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Preface

Originating in 1922, in its 95-year history, extremum seeking has served as a tool
for model-free real-time optimization of stable dynamic systems. We introduce a
paradigm in which not only is the system being optimized allowed to be time
varying and open-loop unstable, but also the very goal of extremum seeking is to
stabilize the system. The cost function and the control Lyapunov function
(CLF) play interchangeable roles, with the unknown optimal set point being
implicitly defined through the cost/CLF and coinciding with the equilibrium to be
stabilized.

Our “extremum seeking for stabilization” (ESS) consists of employing the CLF
as the cost function in a slightly modified extremum seeking algorithm. The goal is
to minimize the CLF, i.e., to drive the CLF value to zero over time, which amounts
to asymptotic stabilization. Unlike conventional CLF-based stabilization approa-
ches, which employ the knowledge of the system model in the feedback law
(Sontag’s formula being a “universal” and a particularly clear example of such a
feedback law), our ESS approach does not rely on the system model and does not
require its knowledge. Instead, ESS employs periodic perturbation signals, along
with the CLF. The same effect as that of CLF-based feedback laws that imply the
modeling knowledge is achieved, but in a time-average sense.

Averaging is an important tool in the analysis of ESS controllers. Rather than
standard averaging, which utilizes integrals of the system’s vector field, we employ
Lie bracket-based (i.e., derivative-based) averaging, based on weak limits of
combinations of dithering terms and their integrals. As results based on averaging
are of “approximate” nature, so are the stability properties that we achieve. For
instance, in contrast to global stability properties that are achieved by CLF-based
control laws that employ the full modeling knowledge, our model-free ESS con-
trollers achieve stability that is semiglobal and “practical” asymptotic (or expo-
nential). This is an acceptable price we pay for achieving model-free stabilization
with very simple control algorithms.

In addition to developing simple robust/adaptive model-free stabilizing con-
trollers, we develop new extremum seeking algorithms, which employ bounded
updates. One of the corollaries of our effort is also that we provide alternative and

v



more generally applicable solutions to the problem of controlling systems with
unknown signs of high-frequency gains (the Morse–Nussbaum problem). While
standard adaptive solutions require the high-frequency gains (and their signs) to be
constant, our perturbation-based extremum seeking solution allows the
high-frequency gain to vary with time and even its sign to change.

Our exposition is mathematically self-contained. We present many illustrative
examples and even several experimental applications. The intended audience for
this brief ranges from theoretical control engineers and mathematicians to practicing
engineers in various industrial areas and in robotics. Chapter 1 motivates the
problems considered and gives the overview of the topics. Chapter 2 presents the
mathematical foundations on which the rest of the brief is built. Chapters 3–8
present the control designs and their mathematical properties established through
theorems. In particular, Chap. 8 demonstrates the generality of our weak-limit
averaging approach in utilizing discontinuous and non-differentiable dithers.
Chapter 9 presents experimental applications and provides design guidelines.

Alexander Scheinker thanks his parents, Vladimir Scheinker and Anna
Gazumyan, and his wife Reeju Pokharel, for their support and encouragement and
his brother David Scheinker for his collaboration on the weak-limit averaging
Theorem 2.3, which is the main theoretical result upon which many of the results of
this work are based. Miroslav Krstić thanks Hans-Bernd Durr for his innovative
connection of Lie bracket averaging with extremum seeking.

Los Alamos, NM, USA Alexander Scheinker
La Jolla, CA, USA Miroslav Krstić
November 2016
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Chapter 1
Introduction

1.1 Motivation

The main focus of this book is the stabilization and optimization of unknown, nonlin-
ear, time-varying systems, by utilizing an extremum seeking (ES) approach directly
as the feedback controller itself.

Our “extremum seeking for stabilization” (ESS) consists of employing the con-
trol Lyapunov function (clf) as the cost function in a slightly modified extremum
seeking algorithm. The goal is to minimize the clf, i.e., to drive the clf value to zero
over time, which amounts to asymptotic stabilization. Unlike conventional clf-based
stabilization approaches, which employ the knowledge of the system model in the
feedback law (Sontag’s formula being a ‘universal’ and a particularly clear example
of such a feedback law), our ESS approach does not rely on the system model and
doesn’t require its knowledge. Instead, ESS employs periodic perturbation signals,
along with the clf. The same effect as that of clf-based feedback laws that imply the
modeling knowledge is achieved, but in a time-average sense.

Averaging is an important tool in the analysis of ESS controllers. Rather than
standard averaging, which utilizes integrals of the systems vector field, we employ
weak limit-based averaging. As results based on averaging are of “approximate”
nature, so are the stability properties that we achieve. For instance, in contrast to
global stability properties that are achieved by clf-based control laws that employ
the full modeling knowledge, our model-free ESS controllers achieve stability that is
semiglobal and “practical” asymptotic (or exponential). This is an acceptable price
we pay for achieving model-free stabilization with very simple control algorithms.

In addition to developing simple robust/adaptive model-free stabilizing con-
trollers, we develop new extremum seeking algorithms, which employ bounded up-
dates. One of the corollaries of our effort is also that we provide alternative and more
generally applicable solutions to the problem of controlling systems with unknown
signs of high-frequency gains (the Morse-Nussbaum problem). While standard adap-
tive solutions require the high-frequency gains (and their signs) to be constant, our

© The Author(s) 2017
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2 1 Introduction

perturbation-based extremum seeking solution allows the high-frequency gain to
vary with time and even its sign to change.

For illustration, we also consider problems such as source seeking with unknown,
open-loop unstable systems, in which an unknown trajectory is followed based only
on signal-strength measurements. We also consider many parameter systems which
must both be stabilized and tuned in order to optimize an analytically unknown, time-
varying cost function, based only on noise-corrupted measurements of the unknown
function, so that the system operates in a stable, optimal manner.

This chapter introduces a few general examples of the types of systems that we can
handle with our ESS method. Many of the results presented in this book are based on
the authors’ recent publications, including initial development of ESS for feedback
stabilization [125, 126, 128], ESS for tracking [127], high voltage converter modu-
lator optimization [129], automated particle accelerator tuning [130], a self-turning
off version of ESS in which the dithers die out as equilibrium is approached [131], a
bounded form of ESS [132], utilizing ESS for electron beam property prediction in a
particle accelerator [133], a general form of ESS with non-periodic, discontinuous,
non-differentiable dithers [134], ESS for systems not affine in control [135], and ESS
for particle accelerating cavity resonance control [136, 137].

Scalar Linear Systems

A simple first example is the open-loop unstable scalar system

ẋ = x + b(t)u, (1.1)

with unknown control direction b(t). For such a system, standard controllers would
fail if the sign of b(t) was guessed incorrectly or if b(t) passed through zero, changing
sign, such as, for example, b(t) = sin(2π f t). However, under the action of the ES
controller:

u = √
αω cos(ωt + kx2),

for large ω, the dynamics of system (1.1) are, on average

˙̄x = (
1 − kαb2(t)

)
x̄ . (1.2)

The most important feature of system (1.2) is that the unknown control direction,
b(t), has been replaced with b2(t) ≥ 0 [126]. Therefore, if b(t) is non-zero often
enough, as discussed in more detail in the chapters that follow, for large enough
kα > 0, we can stabilize the system without worrying about the sign of b(t).

Vector-valued Nonlinear Systems

For vector-valued, time-varying, nonlinear systems, of the form

ẋ = f (x, t) + g(x, t)u, (1.3)
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where the functions f, g : Rn+1 → R
n are unknown and the system is possibly open-

loop unstable, we utilize the scalar controller

u = √
αω cos (ωt + kV (x, t)) , (1.4)

where V (x, t) is a Lyapunov-type function of our choice (such as ‖x‖2), we get the
average dynamics

˙̄x = f (x̄, t) − kα

2
g(x̄, t)gT (x̄, t) (∇x̄ V (x̄, t))T , (1.5)

where ∇x̄ is the gradient with respect to x̄ . Again, the unknown control direction am-
biguity is removed with g(x̄, t)gT (x̄, t) ≥ 0, or, more precisely, for ∇x̄ V g (∇x̄ V g)T ,
and for large enough kα > 0 relative to ∇x̄ V f , the system performs a gradient descent
of V (x̄, t).

Vector-valued Nonlinear Systems Not Affine in Control

In the following chapters, we will show that this approach is not limited to systems
affine in control, and is applicable to systems such as

ẋ = f (x, t) + g(x, t, u), (1.6)

where g(x, t, u) is a polynomial in u, with dominant odd-powered terms and allow-
able small even-powered perturbations of the form εgn,e(x, t)u2n , for |ε| � 1, of the
form

g(x, t, u) =
mo∑

n=1

gn,o(x, t)u
2n+1(x, t) + ε

me∑

n=1

gn,e(x, t)u
2n(x, t). (1.7)

This general result is important because many common nonlinear systems, such as
those with dead-zone and saturation, can be approximated arbitrarily accurately by
odd-powered polynomials over compact sets. Applying the ES controller

u(x, t) = (√
αω

) 1
2m0+1 cos(ωt + kV (x, t)), (1.8)

results in average dynamics of the form

˙̄x = f (x̄, t) − kα

2
G2(x̄, t)

∂V (x̄, t)

∂ x̄
, (1.9)

where G(x, t) is a function which depends on the form of g(x, t, u).
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Stabilization and Optimization

When considering the type of problem most often associated with extremum seek-
ing, one in which a system has an unknown output function whose value is to be
maximized or minimized, our approach extends the standard ES results to noisy,
open-loop unstable, time-varying, unknown systems of the form

ẋ = f (x, t) + g(x, t, u(y, t)), y = h(x, t) + n(t), (1.10)

where the output function h(x, t) is analytically unknown, y is its noise corrupted
measurement, n(t) is bounded noise, and g(x, t, u) is a polynomial in u as in (1.7).
We replace V (x, t) with y in (1.8) and apply the controller

u(x, t) = (√
αω

) 1
2m0+1 cos(ωt + ky). (1.11)

The resulting average dynamics are

˙̄x = f (x̄, t) − kα

2
G(x̄, t)GT (x̄, t) (∇x̄ h(x̄, t))T , (1.12)

a gradient descent of the actual, unknown function h(x̄, t) with respect to x̄ .

Example 1.1 As a simple example considered the open-loop unstable system

ẋ = x + 0.25 sin(t)x2

︸ ︷︷ ︸
f (x,t)

+ 0.5xu(y) + sin(3t)u3(y)
︸ ︷︷ ︸

g(x,t,u)

, y = (x − sin(3t))2

︸ ︷︷ ︸
h(x,t)

+ n(t)︸︷︷︸
noise

.

(1.13)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0
0.5
0.0
0.5
1.0
1.5

Time(s)

x(t):Black x*(t):Red /Dashed

0.0 0.5 1.0 1.5 2.0 2.5 3.0
4
2
0
2
4

Time(s)

u(t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.5
0.0
0.5
1.0
1.5

Time(s)

y ( t )=h(x,t)+n( t )

Fig. 1.1 Despite noisy measurements, x(t) tracks the minimizing value, x�(t), of unknown h(x, t)
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We utilize a controller based only on the noisy measurement y:

u(y) = (√
αω

) 1
3 cos(ωt + ky), (1.14)

which minimizes the unknown h(x, t), with average system dynamics:

˙̄x = x̄ + 0.25 sin(t)x̄2 − sin2(3t)
5

16
kα

∂h(x̄, t)

∂ x̄
, x̄(0) = x(0). (1.15)

The simulation results are shown in Fig. 1.1.

Multiparameter Optimization

Consider the problem of locating an extremum point of the function J (θ) : Rn → R,
for θ = (θ1, . . . , θn) ∈ R

n . We assume that J (θ) has a global extremum such that
there exists a unique θ� for which:

∇ J |θ� = 0 and ∇ J 	= 0, ∀θ 	= θ�. (1.16)

We utilize the following extremum seekers:

θ̇i = √
αiωi cos (ωi t + ki J (θ)) , (1.17)

where ωi = ωω̂i such that ω̂i 	= ω̂ j ∀i 	= j and J satisfies (1.16). On average, the pa-
rameters θi will evolve according to a gradient descent of the unknown function J (θ):

˙̄θ = −kα

2
(∇ J )T , (1.18)

where kα is the diagonal matrix with entries kiαi .
The results presented here, for a large class of systems, perform what is classically

done with ES, with the added benefit that we can handle unstable and time-varying
systems without having a-priori available stabilizing controllers. A quick summary of
the differences between ES for stabilization and classical ES is provided in Fig. 1.2.
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Fig. 1.2 Comparison of
traditional ES for
optimization (top) and the
ES-based feedback for
stabilization and
optimization presented in
this book (bottom)

Classical ES for optimizaton

Unknown

2n

ES for stabilization and optimization

Unknown and 
time-variyng

-k

Unknown and 
unstable

Unkown and 
stable

ES

ES

Unknown

1.2 Classical ES Background

Classical extremum seeking, a perturbation driven method for optimization, was
developed for use as a tool for finding and maintaining the extremum value of an
unknown function, which may be the output of a known dynamic system. This ap-
proach was first proposed in the 1922 paper of Leblanc [83]. In his paper, Leblanc
reported on a new method for maintaining maximum power transfer from a transmis-
sion line to a tram car. Leblanc’s paper was a description of an ingenious engineering
design, but there was no mathematical analysis of the scheme’s dynamics. Eventu-
ally, Leblanc’s simple, powerful method became a popular tool for maximizing or
minimizing unknown output functions for stable, known dynamic systems.

The intuitive explanation of why Leblanc’s method works is very simple. Starting
with some initial condition, x(0) the system’s input is perturbed in the form

x(t) = x(0) + cos(ωt),
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which results in a perturbation of some unknown output function, F(x(t)) =
F(x(0) + cos(ωt)). If F(x) has an extremum point near x(0) then F(x(t)) will
be in or out of phase with the perturbing term cos(ωt) as shown in Fig. 1.3. The
phase of the output function, relative to the perturbing term then gives the controller
an idea of which way to move the parameter in order to approach the extremum
point. By mixing and filtering this process is made into an automated feedback loop
which drives a system’s output towards its minimum.

This simple and effective optimization scheme gained further attention in Russia
starting in the 1940s [66, 67]. In the U.S. the scheme was introduced in the 1950s [30]
for optimization of the performance of an internal combustion engine. In the 1950s
and 1960s the algorithm was modified and its performance for specific problems was
analyzed [97, 98, 112, 117], but rigorous performance and design analysis had not
taken place. In 1971 a Lyapunov based stability analysis of a particular extremum
seeking system was performed [95].

In 2000 the first general stability analysis of the extremum seeking method was
performed by Krstić and Wang [76], for stable dynamic systems, with unknown
output functions. What follows is an intuitive description of principle of operation of
the ES scheme. For detailed analysis, which is an interesting combination of standard
averaging and singular perturbation theory, one should consult the reference.

The dynamic system is given by ẋ = f (x, u) for which a locally exponentially
stabilizing family of controllers, parametrized by θ , in the form of u = α(x, θ), is
known and there exists a unique equilibrium map l(θ) such that ẋ = 0 if and only
of x = l(θ). Furthermore, the unknown output function, y = h(x) is assumed to
have a minimum at some value of θ = θ�, such that h(l(θ)) satisfies some usual
minimization characteristics at θ = θ� such as, for example dh

dθ

∣∣
θ� = 0.

In this setup a dithering term a sin(ωt) is used to perturb the value of θ , in order
to search for the optimal control which will minimize the output function h(l(θ)).
The value of the output function, y = h(x) is first passed through the high pass filter,
whose Laplace transform is represented as s

s+ωh
in order to remove any constant

terms. The filtered signal is then mixed with the same term, a sin(ωt), and then
low pass filtered, a process which after some averaging analysis results in a few
oscillating terms, one of which is of the form sin2(ωt) and proportional to − dh

dθ
, the

gradient of the unknown output map. Upon integration, or low pass filtering through

Fig. 1.3 In searching for the
minimum of F(x) = x2,
depending on whether x(0)

is greater than or less than
x� = 0 the value of the
perturbed function F(x(t))
will be in or out of phase
with the perturbing signal,
allowing for an estimate of
the gradient for minimization

x tx t

F(x t )F(x t )

F(x )t

t

t

t
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k
s all oscillatory terms average to zero, except for the −k dh

dθ
sin2(ωt) term, resulting

in θ following a gradient descent towards the minimizing value θ� of the unknown
function y = h(x) = h(l(θ)).

The work of Krstić and Wang sparked renewed interest in the field. Since 2000 the
extremum seeking method, as a real-time non-model-based optimization approach,
has seen significant theoretical advances [6, 20, 124], with extension to semi-global
convergence [147], development of scalar Newton-like algorithms [99, 107], inclu-
sion of measurement noise [144], extremum seeking with partial modeling informa-
tion [2, 3, 28, 35, 47], and learning in noncooperative games [37, 143].

Extremum seeking has also been used in many diverse applications with un-
known/uncertain systems, such as steering vehicles toward a source in GPS-denied
environments [22, 23, 157], active flow control [12, 13, 15, 58, 70, 71], aeropropul-
sion [104, 151], cooling systems [88, 89], wind energy [25], photovoltaics [87],
human exercise machines [159], optimizing the control of nonisothermal continu-
ously stirred tank reactors [46], reducing the impact velocity of an electromechanical
valve actuator [119], controlling Tokamak plasmas [18, 19], and enhancing mixing
in magnetohydrodynamic channel flows [94].

Recent developments include application for control of uncertain nonlinear sys-
tems [44], a non-gradient approach to global extremum seeking [109], a multivari-
able Newton-based ES scheme, for the power optimization of photovoltaic micro-
converters [42], Newton-based stochastic extremum seeking [93], a proportional
integral ES approach [52], time-varying extremum-seeking control approaches for
discrete-time systems [48, 50], many approaches to maximum power point tracking
[10, 14, 16, 17, 59, 84–86, 90, 91, 123, 155], Newton-like ES for thermoacou-
sic instability control [101], ES for Weiner-Hammerstein plants [102], semi-global
analysis of ES for Hammerstein plants [103], torque maximization of motors [5], op-
timization of variable CAM timing engine operation [121], global ES in the presence
of local extrema [149], various dithering choices [148], multivariable Newton-based
ES [41], ES for cascaded Raman optical amplifiers [29], multi unit systems with
sampled data [69], ES with parameter uncertainties [108], application to nonlin-
ear systems [57], bioreactor control [45], constrained ES [49], multi-objective ES
[51], decentralized ES [80–82], ES for plants of arbitrary degree [61, 118], output-
feedback ES with sliding modes [113], and ES with delays [113–116]. A broad
review of developments of ES is summarized in [100, 161].

As described, extremum seeking is a control framework that has traditionally
been developed as a methodology for optimizing steady states for known stable
systems. The ES method has seen many alterations, a major simplification and a first
effort towards applying ES to unstable plants was presented by Zhang et al. [158],
but only for simple linear examples and only for problems where instability is an
obstacle to achieving optimization, rather than stabilization being the goal. The new
scheme was for velocity actuation of vehicles for minimization of the unknown output
function f (x, y). Because the position of a vehicle is the integral of its velocity,
x(t) = x(0) + ∫ t

0 v(τ)dτ , the ES scheme was simplified by removal of the filter
designated as k

s , with this low pass filtering now being performed by the vehicles
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themselves. Furthermore, the addition of the ω as a gain of the dithering signal and
the use of sin(ωt) and − cos(ωt) as mixing signals for dithering signals ω cos(ωt)
and ω sin(ωt) respectively (which the mixing signals are the integrals of) resulted
in the removal of the second high pass filter and an overall simplified averaging
analysis.

1.3 Stabilizing by Minimization

Stabilization and control Lyapunov functions (clf) have been seminal accomplish-
ments in the control field since the introduction of Sontag’s formula in 1989 [142]
and followed by constructive developments of clf’s throughout the 1990s for sys-
tems with known models [73, 139], unknown parameters [73, 74, 150], uncertain
nonlinearities [36], and stochastic and deterministic disturbances [74].

In the clf theory, a central place is occupied by “LgV controllers” (damping
controllers) [74, 139], which are capable of ensuring not only stability but also
inverse optimality, and of which a representative example is Sontag’s universal con-
troller [142].

In developing stabilizing controllers for uncertain systems, the most challenging
class of uncertainties is the unknown control direction, also referred to as the case
with an unknown sign of the high frequency gain. This problem has a history that
precedes clf’s and goes to the early period of development of robust adaptive con-
trol. Posed in the early 1980s by Morse and first solved by Nussbaum [111], the
problem of stabilization in the presence of unknown control direction has recently
received increased attention in adaptive control of nonlinear systems but the classi-
cal parameter-adaptive solutions suffer from poor transient performance and fail to
achieve exponential stability even in the absence of other uncertainties.

This book builds on the connection between extremum seeking (ES), Lyapunov
functions, and averaging, to develop a general framework for stabilization of systems
with unknown models using clf’s and LgV -like controllers. Since our approach does
not require the knowledge of the control direction (for systems affine in control, the
input vector field g is allowed to be unknown), as a byproduct of our effort in de-
signing ES-based LgV -like controllers we provide a new solution to the problem of
stabilization of systems with unknown direction. The new solution guarantees expo-
nential convergence and does not suffer from poor transients that are characteristic
of solutions that employ Nussbaum gain techniques.

Consider, for example, the n-dimensional, linear time varying system

ẋ = A(t)x + B(t)u, (1.19)

and the scalar controller

u = √
αω cos (ωt + kV (x)) . (1.20)
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In all of our ES-feedback stabilization designs, the first step is the construction (or a
guess) of a clf V (x), the second step is a choice of sufficiently high gains k and α of
the ES algorithm, such that the product kα is large enough to stabilize the average
system

˙̄x = A(t)x̄ − kα

2
B(t)BT (t)

dV

dx̄
, (1.21)

and the third step is the choice of a sufficiently high ω to satisfy the requirements of
the averaging theorem, Theorem 2.3, an extension of the work of Kurzweil, Jarnik,
Sussmann, Liu, Gurvits, and Li [53–55, 79, 145, 146] and of the semiglobal practical
stability theorem of Moreau and Aeyels [105]. In the time-varying case, intuitively
speaking, relative to the system dynamics, we must choose ω large enough such that
the control oscillations are on a separate time-scale from the time-varying dynamics,
ω � | Ȧ(t)|, |Ḃ(t)|. The choice of average gain kα and of the dithering frequency,
ω, are related to the region of attraction of our closed loop systems, with larger kα
providing stability for larger initial conditions, but requiring larger values of ω to
retain the averaging results.

Although the averaging analysis leads to a sufficiently condition for the product
kα to be high enough, the individual terms k and α play significantly different roles
in the ES algorithm. We think of k as a control gain that increases the convergence
rate as well as decreases the size of the residual convergence set. The value of α is
related to the size of our dithering term. Choosing a small value of α results in a
smaller perturbing term which is, near V (x) = 0, after integration, proportional to
α√
ω

sin(ωt), thereby reaching a steady state closer to the origin while decreasing the
rate of convergence. If the value of α is increased, the feedback searches over a larger
space, allowing the system to escape local minimums in the case of optimization
applications.

Clearly, our approach is of a high-gain type in requiring that both kα and ω

be large, furthermore we introduce fast oscillations into the system, which may
become impractical, due to actuator capabilities, for very large choices of ω. When
considering problems with an unknown control direction, unlike the approach by
Nussbaum [111] and Mudgett and Morse [106] (which we refer to as the “MMN
approach”), our approach is neither global nor asymptotic—it guarantees semiglobal
exponential practical stability. As such, our results are robust to disturbances. One
of the major benefits of this approach is that noisy measurement of the cost function,
V (x), is not problematic. On average, as long as the noise is truly random and does
not happen to perfectly match the frequency of the controller’s oscillations, it cannot
destroy the overall system’s stability. Furthermore, unlike the MMN approach, we
can not only handle unknown signs of the high frequency gains, but also signs that
change with time. In particular, unlike other unknown control direction approaches
[39, 152, 153, 156, 160], we can allow B(t) to go through zero. The price we pay,
besides the lack of globality and of perfect regulation to the origin, is that our high-
gain choice of kα requires that we know a lower bound on a mean value of B(t)BT (t)
and upper bounds on mean-square values of A(t) and B(t).

http://dx.doi.org/10.1007/978-3-319-50790-3_2
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The MMN controller is designed for the case of constant plant parameters. When
it is applied to a system that is time-varying, and when the control coefficients are
quickly varying with time, passing through zero, and alternating signs, such as when
B(t) contains sinusoids, then the MMN type controllers simply cannot keep up
and repeatedly overshoot with greater and greater error magnitude. The controllers
developed in this work do not suffer from any such overshoots because the ES control
scheme is by design operating on a faster time scale than the dynamics in the system’s
coefficients. Recently the ESS method has been studied for use on submanifolds [32],
a singular perturbation-based method has been studied [33], as well as new schemes
for GPS-denied source localization [40].



Chapter 2
Weak Limit Averaging for Studying the
Dynamics of Extremum Seeking-Stabilized
Systems

2.1 Mathematical Notation

We start by reviewing a few results from functional analysis which are used through-
out the book, especially in the proof of themain result, Theorem2.3. See, for example,
Conway’s A Course in Functional Analysis [24], for a more thorough review.

Definition 2.1 For a compact set K ⊂ R
n , the space of continuous functions is

denoted as
C(K ) = {u : K → R |u is continuous }.

Definition 2.2 For a compact set K ⊂ R
n , for 1 ≤ p < ∞,

L p(K ) =
{

u : K → R

∣∣∣∣∣

(∫

Ω

|u(t)|pdt

) 1
p

< ∞
}

,

L∞(K ) =
{

u : K → R

∣
∣∣∣sup

t∈Ω

|u(t)| < ∞
}

.

Definition 2.3 A sequence of functions {un} ⊂ L1(K ) is uniformly equicontinuous
if for every ε > 0, there exists a δ > 0, such that:

|un(x) − um(y)| < ε, ∀x, y ∈ K , s.t. ‖x − y‖ < δ.

Riemann-Lebesgue Lemma: If f ∈ L1(K ), then

lim
ω→∞

∫

K
f (x)e−iωx dx = 0. (2.1)

Definition 2.4 A sequence of functions { fk} ⊂ L2[0, 1] is said to converge weakly
to f in L2[0, 1], denoted fk ⇀ f , if

© The Author(s) 2017
A. Scheinker and M. Krstić, Model-Free Stabilization by Extremum Seeking,
SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-50790-3_2
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lim
k→∞

∫ 1

0
fk(τ )g(τ )dτ =

∫ 1

0
f (τ )g(τ )dτ, ∀g ∈ L2[0, 1].

For example, by application of the Riemann-Lebesgue Lemma,

cos (ωt) sin (ωt) ⇀ 0, (2.2)

cos2 (ωt) ⇀
1

2
, sin2 (ωt) ⇀

1

2
, (2.3)

cos (ω1t) cos (ω2t) ⇀ 0, ∀ ω1 	= ω2, (2.4)

sin (ω1t) sin (ω2t) ⇀ 0, ∀ ω1 	= ω2. (2.5)

Arzelà-Ascoli Theorem: If a sequence {un} ⊂ C(K ) is bounded and equicontinuous,
then it has a uniformly convergent subsequence

{
unk

}
.

2.2 Convergence of Trajectories and Practical Stability

In this section we review some results of Moreau and Aeyels [105], which we later
apply in order to relate the stability of ourweak-limit averaged systems to the stability
of the original ES-controlled systems. In what follows, given a system

ẋ = f (t, x), (2.6)

ψ(t, t0, x0) denotes the solution of (2.6) which passes through the point x0 at
time t0.

Definition 2.5 Global Uniform Asymptotic Stability (GUAS): An equilibrium point
of (2.6) is said to be GUAS if it satisfies the following three conditions:

• Uniform Stability: For every c2 ∈ (0,∞) there exists c1 ∈ (0,∞) such that for all
t0 ∈ R and for all x0 ∈ R

n with ‖x0‖ < c1,

‖ψ(t, t0, x0)‖ < c2 ∀t ∈ [t0,∞). (2.7)

• Uniform Boundedness: For every c1 ∈ (0,∞) there exists c2 ∈ (0,∞) such that
for all t0 ∈ R and for all x0 ∈ R

n with ‖x0‖ < c1,

‖ψ(t, t0, x0)‖ < c2 ∀t ∈ [t0,∞). (2.8)

• Global Uniform Attractivity: For all c1, c2 ∈ (0,∞) there exists T̄ ∈ (0,∞) such
that for all t0 ∈ R and for all x0 ∈ R

n with ‖x0‖ < c1,

‖ψ(t, t0, x0)‖ < c2 ∀t ∈ [t0 + T̄ ,∞). (2.9)

In conjunction with (2.6), we consider systems of the form
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ẋ = f ε(t, x) (2.10)

whose trajectories are denoted as φε(t, t0, x0).

Definition 2.6 Converging Trajectories Property: The systems (2.6) and (2.10) are
said to satisfy the converging trajectories property if for every T̂ ∈ (0,∞) and
compact set K ⊂ R

n satisfying {(t, t0, x0) ∈ R × R × R
n : t ∈ [t0, t0 + T̂ ], x0 ∈

K } ⊂ Domψ , for every d ∈ (0,∞) there exists ε
 such that for all t0 ∈ R, for all
x0 ∈ K and for all ε ∈ (0, ε
),

‖φε(t, t0, x0) − ψ(t, t0, x0)‖ < d, ∀t ∈ [t0, t0 + T̂ ]. (2.11)

We then define the following form of stability for system (2.10).

Definition 2.7 ε-Semiglobal Practical Uniform Asymptotic Stability (ε-SPUAS):An
equilibrium point of (2.10) is said to be ε-SPUAS if it satisfies the following three
conditions:

• Uniform Stability: For every c2 ∈ (0,∞) there exists c1 ∈ (0,∞) and ε̂ ∈ (0,∞)

such that for all t0 ∈ R and for all x0 ∈ R
n with ‖x0‖ < c1 and for all ε ∈ (0, ε̂),

‖φε(t, t0, x0)‖ < c2 ∀t ∈ [t0,∞). (2.12)

• Uniform Boundedness: For every c1 ∈ (0,∞) there exists c2 ∈ (0,∞) and ε̂ ∈
(0,∞) such that for all t0 ∈ R and for all x0 ∈ R

n with ‖x0‖ < c1 and for all
ε ∈ (0, ε̂),

‖φε(t, t0, x0)‖ < c2 ∀t ∈ [t0,∞). (2.13)

• Global Uniform Attractivity: For all c1, c2 ∈ (0,∞) there exists T̄ ∈ (0,∞) and
ε̂ ∈ (0,∞) such that for all t0 ∈ R and for all x0 ∈ R

n with ‖x0‖ < c1 and for all
ε ∈ (0, ε̂),

‖φε(t, t0, x0)‖ < c2 ∀t ∈ [t0 + T̄ ,∞). (2.14)

With these definitions the following result of Moreau and Aeyels [105] is used in
the analysis that follows.

Theorem 2.1 ([105]) If systems (2.10) and (2.6) satisfy the converging trajectories
property and if the origin is a GUAS equilibrium point of (2.6), then the origin of
(2.10) is ε-SPUAS.

For systems which perform trajectory tracking, it is usually assumed that even
the averaged system itself does not exactly reach the target, r(t), thereby driving the
error e(t) = x(t) − r(t) to zero, but instead we design the controllers, such that for
any chosen δ > 0, we can guarantee bounds of the form limt→∞ |e(t)| < δ. Towards
studying such systems in this ES framework, we make the following definitions.
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Definition 2.8 Global Uniform Ultimate Boundedness with ultimate bound δ (δ-
GUUB): For δ ≥ 0 an equilibrium point of (2.6) is said to be δ-GUUB if it satisfies
the following three conditions:

• δ-Uniform Stability: For every c2 ∈ (δ,∞) there exists c1 ∈ (0,∞) such that for
all t0 ∈ R and for all x0 ∈ R

n with ‖x0‖ < c1,

‖ψ(t, t0, x0)‖ < c2 ∀t ∈ [t0,∞). (2.15)

• δ-Uniform Ultimate Boundedness: For every c1 ∈ (0,∞) there exists c2 ∈ (δ,∞)

such that for all t0 ∈ R and for all x0 ∈ R
n with ‖x0‖ < c1,

‖ψ(t, t0, x0)‖ < c2 ∀t ∈ [t0,∞). (2.16)

• δ-Global Uniform Attractivity: For all c1, c2 ∈ (δ,∞) there exists T ∈ (0,∞)

such that for all t0 ∈ R and for all x0 ∈ R
n with ‖x0‖ < c1,

‖ψ(t, t0, x0)‖ < c2 ∀t ∈ [t0 + T,∞). (2.17)

Definition 2.9 ε-Semiglobal Practical Uniform Ultimate Boundedness with Ulti-
mate Bound δ ((ε, δ)-SPUUB): The origin of (2.10) is said to be (ε, δ)-SPUUB if it
satisfies the following three conditions:

• (ε, δ)-Uniform Stability: For every c2 ∈ (δ,∞) there exists c1 ∈ (0,∞) and
ε̂ ∈ (0,∞) such that for all t0 ∈ R and for all x0 ∈ R

n with ‖x0‖ < c1 and for all
ε ∈ (0, ε̂),

‖φε(t, t0, x0)‖ < c2 ∀t ∈ [t0,∞). (2.18)

• (ε, δ)-Uniform Ultimate Boundedness: For every c1 ∈ (0,∞) there exists c2 ∈
(δ,∞) and ε̂ ∈ (0,∞) such that for all t0 ∈ R and for all x0 ∈ R

n with ‖x0‖ < c1
and for all ε ∈ (0, ε̂),

‖φε(t, t0, x0)‖ < c2 ∀t ∈ [t0,∞). (2.19)

• (ε, δ)-Global Uniform Attractivity: For all c1, c2 ∈ (δ,∞) there exists T ∈ (0,∞)

and ε̂ ∈ (0,∞) such that for all t0 ∈ R and for all x0 ∈ R
n with ‖x0‖ < c1 and

for all ε ∈ (0, ε̂),
‖φε(t, t0, x0)‖ < c2 ∀t ∈ [t0 + T,∞). (2.20)

Theorem 2.2 ([105]) If systems (2.10) and (2.6) satisfy the converging trajectories
property and if the origin is a δ-GUUB point of (2.6), then the origin of (2.10) is
(ε, δ)-SPUUB.

Remark 2.1 In all of the analysis that follows, the trajectories of our systems are
required to be confined to compact sets. In each case to be considered in this and
the following chapters we first choose R > 0, δ > 0 and consider the compact set
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Fig. 2.1 Trajectories with
initial conditions
x(0) ∈ B(0, R − δ) are
guaranteed to remain within
the compact set B̄(0, R)

R

R-δ

x(t)

x(t)

x(0)

B̄(0, R) = {x ∈ R
n : |x | ≤ R}. Over this compact set we can apply the averaging

results and therefore, for any fixed time length T̂ > 0, there exists ε
 such that for
all ε ∈ (0, ε
), for all x(t), x̄(t) ∈ B̄(0, R),

max
t∈[0,T̂ ]

|x(t) − x̄(t)| < δ. (2.21)

Now we restrict our analysis to the ball of initial conditions B(0, R − δ) = {x ∈
R

n : |x | < R − δ}. We also take into account that in what follows, all of the average
systems are shown to be exponentially stable, and therefore

max
t∈[0,T̂ ]

|x̄(t)| < |x̄(0)| = |x(0)| < R − δ. (2.22)

Combining conditions (2.21) and (2.22), we then have, for all x(0) ∈ B(0, R − δ),

max
t∈[0,T̂ ]

|x(t)| = max
t∈[0,T̂ ]

|x(t) − x̄(t) + x̄(t)|
≤ max

t∈[0,T̂ ]
|x(t) − x̄(t)| + max

t∈[0,T̂ ]
|x̄(t)| < δ + R − δ = R.

Therefore considering x(0) ∈ B(0, R − δ) we are guaranteed that all trajectories
are confined to the compact set B̄(0, R), where the choices of R and δ can be made
arbitrarily large and small respectively. A graphic representation of this simple result
of the triangle inequality is shown in Fig. 2.1.
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2.3 Weak Limit Averaging

We establish our main results by combining a novel idea for oscillatory control with
an extension of functional analytic techniques originally utilized byKurzweil, Jarnik,
Sussmann, and Liu in the late 80s and early 90s.

A proof of Sussmann and Liu’s results was given by Sussmann (1992) [146,
Sect. 5]. We note that Sussmann and Liu mentioned that their work is an extension
of the results of Kurzweil and Jarnik [79]. Such systems were also recently studied,
with an ES application in mind, by Durr et al. [31].

Our main result, Theorem 2.3, developed in [134], extends the study of ES from
smoothly varying sinusoidal functions, to amuch larger useful class of not necessarily
continuous functions, e.g., a perturbing signal common in digital systems, a square
wave with dead time between pulses. Theorem 2.3 has three useful properties. It es-
tablishes feedback control that is, on average, immune to additive, state-independent
measurement noise. It establishes the on-average equivalence of variety of control
choices that may be used with a range of different types of hardware. The proof is
simpler and more general than the related work in [72, 145, 146].

In what follows, we use the notation u(y, t) = u(ψ(x, t), t) to emphasize that
the controller u is a function of t and of, a potentially unknown, function ψ(x, t),
i.e. that u(y, t) need not have direct access to x .

Theorem 2.3 [134] Consider the vector-valued system

ẋ = f (x, t) + g(x, t)u(y, t), y = ψ(x, t), (2.23)

where x ∈ R
n, and the functions f : R

n × R → R
n, g : R

n × R → R
n×n,

ψ : R
n × R → R are unknown. Assume that f and g are twice continuously

differentiable with respect to x and assume that the value y of ψ(x, t) is available
for measurement. Consider a controller u given by

u(y, t) =
m∑

i=1

ki (y, t)hi,ω(t), ki : R × R → R
n, (2.24)

where the functions ki (y, t) are continuously differentiable and the functions hi,ω(t)
are piece-wise continuous. System (2.23), (2.24) has the following equivalent closed-
loop form

ẋ(t) = f (x, t) +
m∑

i=1

bi (x, t)hi,ω(t), (2.25)

bi (x, t) = g(x, t)ki (ψ(x, t), t) . (2.26)

Suppose that the functions defined as
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Hi,ω(t) =
∫ t

t0

hi,ω(τ )dτ (2.27)

satisfy the uniform limits and weak limits

lim
ω→∞ Hi,ω(t) = 0, hi,ω(t)Hj,ω(t) ⇀ λi, j (t). (2.28)

Consider also the average system related to (2.25) as follows

˙̄x = f (x̄, t) −
m∑

i 	= j=1

λi, j (t)
∂bi (x̄, t)

∂ x̄
b j (x̄, t), x̄(0) = x(0). (2.29)

For any compact set K ⊂ R
n, any t0, T ∈ R≥0, and any δ > 0, there exists ω
 such

that for each ω > ω
, the trajectories of (2.25) and (2.29), satisfy ‖x(t) − x̄(t)‖ < δ

for all t ∈ [t0, t0 + T ]. Therefore, by [105], uniform asymptotic stability of (2.29)
over K implies that (2.25) is 1

ω
-SPUAS.

Towards a proof of Theorem 2.3 we start with the following lemma.

Lemma 2.1 As ω → ∞

I1 =
∫ t

t0

bi (xω, τ )hi,ω(τ )dτ

→
m∑

j=1

∫ t

t0

∂bi (x̄, τ )

∂x
b j (x̄, τ )λ j,i (t)dτ. (2.30)

Proof Integrating I1 by parts gives

I1 = bi (x(τ ), τ )Hi,ω(τ )
∣∣t

t0
−

∫ t

t0

dbi (x, τ )

dτ
Hi,ω(τ )dτ.

As ω → ∞ the first term of I1 converges uniformly to zero. The second term can be
expanded as

∫ t

t0

∂bi (x, τ )

∂τ
Hi,ω(τ )dτ

︸ ︷︷ ︸
I2,1

+
∫ t

t0

∂bi (x, τ )

∂x
f (x, τ )Hi,ω(τ )dτ

︸ ︷︷ ︸
I2,2

+
m∑

j=1

∫ t

t0

∂bi (x, τ )

∂x
b j (x, τ )h j,ω(τ )Hi,ω(τ )dτ

︸ ︷︷ ︸
I2,3

.

Since the functions bi (x, t) are continuously differentiable, and x is in a compact
set, the functions {Hω} converge uniformly to zero, the terms I2,1 and I2,2 vanish
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as ω → ∞. The weak convergence assumption applied to I2,3 give the desired
conclusion.

We now establish Theorem 2.3.

Proof Assume thehypothesis ofTheorem2.3, fix a compact set K ⊂ R
n and consider

the following sequence of differential equations on K

ẋω = f (xω, t) +
m∑

i=1

bi (xω, t)hi,ω(t), xω(t0) = x0. (2.31)

Because the functions f , b are differentiable and hi,ω(t) are piece-wise continuous, a
unique solution of (2.31) exists [68]. For each fixed ω and for any t ≥ t0, the solution
of (2.31) is

xω(t) = x0 +
∫ t

t0

f (xω, τ )dτ +
m∑

i=1

∫ t

t0

bi (xω, τ )hi,ω(τ )dτ

︸ ︷︷ ︸
I1

. (2.32)

For any sequence {ω}, since we are on a compact set, the functions {xω} are equicon-
tinuous and point wise bounded, therefore the Arzelà-Ascoli Theorem implies that
there exists a subsequence xωi that converges to x̄ uniformly. To find x̄ we apply
Lemma 2.1 to I1 see that the sequence {xωi } converges to

x0 +
∫ t

t0

f (x̄, τ )dτ +
m∑

i=1

m∑

j=1

∫ t

t0

∂bi (x̄, τ )

∂ x̄
b j (x̄, t)λ j,i (t). (2.33)

This is the solution to

˙̄x = f (x̄, t) +
m∑

i, j=1

λi, j (t)
∂bi (x̄, t)

∂ x̄
b j (x̄, t), x̄(0) = x0. (2.34)

Because the solution is unique, these results are true for each subsequence {ωi }.
Because the convergence guaranteed by Arzela-Ascoli is uniform, and because this
is true for any sequence {ω → ∞}, we have shown that for any t0 ∈ R, and any
δ > 0, there exists ω
 such that for all ω > ω
, the trajectories xω(t) and x̄(t) of
(2.31) and (2.34), respectively satisfy

max
t∈[t0,t0+T ]

‖x(t) − x̄(t)‖ < δ. (2.35)

Therefore, the solutions of (2.29) and (2.25) satisfy the converging trajectories prop-
erty for any T ∈ [0,∞). Therefore, if the origin of (2.29) is GUAS, by Theorem 2.1,
the origin of (2.25) is 1

ω
-SPUAS. Thus, standard bootstrapping methods imply that,

on K , if limt→∞ ‖x̄(t)‖ = 0, then limt→∞ ‖xω(t)‖ < δ.
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A simple example of a system of form (2.23)–(2.24) will illustrate the conse-
quences of the theorem. The controller presented in this example has some inter-
esting and useful properties, we will be return to it in more detail in the following
chapters.

Example 2.1 Consider the system

ẋ + ax + bu, u = √
αω cos

(
ωt + kx2

)
(2.36)

noting that when the sign of b is unknown, one cannot design a classical PID type
stabilizing controller. Theorem2.3 implies that the closed loop average system related
to (2.36) is given by

˙̄x = (
a − kαb2

)
x̄, (2.37)

which is stabilized by a sufficiently large choice of kα > a
b2 , regardless of the sign

of b. We now provide the details of how Theorem 2.3 is applied, carrying out weak
limit calculations which we will routinely omit in the remainder of the book. In the
notation used in Theorem 2.3, system (2.36) may be written as

ẋ = ax︸︷︷︸
f (x)

+ b︸︷︷︸
g(x)

u, y = x︸︷︷︸
ψ(x)

(2.38)

u = √
αω cos

(
ωt + kx2) (2.39)

= √
αω cos (ωt)︸ ︷︷ ︸

h1,ω(t)

cos
(
kx2

)

︸ ︷︷ ︸
k1(x)

−√
αω sin (ωt)︸ ︷︷ ︸

h2,ω(t)

sin
(
kx2

)

︸ ︷︷ ︸
k2(x)

,

which has closed loop form

ẋ = ax + √
αω cos (ωt)︸ ︷︷ ︸

h1,ω(t)

b cos
(
kx2

)

︸ ︷︷ ︸
b1(x)

−√
αω sin (ωt)︸ ︷︷ ︸

h2,ω(t)

b sin
(
kx2

)

︸ ︷︷ ︸
b2(x)

.

Consider the sequence of functions {h1,ω(t)} = {√αω cos(ωt)} and {h2,ω(t)} =
{−√

αω sin(ωt)} where ω → ∞. Consider corresponding sequences {Hi,ω(t) =∫ t
0 hi,ω(τ )dτ } where

H1,ω(t) =
√

α

ω
sin (ω(t)) , H2,ω(t) =

√
α

ω
cos (ω(t))

and notice that for each i , the functions Hi,ω(t) converge uniformly to 0 as ω → ∞.
In the present example, according the Riemann-Lebesgue Lemma [24],

h1,ω(t)H1,ω(t) = α cos (ωt) sin (ωt) ⇀ λ1,1 = 0

h1,ω(t)H2,ω(t) = α cos2 (ωt) ⇀ λ1,2 = α

2
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h2,ω(t)H1,ω(t) = −α sin2 (ωt) ⇀ λ2,1 = −α

2
h2,ω(t)H1,ω(t) = −α sin (ωt) cos (ωt) ⇀ λ2,2 = 0.

Therefore, according to Theorem 2.3, the average system is given by

˙̄x = ax̄ + 1

2

(
∂b1
∂ x̄

b2λ1,2 + ∂b2
∂ x̄

b1λ2,1

)

= (
a − kαb2

)
x̄ . (2.40)

The stability of this system over compact sets implies the 1
ω
—semiglobal practical

uniform asymptotic stability of the original system (2.36).
For illustrative purposes, we partially carry out the weak limit averaging for the

simple linear system (2.36). Integrating (2.36) we get

x(t) = x(0) +
∫ t

0
ax(τ )dτ +

∫ t

0
b(τ )

√
αω cos (ωτ) cos

(
kx2

)
dτ

︸ ︷︷ ︸
I1

−
∫ t

0
b(τ )

√
αω sin (ωτ) sin

(
kx2) dτ

︸ ︷︷ ︸
I2

.

We first integrate the term I1 by parts,
∫

udv = uv − ∫
vdu, with

u = b(τ ) cos(kx2), du = ḃ(τ ) cos(kx2)dτ − 2kb(τ )ẋ sin(kx2)dτ,

dv = √
αω cos(ωt)dτ, v =

√
α

ω
sin(ωt).

The term I1 becomes

√
α

ω
sin(ωt)b(t) cos(kx2)

︸ ︷︷ ︸
uniformly converges to 0

−
∫ t

0

√
α

ω
sin(ωt)ḃ(τ ) cos(kx2)dτ

︸ ︷︷ ︸
uniformly converges to 0

+
∫ t

0

√
α

ω
sin(ωt)2kb(τ ) sin(kx2)ax(τ )dτ

︸ ︷︷ ︸
uniformly converges to 0

+
∫ t

0

√
α

ω
sin(ωt)2kb(τ ) sin(kx2)b(τ )

√
αω cos (ωt) cos

(
kx2) x(τ )dτ

−
∫ t

0

√
α

ω
sin(ωt)2kb(τ ) sin(kx2)b(τ )

√
αω sin (ωt) sin

(
kx2

)
x(τ )dτ

From the two surviving terms, the integral
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2kα

∫ t

0
b2(τ ) sin(kx2) cos

(
kx2) x(τ ) sin(ωt) cos (ωt)︸ ︷︷ ︸

⇀ 0

dτ (2.41)

converges to 0, and the integral

−2kα

∫ t

0
b2(τ ) sin2

(
kx2) x(τ ) sin2 (ωt)︸ ︷︷ ︸

⇀ 1
2

dτ

converges to

−kα

∫ t

0
b2(τ ) sin2

(
kx2

)
x(τ )dτ.

A similar analysis of I2 leaves us with the dynamics

x̄(t) = x(0) +
∫ t

0
ax̄(τ )dτ − kα

∫ t

0
b2(τ ) sin2

(
kx̄2) x(τ )dτ

−kα

∫ t

0
b2(τ ) cos2

(
kx̄2

)
x(τ )dτ,

which are the solution of the dynamic system

˙̄x = ax̄ − kαb2(t)
(
sin2

(
kx̄2

) + cos2
(
kx̄2

))
x̄

= (
a − kαb2(t)

)
x̄ .



Chapter 3
Minimization of Lyapunov Functions

In this chapter, we focus on stabilization of the origin of systems of the form

ẋ = f (x, t) + g(x, t)u, (3.1)

where x ∈ R
n, u ∈ R, and the vector fields f (x, t) and g(x, t) are unknown.

Consider a controller in either of the following on-average equivalent forms

u = α
√

ω cos(ωt) − k
√

ω sin(ωt)V (x, t), (3.2)

u = √
αω cos (ωt + kV (x, t)) , (3.3)

where α, k > 0 and the function V (x, t) is soon to be discussed. The average of the
system (3.1), (3.2) is given by

˙̄x = f (x̄, t) − kαg(x̄, t)
(
LgV (x̄, t)

)T
, (3.4)

where we use the standard Lie derivative notation LgV = ∂V
∂x g.

Though our approach permits a time dependence in f (x, t) and g(x, t), to make
the notation less burdensome, in this chapter, we sometimes concentrate on time-
invariant f and g. The form of the system (3.4) motivates the following assumption.

Assumption 1 (strong LgV -stabilizability) There exists a positive definite, radially
unbounded, continuously differentiable function V : Rn → R+ and a constantβ > 0
such that

L f V − β
(
LgV

)2
<0 , ∀x �= 0 . (3.5)

Theorem 3.1 For given V and β, denote by S (V, β) the class of all systems (3.1)
for which Assumption 1 is satisfied. Under the control law (3.2) all the systems in
S (V, β) are 1

ω
-SPUAS for all kα ≥ β.

© The Author(s) 2017
A. Scheinker and M. Krstić, Model-Free Stabilization by Extremum Seeking,
SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-50790-3_3
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It is relevant to explore the special case of linear systems

ẋ = Ax + bu (3.6)

with control
u = α

√
ω cos(ωt) − k

√
ω sin(ωt)xT Px, (3.7)

where P is a positive definite and symmetric matrix. The average of the system (3.6),
(3.7) is given by

˙̄x = (
A − kαbbT P

)
x̄ . (3.8)

Hence, the linear analog of Assumption 1 is that there exists a positive definite and
symmetric control Lyapunov matrix (clm) P and a positive constant β such that

PA + AT P − 2βPbbT P < 0 . (3.9)

Corollary 3.1 For given P and β, denote byΣ(P, β) the class of all pairs (A, b) for
which (3.9) is satisfied. Under the control law (3.7) all the systems (3.6) in Σ(P, β)

are 1
ω
-SPUAS for all kα ≥ β .

3.1 Is Assumption 1 Equivalent to Stabilizability?

It is well known that a system (3.1) with smooth f and g is stabilizable by feedback
continuous at the origin and smooth away from the origin if and only if there exists a
control Lyapunov function (clf) with a suitable “small control property” (scp) [142],
namely, a positive definite radially unbounded function W with the properties that
LgW = 0 ⇒ L f W < 0 and L f W + LgWαc < 0 whenever x �= 0, for some
continuous function αc.

Assumption1 is somewhat stronger than mere stabilizability. For example, for the
system

ẋ = x3 + x2u , (3.10)

which is stabilizable by simple smooth feedback u = −2x , no function V exists that
satisfies (3.5) for some β > 0, and yet W = x2/2 is a clf with an scp.

However, Assumption 1 is satisfied for any stabilizable system whose clf W
satisfies not only the clf condition LgW = 0 ⇒ L f W < 0 but also a strong small
control property (sscp) that for |x | = ε

lim
ε→0

max
L f W (x)>0

L f W (x)

(LgW (x))2
< ∞ . (3.11)

Under condition (3.11), it can be shown, by slightly modifying the proof in [75–80],
that Assumption 1 is satisfied for any β ≥ 1 by a new clf V constructed as
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stabilizable

clf + scp clf + sscp

strongly
- stabilizableL Vg

Fig. 3.1 The existence of a clfwith sscp is equivalent to the systembeing strongly LgV -stabilizable,
which implies that the system is stabilizable, which guarantees existence of a clf with scp [142],
therefore, existence of a clf with sscp implies existence of a clf with scp

V =
∫ W

0
ρ(r)dr , (3.12)

where

ρ(r) = 1 + 2 sup
x :V (x)≤r

L f V + √
(L f V )2 + (LgV )4

(LgV )2
. (3.13)

In simple terms, a system is strongly LgV -stabilizable if it has a clf with a sscp.
Though violated for the example (3.10), condition (3.11) is satisfied for many sys-
tems, including all systems in strict-feedback and strict-feedforward forms. Hence
Assumption 1 is far from being overly restrictive, despite not being equivalent to
stabilizability by continuous control.

Figure3.1 shows relations between stabilizability and Assumption1 by highlight-
ing that both assumptions are equivalent to the existence of a clf, but with different
small control properties.

In the linear case, the inequality (3.9) is simply a Riccati inequality and by no
means appears to be a restrictive condition. However, when (A, b) are unknown, the
designer can only guess a P , rather than solving (3.9) for a given matrix on the right-
hand side of the inequality. As we shall see next, simple guesses will often violate
(3.9). However, as we demonstrate in the rest of the book, good guesses for a clm are
available for some non-trivial classes of systems with unknown model parameters,
including unknown control direction.

3.2 Is Assumption 1 Reasonable for Systems with Unknown
Models?

Given how hard it is to find a clf when f and g are known, how can the designer
have V and β that satisfy (3.5) when f and g are unknown?
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Fig. 3.2 Left Overshoot caused by the MMN-controller takes place whenever cos(10t)
cos(y(t)) > 0. Right As y is always growing the overshoots grow in severity

For instance, for the scalar example ẋ = f (x) + u with f (x) = x3, the clf
V = x2 violates Assumption1, though the clf V = x4 verifies the assumption.
In Sect. 6.5 we present an approach that allows the designer to construct a clf that
verifies Assumption 1 despite not knowing f .

For the second-order linear example with A =
[
1 1
0 0

]
, b =

[
0
1

]
, which is

completely controllable, a simple clm P = I violates (3.9) since PA + AT P −
2βPbbT P =

[
2 1
1 −β

]
cannot be made negative definite for any β > 0. Yet, as we

shall see in later chapters, a more complicated, valid clm P that does not require
exact knowledge of A and b can be constructed.

3.3 Comparison with Nussbaum Type Control

A clever way of dealing with control-direction uncertain systems, which is com-
pletely different from the Lyapunov approach presented above, is the approach of
Mudgett, Morse, and Nussbaum (MMN). Consider the scalar example

ẋ = x + cos(10t)u (3.14)

and compare our static time-varying feedback

u = α
√

ω cos(ωt) − k
√

ω sin(ωt)x2 (3.15)

to the dynamic feedback scheme of Mudgett and Morse [106],

u = y2 cos(y)x, ẏ = x2, (3.16)

which admittedly was designed only for constant input coefficients. We simulate the
two closed loop systems starting from x(0) = 5, with ω = 100, k = 5, α = 5 for
our controller and y(0) = 10 for the controller of Mudgett and Morse. As shown
in Fig. 3.2, the extremum-seeking method’s performance is only slightly changed by

http://dx.doi.org/10.1007/978-3-319-50790-3_6
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the alternating sign of the input coefficient, at most kicking the system α√
ω
(the size of

the perturbing signal) in the wrong direction. The MMN method on the other hand
suffers from overshoot each time the sign change happens as y(t) cannot change
fast enough to maintain cos(10t) cos(y(t)) < 0. Worse yet, the growing size of y(t)
causes growth of the overshoot size as well.



Chapter 4
Control Affine Systems

4.1 Scalar Linear Systems with Unknown Control
Directions

Ourmain result for generaln-th orderLTVsystems is given inTheorem4.1.However,
for clarity, we first present a simpler result for a scalar LTV case in Proposition 4.1,
which is not a corollary to Theorem 4.1 but is proved under less restrictive conditions.

Proposition 4.1 Consider the system

ẋ = a(t)x + b(t)u (4.1)

u = α
√

ω cos(ωt) − k
√

ω sin(ωt)x2, (4.2)

and let there exist Δ > 0, β0 > 0, ā > 0, and T > 0 such that a(t) and b(t) satisfy

1

Δ

∫ s+Δ

s
b2(τ )dτ ≥ β0, ∀ s ≥ T (4.3)

1

Δ

∫ s+Δ

s
|a(τ )|dτ ≤ ā, ∀ s ≥ T . (4.4)

If

kα >
ā

β0
, (4.5)

then the origin of (4.1), (4.2) is 1
ω

-SPUAS with a lower bound on the average decay
rate given by

γr = kαβ0 − ā > 0. (4.6)

Proof System (4.1), (4.2) in closed loop form is

ẋ = a(t)x + b(t)α
√

ω cosωt − b(t)k
√

ω sin(ωt)x2, (4.7)

© The Author(s) 2017
A. Scheinker and M. Krstić, Model-Free Stabilization by Extremum Seeking,
SpringerBriefs in Control, Automation and Robotics,
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which has a average dynamics

˙̄x = [
a(t) − kαb2(t)

]
x̄ . (4.8)

If kα > ā
β0

we have from (4.3) that

kα

∫ s+Δ

s
b2(τ )dτ > Δā. (4.9)

Therefore, for any s ≥ T , N ∈ N the integral

∫ s+NΔ

s

[
a(τ ) − kαb2(τ )

]
dτ

=
N−1∑

j=0

∫ s+( j+1)Δ

s+ jΔ

[
a(τ ) − kαb2(τ )

]
dτ

=
N−1∑

j=0

[∫ s+( j+1)Δ

s+ jΔ
a(τ )dτ −

∫ s+( j+1)Δ

s+ jΔ
kαb2(τ )dτ

]

is, by application of (4.3), (4.4) and (4.5), bounded by

∫ s+NΔ

s

[
a(τ ) − kαb2(τ )

]
dτ ≤

N−1∑

j=0

[Δā − Δkαβ0] =
N−1∑

j=0

(−Δγr ) = −NΔγr < 0, (4.10)

where γr > 0 is defined in (4.6). Hence, for any s ≥ T , N ∈ N we have

|x̄(s + NΔ)| = |x̄(s)|e
∫ s+NΔ

s [a(τ )−kαb2(τ )]dτ < |x̄(s)|e−NΔγr . (4.11)

Because γr > 0 the state x̄(t) converges to zero. To study the convergence rate, for
any t ≥ T we denote N = ⌊

t−T
Δ

⌋
, where �·� is the floor function. We then proceed

to show that |x̄(t)| ≤ M0e−γr t |x̄(0)|, for all t ≥ 0, for some M0 > 0.

4.2 Vector Valued Linear Systems with Unknown Control
Directions

Before we state our results we introduce the notation

〈Z〉Δ(s) � 1

Δ

∫ s+Δ

s
Z(τ )dτ (4.12)
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for Z : R → R, and note that, for any column vector B, B BT ≤ |B|2 I .
In what follows, the general n-dimensional case, is complicated by the possibility

of cross talk between different components of vectors, a difficulty only possible in
higher dimensions.

Theorem 4.1 Consider the system

ẋ = A(t)x + B(t)u, (4.13)

u = α
√

ω cos(ωt) − k
√

ω sin(ωt)|x |2, (4.14)

where x ∈ R
n, A ∈ R

n×n, B ∈ R
n, u ∈ R, and let there exist Δ > 0, b� ≥ β0 > 0,

a� ≥ 0, and T ≥ 0 such that A(t) and B(t) satisfy

1

Δ

∫ s+Δ

s
B(τ )BT (τ )dτ ≥ β0 I, ∀s ≥ T (4.15)

〈|B|2〉Δ(s) ≤ b�, ∀s ≥ 0, (4.16)

〈< |A|2〉Δ(s) ≤ a�, ∀s ≥ 0. (4.17)

The origin of system (4.13), (4.14) is 1
ω

-SPUAS with a lower bound on the average
decay rate given by

R = 1

2Δ

[
ln

(
1

γ

)
− γ2

]
− √

a� > 0, (4.18)

where

γ = 1 − kαΔβ0

1 + 2k2α2Δ2b2
�

> 0 (4.19)

γ2 = 4kαΔ3b�

1 + 2k2α2Δ2b2
�

, (4.20)

under either of the two conditions:

(i) Given kα > 0 and Δ > 0, a� is in the interval (0, ā�), where

ā� =

⎛

⎜⎜
⎝

ln
(

1
γ

)

Δ +
√

Δ2 + γ2 ln
(

1
γ

)

⎞

⎟⎟
⎠

2

. (4.21)

(ii) For a given a�, the window Δ satisfies Δ ∈ (0, Δ̄), where

Δ̄ = 1√
a�

min
{
Δ̄1, Δ̄2

}
, (4.22)
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where

Δ̄1 =
1
2 ln

(
2
√
2b�

2
√
2b�−β0

)

1 +
√

a�

b�

, (4.23)

Δ̄2 =
−1 +

√
1 + √

2 ln
(

2
√
2b�

2
√
2b�−β0

)

√
2

, (4.24)

and kα > 1 is selected such that

kα ∈
(

1

2
√
2Δb�

,
1

2
√
2Δb�

+ M(a�, b�, β0,Δ)

)
, (4.25)

where

M =

√

β2
0 − 8b2

�

[
1 − e

−2Δ
(√

a�+ a�
b�

)]2

8Δb2
�

[
1 − e

−2Δ
(√

a�+ a�
b�

)] > 0. (4.26)

Remark 4.1 Theorem4.1(i) is a robustness result. For any kα > 0, the controller
(4.14) allows some perturbation A(t)x in the system (4.13), as long as the mean of
A(t) is sufficiently small, as quantified by (4.21). Theorem4.1(ii) is a design result.
If the window Δ is small enough, as quantified by (4.22) and known (it is reasonable
to assume that Δ is known because otherwise the a priori bounds (4.15)–(4.17)
would have no meaning for the user), then kα can be chosen in the interval (4.25) to
guarantee stability. In summary, the controller (4.14) cannot dominate an arbitrarily
large A(t), but if B(t) is persistently exciting (PE) overΔ that is sufficiently small in
relation to the size of A(t), then the controller (4.14) can stabilize the system (4.13).
Furthermore the allowable kα is not arbitrarily large but is within an interval. Overly
large kα results in instability despite B(t) being PE because, for a givenΔ, an overly
large kα forces x(t) to evolve within the time-varying null space of BT (t), rather
than forcing x(t) to converge to zero. The proof that follows was inspired by the
approach in [63].

Proof The closed-loop system (4.13), (4.14) is given by

ẋ = A(t)x + B(t)α
√

ω cos(ωt) − B(t)k
√

ω sin(ωt)|x |2, (4.27)

which we decompose as
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ẋ =
n∑

j=1

n∑

i=1

ba,i, j (x)ūa,i, j (t) +
n∑

j=1

bc, j (x)
√

ωûc, j (t, θ) +
n∑

j=1

bs, j (x)
√

ωûs, j (t, θ),

(4.28)
where

ūa,i, j (t) = a ji (t), ûc, j (t, θ) = b j (t) cos(ωt)

ûs, j (t, θ) = b j (t) sin(ωt)

and
ba,i, j (x) = xi e j , bc, j (x) = αe j , bs, j (x) = −k|x |2e j

where e j is the standard j-th basis vector of Rn . The average dynamics are

˙̄x = A(t)x̄ − kαB(t)BT (t)x̄ . (4.29)

Parts of this proof use steps developed in the proof of Theorem 4.3.2 (iii) in the
second half of Sect. 4.8.3 in [63]. With the following Lyapunov function candidate

V (x̄) = |x̄ |2
2

(4.30)

we get
V̇ (x̄) = x̄ T ˙̄x = x̄ T A(t)x̄ − kαx̄ T B(t)BT (t)x̄ . (4.31)

Therefore, for any s ≥ T we have

V (s + Δ) = V (s) − kα

∫ s+Δ

s

∣∣∣x̄ T (τ )B(τ )

∣∣∣
2

dτ

︸ ︷︷ ︸
I1

+
∫ s+Δ

s
x̄ T (τ )A(τ )x̄(τ )dτ

︸ ︷︷ ︸
I2

. (4.32)

We first consider the term I1 and rewrite

x̄ T (τ )B(τ ) = x̄ T (s)B(τ ) + [x̄(τ ) − x̄(s)]T B(τ ). (4.33)

We can apply the inequality (x + y)2 ≥ 1
2 x2 − y2, obtaining

[
x̄ T (τ )B(τ )

]2 ≥ 1

2

[
x̄ T (s)B(τ )

]2 − [
[x̄(τ ) − x̄(s)]T B(τ )

]2
. (4.34)

Thus, with (4.32) and (4.34) we get

http://dx.doi.org/10.1007/978-3-319-50790-3_4
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I1 ≤ −kα
x̄(s)T

2

∫ s+Δ

s
B(τ )BT (τ )dτ x̄(s)

︸ ︷︷ ︸
I11

+ kα

∫ s+Δ

s

[
[x̄(τ ) − x̄(s)]T B(τ )

]2
dτ

︸ ︷︷ ︸
I12

.

(4.35)
With (4.15) and (4.32) it readily follows that

I11 ≤ − x̄(s)T

2
kαΔIβ0 x̄(s) = −kαΔβ0V (x̄). (4.36)

Next we address I12. Using (4.27) we get

x̄(τ ) − x̄(s) =
∫ τ

s

˙̄x(σ )dσ =
∫ τ

s
A(σ )x̄(σ )dσ − kα

∫ τ

s
B(σ )BT (σ )x̄(σ )dσ.

(4.37)
Transposing (4.37) and multiplying by B(τ ) we get

[x̄(τ ) − x̄(s)]T B(τ ) =
∫ τ

s
x̄ T (σ )AT (σ )dσ B(τ ) − kα

∫ τ

s
x̄ T (σ )B(σ )BT (σ )B(τ )dσ. (4.38)

Byusing the representation in (4.38) togetherwith the inequality (x−y)2 ≤ 2x2+2y2

we get

I12 ≤ 2kα

∫ s+Δ

s

[∫ τ

s
x̄ T (σ )AT (σ )dσ B(τ )

]2

dτ

︸ ︷︷ ︸
I13

+ 2kα

∫ s+Δ

s

[
kα

∫ τ

s
x̄ T (σ )B(σ )BT (σ )B(τ )dσ

]2

dτ

︸ ︷︷ ︸
I14

.

Next we consider the term I14, to which we apply the Cauchy-Schwartz inequality
followed by a change in the order of integration and obtain

I14 ≤ 2k3α3Δ2〈|B|2〉2Δ
∫ s+Δ

s

(
x̄ T (σ )B(σ )

)2
dσ. (4.39)

Now we consider the term I13, whose bound is given by

I13 ≤ 2kα

∫ s+Δ

s
|B(τ )|2

[∫ τ

s
|A(σ )| |x(σ )| dσ

]2

dτ

≤ 4kα

∫ s+Δ

s
|B(τ )|2

∫ τ

s
|A(ζ )|2 dζ

∫ τ

s
V (σ )dσdτ (4.40)

and, changing the order of integration, we get



4.2 Vector Valued Linear Systems with Unknown Control Directions 37

I13 ≤ 4kαΔ2〈|B|2〉Δ〈|A|2〉Δ
∫ s+Δ

s
V (σ )dσ. (4.41)

Combining results (4.35), (4.36), and the bounds on I13 and I14 we arrive at

I1 ≤ −kαΔβ0V (x̄) + 2k3α3Δ2b2�

∫ s+Δ

s

[
x̄ T (σ )B(σ )

]2
dσ + 4kαΔ2b�a�

∫ s+Δ

s
V (σ )dσ. (4.42)

Moving the second term on the right hand side of (4.42) to the left, we obtain

I1 ≤ −kαΔβ0V (x̄) + 4kαΔ2b�a�

∫ s+Δ

s V (σ )dσ

1 + 2k2α2Δ2b2
�

. (4.43)

Now we turn our attention to the term I2 in (4.32). Noting that

x̄ T (τ )A(τ )x̄(τ ) ≤ |A(τ )| x̄ T x̄ = 2 |A(τ )| V (τ ), (4.44)

we get

I2 ≤ 2
∫ s+Δ

s
|A(τ )| V (τ )dτ . (4.45)

Combining (4.32), (4.43) and (4.45) we obtain

V (s + Δ) ≤ γ V (s) + 2
∫ s+Δ

s
|A(τ )| V (τ )dτ + 4kαΔ2b�a�

∫ s+Δ

s V (σ )dσ

1 + 2k2α2Δ2b2
�

which can be rewritten as

γ V (s) +
∫ s+Δ

s

(
2 |A(τ )| + 4kαΔ2b�a�

1 + 2k2α2Δ2b2
�

)
V (τ )dτ, (4.46)

where γ is defined in (4.19). Noting that

kαΔβ0

1 + 2k2α2Δ2b2
�

≤ β0

2
√
2b�

(4.47)

and that β0 ≤ b�, we get that γ ∈
(
2
√
2−1

2
√
2

, 1
)
, which implies that γ is positive. We

now apply the Bellman-Gronwall lemma, and get that for all s ≥ T ,

V (s + Δ) ≤ γ e

(
2
∫ s+Δ

s |A(τ )|dτ+ 4kαΔ3b�a�

1+2k2α2Δ2b2�

)

V (s). (4.48)
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We note that the Cauchy-Schwartz inequality yields
∫ s+Δ

s |A(τ )| dτ ≤ Δ
√

a�, so
we get, for all s ≥ T ,

V (s + Δ) ≤ γ e

(
2Δ

√
a�+ 4kαΔ3b�a�

1+2k2α2Δ2b2�

)

V (s). (4.49)

Evidently for convergence we require that

γ e

(
2Δ

√
a�+ 4kαΔ3b�a�

1+2k2α2Δ2b2�

)

=
(
1 − kαΔβ0

1 + 2k2α2Δ2b2
�

)
e

(
2Δ

√
a�+ 4kαΔ3b�a�

1+2k2α2Δ2b2�

)

< 1(4.50)

or equivalently

1 − kαΔβ0

1 + 2k2α2Δ2b2
�

< e
−
(
2Δ

√
a�+ 4kαΔ3b�a�

1+2k2α2Δ2b2�

)

. (4.51)

To prove the theorem under condition (i), we now calculate the requirement on a�

for (4.51) to hold. We take ln of both sides of (4.51) which gives us

a�

4kαΔ3b�

1 + 2k2α2Δ2b2
�

+ 2Δ
√

a� + ln

(
1 − kαΔβ0

1 + 2k2α2Δ2b2
�

)
< 0. (4.52)

We define γ2 as in (4.20) and set the left side of (4.52) equal to zero, obtaining

a�γ2 + 2Δ
√

a� + ln (γ ) = 0 (4.53)

with roots

√
a� = −2Δ ± √

4Δ2 − 4γ2 ln (γ )

2γ2
. (4.54)

Since
√

a� must be positive, we only consider the positive root

√
a� =

−Δ +
√

Δ2 + γ2 ln
(

1
γ

)

γ2
, (4.55)

which is positive because γ2 > 0 and γ ∈
(
2
√
2−1

2
√
2

)
implies that γ2 ln

(
1
γ

)
> 0. So

we have

ā� =

⎛

⎜
⎜
⎝

ln
(

1
γ

)

√
Δ2 + γ2 ln

(
1
γ

)
+ Δ

⎞

⎟
⎟
⎠

2

. (4.56)
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Since the left side of (4.52) is increasing as a function of a� > 0, for all a� ∈ (0, ā�)

we satisfy (4.50). To study the convergence rate of our system we denote (4.50) as

γr = γ e

(
2Δ

√
a�+ 4kαΔ3b�a�

1+2k2α2Δ2b2�

)

< 1. (4.57)

For any t ≥ T we denote N = ⌊
t−T
Δ

⌋
, where �·� is the floor function. Then for t ≥ T

we have

t = T + Δ

(
t − T

Δ
−

⌊
t − T

Δ

⌋)
+ NΔ (4.58)

and from (4.49) we have the bound

V (t) ≤ γ N
r V

(
T + Δ

(
t − T

Δ
−

⌊
t − T

Δ

⌋))
. (4.59)

This bound is obtained by noting from (4.49) and (4.57) that V (s + NΔ) ≤ γ N
r V (s)

and by substituting s = T + Δ
(

t−T
Δ

− ⌊
t−T
Δ

⌋)
. Recalling that

V̇ = x̄ T
[
A(t) − kαB(t)BT (t)

]
x̄ ≤ 2

∣∣A(t) − kαB(t)BT (t)
∣∣ V, (4.60)

for

Δ

(
t − T

Δ
−

⌊
t − T

Δ

⌋)
≤ Δ (4.61)

we get the bound

V

(
T + Δ

(
t − T

Δ
−

⌊
t − T

Δ

⌋))
≤ e2

∫ T +Δ

0 |A(τ )−kαB(τ )BT (τ )|dτ V (0), (4.62)

and therefore
V (t) ≤ e2

∫ T +Δ

0 |A(τ )−kαB(τ )BT (τ )|dτ γ N
r V (0). (4.63)

We now consider the term γ N
r . Since N = t−T −Δ( t−T

Δ
−� t−T

Δ �)
Δ

≥ t−T −Δ
Δ

, and γr ∈
(0, 1) it follows that

γ N
r ≤ γ

t−T −Δ
Δ

r . (4.64)

With (4.63) and (4.64) we obtain

V (t) ≤ e2
∫ T +Δ

0 |A(τ )−kαB(τ )BT (τ )|dτ γ
− T +Δ

Δ
r γ

t
Δ

r V (0). (4.65)

We now define

M0 =
√

e2
∫ T +Δ

0 |A(τ )−kαB(τ )BT (τ )|dτ γ
− T +Δ

Δ
r (4.66)
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and rewrite

γ
t
Δ

r =
(
1

γr

) −t
Δ

= e− ln( 1
γr )
Δ

t . (4.67)

Recalling that γr ∈ (0, 1) we define

R(kα,Δ, β0, b�, a�) =
ln

(
1
γr

)

2Δ
> 0, (4.68)

and write the exponential decay of V as

V (t) ≤ M2
0 e−2Rt V (0). (4.69)

Substituting (4.57) into (4.68), we obtain (4.18). Finally recalling the definition of
V (t) we write the exponential decay of |x̄(t)| as

|x̄(t)| ≤ M0e−Rt |x̄(0)|. (4.70)

Therefore, the origin of system (4.13), (4.14) is 1
ω
-SPUAS, which proves the result

under condition (i). Proceeding to the proof of the theorem under condition (ii), for
any given a� we want to find a range of stabilizing values of kα as a function of Δ.
For a given β0, b�, a� we first consider over what range of Δ ∈ (0,∞) it is possible
to satisfy the convergence condition (4.51). We define the function

F(kα,Δ) = kαΔβ0

1 + 2k2α2Δ2b2
�

+ e
−
(
2Δ

√
a�+ 4kαΔ3b�a�

1+2k2α2Δ2b2�

)

(4.71)

whichmust achieve a value larger than 1 for (4.51) to be satisfied. In order to consider
themaximumpossible value of (4.71)wefirst fixΔ and set the derivative,with respect
to kα, of F(kα,Δ) equal to zero, to find that F(kα,Δ) has its maximum value at

(kα)m = 1√
2Δb�

(4.72)

and the maximum value is

F ((kα)m ,Δ) = β0

2
√
2b�

+ e−(2Δ
√

a�+
√
2Δ2a�). (4.73)

The convergence condition requires this maximum value (4.73) to be greater than
1. We note that F ((kα)m ,Δ) is strictly decreasing as a function of Δ ∈ (0,∞).
Therefore if F ((kα)m ,Δ�) = 1, it follows that F ((kα)m ,Δ) > 1 for all Δ ∈
(0,Δ�). The condition F ((kα)m ,Δ�) = 1 implies that
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2Δ
√

a� + √
2Δ2a� − ln

(
2
√
2b�

2
√
2b� − β0

)

= 0 (4.74)

from which we obtain the positive root

Δ� =
−1 +

√
1 + √

2 ln
(

2
√
2b�

2
√
2b�−β0

)

√
2a�

. (4.75)

Therefore it is possible to stabilize the system when 0 < Δ < Δ� by choosing
kα = (kα)m as in (4.72). By continuity, for any 0 < Δ < Δ� theremust be an interval
containing (kα)m such that all values of kα within that interval satisfy condition
(4.51). For Δ ∈ (0,Δ�) we consider all values of kα that achieve F(kα,Δ) > 1.
Recalling the definition of F(kα,Δ),

F(kα,Δ) = kαΔβ0

1 + 2k2α2Δ2b2
�

+ e
−
(
2Δ

√
a�+ 4kαΔ3b�a�

1+2k2α2Δ2b2�

)

, (4.76)

to remove the kα dependence from the exponential in (4.76) we restrict our attention
to kα > 1, in which case

e
−
(
2Δ

√
a�+ 4kαΔ3b�a�

1+2k2α2Δ2b2�

)

> e
−2Δ

(√
a�+ a�

b�

)

. (4.77)

We satisfy (4.76) by restricting kα to satisfy

kαΔβ0

1 + 2k2α2Δ2b2
�

+ e
−2Δ

(√
a�+ a�

b�

)

> 1. (4.78)

Setting (4.78) equal to 1, we solve for kα as

kα =
β0 ±

√

β2
0 − 8b2

�

[
1 − e

−2Δ
(√

a�+ a�
b�

)]2

4Δb2
�

[
1 − e

−2Δ
(√

a�+ a�
b�

)] . (4.79)

To ensure kα is real valued we impose the condition

β2
0 ≥ 8b2

�

[
1 − e

−2Δ
(√

a�+ a�
b�

)]2

(4.80)

which implies

e
−2Δ

(√
a�+ a�

b�

)

≥ 1 − β0

2
√
2b�

. (4.81)
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Taking ln of each side of (4.81) we obtain the condition

− 2Δ

(√
a� + a�

b�

)
> ln

(
1 − β0

2
√
2b�

)
(4.82)

which implies that the new requirement on the possible values of Δ is

0 < Δ < Δ̄ = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ln

(
1√

1− β0
2
√
2b�

)

(√
a� + a�

b�

) , Δ�

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (4.83)

With (4.75) and (4.83) we obtain (4.22). Returning to (4.79) and recalling the value
(kα)m = 1√

2Δb�

we have the roots

kα = (kα)m

η
, kα = (kα)mη, (4.84)

where

η =
β0 +

√

β2
0 − 8b2

�

[
1 − e

−2Δ
(√

a�+ a�
b�

)]2

2
√
2b�

[
1 − e

−2Δ
(√

a�+ a�
b�

)] . (4.85)

Therefore the system is stable for

kα ∈
(

(kα)m

η
, (kα)mη

)
. (4.86)

We have thus derived sufficient conditions on Δ and kα to guarantee stability of our
system. For each window Δ we have given an interval of stabilizing values of kα,
(4.86). However we now proceed to restrict our conditions on kα in order to give a
more intuitive condition (4.25). We show that the interval (4.86) contains (kα)m by
recalling (4.80) and calculating

η ≥ 1 +

√

β2
0 − 8b2

�

[
1 − e

−2Δ
(√

a�+ a�
b�

)]2

2
√
2b�

[
1 − e

−2Δ
(√

a�+ a�
b�

)] (4.87)

and
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1

η
≤

2
√
2b�

[
1 − e

−2Δ
(√

a�+ a�
b�

)]

β0
< 1. (4.88)

Therefore the interval (4.86) contains the more restrictive, but more illustrative in-
terval (4.25), where we have explicitly written out the value (kα)m = 1√

2Δb�

. From
the presence of Δ in the denominator we see that this interval of stability grows
unbounded in length as the window Δ decreases.

Remark 4.2 We recall from (4.22) that Δ must not exceed Δ̄1. By recalling that

b� ≥ β0, by using the fact that ln
(

2
√
2

2
√
2−1

)
< 1√

2
and by noting that

ln
(

2
√
2b�

2
√
2b�−β0

)

2
(√

a� + a�

b�

) <
ln

(
2
√
2b�

2
√
2b�−b�

)

2
√

a�

=
ln

(
2
√
2

2
√
2−1

)

2
√

a�

<
1

2
√
2a�

, (4.89)

we get that Δ̄1 < 1
2
√
2a�

. Hence, the stabilizing values of kα in the interval (4.25)
must satisfy

kα >
1

2
√
2Δb�

>
1

2
√
2Δ̄1b�

>

√
a�

b�

. (4.90)

The condition (4.90) is very similar to the stability requirement that is established in
the one-dimensional case, in Proposition 4.1. As a� increases, stability is ensured by
increasing kα.

To demonstrate the extremum seeking controller’s ability to handle unknown,
quickly time varying control direction we consider the system

[
ẋ1
ẋ2

]
=

[
2.1 4.9

−7.5 3.6

] [
x1
x2

]
+

[
cos(10t + .3)
sin(10t + .3)

]
u . (4.91)

A physical motivation for this example can be that x = (x1, x2) is the planar coor-
dinate of a mobile robot, with its angular velocity actuator failed and stuck at 10,
and which has to be stabilized to the origin using the forward velocity input u only,

in the presence of a position-dependent perturbation given by

[
2.1 4.9

−7.5 3.6

]
x . The

uncontrolled system is unstable with poles at 2.85 ± 10.7i . We apply ES control

u = α
√

ω cos(ωt) − k
√

ω sin(ωt)
[
x2
1 (t) + x2

2 (t)
]

(4.92)

With ω = 100, k = 4, α = 2 and starting from x1(0) = 1, x2(0) = −1, Fig. 4.1
shows the system’s time response.



44 4 Control Affine Systems

0 1 2 3 4
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Time s

x
t

x1 t Blue Solid x2 t Black Dashed

0 1 2 3 4

100

50

0

50

100

Time s

u

u t

Fig. 4.1 After a transient which, in the average sense, is underdamped, the solution of (4.91)–(4.92)

settles to an O
(

α√
ω

)
neighborhood of the origin

4.3 Linear Systems in Strict-Feedback Form

In this section we consider linear systems in strict-feedback form and design a con-
troller based on the backstepping approach [73, 150].

Theorem 4.2 Consider the plant

ẋi =
i∑

j=1

ai j (t)x j + xi+1, 1 ≤ i ≤ n − 1 (4.93)

ẋn =
n∑

j=1

anj (t)x j + b(t)u, (4.94)

with the control law

u = α
√

ω cos(ωt) − k
√

ω sin(ωt)

⎛

⎝
n−1∑

i=1

⎛

⎝
n−1∏

j=i

c j

⎞

⎠ xi + xn

⎞

⎠

2

, (4.95)

and let β0 > 0 and amax > 0 be known such that for some T > 0 and Δ > 0, for all
s ≥ T ,

1

Δ

∫ s+Δ

s
b2(τ )dτ > β0,

1

Δ

∫ s+Δ

s
|ai j (τ )|dτ ≤ amax , ∀i, j . (4.96)

If c1, c2, . . . , cn are chosen recursively so that

ci > amax +
{

C1i , max
2≤ j≤i−2

C2i j , ci−1

}
, 1 ≤ i ≤ n − 1, (4.97)
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where c0 = 0 and

C1i = (n − 1)2(1 + d̄i,i−1)
2

4d̄i−1,i−1
, C2i j = (n − 1)2d̄2

i j

4d̄ j j
, (4.98)

and

d̄i j = amax + amaxc j + ci−1d̄i−1, j , 1 ≤ i ≤ n, 1 ≤ j ≤ i − 2 (4.99)

d̄i i = ci − ci−1 + amax, 1 ≤ i ≤ n − 1, d̄nn = b2kα − cn−1 + amax, (4.100)

then if

kα >
cn−1 + amax

β0
, (4.101)

the origin of system (4.93)–(4.95) is 1
ω

-SPUAS.

Proof We define

zi = xi +
i−1∑

k=1

⎛

⎝
i−1∏

j=k

c j

⎞

⎠ xk, 1 ≤ i ≤ n (4.102)

and rewrite the controller (4.95) as

u = α
√

ω cos(ωt) − k
√

ω sin(ωt)z2n. (4.103)

We write the averaged system (4.93)–(4.95) as

˙̄z = Dz̄, (4.104)

where

D =

⎛

⎜
⎜⎜⎜⎜⎜
⎜
⎝

−d11 1 0 . . . 0 0
d21 −d22 1 . . . 0 0
d31 d32 −d33 . . . 0 0
...

...
...

...
...

...

dn−1,1 dn−1,2 dn−1,3 . . . −dn−1,n−1 1
dn1 dn2 dn3 . . . dn,n−1 −dnn

⎞

⎟
⎟⎟⎟⎟⎟
⎟
⎠

, (4.105)

with the diagonal terms of (4.105) satisfying

dii = ci − ci−1 − aii , 1 ≤ i ≤ n − 1

dnn = b2kα − cn−1 − ann.
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The off-diagonal terms are defined as

di j = ai j − ai, j+1c j + ci−1di−1, j , 1 ≤ i ≤ n, 1 ≤ j ≤ i − 2.

Considering the Lyapunov function

V = 1

2

n∑

i=1

z̄2i , (4.106)

we get

V̇ = −
n∑

i=1

dii z̄
2
i +

n∑

i=2

(1 + di,i−1)z̄i z̄i−1 +
n∑

i=3

i−2∑

j=1

di j z̄i z̄ j

which we rewrite as

V̇ =
n−1∑

i=1

n∑

j=i+1

[
− dii

n − 1
z̄2i + (1 + d ji )z̄i z̄ j − d j j

n − 1
z̄2j

]
(4.107)

Note that dii > 0 ∀i for ci and kα that satisfy

ci > ci−1 + amax, 1 ≤ i ≤ n − 1, c0 = 0. (4.108)

We now rewrite (4.107) as

V̇ = −2

n − 1

n−1∑

i=1

dii

n∑

j=i+1

[
zi

z j

]T

D̂i j

[
zi

z j

]
, (4.109)

where

D̂i j = 1

2

[
1 (n−1)(1+di j )

dii
(n−1)(1+di j )

dii

d j j

dii

]

. (4.110)

To ensure that V̇ < 0, thematrices D̂i j = Dnn aremade positive definite by choosing

√
dii

di−1,i−1
>

(n − 1)(1 + di,i−1)

2di−1,i−1
, 2 ≤ i ≤ n (4.111)

and
√

dii

d j j
>

(n − 1)di j

2d j j
, 3 ≤ i ≤ n, 2 ≤ j ≤ i − 2, (4.112)



4.3 Linear Systems in Strict-Feedback Form 47

which is accomplished by choosing ci such that

ci = aii + dii > aii + (n − 1)2(1 + di,i−1)
2

4di−1,i−1
, 2 ≤ i ≤ n

ci = aii + dii > aii + (n − 1)2d2
i j

4d j j
, 3 ≤ i ≤ n, 2 ≤ j ≤ i − 2.

Finally, by choosing

kα >
cn−1 + amax

β0
(4.113)

we ensure that
∫ s+Δ

s Dnn(τ )dτ < 0, and proceeding as in the proof of Proposition 4.1,
we ensure that V (s+Δ) < V (s) for all s ≥ T , and as in Theorem 1we guarantee that
the origin is an exponentially stable equilibrium point of system (4.104). Therefore
by Corollary 1, the origin of system (4.93)–(4.95) is 1

ω
-SPUAS.

A closer examination of the control law (4.95) and the clf (4.106), along with
(4.102), shows that the control law is not exactly in the forms (3.2) and (3.7). The

terms z21, . . . , z2n−1 are omitted because LgV = Lg
z2n
2 = zn .

Unknown Force Direction Simulation Example

Consider controlling the position and velocity of an object experiencing destabilizing
forces proportional to its velocity and its distance from the origin, by applying a force
u whose direction b(t) is unknown. The dynamics are governed by Newton’s law,

Ftotal = ma = mẍ = kx x + kv ẋ + b sin(10t)u,

which may be written in strict-feedback form

ẋ1 = x2, ẋ2 = kx

m
x1 + kv

m
x2 + b

m
sin(10t)u. (4.114)

We implement the feedback controller

u = α
√

ω cos(ωt) − k
√

ω sin(ωt) (2x1 + x2)
2 . (4.115)

For the case kx = 1, kv = 2,m = 1, and b = 1, andwith controller parameters k = 4,
α = 2, and ω = 100, the simulation, with initial condition x1(0) = 1, x2(0) = −1,
is shown in Fig. 4.2.

4.4 Nonlinear MIMO Systems with Matched Uncertainties

While we have presented a general approach for nonlinear systems based on an
assumed availability of a clf V that satisfies the strong LgV -stabilizability condition,

http://dx.doi.org/10.1007/978-3-319-50790-3_3
http://dx.doi.org/10.1007/978-3-319-50790-3_3
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Fig. 4.2 Although the sign of the applied force is unknown to the controller the position x1 and

velocity x2 of system (4.114)–(4.115) quickly settle to O
(

1√
ω

)
neighborhoods of the origin

in this section we turn our attention to a specific construction of such a clf for a
limited but relevant class of systems that illustrates how to overcome the challenge
of dealing with unknown nonlinearities.

In this section we study multi-input systems with the same number of controls
and states. Admittedly, this is a class of “glorified first-order systems.” However,
we use this class to illustrate clearly how to deal with nonlinearities that are not
only unknown but also have arbitrary growth (super-linear, exponential, or even
faster than exponential). For systems with more states than controls, such as nth
order systems in the strict-feedback form with one control and with only bounds
on nonlinearities known, clfs satisfying Assumption 1 can be constructed using the
approach introduced in [96, see Theorem 3.1, with (26) and (27) being the key steps],
which we have actually used for linear strict-feedback systems in Sect. 4.3.

We consider only time-invariant nonlinear systems in this section. Time-varying
systems, albeit linear, have already been dealt with in Sect. 4.2. The nonlinear systems
studied in this section can be approached similarly but, for the sake of clarity, we
choose not to pursue time-varying extensions here. Since the systems we consider
here have the same number of controls and states, the input matrix is square. Given
that the input matrix is not time-varying and thus persistency of excitation cannot be
exploited in stabilization, we make an assumption that the input matrix multiplied by
its transpose is positive definite for all x , which means that the system is completely
controllable, though its control directions are unknown. Furthermore, the non-zero
assumption on the input matrix G(x) is motivated by the possible finite escape time
of general nonlinear systems.

Theorem 4.3 Consider the system

ẋ = f (x) + G(x)u, (4.116)

where u, x ∈ R
n, and f : Rn → R

n, G : Rn → R
n×n and let there exist β0 > 0,

and η ∈ K∞ such that f (x) and G(x) satisfy the following bounds for all x ∈ R
n:

http://dx.doi.org/10.1007/978-3-319-50790-3_1
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G(x)GT (x) ≥ β0 I, (4.117)

| f (x)| ≤ η(|x |). (4.118)

If k and α are chosen such that

kα >
1

β0
(4.119)

then the controller

ui = α

√
ωω

′
i cos(ωω

′
i t) − k

√
ωω

′
i sin(ωω

′
i t)V (x), (4.120)

where

V (x) =
∫ |x |

0
η(r)dr (4.121)

and the frequencies ω
′
i are distinct, renders the origin of (4.116), (4.120) 1

ω
-SPUAS.

Proof A common period for all of the controller components is given by T =
2πLCM

{
1
ω

′
i

}
. Therefore

∫ T

0
cos(ωω

′
i t) cos(ωω

′
j t)dt =

∫ T

0
sin(ωω

′
i t) sin(ωω

′
j t)dt

=
∫ T

0
sin(ωω

′
i t) cos(ωω

′
j t)dt = 0, ∀ i = j. (4.122)

Consider the closed loop system

ẋ = f (x) + √
ω

n∑

i=1

[
αG(x)ei

√
ω

′
i cos(ω

′
i θ) − kG(x)ei V (x)

√
ω

′
i sin(ω

′
i θ)

]
, θ = ωt.

(4.123)

System (4.123) is in a form which we can average. Considering property (4.122),
terms of different frequency combinations integrate to zero. Therefore the terms we
are left with are

[G(x̄)ei , G(x̄)ei V (x̄)] = G(x̄)ei e
T
i GT (x̄)

(
∂V (x̄)

∂ x̄

)T

. (4.124)

Combining all terms of the form (4.124) we get

n∑

i=1

Gei e
T
i GT

(
∂V

∂ x̄

)T

= GGT

(
∂V

∂ x̄

)T

, (4.125)
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resulting in the averaged system

˙̄x = f (x̄) − kα

2
G(x̄)GT (x̄)η(|x̄ |) x̄

|x̄ | , (4.126)

where we have used the fact that

∂V (x̄)

∂ x̄
= η(|x̄ |) x̄ T

|x̄ | . (4.127)

With another Lyapunov function candidate

W (x̄) = |x̄ |2
2

, (4.128)

we get

Ẇ (x̄) = x̄ T ˙̄x = x̄ T f (x̄) − kα
η(|x̄ |)
|x̄ | x̄ T G(x̄)GT (x̄)x̄ . (4.129)

From (6.23) we have ∣∣x̄ T f
∣∣ ≤ |x̄ | | f | ≤ |x̄ |η(|x̄ |) (4.130)

and from (6.22) we have that

kα
η(|x̄ |)
|x̄ | x̄ T G(x̄)GT (x̄)x̄ ≥ kα

η(|x̄ |)
|x̄ | β0|x̄ |2. (4.131)

Plugging (4.130) and (4.131) into the equation for Ẇ (x̄) we get

Ẇ (x̄) ≤ |x̄ |η(|x̄ |) − kαβ0|x̄ |η(|x̄ |) = (1 − kαβ0)|x̄ |η(|x̄ |), (4.132)

therefore by our choice of kα > 1
β0
, we guarantee that (4.132) is negative definite

and therefore the averaged system (4.126) is globally uniformly asymptotically stable
and therefore system (4.116) is 1

ω
-SPUAS.

Remark 4.3 Condition (6.22) can be relaxed to a functional lower bound
G(x)GT (x) ≥ β(|x |)I for someβ ∈ K . Then, for the average system, theLyapunov
inequality (4.132) is replaced by Ẇ (x̄) ≤ (1−kαβ(|x̄ |))|x̄ |η(|x̄ |), which guarantees
that, for kα > 1/β(∞), the averaged system is globally ultimately bounded (GUUB)

with an ultimate bound β−1

(
1

kα

)
. Though Theorem 2.2 only allows us to relate

global asymptotic stability (GUAS) of the averaged system with 1
ω
-SPUAS stabil-

ity of the actual system, a similar relationship can be established between GUUB
and what we refer to as 1

ω
-Semiglobal Practical Uniform Ultimate Boundedness ( 1

ω
-

SPUUB) of a system. The 1
ω
-SPUUB property and its applications in tracking for

unknown systems are presented in later chapters.

http://dx.doi.org/10.1007/978-3-319-50790-3_6
http://dx.doi.org/10.1007/978-3-319-50790-3_6
http://dx.doi.org/10.1007/978-3-319-50790-3_6
http://dx.doi.org/10.1007/978-3-319-50790-3_2
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Fig. 4.3 As system (4.133) settles to within a O
(

1√
ω

)
neighborhood of the origin. The control

effort, initially large, settles to a steady state magnitude of α
√

ω

We demonstrate the controller’s ability to stabilize nonlinear systems with the
following example:

ẋ = f (x) +
(
1 − 1

2
sin(x)

)
u , f (x) = x2 . (4.133)

Assuming that we know that the nonlinearity f (x) is polynomial, we know that f (x)

satisfies a bound of the form

| f (x)| < γ |x |e|x | . (4.134)

For f (x) = x2,γ = 1.Assumingγ to be known, andnoting that
∫

rer dr = (r−1)er ,
we choose the controller

u = α
√

ω cos(ωt) − k
√

ω sin(ωt)
[
1 + (|x | − 1)e|x |] . (4.135)

With k = 7.5, α = 0.25 and ω = 70, simulation results starting from x(0) = 2 are
shown in Fig. 4.3.

4.5 Trajectory Tracking

We consider tracking for a trajectory r(t) satisfying the bounds |r(s)| < r� and
|ṙ(s)| < ρ� ∀ s ≥ T , where we define e(t) = x(t) − r(t), choose any δ > 0 and
perform our analysis for |e| ≥ δ.

Lemma 4.1 Consider the system

ẋ = a(t)x + b(t)u, (4.136)
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and let there exist � > 0, β0 > 0, a� > 0, and T > 0 such that ∀ s ≥ T , a(t) and
b(t) satisfy

1

�
∫ s+�

s
b2(τ )dτ ≥ β0, |a(s)| < a�. (4.137)

Given the error system

ė = a(t)e + b(t)u + a(t)r − ṙ (4.138)

u = α
√

ω cos(ωt) − k
√

ω sin(ωt)|e|2, (4.139)

if

kα >
a�(r� + δ) + ρ�

δβ0
(4.140)

then the origin of system (4.138), (4.139) is
(
1
ω
, δ

)
-SPUUB, with average convergence

rate

γr = 2

[
kαβ0 − a� − a�r� + ρ�

δ

]
> 0. (4.141)

To study convergence, we consider the Lyapunov function V (t) = ē2(t)/2 and
proceed in a similar manner to the proof of Theorem 4.1 to get the convergence rate.
Therefore the averaged system is exponentially converging to within a δ-ball of the
origin. Therefore the origin of system (4.138), (4.139) is

(
1
ω
, δ

)
-SPUUB.

The results also extend to time-varying systems, consider the system

ẋ = A(t)x + B(t)u, (4.142)

where x ∈ R
n, A ∈ R

n×n, B ∈ R
n, u ∈ R, and let there exist Δ > 0, b� ≥ β0 > 0,

a� ≥ 0, and T ≥ 0 such that A(t) and B(t) satisfy

1

Δ

∫ s+Δ

s
B(τ )BT (τ )dτ ≥ β0 I, ∀s ≥ T (4.143)

〈|B|2〉Δ(s) ≤ b�, ∀s ≥ 0, 〈|A|2〉Δ(s) ≤ a�, ∀s ≥ 0. (4.144)

We consider the error system

ė = A(t)e + B(t)u + A(t)r − ṙ , (4.145)

u = α
√

ω cos(ωt) − k
√

ω sin(ωt)|e|2, (4.146)

and proceed in a manner analogous to the approach in the proof of Theorem 4.1, see
[128] for details. The tracking results are also easily extended to nonlinear systems.

Theorem 4.4 Consider the nonlinear system
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ẋ = f (x, t) + G(x, t)u,

where f, u : Rn × R → R
n, G : Rn×n × R → R

n×n, with f and G each having
separable dependence on x and t. Let there exist η ∈ K∞ and β0 > 0 such that f
and G satisfy the following bounds for all t ∈ R

+, x ∈ R
n:

G(x, τ )GT (x, τ ) ≥ β0 I, | f (x, t)| ≤ η(|x |). (4.147)

Consider the error system

ė = f (e, t) + G(e, t)u − ṙ , (4.148)

under the influence of the controller

ui = α

√
ωω

′
i cos(ωω

′
i t) − k

√
ωω

′
i sin(ωω

′
i t)

∫ |e|

0
η(r)dr, (4.149)

where the frequencies ω
′
i are rational and distinct. If kα is chosen such that

kα >
1

β0
+ ρ�

β0η(δ)
(4.150)

then origin of (4.148), (4.149) is
(
1
ω
, δ

)
-SPUUB.

To demonstrate the extremum seeking controller’s ability to handle unknown,
quickly time varying control direction we consider the system
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Fig. 4.4 As the system trajectory approaches r(t) the control effort quickly settles to an almost
periodic waveform with amplitude modulation which is due to the fact that the disturbing term Ax
has magnitude which depends on position
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[
ẋ1
ẋ2

]
=

[
1.1 1.2

−1.1 1

] [
x1
x2

]
+

[
cos(20t + .3)
sin(20t + .3)

]
u, (4.151)

which we want to follow the trajectory

r(t) = [cos (t/4) , sin (t/2)]T . (4.152)

The uncontrolled system is unstable with poles at 1.05±1.15i . We apply ES control

u = α
√

ω cos(ωt) − k
√

ω sin(ωt)|e(t)|2, (4.153)

with parametersω = 400, k = 10, and α = 3 and start from x1(0) = 1, x2(0) = −1.
Figure4.4 shows the system’s trajectory over 26 seconds. Following an initial tran-
sient the control effort settles to a periodic slightly amplitude modulated waveform
whose magnitude depends on |e|, also shown in Fig. 4.4.



Chapter 5
Non-C2 ES

5.1 Introduction

One of themain limitations faced by all extremum seeking schemes is the presence of
a persistent controller-induced perturbation term which prevents even stable systems
from settling at their equilibrium points. In this chapter, by introducing a non-smooth
ES scheme we are able to reduce the introduced perturbations as the system settles
towards equilibrium.

In extending the results of Moreau and Aeyels [105], in Theorem 5.1 we consider
systems of the form:

ẋ = f (t, x), (5.1)

ẋ = f ε(t, x), (5.2)

where the original system f ε(t, x) : R × R
n → R, for a fixed time s is only

assumed to satisfy f ε(s, x) ∈ C2 (Rn \ B), for some subset B ⊂ R
n , while the

averaged system satisfies f (s, x) ∈ C2 (Rn). We first establish a practical stability
result relating the stability of the averaged system (5.1) to that of system (5.2). Our
stability result is based on the two systems satisfying a closeness of trajectories
property, that is if for any given distance Δ and time length T there exists some ε̂

such that for all ε ∈ (0, ε̂) whenever the trajectory of system (5.2) is outside of the
set B, it is withinΔ of the trajectory of its averaged system (5.1). We show that if the
two systems (5.1) and (5.2) satisfy such a closeness property then the convergence
of (5.1) to the set B implies the practical convergence of (5.2) to the same set.

Having extended practical stability results for non-differentiable systems we con-
sider, for 1 �= r ∈ R, systems and controllers of the form:

ẋ = A(t)x + B(t)u, (5.3)

u = α
√

ω cos(ωt)|x |r − k

1 − r

√
ω sin(ωt)|x |2−r , (5.4)

© The Author(s) 2017
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which give us the exact same C2 averaged systems as already discussed:

˙̄x = A(t)x̄ − kαB(t)BT (t)x̄, x̄(t0) = x(t0), (5.5)

for which we have proven practical stability results.

Remark 5.1 For any choice of 1 �= r ∈ R, a controller of the form (5.4) results
in the same averaged closed loop system (5.5). This is interesting considering that
by choosing different values of r we get vastly different controllers, two of which
(r = 0 and r = 2) are smooth onRn , with all others non-smooth and even undefined
at the origin. In general, we would like to choose r ∈ (0, 1) so that control effort is
zero at the origin. In particular, we choose r = 1

2 because through simulation it has

shown the greatest balance in themagnitude of the perturbing termα
√

ω cos(ωt)|x | 1
2 ,

the control gain term 2k
√

ω sin(ωt)|x | 3
2 , and their decay as |x | approaches zero.

Therefore throughout the simulations we have chosen r = 1
2 and used the controller

u = α
√

ω cos(ωt)|x | 1
2 − 2k

√
ω sin(ωt)|x | 3

2 . (5.6)

Recognizing that these new controllers, (5.4), for almost always all values of r ,
are not differentiable at the origin, we are motivated to extend the averaging results
to non-C2 functions in order to prove a closeness of trajectories property, with which
we establish the extended practical stability results of Moreau and Aeyels [105].

In what follows we consider systems of the form

ẋ =
m1∑

i=1

bi (x)ūi (t) +
m2∑

i=1

b̂i (x)
1√
ε

ûi (t, θ), (5.7)

over compact sets D ⊂ R
n , such that bi (x) ∈ C2 (Rn) for all i ∈ {1, . . . , m1} and

b̂i (x) ∈ C2(D) for all i ∈ {1, . . . , m2}. We show that for x(t), x̄(t) ∈ D we can
relate to (5.7) the averaged system

˙̄x =
∑

i

bi (x̄)ūi (t) + 1

T

∑

i< j

[
b̂i , b̂ j

]
(x̄)νi, j (t), x̄(t0) = x(t0), (5.8)

where

νi, j (t) =
∫ T

0

∫ θ

0
ûi (t, τ )û j (t, θ)dτdθ

[
b̂i , b̂ j

]
= ∂ b̂ j

∂ x̄
b̂i − ∂ b̂i

∂ x̄
b̂ j ,
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and the function
[
b̂i , b̂ j

]
are in C2 (Rn). We show, as above, that the two systems

satisfy the property that for any T̂ > 0 and δ > 0, there exists ε� such that for all

ε ∈ (0, ε�), ∀t ∈
[
t0, t0 + T̂

]
for all x(t) ∈ D,

|x(t) − x̄(t)| < δ. (5.9)

5.2 Averaging for Systems Not Differentiable at a Point

We start with a definition relating the trajectory of one system with another on a
given set. The motivation for this definition is in order to perform analysis on a
system which is only well defined on a subset of Rn . We want to prove stability
results about the original system by relating it to an averaged system, which is well
defined on all of Rn .

Definition 5.1 Δ-Convergence of Trajectories on a set B (Δ-CT on B): For anyΔ > 0
and any set B ⊂ R

n , the trajectoryψ(t, t0, x0) of systems (2.6) isΔ-CT relative to the
trajectoryψε(t, t0, x0) of system (2.10) on B if for any T̂ > 0 there exists ε� such that

for all ε ∈ (0, ε�), for all t ∈
[
t0, t0 + T̂

]
for whichψε(t, t0, x0) ∈ B,

|ψ(t, t0, x0) − ψε(t, t0, x0)| < Δ. (5.10)

Theorem 5.1 Consider the systems

ẋ = f (t, x), (5.11)

ẋ = f ε(t, x), (5.12)

whose trajectories, passing through the common point x0 at time t0 are denoted
respectively as ψ(t, t0, x0) and ψε(t, t0, x0). Consider functions f and f ε such that
for every fixed s ∈ R, f (s, x) ∈ C2 (Rn) and f ε(s, x) ∈ C2 (Rn \ {0}). If for some
δ > 0, ψ(t) is Δ-CT relative to ψε(t) on D = R

n \ B(0, δ) = {x ∈ R
n : |x | ≥ δ},

then if the origin is a GUAS equilibrium point of system (5.11) it is also a (ε, δ)-
SPUUB equilibrium point of system (5.12).

We now introduce a Lemma which we will use in the analysis that follows, which
shows that if for a given system a point is (ε, δ)-SPUUB for all δ > 0 then it is in
fact ε-SPUAS.

Lemma 5.1 If the origin of the system

ẋ = f ε(x, t), (5.13)

is (ε, δ)-SPUUB for all δ > 0, then the origin is ε-SPUAS.

http://dx.doi.org/10.1007/978-3-319-50790-3_2
http://dx.doi.org/10.1007/978-3-319-50790-3_2
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Proof If the origin of (5.13) is (ε, δ)-SPUUB for all δ > 0, then for every c2 ∈
(0,∞), for any δ ∈ (0, c2), there exists ε̂ such that the conditions of ε-SPUAS
stability hold for all ε ∈ (0, ε̂).

Corollary 5.1 Consider the systems

ẋ = f (t, x), (5.14)

ẋ = f ε(t, x), (5.15)

whose trajectories, passing through the common point x0 at time t0 are denoted
respectively as ψ(t, t0, x0) and ψε(t, t0, x0). Consider functions f and f ε such that
for every fixed s ∈ R, f (s, x) ∈ C2 (Rn) and f ε(s, x) ∈ C2 (Rn \ {0}). If for all
δ > 0, ψ(t) is Δ-CT relative to ψε(t) on D = R

n \ B(0, δ) = {x ∈ R
n : |x | ≥ δ},

then if the origin is a GUAS equilibrium point of system (5.14) it is also a ε-SPUAS
equilibrium point of system (5.15).

Proof Because the origin of (5.15) is (ε, δ)-SPUUB for all δ > 0, by Lemma 5.1 the
origin of (5.15) is ε-SPUAS.

Remark 5.2 Corollary 5.1 extends to a non-differentiable point the results ofMoreau
and Aeyels, [105, Theorem 1] which state that if p is a GUAS equilibrium point of
(5.15) then p is also an ε-SPUAS equilibrium point of (5.14).

We have established a stability relationship between two general systems (5.11)
and (5.12), we now apply these results to a more specific class of systems.

We start by establishing the convergent trajectories property between a possibly
not well defined system and its averaged version.

Theorem 5.2 Given functions bi (x) ∈ C2 (Rn) and b̂i (x) ∈ C2 (Rn \ {0}), consider
for x �= 0 the system

ẋ =
m1∑

i=1

bi (x)ūi (t) +
m2∑

i=1

b̂i (x)
1√
ε

ûi (t, θ), (5.16)

where each ûi (t, θ) is T -periodic in θ = t
ε

and has zero average,
∫ τ+T
τ

ûi (t, θ)dθ = 0. Consider also the averaged system

˙̄x =
∑

i

bi (x̄)ūi (t) + 1

T

∑

i< j

[
b̂i , b̂ j

]
(x̄)νi, j (t), x̄(t0) = x(t0), (5.17)

such that the average system is smooth, satisfying
[
b̂i , b̂ j

]
(x̄) ∈ C2 (Rn). For any

R > r > 0 and Δ > 0, the trajectory of system (5.17) is Δ-CT relative to the trajec-
tory of system (5.16) on the closed annulus ann (0; r, R) = {x ∈ R

n : r ≤ |x | ≤ R}.
Having established the convergent trajectories property we now present our main

result regarding averaged systems.
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Theorem 5.3 Given functions bi (x) ∈ C2 (Rn) and b̂i (x) ∈ C2 (Rn \ {0}), consider
for x �= 0 the system

ẋ =
m1∑

i=1

bi (x)ūi (t) + 1√
ε

m2∑

i=1

b̂i (x)ûi (t, θ), (5.18)

where each ūi (t) and ûi (t, θ) are bounded as functions of t and ûi (t, θ) is T -periodic
in θ = t

ε
and has zero average,

∫ τ+T
τ

ûi (t, θ)dθ = 0. Consider also the averaged
system

˙̄x =
∑

i

bi (x̄)ūi (t) + 1

T

∑

i< j

[
b̂i , b̂ j

]
(x̄)νi, j (t), x̄(t0) = x(t0). (5.19)

Assume that
[
b̂i , b̂ j

]
(x̄) ∈ C2 (Rn), namely, assume that the average system (5.19)

is smooth despite b̂i (x) being possibly non-differentiable at the origin. If the origin
of (5.19) is GUAS then the origin of system (5.18) is ε-SPUAS.

Proof By Theorem 5.2, we have that for any R, δ > 0 the trajectory of
system (5.19) is Δ-CT relative to the trajectory of (5.18) on B̄R+δ(0) \ Bδ(0) =
{x ∈ R

n : δ ≤ |x | ≤ R + δ}. Therefore, for the given R and δ, for any T̂ > 0, there
exists ε� such that for all ε ∈ (0, ε�) and any x(0) ∈ B̄R(0) \ Bδ(0),

max
t∈

[
0,T̂

] |x(t)| = max
t∈

[
0,T̂

] |x(t) − x̄(t) + x̄(t)| ≤ max
t∈

[
0,T̂

] |x(t) − x̄(t)| + max
t∈

[
0,T̂

] |x̄(t)| ≤ δ + R,

where the last inequality holds due to the origin of (5.19) being GUAS. Therefore
trajectories x(t) starting in B̄R(0) \ Bδ(0) can only leave the set B̄R+δ(0) \ Bδ(0)
through the inner boundary |x | = δ. Because the values R and δ may be chosen
arbitrarily large and small respectively, by Theorem 5.1 the origin of system (5.18)
is (ε, δ)-SPUUB and by Corollary 5.1 it is in fact ε-SPUAS.

5.3 Non-C2 Control for Time-Varying Systems

Proposition 5.1 For 1 �= r ∈ R, consider the system

ẋ = a(t)x + b(t)u (5.20)

u = α
√

ω cos(ωt)|x |r − k
√

ω

1 − r
sin(ωt)|x |2−r , (5.21)
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and let there exist Δ > 0, β0 > 0, a� > 0, and T > 0 such that a(t) and b(t) satisfy

1

Δ

∫ s+Δ

s
b2(τ )dτ ≥ β0,∀s ≥ T (5.22)

〈|a|〉Δ(s) ≤ a�,∀s ≥ T . (5.23)

If

kα >
a�

β0
, (5.24)

then the origin of (5.20), (5.21) is 1
ω

-SPUAS with a lower bound on the average decay
rate given by:

γr = kαβ0 − a� > 0. (5.25)

Proof System (5.20), (5.21) in closed loop form is

ẋ = a(t)x + b(t)α
√

ω cosωt |x |r − b(t)k
√

ω

1 − r
sin(ωt)|x |2−r , (5.26)

which is C2 on Rn \ {0} and has an average

˙̄x = [
a(t) − kαb2(t)

]
x̄, (5.27)

which in Proposition (4.1) was shown to exponentially converge to the origin.
Therefore, by Theorem 5.3 we conclude that the origin of (5.20), (5.21) is 1

ω
-SPUAS.

The decay rate is calculated as in [126].
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Fig. 5.1 As the trajectories approach the origin the α
√

ω cos(ωt) term of ũ(t) persists which shows
up in both the persistent control effort and the trajectory x̃(t), which for |x̃(t)|  1 settles to a
steady state of x̃(t) ≈ α√

ω
sin(ωt)

http://dx.doi.org/10.1007/978-3-319-50790-3_4
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5.4 Comparison with C2 Controllers

We simulate and compare the performance of the system

ẋ = sin(10t)x + cos(10t)u, x(0) = 1 (5.28)

under the influence of the controllers

u = α
√

ω cos(ωt)|x | 12 − 2k
√

ω sin(ωt)|x | 32 , ũ = α
√

ω cos(ωt) − k
√

ω sin(ωt)|x |2,
k = 10, α = 0.5, ω = 100.

We denote the trajectories of (5.28) with controllers u(t) and ũ(t) as x(t) and x̃(t)
respectively, where we have chosen r = 1

2 and r = 0 respectively. The first 3 s of
the simulation results are shown in Fig. 5.1. In Fig. 5.2 the last second of simulation
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Fig. 5.2 As the trajectory of system (5.28) with controller u approaches the origin the control
effort also approaches zero. Once x(t) reaches the origin, the system and control effort remain at
that equilibrium point
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Fig. 5.3 Near the origin the steady state oscillations of xi (t) due to the controller’s input are greatly
reduced relative to those of x̃i (t) which, for |x̃ |  1 reach a steady state proportional to α√

ω
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Fig. 5.4 In the 2-dimensional case, even with the non-smooth controllers, the system may never
settle to equilibrium at the origin, this would only be achieved if x1(t) and x2(t) reached the origin
simultaneously

1.5 1.0 0.5 0.0 0.5 1.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

x1

x 2

x1, x2 Blue Solid x1,x2 Black Dashed

0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

x1

x 2
x1, x2 Blue Solid x1,x2 Black Dashed

Fig. 5.5 This figure shows the parametric view of the simulation of system (4.91) under both
control laws. A zoom in on the last half second of the simulation clearly shows the benefit of the
new controller
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Fig. 5.6 The initial effort of controller u is greater than that of ũ due to the 2k term,which dominates
for large values of |x |. The advantages of controller u are seen in the great reduction of control
effort once the system has reached a neighborhood of the origin

http://dx.doi.org/10.1007/978-3-319-50790-3_4
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is shown where both the state and control effort for system (5.28) with controller u
have converged to zero.

To compare the C2 and non-C2 controllers’ performances for a 2-dimensional
system we recall the system (4.91):

[
ẋ1
ẋ2

]
=

[
2.1 4.9

−7.5 3.6

] [
x1
x2

]
+

[
cos(10t + .3)
sin(10t + .3)

]
u.

A physical motivation for this example can be that x = (x1, x2) is the planar coor-
dinate of a mobile robot, with its angular velocity actuator failed and stuck at 10,
and which has to be stabilized to the origin using the forward velocity input u only,

in the presence of a position-dependent perturbation given by

[
2.1 4.9

−7.5 3.6

]
x . The

uncontrolled system is unstable with poles at 2.85 ± 10.7i . Noting that β0 = 1 and
a� = 8.325, we apply ES controllers

u = α
√

ω cos(ωt)|x | 12 − 2k
√

ω sin(ωt)|x | 32 , ũ = α
√

ω cos(ωt) − k
√

ω sin(ωt)|x |2

with ω = 150, k = 4, α = 2.5, and start from x1(0) = 1, x2(0) = −1. We denote
the trajectories of system (4.91) with controllers u and ũ as x = (x1, x2)T and
x̃ = (x̃1, x̃2)T respectively, where we have chosen r = 1

2 and r = 0 respectively.
Figure5.3 compares the systems’ behavior over 3 s. Figures5.4 and 5.5 zoom in on
the last second of simulation time. Figure5.6 compares the systems’ control efforts.

http://dx.doi.org/10.1007/978-3-319-50790-3_4
http://dx.doi.org/10.1007/978-3-319-50790-3_4


Chapter 6
Bounded ES

6.1 Introduction

Because ES is designed to performwith unknown systems, one of themost promising
applications is for the control of autonomous vehicles, and has been demonstrated
as a powerful tool for steering vehicles toward a source in GPS-denied environments
[22, 23, 157].

Despite the mentioned theoretical advancements and applications, one limitation
which remains in all ES schemes is the uncertainty of convergence rate and control
effort. This is due to the fact that an unknown function, whether it is the unknown
output of a system which is being minimized, or a Lyapunov candidate for a system
which is being stabilized, enters the control scheme in an affine way.

In this chapter we present a new ES scheme, in which the uncertainty is confined
to the argument of a sine/cosine function, resulting in guaranteed bounds on update
rate in minimum seeking and control effort in stabilization.

The controller that we develop, in the case of minimization of a measurable, but
unknown output function J (θ) of a dynamic system, is given by

θ̇i = ui = √
αiωi cos (ωi t + ki J ) . (6.1)

In this scheme, a high frequency (ωi ) dither is applied to parameter θi , whose mag-
nitude is proportional to (after averaging) αi , ki can be thought of as the controller
gain. These parameters are discussed in more detail below.

In the case of stabilization of a system of the form

ẋ = f (x, t) + g(x, t)u, (6.2)

the controller’s components are chosen as

ui = √
αiωi cos (ωi t + ki V (x)) , (6.3)

© The Author(s) 2017
A. Scheinker and M. Krstić, Model-Free Stabilization by Extremum Seeking,
SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-50790-3_6
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where V is a Lyapunov function candidate. In these two cases, the closed loop
systems, on average, satisfy the dynamics:

˙̄θi = −kα

2

∂ J

∂θ̄i
, (6.4)

˙̄x = f (x̄, t) − kα

2
g(x̄, t)gT (x̄, t)

∂V (x̄)

∂ x̄
. (6.5)

Note that both the update rate (6.1) and control effort (6.3) have bounds of the form√
αω, independent of J (θ) or V (x).
Next, we consider the particular case of 2D vehicle control, in which an unknown,

but measurable function J (x, y), whose value depends on vehicle position (x, y) is
to be minimized or maximized, in a GPS denied environment. The controller that we
develop towards this goal is given by:

ẋ = √
αω cos (ωt + k J (x, y) + θ0) (6.6)

ẏ = √
αω sin (ωt + k J (x, y) + θ0) (6.7)

where θ0 is an arbitrary initial vehicle orientation. The resulting closed loop system,
on average, has dynamics

[ẋ, ẏ]T = −kα

2
(∇ J )T , (6.8)

and performs gradient descent towards a local minimum of J (x, y). Note that in
this case, the vehicle velocity v = √

ẋ2 + ẏ2 = √
αω, is constant, and the vehicle

performs smooth, unicycle-type motion in circular trajectories.

6.2 Immunity to Measurement Noise

An important noise-rejecting feature of the controllers (6.1) and (6.3) is buried in
the partial derivatives ∂bi (x̄,t)

∂ x̄ which take place during the averaging analysis. It turns
out that these controllers are inherently robust to measurement noise, a fact which
we illustrate below.

Consider the problem of minimizing the unknown functionψ(x, t) based only on
a noise corrupted measurement, in a system of the form,

ẋ = b(t)u(y), y = ψ̂(x, t) = ψ(x, t) + n(t), (6.9)

where b(t) is an unknown, time-varying control direction. Consider a controller of
the form,

u = h1,ω(t) + h2,ω(t)ψ̂(x, t), (6.10)
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such that the functions hi,ω(t) satisfy the assumptions of Theorem 2.3, with λ1,2 =
λ2,1 = 1. In this case, relative to (2.29), b1(y, t) = b(t) and b2(y, t) = b(t)y, and
the average system dynamics are

˙̄x = −b2
∂b1
∂ x̄

− b1
∂b2
∂ x̄

,

= −b2(t)ψ̂(x̄, t)
∂

∂ x̄
(1) − b2(t)

∂

∂ x̄
(ψ(x̄, t) + n(t)) = −b2(t)

∂ψ(x̄, t)

∂ x̄
. (6.11)

Therefore, when b(t) is not identically zero, the system, on average, converges to-
wards a minimum of the actual function ψ(x, t) despite having access only to its
noise-corrupted measurement ψ̂(x, t).

Remark 6.1 In practice, if there is any large noise in the system, n(t), at a given
frequency, ω0, then the dithering frequency, ω, should be chosen such that ω �= ω0,
this can always be done by choosing ω > ω0.

6.3 Physical Motivation

It is well known that by adding a fast, small oscillation into a system’s dynamics, un-
expected stability properties may be achieved. The classic example is of the inverted
pendulum, whose vertical equilibrium point may be stabilized by rapidly vertically
oscillating the pendulum’s pivot point. The dynamics of this process were first ana-
lytically described in the 1950s byKapitza [65]. The ES scheme has some similarities
to this approach, in that we introduce high frequency oscillations into a system in
order to force certain points of the state space to become stable equilibrium points
towards which the system’s trajectory converges. By abstracting this to a general
state space and choosing such a point to be the minimum of a cost function, we are
able to tune a wide range of systems towards various performance goals.

We start with a simple example, we do not introduce any destabilizing terms in
(6.12), (6.13). To give a simple 2D overview of this method, we consider finding the
minimum of a measurable function C(x, y), for which we cannot simply implement
a gradient descent for the trajectory of (x(t), y(t)) because we are unaware of its
analytic form. We propose the following adaptive scheme:

dx

dt
= √

αω cos (ωt + kC(x, y)) (6.12)

dy

dt
= √

αω sin (ωt + kC(x, y)) . (6.13)

Note that although C(x, y) enters the argument of the adaptive scheme, we do not
rely on any knowledge of the analytic form of C(x, y), we simply assume that it’s
value is available for measurement at different locations (x, y).

http://dx.doi.org/10.1007/978-3-319-50790-3_2
http://dx.doi.org/10.1007/978-3-319-50790-3_2
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The velocity vector,

v =
(
dx

dt
,
dy

dt

)
= √

αω [cos (θ(t)) , sin (θ(t))] , θ(t) = ωt + kC(x(t), y(t)), (6.14)

has constant magnitude, ‖v‖ = √
αω, and therefore the trajectory (x(t), y(t))moves

at a constant speed. However, the rate at which the direction of the trajectories’
heading changes is a function of ω, k, and C(x(t), y(t)) expressed as:

dθ

dt
= ω + k

dC

dt
. (6.15)

Therefore, when the trajectory is heading in the correct direction, towards a decreas-
ing value of C(x(t), y(t)), the term k ∂C

∂t is negative so the overall turning rate ∂θ
∂t

(6.15), is decreased. On the other hand, when the trajectory is heading in the wrong
direction, towards an increasing value of C(x(t), y(t)), the term k ∂C

∂t is positive,
and the turning rate is increased. On average, the system ends up approaching the
minimizing location of C(x(t), y(t)) because it spends more time moving towards
it than away.

6.4 Extremum Seeking for Unknown Map

Consider the problem of locating an extremum point of the function J (θ) : Rn → R,
for θ = (θ1, . . . , θn) ∈ R

n . We assume that J (θ) has a global extremum such that
there exists a unique θ� for which:

∇ J |θ� = 0 and ∇ J �= 0, ∀θ �= θ�. (6.16)

Theorem 6.1 Consider the ES scheme shown in Fig.6.1 (for maximum seeking we
replace ki with −ki ):

θ̇i = √
αiωi cos (ωi t + ki J (θ)) , (6.17)

where ωi = ωω̂i such that ω̂i �= ω̂ j ∀i �= j and J satisfies (6.16). The point θ� is
1
ω
-SPUAS.

Fig. 6.1 ES scheme for the
i th component θi of θ J(θ)

ui

θi

cos(•)√αωi

ωit

J

1
s

k



6.4 Extremum Seeking for Unknown Map 69

The proof is carried out by expanding cos(·), rewriting the θi dynamics as

θ̇i = √
ωi cos(ωi t)

√
αi cos (ki J ) − √

ωi sin(ωi t)
√

αi sin (ki J ) , (6.18)

and applying Theorem 2.3. The trajectory of system (6.17) then uniformly converges
to the trajectory of

˙̄θi = −kiαi

2

∂ J
(
θ̄
)

∂θ̄i
, (6.19)

where we have used the fact that mismatched terms of the form cos(ωi t) sin(ω j t),
∀i �= j , and terms of the form cos(ωi t) cos(ω j t), and sin(ωi t) sin(ω j t), ∀i, j have
averaged to zero. Combining all the θi components we then get:

˙̄θ = −kα

2
(∇ J )T , (6.20)

where kα is the diagonal matrix with entries kiαi .

6.5 Nonlinear MIMO Systems with Matched Uncertainties

We study multi-input systems with the same number of controls and states. We
use this class to illustrate clearly how to deal with nonlinearities that are not only
unknown but also have arbitrary growth (super-linear, exponential, or even faster
than exponential).

Theorem 6.2 Consider the following system over a compact set K ⊂ R
n:

ẋ = f (x, t) + G(x, t)u(x, t), (6.21)

where x(t) : R+ → R
n, and u(x, t), f (x, t) : Rn × R

+ → R
n, G(x, t) : Rn ×

R
+ → R

n×n and let there exist ζ ∈ K, and η ∈ K∞ such that f (x, t) and G(x, t)
satisfy the following bounds for all (x, t) ∈ R

n × R
+:

G(x, t)GT (x, t) ≥ ζ(|x |)I, ∀x ∈ K (6.22)

sup
x∈K

| f (x, t)| ≤ η(|x |). (6.23)

If k and α are chosen such that

kα > sup
x∈K

1

ζ(|x |) , (6.24)

http://dx.doi.org/10.1007/978-3-319-50790-3_2
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then the vector-valued controller with components

ui = √
αωi cos (ωi t + kV (x)) , (6.25)

where ωi = ωω̂i such that ω̂i �= ω̂ j ∀i �= j , and

V (x) =
∫ |x |

0
η(r)dr, (6.26)

renders the origin of (6.21), (6.25)
(
1
ω
, ζ−1

(
1
kα

))
-SPUUB.

Remark 6.2 The proof is based on an existence result regarding a large enough
value of ω for our desired result to hold. Clearly, from the form of (6.21), (6.25),
in order for stabilization to be possible, we must choose ω large enough such that
ζ(|x |)√αω > | f |. Although this detail is glossed over in our existence result, exactly
such a requirement can be found if one writes out the proof of Theorem 2.3 for this
particular system, in which, after integration by parts, terms of the form | f |√

ω
will

appear, which approach zero as ω → ∞.

6.6 2D Vehicle Control

In this section we consider a vehicle in a GPS-denied environment, unaware of its
own orientation, whose goal it is to reach the location of the minimum of J (x, y),
where J (x, y) is a detectable value, whose analytic form is unknown.

Theorem 6.3 If the function J (x, y) has a global minimum at (x�, y�), such that

∇ J |(x�,y�) = 0, ∇ J �= 0, ∀(x, y) �= (x�, y�), (6.27)

then for any δ > 0, by a sufficiently large choice of kα the point (x�, y�) is
(
1
ω
, δ

)
-

SPUUB relative to the system (x(t), y(t)), as shown in Fig.6.2:

ẋ = √
αω cos (ωt + k J (x, y) + θ0) (6.28)

ẏ = √
αω sin (ωt + k J (x, y) + θ0) (6.29)

where θ0 is an unknown initial orientation.

Remark 6.3 In the analysis that follows, it becomes apparent that the value of the
arbitrary initial orientation, θ0, is irrelevant, when we make the simplification:

sin2 (k J + θ0) + cos2 (k J + θ0) = 1,

therefore for notational convenience, and without loss of generality, from now on we
set θ0 = 0.

http://dx.doi.org/10.1007/978-3-319-50790-3_2
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x

y v=  αω√

θ

J(x,y)

ux

x

cos(•)√αω

ωt

J

1
s

y1
s

sin(•)√αω

uy

Vehicle Dynamics ES Loop

θ
k

Fig. 6.2 Velocity actuated ES control scheme

Proof We expand

cos(ωt + k J ) = cos(ωt) cos(k J ) − sin(ωt) sin(k J ) (6.30)

and
sin(ωt + k J ) = cos(ωt) sin(k J ) + sin(ωt) cos(k J ) (6.31)

and rewrite (6.28), (6.29) as

[
ẋ
ẏ

]
= √

ω cos(ωt)

[√
α cos(k J )√
α sin(k J )

]
+ √

ω sin(ωt)

[−√
α sin(k J )√

α cos(k J )

]
. (6.32)

By Theorem 2.3, the trajectory of (6.32) uniformly converges to the trajectory of

[ ˙̄x
˙̄y
]

= α

2
D

([− sin(k J )

cos(k J )

])[
cos(k J )

sin(k J )

]
− α

2
D

([
cos(k J )

sin(k J )

])[− sin(k J )

cos(k J )

]
.

(6.33)
Performing derivatives, Eq. (6.33) simplifies to

˙̄x = −kα

2

(
∂ J

∂ x̄
cos2(k J ) + ∂ J

∂ x̄
sin2(k J )

)
, (6.34)

˙̄y = −kα

2

(
∂ J

∂ ȳ
sin2(k J ) + ∂ J

∂ ȳ
cos2(k J )

)
. (6.35)

Applying the identity cos2(·) + sin2(·) = 1,we arrive at the average systemdynamics

[ ˙̄x
˙̄y
]

= −kα

2
(∇ J (x̄, ȳ))T . (6.36)

Therefore, by Theorem 2.3 the trajectory (x(t), y(t)) of system (6.28)–(6.29) uni-
formly converges to the trajectory (x̄(t), ȳ(t)), of the system

http://dx.doi.org/10.1007/978-3-319-50790-3_2
http://dx.doi.org/10.1007/978-3-319-50790-3_2
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˙̄x = −kα

2

∂ J

∂ x̄
, x̄(0) = x(0), ˙̄y = −kα

2

∂ J

∂ ȳ
, ȳ(0) = y(0), (6.37)

and therefore, for any δ > 0, by choosing arbitrarily large values of kα we may
ultimately bound (x̄, ȳ) within a δ neighborhood of (x�, y�).

Remark 6.4 Although the results presented above are for functions having a station-
ary extremum, they are easily extended to systems where the extremum point varies
with time, such as the case of trajectory tracking, in which the cost is the distance
between a mobile agent and its target.

Corollary 6.1 Consider a function f (x, y, t) = (
fx (x, y, t), fy(x, y, t)

)T
, over a

compact set (x, y) ∈ K ⊂ R
2, which is continuous with respect to t and Lipschitz

continuous with respect to (x, y). If the function J (x, y, t) has a global minimum
at (x�(t), y�(t)) ∈ K ∀t , such that the location of the minimum point has bounded
velocity |ẋ�| , |ẏ�| < M, and

∇ J |(x�(t),y�(t)) = 0, ∇ J �= 0, ∀(x(t), y(t)) �= (x�(t), y�(t)), (6.38)

then for any δ > 0, by a sufficiently large choice of kα, (x�(t), y�(t)) is
(
1
ω
, δ

)
-

SPUUB relative to the system:

ẋ = fx (x, y, t) + √
αω cos (ωt + k J (x, y, t)) (6.39)

ẏ = fy(x, y, t) + √
αω sin (ωt + k J (x, y, t)) (6.40)

where θ0 is an unknown initial orientation.

Proof We define the error variables ex (t) = x(t) − x�(t) and ey(t) = y(t) − y�(t)
and show, by the same proof as above, that the the trajectory of the error system of
(6.39)–(6.40) uniformly converges to the trajectory of

˙̄ex = fx (ēx + x�, ēy + y�, t) − kα

2

∂ J

∂ ēx
+ ẋ�(t), (6.41)

˙̄ey = fy(ēx + x�, ēy + y�, t) − kα

2

∂ J

∂ ēy
+ ẏ�(t). (6.42)

Because the velocities |ẋ�| and |ẏ�| are bounded, and the function f (x, y, t) is
bounded on the compact set K , for any δ > 0, by choosing arbitrarily large val-
ues of kα we may ultimately bound (x̄, ȳ) within a δ neighborhood of (x�, y�).
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6.7 2D Vehicle Simulations

6.7.1 Stationary Source Seeking

In order to illustrate the behavior of the control system for a vehicle with unknown
orientation we first demonstrate the scheme in an environment without external dis-
turbance, in which the goal is to seek the stationary minimum of an unknown, but
measurable function. We consider the system

ẋ = √
αω cos (ωt + k J (x, y)) , x(0) = 1 (6.43)

ẏ = √
αω sin (ωt + k J (x, y)) , y(0) = −1, (6.44)

where J = x2 + y2, α = 1
2 , k = 2, θ(0) = 1.2, and ω = 25.

The simulation results are shown in Fig. 6.3. By showing the system’s trajec-
tory (x, y), alongside that of the averaged system, (x̄, ȳ), it is easy to see that the
convergence is along a gradient descent towards the minimum of J (x, y).
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Fig. 6.3 Tracking of a stationary source is shown for 10 s, along with control effort for the first
1.5s. The initial trajectory of (x(t), y(t)) is far from circular, as the system rotates slower while
heading in the correct direction (towards decreasing J ), which is the mechanism of convergence.
This is also clearly seen in the control effort, where both the sine and cosine terms are initially
asymmetric, changing faster or slower, depending on the heading direction
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6.7.2 Tracking by Heading Rate Control, with Disturbances

We demonstrate the tracking and stabilizing abilities of the controller by tracking a
moving source with an open loop unstable system. Furthermore, in order to demon-
strate the ability to control heading angle velocity, rather than the angle value directly,
we implement the following scheme, in which an additional filter (6.48) of the func-
tion J (x, y, t) has been introduced. The system is:

ẋ = x + 0.75y + √
αω cos (θ) , x(0) = 1 (6.45)

ẏ = 0.5x + 2y + √
αω sin (θ) , y(0) = −1 (6.46)

θ̇ = ω + kω2(J − η), θ(0) = 1.2 (6.47)

η̇ = −ω2η + ω2 J, ω = 250 (6.48)

rx = cos(t), ry = sin(2t) (6.49)

J = (x − rx )
2 + (

y − ry
)2

, α = 2, k = 10. (6.50)

Intuitively, if one considers the combined θ , η dynamics as in (6.47), (6.48), then
θ̇ = ω + kη̇ and therefore θ(t) = ωt + kη(t). Considering the transfer function η =

ω2

s+ω2 J , in the limit as ω approaches infinity, η approaches J , and so θ(t) approaches
ωt + k J as before. Note that the system is open loop unstable, with eigenvalues
λi = 2.3, 0.7. Because of the disturbance and the non-zero velocity of (rx(t), ry(t)),
we must use larger values of k, α, andω. The simulation results are shown in Fig. 6.4.
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Fig. 6.4 Tracking of a moving source, despite external disturbances, is shown for 7 s, along with
control effort for the first 0.25s. The initial trajectory of (x(t), y(t)) is far from circular, the system
rotates slower while heading in the correct direction (towards decreasing J ), as it makes a large arc
towards the location of the minimum of J . This is also obvious in the initial control effort, where
both the sine and cosine terms are initially extremely distorted, changing faster or slower, depending
on the heading direction



Chapter 7
Extremum Seeking for Stabilization
of Systems Not Affine in Control

In all of the methods of ESC for stabilization described above, the unknown systems
are assumed to be affine in control, namely, of the form:

ẋ = f (x, t) + g(x, t)u. (7.1)

However, inmost physical systems the control effort enters the system’s dynamics
through a nonlinear function, such as an input with a deadzone or saturation. Thus,
it would be a major limitation if ESC applied only to systems affine in control.

In this chapter we study ESC for vector-valued systems not affine in control:

ẋ = f (x, t) + g(x, t, u), g(x, t, u) =
m∑

i=0

gi (x, t)u
2i+1 (7.2)

where g is a control non-linearity given as an odd polynomial in u. The forthcoming
Theorem 7.1 reduces controlling system (7.2) to the significantly easier problem of
controlling the averaged system

˙̄x = f (x̄, t) − kαKggm(x̄, t)gTm(x̄, t)

(
∂V

∂ x̄

)T

, (7.3)

where Kg is a constant that depends on the function g. If there exist k, α, and V that
stabilize system (7.3), then there exists ω� such that for all ω > ω� the following
feedback law stabilizes system (7.2):

u(x, t) = (αω)
1

2(2m+1) cos (ωt + kV (x, t)) . (7.4)

In Sect. 7.2, we give sufficient conditions for Theorem 7.1 to be applicable to a
broader range of systems of the form

ẋ = f (x, t) + g(x, t)v(u(x, t)), (7.5)

© The Author(s) 2017
A. Scheinker and M. Krstić, Model-Free Stabilization by Extremum Seeking,
SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-50790-3_7
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where the v(u) is an odd function of u. In Sect. 7.4, numerical experiments show that
this approach is robust to un-modeled odd nonlinearities, errors in approximation,
and perturbations with even exponents such as εu2n , for |ε| � 1.

7.1 The Main Result

Theorem 7.1 In the system

ẋ = f (x, t) +
m∑

n=0

gn(x, t)u
2n+1(x, t), (7.6)

f : Rn × R → R
n, gi : Rn × R → R

n×n, V : Rn × R → R,

let the functions f , gi , and V are twice continuously differentiable with respect to x
and piecewise differentiable with respect to t . Consider the controller

u(x, t) = (αω)
1

2(2m+1) cos (ωt + kV (x, t)) , (7.7)

and the related averaged system

˙̄x = f (x̄, t) − kαAm

(
gm(x̄, t)gTm(x̄, t)

24m+1

) (
∂V

∂ x̄

)T

, Am =
m∑

l=0

(
2m + 1

l

)2

, (7.8)

with x̄(0) = x(0). For any compact set K ⊂ R
n, if x� is a GUAS equilibrium point

of (7.8) for all x(0) ∈ K, then x� is a 1
ω
-SPUAS equilibrium point of (7.6), (7.7).

Proof The closed-loop form of system (7.6), (7.7) is (throughout the proof we omit
the arguments of f , gi , and V to simplify the notation)

ẋ = f (x, t) +
m∑

n=0

gn(x, t) (αω)
2n+1

2(2m+1) cos2n+1 (ωt + kV ) . (7.9)

Let bn = 2n + 1 and bn,l = 2n + 1 − 2l, apply trigonometric power identities, and
rewrite the sum as

m∑

n=0

gn

n∑

l=0

(αω)
bn
2bm

22n

(
bn
l

)
cos

(
bn,l (ωt + kV )

)
. (7.10)
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Apply trigonometric identities to expand (7.10) as the sum of

m∑

n=0

gn

n∑

l=0

(αω)
bn
2bm

22n

(
bn
l

)
cos

(
bn,lωt

)

︸ ︷︷ ︸
hc,n,l,ω(t)

cos

(
bn,l kV

)

and

−
m∑

n=0

gn

n∑

l=0

(αω)
bn
2bm

22n

(
bn
l

)
sin

(
bn,lωt

)

︸ ︷︷ ︸
hs,n,l,ω(t)

sin

(
bn,l kV

)
.

For all n ≤ m and ω ≥ 1
α
, (αω)

2n+1
2(2m+1) ≤ √

αω, the functions hs,n,l,ω(t) and hc,n,l,ω(t)
have uniform limits

lim
ω→∞ Hc/s,n,l,ω(t) = lim

ω→∞

∫ t

t0

hc/s,n,l,ω(τ )dτ = 0, (7.11)

and for all n1, n2 < m, have weak limits

hc/s,n1,i,ω(t)Hc/s,n2, j,ω(t) ⇀ 0. (7.12)

For n = m, we must consider all of the terms

hc,m,l,ω(t) =
(
bm
l

)√
αω cos

(
bm,lωt

)

22m
, hs,m,l,ω(t) =

(
bm
l

)√
αω sin

(
bm,lωt

)

22m
.

(7.13)
The products hc,m,i,ω(t)Hs,m, j,ω(t) are given by

−α

(
1

22m

)2 (
bm
l

)2

cos2
(
bm,lωt

) + α

(
1

22m

)2 (
bm
l

)2

cos
(
bm,lωt0

)
cos

(
bm,lωt

)
.

The terms cos2
(
bm,lωt

)
and cos

(
bm,lωt

)
weakly converge to 1/2 and 0, respectively,

therefore

hc,m,i,ω(t)Hs,m, j,ω(t) ⇀ −α
1

24m+1

(
bm
l

)2

, hs,m,i,ω(t)Hc,m, j,ω(t) ⇀ α
1

24m+1

(
bm
l

)2

︸ ︷︷ ︸
am,l

.

(7.14)
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Therefore, by application of Theorem 2.3, the bm,lω frequency component’s contri-
bution to the average dynamics are

− αam,l gm cos(kbm,l V )
∂

∂ x̄

(
gm sin(kbm,l V )

)
(7.15)

+ αam,l gm sin(kbm,l V )
∂

∂ x̄

(
gm cos(kbm,l V )

)
. (7.16)

The term (7.15) can be expanded as

− αam,l gm cos(kbm,l V )

(
∂gm
∂ x̄

sin(kbm,l V ) − kbm,l
∂V

∂ x̄
gm cos(kbm,l V )

)
, (7.17)

and (7.16) can be expanded as

+ αam,l gm sin(kbm,l V )

(
∂gm
∂ x̄

cos(kbm,l V ) − kbm,l
∂V

∂ x̄
gm sin(kbm,l V )

)
. (7.18)

Adding (7.17) and (7.18) we are left with

− kαbm,lam,l gmg
T
m

(
∂V

∂ x̄

)T

. (7.19)

Plugging in for the values of am,l from (7.14), the overall average system dynamics
are given by

˙̄x = f (x̄, t) − kα
m∑

l=0

(
bm
l

)2 (
gm(x̄, t)gTm(x̄, t)

24m+1

) (
∂V

∂ x̄

)T

and the desired convergence and the existence of the appropriate ω are guaranteed
by Theorem 2.3.

Theorem 7.1 implies that to stabilize system (7.6) one must choose the gain k,
dithering amplitude α, and a Lyapunov-type function V (x, t) relative to upper and
lower bounds on ‖ f (x, t)‖ and

∥∥gm(x, t)gTm(x, t)
∥∥, respectively. Once k, α, and V

are chosen, there exists a sufficiently large ω�, such that for all ω > ω�, the above
results hold. In practice we specifyω and design the controller to maintain the values
of u within some compact set Ku . Because gm(x, t)gTm(x, t) ≥ 0 one need not know
the sign of gm(x, t) which simplifies significantly the stabilization problem.

http://dx.doi.org/10.1007/978-3-319-50790-3_2
http://dx.doi.org/10.1007/978-3-319-50790-3_2
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7.2 An Application of the Main Result

In this section we give sufficient conditions to use our main result to control a general
nonlinear system of the form:

ẋ = f (x, t) + g(x, t)v(u(x, t)). (7.20)

The stability of a system of the form (7.20) may be studied by considering an odd-
polynomial system of the form

ẋ = f (x, t) + g(x, t)
m∑

n=0

u2n+1(x, t)

︸ ︷︷ ︸
p(x,t)

. (7.21)

We assume the functions f and g are twice differentiable and the function v : R → R

is a continuous, odd function of u, i.e., for fixed x and t , v(−u(x, t)) = −v(u(x, t)).
Fix the system (7.20), [t0, t0 + T ] ⊂ R≥0, K ⊂ Rn , and Ku ⊂ R. On [t0, t0 + T ],
K , and Ku . Because g is continuous and K × [t0, t0 + T ] is compact there exists a
G > ||g||K×[t0,t0+T ], where ‖ · ‖ denotes the uniformnorm: || f ||Y = supy∈Y || f (y)||.
For any ε > 0, the Stone-Weierstrass Theorem (see, e.g. [24]) implies there exists
an odd polynomial p so that ‖v − p‖Ku < ε

G . Therefore, we can rewrite the system
(7.20) as

ẋ = f (x, t) + g(x, t)p + g(x, t)(v − p)
︸ ︷︷ ︸

l(x,t)

, (7.22)

such that ‖l(x, t)‖K < ε (Fig. 7.1).
Therefore, given a system of the form (7.20), we can always rewrite it as a system

of the form (7.22) which we can think of as a perturbation of the system

ẋ = f (x, t) + g(x, t)p(u), (7.23)

which we can stabilize by the use of Theorem 7.1. Because we can make the pertur-
bation arbitrarily small, if we stabilize the origin of the odd polynomial system (7.41)

Fig. 7.1 Polynomial
approximation of h(u) for
|u| < 2

- 2 - 1 0 1 2
- 4

- 2

0

2

4

u

0.05u+0.25u3

h(u)
2.1

|u|    2

0.05u+0.25u3



80 7 Extremum Seeking for Stabilization of Systems Not Affine in Control

such that it has a Lyapunov function satisfying Lemma 9.1 in [68], then byLemma9.2
of [68], the origin of system (7.20) is also stable for a set of initial conditions which
can be made arbitrarily large by making ε arbitrarily small.

7.3 Example of System Not Affine in Control

Non-affine controllers, in particular non-linear controllers with dead zones, arise in
a variety of practical control systems [68, 110, 122, 138]. For example, a water
cooling system whose flow rate is controlled by a valve with limited maximum
open surface area and digital resolution-limited minimum valve opening setting. We
provide examples that demonstrate how to develop a controller for systems in which
the control effort enters through an odd non-linear function h(u). In what follows
we take the common approach of approximating h(u) with an odd polynomial p(u)

[62, 77].

Example 7.1 Consider the system

ẋ = f (x, t) + g(x, t)h(u), (7.24)

and the general approximation h(u) ≈ p(u) = a1u + a3u3, which produces the ap-
proximate system:

ẋ = f (x, t) + g(x, t)
(
a1u(x, t) + a3u

3(x, t)
)
. (7.25)

We will design a controller of the form

u = (αω)
1
6 cos (ωt + kV (x)) . (7.26)

The reason for the choice (αω)
1
6 is explained as follows. The closed loop dynamics

of (7.25), (7.26) are given by

ẋ = f (x, t) + a1g(x, t) (αω)
1
6 cos (ωt + kV (x))

+a3g(x, t)
√

αω cos3 (ωt + kV (x)) . (7.27)

The cos() and cos3() terms can be expanded as

a1g(x, t) (αω)
1
6

(
cos (ωt) cos (kV ) − sin (ωt) sin (kV )

)

+a3g(x, t)0.75
√

αω

(
cos (ωt) cos (kV ) − sin (ωt) sin (kV )

+0.25 cos (3ωt) cos (3kV ) − 0.25 sin (3ωt) sin (3kV )

)
.
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Theorem 2.3 implies that as ω → ∞ products containing the a1g(x, t) terms
contain powers of ω of the form 1/ω

2
3 and 1/ω

1
3 , which uniformly converge to zero.

In the remaining terms, by choosing (αω)
1
6 , for u3, we get terms with amplitudes

proportional to
√

αω and by Theorem 2.3, are left with products in which the ω

amplitude dependence has disappeared, only leaving terms of the form cos2(ωt),
and sin2(ωt), which weakly converge to 1/2, leaving us with the average system

˙̄x = f (x̄, t) − kα

2
a23g

2(x̄, t)
(
(3/4)2 + (1/4)2

) ∂V (x̄)

∂ x̄
, (7.28)

where x̄(0) = x(0). Thus, to stabilize the origin, it suffices to choose ω, k, α, V
sufficiently large with respect to a23g

2(x, t) and f (x, t).
We consider the special case of System (7.24), where

h(u) =
⎧
⎨

⎩

0 |u| < 0.5
sgn(u)(|u| − 0.5)2 0.5 < |u| <= 2

2.25 2 < |u|
. (7.29)

Figure7.2 shows the results of a simulation of

ẋ = cos(2t)x2

2
+ 2 cos (20t) h(u), u = (αω)

1
6 cos

(
ωt + kx2

)
(7.30)

with control parameters ω = 200, α = 64/ω, k = 50, and x(0) = 1.5, where h(u)

is given by (7.29) and the controller was designed using the approximation (7.25)
with a1 = 0.05 and a3 = 0.25, which has average dynamics

˙̄x = 0.5 cos(2t)x̄2 − (5/16)kα cos2 (20t) x̄, x̄(0) = x(0). (7.31)

Example 7.2 Second Order System: Consider an unstable mechanical or electrical
second order system in which the control actuator involves h(u) given above

ẍ = 0.5x2 + 2 cos(20t)h(u), x(0) = 1.5, ẋ(0) = 0. (7.32)

Defining x1 = x , x2 = ẋ , we use the controller from [128] for systems in strict
feedback form and rewrite the system

ẋ1 = x2 (7.33)

ẋ2 = 0.5x21 + 2 cos (20t) h(u), (7.34)

u = (αω)
1
6 cos

(
ωt + k (x1 + 2x2)

2) , (7.35)

http://dx.doi.org/10.1007/978-3-319-50790-3_2
http://dx.doi.org/10.1007/978-3-319-50790-3_2
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Fig. 7.2 The trajectory x(t) of the system (7.30) is shown alongside the trajectory x̄(t) of the
averaged system (7.31). It is clear that the system behaves as expected despite our controller design
being based on the approximation of the nonlinearity. The control effort u(t) shows strong initial
phase modulation before a steady state is reached. A zoomed in view of the initial 0.5 s and final
0.1 s of control effort u(t) and control signal h(u(t)) shows the details of the saturation, dead zone,
and steady state oscillation
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Fig. 7.3 The trajectory x(t) of the system (7.33)–(7.35) is shown alongside the trajectory x̄(t) of
the averaged system (7.36), (7.37). The trajectory of the second order system is noticeably smoother
because of the filtering property of the integrator

with k, α as above and ω = 250. The average dynamics are

˙̄x1 = x̄2, x̄1(0) = x1(0), x̄2(0) = x2(0), (7.36)

˙̄x2 = 0.5x̄2 − 5

16
kα cos2 (20t) (2x̄1 + x̄2) , (7.37)

the simulation is shown in Fig. 7.3.

Example 7.3 Approximating summations of non-linear functions: Our results
allow for the stabilization of systems where h(x, t, u) is a weighted sum of nonlinear
control functions such as h(, x, t, u) = g1(x, t) sin(u) + g2(x, t)u3. To approximate
such an h, we approximate each odd term and rearrange the summation.

We suppress the dependance on x, t, u and use the approximation sin(u) ≈ u −
1
6u

3 for |u| < π
3 to approximate h as follows

h ≈ g1(u − 1

6
u3) + g2u

3 = g1u +
(
g2 − 1

6
g1

)
u3 = g̃1u + g̃3u

3. (7.38)

7.4 Robustness of Nonlinear Approximation

We showed that when the control nonlinearity h(u) is odd we can design a feedback
controller and calculate analytically the approximate average behavior. In this section
we propose a conjecture on the robustness of our controller when h(u) is not odd.
We use numerical simulations to demonstrate the relationship between stability and
our controller’s two primary inputs to the system, higher gains and higher oscillatory
rates.Wedivide our analysis basedon estimates of the dominant termof the controller,
information that may be available even when the form of the controller is unknown.
In Sect. 7.4.1 we demonstrate that for a system with dominant odd power terms
our controller is robust with respect to different choices of the power 2m + 1. In
Sect. 7.4.2 we demonstrate, as expected, that for a system with dominant even power
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terms our controller will only stabilize the system for a specific range of values of
the gain α and the power 2m + 1. In Sect. 7.4.3 we demonstrate that the well chosen
lower powers 2m + 1 will stabilize the system with lower gains α.

We consider a more general class of systems with even-powered perturbations
and un-modeled odd nonlinearities:

ẋ = f (x, t) +
no∑

i=0

g2i+1(x, t)u
2i+1(x, t) + ε

ne∑

i=1

g2i (x, t)u
2i (x, t). (7.39)

If there were no even terms and we knew that 2m + 1 was the highest power odd
nonlinearity of (7.39), then we would choose a controller of the form

um = (αω)
1

2(2m+1) cos (ωt + kV ) . (7.40)

However, for the present analysis wemust address two additional issues. First, the
power of our controller 2m + 1 need not equal the highest odd power of the system
2n0 + 1, and therefore the averaging analysis of Theorem 7.1 breaks down because

m < no introduces terms of the form (αω)
2no+1
2(2m+1) cos2no+1 (ωt + kV ), resulting in di-

vergent weak limits which are not independent ofω, because in this case 2no+1
2(2m+1) > 1

2 .
Second, the averaging analysis of Theorem 7.1 further breaks down since the even
powers of u introduce into the system dynamics positive semi-definite terms of the
form (αω)

2l
2(2m+1) cos2l (ωt + kV )which growwithout bound asω grows. However, it

turns out that we may still be able to approximate the behavior of this system.
We integrate (7.39) by parts, notice that as ω → ∞ the highest power terms of

(7.39) dominate the dynamics, keep only the highest order odd and even power
terms, and average the oscillatory functions to produce the approximation (7.41),
which leads us to make the following conjecture:

Conjecture 7.1 Consider systems (7.39), (7.40) and:

˙̄x = f (x̄, t) + εg2ne(x̄, t) (αω)
2ne
2m+1 Bne

− kα
2no+1
2m+1 ω( 2no+1

2m+1 −1)An0

gno(x̄, t)g
T
no(x̄, t)

24no+1

(
∂V

∂ x̄

)T

,

An0 =
no∑

l=0

(
2no + 1

l

)2

, Bne = 1

22ne

(
2ne
n

)
. (7.41)

For any δ > 0, any compact set K ⊂ R
n , and any t0, T ∈ R≥0 there exists

ε�(δ, K , T ) > 0 such that for all |ε| < ε�, there exists ω� such that for each ω > ω�,
the trajectories x(t) of (7.39), (7.40) and x̄(t) of (7.41) satisfy

max
t∈[t0,t0+T ]

‖x(t) − x̄(t)‖ < δ, lim
t→∞ ‖x̄(t)‖ = 0 =⇒ lim

t→∞ ‖x(t)‖ < δ.
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Remark 7.1 When no = m and there are no even power terms, (7.41) simplifies
to (7.8).

7.4.1 Dominant Odd Power Terms

To test Conjecture 7.1 we study the system

ẋ = x + 0.1
(
u + u3 + u5

) + ε
(
u2 + u4

)
, (7.42)

u = um = (αω)
1

2(2m+1) cos
(
ωt + kx2

)
. (7.43)

According to the conjecture, the closed loop dynamics should, for large ω, approxi-
mate

˙̄x = x̄ − 2k

100

1

29
A2α

5
2m+1 ω( 5

2m+1−1) x̄ + εB2 (αω)
4

2(2m+1) . (7.44)

Therefore, the trajectory of the system should converge to the equilibrium point x�

satisfying (
2k

100

1

29
A2α

5
2m+1 ω( 5

2m+1−1) − 1

)
x� = εB2 (αω)

4
2(2m+1) . (7.45)

Thus, for each ε > 0 and each controller power 2m + 1, we can find αm(ω, ε, x�)

which solves (7.45), such that for all α > αm(ω, ε, x�) the system should converge
to |x | ≤ |x�|.

When ε = 0, the system should be stable for

2k

100

1

29
A2α

5
2m+1 ω( 5

2m+1−1) > 1. (7.46)

Thus, for any chosen control power 2m + 1, we can estimate a required αm(ω) such
that the system will be stable for all α > αm(ω), of the form

αm(ω) =
(

100 × 27

63kω( 5
2m+1−1)

) 2m+1
5

. (7.47)

We confirm the estimates (7.45) and (7.47) by simulating system (7.42), (7.43) with
k = 100, m = 1, 3, 5, ε = 0, 0.05, α ∈ [0.1, 2], ω ∈ [5, 200], x(0) = 1. We let the
system evolve for T = 5s and then record |x(T )| (with a cutoff at 3), in order to
determine whether the trajectory is converging towards the origin or diverging. We
plot the results in Fig. 7.4 and compare to the analytically predicted boundaries of
stability (7.45) and (7.47). We see that for large values of (αω)

1
2m , the prediction

is accurate, which happens for much smaller values of αω for the lower powers
m = 1, 3 than for m = 5 because the term (αω)

1
10 grows very slowly.
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(a) (b) (c)

(d) (e) (f)

Fig. 7.4 The region of stability is shown for several choices of controller and ε for system (7.42),
(7.43). For ε = 0, the region of stability is shown for m = 1 in (a), m = 3 in (b) and m = 5 in
(c), relative to the predicted αm(ω, ε = 0) curve as calculated in (7.47). For ε = 0.05, the region
of stability is shown for m = 1 in (d), m = 3 in (e) and m = 5 in (f), relative to the predicted
αm(ω, ε = 0.05) curve as calculated in (7.45)

7.4.2 Dominant Even Power Terms

When the highest power of control nonlinearity is even, we have little chance of
controlling the system, except in a very limited range of values of ε andω, because the
positive semi-definite destabilizing terms dominate the dynamics and grow with ω.
We consider the system

ẋ = 0.1u + 0.1u3 + εu4, (7.48)

with controller um = (αω)
1

2(2m+1) cos
(
ωt + kx2

)
, m = 0, 1. For the case m = 1,

applying Conjecture 7.1, we get the following estimate for a bound on ε for the
stability of the average system:

ε < ε1(ω) = 2k
(
0.12

)
A1α − 1

(αω)
2
3 B2

, (7.49)

which is numerically confirmed in Fig. 7.5a. In the case m = 0 even the averaging
estimates completely break down. The best we can do is to simply compare the
dominant stabilizing (αω)

3
2 and destabilizing (αω)

4
2 powers and estimate a bound
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(a) (b)

Fig. 7.5 aRegion of stability (in terms of ε andω) when assuming h(u) to be of first order, utilizing

a controller with amplitude (αω)
1
2 . b Region of stability (in terms of ε and ω) when assuming h(u)

to be of third order and utilizing a controller with amplitude (αω)
1
6

on ε of the form ε < 1√
αω

, which is in surprisingly good agreementwith the numerical
study, as shown in Fig. 7.5b.

7.4.3 Even Nonlinearities in Bounded System

Weconsider the nonlinearity fromExample 7.1with even power nonlinearities, hε(u)

which is shown in Fig. 7.6. We consider the system

ẋ = x + hε(u), x(0) = 1, um = (αω)
1

2(2m+1) cos
(
ωt + kx2

)
, (7.50)

with various control options m = 0, 1, 2. The numerically calculated regions of sta-
bility are shown in Fig. 7.7, with k = 100 and α = 5. The system remains stable for
a small range of ε = 0, and, as expected, is most robust with the m = 0 controller,
which makes it least predictable as the averaging no longer holds, but highest gain.
Evenwhen ε = 0, asω is increased the system loses stability because, as

√
αω grows,

u leaves any fixed compact set Ku and therefore the polynomial approximation that
closely approximates h(u) over the growing range has increasingly higher numbers
of significant high power terms whose coefficients decay. At some point, the dom-
inant power of u in the approximation has such a small coefficient, that the given
α = 5 is no longer sufficient in order to stabilize the system.
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Fig. 7.6 The nonlinearity hε(u) for |u| < 2.5 for various values of ε

(a) (b) (c)

Fig. 7.7 Region of stability. a Assuming h(u) to be of first order, utilizing a controller with ampli-

tude (αω)
1
2 . b Assuming h(u) to be of third order, utilizing a controller with amplitude (αω)

1
6 . c

Assuming h(u) to be of fifth order and utilizing a controller with amplitude (αω)
1
10

7.4.4 Summary of Robustness Study

From the numerical studies above it is clear that the system is very robust to the
degree of odd nonlinearity approximation and is even somewhat robust to the exis-
tence of even nonlinearities, expectedly much less so when the powers of the even
nonlinearities are dominant. When choosing a controller for unknown nonlinearity,
h(u), if the actual highest order odd term is of the form u2no+1, and the controller
is chosen based on a guess, m, of no, of the form (αω)

1
2(2m+1) , then the dominant

stabilizing term of the averaged system is proportional to:

− kα
2no+1
2m+1 ω( 2no+1

2m+1 −1). (7.51)

If the guess is correct, and m = no, then (7.51) simplifies to

− kα
2no+1
2m+1 ω( 2no+1

2m+1 −1) = −kα, (7.52)

as calculated in Theorem 7.1.
If the guess underestimates the actual degree of h(u), no, such that m < no, then

for some m̂ > 0, no = m + m̂ and



7.4 Robustness of Nonlinear Approximation 89

Fig. 7.8 A simulation of
system (7.42), (7.43),
comparing the use of
controllers with m = 0, 1, 2.
Although lower values of m
result in faster convergence,
the resulting steady state
oscillations are increased

− kα
2no+1
2m+1 ω( 2no+1

2m+1 −1) = −kα
(
1+ m̂

2m+1

)

ω
m̂

2m+1 = −kα (αω)
m̂

2m+1 , (7.53)

which is effectively equivalent to increasing the gain of the controller by a factor of
(αω)

m̂
2m+1 . This is confirmed by the numerical study which shows that lower choices

of m result in larger regions of stability relative to α,ω, and ε.
If the guess overestimates the actual degree of h(u), no, such that m > no, then

for some m̂ > 0, no = m − m̂ and

− kα
2no+1
2m+1 ω( 2no+1

2m+1 −1) = −kα
(
1− m̂

2m+1

)

ω
−m̂

2m+1 = − kα

(αω)
m̂

2m+1

, (7.54)

which is effectively equivalent to decreasing the gain of the controller by a factor of
1

(αω)
m̂

2m+1
, and in the weak limit the system’s control effort will converge to 0, as ω is

increased, rendering the system completely uncontrollable.
When the degree 2no + 1 of the highest odd nonlinearity of h(u) is uncertain, the

best bet is to use the lowest,m = 0, controller of the form
√

αω cos (ωt + kV (x, t)),
in order to guarantee sufficient gain. However, one must be careful, because for large
ω, if m < no, the system’s approximate dynamics will begin to diverge from those
predicted by the averaging analysis. Furthermore, as shown above, the use of a lower
m for a higher order system no, is effectively equivalent to increasing the control gain.
If a system’s actuators can handle higher gains, it is safer to simply use a higher gain
kα, with a higherm, so that the system’s dynamics will be closer to those analytically
predicted. Furthermore, if the controller is based on an underestimate of the degree
of the nonlinearity and has a relatively large amplitude, the dithering terms will result
in the system’s steady state oscillations having larger magnitude. This is shown in
Fig. 7.8, a simulation of system (7.42), (7.43), comparing the use of controllers with
m = 0, 1, 2.



Chapter 8
General Choice of ES Dithers

Different dithers are appropriate in different control designs. In an analog system
based on sinusoidal oscillators, a sinusoidal dither is a natural choice. In a switching
system, such as the high voltage application in Sect. 8.2, a square wave with dead
time is the choice that can be implemented in hardware. In this chapter we take
advantage of the generality of Theorem 2.3, which has the useful property that a
variety of different controllers have, on average, identical dynamics and allows for
the study of discontinuous and non-differentiable dithers.

8.1 The On-Average Equivalence of Various Dithers

Recall that Theorem 2.3 allows us to study the dynamics of vector-valued systems
of the form

ẋ = f (x, t) + g(x, t)u(y, t), (8.1)

y = ψ(x, t) + n(t) = ψ̂(x, t), (8.2)

where x ∈ R
n , and the functions f : R

n × R → R
n , g : R

n × R → R
n×n ,

ψ : R
n × R → R, and n(t) : R → R are unknown and twice continuously

differentiable with respect to x . Also, ψ and ∂ψ/∂t are bounded with respect to t
for x in a compact set, and n(t), ṅ(t) are bounded.

For controlling such systems, we choose controllers of the form u : R×R → R
n ,

given by

u(y, t) =
m∑

i=1

ki (y, t)hi,ω(t), ki : R × R → R
n, (8.3)

where the functions ki (y, t) are continuously differentiable and the only require-
ment on the high frequency dithering functions hi,ω(t) is that they are piece-wise
continuous.

© The Author(s) 2017
A. Scheinker and M. Krstić, Model-Free Stabilization by Extremum Seeking,
SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-50790-3_8

91

http://dx.doi.org/10.1007/978-3-319-50790-3_2
http://dx.doi.org/10.1007/978-3-319-50790-3_2


92 8 General Choice of ES Dithers

System (8.1)–(8.3) has the following equivalent closed-loop form

ẋ(t) = f (x, t) +
m∑

i=1

bi (x, t)hi,ω(t), (8.4)

bi (x, t) = g(x, t)ki
(
ψ̂(x, t), t

)
. (8.5)

The general result of Theorem 2.3 is that if the integrals of the functions hi,ω(t)
satisfy the uniform limits

lim
ω→∞ Hi,ω(t) = lim

ω→∞

∫ t

t0

hi,ω(τ )dτ = 0, (8.6)

and the weak limits
hi,ω(t)Hj,ω(t) ⇀ λi, j (t), (8.7)

then we can also consider the average system related to (8.1)–(8.3) as follows

˙̄x = f (x̄, t) −
n∑

i, j=1

λi, j (t)
∂bi (x̄, t)

∂ x̄
b j (x̄, t), x̄(0) = x(0), (8.8)

and for any compact set K ⊂ R
n , any t0, T ∈ R≥0, and any δ > 0, there exists ω	

such that for each ω > ω	, the trajectories x(t) and x̄(t) of (8.4) and (8.8), satisfy

max
t∈[t0,t0+T ]

‖x(t) − x̄(t)‖ < δ. (8.9)

Furthermore,
lim
t→∞ ‖x̄(t)‖ = 0 =⇒ lim

t→∞ ‖x(t)‖ < δ.

In other words, uniform asymptotic stability of (8.8) over K implies the semiglobal
practical uniform asymptotic stability of (8.1)–(8.3).

In this chapter, we demonstrate that the generality of Theorem 2.3 allows us to
analytically study a large class of dithers, once which are not differentiable or con-
tinuous, but which are naturally implemented in most discrete time digital systems.

Consider the linear system

ẋ = a11x + a12y + b1ux (ψ(x, y), t), (8.10)

ẏ = a21x + a22y + b2uy(ψ(x, y), t), (8.11)

where ψ(x, y) is an analytically unknown function to be minimized. We will consider
four controllers, one of which is a perturbing signal common in digital systems, a
square wave with dead time between pulses. We pick gains such that the λi, j equal ± 1

2
for all dither choices, which results in a uniform convergence rate for all controllers.

http://dx.doi.org/10.1007/978-3-319-50790-3_2
http://dx.doi.org/10.1007/978-3-319-50790-3_2


8.1 The On-Average Equivalence of Various Dithers 93

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
10
5
0
5

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6
15
10
5
0
5

10
15

0.0 0.1 0.2 0.3 0.4 0.5 0.6
10

5
0
5

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6
15
10

5
0
5

10
15

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
6
4
2
0
2
4
6

0.0 0.1 0.2 0.3 0.4 0.5 0.6
15
10

5
0
5

10
15

0.0 0.1 0.2 0.3 0.4 0.5 0.6
6
4
2
0
2
4
6

0.0 0.1 0.2 0.3 0.4 0.5 0.6
15
10

5
0
5

10
15

Average
System

Average
System

Average
System

Average
System

(x(t),y(t))

(x(t),y(t))(x(t),y(t))

(x(t),y(t))

u1 u2

u3 u4

u1,x

u1,y

u2,x

u2,y

u3,x

u3,y

u4,x

u4,y

x

y

x

y

x

y

x

y

tt

Fig. 8.1 The trajectories of system (8.10), (8.11) with controllers u1, u2, u3, and u4 are shown
next to the trajectory of their common average system (8.27), (8.28). Control efforts in each case
are shown for only a few of the initial oscillations in which the phase modulation is obvious
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Fig. 8.2 Left Initial 3.5×2π
ω

seconds of the simulation of system (8.10), (8.11), shows the various
trajectories evolving with similar average velocities. Center Evolution of the trajectories over the
entire simulation time. Right The last 2π

ω
seconds of the simulation, when all trajectories have

settled near the origin, but in this case are slightly tilted due to the destabilizing terms ai j . The
size of the oscillation about the final point of convergence is given in each case by a circle (U1),

ellipse (u2), diamond (u3), and square (u4) of size
√

α
ω

= 1
10 as analytically predicted by the choice

of gains

As the averaged systems for each choice of dither are equivalent, so are their domains
of attraction. The amplitude of the final, steady state oscillation about the stable
equilibrium of the average system, is the same

√
α
ω

for each choice of dither.
The first controller is smooth, it is given by:

u1,x = cos (ωt + kψ(x, y))
√

αω, (8.12)

u1,y = sin (ωt + kψ(x, y))
√

αω, (8.13)

which can be expanded via trigonometric identities as

u1,x = √
αω cos(ωt) cos(kψ(x, y)) − √

αω sin(ωt) sin(kψ(x, y)), (8.14)

u2,x = √
αω cos(ωt) sin(kψ(x, y)) + √

αω sin(ωt) cos(kψ(x, y)), (8.15)

and then the overall dynamics can be rewritten as

[
ẋ
ẏ

]
=

[
a11 a12

a21 a22

] [
x
y

]
+ √

ω cos(ωt)︸ ︷︷ ︸
h1,ω(t)

[
b1

√
α cos(kψ(x, y))

b2
√

α sin(kψ(x, y))

]

︸ ︷︷ ︸
k1(x,y)

+√
ω sin(ωt)︸ ︷︷ ︸
h2,ω(t)

[−b1
√

α sin(kψ(x, y))
b2

√
α cos(kψ(x, y))

]

︸ ︷︷ ︸
k2(x,y)

. (8.16)

The second controller is continuous, but not differentiable, and is implemented
by the use of phase shifted triangle waves of period 2π

ω
:

u2,x = ftri,1 (ωt + kψ(x, y))
4

π

√
αω, (8.17)



8.1 The On-Average Equivalence of Various Dithers 95

u2,y = ftri,2 (ωt + kψ(x, y))
4

π

√
αω, (8.18)

where ftri,1(t) is in phase with cos(t) and ftri,2(t) is in phase with sin(t). One par-
ticular, analytical form of such controllers is

u2,x =
(

1 − 2

∥∥∥∥ ftri

[
cos

(
ω
t

2
+ k

ψ(x, y)

2

)]∥∥∥∥

)
4

π

√
αω, (8.19)

u2,y = ftri [cos (ωt + kψ(x, y))]
4

π

√
αω. (8.20)

In this case the λi j are determined by integrals of triangle waves.
The third controller is given by the discontinuous square wave of period 2π

ω
:

u3,x = fsqr,1 (ωt + kψ(x, y))
2

π

√
αω, (8.21)

u3,y = fsqr,2 (ωt + kψ(x, y))
2

π

√
αω, (8.22)

where fsqr,1(t) is in phase with cos(t) and fsqr,2(t) is in phase with sin(t). Which
can be expressed as

u3,x = sgn [cos (ωt + kψ(x, y))]
2

π

√
αω, (8.23)

u3,y = sgn [sin (ωt + kψ(x, y))]
2

π

√
αω. (8.24)

In this case the λi j are determined by integrals of sign functions.
The last controller is the most realistic for digital implementation. Is is given by

a square wave of period 2π
ω

with dead time:

u4,x = fsqrd,1 (ωt + kψ(x, y))
2

π

√
αω, (8.25)

u4,y = fsqrd,1 (ωt + kψ(x, y))
2

π

√
αω, (8.26)

where fsqrd,1(t) is in phase with cos(t) and fsqrd,2(t) is in phase with sin(t). This
controller can be expressed as

u4,x =
(

sgn
[
cos

(
ωt + kψ(x, y) + π

4

)]
+ sgn

[
sin

(
ωt + kψ(x, y) + π

4

)]) 2

π

√
αω,

u4,y =
(

sgn
[
cos

(
ωt + kψ(x, y) − π

4

)]
+ sgn

[
sin

(
ωt + kψ(x, y) − π

4

)]) 2

π

√
αω.

In this case the λi j are determined by integrals of sign functions.
For all of the controllers above, we use the same function, ψ(x, y) = x2 + y2.

For each fixed i , the controllers ui,x and ui,y are orthogonal and their gains have been



96 Application to Inverter Switching Control

chosen such that λix ,iy (t) ≡ − 1
2 , λiy ,ix (t) ≡ 1

2 . Thus, the same averaged system is
attained for each i :

˙̄x = a11 x̄ + a12 ȳ − b2
1kα x̄, (8.27)

˙̄y = a21 x̄ + a22 ȳ − b2
2kα ȳ. (8.28)

We simulate how the controllers stabilize the system (8.10), (8.11) with bi = 1,
a11 = 1, a12 = 0.75, a21 = 0.5, and a22 = 2. With these constants, the {ai j } matrix
has positive real eigenvalues 2.29 and 0.71 and the system is open loop unstable. We
perform the simulation with ω = 100, k = 4, and α = 1. The results are in Figs. 8.1
and 8.2.

Remark 8.1 In order to apply Theorem 1 to the examples above, such as for the
square wave of period 2π

ω
, we must expand them as their Fourier series:

usqr(ωt + ψ(x, t)) = 4

π

∑

n odd

1

n
sin (nωt + nψ(x, t))

= 4

π

∑

n odd

1

n
sin (nωt) cos (nψ(x, t))

+ 4

π

∑

n odd

1

n
cos (nωt) sin (nψ(x, t)) .

A less elegant, but easier to study and on-average equivalent example of such a
discontinuous bounded controller is

u = √
αωusqr,1(ωt) cos(kψ(x, t)) − √

αωusqr,2(ωt) sin(kψ(x, t)), (8.29)

where
usqr,1(ωt) = sgn [cos(ωt)] , usqr,2(ωt) = sgn [sin(ωt)] . (8.30)

Although we have written usqr(ωt) = sgn [cos(ωt)] so that it is easy for the reader
to interpret the values of the function, the digital implementation of such a function
does not require the calculation of cos(ωt) and is instead accomplished by using a
combination of a resetting ramp with slope ω

2π
and the sgn(·) function, both of which

are trivially implemented with minimal resources in fixed-integer length digital logic
such as that used in high speed field programmable gate arrays (FPGA), such as:

usqr(ωt) = sgn

[
ramp

( ω

2π
t
)

− 1

2

]
, (8.31)

where ramp(t) ramps from 0 up to 1 in 1 s, resets to 0, and repeats.
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8.2 Application to Inverter Switching Control

We consider a class of systems in which discontinuous, high frequency switching con-
trol is necessary by design and for which high frequency extremum seeking is espe-
cially well suited: DC to AC voltage inverters. Inverters are the basic building blocks
of many electrical systems. Control methods for inverters include the application of
classical PID, sliding mode, model predictive control methods [1, 4, 21, 26, 27],
and continue to be an active area of research in power electronics. We present a
simple ESCO approach which can accommodate uncertainties in the voltage input
into the system and unpredictable energy use which results in time-variation of the
load. This is especially important for the uncertain/time-varying characteristics of
renewable energy sources such as wind and solar due to unpredictable weather.

A typical DC to AC inverter is shown in Fig. 8.3. A DC voltage source is con-
nected to ground across an H-bridge and the load. The H-bridge functions by closing
alternating pairs (A1 and A2 or B1 and B2) of metal-oxide-semiconductor field-effect
transistors (MOSFETS), transistors designed for high frequency switching. As alter-
nate pairs of MOSFETS are activated the resulting voltage across the circuit, Vin,
switches from positive to negative and back. Currently available power electron-
ics MOSFETS are capable of holding off tens of thousands of volts and switching
within hundreds of nanoseconds. For our application, the switching is performed at
∼80 kHz and 709 V. The output of the switching H-Bridge is followed by a simple
LC filter and finally an uncertain, time-varying load, R(t), across which the goal is
to maintain a constant amplitude sinusoidal AC voltage.

The state equations of the circuit are Vin = L diL
dt +VR , iL = iC + iR , iC = C dVR

dt ,
iR = VR

R , Vin = u(t) × VDC(t), where iL , iC , and iR are the currents through the
inductor, capacitor, and resistor, respectively, and u(t) is the controlled H-bridge
switching signal. The system dynamics can be summarized as

V̈R(t) = −VR(t)

LC
− V̇R(t)

R(t)C
− VDC(t)

LC
u(t). (8.32)

Defining the error variables e1 = VR − Vref , ė1 = e2 and choosing the control law

u = √
αω fsqrd [ωt + k(J (e1, e2) + n(t))] , (8.33)

where J (e1, e2) = (e1 + k2e2)
2, whose minimization, is equivalent to trajectory

tracking and n(t) is noise. The closed loop dynamics are then

ė1 = e2, (8.34)

ė2 = − e1

LC
− e2

RC
− Vref

LC

− V̇ref

RC
+ V̈ref − VDC(t)

LC

√
αω fsqrd [ωt + k J (e1, e2) + kn(t)] . (8.35)
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Theorem 2.3 implies that the averaged dynamics are:

˙̄e1 = ē2, (8.36)

˙̄e2 = − ē1

LC
− ē2

RC
− Vref

LC
− V̇ref

RC
+ V̈ref −

(
VDC (t)

LC

)2
kαk2 (ē1 + k2ē2) . (8.37)

For any M > 0, we can guarantee the stabilization and convergence to the origin of
system (8.36), (8.37) over the compact set e1, r, e2, ṙ , r̈ ∈ K = {x ∈ R s.t. |x | < M}.
We do so with the Lyapunov function VL = e2

1
2 + (e1+k2e2)

2

2 and gains k, k2 and α such
that for all e1, r, e2, ṙ , r̈ ∈ K , V̇L < 0.

Remark 8.2 In this application, we have no choice on the magnitude of the input
voltage, the only signal that the controller, u, can send is to alternate between ±1,
while the magnitude of the actual voltage input to the system is fixed by VDC(t):

Vin(t) = VDC(t)u(t) = VDC(t)
√

αω fsqrd (ωt + . . .) . (8.38)

Therefore we first choose ω > 0 and we are then forced to choose α = 1
ω

, so that
the input voltage of the system satisfies the constraint:

|Vin(t)| = ∣∣VDC(t)
√

αω fsqrd (ωt + . . .)
∣∣ = ∣∣VDC(t) fsqrd (ωt + . . .)

∣∣ ≤ |VDC(t)| .

This type of constraint is exactly what the bounded form of extremum seeking pre-
sented above is especially well suited for since unknowns enter the controller dynam-
ics as the arguments of a-priori chosen, known, bounded functions.

We demonstrate this controller by simulating a system with a time-varying
resistance

R(t) = 50

(
1 + 4

5
sin (2π × 30t)

)
,

and a two time-scale varying input voltage

Fig. 8.3 The timing of the
switching of the H-bridge is
controlled by the control
signal, u(t), which closes the
MOSFETS in alternating
pairs, A1 and A2 or B1 and
B2, causing the current to
flow clockwise or
counterclockwise through
the circuit, respectively

VDC(t)

R(t)

L

C
u

Vin(t)

A1

A2

B1

B2

VR(t)

http://dx.doi.org/10.1007/978-3-319-50790-3_2
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Fig. 8.4 The system is shown to closely track the desired output voltage trajectory despite time
variation of both the DC voltage and the output load. The entire 0.05 s simulation as well as detailed
views of certain time segments are shown

VDC(t) = 709 + 106 cos (2π × 100t) + 18 cos (2π × 1200t).

The system parameters are

L = 3.5 mH, C = 500 μF, VDC ≡ 709 V, Vref(t) = 570 cos (2π × 120t) V.

Simulation results with ω = 2π ×8000, α = 1
ω

, k = 35×10−6, and k2 = 7.5×10−3

are shown in Fig. 8.4.



Chapter 9
Application Study: Particle Accelerator
Tuning

It is rarely possible to build exact, deterministic input to output models for complex
physical systems. It is especially difficult when the behavior of the system is influ-
enced by many coupled parameters. Some common methods for dealing with large
complex systems are genetic algorithm (GA) and multi-objective genetic algorithm
(MOGA) based multidimensional, nonlinear optimization schemes. Although such
methods do an exhaustive search of parameter space and can provide globally opti-
mal designs, they are limited in being model-dependent. For example, MOGAs and
GAs have been used to successfully optimize many aspects of particle accelerators,
such as magnet and radio frequency (RF) cavity design [56], photoinjector design
[9], damping ring design [34], storage ring dynamics [11], global optimization of
a lattice [154], neutrino factory design [120], simultaneous optimization of beam
emittance and dynamic aperture [38], and free electron laser linac drivers [8]. A
thorough review of GA for accelerator physics applications is given in [60].

However, after any large system design has been finalized and the machine has
been constructed, one often encounters time varying and nonlinear coupling effects
between the imperfectly manufactured and misaligned/unknown orientation compo-
nents. In theory, accelerator design takes a certain level of uncertainty into account.
In practice however, most large systems, such as, for example, particle accelerators,
require post-manufacture and post-installation tuning. This is especially the case
for facilities with limited real-time diagnostics and noise measurement. In this case
components may have to be retuned after each shutdown or change in operating
conditions. Effects such as unknown hysteresis curves and time varying component
thermal cycling also add to system uncertainty.

Extremum seeking, with its ability to handle open-loop unstable, time-varying,
nonlinear systems, is therefore an ideal candidate for online persistent control and
optimization of complex, many parameter, large systems.

In this chapter we present the results of a detailed simulation study of applying
ES for the optimal tuning of a particle accelerator with time-varying components and
time-varying proton beam properties. This large, nonlinear, complex system is ideal
for demonstrating how powerful this ES approach is. We also provide experimental
results of applying ES to actively tune the resonant frequency of an RF cavity based

© The Author(s) 2017
A. Scheinker and M. Krstić, Model-Free Stabilization by Extremum Seeking,
SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-50790-3_9
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102 9 Application Study: Particle Accelerator Tuning

only on reflected power measurements.We begin with a few guidelines for the digital
implementation of ES.

9.1 Guidelines for Digital Implementation

9.1.1 Cost and Constraints

The first step in applying ES to an actual system is to choose tunable machine
parameters, p = (p1, . . . , pm) and a cost function to be minimized,

C = C(p1(t), . . . , pm(t), t).

Next, constraints for all parameters are chosen

pmax = (
p1,max, . . . , pm,max

)
, pmin = (

p1,min, . . . , pm,min
)
.

Implementing initial parameter settings p(1), which are chosen based on the physics
model and numerical methods, allows one to calculate C(p(1)). The iterative update
scheme is then:

pi (n + 1) = pi (n) + Δ
√

αωi cos (ωi nΔ + kC(p(n))) , (9.1)

which is based on the finite difference approximation of the derivative:

pi (t + Δ) − pi (t)

Δ
≈ ∂pi

∂t
= √

αωi cos (ωi t + kC(p(t), t)) , (9.2)

which, according the Theorem 6.1 will drive the system towards a minimum of C .
The constraints are implemented by checking the updated parameters at each step
and confining them to their bounds if necessary:

pi (n + 1) > pi,max =⇒ pi (n + 1) = pi,max, pi (n + 1) < pi,min, =⇒ pi (n + 1) = pi,min.

9.1.2 Choice of ω, and Δ

It is important that ωi � kC , so that the adaptive scheme is operating on a faster
time scale then and able to adapt to time variation of the cost function. Because ES
depends on distinguishing between different frequency components of the cost, Δ

should be chosen in the range of:

http://dx.doi.org/10.1007/978-3-319-50790-3_6
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Δ ≤ 2π

20 × max {ωi } , (9.3)

ensuring that at least 20 iterations (10× the Nyquist sampling rate) are required
to perform one complete cosine oscillation in the iterative scheme (9.1). Choosing
smaller values of Δ results in smoother parameter oscillation and more iterative
steps required for convergence, larger values of Δ speed up the convergence, but
may destabilize the overall scheme.

According to Theorem 6.1, the only requirement on the choices of ωi is that
they are big enough and distinct, but in practice, the more harmonically independent
they are (such as ωi �= 2ω j for all i �= j) the better. The sensitivity to frequency
independence is different for every system and depends on the coupling between
different components. One simple method is to choose a scaling factor, ω0, and

ωi = ω0ri , (9.4)

where the values ri are distinct.

9.1.3 Choice of k and α

The rate of convergence is proportional to the product kα, increasing either k or α

speeds up convergence, as long as they are not too big relative to the value of ω0, so
that the finite difference is an accurate approximation of the derivative. If, after ω0

has been chosen, the convergence is too slow, or if a local minimum is suspected, k or
α may be increased, with the possible need to increase ω0 as well. The vector p(t) is
moving through the parameter space Rm in ellipses with approximate major axes of
magnitude

√
α
ω
, increasing α causes larger steady state parameter oscillations, which

is not a problem if the adaptation is turned off following successful convergence.

9.1.4 Digital Resolution

Although the analytic form ofC(n)may be unknown, at each iteration the parameters
are perturbed by a quantities with known bounds:

0 ≤ ∣∣Δ
√

αωi cos (ωi nΔ + kC(p(n)))
∣∣ ≤ Δ

√
αωmax. (9.5)

For a system with nb bits of resolution, and maximum bounds±Mi on the parameter
settings, if Δ, α, and ωi are chosen such that Δ

√
αωi ≥ N × Mi

2nb , then, as cos()
varies between 0 and 1, it is possible for the parameter value to take N discrete steps
of minimum resolution Mi

2nb .

http://dx.doi.org/10.1007/978-3-319-50790-3_6
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9.1.5 Normalization of Parameters

Different parameters pi may require individual values of ki and αi , in which case
normalizing the parameters to within [−1, 1] bounds may be useful. For example, at
each step n, one may compute the cost C(n) based on parameter settings p(n), then
translate into the scaled parameters ps(n):

ps,i (n) = 2
(

pi (n) − C p,i
)

Dp,i
, (9.6)

whereC p,i = pi,max+pi,min

2 and Dp,i = pi,max− pi,min, bounding each parameter within
[−1, 1]. We then perform the update

ps,i (n + 1) = ps,i (n) + Δ
√

αiωi cos (ωi nΔ + ki C(p(n))) , (9.7)

force the scaled parameters to satisfy the constraints −1 and 1, and transform back
into un-scaled parameter values in order to calculate the cost for the next iteration:

pi (n + 1) = ps,i (n + 1)Dp,i

2
+ C p,i . (9.8)

Remark 9.1 In the case of different parameters having vastly different response
characteristics and sensitivities (such as when tuning both RF and magnet settings
in the same scheme), the choices of k and α may be specified differently for each
component pi , as ki and αi , without change to the above analysis.

9.2 Automatic Particle Accelerator Tuning: 22 Quadrupole
Magnets and 2 Buncher Cavities

A particular problem faced by many accelerator systems is the arbitrary phase shift
of the RF systems, a time-varying uncertainty, requiring time consuming tuning such
as phase scans. The method presented here is demonstrated to automatically adapt
for time varying properties, such as phase shift.

In this section we present simulation results of using the ES scheme to tune up
the twenty two quadrupole magnets and two buncher cavities in the Los Alamos
linear accelerator H+ transport region, a simplified schematic of which is shown in
Fig. 9.1. The simulations were done using a GPU-accelerated online beam dynamics
simulator, which is being developed to predict beam properties along the linac using
real time machine parameters. It can serve as a virtual beam experiment environment
and contribute to the cost being minimized by the ES optimizer, by providing pseudo
realtime estimates of beam sizes and current information in parts of the machine
where diagnostics are not available. Currently being demonstrated on the LANSCE
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low energy beam transport (LEBT) and drift tube linac (DTL), simulating a bunch of
32K macro particles through the LEBT or DTL takes fractions of a second, which
is 40 times faster than the simple CPU version of the code.

9.2.1 Magnet Tuning for Beam Transport

In a first, simple demonstration of the technique, we perform a simulation of only
the LEBT, with all initial magnet current set points set to 0A, and allowed to tune
up based purely on the ES scheme as described above, in which the four costs
(j = 1,2,3,4) being minimized C j = (

I j − 0.013
)2
, were the square of the difference

between initial beam current 0.013A and total current making it through various
parts of the transport region, at which diagnostics are available. With reference to
Fig. 9.1, the current is sampled at four locations, I1, following Q6, I2 following Q10,
I3 following Q18 and I4 at the end of the transport region. The magnets (i=1,...,22)
were then updated according to:

Qi (n + 1) = Qi (n) + √
αωiΔ cos (ωiΔn + kSi (n)) , (9.9)

where Si = C4 + C3 + C2 + C1 for Q1 − Q6, Si = C4 + C3 + C2 for Q7 − Q10,
Si = C4 + C3 for Q11 − Q18 and Si = C4 for Q19 − Q22, so that magnets only
saw costs which they were able to influence. For the tuning parameters, we chose
k = 2,50,000, so that the amplified costs kSj in (9.9) took values between 0 and 300.
The ωi were chosen as ω0ri , with ω0 = 1000 and ri uniformly distributed between
2.5 and 3.7, Δ = 2π

20ω22
, and α = 15. With these values, ωmin

kCmax
> 20.

Q1
Q2
Q3
Q4
Q5
Q6

Q7
Q8

Q9 Q10 Q11Q12 Q13Q14 Q15Q16 Q17Q18

Qi-Quadrupole Magnet

Injector

Drift Tube Linac

Bend Magnet

Other Components (diagnostics/scrapers/jaws...)
Beam

Q19Q20 Q21Q22

Buncher

Pre Buncher
Main Buncher

Fig. 9.1 Simplified schematic of the LANSCE H+ injector and transport region
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Fig. 9.2 Left The surviving current at the end of the beam transport over 2500 iteration steps is
shown for an initial beam current of 13mA. Right Evolution of the magnet current settings to the
magnets over 2500 iteration steps
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Fig. 9.3 Left RMS beam size at the end of the iterative tuning scheme. Right Magnet settings at
the end of the iterative tuning scheme compared to 2011 tune up settings

Figure9.2 shows the evolution of the surviving beam current at the end of the
transport region during the ES tuning scheme and the evolution of the magnet current
inputs. Figure9.3 shows the RMS beam size through various parts of the transport
region at the end of ES tuning and compares the ES found magnet settings to that of
the tune up in 2011.

This example demonstrates some of the strengths and limitations of the scheme,
and the importance of cost function choice. Although the cost has been minimized
and almost all current is making it to the end of the transport region, the beam is
beginning to diverge and in this formwould not be matched to the DTL following the
transport region. In practice it is of course better to start with physics-model based
initial parameters, this simulation was conducted starting with all magnet settings
at zero in order to fairly demonstrate the model-independent abilities of the ES
scheme. The next simulations start with the 2011 tune up for the magnet settings and
use current monitors following two tanks of the DTL, in which case surviving beam
corresponds with well-matched beam.

9.2.2 Magnet and RF Buncher Cavity Tuning

To demonstrate the use of this scheme for fine tuning of machine settings, we used
machine settings found during the 2011 tune up procedure, but with a slightly dif-
ferent beam and incorrectly phased buncher cavities. The magnets were initialized
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Fig. 9.4 Left The surviving current at the end of the beam transport over 2000 iteration steps is
shown for an initial beam current of 15mA. Right New magnet settings after optimization
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(dashed) with RMS beam size following ES tune (solid)

to the values recorded from one of the 2011 machine turn on tuning periods. We set
the phase settings for the buncher and pre-buncher to zero, which typically must be
re-tuned at each turn on, by a phase scan, to take care of arbitrary phase shift.

We used only the surviving current at the end of the second tank of the drift tube
linac to create our cost, our tuning procedure for the parameters was:

Qi (n + 1) = Qi (n) + √
αiωiΔ cos (ωi nΔ + kC(n)) , (9.10)

where αi = αm for the magnets and αi = αb for the buncher phases. In both
cases C(n) = (Iend − 15mA)2. For the tuning parameters, we chose k = 6,05,000,
αm = 25, αb = 550. The ωi were chosen as ω0ri , with ω0 = 2000 and ri uniformly
distributed between 2.5 and 4.3, Δ = 2π

20ω24
. With these values, ωmin

kCmax
> 35.

With an initial beam current of 15mA, the typical surviving current after machine
tune up is roughly 80% or 12mA. After 2000 simultaneous iterations on these 24
parameters (22 quads, 2 buncher phases), the surviving current at the end of Tank
2 was 12.25mA. The results of the optimization procedure are shown in Figs. 9.4,
9.5 and 9.6. From Figs. 9.4 and 9.5 we see that only minor adjustments are made to
magnet settings compared to theRFphases. Figure9.5 shows that the transverse beam
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Fig. 9.6 Surviving beam
current along the machine
with 2011 tune-based
magnet settings and arbitrary
phase (red) and following ES
tune (blue)
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size has further focused throughout the transport region and the transverse match to
the DTL has slightly improved. Figure9.6 compares surviving beam current at the
end of Tank 2 of the DTL before and after tuning.

9.2.3 Adaptation to Time Varying Phase Delay and Beam
Characteristics

In order to demonstrate the adaptive tuning abilities of the scheme, we started with
matched beam settings and varied both the characteristics of the input beam and
added a time-varying phase drift to each buncher cavity.

Figure9.7 shows the initial and final beam properties at the entrance to the trans-
port region, during which ES adaptive tuning maintains beam focus and matching.
Figure9.8 shows the phase shift of the bunchers with and without tuning. These
changes took place starting at step 1000 and finished at step 19, 000, with beam
properties staying constant before and after the interval. Also, during this beam
changing process, the phase of the first buncher was made to drift by 30◦ and that of
the second by 35◦, as seen in Fig. 9.8. The drift of beam characteristics and buncher
phase shifts took place over 18000 time steps, which for a conservative magnet/phase
update rate of 1Hz translates into drastically changing accelerator and beam prop-
erties over the course of just 5h. All tuning parameters were maintained exactly the
same as in the previous example.

Figure9.8 shows the evolution of the magnet gradients throughout the process,
Fig. 9.9 shows the new final magnet settings, and Fig. 9.9 compares the initial and
final beam profiles. In Fig. 9.10 we see that adaptive ES tuning is able to maintain
∼ 12mAof surviving beamduring the time-varying beam and phase, whereas almost
all of the beam is lost without tuning.
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9.3 In-Hardware Applicaiton: RF Buncher Cavity Tuning

In this chapter,wepresent the results of applyingESCOformaintainingRFcavity res-
onant frequencies at their design values despite unknown external disturbances, such
as temperature changes which perturb the resonant frequency of a cavity by chang-
ing its geometry [136]. The particles in modern particle accelerators acquire kinetic
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Fig. 9.10 Surviving beam
current at the end of the
second DTL tank with and
without adaptive ES tuning.
The cost evolution during the
tuning process is also shown
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energies of tens to hundreds of gigaelectronvolts (GeV), which require accelerating
gradients of tens of megavolts (MV) per meter in order to build machines of reason-
able size. Currently, the only efficient way to develop MV gradients while avoiding
electrical breakdown is to use resonant radio frequency (RF) cavities. The reso-
nant frequencies of such cavities depend on their geometries. The proposed method
automatically compensates for time-varying drifts of cavity resonance despite time
varying drifts of the entire RF system, such as arbitrary phase shifts caused by cable
length changes, which typically result in periodic manual re-calibration for standard
phase-information-dependent resonance control systems to function.

The ES algorithm works by moving a mechanical slug, which changes the reso-
nant frequency of an RF cavity, in such a way that the reflected power from the RF
cavity is continuously minimized. By minimizing reflected power, the algorithm is
independent of RFfield phasemeasurements. A similarmodel-independent approach
has been applied to a superconducting cavity setup in [137], which requires control-
ling piezo actuators to compensate for fast phase shifts due to Lorenz force detuning
[7, 43, 78, 92, 140].

9.3.1 RF Cavity Background

The resonant mode most useful for acceleration in a right cylindrical conducting
cavity has electric and magnetic field components of the form

E(r, t) = E0 J0

(
2.405r

Rc

)
eiω0t ẑ = Ez(r)eiω0t ẑ,

B(r, t) = −i

√
ε

μ
J1

(
2.405r

Rc

)
eiω0t ϕ̂ = Bϕ(r)eiω0t ϕ̂,
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Fig. 9.11 Left to right Right cylindrical RF cavity, field strength as a function of distance from
cavity center, circuit model of RF cavity mode, and slug tuner setup for resonance control

where J0 and J1 are Bessel functions of the first kind with zeroth and first order [64].
The resonant frequency is given by

ω0 = 2.405c

Rc
, (9.11)

where c is the speed of light and Rc is the radius of the cavity. In this accelerating
mode, the electric field has only a z-component, down the axis of the cavity, and
is therefore useful for acceleration, while the magnetic field has only azimuthal
component and is zero on axis, as shown in Fig. 9.11. For example, the resonant
cavities used at the Los Alamos National Laboratory linear particle accelerator have
201.25MHz RF fields and radii of approximately 0.57m.

The geometry of an RF cavity is constantly perturbed by, amongst other things,
deformations due to temperature change. The high power (megawatts) RF fields in
the cavities are sustained by currents in the cavity walls, which, through resistive
losses, deposit large amounts of energy into the cavity walls. As a cavity cools or
heats up, it’s geometry changes, which causes a change in the resonant frequency.
The temperature of the cavities must therefore be controlled both to prevent melting,
and to sustain a precise, designed resonant frequency, so that the RF source providing
power to the cavity is well matched. Another source of temperature change is the
time-varying environment in which the cavities are typically located, which undergo
temperature fluctuations.

Equation (9.11) is accurate in the case of a perfect cylindrical cavity. In practice,
cavity geometries are more complicated, and temperature variations in the cavity
walls are uneven, resulting in a non-trivial geometric deformations and complicated
resonance shifts. According to the Slater perturbation theorem [141], a small shift in
resonance frequency is introduced by removing or adding a small volume Δ V from
the cavity volume V, according to

Δω0 = ω0

∫
ΔV

(
μ0B2 − ε0E2

)
dV

∫
V

(
μ0B2 + ε0E2

)
V

. (9.12)

Temperature control for RF cavities is typically performed by water cooling sys-
tems, which roughly keep the cavities within ±0.1◦ of a desired temperature, with
response times on the order of tens of seconds. Such control is sufficient for keeping
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the cavities well cooled, and within a rough neighborhood of their required reso-
nance frequency, but is too slow and too inaccurate to maintain the cavities within
required bounds of their designed resonance frequencies such that reflected power
is acceptably low.

The response of a single mode of a resonant radio frequency (RF) cavity can be
fairly accurately modeled as an RLC circuit (Fig. 9.11), with dynamics

V̈ = −ω2
0V − ω0

Q
V̇ + 1

C
İ (9.13)

where V (t) is the cavity’s accelerating voltage, I (t) is the driving current, C is a
capacitance, and L is inductance, such thatω0 = 1√

LC
, and Q = f0/ f1/2 is the cavity

quality factor where f0 = ω0/2π and f1/2 is the cavity half-power bandwidth.
For RF driving current of the from I (t) = cos(ωt), at steady state, the cavity field

is proportional to

V ∼ 1
√
1 + γ 2

, γ ≈ 2Q
ω − ω0

ω0
, (9.14)

and reflected power is proportional to

Pr(ω, ω0) ∼ 1 − 1
√

1 + 4Q2
(

ω−ω0
ω0

)2
. (9.15)

If the difference between driving frequencyω and resonant frequencyω0 is too large,
the reflected power can result in both damage to the RF source and insufficient power
in the cavity to reach desired accelerating field levels.

9.3.2 Phase Measurement Based Resonance Controller

High accuracy, fast resonance control is performed via tuning of mechanical slugs
by electric stepper motors, as shown in Fig. 9.11, which modify cavity resonance as
estimated by Eq. (9.12). Because the electrical field of the accelerating mode decays
to zero, while the magnetic field grows to a maximum amplitude as we approach
the outer wall of the cavity, as shown in Fig. 9.11, near the wall of the cavity, for
small slug displacement, δ, from some initial position δ0, we estimate E ≈ 0 and
B(r) ≈ B2(Rc), where Rc is the radius of the cavity.

Considering a slug of radius rs , for small perturbations δ, we approximate
(9.12) as

Δω0(δ) ≈ ω0K δ, K = πr2s B2(Rc)∫
V

(
μ0B2 + ε0E2

)
V

. (9.16)
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We also know that for a given frequency offset, Δω, the phase of the cavity field
relative to the driving field, is given by ψ , which satisfies

tan(ψ) ≈ 2Q
Δω

ω0
. (9.17)

Combining (9.16) and (9.17) one is able to determine in which direction to move the
slug in order to compensate for temperature-induced resonance shift. The difficulty
with this approach is in its requirement of a precise phase-difference measurement.
Although the difficulty inmeasuring the phase difference between twohigh frequency
RF signals has been overcome, there is always an arbitrary phase shift introduced
by the cables through which the RF signals are transported for measurement. Such
arbitrary phase offsets can be calibrated out by considering the reflected power from
a frequency-perturbed cavity, (9.15), which has a minimum when the cavity is on
resonance.

This feedback is then put in place during cavity operation to maintain resonance.
However, any time that maintenance is performed and any equipment or cables
are changed, the calibration must be re-done. Furthermore, because the RF cables
throughout accelerators are constantly experiencing temperature variations, their
lengths are time-varying quantities whose slow variations continuously introduce
un-calibrated offsets into the feedback system.

Therefore, we utilize the ability of bounded ES to minimize time-varying, uncer-
tain functions, to maintain cavity resonance despite unknown time-varying pertur-
bations of cavity geometry. The main idea of the ES-based resonance controller is
to continuously minimize reflected power measurements in order to maintain the
cavity on resonance, without needing any phase information. A typical PID-type
loop is unable to utilize the reflected power measurement for continuous slug tuning
without phase measurements, because of the direction ambiguity; reflected power
increases whenever the cavity is too hot or too cold, and only the additional infor-
mation provided by phase measurement tells one which direction the resonance has
moved. Considering reflected power (9.15) together with the influence of the slug
on the cavity resonance (9.16), we get the slug-perturbed reflected power:

1 − 1
√

1 + 4Q2
(

ω−ω0(1+K δ)

ω0(1+K δ)

)2
. (9.18)

Furthermore, if the resonance of the cavity has shifted from its nominal value, ω0

to ω0 + ε(t), due to mechanical changes, such as expansion or contraction due to
temperature change, the reflected power is proportional to

1 − 1
√

1 + 4Q2
(

ω−(ω0+ε(t))(1+K δ)

(ω0+ε(t))(1+K δ)

)2
. (9.19)
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Typically, an RF system is set up to drive the cavity with a field at its design resonance
frequency, ω0, the reflected power is then proportional to

Pr (ε(t), δ) = 1 − 1
√

1 + 4Q2
(

K δ(ω0+ε(t))+ε(t)
ω0+ω0K δ+ε(t)+ε(t)K δ

)2
, (9.20)

which has a global minimum at

δ�(t) = − ε(t)

K (ω0 + ε(t))
. (9.21)

We utilize the ES feedback:

δ̇ = √
αωE S cos (ωE St + k Pr (ε(t), δ, t)) , (9.22)

which has average dynamics
˙̄δ = −kα

2

∂ Pr

∂δ̄
, (9.23)

which performs a gradient descent towards the global minimum d�(t), when the high
frequency ES perturbation ωE S is fast relative to the disturbance dynamics ε(t).

9.3.3 Experimental Results

For the short term test, a heat sourcewas used to periodically heat the cavity and cause
it to move drastically off resonance as shown in the first 15min of Fig. 9.12, where
without feedback control, the reflected power is periodically dramatically increased.
After 15min, the ES feedback control 9.22 was activated and no change is seen in
reflected power in Fig. 9.12. Figure9.13 zooms in to show both the reflected power

Fig. 9.12 Reflected power is shown as a function of time. for the first 15min the ES controller is off
and a heating element is used to perturb the cavity resonance periodically. After 15min, feedback
control is activated and reflected power is kept at a minimum despite the heater turning on
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Fig. 9.13 A zoomed in detailed view of the reflected power (blue) and the position of the control
slug (red). The controller can be seen activating every time that the heater is turned on, to maintain
minimal reflected power

Fig. 9.14 Reflected power (red) is shown next to slug tuner position (black) with implementation
of dead zone to prevent slug from continuously moving

and slug tuner position when the heater was activated and the motor had to respond
to keep the cavity on resonance.

Finally, Fig. 9.14 shows results of implementation of ES combined with a dead
zone so that the controller only responded when reflected power exceeded a pre-
scribed threshold, resulting in the motor moving only for small periods of time
when required, instead of the persistent motion typical of ES feedback which could
degrade the mechanical motor over time. A long term test was conducted over 2days
for 50+h. While the reflected power is maintained below a prescribed threshold, the
slug tuner position is seen to move in a repeatable fashion to compensate for short
heater-induced temperature variations, and a slower, further motion takes place over
a longer time scale as the room temperature slowly drifted.



Chapter 10
Conclusions

This book presents a new application of Extremum Seeking, as a method for sta-
bilization of unknown systems as well as trajectory tracking and optimization. The
stabilization of unknown systems is possible due to the controller’s ability to per-
form a gradient descent of unknown functions or of purposely chosen Lyapunov-like
functions.

The extremum seeking algorithm creates a closed loop system that is independent
of the control vector’s direction. This is a useful property which allows us to stabilize
and perform trajectory tracking with unknown, unstable, control direction-varying
systems using a particular form of time-varying nonlinear high-gain feedback.

In Chap.5, we showed that the ES controllers may be chosen such that they turn
themselves off as equilibrium is approached, in Chap.6 we showed that they may
be chosen so that they are bounded, with all unknowns entering the ES scheme as
arguments of a-priori known, bounded functions, in Chap.7, we showed that we
are not limited to systems affine in control, and in Chap. 8 we concluded that we
may replace smooth perturbing functions such as sin(·) or cos(·), with a general
class of integrable functions, such as square waves with dead time or triangle waves,
signals which are more naturally implemented in digital logic. Finally, in Chap.9 we
described a few cases of implementation of these methods, in hardware, for tuning
various components of a particle accelerator.

One of the main challenges of ESS, as with all other ES approaches, is that it
is an existence result. For any system, for any given compact set and any desired
degree of accuracy, there exists some ω�, such that for all ω > ω�, the desired results
hold. Finding concrete bounds on ω� based on a given system’s parameters and a
set of initial conditions would be an interesting result. Another possible topic of
future research may be in creating an auto-tuning ESC controller, which iteratively
or dynamically adjusts its own k, α, and ω values, in order to stabilize or optimize
an unknown system.
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A. Scheinker and M. Krstić, Model-Free Stabilization by Extremum Seeking,
SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-50790-3

119



120

• theory and control of nonlinear systems, in particular hybrid (logic/dynamic, sym-
bol/ signal) systems.

He has published more than 300 papers in international journals, books, and refereed
conferences.

ProfessorBicchi currently serves as the Director of the Interdepartmental Re-
search Center “E. Piaggio” of the University of Pisa, and President of the Italian
Association or Researchers in Automatic Control. He has served as Editor in Chief
of the Conference Editorial Board for the IEEE Robotics and Automation Society
(RAS), and as Vice President of IEEE RAS, Distinguished Lecturer, and Editor for
several scientific journals including the International Journal of Robotics Research,
the IEEE Transactions on Robotics and Automation, and IEEE RAS Magazine. He
has organized and co-chaired the firstWorldHapticsConference (2005), and Hybrid
Systems: Computation and Control (2007). He is the recipient of several best pa-
per awards at various conferences, and of an Advanced Grant from the European
Research Council. Antonio Bicchi has been an IEEE Fellow since 2005.

Miroslav Krstic holds the Daniel L. Alspach chair and is the founding director of the
Cymer Center for Control Systems and Dynamics at University of California, San
Diego. He is a recipient of the PECASE, NSF Career, and ONR Young Investigator
Awards, as well as the Axelby and Schuck Paper Prizes. Professor Krstic was the
first recipient of the UCSD Research Award in the area of engineering and has held
the Russell Severance Springer Distinguished Visiting Professorship at UC Berkeley
and the HaroldW. Sorenson Distinguished Professorship at UCSD. He is a Fellow of
IEEE and IFAC. Professor Krstic serves as Senior Editor for Automatica and IEEE
Transactions on Automatic Control and as Editor for the Springer series Commu-
nications and Control Engineering. He has served as Vice President for Technical
Activities of the IEEE Control Systems Society. Krstic has co-authored eight books
on adaptive, nonlinear, and stochastic control, extremum seeking, control of PDE
systems including turbulent flows and control of delay systems.



References

1. A. Abrishamifar, Fixed switching frequency sliding mode control for single-phase unipolar
inverters. IEEE Trans. Power Electron. 27, 2507–2514 (2012)

2. V. Adetola, M. Guay, Adaptive output feedback extremum seeking receding horizon control
of linear systems. J. Process Control 16, 521–533 (2006)

3. V. Adetola, M. Guay, Guaranteed parameter convergence for extremum-seeking control of
nonlinear systems. Automatica 43, 105–110 (2007)

4. S. Almer, S. Mariethoz, M. Morari, Dynamic phasor model predictive control of switched
mode power converters. IEEE Trans. Control Syst. Technol. 23, 349–356 (2015)

5. R.Antonello,M.Carraro,M.Zigliotto,Maximum-torque-per-ampere operation of anisotropic
synchronous permanent-magnet motors based on extremum seeking control. IEEE Trans.
Industr. Electron. 61, 5086–5093 (2014)
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75. M. Krstić, Z. Li, Inverse optimal design of input-to-state stabilizing nonlinear controllers.

IEEE Trans. Automat. Control 43, 336–350 (1998)
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