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Preface

Recent years have seen tremendous growth in use of radio frequency spectrum
especially by commercial cellular operators. Ubiquitous use of smartphones and
tablets is one of the reasons behind an all-time high utilization of spectrum. As a
result, cellular operators are experiencing a shortage of radio spectrum to meet
bandwidth demands of users. On the other hand, spectrum measurements have
shown that much spectrum not held by cellular operators is underutilized even in
dense urban areas. This has motivated shared access to spectrum by secondary
systems with no or minimal impact to incumbent systems. Spectrum sharing is a
promising approach to solve the problem of spectrum congestion as it allows cellular
operators access to more spectrum in order to satisfy the ever-growing bandwidth
demands of commercial users. The US spectrum regulatory bodies, the Federal
Communications Commission (FCC) and the National Telecommunications and
Information Administration (NTIA), are working on an initiative to share 150 MHz
of spectrum, held by federal agencies, in the band 3550–3700 MHz with commercial
wireless operators. This band is primarily used by the Department of Defense for air,
ground, and shipborne radar systems that are critical to national defense.

Radars operating in this band are a major source of interference to communi-
cation systems. However, radar waveform can be transformed in such a way that it
does not interfere with communication systems. This is accomplished by projecting
the radar signal onto the null space of the wireless channel between radar and
communication system. This book discusses two different types of radar waveforms
that are designed specifically for congested RF spectrum environments, thus,
enabling simultaneous operation of radar and communication systems.

Arlington, VA, USA Awais Khawar
November 2015 Ahmed Abdelhadi

T. Charles Clancy

v



Acknowledgments

The work reported in this book was supported by DARPA under the SSPARC
program. Contract Award Number: HR0011-14-C-0027. We are grateful to our
sponsors for funding spectrum sharing research between radar and communication
systems.

vii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Spectrum Sharing Efforts Between Radar

and Communication Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Waveform Design for Congested Spectrum . . . . . . . . . . . . . . . . . 3
1.3 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Radar Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Cellular System Model. . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Interference Channel Model . . . . . . . . . . . . . . . . . . . . . . 5
1.3.4 Cooperative RF Environment . . . . . . . . . . . . . . . . . . . . . 5
1.3.5 Spectrum Sharing Scenario . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Spectrum Sharing via a Projection Based Scheme . . . . . . . . . . . . 6
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 BPSK Radar Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Finite Alphabet BPSK Beampattern Matching . . . . . . . . . . . . . . . 12
2.2 Gaussian Covariance Matrix Synthesis for Desired

Beampattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 BPSK Waveform Design for Spectrum Sharing . . . . . . . . . . . . . . 14

2.3.1 BPSK Waveform for Stationary MIMO Radar . . . . . . . . . 16
2.3.2 BPSK Waveform for Moving MIMO Radar . . . . . . . . . . . 18

2.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 QPSK Radar Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Finite Alphabet Constant-Envelope Beampattern Design . . . . . . . . 24
3.2 Finite Alphabet Constant-Envelope QPSK Waveforms . . . . . . . . . 25
3.3 Gaussian Covariance Matrix Synthesis for Desired

Beampattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix

http://dx.doi.org/10.1007/978-3-319-29725-5_1
http://dx.doi.org/10.1007/978-3-319-29725-5_1
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-29725-5_1#Bib1
http://dx.doi.org/10.1007/978-3-319-29725-5_2
http://dx.doi.org/10.1007/978-3-319-29725-5_2
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec7
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Sec7
http://dx.doi.org/10.1007/978-3-319-29725-5_2#Bib1
http://dx.doi.org/10.1007/978-3-319-29725-5_3
http://dx.doi.org/10.1007/978-3-319-29725-5_3
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec3


3.4 Waveform Design for Spectrum Sharing . . . . . . . . . . . . . . . . . . . 31
3.4.1 Stationary Maritime MIMO Radar . . . . . . . . . . . . . . . . . . 31
3.4.2 Moving Maritime MIMO Radar . . . . . . . . . . . . . . . . . . . 32
3.4.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.1 Waveform for Stationary Radar . . . . . . . . . . . . . . . . . . . . 35
3.5.2 Waveform for Moving Radar . . . . . . . . . . . . . . . . . . . . . 38

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Appendix A: Solution of Waveform Design Optimization Problem . . . . 43

Appendix B: MATLAB Code for Waveform Design . . . . . . . . . . . . . . . 49

x Contents

http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec8
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec8
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec9
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec9
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec10
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec10
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec11
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Sec11
http://dx.doi.org/10.1007/978-3-319-29725-5_3#Bib1


List of Figures

Figure 1.1 Spectrum sharing scenario: Seaborne MIMO radar
detecting a point target while simultaneously sharing
spectrum with a MIMO cellular system . . . . . . . . . . . . . . . 6

Figure 2.1 Block diagram of the transmit beampattern design
problem for a stationary maritime MIMO radar. The
desired waveform is generated by including the
projection matrix P�V, for the candidate interference
channel HBest, in the optimization process. For this
waveform constant envelope property is not guaran-
teed. The candidate interference channel is selected by
Algorithms 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.2 Block diagram of the transmit beampattern design
problem for a moving maritime MIMO radar. The
desired waveform is generated with constant envelope
property and then projected onto the candidate inter-
ference channel HBest via projection matrix P�V. The
candidate interference channel is selected by
Algorithms 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.3 Transmit beampattern and its MSE for a stationary
maritime MIMO radar. The figure compares
the desired beampattern with the average beampattern
of BPSK waveforms for null space projection included
in beampattern matching optimization problem
for candidate interference channel HBest . . . . . . . . . . . . . . . 19

Figure 2.4 Transmit beampattern and its MSE for a moving
maritime MIMO radar. The figure compares the
desired beampattern with the average beampattern of
BPSK waveforms for null space projection after
optimization for candidate interference channel
HBest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

xi



Figure 3.1 Block diagram of waveform generation process
for a stationary MIMO radar with spectrum sharing
constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.2 Block diagram of waveform generation process for
a moving MIMO radar with spectrum sharing
constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.3 QPSK waveform for stationary MIMO radar, sharing
RF environment with five BSs each equipped with
three antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.4 QPSK waveform for stationary MIMO radar, sharing
RF environment with five BSs each equipped with five
antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.5 QPSK waveform for stationary MIMO radar, sharing
RF environment with five BSs each equipped with
seven antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.6 Algorithm (4) is used to select the waveform which
projects maximum power on the targets when
NBS ¼ f3; 5; 7g in the presence of five BSs . . . . . . . . . . . . . 37

Figure 3.7 QPSK waveform for moving MIMO radar, sharing RF
environment with five BSs each equipped with three
antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.8 QPSK waveform for moving MIMO radar, sharing RF
environment with five BSs each equipped with five
antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.9 QPSK waveform for moving MIMO radar, sharing RF
environment with five BSs each equipped with seven
antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.10 Algorithm (4) is used to select the waveform which
projects maximum power on the targets when
NBS ¼ f3; 5; 7g in the presence of five BSs . . . . . . . . . . . . . 40

xii List of Figures



List of Algorithms

Algorithm 1 Projection Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Algorithm 2 Interference-Channel-Selection Algorithm [4] . . . . . . . . . . . 15
Algorithm 3 Modified NSP and Waveform Design . . . . . . . . . . . . . . . . 16
Algorithm 4 Stationary MIMO Radar Waveform Design Algorithm

with Spectrum Sharing Constraints . . . . . . . . . . . . . . . . . . 33
Algorithm 5 Moving MIMO Radar Waveform Design Algorithm

with Spectrum Sharing Constraints . . . . . . . . . . . . . . . . . . 34

xiii



Chapter 1
Introduction

An interesting concept for next generation of radars is multiple-input multiple-output
(MIMO) radar systems; this has been an active area of research for the last couple of
years [1]. MIMO radars have been classified into widely-spaced [2], where antenna
elements are placed widely apart, and colocated [3], where antenna elements are
placed next to each other. MIMO radars can transmit multiple signals, via their
antenna elements, that can be different from each other, thus, resulting in waveform
diversity. This gives MIMO radars an advantage over traditional phased-array radar
systems which can only transmit scaled versions of single waveform and, thus, can
not exploit waveform diversity.

Waveforms with constant-envelope (CE) are very desirable, in radar and commu-
nication system, from an implementation perspective, i.e., they allow power ampli-
fiers to operate at or near saturation levels. CE waveforms are also popular due to
their ability to be used with power efficient class C and class E power amplifiers and
also with linear power amplifiers with no average power back-off into power ampli-
fier. As a result, various researchers have proposed CE waveforms for communica-
tion systems; for example, CE multi-carrier modulation waveforms [4], such as CE
orthogonal frequency division multiplexing (CE-OFDM) waveforms [5]; and radar
systems, for example, CE waveforms [6], CE binary-phase shift keying (CE-BPSK)
waveforms [7], and CE quadrature-phase shift keying (CE-QPSK) waveforms [8].

Existing radar systems, depending upon their type and use, can be deployed any-
where between 3 and 100GHz of radio frequency (RF) spectrum. In this range,
many of the bands are very desirable for international mobile telecommunication
(IMT) purposes. For example, portions of the 700–3600MHz band are in use by
various second generation (2G), third generation (3G), and fourth generation (4G)
cellular standards throughout the world. It is expected that mobile traffic volume
will continue to increase as more and more devices will be connected to wireless
networks. The current allocation of spectrum to wireless services is inadequate to
support growth in traffic volume. A solution to this spectrum congestion problemwas

© The Author(s) 2016
A. Khawar et al., MIMO Radar Waveform Design for Spectrum Sharing
with Cellular Systems, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-29725-5_1

1



2 1 Introduction

presented in a report by President’s Council of Advisers on Science and Technology
(PCAST), which advocated to share 1000MHz of government-held spectrum [9]. As
a result, in the United States (U.S.), regulatory efforts are underway, by the Federal
Communications Commission (FCC) along with the National Telecommunications
and Information Administration (NTIA), to share government-held spectrum with
commercial entities in the frequency band 3550–3650MHz [10]. In the U.S., this
frequency band is currently occupied by various services including radio navigation
services by radars. The future of spectrum sharing in this band depends on novel
interference mitigation methods to protect radars and commercial cellular systems
from each others’ interference [11–15]. Radar waveform design with interference
mitigation properties is one way to address this problem, and this is the subject of
this book.

1.1 Spectrum Sharing Efforts Between Radar
and Communication Systems

A study by the NTIA evaluated sharing of radar band with WiMAX systems and
found that in order to protectWiMAXsystems from radar interference huge exclusion
zones upto tens of kilometers are required [16]. This is due to high signal power used
by radars and high-peak sidelobes which saturate communication system receivers,
which are traditionally designed to handle power levels in watts rather than kilo
watts or mega watts. Such high peak powers are typical of airport surveillance radars,
weather radars, andmilitary phased array radars such as SPY-1 radar ofAegis system.
On the other hand, due to highly sensitive radar receivers, designed to detect even
the faintest of returned signal, has in the past mandated for exclusive rights to radio
spectrum allocations since its operation can be affected by commercial wireless
system interference [16, 17].

The heterogeneous nature of devices sharing an RF band, radar and cellular sys-
tem in our case, dictates the need for electromagnetic interference (EMI) mitigation
tactics for both systems since traditional interference mitigation tactics are meant for
exclusive use of the same RF band. The emission pattern, both in space and time,
of radar is significantly different from communication system. This point is also
validated from a study by the NTIA, showing that radar receivers handle noise like
interference from communications systems differently than the interference from
other radars with former having detrimental effect on radar due to its continuous
wide-band nature than the low duty cycle radar waveforms [16].

In the past, it has been made possible for wireless systems to share govern-
ment bands such that they operate under a low-power constraint in order to pro-
tect incumbents from interference. Example includes: Wi-Fi and Bluetooth in the
2450–2490MHz band, wireless local area network (WLAN) in the 5.25–5.35 and
5.47–5.725GHz radar bands [18], and recently the FCC has proposed small cells, i.e.
wireless base stations operating on a low power, to operate in the 3550–3650MHz
radar band [10].



1.1 Spectrum Sharing Efforts Between Radar and Communication Systems 3

The 3550–3650MHz band, currently used for military and satellite operations,
is a possible candidate for spectrum sharing between military radars and broadband
wireless access (BWA) communication systems such as LTE andWiMAX, according
to the NTIA’s 2010 Fast Track Report [19]. Electromagnetic interference to military
radar operations is expected from spectrum sharing. However, one simply can’t
relocate these federal radar systems to other bands since the nature of the said band
contains many frequencies which work best for highly sensitive fixed, airborne, and
maritime radar systems and are essential for superior performance. Moreover, cost
to relocate can be unbearable. The problem of EMI mitigation is possible due to
advancements in transmitter and receiver design technology, of cellular systems,
which has made real-time spectrum reassignment possible.

In spectrum sharing perspective between radars and communication systems,
EMI needs to be mitigated at both the systems. Communication systems due to their
advancements give more freedom to mitigate interference from radar systems. For
example, in order to counter radar interference on WiMAX systems, interference
mitigation in four domains namely space, time, frequency, and system-level modifi-
cation is proposed by Lackpour et al. [20]. Radar systems due to their sensitivity are
more susceptible to interference from communication systems. So far, as previously
discussed, in order to protect radar operations, communication systems operate on a
low-power basis to avoid interference to radars or operate by sensing the availability
of radar channel at a power level which doesn’t exceed the allowed interference limit
[18, 21].

Radar systems are also evolving and with recent trend in design of MIMO radars
and cognitive radars, radar systems are becoming more resilient in handling inter-
ference and jamming as they are more aware about their radio environment map
(REM). This has motivated researchers to propose beamforming approaches to mit-
igate interference from wireless communication systems to MIMO radar [22]. In
addition, spatial domain can also be used to mitigate MIMO radar interference to
wireless communication system.One such techniquewas proposed by Shabnamet al.
[23] which projected radar signal onto the null space of interference channel between
MIMO radar and MIMO communication system. Moreover, radar waveforms can
also designed such that they don’t cause interference to cellular systems, in addition
to meeting their mission objectives [24].

1.2 Waveform Design for Congested Spectrum

Transmit beampattern design problem, to realize a given covariance matrix subject to
various constraints, for MIMO radars is an active area of research; many researchers
have proposed algorithms to solve this beampattern matching problem. Fuhrmann
et al. proposed waveforms with arbitrary cross-correlation matrix by solving beam-
pattern optimization problem, under the constant-modulus constraint, using various
approaches [25]. Aittomaki et al. proposed to solve beampattern optimization prob-
lem under the total power constraint as a least squares problem [26]. Gong et al.
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proposed an optimal algorithm for omnidirectional beampattern design problemwith
the constraint to have sidelobes smaller than some predetermined threshold values
[27]. Hua et al. proposed transmit beampatterns with constraints on ripples, within
the energy focusing section, and the transition bandwidth [28]. However, many of
the above approaches don’t consider designing waveforms with finite alphabet and
constant-envelope property, which is very desirable from an implementation perspec-
tive. Ahmed et al. proposed amethod to synthesize covariancematrix of BPSKwave-
forms with finite alphabet and constant-envelope property [7]. They also proposed
a similar solution for QPSK waveforms but it did not satisfy the constant-envelope
property. Similarly, Jardak et al. proposed to generate infinite alphabet constant enve-
lope waveform [29]. A method to synthesize covariance matrix of QPSK waveforms
with finite alphabet and constant-envelope property was proposed by Sodagari et al.
[8]. However, they did not prove that such a method is possible. It was shown that it
is possible to synthesize covariance matrix of QPSK waveforms with finite alphabet
and constant-envelope property [30].

As introduced earlier due to the congestion of frequency bands future commu-
nication systems will be deployed in radar bands. Thus, radars and communication
systems are expected to share spectrum without causing interference to each other.
For this purpose, radar waveforms should be designed in such a way that they not
only mitigate interference to them but also mitigate interference by them to other
systems [23, 31]. Transmit beampattern design by considering the spectrum sharing
constraints is a fairly new problem. Sodagari et al. have proposed BPSK and QPSK
transmit beampatterns by considering the constraint that the designed waveforms
do not cause interference to a single communication system [8]. This approach was
extended to multiple communication systems, cellular system with multiple base
stations, by Khawar et al. for BPSK transmit beampatterns [24, 32].

1.3 System Models

In the following sections, we describe radar system model, cellular system model,
interference channel model, and spectrum sharing environment between radar and
communication systems.

1.3.1 Radar Model

We consider waveform design for colocatedMIMO radarmounted on ship. The radar
has M colocated transmit and receive antennas. The inter-element spacing between
antenna elements is on the order of half the wavelength. The radars with colocated
elements give better spatial resolution and target parameter estimation as compared
to radars with widely spaced antenna elements [2, 3]. A detailed discussion on radar
signal typewill be provided in Chap. 2 for BPSKwaveforms and in Chap.3 for QPSK
waveforms.

http://dx.doi.org/10.1007/978-3-319-29725-5_2
http://dx.doi.org/10.1007/978-3-319-29725-5_3
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1.3.2 Cellular System Model

We consider MIMO cellular system, with K base stations, each equipped with NBS

transmit and receive antennas, with the i th BS supportingLi user equipments (UEs).
Moreover, the UEs are also multi-antenna systems with NUE transmit and receive
antennas. If s j (n) is the signals transmitted by the j th UE in the i th cell, then the
received signal at the i th BS receiver can be written as

yi (n) =
∑

j

Hi, j s j (n) + w(n), for 1 � i � K and 1 � j � Li

where Hi, j is the channel matrix between the i th BS and the j th user and w(n) is the
additive white Gaussian noise.

1.3.3 Interference Channel Model

In our spectrum sharing model, radar shares K interference channels with cellular
system. Let’s define the i th interference channel as

Hi �

⎡

⎢⎣
h(1,1)

i · · · h(1,M)
i

...
. . .

...

h(NBS,1)
i · · · h(NBS,M)

i

⎤

⎥⎦ (NBS × M) (1.1)

where i = 1, 2, . . . ,K, and h(l,k)
i denotes the channel coefficient from the i th antenna

element at the MIMO radar to the lth antenna element at the i th BS. We assume
that elements of Hi are independent, identically distributed (i.i.d.) and circularly
symmetric complex Gaussian random variables with zero-mean and unit-variance,
thus, having i.i.d. Rayleigh distribution. In addition to this interference channel, other
types of interference channels can be considered for spectrum sharing scenarios. A
detailed discussion on various interference channels can be found in [33–35].

1.3.4 Cooperative RF Environment

Spectrum sharing between radars and communication systems can be envisioned
in two types of RF environments, i.e., military radars sharing spectrum with mil-
itary communication systems, we characterize it as Mil2Mil sharing and military
radars sharing spectrum with commercial communication systems, we characterize
it as Mil2Com sharing. In Mil2Mil or Mil2Com sharing, interference-channel state
information (ICSI) can be provided to radars via feedback by military/commercial



6 1 Introduction

communication systems, if both systems are in a frequency division duplex (FDD)
configuration [36]. If both systems are in a time division duplex configuration, ICSI
can be obtained via exploiting channel reciprocity [36]. Regardless of the configura-
tion of radars and communication systems, there is the incentive of zero interference,
from radars, for communication systems if they collaborate in providing ICSI. Thus,
we can safely assume the availability of ICSI for the sake of mitigating radar inter-
ference at communication systems.

1.3.5 Spectrum Sharing Scenario

Considering the coexistence scenario in Fig. 1.1, where the radar is sharingK inter-
ference channels with the cellular system, the received signal at the i th BS can be
written as

yi (n) = Hi x(n) +
∑

j

Hi, j s j (n) + w(n) (1.2)

In order to avoid interference to the i th BS, the radar shapes its waveform x(n) such
that it is in the null-space of Hi , i.e. Hi x(n) = 0.

1.4 Spectrum Sharing via a Projection Based Scheme

In wireless communications, multiple access schemes have played a vital role in
enabling multiple users access spectrum simultaneously. Some of the very com-
mon and widely used multiple access schemes include frequency division duplexing

Fig. 1.1 Spectrum sharing scenario: Seaborne MIMO radar detecting a point target while simulta-
neously sharing spectrum with a MIMO cellular system



1.4 Spectrum Sharing via a Projection Based Scheme 7

(FDD) and time division duplexing (TDD). However, the emergence of MIMO sys-
tems made it possible to exploit spatial domain. This gave rise to spatial division
duplexing (SDD) in which users coexist in the same channel by exploiting orthog-
onal spatial dimensions, that are not in use by the other user. This results in an
interference free environment and is also known as null space based coexistence
method.

Projection of signals onto null space of interference channels for avoiding sec-
ondary user interference to primary system has been proposed within the cognitive
radio context. The idea is to estimate the null space of the channel matrix, between
secondary user (SU) and primary user (PU). This process is done at the SU transmit-
ter. In the case when channel is assumed to be reciprocal, between PU transmitter
and receiver, null space can be estimated by SU transmitter by using second order
statistics of the PU’s transmitted signal [37, 38]. However, the above approach is
restricted to PUs using Time Division Duplexing (TDD), for example, WiMax sys-
tems. If the assumption of channel reciprocity is removed, the channel estimation
requires cooperation between the PU and the SU.

In this section, we formulate a projection algorithm to project the radar signal
onto the null space of interference channel Hi . Assuming, the MIMO radar has ICSI
for all Hi interference channels, either through feedback or channel reciprocity, we
can perform a singular value decomposition (SVD) to find the null space of Hi and
use it to construct a projector matrix. First, we find SVD of Hi , i.e.,

Hi = UiΣ i VH
i . (1.3)

Now, let us define
Σ̃ i � diag(̃σi,1, σ̃i,2, . . . , σ̃i,p) (1.4)

where p � min(NBS, M) and σ̃i,1 > σ̃i,2 > · · · > σ̃i,q > σ̃i,q+1 = σ̃i,q+2 =
· · · σ̃i,p = 0. Next, we define

Σ̃
′
i � diag(̃σ ′

i,1, σ̃
′
i,2, . . . , σ̃

′
i,M) (1.5)

where

σ̃ ′
i,u �

{
0, for u � q,

1, for u > q.
(1.6)

Using above definitions we can now define our projection matrix, i.e.,

Pi � Vi Σ̃
′
i V

H
i . (1.7)

Below, we show two properties of projection matrices showing that Pi is a valid
projection matrix.
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Property 1.1 Pi ∈ C
M×M is a projection matrix if and only if Pi = PH

i = P2
i .

Proof Let’s start by showing the ‘only if’ part. First, we show Pi = PH
i . Taking

Harmition of Eq. (1.7) we have

PH
i = (Vi Σ̃

′
i V

H )H = Pi . (1.8)

Now, squaring Eq. (1.7) we have

P2
i = Vi Σ̃ i VH × Vi Σ̃ i VH = Pi (1.9)

where above equation follows from VH Vi = I (since they are orthonormal matrices)
and (Σ̃

′
i )
2 = Σ̃

′
i (by construction). From Eqs. (1.8) and (1.9) it follows that Pi =

PH
I = P2

i . Next, we show Pi is a projector by showing that if v ∈ range (Pi ), then
Pi v = v, i.e., for some w, v = Pi w, then

Pi v = Pi (Pi w) = P2
i w = Pi w = v. (1.10)

Moreover, Pi v − v ∈ null(Pi ), i.e.,

Pi (Pi v − v) = P2
i v − Pi v = Pi v − Pi v = 0. (1.11)

This concludes our proof.

Property 1.2 Pi ∈ C
M×M is an orthogonal projection matrix onto the null space of

Hi ∈ C
N BS×M

Proof Since Pi = PH
i , we can write

Hi PH
i = Ui Σ̃ i VH

i × Vi Σ̃
′
i V

H = 0. (1.12)

The above results follows from noting that Σ̃ i Σ̃
′
i = 0 by construction.

The formation of projection matrix for the BPSK and QPSK waveform design
process is presented in the form of Algorithm 1.

Algorithm 1 Projection Algorithm
if Hi received from waveform design algorithm then
Perform SVD on Hi (i.e. Hi = Ui Σ i VH

i )
Construct Σ̃ i = diag(̃σi,1, σ̃i,2, . . . , σ̃i,p)

Construct Σ̃
′
i = diag(̃σ ′

i,1, σ̃
′
i,2, . . . , σ̃

′
i,M )

Setup projection matrix Pi = Vi Σ̃
′
i V

H
i .

Send Pi to waveform design algorithm.
end if
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Chapter 2
BPSK Radar Waveform

In this chapter, BPSK radar waveforms for spectrum sharing are designed, i.e., the
problem of designingMIMO radar BPSKwaveform to match a given beampattern in
the presence of a cellular system is considered. The classical problem of beampattern
matching is modified to include the constraint that the designed waveform should not
cause interference to cellular system. So in addition tomaximizing the received power
at a number of given target locations and minimizing at all other locations this work
also seeks to null out interference to cellular system through waveform design. The
problem of waveform design for MIMO radars to coexist with a single communica-
tion system is considered in [1]. This work extends this approach and designsMIMO
radar waveforms that can coexist with a cellular system, i.e., waveforms that support
coexistence with many communication systems. Two types of radar platforms are
considered. First, radar waveform is designed for stationary maritime MIMO radar
that experiences stationary or slowly moving interference channel. Due to tractabil-
ity of interference channel, null space projection (NSP) is included in unconstrained
nonlinear optimization problem for waveform design. Second, radar waveform for
moving maritime MIMO radar which experiences interference channel that is fast
enough not to be included in optimization problem due to its intractability. For this
case, FACE waveforms are designed first and then projected onto null space of inter-
ference channel before transmission. The performance of BPSK radar waveform for
spectrum sharing is evaluated via numerical examples.

The remainder of this chapter is organized as follows. Section2.1 discusses
BPSK beampattern matching waveform design. Section2.2 presents the synthesis of
Gaussian covariance matrix for beampattern matching design problem. Section2.3
solves the waveform design optimization problem for spectrum sharing. Section2.4
discusses simulation setup and results. Section2.5 concludes the chapter.

The content is this chapter is reproduced with permission after some modifications (License
number 3733091073496). For the original article please refer to: A. Khawar, A. Abdelhadi,
T. C. Clancy, “MIMO radar waveform design for coexistence with cellular systems”, IEEE
DySPAN 2014.

© The Author(s) 2016
A. Khawar et al., MIMO Radar Waveform Design for Spectrum Sharing
with Cellular Systems, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-29725-5_2
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2.1 Finite Alphabet BPSK Beampattern Matching

In this section, finite alphabet BPSK waveforms are designed for spectrum sharing
by considering a uniform linear array of M transmit antennas with inter-element
spacing of half-wavelength. Then, the transmit signal is given as

x(n) = [
x1(n) x2(n) · · · xM(n)

]
(2.1)

where xm(n) is the baseband signal from the mth transmit element at time index n.
Then the received signal from a target at location θk is given as

rk(n) =
M∑

m=1

e− j (m−1)π sin θk xm(n), k = 1, 2, . . . , K . (2.2)

The above received signal can be represented compactly as

rk(n) = aH (θk)x(n) (2.3)

where a(θk) is the steering vector defined as

a(θk) = [
1 e− jπ sin θk e− j2π sin θk · · · e− j (M−1)π sin θk

]
(2.4)

Now, the power received from the target at location θk is given as

P(θk) = E{aH (θk) x(n) xH (n) a(θk)}
= aH (θk)R a(θk) (2.5)

where R is the correlation matrix of the transmitted signal. The desired beampattern
φ(θk) is formed by minimizing the square of the error between P(θk) and φ(θk)

through a cost function defined as

J (R) = 1

K

K∑

k=1

(
aH (θk)R a(θk) − φ(θk)

)2
. (2.6)

It is important to realize thatR can not be chosen freely since it is a covariance matrix
of the transmitted waveform and thus it must be positive semidefinite. In addition, the
interest is in constant envelope waveform, i.e., all antennas are required to transmit
at same power level which translates to same diagonal elements of R. Thus, R is
subject to two constraints, namely,

C1 : vH Rv � 0, ∀ v

C2 : R(m,m) = c, m = 1, 2, . . . , M.
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Thus, under the given constraints, a constrained nonlinear optimization problem can
be setup to solve beampattern matching problem

min
R

1

K

K∑

k=1

(
aH (θk)R a(θk) − φ(θk)

)2

subject to vH Rv, ∀ v (2.7)

R(m,m) = c, m = 1, 2, . . . , M.

For radar waveform design, this constrained nonlinear optimization problem can be
transformed into an unconstrained nonlinear optimization problem by bounding the
variables using multidimensional spherical coordinates [2]. Once R is synthesized,
the waveform matrix X with Ns samples defined as

X = [
x(1) x(2) · · · x(Ns)

]T
(2.8)

can be realized from

X = XΛ1/2WH (2.9)

where X ∈ CNs×M is a matrix of zero mean and unit variance Gaussian random
variables, Λ ∈ RM×M is the diagonal matrix of eigenvalues and W ∈ CM×M is the
matrix of eigenvectors of R [3]. Due to the distribution of X, the distribution of the
random variables in the columns of X is also Gaussian but the waveform produced
is not guaranteed to have the CE property.

2.2 Gaussian Covariance Matrix Synthesis for Desired
Beampattern

An algorithm to directly synthesize covariance matrix of Gaussian random variables
to generate finite alphabet constant envelope binary phase shift keying (BPSK)wave-
form for a desired beampattern was proposed by Ahmed et al. [2]. Using the same
approach, the Gaussian random variables with zero mean and unit variance, xm , can
be mapped onto BPSK symbol, zm , through a simple relation

zm = sign(xm), m ∈ {1, 2, . . . , M}. (2.10)

Using results from [2], we have

E(z pzq) = E

(
sign(x p)sign(xq)

)

= 2

π
sin−1

(
E(x pxq)

) (2.11)
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where x p and xq are Gaussian random variables and z p and zq are BPSK random
variables. Therefore, the relation between real covariance matrix of beampattern R
and Gaussian covariance matrix Rg is given by

R = 2

π
sin−1(Rg). (2.12)

The Gaussian covariance matrixRg is generated by thematrixX of Gaussian random
variables using (2.9). Then BPSK random variables are generated directly by

Z = sign(X). (2.13)

In [3], the authors propose to synthesize Rg as Rg = UH U which transforms
Eq. (2.7) as

min
ψi j

1

K

K∑

k=1

( 2

π
aH (θk) sin

−1(UH U)a(θk) − φ(θk)
)2

(2.14)

where ψi j are the variables of the optimization problem and U is given by

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 sin(ψ21) sin(ψ31) sin(ψ32) · · · ∏M−1
m=1 sin(ψMm)

0 cos(ψ21) sin(ψ31) cos(ψ32) · · · ∏M−2
m=1 sin(ψMm) cos(ψM,M−1)

0 0 cos(ψ31)
. . .

...
...

...
. . . · · · sin(ψM1) cos(ψM2)

0 0 · · · · · · cos(ψM1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(2.15)

2.3 BPSK Waveform Design for Spectrum Sharing

This section considers the design of MIMO radar waveforms for spectrum sharing.
Two waveform design approaches are considered: one includes spectrum sharing
constraint in the optimization problem and the other does not. The motivation and
reasons for these two approaches and their impact on radar waveform performance
is discussed in the following sections.

We design MIMO radar waveform with the additional constraint of waveform
being in null space of interference channel. In addition, we design the waveform
without this constraint but project the designed waveform onto the null space of the
interference channels.

The MIMO radar is sharing spectrum with a cellular system which has NBS base
stations, thus, there exist NBS interference channels, i.e.Hi , i = 1, 2, . . . ,K, between
the MIMO radar and the cellular system. In this chapter, we consider a MIMO radar
that has less transmit antennas than the receive antennas of communication systems,
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Algorithm 2 Interference-Channel-Selection Algorithm [4]
loop

for i = 1 : do
Estimate CSI of Hi .
Send Hi to Algorithm 3 for null space computation.
Receive dim[N(Hi )] from Algorithm 3.

end for
Find imax = argmax1�i�K dim[N(Hi )].
Set H̆ = Himax as the candidate interference channel.
Send H̆ to Algorithm 3 to get NSP radar waveform.

end loop

i.e., M � NBS. In this case, null space of interference channel is notwell defined sowe
propose a threshold based scheme where singular values below a certain threshold
will be selected to determine null space of interference channel. Thus, among K

interference channels we select the interference channel for waveform design which
has themaximumnull space in order for thewaveform to have optimumperformance.
For interference channel selection, two algorithms, Algorithms 2 and 3, are presented
in [4] which first estimate the channel state information of interference channels. This
is followed by the calculation of null space of interference channels and interference
channel with the maximum null space is selected as the candidate channel. For
our beampattern matching problem, we seek to select the best interference channel,
defined as

imax � argmax
1�i�K

dim[N(Hi )]

HBest � Himax

and we seek to avoid the worst channel, defined as

imin � argmin
1�i�K

dim[N(Hi )]

HWorst � Himin

for MIMO radar waveform design.
Once HBest or H̆ is selected the next step is to construct a projection matrix via

singular value decomposition (SVD) theorem, which is given as

H̆NBS×M = UΣ NBS×M VH

= U

⎛

⎜⎜⎜⎜⎜⎝

σ1

σ2 0
. . .

0 σ j∈min(NBS,M)

⎞

⎟⎟⎟⎟⎟⎠
VH
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Algorithm 3 Modified NSP and Waveform Design
if Hi received from Algorithm 2 then
Perform SVD on Hi (i.e. Hi = Ui Σ i VH

i )
if σ j �= 0 (i.e. j th singular value of Σ i ) then
dim [N(Hi )] = 0
Use pre-specified threshold δ
for j = 1 : min(NBS, M) do

if σ j < δ then
dim [N(Hi )] = dim [N(Hi )] + 1

else
dim [N(Hi )] = 0

end if
end for

else
dim [N(Hi )] = The number of zero singular values

end if
Send dim [N(Hi )] to Algorithm 2.

end if
if H̆ received from Algorithm 2 then
Perform SVD on H̆ = UΣV
if σ j �= 0 then
Use pre-specified threshold δ
σNull = {} {An empty set to collect σs below threshold δ}
for j = 1 : min(NBS, M) do

if σ j < δ then
Add σ j to σNull

end if
end for
V̆ = σNull corresponding columns in V.

end if
Setup projection matrix PV̆ = V̆V̆H .
Get NSP radar signal via ZNSP = ZPH

V̆
.

end if

where U is the complex unitary matrix, Σ is the diagonal matrix of singular values,
and VH is the complex unitary matrix. If SVD results in non-zero singular values,
we calculate null space numerically via Algorithm 3. A threshold is defined and all
the vectors in VH corresponding to singular values below the threshold are collected
in V̆. Then, the projection matrix is formulated as in [5, 6]

PV̆ = V̆V̆H . (2.16)

2.3.1 BPSK Waveform for Stationary MIMO Radar

Consider the case of a maritime MIMO radar when a ship is docked or is stationary
and thus radar platform is stationary. In this case, interference channels have little
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to no variations and thus it is feasible to include the constraint of NSP into the opti-
mization problem. The new optimization problem is formulated by the combination
of projection matrix, Eq. (2.16), into the optimization problem in Eq. (2.14) as

min
ψi j

1

K

K∑

k=1

( 2

π
aH (θk)PV̆ sin−1(UH U)PH

V̆
a(θk) − φ(θk)

)2
. (2.17)

This optimization problem does not guarantee to generate constant envelope radar
waveform but guarantees that the designed waveform is in the null space of the
interference channel or the designed waveform does not cause interference to the
communication system. In addition, it is an evaluation of the impact of the NSP on
the CE radar waveforms. The waveform generation process is shown using the block
diagram of Fig. 2.1. The waveform generated by solving the optimization problem
in Eq. (2.17) and then using Eq. (2.9) is denoted by Xopt. The corresponding BPSK
waveform is denoted by Zopt which is obtained using Eq. (2.13). Then, the output
NSP waveform is given by

Zopt-NSP = ZoptPH
V̆
. (2.18)

Fig. 2.1 Block diagram of the transmit beampattern design problem for a stationary maritime
MIMO radar. The desired waveform is generated by including the projection matrix PV̆, for the
candidate interference channel HBest, in the optimization process. For this waveform constant enve-
lope property is not guaranteed. The candidate interference channel is selected by Algorithms 2
and 3
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2.3.2 BPSK Waveform for Moving MIMO Radar

Consider the case of a maritime radar which is moving and thus experiences interfer-
ence channels that change too fast. In this case, it is not feasible to include the NSP in
the optimization problem. Alternately, we can design CE waveforms by solving the
optimization problem in Eq. (2.14) and then projection the waveform onto the null
space of interference channel. The waveform generation process is shown using the
block diagram of Fig. 2.2. Thus, the CE waveform is generated and then projected
onto the null space of the interference channel according to

ZNSP = ZPH
V̆
. (2.19)

This formulation projects the CE waveform onto the null space of the interference
channel. In the next section, the impact of projection on the radar waveform perfor-
mance is studied.

Fig. 2.2 Block diagram of the transmit beampattern design problem for a moving maritimeMIMO
radar.Thedesiredwaveform is generatedwith constant envelopeproperty and thenprojectedonto the
candidate interference channel HBest via projection matrix PV̆. The candidate interference channel
is selected by Algorithms 2 and 3
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2.4 Numerical Examples

This section provides numerical examples discussing BPSKwaveforms for spectrum
sharing. A uniform linear array (ULA) of ten elements, i.e., M = 10, is considered
with an interelement spacing of half-wavelength. In addition, all antennas transmit at
the same power level which is fixed to unity. Each antenna transmits a waveformwith
Ns = 100 symbols and the resulting beampattern is the average of 100 Monte-Carlo
trials of BPSK waveforms. The mean-squared error (MSE) between the desired,
φ(θk), and actual beampatterns, P(θk), is given by

MSE = 1

K

K∑

k=1

(
P(θk) − φ(θk)

)2
.

The interference channels, Hi , are modeled as a Rayleigh fading channels with
Rayleigh probability density function (pdf) given by

f (h|ρ) = h

ρ2
e

−h2

2ρ2

where ρ is the mode of the Rayleigh distribution. The candidate interference channel,
H̆, for waveform design is selected using Algorithm 2 and its null space is computed
using SVD according to Algorithm 3.

In Fig. 2.3, the desired beampattern has two main lobes from −60◦ to −40◦ and
from 40◦ to 60◦. It is the beampattern for stationary maritime MIMO radar obtained
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Fig. 2.3 Transmit beampattern and its MSE for a stationary maritime MIMO radar. The figure
compares the desired beampattern with the average beampattern of BPSK waveforms for null
space projection included in beampatternmatching optimization problem for candidate interference
channel HBest
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Fig. 2.4 Transmit beampattern and its MSE for a moving maritime MIMO radar. The figure com-
pares the desired beampattern with the average beampattern of BPSK waveforms for null space
projection after optimization for candidate interference channel HBest

by solving the optimization problem inEq. (2.17). The resultingwaveformcovariance
matrix is given by

Ropt-NSP = 1

Ns
ZH
opt-NSPZopt-NSP

Note that the desired beampattern and the beampattern obtained by including the
projection matrix inside the optimization problem match closely for interference
channel HBest than HWorst.

In Fig. 2.4, the desired beampattern has two main lobes from −60◦ to −40◦ and
from 40◦ to 60◦. It represents the beampattern of a moving maritime MIMO radar.
Since interference channels are evolving fast, beampattern is obtained by solving the
optimization problem in Eq. (2.14) and then projecting the resulting waveform onto
the null space of H̆ using the projection matrix in Eq. (2.16). The resulting waveform
covariance matrix is given by

RNSP = 1

Ns
ZH
NSPZNSP.

Note that the desired beampattern and the beampattern obtained by projecting the
waveform onto the null space of interference channel match closely for interference
channel HBest than HWorst.

In Figs. 2.3 and 2.4, MSE of beampattern matching design problem is shown. It
shows that interference channel with the largest null space have the least MSE. This
is in accordance with the methodology to select HBest among k interference channels
using Algorithms 2 and 3.
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In Figs. 2.3 and 2.4, the desired beampattern match closely the actual beampattern
when interference channel HBest is used. Thus, by careful selection of interference
channel using Algorithms 2 and 3, when sharing spectrum with a cellular system,
we can obtain a beampattern which is very close to the desired beampattern and in
addition do not interfere with the communication system

2.5 Conclusion

In this chapter, we considered the MIMO radar waveform design from a spectrum
sharing perspective. We considered a MIMO radar and a cellular system sharing
spectrum and we designed radar waveforms such that they are not interfering with
the cellular system. A method to design MIMO radar waveforms was presented
whichmatched the beampattern to a certain desired beam pattern with the constraints
that the waveform should have constant envelope and belong to the null space of
interference channel. We designed waveform for the case when the MIMO radar
is stationary and thus NSP can be included in the optimization problem due to the
tractability of interference channel.We also designedwaveform for the casewhen the
MIMO radar is moving and experiences rapidly changing interference channels. This
problem didn’t consider the inclusion of NSP in the optimization problem due to the
intractability of interference channel but rather constructed a CE radar waveform and
projected it onto null space of interference channel. The interference channel was
selected usingAlgorithms 2 and 3 and results showed that for both type of waveforms
the desired beampattern and NSP beampatterns matched closely.
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Chapter 3
QPSK Radar Waveform

Multiple-input multiple-output (MIMO) radar is a relatively new concept in the field
of radar signal processing. Many novel MIMO radar waveforms have been devel-
oped by considering various performance metrics and constraints. In this chapter,
we show that finite alphabet constant-envelope (FACE) quadrature-pulse shift key-
ing (QPSK) waveforms can be designed to realize a given covariance matrix by
transforming a constrained nonlinear optimization problem into an unconstrained
nonlinear optimization problem. In addition, we design QPSK waveforms in a way
that they don’t cause interference to cellular system, by steering nulls towards a
selected base station (BS). The BS is selected according to our algorithm which
guarantees minimum degradation in radar performance due to null space projec-
tion (NSP) of radar waveforms. We design QPSK waveforms with spectrum sharing
constraints for stationary and moving radar platform. We show that the waveform
designed for stationary MIMO radar matches the desired beampattern closely, when
the number ofBS antennas NBS is considerably less than the number of radar antennas
M , due to quasi-static interference channel. However, for moving radar the differ-
ence between designed and desired waveforms is larger than stationary radar, due to
rapidly changing wireless channel.

This chapter is organized as follows. Section3.1 introduces finite alphabet
constant-envelope beampattern matching design problem. Section3.2 introduces
QPSKradarwaveforms. Section3.4 designsQPSKwaveformswith spectrumsharing
constraints for stationary and moving radar platforms. Section3.5 discusses simula-
tion setup and results. Section3.6 concludes the chapter.

The content in this chapter is reproduced with permission after some modifications. For the
original article please refer to: A. Khawar, A. Abdelhadi, T.C. Clancy, “QPSK waveform for
MIMO radar with spectrum sharing constraints”, Physical Communication, Vol 17, pg. 37–57,
2015.
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3.1 Finite Alphabet Constant-Envelope Beampattern
Design

In this chapter, we design QPSK waveforms having finite alphabets and constant-
envelope property.We consider a uniform linear array (ULA) of M transmit antennas
with inter-element spacing of half-wavelength. Then, the transmitted QPSK signal
is given as

x̃(n) = [
x̃1(n) x̃2(n) · · · x̃M(n)

]T
(3.1)

where x̃m(n) is the QPSK signal from the mth transmit element at time index n.
Then, the received signal from a target at location θk is given as

r̃k(n) =
M∑

m=1

e− j (m−1)π sin θk x̃m(n), k = 1, 2, . . . , K , (3.2)

where K is the total number of targets. We can write the received signal compactly
as

r̃k(n) = aH (θk )̃x(n) (3.3)

where a(θk) is the steering vector defined as

a(θk) = [
1 e− jπ sin θk · · · e− j (M−1)π sin θk

]T
. (3.4)

We can write the power received at the target located at θk as

P(θk) = E{aH (θk) x̃(n) x̃H (n) a(θk)}
= aH (θk) R̃ a(θk)

(3.5)

where R̃ is correlationmatrix of the transmitted QPSKwaveform. The desired QPSK
beampattern φ(θk), which represents the desired power at location θk , is formed by
minimizing the square of the error between P(θk) and φ(θk) through a cost function
defined as

J (R̃) = 1

K

K∑

k=1

(
aH (θk) R̃ a(θk) − φ(θk)

)2
. (3.6)

Since, R̃ is covariance matrix of the transmitted signal it must be positive semi-
definite.Moreover, due to the interest in constant-envelope property ofwaveforms, all
antennasmust transmit at the samepower level. The optimization problem inEq. (3.6)
has some constraints and, thus, can’t be chosen freely. In order to design finite
alphabet constant-envelope waveforms, we must satisfy the following constraints:

C1 : vH R̃v � 0, ∀ v,

C2 : R̃(m, m) = c, m = 1, 2, . . . , M,
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whereC1 satisfies the ‘positive semi-definite’ constraint andC2 satisfies the ‘constant-
envelope’ constraint. Thus, we have a constrained nonlinear optimization problem
given as

min
R̃

1
K

∑K
k=1

(
aH (θk) R̃ a(θk) − φ(θk)

)2

subject to vH R̃v � 0, ∀ v,

R̃(m, m) = c, m = 1, 2, . . . , M.

(3.7)

Ahmed et al. showed that, by usingmulti-dimensional spherical coordinates, this con-
strained nonlinear optimization can be transformed into an unconstrained nonlinear
optimization [1]. Once R̃ is synthesized, the waveform matrix X̃ with N samples is
given as

X̃ = [
x̃(1) x̃(2) · · · x̃(N )

]T
. (3.8)

This can be realized from
X̃ = XΛ1/2WH (3.9)

where X ∈ CN×M is a matrix of zero mean and unit variance Gaussian random
variables, Λ ∈ RM×M is the diagonal matrix of eigenvalues, and W ∈ CM×M is the
matrix of eigenvectors of R̃ [2]. Note that X̃ has Gaussian distribution due to X but
the waveform produced is not guaranteed to have the CE property.

3.2 Finite Alphabet Constant-Envelope QPSK Waveforms

Consider zero mean and unit variance Gaussian random variables (RVs) x̃m and ỹm

that can be mapped onto a QPSK RV z̃m through, as in [3],

z̃m = 1√
2

[
sign(̃xm) + j sign(ỹm)

]
. (3.10)

Then, it is straight forward to write the (p, q)th element of the complex covariance
matrix as

E{̃z p̃zq} = γpq = γ�pq + j γ�pq (3.11)

where γ�pq and γ�pq are the real and imaginary parts of γpq , respectively. If, Gaussian
RVs x̃ p, x̃q , ỹp, and ỹq are chosen such that

E{̃x p x̃q} = E{ỹp ỹq}
E{̃x p ỹq} = −E{ỹp x̃q} (3.12)

then we can write the real and imaginary parts of γpq as
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γ�pq = E

{
sign(̃x p)sign(̃xq)

}

γ�pq = E

{
sign(ỹp)sign(̃xq)

}
· (3.13)

Then, from Eq. (A.18) Appendix A.2, we have

E{̃z p̃zq} = 2

π

[
sin−1

(
E{̃x p x̃q}

)
+ j sin−1

(
E{ỹp x̃q}

)]
. (3.14)

The complex Gaussian covariance matrix R̃g is defined as

R̃g � �(Rg) + j �(Rg) (3.15)

where�(Rg) and�(Rg) both have real entries, sinceRg is a real Gaussian covariance
matrix. Then, Eq. (3.14) can be written as

R̃ = 2

π

[
sin−1

(
�(Rg)

)
+ j sin−1

(
�(Rg)

)]
. (3.16)

In [3], it is proposed to construct complex Gaussian covariance matrix via transform
R̃g = ŨH Ũ, where Ũ is given by Eq. (3.19). Then, Ũ can be written as

Ũ = �(Ũ) + j�(Ũ) (3.17)

where �(Ũ) and �(Ũ) are given by Eqs. (3.20) and (3.21), respectively. Alternately,
R̃g can also be expressed as

R̃g =
[
�(Ũ)H�(Ũ) + �(Ũ)H�(Ũ)

]
+ j

[
�(Ũ)H�(Ũ) − �(Ũ)H�(Ũ)

]
. (3.18)

Ũ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

e jψ1 e jψ2 sin(ψ21) e jψ3 sin(ψ31) sin(ψ32) · · · e jψM
∏M−1

m=1 sin(ψMm )

0 e jψ2 cos(ψ21) e jψ3 sin(ψ31) cos(ψ32) · · · e jψM
∏M−2

m=1 sin(ψMm ) cos(ψM,M−1)

0 0 e jψ3 cos(ψ31)
. . .

.

.

.

.

.

.
.
.
.

. . . · · · e jψM sin(ψM1) cos(ψM2)

0 0 · · · · · · e jψM cos(ψM1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.19)

�(
Ũ

) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(ψ1) cos(ψ2) sin(ψ21) cos(ψ3) sin(ψ31) sin(ψ32) · · · cos(ψM )
∏M−1

m=1 sin(ψMm )

0 cos(ψ2) cos(ψ21) cos(ψ3) sin(ψ31) cos(ψ32) · · · cos(ψM )
∏M−2

m=1 sin(ψMm ) cos(ψM,M−1)

0 0 cos(ψ3) cos(ψ31)
. . .

.

.

.

.

.

.

.

.

.
. . . · · · cos(ψM ) sin(ψM1) cos(ψM2)

0 0 · · · · · · cos(ψM ) cos(ψM1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.20)
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�(
Ũ

) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin(ψ1) sin(ψ2) sin(ψ21) sin(ψ3) sin(ψ31) sin(ψ32) · · · sin(ψM )
∏M−1

m=1 sin(ψMm )

0 sin(ψ2) cos(ψ21) sin(ψ3) sin(ψ31) cos(ψ32) · · · sin(ψM )
∏M−2

m=1 sin(ψMm ) cos(ψM,M−1)

0 0 sin(ψ3) cos(ψ31)
. . .

.

.

.

.

.

.

.

.

.
. . . · · · sin(ψM ) sin(ψM1) cos(ψM2)

0 0 · · · · · · sin(ψM ) cos(ψM1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.21)

Lemma 3.1 If Rg is a covariance matrix and

R̃g = �(Rg) + j �(Rg) (3.22)

then the complex covariance matrix R̃g will always be positive semi-definite.

Proof Please see Appendix A.3.

Lemma3.1 satisfies constraint C1 and R̃g also satisfies constraint C2 for c = 1. This
helps to transform constrained nonlinear optimization into unconstrained nonlinear
optimization in the following section.

In order to generate QPSK waveforms we define N × 2M matrix S̃, of Gaussian
RVs, as

S̃ �
[
X̃ Ỹ

]
(3.23)

where X̃ and Ỹ are of each size N × M , representing real and imaginary parts of
QPSK waveform matrix, which is given as

Z̃ = 1√
2

[
sign(X̃) + j sign(Ỹ)

]
. (3.24)

The covariance matrix of S̃ is given as

R̃S̃ = E{̃SH S̃} =
[ �(Rg) �(Rg)

−�(Rg) �(Rg)

]
· (3.25)

QPSK waveform matrix Z̃ can be realized by the matrix S̃ of Gaussian RVs which
can be generated using Eq. (3.9) by utilizing R̃S̃.

3.3 Gaussian Covariance Matrix Synthesis for Desired
Beampattern

In this section, we prove that the desired QPSK beampattern can be directly synthe-
sized by using the complex covariance matrix, R̃g , for complex Gaussian RVs. This
generates M QPSK waveforms for the desired beampattern which satisfy the prop-
erty of finite alphabet and constant-envelope. By exploiting the relationship between
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the complex Gaussian RVs and QPSK RVs we have

R̃ = 2

π

[
sin−1

(
�(Rg)

)
+ j sin−1

(
�(Rg)

)]
. (3.26)

Lemma 3.2 If R̃g is a complex covariance matrix and

R̃ = 2

π

[
sin−1

(
�(Rg)

)
+ j sin−1

(
�(Rg)

)]

then R̃ will always be positive semi-definite.

Proof Please see Appendix A.3.

Using Eq. (3.26) we can rewrite the optimization problem in Eq. (3.7) as

min
R̃

1
K

∑K
k=1

[
2
π aH (θk )

{
sin−1

(
�(Rg)

)
+ j sin−1

(
�(Rg)

)}
a(θk ) − φ(θk )

]2

subject to vH R̃v � 0, ∀ v,

R̃(m, m) = c, m = 1, 2, . . . , M.

(3.27)

J (Θ) = 1

K

K∑

k=1

[
2

π
aH (θk)

{
sin−1

(
�(Ũ)H�(Ũ) + �(Ũ)H�(Ũ)

)

+ j sin−1

(
�(Ũ)H�(Ũ) − �(Ũ)H�(Ũ)

)}
aH (θk) − αφ(θk)

]2

(3.28)

Since, the matrix Ũ is already known, we can formulate R̃g via Eq. (3.18). We can
also write the (p, q)th element of the upper triangular matrix R̃g by first writing the
(p, q)th element of the upper triangular matrix �(

Rg(p, q)
)
as

�(
Rg(p, q)

) =
{∏q−1

l=1 sin(ψql)
∏p

s=1

∏q
u=1 f (s, u), p > q

1, p = q
(3.29)

where f (s, u) = cos(ψs) cos(ψu)+ sin(ψs) sin(ψu); and the (p, q)th element of the
upper triangular matrix �(

Rg(p, q)
)
as

�(
Rg(p, q)

) =
{

g(p, q)
∏q−1

l=1 sin(ψql), p > q

0, p = q
(3.30)

where g(p, q) = cos(ψp) sin(ψq)+sin(ψp) cos(ψq). Thus, we canwrite the (p, q)th
element of the upper triangular matrix R̃g as
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R̃g(p, q) =
{

�(
Rg(p, q)

) + j�(
Rg(p, q)

)
, p > q

1, p = q.
(3.31)

By utilizing the information of Ũ, the constrained optimization problem in
Eq. (3.27) can be transformed into an unconstrained optimization problem that can
be written as Eq. (3.28), where

Θ =
[
ψT ψ̃

T
α
]T

, (3.32)

and

ψT = [
ψ21 ψ31 · · · ψM1

]T
,

ψ̃
T = [

ψ1 ψ2 · · · ψM
]T

.

The optimization is over M(M − 1)/2 + M elements ψmn and ψl . The advantage
of this approach lies in the free selection of elements of Θ without affecting the
positive semi-definite property and diagonal elements of R̃g . Noting that Ũ and R̃g

are functions of Θ , we can alternately write the cost-function, in Eq. (3.28), as

J (Θ) = 1

K

K∑

k=1

[
2

π
aH (θk) sin

−1
(
�(Rg)

)
a(θk)

+ 2j

π
aH (θk) sin

−1
(
�(Rg)

)
a(θk) − αφ(θk)

]2

· (3.33)

First, the partial differentiation of J (Θ) with respect to any element of ψ, say ψmn ,
can be found as

∂ J (Θ)

∂ψmn
=

[
2

K

K∑

k=1

{
2

π
aH (θk) sin

−1
(�(Rg)

)
a(θk) + 2j

π
aH (θk) sin

−1
(�(Rg)

)
a(θk)

− αφ(θk)

}][
∂

∂ψmn

{
2

π
aH (θk) sin

−1
(�(Rg)

)
a(θk) + 2j

π
aH (θk)

sin−1
(�(Rg)

)
a(θk)

}]
· (3.34)

The matrix �(Rg) is real and symmetric, i.e., �(
Rg(p, q)

) = �(
Rg(q, p)

)
, at

the same time, �(Rg) has real entries but is skew-symmetric, i.e., �(
Rg(p, q)

) =
−�(

Rg(q, p)
)
. These observations enables us to write Eq. (3.34) in a simpler form
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∂ J (Θ)

∂ψmn
=

[
4

K

K∑

k=1

{
2

π
aH (θk) sin

−1
(�(Rg)

)
a(θk) + 2j

π
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−1
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)
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)
√
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)
∂�(

Rg(p, q)
)

∂ψmn

]
·

(3.35)

where ∂�(
Rg(p, q)

)
/∂ψmn is the partial derivative of the (p, q)th entry of �(Rg)

with respect to ψmn . Note that �(Rg) contains only (M − 1) terms which depend on
ψmn , thus, Eq. (3.35) further simplifies as

∂ J (Θ)

∂ψmn
= 8

πK

[ K∑
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{
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π
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−1
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)
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π
aH (θk)

sin−1 (�(Rg)
)
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(
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)

∂ψmn

+
M∑

q=m+1

cos
(
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√
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R2
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)
∂�(

Rg(m, q)
)

∂ψmn

}]
. (3.36)

Second, the partial differentiation of J (Θ) with respect to any element of ψ̃, say ψl ,
can be found in the same manner as was found for ψmn , i.e.,

∂ J (Θ)

∂ψl
= 8

πK

[ K∑

k=1

{
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π
aH (θk) sin

−1 (�(Rg)
)
a(θk) + 2j

π
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−1 (�(Rg)
)

a(θk) − αφ(θk)

}][ M−1∑
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(
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)
√
1 − �(

R2
g(p, q)

)
∂�(

Rg(p, q)
)

∂ψl

]
· (3.37)

Finally, the partial differentiation of J (Θ) with respect to α is

∂ J (Θ)

∂α
= −2φ(θk)

K

[ K∑

k=1

{
2

π
aH (θk) sin

−1 (�(Rg)
)
a(θk) + 2j

π
aH (θk)

sin−1
(�(Rg)

)
a(θk) − αφ(θk)

}]
. (3.38)
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3.4 Waveform Design for Spectrum Sharing

In the previous section, we designed finite alphabet constant-envelope QPSK
waveforms by solving a beampattern matching optimization problem. In this section,
we extend the beampattern matching optimization problem and introduce new con-
straints in order to tailor waveforms that don’t cause interference to communication
systems when MIMO radar and communication systems are sharing spectrum. We
design spectrum sharing waveforms for two cases: the first case is for a stationary
maritime MIMO radar and the second case is for moving maritime MIMO radar.
The process of waveform design and its performance is discussed in the next sec-
tions.

3.4.1 Stationary Maritime MIMO Radar

Consider a naval ship docked at the harbor. The radar mounted on top of that ship is
also stationary. The interference channels are also stationary due to non-movement
of ship and BSs. In such a scenario, the CSI has little to no variations and thus it is
feasible to include the constraint of NSP, Eq. (3.40), into the optimization problem.
Thus, the new optimization problem is formulated as

min
ψi j ,ψl

1

K

K∑

k=1

[
2

π
aH (θk)Pi

{
sin−1

(
�(Ũ)H�(Ũ) + �(Ũ)H�(Ũ)

)

+ j sin−1

(
�(Ũ)H�(Ũ) − �(Ũ)H�(Ũ)

)}
PH

i aH (θk) − αφ(θk)

]2

· (3.39)

A drawback of this approach is that it does not guarantee to generate constant-
envelope radar waveform. However, the designed waveform is in the null space of
the interference channel, thus, satisfying spectrum sharing constraints. The wave-
form generation process is shown using the block diagram of Fig. 3.1. Note that, K
waveforms are designed, as we have K interference channels that are static. Using
the projection matrix Pi , the NSP projected waveform can be obtained as

˘̃Zopt

NSP = Z̃opt
i PH

i . (3.40)

The correlation matrix of the NSP waveform is given as

˘̃Ri = 1

N

(
˘̃Zopt

NSP

)H ˘̃Zopt

NSP. (3.41)
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Fig. 3.1 Block diagramofwaveformgeneration process for a stationaryMIMOradarwith spectrum
sharing constraints

We propose to select the transmitted waveform with covariance matrix ˘̃Ri is as close
as possible to the desired covariance matrix, i.e.,

imin � argmin
1≤i≤K

[
1

K

K∑

k=1

(
aH (θk)

˘̃Ri a(θk) − φ(θk)
)2

]
(3.42)

R̃opt
NSP � ˘̃Rimin . (3.43)

Equivalently, we select Pi which projects maximum power at target locations. Thus,
for stationary MIMO radar waveform with spectrum sharing constraints we propose
Algorithm (4).

3.4.2 Moving Maritime MIMO Radar

Consider the case of amoving naval ship. The radar mounted on top of the ship is also
moving, thus, the interference channels are varying due to the motion of ship. Due to
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Algorithm 4 Stationary MIMO Radar Waveform Design Algorithm with Spectrum
Sharing Constraints

loop
for i = 1 : Kdo
Get CSI of Hi through feedback from the i th BS.
Send Hi to Algorithm (1) for the formation of projection matrix Pi .
Receive the i th projection matrix Pi from Algorithm (1).
Design QPSK waveform Z̃opt

i using the optimization problem in Eq. (3.39).

Project the QPSK waveform onto the null space of i th interference channel using ˘̃Zopt

NSP =
Z̃opt

i PH
i .

end for

Find imin = argmin
1≤i≤K

[
1

K

∑K

k=1

(
aH (θk)

˘̃Ri a(θk) − φ(θk)
)2]

.

Set R̃opt
NSP = ˘̃Rimin as the covariance matrix of the desired NSP QPSK waveforms to be trans-

mitted.
end loop

time-varying ICSI, it is not feasible to include the NSP in the optimization problem.
For this case, we first design finite alphabet constant-envelope QPSK waveforms,
using the optimization problem in Eq. (3.28), and then use NSP to satisfy spectrum
sharing constraints using transform

˘̃Zi = Z̃PH
i . (3.44)

The waveform generation process is shown using the block diagram of Fig. 3.2. Note
that only one waveform is designed using the optimization problem in Eq. (3.28)
butK projection operations are performed via Eq. (3.44). The transmitted waveform
is selected on the basis of minimum Frobenius norm with respect to the designed
waveform using the optimization problem in Eq. (3.28), i.e.,

imin � argmin
1≤i≤K

||Z̃PH
i − Z̃||F (3.45)

˘̃ZNSP � ˘̃Zimin . (3.46)

The correlation matrix of this transmitted waveform is given as

R̃NSP = 1

N
˘̃ZH

NSP
˘̃ZNSP. (3.47)

Thus, for moving MIMO radar waveform with spectrum sharing constraints we
propose Algorithm (5).
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Algorithm 5 Moving MIMO Radar Waveform Design Algorithm with Spectrum
Sharing Constraints

Design FACE QPSK waveform Z̃ using the optimization problem in Eq. (3.28).
loop

for i = 1 : Kdo
Get CSI of Hi through feedback from the i th BS.
Send Hi to Algorithm (1) for the formation of projection matrix Pi .
Receive the i th projection matrix Pi from Algorithm (1).
Project the FACE QPSK waveform onto the null space of i th interference channel using
˘̃Zi = Z̃PH

i .
end for
Find imin = argmin

1≤i≤K

||Z̃PH
i − Z̃||F .

Set R̃NSP as the covariance matrix of the desired NSP QPSK waveforms to be transmitted.
end loop

Fig. 3.2 Block diagram of waveform generation process for a moving MIMO radar with spectrum
sharing constraints

3.4.3 Performance Analysis

There are different metrics to analyze performance of the designed waveform. These
include analysis of the Woodward ambiguity function of waveform or looking at
performance metrics such as angle of arrival or target detection capabilities of the
designed waveform. In [4, 5] it is shown that uncorrelated orthogonal waveforms
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are optimal for target localization. For NSP waveforms, the performance of the pro-
jected/designed waveforms is comprehensively studied in [6–14]. The results show
minimal degradation in radar performance when its waveform is subjected to null
space projection. Although, Woodward ambiguity function has not been considered
thus far to evaluate the performance of NSP BPSK/QPSK waveform but this can be
done along the lines of [15–18].

3.5 Numerical Examples

In order to design QPSK waveforms with spectrum sharing constraints, we use a
uniform linear array (ULA) of ten elements, i.e., M = 10, with an inter-element
spacing of half-wavelength. Each antenna transmits waveform with unit power and
N = 100 symbols. We average the resulting beampattern over 100 Monte-Carlo
trials of QPSK waveforms. At each run of Monte Carlo simulation we generate a
Rayleigh interference channel with dimensions NBS×M , calculate its null space, and
solve the optimization problem for stationary and moving maritime MIMO radar.

3.5.1 Waveform for Stationary Radar

In this section, we design the transmit beampattern for a stationaryMIMO radar. The
desired beampattern has two main lobes from −60◦ to −40◦ and from 40◦ to 60◦.
The QPSK transmit beampattern for stationary maritimeMIMO radar is obtained by
solving the optimization problem in Eq. (3.39). We give different examples to cover
various scenarios involving different number of BSs and different configuration of
MIMO antennas at the BSs. We also give one example to demonstrate the efficacy
of Algorithms (1) and (4) in BS selection and its impact on the waveform design
problem.

Example 1: Cellular System with five BSs and {3, 5, 7} MIMO antennas and
stationary MIMO radar
In this example, we design waveform for a stationary MIMO radar in the presence of
a cellular system with five BSs. We look at three cases where we vary the number of
BS antennas from {3, 5, 7}. In Fig. 3.3, we show the designed waveforms for all five
BSs each equipped with 3MIMO antennas. Note that, due to channel variations there
is a large variation in the amount of power projected onto target locations for different
BSs. But for certain BSs, the projected waveform is close to the desired waveform.
In Fig. 3.4, we show the designed waveforms for all five BSs each equipped with 5
MIMO antennas. Similar to the previous case, due to channel variations there is a
large variation in the amount of power projected onto target locations for different
BSs. However, the power projected onto the target is less when compared with the
previous case. We increase the number of antennas to 7 in Fig. 3.5, and notice that
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Fig. 3.3 QPSK waveform for stationary MIMO radar, sharing RF environment with five BSs each
equipped with three antennas
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Fig. 3.4 QPSK waveform for stationary MIMO radar, sharing RF environment with five BSs each
equipped with five antennas

the amount of power projected onto the targets is least as compared to previous two
cases. This is because when NBS 	 M we have a larger null space to project radar
waveform and this results in the projected waveform closer to the desired waveform.
However, when NBS < M , this is not the case.

Example 2: Performance of Algorithms (1) and (4) in BS selection for spectrum
sharing with stationary MIMO radar
In Examples 1, we designed waveforms for different number of BSs with different
antenna configurations. As we showed, for some BSs the designed waveform was
close to the desired waveform but for other it wasn’t and the projected waveformwas
closer to the desired waveform when NBS 	 M then when NBS < M . In Fig. 3.6,
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Fig. 3.5 QPSK waveform for stationary MIMO radar, sharing RF environment with five BSs each
equipped with seven antennas
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Fig. 3.6 Algorithm (4) is used to select the waveform which projects maximum power on the
targets when NBS = {3, 5, 7} in the presence of five BSs

we use Algorithms (1) and (4) to select the waveform which projects maximum
power on the targets or equivalently the projected waveform is closest to the desired
waveform. We apply Algorithms (1) and (4) to the cases when NBS = {3, 5, 7} and
select thewaveformwhich projectsmaximumpower on the targets. It can be seen that
Algorithm (4) helps us to select waveform for stationary MIMO radar which results
in best performance for radar in terms of projected waveform as close as possible to
the desired waveform in addition of meeting spectrum sharing constraints.
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3.5.2 Waveform for Moving Radar

In this section, we design transmit beampattern for a moving MIMO radar. The
desired beampattern has twomain lobes from−60◦ to−40◦ and from 40◦ to 60◦. The
QPSK transmit beampattern formovingmaritimeMIMO radar is obtained by solving
the optimization problem in Eq. (3.33) and then projecting the resulting waveform
onto the null space of Hi using the projection matrix in Eq. (3.44). We give different
examples to cover various scenarios involving different number of BSs and different
configuration ofMIMOantennas at theBSs.Wealso give one example to demonstrate
the efficacy of Algorithms (1) and (5) in BS selection and its impact on the waveform
design problem.

Example 3: Cellular System with five BSs each with {3, 5, 7} MIMO antennas
and moving MIMO radar
In this example, we design waveform for a moving MIMO radar in the presence of
a cellular system with five BSs. We look at three cases where we vary the number
of BS antennas from {3, 5, 7}. In Fig. 3.7, we show the designed waveforms for all
five BSs each equipped with 3 MIMO antennas. Note that, due to channel variations
there is a large variation in the amount of power projected onto target locations for
different BSs. When compared with Fig. 3.3, the power projected onto the target by
NSP waveform is less due to the mobility of radar. In Fig. 3.8, we show the designed
waveforms for all five BSs each equipped with 5 MIMO antennas. Similar to the
previous case, due to channel variations there is a large variation in the amount of
power projected onto target locations for different BSs.However, the power projected
onto the target is less when compared with the previous case.We increase the number
of antennas to 7 in Fig. 3.9, and notice that the amount of power projected onto the
targets is least as compared to previous two cases. This is because when NBS 	 M
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Fig. 3.7 QPSK waveform for moving MIMO radar, sharing RF environment with five BSs each
equipped with three antennas
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Fig. 3.8 QPSK waveform for moving MIMO radar, sharing RF environment with five BSs each
equipped with five antennas
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Fig. 3.9 QPSK waveform for moving MIMO radar, sharing RF environment with five BSs each
equipped with seven antennas

we have a larger null space to project radar waveform and this results in the projected
waveform closer to the desired waveform. However, when NBS < M , this is not the
case. Moreover, due to mobility of the radar, the amount of power projected for all
three cases considered in this example are less than the similar example considered
for stationary radar.

Example 4: Performance of Algorithms (1) and (5) in BS selection for spectrum
sharing with moving MIMO radar
In Examples 3, we designed waveforms for different number of BSs with different
antenna configurations. As we showed, for some BSs the designed waveform was
close to the desired waveform but for other it wasn’t and the projected waveformwas
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Fig. 3.10 Algorithm (4) is used to select the waveform which projects maximum power on the
targets when NBS = {3, 5, 7} in the presence of five BSs

closer to the desiredwaveformwhen NBS 	 M thenwhen NBS < M . In Fig. 3.10,we
useAlgorithms (1) and (5) to select thewaveformwhich has the least Frobenius norm
with respect to the designed waveform. We apply Algorithms (1) and (5) to the cases
when NBS = {3, 5, 7} and select the waveformwhich has minimum Frobenius norm.
It can be seen that Algorithm (5) helps us to select waveform for stationary MIMO
radar which results in best performance for radar in terms of projected waveform as
close as possible to the desired waveform in addition of meeting spectrum sharing
constraints.

3.6 Conclusion

Waveform design forMIMO radar is an active topic of research in the signal process-
ing community. This work addressed the problem of designing MIMO radar wave-
forms with constant-envelope, which are very desirable from practical perspectives,
and waveforms which allow radars to share spectrum with communication systems
without causing interference, which are very desirable for spectrum congested RF
environments.

In this chapter, we first showed that it is possible to realize finite alphabet
constant-envelope quadrature-pulse shift keying (QPSK) MIMO radar waveforms.
We proved that such the covariance matrix for QPSK waveforms is positive semi-
definite and the constrained nonlinear optimization problem can be transformed into
an un-constrained nonlinear optimization problem, to realize finite alphabet constant-
envelopeQPSKwaveforms. This result is of importance for both communication and
radar waveform designs where constant-envelope is highly desirable.
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Second, we addressed the problem of radar waveform design for spectrally con-
gested RF environments where radar and communication systems are sharing the
same frequency band. We designed QPSK waveforms with spectrum sharing con-
straints. The QPSK waveform was shaped in a way that it is in the null space of
communication system to avoid interference to communication system. We consid-
ered a multi-BS MIMO cellular system and proposed algorithms for the formation
of projection matrices and selection of interference channels. We designed wave-
forms for stationary and moving MIMO radar systems. For stationary MIMO radar
we presented an algorithm for waveform design by considering the spectrum sharing
constraints. Our algorithm selected thewaveform capable to projectmaximumpower
at the targets. For moving MIMO radar we presented another algorithm for wave-
form design by considering spectrum sharing constraints. Our algorithm selected the
waveform with the minimum Frobenius norm with respect to the designed wave-
form. This metric helped to select the projected waveform closest to the designed
waveform.
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Appendix A
Solution of Waveform Design Optimization
Problem

A.1 Preliminaries

This section presents some preliminary results used in the proofs throughout the
paper. For proofs of the following theorems, please see the corresponding references.

Theorem A.1 The matrix A ∈ C
n×n is positive semi-definite if and only if �(A) is

positive semi-definite [49].

Theorem A.2 A necessary and sufficient condition for A ∈ C
n×n to be positive

definite is that the Hermitian part

AH = 1

2

[
A + AH

]

be positive definite [49].

Theorem A.3 If A ∈ C
n×n and B ∈ C

n×n are positive semi-definite matrices then
the matrix C = A + B is guaranteed to be positive semi-definite matrix [50].

Theorem A.4 If the matrix A ∈ C
n×n is positive semi-definite then the p times

Schur product of A, denoted by Ap◦ , will also be positive semi-definite [50].

A.2 Generating CE QPSK Random Processes
From Gaussian Random Variables

Assuming identically distributed Gaussian RV’s x̃ p, ỹp, x̃q and ỹq that are mapped
onto QPSK RV’s z̃ p and z̃q using

© The Author(s) 2016
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with Cellular Systems, SpringerBriefs in Electrical and Computer Engineering,
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z̃ p = 1√
2

[
sign

(
x̃ p√
2σ

)
+ j sign

(
ỹp√
2σ

)]
(A.1)

z̃q = 1√
2

[
sign

(
x̃q√
2σ

)
+ j sign

(
ỹq√
2σ

)]
(A.2)

where σ2 is the variance of Gaussian RVs. The cross-correlation between QPSK and
Gaussian RVs can be derived as

E{̃z p̃z∗
q} = 1

2
E

[{
sign

( x̃ p√
2σ

)
+ j sign

( ỹp√
2σ

)}

{
sign

( x̃q√
2σ

)
+ j sign

( ỹq√
2σ

)}]
· (A.3)

Using Eq. (3.12) we can write the above equation as

E{̃z p̃z∗
q} = E

{
sign

( x̃ p√
2σ

)
sign

( x̃q√
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The cross-correlation relationship between Gaussian and QPSK RVs can be derived
by first considering
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where p(̃x p, x̃q , ρx̃ p x̃q ) is the joint probability density function of x̃ p and x̃q , and

ρx̃ p x̃q = E{̃x p x̃∗
q }

σ2 is the cross-correlation coefficient of x̃ p and x̃q . Using Hermite
polynomials [51], the above double integral can be transformed as in [8]. Thus,

E

{
sign

( x̃ p√
2σ

)
sign

( x̃q√
2σ

)}
=

∞∑

n=0

ρn
x̃ p x̃q

2πσ22nn!
∞∫

−∞
sign

( x̃ p√
2σ

)
ex̃2

p/2σ
2

Hn

( x̃ p√
2σ

)
dx̃ p

∞∫

−∞
sign

( x̃q√
2σ

)
ex̃2

q /2σ2
Hn

( x̃q√
2σ

)
dx̃q (A.6)

where

Hn (̃xm) = (−1)ne
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e
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2 (A.7)
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is the Hermite polynomial. By substituting x̂ p = x̃ p√
2σ

and x̂q = x̃q√
2σ
, and splitting

the limits of integration into two parts, Eq. (A.6) can be simplified as
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Using Hn(−x̂ p) = (−1)n Hn(x̂ p) [52], Eq. (A.8) can be written as
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The above equation is non-zero for odd n only, therefore, we can rewrite it as
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Then using
∞∫

0
ex̂2

p H2n+1(x̂ p) dx̂ p = (−1)n (2n)!
n! from [52], we can write Eq. (A.10) as
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In Eq. (A.5), we expanded the first part of Eq. (A.4). Now, similarly expanding the
second part of Eq. (A.4), i.e.,
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where p(ỹp, x̃q , ρỹp x̃q ) is the joint probability density function of ỹp and x̃q , and

ρỹp x̃q = E{ỹp x̃∗
q }

σ2 is the cross-correlation coefficient of ỹp and x̃q . Using Hermite
polynomials, Eq. (A.7), we can write Eq. (A.12) as
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By substituting ŷp = ỹp√
2σ

and x̂q = x̃q√
2σ
, and splitting the limits of integration into

two parts, Eq. (A.13) can be simplified as
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Using Hn(−ŷp) = (−1)n Hn(ŷp), above equation can be written as
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sign(ŷp)sign(x̂q)

}
=

∞∑

n=0

ρn
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The above equation is non-zero for odd n only, therefore, we can rewrite it as
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Then using
∞∫

0
eŷ2p H2n+1(ŷp) d ŷp = (−1)n (2n)!

n! , we can write Eq. (A.16) as
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Combining Eqs. (A.11) and (A.17), gives us the cross-correlation of Eq. (A.4) as
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A.3 Proofs

Proof (Proof of Lemma3.1) To prove Lemma3.1, we note that the real part of R̃g is
Rg which is positive semi-definite by definition, thus, by TheoremA.1, the complex
covariance matrix R̃g is also positive semi-definite.

Proof (Proof of Lemma3.2) To prove Lemma3.2, we can individually expand the
sum, sin−1

(�(R̃g)
) + j sin−1

(�(R̃g)
)
, using Taylor series, i.e., first expanding
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3
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5
◦
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7
◦ + · · · (A.19)

Then using TheoremA.3, each term or matrix, on the right hand side, is posi-
tive semi-definite, since, �(Rg) is positive semi-definite by definition. Moreover,
sin−1

(�(Rg)
)
is also positive semi-definite since its a sum of positive semi-definite

matrices, this follows from TheoremA.1.
Similarly, expanding j sin−1

(�(Rg)
)
as

j sin−1
(�(Rg)

) = j [�(Rg) + 1

2 · 3�(Rg)
3
◦ + 1 · 3
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5
◦
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7
◦ + · · · ] (A.20)

Now, R̃ is positive semi-definite since real part of it is positive semidefinite, from
Eq. (A.19) and TheoremA.4.
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Appendix B
MATLAB Code for Waveform Design

B.1 BPSK Waveform Design

In this section,we provideMATLABcode to generateBPSK radarwaveforms for sta-
tionary and moving MIMO radar platforms subject to spectrum sharing constraints.

B.1.1 Stationary Maritime MIMO Radar

The following script designs BPSK radar waveform for stationary platforms that are
subject to spectrum sharing constraints.

clear all
close all
clc
global phi P_v_breve

N_s = 100; % Number of samples
M_T = 10; % MIMO Radar Tx Antennas
M_R = M_T;; % MIMO Radar Rx Antennas
N_R = 10; % Communication System Rx Antennas
alpha = 1; % Scaling Factor
sigma2_w = 1; % Noise Variacne
Sig_threshold = 2;
l = 1;
K = 181; % Number of theta points on graph [-90,90]
k1 = -55; % Starting angle with nonzero desired value
k2 = -45; % Ending angle with nonzero desired value
k3 = 45; % Starting angle with nonzero desired value

% (phase 2)
k4 = 55; % Ending angle with nonzero desired value

% (phase 2)
x0 = zeros (1 ,45); % initial value for optimization

© The Author(s) 2016
A. Khawar et al., MIMO Radar Waveform Design for Spectrum Sharing
with Cellular Systems, SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-29725-5
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x00 = zeros (1 ,10);
x1 = -pi/1 * ones (1 ,45);
x2 = pi/1 * ones (1 ,45);
x3 = -pi/1 * ones (1 ,10);
x4 = pi/1 * ones (1 ,10);
H_iterations = 100; % Number of H realizations;
N_iterations = 100; % Number of Gaussian Generator realizations;
% Desired Beamform
phi = zeros(1,K); % Desired o/p beamform 1:181 = = -90:90
for i4 = k1 + 91:k2 + 91
phi(i4) = 25;
end
for i4 = k3 + 91:k4 + 91
phi(i4) = 25;
end
phi;

%%%%% Optimization for no null BPSK case %%%%%%
theta_noNull = fminsearchbnd(@SQP , [x0 , 1],[x1 , 1], [x2, 1])% SQP
U = Spherical_form(theta_noNull );
R_noNull = (2/pi) * (asin(ctranspose(U) * U)); % CE matrix R
[S_noNull V_noNull D_noNull] = svd(R_noNull );

%%%% For different Sigma Threshold %%%%
for kk2 = 1:3
Sig_threshold = 2 * kk2;
Sig_threshold_2(kk2) = Sig_threshold;
%%%% 100 Monte Carlo trials for Gaussian Generator %%%%
for kk1 = 1: N_iterations
% Gaussian Matrix M_T * N
N = random('normal',0,sigma2_w ,N_s ,M_T);
% Gaussian Waveform generation
X = N * (V_noNull )^(1/2) * ctranspose(S_noNull );
% Corresponding BPSK waveform
Z = sign(real(X));
% BPSK matrix R_BPSK
R_BPSK = (1/N_s) * ctranspose(Z) * Z;
% Drawing the beampattern for no null projection case
for i6 =1:181
theta_2 = (pi/180) * (i6 - 91);
theta_3(i6) = (i6 - 91);
a_TT = [1; exp(i * pi *1* sin(theta_2 )); ...
exp(i * pi *2* sin(theta_2 )); ...
exp(i * pi *3* sin(theta_2 )); exp(i * pi *4* sin(theta_2 ));...
exp(i * pi *5* sin(theta_2 )); exp(i * pi *6* sin(theta_2 ));...
exp(i * pi *7* sin(theta_2 )); exp(i * pi *8* sin(theta_2 ));...
exp(i * pi *9* sin(theta_2 ))];
P(i6 ,kk1)= abs(ctranspose(a_TT) * R_noNull * (a_TT ));
% covariance matrix
P_BPSK_noNull(i6 ,kk1)= abs(ctranspose(a_TT) * ...
R_BPSK * (a_TT )); % BPSK
end
%%% Monte Carlo Simulation for Channel %%%
for(j = 1 : H_iterations)
%%%% Null Space Projection %%%%
% Singular Value Decomposition of Channel State H
H = random('rayleigh ',2,N_R ,M_T);
% parameter is (4-pi/4)* variance

[S V D] = svd(H);
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% Null Space Projectoion of H to P_v for singular value less than
% Sigma_threshold
for (k = 1 : M_T)
if (V(k,k)<Sig_threshold)
V_breve (:,l) = D(:,k);
l = l + 1;
end
% Condition to aviod having no projection matrix
if (l == 1)
V_breve (:,l) = D(:,M_T);
end
end
V_breve;
%j
% Projection matrix into null space of H
P_v_breve = V_breve * inv(ctranspose(V_breve )* V_breve) *...
ctranspose(V_breve );
%%%% END (Null Space Projection )%%%%
% BPSK + null projection
R_BPSK_Null = P_v_breve * R_BPSK * ctranspose(P_v_breve );
% Drawing the beampattern for null projection case
for i6 =1:181
theta_2 = (pi/180) * (i6 - 91);
theta_3(i6) = (i6 - 91);
a_TT = [1; exp(i * pi *1* sin(theta_2 )); ...
exp(i * pi *2* sin(theta_2 )); exp(i * pi *3* sin(theta_2 ));...
exp(i * pi *4* sin(theta_2 )); exp(i * pi *5* sin(theta_2 ));...
exp(i * pi *6* sin(theta_2 )); exp(i * pi *7* sin(theta_2 ));...
exp(i * pi *8* sin(theta_2 )); exp(i * pi *9* sin(theta_2 ))];
P_BPSK_Null(i6 ,kk2 , kk1 ,j)= abs(ctranspose(a_TT) * ...
R_BPSK_Null * (a_TT ));
end
end % channel Monte Carlo Simulation

P_BPSK_Null_av = mean(P_BPSK_Null ,4); % avarage over channel
end % Gaussian Random Generator Monte Carlo Simulation
P_av = mean(P,2); % before BPSK waveform (soln of opt Rg)
% after BPSK waveform
% average over noise (after BPSK waveform and NSP)
P_BPSK_noNull_av = mean(P_BPSK_noNull ,2);
P_BPSK_Null_av_av = mean(P_BPSK_Null_av ,3);
Error_BPSK(:,kk2) = (1/181) * ...
(P_BPSK_Null_av_av (:,kk2) - phi ').^2
end % the sigma threshold
Error_BPSK_av = mean(Error_BPSK)
subplot (1,2,1)
plot(theta_3 , phi ,'b', theta_3 , P_BPSK_Null_av_av)
xlabel('\theta (deg)')
ylabel('P(\theta)')
legend('Desired Beam', 'threshold =2','threshold =4','threshold =6')
subplot (1,2,2)
plot(Sig_threshold_2 , 10 * log(Error_BPSK_av ))
xlabel('threshold ')
ylabel('10 log(MSE)')
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B.1.2 Moving Maritime MIMO Radar

This section provides MATLAB code for BPSK waveform when radar platform is
subject to motion.

clear all
close all
clc
global phi P_v_breve

N_s = 100; % Number of samples
M_T = 10; % MIMO Radar Tx Antennas
M_R = M_T; % MIMO Radar Rx Antennas
N_R = 10; % Communication System Rx Antennas
alpha = 1; % Scaling Factor
sigma2_w = 1; % Noise Variacne
Sig_threshold = 2;
l = 1;
K = 181; % Number of theta points on graph [-90,90]
k1 = -55; % Starting angle with nonzero desired value
k2 = -45; % Ending angle with nonzero desired value
k3 = 45; % Starting angle with nonzero desired value

% (phase 2)
k4 = 55; % Ending angle with nonzero desired value

% (phase 2)
x0 = zeros (1 ,45);% initial value for optimization
x00 = zeros (1 ,10);
x1 = -pi/1 * ones (1 ,45);
x2 = pi/1 * ones (1 ,45);
x3 = -pi/1 * ones (1 ,10);
x4 = pi/1 * ones (1 ,10);
H_iterations = 100;% Number of H realizations;
N_iterations = 100;% Number of Gaussian Generator realizations;
% Desired Beamform
phi = zeros(1,K); % Desired o/p beamform 1:181 = = -90:90
for i4 = k1 + 91:k2 + 91
phi(i4) = 25;
end
for i4 = k3 + 91:k4 + 91
phi(i4) = 25;
end
phi;
%%%%% For different Sigma Threshold %%%%%
for kk2 = 1:3
Sig_threshold = 2 * kk2;
Sig_threshold_2(kk2) = Sig_threshold;
%%%%% Monte Carlo Simulation for Channel %%%%%
for(j = 1 : H_iterations)
l = 1;
%%%% Null Space Projection %%%%
% Singular Value Decomposition of Channel State H
H = random('rayleigh ',2,N_R ,M_T);
% parameter is (4-pi/4)* variance
[S V D] = svd(H); % Null Space Projectoion of H to P_v
% for singular value less than Sigma_threshold
for (k = 1 : M_T)
if (V(k,k)<Sig_threshold)
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V_breve (:,l) = D(:,k);
l = l + 1;
end
% Condition to aviod having no projection matrix
if (l == 1)
V_breve (:,l) = D(:,M_T);
end
end
V_breve;
% Projection matrix into null space of H
P_v_breve = V_breve * inv(ctranspose(V_breve )* V_breve) ...
* ctranspose(V_breve );
%%% END (Null Space Projection )%%%
%%% Optimization for NSP in optimization case %%%
theta_noNull = fminsearchbnd(@SQP_case2 , ...
[x0 , 1],[x1 , 1], [x2, 1]);% SQP
U = Spherical_form(theta_noNull );
R_noNull = (2/pi) * (asin(ctranspose(U) * U)); % CE matrix R
[S_noNull V_noNull D_noNull] = svd(R_noNull );
%%%% 100 Monte Carlo trials for Gaussian Generator %%%%
for kk1 = 1: N_iterations
% Gaussian Matrix M_T * N
N = random('normal',0,sigma2_w ,N_s ,M_T);
% Gaussian Waveform generation
X = N * (V_noNull )^(1/2) * ctranspose(S_noNull );
% Corresponding BPSK waveform
Z = sign(real(X));
% BPSK matrix R_BPSK
R_BPSK(:,:,kk1) = (1/N_s) * ctranspose(Z) * Z;
R_BPSK_Null (:,:,kk1) = P_v_breve * R_BPSK(:,:,kk1) ...
* ctranspose(P_v_breve ); % after BPSK waveform

end % Gaussian Random Generator Monte Carlo Simulation
R_BPSK_Null_av (:,:,j) = mean(R_BPSK_Null ,3);
% averaging over noise
end % channel Monte Carlo Simulation
% avarage over channel
R_BPSK_Null_av_av (:,:,kk2) = mean(R_BPSK_Null_av ,3);
% Drawing the beampattern for null projection case
for i6 =1:181
theta_2 = (pi/180) * (i6 - 91);
theta_3(i6) = (i6 - 91);
a_TT =
[1; exp(i * pi *1* sin(theta_2 )); ...
exp(i * pi *2* sin(theta_2 )); ...
exp(i * pi *3* sin(theta_2 )); exp(i * pi *4* sin(theta_2 )); ...
exp(i * pi *5* sin(theta_2 )); exp(i * pi *6* sin(theta_2 )); ...
exp(i * pi *7* sin(theta_2 )); exp(i * pi *8* sin(theta_2 )); ...
exp(i * pi *9* sin(theta_2 ))];
P_BPSK_Null_av_av(i6,kk2)= abs(ctranspose(a_TT) * ...
R_BPSK_Null_av_av (:,:,kk2) * (a_TT ));
end
Error_BPSK(:,kk2) = (1/181)*( P_BPSK_Null_av_av (:,kk2) - phi ').^2;
end % the sigma threshold

Error_BPSK_av = mean(Error_BPSK)
subplot (1,2,1)
plot(theta_3 , phi ,'b', theta_3 , P_BPSK_Null_av_av)
xlabel('\theta (deg)')
ylabel('P(\theta)')
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legend('Desired Beam', 'threshold =2','threshold =4','threshold =6')
subplot (1,2,2)
plot(Sig_threshold_2 , 10 * log(Error_BPSK_av ))
xlabel(' threshold ')
ylabel('10 log(MSE)')

B.2 QPSK Waveform Design

In this section,we provideMATLABcode to generateQPSK radarwaveforms for sta-
tionary and moving MIMO radar platforms subject to spectrum sharing constraints.

B.2.1 Stationary Maritime MIMO Radar

In this section, we provide MATLAB code to generate radar waveform for stationary
radar platforms.

clear all
close all
clc
global phi P_v_breve

N_s = 10000; % Number of samples
M_T = 10; % MIMO Radar Tx Antennas
M_R = M_T; % MIMO Radar Rx Antennas
N_R = 3; % Communication System Rx Antennas
alpha = 1; % Scaling Factor
sigma2_w = 0.1;% Noise Variacne
Sig_threshold = 2;
l = 1;
% Optimization I.C.
x0 = zeros (1 ,45); % initial value for optimization
x00 = zeros (1 ,10);
x1 = -pi/1 * ones (1 ,45);
x2 = pi/1 * ones (1 ,45);
x3 = -pi/1 * ones (1 ,10);
x4 = pi/1 * ones (1 ,10);
H_iterations = 1; % Number of H realizations;
N_iterations = 1; % Number of Gaussian Generator realizations;
K = 181; % Number of theta points on graph [-90,90]
% Desired Beamform 1 parameters
k1 = -60; % Starting angle with nonzero desired value
k2 = -40; % Ending angle with nonzero desired value
k3 = 40; % Starting angle with nonzero desired value

% (phase 2)
k4 = 60; % Ending angle with nonzero desired value

% (phase 2)
for i4 = k1 + 91:k2 + 91
phi(i4) = 25;
end
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for i4 = k3 + 91:k4 + 91
phi(i4) = 25;
end
%%%% Optimization for no null QPSK case %%%%
theta_noNull = fminsearchbnd(@SQP_complex2 , [x0 , 1, x00], ...
[x1 , 1, x3], [x2 , 1, x4])% SQP
U_re = Spherical_form_real (theta_noNull );
% Speherical form
U_im = Spherical_form_imag (theta_noNull );
% Speherical form
U = complex(U_re , U_im);
Rg = ctranspose(U) * U;
Rg_real = real(Rg);
Rg_imag = imag(Rg)
R_S = [Rg_real , Rg_imag; -Rg_imag , Rg_real]
R_real = real ((2/pi) * (asin(Rg_real )));
R_imag = real ((2/pi) * (asin(Rg_imag )))
R_complex = complex(R_real , R_imag );
R_noNull = R_complex%(2/pi) * ...
(asin(ctranspose(U) * U)); % CE matrix R
CE matrix R
[S_noNull V_noNull D_noNull] = svd(R_S);
%%%%% For different Sigma Threshold %%%%
for kk2 = 1:1 % sigma_th = 2, 4, 6, 8, 10

%%%%% 100 Monte Carlo trials for Gaussian Generator %%%%
for k1 = 1: N_iterations
% Gaussian Matrix M_T * N
N_S = random('normal',0,sigma2_w ,N_s ,2*M_T);
% Gaussian Waveform generation
S = N_S * (V_noNull )^(1/2) * ctranspose(S_noNull );
% Corresponding QPSK waveform
Z = sqrt (1/2) * complex(sign(S(: ,1:10)) , sign(S(: ,11:20)));
R_QPSK = (1/N_s) * ctranspose(Z) * Z;
% Drawing the beampattern for no null projection case
for i6 =1:181
theta_2 = (pi/180) * (i6 - 91);
theta_3(i6) = (i6 - 91);
a_TT =
[1; exp(i * pi *1* sin(theta_2 )); ...
exp(i * pi *2* sin(theta_2 )); ...
exp(i * pi *3* sin(theta_2 )); exp(i * pi *4* sin(theta_2 )); ...
exp(i * pi *5* sin(theta_2 )); exp(i * pi *6* sin(theta_2 )); ...
exp(i * pi *7* sin(theta_2 )); exp(i * pi *8* sin(theta_2 )); ...
exp(i * pi *9* sin(theta_2 ))];
P(i6 ,k1)= abs(ctranspose(a_TT) * R_noNull * (a_TT ));
P_QPSK_noNull(i6 ,k1)= abs(ctranspose(a_TT) * R_QPSK * (a_TT ));
end
P_av = mean(P,2);
P_QPSK_noNull_av = mean(P_QPSK_noNull ,2);
%%% Monte Carlo Simulation for Channel %%%
for(j = 1 : H_iterations)
l = 1;
QPSK_noise_iterations = k1
Channel_iterations = j
%%%% Null Space Projection %%%%%
% Singular Value Decomposition of Channel State H
H = randn(N_R , M_T) + j * randn(N_R , M_T);
% Null Space Projectoion of H to P_v for singular
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% value less than
P_v_breve = null(H) * ctranspose(null(H));
%%%% Optimization for null QPSK case %%%%
theta_noNull = fminsearchbnd(@SQP_complex2_case2 , ...
[x0 , 1, x00],[x1 , 1, x3], [x2 , 1, x4])% SQP
U_re = Spherical_form_real (theta_noNull );
% Speherical form
U_im = Spherical_form_imag (theta_noNull );
% Speherical form
U = complex(U_re , U_im);
Rg = ctranspose(U) * U;
Rg_real = real(Rg);
Rg_imag = imag(Rg)
R_real = real ((2/pi) * (asin(Rg_real )));
R_imag = real ((2/pi) * (asin(imag(Rg))));
R_complex = P_v_breve * complex(R_real , R_imag) ...
* ctranspose(P_v_breve );

R_Null = R_complex
%%%% END (Null Space Projection) %%%%

% Drawing the beampattern for null projection case
for i6 =1:181
theta_2 = (pi/180) * (i6 - 91);
theta_3(i6) = (i6 - 91);
a_TT =
[1; exp(i * pi *1* sin(theta_2 )); ...
exp(i * pi *2* sin(theta_2 )); ...
exp(i * pi *3* sin(theta_2 )); exp(i * pi *4* sin(theta_2 )); ...
exp(i * pi *5* sin(theta_2 )); exp(i * pi *6* sin(theta_2 )); ...
exp(i * pi *7* sin(theta_2 )); exp(i * pi *8* sin(theta_2 )); ...
exp(i * pi *9* sin(theta_2 ))];

P_QPSK_Null(i6 ,kk2 , k1 ,j)=
abs(ctranspose(a_TT) * R_Null * (a_TT ));
end % beampattern drawing
end % Channel Monte Carlo Simulation
P_QPSK_Null_av = mean(P_QPSK_Null ,4);% averageing over channel
end % Gaussian Random Generator Monte Carlo Simulation
P_QPSK_Null_av_av = mean(P_QPSK_Null_av ,3);
% averaging over noise
Error_QPSK(:,kk2) = (1/181) * ...
(P_QPSK_Null_av_av (:,kk2) - phi ').^2 % MSE calculation
end % the sigma threshold
Error_QPSK_av = mean(Error_QPSK)
% averaging over theta to get the total error

plot(theta_3 , phi ,'b', theta_3 , P_av ,'r', theta_3 , ...
P_QPSK_noNull_av , 'g', theta_3 , P_QPSK_Null_av_av , 'm')
legend('DESIRED ','R','R_{QPSK}','PROJECTED QPSK')

B.2.2 Moving Maritime MIMO Radar

In this section, we provide MATLAB code to design MIMO radar waveform for
moving radar platforms subject to spectrum sharing constraints.
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clear all
close all
clc
global phi P_v_breve

N_s = 10000; % Number of samples of QPSK
M_T = 10; % MIMO Radar Tx Antennas (In this simulation it
% has to be 10 because of the spherical coordinates)
M_R = M_T; % MIMO Radar Rx Antennas
N_R = 3; % Communication System Rx Antennas
%(could be changed)
alpha = 1; % Scaling Factor
sigma2_w = 0.1; % Noise Variacne
%Sig_threshold = 2;
l = 1;
% Optimization I.C.
x0 = zeros (1 ,45); % initial value for optimization
x00 = zeros (1 ,10);
x1 = -pi/1 * ones (1 ,45);
x2 = pi/1 * ones (1 ,45);
x3 = -pi/1 * ones (1 ,10);
x4 = pi/1 * ones (1 ,10);
H_iterations = 1;% Number of H realizations;
N_iterations = 1;% Number of Gaussian Generator realizations;
K = 181; % Number of theta points on graph [-90,90]
% Desired Beamform 1 parameters
k1 = -60; % Starting angle with nonzero desired value
k2 = -40; % Ending angle with nonzero desired value
k3 = 40; % Starting angle with nonzero desired value
%(phase 2)
k4 = 60; % Ending angle with nonzero desired value
%(phase 2)
% Desired Beamform 2 parameters
phi = zeros(1,K);% Desired o/p beamform 1:181 = = -90:90
% Desired Beamform 1
for i4 = k1 + 91:k2 + 91
phi(i4) = 25;
end
for i4 = k3 + 91:k4 + 91
phi(i4) = 25;
end

%%%%% Optimization for no null QPSK case %%%%%
theta_noNull = fminsearchbnd(@SQP_complex2 , [x0 , 1, x00], ...
[x1 , 1, x3], [x2 , 1, x4])% SQP
U_re = Spherical_form_real (theta_noNull );
% Speherical form
U_im = Spherical_form_imag (theta_noNull );
% Speherical form
U = complex(U_re , U_im);
Rg = ctranspose(U) * U;
Rg_real = real(Rg);
Rg_imag = imag(Rg)
R_S = [Rg_real , Rg_imag; -Rg_imag , Rg_real]
R_real = real ((2/pi) * (asin(Rg_real )));
R_imag = real ((2/pi) * (asin(Rg_imag )))
R_complex = complex(R_real , R_imag );
R_noNull = R_complex%(2/pi) * ...
(asin(ctranspose(U) * U)); % CE matrix R
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[S_noNull V_noNull D_noNull] = svd(R_S);
%%%% For different number of samples %%%%
for kk2 = 1:1:1
%%%% 100 Monte Carlo trials for Gaussian Generator %%%%
for k1 = 1: N_iterations

% Gaussian Waveform generation
N_S = random('normal',0,sigma2_w ,N_s ,2*M_T);
S = N_S * (V_noNull )^(1/2) * ctranspose(S_noNull );
% Corresponding QPSK waveform
Z = sqrt (1/2) * complex(sign(S(:,1:M_T)), ...
sign(S(:,M_T + 1:2* M_T )));
% QPSK matrix R_QPSK
R_QPSK = (1/N_s) * ctranspose(Z) * Z ;
% Drawing the beampattern for no null projection case
for i6 =1:181
theta_2 = (pi/180) * (i6 - 91);
theta_3(i6) = (i6 - 91);
a_TT =
[1; exp(i * pi *1* sin(theta_2 )); ...
exp(i * pi *2* sin(theta_2 )); ...

exp(i * pi *3* sin(theta_2 )); exp(i * pi *4* sin(theta_2 )); ...
exp(i * pi *5* sin(theta_2 )); exp(i * pi *6* sin(theta_2 )); ...
exp(i * pi *7* sin(theta_2 )); exp(i * pi *8* sin(theta_2 )); ...
exp(i * pi *9* sin(theta_2 ))];
P(i6 ,k1)= abs(ctranspose(a_TT) * R_noNull * (a_TT ));
P_QPSK_noNull(i6 ,k1)= abs(ctranspose(a_TT) * ...
R_QPSK * (a_TT ));
end

P_av = mean(P,2);
P_QPSK_noNull_av = mean(P_QPSK_noNull ,2)
P_QPSK_noNull_av(:,kk2) = mean(P_QPSK_noNull ,2)
Error_QPSKnoNull(:,kk2) = (1/181)* ...
(P_QPSK_noNull_av(:,kk2) - phi ').^2
%%%% Monte Carlo Simulation for Channel %%%%
for(j = 1 : H_iterations)
%%%% Null Space Projection %%%%%
% Singular Value Decomposition of Channel State H
H = randn(N_R , M_T) + j * randn(N_R , M_T);
%%%%%% new null space projection %%%%%%
null(H);
P_v_breve = null(H) * ctranspose(null(H));
%%% END (Null Space Projection) %%%
R_QPSK_Null = P_v_breve * R_QPSK * ctranspose(P_v_breve );
% Drawing the beampattern for null projection case
for i6 =1:181
theta_2 = (pi/180) * (i6 - 91);
theta_3(i6) = (i6 - 91);
a_TT =
[1; exp(i * pi *1* sin(theta_2 ));
... exp(i * pi *2* sin(theta_2 )); ...
exp(i * pi *3* sin(theta_2 )); exp(i * pi *4* sin(theta_2 )); ...
exp(i * pi *5* sin(theta_2 )); exp(i * pi *6* sin(theta_2 )); ...
exp(i * pi *7* sin(theta_2 )); exp(i * pi *8* sin(theta_2 )); ...
exp(i * pi *9* sin(theta_2 ))];
P_QPSK_Null(i6 , kk2 , k1 , j)= abs(ctranspose(a_TT) ...
* R_QPSK_Null * (a_TT ));
end
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P_QPSK_Null_av = mean(P_QPSK_Null ,4);
end % channel Monte Carlo Simulation
P_QPSK_Null_av_av = mean(P_QPSK_Null_av ,3);
Error_QPSK(:,kk2) = (1/181)*( P_QPSK_Null_av_av (:,kk2) - phi ').^2
end % Gaussian Random Generator Monte Carlo Simulation
end % the sigma threshold
Error_QPSK_av = mean(Error_QPSK)
Error_QPSKnoNull_av = mean(Error_QPSKnoNull)
plot(theta_3 , phi ,'b', theta_3 , P_av ,'r', theta_3 , ...
P_QPSK_noNull_av , 'g', theta_3 , P_QPSK_Null_av_av)
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