consumption)

process variation

aging

reliability

delay, area

energy (per computation)

power (static consumption)

process variation

aging

delay, area

Sources: www.mobile.de, www.intel.com

Fig. 3.2 Closing the technology gap between safety-critical and consumer computing platforms.
Evolution and challenges in consumer electronics vs. electronic control units in cars [21]

to application demands at different criticality levels running on the same networked
computing platform. The CONTREX approach will be integrated into an existing
model-based design methodology [24, 25] and open source environments [16] that
can be customized for different application domains and target platforms.

CONTREX puts its focus on the requirements taken from the automotive, avion-
ics, and telecommunications domain and evaluates its effectiveness and integration
into existing standards for the design and certification, based on three industrial
demonstrators. An excerpt of the avionics demonstrator is show in Sect. 3.4.

To close the identified technology gap between custom designed mission- and
safety-critical systems and cost-efficient platforms for consumer systems, the main
goal of the project is to combine

– platform independent models for (control) applications with different criticali-
ties, represented in domain specific modeling languages and formalisms,

– management and abstraction of multi-core hardware platforms’ shared resources
to guarantee temporal and spatial segregation for mixed-critical applications,

– management and abstraction of communication network resources to support
temporal and spatial segregation to enable system-wide deployment and mod-
ularization in networked control applications, and

– cloud infrastructure abstraction and management techniques to support integra-
tion with data fusion/filtering for overall monitoring and online optimization of
distributed large-scale control systems

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 61

with management and control of extra-functional properties, like power and temper-
ature. These properties will limit the capabilities and realization of future ambient
intelligent systems with regard to overall energy consumption, mobility (due to lim-
ited battery capacities), waste heat discharge, and finally reliability and availability.
For this reason, the CONTREX project extends the industrial state of the art in
mixed-criticality system design through a holistic design approach that considers
extra-functional constraints as first-class citizens. It will represent and expose extra-
functional properties under existing segregation and certification techniques (both in
the design phase and during system operation), and finally include these properties
into local (on the device/network node) and global (information exchange using
cloud infrastructure) scheduling and control decisions.

The main goal of the project is to enable cost-efficient design, modeling, analysis,
simulation, and exploration of complex networked control systems with mixed-
criticality on different levels of abstraction. The project targets a meet-in-the-middle
approach for the integration of existing design environments, models, and analysis
and simulation tools. The project will extend the state of the art in domain specific
control system modeling (top-down) through:

– Separation of design decisions for control application, deployment, and underly-
ing hardware/software architecture at device level [24].

– Formalization, annotation, and refinement of constraints/contracts on extra-
functional properties: time, power, and temperature [22, 23].

State-of-the-art segregation techniques for shared computing resources (i.e.,
multi-core systems) cover functional correctness and timing [2], but ignore possible
influence and feedback paths originating from parasitic extra-functional effects
[32]. Sharing the same computing platform (as shown in Fig. 3.3), multiple appli-
cations can interfere indirectly through power/energy and temperature properties.
Running a hard real-time application and non-timing critical application (best
effort) on the same execution platform (e.g., using a static Time Division Multiple
Access (TDMA) scheduling), the non-timing-critical application can have an extra-
proportional contribution to the overall power consumption. The increased power
consumption heats up the whole chip and requires to slow-down (e.g., dynamic
voltage and frequency scaling) dedicated cores and the memory subsystem to keep
the chip temperature within a range allowing reliable operation. It has been predicted
that at 22 nm, 21 % of a fixed-size chip must be powered off, and at 8 nm, even more
than 50 % [6]. This dynamic reaction to control waste heat and reliability of the
chip might have an influence on the core running the hard real-time task. This can
be either directly through reducing the clock frequency of the core running the real-
time application or indirectly through the effects in the memory subsystem. When
designing such systems, all critical applications of the system need to designed with
the explicit awareness of possible mode switches due to control of extra-functional
properties.

Another example regarding the influence between mixed-critical applications and
extra-functional properties can be found in mobile battery-powered systems. These
systems suffer from limited battery capacities that keep running the system for a

62 K. Grüttner

Fig. 3.3 Mixed-criticality systems now and then. (a) State of the art: Two control applications
with different criticalities (left: hard real-time system with strict timing deadline, no power, or
temperature constraints; right: soft real-time system with no strict deadline, hard power, and
temperature constraints that might also originate from the systems environment/harsh operat-
ing conditions) implemented on two physical separated and/or distributed hardware/software
platforms. (b) Future mixed-criticality systems: Two independent applications with different
criticalities (from Fig. 3.3a) implemented on a multi-core hardware/software platform that enables
temporal and spatial segregation (e.g., through static virtualization using TDMA). CONTREX
enables analysis of real-time, power, and temperature properties and to implement segregation
techniques regarding power consumption and heat dissipation

determinate amount of time. When running applications with mixed criticalities
on mobile platforms the available battery capacity needs to be partitioned among
applications and managed at system run-time to keep mission- and safety-critical
services running for a determinate time (e.g., to reach the next re-charge cycle).

As pointed out, integrating mixed-criticality applications on multi-core and
mobile battery-power computing platforms requires additional segregation along
extra-functional dimensions, while keeping up classic temporal and special segre-
gation properties. For this purpose, CONTREX extends state of the art in execution

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 63

platform modeling and segregation for functional and extra-functional properties
(bottom-up) through:

– Separation of physical hardware resources like processors, memories, and com-
munication channels (on- and off-chip) from services that enable a transparent
virtualization of different underlying hardware/software platforms,

– Characterization, abstraction, and explicit representation of timing, power, and
temperature properties for specific hardware/software platforms, and

– Segregation along extra-functional dimensions.

The project combines top-down (control system modeling) and bottom-up
(execution platform modeling) approaches in an integrated design environment
establishing a missing link through:

– Deployment and mapping of control applications to a network of virtualized
hardware/software platforms and network infrastructure abiding extra-functional
properties.

– Simulation infrastructure that scales from detailed subsystem to overall net-
worked control systems, including dynamicity of extra-functional properties.

– Support for the exploration of different deployment and mapping alternatives
to obtain the most cost-efficient solution under the given extra-functional con-
straints.

– Cloud services for data acquisition and monitoring of extra-functional properties
to obtain an overall health-state of the controlling system and the system under
control including the coordination of global compensation actions at run-time.

In this chapter, the focus is on the extension of a virtual platform by extra-
functional models for power and temperature. In this context a virtual platform is
an executable model1 of a real hardware platform that is capable to run the original
software stack (full binary compatible) and supports tracing of functional and timing
properties when the system is being executed.

Figure 3.4 depicts the main elements of the extended virtual platform. The
Virtual Platform represents the functionality and the timing of the software stack
(consisting of domain specific application, Operating System Services, Hardware
Abstraction Layer services, and the processing elements). The Extra-Functional
Model adds a power model for each processing element of the virtual platform.
This power model is driven by the timing and activity of each processing element.
If the operating frequency and voltage of the processing elements can be changed
during run-time (e.g., Dynamic Voltage and Frequency Scaling (DVFS)), the power
model receives this information from the HAL. The power model is tightly coupled
with a temperature model for the thermal response of the package. Information
about the local temperature can also be sent to a temperature sensor model that
can be accessed by the software via HAL services to implement a dynamic power
management. (Extra-)functional Monitors support the tracing and property checking

1Running on the host computer.

64 K. Grüttner

OS services

Domain specific
application (MoC)

ContractContract

Domain specific
application (MoC)

OS services

frequencies

supply voltages

Contract

environment
temperature/
cooling

MonitorMonitorMonitor

MonitorMonitorMonitor

MonitorMonitorMonitor

ContractContract(Extra-)functional
Specification

MonitorMonitorMonitor

Virtual Platform
(function & time)

(Extra-)functional
Monitors

Extra-Functional
Models

Temperature
Model

time

activity
Power ModelPower Model

Temperature
Sensor
Model

HAL servicesHAL services

Processing ElementProcessing Element

Fig. 3.4 Extended virtual platform

of function, power, and temperature over time intervals. These monitors are
supported on the hardware platform level and all abstraction layers of the software
stack. The following section provides more information about the combination of
the virtual platform with the extra-functional models using timed value traces as
uniform exchange format.

3.3 Considering Power and Temperature of a Full Chip
at System Level—The CONTREX Flow

The design of embedded systems is typically constrained by extra-functional
properties such as power, temperature, or degradation. Mobile embedded systems,
for example, have in general a limited energy budget while avionic and aeronautic
systems require a reliable operation with a long mean time to failure. In most cases,
even multiple of the extra-functional properties are constrained and the design space
needs to be explored during the design to fulfil all requirements.

Mixed-critical systems comprise tasks of different criticalities. If these are
executed on a single platform, these tasks interfere with each other directly due
to shared resources (e.g., shared memories) as well as through extra-functional
properties. For the latter relation, mixed-critical systems introduce further degrees

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 65

of freedom to the design space exploration that need to be explored. While safety-
critical services need to operate at all time, mission- or non-critical services can be
suspended during run-time (e.g., to reduce the dissipated power and temperature) in
order to meet all requirements.

This work addresses the giant temporal and spatial granularity discrepancy in
the analysis of the extra-functional properties power, temperature, and degradation
for mixed-critical systems that highly interdependent and that cannot be regarded
separately. From a temporal perspective, a power and temperature estimation can
focus on seconds or minutes of operation to cover average and peak temperatures
and power values. From a spatial granularity viewpoint, the analysis of an overall
system at a coarse-grained level is sufficient for power and temperature to reflect
electro-thermal coupling, boundary conditions, cooling capabilities, and energy
budgets. In order to explore the design space and to meet all top-level requirements,
every analysis of these extra-functional properties should provide estimation results
within minutes of computation time. Thus, a scalable level of granularity is crucial
and inevitable.

In the following, an extra-functional property estimation flow is described. The
flow uses several existing point tools and addresses the above-mentioned problems.
It uses a hierarchical composition of traces as the fundamental data structure and
exchange format. These traces can be tailored to the needs of the different analysis
steps via stream processing. The following paragraphs give an overview on the
proposed flow describing its main elements, tools, and interfaces. The individual
point tools and transformations used in the implementation of the flow are either
commercially available, public domain, or result out of former research projects.
Detailed references to the used tools are given in Sect. 3.5.

The overall flow is shown in Fig. 3.5. Green and red boxes indicate inputs and
outputs to separate point tools and transformations (blue boxes). Red boxes thereby
represent transient traces of the extra-functional properties. These traces are the
fundamental data structure, as it will be described in the following.

The overall flow can be separated into three phases. First, the application is
simulated on a virtual platform to gather power and activity data. Second, a
temperature estimation is performed. An extension of this flow towards variation
and aging is available at [10]. In parallel to these three subsequent parts, a contract
satisfaction monitoring checks the validity of formally defined contracts on the
extra-functional properties [22, 23].

3.3.1 Extended Virtual Platform Simulation

The basis for gathering the application dependent evolution of extra-functional
properties over time is the execution of the application in a virtual platform that is
extended by three means. First, power models are attached to the simulator defining
possible power modes for each component that are characterized by a supply
voltage, a clock frequency, an average switched capacitance per cycle, and average

66 K. Grüttner

Component-
Level Floorplan

Power mapper

Stream processing

Thermal estimation

Dynamic and leakage
power map traces

Pdyn(x,y,zi,t) / Pleak(x,y,zi,t)

IC package
data

Thermal IC
package

characterization

Extended VP
simulator

Platform modelPower model
(PSM)

Primary traces: Observable properties

VDD(t) fclk(t)

C(t)

Application

Thermal model

Contracts

Contract
satisfaction
monitoring

Secondary traces: Power per component

Pdyn(t)

Tertiary traces

Stimuli

Θ(t)

Function-
call(t)

a

e

b

c

f

d

g

h

i

Pleak(t)

j

Temperature map
trace θ(x,y,zi,,t)

Fig. 3.5 Overall extra-functional properties estimation flow

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 67

leakage currents [8]. Second, the simulator itself needs to have an introspection
mechanism in order to be aware of power mode changes that may be taken either
automatically due to inherently implemented power management policies or due to
sleep state transitions that are triggered by the application. Third, the simulation
is extended by a tracing engine that protocols the extra-functional properties on
appearance as described in the following.

3.3.2 Primary Traces: Observable Properties

Primary traces are transient traces of observable properties that can be directly
observed during the execution of an application on the extended virtual platform.
The purposes of theses traces are to derive the dissipated power over time at a
component-wise level in order to feed a subsequent transient temperature estimation
and to establish a link between the application execution and its power consumption
to validate if defined constraints on the power budget are met. Thus, the primary
traces need to cover every parameter that is necessary to compute the power
consumption trace per component and to link it with application execution:

– Transient supply voltage traces per component: Multiple voltage domains in a
heterogeneous SoC (e.g., different cores, DSPs, or IO blocks) can operate at dif-
ferent supply voltages that may even change over time due to power management
techniques. A single voltage domain can cover multiple components.

– Transient clock frequency traces per component: Power management tech-
niques can be applied at component level and often rely on a reduction of the
clock frequency. Thus, the clock frequency needs to be traced in order to derive
the power consumption.

– Transient switched capacitance per component: The switched capacitance
reflects the activity of the application and is the fundamental primary parameter
for dynamic power.

– Transient leakage currents per component: Leakage currents also depend on
power management techniques and are the fundamental parameter for the static
power consumption of a component.

– Transient function call traces per component: To establish a link between the
power consumption and the application a tracing of function calls is an adequate
way. Further, it enables the use of design space exploration methods.

3.3.3 Stream Processing

The primary traces of observable properties are transformed to power consumption
traces by a stream processing. This stream processing is defined on the traces
and its implementation is type safe [9]. Figure 3.6 shows exemplary traces of the

68 K. Grüttner

Vdd 1.0V 1.1V

Fclk 600MHz 650Mhz

C0 (t) 50pF 60pF 50pF 60pF 50pF 60pF 50pF

C1 (t) 40pF 40pF 40pF 40pF

C (t) 50pF 90pF 100 60pF 40pF 90pF 60pF 40pF 90 50pF 90 100pF 40pF 50pF

Pdyn (t) 2.5mW 4.5 5 3 2 4.5mW 3 3.6 2.4 5.4 3 5.4 6.1mW 2.4 3mW

Fig. 3.6 Traces of supply voltage, clock frequency, cycle-averaged switched capacitances, and the
dynamic power trace as it can be a target of a stream processor [9]

supply voltage of a single voltage island, a clock frequency trace, the average
switched capacitances per cycle C0 and C1 for two independent components, and
the aggregated averaged switched capacitance per cycle trace as well as the overall
dynamic power trace. In the middle of the trace time, the voltage and frequency
are scaled as it is commonly done by DVFS techniques. The latter two traces can
be derived by simple stream processors. While the aggregated switched capacitance
per cycle is derived by summing up the capacitances of the two components, the
stream processor to compute the dynamic power needs to know the fundamental
physical relation Pdyn.t/ D C.t/V.t/2Fclk.t/ in order to aggregate the streams.

3.3.4 Secondary Traces: Power per Component

Secondary traces describe the power consumption of each hardware component.
The stream processing distinguishes between dynamic and static power to be able
to consider the temperature dependency in the leakage power traces.

3.3.5 Power Mapping

In order to feed the subsequent temperature simulation a two-dimensional power
map trace needs to be generated. Therefore, the component-level traces are mapped
to a component-level floorplan. In this step, the power is averaged to the total
component area because neither the power consumption nor the place and route
data is available for commercially available SoCs at a more fine-grained level. The
power mapping results in two map traces: one for the dynamic power and one for
the leakage power distribution.

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 69

Fig. 3.7 Material properties

Fig. 3.8 IC package model. (a) IC properties and material stack. (b) Intersection through IC
package

3.3.6 Thermal Model Generation of IC Package

Beside the power map traces, a thermal estimation requires a compact thermal
model of the targeted IC package. This model reflects the geometry, used materials
and their thermal properties, and the environment such as applied active or passive
cooling measures [28].

Figure 3.7 shows an excerpt from a material database defining all physical
material properties that are relevant for a thermal estimation: thermal capacity,
conductivity in different directions, and density. Based on this database, an IC
package is defined as shown in Fig. 3.8a. It covers the die stack that is embedded in
the surrounding package materials as well as the connection to the PCB, the PCB
itself, and the boundary conditions.

70 K. Grüttner

Figure 3.8b shows an intersection through a sample IC package showing the stack
of different materials as it is defined in Fig. 3.8a.

Based on this IC package description the compact thermal model is created that
is used in the following thermal estimation. The characterization step needs to be
done only once for each targeted IC package.

3.3.7 Thermal Estimation

A transient thermal estimation reads in the thermal model of the IC package and the
power map traces to stimulate the simulation. It computes a temperature distribution
map that evolves over time. Further, it also outputs aggregated temperature traces
at the component-level granularity that only contain the minimum, maximum,
and average temperature for each component since constraints can be made on
these properties. During the thermal estimation, electro-thermal coupling due to
temperature-dependent leakage currents is reflected.

3.3.8 Tertiary Traces

While primary traces can directly be observed during the virtual platform execution
and are transformed to secondary power traces via stream processing, component-
level temperature traces result out of downstream analysis steps and are denoted
as tertiary traces. Each temperature trace describes the minimum, maximum, and
average temperature per component that can be observed in the occupied area of the
component within the floorplan. From a timing perspective, the temperature traces
are directly correlated to the simulated execution time.

3.3.9 Contract Satisfaction Monitoring

After or even during the overall estimation flow, a monitor checks if constraints
on the traced extra-functional properties are hold. These constraints are defined
in a formal contract specification with an assume/guarantee semantics [22, 23].
For each specified contract, a monitor observes the affected primary, secondary,
or tertiary trace and raises an exception if the assumption (precondition) is violated.
This contract satisfaction monitoring checks the execution trace of the application
dependent on its stimuli against the formulated contracts in a simulative manner
and does not perform a formal verification. Examples of such checks are threshold
temperature values, overall power budgets, or peak power consumptions that should
not be exceeded.

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 71

Fig. 3.9 Remotely piloted multi-rotor scenario: Ball detection and tracking during a match [1]

3.4 A Mixed-Criticality Use-Case

This section briefly presents the specification and implementation of a mixed-
criticality multi-rotor system: integrating a safety-critical flight control algorithm
with mission-critical payload processing on a single chip [1, 26, 30]. The use-cases
are based on an existing multi-rotor platform, which consists of a chassis, four
rotors, the motor driver hardware, and a remote control [11].

3.4.1 Selected Scenario

The aim of the presented use-case scenario is the definition of a mixed-criticality
system with a reasonable compute intensive mission-critical application. In the
selected scenario, this mission-critical application is an on-board video processing-
based detection and tracking of a ball in a robot soccer match, as shown in Fig. 3.9.

While a pilot controls the position of the multi-rotor system, an object-tracking
algorithm scans the video images for the ball. The camera is mounted on a gimbal
to be able to adjust its view angle autonomously by an on-board control algorithm
to center up the ball. The algorithm to detect the ball determines objects with a
pre-configured color of every shape. Since the multi-rotor system is used in a gym,
the ball needs to have a distinct color for the image filter algorithm. Therefore, a
magenta colored ball was chosen. The video images of the camera are streamed to
a ground control station for display.

72 K. Grüttner

Fig. 3.10 Used multi-rotor system (Quadcopter) [29]

3.4.2 Fundamentals

Multi-rotor systems are helicopter-like flying platforms with usually four or more
rotors. The rotors are fixedly mounted on the rigid frame and the airflow is
unidirectional in the direction of the ground. The used multi-rotor system is shown
in Fig. 3.10.

Since the only movable parts of the system are the rotors, it can solely be
controlled via the forces generated by different engine speeds. A higher/lower
engine speed will generate a bigger/smaller force at the particular frame arm.
Figure 3.10 gives in addition an overview of the forces, which are generated at
the mounting points and a naming of the rotors for the following explanations.
To move the multi-rotor system up or down along the z-axis, the engine speeds
of all rotors have to be lowered or raised equably. To rotate the system around the
z-axis, the torque between the rotors has to be unbalanced. Normally, the torque
would be balanced while two engines are turning clockwise and the other two
counter-clockwise. However, if the engine speed of rotor D, C is raised/lowered
and the engine speed of rotor A, B is equably lowered/raised, the system will turn
clockwise/counter-clockwise around the z-axis. To move the multi-rotor system
along the horizontal x- and y-axes, it needs to be pitched and rolled. By raising
the engine speed of rotor B/A and lowering the speed of rotor A/B, the system will
pitch and move along the x-axis in direction of rotor A/B. The same applies for the
y-axis.

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 73

Since multi-rotor systems are not automatically stabilizing, they need to be
controlled at a high frequency. To handle this, sensors for calculating the attitude
and altitude of the system are attaches to the avionics and control algorithms are
stabilizing it.

3.4.3 Payload Setup

To realize an object-tracking application, which is able to track a ball, a motor-driven
camera gimbal and a small high definition camera mounted on the bottom of the
multi-rotor system as payload are used. The gimbal has the ability to turn around all
three axes. In that way, it is possible to settle all rotational movements of the system
to get a stable and horizontally aligned video image. The axes are adjusted by three
brushless motors, which are driven by an extra controlling unit. The controlling unit
gets the set points for the attitude and movements of the camera to manage the field
of vision. A USB Wi-Fi stick is connected to the payload setup to communicate with
the ground control station.

3.4.4 Hardware

The hardware, which is mounted on the top of the flying platform, is the centerpiece
of the multi-rotor system. It consists of PCBs, the processing system, sensors,
interfaces, and an own power supply.

The heart of the hardware is a multiprocessor system-on-chip (MPSoC) repre-
sented by the Zynq 7020. The Xilinx Zynq 7000 MPSoC family [35] combines
a dual core processor and programmable logic. The Zynq 7020 consists of a dual
ARM Cortex-A9 MPCore at 866 MHz and an Artix-7 FPGA with 85k logic cells.

An AMBA Interconnect connects the ARM dual core to the peripherals. There
are plenty of available interfaces, which can be connected to the pinout of the
MPSoC by the Processor I/O MUX. The AMBA Interconnect represents also the
interface to multi-port DRAM Controller and the Flash Controller as well as the
connection to the Programmable Logic (FPGA) part of the MPSoC. With the Artix-
7 FPGA it is possible to define and build further interfaces, processing elements
(e.g., MicroBlaze softcores) or also specialized hardware for the payload processing
tasks.

The hardware structure consists of three PCBs that are stacked together. The PCB
stack is shown in Fig. 3.11 and is composed of the mainboard, the carrier board, and
the Zynq board (see Fig. 3.11c).

The sensors are mounted at the mentioned mainboard and are used to determine
the current attitude and the current altitude of the multi-rotor system. We use a 9
Degree-of-Freedom (DoF) MPU9150 from InvenSense Inc. and a 1 DoF BMP085
from Bosch. The MPU9150 sensor package contains four different types of sensors:

74 K. Grüttner

Fig. 3.11 PCB stack and components of the multi-rotor system. (a) Overall hardware architecture.
(b) PCB stack [29]. (c) TE0720-02-2IF Zynq board (hidden by heat sink) [31]

– 3-axes gyroscope for measuring the angular velocities around the x-, y-, and
z-axis;

– 3-axes accelerometer for measuring the velocities along the x-, y-, and z-axis;
– 3-axes magnetometer for measuring the earth magnetic field along the x-, y-,

and z-axis;
– and a temperature sensor.

The MPU9150 sensor is responsible for a stable flight behavior of the overall
system. The BMP085 sensor contains a barometric sensor and a temperature sensor.

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 75

Fig. 3.12 Developed architecture on Zynq MPSoC [29]

Both sensors have an I2C interface to communicate with the processing system.
To determine the attitude the gyroscopes, accelerometers, and magnetometers are
used. To determine the altitude the values of the accelerometer and the barometer
are fused. The barometer can be used to calculate the height, because the pressure is
approximately proportional to the height above ground level, under the assumption
that the weather is not changing while flying.

The Mixed-Critical Architecture consists of a processing architecture on the
ZNYQ that uses the ARM cores and the programmable logic to implement addi-
tional processing elements, interfaces, memories, and other required components.
This architecture is able to serve as execution platform for mixed-critical tasks, in
the sense that the safety-critical tasks must not be influenced by any other task. In
the presented multi-rotor system, two main tasks are executed: The safety-critical
flight algorithms and the mission-critical video processing. To realize this, the
Zynq is divided into two separate parts. The ARM dual core is used to process
the mission-critical tasks using a Linux operating system. The safety-critical flight
algorithms are executed bare metal, without an operating system, on two dedicated
MicroBlaze processor instances, each with local dedicated RAM, in the FPGA part
of the MPSoC. The resulting block-level implementation of the architecture with
interfaces and connected external systems is shown in Fig. 3.12.

The figure is divided into two parts. On the top all used components of the
mission-critical part are located, at the bottom all components of the safety-
critical part are located. The mission-critical part uses the ARM dual core as
processing elements. The communication with the external components, like the

76 K. Grüttner

Fig. 3.13 Mapping of the software [29]

camera, the gimbal, the Wi-Fi stick, the SD-Card for loading the software image
and logging some telemetry information, and the DDR-RAM, is realized via the
AMBA interconnect and built-in interfaces. At the bottom, all needed parts for the
safety-critical flight algorithms can be seen. For the processing, two MicroBlazes
are used. MicroBlaze 1 integrates all sensor inputs, which are located on the left
side. MicroBlaze 2 uses its resulting data to calculate the final control values of
the motor drivers. Communication between the MicroBlazes is realized by the
dual-ported RAM DPRAM 1 where MicroBlaze 2 has read-only access, to setup a
unidirectional communication (FIFO mode). The same for DPRAM 2. The mission-
critical part has solely read-only access to the memory, to get the telemetry data.
This way, the mission-critical part is not able to influence the safety-critical flight
algorithms. The RC Receiver transmits the control values of the remote control as
Pulse-Position Modulation (PPM) encoded one wire signal, which is decoded by an
IP core and received by MicroBlaze 1. This MicroBlaze transmits also telemetry
data via an UART interface back to the remote control. Like mentioned before
the sensors MPU9150 and BMP085 are connected to the FPGA by I2C interfaces
and also read out by MicroBlaze 1. The Battery Guards are also handled by this
processing element via a SPI interface. All processing elements have connection to
separate LEDs, Pins, or Buzzers for debugging purposes. In the diagram, they are
summarized up as a single block.

3.4.5 Software

The software of the whole system consists of three main parts, two for the
safety-critical task, which are executed on the two MicroBlazes and one for the
mission-critical application. The mapping of these tasks are shown in Fig. 3.13.
The Zynq MPSoC processes both the safety-critical and the mission-critical part
of the software, which will be described in the following.

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 77

3.4.5.1 The Safety-Critical Part

of the software is completely mapped to the MicroBlazes in the programmable logic
part of the MPSoC. The data miner is responsible for the whole sensor processing.
This means, it is getting all sensor data as inputs, filters these data, and makes all
needed calculations to get the final attitude, altitude, and control values for the
second component as a result. In addition, the data miner processes the telemetry
data for the remote control and some debug information, which is output via the
GPIOs. The flight control system consists of an attitude and altitude Proportional-
Integral-Derivative (PID) controller. Based on the internal state (e.g. attitude and
altitude) and the command values (e.g. navigation set point from the remote control),
the flight controller computes new torque values for each of the four motor drivers
to stabilize and navigate the system. In addition, this component processes some
debug data, like reading the status of the motor drivers (including temperature and
overload information) and provides the data, which is needed by the mission-critical
application.

3.4.5.2 The Mission-Critical Part

is executed on the ARM processing system of the MPSoC. A Linux kernel is used
as operating system for handling the different processes and needed interfaces of
the tasks. Object detection is activated by the remote control. Whenever active, the
current video frame of the camera is continuously grabbed. After grabbing a frame,
it will be provided for the ground control station by the video streaming server.
Next to this service, the video frame is downsized for the object detection to reduce
the workload and to increase the possible frame rate for detecting the object. The
object detection searches for the occurrence of a pre-configured color. A color filter
is used, which creates a binary image. In this image, the position of the object with
the pre-defined color is identified. The coordinates of the object in the image are
used afterwards to calculate the new set points for the gimbal controller to update
the camera angle.

3.4.6 Ground Control Station

The ground control station (GCS) is represented by a simple graphical user interface
(GUI) which connects to the multi-rotor system via the Wi-Fi connection and gets all
needed data. Telemetry data, like attitude, altitude, battery voltages, temperatures of
the system, and control values, are displayed also as the state of the mission-critical
application. In addition, the video stream of the on-board camera is shown in the
GUI. The ground station’s GUI only displays data and has no control access to the
multi-rotor system.

78 K. Grüttner

3.5 Application of the CONTREX Flow

This section exemplifies the application of the CONTREX flow (described in
Sect. 3.3) on the mixed-criticality use-case of the previous section.

3.5.1 Virtual Platform

The basis for gathering the application dependent evolution of extra-functional
properties power and temperature over time is the execution of the application in
a virtual platform.

Open Virtual Platforms™(OVP™) [13] by Imperas™provides a complete sim-
ulation infrastructure for virtual platforms of embedded systems. OVP consists of
three main components: OVP APIs to build own models and to create extensions
for the simulator, a library that contains many open source processor and peripheral
models that are freely available, and OVPsim™which is the simulation kernel
to execute these models. Since OVP only performs functional simulations, it
enables very fast simulation speeds. This is done by using code morphing from the
virtualized processor’s instruction set to the host processor’s x86 instruction set. The
virtual platforms simulated by OVPsim are observable via the APIs and debuggers
that can be connected to the processor models. In that way, OVP can be used as a
development environment for embedded software.

Figure 3.14 shows the Zynq™-7000 SoC Extensible Virtual Platform [33] used
as core functional simulator for the Xilinx Zynq MPSoC. It consists of the ARM®

Cortex™-A9 MP OVP processor model, functional models of most Zynq-7000
SoC peripheral devices, and Transaction Level Interfaces (TLM 2.0) for integration
of custom devices within the programming fabric. The safety-critical part of the
use-case hardware platform (see Fig. 3.12), consisting of two Xilinx MicroBlaze
OVP processor models, has been integrated using this TLM interface. As shown in
Fig. 3.13, the mission data processing (i.e., object tracking) is running on Linux (in
SMP mode) on the ARM Cortex-A9 MP system. The data mining and flight control
algorithms are running bare metal, each on one MicorBlaze processor.

After establishing a functional software binary compatible virtual platform of our
MPSoC platform, the following extensions to the virtual platform are preformed:

Timing Models defining a cycle approximate2 progress of the functional simula-
tion.

Power Models defining possible power modes for each component that are
characterized by a supply voltage, a clock frequency, and activity metrics.

Tracing Engine that protocols the extra-functional properties on appearance as
described in the following.

2While the MicroBlaze timing model is close to clock cycle accuracy, the ARM timing model is
working on a coarse-grained instructions per cycle level.

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 79

Zynq-7000 EPP Virtual Platform

Custom
VHDL

Custom
C Model

Custom
Systemverilog*

Custom
VHDL*

Custom
C Model

Custom
SystemVerilog*

Custom TLM
Model

Custom TLM
Model

Custom TLM
Model

Memory

Memory
Controller

CortexTM-A9 MPCoreTM

Peripherals:
UART
USB
I2C

Ethernet
CAN
GPIO
SDIO
SPI

PCIe

PCIe Device
Model

PCIe Device
Model

PCIe Device
Model

Real-World
Interfaces

UART

Processing System

Ethernet

USB

Graphics

Graphics/
Display

Programmable Logic:
System Gates,

DSP, RAM

Fig. 3.14 Zynq™-7000 SoC Extensible Virtual Platform [33]

Within CONTREX, the OVP Simulator [13] will be used and adopted offering
an extended API via the M*SIM extension [12] (Fig. 3.15).

3.5.2 Timing Model

OVPsim is a functional platform simulator, which uses binary translation to reach
its high simulation performance. The simulated time of the platform is estimated
by using an instructions per second metric of the processor model. This way
the simulation kernel counts the executed instructions and divides them by the
instructions per second metric to give an approximate timing of the simulation. This
approach is not very accurate since it completely neglects pipeline and memory
subsystem effects. For getting a more realistic estimation of the executed cycles and
the timing of the virtual platform, a quasi-cycle accurate timing model based on [27]
has been developed.

The timing model uses the OVPsim Innovative CpuManager Interface (ICM)
API. This API offers functions to get the needed run-time information from the
virtual platform. The core idea of the timing model is to observe all executed
instructions of the MicroBlaze softcore and calculate the overall needed cycles of
each one. For this purpose, the timing model is divided into three parts:

1. Instruction and Event Sniffer (IES)
2. Timing Estimator (TE)
3. Pipeline Model (PM)

80 K. Grüttner

Stream processing

Zynq™-7000 SoC
Extensible

Virtual Platform

Xilinx Zynq
SoC and FPGA

Platform
Configuration

Xilinx Zynq
SoC and FPGA
Power Model

Primary traces: Observable properties

VDD(t)

Cj(t)

Flight Control

Secondary traces: Power per component

Pleak_SoC(t) Pdyn_SoC(t)

Flight
Simulator

Function-
call(t)

a

b

c

d

fproc(t)

Pleak_FPGA(t)

Object Tracking

Video
Source

γi(t) IPCi(t)

Pdyn_FPGA(t)

Video
Sink

Xilinx Zynq
SoC and FPGA
Timing Model

Fig. 3.15 Application of the virtual platform power model on the use-case

The IES uses the ICM API to register callbacks, like an instruction fetch callback,
for tracing all executed instructions of the MicroBlaze model or a read callback of
the timer counter register, to analyze the behavior of the virtual platform’s timer
model. The IES calls the TE for every fetched instruction.

The TE uses the operand code of the fetched instruction and uses a look-up table
to get its number of processor cycles. As the MicroBlaze contains an instruction
pipeline with five stages, a pipeline model was implemented to improve the accuracy
of the timing model.

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 81

The PM also gets the operand code and looks up the forwarding stage of the
instruction’s result. This information is stored in a software pipeline. To compute
the pipeline stall cycles, register dependencies are searched within the present and
the four last fetched instructions. The pipeline stall cycles are returned by the PM to
the TE that computes the total cycles of the present instruction, as well as the global
cycles processed by the MicroBlaze. The TE returns all information to the IES that
computes the system time and updates the simulation time of the virtual platform
via the ICM API.

3.5.3 Power Model

Since the Xilinx Zynq is a very complex system that is composed of many single
components in one package, also its power consumption depends on many different
factors. To estimate the power consumption of the Zynq platform, the Xilinx
Power Estimator (XPE) [34] can be used. It is an Excel spreadsheet that is able
to compute the overall power consumption of the Zynq system based on a given
static configuration. Since this power model cannot be used in a dynamic execution
environment, i.e., virtual platform, a power model that is based on the XPE has been
developed. The power model is divided into two parts:

Zynq SoC consisting of the ARM dual core, memory subsystem, and peripherals.
Zynq FPGA consisting of two MicroBlaze processors, Block-RAM and periph-

erals implemented in the FPGA.

The SoC dynamic power model input parameters are:

– clock frequencies of the ARM cores, the memory, the AXI bus, and the I/O ports
(in MHz each)

– number of used cores (0, 1 or 2)
– bandwidth of the AXI bus (32 or 64 bit)
– load of the ARM cores (0-1)
– read and write rates of external DDR3 memory (0-1 each)
– load of the AXI bus (0-1)

Many of these information is available by the configuration of the Xilinx Vivado
Project for the given platform, like the number of used ARM cores, their clock
frequency, as well as the bandwidth and clock frequency of the AXI bus or the
clock frequency of the I/O ports. The utilization parameters (which have to be given
in percent) have to be estimated by the given application that is executed by the
processing system. Further details of this power model are omitted. Instead, we
refer to a more simple power model [15] that computes the ARM A9 dual core
power model in mW:

82 K. Grüttner

trigger

Average
Switched

Capacitance

PrSM

observe

Black-box IP Component

Shared State Variables

PSM

observe

Black-box IP Component

Shared State Variables

observe

Black-box IP Component

Shared State Variables

Communication
Information

observe

Black-box IP Component

Shared State Variables

Fig. 3.16 PSM approach overview for non-invasive simulation of energy consumption

Pdyn_SoC.t/ D 0:63�fproc.t/C1:4��1.t/Cb�
2X

iD1

�2i.t/Cc�
2X

iD1

IPCi.t/C12:45 (3.1)

with:

– fproc processor clock frequency in MHz
– �2 L2 cache miss rate (0 � �2 � 100)
– �1 L1 cache miss rate (0 � �1 � 100)
– IPC Instructions Per Cycle (0 � IPC � 2).

The FPGA dynamic power model of the safety-critical part is dominated by
the switching activity of the two MicroBlaze processors and the involved Block-
RAM resources (for local data and instruction memory and for the unidirectional
communication between the MicroBlaze processors and the ARM SoC subsystem).
For this reason, a Power State Machine characterization for each MicroBlaze
processor and peripheral implemented inside the FPGA has been chosen.

Figure 3.16 gives an overview of our I/O observation-based approach for
annotating state-based power information at hardware components. This approach
is also well suited for black-box IP models, such as the MicroBlaze processor.

Selected I/O ports of an IP component are observed over time to approximate
the internal functionality. Based on these observations, a Protocol State Machine
(PrSM) is controlled. The main task of the PrSM is to trigger state transitions in
the Power State Machine (PSM) based on the observation and interpretation of the
interaction between component and environment. The state of the PSM represents

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 83

Fig. 3.17 PSM Eclipse plug-in GUI [19]

the average switched capacitance NC of an IP component. By using the capacitance
instead of power, the output of the PSM is independent of Dynamic Voltage and
Frequency Scaling (DVFS) parameters such as supply voltage and clock frequency.

By modeling the interdependencies between I/O and internal states, the PrSM
extracts the energetic relevant events to orthogonalize the communication and
functional artifacts of the non-functional PSM model. This may lead to a reduction
of complexity in the PSM because it only describes the different internal operation
modes, whereas the PrSM covers the access protocol of the component. Further-
more, the separation of PrSM and PSM has the advantage that components with
the same access protocol and different internal implementations could use the same
PrSM, only the PSM has to be changed.

PSM and PrSM are each modeled as an Extended Finite State Machine (EFSM),
which allows the extension of a simple FSM with (shared) state variables to reduce
the complexity. More details about this state-based power modeling approach can
be found in [17, 18, 20].

Figure 3.17 shows our PSM Eclipse plug-in GUI with the PrSM and PSM of a
simple memory. It has been created based on a power measurement trace. From this
plug-in, an executable SystemC model of the PrSM and PSM can be generated and
used in a SystemC TLM 2.0 simulation environment of the virtual platform.

84 K. Grüttner

The static power consumption (leakage) of the Zynq is only supply voltage
dependent and currently represented by a technology dependent leakage cur-
rent Ileak.

Pleak_SoC D VDD_SoC � Ileak_SoC Pleak_FPGA D VDD_FPGA � Ileak_FPGA (3.2)

In Eq. (3.2) VDD_SoC is the supply voltage of the Xilinx Zynq processor system
and VDD_FPGA is the supply voltage for the Xilinx Zynq programmable logic (FPAG)
part.

Consideration of temperature-dependent static power consumption [14] is sub-
ject of future work. The source of static power consumption is a combination of
sub-threshold Isub and gate-oxide leakage Iox.

Ileak D Isub C Iox (3.3)

Isub D K1 � W � e�Vth=n�V�
�
1 � e�V=V�

�
(3.4)

K1 and n are experimentally derived, W is the gate width, and V� in the exponents
is the thermal voltage. At room temperature, V� is about 25 mV; it increases linearly
as temperature increases.

Iox D K2 � W �
�

V

Tox

�2

� e�˛�Tox=V (3.5)

K2 and ˛ are experimentally derived. Tox is the oxide thickness.

3.5.4 Temperature Model

Figure 3.18 shows the application of the virtual platform temperature model on the
use-case.

In order to feed a subsequent temperature simulation a two-dimensional power
map trace needs to be generated. Therefore, the component-level traces are mapped
to a component-level floorplan as it is visualized in Fig. 3.19a. In this step, the power
is averaged to the total component area because neither the power consumption nor
the place-and-route data is available for commercially available SoCs at a more fine-
grained level. The power mapping results in two map traces: one for the dynamic
power and one for the leakage power distribution. Figure 3.19b shows the described
mapping of power traces to components as it is done in Docea Power’s Aceplorer
tool [4]. It supports multiple formats of traces such as VCD and CSV. Furthermore,
it supports equations that can be entered as power model to cover the electro-thermal
coupling.

Similar to the floorplan, a package description for the ZYNQ SoC has been
realized in Docea Power’s Thermal Profiler [5].

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 85

Fig. 3.18 Application of the
virtual platform temperature
model on the use-case

Xilinx Zynq
Floorplan (SoC +
custom FPGA)

Power mapper

Docea AcePlorer

Dynamic and leakage
power map traces

Pdyn(x,y,zi,t) / Pleak(x,y,zi,t)

Xilinx Zynq
Package Data

Docea
AceThermal

Modeler

Thermal model

Tertiary traces

ΘSoC(t) ΘFPGA(t)

e
f

g

h

Temperature map
trace θ(x,y,zi,,t)

Θall(t)

Secondary traces: Power per component

Pleak_SoC(t) Pdyn_SoC(t)

d

Pleak_FPGA(t) Pdyn_FPGA(t)

Figure 3.20 shows the example of a transient power and temperature trace of
a single component over time. It visualizes how the temperature follows the power
consumption. In Fig. 3.21 a power and temperature over time trace of the multi-rotor
use-case is shown. It depicts the power consumption for each ARM core and the
combined power consumption of the MicroBlaze cores. The temperature over time
trace is also shown for each component. In the depicted scenario, the set threshold
temperature of 65ıC for the MicroBlazes in the FPAG has been exceeded. A possible
solution to keep the MicorBlaze processor temperature under the given threshold is
a reduction of the workload on the ARM processors that generate the main heat.

86 K. Grüttner

Fig. 3.19 Floorplan and mapping of power traces to obtain temperature map. (a) Component-level
floorplan. (b) Mapping of power traces to components

Fig. 3.20 Example: power P.t/ (lower curve) and temperature �.t/ (upper curve) trace

3.6 Conclusion and Future Work

In this chapter, we presented our flow to consider power and temperature of
a full chip in an executable system level model using a virtual platform. The
presented mixed-criticality use-case described the integration of a mission- and a
safety-critical application on the same MPSoC. The proposed hardware architecture
of this MPSoC takes advantage of the heterogeneity and implements the mission-
critical image processing on the high performance ARM dual core subsystem and
the safety-critical real-time processing in the FPGA. The proposed power and
temperature simulation has been applied to this heterogeneous system and was
capable of providing feedback about the hidden interdependency of the mission- and
the safety-critical applications due to thermal and electro-thermal coupling. With
our extended virtual platform, software developers are capable to virtually integrate
their applications on a single MPSoC and apply power and thermal management to
run the system in safe operation under all possible environmental conditions.

The presented flow is still work in progress and the integration between the power
and the temperature model is still under development. Currently the implementation
of a virtual temperature sensor to provide direct feedback from the thermal

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 87

0
100

200
300

400
500

600
25 30 35 40 45 50 55 60 65 70 75 80

P
ow

er and Tem
perature D

evelopm
ent of Zynq platform

Tim
e [s]

Temperature [oC]

A
R

M
1

A
R

M
2

M
B

1
M

B
2

0

0.5 1

A
R

M
1

0

0.5 1

Power [W]

A
R

M
2

0
100

200
300

400
500

600
0

0.5 1

Tim
e [s]

M
B

1&
2

Fig. 3.21 Use-case power and temperature trace

simulation to running application (e.g., by dedicated HAL or OS services) is under
development. After integration of the power and temperature model of the Zynq
platform configuration, used in our case study, a validation against physical power
and temperature measurements will be performed. Furthermore, explicit support for

88 K. Grüttner

thermal interference analysis will be provided on top of the integrated model. The
goal of this analysis is the online monitoring of thermal budgets per application and
criticality level to drive the development of future resource and power management
strategies for future mixed-criticality systems on a single chip.

Acknowledgements Many thanks to the CONTREX team members Ralph Görgen, Sven
Rosinger, Sören Schreiner, Marco Feltes, and Martin Bornhold, my colleagues Henning Schlender
and Malte Metzdorf, and the master students Jörn Bellersen, Martin Bornhold, Marco Braun,
Henning Elbers, Thomas Nordlohne, Niklas May-Johann, Jenny Röbesaat, André Schaadt, Patrick
Schmale, Steven Schmidt, Sebastian Vander Maelen, and Markus Wieghaus for their great work
and enthusiasm on the multi-rotor use-case.

This work has been partially supported by the EU integrated project CONTREX (FP7-611146)
and the ARTEMIS project EMC2 (01-IS14002R) partially funded by the EC and the German
Federal Ministry of Education and Research (BMBF).

References

1. J. Bellersen, M. Bornhold, M. Braun, H. Elbers, T. Nordlohne, N. May-Johann, J. Röbesaat,
A. Schaadt, P. Schmale, S. Schmidt, S.V. Maelen, M. Wieghaus, Dokumentation Avionic
Architecture. Tech. rep., Carl von Ossietzky Universität Oldenburg, Fakultät II - Informatik,
Wirtschafts- und Rechtswissenschaften, Department für Informatik (2015)

2. A. Burns, R.I. Davis, Mixed Criticality Systems - A Review. http://www-users.cs.york.ac.uk/
burns/review.pdf (2015)

3. FP7 EU project CONTREX (Design of embedded mixed-criticality CONTRol systems under
consideration of EXtra-functional properties). http://contrex.offis.de

4. Docea Power: Aceplorer (2016), http://www.doceapower.com/index.php?option=com_
content&view=article&id=1&Itemid=102

5. Docea Power: Thermal Profiler (2016), http://www.doceapower.com/index.php?option=com_
content&view=article&id=237&Itemid=145

6. H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger, Dark silicon and the
end of multicore scaling. SIGARCH Comput. Archit. News 39(3), 365–376 (2011). http://doi.
acm.org/10.1145/2024723.2000108

7. K. Goossens, A. Azevedo, K. Chandrasekar, M.D. Gomony, S. Goossens, M. Koedam, Y. Li, D.
Mirzoyan, A. Molnos, A.B. Nejad, A. Nelson, S. Sinha, Virtual execution platforms for mixed-
time-criticality systems: The compsoc architecture and design flow. SIGBED Rev. 10(3), 23–34
(2013). http://doi.acm.org/10.1145/2544350.2544353

8. K. Grüttner, P. Hartmann, T. Fandrey, K. Hylla, D. Lorenz, S. Stattelmann, B. Sander, O.
Bringmann, W. Nebel, W. Rosenstiel, An esl timing amp; power estimation and simulation
framework for heterogeneous socs. In 2014 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIV), pp. 181–190 (July 2014)

9. P.A. Hartmann, K. Grüttner, W. Nebel, Advanced systemc tracing and analysis framework
for extra-functional properties. In Applied Reconfigurable Computing - 11th International
Symposium, ARC 2015, ed. by K. Sano, D. Soudris, M. Hübner, P.C. Diniz, Bochum, Germany,
April 13-17, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9040 (Springer,
New York, 2015), pp. 141–152. http://dx.doi.org/10.1007/978-3-319-16214-0_12

10. D. Helms, K. Grüttner, R. Eilers, M. Metzdorf, K. Hylla, F. Poppen, W. Nebel, Considering
variation and aging in a full chip design methodology at system level. In: Proceedings of the
2014 Electronic System Level Synthesis Conference (ESLsyn), pp. 1–6 (May 2014)

11. HiSystems GmbH Germany. https://www.mikrocontroller.com/ (07 2015)

http://www-users.cs.york.ac.uk/burns/review.pdf
http://www-users.cs.york.ac.uk/burns/review.pdf
http://contrex.offis.de
http://www.doceapower.com/index.php?option=com_content&view=article&id=1&Itemid=102
http://www.doceapower.com/index.php?option=com_content&view=article&id=1&Itemid=102
http://www.doceapower.com/index.php?option=com_content&view=article&id=237&Itemid=145
http://www.doceapower.com/index.php?option=com_content&view=article&id=237&Itemid=145
http://doi.acm.org/10.1145/2024723.2000108
http://doi.acm.org/10.1145/2024723.2000108
http://doi.acm.org/10.1145/2544350.2544353
http://dx.doi.org/10.1007/978-3-319-16214-0_12
https://www.mikrocontroller.com/

3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era. . . 89

12. Imperas Software Limited: M*SDK - Advanced Multicore Software Development Kit (2016),
http://www.imperas.com/msdk-advanced-multicore-software-development-kit

13. Imperas Software Limited: Open Virtual Platforms™(OVP™) (2016), http://www.ovpworld.
org

14. N.S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin, M. Kandemir,
V. Narayanan, Leakage current: Moore’s law meets static power. Computer 36(12), 68–75
(2003). http://dx.doi.org/10.1109/MC.2003.1250885

15. S. Kumar Rethinagiri, O. Palomar, J. Arias Moreno, O. Unsal, A. Cristal, Vppet: Virtual
platform power and energy estimation tool for heterogeneous mpsoc based fpga platforms.
In: 24th International Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2014, pp. 1–8 (Sept 2014)

16. A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier, R. Schnekenburger, H.
Dubois, F. Terrier, Papyrus uml: an open source toolset for mda. In Proceedings ECMDA-FA
’09: Model Driven Architecture - Foundations and Applications: 5th European Conference,
ECMDA-FA 2009, Enschede, The Netherlands, June 23–26, 2009, ed. by R.F. Paige, A. Hart-
man, A. Rensink. Lecture Notes in Computer Science, vol. 5562, pp. 1–4 (Springer, New York,
2009)

17. D. Lorenz, K. Grüttner, N. Bombieri, V. Guarnieri, S. Bocchio, From RTL IP to func-
tional system-level models with extra-functional properties. In Proceedings of the Eighth
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Syn-
thesis. CODES+ISSS ’12 (ACM, New York, NY, USA, 2012), pp. 547–556. http://doi.acm.
org/10.1145/2380445.2380529

18. D. Lorenz, K. Grüttner, W. Nebel, Data- and state-dependent power characterisation and
simulation of black-box RTL IP components at system level. In: 17th Euromicro Conference
on Digital Systems Design (DSD 2014) (2014)

19. D. Lorenz, K. Grüttner, V. Ortland, Trace-based power state machine modelling. In: Proceed-
ings of the Forum on Specification and Design Languages (FDL’2014) (2014)

20. D. Lorenz, P.A. Hartmann, K. Grüttner, W. Nebel, Non-invasive power simulation at system-
level with SystemC. In: Power and Timing Modeling, Optimization and Simulation - 22nd
International Workshop (PATMOS’2012). Lecture Notes in Computer Science (Springer, New
York, 2012), pp. 21–31

21. W. Nebel, D. Helms, K. Grüttner, F. Oppenheimer, Closing the gap between technology and
application needs (5 2013), edaWorkshop Panel

22. G. Nitsche, K. Grüttner, W. Nebel, Power contracts: A formal way towards power–closure?! In:
Proc. of the 23rd Intl. Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS), pp. 59–66 (September 2013)

23. G. Nitsche, K. Grüttner, W. Nebel, Towards satisfaction checking of Power Contracts in
Uppaal. In Proceedings of the 2014 Forum on Specification and Design Languages (FDL), ed.
by Chips, E.E.E., design Initiative, S. ECSI - European Electronic Chips and Systems design
Initiative, München (Oct 2014)

24. Object Management Group (OMG): UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems (2011)

25. Object Management Group (OMG): OMG Systems Modeling Language (OMG SysML),
Version 1.3 (2012), http://www.omg.org/spec/SysML/1.3/

26. Project Group Avionic Architecture (PGAA). https://www.uni-oldenburg.de/avionic-
architecture/ (2015)

27. F. Rosa, L. Ost, R. Reis, G. Sassatelli, Instruction-driven timing cpu model for efficient
embedded software development using ovp. In: 2013 IEEE 20th International Conference on
Electronics, Circuits, and Systems (ICECS), pp. 855–858 (Dec 2013)

28. S. Rosinger, M. Metzdorf, D. Helms, W. Nebel, Behavioral-level thermal- and aging-estimation
flow. In: Test Workshop (LATW), 2011 12th Latin American, pp. 1–6 (March 2011)

29. H. Schlender, S. Schreiner, M. Metzdorf, K. Grüttner, W. Nebel, Teaching mixed-criticality:
Multi-rotor flight control and payload processing on a single chip. In: Proceedings of the 2015
Workshop on Embedded and Cyber-Physical Systems Education (WESE) (10 2015)

http://www.imperas.com/msdk-advanced-multicore-software-development-kit
http://www.ovpworld.org
http://www.ovpworld.org
http://dx.doi.org/10.1109/MC.2003.1250885
http://doi.acm.org/10.1145/2380445.2380529
http://doi.acm.org/10.1145/2380445.2380529
http://www.omg.org/spec/SysML/1.3/
https://www.uni-oldenburg.de/avionic-architecture/
https://www.uni-oldenburg.de/avionic-architecture/

90 K. Grüttner

30. S. Schreiner, K. Grüttner, S. Rosinger, A. Rettberg, Autonomous flight control meets custom
payload processing: A mixed-critical avionics architecture approach for civilian uavs. In
Proceedings of the 2014 IEEE 17th International Symposium on Object/Component-Oriented
Real-Time Distributed Computing, ISORC ’14 (IEEE Computer Society, Washington, DC,
USA, 2014), pp. 348–357. http://dx.doi.org/10.1109/ISORC.2014.28

31. Trenz Electronic GmbH: TE0720 Series (Z-7020), http://www.trenz-electronic.de/de/
produkte/fpga-boards/trenz-electronic-te0720-zynq.html

32. S. Trujillo, R. Obermaisser, K. Grüttner, F.J. Cazorla, J. Perez, European Project Cluster on
Mixed-Criticality Systems. In 3PMCES Workshop (Performance, Power and Predictability of
Many-Core Embedded Systems) at DATE’14. Electronic Chips & Systems Design Initiative
(ECSI) (2014)

33. Xilinx Inc.: Zynq™-7000 SoC Extensible Virtual Platform, http://www.xilinx.com/products/
zynq-7000/extensible-virtual-platform.htm

34. Xilinx Inc.: Xilinx Power Estimator (XPE) (2016), http://www.xilinx.com/products/design_
tools/logic_design/xpe.htm

35. Xilinx Inc. Zynq-7000 All Programmable SoC, http://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.html (07 2015)

http://dx.doi.org/10.1109/ISORC.2014.28
http://www.trenz-electronic.de/de/produkte/fpga-boards/trenz-electronic-te0720-zynq.html
http://www.trenz-electronic.de/de/produkte/fpga-boards/trenz-electronic-te0720-zynq.html
http://www.xilinx.com/products/zynq-7000/extensible-virtual-platform.htm
http://www.xilinx.com/products/zynq-7000/extensible-virtual-platform.htm
http://www.xilinx.com/products/design_tools/logic_design/xpe.htm
http://www.xilinx.com/products/design_tools/logic_design/xpe.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

Chapter 4
Throughput-Driven Parallel Embedded
Software Synthesis from Synchronous Dataflow
Models: Caveats and Remedies

Matin Hashemi, Kamyar Mirzazad Barijough, and Soheil Ghiasi

4.1 Introduction

The model-based design methodology advocates separation of application specifi-
cation from target implementation, and representation of application behavior using
formal models of computation [36, 37]. Such models enable one to develop or to
utilize various analysis, optimization, and synthesis techniques for either exploration
of implementation space or generation of efficient implementations. While this
approach has unquestionable benefits, we argue that in certain situations complete
separation of specification from details of the target implementation obscures key
pieces of information that are essential for accurate characterization of the design
space.

We study specific manifestations of this general observation in the context of
embedded streaming applications modeled as synchronous dataflow (SDF) graphs
that are to be implemented on multiprocessor system on chip (MPSoC) platforms.
Streaming applications appear in many disciplines such as networking, signal
processing, security, and multimedia. They are characterized by the requirement
to process a virtually infinite sequence of data items typically under throughput
constraints [24, 34, 46]. Therefore, we focus on streaming throughput as the key
quality metric in our discussions.

In particular, we study two problems in the model analysis and model synthesis
space. First, in Sect. 4.2, we discuss buffer-throughput tradeoff analysis for an
arbitrary SDF model. We show that state of the art throughput analysis techniques

M. Hashemi (�) • K.M. Barijough
Sharif University of Technology, Tehran, Iran
e-mail: matin@sharif.edu; kammirzazad@ee.sharif.edu

S. Ghiasi
University of California, Davis, CA, USA
e-mail: ghiasi@ucdavis.edu

© Springer International Publishing AG 2017
A. Molnos, C. Fabre (eds.), Model-Implementation Fidelity in Cyber
Physical System Design, DOI 10.1007/978-3-319-47307-9_4

91

mailto:matin@sharif.edu
mailto:kammirzazad@ee.sharif.edu
mailto:ghiasi@ucdavis.edu

92 M. Hashemi et al.

that operate solely based on SDF graph operational semantics yield overly pes-
simistic throughput estimations. We propose a set of model transformations that
embed some platform-inspired information in the SDF model. We demonstrate
that the limited amount of platform awareness significantly improves model-based
throughput analysis [3].

In Sect. 4.3, we focus on the problem of scaling streaming throughput for a
given SDF model, as the software synthesis engine targets different platforms.
We demonstrate that conventional SDF graph synthesis schemes cannot scale
throughput well, as the number of processor cores in the platform increases. We
argue that fully decoupled specification of the model from the target implementation
is a key obstacle, and thus, we outline a platform-inspired malleable dataflow graph
specification model that addresses the throughput scaling issue. Extensive empirical
evaluations validate the efficacy of our approach [23].

4.2 Streaming Throughput Analysis

4.2.1 Overview

SDF applications are represented as a set of concurrent tasks that communicate by
sending and receiving messages (tokens) via point-to-point FIFO buffers [28, 46].
The rates at which tasks produce and consume messages are constant and known
at compile time. SDF operational semantics specifies consumption of all input
messages to a task upon start of its execution, and production of all its output
messages upon completion of its execution. An implementation oblivious analysis
technique would have to follow model execution according to the operational
semantics. In actual implementations, however, not all messages of a task are
consumed or produced at exactly the same time. Presence of limited information
or mild assumptions about the nature of target implementation would increase the
timing resolution during model execution. For example, if one assumes that tasks
are going to be implemented as software modules running on parallel processors,
a sequential order would have to be imposed on the production and consumption
of messages. This breaks the pessimistic simultaneous message production and
consumption that is dictated by the SDF operational semantics, and potentially leads
to more accurate analysis.

We utilize the state of the art implementation oblivious throughput analysis
technique developed by Stuijk et al. [41], and argue that its throughput estimation
is overly pessimistic. We propose transformations to the application SDF model to
capture the sequential nature of message production and consumption by software,
and to rigorously embed implementation awareness into the model. Subsequently,
we leverage the method of Stuijk et al. for throughput analysis of the transformed
SDF model. The additional information that we expose to the throughput analysis
algorithm are quite limited in nature: merely sequential order between production

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 93

and consumption of messages, which is implied by the assumption of implemen-
tation as software. As such, the analysis is not tied to the details of target MPSoC
execution platform, and would complement, rather than contradict with, the model-
based design paradigm.

4.2.2 Preliminaries

4.2.2.1 SDF Model

SDF graph is a directed graph G.V; E/, where vertex v 2 V represents an actor,
and edge uv 2 E represents a point-to-point FIFO channel from actor u to v. Actors
communicate by sending/receiving data items, called tokens, via the channels. Actor
v is a tuple .In; Out; F; "/ and channel uv is a tuple .u; v; rp; rc/. In.v/ � E and
Out.v/ � E are input and output channels of v, F.v/ is the actor’s transformation
function, and ".v/ is its execution time, i.e., the average time actor v takes to perform
the transformation function in an implied implementation (Fig. 4.1a). For a channel
uv 2 E, the number of tokens produced by u for channel uv, on every firing of u, is
called the production rate of uv and is denoted by rp.uv/. Consumption rate rc.uv/

is defined similarly. Data rates are constant and actor execution is meant to continue
infinitely [27, 41].

Execution (Firing) Condition: Actor v can execute, also known as fire, at time t,
if and only if (I) previous firings of v have completed,1 and (II) enough tokens are
available on all of its input channels, that is 8uv 2 In.v/ W �.uv; t/ 	 rc.uv/, where
�.uv; t/ quantifies the number of tokens stored in uv at time t.

SDF Operational Semantics: Upon scheduling of actor v for execution, it simul-
taneously consumes rc.uv/ tokens from all of its input channels uv 2 In.v/, then
carries out its computation in ".v/ time units, and finally it simultaneously produces
rp.vw/ tokens on all of its output channels vw 2 Out.v/. Figure 4.1a shows an
example in which ".b/ D 300, rc.ab/ D 50, and rp.bc/ D 10. Thus, upon
availability of at least 50 tokens on ab, actor b can fire. In every firing of b, 50

tokens are simultaneously consumed from ab, then the computation of actor b is
carried out in 300 time units, and finally ten tokens are simultaneously written to bc.

4.2.2.2 Target Platform Model

We target MPSoC platforms whose abstract model for SDF execution can be viewed
as a distributed-memory message-passing system with point-to-point interprocessor
FIFO buffers (Fig. 4.1b). This abstract view is directly implemented in some

1Auto-concurrency, i.e., multiple concurrent firings of an actor, is not allowed in our discussion.

94 M. Hashemi et al.

a
100

b
300 c

200

20
1050

20a

10 50

b P2

P3P1

Fig. 4.1 (a) Example SDF graph (actors and channels are annotated with execution times and data
rates, respectively.) (b) An implied implementation of self-timed execution

platforms such as AsAP [49] and TILE64 static network [5]. Some other platforms
implement the abstract view via circular arrays that are allocated in the shared
memory, using proper producer–consumer synchronization schemes. Regardless
and for sake of our discussion, the platform can be abstractly viewed as a
multiprocessor with a FIFO interconnection network.

We focus on self-timed execution, which implicitly assumes allocation of
dedicated execution resources to every actor (Fig. 4.1b). Under self-timed execution,
an actor fires as soon as its firing conditions are satisfied [41]. In many cases, an
embedded application is developed on an MPSoC target by splitting the application
into many actors, and assigning each actor to its dedicated core (e.g., 1080p H.264
encoder on AsAP [49]). Otherwise, the collection of actors allocated to the same
processor under static schedule can be viewed as a coarse-grain actor in an upscaled
version of the graph that conforms to our model.

4.2.2.3 Buffer-Throughput Tradeoff

Throughput2 is one of the most important quality metrics in streaming applications.
A number of factors, such as actor execution times, actor allocation and scheduling
on processor cores, interprocessor buffer sizes, SDF graph structure, and SDF graph
cycles, impact steady-state throughput [16, 20–22, 24, 41]. In practice, the FIFO
channels must be implemented with finite buffering capacity, which may limit the
throughput, and hence, there is a tradeoff between interprocessor buffer sizes and
application throughput [41].

Throughput: Throughput of an actor v is defined as the average number of
v firings per unit time [16], i.e., �.v/ D limT!1 1

T � �
of v firingsfrom t D

0 to t D T
�
. Since SDF data rates are constant, in the steady-state, the number

of times different actors fire are a constant factor of one another. Hence, normalized
throughput, which decouples the choice of actor from SDF throughput, is defined as
� D �.v/
 q.v/ for an arbitrary actor v 2 V , where, q.v/ is the number of times
v fires in one iteration of the simplest periodic schedule [16, 27]. In our example,
q.a; b; c/ D .5; 2; 1/.

2Here, we use the terms “steady-state throughput” and “throughput” interchangeably.

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 95

Buffer Size: Buffer size ˇ.uv/ is defined as capacity of the interprocessor FIFO
buffer which implements channel uv 2 E. In other words, ˇ.uv/ is the maximum
number of tokens that channel uv can hold at any time during execution. Formally,
�.uv; t/ � ˇ.uv/. Total buffer size is defined as jˇj D P

8uv2E ˇ.uv/.

4.2.3 Inaccuracy in SDF-Based Throughput Analysis

4.2.3.1 Throughput Analysis Based on SDF Operational Semantics

According to SDF operational semantics, after actor u fires and completes its
computation, at least rp.uv/ empty spaces are required on every output channel
uv 2 Out.u/ in order to write tokens produced by u. Otherwise, since sufficient
space is not available, u is stalled at the end of its firing. The actor will resume
execution to complete its previously stalled firing only after enough space becomes
available.

Stall and Resume Conditions: Under self-timed execution assumption, a running
actor u 2 V fired at time t1 stalls at time t2 > t1 if and only if 9uv 2 Out.u/ W
ˇ.uv/ � �.uv; t2/ < rp.uv/ and resumes operation at a time t3 > t2 if and only if
8uv 2 Out.u/ W ˇ.uv/ � �.uv; t3/ 	 rp.uv/.

Throughput is degraded if actors stall due to unavailable space. For a given set
of buffer sizes ˇ, throughput can be obtained by considering the firing, stall, and
resume conditions. Stuijk et al. developed a Pareto point exploration algorithm
to find throughput vs. total buffer size of an SDF graph [41]. The algorithm
works by executing the SDF graph, for a judiciously selected subset of buffer
size allocations, while maintaining the state of actors and channels. Each step of
application execution is modeled as a transition in the augmented state space of
actors and channels. When a state is revisited for the first time, the execution arrives
its steady-state, as a cycle in the state space is formed. Subsequently, throughput
�.v/ is calculated as the number of v firings during the cycle, divided by the amount
of time lapsed in the cycle. The above procedure is repeated for different buffer
sizes in order to evaluate all Pareto points [41]. We later utilize this algorithm in our
experimentation in Sect. 4.2.5.

Figure 4.2 demonstrates throughput calculation for our running example of
Fig. 4.1 when ˇ.ab; ac; bc/ D .60; 50; 20/. At time t D 1100, the progress and
capacities of all actors and channels are equal to those of time t D 300. Thus, the
steady-state is reached, and �.b/ D 2

1100�300
and � D �.b/

q.b/
D 1

800
. If the buffer

size of channel ac is increased from 50 to 70, throughput improves from 1=800 to
1=600, because channel ac becomes full 200 time units later, and actor a stalls for
200 fewer time units.

Deadlock: When at least one stalled actor never resumes operation, then deadlock
happens, in which case, overall throughput � becomes zero. By analyzing SDF
operational semantics, Ade et al. [1] proved the following theorem regarding
deadlocks:

96 M. Hashemi et al.

a a a a a a a a a
bbb

c

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

time

buffers are empty thus
γ=γ(ab,ac,bc)=(0,0,0)
a fires

a ends
γ=(40,20,0)
a fires

a ends (which puts
20 tokens on ab &
10 tokens on ac)
γ=(20,10,0)
a fires a ends

γ=(60,30,0)
a fires
b fires (which consumes
50 tokens from ab)
γ=(10,30,0)

a ends
γ=(30,40,0)
a fires

b ends
γ=(50,50,10)
b fires
γ=(0,50,10)
a stalls (not enough
empty space in ac)

a ends
γ=(50,50,0)
a fires

b ends
γ=(0,50,20)
c fires (which consumes 20
tokens from bc and 50 from ac)
γ=(0,0,0)
a resumes (ac has enough space)
a ends
γ=(20,10,0)
a fires

a ends
γ=(40,20,0)
a fires

a ends
γ=(60,30,0)
c ends
a fires
b fires
γ=(10,30,0)

Fig. 4.2 Throughput analysis based on SDF operational semantics when ˇ.ab; ac; bc/ D
.60; 50; 20/. At t D 1100, states of actors and channels are the same as t D 300

// task ‘a’ on P1
token ab[20];
token ac[10];
while(){a(ab,ac);write(ab,20,P2);write(ac,10,P3);
}

// task ‘b’ on P2
token ab[50];
token bc[10];
while(){read(ab,50,P1);b(ab,bc);write(bc,10,P3);
}

// task ‘c’ on P3
token bc[20];
token ac[50];
while(){read(bc,20,P2);read(ac,50,P1);c(bc,ac);
}

void write (token* x, int n, int dst){
for i=[0,n)
for j=[0,s)writePacket(x[i],j,dst);

}

void read (token* x, int n, int src){
for i=[0,n)
for j=[0,s)readPacket(x[i],j,src);

}

(b)

(a)

Fig. 4.3 Abstract view of (a) software implementation, and (b) communication APIs

Theorem 1. If there exists a channel uv 2 E with buffer size ˇ.uv/ less than

rp.uv/ C rc.uv/ � gcd.rp.uv/; rc.uv//

then deadlock happens between actors u and v. Here, gcd refers to greatest common
divisor operation. We denote the above equation with ˇmin.uv/.

In our example, ˇmin.ab; ac; bc/ D .60; 50; 20/, which means, if interprocessor
buffer sizes ˇ.ab/ < 60 or ˇ.ac/ < 50 or ˇ.bc/ < 20, then deadlock happens. Note
that the theorem does not state if deadlock happens when “for all” channels uv 2 E,
ˇ.uv/ 	 ˇmin.uv/. In such a case, more thorough deadlock analysis is required [50].

4.2.3.2 Abstract View of Implementation

Figure 4.3a demonstrates our abstract view of embedded software that implements
the SDF application on an MPSoC. First, the required tokens are read from input
FIFO buffers, next the actor’s specific computation is executed, and finally, the
generated data is written to output buffers. This sequence is repeated indefinitely.
Let us define “task” as “implementation of actor” according to this abstract view.

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 97

Figure 4.3b shows the typical implementation of communication API calls. The
SDF model allows tokens of arbitrary size, hence, one may define a large block of
data, such as a video frame, as a single token. However, interconnect networks have
limited bandwidth and they are not necessarily capable of transferring one token at
a time (e.g., one video frame takes multiple clock cycles). In practice, each token
may need to be split into s D d sizeof.token/

sizeof.packet/ e packets, which have to be transferred
sequentially as shown in the inner loop of Fig. 4.3b. The outer loop repeats this
process for every token in the array. For brevity, we assume s D 1 in the rest of this
paper. Our approach, however, is readily extensible to other packet sizes.

Note that this abstract view refers to very general implementation guidelines,
rather than a specific platform or software coding style. Therefore, many different
concrete implementations conform to this abstract view, albeit with different
parameters. For example, many interprocessor API calls which appear atomic
to the programmers are implemented by splitting large data into smaller pieces
and transferring them sequentially. As another example, inter-processor token
transfer through blocking API calls to DMA hardware also falls in this category
because tokens are still transferred sequentially but by the DMA hardware rather
than the processors. However, non-blocking token transfer is not covered in this
abstract view of implementation. As another example, in software implementations
conceptually concurrent token transfer would have to be implemented in some
sequential order.

In practice, when SDF graph is implemented in a form that conforms to our
abstract implementation, the simultaneity in reading and writing tokens at arbitrary
rates is not faithfully implemented. The sequential nature of instruction execution
on single-issue processor cores implies that a task can write (read) only one
token to (from) only one channel at a time. This additional information about
implementations leads to an operation that is quite different from the pure SDF
model, in which actors write to (read from) all channels simultaneously at specified
rates.

As shown in Fig. 4.2, analysis based on SDF model concluded that throughput
for interprocessor buffer size ˇ.ab; ac; bc/ D .60; 50; 20/ is � D 1

800
. Actor c waits

for data from b and upon availability of sufficient number of tokens produced by b,
actor c fires and immediately consumes all of them.

The implementation, however, behaves differently by allowing tasks to only read
and write one token at a time (Fig. 4.3). Task c (processor P3) stalls when it tries to
read for the first time, since there is no token available on channel bc. Once task b
(processor P2) places the first token on bc, the stalled readPacket function in c
resumes execution and reads that token. In this setting, therefore, ˇ.bc/ D 1 would
be sufficient to achieve the same throughput as shown in Fig. 4.2. This amounts
to a substantial 20� reduction in size of the interprocessor buffer bc without any
throughput degradation. Interestingly, the analysis based on Theorem 1 and SDF
operational semantics (Sect. 4.2.3.1) resulted in ˇmin.bc/ D 20, which implies that
a buffer size of ˇ.bc/ D 1 should result in deadlock and hence a throughput of zero.
However, in practice it does not cause deadlock or even decrease the throughput for
the target implementation.

98 M. Hashemi et al.

As highlighted in the above example, the analysis solely based on SDF opera-
tional semantics leads to much larger interprocessor buffers than actually required
in practical implementations to achieve a certain level of throughput, or in other
words, leads to much smaller throughput than actually happens in practical imple-
mentations with certain interprocessor buffer sizes.

4.2.4 Proposed Solution: Implementation Aware Throughput
Analysis

We propose taking into account a key piece of information about target MPSoC
implementations by which throughput analysis would become more accurate. In our
discussion, we adopt the above abstract view of implementation for an application
modeled as an SDF graph.

We take a two step approach to bring implementation awareness into
throughput analysis. First, we transform the original SDF graph G by embedding
implementation-dictated sequential data production and consumption into the graph
(Fig. 4.6b). Clearly, the transformation must preserve the function and other relevant
aspects of the original application. Subsequently, the transformed SDF graph G0 is
analyzed by leveraging an implementation oblivious technique, described earlier in
Sect. 4.2.2.1.

Based on the abstract view of implementation, tasks can read (write) only one
token at a time (property I), and from (to) only one channel at a time (property
II). Our proposed SDF graph transformation models these two properties by adding
virtual actors and channels to the SDF graph. Specifically, property I is modeled by
adding virtual reader and writer actors, and property II is captured by adding virtual
sync actors to the SDF graph.

4.2.4.1 Reader and Writer Actors

For every channel uv 2 E, a virtual writer actor W is added at the output of actor u,
and a virtual reader actor R is added at the input of actor v, such that the output of W
feeds data into the input of R (Fig. 4.4a). All reader and writer actors have identity
data transformation functionality and thus, do not alter the data.

Reader and writer actors have production and consumption rates of 1. Thus, for
every firing of u, W has to fire rp.uv/ times sequentially to consume the tokens
produced by u one at a time. Recall that auto-concurrency is disallowed in our
discussion. Similarly, for every rc.uv/ firings of R, actor v fires once. Buffer sizes
for channels uW and Rv are set to rp.uv/ and rc.uv/, respectively. Buffer size of
channel uv in the original graph determines buffer size of WR in the transformed
graph (Fig. 4.4a).

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 99

W
11 11

u
rp(uv)

v
rc(uv)(a) rp(uv) rc(uv)

v

R1

R2

W1

W2

W3

v

c1

c2

p1

p3

p2
c1

c2

p1

p3

p2

11

1 1

11

1 1

11(b)

β(uv) β =β(uv)
u vR

Gv

β =rp(uv) β =rc(uv)

Fig. 4.4 (a) Writer and reader actors for channel uv 2 E. Virtual actors and channels are shown
in green. (b) The transformed subgraph Gv for an actor v with two incoming and three outgoing
channels

Writer actor W models behavior of the writePacket function call (Fig. 4.3b).
rp.uv/ firings of W, which produce rp.uv/ tokens, model the loop, and iterative
calls to writePacket function in the write API call in execution of task u.
Intuitively, virtual channel uW models the local processor memory that temporarily
stores the output tokens of u (e.g., token ab[20] in task a in Fig. 4.3a).
Similarly, actor R models the readPacket call, and channel Rv models the local
memory that temporarily stores the input tokens of a task v (e.g., token ab[50]
in task b in Fig. 4.3a).

As a result of the above transformation, every actor v 2 V is transformed into
a subgraph Gv (Fig. 4.4b). Let jIn.v/j and jOut.v/j denote the number of input and
output channels of v. Let ci for i 2 Œ 1; jIn.v/j 	 denote the consumption rates for
input channels of v, and let pj for j 2 Œ 1; jOut.v/j 	 denote the production rates for
output channels of v. Subgraph Gv has jIn.v/j reader actors R1, R2, : : : RjIn.v/j, and
jOut.v/j writer actors W1, W2, : : : WjOut.v/j. Data production (rp) and consumption
rates (rc), and buffer sizes (ˇ) of virtual channels in Gv are set as:

virtual channel rp rc ˇ

Riv 1 ci ci

vWj pj 1 pj

A firing of actor v in G corresponds to the following sequence of events in
subgraph Gv in the transformed graph G0. Reader actor Ri fires ci times. As a result,
it reads ci tokens from the corresponding input channel of Gv and writes them to
virtual channel Riv. At this point, actor v fires once and consumes all of the input
tokens and produces pj tokens on virtual channels vWj. Next, virtual actor Wj fires
pj times, and copies the tokens to the corresponding output channel of Gv . Note that
input channels of Gv have consumption rates of 1 because they are connected to
reader actors. Similarly, output channels of Gv have production rates of 1. Thus,
subgraph Gv models the execution of task v based on the implementation view
discussed in Sect. 4.2.3.2.

100 M. Hashemi et al.

Theorem 2. Addition of reader and writer actors preserves SDF functionality.

Proof. SDF functionality is independent of task execution order (scheduling), and
merely depends on the value and order of data tokens in channels [8]. Both reader
and writer actors have the identity transfer function and do not alter data. Moreover,
they preserve the order of data tokens delivered from the producer to the consumer.
Therefore, the end to end functionality of the SDF graph remains intact. �

4.2.4.2 Sync Actors

In subgraph Gv developed above, reader actors, writer actors, and actor v can
potentially fire simultaneously. In order to correctly model the sequential nature
of data consumption, computation, and data production based on the abstract
implementation view, we need to eliminate the simultaneity. Our approach is to
add a number of virtual sync actors to every subgraph Gv in order to enforce the
following sequential ordering on the execution of actors:

R1; R2; : : : RjIn.v/j; v; W1; W2; : : : WjOut.v/j

This sequential ordering conforms to the implementation of task v, where first
the read API calls, next the computation of actor v, and finally the write API
calls are executed on the processing core (Fig. 4.3a).

Specifically, to enforce the above ordering in Gv , we add virtual sync actors SR
i;iC1

between Ri and RiC1, and virtual sync actors SW
j;jC1 between Wj and WjC1 (e.g., S1,

S2, and S3 in Fig. 4.5a), and set data production (rp) and consumption (rc) rates, and
buffer size (ˇ) of the newly added virtual channels (marked blue in the figure) as
follows:

v

R1

R2

W1

W2

S2

S1

S3

W3

S4

c1

c2

p1

p3

p2

11

1 1

1
1

1 1

11
1

1

1

c1

c2

p1

p2

1

1

p2

p3

1

1

1p3c1

c1 initial tokensGv

v

R1

R2

W1

W2

S2

S1

S3

W3

c1

c2

p1

p3

p2

11

1 1

1
1

1 1

11

1

1

c1

c2

p1

p2

1

1

p2

p3

1

1

Gv

(b)(a)

Fig. 4.5 (a) Sync actors S1, S2, and S3 enforce the sequential order R1; R2; v; W1; W2; W3 in
subgraph Gv of Fig. 4.4b. The newly added virtual actors and channels are shown in blue. (b)
Sync actor S4 prohibits auto-concurrency

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 101

virtual channel rp rc ˇ virtual channel rp rc ˇ

RiSR
i;iC1 1 ci ci WjS

W
j;jC1 1 pj pj

SR
i;iC1RiC1 ciC1 1 ciC1 SW

j;jC1WjC1 pjC1 1 pjC1

The parameters are carefully selected such that upon ci firings of Ri, SR
i;iC1 fires

once, and then RiC1 can fire ciC1 times. Similarly, upon pj firings of Wj, SW
j;jC1 fires

once, and then WjC1 can fire pjC1 times. By creating appropriate dependencies, the
construction ensures that the desired ordering is enforced.

Lastly, we add a sync actor between WjOut.v/j and R1 (e.g., S4 in Fig. 4.5b). This
creates a cycle in Gv and prohibits concurrent execution of a reader actor and a
writer actor. Specifically, it stops R1 from firing until WjOut.v/j fires pjOut.v/j times.
Note that c1 initial tokens are required on this cycle in order to avoid deadlock,
since R1 fires c1 times for every firing of v.

Sync actors have no effect on the transfer function of reader/writer actors. In
particular, the reader and writer actors continue to copy application data (black and
green channels in Fig. 4.5b), and do not mix up the data with dependency channels of
the sync actors (blue channels in Fig. 4.5b). It follows that the transformed subgraph
Gv in G correctly models the execution of task v according to the abstract view
discussed in Sect. 4.2.3.2.

Theorem 3. Addition of sync actors preserves the original SDF functionality.

Proof. By construction, read and write actors do not mix up application data tokens
(green channels) with synchronization tokens (blue channels). The application
functionality merely depends on the data values and their ordering on green
channels, which is isolated from sync actors. As such, sync actors have no impact
on original SDF functionality. �

4.2.4.3 Properties

Since sync actors are added to only enforce a sequential order among read and
write operations, they must not have any impact on the total execution time of
Gv . We conservatively assume that the information regarding platform-dependent
latency of read and write operations are unavailable. Hence, the execution times
of read and write API calls and the data transformation computation of a task
are viewed to be inseparable. To capture this in subgraph Gv , we set the execution
times of reader and writer actors to zero (" D 0), and assign the entire execution
time of the original actor to v. In case of access to specific parameters of the target
architecture, one could improve the model fidelity by separating the latency of read
and write operations from data transformation computation, and assigning more
accurate execution times to actors in Gv .

102 M. Hashemi et al.

Theorem 4. Assume that the set of actors in Gv in the transformed graph and actor
v in the graph G start execution at the same time and from the same buffer state in
G. In that case, if Gv stalls during execution, the corresponding actor v in the graph
G must also stall.

Proof. Stalling execution occurs because at least one channel does not have enough
capacity to receive the produced tokens at that point in time. By construction,
stalling Gv implies that at least one of output channels of the write actors does
not have sufficient capacity during execution of Gv , as channels internal to Gv are
allocated sufficient capacity to execute Gv . Since production rate of write actors is
one (the smallest possible rate), at least one of the output channels of Gv must be
entirely full. Execution of Gv takes exactly the same time as execution of v, and
thus, the corresponding output channel of v in G is also full during execution of v,
which would stall the execution of v. �

The following theorem articulates the pessimistic nature of implementation
oblivious analysis.

Theorem 5. Given an SDF graph G and a set of buffer size choices ˇ for channels
in G, throughput of transformed graph G0 is not less than G.

Proof. Assume that the theorem does not hold. Then, there must be a time t at
which, for the first time, the execution of an actor v in G starts earlier than the
corresponding execution of the graph Gv in the transformed graph. Execution of v

at t implies that both conditions I and II discussed in Sect. 4.2.2.1 are satisfied at t.
Condition I indicates that no other firing of v is stalled. Based on theorem 4

there cannot be a stalled version of Gv , since t is the first point in time at which G
supposedly runs ahead of the transformed graph. Hence, condition I is also satisfied
for Gv . Condition II indicates that all of the input channels of v have sufficient
number of tokens available at time t. Input channels of v form input channels of the
read actors in Gv . Moreover, the consumption rate of read actors is one, which is
the smallest possible valid rate. Thus, there must be sufficient number of tokens for
read actors of Gv at time t, and its execution should not be stalled. The contradiction
proves the theorem. �

As one would expect, the two original and transformed graphs should yield the
same throughput if buffer capacity constraint is relaxed.

Theorem 6. The maximum throughput of G and G0, which is obtained when all
channels of G have infinite buffer size, are equal.

Proof. If buffer sizes are sufficiently large, throughput would be limited by the
slowest actor or the iteration bound of the corresponding “homogeneous” SDF graph
(HSDF). The iteration bound of a HSDF graph is equal to its maximum cycle mean,
which is defined as the cycle latency divided by the number of initial tokens in the
cycle [16, 35].

The transformation only adds actors with zero execution time to the graph, and
hence, the slowest actor would have the same execution time in both graphs. The

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 103

transformation creates cycles within the subgraph Gv , however, all such cycles have
latency of ".v/. There is at least one initial token in all cycles inside Gv , as the
feedback edge from the last writer actor to the first reader actor must be part of the
cycle. Thus, the cycle mean for cycles that are created inside Gv is not more than
".v/, which would not limit the throughput. Finally, for cycles in the transformed
graph that are not inside Gv , neither the cycle latency nor the number of initial
tokens in the cycle are changed under the transformation, and hence, the two graphs
will have the same limit throughput. �

4.2.5 Empirical Evaluation

4.2.5.1 Setup and Benchmark Applications

To evaluate the proposed technique we employ StreamIt benchmark applications.
StreamIt is a programming language and compiler for stream programs [46]. For
every benchmark application, we execute StreamIt compiler (Fig. 4.6, top left) and
then extract SDF graph topology, data rates (rp and rc), and estimates of actor
execution time (").

Actor execution times are estimated by the StreamIt compiler based on rough
mapping between high-level StreamIt language constructs and typical processor
instruction sets. Original cycle per instruction (CPI) estimates of StreamIt compiler

StreamIt Compiler

Parallel
Code

(.c files)

SDF
Graph G

(c) Cycle-Accurate Simulation

Graphite
Simulator

Measured
Throughput

Implementation-Aware
Graph Transformation

SDF
Graph G’ Tradeoff Analysis

based on SDF
Operational Semantics

Tradeoff Analysis
based on SDF

Operational Semantics

(a) Implementation Oblivious Analysis

(b) Implementation-Aware Analysis

StreamIt
Benchmark
(.str file)

Compile
(gcc-O2)

Binary

Pareto
Points

Pareto
Points

Buffer Size

Extract
SDF

Graphite
Comm.

API

Graphite
CPI

Reader
& Writer
Actors

Sync
Actors

Implementation
Model

Fig. 4.6 Experimentation flow: (a) Baseline implementation oblivious buffer-throughput tradeoff
analysis based on SDF operational semantics. (b) Proposed implementation aware tradeoff
analysis. (c) Cycle-accurate simulation of the compiled binary code

104 M. Hashemi et al.

are based on the RAW processor. We have modified StreamIt source code such that
its CPI estimates match Graphite processor model [18]. Graphite is a cycle-accurate
MPSoC simulator, and is used as the target platform in our experimentation. The
above procedure yields a series of SDF graphs which are used as benchmarks in our
experimentation. We have released the generated SDF graphs along with details of
the above procedure on the web [6].

Note that in our experimentation we evaluate the throughput for a range of buffer
sizes in the target implementation and present a Pareto chart for the tradeoff between
throughput and total buffer size.

4.2.5.2 Implementation Aware vs. Implementation Oblivious Analysis

The proposed implementation aware analysis involves two steps (Fig. 4.6b). First,
we apply the proposed graph transformation discussed in Sect. 4.2.4 and transform
the SDF graph G into another SDF graph G0. The transformation is based on our
abstract view of target implementation as discussed in Sect. 4.2.3.2, which includes
very limited information on the target (sequentially ordered read/write operations)
into SDF graph G0.

Next, we perform buffer-throughput tradeoff analysis on G0 based on SDF opera-
tional semantics, as discussed in Sect. 4.2.2.1. Here, we utilize SDF3 [39, 41], which
implements the tradeoff analysis algorithm explained in Sect. 4.2.2.1. We modified
SDF3 to force it to ignore the virtual channels introduced by the transformation,
while exploring the search space. Buffer size of the virtual channels are also omitted
from the reported total buffer size because virtual channels do not exist in the
implementation and do not take any real space. The analysis yields a set of Pareto
optimal points between total interprocessor buffer size, jˇj, and corresponding
overall throughput, � . To compare the proposed approach against an established
standard, we also perform implementation oblivious analysis directly on graph G
(Fig. 4.6a).

Figure 4.7 shows the result of tradeoff analysis for both the proposed implemen-
tation aware and the baseline implementation oblivious techniques. The experimen-
tal results show that for all benchmarks the implementation aware tradeoff analysis
yields much smaller buffer sizes than the implementation oblivious analysis for the
same level of throughput. This confirms our claim that the analysis solely based on
SDF operational semantics is overly conservative and yields far larger buffer sizes
than required.

In case of mpeg application, for example, the implementation oblivious tech-
nique reports that a total buffer size of jˇj D 15;243 is required to achieve the
maximum throughput, while the implementation aware analysis reduces this to
jˇj D 326, which is 46� smaller.

Figure 4.8 highlights the substantial reduction in total buffer size requirement,
using the same data of Fig. 4.7. The horizontal axis is in logarithmic scale (base 2)
and compares the implementation oblivious vs. implementation aware ratio of total
buffer size, jˇj, required to achieve the maximum throughput, 80 % of the maximum

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 105

beamformer bitonicsort dct

des fft matmul

mergesort mpeg serpent

7

9

11

13

τ

| β |
30

50

70

90

τ

| β |
9

11

13

15

τ

| β |

0

1.1

2.2

3.3

τ

| β |
0.22

0.24

0.26

0.28

τ

| β |
0.0

0.1

0.2

0.3

τ

| β |

9

11

13

15

τ

| β |
0.1

0.2

0.3

0.4

τ

| β |
0.2

0.4

0.6

0.8

0 100 200 300 0 70 140 210 0 250 500 750

0 8000 16000 24000 0 1600 3200 4800 0 2000 4000 6000

0 250 500 750 0 5000 10000 15000 0 900 1800 2700

τ

| β |

Implementation-Oblivious Implementation-Aware

Fig. 4.7 Pareto points between total interprocessor buffer size, jˇj, and the corresponding
throughput, � , for both the baseline implementation oblivious and the proposed implementation
aware tradeoff analysis techniques. The proposed method yields substantially improved interpro-
cessor buffer size estimates under identical throughput constraints

1 3 9 27 81 243

beamformer
bitonicsort

dct
des

fft
matmul

mergesort
mpeg

serpent
Average

max throughput 80% of max 50% of max avoid deadlock

Fig. 4.8 Reduction in total interprocessor buffer size estimates, i.e., the implementation oblivious
over implementation aware ratio of total interprocessor buffer size, jˇj, required to achieve the
maximum throughput, 80 % of the maximum throughput, 50 % of the maximum throughput, and
to avoid deadlock. X-axis shows the ratio in base 2 logarithmic scale

106 M. Hashemi et al.

Fig. 4.9 Runtime of
implementation aware over
implementation oblivious
analysis

7.3

0.1

1

10

100

throughput, 50 % of the maximum throughput, and to avoid deadlock, respectively.
On average (geometric mean), using the proposed implementation aware technique,
total buffer size jˇj required to achieve the maximum throughput, 80 % of the
maximum throughput, 50 % of the maximum throughput, and to avoid deadlock
is reduced by a factor of 8:5, 9:0, 8:5, and 9:3�, respectively.

Figure 4.9 shows how the increase in complexity of the model translates into
an increase in the runtime of the analysis. Specifically, it shows the ratio of the
time it takes to run the proposed implementation aware tradeoff analysis technique
over the time it takes to run the baseline implementation oblivious technique.
The ratio heavily depends on the application, e.g., 98� for mpeg and 0:11� for
fft benchmark. On average (geometric mean), the ratio is 7:3�. The workstation
employed in our experiments has 8 GB of memory and 3:4 GHz Core i7 processor
with 8 MB of cache.

4.2.5.3 Comparison Against Cycle-Accurate Simulation

To quantify the accuracy of estimates produced by the baseline and proposed
techniques, we set out to generate executable binaries and simulate their perfor-
mance under different buffer sizes using the Graphite [18] cycle-accurate simulator
(Fig. 4.6c).

Specifically, we utilize StreamIt compiler (RAW processor backend) and gen-
erate parallel software code in form of multiple C files from StreamIt SDF
applications.3 We parse the C files and replace generated RAW interprocessor
communications with Graphite interprocessor communication API calls. Next, we
compile the generated code into binary using gcc -O2 command, and pass the
binaries to Graphite for cycle-accurate simulation (Fig. 4.6c).

For every benchmark, we adjust the buffer size distribution (ˇ.uv/ for all
channels uv) to match buffers that result in the maximum throughput according to

3We also experimented with SDF3 benchmarks in Sect. 4.2.5.2. However SDF3 benchmarks
merely include graph parameters and not task implementations. Thus, we could only perform the
experiments shown in Fig. 4.6a, b and not c. Detailed results are omitted due space limits. For
SDF3 benchmarks, on average, buffer size reduction using implementation aware analysis is 6�,
and runtime ratio of implementation aware over implementation oblivious is 5�.

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 107

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

beamformer
bitonicsort

dct
des

fft
matmul

mergesort
mpeg

serpent
Imp. Oblivious Imp. Aware Cycle-Accurate Simulation

Fig. 4.10 Comparison of (normalized) throughput estimated by implementation aware and
implementation oblivious techniques against cycle-accurate simulation. Implementation oblivious
technique inaccurately predicts deadlock in most cases, and is less accurate in the remaining cases

implementation aware model analysis. That is, we select buffer size distribution of
the orange diamond-shaped point with the highest throughput in every Pareto chart
in Fig. 4.7. We have slightly modified Graphite to simulate interprocessor channels
with limited buffer size. Since the simulated number of cycles can vary from one
application iteration to the next (due to control flow variations, cache effects, etc.),
we measure throughput by examining its steady-state long term average. That is, we
continue the simulation until no significant change (no more than 1 %) in long term
throughput is observed.

Figure 4.10 compares the throughput estimated by implementation aware and
implementation oblivious analysis techniques for the selected buffer size distri-
bution, against cycle-accurate simulated throughput. The numbers are normalized
with respect to the throughput given by Graphite cycle-accurate simulator. Hence,
a value of 1:0 means zero error in estimation of throughput, in comparison with
cycle-accurate simulation.

The implementation oblivious analysis falsely reports deadlock (� D 0) in six
out of nine benchmarks. This occurs because the selected buffer sizes are smaller
than what implementation oblivious analysis believes to be required for avoiding
deadlock. In the other three benchmarks (bitonicsort, dct, and mergesort),
the average error is 23 %. The overall average error across all the nine benchmarks
using the implementation oblivious analysis technique is 74 %.

The implementation aware analysis, however, estimates the throughput very
closely. Compare the orange and green bars in Fig. 4.10. The error in estimation
of throughput is less than 5 % in beamformer, dct, fft, and mergesort
benchmarks. On average, the error of implementation aware analysis in estimation
of throughput is 19 %, compared to cycle-accurate simulation.

108 M. Hashemi et al.

Let us take a closer look at the mpeg benchmark. The implementation oblivious
analysis falsely reports deadlock (zero throughput) for this benchmark because
the selected buffer sizes are smaller than what implementation oblivious analysis
believes to be required for avoiding deadlock. The implementation aware analysis
does not perform well either and shows 55 % error in estimation of throughput
for the selected buffer sizes. We already know the estimated throughput by both
implementation oblivious and implementation aware analysis for different buffer
sizes from the Pareto points in Fig. 4.7. We performed cycle-accurate simulations
on this benchmark for all buffer sizes in Fig. 4.7 and observed that throughput
does not change. Hence both implementation aware and implementation oblivious
analysis have 55 % error in estimation of throughput for larger buffer sizes, while
the implementation oblivious analysis falsely reports deadlock (zero throughput) for
smaller buffer sizes.

Figure 4.11 shows runtime of cycle-accurate simulation over runtime of imple-
mentation aware analysis for all benchmarks. The runtime ratio is higher than 100�
in six out of nine benchmarks. In the fft benchmark the ratio is 606�. On average
(geometric mean), it takes about 102� longer to run cycle-accurate simulations than
to run the proposed implementation aware analysis.

Comparison with related work is presented in Sect. 4.4. Let us highlight the
key benefits offered by the proposed approach. In comparison with implementation
oblivious analysis (analysis solely based on SDF operational semantics), it offers
substantially more accurate (9� smaller) interprocessor buffer size estimates for the
same level of throughput. This is achieved by taking into account very limited infor-
mation on target implementation. In comparison with cycle-accurate simulation,
the implementation aware analysis offers 102� speedup in runtime and relatively
low error (19 %) in estimation of throughput. Note that the proposed method is
performed at a high-level on SDF graphs, while the cycle-accurate simulation is
performed on compiled binary codes and thus, has access to all relevant details,
such as processors’ instruction set, cache, and program control flow.

102

1

10

100

1000

Fig. 4.11 Runtime of cycle-accurate simulation over the proposed implementation aware analysis
technique

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 109

4.3 Platform-Oriented Throughput Scaling

4.3.1 Overview

In principle, specifying the application as a set of tasks and their dependencies
in form of an SDF graph is meant to only model the functional aspects of an
application, which should enable seamless portability to new platforms by fresh
platform-driven allocation and scheduling of tasks and their executions. However,
SDF graphs are rather rigid in that some non-behavioral aspects of the application
are implicitly hard coded into the model at design time. Consequently, allocation and
scheduling processes are likely to generate poor implementations when one tries
either to port the application to different platforms, or to explore implementation
design space on a range of platform choices [38]. The limitations of SDF graphs
with portability, scalability, and subsequently the ability to explore implementation
tradeoffs (e.g., with respect to number of cores) have become especially critical with
availability of platforms with a large number of processor cores, which can dedicate
a wide range of resources to an application [5, 47].

As an example, consider merge sort dataflow network, which is composed of
actors for splitting the data into segments, sorting of segments using a given
algorithm (e.g., quicksort), and merging of the sorted segments into a unified
output stream. A specific instance of the sort network would have rigid structural
properties, such as number of sort actors or fanin degree of merge actors. The choice
of structure, although implicitly hard coded into the specification, is orthogonal to
application’s end-to-end functionality. It is intuitively clear that the optimal network
structure would depend on the target platform, and automatic software synthesis
from a rigid specification is bound to generate poor implementations over a range
of platforms.

Our driving observation is that the scalability limitation of software synthesis
from rigid SDF models could be addressed if the specifications were sufficiently
malleable at compile time, while maintaining functional consistency. We present an
example manifestation of the idea, dubbed FORMLESS, which extends the classic
notion of dataflow by abstracting away some of the unnecessary structural rigidity
in the model. In particular, malleable aspects of the dataflow structure are modeled
using a set of parameters, referred to as the forming vector. Assignment of values
to the parameters instantiates a particular structure of the model, while all such
assignments lead to the same end-to-end functional behavior. A simple example of
a forming set parameter is the fanin degree of merge actors in the sort example.

Our approach opens the door to design space exploration methodologies that
can hammer out a FORMLESS specification to form an optimized version of the
model for the target platform. The “formed” model can be subsequently passed
onto conventional allocation and scheduling processes to generate a quality parallel
implementation. We also present such a design space exploration scheme that
determines the forming set using platform-driven profiles of application tasks.
Experimental results demonstrate that FORMLESS yields substantially improved

110 M. Hashemi et al.

portability and scalability over conventional SDF modeling. Note that the primary
objective here is to demonstrate the merit of malleable specifications in terms of
scalability, as opposed to development of a formal programming language or a
sophisticated design space exploration engine.

4.3.2 Baseline Software Synthesis

Automated parallel software synthesis from SDF models normally involves several
key steps that are fairly well researched [4, 11–13, 17, 19, 45]. Figure 4.12 shows
the most key steps, namely assignment of tasks to processors, scheduling of tasks
for periodic execution on the processors, and code generation. As discussed in later
sections, we present our method as an improvement on top of the baseline software
synthesis.

Figure 4.13 illustrates an example. Figure 4.13b shows the SDF graph for an
example streaming sort application, which sorts 100 data tokens per invocation.
The split task reads 100 tokens from the input stream, and divides them into
two segments of 50 tokens that are passed onto the two sort tasks. After the
segments are sorted, the merge task combines them into the final sorted output

Code
Generation

Task
Assignment

Task
SchedulingSDF Graph Parallel Code

(.c files)

Fig. 4.12 Baseline software synthesis

void split(int m, // msort.h
int* x,x1,x2){...}

void sort(int m,int* x){...}
void merge(int m,

int* x1,x2,y){...}
#include msort.h; // P1.C
int x[100];
Int x1[50],x2[50];
while(){
read(x,100,in);
split(100,x,x1,x2);
write(x2,50,P2);
sort(50,x1);
write(x1,50,P2);

}

#include msort.h; // P2.C
int x1[50],x2[50];
int y[100];
while(){
read(x2,50,P1);
sort(50,x2);
read(x1,50,P1);
merge(100,x1,x2,y);
write(y,100,out);

}

(a)

sort

merge

split

M

S1 S2

X
(b) (c)

(d)

M

S1 S2

X
100

50

50

P2P1

Fig. 4.13 (a) Example platform. (b) Sort application modeled as SDF graph. (c) Tasks are
assigned to processors (color coded). (d) Synthesized software

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 111

stream. Figure 4.13c shows an example task assignment, and d the corresponding
generated code.

Task functionalities are provided as sequential computations that are kept
intact throughout the synthesis process. The software code for each processor is
synthesized by stitching together the set of tasks that are assigned to that processor
according to their schedule. For tasks that are assigned to the same processor,
inter-task communication is implemented using arrays. That is, the producer task
writes its data to an array, which is then read by the consumer task. Interprocessor
communication is implemented using read and write system calls.

4.3.3 SDF Limitations in Throughput Scaling

Consider the sort example of Fig. 4.13. We investigate the scaling of throughput
when platforms with different number of processors are targeted. Let us assume that
the sort task implements the quicksort algorithm, and the merge task merges two
sorted data segments into one stream using the mergesort algorithm.

An immediate observation is that the example SDF graph cannot readily utilize
many (more than four in the case of depicted SDF graph) processors due to the
limited concurrency in the specification. At the other extreme, the throughput of the
synthesized software is going to be poor when one processor is targeted, compared
to eliminating the split and merge tasks and running a single sort task (i.e., the
quicksort algorithm) on the entire input stream.4 This is partly because the overhead
of coordination among multiple parallel tasks is only justified if sufficient amount
of parallelism exists in the platform.

Intuitively, increasing concurrency in the SDF graph specification facilitates
utilization of more parallel resources and potentially increases the potential for
improving performance via load balancing between processors, however, it comes
at the cost of degraded performance when platforms with fewer processors are
targeted. Conversely, reducing the concurrency in the SDF specification would
improve performance on fewer processors at the expense of scalability to platforms
with large number of processors.

4.3.4 Proposed Solution: FORMLESS Model

We make the key observation that SDF specifications are structurally rigid and
do not fully live up to the intended promise of separating functional aspects of
the application from implementation platform, and thus, fail to deliver efficient
portability and scalability with respect to number of processors in the platform. To

4The discussion does not pertain to sorting of large databases which do not entirely fit in the
memory.

112 M. Hashemi et al.

(c)(b) (d)

split(p,m,x[]
,x1[],x2[],…,xp[])

for i=1:m
j= i/p
xj[i%p]= x[i]

merge(q,m,x1[],x2[],…,xq[],y[])
for j=1:q dj=1
for i=1:m
j=index_of_min(x1[d1],…,xq[dq])
y[i]=xj[dj]
dj++sort(m,x[])

quicksort(x[],1,m)

(a) sort(m): m

m

merge(q,m): m÷q

m

split(p,m): m

m÷p

N

N

sort(N)

split(8,N)
N÷8

merge(2,N)

merge(2,N÷2)

merge(2,N÷4)

N÷4
N÷2

sort(N÷8)

N÷8

N

N

N÷3
split(3,N)

merge(3,N)
N÷3

sort(N÷3)

N

N

Fig. 4.14 FORMLESS specification of the sort example: (a) Actor specifications. (b–d) Example
instantiations

address the portability and scalability limitations, not only application specification
has to be sufficiently separated from implementation platform, but it also has to
admit platform-driven transformations and optimizations.

Our idea is to specify the tasks and their composition using a number of
parameters. Adjustment of parameters enables “massaging” the structure of the
SDF graph to fit the target architecture, while all candidate SDF graphs deliver
the same end to end functionality. Figure 4.14 sketches the idea for the example
sort application in which fanout degree of the split task and fanin degree of the
merge task are parametrically specified. The number of tasks, their types, and
compositions, as well as their data production rates are immediate functions of
the two split-fanout and merge-fanin parameters. Three example instances of the
FORMLESS graphs are shown in Fig. 4.14.

4.3.4.1 Formalism

We propose raising the level of abstraction in specifications to eliminate the rigid
structure of the SDF graph, while preserving its functional behavior. Our approach
is to require application designers to specify the tasks and the structure of the SDF
graph using a number of parameters, referred to as the forming vector. Specifically,
a forming vector ˆ is defines as

ˆ D .
1;
2; : : : ;
jˆj/

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 113

where
j is a forming parameter whose possible set of values are a subset of domain
ıj. Hence, domain of the forming vector ˆ is equal to

� D ı1 � ı2 � � � � � ıjˆj

We extend the definition of a task ˛ such that input ports, output ports, and
data transformation function of ˛ are all specified as functions of the underlying
parameters in ˆ. In other words, task ˛ is defined as the tuple

8ˆ 2 �˛ W ˛.ˆ/ D �
In˛.ˆ/; Out˛.ˆ/; F˛.ˆ/

�

For example, the merge task in Fig. 4.14a is defined based on the forming vector
ˆ D fq; mg. The function Inmerge.q; m/ specifies q input ports of rate m

q , and function
Outmerge.q; m/ specifies one output port of rate m. The data transformation function
Fmerge.q; m/ specifies a mergesort algorithm which combines q sorted input arrays
of size m

q into a single sorted output array of size m. In this example, �merge D
f.q; m/ j m 	 2; q 	 2; m mod q D 0g.

We also extend the definition of SDF graph G.V; E/ such that tasks (V) and
channels (E) are specified as functions of the underlying parameters in ˆ. Formally,
SDF graph G is defined as the tuple

8ˆ 2 �G W G.ˆ/ D �
VG.ˆ/; EG.ˆ/

�

VG.ˆ/ is a function which specifies the set of tasks in G based on forming vector
ˆ, and is formally defined as

VG.ˆ/ D ˚
˛1.ˆ1/; ˛2.ˆ2/; : : : ; ˛jVj.ˆjVj/

�

where ˛i.ˆi/ is an instance of task ˛i which is formed based on forming vector ˆi,
and both ˛i and ˆi are determined based on the given ˆ. For instance, the SDF
graph in Fig. 4.14b is specified based on forming vector ˆ D fp; q; mg D f3; 3; Ng,
and function VG specifies the set of tasks as

VG.3; 3; N/ D ˚
split.3; N/; sort. N

3
/; sort. N

3
/; sort. N

3
/; merge.3; N/

�

in which, for example, task merge.3; N/ is instance of merge.q; m/ D �
Inmerge.q; m/;

Outmerge.q; m/; Fmerge.q; m/
�
, where fq; mg D f3; Ng.

Similarly, EG.ˆ/ is a function which specifies the set of channels in G based on
the forming vector ˆ, and is formally defined as

EG.ˆ/ D ˚
.prd; cns/ j prd 2 Out˛i.ˆi/; cns 2 In˛j.ˆj/

�

where .prd; cns/ denotes a channel from an output port prd of some task ˛i to an
input port cns of some task ˛j.

114 M. Hashemi et al.

We would like to stress that our primary objective in this paper is to demonstrate
the merit of the idea and scalability of malleable specifications. In our scheme,
it is the programmer’s duty to define the ports, task computations, and graph
composition based on the parameters. Furthermore, he has to ensure that every
assignment of values from the specified domain �G to the forming vector ˆ results
in the same functional behavior. This tends to be straightforward since tasks perform
the same high-level function under different parameters (e.g., splitting, sorting, or
merging in the example of Fig. 4.14).

4.3.4.2 Higher-Order Language

Development of a formal higher-order programming language involves many
considerations that are beyond the scope of this paper [9, 10, 43]. However, in
this section we present an example realization of the general idea that we have
developed.

Figure 4.15a presents the prototype for specifying task and application SDF
graph based on a set of parameters. The task specification starts with a list of forming
parameters and their type. The interface section specifies the set of input and
output ports of the task, and the function section specifies its data transformation
function, all based on the given parameters.

Similarly, application specification also starts with a list of forming parameters.
The interface section is the same as task interface. In a composition
section, the tasks are instantiated by assigning the corresponding parameters using
the instantiate construct. The channels are instantiated using the connect
construct which connect ports of two tasks.

Figure 4.15b shows the code for our previously mentioned sort application. For
example, the merge task is specified with two parameters m and q. As we see the
number and rate of input ports in this task is defined using a for loop. In general
we allow a rich set of programming constructs such as for and if-else in order
to provide enough flexibility in specifying the tasks based on the given forming
parameters.

4.3.4.3 Exploration of Forming Parameter Space

To examine the merits of FORMLESS, we developed a design space exploration
(DSE) scheme whose block diagram is depicted in Fig. 4.16. The DSE instantiates
a platform-driven SDF graph G.ˆopt/ from a given FORMLESS specification by
optimizing the forming vector ˆ. Central to the quality of the DSE are high-level
estimation algorithms for fast assessment of the throughput of a specific instance of
the SDF graph.

Task Profiling: The workload associated with a task is composed of two com-
ponents: computation workload and communication-induced workload. Since tasks
are defined parametrically, their computation workload depends on the values of
the relevant forming parameters. In addition, computation workload is inherently
input-dependent, due to the strong dependency of the tasks’ control flow with their

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 115

Fig. 4.15 (a) Prototype for specifying task and application. (b) An example malleable specifica-
tion for the sort application in Fig. 4.14

input data. The communication-induced workload exists if some of the producers
(consumers) of the data consumed (produced) by the task are assigned to a different
processor. We take an empirical approach to characterize the computation workload.
We measure the execution latency of several instances of the tasks (based on the
forming parameters) on the target processor. For each case, we profile the runtime
for several randomly generated input streams to average out the impact of input-
dependent execution times. The data is processed via regression testing to obtain
latency estimates for all parameter values. Hence, for a task ˛.ˆ/, the profiling data
provides DSE with a computation workload W˛ .

In addition, for a channel .˛; ˛0/ with communication volume N.˛;˛0/, the
communication-induced workload of producer and consumer tasks are analytically
characterized as Wwrite �N.˛;˛0/ and Wread �N.˛;˛0/, respectively. Wwrite and Wread are
the profiled execution latency of platform communication operations.

SDF Graph Formation: Formation of SDF graph is essentially assignment of
valid values to the forming parameters. Any such assignment implies a specific

116 M. Hashemi et al.

Baseline Software Synthesis

Design Space Exploration

Task
Assignment

Task
Profiling

Code
Generation

Simulation

FPGA Prototyped
Platform

Throughput
Estimation

SDF Graph
Formation

Task
Assignment

Task
Scheduling

repeat ?
yes

Instantiated SDF Graph

FORMLESS
Application

Parallel
Code

(.c files)

Fig. 4.16 Design space exploration for platform-driven instantiation of a FORMLESS specifica-
tion

instantiation, which can be passed onto subsequent stages for quality estimation.
Our current DSE implementation exhausts the space of forming vector parameters
by enumeration, due to the manageable size of the solution space in our testcases,
and quickness of subsequent solution quality estimation. In principle, high-level
quality estimations can analyze performance bottlenecks to provide feedback and
to guide the process of value assignment to forming set parameters. Note that
our primary objective in this paper is to demonstrate the scalability of malleable
specifications, and not development of a sophisticated DSE.

Task Assignment: Task assignment is a prerequisite to application throughput
estimation, and quantifying the suitability of a candidate SDF graph for a target
platform. Tasks’ computations should be distributed among processors as evenly as
possible while interprocessor communication is judiciously minimized. This can be
modeled as a graph partitioning problem, in which a graph G.V; E/ is cut into a
number of subgraphs Gp.Vp; Ep/, one for each processor. We employ METIS graph
partitioning package [26] for this purpose because our primary focus is to quickly
generate solutions to enable integration within the iterative DSE flow. Every vertex
(task) ˛ 2 V is assigned a weight W˛ which denotes its computation workload, and
every edge .˛; ˛0/ is assigned a weight of N.˛;˛0/ which denotes its communication
volume.

Throughput Estimation: For typical FIFO channels with small latency (relative
to processors’ execution period), the communication overhead only appears as

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 117

communication-induced workload on processors. That is, the workload of a pro-
cessor can be estimated as:

Wp D P
˛2Vp

W˛ C Wread �P˛…Vp;˛02Vp
N.˛;˛0/

C Wwrite �P˛2Vp;˛0…Vp
N.˛;˛0/

where Wread and Wwrite denote the execution latency of platform read and write
system calls. The last two terms indicate communication-induced workload on p.
We use workload of the slowest processor to estimate the throughput. Formally

Throughput D 1
 max
1�p�P

Wp

For a given task assignment, throughput of a candidate solution depends on the
buffer sizes of the platform FIFO channels [42], as well as the firing schedule of the
tasks that are assigned to the same processor. The above equation merely serves to
provide a rough throughput estimate for guiding the DSE. Note that we accurately
simulate the impact of interconnect limited buffer size in our final experimental
evaluations, which are performed using synthesized software from FORMLESS
models in Sect. 4.3.5.

4.3.5 Experimental Evaluation

4.3.5.1 Application Case Studies

To demonstrate the merits of our idea, we experiment with low-density parity check
(LDPC), advanced encryption standard (AES), fast Fourier transform (FFT), matrix
multiplication (MMUL), and parallel merge sort (SORT).

Low-Density Parity Check: A regular LDPC code is characterized by an M � N
parity check matrix, called the H matrix. N defines the code length and M is the
number of parity-check constraints on the code (Fig. 4.17a). Based on matrix H,
a Tanner graph is defined which has M check nodes and N variable nodes. Each
check node Ci corresponds to row i in H and each variable node Vj corresponds to
column j. A check node Ci is connected to Vj if Hij is one (Fig. 4.17b). The input
data is fed to the variable nodes, and after processing goes to the check nodes and
again back to the variable nodes. This process repeats R times, where R depends on
the specific application of the LDPC code. In practice, the H matrix has hundreds
or thousands of rows and columns, and therefore, given the complexity of edges in
the Tanner graph, we decided not to use this graph as the task graph for software
implementation. In fact, direct hardware implementation of the Tanner graph is also
not desired because a huge portion of the chip area would be wasted for routing
resources [29].

118 M. Hashemi et al.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

1

2

3

4

5

0 0 1 0 1 0 0 1 0 1 0 0 C
1 0 0 0 1 0 0 0 1 0 1 0 C
0 1 0 0 0 1 1 0 0 0 1 0 C
0 0 1 1 0 0 1 0 0 0 0 1 C
1 0 0 0 0 1 0 1 0 0 0 1 C
0 1 0 1 0 0 0 0 1 1 0 0 C 6

(b)(a)

(c)

(d)

V1-12 C1-6

unrolled 6 times
(e) V1-6 C’1-6

C”1-6V7-12

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

C1 C2 C3 C4 C5 C6

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

C’1 C’3C’2 C’4 C’6C’5 C”1 C”3C”2 C”4 C”6C”5

Fig. 4.17 LDPC application: (a) Sample H matrix. (b) Tanner graph. (c) Task graph. Row-Split
LDPC based on [29]: (d) Tanner graph. (e) Task graph

We construct the task graph in the following manner. The variable and check
nodes are collapsed into single nodes, and subsequently, the graph is unrolled
R times (Fig. 4.17c). We experiment with the LDPC code used in 10GBASE-T
standard, where the matrix size is 384 � 2048 and R D 6.

In order to have a malleable specification, we decided to employ the Row-
Split method which is a low-complexity message-passing LDPC algorithm and is
originally developed for hardware implementation [29]. In this method, in order to
reduce the complexity of the edges, the Tanner graph is generated while the rows
are split by a factor of
 D 2, 4, 8, or 16. As shown in Fig. 4.17d for
 D 2, the
variable nodes are divided into
 D 2 groups, V1; : : : ; V N

2
and V N

2
; : : : ; VN , and each

check node Ci is split into
 D 2 nodes C0i and C00i . The corresponding task graph
is shown in Fig. 4.17e, where additional synchronization nodes are required for the
check nodes. Interested readers may refer to [29] for further details.

Advanced Encryption Standard: The AES is a symmetric encryption/decryption
application which performs a few rounds of transformations on an stream of 128-bit
data (4 � 4 array of bytes). The number of rounds depends on the length of the key
which is 10 for 128-bit keys. As shown in Fig. 4.18a, the task graph for the AES
cipher consists of four basic tasks called sub, shf, mix, and ark. Task sub is a
nonlinear byte substitution which replaces each byte with another byte according to
a precomputed substitution box. In shf, every row r in the 4 � 4 array is cyclically
shifted by r bytes to the left. Task mix views each column as a polynomial x, and
calculates modulo x4 C 1. Task ark adds a round key to all bytes in the array using
XOR operation. The round keys are precomputed and are different for each of the
ten rounds.

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 119

ark sub shf mix ark sub shf ark…
1616

repeated 9 times

ark

sub

shf
mix ark ark…

16 16

sub

sub

sub

shf

4
8

4 sub

shfsub

sub

sub

shf

4
8

4

16 16 16 16 16 16 16 16

16

repeated 9 times

(a)

(b)

Fig. 4.18 AES: (a) ˆ D .1; 1; 1; 1/ (b) ˆ D .4; 2; 1; 1/

(c)(a)
radix-4

radix-2
(b)

Fig. 4.19 (a) Radix-2 and radix-4 butterfly tasks. (b) 16-point FFT application with radix-4
butterfly tasks. (c) The same FFT computed with radix-2

Therefore, tasks sub and ark can be parallelized over all elements of the array,
and task shf only over the four rows, and task mix only over the four columns. We
constructed the FORMLESS task graph with four parameters.
1,
2, and
4 control
the number of rows that the array is divided into for the sub, shf, and ark tasks.
Parameter
3 controls the number of columns that the array is divided into for the
mix task. For example, the task graph of Fig. 4.18b is formed by ˆ D .4; 2; 1; 1/.

Fast Fourier Transform: Fourier transform of an input array is an array of
the same size. Fast Fourier Transform (FFT), an efficient algorithm for this
computation, is performed using a number of basic butterfly tasks connected in a
dataflow network. The basic butterfly operation calculates Fourier of two inputs
and is called a radix-2 butterfly. In general, however, FFT can be calculated using
butterfly operations with radices other than 2, although typically powers of 2 are
used.

120 M. Hashemi et al.

A2

A B B1

A3

CA1 A2 x B1 = C21
(a)

B2 C11 C12

C31 C32

C21 C22 B
scatter

copy

A matrix
multiply

A2
A1

A3

(b)

gather

C

B1 B2

x =

Fig. 4.20 Matrix multiply: (a) Block operations for ˆ D .3; 2/. (b) Task graph formed with
ˆ D .3; 2/

Fig. 4.21 Parallel merge
sort: (a) ˆ D .1; 2/, (b)
ˆ D .3; 3/, (c) ˆ D .4; 2/

(a) (c)

N/4
merge

split

sort

N

N
N/3

(b)

N/2

N/4

N/2

An N-point radix-r FFT uses a dataflow network of radix-r butterfly tasks. This
network is organized in logN

r stages each containing N
r butterfly tasks. Figure 4.19b

shows the structure of the dataflow network for a 16-point FFT application using
radix-4 butterfly tasks. Figure 4.19c shows the same computation performed using
radix-2 butterflies. Since the computation of FFT is independent of the choice of
radix, we define our FORMLESS model for FFT based on a forming parameter

1 which is the radix. The radix determines structure of the task graph as well as
inter-task data communication rates.

Matrix Multiply: The objective is to calculate A � B D C. A block (submatrix)
of C can be calculated by multiplying the corresponding blocks of matrix A and B.
Adjusting the block size in C trades off the degree of concurrency among operations
with the required amount of data replication and movement. Therefore, we construct
a FORMLESS task graph with two parameters
1 and
2 that control the number
of row and column blocks that matrices A and B are divided into. The task graph of
Fig. 4.20b is formed by ˆ D .3; 2/.

Parallel Merge Sort: A forming parameter
1 controls the number of parallel sort
actors, and a parameter
2 controls the fanout and fanin degree of the split and merge
actors (Fig. 4.21). The value of
1 should be an integer power of
2 to generate a
valid task graph, i.e.,
1 D
n

2 ; n 	 0.

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 121

Benchmark Vector Φ Domain of Φ
LDPC (φ1) δ1 = {1, 2, 4, 8, 16}
AES (φ1,...,φ4) δ1 = ... = δ4 = {1,2,4}
FFT (φ1) δ1 = {2, 4}

SORT (φ1,φ2) δ1 = {1, 2, 3, 4, 8, 9, 16, 27},δ2 = {2,3}
MMUL (φ1,φ2) δ1 = δ2 = {1,..., 10}

Fig. 4.22 The domain of the forming parameters in our benchmark applications

The domains of the forming vectors used in experimenting the above applications
are shown in Fig. 4.22. For example in the AES application, each of the four forming
parameters can be 1, 2, or 4.

4.3.5.2 Experiment Setup

We implemented both FORMLESS design space exploration and baseline software
synthesis schemes (Fig. 4.16). For a given number of processors, P, within the range
of 1 to 100, an optimized task graph G.ˆopt/ is constructed, and subsequently,
parallel software modules (separate .C files) are synthesized for this task graph.

We consider the following FPGA-prototyped multiprocessor system for through-
put measurement of the synthesized software modules. Each processor is an Altera
NiosII/f core with 8 kB instruction cache and 64 kB data cache. The communication
network is a mesh which connects the neighbor processors with FIFO channels of
depth 1024. The processors use a shared DDR2-800 memory, but they only access
their own region in this memory, i.e., they communicate only through the FIFO
channels. The compiler is gcc in Altera NiosII IDE with optimization flag -O2.

Due to limited FPGA capacity, we were able to implement the above architecture
with up to eight cores. For more number of cores, we employ our previously
developed Sequential Execution Abstraction Model (SEAM), which is cycle-
accurate in simulating the effect of interprocessor communication (e.g., blocks
on empty or full buffers), and also accurately predicts any deadlock situation.
We previously confirmed SEAM’s accuracy by comparing it with smaller scale
multiprocessor systems that we could prototype in FPGA [19, 25].

4.3.5.3 Measurement Results

We compare the throughput of the best instantiated task graph, i.e., G.ˆopt/,
with the throughput of rigid task graphs. Figure 4.23 presents the application
throughput normalized relative to single-core throughput. The black curves show the
throughput values obtained through SEAM simulations from synthesized parallel

122 M. Hashemi et al.

Fig. 4.23 Application
throughput on manycore
platforms normalized with
respect to single-core
throughput. The black curve
shows the throughput
obtained from DSE
instantiated task graphs. The
gray curves show the
throughput of sample rigid
task graphs

LDPC
SEAM

rigid graph
=(4)FPGA

0

10

20

30

40

No
rm

ali
ze

d T
hr

ou
gh

pu
t

AES

SEAM

rigid graph
=(2,2,1,2)FPGA

0

10

20

30

40

No
rm

ali
ze

d T
hr

ou
gh

pu
t

FFT

SEAM

rigid graph
=(4)

FPGA

0

5

10

15

20

25

No
rm

ali
ze

d T
hr

ou
gh

pu
t

SORT

SEAM

rigid graph
=(3,3)

FP
GA

0
1

2
3
4

5
6

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

No
rm

ali
ze

d T
hr

ou
gh

pu
t

MMUL

SEAM

rigid graph
=(5,5)FPGA

0

10

20

30

40

number of cores

No
rm

ali
ze

d T
hr

ou
gh

pu
t

0 20 40 60 80 100

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 123

implementations, and the 8 black squares show the throughput measured on
the FPGA prototype for systems up to eight processors. The gray curves show
throughput of a few rigid task graphs selected.

The experiments show that rigid task graphs have a limited scope of efficient
portability and scalability with respect to number of processors. For example, an
LDPC rigid task graph constructed with forming vector ˆ D .4/ does not scale
beyond 40 processors. Note that a rigid task graph which scales to large number
of processors does not necessarily yields the best throughput in smaller number of
processors. For example, an AES rigid task graph constructed with ˆ D .2; 2; 1; 2/

only yields the highest throughput for 90 or more processors. For a single processor,
this rigid task graph yields 74 % of the best instantiated task graph.

Similar scenarios happen in all benchmark case studies. Each forming vector ˆ

yields the highest throughput only for a range of targets. In other words, throughput
of the best instantiated task graph consistently beats the throughput of any rigid task
graph. This result validates the effectiveness of FORMLESS in extending the scope
of efficient portability and scalability with respect to number of cores.

It is interesting to see that, for example, in the matrix multiply application
ˆ D .5; 5/ is not selected for the 25-core target. Instead, the DSE tool selected
ˆ D .6; 4/ which has 24 multiply tasks. This forming set is not intuitive because
one would normally split the multiplication workload into an array of 5 � 5 D 25

multiply tasks for 25 cores. The DSE tool considers the effect of smaller tasks (e.g.,
split tasks), and the communication-induced workloads as well. This again proves
that an automated tool outperforms manual task graph formation. However, the
DSE is able to scale performance only if the programmer has provided meaningful
parallelism. For example, in the SORT application, a larger value for the forming
parameter
1 results in more parallel sort tasks, but the performance does not scale
beyond 13 processors because the workload of the terminal merge stage, which is
not parallelizable through FORMLESS, becomes the bottleneck.

Figure 4.23 can also be used to determine a reasonable target size, i.e., the
number of processors, for each application. For example, in the AES application,
more than 40 processors do not yield a throughput gain unless we have at least 50

processors.

4.4 Related Work

Many previous analysis algorithms [2, 16, 31, 40, 41] are solely based on SDF
operational semantics in analyzing interprocessor token transfer, i.e., they do not
consider the sequential nature of interprocessor token transfer which exists in the
underlying implementation.

To increase accuracy in throughput analysis, Moonen et al. [30] proposed to
construct a cyclo-static dataflow (CSDF) graph from the given SDF graph by
splitting the computation of an SDF task into multiple phases (white box actor
model). Our proposed technique in Sect. 4.2, however, focuses on accurate modeling

124 M. Hashemi et al.

of token production and consumption order (black box actor model), and does not
require manual decomposition of task computation.

Oh and Ha [33] proposed a fractional rate model to reduce the buffer size
requirement. For applications that work on large blocks of data, e.g., video frames,
the dataflow graph is manually transformed into another graph in which actors
operate on smaller pieces of data, e.g., one row of a video frame. As a result the
buffer requirement is reduced (white box actor model). Our proposed technique in
Sect. 4.2 does not require modification of tasks’ functional behavior, and treats them
as unknown black boxes.

Unfolding an SDF graph [15] is to construct a larger SDF which consists of multi-
ple copies of the original graph. The unfolded SDF has the same functional behavior
while expressing more parallelism. This technique can be employed to scale the
throughput to manycore systems with larger number of cores. Another technique
which also preserves the functional behavior and expresses more parallelism is to
convert the input SDF graph to HSDF [15]. The FORMLESS approach introduced
in Sect. 4.3 is orthogonal to such techniques and can be applied in parallel with
unfolding or conversion to HSDF.

A number of dataflow extensions such as parameterized dataflow [7], scenario-
aware dataflow [44], variable-rate dataflow [48], and schedulable parametric
dataflow [14] primarily focus on specifications which enable different static
and/or dynamic dataflow behaviors based on the parameters. The focus in Sect. 4.3,
however, is to specify different possible implementations for the same application
behavior, in order to achieve scaling of throughput with respect to the number of
processors. We are able to employ a rich set of programming constructs to specify
many aspects of the SDF graph based on the forming parameters (Sect. 4.3.4.2).
For example, not only the production/consumption port rates but also the number
of ports for each task can be specified based on the parameters.

StreamIt compiler [17] automatically detects stateless filters (data-parallel tasks)
and judicially parallelizes them in order to achieve better workload balance and
hence scaling of performance. This approach provides some level of malleability,
but it is limited to data-parallel tasks because it fully relies on the compiler’s ability
to detect malleable sections in the application. In CUDA, scaling of performance
is achieved by specifying the application with as much parallelism as practically
possible. At runtime, an online scheduler has access to a pool of threads from
which the non-blocked threads are selected and executed on available cores [32].
This enables the scaling of performance to newer devices with larger number of
processors. In MPI, the programmer may describe the amount of parallelism based
on a set of parameters such as the number of available or idle cores. However, since
the data rate of communications among MPI processes are not necessarily known at
compile time, the allocation and scheduling of the processes are performed by the
operating system at runtime.

Our proposed technique in Sect. 4.3 requires the programmer to provide a
malleable specification, and also, employs compiler optimizations to select the best
SDF graph based on the malleable specification at compile time.

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 125

4.5 Conclusion

We reported two case studies that highlight the potential gap between implemen-
tation attributes and those obtained from SDF graph specifications. Specifically,
we presented arguments and experiments to demonstrate the weakness of SDF
graph-based analysis and synthesis schemes when it comes to optimization of
streaming throughput. We discussed the inaccuracy in estimation and the limitation
in scaling of streaming throughput, in the context of parallel software synthesis from
SDF graphs targeting embedded distributed-memory MPSoCs. Furthermore, we
proposed platform-driven extensions to the SDF specification model that alleviate
the identified issues. Empirical evaluations confirmed the effectiveness of proposed
solutions in improving SDF model fidelity [3, 23].

References

1. M. Ade, R. Lauwereins, J. Peperstraete, Data memory minimisation for synchronous data flow
graphs emulated on DSP-FPGA targets, in Design Automation Conference, 1997

2. M.A. Bamakhrama, T.P. Stefanov, On the hard-real-time scheduling of embedded streaming
applications. Des. Autom. Embed. Syst. Springer Netherlands, 17(2), 221–249 (2012)

3. K.M. Barijough, M. Hashemi, V. Khibin, S. Ghiasi, Implementation-aware model analysis: the
case of buffer-throughput tradeoff in streaming applications, in Proceedings of the Conference
on Languages, Compilers, and Tools for Embedded Systems, 2015, p. 11

4. S.S. Battacharyya, E.A. Lee, P.K. Murthy, Software Synthesis from Dataflow Graphs (Kluwer,
Boston, 1996)

5. S. Bell et al., Tile64 - processor: a 64-core soc with mesh interconnect, in International Solid-
State Circuits Conference, 2008

6. Benchmarks, http://sharif.edu/~matin and http://leps.ece.ucdavis.edu
7. B. Bhattacharya, S. Bhattacharyya, Parameterized dataflow modeling for DSP systems. IEEE

Trans. Signal Process. 49(10), 2408–2421 (2001)
8. S.S. Bhattacharyya, P.K. Murthy, E.A. Lee, Software Synthesis from Dataflow Graphs

(Springer, Berlin, 1996)
9. J.A. Cataldo, The power of higher-order composition languages in system design. Ph.D. thesis,

University of California, Berkeley, 2006
10. J.-L. Colaço, A. Girault, G. Hamon, M. Pouzet, Towards a higher-order synchronous data-flow

language, in International Conference on Embedded Software, 2004, pp. 230–239
11. M.H. Foroozannejad, M. Hashemi, T.L. Hodges, S. Ghiasi, Look into details: the benefits

of fine-grain streaming buffer analysis, in Proceedings of the Conference on Languages,
Compilers, and Tools for Embedded Systems, 2010, pp. 27–36

12. M.H. Foroozannejad, T. Hodges, M. Hashemi, S. Ghiasi, Postscheduling buffer management
trade-offs in streaming software synthesis. ACM Trans. Des. Autom. Electron. Syst. 17(3), 27
(2012)

13. M.H. Foroozannejad, M. Hashemi, A. Mahini, B.M. Baas, S. Ghiasi, Time-scalable mapping
for circuit-switched gals chip multiprocessor platforms. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 33(5), 752–762 (2014)

14. P. Fradet, A. Girault, P. Poplavko, A schedulable parametric data-flow MoC, in Proceedings of
the Conference on Design Automation and Test in Europe, 2012

15. M. Geilen, Reduction techniques for synchronous dataflow graphs, in Design Automation
Conference, 2009

http://sharif.edu/~matin
http://leps.ece.ucdavis.edu

126 M. Hashemi et al.

16. A.H. Ghamarian et al., Throughput analysis of synchronous data flow graphs, in International
Conference on Application of Concurrency to System Design, 2006

17. M. Gordon, Compiler techniques for scalable performance of stream programs on multicore
architectures. Ph.D. thesis, Massachusetts Institute of Technology, 2010

18. Graphite, http://graphite.csail.mit.edu
19. M. Hashemi, Automated software synthesis for streaming applications on embedded manycore

processors. PhD thesis, University of California, Davis, 2011
20. M. Hashemi, S. Ghiasi, Exact and approximate task assignment algorithms for pipelined

software synthesis, in Proceedings of the Conference on Design Automation and Test in Europe,
2008, pp. 746–751

21. M. Hashemi, S. Ghiasi, Throughput-driven synthesis of embedded software for pipelined
execution on multicore architectures. ACM Trans. Embed. Comput. Syst. 8, 11 (2009)

22. M. Hashemi, S. Ghiasi, Versatile task assignment for heterogeneous soft dual-processor
platforms. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(3) (2010)

23. M. Hashemi, M.H. Foroozannejad, S. Ghiasi, C. Etzel, Formless: Scalable utilization of embed-
ded manycores in streaming applications, in Proceedings of the Conference on Languages,
Compilers, and Tools for Embedded Systems, 2012, pp. 71–78

24. M. Hashemi, M.H. Foroozannejad, S. Ghiasi, Throughput-memory footprint trade-off in
synthesis of streaming software on embedded multiprocessors. ACM Trans. Embed. Comput.
Syst. 13(3) (2013)

25. P.-K. Huang, M. Hashemi, S. Ghiasi, System-level performance estimation for application-
specific MPSoC interconnect synthesis, in Proceedings of the 2008 Symposium on Application
Specific Processors, 2008, pp. 95–100

26. G. Karypis, V. Kumar, METIS 4.0: unstructured graph partitioning and sparse matrix ordering
system. Technical Report, Department of Computer Science. University of Minnesota, Min-
neapolis, 1998

27. E.A. Lee, D.G. Messerschmitt, Static scheduling of synchronous data flow programs for digital
signal processing. IEEE Trans. Comput. 36, 24–35 (1987)

28. E.A. Lee, D.G. Messerschmitt, Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)
29. T. Mohsenin, D. Truong, B. Baas, Multi-split-row threshold decoding implementations for

LDPC codes, in International Symposium on Circuits and Systems, 2009
30. A. Moonen et al., Practical and accurate throughput analysis with the cyclo static dataflow

model, in International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2007

31. O.M. Moreira, M.J. Bekooij, Self-timed scheduling analysis for real-time applications.
EURASIP J. Adv. Signal Process. 2007, 14 (2007)

32. J. Nickolls et al., Scalable parallel programming with CUDA. ACM Queue 6, 40–53 (2008)
33. H. Oh, S. Ha, Fractional rate dataflow model for efficient code synthesis. J. VLSI Signal

Process. Syst. Signal Image Video Technol. 37(1), 41–51 (2004)
34. J.D. Owens, U.J. Kapasi, P. Mattson, B. Towles, B. Serebrin, S. Rixner, W.J. Dally, Media

processing applications on the imagine stream processor, in International Conference on
Computer Design, 2002, pp. 295–302 .

35. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation (Wiley, New
York, 2008)

36. A. Pinto, A. Bonivento, A.L. Sangiovanni-Vincentelli, R. Passerone, M. Sgroi, System level
design paradigms: Platform-based design and communication synthesis. ACM Trans. Des.
Autom. Electron. Syst. 11(3), 537–563 (2006)

37. A. Sangiovanni-Vincentelli, G. Martin, A vision for embedded systems: platform-based design
and software methodology. Des. Test Comput. 18(6), 23–33 (2001)

38. A. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, M. Sgroi, Benefits and challenges
for platform-based design, in Design Automation Conference, 2004. Proceedings. 41st, 2004,
pp. 409–414

39. SDF3, http://www.es.ele.tue.nl/sdf3

http://graphite.csail.mit.edu
http://www.es.ele.tue.nl/sdf3

4 Throughput-Driven Parallel Embedded Software Synthesis. . . 127

40. S. Stuijk, Predictable mapping of streaming applications on multiprocessors. Ph.D. thesis,
Eindhoven University of Technology, The Netherlands, 2007

41. S. Stuijk et al., Exploring trade-offs in buffer requirements and throughput constraints for
synchronous dataflow graphs, in Design Automation Conference, 2006

42. S. Stuijk, M. Geilen, T. Basten, Throughput-buffering trade-off exploration for cyclo-static and
synchronous dataflow graphs. IEEE Trans. Comput. 57(10), (2008)

43. W. Taha, A gentle introduction to multi-stage programming. Domain-Specific Program
Generation (Springer, Berlin, 2003), pp. 30–50

44. B. Theelen et al., A scenario-aware data flow model for combined long-run average and worst-
case performance analysis, in Proceedings of the International Conference on Formal Methods
and Models in CoDesign, 2006 http://dl.acm.org/citation.cfm?id=2674331

45. W. Thies, Language and compiler support for stream programs. Ph.D. thesis, Massachusetts
Institute of Technology, 2009

46. W. Thies et al., Streamit: a language for streaming applications, in International Conference
on Compiler Construction, 2002

47. D. Truong et al., A 167-processor 65 nm computational platform with per-processor dynamic
supply voltage and dynamic clock frequency scaling, in IEEE Symposium on VLSI Circuits,
2008

48. M.H. Wiggers, M.J. Bekooij, G.J. Smit, Buffer capacity computation for throughput con-
strained streaming applications with data-dependent inter-task communication, in IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2008

49. Z. Xiao, B. Baas, 1080p h.264/avc baseline residual encoder for a fine-grained many-core
system. IEEE Trans. Circuits Syst. Video Technol. 21, 890–902 (2011)

50. Y. Zhou, E.A. Lee, A causality interface for deadlock analysis in dataflow, in International
Conference on Embedded Software, 2006, pp. 44–52

http://dl.acm.org/citation.cfm?id=2674331

Chapter 5
SimSoC: A Fast, Proven Faithful, Full System
Virtual Prototyping Framework

Vania Joloboff, Jean-François Monin, and Xiaomu Shi

5.1 Introduction

Computer modeling technologies have become powerful enough that one can build
a virtual prototype of the system under design. Virtual prototypes make it possible to
avoid the tedious and time- consuming process of making real hardware prototypes
on which the software has to be tested. They make it possible to develop an emulated
system that captures most, if not all, of the required properties of the final system.
A virtual prototype of a system under design can be run and tested like the real one,
the engineers can exercise and verify the device properties.

In many engineering projects, some components are re-used from former
projects, assembled with modified ones, or new ones. It is necessary to support
emulation of new hardware components with enough detail, integrated with existing
simulation models, possibly coming from third parties. These requirements call
for an integrated, modular, full simulation environment where already proven
components can be simulated quickly, whereas new components under design can
be tested more thoroughly. Modularity and fast prototyping are also important
aspects, to investigate alternative designs with easier re-use and integration of third
party IP’s.

V. Joloboff (�)
East China Normal University, Shanghai, China

INRIA, France
e-mail: vania.joloboff@inria.fr

J.-F. Monin
Verimag, Université Grenoble Alpes, France
e-mail: jean-francois.monin@imag.fr

X. Shi
Tsinghua University, China
e-mail: xmshi@tsinghua.edu.cn

© Springer International Publishing AG 2017
A. Molnos, C. Fabre (eds.), Model-Implementation Fidelity in Cyber
Physical System Design, DOI 10.1007/978-3-319-47307-9_5

129

mailto:vania.joloboff@inria.fr
mailto:jean-francois.monin@imag.fr
mailto:{xmshi@tsinghua.edu.cn}

130 V. Joloboff et al.

The SimSoC project is developing a framework geared towards full system
virtual prototyping, able to simulate complete System-on-Chips or boards. To this
end, SimSoC provides a library of simulation models for peripherals, interconnects,
together with Instruction Set Simulators (ISS) for the most common embedded
systems processors. Each ISS is designed as a SystemC module that issues
transactions towards the other models.

This chapter presents the overall system architecture and the SimSoC ISS.
To achieve fast processor simulation, the ISS technology uses dynamic binary
translation. The hardware models are standard SystemC TLM abstractions and the
simulator uses the standard SystemC kernel. Therefore, the simulation host can
be any commercial off-the-shelf computer and yet provide reasonable simulation
performance.

A platform simulator such as SimSoC can be used to test critical software such as
cryptography or safety related embedded software. In these situations, it is necessary
to work with the full system implementation, not only with the model specification.
It is also important to use a very faithful simulator in order to ensure that no bias
is introduced. To achieve that goal, work was undertaken to demonstrate how it can
be verified that the simulated execution of a binary program on the Instruction Set
Simulator of a target architecture indeed produces the expected results. This actually
requires several steps, to prove first that the translation from C code to machine code
is correct, and second that the simulation of the machine code is also correct, that
is, they all preserve the semantics of the source code; together with the fact that
all of these proofs are verified using a theorem prover or proof checker, not subject
to human error in the proof elaboration or verification. The end result is a faithful
simulator.

The first part of this chapter describes the generic architecture of the SimSoC
framework with discussion of speed and accuracy. It illustrates the different
simulation modes supported by SimSoC, in particular the standard interpretive
mode and the two binary dynamic translations modes. It also discusses performance
estimation obtained from simulation.

The second part of the chapter describes how a faithful, verified simulator has
been developed and proved. The technique presented here partly relies on already
existing tools, in particular the Coq proof assistant, the Compcert C compiler, a
certified compiler for the C language, combined with our own work to prove the
correctness of an ARM Instruction Set Simulator, integrated within SimSoC.

5.2 The SimSoC Framework

In order to simulate a complete hardware platform, one must simulate simulta-
neously each of the individual components, and possibly advance the clock that
represents the simulated execution time. SystemC has become the standard to repre-
sent and simulate hardware models, as it is suitable for several levels of abstraction,
from functional models to synthesizable descriptions. It is defined by an IEEE

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 131

:ad hoc:interrupt request (IRQ):TLM interface

PROCESSOR
MODEL

MMU ISS

INTERRUPT
CONTROLLER

DYNAMIC
TRANSLATOR

SIMULATED
MEMORY

TRANSLATION
CACHE M

E
M

O
R

Y
BUS

OTHER TARGET OR

INITIATOR TLM MODULES

(e.g. DMA, UART, processor, ...)

D
M

I

Fig. 5.1 SimSoC architecture

standard [18], and comes with an open-source implementation. Transactional level
modeling (TLM) refers both to a level of abstraction [14] and to the SystemC-based
library used to implement transactional models [28]. The transaction mechanism
allows a process of an initiator module to call methods exported by a target
module, thus allowing communication between TLM modules with very little
synchronization code.

SimSoC is implemented as a set of SystemC TLM modules and runs on top of the
SystemC kernel [16]. The global architecture is depicted in Fig. 5.1. The hardware
components are modeled as TLM models, therefore the SimSoC simulation is driven
by the SystemC kernel. The interconnection between components is an abstract bus.
Each component simulated in the platform is abstracted as a particular SystemC
module. Each processor in the target platform is implemented as an ISS that
executes its instructions, which may issue transactions towards other components,
while maintaining the processor state. A SimSoC ISS simulates the behavior of the
processor with instruction accuracy, not cycle accuracy. It emulates the execution of
instructions, exceptions, interrupts, and the virtual to physical memory mapping.

The main task of an ISS is to carry out the computations that correspond to
each instruction of the simulated program. There are several alternatives to achieve
such simulation. In interpretive simulation, each instruction of the target program
is fetched from memory, decoded, and executed. This technique has been used
in popular ISS’s such as Simplescalar [6]. It is flexible and easy to implement,
but the simulation speed is slow as it wastes a lot of time in decoding. A faster
technique to implement an ISS is dynamic binary cached translation. With dynamic

132 V. Joloboff et al.

Translation
Cache

Simulated
Memory

Binary
instructions

Fetch Execution
engine

Decode and
Store in Cache

Fig. 5.2 Dynamic binary translation

binary cached translation, illustrated in Fig. 5.2, the target instructions are fetched
from memory at run-time but they are decoded only on the first execution and
the simulator translates these instructions into another representation, which is
stored into a cache. On further execution of the same instructions, the translated
cached version is used. If the code is modified during run-time, the simulator must
invalidate the cached representation. Although dynamic translation introduces a
compile time phase as part of an overall simulation session, this translation latency
is amortized over time and it has been commonly used [2, 9, 31, 32, 35]. Dynamic
cached translators all work on the same model; however, translation simulators can
be subdivided into three categories according to the nature of the translated data
and its usage, which we will call here object oriented, code generators, or micro-
instructions based.

In a micro-instructions based ISS, each instruction is translated into a sequence
of pre-defined micro-instructions that are stored into the cache. These pre-defined
micro-instructions can be considered as a very low level virtual machine that is run
inside the ISS, but this virtual machine is strongly related to the way the simulated
processor state is represented inside the ISS. In order to translate each instruction,
the parameters from each micro-instruction must be extracted from the instruction
(e.g., a constant for an immediate load), and then the micro-instructions must be
glued together into a sequence. Because a whole sequence of target instructions
can be translated in a block of micro-instructions, the execution is faster and higher
simulation speed can be reached. Micro instructions can be compiled in advance
with highly optimizing compilers [3]. However, the micro-instructions must be
linked together and this process may be dependent upon target binary format and
host operating system, hence reducing portability of the ISS.

In the code generation technique, the ISS translates the target binary code into
native host code. As developing a complete compiler technology is not realistic,
the translators tend to leverage off existing compiler technology either (i) by
re-generating C code that can be dynamically recompiled for the host machine
[30], or (ii) by generating some intermediate language code for which an existing

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 133

back-end compiler is used to generate the host code [34], for example, generate
intermediate representation of the popular GCC compiler and then use GCC
back-end to generate the code. The native code generation technique provides
higher performance when executing the simulated code. Edinburgh University ISS
claims to reach performance in the range of over 400 Mips [20]. However, this
performance must be balanced with the throughput. Because dynamic translation
is more complex, it takes more time and the simulation time must be long enough
to amortize the translation time. This technology is worthwhile when the virtual
prototype tests are long enough, and sub-optimal when running very short tests.

In an object oriented ISS, the original instructions are translated into a data
structure of objects associated with function calls. Each instruction can be translated
into one object, each object captures the variable data from the instruction and is
bound to a semantic function that is called upon execution. With some optimizations
a sequence of instructions can possibly be translated into one single object, for
example, a basic block. The advantage of an object oriented ISS is that it is not
so difficult to construct. In fact using some appropriate input formalism the code of
the object classes and methods can often be generated. Using this technique, the ISS
is independent of the host operating system and independent of the host processor,
therefore easily portable. Because the semantic functions are compiled in advance,
a compiler with maximum optimizations can be used and object oriented ISS’s can
reach speed above 100 Mips on a standard PC computer running at about 3 GHz.

The second mode of SimSoC is such an object oriented ISS. In this dynamic
translation mode, the decoder dynamically constructs an intermediate representation
that maps the binary instructions to a data structure representing the program. The
decoding phase mostly amounts to allocating and initializing variables, and locating
the appropriate code from the pre-compiled library. In addition, the translator can
construct the control flow graph of the decoded software into linked basic blocks,
and achieve further optimization at block level.

This mode explores two optimization techniques. First, it offloads the compiling
work by pre-compiling most of the simulation code with maximum optimization.
Second, it exploits partial evaluation, a compiling optimization technique, also
known as specialization [13]. The basic concept of specialization is to transform a
generic program P, when operating on some data d into a faster specialized program
Pd that executes specifically for this data. Specialization can be advantageously
used in processor simulation, because data can often be computed at decoding
time, and a specialized version of the generic instruction can be used to execute
it. The simulation code then uses fewer tests, fewer memory accesses, and more
immediate instructions. This technique has been used to some extent in the IC-CS
simulator [27].

Conceptually, specializing completely the instruction set would mean that for
every possible parameter of an instruction (each bit field), there would be a special-
ized function computing the result. Potentially there are at most 232 specializations
of a 32-bit instruction set, which would lead to a huge amount of specialized code.
In practice, however, there are reserved encoding bits, many binary configurations
are illegal, and overall some instructions are more frequently executed than others.

134 V. Joloboff et al.

Fig. 5.3 ARM ADD
instruction

By specializing only the most significant parameters and the most frequently used
instructions to a higher degree than the less frequent ones, one can reduce the
number of specialized functions to a manageable amount of code.

Let us consider the example drawn from the ARM architecture ISS, the ADD
instruction, noted in assembly language as: ADD{<cond>}{S} <Rd> ,<Rn>,
<operand>. Its semantic is described in ARM Architecture Reference Man-
ual [33] shown in Fig. 5.3.

The S bit indicates whether the instruction updates the Current Process Status
Register (CPSR) or not. There are 11 addressing modes used to calculate the
operand in an ARM data-processing instruction, such as immediate, using a register,
shifted or non shifted, and so on. The operand mode and the addressing mode
are specified in the instruction, they are discovered at decoding time. In order to
maximize performance, one can use many specialized semantic functions that each
carry the very specific task discovered, instead of executing the slower generic
one. In order to test multiple specialization possibilities, SimSoC includes a
generator that can generate the specialized functions automatically based on input
specifications. For example, it can specialize the functions on the condition code,
the S bit, the operand mode, and the registers of data-processing instructions. As an
example, the generated semantic function below is the ADD instruction simulation
code when the condition code is EQ, the S bit is 0, and the operand is not shifted.

PseudoStatus add_Ceq_S0_Mreg
(Processor &proc, PseudoInstruction &pi)
{ if (!proc.cpsr.z) return OK;
uint32_t tmp = proc.regs[pi.dpi.Rn];
uint32_t opv = proc.regs[pi.dpi.Rm];
uint32_t r = tmp + opv;
proc.regs[pi.dpi.Rd] = r;
return OK; }

In interpretive mode, one function is used to implement the ADD operation. In
contrast, in the specialized mode, 330 specialized functions are used to implement
ADD corresponding to: 15 (condition code) * 2 (S bit) * 11 (operand mode).
For the experiment below [17], specialization is used to a limited extent, with
no specialization on the registers and no specialization on the condition codes.

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 135

Table 5.1 Comparison of
interpretive and dynamic
translation

D0 D1 D2

crypto.a0.x 522 s 221 s 57.6 s

arm32, no opt. 6.62 Mips 15.6 Mips 59.9 Mips

crypto.a3.x 139 s 62.2 s 11.6 s

arm32, with opt. 6.84 Mips 15.3 Mips 82.3 Mips

crypto.t0.x 1996 s 576 s 153 s

thumb, no opt. 5.01 Mips 17.3 Mips 65.4 Mips

crypto.t3.x 299 s 90.6 s 26.6 s

thumb, with opt. 5.40 Mips 17.8 Mips 60.7 Mips

loop.a0.x 18.2 s 9.26 s 1.57 s

arm32, no opt. 7.37 Mips 14.5 Mips 85.4 Mips

loop.t0.x 38.1 s 12.1 s 2.49 s

thumb, no opt. 4.84 Mips 15.2 Mips 74.1 Mips

Table 5.1 shows the speed improvement on typical benchmarks between the
interpreted mode (D0), a simple dynamic translation cache (D1), and the version
using partial interpretation (D2).

To ever increase simulation speed, a third code generation translation mode was
added to SimSoC, which uses the LLVM [22] library. LLVM is a Low Level
Virtual Machine that has been designed to serve as intermediate representation in
compilers suitable for complex optimizations. It consists in an abstract instruction
set, each instruction having well-defined semantics. An LLVM program can be
interpreted directly using the LLVM interpreter, or compiled to machine code. The
code generation can be done either with a JIT compiler or a batch compiling phase.
LLVM contains a complete set of high-level compiler optimizations, ranging from
simple scalar simplifications to complex loop transformations.

The LLVM dynamic translator in SimSoC translates on the fly target basic
blocks into LLVM functions, yet again using a pre-compiled library in LLVM
bitcode. Then one can use the existing LLVM optimizer and Just-In-Time compiler
to generate native code, as shown in Fig. 5.4. The translation time from target
code to LLVM, next from LLVM to native, can become lengthy and ultimately
defeat the speed-up in execution time. Thus, the ISS actually mixes translation
modes with a method to evaluate and select only “hot path” code so that the LLVM
translation is not systematic, but only operates on such hot paths, the remaining
code being simulated with the standard translation. This effectively provides overall
faster simulation [19].

In the native code translation mode, the translation-unit is a Basic block, a
straight sequence of code with only one entry point and only one exit, a branch
instruction at the end. By construction, all instructions from a basic block will
certainly be executed when it is entered. Each basic block can be compiled into
a linear simulation function, which allows fast translation and simulation. Below is
an example of a basic block of PowerPC instructions to be translated into an LLVM
function:

136 V. Joloboff et al.

Translation
Cache

Fig. 5.4 Dynamic binary translation to native code with LLVM

addis r9, r0, 385
lwz r0, 1076 (r9)
or r1, r0, r0
bl 0xffffff70

To translate a basic block to LLVM, the translator creates an LLVM function,
containing a single LLVM block entry. This LLVM function has a parameter
%proc that holds the processor state. Then, for each instruction, it generates a call
to the corresponding execution function, which must be defined by existing LLVM
code. The implementations of these LLVM functions are stored in an LLVM bitcode
library, whose generation is explained below. For example, the instructions addis
and lwz are translated to specialized llvm function calls to corresponding functions
addis_ra0 and lwz_raS. Each instruction is followed by a function call to
update the value of the PC register. The status returned by an execution function
tells whether a branch has occurred; by definition, all status but the last tell that no
branch occurred. Thus, the basic block above is translated to the following LLVM
function.

define void @bb_687 (%"struct.Proc"* %proc) {
entry:
%status = call i32 @addis_ra0(%"struct.

Proc"* %proc, i8 9, i32 385)
call void @inc_pc(%"struct.Proc"* %proc)
%status1 = call i32 @lwz_raS(%"struct.

Proc"* %proc, i8 0, i8 9, i32 1076)
call void @inc_pc(%"struct.Proc"* %proc)
%status2 = call i32 @or(%"struct.

Proc"* %proc, i8 0, i8 1, i8 0)
call void @inc_pc(%"struct.Proc"* %proc)

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 137

%status3 = call i32 @bl(%"struct.
Proc"* %proc, i32 -144)

call void @inc_pc_if_no_branch(i32 %status3,
%"struct.Proc"* %proc)

ret void
}

When a basic block has been constructed, one can use LLVM optimization
functions at will. In particular, the AlwaysInline optimization is systematically
called first so that all the code of the execution functions is actually inlined, and thus
available for further optimizations. Next, other optimizations can be accomplished.
For example, LLVM will reduce the K successive calls to inc_pc() inlined
functions into a single addition of K � 4 to the PC when the PC variable is
never read. In general, after the AlwaysInline pass, the LLVM optimization
passes named GVNPass, InstructionCombiningPass, CFGSimplificationPass, and
DeadStoreEliminationPass are also applied.

After the LLVM optimization passes, the LLVM JIT compiler is used to compile
LLVM bitcode into host binary code. Then the instruction cache is updated so that
the native code is called instead of the simulation function. As it is much easier
to write CCC code than LLVM bitcode, to obtain the LLVM library, a library of
CCC functions is compiled into an LLVM bitcode library prior to simulation. As
an example, here is the CCC code implementing the PowerPC add instruction:

extern "C" PseudoStatus ppc_add
(Proc &proc, u8 rt, u8 ra, u8 rb) {

const uint32_t a = proc.cpu.gpr[ra];
const uint32_t b = proc.cpu.gpr[rb];
proc.cpu.gpr[rt] = a+b;
return OK;

}

And here is the LLVM bitcode generated by llvm-g++:

define i32 @ppc_add(%"struct.Proc"* nocapture
%proc, i8 zeroext %rt, i8 zeroext %ra,

i8 zeroext %rb) nounwind {
entry:
%0 = zext i8 %ra to i64;
%1 = geteleptr inbounds %"struct.Proc"*

%proc, i64 0, i32 2, i32 4, i64 %0;
%2 = load i32* %1, align 4;
%3 = zext i8 %rb to i64;
%4 = geteleptr inbounds %"struct.Proc"*

%proc, i64 0, i32 2, i32 4, i64 %3;
%5 = load i32* %4, align 4;
%6 = add i32 %5, %2;
%7 = zext i8 %rt to i64;

138 V. Joloboff et al.

%8 = geteleptr inbounds %"struct.Proc"*
%proc, i64 0, i32 2, i32 4, i64 %7;

store i32 %6, i32* %8, align 4
ret i32 0

}

Another translation mode with larger translation units has also been experi-
mented, by dynamically determining strongly coupled basic blocks in the control
flow graph. Finally, in order to benefit from multi-core simulation hosts, a dis-
tributed dynamic translation mechanism has been experimented. In that configu-
ration, the native code translation is achieved by a separate dynamic translation
server, that runs concurrently with the ISS on other processors. This work has been
described in [37].

5.2.1 Performance Estimate

SimSoC version released in open source is Loosely Timed. It advances the clock
using the quantum method. Each instruction is assumed to execute in some time,
which defaults to a constant time. Each quantum of N instructions (a parameter) the
clock is advanced by the amount of execution time for that quantum. This method
makes it possible to run application software with timers and have some idea of
the software performance, but it cannot be used for worse case analysis or fine
grain performance estimates. However many applications want to have performance
estimates.

As cycle accurate simulators are much too slow to be usable in an iterative,
agile, development cycle, people have seeked other solution to obtain performance
estimates. Attention has turned towards sampling, in which a few chunks of code
sequences are selected and analyzed. Then statistical methods are used to generate
performance estimates. Popular representatives of sampling methods are Simpoint
[15], SMARTS [36], and EXPERT [25]. These systems differ mostly in the manner
the samples are selected, in size and frequency. Sampling techniques can provide
fairly accurate performance prediction with a high probability but may also generate
very large data files, and face the issue of initializing state before running the sample.

The idea of “Approximately Timed” is to provide estimates while running
entirely the code, not using statistical methods, by exercising abstract models of
the architecture, but with a simulation speed that is an order of magnitude faster
than a cycle accurate one, yet obtaining measurements that are less than a bounded
margin error from the real hardware performance.

Modern processors have complex architectures. They can execute theoretically
a certain number of instructions per clock cycle. There are, however, several cases
where the instruction flow is disrupted, introducing delays in the computation. Well-
known causes of delays are

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 139

• There are cache misses. Either data cache miss, or the next instruction to be
executed is not available.

• The pipe line is stalled. Instructions are executed in a pipe line to achieve multiple
operations in each pipe line issue on each clock cycle, but the pipe line may get
stalled in some circumstances.

• There are wait states because of communication with peripherals.

Approximately Timed simulation has been explored in the SimSoC project,
with the idea to simulate enough of the processes causing the delays to estimate
them, though not simulating the exact hardware processes of the caches and pipe
line and I/Os. The approach consists in developing a higher abstraction model
of the processor (than the CA models) that still execute instructions using fast
SystemC/TLM code, but in parallel maintains some architecture state to measure
the delays introduced by cache misses and pipe line stalls. These models do not
mimic the architecture, they only measure the delays. A case study has been done
with a model of the instruction cache and the data cache and the pipe line, for a
sample of a Power architecture processor (e200). Our method consists in evaluating
the delays with the following approach:

• approximate the delays created by the instruction cache misses, and (pre)fetches.
A cache simulator has been implemented that does not simulate the specific
hardware architecture cache in detail, but uses an algorithm that reproduces the
cache behavior to tell whether there is a cache hit or miss. The instruction buffer
is also simulated in an abstract way so that we can compute whether or not the
pipe line is fed with instructions.

• build a model of the pipe line architecture that makes it possible to evaluate
delays without reproducing in detail the hardware behavior.

• evaluate with a high precision the most frequently executed code (the hot blocks),
and use a lower precision for the code that is rarely used (the cold blocks).

• perform a static analysis of basic blocks only once, assuming that future
execution of these blocks will approximately take the same number of cycles
(except for the cache misses).

• rely on Transaction Level Modeling interface to obtain I/O delays. The delays
related to bus arbitration and interconnect access can be captured by TLM
transactions as of the TLM 2 standard. A SimSoC ISS relies upon TLM interface
to the interconnect to provide timing delays.

This Approximately Timed method purposedly makes errors at least on the
following points:

• instruction prefetch is not computed exactly at the same time as the prefetch in
the real hardware. In this method the effect of prefetch is computed at block
level. For example, it may be the case that at the time of a real prefetch,
the interconnect is busy working for other components such as peripherals or
coprocessors. In our simulation, the components will use the interconnect but
may be at a different time (may be the same, by chance) therefore the delay
returned by the interconnect interface is not the real delay that will occur.

140 V. Joloboff et al.

• the same is true for memory reads and writes. The cache simulation does not
simulate exactly the hardware cache. It only knows when there is cache miss and
then generates a transaction. As the interconnect is not solicited at the same time
in the simulation than in the real chip, there is a possible error.

• Additional delays introduced by variable length instructions like multiply and
divide are ignored. A constant average factor is used.

• As mentioned above, the simulator does not maintain an accurate state of the
micro-architecture, there are loopholes in the transition between basic blocks.

This has resulted in good approximation while reducing the simulation speed in
acceptable manner for the Power e200 processor model used in our case study. For
the software developers who want to quickly compare various software/hardware
implementations, fixing all of these error sources would take a very significant sim-
ulation overhead, whereas the error introduced fits in the approximation objectives.

5.3 Faithful Simulation

5.3.1 Objective

In many applications nowadays, virtual prototyping is used to design, develop, and
test new applications. Most of these virtual prototypes include an Instruction Set
Simulator (ISS) to simulate the target processor. The ISS runs the target executable
binary code in emulating the hardware and generates the outputs that the executable
should produce when run on the target platform. An ISS can be used, for example,
to optimize algorithms such as cryptographic software, or to debug new compiler
developments, or in the design of many embedded systems applications. Instead of
using real hardware prototypes, simulated platforms are more convenient and less
expensive. Then, it is important to be sure that the simulator used is faithful to the
hardware that it emulates. A faithful ISS must produce exactly the same results as
the executable would if run on hardware implementation of the instruction set, and
this guarantee must be proven.

We have started a first attempt to formally verify that the execution of a program
on our Instruction Set Simulator for the target ARM architecture indeed produces
the expected results, to be certain that the data output from the simulator, the final
processor and memory states are indeed identical to the result obtained with the
real hardware. This requires sequential steps, to prove first that the translation from
the C code of the simulator to the simulation machine is correct, and second that
the simulation of the target machine code is also correct, that is, it preserves the
semantics of the computer architecture, together with the fact that all of these proofs
are verified using a theorem prover, or proof checker, not subject to human error in
the proof elaboration or verification.

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 141

The sections below are organized as follows. Section 5.3.2 provides the formal
verification background in our context. Section 5.3.3 describes the tools that have
been used, in particular the Compcert C compiler, a certified compiler for the C
language, and the Coq proof assistant. The proof structure presented afterwards
sketches our contribution to prove the correctness of an ARM Instruction Set
Simulator. In summary, the method consists in proving each instruction of the
instruction set independently, by proving that the execution of the C code simulating
an instruction yields identical result to that obtained by a formal executable model
of the architecture.

Each independent proof requires using a number of lemmas from a generic
lemmas library and usage of a new inversion tactics in the theorem prover. Finally,
our conclusion mentions lessons learned and directions for future work.

5.3.2 Formal Verification Background

Program certification has to be based on a formal model of the program under study.
Such a formal model is itself derived from a formal semantics of the programming
language. Axiomatic semantics and Hoare logic have been widely used for proving
the correctness of programs. For imperative programming languages such as
C, a possible approach is to consider tools based on axiomatic semantics, like
Frama-C [8], a framework for a set of interoperable program analyzers for C.
Most of the modules integrated inside rely on ACSL (ANSI/ISO C Specification
Language), a specification language based on an axiomatic semantics for C.

Frama-C software leverages off from Why technology [5, 11], a platform for
deductive program verification, which is an implementation of Dijkstra’s calculus
of weakest preconditions. Why compiles annotated C code into an intermediate
language. The result is given as input to the VC (Verification Conditions) generator,
which produces formulas to be sent to both automatic provers or interactive provers
like Coq.

In our case of verifying an instruction set implementation, one has to deal
with a very large specification including complex features of the C language. A
framework is required that is rich enough to make the specification manageable,
using abstraction mechanisms for instance, and in which an accurate definition of
C features is available. To verify specific properties referring to a formal definition
of the ARM architecture, operational semantics offer a more concrete approach to
program semantics as it is based on states. The behavior of a piece of program
corresponds to a transition between abstract states. This transition relation makes
it possible to define the execution of programs by a mathematical computation
relation. This approach is quite convenient for proving the correctness of compilers,
using operational semantics for the source and target languages (and, possibly
intermediate languages).

142 V. Joloboff et al.

Operational semantics are used in CompCert (described below) to define
the execution of C programs, or more precisely programs in the subset of C
considered by the CompCert project. The work presented in this paper is based
on this approach. Interesting examples are given by Brian Campbell in the CerCo
project [7], in order to show that the evaluation order constraints in C are lax and
not uniform.

A very significant verification work has been done to prove the SEL4 operating
system [21]. It is comparable to our work in that they have considered a C
implementation. The main difference is that they have not considered operational
semantics of C, but deduced the proof obligations from the C code, considering the
compiler and the architecture as correct. In our work, we believe that the subset of
C accepted by CompCert is even larger than the subset accepted in SEL4.

Regarding formalization and proofs related to an instruction set, a Java byte code
verifier has been proved by Cornelia Pusch [29], the Power architecture semantics
has been formally specified in [1], and closer to our work, the computer science
laboratory in Cambridge University has used HOL4 to formalize the instruction
set architecture of ARM [12]. The objective of their work was to verify an
implementation of the ARM architecture with logical gates, whereas we consider
an ARM architecture simulator coded in C. Reusing the work done at Cambridge
in [12] was considered. But, because our approach requires a certified C compiler,
in this case CompCert C, which is itself coded in Coq, it would have required us
to translate all of the C operational semantics as well, which would have been error
prone, not to mention the very large effort. It was more convenient to develop our
formal model and our proofs in Coq.

5.3.3 Background Tools

The formal verification of the ISS is achieved by using two other existing software
tools that have been themselves verified, namely Coq and CompCert C.

5.3.3.1 Coq

Coq [4] is an interactive theorem prover, implemented in OCaml. It allows
the expression of mathematical assertions, mechanically checks proofs of these
assertions, helps to discover formal proofs, and may extract a certified program
from the constructive proof of its formal specification. Coq can also be presented as
a dependently typed �-calculus (or functional language). For a detailed presentation,
the reader can consult [10] or [4]. Coq proofs are typed functions and checking the
correctness of a proof boils down to type-checking.

The logic supported by Coq includes arithmetic, therefore it is too rich to
be decidable. As full automation is not possible for generating proofs, human
interaction is essential. The latter is realized by proof scripts, which are sequences

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 143

of commands for building a proof step by step. Coq also provides built-in tactics
implementing various decision procedures for suitable fragments of the calculus of
inductive constructions and a language which can be used for automating the search
of proofs and shortening scripts.

When a proof has been interactively developed, Coq automatically verifies the
proof, or possibly signals where errors are located. Our work has consisted in
developing proofs demonstrating that the C functions simulating the behavior of
the ARM processor indeed implement the ARM architecture semantics.

5.3.3.2 Compert-C

CompCert is a formally verified compiler for the C programming language
provided by INRIA [23, 24], which currently targets Power, ARM, and 32-bit
x86 architectures. The compiler is specified, programmed, and proved in Coq. It
aims to be used for programming embedded systems requiring high reliability.
The generated assembly code is proved to behave exactly the same as the input
C program, according to a formally defined operational semantics of the language.

A key point is that we are considering here C programs compliant with the
definition of ISO-C 99 standard of correct C programs. Indeed the ISO-C standard
identifies many constructions that are syntactically correct, but have undefined
semantics such as a[i++] = i;. The document identifies about one hundred
such constructions, and says that a C compiler in that case basically may choose
its own interpretation of the abstract syntax, resulting in unspecified behavior. This
is very important in our work. All of the C code implementing the ISS is correct with
respect to the ISO C standard, meaning that it does not contain any construction with
unspecified behavior. Compcert-C does not accept such ill-defined expressions and
only well-formed programs can be translated according to the formal, unambiguous,
semantics. All of the C code considered here has unique and well-defined semantics.
We need to prove that it implements the ARM semantics, but we do not need to
worry about multiple interpretations.

Three parts of CompCert C are used in this work. The first is that we use the
correct machine code generated by the C compiler. The second is the C language
operational semantics in Coq from which we get a formal model of the program.
Third, we use the CompCert Coq library for words, half-words, bytes, etc., and
bitwise operations to describe the instruction set model. These low level functions
have been proven already in CompCert, so we can safely re-use them.

It must be noted that the C code of an ISS does not use functions from the C
library that invoke the operating system, such as gettimeofday(). It uses a very
limited number of functions from the C library such as memset() or memcpy().
CompCert provides the formalized properties of such built-in external functions,
so we can reason formally on their potential side effects in our proofs.

144 V. Joloboff et al.

Fig. 5.5 Overall goal

5.3.4 Verified Simulation

The general objective is to obtain a verified simulator that is illustrated in Fig. 5.5.
Considering the ARM architecture, we need to have the following:

• a formal model of the ARM instruction set.
• an instruction set simulator of the ARM architecture coded in the (CompCert)

C programming language.
• a formal operational semantics of the ISS. As shown in Fig. 5.5, from the ISS

source code in C, we can obtain through CompCert C on one hand the Coq
formal semantics of the compiled C program constructed by CompCert, since
the intermediate representation of the C compiler is a Coq representation and,
on the other hand, the verified machine code, which conforms to this operational
semantics as guaranteed by CompCert. We use both, the compiled machine code
to run simulations and the formal semantics for the proof.

• prove, using the Coq proof assistant, that the resulting ISS semantics indeed
implement the formal model of the ARM processor, which boils down to
verifying that the semantics of the simulator accurately modifies the processor
(and memory) state representation at each step and ends up in results that comply
with the formal model of the ARM architecture.

These steps are described in the following paragraphs.

5.3.4.1 Constructing the Formal Model

Ideally the formal specification of the ARM architecture should be provided by
the vendor. But it is not the case, an issue already raised in the work with HOL4
mentioned above [12]. We decided to derive the formal model of ARM architecture
in Coq from the architecture reference manual as output of a semi-automated
process. The main relevant chapters of the manual are

• Programmer’s Model introduces the main features in ARMv6 architecture,
the data types, registers, exceptions, etc;

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 145

• The ARM Instruction Set explains the instruction encoding in general
and puts the instructions in categories;

• ARM Instructions lists all the ARM instructions in ARMv6 architecture in
alphabetical order and the ARM Addressing modes section explains the five
kinds of addressing modes.

There are 147 ARM instructions in the ARM V6 architecture. For each instruc-
tion, the manual provides its encoding table, its syntax, a piece of pseudo-code
explaining its own operation, its exceptions, usage, and notes. Three kinds of
information are extracted for each ARM operation: its binary encoding format,
the corresponding assembly syntax, and the instruction semantics, which is an
algorithm operating on the processor state. This algorithm may call basic functions
defined elsewhere in the manual, for which we provide a Coq library defining their
semantics. Other than these extracted data files, there is still useful information
left in the document which cannot be automatically extracted, such as validity
constraints information required by the decoder generator. However, the most
tedious (then, arguably, error prone) part is described using fairly simple, precise
and regular pseudo-code, allowing us to extract the Coq formal model in three
automated steps: (i) extracting information from the .pdf file; (ii) parsing the data
into abstract syntax trees, and (iii) automated translation from the abstract syntax
into Coq formal model.

During this process, a dozen documentation problems were found but none that
were relevant to instruction semantics. These documentation mistakes have been
acknowledged by ARM Ltd. Moreover, a single mistake in our automated extractor
would impact the formal model of many or even all instructions and then become
rather easy to detect. The model has then tested on real programs to verify that we
obtain the same results, which gives reasonable confidence in the model.

5.3.4.2 Proof Structure

The proof starts from an ISS coded in C, where each instruction is coded as a
C function that modifies the processor state and possibly the memory state (but
everything is represented in memory on the simulation host machine). Each C
function may also call basic functions from a library. As mentioned above, this
C code does not include any construction with “unspecified behavior” of the C
language specification. To prove that the simulator is correct, we need to prove that,
given the initial state of the system, the execution of an instruction as implemented
by a C function results in the same state as the formal specification. To establish the
proof, a formal model of that C implementation is provided by CompCert, which
defines operational semantics of C formalized in Coq.

The proof shall demonstrate that the operational semantics of the C code
corresponds to the ARM formal specification. The complete proof is too lengthy
for this article, and we only provide here an outline of the method. The state of
the ARM V6 processor defined in the formal model is called the abstract state.

146 V. Joloboff et al.

Compcert-C
Concrete State

Compcert-C
Concrete State'

Projection

Projection

Abstract State

Abstract State'

Operational semantics
of the instruction

Instruction semantics
in the Coq formal model

Fig. 5.6 Theorem statement for a given ARM instruction

Alternatively, the same state is represented by the data structures corresponding to
C semantics that we shall call the concrete state. In order to establish correctness
theorems we need to relate these two models. Executing the same instruction on
the two sides produces a pair of new processor states which should be related by
the same correspondence. Informally, executing the same instruction on a pair of
equivalent states should produce a new pair of equivalent states, as schematized by
Fig. 5.6. Equivalent states are defined according to a suitable projection from the C
concrete state to the abstract model, as represented in Fig. 5.7.

5.3.4.3 Projection

In order to achieve a high speed simulation, the C ISS includes optimizations.
In particular, processor state representation in the C implementation is complex,
not only due to the inherent complexity of the C language memory model, but
also because of optimization and design decisions targeting efficiency. Despite the
complexity of the C memory model, the CompCert C semantics makes it possible
to define and prove the projection function. Fortunately, all of the instructions
operate on the processor state and there is a single representation of that state
in the simulator. It is necessary and sufficient to prove the projection for each
particular case of the representation structure. For example, the projection of a
register performs a case analysis on possible values, whereas the projection of saved
data upon exceptions depends on the type of exception modes. Although there
are a number of specific cases to handle, the proof of the projection is relatively
straightforward. In more detail:

• The C implementation uses large embedded structs to express the ARM pro-
cessor state. Consequently the model of the state is a complex Coq record type,
including not only data fields but also proofs to verify access permission, next
block pointer, etc.

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 147

MMU_ptr

SPSR

CPSR

CP15

user_reg

fiq_reg

irq_reg

svc_reg

abt_reg

und_reg

PC

jump

Slv6_Processor
N_flag

C_flag

Z_flag

V_flag

...

Slv6_StatusRegister

Slv6_StatusRegister

N_flag

...

reg 15

reg 2
reg 1

...

Armv6_state

CPSR

SCCProc_state
reg

memSPSR

reg

mode

exns

Fig. 5.7 Projection

• Transitions are defined with a relational style (as opposed to a functional style
where reasoning steps can be replaced by computations). Relational style is more
flexible, especially when dealing with constraints; and fits well with operational
semantics.

• The global state is based on a memory model with load and store functions that
are used for read/write operations.

The proofs for instructions start from the abstract state described by the formal
specification. To verify the projection of the original state, we need the following
data: the initial memory state, the local environment, and the formal initial processor
state. The projection is meaningful only after the C memory state is prepared
for evaluating the current function body representing an ARM instruction. In the
abstract Coq model, we directly use the processor state st. But on the C side,
the memory state is described by the contents of several parameters, including
the memory representation of the processor state. We also need to observe the
modifications of certain memory blocks corresponding to local variables.

The semantics of CompCert C considers two environments. The global envi-
ronment genv maps global function identifiers, global variables identifiers to their

148 V. Joloboff et al.

blocks in memory, and function pointers to a function definition body. The local
environment env maps local variables of a function to their memory blocks
reference. It maps each variable identifier to its location and its type, and its value
is stored in the associated memory block. The value associated with a C variable or
a parameter of a C function is obtained by applying load to the suitable reference
block in memory. These two operations are performed when a function is called,
building a local environment and an initialized memory state. When the program
starts its execution, genv is built. The local environment env is built when the
associated function starts to allocate its variables. Therefore, on the concrete side, a
memory state and a local environment are prepared initially using two steps. First,
from an empty local environment, all function parameters and local variables are
allocated, resulting into some memory state and the local environment. Second,
function parameters are set up using a dedicated function bind_parameters
and the initial state is thus created.

5.3.4.4 Lemmas Library

Next, we need to consider the execution of the instruction. In the C ISS, there is a
standalone C function for each ARM V6 instruction. Each function (instruction) has
its own correctness proof. Each function is composed of its return type, arguments
variables, local variables, and the function body. The function body is a sequence
of statements including assignments and expressions. Let us consider as an example
the ARM instruction BL (Branch and Link). The C code is

void B(struct SLv6_Processor *proc,
const bool L,
const SLv6_Condition cond,
const uint32_t signed_immed_24){

if (ConditionPassed(&proc->cpsr, cond)){
if ((L == 1))
set_reg(proc,14,address_of_next_instruction(proc));
set_pc_raw(proc,reg(proc,15)+(SignExtend_30

(signed_immed_24)<<2));
}
}

CompCert has designed semantics for CompCert C in big-step inductive types
for evaluating expressions, which we re-use for the proof. The semantics is defined
as a relation between an initial expression and an output expression after evaluation.
Then, the body of the function is executed. On the concrete side, the execution
yields a new state mfin. On the abstract side, the new state is obtained by running
the formal model. We have to verify that the projection from the concrete state mfin
is related to this abstract state. The proof is performed in a top-down manner. It
follows the definition of the instruction, analyzing the expression step by step. The
function body is split into statements and then into expressions. When evaluating an

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 149

expression, one has to search for two kinds of information. The first one is how the
memory state changes on the concrete side; the other is whether the results on the
abstract and the concrete model are related by the projection. To this end, a library
of lemmas had to be developed, identifying five categories summarized below.

1. Evaluating a CompCert expression with no modification on the memory state.
Such lemmas are concerned with the expression evaluation on CompCert C
side and in particular the C memory state change issue. Asserting that a memory
state is not modified has two aspects: one is that the memory contents are not
modified; the other is that the memory access permission is not changed. For
example, evaluating the boolean expression Sbit DD 1 returns an unchanged
memory state.

if G; E ` eval_binopc .Sbit DD 1/; M
"HH) v; M0

then M D M0:

In Coq syntax, the relation in premise is expressed with eval_binop. In this
lemma and the following, E is the local environment, G is the global environment,
M is the memory state, " is the empty event (we may have here a series of
events, e.g., system call, volatile load/store), and v is the result. The evaluation
is performed under environments G and E. Before evaluation, we are in memory
state M. With no event occurring, we get the next memory state M0. According
to the definition of eval_binop, an internal memory state will be introduced.

G; E ` a1; M) M0 G; E ` a_2; M0) M00

G; E ` .a1 binop a_2/; M) M00

In the example, expression a1 is the value of Sbit and a2 is the constant
value 1. By inverting the hypothesis of type eval_binop, we obtain several
new hypotheses, including on the evaluation of the two subexpressions and
the introduction of an intermediate memory state M00. Evaluating them has
no change on the C memory state, hence we have M D M00 D M0. In
more detail, from the CompCert C semantics definition, we know that the
evaluation of an expression will change the memory state if the evaluation
contains uses of store_value_of_type. In CompCert, the basic store
function on memory is represented by an inductive type assign_loc instead
of store_value_of_type. As a note, since CompCert version supports
volatile memory access, we also have to determine whether the object type is
volatile before storage.

2. Result of the evaluation of an expression with no modification on the memory.
Continuing the example above, we now discuss the result of evaluating the binary
operation Sbit DD 1 both in the abstract and the concrete model. At the end of
evaluation, a boolean value true or false is returned in both the concrete and the
abstract models.

150 V. Joloboff et al.

if Sbit_related M Sbit;

and G; E ` eval_rvaluebinop_c .Sbit DD 1/; M) v; M0
then v D .Sbit DD 1/coq

Intuitively, the projection corresponding to the parameter sbit in the concrete
model must yield the same value as in the abstract model. Here, the expression
is a so-called simple expression that always terminates in a deterministic
way, and preserves the memory state. To evaluate the value of simple expres-
sions, CompCert provides two big-step relations eval_simple_rvalue
and eval_simple_lvalue for Evaluating, respectively, their left and right
values. The rules have the following shape:

G; E ` a1; M) v1 G; E ` a2; M) v2

sembinaryoperation.op; v1; v2; M/ D v

G; E ` .a1 op a2/; M) v

In order to evaluate the binary expression a1 op a2, the subexpressions a1 and a2

are first evaluated, and their respective results v1 and v2 are used to compute the
final result v.

3. Memory state changed by storage operation or side effects.
As mentioned before, evaluating some expressions such as eval_assign may
modify the memory state. Lemmas are required to state that corresponding
variables in the abstract and in the concrete model must evolve consistently.
For example, considering an assignment on register Rn, the projection relation
register_related is used. Expressions with side effects of modifying
memory are very similar.

if rn_related M rn
and G; E ` eval_assignc .rn WD rx/; M) M0; v

then rn_related M0 rn

4. Internal function call.
The simulation code is sometimes using functions from libraries. We distinguish
internal functions and external functions. An internal function is a
function that belongs to a library, the code of which is part of the simulator,
that we have coded ourselves, or the C code is provided by compcert C. An
external function is a function for which we do not have access to the operational
semantics. After an internal function is called, a new stack of blocks is typically
allocated in memory. After the evaluation of the function, these blocks will be
freed. Unfortunately, this may not bring the memory back to the previous state:
the memory contents may stay the same, but pointers and memory organization
may have changed.

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 151

if proc_state_related M st
and G; E ` eval_funcall_.copyStatusRegister/_c; M) v; M0
and st0 D .copyStatusRegister/_coq st
then proc_state_related M0 st0:

Lemmas must be developed regarding the evaluation of internal functions,
so that one can observe the returned results, compare it with the correspond-
ing evaluation in the formal specification, and verify some conditions. For
example, the lemma above is about the processor state after evaluating an
internal function call copy_StatusRegister, which reads the value of
the Current Processor Status Register (CPSR) and copies it into the Saved
Processor Status Register (SPSR) when an exception occurs. The evaluation of
copy_StatusRegister must be protected by a check on the current proces-
sor mode. If it is in authorized mode, the function copy_StatusRegister
can be called. Otherwise, the result is “unpredictable,” which is defined by ARM
architecture.

It is necessary to reason on the newly returned states, which should still be
related by the projection. This step is usually easy to prove, by calculation on the
two representations of the processor state to verify that they match.

5. External function call.
The CompCert C AST of an external function call contains the types of input
arguments and of the returned value, and an empty body. For each external
function (e.g., memcpy()), we have its asserted properties, mostly provided
by CompCert C. The general expected properties of an external call are that
(i) the call returns a result, which has to be related to the abstract state, (ii) the
arguments must comply with the signature. (iii) after the call, no memory blocks
are invalidated, (iv) the call does not increase the access permission of any valid
block, and finally that the memory state can be modified only when the access
permission of the call is granted. For each external call, such required properties
are verified.

5.3.4.5 Inversion

Equipped with these lemmas we can build the proof scripts for ARM instructions.
For that, we are decomposing the ARM instruction execution step by step to perform
the execution of the C programs. CompCert C operational semantics define large
and complex inductive relations. Each constructor describes the memory state
transformation of an expression, statement, or function. As soon as we want to
discover the relation between memory states before and after evaluating the C code,
we have to invert the hypotheses of operational semantics to follow the clue given
by its definition, to verify the hypotheses relating concrete memory states according
to the operational semantics.

152 V. Joloboff et al.

An inversion is a kind of forward reasoning step that allows for users to
extract all useful information contained in a hypothesis. It is an analysis over the
given hypothesis according to its specific arguments, that removes absurd cases,
introduces relevant premises in the environment and performs suitable substitutions
in the whole goal. Most proof assistants provide an inversion mechanism. In the
case of Coq, it is a general tactic called inversion [10].

Every instruction contains complex expressions, but each use of inversion
will go one step only. If we want to find the relation between the memory states
affected by these expressions, we have to invert many times. For illustration, let us
consider the simple example from the ARM reference manual CPSR = SPSR, that
assigns to register CPSR the value of SPSR (defined above). As the status register is
not implemented by a single value, but a set of individual fields, the corresponding
C code is a call to the function copy_StatusRegister, which sets the CPSR
field by field with the values from SPSR. Lemma same_cp_SR below states that
the C memory state of the simulator and the corresponding formal representation of
ARM processor state evolve consistently during this assignment.

Lemma same_copy_SR :
8 e m l b s t m’ v em,
proc_state_related m e (Ok tt (mk_semstate l b s)) !
eval_expression (Genv.globalenv prog_adc) e m expr_cp_SR t m’ v !
8 l b, proc_state_related m’ e

(Ok tt (mk_semstate l b (Arm6_State.set_cpsr s
(Arm6_State.spsr s em))))

In its proof, 18 consecutive inversions are needed in order to exhaust all constructors
occurring in the assumptions. Unfortunately, inversion generates uncontrol-
lable names which pollute proof scripts. Here, an intensive use of inversion
makes proofs scripts unmanageable, and not robust to version changes of Coq or
CompCert. In order to reduce the script size and get better maintainability, we
studied a general solution to the inversion problem, and developed a new mechanism
described in [26]. On top of it, we could program a Coq tactic able to automatically
find the hypothesis to invert by matching the targeted memory states, properly
manage other hypotheses, perform our inversion, clean up the goal, and repeat
the above steps until all transitions between the two targeted memory states are
discovered.

As a result, proofs script have become much shorter and more manageable.
Considering the former example of same_copy_SR, the 18 calls to standard
inversion reduce into one single step: inv_eval_expr m m’.

5.3.4.6 Instruction Proofs

Proofs of instructions rely heavily on the library of lemmas and the controllable
inversion mechanism described above. Scripts size vary with the instructions
complexity from less than 200 lines (e.g., 170 for LDRB) to over 1000 (1204
for ADC). As a result, for each ARM instruction, we have established a theorem
proving that the C code simulating an ARM instruction is equivalent to the formal
specification of the ARM processor.

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 153

5.4 Conclusion

The SimSoC virtual prototyping software is a full system simulation framework.
Based on SystemC and TLM, it contains fast instruction set simulators and a library
of models for other hardware components such as RS232 controller, or network
controllers. Thanks to TLM interfaces, these models can interact with other third
party models to elaborate complete simulation platforms that can run an operating
system starting from a bootloader.

SimSoC can fully simulate a complete hardware platform. In addition to the ISS,
it also includes implementation of several Memory Management Units (MMU’s),
interrupt controllers, serial line, and network controllers. All of these simulation
models are implemented as SystemC modules using transaction modeling. As a
proof of concept, we have developed several simulators to simulate commercially
available System-on-Chips. All of the SoC’s models developed are running the
Linux operating system, using the Linux binary as is for the commercial chip. In
order to boot Linux, it is also possible to use a boot loader such as U-Boot. The
SoCs available are

• the SPEArPlus 600 circuit from ST Microelectronics. This SoC contains among
other components two ARM926 subsystems (dual core), together with various
peripheral controllers.

• the Texas Instrument AM1705 circuit. For this SoC, we have also developed
an Ethernet controller model, and a bridge to real Internet so that we can test the
simulated platform connected to real machines on the network, thanks to a bridge
with the local Ethernet port.

• the FreeScale 8641D dual core Power architecture chip.
• We have under construction an example of the Power ez200 series, for which we

develop an Approximately Timed version.

In order to build faithful virtual prototypes, we have added to SimSoc a proven
generated simulator of the ARM instruction set.

Using the approach presented here, we can construct a tool chain that makes
it possible to certify that the simulation of a binary executable program on some
simulation platform is compliant with the formal model of the target hardware
architecture. Using Compcert-C, that has defined formal C semantics, we have
formally proved, using the Coq theorem prover to automate the proof, the ARM
v6 Instruction Set Simulator of SimSoc.

Given that we have a proof that the machine code generated from C is correct,
thanks to CompCert, and now a proof of the ARM instruction set for these
instructions, we have a proof that the simulation of an algorithm on our simulator
is conforming to the algorithm for the target architecture. With this technique, there
is no limit on the size of the C code that can be verified. In fact, if there existed
a publicly available formal model of the ARM processor approved by ARM Ltd
company, our work, combined with CompCert C compiler, could be construed to
define a verified execution of a C program, that could be used for certification
procedures.

154 V. Joloboff et al.

We certainly acknowledge the limits of our approach: the quality of our “verified
simulation” relies on the faithfulness of our formal model of the ARM processor
to the real hardware. Because the vendor companies do not provide a formal
description of their hardware, one has to build them.1 This issue is partly solved in
this work by automatically deriving the most tedious parts of the Coq formal model
from pseudo-code extracted from the vendor reference manual. If the vendors would
make public formal specifications of their architectures, then our toolchain would
become fully verified.

We believe this work has further impact on proofs of programs. First, we have
proved here a significantly large C program. Second, because the proved program
is a hardware simulator, it can be used as a tool to prove execution of target
programs. For example, considering a cryptographic algorithm implemented for the
ARM architecture and compiled with Compcert-C, it could then be proved that the
execution of that program provides the exact encryption required, and nothing else.
Therefore, the tool presented is an enabler for the proofs of other programs, which
offers a direction for future research.

Another consequence of this work is that, supposing one could compile the C
instructions to silicon using a silicon compiler, and that compiler would also be
certified, ala CompCert, it would then make it possible to prove real hardware, etc.

Acknowledgements This work has been partly funded by the international collaboration support
of France ANR and NSFC China in the SIVES project.

References

1. J. Alglave, A. Fox, S. Ishtiaq, M.O. Myreen, S. Sarkar, P. Sewell, F.Z. Nardelli, The semantics
of power and ARM multiprocessor machine code. In DAMP’09 (ACM, New York, NY, USA,
2008), pp. 13–24

2. V. Bala, E. Duesterwald, S. Banerjia, Dynamo: a transparent dynamic optimization system.
SIGPLAN Not. 35(5), 1–12 (2000)

3. F. Bellard, Qemu, a fast and portable dynamic translator. In ATEC ’05: Proceedings of
the Annual Conference on USENIX Annual Technical Conference (USENIX Association,
Berkeley, CA, USA, 2005), pp. 41–41

4. Y. Bertot, P. Castéran, Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science (Springer,
New York, 2004)

5. F. Bobot, J.C. Filliâtre, C. Marché, A. Paskevich, Why3: Shepherd your herd of provers. Boogie
2011, 53–64 (2011)

6. D. Burger, T.M. Austin, The simplescalar tool set, version 2.0. SIGARCH Comput. Archit.
News 25(3), 13–25 (1997)

7. B. Campbell, An executable semantics for Compcert C. In Certified Programs and Proofs
(Springer, New York, 2012), pp. 60–75

1Note that this problem is the same as for the work done by Cambridge University.

5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework 155

8. G. Canet, P. Cuoq, B. Monate, A value analysis for C programs. In SCAM’09 (IEEE, Los
Alamitos, 2009), pp. 123–124

9. B. Cmelik, D. Keppel, Shade: A fast instruction-set simulator for execution profiling. In
SIGMETRICS ’94: Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems (ACM, New York, NY, USA, 1994), pp. 128–137

10. Coq Development Team, The Coq Reference Manual, Version 8.2. INRIA Rocquencourt,
France, 2008. http://coq.inria.fr/

11. J.-C. Filliâtre, C. Marché, The Why/Krakatoa/Caduceus platform for deductive program veri-
fication. In Proceedings of the 19th International Conference on Computer Aided Verification,
Lecture Notes in Computer Science 4590, 2007. http://why.lri.fr/

12. A.C.J. Fox, M.O. Myreen, A Trustworthy Monadic Formalization of the ARMv7 Instruction
Set Architecture. In ITP, pp. 243–258, 2010

13. Y. Futamura, Partial evaluation of computation process—an approach to a compiler-compiler.
Higher Order Symb. Comput. 12(4), 381–391 (1999)

14. F. Ghenassia (ed.), Transaction-Level Modeling with SystemC. TLM Concepts and Applications
for Embedded Systems (Springer, New York, 2005). ISBN 0-387-26232-6

15. G. Hamerly, E. Perelman, B. Calder, How to use simpoint to pick simulation points.
SIGMETRICS Perform. Eval. Rev. 31(4), 25–30 (2004)

16. C. Helmstetter, V. Joloboff, SimSoC: A SystemC TLM integrated ISS for full system
simulation. In IEEE Asia Pacific Conference on Circuits and Systems - APCCAS’08, November
2008. http://formes.asia/cms/software/simsoc

17. H. Hongwei, S. Jiajia, C. Helmstetter, V. Joloboff, Generation of executable representation for
processor simulation with dynamic translation. In Proceedings of the International Conference
on Computer Science and Software Engineering (IEEE, Wuhan, China, 2008)

18. IEEE, Open SystemC Language Reference Manual, 2011. http://standards.ieee.org/getieee/
1666/download/1666-2011.pdf

19. V. Joloboff, X. Zhou, C. Helmstetter, X. Gao, Fast Instruction Set Simulation Using LLVM-
based Dynamic Translation. In International MultiConference of Engineers and Computer
Scientists 2011, vol. 2188, IAENG (Springer, Hong Kong, China, 2011), pp. 212–216

20. D. Jones, N. Topham, High speed cpu simulation using ltu dynamic binary translation. In Pro-
ceedings of the 4th International Conference on High Performance Embedded Architectures
and Compilers, HiPEAC ’09 (Springer, Berlin, Heidelberg, 2009), pp. 50–64

21. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K.
Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, S. Winwood, sel4: Formal verification
of an os kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09 (ACM, New York, NY, USA, 2009), pp. 207–220

22. C. Lattner, V. Adve, LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004 International Symposium on Code Generation
and Optimization (CGO’04), Palo Alto, California, Mar 2004

23. X. Leroy, Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)
24. X. Leroy, The CompCert C verified compiler. Documentation and user’s manual. INRIA Paris-

Rocquencourt, March 2012. http://creativecommons.org/licenses/by-nc-sa/3.0/
25. W. Liu, M.C. Huang, Expert: expedited simulation exploiting program behavior repetition. In

Proceedings of the 18th Annual International Conference on Supercomputing, ICS ’04 (ACM,
New York, NY, USA, 2004), pp. 126–135

26. J.-F. Monin, X. Shi, Handcrafted inversions made operational on operational semantics. In ITP
2013 vol. 7998 of LNCS, ed. by S. Blazy, C. Paulin, D. Pichardie (Springer, Rennes, France,
2013), pp. 338–353

27. A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, A. Hoffmann, A universal technique
for fast and flexible instruction-set architecture simulation. In DAC ’02: Proceedings of the 39th
Conference on Design Automation, DAC ’02 (ACM, New York, NY, USA, 2002), pp. 22–27

28. Open SystemC Initiative, OSCI SystemC TLM 2.0 User Manual, 2008. http://www.systemc.
org/

http://coq.inria.fr/
http://why.lri.fr/
http://formes.asia/cms/software/simsoc
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.systemc.org/
http://www.systemc.org/

156 V. Joloboff et al.

29. C. Pusch, Proving the soundness of a Java bytecode verifier specification in Isabelle/HOL. In
TACAS’99 (Springer, New York, 1999), pp. 89–103

30. W. Qin, J. D’Errico, X. Zhu, A multiprocessing approach to accelerate retargetable and portable
dynamic-compiled instruction-set simulation. In CODES+ISSS’06 (ACM, New York, NY,
USA, 2006), pp. 193–198

31. M. Reshadi, P. Mishra, N. Dutt, Instruction set compiled simulation: a technique for fast
and flexible instruction set simulation. In Design Automation Conference, 2003. Proceedings,
pp. 758–763, 2003

32. K. Scott, N. Kumar, S. Velusamy, B. Childers, J.W. Davidson, M.L. Soffa, Retargetable and
reconfigurable software dynamic translation. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO’03), 2003

33. D. Seal, ARM Architecture Reference Manual (Addison-Wesley Longman Publishing, Boston,
2000)

34. H. Shi, Y. Wang, H. Guan, A. Liang, An intermediate language level optimization framework
for dynamic binary translation. SIGPLAN Not. 42(5), 3–9 (2007)

35. E. Witchel, M. Rosenblum, Embra: fast and flexible machine simulation. In SIGMETRICS ’96:
Proceedings of the 1996 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (ACM, New York, NY, USA, 1996), pp. 68–79

36. R.E. Wunderlich, T.F. Wenisch, B. Falsafi, J.C. Hoe, Smarts: accelerating microarchitecture
simulation via rigorous statistical sampling. In Proceedings. 30th Annual International Sym-
posium on Computer Architecture, 2003, pp. 84–95, 2003

37. Z. Zhang, V. Joloboff, X. Zhou, C. Helmstetter, Fast dynamic translation using llvm on multi-
core hosts. In 5th Workshop on Architectural and Microarchitectural Support for Binary
Translation (AMAS-BT) (Intel Corporation, Portland, Oregon, USA, June 2012)

Chapter 6
A Composable and Predictable MPSoC Design
Flow for Multiple Real-Time Applications

Seyed-Hosein Attarzadeh-Niaki, Ekrem Altinel, Martijn Koedam,
Anca Molnos, Ingo Sander, and Kees Goossens

6.1 Introduction

Embedded system designers are required to integrate an increasing number of
complex applications running on a single system on chip. This calls for design
flows which first, start from abstract application models and implement them in a
fully automated fashion; and second, support designing each application in isolation
while preserving its behavior in the integrated system. The challenge becomes
more harsh for embedded systems that have real-time constraints where the design
flows and the target platforms also need to preserve the timing properties of each
application throughout the entire design flow.

Code generator backends from model-based design tools for real-time processors
have been proposed [14, 22] but complexities of a real-time MPSoC design flow
are not fully addressed in these works. Existing design flows that perform real-
time analysis for MPSoCs are presented in [7, 9, 16, 25] without expressing the
applications and components in an executable formal model and hence, a potential
bug in the specification will be detected late in the design flow and makes it

S.-H. Attarzadeh-Niaki (�)
Shahid Beheshti University, Tehran, Iran
e-mail: h_attarzadeh@sbu.ac.ir

E. Altinel • I. Sander
KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: altinel@kth.se; ingo@kth.se

M. Koedam • K. Goossens
Eindhoven University of Technology, Eindhoven, Netherlands
e-mail: M.L.P.J.Koedam@tue.nl; K.G.W.Goossens@tue.nl

A. Molnos
CEA-LETI, Grenoble, France
e-mail: Anca.MOLNOS@cea.fr

© Springer International Publishing AG 2017
A. Molnos, C. Fabre (eds.), Model-Implementation Fidelity in Cyber
Physical System Design, DOI 10.1007/978-3-319-47307-9_6

157

mailto:h_attarzadeh@sbu.ac.ir
mailto:altinel@kth.se
mailto:ingo@kth.se
mailto:M.L.P.J.Koedam@tue.nl
mailto:K.G.W.Goossens@tue.nl
mailto:Anca.MOLNOS@cea.fr

158 S.-H. Attarzadeh-Niaki et al.

also harder to track it in the original specification. Additionally, running multiple
applications on the same platform is not supported in these works.

We argue that proper design flows for real-time systems require to

(a) start from abstract application models with formal semantics that are executable
to enable detection of specification bugs early in the design flow, avoiding long
design iterations;

(b) apply automated analysis and synthesis methods supported by the applications’
formalisms; and

(c) target platforms which provide time-predictable execution services to faithfully
implement the application behavior; and support composable system design by
integrating isolated applications.

Building on a common formal base in form of Models of Computation (MoCs),
we introduce such a flow for multiple real-time streaming applications which inte-
grates Formal System Design (ForSyDe), as a modeling and simulation framework,
with CompSOC, a design flow and platform template for predictable MPSoCs
(Fig. 6.1). However, our methods are applicable to any combination of system-level
design languages and target platforms which satisfy the above requirements. In the
SystemC implementation of ForSyDe [20] a formally defined representation of the
executable system models can be exported as an intermediate format. CompSOC
is a network-on-chip based MPSoC platform template which provides predictable
and composable execution services to the applications. The platform currently
has a design flow which performs automated mapping, compilation, and synthesis

Fig. 6.1 The proposed system design flow

6 A Composable and Predictable MPSoC. . . 159

from a non-validatable implementation model, where the structure (as XML files)
and behavior of the application (as a set of C files) are captured separately. By
iterative transformation of exported ForSyDe-SystemC models, we integrate them
with the CompSOC design flow and demonstrate an automated flow starting from
high-level simulate-able formal application models. Such a transformation involves
annotating platform-specific memory and timing requirements of the application
elements which is obtained by rapid performance evaluation of the application on
the platform. This results a correct-by-construction design flow which preserves the
functionality and timing of application models in the final implementation.

The contributions of this work are summarized as:

– an automated and composable design flow implementing abstract executable
models of multiple applications on predictable platforms (Sect. 6.3);

– transformation of the specification models captured in the formal modeling
framework (Sect. 6.4) to the implementation models accepted by the predictable
platform design flow (Sect. 6.5) which involves rapid performance evaluation of
the application models on the platform (Sect. 6.6);

– demonstration of the flow in action using two applications from the consumer
electronics domain (Sect. 6.7).

6.2 Related Work

Several tools and design flows have been proposed for real-time MPSoCs, but none
of them fully address different aspects of the problem.

The industrial tool Simulink can produce plain C code from executable real-time
models. In [10], a model-based design flow for cyber-physical systems is presented
in ten design steps, but it is not fully automated. These approaches bring interesting
ideas in the field, however they do not consider real-time constraints throughout the
entire design-flow.

The PTIDES flow [3] targets event-based applications described in a Program-
ming Model with discrete-event semantics. First the temporal behavior and causality
relations of the application model are analyzed and then actor and OS code are
generated. This code may be compiled and bound to three hardware platforms,
out of which one, namely the XMOS board, provides real-time services. The flow
simulates the application code bound on the platform to verify and validate the
design. The effects of the binding on the temporal behavior are hence not formally
analyzed, which may lead to run-time constraints violations.

Code generator backends for real-time processors has been proposed for exe-
cutable Ptolemy [5] models, notably for JOP [22], which is a Java real-time
processor, and PRET [14] which aims at providing predictability in its architecture.
However, complexities of a real-time MPSoC design flow are not fully addressed in
these works.

160 S.-H. Attarzadeh-Niaki et al.

Existing design flows that perform real-time analysis for MPSoCs are presented
in [7, 16, 25]. The approaches in [16, 25] target the streaming domain and have
as input an XML description of the application. The flow produces the code
of the application, and the information necessary to bind this application on a
predictable platform. Real-time constraints are guaranteed, as the temporal behavior
of application, the binding and the platform are formally verified. Note that due
to compatibility of the Synchronous Data Flow (SDF) graph formats, the SDF3

tool [25] can be replaced for formal temporal analysis in our flow. The SymTA/S [7]
framework models an SoC as a set of inter-connected components. Each component
is modeled by an event stream. Classical formal real-time analysis can be applied
to individual components and a formalism for composing streams is proposed to
analyze an entire system. The distributed operation layer (DOL) MPSoC software
design flow [9] targets dataflow real-time streaming applications and automatically
creates an implementation as well as formal performance analysis models for system
validation. However in these approaches applications and components are not
expressed in an executable formal model, hence a potential bug in the specification
will be detected late in the design flow and makes it also harder to track it in the
original specification.

DeaedalusRT methodology [2] starts with a Static Affine Nested Loop Program
(SANLP) and uses the hard real-time multiprocessor scheduling techniques to
analyze the system from intermediate Cyclo-Static Data Flow (CSDF) models and
performs code generation via Polyhedral Process Networks (PPNs). In contrast,
being based on the ForSyDe framework, our input models have explicit parallelism
and are easier to extend and interact with other MoCs for a heterogeneous system
design. On the platform side, CompSOC can run multiple applications based on
resource reservation composably, reducing the run-time scheduling overhead for
admission control. Also, our flow ends with a full FPGA-based prototype while
Daedalus-based flows have reported simulation backends.

The method proposed by Posadas et al. [21] presents an automated software
synthesis flow from a UML/MARTE specification containing system components,
interfaces and communication links, the system memory spaces, the resource
allocations, and the hardware architecture. A software stack is then generated from
such a specification automatically to execute the application on the platform. Unlike
our approach, automatic system-level Design Space Exploration (DSE) based on
formal models is not considered and preservation of real-time properties is not
guaranteed throughout the design flow.

6.3 The Proposed Design Flow

In the high-level view of the proposed flow depicted in Fig. 6.1, the designer uses the
SDF MoC library of ForSyDe-SystemC to create formal executable system models.
This model is used both for validation by simulation and also for automated gener-
ation of an intermediate representation of the specification model as a set of XML

6 A Composable and Predictable MPSoC. . . 161

and CCC files via introspection. Since both ForSyDe and CompSOC are based
on formally defined MoCs, they can be combined by transforming the specification
model to the target implementation model to achieve a correct-by-construction flow.
The benefit of basing the models on formally defined abstractions is evident in
the fact that orchestrating the modeling framework (ForSyDe), a dataflow analysis
tool, and the synthesis flow (CompSOC) in our case is straightforward and does not
involve any semantical ad-hoc transformations. We assume the hardware platform
is given as an architecture description and a communication description file and it is
not going to be explored in the design flow. To hand over ForSyDe-SystemC models
to the CompSOC flow, an automated transformation step is needed to iteratively add
the missing platform information to the model (Sect. 6.6). Figure 6.2 details build
iterations of the software flow which are presented as a loop in Fig. 6.1.

The proposed flow supports multiple applications and runs in three stages:

1. initial build, which performs the model transformation assuming constant values
for platform-dependent metrics, performs a single core mapping and scheduling,
and generates a binary file for each application;

2. measurement run, where the generated binaries and source files are analyzed to
extract the actor memory requirements and token sizes and applications are run
to measure the execution times of the actors; and

Fig. 6.2 Build iterations of the proposed software flow

162 S.-H. Attarzadeh-Niaki et al.

3. final build, in which the SDF graphs of all applications with all the platform-
dependent metrics back-annotated are merged, the final mapping and scheduling
of the combined dataflow graph is performed, and software synthesis is done to
generate the final binaries.

The first two phases are performed individually for each applications, since
CompSOC preserves composability [1].

The CompSOC platform is predictable and composable, as explained in more
detail later. The important thing to note at this point is that each application runs
independently of others: there is not a single cycle of interference due to other
applications for every run. (This holds for actual-case timings as well as worst-case
timings.) Moreover, the performance of each platform component is predictable,
i.e. the worst case can be computed at design time. As a result, the execution
time of each actor (e.g., software task) can be measured independently of all
other actors in the measurement run, even when they are mapped on the same
processor (in the initial build). This execution time does not change if we remap
the actor on another (identical) processor (in the final build). We can do this per
application, as the execution time does not change when adding other applications,
due to composability. In theory it is possible to run the final build per application
rather than all applications together, but then the resulting configurations (virtual
platforms) are not co-optimized.

6.4 The Modeling Framework

In ForSyDe-SystemC [20], a system model is structured as a hierarchical concurrent
process network. Processes communicate and synchronize only using signals and
there is no global state in the system. Hierarchy does not imply any semantics and
is simply a grouping of multiple processes; however, it enables easier IP reuse.
Figure 6.3 is an example of a system model in which p1 is a composite process
formed by composition of leaf processes p1:1, p1:2, and p1:3.

Each leaf process in the process network belongs to a specific Model of
Computation (MoC) [13]. Several MoCs are supported for system modeling in
ForSyDe. This work addresses the synthesis of SDF models [12] which fits very
well to many streaming applications and is supported by analysis methods for
consistency checking, temporal scheduling, and mapping to single- and multi-
processor systems.

Leaf processes are created using formally defined constructs chosen from the
ForSyDe library called process constructor which are provided with side-effect-free
functions and/or initial values. In Fig. 6.3, a process is created using the combSDF
process constructor which is supplied with the firing function f and two initial
values representing the production and consumption rates rp and rc to gain a process
with the semantics of an actor in the SDF MoC. By using the concept of process
constructors the requirements for the computation and communication semantics of

6 A Composable and Predictable MPSoC. . . 163

Fig. 6.3 Example of a hierarchical system model in the SDF MoC of ForSyDe. Leaf processes
are built using process constructors

the processes are satisfied by construction and the designer is liberated from writing
redundant code and focuses on the pure functionality of the processes.

There are two key process constructors in the SDF MoC;

1. combSDFm, which denotes an m-input combinational (i.e., stateless) process
constructor in the SDF MoC; and

2. delaySDFn which delays a signal by n elements.

Because processes in ForSyDe are formally defined as mathematical functions
operating on input signals and returning a single output signal, tuples of values are
used to model multiple signals. Such a signal can be converted into multiple signals
using special family of processes called unzip and created using zip processes.

A special feature of ForSyDe-SystemC models is that in addition to simulation,
the constructed executable models can export their internal structure and behavior
as an intermediate representation via introspection. The exported representation can
be used to feed the models to analysis and synthesis tools, without developing
a full-fledged compiler infrastructure. This intermediate representation contains
the structure of the process network, the process constructors used to build leaf

164 S.-H. Attarzadeh-Niaki et al.

processes, and the parameters passed to build the processes. These parameters
include both the initial values and the source code of the functions which describes
the behavior of the processes [20].

6.5 The Execution Platform

CompSOC [6] provides predictable execution to the applications and can run mul-
tiple applications without interference in a composable manner [1]. Time-division
multiplexing (TDM) is used to provide time-predictable execution, communication,
and memory access services while composability is achieved by using arbiters
which prevent indefinite locking of shared resources.

The hardware is a collection of processor and memory tiles interconnected by
a dAElite NoC [24] (Fig. 6.4). The NoC consists of protocol shells, which serialize
the parallel protocol, network interfaces (NIs), which (de-)packetize the information
and inject/collect them to/from the network in a TDM fashion, and routers. The
processor tiles include a Microblaze softcore without caches, local instruction
and data memories, cycle-accurate times, a set of communication memory blocks
and direct memory access (DMA) engines for inter-tile communication, and other
peripherals. Memory tiles are divided into two parts, namely front-end and back-
end. The front-end contains a number of blocks to achieve composability while the
back-end guarantees the predictability of the resource [1].

CompSOC can run a composable RTOS which uses one or two-level scheduling
for applications. The inter-application scheduler is a microkernel named CoMik
[8, 18], which uses the TDM technique to provide individual performance guar-
antees to multiple integrated applications. The timers in the tile are hooked up to

NoC

Processing Tile 1
μBlaze
DMA Memory

CoMik RM
Drivers

Processing Tile n
μBlaze
DMA Memory

CoMik RM
Drivers

S(D)RAM Peripheral(s)

Memory
Controller

Peripheral
Controller(s)

Arch.
Spec.
(XML)

Comm.
Spec.
(XML)

CompSOC
flow

Fig. 6.4 Overview of the CompSOC platform and its generation flow

6 A Composable and Predictable MPSoC. . . 165

the processor interrupts to support cycle-accurate accounting of time, scheduling
of interrupts at a deadline, and halting the processor until a deadline. The intra-
application scheduler (task scheduler) supports executing application tasks with
different semantics, namely KPN, CSDF, and also time-triggered MoCs [15].

The local memory of each tile stores the instructions and data of each task
executing on that tile. The communication memories store all input (i.e., SDF input
tokens) that the actor requires, and reserves space for all output (i.e., SDF output
tokens) that the actor produces in one firing. As a result, an actor never stalls on
input or output during its execution.

Predictability [6] is achieved by making sure that every resource has a finite
known execution time for an actor that is mapped on it. For example, data
transport from one port on the Network on Chip (NoC) to another is modelled
by a communication actor, and the worst-case execution time of that actor can
be computed at design time. The execution time of DMAs, DRAM, and SRAM
is similarly bounded, taking into account the configuration of their arbiters (e.g.,
number of time slots). Similarly, as long as no DMAs are used to communicate, the
execution time of software running on a processor depends only on the processor
speed, since the software does not stall on caches or other communication outside
the tile. Adding a microkernel or RTOS with one-level scheduling adds a “slow-
down factor” (essentially, the total number of TDM slots divided by the number of
allocated TDM slots) [19]. The second level of arbitration can be dealt with in the
same way [17].

To achieve a composable system, each shared resource of CompSOC is com-
posable [6]. The execution of different applications must be independent, i.e. their
actual (not: worst-case) execution times are independent. This implies that the order
and duration of time allocated to applications is independent, and that resource
arbiters are not work conserving between applications.

The supporting CompSOC design flow for SDF applications consists of three
sub-flows, hardware generation, mapping and software compilation flow. The
hardware generation flow takes in the communication and architecture models of
the platform and performs dimensioning, allocation, verification, instantiation, and
synthesis of the hardware architecture. Based on the SDF graph of the application
and the architecture model of the platform, the mapping flow invokes a mapping tool
to explore the design space and generates a mapping and schedule of the application
onto the platform, and finally synthesizes the software for each core. Consecutively,
the compilation flow is invoked for each tile in the platform and the generated binary
ELF file is merged with the platform bit-stream file generated by the hardware
generation flow.

6.6 Adapting the Flows by Rapid Performance Evaluation

Recall that our approach has three phases. First, an initial build consisting of
transforming the input application model to the SDF graph supported by the

166 S.-H. Attarzadeh-Niaki et al.

software synthesis flow. The result is then compiled on a single processor. This
compilation results in code size (of actors) and data size (including sizes of data
tokens). Note that remapping and recompiling actors and data FIFOs on different
(but identical) resources will not change these sizes. This first step is non-trivial,
and we give more details below.

Second, in the measurement run we execute the SDF graph on the single
processor. Recall that processors have no caches, and that any communication
outside the tile requires the use of DMAs. This, coupled with the SDF semantics
actor has all its input tokens when it fires as well as space for the tokens that it
outputs, means that the execution time of an actor only depends on the processor it
runs on. The execution time of an actor obtained on a given processor is therefore
identical to its execution time on another (identical) processor. A complication is
that the actor may share the processor with different applications. However, since
the Comik microkernel and the RTOS provide cycle-accurate isolation between
applications and also cycle-accurate timing, we can remove the influence of other
applications on the actor timing. Similarly, we can remove timing influence of
sharing with other actors of the same application in a static-order schedule.

Finally, in the final build, we remap actors and FIFOs to multiple processors such
that any real-time constraints are met. As mentioned above, we can do this, without
changing code and data sizes, and execution times. The predictable and composable
performance of our platform, in particular the processor tile, is therefore an essential
enabler for our three-phased approach.

To enable full automation, the pure SDF input model is transformed for synthesis.
The execution times and memory requirements of the actors and also the token sizes
are estimated using a rapid estimation technique. Auxiliary processes in ForSyDe
process networks are transformed to their equivalent SDF actors. Additionally, the
interface and API of the functions are different and conversion between them is
required. Figure 6.5 is a simplified view of the transformation stage between the
flows.

Figures 6.6 and 6.7 demonstrate a small ForSyDe model in the SDF MoC and its
equivalent model transformed automatically by the proposed flow for the CompSOC
backend. This synthetic example is not a common situation in system modeling, but
illustrates different aspects of the transformation processes.

Transforming ForSyDe process networks to SDF graphs involves

(a) flattening their static non-recursive hierarchy;
(b) removing zip, unzip, and fanout processes by integrating them with multi-

input/output actors;
(c) converting source and constant state-full processes to actors with self-edges;

and
(d) converting delay elements to initial tokens on the graph edges.

Figure 6.6a shows the structure of a process network as described in the SDF
MoC of ForSyDe, while Fig. 6.7a demonstrates how it should be exported to
the CompSOC backend as an SDF graph. As stated in Sect. 6.4, hierarchy eases
component reuse and zip/unzip processes are used to combine/extract multiple

6 A Composable and Predictable MPSoC. . . 167

Fig. 6.5 The transformation layer between the flows

Algorithm 1 Determination of the consumption and production rates
a2alinks all actor-to-actor links
for all link 2 a2alinks do

zipfactor multiply(zip rates in link)
unzipfactor multiply(unzip rates in link)
channelfactor zipfactordivunzipfactor
if channelfactor > 1 then

targetrate targetrate � channelfactor
else if channelfactor < 1 then

sourcerate sourcerate � .1=channelfactor/
else if both actors’ ports are tuples then

Report error: Unbalanced zip and unzip sequence
else

Keep the original source and target rates
end if

end for

signals to/from a signal of tuples. Both compAB and compYZ composite processes are
eliminated in the flattening stage. While removing zips and unzips, all actor-to-actor
paths are considered and the production and consumption rates are transformed
using a traversal algorithm which is presented as pseudo-code in Algorithm 1.
Conversions are realized using XSL transformations [11].

The generated SDF graph needs to be annotated with resource requirements and
timing information before the CompSOC backend can make a mapping satisfying
the constraints. This is done in two phases, first a single tile mapping of the

168 S.-H. Attarzadeh-Niaki et al.

1 void k func (std : : vector<f l o a t > &out1 ,
const std : : vector<std : : tuple<std : : vec to r

3 <std : : tuple<std : : vector<f l o a t >, s td : : vector<int >>>,
s td : : vector<UserType>>> &inp1 ,

5 const std : : vector<UserType> &inp2) {

7 // A macro i n t e r f a c e f o r the s i g n a l f l a t t e n e r u t i l i t y
FLATTEN INPUTS(inp1 , inp2) ;

9 FLATTEN OUTPUTS(out1) ;

11 #pragma ForSyDe begin k func // Beginning o f the ex t r a c t ab l e code block

13 // Inputs are read us ing I (S , N) ,
// S : the index o f the channel

15 // N : index o f the token in the bu f f e r
// Outputs are wr i t t en by a s s i gn i ng to O(S , N)

17

O(0 , 0) = pro c e s s 1 (I (0 , 0) , I (1 , 0) , I (2 , 0) , I (3 , 0)) ;
19

#pragma ForSyDe end // End o f the code block
21 }

a

b

Fig. 6.6 A (synthetic) model in the SDF MoC of ForSyDe. (a) The process network. (b) The code
for function fx

application is generated and compiled for the target platform. During this process
the following information is gathered;

(a) Token sizes The DWARF [4] output data generated from running the GNU
readelf tool on the binary files is analyzed to extract the size of each data
token.

(b) Actor memory requirements The memory requirement of each individual
function is retrieved using the GNU tool nm, this combined with the call-graphs
created using the LLVM Clang tool chain is analyzed to recursively find the
memory requirements for each of the SDF actor.

This information is required to make a valid mapping of the application on
the platform and this information is back annotated into the SDF graph. In the
second phase the application is mapped using this extra information, compiled and
executed. By executing the application on the platform an execution log is obtained.

6 A Composable and Predictable MPSoC. . . 169

1 void k func () {
FLATTEN INPUTS() ;

3 FLATTEN OUTPUTS() ;

5 INPUT VAR(0 , f l o a t) ;
INPUT VAR(1 , i n t) ;

7 INPUT VAR(2 , UserType) ;
INPUT VAR(3 , UserType) ;

9 OUTPUT VAR(0 , f l o a t) ;
OUTPUT VAR(1 , f l o a t) ;

11

// Inputs are read us ing I (S , N) ,
13 // S : the index o f the channel

// N : index o f the token in the bu f f e r
15 // Outputs are wr i t t en by a s s i gn i ng to O(S , N)

17 O(0 , 0) = pro c e s s 1 (I (0 , 0) , I (1 , 0) , I (2 , 0) , I (3 , 0)) ;

19 // Fanouts
f o r (i n t k = 0 ; k < 1 ; k++) {

21 O(1 , k) = O(0 , k) ;
}

23 }

a

b

Fig. 6.7 The automatically transformed model of Fig. 6.6 for mapping to CompSOC. (a) The SDF
graph. (b) The code for function fx

This execution log is analyzed to get an estimation of the worst case execution time
for each SDF actor. This information is then added to the SDF graph, that now
contains all the information required to make a real-time mapping.

As for adapting the code for individual actor functions, the main logic is copied
without modification but the function interface is adapted for the backend. In the
above example, Fig. 6.6b shows how process k is modeled in ForSyDe-SystemC,
while Fig. 6.7b demonstrates its equivalent generated code for the SDF actor k.
In both cases, the process_1 function is the fixed part of the logic. The initial
ForSyDe-SystemC model uses standard CCC vector and tuple data structures
for the function inputs and outputs which are transformed by the library-provided
macros before being used by the main logic. On the other hand, the generated
code uses functions from the CompSOC library to prepare input and output data
structures accessible to the function logic.

Note that the above sketched process is simplified; generating code for the SDF
actors not only needs transformation between the models and APIs for the two
flows, but also requires extracting and matching information such as the initial token
values from the ForSyDe intermediate representation, generating code for constant
processes, and generating the required header functions and initialization code.

170 S.-H. Attarzadeh-Niaki et al.

A single tile mapping of the application for determining execution times might not
be possible due to resource limitations. In this case, the tools will automatically map
to the minimum number of tiles but this does not affect the strategy. Additionally, if
the application uses dynamic memory allocation, extra measurement runs might be
needed to determine the minimum heap size.

6.7 Case Study

To demonstrate the feasibility of the proposed design flow, we apply it to two
applications from the multimedia domain, namely SUSAN edge detection and JPEG
decoder. The experiments are conducted to examine the correctness of the design
flow in terms of preserving the functionality and timing characteristics of multiple
high-level application models in the final implementation. We demonstrate that a
quick single-core mapping of the application onto the platform is sufficient for
measuring an execution time bound for the application actors. These execution
time bounds can be used in the final build of the design flow considering multiple
applications at the same time.

Smallest Univalue Segment Assimilating Nucleus (SUSAN) [23] includes three
signal processing algorithms, out of which the edge detection algorithm is consid-
ered here. The image is partitioned into smaller blocks and the following steps are
applied to each pixel:

1. a mask is applied to an area (called USAN) centered around each pixel of interest;
2. the direction of the edge is detected by calculating the momentums of the USAN

area; and
3. thinning is applied on the edges to clarify the pixels.

JPEG standard [26] is a commonly used lossy compression method for images.
In this case study we consider a JPEG decoder. The decoding of an image in this
experiment is performed in five steps by:

1. parsing the image headers and decompressing the input as a series of 8 � 8 pixel
blocks;

2. inverse quantization and reordering of blocks;
3. combining pixel blocks into RGB pixel values; and
4. putting the pixel values in the final image.

The CompSOC platform instance used for this case study has three tiles: a shared
memory tile with 256 KB of memory and two processor tiles running at 120 MHz.
Each processor tile contains 256 KB of instruction and data memory and three sets
of communication memories and DMAs. The tiles are connected by an NoC with
two routers and four NIs. The platform is prototyped on a Xilinx ML-605 Virtex 6
FPGA board. The platform is setup to generate, without affecting the execution of
the application, a detailed trace of the execution.

6 A Composable and Predictable MPSoC. . . 171

Get
Image Usan Put

Image
Direct

ion Thin
1 1 1 1

1 1

1 1

1 1

1 1 1 1

1 1

Get
Image Usan Direc�

on Thin Put
Image

1 1 1
1 1

1 1

1
1 1

1 1
1 1

1 1

1 1

1 1

a

b

VLD IQZZ RasterIDCT CC
10 1 1 1

1 1

1 10 1 1

1

VLD

IQZZ IDCT CC
Raster1 1

1
1

1

1 1

1

1 1
1

1

10

1

1

1

1

1

1

10

1

Fig. 6.8 The ForSyDe process network and the SDF graph of the application models. (a) SUSAN.
(b) JPEG decoder

First, a model of each applications is developed using the SDF MoC of ForSyDe.
Figure 6.8a, b illustrate their process networks as captured by ForSyDe-SystemC
together with the result of their transformation into an SDF graph. These models are
verified by simulation, with the same testbench that is used later in the measurement
run, by checking the produced output against a reference considered correct.

The design flow is automated using makefiles and can be invoked from the
command line using a single make command. The first two main stages of the design
flow, namely the initial build and the measurement run stages are executed for the
two applications separately. The applications are separately run on the platform to
collect the execution times of the actors. The results obtained by the measurement
runs, maximum measured execution times of each actor, are presented in Table 6.1.

172 S.-H. Attarzadeh-Niaki et al.

Table 6.1 Execution times of the actors and the mapped application on the
platform (in clock cycles)

SUSAN getImage USAN Direction Thin putImage App.

20077 1177105 833912 35843 15866 1356352

JPEG VLD IQZZ IDCT CC Raster App.

626884 4294 15505 21284 1327 61618352

Table 6.2 Execution times of different parts of the flow (in seconds)

Simulate and introspect Individual flow Combined flow

SUSAN 0.16 549 1056

JPEG 0.01 509

After the back annotation of the execution times, the applications are mapped
one after each other on the same platform, resulting in final mapping containing
both applications. Table 6.2 summarizes the execution times of each part of the
flow.1

The final phase which is executed for both applications (1056 s) is less than half
of the total execution time of the flow (2114 s). Note that we have used a simple
greedy mapper in our experiments. In a more elaborate design-space exploration
tool, the individual builds for measurement runs would be a smaller fraction of
the final build. After producing the bit-stream file, the system is run and both of
the applications are verified to produce the correct output. Table 6.1 includes the
execution time of individual applications in the final implementation. These times
remain constant while the applications run individually and both together on the
platform.

6.8 Conclusion and Future Work

We have proposed a fully automated design flow for multiple real-time signal
processing applications which compiles formal executable specifications to a
predictable MPSoC template. The design flow

(a) moves the design entry to a higher level of abstraction since functional models
can be simulated efficiently in SystemC;

(b) provides an automated path to synthesis using the introspection feature of
ForSyDe and the CompSoC tool suite; and

(c) uses rapid performance estimation of the applications on the target platform to
estimate platform-specific metrics of the applications.

1Experiments are run on a 64 bit Linux machine with a Core i7 CPU running at 3.07 GHz with
24 Gb of memory.

6 A Composable and Predictable MPSoC. . . 173

Only half of the execution time of the flow is consumed for the combined application
model since the platform ensures the composability of the individually analyzed
applications.

We plan to enrich the flow by supporting additional MoCs such as the Syn-
chronous (SY) MoC for control-oriented behavior, integrating a more elaborate
dataflow analysis tool such as SDF3, and also aiming at a mixed-criticality design
flow. Also, the method we have used for rapid estimation of the actor execution times
can be enhanced by employing static worst-case execution time analysis tools.

References

1. B. Akesson, A. Molnos, A. Hansson, J. Angelo, K. Goossens, Composability and predictabil-
ity for independent application development,verification, and execution, in Multiprocessor
System-on-Chip: Hardware Design and Tool Integration, ed. by M. Hübner, J. Becker
(Springer, New York, 2011), pp. 25–56

2. M.A. Bamakhrama, J.T. Zhai, H. Nikolov, T. Stefanov, A methodology for automated design
of hard-real-time embedded streaming systems, in Proceedings of the Conference on Design,
Automation and Test in Europe. DATE ’12 (EDA Consortium, San Jose, 2012), pp. 941–946

3. P. Derler, J. Eidson, S. Goose, E. Lee, S. Matic, M. Zimmer, Using Ptides and synchronized
clocks to design distributed systems with deterministic system wide timing, in Symposium
on Precision Clock Synchronization for Measurement Control and Communication (ISPCS)
(2013), pp. 41–46

4. M.J. Eager, E. Consulting, Introduction to the DWARF debugging format (2007), http://www.
dwarfstd.org

5. J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, Y. Xiong,
Taming heterogeneity - the Ptolemy approach. Proc. IEEE 91(1), 127–144 (2003)

6. K. Goossens, A. Azevedo, K. Chandrasekar, M.D. Gomony, S. Goossens, M. Koedam, Y.
Li, D. Mirzoyan, A. Molnos, A.B. Nejad, A. Nelson, S. Sinha, Virtual execution platforms
for mixed-time-criticality systems: the CompSOC architecture and design flow. ACM Spec.
Interest Group Embed. Syst. Rev. 10(3), 23–34 (2013). http://doi.acm.org/10.1145/2544350.
2544353

7. A. Hamann, M. Jersak, K. Richter, R. Ernst, A framework for modular analysis and exploration
of heterogeneous embedded systems. Real-Time Syst. 3, 101–137 (2006)

8. A. Hansson, M. Ekerhult, A. Molnos, A. Milutinovic, A. Nelson, J. Ambrose, K. Goossens,
Design and implementation of an operating system for composable processor sharing. Micro-
process. Microsyst. 35(2), 246–260 (2011). Special issue on Network-on-Chip Architectures
and Design Methodologies

9. K. Huang, W. Haid, I. Bacivarov, M. Keller, L. Thiele, Embedding formal performance analysis
into the design cycle of MPSoCs for real-time streaming applications. ACM Trans. Embed.
Comput. Syst. 11(1), 8:1–8:23 (2012)

10. J. Jensen, D. Chang, E. Lee, A model-based design methodology for cyber-physical systems,
in Proceedings of the 7th International Conference on Wireless Communications and Mobile
Computing (IWCMC) (2011), pp. 1666–1671

11. M. Kay, et al., XSL transformations (XSLT) version 2.0. W3C Recom. (2007)
12. E. Lee, D. Messerschmitt, Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)
13. E. Lee, A. Sangiovanni-Vincentelli, A framework for comparing models of computation. IEEE

Trans. Comput. Aided Des. Integr. Circuits Syst. 17(12), 1217–1229 (1998)

http://www.dwarfstd.org
http://www.dwarfstd.org
http://doi.acm.org/10.1145/2544350.2544353
http://doi.acm.org/10.1145/2544350.2544353

174 S.-H. Attarzadeh-Niaki et al.

14. B. Lickly, I. Liu, S. Kim, H.D. Patel, S.A. Edwards, E.A. Lee, Predictable programming on a
precision timed architecture, in Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems. CASES ’08 (ACM, New York, 2008),
pp. 137–146

15. A. Molnos, A.B. Nejad, B.T. Nguyen, S. Cotofana, K. Goossens, Decoupled inter- and
intra-application scheduling for composable and robust embedded MPSoC platforms, in
Proceedings of the 15th International Workshop on Software and Compilers for Embedded
Systems. SCOPES ’12 (ACM, New York, 2012), pp. 13–21

16. O. Moreira, Temporal analysis and scheduling of hard real-time radios running on a multi-
processor. Ph.D. thesis, Technical University of Eindhoven (2012)

17. A.B. Nejad, A. Molnos, K. Goossens, A software-based technique enabling composable
hierarchical preemptive scheduling for time-triggered applications, in Proc. Int’l Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA) (2013)

18. A. Nelson, A.B. Nejad, A. Molnos, M. Koedam, K. Goossens, CoMik: a predictable and cycle-
accurately composable real-time microkernel, in Proceedings of Design, Automation and Test
in Europe Conference and Exhibition (DATE) (2014)

19. A. Nelson, K. Goossens, B. Akesson, Dataflow formalisation of real-time streaming appli-
cations on a composable and predictable multi-processor SOC. J. Syst. Archit. 61, 435–448
(2015)

20. S.A. Niaki, M. Jakobsen, T. Sulonen, I. Sander, Formal heterogeneous system modeling with
SystemC, in Proceedings of the Forum on Specification and Design Languages (FDL) (2012),
pp. 160–167

21. H. Posadas, P. Peñil, A. Nicolás, E. Villar, Automatic synthesis of embedded SW for eval-
uating physical implementation alternatives from UML/MARTE models supporting memory
space separation. Microelectron. J. 45(10), 1281–1291 (2014). http://www.sciencedirect.com/
science/article/pii/S0026269213002607. DCIS’12 Special Issue

22. M. Schoeberl, C. Brooks, E. Lee, Code generation for embedded Java with Ptolemy, in Soft-
ware Technologies for Embedded and Ubiquitous Systems, ed. by S. Min, R. Pettit, P. Puschner,
T. Ungerer. Lecture Notes in Computer Science, vol. 6399 (Springer, Berlin/Heidelberg, 2010),
pp. 155–166

23. S. Smith, J. Brady, SUSAN–a new approach to low level image processing. Int. J. Comput.
Vis. 23(1), 45–78 (1997)

24. R. Stefan, A. Molnos, K. Goossens, dAElite: a TDM NoC supporting QoS, multicast, and fast
connection set-up. IEEE Trans. Comput. 99, 1–10 (2012)

25. S. Stuijk, M. Geilen, T. Basten, SDF3: SDF for free, in Proceedings of the Sixth International
Conference on Application of Concurrency to System Design (ACSD) (2006), pp. 276–278

26. G.K. Wallace, The jpeg still picture compression standard. Commun. ACM 34(4), 30–44
(1991). http://doi.acm.org/10.1145/103085.103089

http://www.sciencedirect.com/science/article/pii/S0026269213002607
http://www.sciencedirect.com/science/article/pii/S0026269213002607
http://doi.acm.org/10.1145/103085.103089

Chapter 7
Analysis and Implementation of Embedded
System Models: Example of Tags in Item
Management Application

Bojan Nokovic and Emil Sekerinski

7.1 Introduction

Verification of probabilistic systems is a technique for establishing if quantitative
properties hold for a particular system model. The properties are expressed in
temporal logic extended with probabilistic and reward operators. The model can
be specified by engineers in a high-level modelling language as a variant of
Markov chain processes annotated with costs and rewards, and used as input for
a probabilistic model checker, e.g. [1]. Such system models can serve only for
analysis.

Traditional state machines are flat and sequential in nature. To effectively allow
representing complex behavior, such as that of communication protocols, state-
charts, which are hierarchical state machines with concurrency and broadcasting
were introduced [2]. Hierarchy is a structuring method that allows the developer to
maintain an overview of large and complex applications. The most abstract view
is at the outermost level and zooming in reveals details in lower level views. The
design process begins with an outline of the application and then stepwise adds
functionality. Concurrency and broadcasting are used to describe parallel tasks and
communication.

Statecharts are used as a graphical specification tool for reactive systems, but
they are executable and compilable like programming languages [3]; pCharts extend
statecharts further with probabilistic transitions, timed transitions, stochastic timing,
state invariants, and costs/rewards assigned to states and transitions [4, 5]. pCharts

B. Nokovic (�) • E. Sekerinski
Computing and Software Department, McMaster University, Main Street West,
1280, Hamilton, ON, Canada
e-mail: nokovib@mcmaster.ca; emil@mcmaster.ca

© Springer International Publishing AG 2017
A. Molnos, C. Fabre (eds.), Model-Implementation Fidelity in Cyber
Physical System Design, DOI 10.1007/978-3-319-47307-9_7

175

mailto:nokovib@mcmaster.ca
mailto:emil@mcmaster.ca

176 B. Nokovic and E. Sekerinski

are supported by pState,1 a tool for the holistic design: in addition to generating
executable code, pState can be used to model the system’s environment and to verify
quantitative properties like resource consumption (e.g. power), reliability (e.g. lost
messages, life expectancy), and performance (e.g. throughput). Such queries can be
specified directly on pCharts.

We use an application with electronic tags to illustrate the holistic design
process. Section 7.2 reviews the design process. Section 7.3 gives an overview of
the architecture and functionality of pState. Section 7.4 describes the process of
executable code generation from pCharts. Section 7.5 presents the process of gen-
erating Markov decision processes and probabilistic timed automata for the PRISM
probabilistic model checker. Section 7.6 describes the generation of the executable
code framework. The remaining sections present a case study: on the example of
the DASH-7 ISO/IEC 18000-7.2 communication protocol, we first give a system
collision model in Sect. 7.8, then a model of power consumption in Sect. 7.9, and
finally the executable code framework in Sect. 7.10. The final section summarizes
the contribution.

7.2 A Holistic Design Process

Existing automated tools for analyzing discrete, timed, probabilistic, or stochastic
models have a textual user interface, which makes them less suitable for engineers
developing larger systems. Visualization of models in the form of hierarchical state
machines, like statecharts, allows a view where the whole system is represented
from the perspective of related states. An extension of statecharts with probabilistic
transitions, timed transitions, and stochastic timing is proposed in [6]. Invari-
antcharts, statecharts with state invariants are introduced in [7]. pCharts support
probabilistic transitions, timed transitions, stochastic timing, state invariants and add
costs/rewards assigned to states or transitions. Through the pState editor, the pChart
system model is entered. Quantitative queries are specified directly in the pCharts.
After validation, a system without timed transition can be verified over a Markov
decision process for systems (MDP) and a system with timed transitions over a
probabilistic timed automaton (PTA); these are passed to a probabilistic model
checker. The correctness of transitions with respect to state invariants is checked
with a combination of the probabilistic model checker and a satisfiability modulo
theories (SMT) solver. Executable code for the software part of the system can be
generated and its worst-case execution time (WCET) analyzed. The architecture of
pState is in Fig. 7.1.

1http://pstate.mcmaster.ca.

http://pstate.mcmaster.ca

7 Analysis and Implementation of Embedded System Models 177

pState

Editor
Executable

code
generator

MDP
PTA

generator

Verification
condition
generator

System model
Safety properties

Quantitative queries

Validation messages
Verification results
Quantitative results

Execution time analysis

CCodeAssembly+WCET

Temporal
query

Guarded
commands

Quantitative
results

Probabilistic
Model

Checker

Boolean
expression

yes/no

SMT
Solver

Fig. 7.1 Top-level pState architecture

7.3 pState Editor

The editor is designed on the JHotDraw (JHD) 7.6 framework [8]. As a starting
point we use frameworks from the org.jhotdraw.samples package. Figure 7.2 is a
view of the pState graphical interface, which shows features of a TV set represented
as a pChart. Components like states and transitions are added in a drag-and-drop
fashion using icons in the toolbar. States without children are called Basic states.
On the TV set, chart states Standby, WarmingUp, Displaying, Waiting, On, and Off
are Basic states. Compositional states are either AND states or XOR states. State
Working is an AND state, it has two children, Pictures and Sound, separated by a
dashed line. When the chart is in Working, it is at the same time in both Picture and
Sound. Composite XOR states are (1) Picture with two Basic states WarmingUp and
Display, (2) Sound with three children Waiting, On, and Off, and (3) the top state
root with two children, Working and Standby.

The TV control activity is partitioned into two states, the Basic state Standby,
and AND state Working. The initial state is Standby. When the chart is in Working,
it is in both the Picture and Sound XOR states. Within Picture the chart is in one of
the basic states WarmingUp or Displaying, within Sound the system is in one of the
Basic states Waiting, On, or Off. The invariant of Working specifies that whenever
Picture is in Displaying, Sound must not be in Waiting, i.e. must be either in On or
Off. The invariant of Sound specifies that the sound level lev must be between 1 and
10; the invariant must be established by the initialization of Sound and be preserved
by all transitions within Sound. The event power causes the chart to flip between
Standby and Working, no matter in which substates of Working the chart is. The
transition on event warm broadcasts event soundOn. The transition on events down

178 B. Nokovic and E. Sekerinski

Fig. 7.2 Statecharts with invariants for TV set

can only be taken if lev > 1 and when taken, will decrement lev. The transition on
power to Working sets Picture and Sound to the default initial states WarmingUp
and Waiting and sets lev to 5.

The design tools in Fig. 7.2 are for selection, state (basic and composed),
transitions, initial pseudostate, probabilistic pseudostate, concurrency line, choice
pseudostate, quantitative query, and comment. It is straightforward to add other
tools to the button factory. We additionally use the standard attribute bar with all
selections from the JHD framework. This bar is an example of how new features,
like colour of the figure, can be added to the drawing editor.

7.4 From Hierarchical Charts to Code

pState generates code according to an event-centric interpretation, in which events
are executable procedures, implying that an event is processed before the next one
arrives. This interpretation is according to the requirements-oriented semantics [9].
This is in contrast to the implementation-oriented semantics based on the state-
centric interpretation in UML and Statemate [10], in which events are data in
queues. The event-centric interpretation was already used by iState, the predecessor

7 Analysis and Implementation of Embedded System Models 179

of pState [11]. The event-centric approach is suitable for those kind of reactive
systems where events are processed quickly enough that queueing is not needed and
where blocking of events is undesirable. This semantic is close to [12]. Currently
we do not support spontaneous transitions—transitions without an event.

Hierarchical state machine diagrams consist, essentially, of just three compo-
nents: a set of states, an initial state, and a set of transitions. The system starts at the
initial state, then follows transitions on external events to move to other states. States
can hold entire sub-state-machines within themselves. Concurrent states express
orthogonality or independence. A transition t from a set of source states ss (of
distinct concurrent states) to a set of target states tt (of distinct concurrent states),

is a tuple written as t D ss
EŒg	=b $c�����! tt, where E is the transition event, g is a

Boolean expression, the transition guard, $c is a non-negative number, the cost of
the transition and b is a statement, the transition body. In a regular transition, E is the
event name, while in a timed transition E is the number of time units [5]. Transitions
can be probabilistic, in which case target states are indicated as probabilistic
alternatives [4]. Each transition must have E, while guard g, cost c, and body b
are optional. All states are nested in the state root, which must not be the source or
target of any transition.

In the transformation of a pChart to intermediate code, for each event, code
associated with that event is generated and for every XOR state, an enumeration
variable is generated holding the names of children states. The code generation is
based on the recursive algorithm of [5].

The scope of a transition is the innermost state which contains all its source and
target states. The grammar of the generated intermediate code has two mutually
recursive productions, Scopeop and Childop. In the intermediate code, one variable
for each state in the hierarchy is declared, starting with root, representing in which
child state the system is. The algorithm for generating the operation Op of a regular
event visits all transitions of one scope, starting with root as scope, before visiting
transitions in children. The transitions on one scope are of the form

Trigger ! Effect Œ	 : : : Œ	 Trigger ! Effect

with a nondeterministic choice (Œ) among them, and each choice being guarded
(!). These transitions take priority (==) over transitions in children. If the child is
an XOR state, there is first a test to determine in which state the system is (Test),
followed by the transitions with that child as scope. If the child is an AND state,
then transitions on that event in all children are taken in parallel (k). The trigger of a
transitions contains tests for all the source states of the transition (Variable D State)
and the guard (Expr). The effect of a transition is executing the body of the transition
(Statement) in parallel with moving to target states (Goto), with a probabilistic
choice (˚) among such alternatives, such that the probabilities for each alternative
(Probability W : : :) sum up to 1. Thus the intermediate representation Op of a regular
pCharts event is of the following form:

180 B. Nokovic and E. Sekerinski

S0

S1

S2

S3

P1

Q1
Q2

P2

E/x:=x+1

E/x:=x-1
 i

 i
E

 P

Q3

@0.2

@0.8

 i

Fig. 7.3 Operation on event E

Op WWD Scopeop
Scopeop WWD .Trigger ! Effect Œ	 � � � Œ	 Trigger ! Effect/ == Childop
Childop WWD .Test ! Scopeop Œ	 � � � Œ	 Test ! Scopeop/ == skip

j Scopeop k � � � k Scopeop
Test WWD Variable D State
Trigger WWD Variable D State ^ � � � ^ Variable D State ^ Expr
Effect WWD Probability W Statement k Goto ˚ � � � ˚ Probability W Statement k Goto
Goto WWD Variable WD State k � � � k Variable WD State

As an example, the operation op.E/ of the event E in Fig. 7.3 is as follows:

op.E/ D
.root D S0 ! x WD x C 1 k root WD S1 k s2 WD P1 k s3 WD Q1/

==

root D S1 !
.s2 D P1 ! x WD x � 1 k s2 WD P2/ == skip
k
.s3 D Q1 ! 0:2 W s3 WD Q2 ˚ 0:8 W s3 WD Q3/ == skip

==

skip

The full description of generalized program statements skip, stop, multiple
assignment, guarded statement, nondeterministic choice, probabilistic choice, and
parallel composition used to define the meaning of events is in [5, 13]. The body of
a transition is an action or chart statement, like x WD x C 1. The grammar of chart
statement is

7 Analysis and Implementation of Embedded System Models 181

ChartStatement WWD if Expr then ChartStatement Œelse ChartStatement	 j
ChartStatement k � � � k ChartStatement j
Variable; : : : ; Variable WD Expr; : : : ; Expr j
Event

Expr WWD Variable j real j integer j true j false j UnOp Expr j
Expr BinOp Expr jj in State

UnOp WWD � j :
BinOp WWD C j � j � j div j mod j D j ¤ j < j � j > j 	 j and j or

If an event leads to broadcasting of another event, the second one is executed
in parallel with the first one, which imposes that there are no race conditions in
the parallel execution. The translation of parallel statements needs extra processing
since for executable code generation, parallel statements have to be converted into
sequential statements using auxiliary variables. Parallel composition is first verified
to be well defined such that variables assigned in parallel statements are disjoint,
and then transformed to multiple assignments using the fact that .x; y WD E; F/ D
.x WD E k y WD F/ [5].

Before code generation, the validation performs three checks on charts: (1)
Composite states must not be childless, AND state must have at least two children,
each child of an AND state must be an XOR state; (2) all XOR states have initial
transitions; (3) transitions between concurrent states are not allowed.

For target code generation, the visitor [14] pattern with two methods, transform
and translate is employed, see Fig. 7.4. The elimination of parallel composition is
done by transform and the creation of either executable code (C, assembly) or input
code for a probabilistic model checker by translate.

7.5 Model Checker Input Code

From pCharts without timed transitions, pState generates an MDP model, and
from pCharts with timed transitions, pState generates a PTA model as input for
the PRISM model checker [15]. As PRISM requires the model to be a flat set of
guarded commands with multiple (probabilistic) assignments as commands, after
the elimination of parallel composition, the intermediate code is flattened. The full
code generation algorithm is given in [5].

7.5.1 MDP

Markov decision processes are a variant of Markov chains that permit both proba-
bilistic and nondeterministic choices. Our presentation of MDP follows [16–18].

182 B. Nokovic and E. Sekerinski

ICode
<<interface>>

translate(Codegenerator)
transform(CodeGenerator)

EventCode
<<interface>>

getValue()
getSentEvents()
getRaedWriteSet()
deepCopy()

AssignmentCode CaseCode

CodeGenerator
<<interface>>

genetateCode(StatechartDiagram)
translateAssignmentCode(AssignmentCode) : String
translateCaseCode(CaseCode) : String
transformIfCode(IfCode) : EventCode

PrismGenerator CGenerator

IfCode

 public String translate(CodeGenerator cg) {
 return cg.translateEventDeclCode(this);
 }

 public EventCode transform(CodeGenerator cg) {
 return cg.transformEventDeclCode(this);
 }

 public String translate(CodeGenerator cg) {
 return cg.translateIfCode(this);
 }

 public EventCode transform(CodeGenerator cg) {
 return cg.transformIfCode(this);
 }

EventDeclCode

ASMGenerator

...

Fig. 7.4 Class diagram of the visitor pattern in pState

Definition 1. A labelled Markov decision process is a tuple M D .S; Ns; A; p; l; r/
where

– S is countable nonempty set of states;
– Ns is the set of initial states;
– A is the finite set of actions;
– p : S � A ! Dist(S) is the transition probability function;
– l : S ! 2AP is the labelling function;
– r : S � A � S ! R is the reward function.

and AP is a set of atomic propositions. We assume that M is time homogeneous;
S, A, p, l, and r do not vary over time, and that S and A are discrete.

Example. The pChart of a simple MDP and the generated PRISM code are shown in
Figs. 7.5 and 7.6. There are two transitions on wakeup from S0, the initial state, the
choice between them being nondeterministic. One of the transitions is probabilistic,
in which with 70 % probability state S1 is reached and with 30 % probability the
system stays in the initial state. The other transition from S0 to S1 is deterministic,
where on the event wakeup state S1 is always reached. The transition on the event
send is deterministic and the transition on event recv is probabilistic. Rewards are
assigned to the states by $r D e, where and e 	 0 is a real expression.

In S3 we specify two queries, the query ‹$r:max returns maximum costs to reach
S3, and the query ‹P:max returns maximum probability to reach state S3. Those
two properties are translated into PCTL formulae R“r00max D‹ŒF.root D S3/	 and

7 Analysis and Implementation of Embedded System Models 183

S0 $r=0.1

S1 $r=3 S2 $r=2

S3 $r=0 P
wakeup

@0.7

@0.3 i

wakeup

send

 P

recv
@0.1

@0.9

Fig. 7.5 State-transition diagram of the MDP model

mdp

const S0=0; const S1=1; const S2=2; const S3=3;

module mdpexample
root :[0..3] init S0;

[send] (root=S1) −> (root’=S2);
[wakeup] (root=S0) −> 0.3:(root’=S0) + 0.7:(root’=S1);
[wakeup] (root=S0) −> (root’=S1);
[recv] (root=S2) −> 0.1:(root’=S1) + 0.9:(root’=S3);

endmodule

rewards ”r”
(root=S0): 0.1;
(root=S1): 3;
(root=S2): 2;
(root=S3): 0;

endrewards

Fig. 7.6 MDP PRISM code generated by pState

Pmin D‹ŒF.root D S3/	, respectively. The calculated maximum costs to reach state
S3 is 5.6984, and the maximum probability to reach S3 is 0.9999, that is 1. The error
comes from floating point rounding of the model checker. In this example, there
is a nondeterministic choice between the probabilistic and deterministic wakeup
transitions from state S0 to state S1. Eventually, in both cases, the transition on
event wakeup leads to S1 state. Calculated reward of 5.698 is maximum expected
long-run reward. This is the same as a long-run average reward, but only if there are
no nondeterministic transitions.

7.5.2 PTA

Timed automata (TA) provide a natural way for expressing timing delays of
real-time systems [19]. On a TA, we can prove the correctness of finite-state
real-time systems using the trace semantics originally proposed in a model for

184 B. Nokovic and E. Sekerinski

communicating sequential processes (CSP) [20]. Probabilistic timed automata
(PTA) are an extension of TA used for formal modelling and analysis capabilities for
systems with probabilistic, nondeterministic, and real-time characteristics [17]. PTA
augmented with quantitative information in the form of costs or reward are called
priced probabilistic timed automata. On a PTA model two main classes of properties
can be analyzed, the minimum/maximum probability of reaching a target, possibly
within a time bound and the minimum/maximum expected reward accumulated until
a target is reached, using quantitative abstraction refinement and statistical model
checking verification methods [21].

Definition 2. A probabilistic timed automaton (PTA) is a tuple
P D .S; Ns;X; A; inv; enab; prob; l/, where

– S is the countable nonempty set of states;
– Ns is the set of initial states;
– X is a finite set of clocks;
– A is the finite set of actions;
– inv : S ! CC(X) is an invariant condition, a clock constraint for each state;
– enab: S � A ! CC(X) is an enabling condition;
– prob: S � A ! Dist(2X� S) is a (partial) probabilistic transition function;
– l : S ! 2AP is the labelling function;

Example. The pChart of a simple PTA and the generated PRISM code are shown in
Figs. 7.7 and 7.8. The PTA has clock rootclk with initial value 0. In the state S0, the
system waits for the wakeup event for 1 time unit. State S0 also allows a transition
to state S1 when rootclk D 1 and the PRISM invariant root D S0) rootclk � 1

forces the transition to be taken when rootclk reaches 1. In the state S0, the system
waits for wakeup for a maximum of 1 time unit. If the event does not occur, it
goes to next state on timed transition. On this model, properties like the expected
time to reach state S3 or the probability of reaching state S3 in a given number of
time units can be verified. In the state S3, we specify two queries: ‹P:maxF < 10s
returns 0.9, the maximum probability to reach state S3 in 10 time units (seconds)
and ‹P:minF < 10s returns 0.819, the minimum probability to reach S3 in 10 time
units. Those properties cannot be verified on an MDP model. While PRISM uses
abstract time units, in pCharts the time unit, here s, must be explicitly specified.

S0 $r=0.1

S1 $r=3 S2 $r=2

S3 $r=0 P
wakeup

@0.7

@0.3 i

wakeup

1s

 P

4s
@0.1

@0.9

Fig. 7.7 State-transition diagram of the PTA model

7 Analysis and Implementation of Embedded System Models 185

pta

const S0=0; const S1=1; const S2=2; const S3=3;

module ptaexample
root :[0..3] init S0; rootclk : clock ;

invariant
(root=S1=>rootclk<=1)& (root=S2=>rootclk<=4)

endinvariant

[wakeup] (root=S0) −> (root’=S1)&(rootclk’=0);
[wakeup] (root=S0) −> 0.3:(root’=S0)&(rootclk’=0) + 0.7:(root’=S1)&(rootclk’=0) ;
[] (root=S2)&(rootclk=4) −> 0.1:(root’=S1)&(rootclk’=0) +

0.9:(root’=S3)&(rootclk’=0) ;
[] (root=S1)&(rootclk=1) −> (root’=S2)&(rootclk’=0);

endmodule

rewards ”r”
(root=S0): 0.1;
(root=S1): 3;
(root=S2): 2;
(root=S3): 0;

endrewards

Fig. 7.8 PTA PRISM code generated by pState

A PTA in PRISM is verified by one of two engines, digital clocks [22] and
stochastic games [23]. The specification of queries or quantitative properties of a
PTA is based on probabilistic computational tree logic PCTL [17, 24]. In the digital
clock engine, clock variables are allowed in P (probability) operator expressions, as
well as in F (eventually) and U (until) expressions. However, this engine does not
support time-bounded reachability properties and clock constraints cannot use strict
comparison operators, e.g. rootclk < 2. Also, comparison between clock variables
is not allowed. Automata with such constraints are called closed, diagonal-free
probabilistic timed automata. The digital clocks method is based on a language-level
translation from a PTA model to an MDP model. In the stochastic games engine,
properties cannot contain references to clocks. Only unbounded or time-bounded
probabilistic reachability properties are allowed. For this, only the P operator is
used. The basic types of path properties that can be used inside the P operator are:
X (next), U (until), F (eventually), G (always), W (weak until), and R (release), but
the stochastic game engine currently (V 4.2.1) only supports the F path operator.
The S operator, used to reason about the steady-state behavior of model, and the R
operator, used to calculate reward properties, are not supported.

186 B. Nokovic and E. Sekerinski

7.5.3 Properties Specification

pState allows quantitative queries to be placed inside hierarchical states, making
use of the state hierarchy, while the specification of properties in PRISM is done
separately from the model.

For example, in pState we can attach ‹P:min to a state, say S, to compute the
minimal probability to reach S. If S is child of root, pState generates the PCTL
formula Pmin D‹ŒF.root D S/	 for PRISM. The same query can be attached
to another state, possibly deeper in the hierarchy, and pState would generate
a corresponding, more complex property specification. Similarly, if the reward
property ‹$tran:max for computing the maximal reward to reach that state is placed
in S, pState generates Rf“tran00gmax D‹ŒF.root D S/	. Quantitative queries in
pState are according to the following grammar:

Query WWD ‹.Probability j Reward/.:min j :max j > real j < real/ŒBound	ŒTarget	
Bound WWD F < Time
Target WWD 0.0Expr0/0

Probability WWD P
Reward WWD $Identifier
Time WWD digitfdigitg.d j h j s j ms/
Identifier WWD letterfletter j digitg

Quantitative queries are attached to a state or written in the special property
box. Currently only simple properties can be attached to states. For more complex
properties, which include more than one condition, property boxes have to be used.
For instance, the PCTL formula Pmax D‹ŒF.rootclk < T/&.root D S/	 has to be
specified in a property box. With this property we can calculate the probability that
state S will be reached before T time units.

7.6 Executable Code

Target code is created by further translating the intermediate code, provided that
there are no probabilistic transitions in the sub-chart for which code is to be
generated. The intermediate code may contain parallel compositions emerging from
broadcasting (transitions in concurrent states are taken in parallel) and multiple
assignments. As multiple assignments are a special case of parallel composition,
both are treated uniformly by introducing auxiliary variables and sequentializing,
for example:

.x WD yjjy WD x/ D .x; y WD y; x/ D .var h D xI x WD yI y WD h/

7 Analysis and Implementation of Embedded System Models 187

Specifications of costs/rewards are ignored for code generation. Nondeterministic
choice with guarded choices is translated as if-then-else or case statements in the
target code syntax. The abstract syntax of the executable code follows:

Statement WWD if Expr then Statement Œelse Statement	 j
Statement I : : : I Statement j
Variable WD Expr j
case Variable of State W Statement : : : State W Statement j
call Event j
var Variable D Expr I Statement

pState generates code for PIC16F6xx in C or assembly language, and Libeli-
um/Arduino code for ATmega1281 micro-controller. Both are 8-bit RISC-based
micro-controllers.

7.6.1 PIC C Code

All executable files can be divided into two groups, (1) generated files and (2) pre-
written files. pState generates the file charts.c, which defines the behavior of the
application. Prewritten files main.c, setupProcessor.c, Scheduler.h, actions.h can be
divided into two groups: target independent, and target dependent files, similar as
for the assembly files shown in Fig. 7.9. Target independent files are main.c, and
Scheduler.h. The file main.c defines the entry of the application, and initializes
variables, chart states, and the scheduler. Then it enters an infinite loop which

Code generated
by pState

chartsApp.asm .obj

Manually written
code for scheduler
and device drivers

mainAsm.asm .obj

setupProcessor.asm .obj

.hex

Include files globalVars.inc P16F636.inc

Fig. 7.9 Structure of target code

188 B. Nokovic and E. Sekerinski

processes input events and schedules actions. The file Scheduler.h defines a data
structure which holds timed events and defines functions to schedule and cancel
timed events.

The target dependent file setupProcessor.c contains routines for processor
input/output initialization, timer initialization, etc. The file actions.c specifies how
external events will be processed. For instance, if a digital signal is connected
to PORTA bit 0 of the PIC16F6xx micro-controller, and if the presence of a
signal means high voltage on the pin, then that should be defined in actions.c as
#define SIGNAL .RA0 DD 1/.

7.6.2 PIC Assembly Code

Assembly code is created by translating the abstract executable code. Translation
of if-then-else and case statements is straightforward. Most micro-controllers have
an instruction which allow constants to be added immediately. In this approach
generation of the code is delayed until the mode of an expression is known, which
is known as delayed code generation [25].

We are using CBLOCK 0x20 or CBLOCK 0x40 to allow the variables declared
within the block to automatically increment to the next general register, starting
from 0x20 or 0x40. Address 0x40 and beyond are used for constants associated
with state names, while 0x20 to 0x39 are used for variables.

Names of variables in assembly code are generated as lowercase letter state
names. Variables are either integer subranges or Boolean. The generated code
consists of state and variable declarations, assignments and expressions, state
transitions, macros, statements, and timed transitions. Scheduler, initialization, and
I/O actions are not generated from the specification, they are write-once code. In
this way we have full control over the structure of the application, similar to the
approach described in [26].

Code generation depends not only on individual symbols but also on the values
of their attributes. We use a one-pass generation that delays emitting the code until
the attributes are known [25]. The generated code depends on the fact if the value
is held in a register or it is a known constant. If it is constant, the generated code
will be smaller since the value does not need to be stored to working register before
the operation is performed. Where the value is stored and how it is to be accessed is
indicated by attributes of expressions. In our implementation we have the following
attribute modes: Reg - special function registers, i.e. PORTA, STATUS, etc., Var -
general purpose registers, Const - constant, AccW - working register or accumulator.
In addition to those we have special modes for expressions like VarPlusConst,
VarMinusConst which indicate operations of addition or subtraction between factors
of type variable and constant. Once we know mode of an expression, optimized code
can be generated.

7 Analysis and Implementation of Embedded System Models 189

7.6.3 Energia, Arduino-Like Code

Arduino is a C-derived programming language. Energia is an Arduino-like IDE for
TI LaunchPad (Tiva C) development board. In our implementation, the target is
the TM4C123 ARM micro-controller. The program is structured as two routines,
setup./ and loop./. The setup./ routine contains the initialization of variables and is
run only once. The loop./ routine is then executed continuously, allowing variables
to change and the program to respond to and control the board. The code can be
compiled on the Energia IDE. Custom routines in Energia can be written to perform
reoccurring tasks. They are declared like functions in C/CCC, with function return
type, name, and parameters. In our implementation we assume that no value is to be
returned, so the event function type is void.

The code generated from the example in Fig. 7.10 is in Fig. 7.11. All states
of the hierarchical structure are nested in the root state, which is declared as
the variable root. pCharts allows direct declaration only of integer subranges and
Boolean variables.

Functions that are unique to the Energia language and used to configure, read,
and write specific ports of the micro-controller can be called in the body of
transitions. Those functions have to be prewritten. They are ignored for the purpose
of verification. If we need to set up some pin to be INPUT or OUTPUT, that is
done by the pinMode(pin,mode) function; to read digital pin value, which can be
HIGH or LOW, the function digitalRead(pin) is used, and to write to pin digital-
Write(pin,value) is used. Handling an analog pin is done by analogRead(pin,value)
and analogWrite(pin,value). It reads and write the value from a specified analog pin
with 10-bit resolution.

Untimed event can be executed by (1) polling the trigger of the event or (2)
assigning external interrupt to the event. Polling can be done in a continuous loop
or by a timer. In our implementation we call the dispatcher function in the loop
to check if external trigger that causes the On or Off event is present. The same
functionality can be achieved by calling dispatcher after a predefined amount of
time (i.e. every 1ms). In the prewritten code of Fig. 7.12, the function that configures
hardware, HW_Init(), and the function dispatcher are shown.

Fig. 7.10 Simple switch
operation

S T
2s/x := 0

/x := 0

On[x= 0]/x := x+1

Off[x> 0]/x := x−1

190 B. Nokovic and E. Sekerinski

/∗
∗ Energia (Arduino) code generated from pCharts
∗/

#include ”OneMsTaskTimer.h”

/∗ Variables ∗/
#define T 0
#define S 1

int x;
int root ;

OneMsTaskTimer t teExactly0={2000, exactly0, 0, 0};

void exactly0 (){
if ((root==T)) {

x=0;
root=S;

}
}
void Off(){

if ((root==T)&&(x>0)) {
x=(x−1);
root=S;
OneMsTaskTimer::remove(&teExactly0);

}
}
void On(){

if ((root==S)&&(x==0)) {
x=(x+1);
root=T;
OneMsTaskTimer::add(&teExactly0);

}
}

void setup (){
/∗ Initialization ∗/
HW Init();
root=S;
x=0;
OneMsTaskTimer::start() ; // Start timer

}

void loop (){
dispatcher () ;

}

Fig. 7.11 Generated code for the chart in Fig. 7.10

7 Analysis and Implementation of Embedded System Models 191

void HW Init(){
// Initialize the pushbutton pin as an input
pinMode(PUSH1, INPUT PULLUP);
pinMode(PUSH2, INPUT PULLUP);

}

void dispatcher (){
noInterrupts () ;
if (digitalRead (PUSH2)==LOW) {

On();
}
if (digitalRead (PUSH1)==LOW) {

Off() ;
}
interrupts () ;

}

Fig. 7.12 Prewritten hardware-related code, target TM4C123 micro-controller

7.7 Contention Resolution in DASH-7 ISO/IEC 18000-7.2

The ISO/IEC 18000-7.2 [27] standard provides an air interface implementation
for wireless, non-contact information system equipment for item management
applications. The RFID equipment is composed of two principal components: tags
and interrogators. We study a system with active tags, i.e. tags with own source of
energy, like battery. Each tag has a unique serial number and other data. It is intended
for attachment to a managed item. An interrogator is a device that communicates
to tags in its RF communication range. The interrogator controls the master–slave
protocol, reads information from the tag, directs the tag to store data, ensures
message delivery and validity. We present the method by which an interrogator
identifies and communicates with one or more tags present in the operating field
of the interrogator over a common radio frequency channel. Tags do not transmit
unless commanded to do so by the interrogator. An interrogator can communicate
with tags individualy, or with the tag population as a whole.

7.7.1 Tag Collection and Collision Arbitration

The tag collection process is an iterative process that includes methods for coordi-
nating responses from the tag population and handling collisions which occur when
multiple tags transmit at the same time. The entire tag collection process is referred
to as a complete collection sequence. Figure 7.13 shows a complete collection
sequence consisting of a wakeup period (WP) followed by a series of collection

192 B. Nokovic and E. Sekerinski

WP CP #1 CP #2

SP LP AP SP LP AP

Interrogator

TS1 ... TS5

Tag #3

Tag #2

Tag #1

Fig. 7.13 Interrogator-tag communication timing diagram

periods (CP). Each collection period consists of a synchronization period (SP), a
listen period (LP), and an acknowledge period (AP). The LP is further divided into
multiple time slots (TS).

For three tags and five time slots as shown in Fig. 7.13, in the first communication
period, tags #1 and #3 transmit in the same time slot, so there will be a collision.
In the first acknowledge period there is an acknowledgment only for the message of
tag #2. In the second communication period, tags #1 and #3 retransmit the message,
but this time tag #1 transmits in the time slot 1, and tag #3 transmits in time slot 4, so
there is no collision, and in the acknowledge period there are two acknowledgement
messages.

7.8 Collision Model

We can calculate the collision probability by calculating the number of possible
transmissions without collision and divide it by the total number of possible
transmissions. For n tags transmitting, the first tag can transmit in any of the m
time slots, the second tag should transmit in any of the m�1 slots to avoid collision,
and so on. The number of transmissions without collision is

NC D m � .m � 1/ � : : : � .m � n C 1/ (7.1)

while the number of all possible transitions is

AT D m � m � : : : � m D mn (7.2)

7 Analysis and Implementation of Embedded System Models 193

Tag; M=5; c:0..M; N=3

 i
TS

 P

NextTS

t1[c>M-N] @c / M

Collision

 i

/c:=M

@ 1 - c / M

t2[c>M-N]/ c:=c-1

? P.min

Fig. 7.14 Collision model, three tags, five time slots

The probability that a collision will happen is simply

1 � NC=AT (7.3)

We assume a model of three tags N D 3 and five time slots M D 5. The number of
possible transmissions without collisions is NC D 5 � 4 � 3 D 60, and the number
of possible transmissions is AT D 5 � 5 � 5 D 125. The probability of at least one
collision according to (7.3) is 0:52.

The collision model represented by pCharts is shown in Fig. 7.14. In the Collision
state, by “‹ P:min00 we query the collision probability, or probability to go to
Collision state, which is calculated as 0.52. To calculate the collision probability
for a different number of time slots or a different number of tags, all we have to do
is to assign new numbers to M or N in Tag state declaration.

7.9 Collection Period Power Consumption

The collision model in Fig. 7.14 is without timed transitions and the generated input
code for the model checker is an MDP. But, in the power consumption model, we
need to know how long tags stay in states and the current consumption in those
states. The model of power consumption is shown in Fig. 7.17. From this model,
pState generates a PTA.

On the PTA model we can query the average power consumption in one
collection period (CP), taking into account the collision probability calculated
on the collision model. The current consumption for a typical active tag during
transmission is 9.2 mA, in receiving mode 0.2 mA, and in standby 0.0024 mA [28].
In the construction of the transitions we use data from Fig. 7.15. In the case of three
tags and five time slots, the collision probability is 0.52, or 52 %, so the transition

194 B. Nokovic and E. Sekerinski

Fig. 7.15 Collision probability for tags N D Œ2; 3	 and time slots M D Œ3::9	

mdp

const M = 5;
const N = 3;
const Collision =0; const NextTS=1; const TS=2;

module collision
tag :[0..2] init TS;
c :[0.. M] init M;

[t2] (tag=NextTS)&(c>(M−N)) −> (c’=(c−1))&(tag’=TS);
[t1] (tag=TS)&(c>(M−N)) −> (1−(c/M)):(tag’=Collision) + (c/M):(tag’=NextTS);

endmodule

Fig. 7.16 PRISM code generated by pState for model shown in Fig. 7.14

from state Tx to Next is probabilistic with 52 % probability. That means if a collision
happens, the tag needs another collection period to perform the operation. In the
case of collision, the probability that all three tags select the same time slots is 4 %,
which is modelled by a probabilistic transition from Tx to ThreeCollisions state. If
there is a collision of two tags, in the next collection period, on five time slots, only
those two tags are retransmitting. According to Fig. 7.15, the collision probability is
20 %, and that is represented by probabilistic transition from TwoTags to Next state.
The maximum number of collection periods in the model is three (Fig. 7.16).

The queries are verified over the formulae Rf“cons00gmax D‹ŒF.tagconsum D
End/	 and Pmax D‹ŒF.tagconsum D End/&.i D 3/	. For the first, the calculated
value for the electrical charge is 280.72 mAms (Fig. 7.17). The probability of not
receiving all tags in three collection periods is calculated as 0.1106, or 11.06 %, so
about 89 % of time all tags are read in three collection periods (Fig. 7.18).

7 Analysis and Implementation of Embedded System Models 195

TagConsum; i:0..3

 i
 /i:=0

Rx $cons=0.5

Tx
$cons=9.2

68ms[i<3]/i:=i+1

15ms[i=1]

End ? $cons.max

@0.48

Next
$cons=0.2

@0.52

 C

[i 2]

[i>2]

 P
1ms@0.2

@0.8

 P 15ms[i 1]

@0.04 @0.96

1ms

TwoTags
$cons=0.2

ThreeCollisions
$cons=0.2 P

0..1 ms

? P.max (i=3)

Fig. 7.17 Collection period power consumption

7.10 Executable Tag Code

Figure 7.19 gives the tag operation model. It has two parallel processes, Tag, which
represent tag operation, and Mode which represents tag transition from sleeping to
working mode and back. Initially, Mode is in Sleep, in which periodically, every
1ms, the presence of a wakeup signal is checked. If there is no signal, it goes
back to Sleep and repeats the process after 1ms. If there is a wakeup signal, the
indicator field is set to true, and the system goes first into Field and immediately
to FieldON. From that state it goes to Work and broadcasts the event WakeUp.
That event moves Tag from Start into Preamble. On that transition, procedure
WAKEUP is called. It has to recognize the (WP) preamble, Fig. 7.13, and has to
be executed in 2.45 to 4.8 seconds. Next, Tag goes into CP state in which it receives
a command form the interrogator, and goes into listen period LP, in which the tag
transmits its message in a randomly selected time slot. In the Ack state, Tag waits
for confirmation or acknowledgment message. If the received command informs the
tag that communication is done, it goes to Finished and then back to Start. On the
transition form Finished to Start, local event GoToSleep is broadcasted. This forces
the parallel task Mode to go from Work to Sleep mode. Another way to go from Work
to Sleep is on timeout, which is 30 seconds according to the protocol specification.

From the specification we generate the framework for tag application according
to the DASH-7 protocol specification. For the full implementation it is necessary
to implement the following subroutines (1) WAKEUP to detect the low frequency
wake up signal, (2) RECEIVECP to receive broadcast and point-to-point commands,
(3) LISTENPERIOD to send a packet message which contains a unique tag
identification number to the interrogator in the selected time slot, (4) ACKPERIOD
to receive an acknowledgement from an interrogator. Those routines should satisfy
timing requirements from the general framework model. Each transition can

196 B. Nokovic and E. Sekerinski

pta

const Next=0; const Rx=1; const Tx=2; const TwoTags=3; const End=4; const
ThreeCollisions =5;

module powerconscp2
tagconsum :[0..5] init Rx; tagconsumclk : clock ;
i :[0..3] init 0;

invariant
(tagconsum=Next=>tagconsumclk<=1)
& (tagconsum=Rx=>tagconsumclk<=68)
& (tagconsum=Tx=>tagconsumclk<=15)
& (tagconsum=TwoTags=>tagconsumclk<=1)
& (tagconsum=ThreeCollisions=>tagconsumclk<=1)

endinvariant

[] (tagconsum=ThreeCollisions)&(tagconsumclk=1) −> 0.52:(tagconsum’=Next)
&(tagconsumclk’=0) + 0.48:(tagconsum’=End)&(tagconsumclk’=0);

[] (tagconsum=Tx)&(i=0)&(tagconsumclk=15) −> 0.52:(tagconsum’=Next)
&(tagconsumclk’=0) + 0.48:(tagconsum’=End)&(tagconsumclk’=0);

[] (tagconsum=Next)&(tagconsumclk>=0)&(tagconsumclk<=1) −>
(tagconsum’=(i<=2)?Rx:End)&(tagconsumclk’=0);

[] (tagconsum=Tx)&(i!=0)&(tagconsumclk=15) −> 0.96:(tagconsum’=TwoTags)
&(tagconsumclk’=0) + 0.04:(tagconsum’=ThreeCollisions)&(tagconsumclk’=0);

[] (tagconsum=Rx)&(i<3)&(tagconsumclk=68) −> (i’=(i+1))&(tagconsum’=Tx)
&(tagconsumclk’=0);

[] (tagconsum=TwoTags)&(tagconsumclk=1) −> 0.8:(tagconsum’=End)
&(tagconsumclk’=0) + 0.2:(tagconsum’=Next)&(tagconsumclk’=0);

endmodule

rewards ”cons”
(tagconsum=Next): 0.2;
(tagconsum=Rx): 0.5;
(tagconsum=Tx): 9.2;
(tagconsum=TwoTags): 0.2;
(tagconsum=ThreeCollisions) : 0.2;

endrewards

Fig. 7.18 PRISM code generated by pState for model shown in Fig. 7.17

be automatically transferred into assembly code and worst case execution time
(WCET) can be calculated in terms of processor cycles. Assembly code generation
and calculation of WCET on pCharts is described in [29].

From pCharts in Figs. 7.14 and 7.17, input code for the probabilistic model
checker is generated, and from the pCharts in Fig. 7.19, executable code is
generated. All generated code is posted on the pState web site.

7 Analysis and Implementation of Embedded System Models 197

DASH7; done:bool; field:bool

Tag

 i

Preamble CP
2450..4800 ms/ RECEIVECP

Start
WakeUp/ WAKEUP

LP

5ms / LISTENPERIOD

57ms/ ACKPERIOD
Ack

 C

20ms
[done]

Mode
Sleep

 i

Field
 C

FieldON

[field]

Work
30000ms

/ done:=false

GoToSleep

Finished

0..1 ms1..2 ms/ if WUPSIGNAL then field:=true

0..ms/WakeUp

0..1ms/GoToSleep

/ field:=false

Fig. 7.19 Tag model

7.11 Conclusion

In this chapter, we presented the model based process of system analysis and
code generation. From the same model, input code for probabilistic model checker
and an executable code are generated. Probabilistic model checker is used for
quantitative and qualitative properties analysis. The target for executable code are
8- and 16-bit micro-controllers used in embedded systems. The code is generated
in C or assembly language. As a part of assembly executable code generation, we
can calculate execution time calculation for each graph transition. Target micro-
controllers do not have features like multi-stage pipelines and caches, so execution
time in a number of executable cycles is actual execution time. The integrated
process of model-based analysis and code generation increases an accuracy of
analysis and fidelity of generated executable code.

We created a tool, pState, for the purpose of holistic software design. In addition
to executable code generation, the tool is used to verify quantitative properties.
This is of practical interest specially for complex embedded systems where not
only functional correctness and timing guarantees are relevant, but also quantitative
properties, which cannot be analyzed by considering exclusively the software part.
The environment has to be considered as well.

In the example of RFID tag working according to DASH-7 ISO/IEC protocol, we
show how one tool can be used for system property analysis (collision probability),
device property analysis (power consumption), and device code generation.

The goal is an automated approach from modelling and analysis to code
generation. This can be used to evaluate design alternatives and generate trustworthy
code.

198 B. Nokovic and E. Sekerinski

References

1. A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, PRISM: A tool for automatic verification
of probabilistic systems. In Proc. 12th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’06), vol. 3920 of LNCS, ed. by H. Hermanns,
J. Palsberg (Springer, New York, 2006), pp. 441–444

2. D. Harel, Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8(3),
231–274 (1987)

3. D. Harel, Statecharts in the making: a personal account. Commun. ACM 52(3), 67–75 (2009)
4. B. Nokovic, E. Sekerinski, pState: A probabilistic statecharts translator. In Embedded Comput-

ing (MECO), 2013 2nd Mediterranean Conference on, pp. 29–32, 2013
5. B. Nokovic, E. Sekerinski, Verification and code generation for timed transitions in pCharts. In

Proceedings of the 2014 International C* Conference on Computer Science #38, C3S2E ’14
(ACM, New York, NY, USA, 2014), pp. 3:1–3:10

6. D.N. Jansen, Extensions of Statecharts with Probability, Time, and Stochastic Timing. PhD
thesis, University of Twente, Enschede, 2003

7. E. Sekerinski, Design verification with state invariants. In UML 2 Semantics and Applications,
ed. by K. Lano (Wiley, New York, 2009), pp. 317–347.

8. W. Randelshofer, JHotDraw. http://www.randelshofer.ch/oop/jhotdraw/index.html, December
2012

9. R. Eshuis, D.N. Jansen, R. Wieringa, Requirements-level semantics and model checking of
object-oriented statecharts. Requir. Eng. 7(6), 243–263 (2002)

10. D. Harel, A. Naamad, The statemate semantics of statecharts. ACM Trans. Softw. Eng.
Methodol. 5, 293–333 (1996)

11. E. Sekerinski, R. Zurob, iState: A statechart translator. In UML 2001 - The Unified Modeling
Language, 4th International Conference, Lecture Notes in Computer Science 2185, ed. by M.
Gogolla, C. Kobryn, Toronto, Canada, 2001, pp. 376–390

12. E. Mikk, Y. Lakhnech, M. Siegel, G.J. Holzmann, Implementing statecharts in PROME-
LA/SPIN. In Proceedings of the Second IEEE Workshop on Industrial Strength Formal
Specification Techniques, WIFT ’98 (IEEE Computer Society, Washington, DC, USA, 1998),
pp. 90–101

13. E. Sekerinski, Verifying statecharts with state invariants. In Proceedings of the 13th IEEE
International Conference on Engineering of Complex Computer Systems (IEEE Computer
Society, Washington, DC, USA, 2008), pp. 7–14

14. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley Longman Publishing, Boston, MA, 1995)

15. University of Birmingham, Probabilistic symbolic model checker. Website, 2015. http://www.
prismmodelchecker.org/

16. M. Fruth, Formal Methods for the Analysis of Wireless Network Protocols. PhD thesis,
University of Oxford, 2011

17. C. Baier, J.P. Katoen, Principles of Model Checking (MIT Press, New York, 2008)
18. G. Norman, D. Parker, J. Sproston, Model checking for probabilistic timed automata. Formal

Methods Syst. Des. 43(2), 164–190 (2013)
19. R. Alur, D.L. Dill, A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)
20. C.A.R. Hoare, Communicating sequential processes. Commun. ACM 21, 666–677 (1978)
21. V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, Automated verification techniques for

probabilistic systems. In Formal Methods for Eternal Networked Software Systems (SFM’11),
vol. 6659 of LNCS, ed. by M. Bernardo, V. Issarny (Springer, New York, 2011), pp. 53–113

22. M. Kwiatkowska, G. Norman, D. Parker, J. Sproston, Performance analysis of probabilistic
timed automata using digital clocks. In Formal Modeling and Analysis of Timed Systems,
vol. 2791 of Lecture Notes in Computer Science, ed. by K.G. Larsen, P. Niebert (Springer,
Berlin, Heidelberg, 2004), pp. 105–120

http://www.randelshofer.ch/oop/jhotdraw/index.html
http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/

7 Analysis and Implementation of Embedded System Models 199

23. M. Kwiatkowska, G. Norman, D. Parker, Stochastic games for verification of probabilistic
timed automata. In Proceedings of the 7th International Conference on Formal Modeling and
Analysis of Timed Systems, FORMATS ’09, ed. by J. Ouaknine, F.W. Vaandrager (Springer,
Berlin, Heidelberg, 2009), pp. 212–227

24. A. Bianco, L. de Alfaro, Model checking of probabalistic and nondeterministic systems. In
Proceedings of the 15th Conference on Foundations of Software Technology and Theoretical
Computer Science, ed. by P.S. Thiagarajan (Springer, London, UK, 1995), pp. 499–513

25. N. Wirth, Compiler construction. International computer science series (Addison-Wesley,
Reading, 1996)

26. IARSystems, IAR visualstate concept guide, 1999
27. DASH7 Alliance, Dash7, 2013. http://www.dash7.org/
28. M. Paun, Posttag PT23 technical specification. Technical report, Lyngsoe Systems, 2006
29. B. Nokovic, E. Sekerinski, Model-based WCET analysis with invariants. In Proceedings of

the 15th International Workshop on Automated Verification of Critical Systems (AVoCS 2015),
Edinburgh, UK, Sep., 2015, vol. 72 of Electronic Communications of the EASST, ed. by G.
Grov, A. Ireland, 2015

http://www.dash7.org/

Chapter 8
Positioning System for Recreated Reality
Applications Based on High-Performance
Video-Processing

Patricia Martinez and Eugenio Villar

8.1 Introduction

While Moore’s Law is still in place, the complexity of embedded systems continues
to grow exponentially. Embedded Systems are implemented on complex HW/SW
platforms, requiring more powerful design methods and tools. Raising the level
of abstraction in which the system is modeled has been proposed to allow the
analysis and optimization of the system at earlier stages of the design process.
Implementation of complex video processing algorithms on a high-performance,
multi-core, heterogeneous platform constitutes the kind of system design where new
design methods and tools are necessary.

Model-driven development (MDD) [15] has been proposed to capture the initial,
high-level model of the system [4]. The adoption of standard languages and profiles,
like Unified Modeling Language (UML) [18] and the Modeling and Analysis
of Real-Time Embedded Systems (MARTE) [11–13], contributes to a standard
graphical representation and the reusability and interoperability of the models. In
this chapter, MDD based on UML/MARTE is used in the modeling of a positioning
system for “recreated reality” applications.

Although the term “virtual reality” applied to the theater experience is more
than 75 years old, its meaning has evolved dramatically since that time with the
evolution of technologies able to support virtual reality (VR) experiences. The
evolution of computers made possible the current meaning of virtual reality as
the use of computing technology to create simulated 3-dimensional (3D) worlds in
which the user can move and interact while creating the experience of being inside
these worlds. The 3D world is created and displayed depending on the position

P. Martinez • E. Villar (�)
TEISA Department, University of Cantabria, ETSI. Industriales & Telecom.,
Avda. Los Castros s/n, 39005 Santander, Spain
e-mail: villar@teisa.unican.es

© Springer International Publishing AG 2017
A. Molnos, C. Fabre (eds.), Model-Implementation Fidelity in Cyber
Physical System Design, DOI 10.1007/978-3-319-47307-9_8

201

mailto:villar@teisa.unican.es

202 P. Martinez and E. Villar

of the user using specialized graphic SW tools [2]. The 3D experience is only
partial in traditional personal computers and video-consoles where the user sees the
3D environment through the screen of the TV or the computer monitor. The term
“virtual reality” is usually associated with “immersion,” that is, the sensation of
being actually inside the virtual world with the world changing as the user moves the
head and looks in any direction around. The two main ways to create the immersive
experience are the computer assisted virtual environment (CAVE) and VR glasses.

A CAVE is a room in which the virtual environment is created by projecting
it onto the walls of the room. The projection also covers the floor and the ceiling
improving the immersive experience. By using similar glasses to those used in 3D
cinemas, the CAVE can create 3D environments. In any case, the cost associated
with the required infrastructure limits the applicability of this technology to a
reduced number of specific domains such as product development and prototyping
and collaborative planning in sectors such as construction.

Improvements in video display technology during the last years, especially
liquid-crystal displays (LCDs), have made 3D virtual glasses available at prices
low enough to reach a large number of customers. The number of applications has
increased dramatically during this time. The first and still the most important is
video gaming. With VR glasses the user can fully obtain an immersive sensation of
being part of the game he/she is playing. To do so, the glasses come with a gyroscope
able to detect the orientation of the head and therefore adapt the 3D graphic
environment point of view accordingly. A second, very promising application field
is education. With VR glasses, the whole class can move to any virtual place the
teacher selects in order to show in a realistic, immersive way the subject matter
to learn, from real or reconstructed buildings of any age anywhere, geographical
landscapes and wildlife under different climates and in different times, etc. Some
glasses make use of the screen of a mobile phone instead of internal displays.
To do so, the screen of the phone is divided into two parts, left and right, each
one to be seen by an eye thus creating 3D images. As this avoids any additional
electronics, the glasses can be inexpensive [3]. An additional advantage is that the
glasses become autonomous avoiding the need to be connected to a PC or tablet.

In some applications, the glasses just reproduce the video captured by cameras
elsewhere, leading to many different possibilities. One is being part of something
occurring in a different location, even miles away [14]. If the cameras are directly
put in front of the glasses, then, one may live someone else’s life [1].

Another technology which has gained interest in last years is “augmented reality”
(AR). In AR applications, the real image is always seen but reality is enriched with
additional information, usually meta-information. The glasses used in this case are
different to those for VR. In order to “add” information to the living scene, small
projectors show the computer-generated information on the surface of the glasses. In
this way, the user sees both the real image and the “added” one [17]. This technology
may lead to a completely new human–computer interaction [7].

8 Positioning System for Recreated Reality Applications Based. . . 203

8.1.1 Recreated Reality

The advantage of 3D glasses equipped with cameras is that they give complete
control of the synthetic image provided to the user generated as a combination of
both reality and virtual reality. We will call this new, different possibility, “recreated
reality” (RR). The main difference against AR is that now, the complete image can
be synthetic. In order to take most advantage from this technology it is important to
allow the user to move freely inside the RR space. The virtual reality provided to
the user should correspond to the movement of the user inside the real space. While
the gyroscope in the glasses will track the watching direction and, therefore, which
part of the virtual reality scene to show from the position of the user, the scene itself
should change as the user moves. As a consequence, correct positioning of the user
inside the RR space is an essential component of the RR technology.

The positioning technology should be as flexible as possible. In some cases the
space may be small. Other applications may require large spaces. In some cases
the space is indoors, but other cases may require an outdoor space. In some cases,
the space may be illuminated by artificial light while in others the application may
require sunlight. A positioning system able to work in such varied scenarios is
required.

The general architecture of the proposed RR system is shown in Fig. 8.1. The
positioning system proposed calculates the position from the analysis of the images
captured by the cameras in the glasses. This information, along with the direction of
the glasses, is sent to the graphic software which will generate the image to be seen
at this position looking in that direction. This information may be added to the real
image captured by the cameras. The resulting RR is shown to the user through the
3D glasses.

Fig. 8.1 Architecture of the RR system

204 P. Martinez and E. Villar

8.1.2 State of the Art in Positioning Systems

In the last years, there has been a growing interest in systems and products related
to the location of objects in three dimensions (3D). The main reason for this derives
from the large number of sectors where this technology can be applied, such as
robotics, training, medicine and gaming, among many others.

To establish the precise position of the individual, the systems may be based on
the use of many different means such as cameras, optical sensors, accelerometers,
gyroscopes, GPS, etc. In the event that vision systems are used, it is necessary to
perform a pre-processing of the region of interest where the individual is located
using imaging algorithms that detect corners, edges, or reference markers; then,
with these data it is possible to obtain the real 3D coordinates of the environment.

When only a reference marker is visualized, the use of stereo cameras and epipo-
lar geometry is necessary. The characterization of a point in a three-dimensional
space requires knowledge of its coordinates (x, y, z) within the environment where
it is situated, relative to a reference position. The most common technique is based
on the use of two or more calibrated cameras that provide left and right images
of the same scene. The 3D coordinates of the point or object can be estimated
using stereo mapping, that is, looking for the same point in both images and then
applying projective or epipolar geometry (describing the relationship between the
image planes of the cameras and the point).

When there is more than one marker or pattern available, it is possible to
apply other techniques to locate the object on the stage. Through triangulation,
knowing the actual distance between markers, it is possible with only two markers
and a single camera to obtain the parameters to establish the target position in
the environment. This practice simplifies the computational cost, because it is not
necessary to analyze two images and their matches, but it requires greater precision
in detecting markers.

One of the problems that has been identified [9] when using markers is the
illumination that is required in the environment where the images will be taken.
The points to be detected in the scene may be lost because of darkness. This limits
the use of this system to daylight outdoors or indoors under controlled brightness.
Furthermore, this technique requires the use of contrast enhancement algorithms
and a database where the specific markers are stored, which substantially increases
the computing time of these systems. In addition, it significantly limits the distance
between printed markers and the user, unless its size is large enough for capture
by the image sensor. To solve this problem, light markers working in the visible
or infrared spectrum can be used, such as light emitting diodes or lasers. In some
cases [5] the use of light sources with varying luminance or pulsed light has been
proposed, which can cause synchronization failures. Still, the use of light markers
can pose problems, particularly in environments where light sources with much
higher luminance than the marker itself (in the worst case, sunlight) or where
sources emit radiation in the same direction. In these situations, the image sensor is
not able to differentiate between one light source and another, so it will oblige, like

8 Positioning System for Recreated Reality Applications Based. . . 205

in the previously case, this technology to be used in bright environments without
bright light sources in them. Therefore, it is necessary to improve the positioning
systems to prevent the light conditions in the environment having such a great effect.

In [8], the authors propose incorporating infrared luminous markers on a tape
on the user’s head. To do this, they put two independent cameras in the scenario,
which require a synchronization process to make the shot simultaneously, located
at a distance equal to the length of the wall of the room where they are tested.
The algorithm used to make an estimation of the position is based on stereo
correspondence. One of the drawbacks is that it cannot be used for augmented reality
systems or simulated, because the cameras do not show what the user sees, besides
being restricted to indoor environments with limited dimensions.

Other studies [6] propose the use of infrared markers located on the wall of a
room to locate the user. Specifically, they consider the use of two types of markers:
active and passive. The active markers are formed by a set of three infrared LEDs
and a signal transmitter that sends data from its actual position to a decoder that the
user carries. The passive markers have only one source of infrared light, from which
they obtain the relative user position. In addition to receiving signals from active
markers, the system calculates the relative distance between the user and the markers
using stereo vision. This technique, as occurred in the cases discussed above, is
restricted to indoor use.

There are other methods that do not require direct vision of one or more cameras
with reference markers for locating and tracking individuals. RF techniques involve
measuring distances from static or moving objects by emitting electromagnetic
pulses that are reflected from a receptor. These electromagnetic waves are reflected
when there is significant difference in atomic density between the environment and
the object, so the technique works particularly well in cases of conductive materials
(metals). They are able to detect objects at greater distances than other systems
based on light or sound; however, they are quite sensitive to interference or noise. It
is also difficult to measure objects located at different distances from the transmitter,
because the pulse frequency will vary (lower the farther away and vice versa).
However, there are experimental studies which are able to demonstrate the use of
this technique to estimate the user location with a high level of accuracy.

Another example of existing solutions is the LIDAR system, which calculates
the distance through the time taken for a light pulse to be reflected on an object or
surface; using a device with a pulsed laser as a light emitter and a photo-detector as
a receptor of the reflected light. The advantages of these systems are the accuracy
achieved over large distances (using lasers with wavelength > 1000 nm) and the
possibility of mapping large areas by scanning light pulses. The disadvantages
are that it is necessary to analyze and process each point, and the difficulty of
automatically reconstructing three-dimensional images.

A similar method is used by the HTC and Valve Corporation Vive device,
a virtual reality head-mounted display. The technology requires two lighthouse
stations (a base station with two spinning IR lasers and a bank of infrared LEDs)
in an indoor environment. The stations will function as emitters; the receptor is
composed of a headset and two wireless controllers with 70 sensors (gyroscopes,

206 P. Martinez and E. Villar

accelerometers, VR visor, etc.). The system computes the user’s position with
respect to the reference point and the lighthouse station transmits a flash from the
LEDs and a pulsed light from the laser. When the receptor, either on the headset
or the wireless controllers, receives the flash, it begins counting the time until it
receives the light from the laser. The user position is found from the relationship
between the position of the sensor which has detected the light from the laser and
the time between the led’s flash and the laser’s light. Although very effective in
reduced areas, this system is very difficult to extend to larger spaces. It is valid
in indoor environments with a maximum area of 25 m2. The lighthouse stations
must be situated in a high position to avoid occlusion and to cover the entire scene.
Therefore, the scene should be free of objects. Its extension to non-uniform spaces,
like a house, would not be without problems.

Another method of tracking a target using a laser-based technique is that used by
Microsoft’s Kinect. This device is a motion sensing apparatus, consisting of an RGB
camera and a depth sensor. The sensor features an infrared laser projector used as
an emitter and a monochrome CMOS sensor or 3D depth camera used as a receptor.
It obtains the depth map of the scene under any ambient light conditions. Many
applications are based on this device. They use a combination of RFID identification
and positioning technology, Kinect’s vision for the position of a person [20] and a
single RFID reader [10] situate a Kinect in a small environment or several Kinects
to cover all the area. However, this sensor has distance limitations, so it needs to
use more than one device to cover a scene, at least four apparatus for 10 m2, which
would imply expensive systems for big environments.

The objective technical problem that arises is therefore to provide a system for
detecting the position and orientation of a person or object in any environment, large
or small, inside or outside, whatever the lighting conditions are.

8.2 System Architecture

The UC has patented [19] a system and a method to obtain the spatial location
of objects or individuals in a scene under all environment conditions (indoors
or outdoors) and with greater distances between the user and the marker than
other systems. As shown in Fig. 8.2, it is based on the use of the following main
components:

1. Light sources used as markers to calculate relative positions of the industrial
machinery/ robot;

2. A stereo camera to display these markers in the image of the scene;
3. An angle measuring device (such as a gyroscope or electronic compass) to

provide angles of rotation of the target object at each instant of time;
4. A digital signal processor, with uses the stored coordinates (from the memory)

and the output parameters obtained from the stereo camera and angle measuring
device to determine the target object position in the 3D environment.

8 Positioning System for Recreated Reality Applications Based. . . 207

Fig. 8.2 Schematic of the positioning system

The positioning system follows the COMPLEX UML/MARTE modeling
methodology [4]. Thus, it is independent of any hardware architecture leading
to a platform independent model (PIM), which can be implemented on HW or SW
resources.

8.2.1 Reference Marker Description

The system is based on the identification of fiducial markers for location and
orientation of moving objects in different kinds of environments. Taking into
account the above, it is necessary to use a specific marker which is visible for the
camera outdoor and indoor, under bright and dark light conditions and at short and
long distances.

Figure 8.3 shows what the proposed reference marker is like. It consists of two
main elements, a light source and a black contrast surface. The preferred light source
is an LED emitting in the visible range (400–700 nm); this type of source is a
point light source that reaches distances greater than 50 m. An LED may also be
considered as a non-hazardous material, due to its working optical power and low
reaction time of aversion (Š 250 ms). Nevertheless, the system works properly with
other kinds of light sources, as the light receptors and the cameras are usually able
to detect these light sources in the visible and infrared spectrums.

Moreover, the contrasting surface must be black, to absorb 100 % of the light;
the dimensions of the contrasting surface depend on the lighting conditions of the
environment, the luminous flux light source and the maximum distance between the
camera and luminous markers. The template or contrast surface lies on the outside

208 P. Martinez and E. Villar

Fig. 8.3 Reference marker

of the light source, specifically on the back, leaving the light source in the camera’s
view. In the event that the ambient or background light behind the light source is
dark enough, it is not necessary to add the contrast surface.

8.2.2 Design Methodology and Workflow

In order to ensure modeling fidelity of the implementation of complex embedded
systems on multi-processing platforms, design methodologies that, based on sepa-
ration of concerns, enable the design teams to work in an efficient way, is required.
Separation of concerns enables the specialization of the design process; separate but
collaborating sets of designers can deal with different system concerns (application
modeling, HW/SW platform design, etc.), improving the development process.
Therefore, well-defined system concerns in the same model enable designers to
focus on their specific designing domain, guaranteeing system consistency by using
the same specification language, producing synergy among different domains.

In order to support all the different stages of the flow, a high-level system
modeling and design methodology has been applied [4]. It follows a model-driven
architecture (MDA), component-based, software-centric approach. The design-
space exploration and implementation activities are developed around the model.
Another remarkable feature is that the COMPLEX methodology supports the
separation of concerns paradigm, keeping the functional and non-functional aspects
well-differentiated. The unified modeling language (UML) is used to capture all
the required information of the system functionality, the HW/SW platform and the
selected architectural mapping in a single-source. In order to provide UML with the
required modeling features, the MARTE profile is used to capture all the specific
characteristics related to the embedded system being designed. This methodology
can completely describe the system, enabling automatic generation of the input
code. More concretely, the complete UML/MARTE model is based on graphical
descriptions, which are called views, each one focused on a relevant aspect of the
system. These views describe the system functionality, the target platform, and the
resource allocation.

8 Positioning System for Recreated Reality Applications Based. . . 209

Fig. 8.4 Design workflow

The design methodology follows in this project is shown in Fig. 8.4. The first
step is to develop the UML/MARTE model. This model is composed of three main
parts. Each one, associated with several views ensuring the separation of concerns
mentioned above:

• The platform independent model (PIM), which describes the functional and
non-functional aspects of the system components independently of where and
how these components will be implemented and deployed. Therefore, it can be
reused when the application is going to be implemented on other platforms. The
following are the associated views:

– Data View
– Functional View
– Application View
– Communication View
– Memory Space View

• The platform description model (PDM), which describes the hardware and soft-
ware resources where the functionality can be mapped. A PDM. The following
are the associated views:

– HW Platform View
– SW Platform View

• The platform specific model (PSM), which describes the system architecture
as the allocation of functional components to platform resources, leading to a
concrete system implementation. The following is the associated view:

– Architectural View

Figure 8.5 shows how all the presented views of the three sub-models are related
among them.

Following with the design workflow of Fig. 8.4, once the model is finished we
can create easily an executable model of the system in the PC using eSSYN, the
SW synthesis tool developed by the University of Cantabria in the Pharaon FP7

210 P. Martinez and E. Villar

Fig. 8.5 Relations among UML/MARTE views

project [13]. Only when the PC executed in the PC workstation is correct, then it is
synthesized using eSSYN again on the Odroid in order to verify its correctness in
the final execution platform.

The positioning system, presented in previous section and shown in Fig. 8.2,
is divided into six components. In order to describe the communication between
components it is necessary to specify the set of services, which are defined in the
Functional View. These services are grouped into interfaces, which are specific for
each inter-component communication channel. The interface services are modeled
making use of the functions specified in the DataView. Additionally, this view
includes the specification of the files that contain the implementation, that is, the
functional source code of each. The functional view of the positioning system is
shown in Fig. 8.6, where each interface is represented with the same color as the
corresponding component. These components are shown in Fig. 8.7.

The functional components are the basic building blocks of the system applica-
tion, and are defined in the Application View. As shown in Fig. 8.7, the Application
View includes the description of the application components, the relationship among
them, and their interconnection through ports by the set of required/provided
services defined by the corresponding interfaces.

Each application component defined in this view is associated with the files with
the source code (c-code and their heathers) describing its functionality. These are
defined in the Functional View (Fig. 8.8).

The platform description model (PDM) describes the HW/SW platform architec-
ture. Later (PSM section) the memory partitions defined in the PIM will be allocated
to the resources defined in the PDM.

In our case, the HW Platform is the ODROID-XU3 development board, which
has 4 BIG cores (Cortex-A15) and 4 LITTLE cores (Cortex-A7). The SW Platform
defines the operating systems available in the HW/SW platform, in our case the
Linux OS.

8 Positioning System for Recreated Reality Applications Based. . . 211

Fig. 8.6 Functional view: interfaces

As shown in Fig. 8.9, the PDM describes the distribution of the elements,
the processors Cortex-A7 (proc0-proc4) and processors Cortex-A15 (proc5-proc7)
connected to the 2GB LPDD3 RAM (RAM) through a AXI/AHB bus (main_bus),
the two bridges (bridge0 and bridge1) and the two AMBA buses (bus).

Finally, the platform specific model (PSM) which defines the mapping of the
functional components in the platform is captured in the Architectural View. It
describes how the functional components are mapped onto the available HW
resources. Thus, during design-space exploration, several PSMs can be analyzed
and evaluated. From the result of the functional and extra-functional performance
analysis, the most appropriate PSM can be selected and implemented [16].

This model specifies the different allocation of the system, which are: application
components-memory partitions and memory partitions-HW/SW platform resources.
So firstly, the components described on the Application View have to be associated
with the memory partitions. There will be as many memory partitions as executables
in the application system; in our case, the positioning system has just one executable
(Fig. 8.10).

The last step is to allocate this memory partition with the HW/SW resources
defined in the HW and SW Views (Fig. 8.11).

212 P. Martinez and E. Villar

F
ig

.8
.7

A
pp

lic
at

io
n

vi
ew

:c
om

po
ne

nt
st

ru
ct

ur
e

8 Positioning System for Recreated Reality Applications Based. . . 213

F
ig

.8
.8

A
pp

lic
at

io
n

vi
ew

:a
ss

oc
ia

tio
n

of
C

/C
CC

fil
es

to
co

m
po

ne
nt

s

214 P. Martinez and E. Villar

Fig. 8.9 HW/SW platform view

Fig. 8.10 Application component-memory partition allocation

8.3 Positioning Algorithms

This section describes the functional (SW) components of the Application View
and their functionality (either provided or required) as described in the Functional
View of the UML/MARTE model. The global behavior emerging from the close
interaction of the behaviors of all the system components will ensure the detection
and analysis of the markers and, based on this information, the positioning of objects
or individuals in a 3D environment.

8 Positioning System for Recreated Reality Applications Based. . . 215

Fig. 8.11 Architectural view

8.3.1 Input Data

The inputData component is in charge of getting the view angle from the gyroscope
and the images from the stereo cameras. The main functions in this component are
the following (Fig. 8.12):

• Camera: Capture right and left images from the environment with a stereo
camera. The cameras are installed on virtual reality glasses, such as Oculus
Rift. The algorithm captures images from the camera and transforms the pair
of images into rectified and undistorted images by compensating for nonlinear
effects of the lens, such as radial and tangential lens distortion. Then, image
quality is improved by removing sensor noise, in order to reduce to a minimum
the mismatches between left and right images.

• angleMeasurement: Obtains rotation angles form a gyroscope or an electronic
compass. This parameter is captured from the integrated gyroscope installed on
the Oculus Rift Glasses.

8.3.2 Marker Detection

In the markerDetection component, the markers are found in the images captured
and the movement of the object analyzed (Fig. 8.13).

216 P. Martinez and E. Villar

floatangle
measurement

angle_n

imageL

imageR

camera
(left)

camera
(right)

matrix {w,h}: unsigned char

matrix {w,h}: unsigned char

Fig. 8.12 Input data component

bit
float

float

matrix {w,h}:
unsigned char

matrix {w,h}:
unsigned char

matrix {w,h}:
unsigned char

rollroll detection

marker
detection

marker
detection

movement
detection

angle_n

angle_n-1

imageL

imageR

imageR_n-1

markL_n

markR_n

rR_n

mov

rL_n

matrix{*, 2} : ushort

matrix{*, 2} : ushort

float

bit

float

Fig. 8.13 Marker detection component

• markerDetection: This first task obtains the image coordinates of the reference
makers and their radii (u, v, r). As explained above, the reference markers are
composed of an LED light and a contrast surface. Thus the method used to
detect them is based on the search for brightest pixels’ contours on the image
and the verification of dark areas around them. Going into more detail, firstly,
the algorithm finds pixels with color range from [205, 205, 205] to [255, 255,
255], which correspond to high luminance values, and then filters the binary
image to remove non-significant bright regions by using a smooth filter or a
combination of erode and dilate processes. Once the processed image is obtained,

8 Positioning System for Recreated Reality Applications Based. . . 217

the next step is to identify the contours of the bright areas. This process is based
on the algorithm presented in the article “Topological Structural Analysis of
Digitized Binary Images by Border Following.” In order to reduce the vertices or
points which characterize the selected area, each contour is stored as a vector of
points, represented as a polygon. Then, it is possible to calculate the minimal
up-right bounding rectangle for the point set. Two techniques are applied to
delete false positives, the first one takes into account the shape of the markers,
by excluding those rectangular areas with large differences between width and
height values. The second one considers the intensity difference between the
light source and the contrast surface. It searches those regions with an important
contrast between the selected brightest zone and its neighbor area, by obtaining
the average intensity value of all pixel points in the interest area and around this
area.

• rollDetection: A second function checks the value of the gyroscope to find out if
the user/object has turned. It compares the angle value at the current time with
the previous time instant. If they are different, it means that the user has turned.

• movementDetection: A third task detects changes between the current frame and
the previous frame, by subtraction of the pixels of one, to find out if something in
the image has moved. In the event of big discrepancies between the two images,
this will imply that the user/object has moved in the environment.

8.3.3 Movement Type

Once the markers are detected, the next step is to recognize the type of movement
performed by the user. This information is needed by the rest of the components of
the positioning algorithm, and is computed by the movementType component and
their services (Fig. 8.14):

• movementType: Identify the type of movement, whether it is perpendicular (from
front to back or vice versa) or whether it is parallel (from right to left and vice
versa). For this purpose, the previous and current marker radii are considered.
When they are similar, it means that the user has moved in parallel, otherwise the
user has moved perpendicularly.

• despy_perp_type: Taking into account the last option, it is possible to charac-
terize the perpendicular movement; when the current radius is bigger than the
previous one, the user has approached the markers, otherwise, the user has moved
away from the markers.

• marker_check: Verify current marker coordinates by comparing them with the
previous image region. There must be agreement between them, if not, the marker
which is in a different position to the expected one will be identified as a false
positive and removed from the marker array.

218 P. Martinez and E. Villar

bit

bit

float

array[*]: ushot

array[*]: ushot
matrix {*,2} : ushort

matrix {*,2} : ushort

matrix {*,2} : ushort

matrix {*,2} : ushort

marker
check

marker
check

movement
type

disp perp
type

markL_n

markL_n-1

markR_n

markR_n-1

uL

uR

disp

dperp

rL_n

rR_n
rR_n-1

rL_n-1

Fig. 8.14 Movement type component

8.3.4 Geometry Algorithms

The geometry component is in charge of the estimation of the user/object position
applying the positioning algorithms. Thus, they are one of the main components of
the system. To place the target user in the environment where the system is used, it
is necessary to know the following information:

• the image coordinates (u, v) and radius of each marker captured by the stereo
camera,

• the ı value (in degrees) of the target user rotation, returned by the angle
measuring device (gyroscope) at the time of the stereo image capture; and

• the data stored in memory such as: previous position of the object, actual distance
between markers, camera focal length, aperture angle of the camera, distance
between cameras or baseline, previous image frame, previous marker radius,
previous marker position vectors, and previous rotation angle.

The geometrical analysis to be performed has two parts, each one related to
each of the movement components, perpendicular and parallel. In both cases, two
different situations have to be considered. In the first one, only a marker is detected
and as a consequence stereo-vision techniques have to be used. In the second, several
markers are detected.

8 Positioning System for Recreated Reality Applications Based. . . 219

8.3.4.1 Perpendicular Movement

Geometry Interface, Stereo Operation: Single Marker

This case represents a perpendicular movement of the target object when only a
single marker is detected by the stereo camera. It is necessary to make use of stereo-
vision techniques. The following parameters are needed:

• the values of baseline (B) and the focal length distance (f) of the stereo camera
• the rotation angle (ı) of the target object
• preceding target object position (xn�1, yn�1)
• preceding distance between the marker and the camera (Lmarker_n�1) (Figs. 8.15

and 8.16).

Fig. 8.15 Perpendicular
movement with one marker

Fig. 8.16 Epipolar geometry

220 P. Martinez and E. Villar

To transform the image coordinates (u, v) to the depth between the marker and
the camera (Lmarker_stereo_n), projective geometry is applied at the current time n
according to the following equation (where uL and uR are the parallel left and right
image coordinates, respectively, which are rectified and undistorted):

Lmarker_stereon D baseline � focal_length

disparity
D B � f

uL � uR

Geometry Interface, Triangulation Operation: Two or More Markers

When two or more markers are detected in the image it is possible to apply linear
triangulation. In this case, the following parameters are required:

• the real distance (d/m) between markers,
• the rotation angle (ı),
• the camera opening angle (2®),
• the image pixels (A � B),
• preceding target object position (xn�1, yn�1),
• preceding distance between the marker and the camera (Lmarker_n�1) (Figs. 8.17

and 8.18).

Once the parallel image marker coordinates (u) are known, the distance in pixels
between them (q D u2�u1), which in the real world is equal to d/m m. Therefore, the
actual distance, Lmarker (n), between the target and one of the markers at the current
instant n is

Lmarker_triangn
D

ˇ
ˇ A

2
� u1

ˇ
ˇ � d

m � cos ı � 1
ju2�u1j

tan
�
2' � ˇ

ˇ A
2

� u1

ˇ
ˇ
�

The following figure shows how these algorithms are implemented in the system
(Fig. 8.19).

Fig. 8.17 Perpendicular
movement with two markers

8 Positioning System for Recreated Reality Applications Based. . . 221

Fig. 8.18 Triangulation

Fig. 8.19 Perpendicular movement in the geometry algorithm component

222 P. Martinez and E. Villar

8.3.4.2 Parallel Movement

Geometry Interface, Stereo_Frames Operation: Single Marker

As with perpendicular movement, an algorithm based on stereo geometry is applied,
but instead of using two images of the same instant taken from two different angles
(each camera), it uses two pictures of the previous instant with the same perspective.
The parameters required for this configuration are

• the focal length (f) of the stereo camera
• the rotation angle (ı)
• preceding target object position (xn�1, yn�1)
• preceding distance between the marker and the camera (Lmarker_n�1)
• preceding u-coordinate of the marker (Figs. 8.20 and 8.21)

Knowing the parameters presented above, the parallel shift (D) can be calculated
by the target user according to the following expression:

Dstereo D Lmarkern�1 � jun�1 � unj
f

Geometry Interface, Triang_Frames Operation: Two or More Markers

This last situation is related to the case where there is more than one detected
marker in the image. A similar algorithm is used to the triangulation one previously
explained in the case of a perpendicular movement of the user with many markers
detected, but in this case on two images captured consecutively in time by the same
image sensor. In this case, it is necessary to know the following values:

Fig. 8.20 Parallel movement
with one marker

D

δ Lm
ar

ke
rn-

1

Lm
ar

ke
rn

(xn-1, yn-1)

(xn, yn)

a

b

8 Positioning System for Recreated Reality Applications Based. . . 223

Fig. 8.21 Stereo between
consecutive frames

Fig. 8.22 Parallel movement
with two markers

D

δ
Lm

ar
ke

rn-
1

Lm
ar

ke
rn(xn-1, yn-1)

(xn, yn)

a

x

d/n

b

• the rotation angle (ı)
• preceding target object position (xn�1, yn�1)
• preceding u-coordinate of the marker
• the real distance (d/m) between markers (Figs. 8.22 and 8.23)

Knowing the real distance between markers and the pixels between them, at the
current instant and its previous instant, the distance that the target object has moved
can be extrapolated:

224 P. Martinez and E. Villar

Fig. 8.23 Triangulation
between consecutive frames Image (n-1)

Image (n)
p pixels

d/m

(u1n-1, v1n-1)

(u2n, v2n)(u1n, v1n)

Dtriang D cos .ı/ � d

m
�

ˇ
ˇu1n�1

� u1n

ˇ
ˇ

u2n � u1n

The figure shows the last algorithms and how they are implemented in the system
(Fig. 8.24).

Others Functions

The geometry algorithm component also implements other important features:

• geometry interface, markers_num operation: Classifying the number of markers
in each image. When calculating the user position, the algorithm needs to know
whether there is a single marker or more than one marker. This parameter is easy
to compute by monitoring the length of the marker coordinate array.

• geometry interface, desp_parellel_type operation: Identifying the type of parallel
displacement (from right to left or vice versa). The parallel movement is char-
acterized by comparing the current parallel image coordinates (u-coordinates) of
the marker array with the previous markers. If the new ones have higher values,
the user has moved to the left, otherwise, the user has moved to the right.

8.3.4.3 Possible Position

The possiblePosition component compares different distance values calculated in
the last stage for each type of movement and selects the correct ones, considering the

8 Positioning System for Recreated Reality Applications Based. . . 225

DstereoL
stereo frames

(left)

stereo frames
(right)

triangulation
frames (right)

triangulation
frames (left)

disp paral
type

Lmarker
focal

uL_n
uL_n-1

uR_n-1

angle_n

d/n

uR_n DstereoR

DtriangL

DtriangR

dparal

float

float

float
float

ushort

array[*]: ushot

array[*]: ushot

array[*]: ushot

array[*]: ushot

float

float

float

bit

Fig. 8.24 Parallel movement in geometry algorithm component

type of perpendicular or parallel displacement and the number of markers detected
in the image. Again, different solutions are applied depending on whether there is
only one marker or more than one in the image.

Possibleposition Interface, Mov_Perpendicular Operation: Perpendicular
Movement

Single Marker

Once the distance Lmarker_stereo_n is calculated, it is possible to obtain the position
of the target in the environment. As it has been displaced perpendicularly, all
that has apparently changed is its y-coordinate, but it is necessary to consider the
angle of rotation (ı) for absolute coordinates. The coordinates (x, y) at the present
moment are equal to the coordinates in the previous instant (xn�1, yn�1) plus the new
movement.

If rn�1<rn

n xn D xn�1 C sin .ı/� jLmarkern�1 � Lmarker_stereon j
yn D yn�1 C cos .ı/� jLmarkern�1 � Lmarker_stereon j

If rn�1>rn

n xn D xn�1 � sin .ı/� jLmarkern�1 � Lmarker_stereon j
yn D yn�1 � cos .ı/� jLmarkern�1 � Lmarker_stereon j

226 P. Martinez and E. Villar

Two or More Markers

When the distance to the marker is calculated, and having the previous n�1 distance,
the new distance covered is the difference between them. From this value and the
previous position of the target (xn�1, yn�1), its new coordinates (xn, yn) are

If rn�1<rn

n xn D xn�1 C sin .ı/� jLmarkern�1 � Lmarker_triangn
j

yn D yn�1 C cos .ı/� jLmarkern�1 � Lmarker_triangn
j

If rn�1>rn

n xn D xn�1 � sin .ı/� jLmarkern�1 � Lmarker_triangn
j

yn D yn�1 � cos .ı/� jLmarkern�1 � Lmarker_triangn
j

Possibleposition Interface, Mov_Parallel Operation: Parallel Movement

Single Marker

As soon as the displacement D in meters of the target user is known, it is possible to
obtain its actual coordinates, which depend on its position in the previous time n�1
and the type of movement (left or right):

If un�1 > un

n xn D xn�1 � cos .ı/� Dstereo

yn D yn�1 C sin .ı/� Dstereo

If un�1 > un

n xn D xn�1 C cos .ı/� Dstereo

yn D yn�1 � sin .ı/� Dstereo

Two or More Markers

As in the case of a single marker, once the displacement (D) is known, the actual
coordinates of the target object can be obtained:

If un�1 < un

n xn D xn�1 � cos .ı/� Dtriang

yn D yn�1 C sin .ı/� Dtriang

If un�1 > un

n xn D xn�1 C cos .ı/� Dtriang

yn D yn�1 � sin .ı/� Dtriang

The following is the Possible Position component (Fig. 8.25).

8.3.4.4 User Position

The last step, userPosition component, obtains the target object or individual
position in the 3D environment, represented with the service position. It considers

8 Positioning System for Recreated Reality Applications Based. . . 227

Perpendicular
movement

Parallel
movement

Lmarker_n-1
Lmarker_stereo

DstereoL

DstereoR
DtriangL
DtriangR

Lmarker_triangL
Lmarker_triangR

angle_n
Pos_n-1

dperp
nmarkerL
nmarkerR

dparal

Pparal

Pperp

float

float

float

float

float

float

float

float

float

bit

bit
bit

bit

array[2]: float

array[2]: float

array[2]: float

Fig. 8.25 Possible position component

User
Position

Pperp

Pparal

mov
roll
disp

Pos_n-1

Pos

array[2]:float

array[2]:floatarray[2]:float

array[2]:float

bit
bit
bit

Fig. 8.26 User position component

the data received from the last stage, Pperp and Pparal, and the previous position.
The final position is selected from one of those three, taking into consideration
the values of movement type and whether there has been displacement or rotation
(Fig. 8.26).

228 P. Martinez and E. Villar

8.4 Synthesis

Once the complete platform model has been created and all the functionalities are
implemented, simulation and synthesis are the last steps. Firstly, it is necessary to
generate the XML files from the model and the wrappers files from these XML
files. Then it is possible to generate the makefiles and compile the complete system.
Finally the generated binary files are ready to run into the development board.

The system model design includes the evaluation in seconds or data/second of
each component. The idea is to have a system working properly, where the user
does not notice the computational charge. In our case, we have three important
limitations:

• the minimum delay for the human sensory system using a VR glasses

– 33 ms or less will provide the minimum level of latency deemed acceptable,
in frequency terms is 30 frames per second

• the minimum resolution to detect the markers in a space where the dimensions
between the user and the marker could be at least 10 m

– 640 � 480 pixels/image

• the minimum delay for the human sensory to locate someone on an environ-
ment

– 250 ms

These temporal restrictions have been included in the model. It will be said that
the model fidelity has been satisfied by the implementation whenever the restrictions
has been satisfied.

Components Input data
Marker
detection

Movement
type Geometry

Temporal restriction (ms) <167 <80 <2 <0.5
PC Measured latency (ms) 81.104 14.222 0.088 0.010
Board Measured latency (ms) 137.381 59.154 0.114 0.019

The positioning system has not been yet completely implemented as the two last
components of the application are not yet finished. However, a first approximation of
the model and a time analysis is done, which could be compared with the ideal data.
The goal is to get the response time results in order to know when it is necessary to
parallelize or optimize the code. And, if necessary, change the hardware, by using a
camera with USB 3.0, which has ten times more MB rate than a camera with USB
2.0, or by using a different development board.

8 Positioning System for Recreated Reality Applications Based. . . 229

8.5 Conclusions

The advances during the last years in video display, video processing, and graphic
SW technologies have led to the emergence of modified reality systems. Three mod-
ified reality systems can be distinguished. First, those systems adding information
to reality, called augmented reality systems. Second, those systems creating fully
artificial worlds, called virtual reality systems. In between, there are systems able to
take real and virtual images and create a synthetic new image by combining both.
We have called them “recreated reality.”

One of the main problems in all these technologies is accurate positioning of the
subject. Many different technologies have been proposed to date. Some of them are
valid only in small spaces. Others only work indoor or outdoor. The University of
Cantabria as a consequence of its participation to the Artemis CopCams project has
developed a positioning system able to overcome most of the drawbacks found by
other competing alternatives. In this chapter, the technique has been described and
its UML/MARTE model outlined. At the end of the project, in September 2016, a
prototype is forecast that will be able to assess the actual capabilities of the proposed
positioning system.

UML/MARTE has proven to be a powerful means to model this high-
performance video processing system. From the UML/MARTE model the designer
can decide about the system, detect potential architectural problems, fully specify
the different components and based on this, start the platform-independent code
development. Once the code is ready, the model can be simulated and finally,
synthesized (www.essyn.com). By using the SW synthesis tool eSSYN, it is
possible with very fast turn-arounds to verify if the temporal restrictions imposed
by the model are satisfied by the implementation, that is, to what extend the fidelity
to the model has been achieved.

References

1. BeAnotherLab, Retrieved from http://www.themachinetobeanother.org/ (2014)
2. J. Chen, Guide to Graphics SW Tools (Springer, NewYork, 2008)
3. Google, Retrieved from Google (2016). https://www.google.com/get/cardboard/ (2016)
4. F.P. Herrera, The COMPLEX Methodology for UML/MARTE modeling and design-space

exploration of embedded systems. J. Syst. Archit. 60(1), 55–78 (2014). Elsevier
5. R. Kumar, S. Samarasekera, T. Oskiper, Method and apparatus for 3D spatial locazation and

traking of objects using active optical illumination and sensing. WO Patent 2013/120041 A1
(2013)

6. M. Maeda, T. Ogawa, K. Kiyokawa, H. Takemura, Tracking of user position and orientation
by stereo measurement of infrared markers and orientation sensing. IEEE, 8th International
Symposium on Wearable Computers (2004)

7. Microsoft, Retrieved from https://www.microsoft.com/microsoft-hololens/en-us (2016)
8. A. Mossel, H. Kaufmann, Wide area optical tracking in unconstrained indoor enviroments.

IEEE, 23rd International Conference on Artificial Reality and Telexistence, (2013)
9. L. Naimark, E. Foxlin, Fudicial detection system. US Patent 7,231,063 B2 (2007)

http://www.essyn.com/
http://www.themachinetobeanother.org/
https://www.google.com/get/cardboard/
https://www.microsoft.com/microsoft-hololens/en-us

230 P. Martinez and E. Villar

10. Y. Nakano, K. Izutsu, K. Tajitsu, K. Kai, T. Tatsumi, Kinect Positioing System (KPS) and its
Potential Applications. International Conference on Indoor Positioning and Indoor Navigation
(2012)

11. OMG, Modelling and analysis of real-time embedded systems, Version 1.1. OMG. Available
from http://www.omgmarte.org (2012)

12. P. Peñil, UML-Marte methodology for heterogenius system design. Microelectronics Engineer-
ing Group, TEISA Dpt., University of Cantabria (2014)

13. H. Posadas, P. Peñil, A. Nicolás, E. Villar, Automatic synthesis of embedded SW for evaluating
physical implementation alternatives from UML/MARTE models supporting memory space
separation. Microelectr. J. 45(101), 281–1291 (2014)

14. Samsung, Retrieved from http://www.samsung.com/au/news/local/world-first-live-streaming-
virtual-reality-birth-using-samsung-gear-vr (2015)

15. D.C. Schmidt, Model-driven engineering. IEEE Computer 39(2), 25–31 (2006)
16. C.F. Silvano, Multi-Objective Design-Space Exloration of Multiprocessor Soc Architecture

(Springer, NewYork, 2011)
17. Tom’s Guide, Retrieved from http://www.tomsguide.com/us/best-ar-glasses,review-2804.html

(2016)
18. UML, Unified Modelling Language. OMG. Available from http://www.omg.org/spec/UML
19. E. Villar, P. Martínez, F. Alcalá, P. Sánchez, V. Fernández, Método y sistema de localización

espacial mediante marcadores luminosos para cualquier ambiente. P.N.ES-2543038-A1 (2014)
20. C. Wang, C. Chen, RFID-based and Kinect-based Indoor Positiong System. 4th Int. Conference

on Wireless Communications, VehicularTechnology, Information Theory and Aerospace &
Electronic Systems (VITAE) (2014)

http://www.omgmarte.org/
http://www.samsung.com/au/news/local/world-first-live-streaming-virtual-reality-birth-using-samsung-gear-vr
http://www.tomsguide.com/us/best-ar-glasses,review-2804.html
http://www.omg.org/spec/UML

Index

A
Advanced encryption standard (AES),

117–119, 121, 123
AMBA Interconnect, 73, 76
Amdahl’s law, 44
Architecture-Open (ArchOn) simulator, 42–43

Amdahl’s law, 44
execution time, 45
graph assembly language, 42, 44
many-core test platform, 43–44
modes, 44
PER diagrams, 45
perfect scaling, 45, 46
runtime management system, 45, 46
virtual hardware, 42, 43

ARM V6 architecture, 144–145
ASTROLABE approach

assumptions and shortcomings, 13
distribution fitting, 12
illustration of, 11
overview, 11–12

“Augmented reality” (AR), 202, 205, 229
Autoregressive models (AR), 17

B
Box–Jenkins ARMA model, 17

C
Collision model, 176, 192–193
Communicating sequential processes (CSP),

184
Compert-C, 143
Computer assisted virtual environment

(CAVE), 202

Continuous-time Markov chains (CTMCs)
models, 20

CONTREX flow
contract satisfaction monitoring, 70
estimation flow, 65, 66
extended virtual platform simulation, 65,

67
FPGA dynamic power model, 82–83
giant temporal and spatial granularity

discrepancy, 65
IC package, 69–70
mobile embedded systems, 64
observable properties, 67
OVP, 78–80
power consumption, 68
power mapping, 68
SoC dynamic power model, 81–82
static power consumption, 84
stream processing, 67–68
temperature model, 84–86
tertiary traces, 70
thermal estimation, 70
timing model, 79–81
XPE, 81

CONTREX project
computing platform, 61, 62
control system modeling, 61, 63
cost-efficient and cost-sensitive design,

59–60
execution platform modeling and

segregation, 62–63
extended virtual platform, 63, 64
goal of, 60–61
mobile battery-powered systems, 61–62
properties, 59, 60

© Springer International Publishing AG 2017
A. Molnos, C. Fabre (eds.), Model-Implementation Fidelity in Cyber
Physical System Design, DOI 10.1007/978-3-319-47307-9

231

232 Index

Coq, 141–149, 152–4
Current process status register (CPSR), 134,

147, 148, 151, 152
Cyclo-static data flow (CSDF) models, 123,

160, 165

D
DeaedalusRT methodology, 160
Distributed operation layer (DOL), 9, 160

E
Embedded system models

collection period power consumption,
193–195

collision model, 192–193
DASH-7 ISO/IEC 18000-7.2

item management applications, 191
RFID equipment, 191
tag collection and collision arbitration,

191–192
executable code

Energia, Arduino-Like Code, 189–191
if-then-else or case statements, 187
multiple assignments, 186
PIC assembly code, 188
PIC C code, 187–188

executable tag code, 195–197
hierarchical charts to code, 178–181
holistic design process, 176–177
model checker input code

MDP, 181–183
properties specification, 186
PTA, 183–185

pCharts, 176
pState editor, 177–178
statecharts, 175
traditional state machines, 175
verification of probabilistic systems, 175

Embedded systems (ES) models
ASTROLABE approach

assumptions and shortcomings, 13
distribution fitting, 12
illustration of, 11
overview, 11–12

benefits, 1–2
co-design, 2
hardware-centric, 2
important characteristic, 3
NoC, 3
performance challenges

caches and/or DMAs, 6–7
energy consumption, 4

global throughput, 4
memory architectures, 6
memory contention, 5
memory utilization, 4
multi-processing, pipelining, and

others, 7
timing behavior, 4

performance modeling
abstract representations, 8–10
detailed representations, 8
probabilistic representations, 10
techniques, 8

probabilistic models
fitting mixture models, 19
fitting regressionmodels, 19–20
learning Markov models, 20
Markov models/chains, 18–19
mixture distributions, 15–16
perspectives, 20–21
regression models, 16–18
stochastic process, 14–15

software-centric, 2
Energia, 189–191
Extended Finite State Machine (EFSM), 83
Extra-functional model, 63, 64

F
Fast Fourier transform (FFT), 117, 119–122
Formal system design (ForSyDe), 158,

160–163, 167–169, 171, 172
FORMLESS model

formalism, 112–114
forming parameter space

SDF graph formation, 115–116
task assignment, 116
task profiling, 114–115
throughput estimation, 116–117

higher-order programming language, 114
FPGA dynamic power model, 82–83

G
General semi-Markov processes (GSMPs), 20
Goodness-of-fit tests, 12
Graphical user interface (GUI), 77, 83
Ground control station (GCS), 77

H
Hardware, MPSoC

AMBA Interconnect, 73
BMP085 sensor, 74–75
MicroBlazes, 76

Index 233

mission-critical part, 75–76
MPU9150 sensor package, 73–74
PCBs, 73, 74
safety-critical tasks, 75
Zynq, 75

Hidden Markov models (HMMs), 20
“Homogeneous” SDF graph (HSDF), 102, 124

I
IC package model, 69–70
Instruction and event sniffer (IES), 79–81
Instruction set simulator (ISS), 130–135,

138–140, 142–146, 148, 153

L
LIDAR system, 205
Liquid-crystal displays (LCDs), 202
Low-density parity check (LDPC), 117–118,

121–123

M
Markov chain modeling, 18–19
Markov decision processes (MDPs), 20, 176,

177, 181–185, 193
MicroBlazes, 73, 76–83, 85, 164
Mixed-criticality system

ambient intelligence, 57–58
CONTREX flow

contract satisfaction monitoring, 70
estimation flow, 65, 66
extended virtual platform simulation,

65, 67
FPGA dynamic power model, 82–83
giant temporal and spatial granularity

discrepancy, 65
IC package, 69–70
mobile embedded systems, 64
observable properties, 67
OVP, 78–80
power consumption, 68
power mapping, 68
SoC dynamic power model, 81–82
static power consumption, 84
stream processing, 67–68
temperature model, 84–86
tertiary traces, 70
thermal estimation, 70
timing model, 79–81
XPE, 81

CONTREX project
computing platform, 61, 62
control system modeling, 61, 63
cost-efficient and cost-sensitive design,

59–60
execution platform modeling and

segregation, 62–63
extended virtual platform, 63, 64
goal of, 60–61
mobile battery-powered systems, 61–62
properties, 59, 60

fundamentals, 72–73
GCS, 77
hardware

AMBA Interconnect, 73
BMP085 sensor, 74–75
MicroBlazes, 76
mission-critical part, 75–76
MPU9150 sensor package, 73–74
PCBs, 73, 74
safety-critical tasks, 75
Zynq, 75

payload setup, 73
segregation techniques, 58–59
selection, 71
software, 76–77
SWaP, 58

Mobile battery-powered systems, 57, 61–62
Mobile embedded systems, 64
Modular performance analysis (MPA), 9
Moore’s Law, 25, 201
Moving average (MA), 17
Multiprocessor system on chip (MPSoC). See

Mixed-criticality system
Multi-rotor system, 71–75, 77

N
Network on chip (NoC), 3, 158, 165
Non-uniform memory access (NUMA), 6

O
On-board control algorithm, 71–72
Open Virtual Platforms™ (OVP™/, 78–79
Order graph (OG) modelling

abstraction hierarchy, 34–35
consistency relation, 34
conventional hierarchy, 35
cross-layer cuts, 37–39
homogeneous hierarchy, 35–37
system elements, 34
transformations, 34

234 Index

P
Pipeline model (PM), 81
Platform description model (PDM), 209–211
Platform independent model (PIM), 207, 209
Platform-oriented throughput scaling

AES, 118–119
baseline software synthesis, 110–111
DSE tool, 123
experiment setup, 121
FFT, 119–120
FORMLESS model (see FORMLESS

model)
LDPC, 117–118
limitations, 111
matrix multiply, 120
overview, 109–110
parallel merge sort, 120–121
single-core throughput, 121–122

Platform specific model (PSM), 82, 209–211
Polyhedral process networks (PPNs), 160
Positioning system

AR application, 202
CAVE, 202
LCDs, 202
MDD, 201
Moore’s Law, 201
positioning algorithms

geometry component, 218
inputData component, 215
markerDetection component, 215–217
movementType component, 217–218
parallel movement, 222–224
perpendicular movement, 219–221
possiblePosition component, 224–226
UML/MARTE model, 214
userPosition component, 226–227

recreated reality, 203
state of art, 203–206
synthesis, 228
system architecture

application component-memory
partition allocation, 211, 214

application view, 210, 212–213
architectural view, 211, 215
COMPLEX methodology, 208
functional view, 210–211
HW/SW platform design, 208
HW/SW platform view, 211, 214
PDM, 209
PIM, 209
PSM, 209
reference marker description, 207–208
schematic of, 206–207
UML/MARTE model, 208–210

virtual reality, 201
VR glasses, 202

Power-proportional modelling
platform description, 47–48
platform model, 48–51
sizes, 51–53

Power state machine (PSM), 82–83, 209–211
Probabilistic timed automaton (PTA), 176,

177, 181, 183–185, 193
Protocol state machine (PrSM), 82–83
Pulse-position modulation (PPM), 76

R
Real time calculus (RTC) method, 9
Real-time MPSoC design flow

DeaedalusRT methodology, 160
DOL, 160
execution platform, 164–165
ForSyDe-SystemC models, 158–159
JPEG decoder, 170–172
modeling framework, 162–164
plain C code, 159
proposed design flow, 160–162
PTIDES flow, 159
rapid performance evaluation

actor memory requirements, 168
CompSOC, 166, 169
cycle-accurate isolation, 166
SDF graph, 165–166
small ForSyDe model, 166
structure of process network, 166, 168
token sizes, 168
transformation layer, 166–167

real-time systems, 158
SDF graph formats, 160
SUSAN edge detection, 170–172

Resource-driven modelling
ArchOn simulation

Amdahl’s law, 44
execution time, 45
graph assembly language, 42, 44
many-core test platform, 43–44
modes, 44
PER diagrams, 45
perfect scaling, 45, 46
runtime management system, 45, 46
virtual hardware, 42, 43

constrained architectures, 33–34
dynamic systems and architectures, 30–32
flat labelled graphs, 27, 28
functional units, 25, 26
Order Graphs

abstraction hierarchy, 34–35

Index 235

consistency relation, 34
conventional hierarchy, 35
cross-layer cuts, 37–39
homogeneous hierarchy, 35–37
system elements, 34
transformations, 34

organisation, 27
performance, energy and reliability, 39–41
petri nets, 26
power-proportional modelling

platform description, 47–48
platform model, 48–51
sizes, 51–53

relation graph, 27
resources quantification and reward

functions, 32–33
system design and implementation, 28–30
trade-offs, 42

Resources quantification, 32–33
Reward functions, 32–33, 47

S
Saved Processor Status Register (SPSR), 151,

152
SBIP models, 20–21
SDF graph-based analysis

buffer-throughput tradeoff analysis, 91
model analysis and model synthesis, 91
platform-oriented throughput scaling

AES, 118–119
baseline software synthesis, 110–111
DSE tool, 123
experiment setup, 121
FFT, 119–120
FORMLESS model (see FORMLESS

model)
LDPC, 117–118
limitations, 111
matrix multiply, 120
overview, 109–110
parallel merge sort, 120–121
single-core throughput, 121–122

streaming throughput analysis
abstract view of implementation, 96–98
buffer-throughput tradeoff, 94–95
cycle-accurate simulation, 106–108
execution (firing) condition, 93
implementation aware vs.

implementation oblivious
analysis, 104–106

point-to-point FIFO buffers, 92
properties, 101–103
reader and writer actors, 98–100

SDF operational semantics, 93, 95–96
setup and benchmark applications,

103–104
sync actors, 100–101
target platform model, 93–94

Sequential execution abstraction model
(SEAM), 121, 122

Simplescalar, 131
SimSoC

cryptography/safety related embedded
software, 130

faithful simulation
Compert-C, 143
constructing formal model, 144–145
Coq, 142–143
formal verification background,

141–142
instruction proofs, 152
inversion, 151–152
lemmas library, 148–151
objective, 140–141
projection, 146–148
proof structure, 145–146
verified simulator objective, 144

framework
architecture, 131
ARM ADD instruction, 134
code generation technique, 132–133
definition, 130–131
dynamic binary translation, 132, 136
interpretive and dynamic translation,

135
LLVM bitcode, 137–138
LLVM dynamic translator, 135
LLVM optimization, 136–137
micro-instructions based ISS, 132
object oriented ISS, 133
performance estimate, 138–140
SystemC TLM modules, 131

ISS technology, 130
system-on-chips or boards, 130
virtual prototype, 129

Smallest univalue segment assimilating
nucleus (SUSAN), 170–172

SoC dynamic power model, 81–82
Software, MPSoC, 76–77
Space/Size, Weight, and Power consumption

(SWaP), 58
Static affine nested loop program (SANLP),

160
Stochastic activity networks (SANs), 49, 50
Streaming throughput analysis

abstract view of implementation, 96–98
buffer-throughput tradeoff, 94–95

236 Index

Streaming throughput analysis (cont.)
cycle-accurate simulation, 106–108
execution (firing) condition, 93
implementation aware vs. implementation

oblivious analysis, 104–106
point-to-point FIFO buffers, 92
properties, 101–103
reader and writer actors, 98–100
SDF operational semantics, 93, 95–96
setup and benchmark applications, 103–104
sync actors, 100–101
target platform model, 93–94

Stream processing, 65–68, 70
Synchronous data flow (SDF) graph formats,

160

T
Tightly coupled memory (TCM), 6
Time-division multiplexing (TDM), 164, 165
Timing estimator (TE), 80
Transactional level modeling (TLM), 78, 130,

131, 139, 153
Trustworthy system analysis, 4

U
UML/MARTE model, 208–210, 229
Unified modeling language (UML), 178, 201,

208

V
VCC system-level modeling, 18

W
Worst case execution time (WCET) analysis

techniques, 9, 10, 176, 196

X
Xilinx Power Estimator (XPE), 81

Z
Zynq system, 81

	Preface
	Introduction
	Contents
	1 Building Faithful Embedded Systems Models: Challenges and Opportunities
	1.1 Introduction
	1.2 Challenges for ES Performance
	1.2.1 Memory Contention
	1.2.2 Memory Architectures
	1.2.3 Caches and DMAs
	1.2.4 Multi-processing, Pipelining, and Others

	1.3 Performance Modeling: State of the Art
	1.3.1 Techniques for Gathering ES Performance
	1.3.2 Characterizing ES Performance: Models and Methods
	1.3.2.1 Detailed Representations
	1.3.2.2 Abstract Representations
	1.3.2.3 Probabilistic Representations

	1.4 The ASTROLABE Approach
	1.4.1 Overview
	1.4.2 Distribution Fitting
	1.4.3 Assumptions and Shortcomings

	1.5 Performance Modeling Using Probabilistic Models
	1.5.1 Probabilistic Models
	1.5.1.1 Mixture Distributions
	1.5.1.2 Regression Models
	1.5.1.3 Markov Models

	1.5.2 Learning and Fitting Techniques
	1.5.2.1 Fitting Mixture Models
	1.5.2.2 Fitting Regression Models
	1.5.2.3 Learning Markov Models

	1.5.3 Perspectives

	References

	2 Resource-Driven Modelling for Managing Model Fidelity
	2.1 Introduction
	2.2 Resource-Driven Modelling
	2.2.1 System Design and Implementation
	2.2.2 Dynamic Systems and Architectures
	2.2.3 Resources Quantification and Reward Functions
	2.2.4 Constrained Architectures

	2.3 Hierarchical Modelling in Order Graphs
	2.3.1 Introducing Hierarchies
	2.3.2 Order Graphs
	2.3.3 Cross-Layer Cuts

	2.4 Case Studies
	2.4.1 Studying the Performance, Energy and Reliability Trade@汥瑀瑯步渠-Offs of Scalable Systems
	2.4.2 Exploring Concurrency in Many-Core Systems
	2.4.2.1 Architecture-Open (ArchOn) Simulator
	2.4.2.2 Benchmark Results

	2.4.3 Power-Proportional Modelling of Heterogeneous Systems
	2.4.3.1 Platform Description
	2.4.3.2 Platform Model
	2.4.3.3 Power-Proportional Model Sizes

	2.5 Conclusions
	References

	3 Empowering Mixed-Criticality System Engineers in the Dark Silicon Era: Towards Power and Temperature Analysis of Heterogeneous MPSoCs at System Level
	3.1 Introduction
	3.2 The CONTREX Project
	3.3 Considering Power and Temperature of a Full Chip at System Level—The CONTREX Flow
	3.3.1 Extended Virtual Platform Simulation
	3.3.2 Primary Traces: Observable Properties
	3.3.3 Stream Processing
	3.3.4 Secondary Traces: Power per Component
	3.3.5 Power Mapping
	3.3.6 Thermal Model Generation of IC Package
	3.3.7 Thermal Estimation
	3.3.8 Tertiary Traces
	3.3.9 Contract Satisfaction Monitoring

	3.4 A Mixed-Criticality Use-Case
	3.4.1 Selected Scenario
	3.4.2 Fundamentals
	3.4.3 Payload Setup
	3.4.4 Hardware
	3.4.5 Software
	3.4.5.1 The Safety-Critical Part
	3.4.5.2 The Mission-Critical Part

	3.4.6 Ground Control Station

	3.5 Application of the CONTREX Flow
	3.5.1 Virtual Platform
	3.5.2 Timing Model
	3.5.3 Power Model
	3.5.4 Temperature Model

	3.6 Conclusion and Future Work
	References

	4 Throughput-Driven Parallel Embedded Software Synthesis from Synchronous Dataflow Models: Caveats and Remedies
	4.1 Introduction
	4.2 Streaming Throughput Analysis
	4.2.1 Overview
	4.2.2 Preliminaries
	4.2.2.1 SDF Model
	4.2.2.2 Target Platform Model
	4.2.2.3 Buffer-Throughput Tradeoff

	4.2.3 Inaccuracy in SDF-Based Throughput Analysis
	4.2.3.1 Throughput Analysis Based on SDF Operational Semantics
	4.2.3.2 Abstract View of Implementation

	4.2.4 Proposed Solution: Implementation Aware Throughput Analysis
	4.2.4.1 Reader and Writer Actors
	4.2.4.2 Sync Actors
	4.2.4.3 Properties

	4.2.5 Empirical Evaluation
	4.2.5.1 Setup and Benchmark Applications
	4.2.5.2 Implementation Aware vs. Implementation Oblivious Analysis
	4.2.5.3 Comparison Against Cycle-Accurate Simulation

	4.3 Platform-Oriented Throughput Scaling
	4.3.1 Overview
	4.3.2 Baseline Software Synthesis
	4.3.3 SDF Limitations in Throughput Scaling
	4.3.4 Proposed Solution: FORMLESS Model
	4.3.4.1 Formalism
	4.3.4.2 Higher-Order Language
	4.3.4.3 Exploration of Forming Parameter Space

	4.3.5 Experimental Evaluation
	4.3.5.1 Application Case Studies
	4.3.5.2 Experiment Setup
	4.3.5.3 Measurement Results

	4.4 Related Work
	4.5 Conclusion
	References

	5 SimSoC: A Fast, Proven Faithful, Full System Virtual Prototyping Framework
	5.1 Introduction
	5.2 The SimSoC Framework
	5.2.1 Performance Estimate

	5.3 Faithful Simulation
	5.3.1 Objective
	5.3.2 Formal Verification Background
	5.3.3 Background Tools
	5.3.3.1 Coq
	5.3.3.2 Compert-C

	5.3.4 Verified Simulation
	5.3.4.1 Constructing the Formal Model
	5.3.4.2 Proof Structure
	5.3.4.3 Projection
	5.3.4.4 Lemmas Library
	5.3.4.5 Inversion
	5.3.4.6 Instruction Proofs

	5.4 Conclusion
	References

	6 A Composable and Predictable MPSoC Design Flow for Multiple Real-Time Applications
	6.1 Introduction
	6.2 Related Work
	6.3 The Proposed Design Flow
	6.4 The Modeling Framework
	6.5 The Execution Platform
	6.6 Adapting the Flows by Rapid Performance Evaluation
	6.7 Case Study
	6.8 Conclusion and Future Work
	References

	7 Analysis and Implementation of Embedded System Models: Example of Tags in Item Management Application
	7.1 Introduction
	7.2 A Holistic Design Process
	7.3 pState Editor
	7.4 From Hierarchical Charts to Code
	7.5 Model Checker Input Code
	7.5.1 MDP
	7.5.2 PTA
	7.5.3 Properties Specification

	7.6 Executable Code
	7.6.1 PIC C Code
	7.6.2 PIC Assembly Code
	7.6.3 Energia, Arduino-Like Code

	7.7 Contention Resolution in DASH-7 ISO/IEC 18000-7.2
	7.7.1 Tag Collection and Collision Arbitration

	7.8 Collision Model
	7.9 Collection Period Power Consumption
	7.10 Executable Tag Code
	7.11 Conclusion
	References

	8 Positioning System for Recreated Reality Applications Based on High-Performance Video-Processing
	8.1 Introduction
	8.1.1 Recreated Reality
	8.1.2 State of the Art in Positioning Systems

	8.2 System Architecture
	8.2.1 Reference Marker Description
	8.2.2 Design Methodology and Workflow

	8.3 Positioning Algorithms
	8.3.1 Input Data
	8.3.2 Marker Detection
	8.3.3 Movement Type
	8.3.4 Geometry Algorithms
	8.3.4.1 Perpendicular Movement
	8.3.4.2 Parallel Movement
	8.3.4.3 Possible Position
	8.3.4.4 User Position

	8.4 Synthesis
	8.5 Conclusions
	References

	Index

